i
e
TLLRAL

: I 5 1 1 : I h
: i i ; H e 1 -
i : ' H i : 3
3 i] o L i s o
E 0] i W N u 3 1 &
A W W . — — { .
.I b _s E - :"= E i 5 :) E i '
N W : i Y ; N |
& i § 5 . 3 I :
) : 3 H H = %]
e 5 B R S0 W
;

...........................
llllllllllllllllllllllllll

lllllllllllllllllllllllllll

llllllllllllllllllllllllllll

............................

llllllllllllllllllllll

AN ILLUSTRATED BEGINNER'S
GUIDE TO PHYSICAL COMPUTING

JODY CULKIN AND ERIC HAGAN

CONTENTS

Acknowledgments

About the Authors

Preface

Chapter 1: Introduction to Arduino

Physical Computing

Prototyping

What Will | Need and Where Can | Get It?
Parts and Tools

Resources

Summary

Chapter 2: Your Arduino

Parts of an Arduino

Plug Your Arduino into Your Computer
Components and Tools

Summary

Chapter 3: Meet the Circuit

The Circuit: Building Block of Electronics
The Schematic

Using a Breadboard

Building a Circuit

A Look at the Battery

Power for Our Circuit: Electricity

Debugging the Circuit

The Multimeter

Using the Multimeter

Back to Debugging Our Circuit
Summary

Chapter 4:

Arduino, Circuits, and Code: Bringing Everything Together
What's an IDE?

Downloading the Arduino IDE: Getting Started

The Sketch: The Basic Unit of Arduino Programming
Debugging: What to Do if the LED Isn’t Blinking
LEA4_Blink Sketch: An Overview

setup() and loop(): The Guts of Your Code

Looking at loop(): What Happens Over and Over

A Schematic of the Arduino

Building the Basic Circuit

SOS Signal Light: Creating More Complex Timing

Summary
Chapter 5:

Understanding Electricity

Build the Circuit Step by Step

Electricity: An Overview

Understanding Electricity: The Water Tank Analogy
Voltage: The Potential

Current: The Flow

Resistance: Restricting the Flow

Voltage, Current, Resistance: Review

How Do Voltage, Current, and Resistance Interact? Ohm'’s Law
Components in Parallel and Series
Summary

Chapter 6:

Interactivity!

Digital Inputs and Outputs Overview

Digital Input: Add a Button

Looking at the Sketch: Variables

Digital Input Refresher

Looking at the Sketch: Conditional Statements
Add a Speaker and Adjust the Code

Add Two More Buttons and Adjust the Code
Reviewing Electronic and Code Concepts
Summary

Chapter 7:

There's More to Life than On and Offl
Potentiometer Circuit, Step by Step

The LEA7_AnaloglnOutSerial Sketch

Analog Input: Values from the Potentiometer
Analog Values as Output: PWM

Serial Communication

Adding the Speaker

Adding the Photoresistor

Summary
Chapter 8:

Waving the Flags

Servos Up Close

Building the Servo Circuit Step by Step
LEA8_Sweep Overview

What's a for Loop?

Operators

The for Loop in the Sketch

Add Interactivity: Turn the Flag
LEA8_Knob Explained

Two Flags Waving: Add a Second Servo Motor
LEA8_2_servos, First Look

Summary

Chapter 9:

Project Management

A Few Helpful Components

Types of Projects

Other Versions of the Arduino Board
Document Your Project and Share It!

Summary

Appendix A:

Index

Make

LEARN ELECTRONICS WITH

ARDUINO

V.

JODY CULKIN AND ERIC HAGAN

MAKERMEDIA

SAMN FRAMCISCO, CA

Copyright © 2017 Jody Culkin and Eric Hagan. All rights reserved.
Printed in the United States of America.

Published by Maker Mediq, Inc., 1700 Montgomery Street, Suite 240, San
Francisco, CA 94111

Maker Media books may be purchased for educational, business, or sales
promotional use. Online editions are also available for most titles

(). For more information, contact our
corporate/institutional sales department: 800-998-9938 or
corporate@oreilly.com.

Publisher and Editor: Roger Stewart

Copy Editor: Elizabeth Welch, Happenstance Type-O-Rama
Proofreader: Scout Festa, Happenstance Type-O-Rama

Interior Designer, Compositor, and Cover Designer: Maureen Forys,
Happenstance Type-O-Rama

Indexer: Valerie Perry, Happenstance Type-O-Rama

August 2017: First Edition

Revision History for the First Edition
28-08-2017 First Release

See for release
details.

Make:, Maker Shed, and Maker Faire are registered trademarks of Maker
Media, Inc. The Maker Media logo is a trademark of Maker Media, Inc. An
lllustrated Beginner’s Guide to Physical Computing and related trade dress
are trademarks of Maker Media, Inc. Many of the designations used by
manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and Maker
Media, Inc. was aware of a trademark claim, the designations have been
printed in caps or initial caps. While the publisher and the author have used
good faith efforts to ensure that the information and instructions contained
in this work are accurate, the publisher and the author disclaim all
responsibility for errors or omissions, including without limitation
responsibility for damages resulting from the use of or reliance on this work.
Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes
is subject to open source licenses or the intellectual property rights of

http://safaribooksonline.com/
http://oreilly.com/catalog/errata.csp?isbn=9781680453744

others, it is your responsibility to ensure that your use thereof complies with
such licenses and/or rights.

9-781-68045-374-4

Safari® Books Online

Safari Books Online is an on-demand digital library that delivers expert
content in both book and video form from the world’s leading authors in
technology and business. Technology professionals, software developers,
web designers, and business and creative professionals use Safari Books
Online as their primary resource for research, problem solving, learning, and
certification training. Safari Books Online offers a range of plans and pricing
for enterprise, government, education, and individuals. Members have
access to thousands of books, training videos, and prepublication
manuscripts in one fully searchable database from publishers like O'Reilly
Media, Prentice Hall Professional, Addison-Wesley Professional, Microsoft
Press, Sams, Que, Peachpit Press, Focal Press, Cisco Press, John Wiley &
Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe Press, FT
Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, Course
Technology, and hundreds more. For more information about Safari Books
Online, please visit us online.

How to Contact Us

Please address comments and questions to the publisher:
Maker Media

1700 Montgomery St.

Suite 240

San Francisco, CA 94111

You can send comments and questions to us by email at
books@makermedia.com.

Maker Media unites, inspires, informs, and entertains a growing community
of resourceful people who undertake amazing projects in their backyards,
basements, and garages. Maker Media celebrates your right to tweak, hack,
and bend any Technology to your will. The Maker Media audience continues
to be a growing culture and community that believes in bettering ourselves,
our environment, our educational system—our entire world. This is much
more than an audience, it's a worldwide movement that Maker Media is
leading. We call it the Maker Movement.

To learn more about Make: visit us at makezine.com. You can learn more
about the company at the following websites:

Maker Media: makermedia.com
Maker Faire: makerfaire.com
Maker Shed: makershed.com

http://makezine.com/
http://makermedia.com/
http://makerfaire.com/
http://makershed.com/

DEDICATION

Dedicated to all of our students, past, present, and future. Their
curiosity drives them and inspires us.

This book wouldn’t have been possible without the help of many
people, more than we can mention here. We'd like to thank our tech
editor, Anna Pinkas, for her tireless and thorough review of this text.
An earlier version of this book also benefited from tech editing by
Michael Colombo and Sharon Cichelli. Roger Stewart, our publisher
and editor, has been supportive and helpful throughout the process
of getting this book into print. Our production team from
Happenstance Type-O-Rama has been a delight to work with,
particularly Liz Welch and Maureen Forys. We met at the Interactive
Telecommunications Program at New York University, and we will
always be grateful to Tom Igoe for suggesting we work together on
a project there. In fact, we'd like to thank all of the faculty and staff
at ITP, especially Dan O’Sullivan and Marianne Petit.

Eric would like to thank his wife Marie for her endless support,
without which this book would not be possible. He would also like to
thank his parents, David and Tracey, who have always had so much
faith in his work.

Jody would like to thank her husband Calvin Reid, who seems to
think she can do anything and has done whatever he can to make
that possible. And she would like to acknowledge the memory of her
parents, Florence and Hosmer Culkin, who would be startled but
proud that she has co-authored a book on technology.

Jody Culkin is an artist and teacher. She has shown her sculptures,
photographs, and installations at museums and galleries throughout
this country and internationally. She illustrated How to Use a
Breadboard, written by Sean Ragan, for Maker Media (2017). Her
comic Arduino! has been translated into 12 languages. She has
received grants and awards from the National Science Foundation,
the New York State Council on the Arts, and many other
organizations. She is currently a professor at City University of New
York's Borough of Manhattan Community College in the Media Arts
and Technology Department. She has a BA from Harvard University
in visual studies and an MPS from NYU's Interactive
Telecommunications Program.

Eric Hagan is an interactive and kinetic artist and professor based
out of Astoria, New York. He has written articles for publications,
including Make: magazine and Popular Science. He has also worked
on several art installation projects around New York City, including
the annual holiday windows on 5th Avenue and Kara Walker’s A
Subtlety. He is currently an assistant professor at SUNY Old
Westbury in the Visual Arts Department. He has a BA from Duke
University in philosophy and an MPS from NYU's Interactive
Telecommunications Program. Eric enjoys showing projects at the
annual New York City World Maker Faire.

We conceived of this book as an introduction to electronics and the
Arduino platform for the complete beginner. We have written and
illustrated it assuming that the reader has no prior knowledge of
either electronics or programming. As the reader progresses through
the book, electronics and programming concepts are thoroughly
explained, in text and with images. After the reader has completed
the book, they will be able to use it as a reference for basic
electronics and Arduino programming.

This book should be the jumping-off point for creative projects.
When finished reading the book and completing all the exercises in
it, readers should be equipped to start developing their own
projects. We haven'’t covered everything that the Arduino can do,
but we have set readers on their way to finding that out for
themselves.

Many of the code sketches used in this book are taken from the
examples in the Arduino IDE. The other sketches are available here:

http://github.com/arduinotogo/LEA

erhaps you have seen the Arduino at a local

retailer, heard about it from a friend who

purchased one, or just saw a cool project on the
Internet that piqued your interest. What is the
Arduino? Most simply, it is an affordable, small-scale,
simple computer that focuses on interaction with the
outside world ().

Most of the computers you are familiar with are
controlled almost exclusively through the keyboard
and mouse, touchscreen, or trackpad. An Arduino
allows you to take information from the outside world
with sensors that measure temperature, light and
sound levels, or even the vibrations underneath your
feet, and convert these measurements into motion,
sound, light, and more.

ARDUINO

The Arduino logo

The Arduino was originally developed by teachers to make it
possible for their design students who were not engineers to create
interactive objects and environments. Since the original Arduino was
released in 2005, it is estimated that over 1 million have been sold.
Designers, educators, engineers, hobbyists, and students have built
all kinds of projects that sense and respond to the world with
Arduino.

There are many versions of the Arduino, and each is designed for a
specific function. Figure 1-2 shows a few of the Arduino boards.

We have written this book in the spirit of the Arduino team. We
don’t assume that you already know programming or electronics—we
will show you what you need to know to get up and running with the
Arduino. It will help if you are good at building and tinkering, and you
have a determined nature.

Arduino 101 Arduino YUN

There are many versions of the Arduino, each
designed for a different function.

The Arduino is used for building physical computing projects. What
does that mean? Physical computing refers to taking information from
the world around us by using inputs such as sensors and switches
and responding to that information with outputs of some kind. It
could be as simple as turning on an LED when a room gets dark, or it
could be a complex system of sound and light that responds to the
position of a person in a room. An Arduino can act as the “brains” of
this kind of a system, handling the information coming in and the
response going out.

The Arduino is part of the open source hardware movement. Let’s
look at what that means.

The Arduino is defined on its website as an open source electronics
prototyping platform. In the open source hardware movement,
technologists share their hardware and software to foster
development of new projects and ideas. Source designs are shared in
a format that can be modified, and whenever possible, readily
available materials and open source tools are used to create the
designs.

By encouraging the sharing of resources, the open source
hardware movement facilitates development of new products and
designs. Open source projects emphasize the importance of
documentation and sharing, making the community of users a great
resource for learners.

The Arduino is a prototyping platform. What's prototyping? It is
building a model of a system. It can involve many phases, from initial
sketches through detailed plans and a series of refinements, to
building a fully functional model that can be replicated. Or it can be a
quick one-off that’s put together rapidly to test an idea.

There are several versions of the Arduino; it has been around since
2005 and is constantly evolving. For the purpose of this book, we are
concerned with the Arduino Uno. Your Arduino might not look exactly
like the Uno shown in , because we have simplified the
drawing in order to point out the sections that concern us. Since the
Arduino is open source, you might also purchase a board that does

not come directly from the Arduino organization. Just know that for
this book we are focused on the Arduino Uno and compatible boards.

Here's your first locl: of Hhe Arduine Une.

RXsi» ARDUINO

MADE IN ITALY

The Arduino Uno

PARTS AND TOOLS

We will also need some additional electronic parts and a few tools to
build projects with the Arduino. Here is a list of the parts you will
need to purchase to complete the projects in this book. We'll give you

more detail about the parts and what they do as we build each
project.

PARTS LIST

Breadboard

USB A-B cable
9-volt battery
9-12-volt power supply
9-volt battery cap or holder
Assorted LEDs, a variety of colors
Assorted resistors
10K potentiometer
3 momentary switches/buttons
Photoresistor
Speaker, 8 ohm
2 servo motors
Jumper wires
The next few figures, through , show you
what the parts look like, along with a brief description. Electronic
parts are often called components, because they are components in

an electronic circuit. You'll learn more about circuits in Chapter 3,
“Meet the Circuit.”

A breadboard, shown in , is used to build and test
circuits quickly. A USB A-B cable, shown in , connects the
Arduino to a computer so you can program it. It will also provide
power. A 9-volt battery, shown in , can provide power when
the Arduino is not attached to a computer.

Breadboard

USB A-B cable

9-volt battery

-

Bqttery cap

The battery cap, shown in Figure 1-7, will be used to attach a
battery to a breadboard. The power adapter, shown in Figure 1-8,
can power your Arduino when it is not attached to your computer.
Light-emitting diodes (LEDs), shown in Figure 1-S, emit light when a
voltage is applied.

Power adapter

Resistors, as you can see in , limit the flow of current in
a circuit. We will use a momentary pushbutton, shown in ,
to make or break a connection in a circuit. shows a
potentiometer, a variable resistor.

——aD——

—AD—

Resistors

Momentary pushbutton

Potentiometer

A photoresistor, shown in Figure 1-13, changes its resistance when
exposed to different levels of light. Figure 1-14 shows an 8-ohm
speaker, which will play audio signals. The servo motor is an easily
controlled hobby motor, as you can see in Figure 1-15. Jumper wires,
shown in Figure 1-16, are used to connect components in a
breadboard. You can buy them or make them yourselves with wire
strippers.

Photoresistor

Speaker, 8 ohm

Servo motor

o—

-
—

Jumper wires

LEDs come in a variety of colors, styles, and sizes. We will use LEDs
in many of the projects in this book because they help demonstrate a
number of basic electronics and Arduino concepts in a visual way.

One important thing to remember about LEDs is that they have a
polarity, or direction in which they must be placed in order to work in
a project. If we place the LEDs backward, they won't light up. How
do we know the orientation of an LED?

LEDs have two legs, or leads, which are different lengths, as you
can see in Figure 1-17. The longer lead is known as the anode, the
side of the LED that we will connect to power. The shorter leg is
called the cathode, which will be pointed away from our power
source. We'll show you how to position the leads in a circuit when we
start building one, and we'll always remind you of the polarity in later

circuits.
N\

ek

If you place the LED in backward, it won't light up but it also
Qon’t damage anything in your project.

GhOde

C&'H\OG‘ e

lowg lead
O«'H’GCL\GS SL\OY'(' L@Gd

fo power

Anode (positive lead) and cathode (negative lead)
of an LED

What happens if you have a used LED that has clipped leads? In
many LEDs, if you feel the bulb, one side of the rim at the bottom of
the bulb feels flatter. The lead connected to that side is the cathode,

or negative side.
Now let’s take a look at a few tools you will need to make these

projects.

A multimeter will tell you everything you need to know about the
electrical properties of a circuit, properties that are not necessarily
visible to your eye. We will show you how to use it, starting in
Chapter 2. The multimeter depicted in is available from
SparkFun (part number TOL-12966), but you may find another one
that you like. When you choose a multimeter, make sure it is digital
and has removable leads, and that it is fused.

Multimeter

Needle-nose pliers, as shown in Figure 1-19, come in handy for
pulling components out of the breadboard when you wish to make

changes to a circuit. They are also helpful for picking up small
components.

Wire strippers, pictured in Figure 1-20, are used to pull off the
plastic insulating coating found on various thicknesses of wire. They
will make your life a lot easier when using spools of wire, since you
will be able to cut and use custom lengths of wire.

Needle-nose pliers

)

Wire strippers

Although you can buy precut jumper wires, remember that
you can create your own by using your wire strippers to strip
off the plastic coating on the ends of a segment of wire.
Twenty-two-gauge hookup wire works well in breadboards.

You may be familiar with a soldering iron and its use in electronics to
connect components. In this book we have elected to use a
breadboard to make connections in all the circuits listed. This means
that you are not required to purchase a soldering iron or learn how to
use one to complete the projects in this book.

What does a soldering iron do?

A soldering iron is used to melt a conductive material

(“solder”) to combine electrical components in a permanent way.
This process is called soldering.

Why aren't you teaching soldering in this book?

Soldering is a wonderful skill to have and will help you take

your electronics to the next level, but for this book we were
primarily concerned with the basics. You can make fully functional
circuits without it.

The list of components seems to have a lot of parts to it. The

pictures look nice, but do I really need to purchase all the items in
that list?

You will be seeing a lot more of those pictures! To answer

your question, you will be using all of those parts when you build

the projects in this book. These parts can also be reused for your

own projects. We will explain what all of these parts do as we use
them.

My friend/sibling/parent/teacher/dog gave me a newer/older

model of the Arduino. Do I have to use the Arduino Uno for the
projects in this book?

Good question. The projects in the book might work with your

particular Arduino, but both the programming and the abilities of
the Arduino have changed over time and differ based on the
version. All of the examples in this book have been tested using
the Arduino Uno and the latest release of the Arduino software.

I don't recognize or know how to use any of the tools or
components you have shown; is there another book for me?

No! This book /s written for you. We will be covering specifics

on how to use all of the parts and tools we have listed in the
coming chapters. Sit tight and keep reading.

I dont have anywhere in my neighborhood to purchase those

parts. Do you have any recommendations for places I can find
those parts online?

Great question! You are ready for the next section.

A number of vendors sell the components that you will need. Here
are the URLs of the websites of many of them, and there may be
brick-and-mortar stores or other resources in your community.

Maker Shed ()

Selection of kits and individual Arduino components. Some electronic
parts, focused on the Maker community.

http://makershed.com/

SparkFun Electronics (sparkfun.com)

Wide range of sensors and breakout boards, classic Arduinos and
their homemade version.

Adafruit Industries (adafruit.com)

Arduinos and breakout boards, sensors, electronic components.

http://sparkfun.com/
http://adafruit.com/

Jameco Electronics (jameco.com)

Mostly electronics components, endless buttons and switches.

Mouser Electronics (mouser.com)

Some Arduino, tons of electronics, sensors, and other items.

http://jameco.com/
http://mouser.com/

Digi-Key Electronics (digikey.com)

Great for ordering components, chips, and so on.

Micro Center (microcenter.com)

A source of components and Arduinos, they have some brick-and
mortar-stores as well as a website.

http://digikey.com/
http://microcenter.com/

o—

- |
—

Kits are available from some of the vendors mentioned here that
have most of the parts you will need to complete the projects. We
will review exactly what you need to build the projects in every
chapter. Here are a few of the kits available; you will find that there
are many more.

A kit developed by the Arduino team
(arduino.cc/en/Main/ArduinoStarterKit). It can be purchased from a
number of vendors.

This kit is available from the Maker Shed:

makershed.com/products/make-getting-started-with-arduino-kit-
special-edition

Adafruit Industries has a few kits, including this one:
adafruit.com/products/193

SUMMARY

This chapter set you on the path to using your Arduino. By now you
know where to get the required items, you can identify various
components and tools you will use, and you know something about
the contributions of the open source movement.

The next chapter will look at the Arduino Uno in more detail and
show you how to hook it up to your computer.

http://arduino.cc/en/Main/ArduinoStarterKit
http://makershed.com/products/make-getting-started-with-arduino-kit-special-edition
http://makershed.com/products/make-getting-started-with-arduino-kit-special-edition
http://adafruit.com/products/193

ow that you've got your Arduino and a number of

parts and tools, let’s look at them in more depth.

The Arduino is just the thing to solve your
everyday interactive needs. In this chapter, you'll
learn about the parts of the Arduino and how to
attach it to a computer and to a power supply. We
will also look at unboxing our electronic parts, sorting
them out, and learning more about them on both
websites and data sheets.

First let’s take a look at the labeled parts of the board, as shown in

reset button Built=in LEDx

EEaﬁﬂzE?m h?m*l‘?(\l:i
Tt x %

. - £ L)

UEEPW* _BIE[T.M. {PHM

Xl % III-'DN Y

RXsi» ARDUINO

]{1'?‘

MADE IN ITALY

s — g, S — — - —

T — T ——— i ————

The Arduino Uno

We are going to break down each side of the board in more detail
SO you can see where everything important is located on the Arduino.

Let’s learn a bit more about what is on the Arduino board. Remember
that there are different styles of boards, so yours may look slightly
different. These figures are based on Arduino Uno revision 3. We'll
look first at the left side of the board, with the reset button, USB
port, voltage regulator, and power port, as shown in Figure 2-2.

f reset button

The left side of the Arduino Uno board

Reset Button

Much like turning your computer off and on again, some problems
with the Arduino can be solved by pushing the reset button. This
button will restart the code currently uploaded on your Arduino. The
reset button may be in a different location on your board than in

, but it is the only button.

USB Port

The USB port takes a standard A-to-B USB cable, often seen on
printers or other computer peripherals. The USB port serves two
purposes: First, it is the cable connection to a computer that allows
you to program the board. Second, the USB cord will provide power
for the Arduino if you're not using the power port.

Voltage Regulator

The voltage regulator converts power plugged into the power port
into the 5 volts and 1 amp standard used by the Arduino. Be careful!
This component gets very hot.

Power Port

The power port includes a barrel-style connector that connects to
power straight from a wall source (often called a wall-wart) or from a
battery. This power is used instead of the USB cable. The Arduino can
take a wide range of voltages (5V—-0V DC) but will be damaged if
power higher than that is connected.

We'll take a closer look at the other side of the board now (
), which includes the digital, analog, and power pins as well as the
actual chip for the board.

buiké-in LEDs digital inpot and output pins Fx and rx pins h

-HOMNM NWOBew - O

:] Ea — t 1 t ANV
l >

=

DI GI AL (PWM~) on indicefor

Ll[l LED
TX€l» % NO ol I ON

RXwm» ARDUINO

MADE IN ITALY

ﬁTheﬂa:SZ] E blacl chi P

power end ﬂrﬂuhd Pihs ﬂhﬂ-[ﬂﬂl Fihi‘ J

The right side of the Arduino Uno

Built-In LEDs

The LEDS marked TX and RX show whether your Arduino is sending
or receiving data. The one marked L is connected to Pin 13.

ON Indicator LED

This LED indicates that the Arduino is getting power when you turn it
on.

Digital 1/0 Pins

The holes on this side of the board are called the digital input/output
pins. They are used to either sense the outside world (input) or
control lights, sounds, or motors (output).

TX/RX Pins

Pin 0 and Pin 1 are special pins labeled TX and RX. We will cover this
in more detail later, but it is good practice to leave these pins empty.
Any changes you make to your program won't load if something is
plugged into Pin 0.

ATmega328P, Black Chip

The black chip in the middle of the board is an ATmega328P. This is
the “brains” of the Arduino: it interprets both the inputs/outputs and
the programming code uploaded onto your Arduino. The other
components on the board enable you to communicate with this chip
when creating projects.

Power and Ground Pins

Pins related to power are located here. You can use these pins to run
power from your Arduino to your breadboard circuit.

Analog Pins

These pins take sensor readings in a range of values (analog), rather
than just sending whether something is just on or off (digital).

Now let’s connect the Arduino to your computer. We're not going to
program it just yet, but it will help to see how to attach it to the
computer via the USB cable.

PLUG YOUR ARDUINO INTO YOUR

You'll need a USB A-B cable, your computer, and an Arduino Uno. If
you have a newer MacBook model, you may also need a USB-C-to-
USB adapter.

Connect your Arduino to your computer.

First, plug the USB cable into one of your computer’s USB ports as
shown in Figure 2-4. Any port that is available, as shown in Figure 2-
5, should work fine.

<

Close-up USB port

Now that you are attached to the computer, plug the USB cable
into the USB port on the Arduino. The USB port is labeled in Figure 2-
6.

USB Pt)rf“

USB port on the Arduino

You can see the top view of the USB port on the Arduino with the
USB A-B cable in Figure 2-7.

Top view of plugging USB cable into Arduino

What happens when you plug in the Arduino? The power LED labeled
ON should light up. And if this is the first time you‘ve plugged it in,
the LED on the Arduino near Pin 13 should blink on and off, as shown
in Figure 2-8.

ﬂrdufhﬂ- dHﬂcLed

to computer

Hihhihﬂ LED

ﬂnETm h'fl{’ﬂ‘ﬂﬂ ﬂc‘f’nf[nfﬂr&uiho
t board

DIGI TAL (PHM-~)

with LEDs (it

Ld‘

TX@in ' power LED

Rimi= ARDUINO

The LEDs turn on when the Arduino gets power from
your computer.

You've Powered Up Your Arduino for the First
Timel
You can always use a USB cable and a port on your computer to

power the Arduino. The Arduino can also be powered by attaching it
to a power supply that’s plugged into a wall outlet.

\
ek

The Arduino can be powered off the USB port or the power

ort.
_ _

You will need a 9—-12V DC power supply and an Arduino. The first
step is to unplug the USB cable, which will completely power down
the Arduino. Figure 2-9 shows the power port on the Arduino.

Always unplug the Arduino from a power source whenever
you are making any changes!

PDwE?’ PDH('

/

Power port on the Arduino

Attach the power supply to the power port on the Arduino (Figure
2-10).

power PDI’+

/

Top view of the power port on the Arduino

Next, plug your power supply into a surge protector, and then into
a wall outlet, as shown in Figure 2-11.

What happens now? It should be just the same as when you
attached the Arduino to your computer with the USB cable: the LED
labeled ON indicates that the Arduino has power. And if your Arduino

is straight out of the box, the LED near Pin 13 will start blinking, as
seen in Figure 2-12,

-0 O

Plug your power supply into a surge protector.

blinking led power led

DIGITA (PWM~)

ARDUINO

LEDs blinking on the Arduino

Now you know the two methods of powering an Arduino. You can
switch your power source as your project evolves—you’re not stuck

using one or the other.

Now that you have purchased the components in the parts list
(Figure 2-13), you may wish to learn more about the individual
pieces. Several different types of resources are available that can help
you figure out which parts to use and where to put them.

:‘\qm}\

WLﬂ'f' are ﬂu. 'HHEEE 'lLLihSE -‘Jﬁﬂih?
LULET'E Cth f ﬁhd thDI"hnﬂ'hGh Oh +L\€Im_?

—

Where do | find information about my components?

The best thing to do when unboxing all your parts is to separate
them by type. Its nice to have all of your resistors in a separate place
from your LEDs, or even to have separate places for different LED
colors and for resistors of different values. Most hardware or craft
supply stores sell plastic boxes that will make it easy to sort out the
parts and find them when you need them later on. We recommend
something that looks like the box shown in Figure 2-14.

\—/ ports box top view

filled with some components

Sorting all of your components will also help you
get familiar with them.

Now that you have your parts separated out and can identify what
they are, where should you look to find out information about them?
The very first place to check for information about components is the
components themselves. Resistors, LEDs, and most other
components look different enough that you will quickly learn how to
identify them. Often, components will have a part humber listed on
them somewhere, which can help you find a supplier’s or
manufacturer’s website. When you order components or a kit, the
store will also send along documentation or point you to a page on
their website. Always check a part supplier’s website first and save
yourself a headache.

If you can't find the information you are looking for either on the
component or on the website, the next thing to look for is your
component’s data sheet. You can find it by entering the part number,
followed by “data sheet,” in your favorite search engine online. Do
not search for just the part name, since chances are there are many

different versions of your part online with different information. For
example, there are a lot of different LEDs!

Electronic data sheets document the behavior, function, and
limitations of electronic components. They have a tremendous
amount of information, from operating temperature and behavior and
suggested wiring diagrams, to material makeup and industrial
application.

For example, here’s how to find a data sheet online for one of your
LEDs.

Find the number that identifies the LED on your invoice from the
supplier you purchased your parts from. If you can’t find one, use
this one for red superbright LEDs: WP7113SRD.

Open a browser and type the number of your part into your favorite
search engine, as well as the words “data sheet.” If you use our
example part number, your search terms will be "WP7113SRD data
sheet.”

Your search results will include data sheets about your part, often in
the form of PDFs. Choose a couple of the links and click on them.
Take a look at the results and make sure they approximately match
the part number you searched for.

It can often be overwhelming to sift through the data sheet to find
the one bit of information that you need, but data sheets come in
handy, particularly when you are not sure what components you are
handling. Let’s start by looking at a sample sheet, as shown in

hoke o part
B P

LEDWP7113SRD ——— |l

ﬂ#hPWEI‘F’
(found on a shelf)
 Features: L precise droing of
lst of features”] . Lights up eobpehent huiﬁi-—
specific fo gour - Turns power into light e :jmg ‘;hd
cohponent - You can put them on everything P n loted
-Available in various colors sometihes relete

components

stefistics about Y J
o comporent, || Parameter | Symbol | Rating Unit
whot wnits ore
:‘;:j{ i:fd:'::: Power dissipation Pd 80 miV
those stedistics Forward Current If 30 mA
epply
Peak Farward Current Ifp 150 mA
Reverse Voltage A 5 v
Operating Temperatune T-:lp-c: -4ﬂ°C”8ﬂ°C

Data sheet for LED found on a shelf

Your data sheet contains a lot of parts, and not all of the technical
information will matter for your project—but it can help you if you get
stuck.

You should now feel comfortable with the layout of your Arduino. You
know how to power up the Arduino from the USB and the power
ports. If you are ever unsure about your components, you know you
can look them up online from the website where you purchased them

or search for their data sheet. In the next chapter, we are going to
take a look at using a few components to build our first circuit.

n the last chapter, you learned a bit about the

Arduino and its parts. You were also introduced to

some of the components and tools you’ll be using
to complete the projects in this book. In this chapter,
you'll learn some of the electronics practice and
theory you’ll need to know to build circuits using the
Arduino. We won't be using an Arduino just yet, but
we'll get back to that shortly.

The circuit is the basic building block for all of the electronics projects
we’ll be building with the Arduino.

You can build many different types of projects with an Arduino—
you are limited only by your imagination. Although many different
types of projects exist, all the projects in this book are built using
circuits.

First, we'll look at what a circuit is; then you'll build your first
circuit. We'll also look at techniques for representing electronic

circuits visually and show you how to test your circuits.

Figure 3-1 illustrates a few Arduino projects. You can see that the
circuits in these projects take different forms. In the cardboard robot,
you can't see the circuit, but that is what is controlling the robot.

FLDf‘oruiit‘fnr awd s;pd.'nL::r circuit

el

y

-
v

-

Hnﬁ—wwihg wotor circuif cardboard robot

Some examples of projects that use the Arduino as
part of a circuit

Let’s look more closely at what a circuit is.

If you've ever been to a car race, you know that they refer to the
track as a circuit. A circuit just means that there is a completed

closed loop, as shown in the circuits in . The cars pass from
the start line and end at the same place.

Mo sotter bow cakplicn"ed. a cirewit fracl,

sherts ond ends of the sone point.

Circuit tracks

The same is true for electronic circuits. An electronic circuit
describes a complete and closed loop. A circuit includes all of the
electronic components required for a task as well as wires or another
material that will let the electricity flow between the connected
components, as you can see in

The flow of the circuit starts and ends with the
power source.

Think for a moment about the light switches in your home as a
model. To turn a switch on or off, you must be in physical contact
with the switch. In our projects, the Arduino will control the behavior
of the electronic components. Our electronic components will be
arranged in a circuit, and the Arduino must be part of that circuit in
order for it to control the behavior.

Circuits allow the Arduino to connect to the electrical components,
turning off and on a variety of objects (speakers, LEDs, motors, etc.)
or taking information from the outside world ("How hot is it?”; “Is the
switch on?”; etc.). As long as we figure out how to have the Arduino
connect to the object, we can control it with electricity and, later,
programming.

There are two main parts that make up a circuit: conductive lines and
components.

Conductive Lines

Although most of the focus for a circuit is placed on the components,
you cannot have a circuit without some sort of connection between
the components. Our computers and electronic devices contain
printed circuit boards (PCBs). PCBs, which do not conduct electricity,
are composed of base layers of material onto which fine lines of
conductive material have been applied, as seen in Figure 3-4. The
conductive lines connect components that are soldered to the PCB. If
you look at a PCB, you'll notice the shiny silver lines running between
the components, connecting them. These lines are like wires stuck to
a flat surface.

e, LR B
e o

S

e 2
r
- 1:

Detail of printed circuit board

Components

Components are the other requirement for a complete circuit. We
looked at a whole list of components to buy in Chapter 1,

“Introduction to Arduino.” The components form the locations that
need to be connected within a circuit (Figure 3-5).

resi ﬁm .
LED lF3L+-
El-.i'H'ihg diode
momentery switch :

SOhe COmROh Components components arronged in o circuit

Circuits are made of components.

In Figure 3-6, you can see that the leads of the components are
acting as conductive lines.

cnhduc‘[’i ve [ihe's

E{ec‘h’ici‘f' Y
flows ‘H'\I'Du?’L / / \ 4
the metal [eﬁs (\

ond info the
Electricity flows through conductive lines.

CDhPUhEh‘FS

The first circuit we're going to build together is an LED bulb flashlight
powered by a battery. This circuit is a great beginner project because
the light turning on confirms visually that the circuit is working. The

flashlight circuit also demonstrates the basic techniques of circuit
building you'll need throughout all the projects in this book.

is a drawing of the circuit when completed, with the
parts annotated. We'll explain what the parts do in detail, partially in
this chapter and in forthcoming chapters as well. For now, know that
this circuit will be built from an LED, a resistor, a jumper, a 9V
battery, and a battery cap arranged on a breadboard, components
you met in Chapter 1.

There are many different ways of representing or drawing circuits
to convey the necessary information. In , we have made an
approximation of what the circuit will look like when you build it. This
isn't always the clearest way to see what is happening—some circuits
have many parts that are connected in complex ways. Schematics are
a great way to make a drawing of a circuit that has simplified parts
and show how they are connected. Let’s take a closer look at how
schematics work.

battery cap

breadboard >

!JG-HET%

resistor & -
. o @

'Fuh.per

The circuit we'll build

A schematic is a diagram of the relationships of the electronic
components in a circuit. In a schematic, you see the components that
are part of the circuit and how they are attached to each other. Let’s
start by looking at a simple schematic that represents our basic
circuit. We'll get into the details about what each symbol means in
the schematic soon, but for now let’s just take a quick look. Figure 3-

8 compares a schematic of the circuit we are about to build to a
drawing of the circuit.

Schematic of the circuit with a drawing of the circuit

Most electronic projects and components are represented by
schematics, not necessarily by drawings or photographs. As your
electronic skills advance and you want to build your own projects
outside of this book, you'll need to be able to read and draw
schematics in order to research your projects, as well as describe and
build them.

We're starting with simple schematics—we’ll build up to more
complex representations as we build more complex projects in the
book. As you look at schematics online or in other documentation,
you may notice that there are sometimes variations in how the
symbols are drawn or arranged. Don’t worry if all the schematic
symbols don't look exactly alike, as shown in Figure 3-9.

L O B

Schematic symbols for LEDs

You've learned that a schematic is the standard way to represent the
electrical relationships in a circuit. All commonly used electronic
components have a symbol to represent them within electronic
schematic diagrams in order to make it clear what is attached within
the circuit. shows a basic circuit of one LED, a resistor,
and a battery. The LED has an orientation, a positive lead (anode)
and a negative lead (cathode), as mentioned in Chapter 1.

Schematics are primarily concerned with diagramming how the
components are connected in the circuit, and will sacrifice clarity in
how the components are set up physically to demonstrate better how
they are connected electronically.

cathode

resistor

N

end = grou il

/

stort = positive

Annotated schematic for the circuit

Table 3-1 shows the symbols for the components that are in our
first circuit. The Wikipedia page on electronic symbols is a good place
to get an overview of many of the symbols used in schematics:
en.wikipedia.org/?title=Electronic symbol.

http://en.wikipedia.org/?title=Electronic_symbol

Components with their schematic symbols

COMPONENT DESCRIPTION SCHEMATIC
SYMBOL
Battery K L
’ LED (light-emitting ‘s,
diode)
D Resistor

There are also a few other ways that the symbols from a power
source can be drawn, as you can see in Figure 3-11. We'll cover the
concepts of power and ground later on in the chapter, but recognizing
these symbols will help you understand what is going on in our

circuit.

—l
+BV T

3&heric power st.TlmeD[?]Eheric 3FDUHG(st?hbn[

wi‘H« vo‘.‘fﬂ(oje m‘fihﬁ

Schematic symbols for power and ground

You've seen an example of a schematic, as well as the symbols that
are used in the schematic for our first circuit. How do you connect
the symbols to draw a schematic?

We'll start with the symbol for a resistor in Figure 3-12. Remember
that the resistor does not have a positive-negative orientation, so it
does not matter which end is which.

Schematic symbol for a resistor

We'll next draw the symbol for the LED and connect it to the
resistor with a solid line. Why is the line solid? Remember that we are
representing the physical connection between the components in the
circuit, just like the conductive silver lines on the PCB.

The positive end, or anode, connects to the resistor as it will in the
circuit when we build it, as seen in . When we attach the
battery, the power will flow through the resistor to the positive end of
the LED.

Resistor connected to anode of LED

Now we add the symbol for the battery and connect it to the
symbols for LED and resistor, as shown in Figure 3-14. The negative
end of the LED, or cathode, connects to the negative end of the
battery.

Schematic for the circuit

We can see in this schematic that one end of the resistor is
attached to power, or the plus sign on the battery. The other end of
the resistor is attached to the positive end of the LED. The negative
end of the LED is attached to ground, or the minus sign. Our
schematic represents the complete loop of our circuit.

How do we attach the components to build a circuit? If you take a
look at Figure 3-15, you can see there is a breadboard beneath all
the components.

Why do we use a breadboard? The breadboard allows us to
connect all our components. We could never hold all the pieces
together with our fingers, and we don’t want to permanently attach
them to each other initially. We know that a circuit is a loop and that
the components must be connected. The breadboard allows us to
connect our components to each other rapidly and gives us the
flexibility to easily adjust our circuits. Using a breadboard allows us to
rapidly prototype our projects.

ETED.G! Eonrd

The circuit we'll be building, with the breadboard
marked

™\
ek

Using a breadboard allows us to attach components to each
\other quickly and make adjustments to our circuit.

You've seen pictures of a breadboard and circuits assembled on a
breadboard. You also know that using a breadboard allows you to
quickly prototype circuits and test them out. How is a breadboard
constructed? Let’s look at an “x-ray” view of a breadboard.

Don’t actually remove the backing—doing so could ruin your
breadboard.

A breadboard has strips of metal encased in plastic with a grid of
holes on the top. The holes, called tie points, are placed at regular
intervals and arranged in rows and columns.

In Figure 3-16, you can see the metal strips arranged over rows
and columns of tie points. All of the tie points that are connected to
one of the metal strips are connected to each other.

metel s'ir!ip comnects ‘t&es‘e tie points

:IIIIT.-- l-.l_‘:--l--‘:--.- -ll-'-“]
+ B\ \m @3 m EEEEE 00D 0EEDEE §EE @ E

EEEEEEEEEEEEEEEREEEEREEEEEE B

HEEEE R R REEREEREEDEE DR R DR R R B "‘nh.g"‘ﬂ.l'l;"'ri])cﬂhhﬁc{‘;
BEEEEEEBEE BB BEEEEEEEE D EEEE B F-+LESE+I-EPMH{;
DR EEEESEeR R R RS DR GRS R D

' I IEE @EEEEE EEEEE EEEE
+mEmEEE BN R BEEEEODE ODEE @

An “x-ray” view of a breadboard

The rows and the columns are arranged in patterns to make it easy
to build circuits with standard electronic components.

The long columns on the far left and right of the board shown in
are by convention attached to power and ground, and

they are called power and ground buses. There is a plus (+) sign or a
minus (-) sign at the top of each column. They will be attached to
the plus and minus signs on the battery. There is often a red line
close to the power bus, and a green, blue, or black line next to the
ground bus. Some breadboards, particularly smaller ones, do not
have these power buses.

PDWEF {?l.-ti‘ _—

F’:'lllll " B N NN },I:W--——-Fﬂwerbut
“ A N e
¢ o | IS Rl s
'f‘LELDI[eEih/ . E N EEEN E N EE BN
these columns . ::::: EREE ::
are connected —_| ||" "TEER ::::: Il
SRR B
3rnuhd Bus\‘_‘h_ Eif: ::::: ::::: E{{/ﬁrmhd ous

Power and ground buses in a breadboard

We'll explain more about power and ground later. For now, you just
need to know that we'll connect a battery to the buses on one side of
the board, and the left and right side buses are not connected. Left
or right, it doesn’t matter to which side of the breadboard you attach
power and ground, though we’ll connect the battery to the left side
of the board. It's a good idea to be consistent in how you set up your
breadboard.

Generally a gap, known as a trench, exists down the middle; it is the
same width as some components, to make it easy to plug them into
the circuit. The tie points in each row on either side of the trench are
connected, allowing you to make connections between components
when you place them on the board. shows that they do
not connect across the trench; each row of tie points on either side of
the trench is a discrete row.

=}
] J_...h
< <
3 2
= =
o w = o
S £ + O
—- = B o= U
a 9 P £
3 o 2 P 3
a M - & o
P
.- 4
] 1
I EE E e mE EfEE S EEEEE BE= " m| " mEEE
4+ = m mEmE = " B E EE SN EB=N E E\" " ® 8§44
E E EE EEEB®N = = IIIIIEIII
H B B BE BE B B Em || | H E B B E E E EEEmEmEm
fm HE H E B B B B BE [| | H E B B B B E E EEE BB
.m. HE H E B B B E BN [| | HE B B B B BE E EEEEEBE
LS, E B EE EEEBR = = E E E EE EE EENEENEBEH®
-
=
<
o E EEEEN m EjE = E N EEEENEEB®N
o
m H E B B B | | H]|El B B H B B BE BE E BB
m H E B =B = [| H|E B B H E E B B BE BB
/]
_..frm HE E B =B B [| H|E B B H B B E B B B B
3 E EEEN = E/lmmm E E EEEEBEB®N
&
e E E EE N " mE E EE E EE Elm E E @ EE E EE = HI
C I E BN BN E EE Els EEEESE EEENS§4

row of
Cﬂ'hhﬂc{'ﬁd
‘l('ie Pc-ih‘h‘

french

Row of tie points in the breadboard

\
Note

The rows in a breadboard do not connect across the trench.

/

Components can be connected to each other by putting them in
the same row of tie points, as shown in Figure 3-19.

these are ot complefe circuits: they

show how components are conmected
/,/_- ih & row of fie pofh‘f: \

Cﬂlhpﬂhfh{? are

l‘u

fhese components

connected here

Nk

are comnected

i =g

|
ond here

Connected components in breadboard

Do I need a new breadboard for each circuit I build?

The great thing about breadboards is that it is very easy to

change out the parts of a circuit or make a new one entirely. You
could make all of the circuits in the book by just reusing one
breadboard. If you want to have more than one circuit set up at
once, it is helpful to have an additional breadboard.

We're going to build our first circuit! You'll need these parts and
tools:

Breadboard

9V battery

Battery cap

1 LED

330-ohm resistor (bands colored orange, orange, brown, gold)
Jumper wires

Needle-nose pliers

Get all of your parts together to start building the circuit in Figure
3-20.

The circuit

We are going to walk you through the steps of making the basic
circuit we've shown you throughout the chapter. You may not
understand exactly how all the parts in the circuit work together yet.
Don‘t worry about this—we’ll explain more about electricity in a
circuit and about each component as we move forward. For now, just
follow the steps.

The first parts you'll need are the breadboard and the 330-ohm
resistor. You'll learn more about resistors later, but right now you just
need one resistor that has four bands with the colors orange, orange,
brown, and gold.

