<packt

PLCs for Beginners

An introductory guide to building robust PLC programs

with the Structured Text language

M. T. WHITE

<packn

PLCs for Beginners
Copyright © 2024 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored
in a retrieval system, or transmitted in any form or by any means,

without the prior written permission of the publisher, except in the
case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure
the accuracy of the information presented. However, the information
contained in this book is sold without warranty, either express or
implied. Neither the author, nor Packt Publishing or its dealers and
distributors, will be held liable for any damages caused or alleged to
have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information
about all of the companies and products mentioned in this book by
the appropriate use of capitals. However, Packt Publishing cannot
guarantee the accuracy of this information.

Group Product Manager: Preet Ahuja

Publishing Product Manager: Suwarna Rajput

Book Project Manager: Uma Devi
Senior Editor: Isha Singh
Technical Editor: Yash Bhanushali
Copy Editor: Safis Editing
Proofreader: Isha Singh

Indexer: Subalakshmi Govindhan
Production Designer: Vijay Kamble

DevRel Marketing Coordinators: Linda Pearlson and Rohan
Dobhal

First published: May 2024
Production reference: 1100524
Published by Packt Publishing Ltd.
Grosvenor House

11 St Paul’s Square

Birmingham

B3 1RB, UK

ISBN 978-1-80323-093-1

www.packtpub.com

http://www.packtpub.com/

To mom and dad.

Contributors

About the author

M. T. White has been programming since the age of 12. His
fascination with robotics flourished when he was a child
programming microcontrollers. He holds an undergraduate degree in
mathematics, a master’s degree in software engineering, and an
MBA in IT management. He is currently working as a software
developer for a major US defense contractor and is an adjunct CIS
instructor, where he teaches Python, C, and an array of other
courses. His background mostly stems from the automation industry
where he programmed PLCs and HMIs for many different types of
applications. He has programmed many different brands of PLCs
over the years and has developed HMIs using many different tools.
Other technologies that he is fluent in include Linux, Ansible, Docker,
AWS, C#, Java, and Python. Be sure to check out his channel
AlchemicalComputing on YouTube.

About the reviewers

Keith Lyding is an electrical engineer for a manufacturing company
in Columbus, Ohio. He has over 15 years of experience in the
electrical field, as well as more than 9 years of experience in

automation. He graduated from Thomas Edison State University in
2019. He served in the US Navy for six years and has also worked
for Nucor Steel. He currently works for Sonoco Products Company,
where he works primarily with Allen Bradley PLCs, Inductive
Automation’s Ignition platform, EXOR and Panelview HMIs, and
many other platforms. He enjoys troubleshooting, as well as
automating complex operations. In his spare time, he loves to serve
in his church, coach his son’s baseball team, and spend time with his
family.

I extend my deepest gratitude to my wife, Katie, for her unending
support. I am grateful to my colleagues and mentors for their
guidance throughout my journey: Kyle Ahrendt, William Carleton,
and K. Andy Steinacker. I am also appreciative of the men in my life
for continuing to sharpen, push, and encourage me to become more
like Jesus: Paul Cassidy, Brian Babin, Ken Lyding, K. Andy Steinacker,
Jon Krull, David Bout, Isaac Dye, and many, many others.

Ninad Deshpande is an author, storyteller, international speaker,
and technology evangelist known in the industrial automation
fraternity. He has over 15 years of extensive hands-on experience in
varied fields of the automation industry, such as application
development, testing, R&D, marketing, corporate communication,
and global product management. He is the co-author of the Packt
book The Art of Manufacturing. Today, as a co-founder and director
of Passion Minds Private Limited, he helps organizations across the
globe in various industries with services focusing primarily on
technologically and strategically driven content generation.

I thank my family and friends for teaching me life lessons and
consistently inspiring me. I admire my mother’s and my wife’s

fighting spirit; their constant support and motivation enable me to
achieve my dreams.

Table of Contents

Preface

Part 1: Basics of Computer Science for PLC
Programmers

Computer Science Versus Automation
Programming

Technical requirements

What is computer science?

Why study computer science?

What is automation programming?

What is a PLC?

Exploring automation through computer
science

How does computer science help
automation programmers?

Why should automation programmers

Cloud technologies

The internet of things

Machine learning

What does this mean for automation
engineering?

PLCs versus microcontrollers

What are microcontrollers?

Surface-level differences

PLC and microcontroller programming

languages

Use cases

PLC versus computers

What is a computer?

PLC versus computers

Summary

Questions

PLC Components — Integrating PLCs with

Other Modules

Technical requirements

PLC types

Common PLC modules

Power supply

Chassis

CPU modules

I/0 modules

Safety modules

Sinking versus sourcing

NPN versus PNP

Sensors

Motors and motor controls

What is a motor?

Open and closed-loop control systems

Stepper motors

Servo motors

Encoders

Motor drives

Communication protocols

What is a communication protocol, and

what is it used for?

Wiring diagrams

Final project

Summary

Questions

Further reading

The Basics of Programming

Technical requirements

Understanding what a program is

What is the purpose of a program?

Why use software over hardware?

How to view software and hardware in a

system

Software is not a cure-all solution

Understanding programming languages

Syntax

Translators

Machine instruction

Language paradigms

Keywords

Dos and don’ts of learning keywords and

syntax

Program flow

Program iteration

Exploring the IEC 61131-3 standard

IEC 61131-3 pitfalls

Final project

Strategy

Summary

Further reading

Questions

Unleashing Computer Memory

Technical requirements

What is memory?

Memory

Storage

How computer/PLC memory and storage

Volatile versus non-volatile memory

Volatile memory

Non-volatile memory

Memory addresses

How memory works

Computer memory — an analogy

Common storage devices

USB drives

External hard-drives

SD cards

Cloud storage

Obsolete storage devices

Floppy drives

Summary

Questions

Further reading

Designing Programs — Unleashing
Pseudocode and Flowcharts

Technical requirements

What are pseudocode programs and
flowcharts?

Pseudocode

What does pseudocode look like?

Flowcharting

What do flowcharts look like?

Why use pseudocode and flowcharts in

PLC programming?

Why use pseudocode?

Why use flowcharting?

When to use one over the other?

Tools needed for flowcharts and
pseudocode

Pseudocode tools

Flowchart tools

Whiteboarding

Design exercises

The quadradic equation

The beer program

Final project — Robot startup system

Designh requirements

Design logic

Wait sequence

Pseudocode

Flowchart

Summary

Questions

Boolean Algebra

Technical requirements

What is Boolean algebra?

Boolean operators

The basic operators

The OR operator

The NOT operator

Boolean expressions

Exploring NOT

The OR operator

The AND operator

Operator laws

Idempotent law

Solving Boolean equations

Examples

Getting to know truth tables

Basic operators

Final project: Creating custom truth

tables from scratch

Final truth table

Summary

Questions

Further reading

Part 2: Introduction to Structured Text
Programming

Unlocking the Power of ST

Technical requirements

What is ST?

Area of a circle program in ST

Why is ST important?

ST versus LL

Example 1 — The area of a circle
program — LL

Example 2 — Toggling a light

What is CODESYS?

Installing CODESYS

A CODESYS exploration

Exploring the PLC_PRG file

The final project — Hello World

Step 1 — Creating a new project!

Step 2 — Code implementation

Step 3 — Running the program!

Chapter challenge

Summary

Further reading

Questions

Exploring Variables and Tags

Technical requirements

What are variables/tags?

Applications of variables

Variables/tags under the hood

Why use variables?

Data types

What is a data type?

The IEC 61131-3 data types

Bits and bytes

Common data types

How to declare variables

Variable section of a file

Declaring a variable

Initializing a variable

Variable naming

Rules to naming a variable

Naming conventions

Final project — declare the variables of a

triangle

Code implementation

Challenge — declare the variable for a
rectangle’s perimeter

Summary

Further reading

Questions

Performing Calculations in Structured Text

Technical requirements

Math in ST

Assighing numbers

Basic calculations

Solution variable

The four basic functions

Basic operation demonstration

Complex mathematical functions

Square root function

Exponent function

ABS function

Trigonometric functions

Arc functions

Order of operations for math
calculations

Computing complex equations

Distance between two points

Final projects

Final project 1 — programming the
perimeter of a rectangle

Final project 2 — Pythagorean theorem

Summary

Questions

Further reading

Unleashing Built-In Function Blocks

Technical requirements

What are prebuilt function blocks?

Functions, function blocks, and
keywords

Function blocks under the hood

What is a function block?

Rising and falling edges

Common PLC function blocks

Counter function blocks

Timer function blocks

Final project

Variables

Summary

Questions

Further reading

Unlocking the Power of Flow Control

Technical requirements

Exploring what flow control is

Exploring why flow control is important

Exploring logical expressions

Exploring the IF statement

IF statement syntax

Checking if two values are the same!

Exploring the not equals operator

Desighing control statements

Overdraft program

Exploring the CASE statement

State machines and CASE statements

Implementing the state machine

Flowcharting and CASE statements

Real-world applications for the CASE

statement

Final project

Requirements

Program design

Code implementation

Final challenge

Summary

Questions

Unlocking Advanced Control Statements

Technical requirements

Nested control statements

ELSE statements

ELSIF statements

Challenge

Logical operators

Exploring the OR operator

Exploring the XOR operator

Exploring the NOT operator

Final project

Requirements

Variables

Color and shape sorter logic

Testing conditions

Summary

Further reading

Questions

Implementing Tight Loops

Technical requirements

Exploring the different types of loops

Counter loop

Precheck loops

Post check loops

Infinite loops

Exploring loops in pseudocode and
flowcharts

Exploring loops with pseudocode

Representing a loop in a flowchart

Implementing a FOR loop

Implementing the WHILE loop

Exploring the REPEAT loop

Exporting the EXIT keyword

Understanding nested loops

Challenge — creating a behavior report

Final project

Design

Code implementation

Testing the program

Summary

Questions

Further reading

Part 3: Algorithms, AI, Security, and More

Sorting with Loops

Technical requirements

How to use this chapter

What is sorting?

Exploring what arrays are and how to
use them!

What is an array?

Array elements

Initializing an array

Retrieving the number of elements in an

Why are arrays important for sorting

algorithms?

Exploring sorting algorithms

What is an algorithm?

What is a sorting algorithm?