Pick one corner of the breadboard—we are starting with the upper-
left corner. (It doesn’t make a difference if you pick the right- or left-
hand buses, but it's preferable to be consistent.) First put one end of
the 330-ohm resistor (with bands colored orange, orange, brown,
and gold) into the power bus (marked with the + sign) of your
breadboard and the other end into a row of your board. You'll have to
bend the leads a little so you can get them into the board.

Resistors don’t have a forward or backward direction in a circuit, so
it doesn’t matter what the orientation is. Each lead or leg is the
same. shows how the resistor is attached.

The components should feel like they are pressed in place.
Sometimes it's hard to get the components all the way into
the board. Just be patient. Some people find it easier to use
needle-nose pliers to stick components into a board,
whereas others just use their hands. See what's easier for
you.

Lﬂﬂd PLO\CE;C‘ ih **I

Y Ow 01‘ +ie Poih'f's r “

lead p‘.aced i *e. S <

‘POUUEF !D{AS‘

First add the resistor.

Next add an LED (Figure 3-22). The anode (long lead) goes in the
same row of tie points as the resistor. The cathode (short lead) goes
into the next row.

Figure 3-23 shows how one end of the resistor is in the same row
of tie points as the anode of the LED.

cethode

Add the LED.

ﬁhDdE‘. D'f LED

CthEC'fEd +D I"EEiS‘{’DT’

< t 4:/ ca‘Hnnde; Df
e ¢ *’-—ej——‘“’%: LED in wnext
4y
> {}{} « QQ 4 row of fie
. g |, AP~ & 4
> “ ~ « Pth‘f’E
. <
S Qz £ 4
iy

LED placed correctly

Next, you should put a jumper connecting the ground bus (marked
with the — sign) to the cathode of the LED, as shown in Figure 3-24.
Using a black jumper will indicate that it is going to ground. The
jumper is just there to make a connection between the cathode and
the ground bus.

™ one end m‘ ful-h'PEr'
ih SCWE row t:-f:
tie points as

Cﬂ'Hﬁ.DG{E DI!: LED

one end of juhper

ih smuhd bus
Add a jumper to ground.

Add the battery cap into the breadboard power and ground bus
(Figure 3-25). It has metal ends that will fit into the power and the
ground bus.

Make sure you get a secure fit into the breadboard. Doing so
can be tricky; sometimes twisting the wire at the end of the
battery cap can help.

blocl: lead of betterq
cep ﬂHﬂ-CLEd '['D SYDHHG(

bus (?)re.ea-. IminUS Siﬁh]

red lead of bn‘H’erc? cap ‘-

otteched fo power bus
(red p[us Ei%h)

Add the battery cap to the breadboard.

Let’s take a closer look at the 9V battery and the battery cap. The top
of the battery has two terminals that attach to the snap connectors
on a battery cap, as shown in Figure 3-26. The smaller one, next to
the plus (+) sign, is the power terminal. The larger terminal, next to
the minus (-) sign, is the ground terminal.

"'o? of W EIG-'H‘EH, vide view of 5&#&«?

poatr
5rnr.md fermivel (+]
fereinal ‘—'i

3row€|

ferninal (=)

ferkinal [+]

9-volt battery up close

Turn over the battery cap, and look at the two snap connectors.
The small connector will attach to the ground terminal and the large
connector will attach to the power terminal, as seen in Figure 3-27.

wderside of botd
red lead oHached 4o smap urderside of botlery cop

commeeter thet comneets fo pover ettaches fo power

{Erhihﬂ-i

blocl leod aftecled fo shap offackes fo 'ﬁ'm"d
comnector that commects 1o ﬁrwmf feriinal

The battery cap

The snap connectors will only attach properly if the battery is
correctly oriented, as shown in Figure 3-28. Your battery cap or
holder may look different, but it will follow the same conventions.

Shap Cﬂh'hct'h?r dHﬂ-CLEJ Ehﬂ-r CDMHEt-{Er QHQELEA -Fﬂ

"’/Ermnd ferminal om Eua'Herc,

to power ferminal on battery

Attaching cap to battery

Now attach the battery to the cap. Your LED should light up (Figure
3-29). You've made your first circuit!

Your LED lights up!

This is just the first of many LEDs in the book, but feel good that
you have turned on this first one. Next, let’s look at how the battery
is providing power to our circuit.

What if I don’t have the resistor that you suggest?

We recommend buying a wide range of resistors initially to

make sure that you have all of the resistors suggested for the first
few projects and chapters in the book. Although there are ways to
combine resistors to change their value, we don't cover them in
detail in this book. It is generally best to have a variety to begin
with.

The term power has a specific meaning when talking about electricity,
which we'll explain later. For the moment, power here refers to the
fact that electricity comes from our battery, passes through the
resistor to the LED, and lights it up. Let’s take a closer look at how
this is indicated both on our battery and with the color of the wires in
our circuit. We looked at the plus and minus symbols on the battery
briefly when attaching the battery cap; now we'll look at the symbols
in more detail.

As you can see in , there is a + (positive) side and a -
(negative) side on a battery, the conventional symbols used to mark
which side of the battery produces power (positive) and which side is
the ground (negative) side. (And you've seen the plus and minus
signs on the buses on the breadboard.) You also saw that the positive
side of the battery attached to the red lead on the battery cap and
the negative side attached to the black lead on the battery cap.

pusiﬁue side Df 5-:1‘Herc?: hES{l‘hUE side Df EaHerc?:

power, red wire 3‘!’0L¢h0{, blocle wire

Positive and negative sides of a battery

Power

The + sign, or the positive, marks the power side of your battery.
The convention is that power flows from this side of the battery, and
all paths in your circuit must trace back to the power side. Standards
also state that all wires that are connected to the positive side are
red. This way, anyone who needs to look at or repair your circuit can
immediately tell from where the power enters your circuit.

Ground

The — is the negative side of the battery, also known as the ground
side. Just as all paths in the circuit must begin with the power side,
they must all end at the ground side if you trace them along the
entire length. Ground can be thought of as the “zero” side, the place
where all power has been used up. All wires that lead back to the
ground part of the circuit should be black; that will make it easier to
work on your circuits and to know at a glance what parts are
connected to ground.

We have looked a bit at power and ground, and you built your
circuit. But what if your LED didn't light up? What steps can you take
to find your problem and fix your circuit?

Do I need to use a new battery to light my LED? Can I use an
old battery I found/borrowed around my house?

Yes, you can, but chances are your lights won't shine as bright

as when you use a new battery. Batteries run out of power over
time.

Something went wrong or doesn’t work right? What if the LED didn't
light up? What might be wrong? Debugging!

Checking your circuit to see what is wrong is called debugging.
Debugging is not just about solving the immediate problem, but also
about creating a checklist of possible issues and solving them one by
one. Sometimes the “obvious” solution is the hardest to find, and by
following a checklist, you're sure not to miss anything.

Make sure you connected the leads from the battery cap correctly to
the power and ground buses on the breadboard, as shown in

. Remember: Connect the red lead to the bus with the red line
next to it with a plus (+) sign at the top and the black lead to the
ground bus with a green, blue, or black line (depending on your
breadboard) and a minus (=) sign at the top of the breadboard.

X

Leads from the battery cap attached properly to
the power and ground buses

Check to make sure you have placed the LED correctly on the
breadboard. Remember it has a positive lead (anode) and a negative
lead (cathode) and current flows through only if the LED is oriented

correctly. The positive lead is longer than the negative lead, as shown
in

Positive (anode) and negative (cathode) leads of
LED

Next check to see if you used the correct resistor. We'll discuss how
to select a resistor in later chapters, but if you have used one with
too much resistance, the circuit will not have enough power to light

up. If you use one that doesn’t have enough resistance, you can
destroy your LED. For this circuit, the resistor should have orange,
orange, brown, and gold color bands ().

—{dD——

A 330-ohm resistor

These first few debugging steps rely on careful observation and
understanding of the circuit basics we have covered so far. Some
debugging steps will also rely on tools to enhance your knowledge
about what happens in the circuit.

Perhaps the most common error in building a circuit using a
breadboard is putting the components in the wrong tie points on the
breadboard so they are not connected. As you've seen, circuits are
loops, and if the components are not attached to each other properly,
the loop is broken. Continuity is the property that simply means that
things are connected, as shown in

Te resivfor and LED
ARE NOT cornected,

juimper ARE connected]

Components that are properly connected, and
components that are not properly connected

You can check to see whether your components are attached
correctly by looking closely at your board. Check carefully that the
leads for the LED, resistor, and jumper are in the correct rows of tie
points on the breadboard so they are connected properly.

There is another way to test for continuity in a circuit on a

breadboard besides inspecting it visually: you can test for continuity
with a multimeter (Figure 3-35).

A multimeter

Will I have to memorize the steps for debugging?

Good question. You are not required (or expected) to

memorize the debugging steps. You'll find that after building the
circuits in the book you’ll begin to remember the debugging steps
since you'll use them frequently. We'll reference the steps as need
be for the remainder of the book.

Another way to find out information about your circuits is by using a
multimeter. A multimeter is a critical tool for verifying that our
electronic and Arduino projects are running correctly and that all of
our parts are functional. Your multimeter will be a great tool to use
throughout the projects in this book to ensure everything is working
as expected. We'll sometimes call it a multimeter, and sometimes
we'll refer to it as a meter. Now we’ll show you how to use it to test
for continuity.

You won't use a multimeter with the Arduino here, but you will in
future chapters. Why are we looking at it now? It will help you debug
your first circuit, and it will be invaluable later on when your projects
become more complex and you learn more ways to use it.

shows a few different multimeters.

We are using the meter from SparkFun (SparkFun part number
TOL-12966), which we mentioned in the parts list in Chapter 1. The
drawings of the multimeter in this book are all based on this model.
Your meter may look different, but the principles of setting up the
meter and using it will be the same.

TLE‘.P‘E are hﬂ-hﬁ? di”ﬂ?‘&h"‘ hﬂdﬁi‘i Df huH‘ihe{‘ers. Here are Fid‘ures Df o fﬂ'l.w.

Olar IME‘.'['EP‘ bf: CLDFCE,
E‘:u‘f‘ ﬂ.[[are hc&riv‘: it{r:h"‘icn-[—

Multimeters come in different sizes and colors.

Figure 3-37 shows the parts of a multimeter: a display that shows the
value of the electrical property you are measuring, and a dial that
turns to determine the electrical property you are testing. One end of
the probes touches the components you are testing at one end,
whereas the other end is attached to the meter in the ports.

disp[auf _

dial

pnrﬁ -

Parts of a multimeter

Some meters have off /on buttons, whereas this one turns on with
the dial.

Remember to turn your meter off when you are done so you
don’t run down the battery.

Most multimeters are powered by a 9V battery. We don't include
instructions for inserting the battery into your meter. If you get this

meter, the instructions will come with it. If you purchased or inherited
a different meter, the instructions for replacing the battery will be
different.

is a detail of the dial of a typical multimeter marked with
some of the electrical quantities it can measure. We'll explain all
these symbols and properties as we progress through the book. Right
now just know that there are different properties you can measure:
AC voltage, DC voltage, resistance, DC amperage, and continuity.

o g r‘.'ﬁ

20MQ OFF 200mv
resistance 200[({} ./P- %

DC vold ege

cGh‘f’ihui‘f\T

AC voltage

DCa mperoge

The dial of a multimeter with electrical properties it
can measure

We'll return to these electrical properties and how to measure them
with the meter in Chapter 5, “Electricity and Metering.”

shows the probes, the part of the multimeter that
touches your circuit, component, or whatever it is you're testing or
measuring. The metal tips of the probes are placed so that they
touch the circuit or component. The other end of each probe snaps
into the ports on the multimeter. The probes will not be attached to
the ports when you unpack the multimeter.

Hnis end mc H«e proives f
will be used 1o fouch

UJD[A\"‘ EDhPDhEh’(’S‘

'HniS end Df 'HnE Prn&e&
will be attached to the
PDY‘& Oh 'Hne, &huHiImE‘fer

Probes of the multimeter

Now that we've looked at the probes of the multimeter, let’s take a
closer look at the ports on the meter, shown in

It is important that the probes be placed in the correct ports when
using a meter. For all measurements, the black probe is placed into
the center COM port. The red probe has two different ports in which
it can be placed (the outsides as marked). Generally, keeping the red
probe in the far-right port is a good practice.

This is & defoil of whet the ports lock like without the probes.

0

MAX 600V
200mA

FUSED

P

r{’.d Prb!‘.rr?. %]Jiﬂ--l‘.l?.d

kere sometimes blacl probe, or COMN, is
ALWAYS placed here

red proﬁe % p[acmf
bere fo meesure most
pmper‘f'iﬁ';

The ports on a multimeter

Continuity () is an electrical property that shows whether
a connection exists between parts. You can use the meter to test this
property. It's a good way to get familiar with the parts of your meter.
And you're going to use it for debugging your circuit!

)))

First, we'll show you how to use the multimeter to test the electrical
connection between the probes on the meter, checking the
“continuity” between the probes (). We'll then move on to
testing continuity in your circuit.

Symbol for continuity

Multimeter with the probes touching

This test is a good way to make sure that your multimeter is
functioning and to get familiar with how to use it. If the probes are
touching, they form a complete electrical loop. The same test can be

used later to check if your parts are connected correctly from an
electrical perspective.

To test continuity, the black probe goes in the port marked COM and
the red probe goes in the port marked mAVQ, as seen in Figure 3-43.

10A COM mAVO

-

FAY
e
y ‘él b o)

P

10sec MA’ | MAX 600V
L 10A . 200mA
- FUSED [y FUSED

blecl probe in red probe in
CON port wAV(Q) port

Meter port settings to test for continuity

Next, move the dial so the knob is pointing toward the continuity
symbol (Figure 3-44).

(@) 20MQ OFF 200mv Ve

20kQ !/ e 20V

2kQ ./ e 200V
\l' 600V
e 600V
mﬁm.ﬁ.,,uw +{L¢ \‘\ A 'ZGGVVN
wultineter ”20uA

20mA oma 200pA C¢

Turn the knob to the symbol for continuity.

When the probes touch components that are connected, the meter
will play a tone if the meter is set to test for continuity. When the
probes are attached to the ports correctly, if they touch each other
they make an electrical loop. You are making a circuit with your
probes in order to test continuity.

Touch the two probes together now to test this out, as shown in
. While the probes are touching, the screen will display
*.000,” though it may fluctuate slightly. You'll also hear a tone that
will vary in sound depending on your meter. For continuity, the
display numbers are not as important as they will be with the other
properties we'll talk more about in Chapter 5.

disploy skows .000

fouch Prnfmt +asr3'fﬁe ol

dial set fo
cm‘fihui‘ﬁ? :l.Th-.{ml

The multimeter with the probes touching is a test
for continuity.

When the probes touch, as shown in Figure 3-46, you should hear
a tone!

The probes touch, and a tone plays.

Continuity will help troubleshoot issues in more complicated circuits
by identifying when components are not connected to each other or
if they are connected in an incorrect spot. We'll show you more
explicitly how continuity can help you solve issues in Chapter 5.

Let’s return to our basic circuit. Now that you have unboxed your
multimeter and understand what continuity is, let’s apply the
multimeter probes to our circuit and take a look at our results.

Your meter is already set up correctly to test continuity if you just
completed the last exercise. The settings for the dial and probes are
shown in Figure 3-47. Check to make certain that the dial is set to the
continuity symbol and the probes are in the right ports.

10A COM

A
T0sac MAS
104
FUSED
cnh{ihui‘ht ok '“n-lf

Ii-u[\ti he‘f{:r

blocl: praEu: in COIN pn:rf red pn;li'.\c in =AU]:-l:lr‘f
Meter settings to test continuity
First, remove your battery from the circuit. Then, turn on your
meter and place the probes on one of the leads of the resistor and

one of the leads of the LED, as shown in Figure 3-48. It doesn’t
matter which color probe touches which lead.

»

I'mHerc? is removed
Frm-n ‘Hae circui‘f*

probe touches lead of LED

Prnba “h:nu-::Les
lead of re'iirf'nr

Testing the circuit for continuity

If your components are connected, you’ll hear the buzzing sound

again, and the settings on the display will read .000 with a possible
slight fluctuation.

What if you didn't get that buzzing sound? Check the connections
in your breadboard between each component to see if they are in the
proper tie points.

In Figure 3-49, the LED is not connected to any of the other
components. The resistor is attached to the power rail and the
jumper is attached to ground, but neither is attached to the LED. To
fix the circuit, put the leads in the correct tie points.

-+ probe fouches lead of LED
BaH'ch is -
removed from B

He circuit A “Fl.- 4 the LED is not connected
i F-"| fo uw.f‘fLihﬁ else in the circuit.

PI'DEE +ﬂ[ﬂﬂ{‘\€§ {Eﬂd
of resistor

The multimeter testing a circuit where the
components are not connected

What about all those other symbols on the multimeter—when
will we use the multimeter to measure those?

We'll explain more about the multimeter and how to measure

the various electrical properties (resistance, voltage, current) in
Chapter 5.

What if my meter has a different reading than .000 when I'm
testing continuity?

With the recommended meter, the most important thing to

pay attention to when checking continuity is to listen for the noise
created by the meter that indicates your components are
electrically connected. Meters without sounds will have other
ways of indicating continuity on the display screen.

In this chapter, you learned how to build a circuit and how to debug
it. You were introduced to the multimeter, and you learned how to
use it to check if all your components were connected. In the next
chapter, you'll set up your Arduino to program it, and then connect it
to a breadboard to begin using your Arduino to control components.

4
PROGRAMMING THE ARDUINO

n this chapter, you'll start to see how the Arduino

controls electronics with the programs that you

write. First you'll set up the software to program
the Arduino on a computer; then you'll connect your
Arduino to a breadboard. We'll show you how to build
an SOS signal light using an LED. You'll learn basic
rules about writing code and get familiar with writing
code in the Arduino environment. For this chapter,
you need to know how to hook up your Arduino to a
computer and how to build a basic circuit on a
breadboard.

This is your first opportunity to combine building circuits with basic
programming. When you add programming and the Arduino to your
circuit, you have more control over the circuit; your LED can flash on
and off in different patterns. You'll learn how to program the Arduino
and connect it to a breadboard to build a complex circuit in which the

timing of the components in the circuit is controlled by the series of
instructions loaded onto the Arduino. To illustrate this, we’ll show you
how to create an SOS signal light with an LED that flashes on and off
according to timing controlled by the Arduino.

From this point on, most of the projects will include the three parts
shown in Figure 4-1: the code, the Arduino, and a circuit on a
breadboard. We'll discuss the combination of all three elements and
how they interact with each other in this chapter.

cede for Arduing in fhis c-‘rcui‘* Arduing Uno breadboard with cn&-pnhuhf‘s
affacked fo Brduing

LA K LAY e | Arcidng 1.0.3

[} 1%
L]

|||||

E
§
=
=
o
—
F
=

rerrrr ;8B

o

Eg
g
e

circuif with Arduine
affacked fo breadboard

Code, Arduino, and the breadboard

We looked at the Arduino and some of its features in Chapter 2,
“Your Arduino.” In Chapter 3, "Meet the Circuit,” you learned a bit
about small-scale electronics and circuits. We'll walk you through
downloading and using the Arduino IDE in this chapter, which will
allow you to upload code, changing the behavior of the Arduino.

Just as we’ll show you the necessary circuits throughout the book,
we'll also include all the code examples you will need to run your
projects.

To code, you'll need software from Arduino installed on your
computer. You'll download and install the Arduino IDE. What's an
IDE? Let’s take a look.

An integrated development environment (IDE) is a software
application that allows you to write code and test that code out in the
programming language the IDE supports.

If you have experience programming, you may have used another
IDE to write, test, debug, and turn your code into something the
computer understands. If you haven't, the Arduino IDE is a good
place to start—it is relatively simple and easy to understand.

The Arduino team has designed an IDE for use with their devices
that has all the features you need. It has a built-in code editor, which
is a program used to write the text files that you create when
programming. You can test your code in the IDE and solve any
emerging problems with the help of a message area that shows
errors in your code and a console that provides more detail about the
nature of these errors. It has buttons so you can check your code,
save it, create a new code window, upload it to your Arduino, and
more. This matches nicely with the basic flowchart for Arduino
projects as shown in

Uploading is transferring the instructions you write in the
code editor to the “brains” of the Arduino so that your code
controls the Arduino.

Find errors

f

Write code |—> Test code |—p| Upload code

Arduino flowchart

The IDE is freely available on the Arduino website at
. It is possible to program an Arduino
using another text editor or IDE, but we'll stick with using the
Arduino IDE in this book.

So what's in the IDE?

A code editor window where you write your code
A message area that gives information about your code

An error console that gives detailed information and helps in
debugging

Menus that allow you to set properties for your Uno and load code
examples and other functions

Buttons to check code, upload it to Arduino, save code, create a new
code window, and more

In basic terms, code is used to give instructions to the computer. We
use code to speak in the language the computer understands (in this
case, the Arduino language) in order to accomplish a set of tasks or
to set up a series of programmed responses. Computers have a hard
time understanding what you mean, imply, or suggest. They are not

http://arduino.cc/en/Main/Software

capable of the finer points of language, so we use code to simplify
the instructions to a set of commands at a fundamental level.

You've seen what'’s in an IDE, as well as a basic description of
code. Let’s take a quick look at the Arduino IDE.

Here's your first look at the Arduino IDE. Don’t worry about
memorizing any of the parts or what they do—this is just a first
glance. We'll cover all of the parts in detail later in this chapter and in
the rest of the book.

As you can see in , menus appear at the top of the
window. There are also buttons for frequently used functions such as
save, an area where you can write code, and some message areas.

hﬁqhi‘

(Arduino File Edit Sketch Tools Help O

] [] sketch_jun26a | Arduino 1.8.3

FOVE BUHDH

sketch_jun2ta

wvord setupl) { |
£ put your setup code here, to run once: |

H

void loopl) {
A put your main <ode here, to run repeatedly:

areo To ¥

u.-ri'F'E cnde

aesmﬂc

GFrEas

errors ond=" |

Arduina/Genuing Una on fdevicuusbmodeml4l]

ihfl}?‘ m‘f‘ioh

winil 0w

Arduino IDE

Now that you have an idea about what's in an IDE (and,
specifically, in the Arduino IDE), you can download it and install it on
your computer.

GETTING STARTED

The IDE you'll use to program your Arduino is free and available on
the Arduino site. The installation procedure is slightly different for the
Mac platform than for the Windows platform, so we'll walk you
through the download and installation process for both of them.

™\
ek

The URL again to download the IDE is
Cduino.cc[en/Mgin/S_ofton.

/

The download page will look something like Figure 4-4. Websites
change frequently, as does software, so it may look different when
you visit it. Click the link to download the Mac version of the
software. Make sure you download the latest recommended version
of the Arduino IDE for Mac.

Download the Arduino IDE

ARDUIND 1.28.3 Windows app| Get 21
The cpenssow e Arduing Soltware (I0DE) makes 4 casy Lo Here's' H\E
weritd (o dhd upliid @ B the Badcd. 18 rund aa Mac 05 X507 Lisa o aewer

% Wi, MaE 05 X, nd Lifrus, The #matonmmsent i liel,, Clicl. #
eTiCten in jarva and bacsed on Processing and other open
sourie soliware 1o downloed
Trus £afteand a0 Bt Ui with 3y Ardand bosrd
Reefier 1 the Getting Started page for iInstallaton e soffware.

Lifai !

Arduino IDE download for Mac

http://arduino.cc/en/Main/Software

When you click the link, a zipped version of the Arduino IDE will
start to download. It will be in the default download location on your
computer, most likely the pownloads folder. When it has finished
downloading, double-click the zipped file to unzip it. The unzipped file
will be named Arduino.app and will look similar to

If you don't see . app, don't worry—it means that your
computer is set not to display file extensions.

(o
reduinoass W will losl like this in icon view. 00] Arduino.app Bud lilie Hhis in fext view.

Icons for Arduino app

Move the Arduino.app file into the Applications folder on your
computer, as shown in

You have now downloaded and installed the Arduino IDE on your
Mac.

-qFP [icn'fiohs fn[der

- W
-/% Applications

= Desktop Arduino.app

i Documents
O Downloads

Drag the icon to your Applications folder.

Downloading and setting up the software for a Windows PC is very
similar to the steps taken for a Mac computer, but there are a few
additional minor steps you need to take in order to ensure the
computer and the Arduino can communicate.

First you'll have to download the software. The URL is the same as
that for the Mac download. Make sure you download the latest
recommended version of the Arduino IDE for Windows, as shown in
Figure 4-/.

\
(et

The URL again to download the IDE is
qduino.cc/en/Moin/Software.

http://arduino.cc/en/Main/Software

Download the Arduino IDE

Windows inaater Hﬂﬂ’.‘. 3 ‘Hn-l:

Windows 217 fie for non adsn instal Liwle, Clicl,
ARDUINO 1.8.3 Windows app| et 23 o download
The open-souwte Anduina Solftware (IDE) makes 2 eamy 1o

Hhe soffware.

writ code snd uplasd it ta the baacd 12 rund o0 MALC 5 X507 Lise e nemer
WYirsdow, Miag 05 X, Bnd Lin The emasonment o
WETICLEN 0 jarv and based on Progessng and other open
fource soltware

©.0

Limux 32 bits
This palpaang 50 e urked with 3y Andan bagsd U“ul Bl bein
Refer 1o the Getting Started page for insiallation Linux AR

et ons.

Rgleate Motes
Source Gode
Ehbckiuma (Fhadil)

Arduino IDE download for Windows

We recommend you use the Windows Installer link. If you are
sharing the computer—for example, you're using a computer at
school or work where you are not the only user—you may need to
download the version marked “non-admin install.”

When it is finished downloading, there will be an EXE file named
with the Arduino version in your default download location, generally
the pownloads folder. Double-click on this file to start the installation

process.

The first dialog box asks you to agree to the Arduino License
Agreement (Figure 4-8). Clicking "I Agree” will take you to the next
step of the installation.

@ Arduino Setup: License Agreement - X

S0, Please review the license agreement before installing Arduino. If you
o accept all terms of the agreement, dick I Agree.

"',:"NU LESSER. GENERAL PUBLIC LICENSE A
Version 3, 29 June 2007
|Copyright (C) 2007 Free Software Foundation, Inc. <htip://fsf.org/>

Everyone is permitted to copy and distribute verbatim copies of this license
document, but changing it is not allowed.

This version of the GNU Lesser General Public License incorporates the terms
and conditions of version 3 of the GNU General Public License, supplemented
‘b?’ the additional permissions listed below.

Cancel Mullsaft Install System 3.0 I Agree

c{icL Lere ‘h:i cah‘f'ihue;

Arduino license agreement

With the Arduino Setup Installation Options, make sure that the
Install USB Driver and the Associate .ino Files boxes are checked
(Figure 4-9). Create Start Menu Shortcut and Create Desktop

Shortcut are optional but will help you navigate to the Arduino IDE in
the future.

@Arduino Setup: Installation Options — X

@98, Check the components you want to install and uncheck the components
o you don't want to install. Click Next to continue.

Select components to install: ' Install Arduino software

Install USB driver

Create Start Menu shortcut
Create Desktop shortcut
Assodiate .ino files

Space required: 417, 1IMB

Cancel Mullsoft Install System v3.0 < Back Next >

Installation options

Depending on your settings and your version of Windows, you may
get a Windows security pop-up box asking about the USB Driver
installation. Click Install whenever a security dialog box pops up to
allow the Arduino IDE to be installed completely (Figure 4-10).

— el
(-] Windows Security W |

Would you like to install this device software?

Mame: Adafruit Industries LLC Ports (COM & LPT...
— Publisher: Adafruit Industries

[] Always trust software from "Adafruit Industries”. [Install H Don't Install]

@] You should only install driver software from publishers you trust. How can [decide
which device software is safe to install?

Security dialog box

That’s it! Now your Arduino IDE is ready to run on your Windows
PC.

You've installed the Arduino IDE, so now it's time to connect your
Arduino to your computer so you can program it.

Plug your USB cord into the Arduino, and plug the other end of the
USB into your computer, as in Figure 4-11.

Rewerber fo vee o shandord B = B USE coble.

Plug fbe ofber evd
info oLF cahyu‘f‘er_

=

Attach your Arduino to your computer.

The LED marked ON should light up, and if your Arduino is brand-
new out of the box, the light near Pin 13 should be blinking, just like
when you tested plugging your Arduino in for Chapter 2 (Figure 4-
12).

LED blinls Arduive Uno is ON

Indicator LEDs

Let’s take a look at the Arduino IDE in Figure 4-13 now that you've
launched it.

The Arduino IDE allows you to check whether your Arduino is
connected to the computer, check your code for errors, upload any
code you write to control your Arduino, and has a few other helpful
options for understanding how the Arduino is behaving. We'll look at

all of the features in much more detail before you start to write code
for your Arduino.

A program we write in the code editor for the Arduino is called a
sketch. When you launch the software for the first time, you'll see the
bare bones of a sketch. We'll explain how the code that’s there is
used as you start to program your Arduino.

A sketch is the name for a program you write for the Arduino.

mwenhus
~

(-_A.rﬂulnn File Edit Sketch Tools Help __:)
T w

SKRElCh_Junzea | Arguing 1.8.3

sketch_jun2ba

vold setupld

£F put your setup code here, to run once:

¥
wvold Voop() {
£ pur U Faln code here, edly:
area +D put your ;o code here, O run repeat ¥
}
wrife code \

Arduing | Gemuing Und on fdeviouuibamodemlall

Basics of Arduino IDE

One peculiarity of the Arduino IDE is that if you close all of
the sketch windows, the IDE will try to close. It will ask you to
save a sketch if you made any changes, but otherwise it will
close.

You'll have to configure some settings before you start
programming. Let’s look at them now.

Two important settings need to be configured in the Arduino IDE so
your computer can communicate with your Arduino Uno. You need to
specify which version of the Arduino hardware, or board, you are
using, and which connection or port you'll use for communication
between the Arduino and your computer. These settings will be the
same as long as you're using the same Arduino Uno. (The settings
will be different if you're using another Arduino. We're using the
same Arduino for all of the projects in this book.)

Specify the Arduino Hardware Version

You saw in Chapter 1 that there are many different versions of the
Arduino. To program yours, you must indicate in the software which
version of the Arduino board you're using.

To do this, go to the Tools menu and select Board, as shown in
. From the flyout menu, select Arduino Uno/Genuino.
Once this is set, you'll have to set a port through which your Arduino
will communicate with your computer.

-“-'1'1 EEYEL‘hEIHII'F L7 frnk & nnc CGHPU‘!E[

Tools bemes —_—

#& Arduine File Edit Skeir Help
686 sk Auto Format KT

Archive Sketch
Fix Encoding & Reload
skadch jull9a Lerial Monitor vk 0]
: o 1 Serial Plotter L

) Board: “Ardulnt/ Genulng Une®™ = Boards Manager...

Poat -
e e e b, 18 rum repmstny ‘a2 B0 Info -
Arduing
. Programmer: “ANRISE mikil” Y v Arduino/Genuing Una. i —Select Arduing/Genuing Une
Buirn Booiloader 'Di' Deecimila

Arduing Mang
ArduinafGenuing Mega or Mega 2560
Arduing Mega ADK

Arduing Leanards

ArduinofGenuing Micro

Arduing Esplora

Arduing hind

Arduing Exhermet

Arduing Fig

Arduing 6T Lisf of all fhe
LilyPad Arduino USE
LilyPad Asduine versions of fhe

Arduing Pra or Pro Mini ﬂr\d i
Lan b

Arduino NG or older
Arduing Robot Control
Arduing Robat Mator
Arduing Gemma

Selecting the Arduino board

Specify Which Port You're Using

There is a port on the Arduino that communicates with a port on your
computer when the two are connected by a USB cable. Think of the
port as the channel through which the two devices speak to each
other. Right now, you need to set up the Arduino IDE so the correct
port on your computer communicates with your Arduino.

Selecting the right port looks slightly different on a Mac and a
Windows computer. We're going to look at screenshots for both of
them. Remember, you're setting up your computer to talk with your
Arduino Uno, since that is the version of Arduino that we're using for
the projects in this book. Let’s look at Mac first; if you have a
Windows PC you can skip ahead to the next section.

ek

\Arduino and the computer.

A portis a channel of communication that connects your

_/

Mac Port Selection

To set the correct port for your computer to communicate with the
Arduino, go to the Tools menu and select Port, as shown in Figure 4-

15.

':-:rcrzw:-uﬁ. & Mac
& Arduine File Edit Skewh [ESCH Help

Auto Farmat xT
Archive Sketch
Fix Encoding & Reload

Serial Monitor HM
Serial Plotter RL
Board: "Arduing/Genuing Unge” »
Get Board Info fdewjou.Bluetooth-Incoming-Port

fdevjou.Bluetooth-Modem

Programmer: “AVRISF mkIl
Burn Bootloader

i pdyulkingiPhone -Wirel
“rdevfou.usbmodem1451 (ArduinofGenuing Uno)

detail of correct PI}r“F selection

-~ jdev/cu.usbmodem1451 {Arduino/Genuino Uno))

ke DF f;f"' 'IE!EE"EA

Selecting the correct port

™~
wome of Arduine

On a Mac, select the port whose description includes dev and cu
and that is labeled Arduino/Genuino Uno. Dev is a prefix added by
the Mac, cu is short for call-up, and Arduino Uno is the version of
Arduino hardware you’re using. In our earlier example, the number at
the end of that menu item is 1451; on your screen, this will be
different from this example, and it might be different each time you
connect your Arduino. In some versions of the software or operating
system, you may see tty rather than cu in the lists of ports. That

should work as well; what is important is that you see
Arduino/Genuino Uno in the port description.

Nothing bad will happen if you select the wrong port, but the
Arduino and your computer won't know how to talk to each other. If
it seems that the Arduino and your computer aren’t communicating,
take another look at your list of ports and make sure you've selected
the right one.

Windows Port Selection

Let’s look at the port selection on a Windows machine (Figure 4-16).
On a PC, the port names will all start with COM. You want to go to
the Tools menu, select Port, and then select whichever COM number
matches up with the Arduino Uno/Genuino label under Serial Ports. It
will be something like COM3 (Arduino Uno/Genuino).

screenshot from o Windows PC

File Edit Sketch [Tl.'.ll.'.l|5 Help
1. Auto Format Ctrl+T
Archive Sketch
SKEICh_ARM212 - by Encoding & Reload
vold setup() Serial Monitor Ctrl+Shift+M
/1 put your
Board 4
} Port : Serial ports
void loop() | pmgmmmer | ‘f COM3 U-.“dl.linn UT]
// put your
Burn Bootloader
}

Selecting the correct port

Will T always choose the port that says Arduino Uno/Genuino?

Not necessarily. That is the version of the Arduino board we

are using in this book, so all of the projects in the book use the
Arduino Uno, but you may want to use other versions of Arduino
as you build your own projects later on.

Sometimes there are other ports listed in the dropdown. What
are they?

Those are other ports that use different means for your

computer to communicate with other devices. Don’t worry about
them—we won't be using them.

What if T don’t have my computer hooked up to the Arduino?
Will I see the port to connect to my Arduino then?

No. In order to see the correct port, you must have your
Arduino and computer connected with a USB cable.

Now that you‘ve set the port and the correct Arduino board, let's
take a closer look at the Arduino IDE used to create your code.

We've heard about the parts of the Arduino IDE; now let’s take a look
at them more closely in

As in most software, there are menus that allow you to perform
various actions, such as creating new files, saving them, and many
more, at the top of the software interface. There are button icons
that also allow you to quickly access some of the most often
performed actions. Clicking the Verify button checks to make sure

there are no errors in your code. Clicking Upload transfers your code
from your computer to your Arduino so it can run on your Arduino
board. There is a window where you type your program, and
message areas that give you information about that program. We'll
explain more about messages as we work in the IDE; for now, know
that they tell you if your code has errors, and also information like
the amount of space it uses in the Arduino’s memory.

im.Et:h'iT
(Arduino _File Edit Sketch Tools Help D

] [] sketch_jun?6a | Arduing 1.8.3

sketch_jun2ba

vord setupl) {
£ put your setup code here, to run once:

¥

sioid lm::n(} -E
A put your main Lot here, to run repeatedly:

erec to ¥

u.-ri'hz chE

hESiﬂﬂE

GrEQs

errors ande

ihfor p.n‘f‘[ph Arduina/Genuing Ling on fdevicuushmademl4l]

winil ow

Arduino IDE annotated

Let’s look a little closer at the buttons at the top of code editor in
Figure 4-18.

These buttons allow you to quickly access the actions that you will
perform most often with the code window. These actions include
checking if your code has any errors (verifying), sending your code to
the Arduino board (uploading), creating a new file, opening a file,
and saving it.

UPLOAD OPEN
S‘Ehd? u?:}ur l’_'.DdE. OP‘EHS‘ & PTEViDhSL?

to our Arduino soved shefch

VERIFY
'C-LE.CL'S nfnur

code for errors

SAVE
Soves qour sleteh

NEW

C,rea‘f'ei & hew

code window

Buttons in the Arduino IDE

We'll use all of these buttons in just a moment, but first let's be
clear about what writing a sketch actually means.

You can think of an Arduino program, or sketch, as one full group of
instructions to perform specific tasks. A sketch includes all of the
code, or instructions, for that task or tasks. It's possible to have
multiple, separate sketches open at once—just as a spreadsheet
program can have more than one sheet open at a time. Let’s take a
closer look at what forms a sketch.

Every program you upload to your Arduino is considered a sketch.
A sketch can be quite simple or extremely complex. It could turn a
single LED on and off, or it could control 10 or more motors based on
sensor input. Although each sketch corresponds with one task, that
task could be made up of multiple parts. For example, your program
may take measurements of the world (like light levels) and use them
to trigger speakers and LEDs. All of that would go in one sketch.

The name of the sketch appears in a tab in the upper-left corner of
the code editor. Figure 4-19 shows examples of Arduino sketches.

blonl sbketel window expiple of o shefeh wirdow with code
His shetcl is vamed Blinl. We'll
[hoie of shefeh will oppear in fhis fab open this skefch on the next poge

LR]

OO0 BED =
1A i =
‘F‘?Pﬁ your /

code ik bere

N

A blank sketch window and one with code written in

Before you start to write your own code, let’s explore an example
that is included in the Arduino IDE. The IDE has a lot of examples
(sample code) that demonstrate many of the things that the Arduino
can do built into it. You can load an example into the code window
and upload it to your Arduino when it is attached to your computer.

First, open up the example sketch named Blink by selecting File >
Examples > 01.Basics > Blink, as shown in Figure 4-20.

Fi[E ”E v EKQhPL&S 01.BD~EFCS‘ B[ih[&

® Arduino Edit
Teseo

pketch Tools Help
N ino 1.6.5

> AnalogReadSerial
02.Digital [3 BareMinimum
} Save 5 03.Analog [
Save As... T8s 04.Communication > DigitalReadSerial
oid loopl) { 05.Control > Fade
/4 put your mat Falge Setup o3P 06.5ensors S ReadAnalogVoltage
) Print &P 07.Display >
08.5trings 3 r
Af 1IED [

Opening the Blink sketch

By default, your Arduino sketches will be saved inside the Arduino
folder within your computer’s bocuments folder. It is a good idea to
continue to save in this space since it makes it easier to return to the
files. Arduino also keeps track of past files saved inside this folder in
the Sketchbook dropdown in the File menu.

Even though you're using code from an example, it is best to save
it now with a different name so that you can always return to the
original unadjusted example code later. That way, when you make
changes and save your sketch you’ll know you haven’t saved over the
Blink example sketch accidentally. Save your sketch as LEA4_Blink so
that you'll be able to find your changes later.

Get in the habit of saving your files. Just like you wouldnt want to
lose work from a paper or another project, saving early and often can
help save frustration if for some reason your computer closes the

Arduino IDE (losing power, momentary hiccup, etc.). Although the
odds of this happening are low, the one time it does you'll be glad
you don't have to repeat all the work you did because you saved your
project and don’t have to worry about it.

Keep saving your sketch files as you are working.

Now that you‘ve saved the example sketch with a new name, it's time
to upload it to the Arduino. Before you upload it, let’s check it for
errors. Even though you're using the code that’s built into the IDE,
get in the habit of always verifying your code before you upload it.

There are two buttons we talked about earlier that you need to
keep in mind when you're ready to upload your code: Verify and
Upload. We've highlighted both of these buttons in

Ugrifu.?
Uplmdi your code

Clecls your code for errors

o

'Fo -nrnn-'r Arduing

Verify and Upload buttons in the Arduino IDE

Step 1: Verify Your Sketch

Verifying ensures that your code is set up correctly. Click the Verify
button to make sure there are no errors (Figure 4-22). Unless you
made changes to the LEA4_BIlink sketch before you saved it,
everything will work fine.

verif <?

The Verify button

The message window at the bottom of the IDE shown in Figure 4-
23 will display “*Done compiling” and show no errors.

Euccessfu[VE riﬁ?

The message window

When you verify your code, you will get a message that notifies
you that something is wrong if there are any errors in your sketch.
The Arduino IDE only knows about programming errors, not mistakes
you might have made in setting up your circuit with the Arduino.
(We'll cover those types of errors as we progress through the book.)
When we type text into the Arduino IDE window, the code looks like
something that humans can read, but the Arduino doesn’t understand
how to interpret it. Your computer temporarily converts the code into
a language that the Arduino understands when you click Verify to
check for these errors.

Step 2: Upload Your Sketch

upload

The Upload button

When you click Upload (Figure 4-24), your computer converts the
code into a language that the Arduino understands and then
immediately begins sending this program over the USB cord to your
Arduino.

Uploading Continued: Status Bar and Message
Window

Once you click the Upload button, the Arduino IDE window will give
you a status bar indicating how much progress the upload has made
and a message window with information such as the size of the
sketch. That progress bar and message window looks something like
Figure 4-25.

Once the file has been sent to your Arduino, the message window
will say “Done uploading.”

That’s it! Now your code from the IDE window is running on the
Arduino.

uplbad Froﬂrzﬁ Ear

IEinar'y sketch size: 1,884 bybes (of a 32,256 byte mmiimum) ;.,,1355;;5.3 window

Arduino Uno on fdev/iry.usbmodemb21

SLCCETS Fh{ [[CHJ-B‘

Upload progress bar

Run the LEA4_Blink Sketch

Now that you‘ve uploaded your sketch to the Arduino, as long as the
Arduino has power from the computer through the USB cable, it will
keep running. The code that you've uploaded to the Arduino contains
the instructions that tell the Arduino to blink the light over and over.
The LED near Pin 13 will turn on and stay on for one second, then
turn off for one second, over and over again. This is illustrated in
Figure 4-26. We'll look at the code in detail shortly and see exactly
how it works.

USB Cﬂé’[ﬂ CGHHEC'{'E .
+I'J CDhPU+EF \

XIS %

RX=1= ARDUINO

MADE IM ITALY

T — - —

The LED blinks.

If your LEA4_BIlink sketch is not running, you can turn again to the
methodical process used to discover what issue is preventing your
code from working. You've seen this before with our electronics, and
it is known as debugging.

™\
e

Debugging is the name of the process used for solving issues
\with the circuit and with the code in your Arduino projects.

DEBUGGING: WHAT TO DO IF THE LED

If the upload was successful and your LED is blinking, there isn’t
anything to fix. But what if the LED didn’t light up? Just as you used
debugging to search out issues in your circuit, you'll debug your code
throughout the book, methodically looking for problems that prevent
your code from functioning properly. You'll also look for problems
with how the Arduino hardware is set up. If you had any issues with
your LEA4_Blink sketch make sure that:

Your USB cord is tightly plugged into both your computer and your
Arduino (Figure 4-27).

You have selected the right board type and serial port from the
menus (Figure 4-28).

Make sure your computer is firmly attached to your
Arduino via the USB A-B cable.

1 Help

sk Auto Format ®/T
Archive Sketch
Fix Encoding & Reload

Serial Monitor {ra M
Serial Plotter 438l
Board: "Arduino/Genuino Uno" > Boards Manager...
Port >

o ,
o Cet Board Info Arduino AVR Boards

Arduino Ydn
Programmer: "AVRISP mkIl" [' Arduino/Genuino Uno
Burn Bootloader Arduino Duemilanove or Diecimila

Arduino Nano
Arduino/Genuino Mega or Mega 2560
Arduino Mega ADK
Arduino Leonardo
Arduino/Genuino Micro
Arduino Esplora
Arduino Mini
Arduino Ethernet
Arduino Fio
Arduino BT
LilyPad Arduino USB
LilyPad Arduino
Arduino Pro or Pro Mini
Arduino NG or older
Arduino Robot Control
Arduino Robot Motor
Arduino Gemma
B

Make sure you have selected the correct board.

If your Arduino seems not to be responding, you can always push
the Reset button before uploading, as shown in Figure 4-29. The
Reset button will turn off your Arduino for a moment before turning it
back on.

I"ES‘&"’ bh‘H'Dh

R{4i» ARDUINO

MADE IM ITALY

—— g S g

The Reset button on the Arduino

You can also try switching your USB port or restarting your
computer if none of the above solutions work for you. We'll cover all
sorts of code debugging tricks throughout the book, but these few
basic tips concerning the Arduino can save you a lot of headaches
later.

The LEA4_Blink sketch will run as long as the Arduino has power,
but how does it actually work?

LEA4 2TCH: AN OVERVIEW

Figure 4-30 shows a screenshot of the LEA4_BIlink sketch. This is a
quick overview of the parts of the sketch; after we look at it we'll go
over every part of it in detail.

L X B LEA4_Blink | Arduing 1.8.3

Dont sfress out "'I"J.?iha

fo understond this code--
we ([walle ‘H«mugh

it in defail in the

cﬂhihﬁ pnses.

A the sethp function Ard onde abon W preis roiet OF power the boord
woid setupd) {

A initialize dightol pin L0 BILTIN od on output

pirMedefLED BUILTIN, CUTPUT):

7 AR Lot FUMCRLON Fums (wir and Gvir GQanm Terever
vold loop(y {
g ha Bt ofLED_RUTLT

F W, HIG: A7 tuen the LD on CHISH 45 the waltags Level)

LWP et (1008 £ wait for 8 sevend
digitel®ite{LIDBALTIN, LOW); £ turn the LID of f by molting the veltage LOW

el {) £ malt for @ gedond

Arduing e nuing Ung on fdev/oumbmodemi? |

LEA4_Blink sketch first look

Comments are notes to the programmer in the text that are not
part of your program. In an Arduino sketch, setup () is where you put
the parts of your program that happen only once, and 1oop() is
where you put what you want to happen over and over again.

In this sketch, all of the code in setup() and loop() is written in
the Arduino programming language. If you look at the code in the
Arduino IDE, you will see that parts of the code are different colors;
some are orange, some blue, some black. These colors represent
some of the different roles of the code. It's not important to
memorize or know these colors; they are just there to help you
visually separate the purpose of the various parts.

In the LEA4_Blink sketch, all of the code in setup() and loop ()
is defined by the Arduino programming language.

We'll look at all the parts of a sketch in detail shortly, but first let’s
look at the comments section at the top of the code.

Comments in code are used to write notes to anyone who might read
your code. This might be you when you return to a sketch you
created earlier, or others with whom you are sharing your code.
Comments have no effect whatsoever on how the computer
interprets the text and are only there to remind you or clue someone
else in on what you intended to do, or how the program functions as
a whole. We'll use comments throughout our code examples to help
explain sections. It is a good habit to get into writing comments to
yourself so that you can return to a sketch later and remember what
is going on.

The first part of the LEA4_BIlink sketch includes a comment about
how the file works. This comment is long, with lots of information,
but comments are sometimes short, just a word or two. As you can
see from this example, comments sometimes have information about
the author of the code and the date. In this case they also tell us that
the code is in the public domain.

In the Arduino language, as in many other popular languages,
there are a couple of ways to indicate comments. Multi-statement
comments start with /x and end with »/, which allows for entire
blocks of code to be commented out. Single-statement comments
start with // and end when you hit Enter to create a new statement.
Sometimes the single statement comments are at the end of a

statement of Arduino code. Anything written after the double slash
(//) will be ignored until the next statement.

As you can see in Figure 4-31, the top section of the LEA4_Blink
sketch shows the comments at the beginning of the sketch.

L N N LEA4_Blink | Arduing 1.8.3

LEA4_Blink

ink

Turns on an LED on for oné second, thea off for one second, repoacedly.

0'“":’;[""“" of Host Arduinos have an on-board LED you can control. On the UNO, MEGA and ZERO

what .u.e"'ﬂ it is attached to digital pin 13, on MER1000 on pin 6. LED BUILTIN is set to

the correct LED pin independent of which board is used.

code does If you want to know what pin the on-board LED iz connected to on
your Arduino model, check the Technical Specs of your board at

httpsr/ A ardoino.cofen/Main/Products

This example code is in the public domain.

modified 8 MHay 2014

by Scott Fitzgerald efber infornotion,
such as aufhors,

modified 2 Sep 2016 'd 'f . Il'l

by Arturo Guadalupi ates, righls

madificd 8 Sop 2016
[\ by Colby Howman

<@n sotup function runs once when you press roset or power the board
I
cmﬂ-pk of :rn-»siu—{iu comhent

Comments at the beginning of the LEA4_Blink

eml cohhch'l:

sketch

N\
ek

/* and x/ denote the beginning and end of a block comment.

(indicates single-line comments.

4

SETUP() AND LOOP(): THE GUTS OF YOUR

Comments, though important, are not instructions to the Arduino. In
an Arduino sketch, there are two basic sections: the setup () function
and the 1oop () function. The diagram in Figure 4-32 shows how
setup () and loop() work: setup() happens once, followed by

loop (), Which repeats over and over.

Se‘l'upo 4

o Flhs OhCE

- runs rﬁpﬂﬂ‘f'ﬁd{t?

v

Joop()

setup () and loop () diagram

setup() is the name of a function that is included in every Arduino
sketch. What's a function? Just think of it as a way of organizing code
or instructions to the computer.

A functionis a way of grouping statements of code or blocks
of instructions to the computer.

Generally speaking, anything that you want to happen only once in
your sketch belongs in the setup () function. setup () is run exactly
once every time your Arduino is reset.

We are going to take a look at the rest of the Arduino code for the
LEA4_Blink sketch, but first let’s look at a couple of example projects.
We'll use these example projects to help you gain an understanding
of the difference between the setup() and loop () sections of the
code.

Example 1

Later on in this chapter, you will be building an SOS signal
light that will flash an LED on and off in an SOS pattern
continually, with the timing controlled by the programming.

setup () is where you will set the pin that controls the LED to
an output, telling the Arduino which pin will control the LED.

loop () is where you will put the code that controls the timing,
turning the LED on and off continually.

Example 2

Let’s say you want to build a digital music box that plays
different sounds depending on what button you press, and
you want to include a volume control knob.

setup () will be used to assign different buttons to each of the
sounds and determine which pin responds to the knob.

Loop () will be focused on responding to button presses and
playing each sound when the corresponding button is
triggered. The loop () function will also look for changes in the
knob, which will change the volume.

You've seen examples of how setup() and loop() work; now let’s
see what the setup () function looks like from the LEA4_Blink sketch
you just uploaded and have running on your Arduino.

We've discussed comments, and you've seen that setup () runs once
at the beginning, whenever you turn on or reset the Arduino. Let’s
now take an in-depth look at the setup () function in the LEA4_Blink
example sketch.

the complete setup() function

vold setup() {
// initialize digital pin 13 as an output.
pinMode (LED BUILTIN, OUTPUT);

}

setup () has some parentheses attached to it; we'll explain why
they are needed and what they do later. After the parentheses is an
opening curly brace, {, which is very important. Curly braces denote
a block of code and mark off the instructions that will happen when
the code is run. In this case, whenever setup() is run, all of the
instructions will execute one by one. When you are done with the
code block, be sure to include a closing brace, 3, to tell the Arduino
that you are done talking about that section of code instructions.

Curly braces denote when we begin and end a block of code.

Let’s take a look at what code instructions happen when setup() is
run. For the LEA4_Blink sketch code, there is only one setup() code
instruction and one single-line comment.

/ covtents of sefupl[:l

COmments -

<
// initialize digital pin LED BUILTIN as an output.
pinMode (LED_BUILTIN, OUTPUT);\

A
code insfructions

The first line looks familiar. It starts with two forward slashes,
which means that it is a comment. In this case, the comment is
telling us the purpose of the second line is to “initialize digital pin
LED_BUILTIN as an output.” We don't yet understand what this
means, but we do now know that pinMode (LED_BUILTIN, OUTPUT);
sets the built-in LED to be an output. Let’s take a look at the code
instruction line without the comment.

/se;'f'up(] code ihS'h'uc‘\LiDh

pinMode (LED BUILTIN, OUTPUT);)

\
ek

A line of code is defined by one and only one instruction
C\ding with a semicolon.

/
///-Ghﬁ ih?’h’tﬂﬂ'hﬂh eofua{'s Ohe {ihe r:nc coc{e

@Mode (LED BUILTIN, OUTPUT D

Semicolons in the code serve the same purpose as periods in
English; they denote that you have reached the end of the line. This

keeps the Arduino from misinterpreting your instructions, because it
knows you meant to end the line as soon as it sees a semicolon. If
you omit the semicolon, you will generate an error in the Arduino IDE

and your code won't upload to your Arduino.

pinMode (LED BUILTIN, OUTPUT@
SEh«iCDLOh

Semicolons end statements of code, like periods end
sentences.

Next, let’s look at the end of the line. pinMode () is followed by a
set of parentheses, which contain the text LED_BUILTIN, @ comma,
and the word ouTtpruT all in capital letters. pinMode () is a function that
sets our pins to behave in a particular way.

When we want to use a function or instruction like pinMode (),
we say that we are “calling” the function.

set pin mode (LED_BUILTIN, OUTPUT) ;

When you call pinMode (), you instruct the Arduino to set the pin
with the number you type to act as either an input or an output.
Instead of seeing a pin number there, you see LED_BUILTIN—Which is
there instead of the pin number, because your Arduino Uno knows

that LEp_BUILTIN means Pin 13. So, 13 is the number of the pin you’ll
set to ouTPuT. You haven’t wired anything to the Arduino yet, but the
Arduino already has a tiny LED wired permanently as part of the
board attached to Pin 13, which is where the word LED_BUILTIN
originates. You are setting the mode for Pin 13, telling the Arduino
that you plan to use Pin 13 as an output.

LED_BUILTIN is connected to Pin 13 on the Arduino. Both
pinMode (13, OUTPUT) and pinMode (LED_BUILTIN, OUTPUT) have
the same outcome.

pinMode (@D BUILT@ ,

Plh huhber Plh se 'h} 'HMS

OUTPUT means that you want to control whether the pin is off or on.
ouTpuT allows you to set the pin dynamically and change its state as
your sketch continues.

To recap, in our LEA4_Blink sketch setup () tells the Arduino to treat
Digital Pin 13 like an output. The Arduino is good at remembering
instructions that you tell it about pins, so you need to tell it only
once. As long as this sketch is still running, Arduino knows that Pin
13 is an output. If the Arduino gets unplugged or turned off
somehow, the first thing that happens when the Arduino restarts
(within the setup () function) is that Pin 13 is set as an output. In
other words, you don't need to remind the Arduino what the
individual pins do over and over. You'll put all of your pinMode ()

functions inside setup () so that they run only once. Figure 4-33
shows the LED blinking.

\
Note

setup () happens once and only once.

LED blinls
Din ﬂhd ﬂlcf

USB CGB[E CGHHEC'{'E .
+ﬂ cohpu‘h’:r \

Tl
RX=i= ARDUINO

MADE IM ITALY

—— e —

The LED blinking

Why should I bother putting comments in my code?

Sometimes when you are writing code, it's not obvious exactly

what the code is doing, and it is very helpful to make notes to
yourself for when you come back to a sketch later on. It is also
helpful when you share your code or when you are working on a
team.

Does setup () always come first?

The Arduino knows to always run setup() first, once, and

then continue on to running the 1oop() section of your code. In
order to have a successful sketch, your code must include a
setup () block.

Can you explain again what it means that we set a pin using
pinMode()?

By using pinMode (), we are instructing the Arduino that we

plan to use a specific pin, in this case number 13 (also labeled as
LED_BUILTIN), within our sketch. This is necessary for the Arduino
to know which pins it will be controlling for each sketch.

Do I always have to set pins as outputs?

No, you only set pins as outputs when you want to use them

to turn things on and off. Pins can also be declared as inputs.
We'll cover inputs in the next chapter.

Is pinMode () always attached to LED_BUILTIN?

No, you have a lot of other pins on the Arduino you can use
for your sketch. You are using LED_BUILTIN (Pin 13) right now

because it is the only pin that conveniently has an LED attached
to it.

Does it matter which pins I declare?

You should only declare pins you plan on using in the sketch.

In the LEA4_BIlink sketch, you only declare the LED_BUILTIN, Pin
13, because you know you’re going to use that pin to turn on and
off the LED.

Setting the pin mode to output isn't the only thing I will do in
setup(), right?

Right. There are a lot of other instructions to the Arduino that

you want to run only once, and you will put them in setup().
We'll explain them later on.

PENS

LOOKING AT LOOP(): WHAT HAP

OVER AND OVER

Now that we have seen the setup() function from the LEA4_Blink
sketch, let’s take a look at the 1o0p () function.

/"" loopl) function from fhe LEAS_Blink shetck

vioid 100‘?{} {
digitalWrite(LED BUILTIN, HIGH);//turn the LED on (HIGH is the voltage level)
delay(1000); f/wait for a second

digitalWrite{LED BUILTIN, LOW);/fturn the LED off by making the woltage LOW
delay(1000); f/iwait for a second

The 1oop () function contains the code that you want to have
repeated over and over again. As long as the Arduino is running, this
code will keep repeating, after the code in setup() has run once.

loop () will continue running as long as the Arduino is on.

When you saw LEA4_BIlink run on the Arduino, the LED light
blinked off and on every second. The code in the loop creates this
behavior. Let's take a close look at what’s in 1oop () in our sketch line

by line.

@l?.‘rite{:-: D BUILTIN, HIGH};// turn the LED on (HIGH is the voltag@

.
firet chaterent in fhis loepl)

In an Arduino sketch, write means to set a value.
digitalWrite() will set a value of HIGH or Low.

The first statement of code instructions inside the 1oop () looks
similar to the pinMode (LED_BUILTIN, OUTPUT); statement you saw in
setup (). Again you'll be dealing with LED_BUILTIN, which is a label
for Pin 13, since you declared in setup() that your sketch uses this
pin. The digitalwrite() function in this context is used to set
whether the pin is on or off. When you write, or set the value of the
pin to HIGH, you are turning the pin completely on.

digitalWrite(pin #, HIGH) will turn pin # on.

When the Arduino gets to this line in the 1oop (), it will turn on the
LED attached to Pin 13. Let’s next take a look at the second line.

After you turn the pin on, you want to put a short delay() in the
program. This delay () will pause your program, preventing the
Arduino from reading the statement that follows for a short time.
How long does delay () pause the program? That is up to you.
delay () requires that you include between the parentheses the
number of milliseconds (one thousand milliseconds equal one
second) to wait. In this case, you have stated that the Arduino will
wait one thousand milliseconds, or one second, before moving on to
the next statement of the program.

@ay{lﬁﬂﬂ}; // wait for a se@

<
second line in this (oop()

The delay () function stops the Arduino from doing anything
for a short time.

Now let’s look at the third line of the 1oop () function.

/'H-irtj t*afuhth'f' in 'Hnit 1D~DF{]‘

TIN), ;h’ turn the LED off by making the volt@

write to o pik value we wrife fo pik

pin }..,e wrife fo

This third line of code instruction inside the 1oop () is nearly
identical to the first line, digitalwrite (LED_BUILTIN, HIGH);, except
that HIGH has been replaced with Low. You are still focused on Pin

13, which is the only pin that you use in this sketch. As you learned
with the first line, digitalwrite() determines whether the pin is on
or off. Using the Arduino to write Low sets the pin all the way down—
in other words, off.

digitalWrite(pin #, LOW) will turn pin # off.

Finally, let’s look at the fourth and final line of the 1oop (). You'll
put another pause in the program, this time for 1000 milliseconds, or
one second. This makes it so that the LED stays off for a full second
since the Arduino is paused for this time. The Arduino pauses for one
second and then will go back to the first line of the 1o0p () code
again, repeating the cycle just described.

(]? // wait for a seca@
~

pouse function emount of fime fo pause

lest line in this [DQP”

I can change the amount of time in a delay, right?

Absolutely. You'll see how to make the pauses longer and

shorter, as well as make other modifications to the code in
loop (), later on in this chapter.

Here's all of the 1oop () code again, including the comments:

‘/,,.J looplh function fron the LEAS_Blink shetch

veid loop() {

digitalWrite(LED BUILTIN, HIGH);//turn the LED on (HIGH is the voltage level)
delay(1000); f/wait for a second

digitalWrite(LED BUILTIN, LOW);//fturn the LED off by making the woltage LOW
delay(1000); ffwait for a second

Again, as demonstrated in Figure 4-34, loop() is run continuously,

and setup () is run once. Your loop() code will blink the light on and
off until the Arduino is unplugged.

|— Fluhs OhCe

Se‘I'UPO 4

/ Flns I’EPE&‘*’EG‘L?

v

| oop()

setup() and loop()

\
(et

Setting pin modes is always done in setup (). Anything you
want to run more than once should be included in the loop()

function.
k /

Although the sketches you’ll write throughout the book will become
more complicated and include more lines of code, the basics laid out

in the LEA4_Blink sketch will continue to be your foundation for good
code. Pins only need to be declared as inputs or outputs in setup(),
and any code you want to happen more than once should be
included in loop (). Remembering these two principles will help
immensely as you get into more complex projects.

You've seen the basics of an Arduino sketch, and looked at how
setup () and loop() functions work. After answering a few questions,
we'll move on to reviewing schematics and look at the schematic for
the Arduino. Then, we'll explain how to hook up your Arduino to a
breadboard so you can run LEA4_Blink and light up an LED on the
breadboard.

So whatever I put in 1oop () Will keep repeating over and over
again?

That's right. Just like the name, 1oop () keeps on looping
through the same lines of code, over and over again.

What does the delay () function do?

The delay () function specifies the amount of time that the

Arduino is paused, or waiting idle. During this time everything
stays the same, so if the light is on it stays on. With the delay ()
in this sketch, you can see clearly that the light turns on for one
second, and then off again for one second.

Will digitalwrite() always be in loop()?

No, it will only be there when you want to set a pin and

whatever is attached to that pin, HIGH or Low. In this case, you
use digitalwrite() to turn the LED on or off.

What exactly is a function again?

For now, think of a function as a way of organizing

instructions to your Arduino. We'll explain more about them as
you write more sketches.

Semicolons, curly braces...it seems like there is a lot of
punctuation in the sketch. How will I ever remember it?

It can be confusing when you start. Keep looking at the

examples and see how the punctuation is used. Curly braces mark
off a block of code, and semicolons mark the end of a line.

Does the Arduino programming language have a reference
guide online?

Yes. is a great place to

get more information about the language. You can use it to find
out more about the code you use in this book, and to research
your own projects after finishing the book.

Now that you‘ve run your code and lit the LED on the Arduino board,
you're going to attach your Arduino to a breadboard, build a circuit,
and run your LEA4_Blink sketch again. You want to learn how to
control external components with your Arduino, not just light up an
LED on the Arduino itself, so you must attach a breadboard to hold
the components.

To run LEA4_Blink on the Arduino attached to a breadboard, you
won't need to make changes to your code. When you set
LED_BUILTIN to HIGH in LEA4_BIlink, it lights up the LED on the
Arduino near Pin 13, and it will also set whatever is attached to Pin
13 (an LED) on a breadboard to HiGH (a.k.a. on).

Before you start to build your circuit, let's take a look at the
schematic for it. Doing so helps you visualize the electronic
relationships in the circuit.

Your schematics from now on will include a symbol for the Arduino.
shows a schematic for the Arduino, with all the digital,
analog, and power and ground pins labeled with their numbers or
function, placed next to a drawing of the Arduino Uno for
comparison. Don't worry about memorizing the pin numbers and
functionality now—we’'ll explain more about the pins and their uses
later.

http://arduino.cc/en/Reference/HomePage

Brduivg Une selenatic Arduine Uno wifh piks lobeled

AREF|- -
GND = wo=ly
17 - I p
= ICAEF 1k _ :
= ReEsET LRI 8 i @
platr DH:‘ xS P ID O ':p: :
grourd pins | - sv PVH T TR
3 bk o ® HE:
e —diﬁ-i'h'-[pins 1oany . ~ 12
i ER= =11
= vin kN :;“' H = =19
T . =l : oz =
4 o s b 1< I ;
r:mn[oﬁ_ pins [T A i i ! % :
sorbed wifl A | 42 L S a o) | ¢
il -
42 : .] R
A 1
= Ad T | = J | [s 1 i"'_" [
o a5 w0k @ e |, ..

Arduino schematic and board

The schematic for the Arduino looks much more complicated than
the other schematics you've seen previously. Its complexity reflects
the number of connections possible with the Arduino hardware.
Rather than try to cram this detailed Arduino schematic into the
schematic of every circuit you build, you’'ll use a simplified version: a
rectangle that represents the Arduino, with labels only for the
components you're using in that circuit. Let’s see a full schematic of
the circuit you're going to build with the Arduino.

For the sake of clarity, when you include the Arduino in your
schematics, you're only going to label the pins that are attached to
the circuit you're building. For example, Figure 4-36 shows the
schematic for the circuit you're about to build. Only Pin 13, 5 volts,
and ground are shown, as well as the LED and resistor.

The simplified Arduino

syimbol we ll use in

our schematics

rESiS’{‘ or

5V

ca»rouhc{ Pih GND

Schematic for LEA4_Blink circuit

Now that you've looked at the schematic, let’s see how you're
going to build the circuit. You'll start from the circuit you made in
Chapter 3 (Figure 4-37).

Circuit from Chapter 3

Now that you've taken a look at the schematic, let’s build the circuit.
You're going to run your LEA4_BIlink sketch and light up an LED on a
breadboard. You're attaching a breadboard with a resistor and LED to
the Arduino—the program that runs on the Arduino will not change.
The Arduino will be the power source for your circuit when it is
attached to a computer with a USB cable.

Remember, whenever you make adjustments to a circuit,
your Arduino should not be attached to your computer.

You will need these parts:

LED (red)

220-ohm resistor (red, red, brown, gold). This is different from the
one you used in the previous chapter.

Jumper wires
Breadboard
Arduino Uno
USB A-B cable
Computer with Arduino IDE
compares a drawing of this project to a schematic of

the completed circuit. As you can see, the circuit uses a resistor and
LED like the circuit you built in Chapter 3.

eivewit illurtrofion circwit tehenatic
resivlor

— LED

\@
I
&

SHIHEY o

v wamme o B
el ekl od BEE S Yy -
- |

TEDCO

»
®
L E
(L LI L
LR I 1 L
i =] [
e o] [
ayi
§ v
y v
L=k
A 1
A% 1
-l I .
o 1
|
ﬂ. -

|

)
(Fe
G

Labeled Arduino breadboard and schematic
annotated

You want to build circuits with your Arduino, not just light up an LED
on the Arduino board, so you're attaching it to a breadboard. How do
you do that?

We first mentioned using the power and ground pins on the
Arduino in Chapter 2. These two pins allow you to use electricity from
the Arduino to power the components in your circuit, replacing the 9-
volt battery you previously used.

To use the pins, start by attaching a jumper from the pin marked
5V to one of the power buses on your breadboard. Then attach a
jumper from one of the pins marked GND (which stands for ground)
to one of the ground buses on the breadboard. This is shown in
Figure 4-39.

Make sure your computer is not attached to the Arduino
when you are building a circuit.

dedeil of fle breedboard

Attaching power and ground to the breadboard

It is standard procedure to attach both power (5V) and ground
(GND) to the breadboard when attaching a breadboard to an
Arduino. Even if you don't use the power right away, it can be handy
to have later as you add more components to the circuit. In this

circuit, instead of using the 5V from the power pin, you’ll be using Pin
13 to provide power for the LED.

Now that the Arduino and breadboard are connected, connect Pin 13
on the Arduino board to a line of tie points in the breadboard with a
jumper, as you see in Figure 4-40.

deteil of the Arduine

Pin 13 i‘f‘facl-.ed fo row of
fie Pﬂih+$ on breedboord

Adding a jumper from the pin to the breadboard

Next, put one end of a 220-ohm resistor (which has bands marked
red, red, brown, gold) in the same row of tie points as the jumper
from Pin 13. Put the other end into another row of tie points (Figure
4-41).

one end of resistor

oteched {'DIIPih 13

caee ﬂ

4

o'Hmer Ehd nf regi:‘f‘nr it
different row of tie points

Adding the resistor to the circuit

Put the anode (long lead, positive end) of the LED in the same row of
tie points as the other end of the resistor. Put the cathode (short
lead, negative end) in another row (Figure 4-42).

2= 4 ovode of LED “
= | I]
, R

' I |
& cafbode of LED .
" I |

Adding the LED to the circuit

detail of resistor and
ﬂ-hﬁﬁ.’ I:Hf LED EDMEC"'EJ

Next, add a jumper that connects the cathode (short lead, negative
end) of the LED to the ground bus (Figure 4-43).

——

)

cofbede of LED

2 : "uhpq:r ottached fo

.:- ground bus

detail of cHLmL of LED
i'uln-?ct.l o .E'rl:lumi bus

Adding a jumper from the LED to ground

Finally, connect the USB cable that is attached to the computer to
give your circuit power (Figure 4-44).

Attaching the Arduino to your computer

The LED should start blinking on the breadboard (Figure 4-45).
Your circuit is like the basic circuit you created in the previous
chapter, but now your LED flashes on and off, controlled by your
Arduino, which is running the LEA4_Blink sketch. You have more
control over your LED by using the Arduino; you have added the
element of timing.

o |prL

ONINaHY wir X

(ONNJ©,O)

ATWLI HI 1OV

|
I
1
I
|
I
I
|
1
I
1
|
|
|
1

I [- ‘o
L | my
L}
ARDUTROLE |mw ._‘_.g .-

The blinking LED

+a m e mn

R IR
_—]
L] - =
e ——
- E I EE
- -
- E I EE
] " I E N
™ "= i E =
- E I EE
:IIII

E I EE
-

- - FE =
S
a " I Em
“|l #m 1mm
= "E I Em
" "= I E =
| E IR E
- T
L] E 5 E =
= E I EE

R R R T EEEE

--II+

+m m s mm

My LED didn’t light up—what’s wrong?

Remember the section about debugging the circuit from

Chapter 3? Check the continuity by looking carefully at the board
or using your multimeter. Make sure the LED has the correct
orientation. Also check that your jumpers are attached properly to
the breadboard and to the Arduino.

I didn’t change the code in the LEA4_Blink sketch; why does
this work?

The code in the LEA4_Blink sketch controls the LED_BUILTIN

on the Arduino Uno. The tiny built-in LED is connected to the
Arduino board on Pin 13, but the code in the sketch will also
control any components that are attached to Pin 13.

Tell me again why we connected 5 volts to the breadboard
when it doesn’t appear we're using it?

It is a convention to attach power and ground to the power

and ground buses on a breadboard when you set it up. As you
build more complex circuits, you’'ll eventually be using the power
bus. This circuit gets the power from the pin on the Arduino.

While the previous circuit ended up being very similar to the project
in Chapter 3, you have accomplished something by hooking it up to
the Arduino and discovering the possibilities of code. Earlier in this

chapter, you saw that you can make one light blink on and off with a
few very simple lines, and the opportunity for complexity just grows
from this basic starting point.

Now you’ll work on the code, adjusting it to create an SOS signal
light, a light that uses Morse code to convey an SOS message by a
blinking light pattern. This is a pattern of three short light flashes,
followed by three long flashes, and finally three more short flashes
with a long pause at the end before the pattern repeats (Figure 4-
46).

code for LEAS_SOS sigrol light Arduing end breedbpord

LA TG | At LY

|
g

.n-n

@ FEEEE ':'!H=;g§ei 0
5 PO —

J
®

GHINOHY "':
TED O

e

Ardde ..Lé&::‘ﬂ&ﬁi_.: 3

RN AR ah et Li 8

&
o=

LEA4_SOS sketch and circuit

You can see by looking at Figure 4-46 that the hardware (the
Arduino and breadboard with components) does not change at all. All
the changes to make the LED blink in an SOS pattern will go in the
sketch you write in the Arduino IDE. You don’t need to disconnect
your Arduino from your computer if you're adjusting the code—only
when you're adjusting components on the circuit.

The Arduino can remain connected to your computer if
you're adjusting code only, but not when you're changing the
hardware.

Select Save As and rename your sketch LEA4_SOS. Some of this new
sketch will have the same code you just used, and you'll be adding
substantial new code. The code inside setup () will have one minor
change and the code in 1oop () will become much longer. Let’s review
the LEA4_Blink code, then revise the code in loop().

Reviewing and Revising Code: What Do You
Change?

Let’s first take a look at the setup () code. After a comment that tells
you what the following line does, there is a line that sets
LED_BUILTIN, connected to Pin 13 as an output. Instead of leaving it
as LED_BUILTIN, you're going to change this setup() code to include
the line pinMode (13, OUTPUT).

setup() code

void setup() { N
// put your setup code here, to run once: ﬁ
pinMode (13, OUTPUT); curly breces
} ——_sef Pin 13 1o uu‘fpu}r

You're changing LED_BUILTIN to 13 in the pinMode() in the
setup () code.

Unlike the code in setup(), the code in 1oop () Will be revised and
added to extensively. Let’s review the code from the LEA4_Blink
sketch before you make changes.

The first line in the 1oop () sets LED_BUILTIN to HIGH, turning on
the LED. delay() then pauses the Arduino—in this instance, for 1000
milliseconds, or one second. Next you set LED_BUILTIN to LoOw,
turning off the LED. delay () pauses again for 1000 milliseconds.
Since the code in loop() repeats over and over again, the LED is
blinking on and off.

f_,.funl-:-[] cade
sets pin Liﬁ!- oid loop() {
digitalWrite(l3, HIGH); Sf turn the LED on (HIGH is the wvoltage level)
pause oke second delay(1000); ff wait for a second
tett piln Lo digitalWrite(l3, LOW); S/ turn the LED off by making the voltage LOW
delay(1000); /i wait for a second

poute ohe secomd

Let’s look at how you are going to revise loop ().

Adjusting loop() in the SOS Sketch

Your code for the SOS signal will be three short flashes of the LED
followed by three long flashes, then another three short flashes, with
a final pause before the code repeats again. You'll write the code for
the three short flashes first. We'll look at all of it first, and then break
it down line by line. We'll also reference Pin 13 by its number,
replacing all mentions of LEp_BuILTIN from the LEA4_Blink code.

After a comment that states what the code does, Pin 13 is set to
HIGH, followed by a delay, then set to Low, followed by a delay. This is
repeated three times.

r?f 3 short flashes
digitalWrite(l3, HIGH); /f turn the LED on (HIGH is the voltage level)
delay(500); £/ wait for a half second

digitalWrite(l3, LOW): /f turn the LED off by making the voltage LOW
delay(300); /fpause for 300 milliseconds, about 1/3 of a second
digitalWrite(l3, HIGH);

delay(500);

digitalWrite(l3, LOW);

delay(300);

digitalWrite(l3; HIGH):

delay(500);

digitalWrite(l3, LOW);

hEElay{Eﬂﬂ];

Let’s take a closer look. The first line of code inside 1oop () will stay
the same as in your LEA4_Blink sketch. As you have seen, this line
sets Pin 13 to HIGH.

1¢!Rh134¢k3L
@.ala-arite(lz, HIGH): // turn the LED on (HIGH is the voltage @

You're going to make an adjustment to the next line of code.
Remember, the delay () function creates a pause, measured in
milliseconds. In your original sketch you paused for 1000
milliseconds, or one second. You want a shorter pause now, 500
milliseconds, or half a second. Let’s change the comments to reflect
what your code is doing.

pouse for 1/2 second
delay(500); // wait for a half sec@

Your next line will set the pin Low, or turn off the LED. You can
leave this line as it is, since there is no need to change it from the
LEA4_Blink sketch.

set Pin 13 To low

(EEEEEEIWrite{IE, LOW) & f/ turn the LED off by making the wvoltage LGHt:::}

However, you'll make a change in the number of milliseconds in
delay (). In your LEA4_Blink sketch, the delay was 1000 milliseconds,
or one second. Now you’ll pause 300 milliseconds, about a third of a
second. You'll adjust the comments as well.

powse 'Fﬂ-'l' jﬂﬂ hl[[l'!tfﬂhd-'!

(::égz;;[auna; f/pause for 300 milliseconds, about 1/3 of a second

Here is the complete cycle:

digitalWrite(l3, HIGH); £/ turn the LED on (HIGH is the woltage lewvel)
delay(500); /f wait for a half second

digitalWrite(l3, LOW); Ff turn the LED off by making the voltage LOW
delay(300); /fpause for 200 milliseconds, about 1/3 of a second

You want to repeat turning on and off the LED three times. Let’s
first add a comment indicating what this part of the code does, then
copy two more cycles of turning on and off. Here is the code again:

r}} 3 short flashes

digitalWrite(l3, HIGH); /f turn the LED on (HIGH is the voltage level)
delay(500); £/ wait for a half second

digitalWrite(l3, LOW); /f turn the LED off by making the voltage LOW
delay(300); //pause for 300 milliseconds, about 1/3 of a second

digitalWrite(l3, HIGH);
delay(500);
digitalWrite(l3, LOW);
delay(300);
digitalWrite(l3, HIGH);
delay(500);
digitalWrite(l3, LOW);
| delay(300);

Now let’s look at the code for the longer flashes.

The three long flashes section is very similar to the short flashes
section. After the pin is set to H1GH, the delay () function pauses for

1500 milliseconds, or one and a half seconds, keeping the LED turned
on. Let’s look at all of the long-flash code first. A comment states
what the code immediately following does.

T long flashes

digitalWrite(l3, HIGH); Sf turn the LED on

delay(1500); Jf wait for a second and a half
digitalWrite(l3, LOW): Jf turn the LED off by making the veltage LOW
delay({300});

digitalWrite(l3, HIGH);
delay(1500);
digitalWrite(l3, LOW);
delay(300);
digitalWrite(l3, HIGH):
delay(1500);
digitalWrite(l3, LOW);
| delay(300);

Again you have a repeating cycle of setting the pin to HIGH,
pausing, setting the pin to Low, pausing, three times. First you set the
pin to HIGH.

et Pin 13 46 L;SL
Gigégga1Writ9113, HIGHY; // turn the LED on (HIGH is the voltage EEEEEE}

Then you pause with the delay() function, this time for 1500
milliseconds, or a second and a half. The comments have also been
changed to reflect the adjusted amount of time.

pavse for 11/2 veconds

@Y{IEQO}; fiwait for a second and a half D

Just as in the code for the short flashes, you must set the pin to
Low, then pause with delay ().

setf Pin 13 To low

(EEEEEElWrite{IE, LOW) ; £/ turn the LED off by making the voltage Lﬂﬁt:::}

You'll then use the same number of milliseconds as delay ()
between the short flashes, 300 milliseconds.

pavse for J00 williseconds

(::§EE;Y{BDG:; f/pause for 300 milliseconds, about 1/3 of a seé%EEZ::)

Again, you're creating a cycle that is going to repeat. After the last
short flash cycles, you'll make the pause last longer to make each

SOS signal discrete. Let’s look at that, and then look at all the code in
loop () together.

This final line of code in 1oop () pauses the Arduino for 3000
milliseconds, or 3 seconds. This follows a line that has set Pin 13 to
Low. You want a longer pause between each SOS signal to make sure
viewers can distinguish between cycles.

Flhﬂ[[llﬂ[‘i 1y [U‘JF‘[]

digitalWrite(13, LOW);
delay({3000); fifinal delay is 3 seconds

I didn’t change my code from LeD_BUILTIN to 13. Why does it
still work?

LED_BUILTIN is the same as Pin 13, so even if you switch

between the two, your sketch will still work. It is best to pick only
one so as not to confuse what is happening in your sketch.

Now let’s look at all of the code in 1oop(). It is long, so we're
breaking it up into sections.

Goid loop() D________——— leopl) decloration and tfort :r.rerl:! broce

3 short flashes
digitalWrite(l3, HIGH);
delay(500);
digitalWrite(l3, LOW);
delay(300);
digitalWrite(l3, HIGH):
delay(500);
digitalWrite(ll, LOW):;
delay(300);
digitalWrite(13, HIGH);
delay(500);
digitalWrite(l3, LOW);
delay(300);

// turn the LED en (HIGH is the wvoltage level)

ff wait for a half second

ff turn the LED off by making the wvoltage LOW
f/pause for 300 milliseceonds, about 1/3 of a second

3 sbort flask code

r?} 3 long flashes
digitalWrite(l3, HIGH);
delay(1500);
digitalWrite(l3,
delay(300);
digitalWrite(l3,
delay(1500);
digitalWrite(1l3,
delay(300);
digitalWrite(l3,
delay(1500);
digitalWrite(l3,
delay(300);

LOW) 3
HIGH);
LOW);
HIGH):

LOW) ;

ff turn the LED on
ff wait for a second and a half
Jf turn the LED off by making the veltage LOW

3 Imi flask code

r!f ¥ short flashes again

digitalWrite(13, HIGH): f/ turn the LED on (HIGH is the woltage level)
delay(500); /f wait for a half second
digitalWrite(l3, LOW); £ turn the LED off by making the voltage LOW
delay(300); ffpause for 300 milliseconds, about 1/3 of a second
digitalWrite(1l3, HIGH):
delay(500);
digitalWrite{13, LOW); 3 shorf flosh code
delay(300);
digitalWrite(13, HIGH); fival deloy is 3000 nilliseconds
delay(500);
digitalWrite(ld, LOW);

Cdelay(3000); J/final delay is 3 seconds

n-r!u‘l brace claves the !MP code

After you've written your code for the SOS signal light and saved it,
click the Verify button to check for errors (Figure 4-47).

Arduing/Ce nuino Uno on fdeviouusbmodemlas]

Successful verify

If it is okay, make sure your computer is attached to your Arduino,
and that you have the correct board and port selected. Then click the
Upload button to upload your code to the Arduino (Figure 4-48).

Arduire e nuing Und on fdeviouuibmaderml45]1

Successful upload

What does the LED look like now on the board?

Your LED should now be flashing an SOS signal: three short bursts,
followed by three long flashes, three short bursts again, a 3-second
pause, then the whole pattern starting over and over again. There
are other, more efficient ways to write the code, but for now we want
you to make adjustments and understand what the code is doing by
seeing the results in your circuit (Figure 4-49).

LED flashes on ard off
in an SOF ':-'shn{ pu”trh

LLAL_ 506 | Aadyni 183

=2 s (| :
= N (R -
- R BT
) Ho) & S EREEH | T
13f: I
m o — ‘:
B e
= acn e BHE
LED flashing SOS

You've set up the Arduino IDE, learned how to verify and upload
code, seen how to attach a breadboard to an Arduino, and explored
writing a sketch in the Arduino programming language. You can
download the code for LEA4_SOS from

https://github.com/arduinotogo/LEA/blob/master/LEA4 SQOS.ino.

In the next chapter, you'll learn more about writing code in the
Arduino programming language and how to attach different types of
components to a circuit.

https://github.com/arduinotogo/LEA/blob/master/LEA4_SOS.ino

hat are voltage, current, and resistance? How
are they related? And why should you care?

In this chapter, you'll learn about voltage,
current, and resistance and how they interact with
each other. This will help you understand how your
circuits are working and how to make adjustments to
them. You'll also learn how to use the multimeter to
measure these properties. This knowledge will help
you debug your circuits and also get you on your way
to designing and building your own projects from
scratch.

Electricity is the flow of electrons through a material, as you can see
in . In the projects in this book, electrons flow through
carefully arranged and specified paths—through our circuits.

Electricity flows through a circuit.

Electricity has three main properties: voltage, current, and
resistance. In this chapter, you'll see how these properties interact
with each other, in a fundamental relationship called Ohm’s law. You'll
also learn how placing components in different arrangements affects
the electrical properties in a circuit.

Why are we looking at electrical properties, and not just building
more circuits with our Arduino and other components? If you don't
understand a bit about how these properties work in a circuit, it will
be very difficult to move on to building your own circuits after you‘ve
completed all the projects in this book. Also, without some
understanding of these properties, troubleshooting your projects is
next to impossible. In this chapter, you'll learn more techniques for
debugging your projects.

Remember the multimeter (Figure 5-2) from Chapter 3, “Meet the
Circuit”? You learned how to set it up to test for continuity (whether
your components are connected to each other). The multimeter helps
you debug problems in a circuit. By testing for continuity, for
example, you can verify that your circuit is a complete loop. In this
chapter, you'll learn how to use the multimeter to measure voltage,
current, and resistance. Why do you need to do this? Testing voltage
will help you analyze problems with your circuits; for example, is your
circuit getting voltage? How much voltage is each of your
components consuming?

N
N

Understanding how voltage, current, and resistance interact
in a circuit helps you troubleshoot your projects as well as

Cild new circuits.

The multimeter

If you're going to use a multimeter to test electrical properties in a
circuit, you'll first need to build a circuit. Let’s start with a basic circuit
that contains one LED, a resistor, a breadboard, and an Arduino. You
won't write an Arduino sketch this time; instead, you'll simply use the
Arduino as a power source. You'll check the voltage coming out of

the Arduino, and then test the voltage across each component. You'll

then add a second LED to the breadboard and see how the electrical

properties of the components change depending on if you place them
in a series or in a parallel arrangement. We'll explain exactly what we
mean by all of this shortly.

To build the basic circuit described in this chapter, you'll need the
following parts:

1 red LED

1 220-ohm resistor (red, red, brown, gold)
Jumper wires

Breadboard

Arduino Uno

USB A-B cable

Computer

This circuit is quite similar to the circuit you built in Chapter 4,
“Programming the Arduino.” The one difference is that you aren’t
powering the LED from a pin on the Arduino but from the 5-volt
power bus on the breadboard.

As we said earlier, there is one major difference in this circuit, shown
in , from the one you built in Chapter 4: you aren’t
connecting |t to a digital pin on the Arduino. Instead, you're going to
get power from the power bus on the breadboard. Remember, the
power bus is connected by a red jumper to the pin marked 5V (for 5
volts) on the Arduino.

the cuhp[d&a‘ circit p{uﬁed i sehenatic for the cireurt

+
EEQ s
amiosw |
== 5w |""
ams wu|"™ "
s ww|"™
[]
SLENN
AN oRE|IE
(]

5V
GND

Laddu =dtzs

i3
3t

The circuit with the schematic

Before we start building, let’s take a look at the block of power and
ground pins, shown in Figure 5-4. There is a pin marked 5V, and also
one marked 3.3V, as well as pins marked GND for ground.

33 voH Pih-—-
S volt Pin—

Ground Pins—

Power and ground pins on Arduino

Although we have been building our circuits using 5V, you can also
use 3.3V to build some circuits with components that require less
voltage. The 3.3V port works the same as the 5V except it puts out a
lower amount of voltage.

Here are the steps to build the circuit, shown in Figure 5-5:

Attach one end of a jumper to the 5V pin on the Arduino, and the
other end of the jumper to the power bus on your breadboard (that’s
the column marked with a red +)

Grab another jumper and attach one end to the GND pin on the
Arduino, and the other end to the ground bus on your breadboard
(that’s the column marked with the green -).

Connect a jumper from the power bus to a row of tie points.

Connect one lead of a 220-ohm resistor to the same row of tie points.
The other end goes in another row of tie points.

Connect the anode (long leg) of the LED to the other lead of the
resistor.

Attach a jumper from the cathode (short leg) of the LED to the
ground bus.

deteil of junpers atfacked fo Arduine U avd GuD detail of breadboard
"R
jumper comnects | ' l e m o m
resivfor fo power buss [T
nE M“'\! EEEE
resivlor conmected EEu
to ancde of LED —— I
juper attacked |
4o S cetlede of LED -
comnected to jukper
juh?rr etfacked
s ﬁrm) jubper connecty
fo 3I'\bnhd P

A circuit with details of power and ground pins on
Arduino and the components on the breadboard

When you have the circuit built, use the USB cable to attach your
Arduino to your computer. We aren't going to write a sketch; you're
just using your computer as a power source for the Arduino.

If your LED lights up when you attach the USB cable to your
computer, you can skip to the next page. If not, let’s troubleshoot, or
“debug” the circuit.

You learned about debugging in the earlier chapters. As a reminder,
it is defined as the process by which you methodically check your
project to eliminate any issues that might be causing problems.

Check that power and ground are connected to the breadboard
buses and the correct ports on the Arduino. Figure 5-6 shows them
connected improperly.