Algorithm efficiency metrics

Exploring the Big O notation

Exploring the Big Q notation

Common sorting algorithms

Exploring bubble sort

Exploring insertion sort

Challenge — Merge sort

Final project — cement bag sorter

Requirements

Analysis

Implementation

Summary

Questions

Further reading

Secure PLC Programming — Stopping
Cyberthreats

Technical requirements

What cybersecurity is and why it’s

important

The basics of cybersecurity

Vulnerabilities, threats, and risk

Threat actors

Exploring AAA

Air-gapped systems

Common cyberattacks

Exploring information gathering

Exploring social engineering

Exploring password hacking

Malware

Attack prevention methods

Stopping social engineering

Defending against password crackers

Password length

Malware defense

Final project — a PLC-based activation

system

Design

Certifications

Summary

Questions

Further reading

Troubleshooting PLCs — Fixing Issues

Technical requirements

Common causes of PLC issues

Broken software

Exploring environmental issues

Understanding non-environmental

issues

Common hardware issues

Exploring power supply issues

Common PLC problems

Bad batteries

Exploring troubleshooting techniques

The PLC toolkit

Diagnosing power supply issues

Diagnosing temperature issues

Diagnosing networks

Troubleshooting software

The basics of troubleshooting software

Final project

Troubleshooting

Summary

Questions

Leveraging Artificial Intelligence (AI)

Technical requirements

What is GenAlI?

What is AI?

What GenAlI can’'t do

Reasonable expectations with GenAl

What not to expect with GenAl

What to expect when using GenAl

The basics of prompt engineering

Creating a prompt

Producing workable code with ChatGPT

Final project

Prompt and code

Summary

Questions

Further reading

Technical requirements

Project scope

Project requirements

Flowchart for the system

Desighing the pseudocode

Implementing the program

Using ChatGPT to implement bubble sort

Final project variables

Main program logic

Testing the program

Summary

Assessments

Other Books You May Enjoy

Preface

Until recently, automation programming has been, for the most part,
unchanging. However, with the recent boom in computing power,
that is rapidly changing. New technologies are being introduced at a
rapid pace, and these are drastically altering the automation
landscape. These new, disruptive technologies are rendering the
days of only programming in Ladder Logic a relic of the past. In
today’s automation landscape, to get the most out of a PLC, one
must use Structured Text. This book is an in-depth look at writing
very robust and well-written programs in Structured Text while also
providing a general education for programming logic and design as
well as other core tenets that will be required to future-proof
projects.

Who this book is for

This book is for anyone who is interested in learning Structured Text
programming. It is designed for beginners who have never
programmed before and for those who wish to transition from
Ladder Logic to Structured Text.

What this book covers

introduces you to computer science and contrasts it with automation
programming. This chapter will explore the various types of
controllers, emerging technologies, and more.

focuses on introducing the various components that make up a
traditional PLC. This chapter will introduce you to analog and digital
principles as well as all the needed components that a PLC will need
to operate.

programming. This chapter will introduce you to what programs are,
how they work, and much more.

more advanced chapters by introducing you to the basics of
memory. Topics explored will include what memory is, how memory
works, and common storage devices.

Flowcharts, teaches you how to create a design for a program.
Concepts explored will be designing a program in pseudocode and
with a flowchart.

The core principles will be to learn how to compute logical

equations, understand logical operators, and create truth tables.

truly is and why it is important. The key takeaways from this chapter
are understanding why Structured Text is important, why it should
be used, and how to set up the programming environment.

variables or tags. This chapter will cover concepts such as data
types, naming conventions, and much more.

the most pivotal skills any PLC programmer can have: programming
mathematical calculations. Topics will include how to program math
equations and common math functions.

Chapter 10, Unleashing Built-In Function Blocks, explores the built-in

function blocks. The main takeaway will be for you to understand
what a built-in function block is and how to use common function
blocks such as timers and counters.

Chapter 11, Unlocking the Power of Flow Control, introduces flow

control with conditionals. This chapter will explore how the flow of a
program can be altered and basic intelligence can be introduced to a
program.

Chapter 12, Unlocking Advanced Control Statements, expands on
concepts that were explored in the previous chapter, and examines

topics such as embedded conditional statements, complex logical
expressions, and much more.

Chapter 13, Implementing Tight Loops, provides an in-depth
exploration of loops. This chapter will explore various types of loops

in Structured Text as well as their applications.

Chapter 14, Sorting with Loops, introduces you to the basics of
sorting algorithms. The key takeaway from this chapter is to

introduce you to concepts such as algorithms, Big O notation, the
basics of arrays, common sorting algorithms, and more.

Chapter 15, Secure PLC Programming — Stopping Cyberthreats,
provides an overview of the cybersecurity landscape in relation to
PLC-based systems. This chapter will present a lot of theoretical
knowledge that can be applied to the design of PLC-based systems,

networks, and more.

Chapter 16, Troubleshooting PLCs — Fixing Issues, provides the
necessary steps to troubleshoot a malfunctioning PLC-based

machine. Topics will include common issues, necessary tools, IT
diagnostics, and more.

Chapter 17, Leveraging Artificial Intelligence (Al), explores how
generative Al (ChatGPT) can be used to help automatically write
software. This chapter will explore what generative Al is, how to use

it, reasonable expectations, and how to write prompts.

Chapter 18, The Final Project — Programming a Simulated Robot,
draws on material explored throughout the book. This chapter will
focus on programming a theoretical robot that sorts parts and sends

lots down the proper production line.

To get the most out of this book

This book assumes no prior knowledge of PLC programming or
programming in general. To get the most out of this book, only a
basic understanding of mathematics is required. Ideally, you should
be familiar with basic algebra and maybe trigonometry.

Software/hardware covered in | Operating system
the book requirements
CODESYS Windows

ChatGPT N/A

If you are using the digital version of this book, we advise
you to type the code yourself or access the code from the
book’s GitHub repository (a link is available in the next
section). Doing so will help you avoid any potential errors
related to the copying and pasting of code.

Download the example code files

You can download the example code files for this book from GitHub
at https://github.com/PacktPublishing/PLCs-for-Beginners. If there's
an update to the code, it will be updated in the GitHub repository.

We also have other code bundles from our rich catalog of books and
videos available at https://github.com/PacktPublishing/. Check them
out!

https://github.com/PacktPublishing/PLCs-for-Beginners
https://github.com/PacktPublishing/

Conventions used
There are a number of text conventions used throughout this book.

code in text: Indicates code words in text, database table names,

folder names, filenames, file extensions, pathnames, dummy URLs,
user input, and Twitter handles. Here is an example: “"We had a case
conditional with an 1r statement inside it .”

A block of code is set as follows:

PROGRAM PLC PRG

VAR

currentHopperWeight : REAL := 250;
baglWeight : REAL;
bag2Weight : REAL;

END VAR

When we wish to draw your attention to a particular part of a code
block, the relevant lines or items are set in bold:

PROGRAM PLC PRG

VAR
password : STRING(255) := 'password';
length : UINT;
acceptPass : bool;

END_ VAR

Bold: Indicates a new term, an important word, or words that you
see onscreen. For instance: "Air gapped systems are simply
systems that are not connected to the internet.”

TIPS OR IMPORTANT NOTES

Appear like this.

Get in touch

Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this
book, email us at customercare@packtpub.com and mention the

book title in the subject of your message.

Errata: Although we have taken every care to ensure the accuracy
of our content, mistakes do happen. If you have found a mistake in
this book, we would be grateful if you would report this to us. Please
visit www.packtpub.com/support/errata and fill in the form.

Piracy: If you come across any illegal copies of our works in any
form on the internet, we would be grateful if you would provide us
with the location address or website name. Please contact us at
copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic
that you have expertise in and you are interested in either writing or
contributing to a book, please visit authors.packtpub.com.

Share Your Thoughts

Once you've read PLCs for Beginners we'd love to hear your
thoughts! Please click here to go straight to the Amazon review page
for this book and share your feedback.

Your review is important to us and the tech community and will help
us make sure we're delivering excellent quality content.

mailto:customercare@packtpub.com
http://www.packtpub.com/support/errata
mailto:copyright@packt.com
http://authors.packtpub.com/
https://packt.link/r/1803230932

Download a free PDF copy of this
book
Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print
books everywhere?

Is your eBook purchase not compatible with the device of your
choice?

Don’t worry, now with every Packt book you get a DRM-free PDF
version of that book at no cost.

Read anywhere, any place, on any device. Search, copy, and paste
code from your favorite technical books directly into your application.

The perks don't stop there, you can get exclusive access to
discounts, newsletters, and great free content in your inbox daily

Follow these simple steps to get the benefits:

1. Scan the QR code or visit the link below

https://packt.link/free-ebook/9781803230931

https://packt.link/free-ebook/9781803230931

2. Submit your proof of purchase

3. That's it! We'll send your free PDF and other benefits to your
email directly

Part 1: Basics of Computer Science
for PLC Programmers

Programming is much more than just writing code. There is a lot of
theoretical knowledge that goes into crafting a well-written program,
and this part will lay the foundation for just that. This part will
provide all the theoretical knowledge needed to understand the rest
of the book and will cover the basics of PLCs, including PLC
hardware, memory, logic, and design, how programs work under the
hood, Boolean algebra, and more.

This part has the following chapters:

e Chapter 2, PLC Components — Integrating PLCs with Other

Computer Science Versus
Automation Programming

If you were to ask an everyday automation professional what
computer scientists are, you would probably get an answer along the
lines of math nerds, computer geniuses, and so on. Most automation
professionals are usually engineers or trade persons who stem from
a field with little to no computer science exposure. This means very
few automation professionals are classically trained in computer
principles. For many automation professionals, there is a barrier
between complex computing and automation.

This book is going to be different from most automation
programming books on the market. This book is going to focus on
developing software for Programmable Logic Controllers
(PLCs); however, this book is designed to teach you, the reader, to
be more than a PLC programmer or tech. This book is designed to
turn you into a genuine software developer. In short, this book will
cover everything from program design to security. This book will also
utilize Structured Text over the more traditional Ladder Logic. The
reason for utilizing Structured Text is twofold. First, Structured Text
is the future of PLC programming. As PLC applications become more
advanced, the programming apparatus will need to be more robust.
Structured Text offers much tighter control over a program than

Ladder Logic. Second, implanting a well-designed program in
Structured Text will be much easier to implement than it would be in
Ladder Logic. With that said, there are no prerequisites for this book.
You do not need to have any special math skills, logic skills, or
anything of the sort to follow along. Those skills will be introduced in
the book, but they will be easy to master and implement.

To begin, the brain of most modern machines is a PLC. PLCs, for
many, are just programmable devices, but they are miniature
computers that are governed by the same laws of computing that
govern any other device, such as a personal computer or
smartphone. This poses a problem in the automation world because
software is usually considered an easily replaceable component that
exists to complement the hardware. In other words, many
automation engineers often have an "“if it works it'll do” attitude
towards software. This is a faulty philosophy, as poorly written
software can hinder a machine and put it in the cyber trash heap
before its time. Therefore, to become more than a simple PLC
programmer, a mastery of computer science is a must.

To begin our journey into computer science, we're going to first
explore the following topics:

e What is computer science?
e What is automation programming?
e Why is computer science important in automation programming?

e Why should automation programmers care about automation
programming?

e The differences between a PLC and a microcontroller

Finally, to round out the chapter, we will explore the differences
between a PLC and a computer.

Technical requirements

This chapter is theoretical and will not require any specific software.

What is computer science?