Check that the LED is oriented correctly (anode connected to
resistor that is connected to power, cathode attached to jumper that
is attached to ground). Figure 5-7 shows what it should look like.

pl:m-ur I:lhl.'.l SFDLMI.'.I ibh?tri ”GT ﬂHﬂ-CL\E{I praperlnf

H B E E B
H B E E B
H B EHE E B
L HE B B B = |
\ jusper NOT atfacked to pouer bus juper NOT atfacked 1o GND on Arduing

Power and ground on Arduino and breadboard
improperly attached

LED is OriEh‘i[EC{ pruper[u!

a.hm:!e {[Ohﬁ [ead} a‘ch-::Led
‘h} resisﬁ)r aHacI'nEd ‘!"n power

cathode (short lead)
otteched fo juhper to 3!"0[.1?\5[

Check the orientation of the LED.

Check the continuity; the leads of the components that are
supposed to be connected need to be in the same row of tie points.
Figure 5-8 shows a circuit where the components are not connected.

components in WRONG row of fie points

— resistor and anode
of LED are
NOT CONNECTED

cetbode of LED —
and fuh.pcr ‘fu 3rwhd
NOT CONNECTED

Components not connected

Now that you have your circuit fully functional, let’s discuss how
electricity is flowing through the circuit.

Why are you putting so much emphasis on debugging?

In any electronic project, many things can potentially go

wrong. It is smart to maintain a comprehensive approach to error
checking.

Electricity is the flow of electrons through a material. Electricity
requires a closed loop to flow from beginning to end. Your circuits
create a closed loop with conductive lines and components. The
electricity follows the paths of the circuit. shows the path
of electricity in the circuit you just built.

This discussion of electricity is simplified. We wanted to
reduce the complexity of explanations to better fit with the
small-scale electronics projects we're building. This is not an
adequate primer for a complete understanding of electricity
or of complex electronic theory.

'Hnt{‘l ﬂow of e[ec‘frici'h? ih 'Hu‘g circui‘f

Schematic with electrical flow indicated

Materials can be broken down into two different types. The first type
of material is conductors, which are good at letting electricity flow.
Wires are made of metal because it is a good conductive material.
The second type of material is insulators, which resist the flow of
electricity. Rubber is one example of an insulator.

Conductors let electricity flow, whereas insulators restrict
the flow.

There are two different types of electrical flow: alternating current
(AC) and direct current (DC). The electricity that comes out of your
wall socket is AC, whereas our Arduino and many small electronic
projects and components use DC. In alternating current, represented
by the drawing in , the flow of electricity changes
direction. In direct current there is only one direction to the flow.

ﬁH’EThﬂ‘f'ihtj CUTTEh+ wﬂUEfﬂF’h Euih]l:'ﬂ['FCI}" lqc

Alternating current

One of the major benefits of AC is that it can be distributed over
great distances, something that is much more complicated with DC.
AC is also able to increase the amount of voltage supplied much more
efficiently than DC. Small-scale electronics projects, such as those we
create with the Arduino, do not need to transport the electricity great
distances, nor do they generally require large amounts of voltage. For
these reasons, our descriptions of electricity will be restricted to
direct current, which we describe in more depth in the following
pages. Direct current, which most small-scale electronics projects
use, is represented by

CIirEC+ CUI’FEH'F urﬂ'l.l"EfOl'h SU‘IhBﬂ['FIDT' DC-
' SE—
0 T

Direct current

Electricity is dangerous. Don't try using anything that
involves alternating current!

Is a battery direct current?
Yes, a battery uses direct current.
Is the power supply we use with the Arduino AC or DC power?

The power supply for the Arduino actually converts AC into DC

power. It uses a transformer, which we are not going to cover in
this book.

Let’s look at the three main properties of electricity: voltage, current,
and resistance. We're exploring how electricity works in DC; AC works
somewhat differently, and we aren’t addressing it here. This chapter
provides enough information about these properties to let you build
your own Arduino projects; however, if you have a deeper interest in
electronics and electrical engineering, you'll need to know more than
the simplified overview presented here.We suggest these titles:
Getting Started in Electronics, by Forrest M. Mims, III (Master
Publishing, Inc., 2003); Make: Electronics: Learning Through
Discovery, 2nd Edition, by Charles Platt (Maker Media, 2009); and
Practical Electronics for Inventors, 4th Edition, by Paul Scherz and
Simon Monk (McGraw-Hill Education, 2016).

flow of water
> 71/// ru;:r:-ﬂ-h"-:d 5\1 SFTORT
volfoge 8_/
SOLTCE,

Lepper *{IHL

”rl:-l.» ¢F v.‘nrrth"

represenfed by arrows

The water analogy for electricity

To help you comprehend how voltage, current, and resistance
interact with one another, we'll use a common analogy that relates
electrical properties to a water system, shown in Figure 5-12. On the
left, you see an electrical circuit that has a voltage source, a light
bulb, and a resistor. The flow of electricity is represented by the
arrows. On the right is a water system, with a pump, two tanks of
water, a turbine, and pipes connecting all of the pieces. The flow of
water is represented by arrows.

Why do we use the water analogy to understand electrical
properties?

Electrical concepts are necessarily abstract and difficult to

visualize. Although the water analogy is a simplification of how
electrical properties work, it helps you to conceptualize their
interaction.

How do we use this analogy to understand the properties of
electricity? Let’s look at voltage first. In our electrical system, we
have a voltage source: a battery. What is this analogous to in our
water system?

In our water system, water has a potential to fall from the upper
tank, moving through the turbine to the lower tank. When the water
gets to the lower tank, it has no more potential to fall (because it's
already at the lowest point in the system). If we increase the amount
of water in the upper tank, we increase the pressure, or the potential
for the water to fall. If there is increased water pressure, the turbine
will turn faster, producing more work. If we decrease the amount of
water in the tank, there is less pressure or potential to fall and so the
turbine will turn more slowly, doing less work ().

woter foul full: Lish pressure (pofestiol) less water in fonl: low presture (pofential)

> wore water in > lezs wofer in
/\ fonl. ereates forl, = lower
[-j-:jl-l:r presiure A

preEsTuFe
PUMP @ PUMP

all wefer \A \] A)

(el Y

Jlomste B GGl 4, e < furbine furms
o h farter hare i[ﬂu-{ﬂ

\“'--...,___ _._-/)

Voltage in the water analogy

Ewhf)ﬂt for DC voHaﬁe

How does this relate to voltage? In our electrical system, the
electrons have the potential—that is, they have the pressure to flow
from an area of higher charge to lower charge. Similar to more water
making the turbine spin faster, in a circuit, a higher voltage source
makes the light shine brighter (more electrical potential), whereas a
lower voltage source (less electrical potential) makes the light

dimmer, as shown in Figure 5-14. This potential is also known as the
electromotive force.

\
Nofe

Electromotive force is the potential for electricity to flow.

/

Similar to the way water always flows downhill (from a higher point
to a lower one), electricity has to flow from a higher voltage point
toward a lower voltage point. Measuring voltage involves measuring
the difference between the pressure at any two points in the system.
It is always a relative value, measuring the difference between two
points. Figure 5-15 shows the schematic and the electrical model,
with the flow of electricity marked from power to ground.

Ct}hpﬂ-ﬁhg -Jiltltt!.l‘ihﬁ W[“'ﬂ-ﬁt SOLFCET 1k DLer HIE(!'FPI'E#{ hﬂdﬂ{

> >
N\

V t‘sl‘:& il light s
"55 e . V dil-.h.fr
/ m
iou.er/
volfese I
—

A Y A Y

< <

Electrical model with differing voltages

N\

I--iﬁir.cr
"-'GHO SE

SOLTCE

otr electricel model

>
pomer~ A 8
I

D
ﬁrnuhu'/-)

- \‘.‘.-\1!-501 for

Our electrical model with the schematic

seheretic of cirewit

—— +

-EFWHJ

Voltage is the difference in electrical potential between any
two points in the circuit.

As the electricity travels through a circuit and its components, from
a point of higher to lower voltage, this electric potential is consumed
and used up by the components it flows through until there is no
more potential energy. This zero point, measured at zero volts, is also
known as the electrical ground. 1t is analogous to the lower tank in
the water circuit, the lowest point in the system, where the water
can't fall any lower—it has no more potential to fall. This is the same
ground that we've talked about in our circuit diagrams and on our
Arduino.

Zero volts (the point of no electric potential) is known as
ground.

So is the ground you said is zero volts the same ground we've
been talking about in our circuits since Chapter 37?

Yes, ground is a reference point in a circuit with the electrical
potential equal to zero.

You may be familiar with voltage as appliances, electronics, and
electrical components all often list a voltage rating. Most small-scale
electronics, like phone chargers, use between 3 and 12 volts DC.

Our Arduino operates at 5 volts. Remember how you connected the
breadboard to the pin marked 5V on the Arduino? When your Arduino
is plugged into your computer, it is getting 5 volts from the computer.
In your circuits, the components (the LED, for example) use up some
of the voltage. The resistors you've used in your circuits allow you to
change (reduce) the value of the voltage, which you’ll learn more
about later in this chapter.

Now that you're familiar with voltage, let's see how you measure it
with a multimeter.

Why measure voltage? It is critical to know that your breadboard and
components are receiving voltage; this is always one of the first steps
to take in debugging your electronics projects.

We are continuing to use our multimeter from SparkFun (SparkFun
part number TOL-12966). Back in Chapter 3, you saw that the
multimeter has probes that have to be in the correct ports to
measure different electrical properties. Let’s check the probes to
make sure they are in the right ports, and then set the dial on the
multimeter to measure voltage.

Measuring Voltage

Make sure the black probe is in the COM (common) port and the red
probe is in the port marked mAVQ on the right side of the multimeter,
as shown in . Then turn the dial to the section that
measures DC voltage. When measuring voltage, you need to set the
dial on the meter to a value above what your estimated voltage is.
For example, you know that the Arduino puts out 5 volts, so set the
dial to 20V.

When measuring voltage, set the dial to a value greater than
what you think your reading will be.

I N .
v?him[for D L"Di‘faﬁrz

,..—...‘.

["rJMn OFF mv
ﬁu-cm _a

Nhﬁ

10A COM mAVQ

10sec MAZ i LAY GO0V
L 104) 200mA
FUSED § FUSED

blacl. prn!}e iw CON par“! red Pm-ﬁm ih M‘-'ﬂ»‘ﬂ pm‘"

Settings on multimeter to measure DC voltage

We told you that 5 volts are coming out of the Arduino—let’s check
with the multimeter to see if that’s true.

Grab a new jumper and stick one end of it into the power bus on
the breadboard. The other end should not be connected to anything.
Then connect a different spare jumper to the ground bus, with the
other end loose. Don't let the “loose” ends of the jumpers touch each
other, or you will cause a short circuit, where the path of electricity
takes a shortcut to ground and potentially damages your Arduino.
You can reduce the chance of a short circuit by keeping space
between your two leads.

A short circuit allows electricity to travel along an
unintended path; it can damage your circuit.

Next, touch the metal end of the jumper that’s attached to the
power bus with the red probe, and touch the metal end of the

jumper attached to the ground bus with the black probe, as shown in
Figure 5-17.

CLECLiMﬁ 'FI«! UD["HSC '[N.II'F DF '”'f nl'l."l.ﬂil\tl}

ok
==

bdadhdu od

N EE RN ENN
|}

+

_’/ defoil of probes fouching jubpers

Metering the voltage on the breadboard from the
Arduino

On the multimeter’s screen, you should see the number 5, though
that number may be a bit lower. Our meter read 4.96. This is the
amount of voltage that comes out of the Arduino and that is going
into the breadboard. The slight difference has to do with the
resistance in the breadboard, the components, and/or the Arduino’s
internal circuitry.

What if your screen shows a negative humber? That means you
probably have the probes reversed; the red probe touching the
jumper attached to the ground bus and the black probe attached to
the power bus. Try switching the probes to the opposite jumpers and
you should get a positive number.

If you see the number 1, it means that the dial on your multimeter
is set to the incorrect value. Simply increase the value of the voltage
dial to the next level by turning it clockwise. Then you should see an
accurate value.

If your multimeter is showing odd values, check that your
voltage dial is greater than the expected voltage. If you have
a negative voltage, switch the location of your probes.

After you have measured the voltage, remove the jumpers (you
don’t want to cause a short circuit by letting them touch each other
accidentally). We're going to measure the voltage across the
components in the circuit.

Don’t forget to turn off your multimeter when you aren't
using it, or you'll run down the battery.

Now you’ll measure the voltage across the resistor and across the
LED. Doing so will show you how much voltage each component is
“using up.”

Keep the dial of the meter at the spot marked 20VDC. Your Arduino
should still be attached to your computer to give your Arduino power.
Touch the red probe to the end of the resistor attached to the jumper

to the power bus, and the black probe to the other end, as shown in
. What do you see on the multimeter’s display?

Measuring the voltage across the resistor

Now touch the anode of the LED with the red probe and the
cathode with the black probe to see how much voltage is being
consumed by the LED. Figure 5-19 shows a detail of the probes of
the multimeter attached across the resistor and across the leads of
the LED.

detail of probes ‘f'ﬂhﬁlﬁih'ﬁ resistor detail of probes %ouchihﬂ LED to

'F'o easure uaHaﬂrz ACross ‘H\E reris{’or hEOSLre vnHaﬂﬂ OCross ‘H-.E. LED

=i By &
SN (el ek
SN

Details of measuring voltage in the circuit

The display on the meter should read something like 3.06 for the
resistor and 1.86 for a red LED. These numbers will also vary,
partially based on what color LED you’re using. Don’t worry that this
doesn’t add up exactly to 5 volts. The number displayed on the meter
is the amount of voltage that the LED is using. When we measure
voltage across a component like this, it is called measuring the
voltage drop. Voltage drop is the amount of voltage consumed by a
component.

If voltage drop is the amount of voltage consumed by a component,
what does this mean for our circuits? Each of our components will
consume some of the voltage provided by our power source, until all
of the voltage is consumed, as shown in Figure 5-20. If we only have
one component (say, if we just placed our LED in without our
resistor), then all of the voltage would flow through the one
component and burn out our LED. How do we determine the amount
of voltage a component consumes without damaging the component?
Remember data sheets, which we discussed in Chapter 2, “Your
Arduino”? They will have this information. We've already shown you

how to measure this voltage drop, but later in this chapter we'll also
cover how to calculate the value ahead of time.

Sv

‘”-e r'eﬁtfl:rr COnSLbEs Harf ifir'i;{

PGY'F D['”ﬂ-ll' '-"UHﬂﬁf. fH DLT CRIE,

it wged 3.06 volts

‘”'vt' Uﬂ[‘fﬂﬁ".’ tl'.’H over 5 Cﬁh'i{rhfd
5-1 the LE D, f:rril-.rjihﬁ i down o

G "-"!I'Hi, EETE L;hau,h &5 ﬁrﬂhHI

GND

Visualizing the voltage drop

Voltage drop is the amount of voltage consumed by a
component. The components in your circuit will consume all
of the provided voltage.

What are we measuring when we check the voltage across
the component?

The number on the multimeter for voltage is the difference

between the voltage going into the component and what comes
out the other side. This allows us to see how much voltage the
component uses.

So voltage drop across a component refers to how much
voltage that component is using up?

Yes. As you saw when we metered our components, each one
is consuming some of the total voltage in the system.

What happens if our components don’t use up all of the
voltage?

The components will always use up all of the voltage

provided, and if a higher voltage is provided, the values they
consume will scale to a higher value.

Now that you know what voltage is and how to measure it in a
circuit, let's go back to the water analogy and look at current.

sqmbol for DC

C hFTEh+ {Glmi:l EY{J-IS(.".}

f

In our water model, shown in , We can measure the
amount of water that flows through the pipes. If we measure a cross
section of one of the pipes at any point, we can figure out how much
water passes through it in a given amount of time—for example, we
might measure 1 gallon per second. People typically refer to this as
the water’s current—the more water that is flowing in a given amount
of time, the stronger the current.

'H-.e ahauh'f of: u..a."fer H_omihﬁ

>
N\

Current it the cmount of
/ u..a'ﬁ:r Pnssihﬁ o speciﬁc Poih'f
. V in & specific amount of fime.

Current in the water analogy

The word current means pretty much the same thing in a circuit.
Current is the amount of electrical charge passing through the circuit
per second. Current is measured in amperes (a.k.a. amps), which is
why current is also called amperage. Current requires a complete,
closed loop in order to flow. If your circuit is not a complete closed
loop (say there is a broken wire in the circuit), then there is zero
current. Current in the electrical model is shown in Figure 5-22,

ek

Current is measured in amps, or amperes, which is the
kclmount of electricity flowing per second.

our eiec‘f'ri ca[hade[

A 8 Curmh{' is +LE a.h.auh'f' of
E{e::'l"l'fca[f[ow passih3 [}
- SPECiﬁC Pﬂih+ ih Ohe secnhd's 'f'ih.m

<

Current in the electrical model

The amount of current in your circuit is determined by two things:

The Resistance of Your Components in the Circuit

Components that require more current will typically have less
resistance. We'll explain more about resistance later this chapter.

The Power Supply’s Current Rating

This rating indicates the maximum amount of current the power
supply can produce. You can check the rating for current (as well as
voltage) by looking at the output rating generally placed on the
bottom of the power supply with other information.

shows the output rating on the bottom of a power supply. (We
recommended that you purchase a power supply that is rated 500
milliamps to 1 amp for current, 9—12V for voltage).

ihlcorhﬂ'{'ioh anu‘f‘ ‘er. e[ec‘f‘rica(. Prope,r'f'ies
of o power S‘UPPL? IS ‘f’ L?Picauuf ana‘fed

Oh ‘Hne: bo‘f‘f‘o:« of ‘Hne device

4

AC ADAPTER

- MODEL:FY0901000
~ INPUT:100V-240V S0/60HZ
€ UT: 9V DC 1000mA

\ou+Pu+ of this SU’PPL? is 1000 bhiu.ialmps,
or amp, end 9 volts DC

Output ratings on the bottom of a power supply

All components have a current rating shown on their case or listed
on their data sheet, which shows how much flow they can handle. A

component can’t force a power supply to push more current than the
power supply is rated for.

The Arduino board has a current input limit of one amp. We
recommended that you purchase a power supply that is rated from
500 milliamps (%2 amp) to 1000 milliamps (1 amp). The USB cord
connecting your Arduino to a computer will provide 500 milliamps (2
amp), which is enough to run the Arduino board and provide power
to the pins. A power supply with a higher rating than one amp could
damage your Arduino.

The Arduino can only output 40 milliamps on each I/O pin. There
are other electronics components that can help your Arduino cover
higher current applications, but 40 milliamps is enough to power the
components we'll cover in this book.

The maximum input current for the Arduino is one amp. The
I/O pins on your Arduino will only output a maximum of 40
milliamps.

Now, let’s look at how current can be measured with a multimeter.

Measuring current is trickier than measuring voltage, and it's done
much less frequently as part of the debugging process than
measuring voltage. So why are we showing you? It's a useful exercise
to learn how current flows through your circuit, and to understand
the difference between voltage and current. The multimeter is your
primary debugging tool, so we want you to know how to use it to
check many electrical properties.

To measure current, you have to pull out one of the leads of a
component in a circuit, as shown in Figure 5-24, to insert your meter
and make it part of the loop of the circuit. In your circuit, you'll pull
out the anode of the LED. As always, when you are making
adjustments to your circuit, make sure it is not attached to power.

amnde nf LED Fuﬂed t::u‘f' frt:a.'m ¥ Ow uf 1Lie pnih‘h?

Il

~— anode of LED

=il

Pull out the anode of the LED to prepare your
board for measuring current.

You need to move the dial of the multimeter to measure 200
milliamps of DC amperage. Just like when you measure voltage, with
current measurement you want to pick a value greater than what you
expect the value to be—200 milliamps is the maximum safe current
value for your multimeter without moving the probes (more on that
later). Since you aren’t using any high-current components like
motors, you can feel confident that 200 milliamps will be more than
the current value. So, leave the multimeter’s probes plugged into the
same ports, as shown in Figure 5-25.

sumbol for DC o&-p?::uﬁe

!}!ﬂ(L PH:IBE Th Cﬂn Pﬂ]’" recr PFDENE ik h.ﬂl.l'ﬂ FI!}I"F
L

Settings on the multimeter for measuring small
amounts of current

hunmr-rg '“'E Cl.l'"l"ﬂ'h‘f ih o Clﬂ:f.rl" wi'“* a kl.l“'il'-ﬂtf

1

Bzl

bde mdztzcH

CHENIEY “=n

DEO

[]
W g
5 nn Pk

foans
kL)
LW
E d
e
L)
Al
Ar
A3
A
[]

Probes touching one end of the resistor; the anode
of LED pulled out of the tie point

Now that you've set up your multimeter correctly and arranged
your circuit so that the anode of the LED is pulled out from the row of

tie points, you can plug the Arduino back into your USB cord. Next,
take the red probe of your meter and touch the lead of the resistor
that was in the same row of tie points as the anode of the LED
(before you pulled the anode out for this exercise), and touch the
black probe to the anode of the LED, as shown in Figures 5-26 and 5-
27. The LED should light up because the multimeter is now a part of
the closed loop of your circuit. Since the multimeter is inserted in the
circuit, it displays the current (a.k.a. amperage). On our meter, it
read 14 milliamps. It might read something slightly different on your
meter, depending partially on the color of the LED.

= BIQCL PF‘DB‘E 'EG[ACLEE

red probe fouches
anode of LED

lead of resistor

Detail of probe placement measuring current

Be careful when measuring high levels of amperage!

As long as you're measuring relatively small amounts of current like
the 14 milliamps you measured in your circuit, it's fine to have the
red probe plugged into the multimeter’s mAVQ port (milliamps,
voltage, and resistance measurements). However, if you're working
with stronger currents (over 200 milliamps), you need to do two
things to avoid frying your multimeter:

Set the multimeter’s dial to 10A.
Move the red probe from the mAVQ port to the 10A port.

If you forget to do these two things, the extra current can damage
your meter. We recommend that you don’t measure values of current
higher than 200 milliamps.

It is a good idea to keep the red probe in the mAVQ port—that is
the correct port to use for measuring most of the electrical
properties.

Can we control how much current flows through our circuits?

Yes, the amount of current is controlled by what components

you have attached within your circuit. Controlling the amount of
current is an important skill for safely using more power-intensive
components like motors.

Are current and voltage related?

Yes, they are. You'll see a formula later in this chapter that
explains their relationship.

Why is there a separate port on the meter for high current?

The meter needs to use different internal electrical circuits to

measure voltage and high levels of current to protect the meter
from damage. Low levels of current (under 200 milliamps) won't
damage the voltage-measuring circuit, but anything above that
can cause issues. Switching the port is the way you change which
circuit is active inside of your meter.

Why does measuring current require that we remove the legs
of our components from the circuit?

In order to measure current, the multimeter needs to become

a component in the circuit. All of the current in your circuit then
flows through the meter so it can figure out the total amount.
We'll explain the relationship between the meter and your
components a bit later in this chapter.

Let’s look at how resistance might be demonstrated with the water
analogy in Figure 5-28. If the pipes are wider in our water system,
more water can flow through them. If the pipes are narrower, less
water can flow. You could say that the amount of resistance, or the
restriction of flow, is greater in the narrower pipes. Where there is
more resistance in the system with the narrower pipes, the turbine
would turn more slowly and do less work.

wider pipes, less resfriction WETTiEr PIpES, hore restriction

> >—

furbine furns v Forbive furms
@ ayuiclly @ slowly
<

AN N <

Resistance in the water model

\
ek

In circuits, resistance refers to how much a material restricts

Ce flow of electricity.

In a circuit, resistors are equivalent to narrow pipes because they
restrict the flow of electrons. In the electrical system diagrams in
Figure 5-29, the image on the left has only one resistor and so the
light shines brightly. There are three resistors on the right image,
which causes more resistance value and makes the light shine less
brightly.

OL\P- sr.?iafsol]‘Dr YEEI'S'FGHCE

Resistance is measured in ohms, represented by the omega symbol
shown to the left. We'll look at how ohms are related to the other
electrical properties later in this chapter, but at the moment just know
that a resistor has a value that indicates how well it opposes the flow

of electricity.

cchparihﬂ resistance in electricel models
small amount >
{arﬂe ahount
D'F I‘C‘SIS“FGHCE .
@ OF I'E'SIS'FD-H-EE

N\
C

EruSH {uﬂH‘ (dihher [i.—jH

Y A Y
< <

Resistance in the electrical model

N
[
u
N

As you've seen throughout the chapter, the voltage and current
within your circuits vary based on what components make up the
circuit. Electronic components can be very sensitive to spikes in
electricity. Also, if you have a voltage source that is too powerful for a
component, it could damage the component. How can you protect
your electronic components within circuits? The answer is resistors.

shows a package of 220-ohm resistors. You've already
been using resistors to protect your LEDs from the 5V power coming
from the Arduino.

b m B R g e L -
ﬁ*_' . .-,_'.:il,.:-'i- J#'.EM.-;\..- . i

FlEURE 5-30: A package of resistors

If resistance is a property of all electronic components, why do we
need a special resistor component? Resistors are great because they
come in a wide range of different values and can help control the

flow of electricity in a circuit. You've already used circuits that require
220-ohm resistors, but circuits throughout the book will need
resistors with different values. How will you be able to identify how
much resistance any given resistor has? There are a couple of ways.
Let’s look at measuring resistance with a multimeter.

You measure resistance in a resistor outside of a circuit. This is
different from what you‘ve seen when measuring voltage or current,
where you measured these values within a circuit. Now you're going
to measure your 220-ohm resistor.

On your multimeter, the black probe should be in the COM port,
and the red probe should be in the port marked mAVQ.

Move the dial so it is in the section that measures resistance. You'll
set the dial to 2K for this example. The correct configuration is
shown in

Here is your port plocement, which is the some /Q

o5 witl vaH‘a.ﬁc ond low current E‘Thbu[for resistonce

10A COM mAVQ

10A y 200mA
FUSED . FUSED

|
-

L 10sec MAS JMAK 600V

200ma" A
A 20maA 2ma 200pA

set the mulfimeter dial to 2L olbins

Multimeter settings to measure resistance

You learned about setting the range when you were measuring
voltage. You need to set the range when you’re measuring resistance

as well. You know your resistor is 220 ohms, so you must set the dial
to a value that is greater than that—the 200 ohms setting will be too
low. Move the dial to 2kQ; you're looking for a value between 200
ohms and 2000 (2k) ohms. Now that you've set the dial and you
know the probes are in the right place, you're ready to measure your
resistor.

Touch one probe from the multimeter to each of the metal legs of
the resistor, as shown in Figure 5-32. When you’re measuring
resistance, it doesn’t matter what side each probe is on. You may
have to hold the resistor’s leads so that they have a solid contact
point with the probes, or you can set the resistor flat on a table.
What value does your multimeter display? The display should show
something close to .221, which is measured in kilo-ohms. Remember,
since the meter is set to measure 2k ohms, or 2000 ohms, .221k
ohms is actually equal to 221 ohms.

i:ji':Flm-! s‘!-nu-'! '.ra!m: probet {ﬂ-u(.!-'ihﬁ

eifler ewd of
the resister

diel set fo
heasure

resistarce

Measuring resistance with the multimeter

The value of the resistor will be shown on the meter display. Figure
5-33 shows what it looked like on our meter.

sparkfun. VC830L DIGITAL MULTIMETER

dFEP[lﬂ‘-? EI’\D\.‘HS YE'SiS""DF va[ue

Multimeter display showing resistance value

Why is the value slightly different from the 220 ohms the resistor is
rated at? It's because resistors have a tolerance value, which tells you
the accuracy range of the resistor. The resistors you'll deal with in
Arduino projects can have actual values that are plus or minus 10
percent different from the stated value. Generally speaking, you're
working with components that aren’t sensitive enough to be bothered
by these discrepancies, so you don’t need to worry about the
variation.

Resistors include a set of color bands to help you identify their
value and their accuracy. The appendix explains how to read these
color bands.

What do voltage, current, and resistance have to do with the
Arduino?

When you are working with the Arduino, you are building

circuits that use electricity. If you understand how voltage,
current, and resistance work, it will help you debug your circuits
and eventually build more complex projects.

Let’s look at our water analogy diagram one last time (Figure 5-34),
then quickly review the properties you've just learned about, what
unit each is measured in, and the symbol used to represent it.

flow of woter
> . i y// rﬂrrtith"ﬁd B‘f folgg- e
wH'oﬁe A 8_) ‘ A vV wpper tonk
fhurie,

m Y
|9}

light bulb

(|

flow of current

I‘EF'fﬂil!h'FC{l 5)41 ArronsS

Water analogy for electricity

reviews the electrical properties with their symbols and
the units that they are measured in.

Electrical properties

NAME DESCRIPTION UNIT SYMBOL

Voltage Electromotive force, or | Volt \
the potential flow

Current Amount of electrical flow Ampere, or A
amp

Resistance Restriction of electrical Ohm Q
flow

In a circuit, current, voltage, and resistance are related. If you have
current in a system, then there is necessarily a voltage and a
resistance. Let's examine what happens when you reduce only one of
these properties.

Voltage

Su!hfm{ for DC 'l.roHaﬁe

Remember that voltage represents the potential for electricity to
move within a circuit. Voltage will always flow from the highest to
lowest charge until it reaches the equilibrium zero state, also known
as ground. If we place the same LED and resistor in our circuit, and
power it using only 3.3 volts instead of the 5 volts we have been
accustomed to, then our LED will be less bright. If we continue to

reduce the voltage, our LED will continue to dim until it finally turns
off.

Current

s*n.?hba{ fer DC ohperage [current)

Current is the property related to the flow of electrons in the circuit.
Current is what drives our components. What happens if we don't
have enough current within our circuit? Without enough current there
are not enough electrons to turn our components on. When you have
a flashlight with dead batteries, the batteries have too little current to
turn the light on. If we reduce the current to our circuit by adding
resistors, the LED will turn off suddenly once the minimum current
needed to turn the LED on disappears.

Resistance

Ol sr.?hbol for resistonce

Resistance is a measure of how a material restricts the flow of
electricity. All materials naturally have some resistance, but if the
resistance is too high the electrical flow will be stopped altogether.
However, if there is too little resistance our components can be
overwhelmed by the amount of current and fry. We often use
resistors to restrict the flow in order to preserve the other
components of our circuits. If we add more resistors or change the

value of the resistors in the basic circuit with the LED, we will
increase resistance value and decrease the amount of electricity that

reaches our LED, perhaps even limiting our LED’s ability to produce
any light.

Let’s take a quick look at how our components are affected by
changes in electrical properties in

PART
LED

Resistor

Effects of changes in electrical properties on
components

IMAGE VOLTAGE

The LED
will get
dimmer as
the voltage
gets lower,
or brighter
as more
voltage is
added; if
there is too
much
voltage the
LED will
burn out.

Voltage is
converted
into heat
when it
crosses
over a
resistor.
More
voltage
means
more heat

CURRENT

LEDs need
only a very
small amount
of current to
run. However,
reducing the
amount of
current too

much will turn

off the LED.

Resistors
lower the
amount of
current being
drawnin a
circuit.

RESISTANCE

LEDs have a
tiny amount of
resistance.

The amount of
resistance
depends on
the resistor’s
rated value.
Check the
appendix to
learn how to
identify
resistor values
by color.

PART

Battery

IMAGE VOLTAGE CURRENT

and less
voltage
means less
heat.

Batteries
establish
the voltage
level for
both the
high point
and zero
volts, a.k.a.
the ground.

Current
comes from
the battery.
The current
flowing will
change
depending on
what
components
are attached
to the battery
and how
much current
they require.

RESISTANCE

Since a
battery is not
a perfect
conductor,
there is a
small amount
of resistance
inside of the
battery, but
whenitisin
our circuits it
is effectively
zero.

Now let’s take a look at how voltage, current, and resistance
interact with each other in a rule called Ohm’s law.

{OW DO VOLTAGE, CURRENT, AND
RESISTANCE INTERACT? OHM'S LAW

Voltage, current, and resistance are related through a formula known
as Ohm’s law. Ohm’s law, shown in Figure 5-35, states that in a given
circuit, the voltage (in volts) is equal to the current (in amps) times
the resistance (in ohms).

vn[*a:;«: in volfs current in Shpt resictence in ol

Ohm'’s law

This equation shows us that, no matter how much pressure
(voltage) there is, if the resistance is high the current will be
restricted. This is true for all electrical wiring.

One benefit of Ohm’s law is that if we know two of the electrical
properties, we can always calculate the value of the third property.
You can see these relationships in Figure 5-36.

If we Liow fuo properfies, we can coleulate the value of the fhird

VIR IR R-f

Permutations of Ohm’s law

Since you have already learned how to measure the values of
voltage and current in your circuits, you can calculate the voltage,
current, or resistance, as long as you know the value for two out of
the three properties.

Now you know about Ohm’s law, but how will it help you make your
circuits? You can use Ohm'’s law to determine the value of the
resistors you need in your circuits. You can also use Ohm’s law as a
safety check to confirm that the values of voltage and current
running through are components are below the limits for those
components.

For example, if you have a resistor in your circuit that has 220
ohms of resistance, and there is 20 mA (which is the same as 0.020
amps) running through the circuit, then you can use Ohm’s law to
figure out how much voltage will pass through the resistor.

shows the calculations.

V=IR
V=(0.020 amps) * 220 ohms
V=4.4Volts

Using Ohm's law

How else can you use Ohm'’s law? Let’s say you want to build two
circuits that each contain one LED and one resistor. You're going to
power one circuit with a 3.3-volt pin on the Arduino, and another
with the 5-volt pin (recall that the Arduino can provide either
voltage). The LEDs we're going to use in the circuits take 2.2 volts to
light up fully, and use 25 milliamps, or 0.025 amps. Because of the
voltage difference between the two circuits, you will need different
resistors in each circuit to protect the LEDs. What resistor value will
you need for each circuit?

Since you know that 2.2 volts are going to pass through the LED in
each circuit, you can take the difference between your provided
voltages (3.3 volts and 5 volts) and 2.2 volts to figure out how much
voltage will pass through each resistor ().

cirewit one coleulation circuit fwo caleulation

(3.3 volts - 2.2 Volts = 1.1 Volts) 5 volts - 2.2 Volts = 2.8 Volts)

Determining voltage

Now you can use Ohm'’s law to calculate how much resistance you
need to have the stated voltage and a current of 0.025 amps pass
through the resistor protecting your LED ().

cirewit one caleulotion circuit fwo ca.fc;.fa:fioh

circut powered -{ V-IR V-IR

from 33 |11V = 0.025A * R 2.8V = 0.025A * R
volt sewrce [4,1V/ 0.025A = R 2.8V/ 0.025A = R

44 ohms = R 112 ohms =R
44 ohm resistor 112 ohm resistor

eircuid pﬁurzrﬂtf
from 5 volt

FOUFCE

Calculating with Ohm'’s law

The 5-volt circuit requires a higher value resistor than the 3.3-volt
circuit. You can see that using Ohm’s law shows you how the value of
the resistor required changes in your circuit based on the voltage
provided. Ohm’s law is useful for making sure your components are
provided with the right amount of electricity.

How do you know how to arrange the components in your circuit?
You know that the circuit must form a complete loop. Some
components seem to be arranged next to each other with common
electrical points, whereas others are connected end to end. What are
these arrangements, and what effect do they have on the electrical
properties in the circuit?

Let’s look at the order of arrangement of components in a circuit.
We'll look at parallel first.

Components in parallel are placed next to each other and share
electric contact points, as shown in . The electricity flows
along each path through the components that are arranged in
parallel.

In contrast, components in series follow one after another, as shown
in Figure 5-41. The circuits you have built so far have all been
arranged in series—all of the electricity that flowed through the
resistor then went into the LED.

scherotic of resisfors

rciit‘fnﬂ' drrﬂhﬂe’d in Fdrnu:g:[. arrnhﬁetf in thrauel

H B E B

1 ﬁ"ﬁ (I
components share
common electrical

cou‘f‘nc{' Paih‘h ‘\‘_‘

}\{ HE B

HE B B B

Resistors arranged in parallel

schematic of resistors

resictors a.rromstrd i SEFIes D-"ﬂ-hﬁﬂr il SEries

ICDB-PEJHEH'h arg |

GFrdh ﬁl?d QR

olter anether

Resistors arranged in series

To see exactly what we mean by components in series and parallel,
we'll show you how to add another LED to your basic circuit, first in
parallel, then in series. Then you’ll measure the voltage drop across
each of the LEDs.

You'll add this LED so it is in parallel with the first LED, as shown in
Figure 5-42. Arranging components in parallel means that the
components are connected with common electrical points. You can
think of the components as being next to each other. Let’s look at the
schematic for a circuit with the LEDs arranged in parallel. You can see
that the resistor is attached to 5 volts and also to both of the LEDs.

LE Dt i pamuﬂ.’[

S

L@—
'i«cfwehct‘fic far cirg l'.-i‘f

with LEDs i Pamﬂe{ L 5%

—f GMND ______// deteil schemetic

Schematic for circuit with LEDs in parallel

Add a Second LED to the Circuit

To create this circuit, add a second LED to the breadboard so that the
anodes of both LEDs are in one row of connected tie points and the
cathodes are in a different single row of connected tie points. Both of
the anodes are now connected to one end of the resistor, and both of
the cathodes are connected by a jumper to ground, as shown in

. Remember to disconnect your computer before you
make any changes to the circuit.

You've added the second LED, so you're almost ready to check the
voltage in this circuit.

one end of resistor ard

e cirewit with 2 LED*: iw Paral{e[erodes of botl, LEDS it

S Tl Df "_!'it :lﬂih'h

SRS detoil of the 2 LEDS \caﬁmde: of both
armnged‘ in porallel LEDs and jumper

{'ﬁ .sraunj i S0k
row of fie puih‘fs

Adding the second LED in parallel

When you have the LED placed correctly in the breadboard, attach
your computer again to the Arduino. Next, set the dial on your
multimeter to measure 20 volts. Then place the red probe on the
anode of one of the LEDs, and the black probe on the cathode of the
same LED, as shown in Figures 5-44 and 5-45.

- - - . .9 :
. / . - .
detoil heasurihﬂ unH’aﬁe of LED 1 defail hzﬂsurihﬁ !.rDH'aﬁe of LED 2

Measuring the voltage of LED 1 and 2

The display on your meter should read about 1.78 volts for red
LEDs (if it is not exactly the same, that’s because the LEDs you're
using are rated differently than the ones you used to build the
circuit). After you've tested the voltage across one of the LEDs, check
the other, as shown in Figure 5-45. The value should be the exact
same voltage drop for both LEDs if you used identical LEDs. You don't

need to measure the voltage across the resistor, because it will be the
same value as you had with your basic circuit.

In parallel, both LEDs receive the same voltage.

You may have noticed that the LEDs share common electrical contact
points, and so does the multimeter. When you're using the
multimeter to measure voltage, the multimeter is in a parallel
arrangement with the component whose voltage you are measuring

().

Measuring voltage in a circuit places the multimeter in
parallel with the component being measured.

The multimeter is in parallel with the LEDs.

You know that components in parallel share the same electrical
contact points. Electricity will take all possible paths from the
beginning of a circuit to its end. As you saw with our voltage
measurement, the same voltage will pass through all the components
in parallel (Figure 5-47).

Ever with & fon of LEDs, Hhe vol'faﬁe is
He sone for oll Hhe LEDs in pnrn{[z[

The voltoge is
fhe some seross
oll of these LEDs & S S ¥ S 5 S S

\

Many LEDs in parallel

If you want several LEDs to glow the same brightness, you can
place the LEDs in parallel and know that they will all receive the same
voltage, unchanged by the number of LEDs in place. You aren't able
to light more than a few LEDs in parallel from your Arduino, however,
since you're limited by the amount of current provided.

Equal voltage will pass through all components that are in
parallel.

Now we're going to adjust our circuit, placing the LEDs so they are in
an arrangement called series. Components that are in series are
placed one right after each other. It is easy to see this by looking at

, Where two LEDs are shown one right after the other; in
fact, the resistor is also in series in this arrangement. Most circuits
will be a combination of components arranged in series and in

parallel.

sehetatic for cireuit with LEDs in series

5V
GND

\—M“{)—Eﬁ——

N

IJ-, I},

-

deteil selemetic will I'.'.ED?

aw:.! re';is‘hr i series

Schematic for the circuit with LEDs in series

Start by unplugging your Arduino from your computer. To place the
second LED in series with the first, place the anode (long leg) of the
second LED in the same row of tie points as the cathode (short leg)
of the first LED. Place the cathode of the second LED in a separate
row of tie points. You will have to move the jumper that goes to
ground so it is in the same row of tie points as the cathode of the

second LED, as shown in
be a complete loop in order to work.)

. (Remember, the circuit has to

onede of second LED
in sake row of fie ?Dih‘fs
at cothode of firf LED

circuit with LEDs in series

i E " E EE N /

———— I E N f

o[8
L I _/% codlode of second
s .= //;LE.D-'hml.e row of
f smfzm nd 1| e points a5 jumper
® ied M o groud
nar E i detail of the circuit

with LED: in TEFIES

[
L

rxsper JEE:

Placing the second LED in series

When you have adjusted your circuit, you will be ready to meter it.

Metering components that are in series for voltage is much the same
as metering components that are arranged in parallel. Plug your
Arduino into your computer and the LEDs should both light up. With
the dial again on 20V, place the red probe on the anode of one of the
LEDs and the black probe on the cathode of the same LED, as shown
in Figure 5-50. The voltage should read something like 1.77 volts.
Next, measure the voltage across the other LED; your result should
be similar to what you got for the first LED. Finally, measure the
voltage across the resistor (for us, the value was 1.38 volts). Figure
5-51 shows a detail of metering the components in the circuit.

Measuring the voltage of the components in series

J‘ = E N [
..: ;—mﬂ:-:
N 4 R

T

o~
T
am 'y mnomm

Il-ﬂdﬂdl'l'hls \I‘DHF-T: SCrost ﬂ:ﬁf"ﬂf

Details of metering the circuit

hcﬂ-ihﬁh!& Vﬂ“ﬂﬁﬂ CCFOSE [—Eﬂ' 1

7]

ﬁ-ﬂﬂﬂdiihs \"ﬂ“’ﬂﬁc GCreLT LED 2

Why are the values for voltage in both the series circuit and
the parallel circuit so similar?

In this case, we are not seeing as big a difference in voltage

for series and parallel as we might in a different circuit. We felt
that it was important to show you the differences in the way
these components are arranged and how electricity flows in these
circuits, and help you become more familiar with using the meter.

In your circuit, the electricity must pass through the resistor before it
gets to the first LED. As you saw in our multimeter measurements,
voltage is consumed as it passes through each component. Although
the voltage across each LED is about the same as for your one LED in
your basic circuit, the value of the voltage across the resistor drops.
The resistor consumes less voltage in this series example because
two LEDs in the circuit are consuming voltage. Note that the value of
the resistor does not change, but since each LED now requires its
own voltage, the resistor consumes a smaller portion of the total
voltage. represents the voltage drop in the circuit. The
values of voltage are each adjusted according to Ohm’s law and can
be measured with a multimeter.

You'll often have to wire resistors in series with other components,
like LEDs, in order to drop the value of the voltage that enters your
component.

fle resictor consibes
fhe first part of the volfoge.
In our cote, it used 1.38 volfs

sobe of the vu[‘-Fnse leH over
is consubed &? He first LE[},

1?? 1]'0["":.‘ fi'l}ﬁ- (171 l'hl."ﬂ-thfl’."hﬂh{-

He remaining vol‘f‘a-ﬂg it consubed

by the second LED, & further
1‘?2 '.ruH:"; £wi| [keuiurheh{_

GND

Visualizing voltage drop across the circuit with
LEDs in series

It’s less likely that you'll put multiple LEDs in series since each
additional LED makes all your lights dimmer. Old strings of holiday
lights, such as those in Figure 5-53, are a real-world example of
lights designed to be wired in series. Being wired in series is the
reason that if one bulb burns out the whole string of lights turns off.
More recent string lights have been redesigned to avoid this problem.

rfrihrss of cfarfﬁhas [FSH‘? are QH'Eh ih series

Christmas lights, arranged in series

Remember how you pulled out the anode of the LED when you were
measuring current in your basic circuit? Then you inserted the
multimeter right into the circuit, touching one end of the resistor and
the anode of the LED to complete your circuit. In that arrangement,
the multimeter was in series with the resistor and the LED. The
multimeter has to be in series to measure the current, because then
it does not alter the value of the current (Figure 5-54).

The multimeter is in series with the other
components when measuring current.

Table 5-3 shows the effects of electrical properties on components
in both series and parallel.

Effects of electrical properties on components in
series and parallel

EFFECT ON COMPONENTSIN COMPONENTS IN

ELECTRICAL SERIES PARALLEL
PROPERTIES
Effect on Each component Equal voltage will
voltage consumes part of cross all parallel
the voltage. components.
Effect on Equal current The current gets split
current crosses all series based on the
components. resistance value of
each component.
Effect on Total resistance Resistance is
resistance equals all values of reduced when
resistance added components are in
together. parallel.

You've learned about voltage, current, and resistance and how they
interact, through Ohm’s law, and you know how to measure those
properties with your multimeter. You've also learned about setting up
components in series and in parallel. In the next chapter you’ll return
to Arduino projects and get additional programming practice.

n this chapter, you're going to learn how to make

your projects interactive, first by adding a button

to turn an LED on and off. Then, you'll attach a
speaker to your Arduino and control both sound and
light with your sketch. Finally, you’ll add two more
buttons, in the process of building a keyboard
instrument on which you can play simple tunes.
Throughout these projects, you'll learn more about
programming the Arduino. To complete the projects
in this chapter, you need to have the Arduino IDE
installed, know how to connect a breadboard to your
Arduino, and be familiar with writing a sketch and
uploading it to your Arduino.

In Chapter 4, “Programming the Arduino,” you saw how to connect
the Arduino to a breadboard to build a circuit that lit up an LED in an
SOS pattern. The LED turned on and off, over and over and over

again, always in the same pattern. Wouldn't it be great if you could
build a circuit that would respond to the user’s action?

You'll do just that in this chapter by building a mini-keyboard
instrument with three buttons, a speaker, and an LED. The speaker
will play a different tone, depending on which button you push, so
you can play a tune. And the LED will turn on whenever you push any
of the buttons. We’'ll start with a circuit with an LED and a button and
build on that. Figure 6-1 is a preview of what the finished circuit will
look like.

wirxL

COoN

ONINAYY wiexs

ATWLE NI DOWM

.........

Three-tone button keyboard

Just as in Chapter 4, our project will consist of an Arduino and
breadboard circuit with code written in the Arduino IDE. We'll go over

building the circuit and all of the code in the sketch step by step. In
this chapter, you will also learn a bit more about reading schematics.

This project uses digital inputs and outputs. You used a digital
output, an LED, in the last chapter. Before we start to build, let’s look
more closely at what we mean by digital input and output.

Think about your computer: how do you get information into it? You
may use a mouse, and you probably use a keyboard. Keyboards and
mice are both examples of inputs (Figure 6-2). You can attach many
different types of inputs to your Arduino. In this chapter you will
attach buttons to the Arduino as inputs.

Le.c?{mard

mouse buton

Common inputs

What do we mean by output? Again, think about your computer.
You might have speakers attached to it, or a monitor or printer. Those
are all examples of output devices (). An Arduino can have
many different types of outputs attached to it. In fact, you have
already used an output device with the Arduino: the LED you
connected to it in the last chapter.

outputs

Q

~

LED

moTor

S‘PQO\[AEI”

Common outputs

For now, think of digital inputs and outputs as components that
have only two possible states: on or off. Inputs send messages to the
computer. Outputs receive messages from the computer. We will
explain this in more detail later in the chapter.

Before you start building your circuit, let’s look at the schematics
for a button or switches. Doing so will help you understand how
digital input works.

There are a million different ways to trigger electronic devices or turn
something on. Switches and similar on/off devices activate
televisions, music equipment, lights—even your kitchen appliances!
How does a switch work?

All switches work on the same basic principle: it either “closes the
circuit” and turns something on, or “opens the circuit” and turns
something off. When the switch is closed, electricity can flow
through; it cannot flow through when the switch is open.
illustrates how this works.

o c[nsad twi‘h:i-: ﬁ[ec‘hici‘M (:Jq“ @n opek tl..»i‘r'ci-u-‘ ﬁ[ec‘frici‘r'u? CﬂMUOT
flow -FLroL-SL Hee circuit flow 'fer.-ﬂL He cirewif

—o0—0o— o—

Switch diagrams

Like all digital inputs, as you saw earlier, switches have only two
possible states: on and off. In the Arduino IDE, on and off
(respectively) are equivalent to HIGH and Low. (Remember how, in the
SOS circuit in Chapter 4, the light turned on when you set it to HIGH
and off when you set it to Low.) Each key on a keyboard is actually a
switch, set in the off position until pressed down, when it goes to on.

Buttons are one type of switch. For our circuit, we will use a
momentary pushbutton switch, which closes and completes the
circuit when you press it. As soon as you let go, the switch opens
again and the circuit is no longer complete.

Let’s get our parts together to start building a circuit with a button.
You'll need the following:

1 LED

1 220-ohm resistor (red, red, brown, gold)

1 10 kQ resistor (brown, black, orange, gold)
1 momentary pushbutton switch

Jumper wires
Breadboard
Arduino Uno
USB A-B cable
Computer with Arduino IDE
Figure 6-5 shows a preview of what the circuit will look like when
it’s built, as well as the schematic. Since the schematic is a bit

different from those we have seen before (it includes some new
symbols), we will take a closer look at it.

the co&-y[eﬁd circwif p!mﬁcd' i scheiatic for Hhe button circedt
220 Ole resistor
13—
¥ — LED
— 5Y
— GMND switeh selewatic
w.l:n!
]
| g 10K Oli resictor
)

Renenber, this par‘i of fle sches.otic

fEFrcifh"'! e Arduing

LED button circuit

The schematic for this circuit follows a couple of conventions that you
haven't seen before.

At the bottom of this schematic is a small circle indicating that the
cathode of the LED (remember: the cathode is the LED’s short lead or
negative side) on Pin 13 is connected to the same ground as the

resistor that is attached to one end of the switch. A filled circle is
often used in schematics to indicate connection points.

As schematics become more complex, you sometimes have to run
lines that are not connected over each other. To indicate that these
lines are not connected, we'll draw a little loop like the one on the
right side of Figure 6-6.

SCLeho-‘fic fur ‘H«: F}LJ'H'DH circui‘f“

//" 22!] DLh re:-":h:n‘

13 —J\/V?Z_f_,.- LED

5v switeh schenotic

GND whba{
/.

loop indicates

et Hiese these

[N
(NOT ¢
iKES Gre
2 {;‘}\ connected. LJ
% Jﬁ{ai! Lim:s HOT cmner_"feﬁ
10K Ol resistor

filled=in circle indicotes

ComRhEC fiuh Puin{

N

Schematic diagram

Before you add the button to the circuit, you have to rebuild the
circuit you used with the LEA4_Blink sketch in Chapter 4, shown

again in Figure 6-7. Here'’s a quick overview of how to do that. Follow
along and check each step as you go:

Attach the power and ground from the Arduino to the power and
ground buses on the breadboard.

Connect a jumper from Pin 13 on the Arduino to a row of tie points
on the breadboard.

Connect a 220-ohm resistor to the same row of tie points as Pin 13.
Connect the anode (long leg) of the LED to the other end of resistor,
and jump the cathode (short leg) of the LED to the ground bus.

dlort frow bere= sene as fhe basie cireuil in cl-ap'fer g

powtr and Tm.-hd' buses aftocked fo Arduine

—_ |
pin 13 affacked 4o breadboard | . 220 O
L Y : : resistor convected
e oy fepm B
(] s o[T—orode of LED
vl eHoeled 4o
resisfor
10 =t catbode of
power and = 5: : o ifg:::ﬂd
T‘NH‘] o Frduine %
atfacked o power o
ovd ground buses
ok breadboord i + -

Reviewing the basic circuit from Chapter 4

Now that you have the basic circuit assembled, you’ll add a button.
You've looked at the schematic for a button, but before you put the
button in the breadboard, let’s look at how the button is constructed.

The button you're going to add is a pushbutton switch (a.k.a. a
momentary switch). While you are pressing the button, the LED will
turn on, and as soon as you lift your finger, the LED will turn off

(). This type of button gets its name from just being
toggled for the moment.

our bu‘H’ﬂh

Pressims the button closes the circuit

‘H\is Eanm ac‘f’ua{{c? cmﬂ‘aims +wo sePo.m'f'e.
swifches next fo each u‘f’L\er, as qou cah see

i ‘Hne x—mvr view of ‘f'Le Eu‘f‘f’mfs ihhards

vt 3K
[I A

Button diagrams

When the button is pressed, the circuit is closed, and electricity can
flow through it, like the diagram you saw earlier in this chapter.

This button actually contains two separate switches (that’s why it
has four pins sticking out of it). Both close when you press the button
down. Your circuit will use only one side of the button.

Remember the trench that runs down the middle of the
breadboard? (You learned about it in Chapter 3, "Meet the Circuit.”)
Your button is going to be placed across the trench, with two pins
inserted into the row of tie points on each side. The button will only
fit across the trench in one orientation. Placing your button across
the trench ensures that it is oriented correctly, with each pin
connected to a separate and discrete row of tie points (Figure 6-9).
As long as the button fits across the trench, the button direction will
not matter.

adding fle button

detail of beton across french

o
i
-
H
o
5
T
L=l

Fy S

Eﬂ{l‘l Fih 15 i O itpa-ru‘fc

ot

row of fie paih*i

+ ¥

E 2

pushbtfon suifch odded
{ﬂ' E‘TEBJEWTJ ACFOYY *":"H:L

Adding the button to your breadboard

You are placing the button near the end of the board to
make it easier to add all your components.

Let’s continue wiring the button. Add a red jumper that connects the
power bus (the one with the “+" sign) on the breadboard to the top-
left side of the button (Figure 6-10).

r'ur-pu'hg piw of buton o prracr bus

detoil of red jub-per cuhhecfihg pin to power bus

® =
| £
& |

ok g @
=
NI EY

'“ﬁl'_.l

=E BRS

.
=

Lok row &% '”-12 !‘.!u'H'Dh

-
3 '
:
= |

L

=S

i =
s

.| =il

Adding the first jumper wire

Next, attach a 10 k< resistor (colored brown, black, orange, gold).
Attach one of the resistor’s leads to the button, and the other lead to
the ground bus (the one with the “"-" sign), as shown in Figure 6-11.

aHacLihg resistor to other end of bufton ard fo ﬁrauw;‘ bus defeil of 10K ol resistor affacked
to button ond to 3rnuhd bus

\

1
Ik\‘Fi’-«: re:i:‘fw nHac!nes
fle buton to the

-3rauhd bus

TT-I

. -
|
u

GRINDEY @B
ety

@FEEEEE Eﬂiggi =

R AR <™
- mm e

Adding the resistor for the button

Finally, you'll attach a jumper to Pin 2 on the Arduino. This jumper
will be attached to the 10 kQ resistor that is attached to the ground
bus. As you can see in Figure 6-12, the resistor, the jumper to the
pin, and one of the pins of the button should all be in the same row
of tie points. The jumper wire also needs to be in between the
resistor and the button.

ottack pin & fo resisfor and button

1
defeil of [ubper cnmec‘fins pin ¢ !
to button and T 10 K ele. resictor

Adding the jumper to the digital pin

The button is all hooked up. Now that the Arduino is attached to
the breadboard and the button is wired up, hook up the Arduino to
your computer so you can upload a sketch that will control the
behavior of the button and the LED.

Attach your computer to the Arduino with the USB cable so you can
upload the Button sketch. This is one of the example sketches that
comes with the Arduino IDE.

Launch the Arduino IDE, and then open the Button sketch by
choosing File > Examples > 0.2 Digital > Button.

Save the button sketch as LEA6_Button.
Click the Verify button first to make sure your code is okay.

Click the Upload button to upload your code to the Arduino. This is all
shown in Figure 6-13.

— -E_ F‘“ ’*E']\.

i cick uplosd
buton 1o
wpload shetch
'!'o- ﬂn‘:ruihb

corneet Arduing o conputer open E:.—‘Huh shoetel in sove Eu”u-n ot elick verify
and lawnch Arduine IDE Arduine IDE LEAG_ Buton buton fo
check code

Procedure for getting code onto the Arduino

Now when you press the button, the LED will light up, as you can see
in Figure 6-14.

‘) B EEE || O m=EoEEm
-----]
LB B B N (I]
LI - - = = § | = Em B ®
LI .%-'. .- 3 B
- - . ":_.ln L]
../l--:I-:' -----
e " E E®EE =1 Em
- e EmE B]
e, - []
: ----------
“F 18] camms [l an. a-
= e BRI .
i: s w| ®"mm=me || sma o
! a| " "R E N "= e
5 -11 T Em Em I EE
= ~19 "= semEE || emomwm
=] =2 L
: s em| TEEE] O emr -
- 000 | ([F| s s s = s || = o=om
7 b
~6 nE "EEEE N :-:.:
1 - . - s . EE 0 L]
-3 [| EEEE N =
2 | s == \
] P - -
= oI
+ - --J lllll

Press the button and the LED lights up.

Can I use other types of switches or buttons that I find?

Yes! All switches and buttons work on the principle of either

closing the circuit (making a complete loop) or opening the circuit
(breaking the loop).

Can I use a single button to trigger more than one output?

For example, could I use one button to trigger a whole string of
lights?

Although one button can be programmed to trigger many

different things at the same time, most electronics have one
button per function because that setup makes it easier for the
user to understand exactly what is being triggered. If the same
button triggers many functions, the user can be confused as to
how the interaction works.

You've built the circuit and looked at the schematic. Now let’s
examine the code for LEA6_Button in detail.

Here's the code for the LEA6_Button sketch. We'll step through the
details over the next few pages. We've removed the code’s starting
comments for the sake of brevity.

ivitialization section:

o values
I'Jli.'c!ﬂﬂ.'d Lcrc

// constants won't change. They're used here to
// set pin numbers:

const int buttonPin = 2; /{ the number of the pushbutton pin
const int ledPin = 13; // the number of the LED pin

// wariables will change:
int buttonState = 0; /f wvariable for reading the pushbutton status

:E‘ft-p fumction

void setup() {

// initialize the LED pin as an output:

pinMode(ledPin, OUTEUT);

// initialize the pushbutton pin as an input:
pinMode{buttonPin, INFUT);

}

[roia 100p0) ¢

/f read the state of the pushbutton value:
buttonsState = digitalRead(buttonPin);

(}} check if the pushbutton is preasé%?
ff if it is, the buttonState is HIGH:
if (buttonState == HIGH) {
// turn LED on:
digitalWrite(ledPin, HIGH):
}
else {
// turn LED off:
digitalWrite(ledPin, LOW);

— loop fumetion

Rerenber ﬂhﬂf‘{\ih:&
affer /s & conpent

ard wont offect fhe code

}

}

e

LEA6_Button is different from our LEA4_Blink sketch in that there is
code that happens before the setup () function. This initial code is
aptly called initialization code—code at the very top of a sketch where
you declare values that you want to have access to throughout your

sketch. Let’s take a look at this sketch’s three lines of initialization
code:

const int buttonPin = 2; // the number of the pushbutton pin
const int ledPin = 13; // the number of the LED pin

int buttonState = 0(; // wvariable for reading the pushbutton status

All three lines of codes look similar; they all have some words on
the left and numbers on the right with an equals sign in the middle.
But what do they do? To help you understand this section of code,
we'll introduce a new programming concept: variables.

In the simplest terms, a variable is a place to store a specific value
and give it a useful name. Think of a variable as a container that
holds a value. If you've taken algebra, you're familiar with variables.
Remember equations where you were told things like “if x = 1"?

Variables can hold different types of values. For now we will look at
variables that hold integers.

In the following code line, we are both declaring and assigning a
variable. Declaring a variable means to give it a name, and assigning
the variable gives it a value. You can declare variables without giving
them a value, but you can't give a value to something you have not
yet declared.

int buttonState = 0

-0

A line of code that defines a variable is called a variable declaration.
Often Arduino code will also include a variable assignment. Variable

declarations and assignments are not structured the same in all
programming languages—we are looking only at how variables are
declared in the Arduino programming language.

In the Arduino language, all variable declarations and assignments
have at least four different parts: the type of data the variable
contains, the variable’s name, an equals sign, and the actual value
you wish to set for the variable. (Variables can have more than four
parts; you’ll learn about a fifth part momentarily.)

Vi [DIE

@ buttonStatey= é-‘______'_,...-ﬂ semicolon indicafes

hﬂ-i-hi?. 'HnE Ehd Df('EO-CL

+“‘?PE eoirua[s sigh (ine of code.

In this example, you are putting the value 0 into a variable with the
name buttonState that has a type of int, which stands for integer.
Let’s look at all the parts of that declaration in detail. We'll start with
the name, and then look at the value.

Variable Name

The name part of the declaration determines how you refer to your
variable through the rest of your sketch. There are a few rules for
selecting names: a variable name can't start with a number, can't
have any spaces in it, and can’t be a word that the Arduino language
already uses for another purpose (for example, we can’t name a
variable “delay,” since that term is already reserved by the Arduino
language). There should be only one variable with a particular name
for each sketch. It is considered best practice to name your variables
something that indicates their purpose.

int (buttonStaté)= 0;

Variable names can’t start with a number, include spaces or
symbols, or be a word used by the Arduino language.

Variable Value

The value part of the declaration is what is stored in the variable. In

this example you have an integer value of 0, which corresponds to
the state, or voltage value, of our pin. Values are set using one =

(equals sign), which says that anywhere you see this variable’s name
(buttonState), it means “Use the value 0” or “You are assigning the
value 0 to this variable.”

va[ue Pu+ 13

variab[e
1int buttonState

-

eo;ua[s SiSh assicéhs

value + (o] variab‘.@

Variable Type

type sets what type of information you can save within your variable.
In the declaration we're examining, int stands for integer, which
means you can save only values that are whole numbers. Not all
languages have typed variables, but in the Arduino language, you
must declare the type of each variable in your sketch. Other types
include float, string, character, and Boolean; you can learn more
about variables types at

wLa+ +‘?P€; DIC

Ve LUE we CCGh

PmL i variaBL&

buttonState = 0;

Now that you know about the four parts required in variable
declaration, let's examine one optional part that’s used in a couple of
variable declarations in our sketch: the qualifier.

Variable Qualifiers

Some variables also have a qualifier, which determines whether you
can change the value of the variable after you create it. The qualifier
const sets your variable to have a permanent value when you run the
sketch. In this context, const stands for constant. Here's an example
from our sketch:

http://arduino.cc/en/Reference/VariableDeclaration

quaﬁﬁer

int ledPin = 13;

It may seem a little strange to think of a constant variable, but
remember that setting a variable just means to keep track of a value
with a name. When you plug the wires into the pins of your Arduino,
the pin numbers are not going to change. Since the value of the
variable isn’t going to change, you add const to your declaration,
which makes it clear that this is a constant variable.

N
e

The qualifier is optional for variables; most variable
Qeclarations only have a type, a name, and a value.

_/

As you can see from the following initialization code, our sketch
contains two constant variables and one variable that can change:

const int buttonPin = 2; f/ the number of the pushbutton pin
const int ledPin = 13 // the number of the LED pin

int buttonState = 0; // variable for reading the pushbutton status

What happens if I name my variable something that is not
allowed?

The error console in the Arduino IDE will give you an
“unexpected unqualified id” warning, which will be displayed in
orange text. The easiest fix is to change your variable name to
something different.

Do I need to use const for all my variables?

No, it depends on what the variable is for. For example, in the
LEA6_Button sketch, the pin variables will never change during
the sketch, but the variable for buttonstate will. We want to be
able to change the value of the buttonstate variable, so we will
leave const Off its declaration.

Now that we've looked at the LEA6_Button sketch’s initialization code,
let's move on to its setup () function:
vold setup() {

// initialize the LED pin as an output:
TL{\:;« fre wria[:-fr.: u.[-n':q: ua.fym p11 OdE{jEdPlﬁ, : : “.,F {n M.}Ph{

we set in the infiolization code // initialize the pushbuttan pin as an input:
pinM cdeﬂtonPln ; set o input
}

The setup() function for the LEA6_Button sketch has only two
lines of code. Similar to the code in Chapter 4, you're setting a pin to
be an output using the pinMode () function. This time, however,
you're using the variable 1edrin to stand in for the number 13. You're
also using pinMode () to set a different pin with value buttonPin as an

input. These are two of the three variables that you created in the
sketch’s initialization code. Naming your variables gives you a way to
refer to numbers you need in your sketch in a meaningful way and
makes your code easier to read.

Let’s take a closer look at what we mean by digital input.

Let’s say that you're arriving at a friend’s house when your friend
calls and asks you to look through the window at a light. Your friend
then asks, "“Is the light on?” Your job is to tell the friend, “Yes, the
light is on” or “No, the light is off.” That's exactly what a digital input
does: it reports whether the light is on or off ().

in diSiJral inputs and outpufs,
‘Hnere ore Dh‘,t? Z Possifute S’f'a‘f'e:s

Hig :Dn:

or
Lou

Or-(

Digital input states

In digital inputs, there are only two possible states: HIGH and Low,
which you can think of as on (H1GH) or off (Low). Digital inputs
measure whether something is on (in a HIGH state) or off (in a Low
state). HIGH/ON is also equal to 1 and Low/off is equal to 0. We can
use the digital pins on the Arduino to check on buttons and switches
to see whether or not they have been triggered or pressed.

If HIGH, 1, and on are all equivalent (as are Low, 0, and off), why are
there multiple ways to say the same thing? This can be confusing.

Each value talks about a different aspect of our Arduino project:

On and off refer to what we see happening in the world. For
example, is the LED lit or not? We don't use the terms on and off in
our code for the Arduino—only in our general discussions.

1 and 0 are integer variable values that represent on and off,
respectively. We use 1 or 0 when we are initializing variables in our
code. You saw an example of this in our sketch’s initialization code,
which includes the line int buttonState = 0;. This line tells the
Arduino that the button is initially off.

HIGH and Low refer to the electrical state of the pin: is the pin
providing 5 volts or is it acting as Ov (ground)? In the Arduino
programming language, HIGH and Low are used to set or to read the
state of a pin (via digitalwrite() and digitalRead() functions).

1's and 0's are part of the binary language that computers speak.
HIGH and Low means 1 and 0 to computers, including our Arduino.
HIGH and Low make the code slightly easier for humans to read, and
they are used when we are using the digitalwrite() and
digitalRead() functions. You'll use 0 and 1 when you are creating
new variables.

Now that you understand what digital inputs do, let’s take a look at
the LEA6_Button sketch’s 1oop () code.

vold loop() {
// read the state of the pushbutton wvalue:

this code invelves buttonState = digitalRead(buttonPin);

Lo MEWw EGHCEPﬁI

exploined shorfly ™ // check if the pushbutton is pressed.
f/ if it is, the buttonState is HIGH:
if (buttonState == HIGH) {

// turn LED on:
digitalWrite(ledPin, HIGH):
}
else {
// turn LED off:
digitalWrite(ledPin, LOW);

t

}

In the first line of the LEA6_Button sketch’s 1oop () section, the
Arduino uses a function called digitalRead() to check whether a pin
is on or off. In this case, you are checking the pin represented by
your buttonPin variable, so you are evaluating the state of Pin 2. The
results of your digitalRead() function will be either a value of 1

(HIGH) or O (Low). You then set your variable named buttonState to
this value.

This verioble will be sef fo velue of diﬁifa!izea:f fumetion

Jom S e S
verieble buttonStefe buttonPin bolds the pin nunber

fumction digit d
wrchion digitolleo fhot is attacked fo Arduino
(in This example sketel, that's pin 2)

The next part of the 1oop () code gives you another new
programming concept: the use of conditional statements.

Conditional statements are a powerful way to change what happens
within your code depending on conditions you specify, such as
whether a button is on or off. You have experienced the use of
conditional statements in everyday language, as shown in

1 i 1y .
ot a2 I the g

' have desser’-

€, Jou sy op the car
'C"
STEER Yoy LriAY L0,

If yo!

}DH t'.'ﬂ”

If you are reading this page, you will learn Arduino.

Conditional statements in English

Conditionals in programming work the same way. They have three
basic parts: the 1 f, the expression you are evaluating, and what you
want to happen if our statement is true. Let’s take a look at
conditional statements in our 1oop () code.

The first part of the conditional statement within the 1oop() code
for LEA6_Button is shown here. In some sketches, this could be your
whole conditional statement; ours happens to have a second part—
you'll learn about it soon.

///__—— conditional stofement port one

if (buttonState == HIGH) {
// turn LED on:
digitalWrite(ledPin, HIGH);

This part of the conditional statement includes the - f, the
expression you are evaluating, and what happens if your expression

is true. Everything that will happen, if the statement is true, is
contained within a set of brackets. You, as the programmer, get to
tell the program what to do if certain situations happen.

Conditional statements start with an - f. The 1 f tells the computer to
evaluate the next expression.

stotement we ore 'r'ES’fihs

condifional IF” @ (L{ttonState __ H@} @—ﬁaﬁ of “frue’ code blocle

turn LED on:
@malerte{ledF’ln, HIGH) ;
S __.--TG'S‘UH'E U-LI'EI'I +I'L-IE

end of “frue’ code blocl

The next part of the conditional statement is the condition to be
evaluated. This is a section of code that the Arduino has to assess for
truth. “True” in a programming context means that the condition is
logically valid. For example, the English statement “One is equal to
one” doesn't tell us anything interesting, but it is true. The
nonsensical statement “Two plus two equals five” is false. You will see
various types of conditional statements throughout the book that
evaluate what is happening with your Arduino and the rest of the
circuit.

In the case of this sketch, the code is trying to evaluate whether
the button is currently pressed. (Remember, pressed means “on,”
which is the same as HIGH in the Arduino programming language.) To
test whether a value is equal to another value, you use two = signs,
or ==,

Note

Conditional statements start with an 1 f.

4
is ‘H'IE B'HHDI'I CurrEh+L‘1 PTES‘E‘ECI.?
if (buttonstate &9 @

L +Wﬂ‘ Eﬂruﬂlﬂ Sitﬁhi +€.i‘f‘ f{)? equa[iﬂ?

The last part is the “true” code block, the commands that are run if
the condition is true. There is no limit to the number of actions you
can include inside the true code block, as long as they are all
contained within the brackets. In this case, the code block will turn
on the LED attached to the 1edP-in, also known as Pin 13.

if (buttonState == HIGH) {
// turn LED on:
digitalWrite(ledPin, HIGH);

Conditional statements check for whether something is
logically true.

Think carefully about what you want your conditional
statement to do. You might try saying it out loud to yourself.

What happens if the button is not pressed? For this conditional
statement, there is an else clause, which handles any events that
happen when the statement is not true. else is helpful for dealing
with cases where the 1 f statement is false, but it is not required for
every conditional statement. Some conditionals have an else, and
some do not. If this conditional didn’t have an else, then if the
condition you’re evaluating were false, nothing would happen.

For your button code, the else statement can also be broken down
into a simple English statement: “If the button is not pressed, then
turn off the light.”

}

else {
// turn LED off:
digitalWrite(ledPin, LOW);

+LE EE{:DH& PU-F'{- GIE oLr
conditional stofemert means
if the button is not pressed,
turn off the LED

else is not required in all conditional statements.

shows a quick summary of the conditional statement we

just examined.

Conditional statement in LEAG6_Button

WHAT IS CONDITION TO TRUTH RESULT

HAPPENING IN THE BE EVALUATED VALUE

CIRCUIT?

Button is pressed if (buttonState @ true Turns
== HIGH) LED on

Button is not if (buttonState false Turns

pressed == HIGH) LED off

What if I want more than two possible outcomes?

Then you might use an else if, or maybe even multiple else
ifs. You can read more about it here:

Can I place a conditional inside another conditional?

Yes, it is possible to have conditionals inside other

conditionals. Although you won't see an example in this book,
they are called nested conditionals, and they can let you deal with
evaluating complicated logic.

Now that you've connected your button and made it turn the LED
on and off, you are ready to make your circuit more interesting. Let’s
add a speaker, and then add some code so that the speaker plays a
tone when you press the button. First we'll show you how to add the
speaker to the breadboard.

In this circuit, the button, LED, resistors, and jumpers will stay in the
same place. You are simply adding a speaker; everything else
remains the same ().

Part to add:
1 8-ohm speaker

As always, before you attach the speaker, make sure your
computer is not connected to the Arduino. Attach one end of the
speaker to Pin 11 on the Arduino and the other end to the ground

http://arduino.cc/en/Reference/Else

bus (Figure 6-18). It doesn’t matter which end you connect where;
like a resistor, the speaker does not have an orientation. The colors of
your speaker wire may vary, but the speaker does not have a
direction.

cebenetic for e circart the circwif with o spealier and one butfon

¥

5 L schenatic for
GND " . speaber @

-

| |

—
D (EX=) :

A speaker added to the circuit

DELNOEY e
EETs =Y

..........
..........

S iig @

S detoil one evd of spealier otfocked
— 'fnpdh 1M {le nﬂu:r'fnﬂrﬂwd bus

—
-5
"

¥
-
=
&
=1
E

(]
g b
B

.t‘.'ﬂhﬂ-k
— IR

Adding the speaker

That's all there is to adding a speaker. Now you are ready to adjust
your code.

Now that you've wired up the speaker, you will adjust the code. First,
save the sketch as a new sketch named LEA6_1_tonebutton.

You're going to add a line of code to the sketch’s initialization
section and add a variable for the speaker pin.

const int buttonPin = 2; // the number of the pushbutton pin
const int ledPin = 13; //the number of the LED pin
@ int speakerPin = 11; //the number of the speaker pin>

// these wvariables will change: \
int buttonState = 0; odd this voriable to Lold

value of fhe spealer pin

Let’s look at the new line of code more closely. You can see that it
is like your other variable declarations: there is a qualifier, a type, a
name, and a value. Remember, you use the const qualifier, which

stands for constant, when you have a variable that has a value that
will not change.

Hi '.rﬂ-[l.lE

quaiiﬁcr tupe
@% = @; //the number of the speaker pin

It's a good idea to add comments as you type new code to
remember what you are adding to your sketch.

What do you think you will have to adjust in the sketch’s setup ()
section? Remember that setup () is where you state whether the
circuit’s various components are inputs or outputs.

What is the speaker? An output. So you'll add a line of code that
will declare that the pin the speaker is attached to is an output.
Because you made a variable to hold that value, you will use it when
you declare the pin an output.

void setup() {
// initialize the LED pin as an output:
pinMode (ledPin, OUTPUT);
// initialize the pushbutton pin as an input:
pinMode (buttonPin, INPUT);
@Mﬂde (speakerPin, OUT PU@-— use the Pihﬂude function
} to declore spealerPin on output

Here’s a closer look at this new line of setup() code:

(pintiods(Epeaker?in, QUrrud);

SE+$ the Pin verioble thet stores mLa‘Ir' we s€+ thet Pin to

the specler's Pin number

On to loop()!

As you have seen, 1oop() has the code that reads whether or not the
button is pressed and then uses a conditional to direct the Arduino to
do something based on that information. Now you will use the
Arduino functions tone () and noTone () inside the conditional. tone ()
will generate a note or tone; noTone () will stop it from being played.
Let’s look at all of the 100p () code first, and then explore tone() and
noTone () More cIoser.

void loop() {

// read the state of the pushbutton wvalue:
buttonState = digitalRead(buttonPin); laop function

// check if the pushbutton is pressed.
if (buttonState == HIGH) ({

digitalWrite(ledPin, HIGH):
Ciéﬂg{speakerPin, 330};:::}

tore furetion

}

else {
//turn speaker off
(EéTone{speakerPiﬂ“' wolone function

=T
digitalwWrite(ledPin, LOW);// turn LED off:

}
}

As we said, tone() will generate a note or tone that can play
through the speaker you just attached. When you use the tone ()
function, you need to tell Arduino on which pin to generate a tone

and what note to play. It makes sense that you want to generate a
note on the pin that has the speaker attached.

Pih ho‘h?,

speakerP@,);

Let’s take a more in-depth look at the tone () and noTone()
functions.

What does 330 mean? You know it means the note the speaker will
play, but how do you arrive at that number? The Arduino generates

sound waves that are measured in hertz; 330 is the hertz value of the
note you want your circuit to play.

Plih h0+ e

speakerP@,);

In musical circles, this note is known as an E. From now on, when
we mention the tone () function, we will say that it is generating a
note. Figure 6-15 shows some of the possible note values.

'HﬂE VO-{UES 'FDY' o 'FEW hﬂ-‘h{ﬁ

NOTE FREQUENCY (hertz)
C 262
D 294
our firstuote | _(E 330 O
F 349
" y G 392
e sound on ___,—:_-——
orchestro funes fo A 44OD
B 494
C 523

Note chart

A more comprehensive note chart can be found on the
Arduino website at

Now let’s look at noTone (). This function stops the sound from
being played on the pin specified. In this case, that’s speakerpin,
which stores the value of the pin that has the speaker attached to it.
If you leave out noTone (), then your note will play continuously once
you press the button the first time.

Pih 'h} ble +urhed DH

@oTone)(speakerPin)) ;

Add the tone() and noTone() functions to your code, save your
sketch, and then upload. Now when you press the button, you'll hear
a note playing from the speaker, as well as see the LED turn on.

We said earlier that we would explain what’s inside the
parentheses in functions. For example, in the tone () function, what
do speakerPin and 330 mean? Those values are called arguments.
Let’s take a look at them now.

You've used a number of Arduino functions in this book so far, from
pinMode () to digitalwrite(). You may have also noticed that most
of the functions require something to be placed within the

http://arduino.cc/en/Tutorial/ToneMelody

parentheses, often some combination of numbers and words. The
values placed inside the function are called arguments.

c&uh\e‘.h‘fs
Clgltaleriﬁ edPi

1(Uhc+i0h hewe Parehﬂnese;s

-

Arguments tell your Arduino function important information, such
as which pins are used as inputs. Different functions often have a
different number of arguments. digitalwrite() has two arguments
—the pin number and the value—whereas the Arduino delay ()
function has only a single argument—how many milliseconds to
pause the program. Some functions won't need any arguments,
whereas others will require several. Let’s look at the tone() and
noTone () functions and how arguments work with them.

In the tone() function, two arguments are passed in: the pin that
the speaker is attached to (in this case, the variable speakerpin) and
the value of the note. Note that the argument values are separated
by a comma.

ih ho‘h?,

speakerPJ.n ‘)

The noTone () function has one argument: the pin that the speaker
is attached to (again, the variable speakerp-in).

Plh +0 Ee +urhed DH

@To@(@eakerP@)

Some functions have no arguments, whereas others have many. In
some functions, not all of the arguments are required. You'll learn
more about functions and arguments in later chapters.

Next, you'll add a second button to your tone button keyboard so
you can play more than one note.

You are going to add another button to your circuit so you can play a
two-note tune on your mini-keyboard instrument (Figure 6-20). You
will need another button, another 10 kQ resistor, and more jumpers.
Remember to unplug your Arduino from your computer before you
add to the circuit.

Parts to add:

1 momentary pushbutton switch
1 10 kQ resistor (brown, black, orange, gold)
Jumper wires

2 buton circuit complefed ond plugaed in

scheratic of 2 butfon circuit

A _
[1] .
IS
] GND W
g o
button : g ;
P 3—Gh—p—— =
_J =
.]
%
10 K vesistor

Two-button circuit

The configuration of this button will be very similar to the first
button you placed in the circuit, except that the new button will be
attached to a different pin on the Arduino (Figure 6-21).

Place the new button across the trench. Use a jumper wire to
connect the button’s top-left pin to the power bus. Attach one lead of
the 10 kQ resistor to ground and the other lead to the lower-left pin
of the button. Finally, attach Pin 3 to the lower-left pin of the button
and one end of the 10 kS resistor with a jumper wire.

Now that you've added the second button, it's time to adjust the
code in the sketch.

-F == s m | - =
! o
(L L [I - =
——— -
i e) AOF:

detail of the 2 buton circeit

NI

Attaching the second button

First, save your sketch as LEA6_2_tonebuttons. You will edit your
code, adding the lines that are marked in bold on the next couple of
pages.

Initialization Code Adjustments

Here is the initialization code updated with two new variables. One is
set to the number of the pin you attached to the second button (3);
the other will hold the state of that button, and it is initially set to 0.

const int buttonPin = 2; // the number of the pushbutton pin

«onst int (buttonPin® = 3; // a second pushbutton pimy—— varichle seffo

const int ledPin = 13; f/ the number of the LED pin wunber of pin
etfocked fo fle

// variables will change: second button

int buttonState = 0: /f wvariable for reading the pushbutton status

{}nt?huttonﬂtate?}n 0; /7 variable holds second pushbutton state >

\ {his verioble will Lold fle

tote of e second button,
et o O or 140 indicate
whether i i Et-‘rﬁ prevved

setup() Code Adjustments

The following graphic shows the setup() code again, edited to
account for your second button. You use the pinMode () function
again, this time to set buttonpPin2 (which you set to 3 in the
initialization code) as an input.

volid setup() {
// initialize the LED pin as an output:
pinMode(ledPin, OUTPUT);
// initialize the pushbutton pins as inputs:
pinMode (buttonPin, INPUT);

(pinMode (buttonPin2, INPUTZ::)

pinMode (speakerPin, OUTPUT)

}

Next, let’s look at the 1oop () code and see what you need to add.

You can see that you are reading the value of buttonpPin2 (either 1
for on or 0 for off) with the digitalrRead() function and storing it in
the variable buttonsState2.

You also have to add a new section inside your - f statement—what
is known as an else if. When your 1 f statement is being evaluated,
it will check for the first condition after the 1 f to see whether that
condition is true or false. As you saw earlier, if the first condition is
true (in other words, if button 1 is currently pressed), then the
speaker will play a note at 330 hertz. But if the first condition is false
(in other words, if button 1 is not currently pressed), then the
Arduino will move on to the else 1if code to determine whether the
statement following the else -if is true or false. If it is true (in other
words, if button 2 is currently pressed), then the Arduino will follow
the instructions inside the curly braces.

void loop() {
// read the state of the pushbutton value:
buttonState = digitalRead(buttonPin);
buttonState2 = digitalRead{buttonPinZR
// check 1f the pushbutton 1is pressed.
if (buttonState == HIGH) {
digitalwWrite(ledPin, HIGH);
tone(speakerPin, 330);
}
// check if the second button is pressed
else if (buttonState2 == HIGH) {
digitalWrite(ledPin, HIGH);
tone (speakerPin, 294);
}
else {
noTone (speakerPin); //turn speaker off
digitalWwrite(ledPin, LOW); // turn LED off:
}
}

n?_ﬂdihﬁ vfate of
butorPing owd t’forihs
it in butfonttate?

EIEE -'f ‘{f:*:fs fnr

iecuhcf cnnc!i‘f‘iun

Let's look at each line of the else 1f.

First, else if tells us that the Arduino is going to test for another
condition. It is testing whether buttonsState2 is HIGH—in other words,
is the button at Pin 3 currently being pressed?

@ttcnﬁtatez == HIGH)

else if stotement condition fo be fested CurLq brece werls
nff 533ihhih3 nl': E{'se;

if blocl of code

You've seen the code in the next line of the else 1if block before;
it sets the pin attached to the LED to HIGH so that the LED turns on.

digitalWrite(ledPin, HIGH);

And here’s the last line in the else 1if block. It uses the tone ()
function to play a note on the speaker. This time, the note is 294
hertz—slightly lower than the note played by the first button.

tone (speakerPin, 294);

The following graphic shows the whole block of the else 1f code
again. Note that the parentheses surround the code that describes
the condition being tested, and the curly brackets surround what you
want to do if the condition is true.

S+-0~Y+ Clar [U! f}rac e
else if (buttonState2 == HIGH)
digitalWrite(ledPin, HIGH);
tone (speakerPin, 294);

@‘\ end cwf.n? brace

To test your code, attach your computer to your Arduino, save your
code, verify it, and upload in to the Arduino.

Now you can play two different notes on your two-button
keyboard.

What will happen if I push both buttons at once?

The way we have written the conditional statement, only the

first note will play if you push both buttons at once. This works in
our favor because the Arduino tone() function isn't able to play
more than one tone through the speaker at a time.

What will happen if I change the second note number in the
tone () function to something other than 294?

The note chart you saw a few pages ago provides just a

selection of the possible notes you can play. We left out all
sharp/flat notes—this isn’t a lesson on music theory—but if you
randomly pick a number for the second note, chances are it will
sound slightly off—like an out-of-tune guitar—compared to the
first note.

Now you're going to add a third and final button to the circuit (
). Be sure to unplug your Arduino from your computer before
adding this button!

Parts to add:

1 momentary pushbutton switch
1 10 kQ resistor (brown, black, orange, gold)
Jumper wires

seleretic of the 3 butfon circuit

|3_|.WI.-_

1
v A
GND kY

) “
3@; 1’

v w(®)

Three-button circuit

hird button
m:Hed of

3 butfon circuit complefed ond plugged in

0NN E}ﬁ

Place the button across the trench above the other two buttons.
Use a jumper to connect the button’s top-left pin to the power bus.
Attach one lead of the 10 kQ resistor to ground and the other lead to
the lower-left pin of the button. Finally, attach Pin 4 to the lower-left
pin of the button and one end of the 10 kQ resistor (Figure 6-23).

Now that you‘ve added the third button to the circuit, it's time to

adjust the sketch.

detail of the 3 button circudt

Adding the third button

Save your sketch as LEA6_3_tonebuttons, and we'll look at the code
you have to adjust. This will be very similar to the adjustments you
made to the previous sketch when you added the second button.
Follow along and edit your sketch to match the following code.

Initialization Code Edits

You are attaching the third button to Pin 4. You're also adding a
variable called buttonstate3, which holds the value that indicates
whether or not the pin is being pressed (1 or 0, HIGH or Low, on or
off).

const int buttonPin = 2; f/ the number of the first pushbutton pin
const int buttonPin2 = 3; // a second pushbutton pin

<const int buttonPin3)= 4; // third pushbutton pin attached to pin 4 >
const int ledPin = 13; // the number of the LED pin

const int speakerPin = 11; // the number of the speaker pin

// wariables will change:
int buttonState = 0; [/ variable for reading the pushbutton status
int buttonState2 = 0; // wariable holds second pushbutton state

G:_ﬁ_t— (puttonStated = 0; /7 third pushbutton state >

setup() Code Edits

In our setup() code, we set the variable buttonPin3 (which holds the
value 4 to indicate pin 4) to an InpuT. All three of our buttons have
now been set as INPUTS.

volid setup() {
// initialize the LED pin as an output:
pinMode (ledPin, OUTPUT);
// initialize the pushbutton pins as inputs:
pinMode (buttonPin, INPUT);
pinMode (buttonPin2, INPUT);
(pinMode (buttonPin3, INPUT); O
pinMode (speakerPin, OUTPUT);

}

Three-Button “Instrument” Joop() Function

The updated 1oop () function is shown next. It reads the state of
buttonPin3 and stores it in buttonState3. It also has an additional
else if statement, which tests to see whether the third button is

being pressed, and if so, plays a note (one slightly lower than the
note for button 2) and lights the LED.

vold loop() {
// read the state of the pushbutton values:
buttonState = digitalRead(buttonPin);
buttonState? = digitalRead(buttonPin2):
uttonStated = digitalRead(buttonPi :
// check if the pushbutton is pressed.
if (buttonState == HIGH) ({
digitalWrite(ledPin, HIGH);
tone(speakerPin, 330);

Eﬂ.'u'ih$ all three button

N[Uﬂ: in Efpﬂr’ﬂ'rf Vﬂ-riﬂHﬁl

buttor 1 code

i! check if the second button is pressed

else if (buttonState2 == HIGH) {
digitalwrite(ledPin, HIGH); button 2 code
tone(speakerPin, 294);

}

check if the second button is pressed

else if (buttonState3 == HIGH) {
digitalWrite (ledPin, HIGH); button 3 code
tone(speakerPin, 262);

else {
// turn speaker off:
noTone | speakerPin) @ code that runs
digitalWrite(ledPin, LOW); //turn LED off when o butfon
} it ﬁcins pu's‘ln:-tf

}

Your code can now respond when you press each of the three
buttons.

You‘ve written your code and adjusted your circuit. Your three-button
mini-keyboard instrument should now work. To take it for a spin,
attach your computer to your Arduino, save your code, verify it,
upload it to the Arduino, and then press the buttons. Remember to
press one button at a time, since the speaker can play only one note
at a time.

Before we move on to look at how some of the components are
working in this circuit, we'll briefly review what you’ve learned about
writing code while building this project.

You learned a few new, and very important, programming concepts in
this chapter. These concepts are critical to writing code in all
programming languages, though the details might be a little different
depending on the language. Let’s look once more at variables and
conditionals.

A variable is a container in your code that can hold different values.

ua[rﬁer u”;e hoewe va(ue

'

A conditional statement evaluates a condition and executes
instructions if that condition is true. If the conditional statement
contains an optional else +if or else block, then it can test for
multiple conditions, and it sometimes tells the code to do something
if the conditions are not true.

if (buttonState == HICGH) {
digitalWrite(ledPin, HIGH);

}

// check if the second button is pressed

else if (buttonState2 == HIGH) {
digitalWrite(ledPin, HIGH);

}

Let’s take a quick look at how the electronic components you used
in this chapter work in a circuit.