Computer science is the study of computer systems, with a strong
emphasis on software. In a more lay sense, computer science is the
study of computational systems such as computers, phones, or
anything that runs software, including PLCs. In short, the scope of
computer science usually encompasses fields that involve software
development or computer architecture. Computer science is a broad
field that ties into many other disciplines, such as the following:

e Software engineering

¢ Artificial intelligence (AI)
e Networking

e Cyber security

e Database systems

e Bioinformatics

e Distributed computing

e Computer architecture

The field of robotics and automation can also loosely be considered
a field of computer science.

As can be seen, computer science encompasses a lot of different
disciplines. For some, this may seem scary, but rest assured that a
mastery of each of these subfields is not necessary to be successful
at computer science or programming. The focus of this book is going
to be mostly on software engineering, which means there is going to
be a heavy emphasis on software design and implementation. So,
why should one learn computer science?

Why study computer science?

The ultimate goal of computer science is to create faster and more
powerful computer systems that can solve increasingly complex
problems. To put it briefly, a person would want to study computer
science to build more efficient hardware, software, and networks,
improve computer system security, and more. In other words, a
person will study computer science to build faster, smarter, safer, and
more reliable systems. With that, why should automation
programmers or engineers care about computer science?

Before the benefits of computer science can be appreciated for
automation programming, it is important to understand what
automation programming is. As such, the following section is going
to explore what automation programming is and where it is used.

What is automation programming?

Automation programming can take on many different
interpretations depending on the context and industry. For this book,
automation programming will be considered industrial automation
programming. Industrial automation programming and control
programming can be considered the same thing. When one
mentions controls or automation programming, they are usually
referring to writing software that lives on some type of controller
that is used to automate the use of machinery. In all, automation
software is designed to reduce the amount of human intervention in
a process.

Automation programming starts with a programmable device. There
are many types of automation controllers, with some being the
following:

e PLCs

¢ Remote terminal unit (RTU)

e Proportional — integral — derivative (PID)

e Miscellaneous control boards
What is considered automation software should include more than
software that simply lives on controllers. This means that what is

considered industrial control software can also branch out into other
families of software, such as the following:

¢ Human—machine interfaces (HMIs)

e Supervisory control and data acquisition (SCADA)

e Databases

When someone mentions automation programming, they are usually
referring to software that lives on the most common types of
industrial controllers, PLCs. PLCs are often the main type of
controllers for industrial applications and are often seen as the
backbone for many machines. This means that when it comes to
automation programming, knowing how to program a PLC effectively
IS necessary.

For this book, automation programming refers to writing software for
PLC devices. With that, before the links between automation
programming and computer science can be fully appreciated, it is
important to establish a high-level understanding of what a PLC is
and what it does.

What is a PLC?

A PLC is a specialized programmable device designed to be very
rugged and operate for extended periods. PLCs are responsible for
operating industrial or heavy equipment and are commonly used in
the following:

e Streetlights
¢ Amusement parks

e Factories

Cranes

Nuclear reactors

Space launch systems

Dams

Anywhere a program is required to operate a piece of industrial or
heavy equipment, a PLC will usually be present.

For beginners and even some experienced automation professionals,
all this computer science stuff may seem dubious, unnecessary, and
more trouble than it's worth. However, before any rash judgments
are made, let us explore why automation engineers need to
understand computer science.

Exploring automation through
computer science

In automation, software is often seen as a second-class citizen to
the hardware. If you speak to an automation professional, chances
are they are going to tout the hardware as the main focal point of
the system. Automation engineers love to brag about the latest
controllers that are being utilized, how they integrated the finest
motors and motor drives into the system, and so on. However, it is
rare to hear a typical automation engineer brag about the efficiency
of the software or tout the design patterns they used to architect the
software.

A lot of this attitude towards software boils down to tangible assets.
Often, an engineer can hand a customer the latest power supply or
brag about how easy it is to swap out a new motor drive. If the
customer ever sells the machine off, they can use all those features
as selling points to raise the value of the machine. However, there is
a major flaw in this logic. Without quality software, the machine will
be an expensive paperweight. With low-quality software, the
machine will be a high-quality paperweight that can move and
perform certain tasks marginally well at best. Put bluntly, the quality
of @ machine starts with the software. A machine can have the most
advanced hardware in the world, but if it has poorly written
software, it will be a poorly performing machine at best. With that,
how does computer science help?

How does computer science help automation
programmers?

If you think about the way computer science was defined in the
past, it was mainly concerned with producing quality software.
Computer science has many principles that, when followed, will
produce fast, safe, and reliable software. In other words, the
computer science principles that are going to be explored in this
book are going to allow you to get the most out of that advanced
hardware. If you can understand and even master the principles that
will be explored, your code will be light years ahead of your
competition, and all that fancy hardware will be used to its full
potential.

Many experienced automation professionals may be wondering why
they should care about computer science and how it relates to
automation programming. After all, automation software, for years,
has been written with little concern given to software execution
performance. There are also a lot of beginners who are more
infatuated with robots and building smart factories than with writing
quality code. So, to give some context as to why someone should
care about computer science, we are going to explore a few reasons
why.

Why should automation
programmers care?

The world is changing rapidly, and the computer industry is leading
the charge. For those who work in the automation industry, where
systems can easily be 20 years old, it can often be difficult to see
how rapidly the IT world is morphing. In the past, most of the then-
emerging technologies were decentralized and did not factor into
industrial automation. However, with the widespread adaptation of
the internet and interconnected devices, that all changed.

Recently, the world has seen the rise of things such as cloud
computing, the IoT, machine learning, and many other things. The
new elements have exploded so fast that they are starting to be
integrated into the industrial automation realm. To understand why
automation programmers should care about computer science, we
first need to understand what these modern technologies are. Now,

it is important to remember that this list is not exhaustive, but the
following technologies will give an insight into why we need to care
about computer science principles.

Cloud technologies

The term cloud has been making the rounds over the past few
years. In a very lay sense, the cloud is a bunch of interconnected
data centers where you can rent resources. These resources vary
and have many different applications. For example, some common,
high-level services include the following:

¢ Virtual machines (VMs)

Data storage, such as databases and cloud storage

Containerization

Microservice support

Machine learning

Data analytics

Networking

The best way to conceptualize the cloud is an all-in-one resource
that has all the computing infrastructure needed to power your
application. There is a lot to understand about the cloud and its
various levels that go well beyond the scope of this book. However,
it is important to know the most popular cloud service providers
(CSPs):

AWS (Amazon)

Azure (Microsoft)

GCP (Google)
OCI (Oracle)
IBM Cloud (IBM)

It is important to note that this list is not complete, and from this
list, AWS and Azure are the most popular.

Most of the services offered through these CSPs charge either via
usage, the number of requests to the service, or the amount of time
used. What is also interesting is that the cloud is being adopted by
the automation industry because it is often cheaper and requires less
skill to create resources in the cloud than having to create those
resources in-house and maintain the service on a custom server.
Even if the automation company you are working for does not utilize
the cloud, it is likely that a customer would require the machine to
be interfaced with cloud services. With that, the next major
technology that we need to explore is the IoT.

The internet of things

The Internet of Things (IoT) is another buzzword that has been
popping up recently. To summarize, the IoT is a group of devices
that are networked together to form an integrated smart system,
such as a smart house or smart factory. Typically, devices are

connected via a network and can pass data freely to any other
device in the network, which allows for easy access to real-time
production data. The IoT allows for the following:

¢ Problems can be identified more rapidly.
¢ Personnel can have real-time status updates.
e Machine(s) can adjust to changing situations more readily.

e Processes can be better orchestrated.

Overall, the IoT is becoming a very prominent tool in automation
and is the backbone of smart factories. Although the IoT is the
backbone of many smart factories, another emerging technology is
Al and machine learning (ML).

Machine learning

Of all the buzzwords, machine learning is by far the most famous.
Machine learning and Al are all over the news, and systems such as
ChatGPT are quickly changing the world. Much like the rest of the
modern world, AI and ML have infiltrated the realm of automation.
Currently, there are libraries that can be utilized to give PLCs the
ability to leverage the power of Al and ML. Al and Machine Learning
is @ complex field that incorporates aspects of mathematics and
computer science to understand and properly implement.
Additionally, AI and ML are not singular concepts; instead, machine
learning and, by extension, Al encompass many different algorithms
that do different things. Common algorithms include the following:

¢ Deep learning algorithms that mimic the human brain
e Regression algorithms that are used to make predictions

¢ (Clustering algorithms that cluster things into groups

These are just a few broad types of algorithms. There are other
types of algorithms, and many of those algorithms have different
categories. For example, regression algorithms can be simple
regression algorithms, multiple regression algorithms, or
logistic regression algorithms. These algorithms can open vast
new avenues that many would never have dreamed of; however, to
effectively use ML, a developer must select a machine learning
algorithm, collect and process the data, train the model, and finally
deploy the model. This can be an exceedingly challenging job, and
depending on the algorithm, formatting the data can be a daunting
task that requires a lot of knowledge in computer science. So, what
does all this equate to?

What does this mean for automation
engineering?

So, with all this, why should an automation engineer care about
computer science? After all, automation engineers have spent
decades doing just fine with simple Ladder Logic and little thought
into the guts of software, so why should automation professionals
care now?

Well, the answer is quite simple. Effective programming must be
implemented to cut costs, secure the system, and ensure that the
system runs efficiently. In terms of the cloud, if a machine is
constantly uploading useless data to the cloud, it is going to add an
extra cost to the system’s operation. For example, if the data is
being uploaded to the cloud and the cloud is utilizing services such
as computer instances and data resources, each useless byte of data
is going to compound the cost of operating the machine. In terms of
ML, if those data are being used to train a machine learning model,
it can create errors in the model that make it perform poorly. It may
also cause the system to take too long to train, which could render it
useless. In terms of the IoT, if poor security practices are baked into
the system, it can cause the system to become vulnerable to
cyberattack. This means that if something is not coded correctly,
whole smart factories could be rendered inoperable by simply
exploiting something akin to a sensor or voice controller. More than
anything else, following computer science principles will simply
create better, more robust, and more durable machines. In all, even
if you do not use innovative technologies, such as ML, the cloud, or
the IoT, it will still pay to learn the core of computer science.

Overall, computer science principles will help secure systems from
attack, create smarter systems, and, most importantly, save money.
The core of this stems from good coding practices, quality logic, and
learning how to implement efficient software. So, now that we know
why we need to understand computer science, let us take a step
back and look at what a PLC is at the application level. For

beginners, especially those who have programmed microcontrollers
in the past, the concept of a PLC may not seem necessary. However,
in terms of applications, there is a vast difference between
microcontrollers and PLCs. With that, let us explore how they
differentiate.

PLCs versus microcontrollers

Over the past 15 years, microcontrollers have become quite common
for electronics education and hobbyists in general. At first glance, a
PLC is a lot like a microcontroller, and if you were to compare a
microcontroller to a PLC from 30 years ago, a PLC basically was a
rugged microcontroller. Based on the PLC definition established
before, it is quite easy to confuse the two types of controllers or, at
the very least, confuse the applications. The nature of PLCs has
changed, and the two types of controllers are worlds apart.
Therefore, it is especially important to understand the differences
between the two types of controllers, as it is often more appropriate
to use one type over the other. To understand how a PLC differs
from a microcontroller, let us explore what a microcontroller is.

What are microcontrollers?

A microcontroller can best be thought of as a low-level computer
on a chip. Common microcontrollers include the following:

e PICs

AVRs

Arduino

BASIC Stamp
PICAXE

Raspberry Pico

It is important to note that many of these devices, such as Arduinos,
BASIC Stamps, and Raspberry Picos, are not microcontrollers in the
same sense as a PIC. These devices are best thought of as
developer boards since they come packaged with a lot of external
hardware that AVRs and PICs do not have. It is also important to
know that these devices, especially the PICAXE, come with a
bootloader loaded on them to understand their special programming
interfaces, such as the Arduino programming language or PBASIC.
For this discussion, we are going to keep things high-level and group
all those devices into the microcontroller category.

In terms of architecture, a microcontroller will often come packaged
with its RAM, ROM, CPU, and other peripherals baked onto the chip.
Microcontrollers do not run operating systems and can only run one
program at a time. In short, most microcontrollers are best
described as embedded components. So, what are some of the
surface-level differences between a PLC and a microcontroller?

Surface-level differences

On the surface, PLCs and microcontrollers are vastly different. A PLC
is a self-contained electronic computing apparatus that will usually
have built-in programming connectors and expansion ports. On the
other hand, a true microcontroller, such as a PIC, is a chip that
requires external components, such as external clocks, resistors, and
so on, to operate.

It can be said that PLCs have more in common with Arduinos and
other development boards that are microcontroller-based. For
example, most development boards can be programmed with a USB
or ethernet cable and do not usually require external components
other than a power supply to run. However, the similarities usually
end there. A major difference between a PLC and a microcontroller is
the programming system that they use.

PLC and microcontroller programming
languages

In general, microcontrollers are programmed in a derivative of a
traditional programming language, typically a C, Assembly, Python,
or BASIC dialect. For the most part, each microcontroller will have a
corresponding programming language. For example, Arduinos use
the Arduino programming language, which is a variant of C++,
PICAXE chips use a version of BASIC, PIC microcontrollers use C,
Parallax’s BASIC Stamp uses BASIC, and so on.

PLCs, on the other hand, are programmed using Ladder Logic,
Structured Text or other dedicated PLC programming languages.

Most PLCs are programmed in Ladder Logic, which is a programming
language designed to simulate relay logic and digital circuits;
however, recently, Structured Text (a text-based programming
language that is reminiscent of a cross between BASIC and Ada) has
been on the rise. Ladder Logic is, right now, more popular than
Structured Text, but when it comes to architecting quality and secure
code, Structured Text is much easier to use.

There is also another major difference between PLCs and
microcontrollers: standardization. Many microcontroller programming
languages do not follow any specific standards. Different
programming systems can be used to program microcontrollers if the
chips have similar architecture, but the languages themselves will
usually vary. Many major PLC brands, such as Allen Bradley,
Siemens, Beckhoff, and so on, follow the IEC 61131-3 standard.
Essentially, this standard is a set of programming language rules that
compliant devices follow. The goal of standardizing PLC
programming languages, among many other reasons, is to ensure
there is not a drastic learning curve between manufacturers.
However, much like microcontrollers, a program written for one PLC
device will rarely be able to run on a device made by another
company or even another PLC model. With that, how are the two
devices used?

Use cases

The use cases for PLCs and microcontrollers are also radically
different. For the most part, a microcontroller or microcontroller
development board is used for low-voltage applications, with very
few designed to give outputs over +5v. Microcontroller chips are
normally used in the following types of applications:

e Toys
e Hobby projects
e Consumer electronics (appliances, TVs, etc.)

e \ehicles

Just about anything that is low voltage in nature and is not designed
to perform in a complex industrial environment will usually be
controlled by a microcontroller. The best way to think of a
microcontroller is as an embedded device.

As stated before, PLCs are used for industrial purposes. For example,
PLCs are a mainstay in factories because they run for prolonged
periods of time without needing maintenance. They are also
designed to control high-voltage systems that are usually associated
with machinery. A PLC is not an embedded device. On the surface, a
PLC can be thought of as an industrial microcontroller, but it is
important to realize that they are different from microcontrollers.

Compared to a microcontroller, a PLC is much more rugged and can
run for years without needing maintenance and even longer without
needing to be replaced. It is not uncommon for a PLC to be in
service for decades. PLCs are specifically engineered to be rugged

devices that can withstand an extreme environment without
interrupting the process(es) they are programmed to control.
Though microcontrollers are often used as components to make a
PLC, a PLC is not a microcontroller.

This does not mean that microcontrollers are excluded from the
world of automation. Microcontrollers are used in many facets of
automation, with applications ranging from machine controllers to
the chips used in PLCs. Microcontrollers are particularly important
electrical components, and their importance cannot be understated;
however, to reiterate, they are not PLCs and should not be employed
to do the same job as a PLC.

Therefore, a PLC has more in common with a traditional computer
than a microcontroller. To appreciate the complexity of a PLC, let us
explore the differences between a PLC and a computer.

PLC versus computers

Over the past 20 or so years, the cost of computers has dropped
significantly. This drop in price has given rise to cheaper and more
powerful computers. This increase in computing power and decrease
in price has been reflected in all aspects of life. For example,
smartphones are now an integral part of society; virtually everyone
has easy access to tablets, such as Kindles, smart homes are on the
rise, and more. This shift in computing has also seeped into the
automation world. In contrast to the past, hardware-based control
panels have been replaced with touchscreen HMIs, advanced

networking technologies are employed everywhere, and, of course,
PLCs (that more resemble modern computers as opposed to
microcontrollers) are a mainstay in most factories. But before the
similarities between a PLC and a computer can be explored, it is
important to understand what a computer is.

What is a computer?

Describing a computer can be a bit difficult because many devices,
such as modern smartphones, have significantly more power than a
state-of-the-art desktop computer from 20 years ago. As such, many
devices qualify as computers, even microcontrollers, to an extent.
This means that many different devices can be considered
computers, and whole books can be dedicated to defining what a
computer is. However, for our purposes, we are going to keep things
broad and think of a computer in terms of a modern, traditional
personal computer — that is, a microprocessor-based device that
utilizes an operating system and can run multiple applications at the
same time.

PLC versus computers

As said before, although PLCs are often conceptualized as industrial
microcontrollers, that is only a superficial comparison. Remember, a
microcontroller can best be thought of as a low-level computer on a
chip because it will often come packaged with its own RAM, ROM,

CPU, and other peripherals baked onto the chip. Microcontrollers do
not run operating systems and can only run one program at a time.

In contrast, a computer is a microprocessor-based system with
external components, such as ROM, RAM, and other external
peripherals. A computer system also requires an operating system
such as Windows, MacQS, or a Linux distro. When one compares a
computer to a microcontroller, major differences start to manifest.
For example, a computer’s main goal is not to control external
hardware in the same sense as a microcontroller does; a computer
has way more computational power and can run multiple
applications simultaneously.

If one were to examine a PLC, one would find that most of the
major brands are microprocessor-based, have external peripherals,
such as ROM and RAM, and many of the more advanced PLCs use
some form of operating system. For example, a high-end Beckhoff
PLC will run Windows, whereas brands such as Wago usually use a
Linux distro for embedded devices. The reason PLCs are often
touted as industrial microcontrollers stems from lower-end PLCs that
behave more like microcontrollers than computers and because the
PLC can only run one control program at a time. However, advanced
PLCs, such as Beckhoff PLCs, blur the line between PLC and
computer, run an embedded version of Windows, and have Intel
microprocessors. On top of that, the more advanced PLCs can
usually house and run their own HMI, security software, control
program, and so on simultaneously.

Summarily, it is true that a modern PLC behaves similarly to a
microcontroller, considering that it can run one control program and,
like @ microcontroller, controls external circuitry; however, that is
where the similarities end. In terms of modern PLC programming
and automation programming in general, it is no longer wise to think
of PLCs and other control devices as simple microcontrollers. It is
better to think of a modern PLC as a computer designed to control
machinery.

Summary

This chapter explored the basics of how automation engineering
relates to computer science. Thus far, PLCs, computers, and
microcontrollers, their use cases, and more have been explored. By
this point, a solid foundation on the concepts should have been
established.

The days of hodgepodge Ladder Logic programming are ending. The
automation industry is notorious for being many years behind the
curve in terms of technological advancements; however, over the
past 10 or so years, technology has made leaps and bounds that
cannot be ignored. With the introduction of technologies such as the
IoT, the cloud, and machine learning, automation developers are
going to be forced to abandon the old mindset of “if the program
works, it’ll do.” Automation programmers are going to have to adapt
to new trends, which means a core understanding of software will be
vital in the coming days.

With all that said, a basic understanding of PLC hardware is required
to move forward. Just as hardware is nothing without software,

software is nothing without hardware. Integrating PLC modules and

other hardware is pivotal to the success of a project. As such, the

next chapter is going to explore basic PLC hardware components.

Questions

1.
2.

N o U bk

What are three use cases for a PLC?

Can a PLC be used in a space launch system?

. Why is computer science important to an automation

programmer?

What are two use cases for a microcontroller?

Name three emerging technologies for industrial automation.
What is computer science?

Why should automation programmers care about computer
science?

. Name three common microcontrollers.

. What are some common microcontroller programming

languages?

2

PLC Components — Integrating PLCs
with Other Modules

Software and hardware have a symbiotic relationship. Without
hardware, software is useless, and vice versa. A key component of
computer science is hardware engineering, and as most automation
programmers know, hardware is a major factor in automation
machinery. In other words, you cannot have a quality machine
without quality hardware and software.

In terms of hardware, a PLC is a series of integrated modules that
take in data and provide some type of output. To do this, PLCs utilize
many different components, such as switches, sensors, motor drives,
and safety modules, that all work in unison to control a machine.
The key to these systems is the PLC. However, many inexperienced
automation engineers do not fully understand what a PLC is, how to
integrate external modules, and so on.

Knowing what a component does and how to integrate a module
into a PLC system is vital to successful engineering. Even if a person
is a dedicated programmer, an in-depth knowledge of hardware is
required to both program and troubleshoot a machine. As such, the
following is going to be explored in this chapter:

e PLC types

Common PLC modules

Sinking vs. sourcing

Sensors

Motor control

Communication protocols

Wiring diagrams

To round out the chapter, we are going to design a theoretical
system that will turn on a motor when a switch is turned on and
shut the motor off when a sensor is tripped.