The default, unpressed state of the button is open, meaning
electricity can’t flow through it. In order for electricity to flow through
your button, it must be pressed down, making a connection between
the pins (Figure 6-24). When you read the value on the pin that is
attached to the button, you will see that it is HIGH.

pressing the button connects the pins within
the button and allows electricify fo flow

R

pin is set fo HIGH ,I 1'1

when bufton is pres&ed when the button is
pressed, these pins
are fehpomrr{-.? connected

'h} EO-CL D+L|E r

Pushing the button

There is nothing attached to the pins on the other side of the
trench, but the pins on that side of the trench are also connected
when the button is pressed ().

with the butfon pressed, when the button is NOT pressed,
electricity has o complete it means the circuit is open
paﬂn fo flow +Lrnu§l« oind Eﬁecﬁici‘h? CANNOT How

ﬁ—.:@h

How a switch functions

The tone () function built into the Arduino knows how to change the
power provided by your digital pin to create different notes from your
speaker. Without getting too technical, the note value you include in
your tone () function tells the Arduino how to rapidly change the
voltage to create different notes ().

A change in voltage to the speaker will play
different notes.

SUMMARY

This chapter taught you more about programming. You learned what
a variable is and how to use it, and how to use conditional
statements to control the flow of your program. You also learned
more about digital output and how to add a digital input to your
circuit to make your project interactive. You can download the code

here:
github.com/arduinotogo/LEA/blob/master/LEA6 3 toneButtons.ino.

In the next chapter, we will show you how to attach analog sensors
or other inputs to a circuit and use the information you gather from
them to do more with your output components than turn them on
and off.

http://github.com/arduinotogo/LEA/blob/master/LEA6_3_toneButtons.ino

n the previous chapter, you learned how to put

buttons into a circuit to play notes through a

speaker and to turn an LED on and off. This
chapter shows you how to attach sensors to a circuit
and use the information you gather from them to
create more varied experiences. You will also learn
how to use the Arduino IDE to look at information
coming in from your sensors.

You have learned how to attach buttons to your circuit so you can
make your projects interactive using digital inputs and outputs with
your Arduino sketches. With digital input, you have only two possible
values: on or off (a.k.a. HIGH or Low, 1 or 0). But sometimes you
might want to use values that are not as simple as on or off. In this
chapter, you will see how to read values from sensors and variable
resistors, and then use those values in your Arduino sketches to
produce different effects.

You will learn these concepts by building a circuit with a
potentiometer, which is like a knob that can be turned to give you a
range of values beyond just 1's and 0’s. You will use your
potentiometer first to adjust the brightness of an LED and then to
play different notes from a speaker.

Why are we showing you how to use analog sensors and
information? And what exactly do we mean by analog?

You have seen that digital information has only two possibilities: on
and off. Analog information, on the other hand, can hold a range of
possible values. We perceive the world as a stream of analog
information via our sight, hearing, and other senses. By using analog
information with your Arduino, you can respond to user input in a
complex fashion. You can control the brightness of an LED, setting it
to shine brightly, grow dimmer, or show any range of values in
between.

Analog information is continuous and can hold a range of
possible values.

Once you understand how analog values work, you will use the
values to create a homemade musical instrument called a theremin. A
theremin is a musical instrument in which the pitch of the sound is
controlled by the distance of the musician’s hands from the
instrument, as shown in . (That's right; you don't actually
touch a theremin to play it.) You may have heard the eerie tones of a
theremin on a soundtrack for a movie or television show. Our version
will use a speaker and a photoresistor; as you raise or lower your
hand over the photoresistor, the speaker will play different notes.

In all of the projects in this chapter, a sketch will read information
from an analog input and then use that information to control an

output, such as the brightness of an LED or the tones emanating
from a speaker.

You will be using analog information in this chapter and in some of
the projects in future chapters. Let’s get started!

F[m::ihﬁ our {:'.EH'-EME{J Hreremin

Playing a theremin

shows the schematic and a drawing for your first circuit of
the chapter. The circuit uses the potentiometer to change the
brightness of your LED. The LED gets brighter as you turn the
potentiometer until it is all the way lit, whereas turning it the
opposite way dims the LED until it is off.

potentioneter schenatic pofestioneter cireuit

9
5V A
GND

i

- @O i
UN“ S e
sl add -H::L‘-Ei'

QFEEEEE =im=;§'§ ;
e

i
|
5 [—

_J

The first circuit you will build in this chapter

We'll discuss the analog input pins on the Arduino before we get
started building our circuit.

Remember back in Chapter 2, “Your Arduino,” when you first took
your Arduino out of the box? We pointed out that it has analog input
pins, which are pins that can read sensors that have a range of
possible values. Let’s take a closer look at those pins in Figure 7-3.

Celenadic of
Arduive Une with Arduine Uno

r—;mhs sins lobelled defail of d.r-nloﬁ pins

T T T 17T T17TTT

T 1T 17T 17T 17T 1T°7

Analog pins on the Arduino

The analog input pins are located opposite the digital input/output
pins on the Arduino, below the power and ground pins. There are six
pins, labeled AO through A5, with the “A” indicating that it is for
“analog.”

When one of these pins is connected to an analog input, it can
return a range of values, from 0 to 1023. This range of humbers is
related to how the Arduino manages memory. A detailed explanation
is beyond the scope of this book; what's important for you to know is
that it is @ much larger range than just 1 or 0, allowing you to create
varied experiences rather than simply turning something on or off.

What's an analog input? Any component, often some type of
sensor, that can give you a range of values, not just on and off. The
first analog input you're going to work with is a potentiometer, which
you'll attach to Pin AO.

The schematic in Figure 7-3 shows the location of all of the analog
pins on your Arduino.

A potentiometer is a type of variable resistor, which means its amount
of resistance can change. A potentiometer, sometimes called a pot, is
a knob or dial that can be turned to increase or decrease the amount
of resistance depending on how far, and in which direction, it is
turned (Figure 7-4). Potentiometers come in many sizes and shapes.
You will be using a 10 kQ potentiometer in your circuit.

A potentiometer has three pins: one that attaches to power, one
that attaches to ground, and one that attaches to a pin on the
Arduino. In the following pages, we'll show you how to attach the
potentiometer to a breadboard.

o potentiometer schematic su!hﬁu[for varieble resistor

Component drawing and schematic for the
potentiometer

A variable resistor can provide different amounts of
resistance.

Is a potentiometer just like the knob on an old TV set?

Not exactly. The dial on an old TV has set points, where it

stops as you turn it to “tune in” a channel. A potentiometer
generally has stop points at both ends, where it has either
maximum resistance or minimum resistance. It can be turned
smoothly between those two endpoints.

The first circuit you will build will contain a potentiometer that
controls the brightness of an LED ().

'.'w:l-tlr ﬂ"'ill‘ fu-r “n-e Pﬂhh"'im-l!"l.!r LED Eil'l!‘l;ui'F W
" | R B
sl bor AR
poterdiopeter w ! \hw‘_g‘z | ::::'_5?;.'.
GHD ¢ |_|. :'II‘!:::: ST
o s B | [L Dependng o
T ﬁ H---- !:;’"f_,_...,,__ which direefion
-n"e 1ok [h you furn fhe
u_di . 28**1 Sl e[| pofetioneter fhe
= % 4 O I | ESS A BH LED will dike or
TR ||| e
SE_d o S |55::::'

Completed potentiometer and LED circuit

You'll need these parts:

1LED
1 220-ohm resistor (red, red, brown, gold)
1 10 kQ potentiometer
Jumper wires
Breadboard
Arduino Uno
USB A-B cable
Computer with Arduino IDE
You will start with a basic circuit where the anode of an LED is
attached through a 220-ohm resistor to the Arduino and the cathode
is attached to ground. There is one key difference between this
circuit and the circuit you have used in previous chapters: you are

using Pin 9 instead of Pin 13 on the Arduino board, as shown in
Figure 7-6. We'll explain why soon.

jub-per etHocked
'fo Pih ﬂ'

o Brduine

LED attached to Pin 9

Next you’ll place the potentiometer in the breadboard.

As you have seen, a potentiometer has three pins. In your circuit,
you will attach the middle pin to a pin on the Arduino, one of the
outer pins to the power bus, and the other outer pin to the ground
bus. It doesn’t matter which outer pin goes to power and which one
to ground.

You will place the potentiometer parallel to the trench, as depicted
in Figure 7-7. Each pin of the potentiometer is in a separate row of tie
points, with an empty tie point between each of the pins. Orient the
potentiometer facing away from the Arduino, with the shaft over the
trench, as you can see in Figure 7-7. This will make it easier for you
to reach the potentiometer to turn it and to integrate it into the rest
of the circuit.

each pin is in & separate row of fie points

side view of placing the [
pn{'enfiuheﬁm [= 7
Glddl'hﬁ e Pn‘fuh'finheﬁ:r "f‘np view _'..:_"_'. o
e e afea
\
] -
LI] :
. Al : : -
[= N | .
.= . -
A H :
Eq I .__//d-:a'f'ni['fop View nf Fn+Eh+iDhE‘f‘Er
A

Attaching the potentiometer

Next you'll attach the potentiometer to the power and ground
buses.

Attach the pin at the top of the potentiometer to the ground bus
with a jumper. Then, attach the pin at the other edge of the
potentiometer to the power bus (Figure 7-8). Make sure the jumpers
and the pins of the potentiometer are in the same row of tie points.

d T /Je{'ai[of jumpers etfacking pins of
W petetioneter fo power ard ground buses

Labde =titeclEl:) -

Adding jumpers to the potentiometer

Finally, attach the middle pin of the potentiometer to Analog Input
Pin AO with a jumper (Figure 7-9).

"uhpcr attocked o pit AD ord fo widdle pin of le po'fcn‘lu'ud.-.c*er

j U

ﬁ:

deteil of jurper aftoched
to middle Pih of Pnfzh‘f‘fnh:‘l‘zr

dgﬁ;i{ of o I‘-""‘P‘r
etfecked fo pin AD

.G:E#.‘:_i g TERE =
il
C e

Attaching the potentiometer to the analog pin

At this point, connect your Arduino to your computer with the USB
cable. Let’s load up an example sketch from the Arduino IDE. To load
the sketch, choose File > Examples > 03.Analog and select
AnalogInOutSerial. Save this sketch as LEA7_AnalogInOutSerial.

After you have saved it, click Verify, and then click Upload.

When you turn the potentiometer, the LED should get dimmer or
brighter, depending on which way you turn it (Figure 7-10).

CinyL

wim

ONINGYY =eixy

ATVLN NI B0V

The LED gets brighter or dimmer when you turn the
potentiometer.

You probably use a potentiometer every day for volume
control on a stereo or for a dimmer light switch. Can you
think of other devices that you might want to try to control
with a potentiometer?

Next you'll see how your sketch allows the circuit to interpret the
potentiometer’s resistance value and change the LED’s brightness
accordingly.

You've seen the circuit in action, so you understand what it does, but
how does the Arduino translate the potentiometer resistance value to
a brightness value for the LED? To figure that out, let’s take a look at
how electricity and information flow through the circuit.

Step 1: Power in to the Arduino

Five volts of power come into the Arduino from the computer via the
USB cable.

5 volts

computer——=>{Arduino

Step 2: Power in to the Potentiometer

Five volts get sent to one side of the potentiometer from the 5v pin
on the Arduino (via the power bus).

Arduino——2>»Potentiometer

Step 3: Potentiometer Changes the Voltage

The potentiometer creates resistance, lowering the voltage, and then
sends this new voltage back to the Arduino via Pin AO.

new

Potentiometer ——=& {Pin AO

Step 4: Arduino Reads the Voltage

On Pin AO, the Arduino reads the voltage coming in from the
potentiometer and translates the voltage value to a number on the
0-1023 analog scale we mentioned earlier. Sometimes this reading
takes a longer amount of time. We will talk about how the Arduino
determines the value later on in this chapter.

new
voltage

voltage to
analog value

Pin AQ === Arduino

Step 5: Arduino Converts the Value

The Arduino changes the analog value from the potentiometer to a
translated analog value using the function map (), which we will
explain later in the chapter. This step is crucial, since the LED won't
understand values between 0 and 1023 but will accept values
between 0 and 255.

translate

Arduino =———=» Arduino|

Step 6: Arduino Writes the Value to the LED

The Arduino sends this translated analog value to the LED through
Pin 9 using PWM. We will explain what PWM is and how it works later
in the chapter.

Ard U | NO translate

pln 9 value a LED

Step 7: LED Lights Up

The LED lights up; how bright or dim it is will be determined by the
analog value it received.

--ff\\--

As you can see, the sketch performs the important step of
translating the information from the potentiometer into a value that is
used to control the brightness of the LED.

Now that you‘ve seen an overview of what’s going on in the circuit
and how it interacts with the sketch, it's time to dive into the details
of the sketch.

This Arduino sketch reads the value of voltage on Pin AQO, translates it
to a value the LED can understand, and then sends it out to Pin 9. As
in other sketches you have seen, there is an initialization section, a
setup () function, and a 1oop () function. We have again cut out the
comments at the top of the sketch.

const int Jzna'l.ugInPin = A3; /7 Analog input pin that the potentiometer is attached to
const int analogutPin = 9; /¢ Analog output pin that the LED is attached to

int sensorValue = 8; /¢ value read from the pot ihi'f“-aiiaafioh
int outputValue = 83 £ walue output to the PR (analog out)
void setup(d {
A initialize serial communicotions at 9689 bps; ‘f‘
Serial . begin(9608); i L‘P’“
}
void loop() {

/i read the analog in value:
sensoralue = analogRecd(analogInPind;
A map it to the range of the onalog out:
outputValue = mop(sensorvalue, 8, 1823, @, 255);
/f change the analog out walue:

cnaloghiri teCanaloglutPin, outputValue);

loop()

£ print the results to the serial monitor:
Serial .print("sensor i

Serial .print(sensorValue);

Serial . print{™\t output = "
Serial.printinfoutputValue);

A wailt 2 milliseconds before the next loop
/¢ for the analog-to-digital converter to settle
/f after the last reading:
delay(2);

The initialization section declares and sets an initial value for some
variables you will need in your sketch. As you learned in the previous
chapter, when you declare a variable, you give the variable a name,
indicate what type of information it will hold, give it a value, and in
some cases add a qualifier that indicates whether it is a constant.

const int analogInPin = AO; //RAnalog input pin attached to potentiometer
const int analeogOutPin = 9; //Analog output pin attached to LED

int sensorValue
int outputValue

0; //wvalue read from the pot
0; //wvalue output to the PWM (analog out)

As you can see from the excerpted lines of code here, our sketch
includes four variables. Here are the details of what each one does:

analogInPin

Holds the pin humber that you take the potentiometer reading from.
You set this to Pin AO (Figure 7-11).

analogInPin set to Pin AO

analogOutPin

Holds the pin humber that is connected to your LED. This is set to Pin
9 (Figure 7-12).

g
é
)

analogOutPin setto Pin 9

sensorValue

This variable is initially set to 0; it will hold the voltage value coming
from the potentiometer (Figure 7-13).

sensorValue will hold the changing voltage level on
Pin AO coming from the potentiometer.

outputValue

This is initially set to 0; it will hold the value the Arduino will be
sending to the LED, which determines how brightly it shines (

)

outputValue Will hold the value the Arduino will send
to Pin 9 to control the brightness of the LED.

The initialization section creates these variables so you can use
them later on, in the 1oop () section. Next up: the setup() section.

The setup () section for the sketch is only one line long, but it is a
new Arduino function we have not talked about: Serial.begin().
This function uses the serial object.

The serial object is a set of functions and variables that allows the
Arduino to communicate with other devices. In this sketch, you will
use it to communicate with your computer. begin() is a function of
the serial object.

A functionis a way of organizing code or blocks of
instructions to the computer.

We talked about functions in Chapter 3 when we discussed setup ()
and loop (). Here's how the begin() function appears in our setup ()
code:

void setup() {
// initialize serial communications at 9600 bps:

Serial.begin(9600);
}

This line of code tells the Arduino to open a line of communication
with your computer (they will communicate through the USB cord
that connects them). It also sets a rate of communication for the
Arduino and your computer to communicate: 9600 bauds per second
(bps). The exact baud rate is not important at this point as long as
your Arduino and your computer have a shared rate of
communication.

We will look at serial communication more closely in a few pages;
for now, let's move on to the 1oop () section of the code.

begin() is a function of the serial object that sets up
communication between devices.

Here's an overview of what the 1oop () code does:

It takes an analog reading from the pin your potentiometer is
connected to and stores it in a variable.

It translates that value into something the LED can understand (a
value on the 0-255 scale).

It writes the adjusted value to the LED (Pin 9).

It sends the two values to your computer (sensorvalue and
outputValue) so that you can see how they change over time.

It waits a short amount of time (2 milliseconds) before your next
reading.

These steps happen in this order repeatedly for as long as your
Arduino has power.

Let’s look at the code again:

loap() code
void IDOP{) A reads fhe volue on Pin AD will 1le
// xead the ana 10'; in value: po{uh'liuhn:"ftr ond stores if in sensorlalue
| sensorvalue = analogRead{analogInPin);

// map it to the range of t scoles sensorlialue ard sfores
ﬁutputvalue = map(sensorvalue, 0, 1023, 0, 255); it in fhe outpidlolue vorioble

f/ change the analog out value:
((analogWrite{analogQutPin, output?alue};r ~ sends oufputliole fo Pin 9

[/ print the results to the serial monitor:

Serial.print("sensor = " }); sends sensorlalue and
Serial.print(sensorValue); sutodlialue o fhe computer
Serial.print("“t output = "}; J F
Serial.println({outputValue);

// wait 2 milliseconds before the next loop
// for the analog-to-digital converter to settle
// after the last reading:

delay(2); — colls the deloy() function and fells if fo

} poute for 2 williseconds: sHer fhat poue,
fle leopl) code sforfs over

The first line of code has the Arduino check the value of voltage
coming in from the potentiometer on Pin AQ. This value is stored in

sensorValue.

read va[ue from 'HnE Pn‘F’em‘[’inhe‘[’er aH’acLed ‘f’n Pih AO

// read the analog in value:
sensorValue = analogRead(analogInPin);

How is the changing resistance of the potentiometer affecting the
values coming out of Pin AQ?

If you were to use a multimeter to read the voltage out of Pin AQ
when the potentiometer is all the way to one side, giving maximum
resistance, you would read a voltage of 0. If the potentiometer were
turned all the way to the other side, with no resistance, you would
read a voltage of 5 volts. Remember Ohm'’s law? Here we see it in
action, with a changing amount of resistance affecting the amount of
voltage.

The values that we get using the analog pins are a scaled
measurement of voltage. The Arduino converts voltages values
between 0V and 5V into a number between 0 and 1023. This process
is called analog-to-digital conversion.

shows a ruler that demonstrates the conversion from
voltage to an analog value reading. On the top you see voltage
ranging from 0 to 5 volts; on the bottom you see the range you can
get from an analog input pin on the Arduino, 0-1023.

Analog input pins read voltage levels from OV to SV and
convert them to a range of values from O to 1023.

M'D{'Fﬂ-lj{‘. "t} Ghﬂ-tﬂﬁ '-'ﬂ-ti.ul:& ﬂiic

Ov 2V 3V SR

——— |

0 909 41 1023/) "

Converting voltage to an analog reading

On the ruler in , You can see that at 0 volts you get a
reading of 0, and at 5 volts you get a reading of 1023. What happens
at the values in between 0 and 5 volts? The analog input value is a
number between 0 and 1023, so at 2 volts you get a value of 409. At
3 volts you get a value of 614. These values are automatically
calculated by the sketch. You will see how this works with our
projects later in this chapter.

Why do you have to convert the value of the voltage? You will see
later in this chapter, and in Chapter 8, “Servo Motors,” how we use
the value (between 0 and 1023) with some of our other functions.

The sketch first takes an analog reading from the pin your
potentiometer is wired to, Pin A0, and stores the value of the reading
in a variable named sensorvalue.

First loop Line: nhr:-[oﬁizcadl[}
Piv 60, ﬂhﬁb}ﬁ pin ottocked fo

the sletel soves Hhe / potertioneter

ﬂl-'.r.‘l[onﬁ value from 'H-l: = anangREﬂd (F
potentiometer info
‘”m's '.rr:lria!;!lg

ann!oﬂﬂead{} function

CinxL

L

ONINaYY =exy

ONNJOO,

AVVEN NI B0V

Figure 7-16: Turning the potentiometer fades and brightens the
LED.

Remember that analog means that we can have a value other than
0 or 1. analogRead() reads a value from an analog input pin that can
range between 0 and 1023, as you just learned. If you turn the
potentiometer all the way to one side, there is no resistance, so the
value is at its highest, which is 1023. When you turn it all the way to
the other side, there is maximum resistance, so the value is reduced
to 0. The process of reading the value on the pin takes a small
amount of time.

Let’s bring back our analog value ruler and take a look again
(Eigure 7-17).

M'D{'Fﬂ-s{‘ "t} G‘hﬂ-tﬂrj '-'ﬂ-ti.ul:& Hiic

ov 2V 3V SR

———— |

0 909 &M 10227 "

Voltage-to-analog conversion

If the potentiometer sends 2 volts to the A0, then the value read
on that pin is 409. If instead you turn the potentiometer to let 3 volts
into the pin, then your new value read will be 614.

Now that you have a better understanding of analogRead(), let's
look at our next line of code in the sketch.

The next step is to adjust the value of the sensorvalue and store it in
a new variable. On the next line in our 1oop() function, you see the
second variable, outputvalue, being assigned the value of a map ()
function. The map () function automatically scales one sensor value
and converts it to another range of values.

[nopf} code line Two: mep() function
// map it to the range of the analog out:
outputvalue = map(sensorvValue, 0, 1023, 0, 255);

Why are you mapping your value? Why can’t you just use the
numbers that you get from reading Pin AO? When we looked at the
sketch earlier, you saw that you will be using analogWrite() to write
values to Pin 9. This function takes a range of values from 0 to 255.
As the values coming from your analog input pin can range from 0 to
1023, you have to convert that range, 0—-1023, to 0—-255 in order to
pass the value on to Pin 9 ().

kuppihrj volues ruler
[ET l-nyl:] frnetion
toles these

wt-!m's i

0 909 4 1023)

—

0 102 1S3 7SS\ o st

will outpud
fhese velves

Converting the range from 0-1023 to 0-255

The map () function asks you which variable you want to scale,
what the expected minimum and maximum scaled values are for your
sensor variable, and what your minimum and maximum values should
be.

mopl) function breoldown

ELHEG‘F value veriable

outputValue)= map {@nsur‘ualue—:_)
Uﬂ-ﬁﬂbtﬂ +0 fove deflrﬂd DU‘"’FH{’

EKPEC‘fEd thh+ bribibnlobn

hﬂPPEd ﬂ.L.ﬂ-. i Ohd

ond mokimub volues
scoled value okitmubn velues

The value saved to outputvalue is a scaled-down number. If your
sensor reads 1023, map () will set the variable outputvalue to 255. By
giving the map () function these ranges, almost all the values you save
in outputvalue Will be smaller than the original reading indicated.
The one exception is if you read 0 on the sensorvalue—that is still
saved in outputvalue as 0.

The map () function is used to scale values from one range to
another.

Now that you have mapped your value, you're ready to send a value
out to your LED and light it up. The next step that the sketch
performs is to write the adjusted value to the LED pin.

You'll use the anatlogwrite() function to send analog values to
some pins on your Arduino. We'll talk about these special pins in a
moment, but first let’s take a look at the analogwWrite() code from
our sketch.

[m}p{] code line three: uhu[nﬁLUri‘f'eﬂ

// change the analog out value:
analogWrite(analogOutPin, outputValue);

analogWrite() is similar to the digitalwrite() function we've

already discussed. analogwWrite() needs to know two things: the pin
you want to write to, and the value you want to write to that pin. In
this sketch, you are sending the analogoutPin, set as Pin 9, a value
from the variable outputvalue, which you set with the map ()

function. By sending an analog value between 0 and 255, the Arduino
actually sends a voltage between 0V and 5V back to your LED. Let's
look at how the range from 0 to 255 maps to the voltage level on the

pin ()-

apping 0=-251ee wp”‘nﬁc volue behueen OV ond 3U
Oar ﬂ-ra!ﬂsb.l’:i"::“
e en 0 02 13 Z55)

o osomoa OV A 5V)

send These w:s{faﬁ-:
values fo pik 9

Mapping 0-255 back to a voltage value

analogWrite() takes a value between O and 255 and writes a
value between O and S volts to a pin.

The Arduino is able to send an analog value by using a process
called PWM. We will explore how PWM works in a few pages.

How Do the Analog and Digital Functions Differ?

Before we get further into analogwrite() and how it works with
PWM, let’s break down how analogRead () and analogWrite()
compare to the digitalRead() and digitalwrite() functions we
have used in previous chapters. We have been making the
comparison all along, but shows how these four functions

compare.

Analog and digital functions compared

NAME OF
FUNCTION

digitalRead()

digitalWrite()

analogRead ()

analogWrite()

WHATIT ARGUMENTSIT
DOES REQUIRES
Reads The number of
the value the pinitis

of a assigned to read
digital

input pin

Writes a The number of
value to |the pinitis

a digital | writing a value to
output |and the value it
pin is writing

Reads The number of
the value the pinitis

of an assigned to read
analog

input pin

Writes a The number of
value to |the pinitis

an writing a value to
output |and the value it
pin with | is writing

PWM

RANGE OF
VALUES

Reads either1
or O from pin

Writes either1
or O to pin

Reads an
integer
between O
and 1023 from

pin

Writes an
integer
between O
and 255 to
pin, which
results in a
voltage value
between O
and 5 volts

Can you think of a circuit you might want to build using
analog information? How will it be different from a circuit
that uses digital information?

As you have seen in earlier chapters, the Arduino is capable of
putting out only a few different voltage values: either 5V or 3.3V. All
of the I/O pins on the Arduino are set to output 5V when used to
control circuit components. If the Arduino is capable of producing
only 5V on your output pins, how can you create analog values? The
Arduino has the built-in capacity to use a technique called pulse width
modulation, or PWM,

So how does PWM work? Imagine turning the lights on and then
off in your room. The room looks bright for a moment, and then dark
again. If you continue to flip the light switch back and forth at a slow
rate, the room just appears to be bright, then dark, over and over

()-

[J [[
Tk darls L e

0, D), D

oFF ' oFF I
.

0,) (), 0

L J . A -

Flipping light switches

But something strange happens when you flip the light switch
faster and faster. Rather than just appearing bright followed by dark,
your room will have a light level somewhere in between bright and
dark. In fact, the room will also appear brighter if you leave the light
on for slightly more time than you leave it off. Your room will have a
light level that is the average brightness that is dependent on the
percentage of time that the light is on in relation to the percentage of
time the light is off.

PWM uses a technique similar to flipping the light switch to create
a brighter or dimmer light level. When you use PWM on the Arduino,
the level of voltage on the PWM pin is switched on and off at various
rates at regular intervals. It is sometimes 0 volts, and sometimes 5
volts.

o Pl.U” silo}ha-'[ik wLicL ‘H«E Faih 5 0u+Pu‘H’fm$ ei‘H«er O or S VQH'?.
5V
~ LI LI LI LT L

PWM signal

PWM creates an average value by turning the pin off and on
very quickly.

By varying the amount of time the pin is turned on and off, the
Arduino creates an average voltage value between 0 and 5.

So which pins can you use with PWM? A number of the digital pins on
the right side of the Arduino can be used with PWM: Pins 3, 5, 6, 9,

10, and 11. As you can see, each one of the pins is marked by the ~
symbol on the Arduino (Figure 7-22).

Pins lobeled with ~
Arduine Uno are FLUN pins

schematic of Brduine Une

wiﬂn PN FI'H'L‘ {a[vet&‘wf

PAMDI =
P D10
M DY

ONINdYY ®iexy

PWHM D
PV DS

=
=
=2
-
H
=
=
=
-

PWM D3

Labeled PWM pins on the Arduino

Are PWM and analogwWrite() the same thing?

No, PWM and analogwrite() are related but they are not the

same thing. analogwWrite() is an Arduino function that tells the
Arduino to use a pin to create analog values. This function uses
the technique of PWM to create analog values.

PWM turns the pins on and off, and that makes a different
value somehow?

That's right. Since the Arduino is turning the pin on and off so

quickly, the effective value for the voltage that comes out of the
pin is the average time the pin is set to HIGH. Note that the
Arduino is not producing a different value of voltage but rather
just using this trick of averages to create the analog value.

The PWM pins can also be used as digital pins?

That's right. Depending on your circuit and your sketch, you

can use Pins 3, 5, 6, 9, 10, and 11 either as digital pins or as
PWM output pins.

You've seen how the sketch works with the Arduino to take in
information from the potentiometer, change it, and then send it to
the pin controlling the LED. Next we'll look at how and why you print
values to your computer using serial communication. The second-to-
last step the sketch performs is printing two values to your computer
(the value from an analog input pin and the value you send to the
LED pin) so that you can see how they change over time.

Sometimes it's helpful to find out information about how your sketch
is running. This knowledge can be useful if you're trying to debug
your circuit. For example, you can see the values you have on your
input and output pins. We'll show you how to do this shortly.

Serial, in this context, is a type of communication protocol. It refers
to a way that two devices can communicate by sending information
across a pair of wires. By changing the value of voltage along a wire
from HIGH to Low, the Arduino can transmit information across the
USB cable to our computer (). Remember the digital
output pins marked TX and RX on the Arduino (digital Pins 1 and 0)?
These pins are used to communicate with your computer. TX sends;
RX receives.

thDrhﬂ+th frmm ﬂrduihn
o{isp[aoiled ik fLE ‘serm[
mehi'i'Dr wfhdow Okl Olr

)) . cohpuﬁr
Se rm[CObnbw hthﬂ+rﬂh

sends values from the

Arduino fo o coi-.pr.a'Fer -

i,
S———

Qi S~ /

Serial communication allows the Arduino to talk to
a computer.

ua[ues ':TEh'['
l':roi-h ﬂrd LilD

Serial communication is an easy and efficient method for your
Arduino to communicate with your computer. The Arduino IDE

contains a window called the serial monitor, which displays the
information it receives from the Arduino, such as the values your
sensors detect or what function is currently running.

We'll take a look at the serial monitor first before getting back to
our code.

The serial monitor is a feature of the Arduino IDE that shows you
information sent from the Arduino. It is helpful for debugging and for
learning what values a sensor or variable resistor produces. To open
the serial monitor, click the button at the top of the Arduino IDE
(Eigure 7-24).

seriel monifor butfon

Serial monitor button

When you open the serial monitor, you see a window that displays
responses from the Arduino, and a drop-down menu that controls the
rate of communication, or baud rate, between your computer and the
Arduino. As we've mentioned before, the baud rate is the rate of
communication that the computer and Arduino use to talk to each
other. By default, the baud rate of your serial monitor will be set to
9600, which matches the value you set in the serial.begin()
function in your setup () code, so you shouldn’t have to make any
adjustments.

setupl)

vold setup() {
// initialize serial communications at 9600 bps:
Serial.begin(9600);

}

™\
e

The Arduino and your computer must use the same rate of
Qammunicqtion: the value set in Serial.begin().

/

Figure 7-25 shows what the serial monitor window looks like when
running this sketch.

™ & Fober ol umbwraciarm 14 § AT Linog
| Send

P |

lnforsction from :’ .

Prduo \EE

PR TR

E?ﬂ-bdl Pﬂ-*ﬁ

drop down meno

Apst = @

111811

-
- ¥
)
- #
-9
-#
w i

o Aadosondl o bt gnding

Running the serial monitor

Now that you understand where to find your serial monitor, let’s
explore the use of the serial object in the 1oop() code.

The serial object has two functions for sending information to your
computer: Serial.print() and Serial.println(). Our sketch uses
both of these functions in order to format the information on the
computer screen.

code frofm loop[] for Prih‘f‘ih% ‘fo our cohpuﬁr

Serial.print("sensor = ");
Serial.print(sensorValue);
Serial.print("\t output = ");

Serial.println(outputvValue);

All four of these lines of code together print the single line in the
serial monitor that includes sensor =, the value of our sensor, a tab,
the text output =, and the mapped value. Here’s an example of a line
of output this code will display in the serial monitor:

serial. hohi‘f'or ou‘fpu‘(’_\
(EEBSOP = 302 output = 75::)

Sending Words to the Serial Monitor: Strings

Look at the first serial.print() line, and you see words and
quotation marks around them. In order to send words to your serial
monitor, you use something called a string.

fir*ﬁ geria(,prih‘f'() {ihe l‘rﬂh—. ‘H-.e Loup() code

Serial.print(('sensor =)) ;

N
C S’h’i‘h%

A string is a representation of text in a programming language. Any
letters, numbers, or other alphanumeric characters (including spaces
and punctuation marks) are represented by strings in your code.

Why do you need strings? Computers normally only work with the
value of numbers. Sometimes you need to use text in your code, to
pass along textual information or to give context to other data. We
will show you how this works as we look more closely at our code in
the next couple of pages.

How do you use strings in your code? You place guotation marks
around a string to identify it. The quotation marks enclose the full
group of characters, including all of the letters, spaces, and
punctuation.

Text is represented by strings in your code. Any
alphanumeric characters, including spaces and punctuation
marks, are represented by strings.

Now we'll take a closer look at how each line of code prints to the
serial monitor. You know that any characters inside quotation marks
is a string and will be represented as text. You also see your variables

referenced in the code. Let’s look at how these work together with
Serial.print().

Everything inside the quotation marks, including spaces and
punctuation, will be printed to the serial monitor.

code from [onp(} for Fr’ih"’ih% to our cuhpu’f@r

first line

EECOHG{ {ih(:’.

Serial.print("sensor = ");
Serial.print(sensorValue);

Hird line Serial.print("\t output ")
tourth line Serial.println(outputvValue);
The first line of the code prints the string "sensor = " (including

the spaces before and after the equals sign).

The second line of serial.print() will print the value of the
variable sensorvalue, Which is a number. Without quotation marks,

the Arduino will print the numeric value stored in the variable, rather
than the name of the variable.

The third line of the serial 1oop () code uses quotation marks again,
so you know that you are going to print a string. However, you also
have a new symbol: what does that “\t” mean? The \t tells the

Arduino serial monitor to include a tab—a set of spaces—in your
printed output.

The fourth line prints the value of your outputvalue variable. But
instead of Serial.print(), you use Serial.println(), which will
print a line break.

Remember, the values for sensorvalue and outputVvalue YOuU See in
your serial monitor will change as you turn your potentiometer.

first line of code prints
‘H«e s’*‘rihﬁ SERSOr =

third line of code prints o S'h‘ihs
‘f‘La.f' ihc[uder o {'ab ahd ‘H«e

fext output =
(sensor (02 @
{Gur'Hn {ihe of code PTih{'S ‘H—-e
‘;Ef_‘ﬂhd [ihe of code Prfh‘f"&‘ ‘f‘[ne m[ue of 'H«e uariabie au‘f‘PufUa[ue
velue of the verioble sensorlialue ond sets o line breal:

The final line of serial code uses serial.println() rather than
Serial.print(). You saw that serial.println() automatically adds
a line break; how does this affect the way your code appears in the
serial monitor?

fiha[gerin[.prihﬂh() [ihe froh [DUP[} code‘:’;

@erial .println(outputvalue)9

The line break means that the next time you print something to the
serial monitor (including the next time through your 1oop () code),
the printed serial information will appear on a new line.

The only difference between serial.print() and
Serial.println() is that line break, which can make it easier to read
the information in the serial monitor.

Serial.println() includes a line break, which makes the
serial information easy to read.

And because this code is in 1oop(), the lines will appear over and
over again. The values of the variables will change if you turn the
potentiometer.

This is how all four lines

of code will oppeor :h\@m‘ = 302 output =®
the serial monitor. sensor = 303 output = 75
sensor = 306 output = 76

What do those values mean and how do they relate to the scales of
numbers we looked at earlier? sensor is the value derived from
reading the voltage (0-5) on Pin A0 and setting it to a range from 0
to 1023 with the analogRead () function. output is the value of
sensor mapped to a range from 0 to 255 by the map() function to be
used by Pin 9.

The final step is to wait a short amount of time (2 milliseconds)
before your next reading. This is accomplished with a single line of
code that includes the delay () function you‘ve seen in previous
chapters.

/ (i ((. secomo(o(e(ac?

B e

delay(2);

This delay pauses the program for just a moment so that there is
enough time to take another sensor reading. There is a limit to how
many accurate sensor readings can be taken every second, so the
delay helps to space out your sensor readings just long enough to
maintain good readings.

A short delay at the end of the sketch keeps your code
running smoothly and your sensor readings accurate.

As you've seen, the 1oop() code reads an analog value from an
analog input pin, scales that value down to a smaller number, writes
the analog value out to a PWM pin, and prints the results from all of
those steps to your serial monitor so that you can see a readout of
how the value changes.

The analog output value—which can be any humber between 0V
(off) and 5V (fully on)—changes the brightness of your LED. At an

intermediate point such as 3.5V, the LED will be less bright than at
5V. What else can you modulate in this way? Next you’'ll hook up the
speaker and change the notes that come out in a more dynamic way
than you did in Chapter 5.

Are there other functions using serial besides
Serial.begin(), Serial.print(), and Sserial.println()?

Yes, there are quite a few, including serial.write() and

Serial.read(), Which are also used to communicate with your
computer.

Why do we bother using the special character \t to create a
tab? Are there other special characters I need to know?

Using \t makes the output in the serial monitor much easier

to read, and that’s the only reason we use it. There are many
special characters; one that can sometimes be useful is \n, which
creates a new line. This formats the text in a similar way to using
Serial.println()—it adds a line break.

I've heard of strings before; they are a way of describing text
in other programming languages, right?

Yes, alphanumeric characters, including spaces and
punctuation, are called strings in many programming languages.

What other information might you want to send from your
Arduino to your computer to help you in debugging your
projects?

We have sent analog sensor readings in the past, but you can also
print strings (to check if something happens, like a button press) or
digital readings.

You‘ve seen how your potentiometer can give you a range of
values when hooked up to an analog input, and you know how to
map those values in your sketch to get values you can use with a
PWM output pin. Now let's add a speaker to your circuit to control
tones with analog values.

You're going to keep all the components that are currently in your
circuit and add a speaker (). Both the LED and the
speaker will use the values produced by turning the potentiometer to
control their behavior.

e circuif with o pofertioheter confrols fhe

BrirsH”hEt: of LED avd nofe ?Id-«fihﬁ
scheradic for fhe circuif with spealier, in Hhe spealer
LED and Fn‘fen'iiahe‘hr
FWH LI st
sv pwH o= I

@
GMD ¢

1

Adding the speaker to our circuit

Part to add
1 8-ohm speaker

Connect one end of the speaker to Pin 11 and the other to ground.
Remember, the speaker doesn’t have any orientation (Figure 7-27).

c:’rcui{ with ipeoﬁcr added

|
S o

.- -

I Eiig @

detail one end of 1|:Iea|!4¢r oHocled fo
pin 11_, fhe other 1o the nﬂmund bus on
fhe breadboard

] = B e | n]
EEnd ke miis iR A AL

Attaching the speaker to the potentiometer circuit

Once you've added the speaker to the circuit, attach your computer

to the Arduino and open up the LEA7_AnalogInOutSerial sketch. You
will be adjusting it.

Save your sketch as LEA7_VariableResistorTone. You have to add two
lines of code to use your speaker: in the initialization section, a
variable to hold the value of the pin attached to the speaker, and in
the 1oop () section, a call to the tone() function. You'll also comment
each line to explain what it does.

// Analog input pin that the potentiometer is attached to
const int analogInPin = AQ;

// Analog output pin that the LED is attached to

const int analogOutPin = 9:

// Analog output pin that the speaker is attached to/
const int speakerOutPin = 11; varioble fo bold the pin

oHocked to the spealier

0; // walue read from the pot
0; /f value output to the PWM (analog cut)

int sensorvValue
int outputvalue

volid setup() {
f// initialize serial communications at 9600 bps:
Serial.begin(9600});

}

void loop() {
// read the analeog in wvalue:
sensorvValue = analogRead(analogInPin};
// map it to the range of the analog out:
outputWValue = map(sensorValue, 0, 1024, 0, 255);
// change the analog out value:
analogWrite({analogOutPin, ocutputValue);

//call to the tone function calls e forel) function
tone {speakerOutPin, sensorValue);

// print the results to the serial monitor:
Serial.print("sensor = " };
Serial.print(sensorvalue);

Serial.print("\t output = ");
Serial.println{outputvalue);

delay(2);
}

Once you have added those lines of code (initialized the variable to
hold the speaker pin, added a call to the tone() function, and
commented each line), attach your computer to the Arduino. Verify
and then upload your sketch.

Note again that you are using the potentiometer to set the pitch of
the audio coming out of your speaker (Figure 7-28). As you turn it,
the pitch changes, getting higher as the LED gets brighter and lower
as the LED dims.

a9 =

LELDE]

Ml TOTVET

Turning the potentiometer changes the pitch.

Before we move on to replacing the potentiometer with a
photoresistor to build the theremin, let’s take a closer look at the call
to the tone() function.

(gsne(speakerOutPin, sensorValuéYE)

You may remember from Chapter 6 (“Switches, LEDs, and More”)
when you used the tone () function that it takes two arguments: the
pin the speaker is attached to—in this case, the variable

speakeroutPin (set to Pin 11)—and the frequency of the tone to be
played, here set to the variable sensorvalue, which is the value
derived from reading the potentiometer on Pin A0. You don’t need to
map this value to the smaller scale, since the range of frequencies
accepted by the tone () function is much wider than 0-255.

Now that you‘ve built your circuit with the potentiometer and the
speaker, you will swap out the potentiometer for a photoresistor to
create your theremin.

Place the photoresistor in the breadboard so that one end is in the
same row of tie points as the jumper from Analog Pin A0 (Figure 7-
29). The other end should be in the row of tie points below that. The

photoresistor doesn’t have an orientation, so don’t worry about
placing it in the breadboard backward.

- —
T s | e .

jubper in 1 detail of one lead of Hhe photocell
pin a0 :% i the saie row of fie ?bih{"! as a

ruhpzr fruh ﬂhﬂlaﬁ ik a0

Adding the photoresistor to the circuit

N
ek

Photoresistors don’t have an orientation and can’t be placed
Q:ckwqrd in your circuit.

/

Next, add a jumper that connects the other end of the
photoresistor to the power bus (Figure 7-30).

J|ln = [| : : : :

: deteil of one lead of the
] photocell attached fo the
38 E power bus wiﬂn o [uhpﬂr

= |
= |
':J <
i |

Adding the jumper wire to power

Now add the 10 kQ resistor to the same row of tie points as the
jumper to Pin A0 and one end of the photoresistor (Figure 7-31). The
other end of the 10 k< resistor is jumped to the ground bus.

e

.-
-]
P

£

o B
5

1

CMIOHY =Ew
(T

‘H.-.m{..ﬁL "ub.Fer

Enbebdu abstpeBER:) -

'F EEEES
o]
*
& e

10 kQ resistor added to circuit

You have now completed the circuit. Attach your computer to the
Arduino through the USB cable and see what happens (Figure 7-32).

owe end of 10K Ol resicfor
connects fo one end of photfocell
ond onelog pin AD, while the
other end conrects fo sraumf bus

GED

N3

Flnds

D OC

NI F0IVNY

Testing the completed circuit

The arrangement of the photoresistor with the resistor in
series is an example of a very common circuit called a
voltage divider. Voltage dividers are helpful when using
some sensors, like the photoresistor, but they won't be
required for all circuits. To understand how the voltage
divider functions, think of it as changing a large voltage into
a smaller one.

Why didn’t you need another resistor when you used the
potentiometer in your circuit? It contains a resistor with a
wiper, which divides the resistor in half (see).
Moving the wiper adjusts the ratio of resistance of the two
halves.

inside the pofentiomefer

‘f‘L\e uuipr:’.r c[«ahses
‘Hne resis’fahce:

bﬁ""w&&h ‘H«e S‘iﬁ[@?

X-ray of potentiometer

You can play your light theremin by moving your hand closer to and
farther away from the photoresistor. Changing the amount of light
that falls on the photoresistor changes the resistance. Move your
hand up and down to hear the eerie tones changing pitch (

).

You might try shining a flashlight on the photoresistor (Figure 7-
35); the pitch should jump up as you reach the highest light level.

WONE '-1or..-r lﬁlhﬁ! OVEF ‘H-\E'. FLD‘E'OEEH ‘Fo
rf' “ olter fhe fomes

The pitch changes as the photoresistor is exposed
to different amounts of light.

ONNIO, O

_

Shining a flashlight on the photoresistor

You didn’t need to change the code when you replaced the
potentiometer with the photocell. How can this be? As described
earlier, the photoresistor works on the same basic principle as the
potentiometer. Both types of variable resistors change the values of
the resistance in the circuit, which, as you know from Ohm’s law,
alters the value of the voltage (and the current as well) on the
Arduino. The code you've written for your light theremin will work
with a potentiometer, a photoresistor, or any other variable resistors
you want to use.