Technical requirements

This chapter will not utilize physical hardware or software. However,
to complete the final project, rendering software will be needed. For
the most part, no electrical symbols will be used. This means that
any rendering software can be utilized, even something as simple as
Paint. However, the examples are going to be drawn in block
diagram format using draw.io, Which is free to use online.

PLC types

PLCs are the brains of a machine; however, there is not one single
type of PLC. In actuality, there are two major categories of PLCs,
which are known as modular and fixed PLCs. When designing a
system, it is important to understand the difference between the two

types so the correct one can be chosen for the project. The following
is a high-level breakdown of the two types of PLCs:

¢ Fixed PLCs: Fixed PLCs are ones that have their I/O already
integrated into them. These PLCs are usually cheaper than
modular PLCs but are usually not expandable. This means that
whatever I/O comes with the unit is what the engineer is stuck
with. Generally, these PLCs are great for standalone or small
projects that will never need to be updated. An example use case
for a fixed PLC would be something akin to an automatic door
opener. For an application like this, there will probably never be a
need to expand the system, and only a handful of I/O ports will
be needed. In this case, a fixed PLC will be optimal because it
will be less expensive.

e Modular PLCs: Modular PLCs are more expensive but more
flexible. Modular PLCs are very common in large automation
projects due to their flexibility and higher memory capabilities.
Due to the ever-evolving nature of industrial processes, it is very
common to see modular PLCs in factories. Overall, there will be a
higher upfront cost with modular PLCs, but they will offer more
expandability in the future.

Modular PLCs can be considered to be more complex than fixed
PLCs. More thought must go into the system design since modular
PLCs are not integrated units. Therefore, to fully grasp modular
PLCs, the modules that compose them need to be explored.

Common PLC modules

As could be deduced from the last section, a modular PLC is not a
singular unit. PLCs are composed of many different modules that,
when integrated together, form the PLC. Many different modules do
many different things; however, all PLCs have a select few modules
that perform the same functionality across all brands. This section
will be dedicated to exploring some of those modules. With that, let
us explore the power supply module!

Power supply

As everyone knows, electronic devices require electrical power of
some type. PLCs require a stable power supply to function properly.
Most PLCs utilize a 24VDC power supply. Depending on the PLC
brand, the power supply will either be a module that attaches to the
PLC in some way or it will be directly wired to the PLC. Of all the
modules, the power supply is probably the easiest to comprehend.
Let us now explore what a PLC chassis is.

Chassis

Depending on the PLC system being implemented, modules will need
what is called a chassis or rack to interconnect with each other. A
chassis is like a carriage that houses multiple modules and allows
the modules to communicate with each other. A chassis is not always
necessary, as some devices connect by simply attaching to each

other. For example, to integrate Beckhoff modules, all one must do is
slide them together and set an address on the device. Whether a
PLC requires a chassis or not will depend on the manufacturer and
model. With that, we can investigate the CPU.

CPU modules

Regardless of the model, all PLCs have one key component. This
component is known as the CPU module. Many inexperienced
engineers consider this module to be the PLC itself; however, the
CPU is actually a module as well. If the PLC is the brains of a piece
of equipment, the CPU is the brains of the PLC. This module is the
computer that houses the PLC program, memory, operating system
(if applicable), and all the other necessary components that are
needed for the program to tick.

This is the main module an engineer or tech will interact with. These
modules usually have some type of communications interface, such
as a USB port, Ethernet, or other custom port that is designed to
interface with a standard personal computer that contains the
programming software. By interfacing with the CPU module, an
engineer or tech will be able to do the following:

e Upload/download a program
o Alter the program

e Change values in the program, such as timer and counter
setpoints

e Read the real-time data collected by the unit

The CPU module will typically be integrated with other modules,
such as the I/O (input/output) modules that will send signals to it.
The CPU will then process those signals and carry out the
programmed instructions. If the CPU module fails, the system will
fail with it. Now, if the CPU is the brains of the PLC, the I/O modules
can be thought of as the nervous system.

I/O modules

I/0 modules are pivotal to a PLC as these modules are responsible
for receiving inputs and driving outputs. In terms of I/O modules,
there are two main categories that engineers need to know about.
The first category is digital, and the other is analog. Both categories
have their own uses, and both are of equal importance. Most PLC
systems will incorporate a combination of the two types of I/0,
which means that an engineer won't be able to function without a
basic knowledge of how they both work. Therefore, to begin the
discussion, let’s explore digital modules.

Digital I/0O

Digital I/0 modules, or as they are sometimes called Discrete
I/0 modules, are PLC modules that operate in either an on or off-
state. Digital I/O modules fall into two categories: inputs and
outputs. An input device is usually tied to something like a sensor or
switch and once it detects voltage over a certain threshold, it will

send a signal to the CPU module that the data point is on. Once the
voltage is below a certain threshold, it will lose the signal to the CPU
module, therefore letting the PLC know that the data point is off. On
the other hand, output modules are usually tied to devices such as

relays, LEDs, alarms, and so on. Output modules are used to control
the state of these devices. In other words, the CPU module will send
a signal to the output module telling it to turn the device on or off.

Overall, it is important to know that discrete devices are like
switches; they are either fully on or fully off, and there is no in-
between state. Though threshold voltages and outputs can
sometimes vary from module to module, 24V will usually trigger a
digital module to the on state, and an output module will usually be
24V when activated. For many cases, having a fixed on or off state is
not desirable, so an engineer can employ analog modules for cases
like these.

Analog modules

Analog modules are like digital I/O modules in that they send and
receive signals from the CPU. Unlike their digital counterparts,
analog I/O can send and receive a wide range of current or voltage
levels. Since analog I/O can send and receive signals of varying
sizes, they are used with components that either send or receive
various levels of voltage or current.

In terms of analog inputs, these modules are often used with
sensors that will return a value based on a corresponding physical
state. That state will produce a signal proportional to that state.

Common examples of analog sensors that are often integrated with
analog inputs are pressure sensors, thermocouples, strain gauges,
current/voltage sensors, and the like.

Analog output modules work similarly to analog inputs but in
reverse. Instead of receiving current or voltage, they produce
current or voltage. These modules are often used in conjunction with
devices that use a variable electrical signal to change their physical
state. Common devices that are used with analog outputs are motor
drives, valves, heating coils, power supplies, and the like.

Safety modules

Automation can be a dangerous field. If a component fails, it can
cause unsafe conditions for both the machine and, more importantly,
the people around the machine. To ensure a safe and graceful
failure, engineers often incorporate safety modules into the PLC
design if the base modules are not compliant with the IEC-61508
safety standard.

Safety modules are modules with redundancies and self-checking
functionality that ensure nominal behavior. Much like traditional
modules, there are a multitude of safety modules. Typically, these
modules are used to integrate safety devices into the system. For
example, sensors (more information on sensors is provided in the
sensor section), such as safety sensors and emergency stops, are
often wired into these modules. As such, if things like light curtains,
trip sensors, or any other safety sensor or stopping mechanism are

integrated into the system, it is best to wire these devices into a
safety module.

The world of modules is very rich, and there are many different
types that have not been explored here. The next step in
understanding modules and, by extension, PLCs is to understand the
difference between sinking and sourcing signals.

Sinking versus sourcing

In automation engineering, the concepts of sinking and sourcing are
very important. Sinking and sourcing is, in lay terms, the direction of
the current flow. For example, consider Figure 2.1:

Device 1 Device 2
(Sourcing) (Sinking)

Y

Figure 2.1 — Sinking and sourcing

In Figure 2.1, the arrow that represents the current is going from
Device 1 to Device 2. This means that Device 1 is the sourcing
device, and Device 2 is the sinking device. If the arrow is reversed,
then Device 2 would be sourcing, and Device 1 would be sinking. In

other words, this concept boils down to the direction of the current
flow.

NPN versus PNP

Another way to think of sinking and sourcing is to consider an NPN
or PNP device. For many who have studied electronics in the past,
PNP and NPN may seem very familiar because they are the two basic
types of transistors. The easiest way to conceptualize NPN and PNP
devices is as follows:

e PNP: A PNP device is a sourcing device. This means that the
device is placed between the positive voltage rail and the load.

e NPN: An NPN device is a sinking device. This means the device
is placed between the load and the negative voltage rail.

To visualize this concept, consider Figure 2.2:

Sourcing (PNP) Sinking (NPN)

Tn

PO

ppo]
O

Figure 2.2 — Sinking vs. sourcing

Digital I/O devices are either designed to be sinking or sourcing. It is
very important to understand what type of device is being employed.
As an automation engineer, you'll mostly encounter sinking inputs
and sourcing outputs. This means that things like sensors are usually
PNP in nature, while modules are NPN. There is a “gotcha,” though;
older PLCs are inverted and may require NPN-style sensors. Now
that some background information for sinking and sourcing has been
established, it is time to explore sensors.

Sensors

If one were to compare a machine to the human body, a sensor
would be something akin to nerves. A sensor is a device that takes
in some type of input from the outside world and converts it to an
electrical signal that a PLC module can read and transmit to the CPU
module.

Generally, sensors will produce an analog value or an on/off value.
An analog sensor is a device that will produce an electrical signal in
proportion to its reading. For example, a light sensor, such as a
photoresistor, will produce an electrical signal that is proportional to
the amount of light that is picked up. In a more lay sense, an analog
device is one in which the output signal will vary. Common analog
sensors are as follows:

e Light sensors

Strain gauges

Sound gauge

Pressure sensors

Position sensor

Temperature sensors

On the other end of the spectrum are sensors that produce an on/off
value. These types of sensors are like switches. An example of a
digital signal might be an IR sensor that is used to detect entry into
an area. If the light beam is not broken, it will produce an on signal
that will be picked up by the digital I/O module and transmitted to
the CPU. If someone were to break the light beam by stepping in
front of it, the digital I/O module would detect an off case, which
would be transmitted to the PLC. Common digital sensors are
sensors that will produce an on or off state, such as a switch, IR
sensors, proximity switches, and so on.

So far, sensory input, modules, and more have been explored.
However, what has not been touched on is the main catalyst to turn
all those signals into something meaningful: motion.

Motors and motor controls

Circling back on the human body analogy, motors are like the
muscles of a machine. Without motors, most machines are glorified
paperweights. Motors are responsible for propulsion, moving

conveyors, positioning machines, drilling holes, and much, much
more. So, fundamentally, what is a motor?

What is a motor?

At a high level, a motor is simply an electrical device that converts
electricity to circular or linear motion. There are many types of
motors, such as the following:

e DC motors

AC motors

Servo motors

Stepper motors

Linear motors

Brush/Brushless motors

Automation utilizes a vast majority of motors, and each type of
motor will have its specific use cases. In terms of automation,
arguably, the two most commonly used motors are steppers and
servo motors. Before stepper and servo motors can be explored, it is
first important to understand the difference between open and
closed-loop control.

Open and closed-loop control systems

The terms open and closed-loop control systems may sound a bit
intimidating at first, but the concepts are very simple to understand.
In a very basic sense, open and closed-loop controls simply mean
whether or not position data are fed back into the control systems.
The two types of systems can be summarized by the following:

e Open-loop control: No positional data is fed back into the
control system

o Closed-loop control: Positional data is fed back into the control
system

Both open and closed-loop systems are common in automation.
However, depending on the type of motor involved, extra hardware
might be required, such as an encoder or resolver. Now that a little
background information on open and closed-loop systems has been
established, we can move on to exploring stepper and servo motors.

Stepper motors

Stepper motors are high-precision motors. Stepper motors are
often found in common devices, such as printers, 3D printers, hard
drives, and so on. If an everyday device has a motor, it is probably a
stepper motor. Unlike traditional motors, stepper motors can be
positioned into a number of equal locations. As the name suggests,
a stepper motor will move into what is known as a step. A step is
the number of degrees the motor shaft will move in response to a
signal. The amount the motor moves in response to a control signal

is called resolution or the step angle. The number of steps for the
shaft to complete one full revolution can be found with the
following:

360

Steps = Step Angle

For stepper motors, control signals are pulses. Generally, stepper
motors will move 1.8 degrees for each pulse and will usually require
200 steps for a full rotation.

The number of pulses required to move the motor to a specific
position is given by the following equation:

Degree Rotation

Pules = Step Angle

So, if an engineer needs to position the motor 45 degrees, and the
motor has a step angle of 1.8 degrees, the engineer will need to use
the following equation:

_ 45
Pulses = g = 25

This case will require a total of 25 pulses to the motor for it to move
45 degrees. Since no positional data are fed back into the system,
stepper motors are generally considered open-loop control systems,
but it should be noted that with the proper hardware, they can be
converted to closed-loop systems.

Stepper motors are used in applications that require precise
positioning but slow speeds. Typically, stepper motors are used in
applications that require low speeds, as this is how stepper motors
usually perform best. Common applications for stepper motors are

devices such as ground-based telescopes, antennas, robots,
turntables, and so on.

Servo motors

Another very common motor used in automation is the servo
motor. Servo motors are the inverse of stepper motors, as they
perform better at higher speeds, which allows them to be used with
gearboxes to deliver more torque. Unlike stepper motors, servo
motors operate under a closed-loop control system. This means that
servo motors require a type of sensor called an encoder to provide
feedback data to the control system. Though technically optional,
servo motors typically require a motor drive and an encoder to
function as intended. With that, let’s explore encoders.

Encoders

By default, not all motors have mechanisms to determine their speed
and position. Unlike stepper motors, servo motors need a
mechanism to collect data on the motor’s position, angle, and so on.
Encoders are basically sensors that collect data on a motor’s
movement. Encoders are typically used with servo motors; however,
they can also be used with stepper motors as well. Generally,
encoders can be changed out; however, most servo motors will
usually come pre-assembled with a built-in encoder that is
specifically designed to work with both a motor drive and servo.

Motor drives

A pivotal component of any automation system is a motor drive or
variable frequency drive (VFD). In a lay sense, a motor drive is
an electrical device that sends control signals to a motor. These
devices are used to control the motor speed, torque, and position of
the motor. There are many different types of motor drives that are
used to control the various types of motors. The four main types of
motor drives are the following:

e AC drives

e DC drives

e Servo drives

e Stepper drives
The way each one of these drives operates is different and goes

beyond the scope of this book. However, each of these drives will
take control inputs from a controller device such as a PLC.

Motor drives need a way to communicate with a PLC. APLC and a
drive can communicate in various ways, depending on the type and
application, with arguably the most common being some kind of
communication protocol.

Communication protocols

Communication protocols are an advanced concept in automation.
Consequently, only a high-level explanation of communication

protocols and how they work will be given here. However,
communication protocols, along with more advanced software
engineering concepts, can be explored in my previous book,
Mastering PLC Programming: The software engineering survival
guide to automation programming.

What is a communication protocol, and what
is it used for?

Communication protocols are a way for devices to pass data to and
from each other. In the most basic sense, a communication protocol
is @ way of packaging data in a common format that devices on a
network can understand. There are many different protocols that are
used in automation engineering. Some protocols are common
protocols that are used throughout the IT industry, while others are
proprietary and designed to work only with specific control systems.
Common communication protocols are as follows:

e UDP

o TCP/IP
e Modbus
e EtherCat
e Profinet
e Profibus

¢ MQTT

From this list, UDP and TCP/IP are used widely in all industries,
including internet communication. The other protocols are mostly
used for automation systems, such as PLC-based systems, among
other things. Now that networking, drives, and modules have been
explored, we can move on to wiring diagrams!

Wiring diagrams

The main way to communicate a design to others is with a
schematic or wiring diagram. Diagrams can be as detailed or as
simple as needed; all that matters is that enough information is
given to relay the necessary information regarding the internal
workings of the systems. This book is going to represent systems as
block diagrams, in other words, as high-level diagrams. For example,
wires and dataflows can be represented with simple lines and
components, and software services can be represented as shapes,
such as squares. To fully demonstrate wiring diagrams, let’s work on
the final project.

Final project

Many programs can be used to draw wiring diagrams. For this book,
we are going to use draw.io to draw diagrams. You do not have to
use draw.io, SO feel free to use a different drawing system or even

draw out the diagram on paper if you prefer. It is important to note

that drawing diagrams are very subjective. There are many ways to
draw a diagram, and, as such, there is no right or wrong way of

doing things. All that matters is that the connections are accurately
represented on the diagram. Therefore, it is okay if your diagrams
do not match the diagram in the book.

This project is going to use theoretical parts. In automation, the way
in which devices operate will vary widely. This means that we must
make some assumptions about how these parts operate. It is
important to note that this project is not meant to produce a
working system. Instead, this project is merely an exercise in design
logic to get a feel for how components will interact.

Specs
Before the diagram can be drawn, we need to lay out some
requirements about how the system should operate:

e A conveyor motor should activate when an IR sensor detects a
box

e When no box is detected by the sensors, the motor should shut
down

e The motor speed needs to be adjustable with the turn of a knob

e There should be a light curtain that should shut the motor down
when it is tripped

* An emergency stop (E-Stop) needs to be integrated into the
system to shut the system down in case of emergencies

Needed components

From the description, we're going to need a digital I/O module to
handle the IR sensor. Since the requirements specifications only
require one sensor and digital inputs usually can handle multiple
inputs, only one digital input module will be needed.

In terms of the speed control knob, a simple potentiometer (variable
resistor) can be used. A potentiometer will be tied into an analog
input. As the resistor is turned, it will vary the voltage to the analog
input module, which can then be processed by the CPU.

The requirements also mentioned two safety features: the light
curtain and the E-Stop. Since these are safety devices, the system
will either need safety-compliant devices or separate safety PLC
modules. In this case, we're going to assume that the PLC is not a
safety-rated PLC system, and we will add safety modules into the
system.

The final aspect that needs to be explored is the drive system. For
this project, a relatively simple system is all that is needed. For this,
we will use a simple DC motor. Since the PLC is controlling the
system, we cannot connect the motor directly to the PLC, especially
since we need to vary the speed. This means that we will also need
a DC motor drive. Additionally, most drives do not connect directly to
the PLC and, instead, use some intermittent module, such as a
contactor, that can be used to relay signals. As such, we are going to
create a generic PLC interface that will act as a relay system for
communication with the motor drive. Now that we have an idea of
what we need to design the system, let us make a bill of material
(BOM) to get a parts list.

BOM

A BOM is simply a parts list for all the materials needed for the
project. Engineers will usually produce the BOM after the design is
finalized; however, for learning purposes, we're going to create the
BOM first so we do not forget any parts:

e Power supply

CPU module

Digital input module

Analog input module

Safety CPU

Safety digital input

The sensors comprise the following:
e E-Stop push button
e Light curtain
o Potentiometer (10K)

e IR sensor

The motor system is made up of the following:
e DC motor
e DC motor drive

e Generic motor-PLC interface

e Network cabling
Before looking at the diagram, try to sketch out a mock diagram of
what you think the diagram should look like. Assume the following:
o E-Stop on Safety Digital In 1
e Light Curtain on Safety Digital In 2

o All other devices integrate into Input 1 of their respective
module

e Draw the networking cables as a thick line

Once complete, you should have something akin to the following:

;
I
7 0 ;
? i 318 ol 8 5
N O O O - 0
A O Tl
T = = a) =y el
T 0 | 2 0
< -] 5
3 0 -
)
0
Inputl| ~ (Input2{input] {Input]
R Sensor = +V
|
T EStop 0
rd I
— |
—Light Curtain

Figure 2.3 — Wiring diagram for system

In this diagram, the wires are represented by thin lines, and data
lines are represented by thick lines. In terms of the motor, we're
assuming that the motor driver receives signals from the CPU via the
Motor PLC interface and will control the motor speed by simply

controlling the current to the motor. The way this would work in the
real world will vary as different motors and motor drives will operate
differently. Some only require the motor to be hooked up to the
drive, while others have to be connected to a power source and are
controlled via a control signal. It all depends on the motor, drive
type, and the manufacturer.

It is also important to note that we are using a safety CPU in
conjunction with a regular CPU. This is a common practice when
using a non-safety-compliant PLC system. Safety CPU modules
usually house their own programs; however, they are usually
integrated into the overall system and communicate with the main
CPU. The programs that these CPUs house are usually things related
to safety inputs, starting dangerous subsystems, and so on.

Summary

This chapter explored the integration of modules and components
into a PLC system. The different types of PLC modules, sensors,
motors, communication protocols, and more have been explored. We
have also designed a simple PLC-based conveyor system to reinforce
the concepts that were covered. At this point, you should have a
basic idea of how hardware works and how it is used in an
automation system.

As stated before, hardware is an important aspect of automation.
However, as was also stated, it is not the only aspect that engineers
should care about. Now that we have some hardware theory under

our belts, we can move on to explore programming concepts by

looking at the fundamental principles of programming!

Questions

1.
2.

10.
11,
12,
13.

Name three types of PLC modules.

What is the difference between a regular PLC module and a
safety module?

. What is a stepper motor?

What is a servo motor?

. How many pulses are required to move a stepper 180 degrees if

the resolution is 1.8?

. What is a motor encoder?

What is a motor drive?

. What is the difference between an analog module and a digital

module?

. What is a discrete module?

What is a BOM?
What type of module should an E-Stop be wired into?
What is an analog input?

What is a discrete input?