The serial window displays the values sensed by your photoresistor,
but what do these humbers mean? More light shining on the

photoresistor creates a lower resistance and consequently a higher

sensor value (Figure 7-36).

LisLer nubber meons less resisfance

[]

sensor value =
sensor value
sensor value
sensor value
sensor value
sensoer value
sensor value
sensor value

of Moisrel

Ao e e 08 b U

852
852
852
g52
852
g5z
852
852

output
output
output
output
output
output
output
output

value
value
value

value =

value
value
value
value

Apwardey

212
212
212
212
212
212
212

212

e bead i

i -
fieladl. satecll ..

QVERERE .=1:“-. '
D E0

!

More light means a lower resistance value.

If the photoresistor detects less light, the resistance value of the
sensor is higher, and the number in the serial monitor will be lower

(Eigure 7-37).

I'.m.ner nuh&er WECKS WOre

resistfance

o toad e

sensor value
sensor value
sensor value
sensor value
sensor value
sensor value
sansor value
sensor value

P . bt 1T W Lol

200
200
200
200
200
200
200
200

output
output
output
output
output
output
output
output

ey bt

value = 50
value = 50
value = 50
value = 50
value = 50
value = 50
value = 50
value = 50

Less light means a higher resistance value.

It's good practice to get used to reviewing the information

displayed in the serial monitor. You may need it to troubleshoot

problems.

In this chapter, you learned how to attach a potentiometer and a
photoresistor to the analog input pins in the Arduino to get a range of
values to use in your sketches. You learned what PWM means and
how the Arduino uses the PWM pins with analogWrite() to simulate
an analog output. You now know how to map values from the range
you receive from your inputs to a range that is appropriate for the
output you are using. And you learned to use the serial monitor in
the Arduino IDE to read values from inputs. In the next chapter, you'll
build on this knowledge by creating a circuit that turns motors.
Download the code for LEA7_VariableResistorTone here:

http://github.com/arduinotogo/LEA/blob/master/LEA7_VariableResistorTone.ino
http://github.com/arduinotogo/LEA/blob/master/LEA7_VariableResistorTone.ino

8
SERVO MOTORS

n this chapter, you'll add motion to your Arduino
projects. You will be using servo motors, as shown
in Figure 8-1.

N

Hobby servo motors

Servo motors are a type of motor that can be easily programmed
to rotate to a precise position. A servo motor contains a set of gears

and a control mechanism that rotates a shaft a specified number of
degrees. Because servos are relatively easy to control, they are a
good introduction to using motors in your projects. Although there
are many types of servos, the ones that we recommend you use can
rotate between 0 and 180 degrees.

360 dearees
130 dearees

5}0 dE?)I"EES‘

Diagram of degrees of rotation

First, you'll be turning your servo continuously with an example
sketch from the Arduino IDE. Then, you'll control a servo with a
potentiometer. Finally, you'll add a second servo to the circuit and
adapt a sketch so that the movement of both servos is controlled by
turning the potentiometer.

We'll also cover some programming concepts that you haven't
encountered before, including for loops and custom functions.

The type of servo motors you'll be working with are called
positional rotation servos. They are limited to 180 degrees, or one
half of a full rotation of movement; degrees of rotation are shown in

(previous page). They are accurate to any degree within
that range, meaning if you need the shaft of your motor to point to
an exact spot, they are a great fit.

Servo motors are used in a wide variety of applications, including
hobby model airplanes, robotics, and art projects of all shapes and
sizes.

shows a drawing of the first project you're going to build.
We’'ll review a bit about analog data, look more closely at servos, and
then get started building.

You learned in the previous chapter that analog data can refer to any
information that has more than the two possible values that digital
information can hold (described alternately as 1 or 0, true or false,
HIGH or Low). In your Arduino sketches, you saw that the number of
possible values was often mapped to a particular range—for inputs, a
value between 0 and 1023, and for outputs, a value between 0 and
255. Having a wider range of values allows you to do more than just
turn your components on or off.

Servo motors use precise positioning. You'll use analog data in
order to set the direction the shaft of your motor is facing in the
projects you build in this chapter.

[1F]

NONNI©.©

- . m
t-"asnnn||lewnns + -

As we have said, many types of servo motors are available. We
recommend that you use a motor with a range of 180 degrees that
runs on 4.8V to 6V. This type of standard servo is commonly available
from many online vendors or from hobby shops or stores that sell
electronic components.

The mechanisms that turn the servo (motor, gears, and circuit) are
enclosed in a case. The spline is the part of the movable shaft that
extends through the case. The horn, or arm, attaches to the spline. A

screw holds the horn in place on the spline. The packet of mounting
materials that comes with your servo will generally have a variety of
horns that you can attach so that you can switch them depending on
the nature of your project, as well as some screws and other
fasteners. The servos are designed to make it easy to unscrew a horn
and replace it with another one. Servos also generally have mounting
flanges on the front and back, making the servo easy to attach to
your projects.

Online vendors include the following:

adafruit.com

sparkfun.com

makershed.com

microcenter.com

servocity.com

When you purchase a standard servo motor, you will receive
the motor and a package that contains mounting hardware,
as shown here:

A cable is connected to the front of the case near the bottom. This
has three color-coded wires; the black wire will be attached to
ground, the red wire will be attached to power, and the third wire,
sometimes yellow, sometimes blue, sometimes white, is the control

http://adafruit.com/
http://sparkfun.com/
http://makershed.com/
http://microcenter.com/
http://servocity.com/

wire. You will be connecting the control wire to a pin on the Arduino.
The servo has a plug, or connector, at the end of the cable to attach
it to a circuit. Figure 8-4 shows a servo with and without a horn
attached.

born spline

i-».m.—h‘fih.s

F[a h%&

i
con be removed

-II\-I'HJI rl:ZFtd-Cer;

screw holds

born in ploce n..nvuhfih3

“Ghsﬁ

cese confoins mofor,
ﬁzars ﬂ-hd cfrcui‘f‘

/

coble for
power & control

connector
\\‘I_f
1o Pfu3 info

breedboord

Servos annotated, one with the horn and one with
the horn detached

The different styles of horns that come with your servo allow you

to attach the correct horn for the project you are building (Figure 8-
5).

Some servo horns

Why are we starting with servo motors rather than another
type of motor?

We are starting with servo motors because they are easy to
control and wire.

Will I need any other type of motors for my projects?

Yes, though servos are useful, they will not work for every

project. Sometimes it is appropriate to use a DC or a stepper
motor because of power requirements, or because of the
particular task that they are to perform. They are attached to the
circuit and programmed differently, which we will not be covering
in this book.

My servo wires don’t match the colors you mentioned. Which
wires go to power and ground?

On some servos, the ground wire is brown; generally power is

red on most hobby servo motors. Look at the front of the servo to
see how the wires are coming out on the cable. Generally the
ground wire is on the right, the power wire in the middle, and the
control wire on the left.

You'll need these parts:

Standard servo motor

Breadboard
Jumper wires
Wooden coffee stirrer or strip of cardboard
Tape
Colored paper
Arduino Uno
USB A-B cable
Computer with the Arduino IDE installed
Figure 8-6 shows the schematic and the drawing of the first circuit
you are going to build. As usual, the power and ground buses on the
breadboard are attached to 5V and GND on the Arduino. You can see

that the servo has three wires: one attached to power, one to
ground, and one to a pin on the Arduino.

serve confrel wire
servo affacked ottocked fo pin 9
fo power

®

[% o]
+
i%?., oMached -

fo .sroumi t::{v:’ whf;-n[

Schematic and drawing of our first servo circuit
There are a few things you should know about the servo that will

make it easy to set up.

You've seen that the servo comes with a packet of different horns.
You might want to swap out the horn that is attached to your servo

when you purchase it. Use a small screwdriver to remove the screw
attaching the horn and replace it with another, as shown in
. We are using the circular horn in our examples.

'Hu’i LwDI"h CGh bE. dE{'ﬂCL\Ed ﬂhﬁ‘

rep[aced wi‘ua ﬂhD‘f’LEf +La+ IS &
bEHer H for uIDur prnim‘f

y/
/.
)

dE{'ﬂCLFhS L.Dr'h

wi'Hn o screwdriver

Removing the horn

We have made a flag with a coffee stirrer and a piece of colored
paper. A strip of cardboard with a piece of colored foam would also

work. Make a flag with whatever materials you have lying around and
attach it to your horn with wire, as shown in Figure 8-8.

r.'e'f‘aif. af juhper wires puerzJ {Lrourj!a 'HME qu[es
i ‘H-.E' LDFH

Attaching the flag to the servo horn

Before you attach your servo to the breadboard, you will have to
add jumper wires to the plug/connector on the servo. As you know,
there is a control wire, a wire that goes to power, and one that goes
to ground. Follow the color conventions (red wire connected to
power, black to ground) as usual. If you have a jumper that'’s the
same color as your control wire, use that, or use a color that is
distinctive from the red and black wires. In our example (Figure 8-9),
the control wire is yellow, but sometimes that wire will be another
color, such as white.

l’uhpers

Servo connector up close

Attach jumpers from GND on the Arduino to the ground bus on the
breadboard and from 5V on the Arduino to the power bus.

Now attach your servo to the breadboard. Attach the red power
jumper to the power bus, and the black ground jumper to the ground
bus. Then place the control jumper wire in its own row of tie points
(Eigure 8-10).

defeil ﬂ‘HﬂcLihg jubper from
fﬂﬁ £
T Tl g 8 2 2 B

R

® \ jubper (rob. T.wwd coble
-"'"! ' to groved bus
o

u I \ jubsper from power coble

Eq I to Poeer bus

[}

Attaching the servo to the breadboard

Next, attach a jumper from Pin 9 to the same row of tie points as
the jumper from the control cable, as seen in Figure 8-11. You are
attaching the servo to Pin 9 because that is the pin it's attached to in
the sketch you will be downloading. It could be attached to any of
the digital pins, 2 through 13.

V\' jubper coinects Fin D on

Arduire fo confrol coble on servo

Attach the control wire of the servo through a
jumper to Pin 9 on the Arduino.

You're now ready to download the sketch from the Arduino IDE.

Now that you have completed wiring your circuit, you need to
download a sketch to your Arduino in order to run your servo. The
Arduino includes a few sketches about using the servo motor, and for
this first example, you'll use the Sweep sketch included in the Servo
folder of example sketches (File > Examples > Servo > Sweep).

When you have opened the sketch, save it as LEA8_Sweep. If you
haven't already done it, attach your computer to your Arduino and
upload the sketch.

b =d

- A

b

|]
(s
-

The flag waves.

Wave the Flag!

You should begin to see the servo motor swing the flag attached to
the horn 180 degrees in one direction, and then reverse directions
and swing back to its starting position (Figure 8-12). It will continue
to loop these movements one after another for as long as the
Arduino has power. Let’s take a closer look at the code and explain
what each line is doing.

In our breakdown of some of the sketches in this chapter, we have
removed the comments section for readability. Figure 8-13 shows a
quick look at the sketch.

LEA8_Sweep | Arduino 1.8.3

LEA8_Sweep

* Sweep
by BARRAGAN <http: *borrosonstudio, core

This exomple code is in the public domain. Cﬂlhhﬂhﬁ

modified 3 Nov 2013

by Scott Fitzgerald

http: Ao arduing, cofen/Tutorial SSweep

%y

#include <Servo.he-

Servo myservo; S/ create servo object to control a servo i ‘|.“ [+
A twelve servo objects can be created on most boards ITIGUZATION

int pos = @; A/ varigble to store the servo position

wvoild setup() { 'iﬁ'[h
myservo. attach(9): /7 attaches the servo on pin 9 to the servo cbject P
}

wold leep() {
for (pos = @; pos <= 180; pos += 1) { // goes from @ degrees to 180 degrees
A Ain steps of 1 degree
myservo_write(pos); A tell servo to go to position in wvariable 'pos’
delay(15); A waits 15ms for the servo to reach the position

loop

for (pos = 188; pos >= @; pos -= 1) { // goes from 188 degrees to @ degrees
myservo_write(pos); /7 tell servo to go to position in variable 'pos’
delay(1S); A waits 15ms for the servo to reach the position

LEA8_Sweep overview

The first thing you see in the initialization section is a line of code
that is going to add functionality to your Arduino. The include
statement tells your Arduino to load a library, which will extend the
capabilities of your Arduino. Rather than having to write all the code
yourself, including libraries gives you access to extra functions that
other people have written that expand the possibilities of the
Arduino.

How do you add a library? We use an include statement, which
starts with a # followed by the word include. An open angle bracket
follows, with the name of the library, in this case servo, and the
extension .h next. A closing angle bracket completes the statement,
and there is no semicolon in this instance.

ihc[ude s‘f‘ahﬁhem{' [md: the Servo L‘Emru?

x. 10 sehicolon

include Preceded EL? LasH’ms neme of [iEraru',- i m-.g[e. braclets

A libraryis a set of code that extends the functionality of an
Arduino. The library must also be specifically included in your
sketch in order to use it.

The Arduino IDE has many libraries already loaded, and it also
allows you to load new libraries if you want to have access to them.
For now, we are just concerned with the Servo library and what it
does.

If you look at the next line of our initialization section, you see a
new type named servo. After loading the Servo library, you can
create a servo object, which has functions that allow it to control
servo motors. This line creates a servo object and stores it in a
variable named myservo.

crepte servo object clore it in o verioble

Servo @ser;%; // create servo object to control a servo

We have not discussed objects before, and an in-depth discussion
of objects is beyond the scope of this book. Think of an object as a
template with a set of attached functions and properties—that is, you
can create several different servo objects in your sketch based on the
template. Although each one follows the same basic structure, you
can modify their properties, such as position.

An objectis a template that includes properties and
functions. Each instance of an object can have unique
qualities; in this chapter, you will see more than one servo
object.

The last line in our initialization sketch creates a variable named
pos, Which is set to 0. This variable will be used to set the position of
the servo. If you change this value and again send it to the servo, the
motor will update with its new position. You will see the code that
changes these values within the 1oop () code.

'-"l'.‘-l‘lﬂ-E‘[E hﬂ-hfd FD"; % C‘Ll’.‘lﬂi‘ﬁd {L?Pi:'d ﬂ-hﬂ{ S‘E’* +D ﬂ I‘;’ 'l.M”. I'\D[l'.'-r ‘H~£ FDSI{ 10k D'F ‘H-.E SEFVD

Q_P_Di) // wvariable to store the servo position

Our setup () section includes just one line in this sketch. attach() is
a new function made available to your Arduino from the Servo library
that allows you to connect the servo object that you named myservo
to a pin on your Arduino. That way, whenever you refer to myservo
you are referencing the pin to which you have attached myservo, and
you will be able to control the servo that is attached to that pin. In
this project, the servo motor is attached to Pin 9.

fervd “”j"tf attack(} function
@Jattachj{]: //attaches the servo on pin 9 to the servo object

pin nubber

This 1oop () code is a little different than what you have seen in the
past, and will introduce you to our next programming concept: the
for loop. Let's take a look at the code; then we will break it down.

tle for loop: code inside of loop()

for (pos = (; pos <= 180; pos += 1) //goes from 0 degrees to 180 degrees

{ ff in steps of 1 degree
myservo.write(pos); fftell servo to go to position in wariable ‘pos'
delay(15); f/waits 15ms for the serve to reach the position
'
for (pos = 180; pos >= 0; pos -= 1) [//goes from 180 degrees to 0 degrees
{
myservo.write(pos); //tell servo to go to position in variable ‘pos’
delay(15); ffwaits 15ms for the servo to reach the position

There are times when you might want to repeat something a certain
number of times or until a particular condition is met. The for loop
allows you to repeat something a number of times based on some
conditions. In your sketch, you are setting the position of the shaft of
the servo motor with a for loop.

Let’s first take a closer look at an example of a for loop before you
see exactly what it does in your sketch. In the Arduino language,
after the keyword for, the for loop has three parts: the initialization,
the condition or test, and the Jjterator.

declore varioble fest increment or decrement variable

L.cu?wt:r fﬂr
(tlnltlallzatlon}m 6

Statements
i

stotements fo be executed if condifion ig et

Here’s how the parentheses and curly braces are used in a for
loop. The parentheses mark off the initialization, condition, and
iterator section. The curly braces mark off the block of code, or the
statements to be executed if the condition is true.

perentheses marle off for loop parts

for @initialization condition iterato
statements

M CLIF{V'I EY‘GCEE d&hﬂ'hi CDG{E 5[DCL

Now let’s look at an example of a for loop in the syntax of the
Arduino language. This for loop prints integers from 0 to 9 in the
serial monitor.

c{ec [-:.Lre v&riubte ‘['E'S'{'

ihcrehew!' or decrehew" variabie

Le::iwnrd Fm-

[\ (
é @t i = 0pE < 10;)E += 1) {
@l.primn@

}

S‘fu‘f’Eh.Eh‘f ‘h:: !':rf.: Execu‘*’ed Ff cahdi‘hah 5 i-..r:'.‘f’

How would this work differently if you put the for loop in
setup()? What about inside 1loop()?

In what order do the parts of the for loop get executed? Let's take a
look at Figure 8-14,

initialization

FALSE

TRUE iterate

|

statements

Y

for loop flowchart

The first thing that happens in our for loop is the initialization
(). You create a temporary variable to count how many
times you execute your for loop. The for loop will happen a certain
number of times.

Initialization

\ 4

The initialization is the first step.

How many times will the for loop happen? This depends on the
next part of your for loop: the test, shown in . If the
condition in the test is true, then the statements inside the curly
braces will get executed. Once the test is no longer true, the for loop
will end. We will talk more about the different types of conditions
you'll create for the test in just a moment.

The condition is tested.

If the test evaluates to be true (), the
statements/instructions get executed. Then the value is iterated. This
often means that you increase the count of your variable by one, but
you can also alter the variable in a number of other ways to continue
the for loop. Once you have iterated your variable, the for loop
returns to the test. If the test continues to be true, the statements

inside the curly brackets get executed again, and the value is
iterated.

condition

TRUE

Iterate
v
statements
If the condition is true, execute statements, then
iterate.
It is only when the test is false, shown in , that the for

loop ends.

FALSE condition

The for loop ends when the test evaluates to false.

Let’s look at the cycle again with the code from our example

).

initialization
int i= 0;

FALSE condition
i < 10;
iterate
i4=1
statements T
v Serial.println(i);

The for loop flowchart with code

Before we move on, let’s look more closely at the condition, or test,
section of the for loop, which requires discussing the idea of an
operator.

OPERATORS

An operator is a mathematical or logical evaluation of values that are
useful in evaluating the test in the for loop. In basic arithmetic,
addition, subtraction, multiplication, and division are all examples of
operators. There are a few different types of operators.

Let’s take a closer look at the test. You see the variable 1, then the
symbol < followed by 10. What does this mean? In English, it means
is the variable i less than the integer 10? You know that the variable
was set to 0 in the initialization of the for loop. The symbol < stands
for “is less than”; it checks to see how the value of i compares to the
value of 10. In this context, it is called a comparison operator.
Comparison operators are used in logical statements, like the test in a
for loop, or in a conditional statement, to determine whether a
statement is true or false.

vario.He 1 1S cotmpo.red +o imLe%er 10

variaﬁ(e cot«hparimh opem‘for

\@ 10;

shows the commonly used comparison operators in the
Arduino language.

Logical comparison operators

COMPARISON WHAT IT EXAMPLE WHAT THE

OPERATOR MEANS EXAMPLE
MEANS

> Greater X > 0 x is greater
than than O

< Less than x < 10 x is less than 10

>= Greater X >= 0 x is greater
than or than or equal
equal to to O

<= Less than or | x <= 10 x is less than or
equal to equal to 10

== Isequalto |x == 106 xisequaltol0

I= Is not equal |x != 10 x is not equal to
to 10

While we're on the topic of operators, you'll notice that a different
type of operator is used in the iterator section of our for loop. The
variable 1 is followed by +=, followed by 1. In English, this means you
are adding 1 to the variable value. The symbols += indicate that you
want to add whatever is on the right side to the variable on the left
side. In our example, it means add 1 to the variable 1.

odd 1 'h) variab(e I

COlm OUhG{ D‘PE’,I’O\'('OI’

varuaue huh\bef ‘f—o ,’;e ao(ded

This type of operator is called a compound operator. Compound
operators perform a mathematical operation of some kind.
lists commonly used compound operators in the Arduino language. In
each of the examples in , x initially is set to 10.

Results of using a compound operator when x initially
equals 10

COMPOUND WHATIT EXAMPLE WHAT THE
OPERATOR MEANS EXAMPLE
MEANS
++ Add1l X++ x how equals
11
-- Subtract 1 X—= x Nhow equals
9
+= Add value on X += 2 x Now equals
right to value on 12
left
-= Subtract value |[x -= 2 x Now equals
on right from 8
value on left
*= Multiply value x x= 5 x Now equals
on left by value S0
on right
/= Divide valueon x /= 2 x how equals
left by value on S
right

So how can you employ for loops to help you move your servo? Let’s
take a look at the first for loop in our code. Breaking it down, in the
initialization you set the pos variable to 0. The condition checks to
see if the pos variable is less 180, and if so, a 1 is added (iterated) to
pos. You didnt have to use int here to indicate the type of pos,
because pos was declared in the initialization section.

for (pos = 0; pos <= 180; pos += 1) f/goes from 0 degrees to 180 degrees

{ fFfin steps of 1 degree
myservo.write(pos); fftell servo to go to position in variable 'pos’
delay(15); ffwaits 15ms for the serve to reach the position

h

What instructions are executed each time through the for loop? As
long as the value of 1 is less than 180, the Arduino will write the
value of pos to the motor, which will move the servo motor to some
position between 0 and 180 degrees. After the Arduino has written
this position, there is a delay of 15 milliseconds.

Since the for loop continues for every value between 0 and 180,
the servo motor will move from 0 degrees until 180 degrees in the
first for loop. This will take a few seconds—there is a very short
pause between each movement—but the motion overall will look
relatively smooth. If you remove or adjust the length of the delay, the
smoothness of the movement will change.

Why is the for loop counting between 0 and 1807 Because that
represents the range of movement that the shaft in your standard
servo motor can move. Think of this as 0 to 180 degrees.

The second for loop in this sketch functions in much the same
way. Instead of starting at 0, it starts with the pos variable equal to
180. What's 180? The second loop needs to start with the last
position of the first loop, which is also the end position of the servo.

for (pos = 180; pos »>= 0; pos -= 1) f/goes from 180 degrees to 0 degrees

{
myservo.write(pos); fftell servo to go to position in variable 'pos’
delay(15); ffwaits 15ms for the serve to reach the position

h

Besides having a different starting point, this second for loop also
decreases by one through each pass of the for loop. That way, the
servo motor starts at 180 degrees and slowly rotates back to 0
degrees.

Once the second for loop has finished, the full Arduino loop ()
function has also finished. The Arduino will then return to the
beginning of the 1oop () and repeat the steps, as you have seen with

the other 1oop () functions.

for loops are used in other programming languages, right?

Yes, for loops are commonly used in many different
programming languages. They are often used when something

needs to happen a certain humber of times.

Are there other types of loops besides the for loop in the
Arduino programming language?

Yes, there are while loops and do loops. Read more about
them here: and

Now that you know how a servo motor operates, think of
some uses for them. What types of devices have you seen
that use servo motors? What are projects you would like to
build that would require this kind of movement?

You now have a basic understanding of how the servo motor
functions with your Arduino code, so let’s try making your servo

http://arduino.cc/en/Reference/While
http://arduino.cc/en/Reference/DoWhile

circuit interactive. Rather than the Arduino moving the servo at a
steady pace continually, this next sketch uses information from a
potentiometer to position the shaft of the servo motor. As you turn
the knob, the shaft of the servo motor will move.

You will use the Knob sketch that is also included in the servo
motor examples in the IDE. Before you upload the sketch, though,
let’s adjust your circuit by adding the potentiometer.

Adding a potentiometer to the circuit allows you to control how the
flag waves and to set it to a precise position. If you completed the
first circuit with the servo, you can leave the servo control wire
attached to Pin 9 on the Arduino, the power line attached to the
power bus, and the ground wire attached to the ground bus. You will
be adding only the potentiometer to the circuit.

You'll need these parts:

1 10 K potentiometer

Jumper wires

shows the finished circuit with the schematic.

As always, make sure you have unplugged the Arduino
before you make any changes to the circuit.

Place the potentiometer in the breadboard, as shown in

fhrhl'hg fle ?ofznﬁmw‘fer contrele fle po;iﬁnu of fhe F[ng

GHD

pofentivieter added of Fin AD

Circuit with the potentiometer added

deteil of Pn‘h:h‘fioht‘ftr in breadbosrd

Plﬂﬂihi "L{E PO"(:W"I‘HKE"'EI (] 'u'\.E ﬁr:nﬂﬁoanf R R R

Adding the potentiometer to the breadboard

Connect one end of the potentiometer to the ground bus with a
jumper. Connect the other end of the potentiometer to the power bus
with a jumper. Connect the middle pin of the potentiometer to Pin AQ,
one of the analog input pins (Figure 8-22).

Now that you've wired your circuit, it's time to open the next
sketch in the Arduino IDE. This sketch is located under File >

Examples > Servo > Knob. Once you have opened it, save it as
LEA8_Knob. Hook up your computer to your Arduino. Click Verify to
check the code, and then click Upload to load it to your Arduino.

odd jubpers fo comnect poterfionefer
fo power ond grownd buses ord to Pin AD

detoil cwmcfihg jubpers to
power bus avd Gcnoud b

EEEELE

Fyhpﬂ;r cowm]t*ims Pin ﬂﬂ 4:¢| Po‘!‘:n*iﬁh:fqr

Adding jumpers to the potentiometer

Now when you turn the potentiometer, your flag should turn, too.

Let’s take a quick look at the sketch. It is similar to the LEA8_Sweep
sketch—with a couple of important differences that we will look at
closely.

#inelude <Servo.h>

Jhl'ilﬁil?ﬂ"ll}h
Servo myservo; /f/ create servo object to control a servo

int potpin = 0; // analog pin used to connect the potentiometer
int walj {// wariable to read the value from the analog pin

voild setup()

{

myservo.attach(9);
// attaches the servo on pin 9 to the servo object

b
volid loop() wrie value fo serve in [Mp

{

otfech servo in 'pc'{yP

reod volue, kop value,

// reads the value of the potentiometer (value between 0 and 1023)
val = analogRead(potpin);

// scale it to use it with the servo (value between 0 and 180)

val = map{val, 0, 1023, 0, 180);

// sets the servo position according to the scaled walue
myservo.write(val);

// waits for the servo to get there
delay({l5);

Just like with LEA8_Sweep, this sketch controls the position of the
horn attached to the shaft of the servo motor, depending on what
value the Arduino sends to it. However, this time you have control
over how much it turns, since as you turn the potentiometer, you
change the value that the Arduino receives and sends to the servo.

In this servo sketch, as with the previous one, the first thing you see
in the initialization section is the include statement that loads the
Servo library. As you've seen, libraries extend the abilities of the
Arduino to perform specific functions or interact with some types of
technology in a streamlined way so that you can write simplified
code.

#include <Servo.h>

Looking at the next line of the initialization section, you see that,
as in LEA8_Sweep, you're creating a new servo object named
myservo. This object will be able to access the functions of the Servo
library to communicate with the servo motor.

crepte servo object dlore it in o voripble

Servo @rser:%; // create servo object to control a servo

The initialization section also contains a variable for the analog pin
to which your potentiometer is attached. We covered this in Chapter
7; by connecting the potentiometer to Analog Pin 0 you are able to
take readings between 0 and 1023 instead of the HIGH or Low reading
you get from a digital pin. Finally, the last line in the initialization
sketch creates a variable called val, which you will later use to store
the value coming in from the potentiometer and send it out to the
servo.

voriobl potpin i set fo avalog P 0
4

// analog pin used to connect the potentiometer
variable to read the value from the analog pin

variable val will bold value of pn'f’en‘f’-'ahﬂfer attocked o pn‘f’Pih

lnt potpin = 0;

The setup() section includes only a single line for this sketch. Again,
you use attach() to connect the Arduino to the servo object that you
named myservo to a pin on your Arduino. That way, whenever you
refer to myservo, you are referencing to a particular pin much in the
way that you have seen with digitalwrite() and a pin name. In this
case, your servo should be wired so that it is attached to Pin 9.

rligtlil n!:j:':ﬂf‘

i attack(} function
@Jattacﬁ‘l{ﬁj: //attaches the servo on pin 9 to the servo object

pin nubber

The 1loop () code section looks similar to what you did in Chapter 7.
The first step is to use the analogRead () function to read the value
from the potentiometer on Pin AO and store it in the variable vat.
This will set val to a value between 0 and 1023, which as you know
is the range of possible values from an analog pin.

val belds value Hhat nu}-}[oﬁﬁcadﬂ fmfinhwiﬁuhﬁnhuﬁr
val =@HaloqRead{@otPin}}:
/f reads the value of the potentiometer (value between 0 and 1023)

Next, you use the map () function to adjust the value from your
potentiometer reading to match up with the degrees of motion for
your servo motor. Since your servo motor is able to move 180
degrees, you will scale the value from 0 to 180. That way, when you
send the value to the servo motor, it will already be in a value given
in degrees. This new scaled value is then again saved in your val
variable.

vel is scaled by mopl) function fo o renge that com be used by the servo befucen O and 180

@m val, 0, 1023, 0, 180);

// scale it to use it with the servo (value between 0 and 180)

The next step is to write out your scaled va1l variable to the servo
attached to Pin 9 using the write() function of the servo object. It is
worth noting again here that it will not move the servo an additional
val humber of degrees, but that it will move to the val number of
degrees from 0. For example, if val is equal to 90, it will always
move the servo shaft to the midpoint.

// sets the servo position according to the scaled value
myservo.write(val);

The last line in the 1oop () code delays the Arduino program for 15
milliseconds. This very short delay time will let the servo move to the
correct position since the movement is not instantaneous. It will also
give the Arduino slightly more time between potentiometer readings
to ensure a more accurate reading overall.

// waits for the servo to get there
delay(15);

Let’s add another servo motor to the circuit. You'll use the
information from the potentiometer to set the position of both servos.
You’re making a flag-waving signal system.

In the sketch for this project, you'll learn how to write a custom
function, and you'll also learn more about using logic in conditional
statements.

If you built the circuit for the LEA8_Knob sketch, this circuit will be
almost the same—the only addition is the second servo motor.

You’'ll need the following:

Servo motor

Jumpers

Coffee stirrer or cardboard strip
Colored paper

Tape

Figure 8-23 shows the schematic for the circuit, as well as a
drawing of the completed project.

sehenatic for the 2 terve cireuit

"\'.ri'hl-hs '“'E Pﬁf'ﬂh*iﬂhl!"ef 'u.iu {hrh LI!'"'\I H.Dg‘l

5
GHD

[

Two-servo circuit and schematic

Attach the flag to the servo horn.

First attach the wooden stirrer with the paper flag to the servo
horn, as you did with the first servo motor (Figure 8-24).

Attach the jumpers to the servo connector (Figure 8-25), matching
the colors for power and ground, and attach the control wire.

l'uhpers

Attach jumpers to the servo connector.

Now attach the jumpers to the breadboard, as shown in Figure 8-
26. As you did before, connect the jumper connected to the power
cable to the power bus and the jumper connected to the ground

cable to the ground bus. The control wire connects to a row of tie
points. Finally, connect Pin 10 to the same row of tie points as the
jumper from the control cable.

]
posCr wire oHocked nE|y
to power bus —
ISV
alrowd wire otfacked ﬁ i
to grovind bus ma|n
TILE
Lk
confrol wire affacked (B -
add'inﬁ the second serve o pin 10 s :":_,—f'
vafaa
LI

defeil ﬂ-‘HﬂEiﬂihﬁ Hhe second servo

Attaching the second servo

Before you attach the Arduino to your computer, you must make
some adjustments to the code. Let’s look at the sketch.

Save LEA8_Knob as LEA8_2_servos. You will be adjusting this code.
In the LEA8_2_servos sketch, the initialization section is similar to
your other sketches, as is setup (), but you'll notice something new in
loop (), which we will explain. Figure 8-27 is a first look at the code.

LEAB_2_servos

e
Adapted from Knob by Scott Fitzgerald
b S e ardui no, cofensT J!:_ﬁr'i.n;:: b
by Jody Culkin and Eric Hagon
.

Hoodified July 25, 2017

#include <Servo he

Servo myservol, J// create servo object to control a servo
Serve myserve; /fodd another serve cbject for Znd motor inifialization
int potpin = @, 7/ onalog pin used to connect the potentiometer
int val = @; A7 variable to read the value from the analog pin
int pwal = @ f/keeping track of the previcus wvalue

int servopinl = 9;
int servoping = 18;

void setup(){ Eef'up
myservol.attach{servopinl); /7 attaches the servo on pin 9 to the servo object
myservo? . attach(servoping); Afottach 2nd servo

myservol.weite(00): Afmove 1st serve to midpoint
myservod weite(08): Afeove 2nd servo to midpoint

h

void leop(){
pual = val; //set previous walue from potentiometer reading to current readiing [-OQF
val = analegRead{potpind; /#check value from potentiometer on pin AD
val = map(val, @, 1023, @, 188); /mop value to roange used by servo
if (vall= pval){ // if there has been a change, call turnServos function
turnServes();

]
AfturnServos 15 o custom function that gets called by loop
void turnServos() {
if (val » @ &% val <= 45) { //iF val 15 between® and 45
myservol.write(ds); /fset position of first servo
myservo?, write(138); Afset position of second servo

H

if (wal > 45 &% val <= 983 { //if val is between 45 and 99
myservol. write(@); //set position of servos
myservod. write(188);

H

if (val > 99 &% val <= 135) { /FiF val is between 99 ond 135
myservol. write(188); S/sct position of servos
myservad write(@);

}

if (wal > 135 &% wal <= 1883 { //1iF val is between 135 and 128
myservol.arite(48); /fset position of servos
myservo?, write(d5);

Chi“hﬁlﬂh fhhc‘l-'iﬂh "'hrhSEP‘VDS

H
delay(15); fshort pouse for serve to move

.

The LEA8_2_servos sketch annotated

Some of the comments have been moved in the code breakdowns
for legibility.

As we've said, the initialization section is quite similar to that section
in LEA8_Knob. There are a couple of additions: you're including a
variable for the second servo object, and you're storing the pin
numbers that the servos are attached to in variables. You're also
adding a variable (pval) to store the previous value.

initialization in LEQE_ Z_servos shefch
#include <Servo.h> verichle for Zwd servo

Servo myservol; /// create servo object to control a servo

Servof:’add another servo object for 2nd motor
int potpin = 0; // analog pin used to connect the potentiometer
int val = 0; // wvariable to read the value from the analog pin

int // keeping track of the previous value

int @ervopinl = 9; veriable o Leep frack of previous value
int §ervopin2 =]@\
'-"ﬂriﬂ-!::ltfi Fur REFVD Plh w.;h.!:mr's

The setup() function has a couple of changes from the LEA8_Knob
sketch. You're attaching the servo objects to the pins, using the
variables servopini1 and servopin2. Then you're using the write()
function of the Servo library to move the first servo to midpoint,

followed by moving the second servo to midpoint using the write()
function again.

code in m'fuplf]'
vold setup(){
(fyservol.attach(servopinl) ;y~aHaches servo on pin 9 o servo object
// attaches the servo on pin 9 to the servo object

CE-Y_SEL‘?DE -attach {SEJ‘.‘?DP_-J-.IIZ)D" ~otteches servo on pin 10 to servo nbrzc{
//attach 2nd servo

(myservol.write (QH

1 . .
ffmove st_servo to mldpﬂlnt m{’ bodl. SErvos to hfr;paih‘F

(myservo2.write(90) 7 R

//move 2nd servo to midpoint

In the 1oop() code, the first line saves the previous value read from
the potentiometer into the variable pvatl. You then read the current
value on the potentiometer and map it. Finally, you use a conditional
statement to check to see if val is not equal to pval—in other words,
check to see if there has been a change in the pin reading. If there
has been a change, you call the turnservos() function.

You'll notice a few things you haven’t seen before in this code.
Let’s break it down.

loop() code
voeid leoop(){
val = val- "'.'FDFI! Pl"l!‘u'il'.'n'.ri 'ﬁ'd-[r.rf
f/set previous value from potentiometer reading to current reading
val = analogRead(potpin);
//check value from potentiometer on pin AQ
val = map(val, 0, 1023, 0, 180);
//map value to range used by servo
@£ (vall=pval) (O check if volue of pofentioneter bos chonged
// if there has been a change, call turnServos function
@" if :th.au.-d, eoll foretion
}
}

We use a conditional statement to compare the previous value read
from the potentiometer to the new value read. This conditional uses

a comparison operator. the symbols !=. This operator is used to
compare two values, and if one value is not equal to the other, it
evaluates to true. (covered these comparison operators and
what each means.)

CD*\-P[’.‘-HEGM BP-EFD-'FCI!‘ != E?ﬂthﬂ‘f‘f? ‘f'ﬂ 'i;l‘tnE iF 'u'l.':l-{ ig HD"' ea}ur;i +D P'I.I'O-I
if (val épval}{

// if there has been a change, call turnServos function

Emservos 0

If there has been a change, the turnservos () function is called.
turnServos () is @ custom function, the topic of our next section.

coll o tureServos() function

We've introduced another new code concept in the updated servo
code: custom functions. Why would you want to make your own
functions? First let’s quickly review what a function is.

A function is a block of code that performs a specific action
or series of actions that can be used over and over.

You have used many Arduino functions: delay(), digitalwrite(),
and analogRead () are all functions used to perform some specific
task with the Uno. You have written most of your code inside the
setup() and loop() functions for your sketches.

What is the advantage to writing your own functions? You can
group together actions outside of your 1oop () code and call this new
function only when you want those actions to happen. It makes your
code more legible and easier to understand.

What does the line of code turnservos(); do? It's the call to the
custom function you wrote. As you've seen, it will be called if there
has been a change to the variable va1—in other words, if someone
has turned the potentiometer. turnservos () will only happen when

the value of the potentiometer has been changed and not every time
the Arduino goes through the 1oop() function.

What does your turnservos () function look like? First, it starts with
void. This is followed by turnservos, which is the name of the
function, followed by parentheses and an opening curly brace. The
instructions to be executed when turnsServos () gets called follow,
and the last line contains only a closing curly brace.

furebervor() function decloration

I bt

void GEETBSETSRY) {

if (val = 0 && val <= 45) { //if val is between 0 and 45
myservol.write(45); //set position of first servo
myservo2.write(135); //set position of second servo

}

if (wval > 45 && wval <= 90) { //if wval is between 45 and 90
myservol.write(0); //set position of servos
myservo?.write{180);

}

if (val = 90 && wval <= 135) { //if val is between 90 and 135
myservol.write(180); //set position of servos
myservo?.write(0);

}

inetructions

if (val > 135 && val <= 180) { //if wal is between 135 and 180
myservol.write(45); //set position of servos
myservoZ.write(45);

}

delay(15); //short pause for servo to move

Creating a custom function is called declaring a function, and it
follows a few rules in the Arduino programming language.

hone t::lC fumc‘lLiDh

J S+ﬂ~|r+ Cl'..lt'l"'.llll b?’ﬂnﬂ@
(void) turnServm ®/
starts with void parem‘fLeses

There are a couple of simple rules for naming functions.
Functions must start with a letter and can’'t be named the
same as an Arduino reserved word. And it is best to make
the name of your function clearly indicate what exactly it is
going to do.

Why does the function start with void? It has to do with how
some functions operate; in some functions you might see int
or string there, for example. It's beyond the scope of this
book to explore this concept, but here's an explanation from
the Arduino site:

Next you see a set of parentheses. Some functions have
parameters or information that will be passed into the function as
arguments when the function is called. These are placed inside the
parentheses. Since turnservos () doesn't have any parameters, the
parentheses are empty. The parentheses are followed by an opening

http://arduino.cc/en/Reference/FunctionDeclaration

curly brace, the punctuation you have used before to mark out a
block of code.

This discussion about function declaration must seem familiar,
because you have seen some of these conventions used before.
Where? In setup() and loop()! The difference is that now you are
creating and naming the function yourself.

You can write your own functions at any time, and your functions
can incorporate any Arduino-compatible code.

When you want to invoke a function, you call that function. The call
to your custom function is inside 1loop (). The call is simply the name
of the function followed by parentheses and a semicolon.

caU. + o) + urhgervos() furnd’ 10l

(
CigrnServos(ib

You've been making calls to the built-in Arduino functions since you
uploaded your first sketch. The functions you‘ve used have usually
had parameters, so you passed in arguments inside the parentheses.
When you called the delay () function, for example, you passed in
the amount of time in milliseconds that you wanted the delay to last.

(iaelay(lgiz)

coll 4o fhe deloy) function

Custom functions can be quite powerful by letting you extend the
functionality of your sketches. Our discussion here is limited—it is
meant to give you an introduction to the concept and the general
rules for creating them. You will undoubtedly explore more on your
own.

You know that turnservos () is going to turn your motors, but how?
It is positioning both flags in a pattern based on how far the
potentiometer is turned; sometimes they are opposite each other,
and sometimes they are parallel. The code consists of a series of
conditional statements. Let’s look closely at the first one.

In this conditional, it is testing for two conditions. Is val greater
than 0 and is val also less than or equal to 45? The value of val
must be a number between 0 and 45 for the instructions inside the
if statement to be executed.

anfcnn épt‘rﬂ*m
firt" {Drdl"\‘iﬂh secord condition

if []' { //if val is between 0 and 45

myservol.write(d45); //set position of first serwvo
myservo?.write(135); //set position of second servo
}

i'F {il"ﬁ.‘! (-Uhdi'Fil:lh -t.'lhﬂ' iﬁl:ﬂhd ﬁﬂhdi{l'clh arg f'l"l..N!‘. E‘kEch‘!‘ﬁ ihi"'l‘u{"iiﬂhi

The symbols && are an example of a Boolean operator. 1In this case,
both the first and second conditions must be true in order for the

servo positions to be set.

Boolean Operators

Boolean operators allow you to make complicated evaluations when
trying to decide what actions should be taken. lists the
Boolean operators and what they mean and includes an example for
each.

Boolean operators

BOOLEAN WHATIT EXAMPLE WHATTHE

OPERATOR MEANS EXAMPLE MEANS
&& logical if (a>0 && Evaluates to true if
and b<10) both conditions are

true

| | logicalor if (a>0 || | Evaluates to trueif

b<10) either condition is

true

! not if (la) Evaluates to true if
ais false

Although you use && only in this sketch, can you think of how
you might use the other operators to change the
execution/logic of your program?

The turnServo() Function and Boolean Operators

Let’s take a look at the first i f statement in turnservos() again.
What happens if val is a number between 0 and 45? The first servo

motor turns to a position of 45 degrees and the second servo motor
turns to a position of 135 degrees. You know this because both of the
servo object write () functions will be called and move myservo1 and
myservo2 to the desired position.

booleon operator

first condglion second condition
if (@al > 0]' { //if val is between 0 and 45
myservol.write(d45); //set position of first servo

myservo?.write(1l35); //set position of second servo
}

i-F !'irfr! cohdi'Finh am' 5:2(th .:om:fi'Froh. are frw.'. EkEch‘!‘ﬁ imi?uc’fimﬁ

The three other conditional statements in turnservos() work in a
similar manner—testing the value of va1l (how far the potentiometer
has been turned), and whether it is between a particular range of
numbers, the Arduino will then turn each of the servo motors to their
new position specified by the turnservos () function.

Now that you‘ve written the sketch, make sure you‘ve saved it (as
LEA8_2_servos) if you haven't already done so. Click the Verify
button to check for errors, and if it is error free, click the Upload
button. Your flags will change positions as you turn the potentiometer

()-

Waving two flags

When should I write my own custom functions?

If you know there is a block of code you will need often in a

sketch, or if you find yourself repeating the same lines, it may
help to write a custom function to shorten your code and make it
easier to read. We could have used a custom function earlier in
our first SOS sketch. In fact, we could have used for loops there
as well.

How do I know which Boolean or comparison operator to use?

As with most programming concepts covered in this book, it

will be easiest to state in plain language what you are trying to
accomplish in order to decide how the logic will be structured in
your sketch. For example, if you want conditions to be true
(button 1 is pressed and an LED is lit) to make something
happen, you would use and, or the && sign, as you did in this
sketch.

How many is too many conditionals?

We selected four key positions in this sketch in order to create

a choreography of sorts for the flags. You can use as many
conditionals as you need to get the kind of behavior that your
project requires.