Further reading

Types of motor controllers and drives:
https://www.thomasnet.com/articles/instruments-controls/types-
of-motor-controllers-and-drives/

Industrial motor drives: https://www.danfoss.com/en-
us/markets/industry/dsp/industrial-motor-drives/#tab-overview

Motor encoder overview:
https://www.dynapar.com/technology/encoder_basics/motor_enc

What is the difference between NPN and PNP?:
https://www.maplesystems.com/supportcenter/faq?qid=328

Sinking vs. sourcing in PLCs:
https://www.dosupply.com/tech/2022/05/16/sinking-vs-sourcing-

https://www.thomasnet.com/articles/instruments-controls/types-of-motor-controllers-and-drives/
https://www.thomasnet.com/articles/instruments-controls/types-of-motor-controllers-and-drives/
https://www.danfoss.com/en-us/markets/industry/dsp/industrial-motor-drives/#tab-overview
https://www.danfoss.com/en-us/markets/industry/dsp/industrial-motor-drives/#tab-overview
https://www.dynapar.com/technology/encoder_basics/motor_encoders/
https://www.dynapar.com/technology/encoder_basics/motor_encoders/
https://www.maplesystems.com/supportcenter/faq?qid=328
https://www.dosupply.com/tech/2022/05/16/sinking-vs-sourcing-in-plcs/
https://www.dosupply.com/tech/2022/05/16/sinking-vs-sourcing-in-plcs/

3

The Basics of Programming

For many college students, and even some entry-level automation
engineers, programming can be the stuff of nightmares. For the
uninitiated, programming is cloaked in a shroud of mystery that only
the brightest can peer behind. The media has reinforced this cliché
with movies that feature super-genius programmers who are able to
do complex calculus in their heads and write a million lines of code a
second. However, this is a very fantastical and untrue cliché of what
programming in the real world is. This false reality is also very
damaging to up-and-coming programmers as it has painted an
unrealistic view of the IT world that has discouraged many young
developers. Programming doesn’t require a person to have any more
intellect than any other field. What can be said, though, is that
programming requires a bit more patience.

The key to a solid foundation in programming is understanding the
basics of how programs work. No matter the language, platform, or
application, there are common themes, such as the flow of a
program and the way a programming language works. Once these
concepts are understood, programming will make a lot more sense.

To dispel some common misconceptions, to be a successful
programmer, one does not need to be a genius, gifted at math, able
to think in multidimensional space, or anything of the sort. The

qualities that one does need are patience, curiosity, and a will to
learn. As cliché as it sounds, the best programmers are not always
the most intellectually gifted. In fact, some of the best developers
are those who weren't very good at academics in school but had a
true passion for learning.

The core of PLC programming is the IEC 61131-3 standard. To many,
that is a meaningless tag, but to an experienced automation
programmer, it says a lot about the PLC that follows it. To fully
appreciate the standard, we have to lift the programming veil; to do
that, we're going to explore the basics of programming and their
languages. As such, this chapter is going to cover the following
concepts:

¢ Understanding what a program is

¢ Understanding programming languages
e Exploring keywords

e Exploring program execution

e Exploring the flow of a program

e Exploring IEC-61131-3

To round out the chapter, we're going to explore some exercises to
help comprehend algorithms.

Technical requirements

This chapter is going to explore programming from a theoretical
point of view. Therefore, no special software will be needed.
However, a text editor such as Notepad or even Microsoft Word
would be beneficial to help write draft algorithms.

Understanding what a program is

The first step in understanding how to write a program is to
understand what a program is. The technical term for a program is
algorithm. For the inexperienced, the term algorithm is ambiguous
and, for some, scary. However, an algorithm is simply a set of steps.
This means the most literal way to think of a program is as a series
of steps that a computer or other programmable device will carry out
to accomplish a task.

To demonstrate what an algorithm is, consider the steps it takes to
withdraw money from an ATM:

1. Enter the debit card into the machine.

2. Enter the PIN.

3. Enter the amount to withdraw.

4. Remove the debit card from the machine.

5. Take cash and go.
The steps it takes to withdraw money from an ATM is a prime

example of an algorithm. Now that we know what an
algorithm/program is, what purpose does it serve?

What is the purpose of a program?

The purpose of a program starts with a problem to solve. For our
purposes, a problem doesn’t necessarily mean that there is
something wrong. Typically, a problem in a programming sense
usually means that there is a task that needs to be accomplished. An
example of a problem can be anything such as the following:

e Creating a text editor
e Controlling a robot
e Controlling a drill bit

e Performing calculations

In other words, a program is anything that runs on an electronic
device that helps people complete a task and increase productivity.
With that, why should people opt to use a program instead of using
electronics or mechanical components?

Why use software over hardware?

Software is a non-physical component. Software does not take up
physical space in a machine and when designed properly can be
easily scaled to accommodate new functionality. Outside of
development costs, software carries no extra expense. This is in
stark contrast to adding extra and expensive hardware to accomplish
the same task.

As stated many times throughout this book, many automation
engineers approach problems with a hardware-first mentality. This is
a very poor mentality that can drastically increase the cost, size, and
points of failure for the project. Adding extra hardware can often
solve a problem; however, if a problem can be solved
programmatically, it is usually best to opt for that path. So, how
should an engineer view hardware and software in a system?

How to view software and hardware in a
system

Up until now, this book has posed what many would see as a
counter-intuitive view of automation engineering. Usually,
automation engineering students and engineers are taught to
approach software with a hardware-oriented view; hence, the
creation of Ladder Logic, which simulates relay-logic diagrams.
However, when viewing the hardware-software relationship, one
needs to view software as the workhorse of the system. Software
should be in charge of the orchestration of all the functionality of the
system, while the hardware only exists to house the software and
control the machine. Hardware in a system should serve one
purpose and one purpose alone, to support the software. As stated
before, this can seem quite counter-intuitive because many
academic programs focus on hardware significantly more than
software.

Software is not a cure-all solution

Software is not a cure-all. Many automation programmers typically
take on another very poor philosophy in that they usually try to
compensate for faulty hardware with software. This is not the goal
of a program and can lead to many issues down the line. A code
base should never be altered to compensate for a broken physical
part. The only time a code base should be modified is when a new
feature is being added, an old feature is being removed, changing
equipment behavior, or a physical part of a process is altered.

There is one exception to this rule and that is when calibrations and
similar operations are required. Sometimes, a machine will not have
an interface to input data. This is especially true for older machines.
In these cases, the only way to input the data is by modifying the
values in the program. In cases such as calibration, an engineer is
not modifying core logic; they are only modifying certain values in
the code base.

Thus far, we have explored what a program is as well as where and
how it should be used. We've also explored the general steps of how
to outline an algorithm. The one thing we have yet to explore is how
to create a program.

Understanding programming
languages

The key component of creating a program resides in what is called a
programming language. A programming language is a special
language that both a computer and a machine can understand.
There are many different programming languages that are available,
especially for PLCs. In terms of general-purpose text-based
programming languages, there are a few popular ones, which are as
follows:

e Java

C/C++
o C#

Python

JavaScript/Node.js

There are many more general-purpose programming languages
available, these are just a few. In terms of PLC programming, there
are some specific languages that can be used depending on the PLC
being used, which are as follows:

e Ladder Logic

e Sequential Function Chart
e Function Block Diagram

e Structured Text

Now, having so many different programming languages may seem
redundant, but each language has its own niche, strengths, and

weaknesses, and many of the languages follow different paradigms
(ways of structuring code). With that, let’s explore the basics of a
programming language.

Syntax

Each programming language has a unique set of rules. The rules
that govern the language are called syntax. The syntax for a
programming language is very similar to the syntax of a written
language. That is, for the computer to make sense of the program, it
must follow a certain grammar construct and sequence. For the
most part, each language will have a unique syntax; however, many
general-purpose languages follow the general rules of the C
programming language. Now, a computer or programmable device
doesn’t understand written language the same way as humans do.
Computers speak the language of 1s and 0s or ons and offs. This
means that there has to be an intermittent step to convert the
human-readable program that a person writes into a program that
an electronic device can understand.

Translators

Obviously, a program has to be translated from human-readable
code to a language a machine can understand. This conversion is
accomplished in translation. There are different types of translations;
however, for everyday use, the two most common are compilers and

interpreters. The differences between the two can be summarized
with the following:

o Compiler: A compiler is a program that reads all the source
code at one time and converts the code into commands that a
machine can understand. During the compilation process, the
compiler will check the human-readable code for errors that
would otherwise cause errors in the compilation process and will
abort the process if any errors are found. The final output from
the compilation process is all the human-readable code converted
into machine commands.

o Interpretation: An interpreter is another type of program that
converts human-readable code to machine code. However, an
interpreter works differently than a compiler. Where a compiler
converts the source code all at once, an interpreter will convert
the code to machine code line-by-line as the program runs.
Interpreters are typically used with scripting languages, but that’s
not necessarily a hard rule. Interpreted programs are generally
slower than compiled ones due to the line-by-line translation;
however, on modern machines, this is usually not noticeable.
Interpreted software can pose more risk during development as
fatal errors are not caught until a block of code is run. This
means unusual conditions can pose problematic risks with
interpreted languages.

Whether or not a program is compiled or interpreted may seem
academic; however, it is very important to understand how a

program is translated to machine-understandable code. In terms of
PLCs, most programming systems utilize compilers; as such, when
writing the software, you must ensure that you do not violate the
rules of the programming language. Now that we have explored the
basics of translators, we need to shift our attention and explore
machine commands.

Machine instruction

The commands that a program translates into are called machine
instructions. Machine instructions are special commands unique to
a processor or family of processors. These instructions command the
processor to carry out operations such as moving data around and
logical operations. Typically, a developer won't have to directly work
with the machine instructions, but a well-rounded one should be
aware of them.

So far, our attention has been focused on the mechanics of a
programming language. However, there is more to a programming
language than simply the way it works. The next vital concept that
we need to explore is programming paradigms.

Language paradigms

Most programming languages require programmers to organize and
structure programs in a specific manner. This way of organizing code

is called a programming paradigm. The most common paradigms are
as follows:

¢ Object-oriented

Functional

Procedural

Declarative

Imperative

This is not a complete list of programming paradigms, but these are
very common. Most languages are not pure, meaning they do not
completely follow one paradigm or another. Most are a mix of
paradigms and tend to cherry-pick the features that best suit the
language.

Of all the paradigms, Object-Oriented Programming (OOP) is
the most common. Almost all modern programming languages
support OOP to one extent or the other. In fact, OOP is so ingrained
in modern programming that it is a prerequisite for any programmer
hoping for employment. In short, object-oriented programs utilize a
data structure called a class, or as they are known in IEC-61131-3,
function blocks. A class or function block is essentially a digital
blueprint of an object. This is an extremely important concept;
however, this concept goes beyond the scope of this book.

For PLCs, the programming paradigm will either be procedural or
object-oriented. The IEC-61131-3 standard supports OOP, but
whether or not a PLC manufacturer supports it or not will vary.

Common PLC programming systems that support OOP are those that
are built off the back of CODESYS.

Understanding which paradigm a programming language uses will
seem very academic to many inexperienced readers. However, this is
one of the most important aspects that a developer should know as
it will dictate the way they structure their program. Though a
program’s structure is very important, it is also important to
understand the concept of keywords to implement that structure.