Our primary focus in this chapter has been to show you how to use
servo motors. Servo motors are versatile for many Arduino projects,

since a servo can easily be run automatically, as in the Sweep sketch,
or can be controlled by a sensor or switch, as in the Knob sketch.

We discussed a number of important programming concepts in this
chapter. You learned about libraries, and you used the Servo library
to give your Arduino access to a number of servo functions that make
it easier to control the servo motors.

We also showed you how to use for loops to set your servos to
different positions. And you learned about using comparison,
compound, and Boolean operators in your code. You'll find the
LEA8 2 _servos sketch here:

http://github.com/arduinotogo/LEA/blob/master/LEA8_2_servos.ino

9
BUILDING YOUR PROJECTS

ow that you‘'ve completed the projects in this

book, what's next? This chapter will be a brief

overview of tips for project management, a few
project ideas, and a quick look at some of the other
Arduino boards available and what they can do.

In this book, we gave you step-by-step instructions on how to work
with the Arduino. How do you start your own projects? The first step
should be research. Look around online; many of the vendors we've
mentioned have websites that are chock-full of tutorials and project
ideas. Also, browsing through sites to get an idea of inputs and
outputs that are available to you should give you plenty of ideas.
Here are a few sites:

makezine.com/category/technology/arduino/

learn.adafruit.com/category/learn-arduino

learn.sparkfun.com/tutorials/tags/arduino?page=all
playground.arduino.cc/Projects/Ideas

http://makezine.com/category/technology/arduino/
http://learn.adafruit.com/category/learn-arduino
http://learn.sparkfun.com/tutorials/tags/arduino?page=all
http://playground.arduino.cc/Projects/Ideas

Once you have an idea for a project, try sketching or writing out the
system that you are thinking of building. This can be as simple as
making a list containing the components you are planning to use and
the type of behavior you will need in the code. It usually helps to be
able to break your project down into inputs, outputs, and code.
Remember, your project will always be a system, with inputs,
outputs, and code that controls behavior running on the Arduino

()-

Breaking your project down into component parts, starting with the
simplest section that you already know how to do, will help you get
the work underway. Tackling each part separately, rather than facing
the entire scope, makes it easier to get the job done. Also, when
working initially, simplifying your idea will help you realize it; it's
always possible to enhance and refine it in later versions.

--P(flh

p—
—_—
e .
3

111

brealc it dowr

cohbme 'Hne PIECES‘

\(L
L,_{

/
[23" f‘fEl" a+e { {

Planning notes can help direct your project.

As you start building your project, what do you do if something
isn‘t working? Throughout this book we have emphasized the
importance of debugging, both your code and your circuits (Figure 9-
2). Be patient and apply a methodical approach to examining each
element of your project. If you get an error in the code editor of the
IDE, note the exact language and type it into a search engine. You
will probably find that you are not the first person to have this
problem. The forums on the Arduino website (forum.arduino.cc) are
a great place to search for answers to problems and post questions.
Arduino Stack Exchange (arduino.stackexchange.com) is another
place to look.

Avoid the frustrations of broken projects—use
debugging.

http://forum.arduino.cc/
http://arduino.stackexchange.com/

Once you have a working version or prototype of your project, share
it with someone. Explain the project to them and have them test out
your device. When building a project, it is easy to make a lot of
assumptions about how someone will see it or use your project, and
it can help to have an outside perspective in order to break some of
your assumptions. If possible, having a wide variety of people test
your project will help to make it the best possible version and to
develop your idea. If you are unsure who to approach, start with
friends and family (Figure 9-3).

Get others to try out your projects.

Now that you have gone through the first pass with your project, you
should feel comfortable writing notes for yourself. What went well
with your project? What improvements could be made? These notes

can help you iterate on your project and make better versions in the
future by improving on past mistakes or false assumptions.

Now that you have a basic understanding and support from some
project management techniques, let’s talk about common genres for
Arduino projects.

We don’t have enough room to get into all the varieties of sensors
and outputs that exist in the world, but we do want to mention
popular choices that can help your projects spring to life.

Here are a few commonly used sensors that can be easily
incorporated into your projects.

Sensing Distance and Motion

Passive infrared sensors (PIRs;) and ultrasonic
rangefinders () are both used to tell how far away people
or objects are from your project. They can also be used to check if
someone has walked in front of your project. Since both often give
you analog values, you can use these sensors similarly to how you
employed the photocell in Chapter 7, "Analog Values.”

®

Passive infrared sensor (PIR)

e (O e .
ANNEEEEN-.

| %
[]]
(]
(]
1]
(]
(]
(]
]]
]|
1]
[]|
1]
4

YEEEEEEEEEPF’
“EEEEEEEF
YEEEEEEEEEEEYF

YEEEEEEEEEPF

AlIEEEEENE
AN EEEEEEEEEL
EEEEEEEENE

Ultrasonic sensor

Force-Sensing Resistors

Force-sensing resistors (FSRs) allow you to sense different values of
pushing or pressing down on a sensor (Figure 9-6). Since they give
analog readings, you can scale the response to move servo motors,
light up different sections, or play sounds from a speaker. FSRs are
used in gaming controllers and other hands-on interactions. FSRs
come in a variety of sensitivities, shapes (including both square and
round), and sizes.

Force-sensing resistors (FSRs) come in different
shapes and sizes.

Other Sensors

As mentioned earlier, there are many more sensors out there that
can help extend your Arduino projects. From temperature sensors, to
microphones for measuring volume levels, to heart rate and pulse
monitors, finding the right sensor can make your project shine.

We have shown you projects that incorporate motion by using servo
motors, but there are several other types of actuators (components
that can move something) that can make your project move in a
variety of ways. We have highlighted a few popular options next.

DC Motors
DC motors come in a variety of sizes and strengths to power even
the most stubborn projects (). They often rotate only in

one direction continuously and will move faster or slower, depending
on how much power is applied to them (within a safe range). DC
motors are used quite successfully to drive wheels, lift heavy objects,
and more.

SlCURE ©-7:- DC motor

Stepper Motors

Stepper motors () are a more controllable type of motor
than the basic DC, which means they also require more computing
power from the Arduino to function. Rather than turning
continuously, stepper motors take single “steps,” some percentage of
the total rotation. This means that they can be used for accurate
positioning and will both start and stop on command. Stepper
motors work quite well with the Arduino, though they often require
an H-bridge integrated circuit chip or a stepper motor driver to
perform more complex behaviors.

N

Stepper motor

Solenoid

Solenoids (Figure 9-9) look quite different from the other actuators
we have talked about. Rather than creating a rotation, solenoids are
“fired” in a straight line. They have a spring attached to a metal
shaft that is either pushed or pulled from the central motor body
depending on their type. They are often used in musical instruments
to strike percussive or bell-like elements in order to create new
sounds.

Solenoid

We've talked about a wide variety of projects you can build with your
Arduino, but we wanted to suggest a couple more genres of projects

with a few ideas to help you get started.

Although there are a number of products on the market, you can
build your own home automation projects using the Arduino. Popular
choices for home automation projects include triggering lights,
activating fans, or turning off appliances.

Robots are always a popular choice for Arduino projects. With a few
motors and sensors, you can have a pet robot in no time. Single-task
robots are also a great choice, from robots that slice butter to those
that track objects on the floor. They can even be built out of
cardboard ()!

Cardboard robot pet

Wearable projects include any sort of clothing, jewelry, or
accessories that combine the power of physical computing with
portability and accessibility. You can use sensors to get data about
your users’ pulse or build buttons right into the clothes they wear.
Popular projects use gloves, hats, T-shirts, or jewelry and sensors to
trigger musical instruments or display screens (). What
type of projects can you think of that use common accessories?

Bracelets, hats, and clothing items are all popular
choices.

ART PROJECTS

Beyond the categories we have already mentioned, you can make
any sort of art project you have in mind. From auto-generated
painting devices to moving sculpture and interactive books, the only
limitation to an art project is your imagination.

We've mentioned that there are many other versions of the Arduino,
which have different functionality. Here is a quick look at a few of the
other boards and what they do. There are many more.

The Arduino 101 (Figure 9-12) is an excellent choice for moving on
from the Uno, since it is the same size and has the same general
layout as the Uno. It also has Bluetooth Low Energy (BLE)
connectivity and a six-axis accelerometer/gyro. If you want your
project to recognize gestures, this might be a good choice. Read
more about it here: store.arduino.cc/usa/arduino-101.

Ilillllliilllfll

R Sl

e - E FNEnE B

CRHHHTE o L g

o e % -‘-- i
R (intel
l|I| 3 l_-‘

5 T ARDUING .gsr: 00010
pl'ﬂ‘rxsn&”"”*" . T

R -
v S EAULT
¥
1 .
] T T

= 0N
o

rrrrrrrrrr

ARDUIND.C(

The Arduino 101

http://store.arduino.cc/usa/arduino-101

Half Arduino and half Linux computer, the Arduino YUN (Figure 9-13)
will let you use WiFi and the power of an operating system in order
to accomplish complicated computing tasks. The YUN can be used to
run Python scripts to analyze data on the Linux side of the board,
with the Arduino handling inputs and outputs that respond to that
information. It has a slot for an SD card, and both WiFi and Ethernet
connectivity built in. More information can be found here:
store.arduino.cc/usa/arduino-yun.

The Arduino YUN

As mentioned in the “Wearable Projects” section, sometimes you
want the ability to attach an Arduino to a garment meant to be
worn, and the Arduino Uno can be a bit clunky. The Lilypad Arduino
is great because not only is it flat and less conspicuous, but it can

http://store.arduino.cc/usa/arduino-yun

also use conductive thread in place of wires. This will let you sew
your sensors and Arduino directly into the fabric of the project. There
are several versions of the Lilypad; Figure 9-14 shows a Lilypad
Arduino Main Board.

Lilypad Arduino Main Board

Although it's beyond the scope of this book to go into every model in
detail, we would like to mention a few more boards. The Mega 2560

has 54 digital input/output pins and 16 analog input pins; it is
suitable for larger projects. The Leonardo has built-in USB
communication, so you can plug in a keyboard and mouse directly.
The Micro is the smallest board in the Arduino family, making it
appropriate for embedding inside projects. Like the Leonardo, it
supports USB communication. The MKR ZERO is a smaller board
designed to work with audio applications. The MKR1000 has WiFi
connectivity and a built-in rechargeable lithium-polymer battery. The
Gemma, developed by Adafruit, is another board designed to be
used in wearables.

In addition to the various Arduino boards, there are a wide variety of
branded and third-party “shields” that attach to the top of the
Arduino and expand its functionality. These include adding

SD card support in order to save data

Sound file support for playing back recorded audio
Support for controlling motors

and much more.

At , you'll find a chart that links to
details and technical specifications on each model and on some of
the shields that are available.

One of the best things about open source projects is seeing what
others have come up with, and now it’s your turn to share your
projects with the world. Here are a few tips that can separate your
project from other projects online.

http://arduino.cc/en/Main/Products

One frustration that often pops up for DIY physical computing
projects is that it can be hard to see what is happening in a project
photograph. We recommend that you have bright, consistent lighting
and a plain background underneath your project.

If you are planning on taking photographs of the wiring, it is extra
important that you color-code your wires and avoid crossing them
too often. Otherwise, you run the risk of having your project look like
spaghetti (Figure 9-15)!

"EEEEm E N EEE =N EEE =EEEE&= +
\II’I,. H B B " B EEE I

-I TI " jE BN
e - 5 il
:—: : " E R -I u I-l.l--.i-- ----I- I-I.. I. [| : : ::'

Spaghetti wiring; this is not an actual circuit!

If you had problems with some section of code or a certain concept,
chances are that the next person who tries to make the same idea
(or something similar) will stumble onto the same issues that you
did. Writing a summary of your experience building a project or the
steps you took to make your project will help you remember the

tricks you have learned for future projects—and may save someone
else from a huge headache.

Though not required, it can be a great help to share what you come
up with for others to see. Many websites, such as

and , have the option to post your own projects
and include step-by-step instructions to make them. This is one of
the strongest parts about Arduino being open sourced—the
knowledge is free to be shared by everyone.

We've reached the end of this book. In the earlier chapters, you
were introduced to basic electronic theory and practice as well as
programming concepts. We gave you a few tips on moving forward
with your own projects in this chapter. You are now well on your way
to building your own fabulous Arduino projects.

http://makershare.com/
http://instructables.com/

A
APPENDIX: READING RESISTOR
CODES

f you have just purchased a resistor, it will

generally come with some sort of label, but that

doesn’t help if you find your resistor sitting
unaccompanied on a table or in your parts box.
Fortunately, every resistor has a set of color bands
printed on its casing that tells you the value of the
resistor. While there are resistors with six, three, or
even one band, the most commonly found resistors
by far have four bands, and we are looking at that
type in this appendix.

Let’s take a close look at a resistor in Figure A-1. A resistor has two
wire leads and a body with color bands on it.

EOGL?

wire leads

A resistor

Not only do the colors of the bands matter, but also the order in
which the colors appear. How do you know what each color means?
The first step is to orient your resistor in the correct direction, as
shown in . On one side of the resistor, the band color will
be either silver or gold. This band should be placed on the right-hand
side of the resistor. Look for the silver or gold band on the resistor
body and place it on the right-hand side.

L’ULEh rcdd-’rﬁ rut-’-';'*r:rrt. FU‘F +LE
qold (or silver) bowd on the
rir'iLf—Ld-vJ side

Orient your resistor.

Now that your resistor is oriented correctly, you can identify the
other color bands on the resistor body. We have labeled the bands in
in order. The colors on each band have a particular
significance.

Hird

Numbering the bands on the resistor

Resistor Color Chart

is a standard color chart that all resistors follow. You can
find similar charts online. We'll go over what each band means in
detail. The colors mean the same thing for all resistors.

220 Ohm Resistor , , o +5%

15t Digit 2nd Digit Multiplier Tolerance
Black m m D 5% Gold
whet the color Brown m m 10% Silver

et -

Orange |3 | 3] :f:_—umﬁ::

Yellow 4 4 10,000

o (G

-« 00

Gray 8 8

White @ @

Resistor band color chart

Decoding the Resistor

Now that you’ve seen the color chart, we'll show you how to apply it
to a resistor.

The first band represents the most significant digit, or the first digit
in the number. For example, on our resistor in Figure A-5, the first
band is red. Looking at the color chart, you see that red on the first
band equates to the number 2.

p—

st Digit

Black m
Brown m
— Red
Orange 3
Yellow 4
Green G
Blue B
The first bond is red which, a5 we can fell Purple
from Hhe chort, represents the number 2 oy 8
White [}i}

The first band

The second band signifies the second most significant digit. On this
resistor, the second band is also red. As you see in Figure A-6, the
chart indicates again that the number 2 is represented by the red
color of your second band.

Black

Brown

(=]
=
=9
L=
=

Red
Orange | 3
Yellow

The second bord is alse red and therefore ogoin

Green rgprﬁ{h‘h ‘Hﬂ: htabnber A ag iLf,‘-uh ik ”r-.r: cLar‘f‘,

Blue
Purple a

Gray

2000 -

White | 9 |

—

The second band

The first two bands taken together give us the number 22. The
first two bands on a resistor will always represent a number between
10 and 99. (We'll explain what these numbers mean shortly.) The
third digit is a little bit different.

The third band, shown in , has another meaning. Rather
than representing a number like the first two bands, the third band
represents a multiplier. This band multiplies the values on the first
two bands by a power of 10. We can see this in the third row of the
chart in . For this resistor, the band is brown, which the
chart tells us means a multiplier of 10, or 10 to the first power. Now
that we know these three values, we can calculate the resistor’s total
resistance using the simple formula shown in : the first two
digits times the multiplier equals the resistance (in ohms).

Multiplier

Rea [100)
Orange 1,000
Yellow 10,000
The flird band, whick rcprc':ch‘f: the P.LaHiplier, 5 Ermm-,
Green u.-lni.:!—. PR Wl huH‘ip{«? '"M;: f-'r'f* ‘f’u-u hph!‘:-r:rs 5\1 10,
E|ug 1,‘0‘0(’,‘:'00
The third band
Fuvﬁ ﬂ}ahul. second bend times '”».f_f ‘][[(-ir'fj band totel resistance velue

~ ——
22 ' 10 = 220 Ohms

Calculating the value of a resistor

This means that our red-red-brown resistor is a 220-ohm resistor.
In fact, all red-red-brown resistors have a value of 220 ohms.

The fourth band of our resistor, Figure A-9, represents the resistor’s
tolerance or possible range of accuracy. With a gold band, the
accuracy is plus or minus 5 percent, which means that our resistor
could be as high as 231 ohms (220%1.05) or as low as 209
(220%0.95). (This variation is caused by imperfections in the
resistor’s manufacturing process.)

_\ Tolerance

5% Gold

10% Silver

fourth bond = toleronce

The fourth band

Since the fourth band is always going to be gold or silver, and
these are not colors any of the other bands use, we can always use
the fourth band to orient our resistor correctly.

Are the band colors universal, and will I have to remember
what each color means?

All resistors use the same standard color codes we have

talked about here regardless of the manufacturer. You don'’t have
to memorize them; you can easily find the color information
online, and there are a number of free smartphone apps for all
the platforms.

: What if the bands are hard to see or they have been painted
over or erased?

If your resistors are missing the color bands, you can always
use a multimeter to confirm the resistance value.

How accurate do I need to be with my resistors?

Good question. Hobby electronics and electrical components

are not super sensitive to minor variations in resistance. The
difference between 209 ohms and 231 ohms is not enough to
cause any issue with your LED. However, using a resistor with a
much higher rating (double or more) or a much smaller rating
(half or less) is enough to cause issues.

Although the four-band resistor is very common, some
resistors have a different number of bands. The colors
indicate the same numbers in the first three bands, but the
tolerance values are calculated differently.

Let’s look at another resistor and evaluate its color bands to figure
out its total resistance value. The resistor in has the color
bands brown, black, orange, and gold.

A resistor with the bands labeled

The first step is to orient the resistor correctly. To do that, make
sure that the gold band is on the right-hand side ().

orie h‘hzd COrre C'H.t-jl

Orienting the resistor

Refer back to to reference the color values. You can
always look up the chart whenever you need to calculate a resistance

value.

Reading the Bands

The first band is brown, so we can look at the color chart and know
that the first digitisa 1 ().

First band

The next color band on the resistor is black, which makes the
second digita 0 ().

Second band

The third band is orange, which means that the value of the
multiplier is 1000 ().

Hird Lond: ore hOE = 1000

Third band

This means that our resistor value is 10 times 1000. That means
our resistor is 10,000 ohms, or more commonly seen as 10 kQ

().

Owe Zero dimes 1000

10-1000 = 10 KOhms

Calculating the resistance in our 10 kQ resistor
using the color bands

INDEX

Numbers

3.3V port, 142
5V power and GND
versus 3.3V port, 142
attaching to breadboard, 121, 125
8 ohm speaker
adding, 220-221
adding to circuit, 278282
arguments, 226-227
circuit, 32
code, 221-222
delay() function, 226—227

digitalWrite() function, 226-22

illustration, 8
loop () code, 223-22

note chart, 225

playing notes, 239

setup(), 222-22

tone () and notone(), 224-22
9-12-volt power supply, 5, 22
9V battery. See also batteries

attaching cap, 53

ground terminal, 52

illustration,
multimeter,
plus (+) and minus (-) terminals,
power terminal,
top and side,
9-volt battery cap or holder, 5-
10K potentiometer,
330-ohm resistor, 48—49, 58. See also resistors

Symbols

-- operator,
//, using with comments, —
/* and */, using with comments, —
/= operator,
++ operator,
+= operator,
—= operator,
*= operator,
{} (curly braces)
for loop,
using,
using with setup(),
> (greater than) operator,
>= (greater than or equal to) operator,
= = (is equal to) operator,

I= (is not equal to) operator, 310, 324-325
< (less than) operator, 310

<= (less than or equal to) operator, 310
&& (logical and) operator, 329

|| (logical or) operator, 329

— (minus) sign, 43

I (not) operator, 329

() (parentheses) in functions, 226, 305

+ (plus) sign, 44

(@)}

; (semicolon) in code, 105-106
\t (tab), 27/

A

AC adapter, output ratings, 162
AC and DC current, 146—147
actuators and motors, 340-342
Adafruit Industries, 12—-13
addition operators, 311

amperage
explained, 159-160

warning, 166
analog data, 291-292

analog input
adjusting values, 262-263

analogRead (), 261—262

analogWrite() function, 264-265
map (), 262-263
potentiometer values, 255-261

scaling values for ranges, 263
voltage-to-analog conversion, 262

analog input pins
analogWrite(), 264265
features, 244-246
using, 244-245
writing values, 264-265
analog pins, 16, 18—-19
analog values. See also PWM (pulse width modulation)
as output, 266-268
overview, 241-242
potentiometer, 245
potentiometer circuit, 243
analog versus digital information, 242

analogRead () function, 265

0
analogWrite() function, 264-265, 268

analog-to-digital conversion, 2

anode and cathode
illustration, 9
symbols, 39, 41-42
Arduino. See also Uno version
app, /9

boards, -
computer connection, 82—
features, 1-
flowchart,
forums,
functions and boards,
hardware version,
license agreement,
logo,
parts,
plugging into computer, 20—
powering up, 22—
programming language,
schematic, -
setup() and |oop(),
shields,
unplugging during changes,
USB port, 20—
versions, 2, 4,
Arduino ,
Arduino IDE. See IDE (integrated development environment)
Arduino team, Kkits,
Arduino YUN,
arguments, —227. See also functions
art projects,

ATmega328P, black chip, 18—

B

batteries. See also 9V battery
current,
LED bulb flashlight, 52—
positive and negative sides,
symbol, 39, 40—
voltage, current, resistance,
battery cap, 5-6, 48,
begin() function, LEA7_AnalogInOutSerial sketch,
Blink sketch. See also LEA4 Blink sketch
debugging, 96—

opening, 91-92,
blinking LEDs. See LEDs
boards, —

Boolean operators,
breadboard
5V power and GND,
benefits,

. See also operators

circuits attached,
connecting components,
connecting to, -
connections, 46—
labeling,

LED bulb flashlight, 42—

pins,

power and ground buses, 44—

power and ground connection,

power and ground pins,

versus soldering iron, 10—

tie points, 44,

trench,

using, 42—

warning,

“x-ray” view,
brightness value, translating, -
built-in LEDs, Uno version,
button circuit, building, . See also circuits
button keyboard, three-tone,
Button sketch, uploading, —

buttons. See also digital input; three-button “Instrument” 1oop ()
function; two-button circuit

adding, —202, —
adding to breadboard,
adding to pin,
diagrams, -
functionality, -
ground connection,
identifying,

LED circuit, 198

LED on and off, 205-206
parts, 19/-198

power connection, 203

pushing, 238

resistor connection, 203
schematic, 198—-199
switches, 202, 206
uploading sketch, 204

C

calling functions, 106

cardboard robot circuit, 32

cathode and anode, 9

Christmas lights, series arrangement, 190
circuit loops, debugging, 58-59

circuits. See also button circuit; electricity; potentiometer circuit;
short circuit

3.3V, 142

Arduino connected to breadboard, 119-121
attached to breadboard, 74

component arrangement, 180

components, 35—-36

computer attachment, 123—-12

conductive lines, 34

continuity, 58-59

continuity testing, 69-/0, 144
current, 161-162
debugging, 57-60, 143-144

diagramming, 39-40

examples, 32

features, 34

flow, 33

LED bulb flashlight, 48-52

LED connection, 122-123

LEDs in parallel, 182—-183

Ohm’s law, 178

parts and tools, 48, 119, 140

PCBs (printed circuit boards), 34-35
pin and resistor, 121-122

pin connected to resistor, 121-122

power and ground pins, 141-142
powering, 140-141

schematic, 116—-118, 141

tracks, 33

voltage measurement, 157

warning, 118, 120
code. See also comments

in circuit, /4

explained, 7677

instructions, 105
uploading, 75
code window, 88-90
comments. See also code
LEA4_BIlink sketch, 99
using, 99-101, 108
comparison operators, 309-310
components. See also parts
actuators and motors, 340-342
arranging in circuits, 180
getting information, 26
parallel, 180-186
pressing into place, 49
schematic symbols, 40
sensors, 338—340
series, 180-181, 186—-192
components in parallel. See parallel
components in series. See series
compound operators, 310-311
computer, connecting Arduino, 82—-83
conditional statements
best practices, 331
else Statement, 218-220

explained, 216—-218
if, 21/

LEA6_Button sketch, 215
loop () code, 215-218
nesting, 220
reviewing, 237/
conductive lines, 34, 36
conductors and insulators, 145-146

const, variables, 212
curly braces ({})

for loop, 305

using, 115

using with setup(), 104

current. See also high current; Ohm's law
AC and DC, 146-147
in circuits, 161-162
circuits, 161-162
electrical model, 161
explained, 159-160, 175
flow, 159-161
impact on batteries, 176
impact on LEDs, 176
impact on resistors, 176
input, 163
limit, 162-163
limit for Arduino, 162—-163

measuring, 160, 163-164, 167

multimeter adjustment, 164—-167

review, 1/3-1/7

series and parallel, 152

symbol, 174-175, 177

voltage and resistance, 148-149, 167, 173-180
current flow, 159-161, 167
custom functions. See also functions

calling, 327-328

creating, 325-32/

using, 331

D

data sheets, 28-29

DC current, symbol, 159

DC motors, 340

DC voltage
measuring, 154
symbols, 175

debugging
Blink sketch, 96—-98
circuits, 5/-60, 143-145
explained, 96
LED bulb flashlight, 65-70
projects, 335-336

unblinking LED, 56-58
delay() function, 111-112, 114, 226-227
Digi-Key Electronics, 12

digital input. See also buttons
adding button, 201-202
button attachment, 204
button circuit, 200
button connection, 203
Button sketch, 204-205
HIGH and Low states, 213-214, 241
LED off and on, 205-206
parts, 15/-198
review, 213-214
schematics, 198—-199
states, 213-214
digital inputs and outputs, overview, 195-197
digital I/O pins, 16, 18-19
digital pins, treating like output, 107

digital versus analog information, 242

digitalRead() function, 265

digitalwrite() function, 110-112, 115, 226227, 265
distance and motion, sensing, 338

division operator, 311

E

electrical connection, testing, 65—-66
electrical ground, 152
electrical model

current, 161

resistors, 169

schematic, 150-151

electrical properties

—177

impact of changes, 17

series and parallel, 152

symbols, 174
electrical properties, testing, 139-140
electricity. See also circuits

AC and DC current, 146—147

behavior, 145-146

conductive lines, 36

flow, 150

flow through circuit, 138, 2

1-254
—176

impact on components, 1/
LED bulb flashlight, 55-56
measuring with multimeter, 135-14

overview, 144—145
properties, 138

resources, 1

warnings, 14/, 154

water tank analogy, 148—-149, 174

zero point, 152
electromotive force, 150
else if statement, 220, 230-232
else Statement, 218-220

end = ground symbol, 3

errors, checking in code, 77, 88-89

F

flags
turning, 314-316

flow

and current, 159-160
restricting, 16/-1/3

flowchart, 76

for loop. See alsoloop () function
condition testing, 307-308
ending, 308
flowchart, 306
flowchart with code, 309
initialization, 307

overview, 304-309
in sketch, 312-313
FSRs (force-sensing resistors), 339

functions. See also arguments; custom functions

calling,

declaring,

defined, , , ,
naming,

void,

G

GND and 5V power, attaching to breadboard,
and ground pins

greater than (>) operator,
greater than or equal to (>=) operator,
ground terminal,

H

hardware
open source,

version,
HIGH and Low states, digital input, —-214,
high current, . See also current

home automation projects,

IDE (integrated development environment)
Applications folder,
buttons, 89—
closing sketch windows,

. See also power

code window, 88-50
components, //
configuring, 84—88
contents, /6
downloading, 76, 78-82
errors and information window, 89
explained, 75
interface, 83-84
message areas, 589
if in conditional statements, 217
indicator LED, On Uno version, 18
information window, 77, 89
input and output pins, 16, 18-19. See digital I/O
inputs, 195-19/
inputs and outputs, 324
instructions in code, 105
insulators and conductors, 145—-146
interactivity
three-tone button keyboard, 194—-195
turning flag, 314-316
is equal to (= =) operator, 310

is not equal to (=) operator, 310, 324-325

J

Jameco Electronics, 12

jumper to ground, LED bulb flashlight,
jumper wires

creating,

illustration,

LED bulb flashlight,

LED to ground,

pin to breadboard,

kits,

L

LEA4_Blink sketch. See also Blink sketch
button circuit,
code,
comments, 99—
running, 95—
saving,
schematic for circuit,
screenshot, 98—

LEA4_SOS sketch. See also SOS signal light

and circuit,

downloading,

loop () code,

saving and renaming, -
setup() code, -

LEA6_1_tonebutton sketch, 221
LEA6_2_tonebuttons sketch

buttons, 233-234

editing, 229-230

else +if loop, 230-232
LEA6_3_tonebuttons sketch, 234-236
LEA6_Button sketch

code, 206—-207

code and variables, 207-212

code initialization, 207-20

conditional statement, 216-220

else Statement, 218-22

loop () code, 215-216

saving, 204

setup(), 212213

variable initialization, 207-208

variables, 206—-208
LEA7_AnalogInOutSerial sketch

analogInPin, 255

analogOutPin, 256
begin() function, 258

code, 254
initialization, 255-257
loop () code, —259

outputValue, 257

saving, 250

sensorValue, 256

setup() code, 257-258

summary, 2//-278
LEA7_VariableResistorTone

code, 279-280

features, 280-281
LEA8_2_servos sketch

code, 322

comparison operator, 324-325

custom functions, 325-328
initialization, 323

loop () code, 324-325
setup () function, 323-324

turnServos (), 328—330
LEA8_Knob sketch. See also servo motors

code, 316
initialization, 31/-318
loop () code 8-319

saving, 315

setup() code, 318
LEA8_Sweep sketch

initialization, 302-303

library, 302

loop () code, 304

objects, 303
opening and saving, 300

overview, 301
setup() code, 303-304
LED bulb flashlight
330-ohm resistor, 48—49
battery, 52-54
battery cap, 52
breadboard, 42-47
circuit, 48-52
debugging circuit, 57-60, 69-70
electricity, 55-56
jumper to ground, 51
lighting up, 53-54
multimeter, 60-69
project description, 36—37
schematic, 37-42
LED circuit, buttons, 198
LEDs
adding to circuit, 122

anode and cathode, 9, 58
blinking, 25, 95, 108

built-in, 16, 19

data sheet, 28-29

debugging unblinking, 56-98, 124

dimming and brightening, 250
features, 8-9

illustration, 7

On indicator, 16

LED bulb flashlight, 48, 50-51
orientation, 58

in parallel, 182—-183

positive and negative leads, 58
symbol, 38-42

turning on, 22

voltage, current, resistance, 176

Leonardo board, 347

less than (<) operator, 310

less than or equal to (<=) operator, 310
libraries, defined, 302

light switches, flipping, 266

lights, dimming, 250-251

Lilypad Arduino, 346—347

logical and (&&) operator, 329

logical comparison operators, 310
logical or (||) operator, 329

loop () function, 99, 109-115. See alsofor loop; setup() function
8 ohm speaker, 223-224
code, 113-114
conditional statements, 215-21

contents, 110

digitalWrite() and delay(), 111-112

LEA4_Blink sketch, 99
LEA4_SOS sketch, 128
mini-keyboard instrument, 230-232

running, 110
SOS signal light, 132-134
loops, types, 313

M

Macs
downloading IDE, 78—-79
port selection, 86
Maker Shed, 12-13
map () function, 262-264
Mega 2560 board, 347
menus, //

message areas, //, 89
message window, 94-95
metal, warning about touching, 154

meter. See multimeter

Micro board, 347

Micro Center, 12

mini-keyboard instrument
adding buttons, 233-234

button attachment, 229
else if statement, 230-232

LEA6_2_ tonebuttons, 225-230
Loop() code, 230-232

parts, 228

playing, 236

pushing buttons, 232
testing code, 232
tone () function, 232

two-button circuit, 228

mini-keyboard instrument, playing, 238
minus (-) sign, 43

MKR ZERO board, 347

MKR1000 board, 34/-348

momentary switches/buttons, 5, 7
Morse code, 125

motion and distance, sensing, 338

motor circuit, 32
motors and actuators, 340-342. See also servo motors
Mouser Electronics, 12
multimeter
adjusting, 164—-166
continuity testing, 59, 65-69
dial, 63, 67

features, 60

high current, 167
illustration, 9
LED bulb flashlight, 60-69
measuring DC voltage, 154—-156
measuring electrical properties, 139-140
measuring resistance, 1/0-1/3
parallel, 184-185
parts, 61-62
ports, 64—65
powering, 62
preserving battery, 156
protecting, 166
series, 191-192
setting, 166
turning off, 62
types, 61
warning, 166
multiplication operator, 311

N

needle-nose pliers, 10, 48
New button, 90

not (!) operator, 329

note chart, 225

notes, playing, 239

o

objects, explained, 303
ohms, symbol, 168

Ohm’s law, 138, 177-180. See also current; resistance; voltage
19

ON indicator LED, 16, 18—-19

Open button, 50

open source hardware, 3

operators, 309-311. See also Boolean operators
output, treating pins as, 10/, 109

outputs, 19/

P

parallel
components, 185186

LEDs, 182-183

multimeter, 184-185
order of components, 180

parentheses (()) in functions, 226, 305
parts. See also components; tools
Arduino, 16
numbers and store guides, 27
obtaining, 12
placing in box, 27

sorting, 26—27/

parts list, 5

pausing Arduino, 111-112, 114, 226-227
PCBs (printed circuit boards), 34-35
photographing projects, 348—349

photoresistor
adding, 282-288
circuit, 32
features, 7
illustration, 8
and resistor, 284
shining light, 286
physical computing, 3

121-122
106—109

pin and resistor, connecting,
pinMode () function, calling,

pins
declaring, 109

treating like output, 107

using on breadboard, 12

PIRs (passive infrared sensors), 3
pitch, changing, 281, 285-286
planning notes, 335

pliers, needle-nose, 10

plus (+) and minus (-) terminals, 9V battery, 52
plus (+) sign, 44

ports, specifying, 85—-88

potential and voltage, 149-153
potentiometer
adding, 248-249, 314-316

analog-to-digital conversion, 260

brightness value, 251-254
component drawing, 245
dimming lights, 250
illustration, 7

pins, 248

schematic, 245

values, 259-261

X-ray, 285

potentiometer circuit. See also circuits
building, 247
completion, 246
LED attached to Pin 9, 247
parts, 24/
role of sketch, 251-254

schematic, 243

power
battery, 56
terminology, 55

power adapter, /7

power and ground
buses, 44-45

checking connections, 57
symbols, 40

power
power port, 16—17/
power supply, 22-26, 162
printing to serial monitor, 273276
programming language, reference guide, 115
programs. See sketches
project management, 334-33/
projects
documenting and sharing, 348-350
types, 342-344
writing up, 349
prototyping, 3, 42-43
pushbutton, 7
pushing buttons, 238
PWM (pulse width modulation), 265-268. See also analog values

R

Reset button, 16—17, 98
resistance. See also Ohm’s law
calculating, 359
current and voltage, 173—-177
defined, 168
explained, 175-17

(@)}

impact on batteries, 176
impact on LEDs, 1/6
impact on resistors, 1/6

measuring, 168

multimeter measurement, 170-173
restricting flow, 167-169

review, 1/3-1/7

series and parallel, 152

symbol, 174-175, 177

voltage and current, 148-149, 177-180

water tank analogy, 168

resistors. See also 330-ohm resistor
accuracy, 357
bands, 354-356, 358-359
body and wire leads, 351

buying, 54
checking, 58
color bands, 357-358

color chart, 352—353, 358-35

connecting to pin, 121-122
current and voltage, 173
decoding, 353-356
electrical model, 169
features, 169-170
illustration, 7

numbering bands, 352
orienting, 352, 358
parallel arrangement, 181
and photoresistors, 284

series arrangement, 181
symbol, 39-42

value calculation, 355

voltage, current, resistance, 17

voltage measurement, 156
robots, 343

S

Save button, 77, 90
saving sketches, 52
schematics. See also symbols
annotation, 119
Arduino, 116-117
and board, 116
buttons, 198—
circuits, 116-118, 141
complexity, 198-199

drawing, 41-42
electrical model, 150-151

explained, 37
LED bulb flashlight, 37-42

LEDs in series, 186
potentiometer, 245

potentiometer circuit, 24

reading, 38
servo circuit, 296, 320
semicolon (;) in code, 105—-106
sensors, 338340
serial code, 272-273
serial communication
explained, 269-270

input and output, 269

loop () and delay(), 27
strings, 2/2-273, 277
serial functions, 277

serial monitor
printing to, 2/3-276
running, 2/1
using, 2/0-272
serial output, reading, 287-288
series
components, 1895-190
LED circuit, 186—187
metering voltage of components, 187/-188
multimeter, 151-192

order of components, 180—-181

series arrangement, Christmas lights, 150
server, 8
servo circuit
attaching, 298-300
attaching computer, 300-301
connector, 298
flag attached to horn, 297
parts, 295-296

preparing, 296-298

removing horn, 297
schematic and drawing, 296
Sweep sketch, 300-301

servo motors, 8, 287-288. See also LEA8_Knob sketch; motors and
actuators

adding, 320-322
analog data, 291-292

annotation, 294

degrees of rotation, 290
horns, 294

moving, 312-313

online vendors, 293

parts, 252-295

positional rotation, 291-292

turning on, 328-330
using, 289
wire colors, 295

setup () function. See alsoloop () function
8 ohm speaker, 222-223
curly braces ({}), 104
happening once, 107-108

initial conditions, 104—-108
LEA4_Blink sketch, 99
LEA4_SOS sketch, 127-128
LEA6_Button sketch, 212-213

and loop(), 101-108, 113-11

pin mode, 108
positioning, 108
short circuit, 154. See also circuits
sketch window, 91
sketches
explained, 83, 90
message window, 94-95
opening, 90-92
running, 95
saving, 90, 92
status bar, 94-95
uploading, 93-56
verifying, 93-94
soldering iron versus breadboard, 10-11
solenoids, 341-342
sorting parts, 262/

SOS signal light. See also LEA4_SOS sketch
creating, -
flashes on and off, -132,
loop () code, -
saving and renaming sketch, -
spaghetti wiring,
SparkFun Electronics,
speaker. See 8 ohm speaker
start = positive, symbol,
statements, ending in code,
status bar,
stepper motors,
strings, —273,
subtraction operators,
surge protector,
Sweep sketch. See LEA8_Sweep sketch
switches
and buttons,
buttons,
flipping,
functionality,
using, -
symbols. See also schematics
anode and cathode, 39, 41—
battery, 39—

components, 40

current, 1/4-1/5, 1/7
DC current, 159

DC voltage, 175
electrical properties, 174

end = ground, 39

LEDs, 38-42

ohms, 168

parallel arrangement, 181
power and ground, 40
resistance, 1/4-1/7
resistors, 39-42

series arrangement, 181
start = positive, 39
voltage, 174-175, 177

tab (\t), creating, 277
testing, continuity, 65-/0

text, representing, 2/3

theremin, playing, 243, 285-286

tie points

breadboard, 44, 46
debugging, 58-59

three-button “Instrument” 1oop () function, 235-23
buttons

See also

tone () and notone() functions, —
tools, S—11. See also parts

trench,

turnServos (), —

two-button circuit, . See also buttons
tx and rx pins, 18—

U

ultrasonic sensors,
Uno version. See also Arduino
analog pins,
built-in LEDs,
illustration, 2,
On indicator LED,
input and output pins,
left side,
parts,
power and ground pins,
power port,
reset button,
right side,
tx and rx pins,
USB port,
voltage regulator, 17—
unplugging Arduino,

Upload button, 89-90, 94
uploading, 75
URLs. See websites
USB A-B cable, 5-6
USB port
Arduino, 20-21
locating, 16
Uno version, 1/
user testing, 336337/

VvV

values
setting, 110
testing equality, 217

variables
const, 212
declaring, 208-211
explained, 208
LEA6_Button sketch, 206—207

names, 209
qualifiers, 211

reviewing, 238-239
typesl M_ 11

values, 209-210
Verify button, 88-90, 93-9

void in functions, 327

voltage. See also Ohm’s law
checking, 153-157
checking across components, 156—157, 159
components in parallel, 185-186
components in series, 189-190
converting to analog reading, 260
current and resistance, 148-149, 1/3-180
defined, 152

determining, 179

explained, 175

impact on batteries, 176

impact on LEDs, 1/6

impact on resistors, 1/6

LEDs in parallel, 183—-184

measuring, 150—151, 153-156
metering components in series, 18/-18

metering on breadboard, 155
potential, 149-153

review, 1/3—-177

scaled measurement, 260
series and parallel, 192
symbol, 174, 177

symbols, 175

use by components, 159

values, 152— @ 189

voltage divider, 284
voltage drop, 157-159

voltage potential, 149-152
voltage regulator, 16—18
voltage value, mapping to, 264

voltage-to-analog conversion, 262

W

water tank analogy
electricity, 148-149, 174
resistance, 168
voltage, 150
wearable projects, 344
websites
Adafruit Industries, 12—-13
Arduino 101, 345
Arduino programming language, 115
Arduino YUN, 346
components, 12
Digi-Key Electronics, 12
forums, 336
IDE (integrated development environment), 76, 78, 80
inputs and outputs, 324

Jameco Electronics, 12
kits, 13

Maker Shed, 12-13
Micro Center, 12
Mouser Electronics, 12
note chart, 225

servo motors, 28/-288

sharing projects, 345-350

SparkFun Electronics, 12
Windows PC

downloading IDE, 80—82

port selection, 8/-88

wire strippers, 10
words, sending to serial monitor, 272-273

Z

zero volts, 152

	Acknowledgments
	About the Authors
	Preface
	Chapter 1: Introduction to Arduino
	Physical Computing
	Prototyping
	What Will I Need and Where Can I Get It?
	Parts and Tools
	Resources
	Summary

	Chapter 2: Your Arduino
	Parts of an Arduino
	Plug Your Arduino into Your Computer
	Components and Tools
	Summary

	Chapter 3: Meet the Circuit
	The Circuit: Building Block of Electronics
	The Schematic
	Using a Breadboard
	Building a Circuit
	A Look at the Battery
	Power for Our Circuit: Electricity
	Debugging the Circuit
	The Multimeter
	Using the Multimeter
	Back to Debugging Our Circuit
	Summary

	Chapter 4: Programming the Arduino
	Arduino, Circuits, and Code: Bringing Everything Together
	What’s an IDE?
	Downloading the Arduino IDE: Getting Started
	The Sketch: The Basic Unit of Arduino Programming
	Debugging: What to Do if the LED Isn’t Blinking
	LEA4_Blink Sketch: An Overview
	setup() and loop(): The Guts of Your Code
	Looking at loop(): What Happens Over and Over
	A Schematic of the Arduino
	Building the Basic Circuit
	SOS Signal Light: Creating More Complex Timing
	Summary

	Chapter 5: Electricity and Metering
	Understanding Electricity
	Build the Circuit Step by Step
	Electricity: An Overview
	Understanding Electricity: The Water Tank Analogy
	Voltage: The Potential
	Current: The Flow
	Resistance: Restricting the Flow
	Voltage, Current, Resistance: Review
	How Do Voltage, Current, and Resistance Interact? Ohm’s Law
	Components in Parallel and Series
	Summary

	Chapter 6: Switches, LEDs, and More
	Interactivity!
	Digital Inputs and Outputs Overview
	Digital Input: Add a Button
	Looking at the Sketch: Variables
	Digital Input Refresher
	Looking at the Sketch: Conditional Statements
	Add a Speaker and Adjust the Code
	Add Two More Buttons and Adjust the Code
	Reviewing Electronic and Code Concepts
	Summary

	Chapter 7: Analog Values
	There’s More to Life than On and Off!
	Potentiometer Circuit, Step by Step
	The LEA7_AnalogInOutSerial Sketch
	Analog Input: Values from the Potentiometer
	Analog Values as Output: PWM
	Serial Communication
	Adding the Speaker
	Adding the Photoresistor
	Summary

	Chapter 8: Servo Motors
	Waving the Flags
	Servos Up Close
	Building the Servo Circuit Step by Step
	LEA8_Sweep Overview
	What’s a for Loop?
	Operators
	The for Loop in the Sketch
	Add Interactivity: Turn the Flag
	LEA8_Knob Explained
	Two Flags Waving: Add a Second Servo Motor
	LEA8_2_servos, First Look
	Summary

	Chapter 9: Building Your Projects
	Project Management
	A Few Helpful Components
	Types of Projects
	Other Versions of the Arduino Board
	Document Your Project and Share It!
	Summary

	Appendix A: Reading Resistor Codes
	Index