Keywords

Every programming language has keywords. Keywords are
reserved words for a programming language that performs certain
tasks. For example, keywords are used to declare control
statements, function blocks, functions, datatypes for tags, variable
blocks, and so much more. In other words, keywords are
commands. When a keyword is used, it will signal to the PLC to do
something such as compare two numbers or create a variable.

Keywords cannot be used to name variables, functions, function
blocks, or anything else; as such, they are referred to as reserved
words. Keywords in a decent programming editor will change color
to let you know that you are using a reserved word. Keywords will
vary greatly from language to language as well as their functionality.

Dos and don’ts of learning keywords and
syntax

Keywords and syntax can pose a major pitfall to developing
programmers. Many inexperienced developers feel they have to
memorize a language’s syntax and keywords to be a quality
programmer. This is a grave misconception and a stereotype that is
often propagated by inexperienced developers and low-quality hiring
managers. The key to mastering a programming language and
mastering programming, in general, is learning the key concepts that
govern the language. In other words, think of learning a
programming language the same way that a person would learn a
foreign language. If you were to compare a high school student who
is learning Latin to a linguist who is learning the language, who do
you think would have a better grasp of the language? Hopefully, you
would say the linguist who understands the concepts that govern
language syntax over the person who is simply memorizing phrases.
Learning a programming language is no different. Once you learn
the core concepts behind the language, you'll be able to master not
only the language you're working on but any language you
encounter in the future that follows the same paradigm.
Consequently, when you’re reading this book or reading
programming material in general, don't focus on the syntax or
memorizing the pattern, but instead focus on the core ideas behind
the concept.

For keywords to make sense programmatically, the flow of a
program needs to be understood. With that, we're going to look at
the flow of a program.

Program flow

The flow of a program can often be confusing to an inexperienced
programmer regardless of whether they are a traditional
programmer or an automation programmer. However, the overall
flow of a program is very simple. In the most basic sense, a program
will flow from top to bottom. A program will start at the very first
command and will end at the last command. However, a program
can have multiple paths to that last command.

Though a program will flow from top to bottom, the path it takes to
the bottom may vary. A program can branch out into different paths,
code blocks can be looped over, and functions that live in other files
can be called. It is also important to understand that the last
command that is executed is not necessarily the last command in
the file or group of files. We're going to explore some of these
concepts in more detail later on in the book; however, for now, just
assume that a program will start at the first command and end at
the last command.

Program iteration

For most programming languages, when a program executes its final
command, it will automatically terminate; that is, it will stop running
and will need to be restarted by a user. Having to restart a program,
especially in a high-paced automation setting, is not optimal.
Therefore, for applications such as PLC programs, you want the
program to run in a loop. This means when the last command is

executed, you want it to loop to the top of the program and start
over from the first command. Consider Figure 3.1:

First Command

Last Command

Figure 3.1 — Program flow

Figure 3.1 shows the general flow of a PLC program. Most code
blocks can be looped over, but to do that will require a special set of
keywords. Most PLC programs, however, will generally run in an
automatic loop without the need for any special code.

This is very important to remember as you're developing PLC
programs. It is common for many PLC programmers, especially those
who have training in traditional programming, to try to create a loop
for the PLC program. This additional loop is not only unnecessary but
can cause performance issues in the program. Always remember
that your PLC program will always restart at the very first command
when it reaches the last.

The last relevant concept to explore is the IEC 61131-3 standard. So
far, we've explored the guts of the programs and programming

languages, but we haven't really explored how that all integrates
into the IEC 61131-3 standard. The following section is going to
explore the standard and how everything fits together for PLC
programming.

Exploring the IEC 61131-3 standard

Most of the major PLC brands follow what is known as the IEC
61131-3 standard. The standard is designed to add programming
uniformity across all the brands that utilize the standard. The
standard provides uniformity for the following:

e Syntax

e Base keywords

e Language semantics
In other words, when utilizing a PLC that is compliant with the
standard, one can expect a similar programming experience when
programming any device that follows the standard. This means that
a programmer will not have to worry about learning a different PLC
language, as the core commands and grammar will be the same.

Currently, the IEC 61131-3 standard provides programming protocols
for the following PLC languages:

e Ladder Logic
e Structured Text

e Instruction List

¢ Sequential Function Chart

e Function Block Diagram

Depending on who you speak with, learn from, or work with, the
names in the preceding list may differ. For example, the ladder
language can be referred to as ladder diagram programming, Ladder
Logic programming, or any other variation. Sequential Function
Chart is often referred to as sequential flowcharts, or simply
flowcharting. Structured Text is often referred to as simply text, and
so on. A lot of the name variation is due to the slang and culture of
the programmers. Regardless of what the language is referred to, an
IEC 61131-3-compliant device will follow the same general rules.
Though there will be similarities in programming-compliant devices,
there are some pitfalls to be aware of.

IEC 61131-3 pitfalls

The first significant pitfall that one needs to be aware of is that
though the standard does create uniformity across the programming
languages for compliant devices, it does not mean that programs for
one PLC model can be downloaded to another. Generally, software
written for one PLC will not port over to another PLC brand or, in
many cases, another model of the same PLC brand. Much of this has
to do with the way the code is compiled, the architecture of the
devices, and so on. This means that though the syntax and grammar
may be similar across compliant devices, a developer cannot simply
take a program file for one PLC and download it to another.

Another pitfall to look out for is custom functions in the
programming environment. It is not unusual for manufacturers to
include their own prebuilt code in their programming environment. It
is also not uncommon for manufacturers to /ock out the ability to use
certain functions in certain models. This means that if a developer
has a program for an IEC 61131-3 PLC and they try to port it over to
another device, even if the other device is compliant, it may not
work. That means that function may have to be manually
programmed in.

The last pitfall to look out for is the features that are included in the
PLC programming language. It is important to remember that the
IEC 61131-3 standard is just that, a standard. This means that PLC
manufacturers can cherry-pick what IEC 61131-3 features they want
to include. A common example of this is support for OOP. OOP is a
novel concept in the PLC world. As such, many manufacturers have
not integrated support for the paradigm yet. This means that if you
were to try to port a program that utilizes OOP architecture and
keywords to a device that does not support the paradigms, the
developer will likely be met with a series of compilation errors. The
same goes for any feature in the IEC standard; just because the
standards support it, doesn’t mean the device will.

A key issue faced by many students who are required to study

software development, and even entry-level developers, is learning
to think like a machine. Unless a person spent their formative years
writing code, it is unlikely that the logical thinking required to write

code will come naturally to them. However, there is a simple exercise
to help with this that we're going to explore in the final project.

Final project

The key to learning to program well is learning to think like a
machine. In other words, to be an effective programmer, a person
needs to learn to think algorithmically, that is, in steps. One exercise
that many programming instructors like to have their students do to
master this skill is to have them take daily tasks and break them
down into a series of steps. For the final project, we're not going to
use a daily task but a task that one would normally see in the
automation world.

A common task in automation would be to load parts onto a
conveyor and start the machine. We're going to take this process
and turn it into a series of steps that can later be converted into a
program. The goal of this final project is not to produce pseudocode
or a flowchart, as those concepts will be explored later. For now, all
we need to do is produce a series of steps to accomplish our task.
With that, let’s look at loading the strategy we're going to use.

Strategy

To accomplish any task in programming, we need to look at the
overarching problem and break that down into individual tasks. As
such, we're going to break the problem down into two parts:

1. Loading the conveyor

2. Starting the machine
We can use these two steps as a roadmap to further break the
problem down. So, the first thing we're going to do is tackle the
conveyor steps. Before reading the steps, think about how you
would load the conveyor. Write those steps down somewhere and
compare them to the ones that follow. There are no right or wrong
answers to this project. You can make the steps as detailed as you

want; this is merely an exercise in algorithmic thinking. However,
your algorithm should have at least three steps in it.

Conveyor

To load the machine, we will need to perform the following steps:
1. Bend down.

Wrap hands around the box.

Apply pressure around the box to grasp it.

Stand up.

Rotate to place the box over the conveyor belt.

Lower the box onto the belt.

N O U oA W N

. Release grip.

For the operator to place a box on a conveyor belt, there could be
roughly seven or more steps depending on how detailed you made

your algorithm. With that part out of the way, we can now focus our
attention on starting the machine. For this part, we're going to
assume that there is a red light when the machine is off, and an E-
Stop that needs to be released. After the E-Stop is released, the
operator will need to press the blue reset button and then a green
button. If everything is working correctly, a green light will come on.

Start machine
To start the machine, we could use the following algorithm:
1. Check whether the light is red.

2. Release E-Stop.

3. Press the blue button.

4. Press the green button.

5. Check to ensure the light is green.

Now, we have two algorithms that solve two different parts of the

overall task we were assigned. Now, to complete the whole task, we
can combine the two algorithms like so:

1. Bend down.

2. Wrap hands around the box.

3. Apply pressure around the box to grasp it.
4. Stand up.

5. Rotate to place the box over the conveyor belt.

6. Lower the box onto the belt.
7. Release grip.

8. Check whether the light is red.
9. Release E-Stop.

10. Press the blue button.

11. Press the green button.

12. Check to ensure the light is green.

Now, the key takeaway from this exercise is to learn how to break
big problems into smaller problems and think about simple tasks in a
systematic way. Once those skills are mastered, you'll shine as a
programmer.

Summary

In this chapter, we explored the basics of programming and
programming languages. The goal of this chapter was to provide you
with a gentle introduction to programming. We achieved this by
exploring concepts such as programming languages, programming
paradigms, program flow, the IEC 61131-3 standard, and
programming logic.

The core takeaway from this chapter is to understand how programs
work and flow at a high level, and to understand how to think like a
machine. Thinking like a machine may be a completely alien topic
now, but with practice, it'll become second nature. The best advice

for those still struggling with algorithmic thinking is to pick a few
more tasks, such as tying your shoes, combing, your hair, or taking a
shower, and create little algorithms like the one in the final project.
After you do that a few times, it will become second nature. Do not
get overwhelmed by the size and scope of the task. If the task
seems large, simply break it down.

Once you feel comfortable with algorithmic thinking, you are free to
move on to the next chapter, which will cover the concept of
computer memory. However, before you proceed, it is especially
important that you feel comfortable with algorithms and the general
gist of how a program works. Therefore, if you need to take a break
and run through this chapter a few times, do so. The next chapter is
going to be about unleashing the power of computer memory

Further reading
e JEC61131-3

https://plcopen.org/iec-61131-3

e Compiler versus interpreter

https://www.geeksforgeeks.org/compiler-vs-interpreter-2/

¢ Machine instructions

https://www.geeksforgeeks.org/machine-instructions/

e Programming paradigms

https://cs.Imu.edu/~ray/notes/paradigms/

https://plcopen.org/iec-61131-3
https://www.geeksforgeeks.org/compiler-vs-interpreter-2/
https://www.geeksforgeeks.org/machine-instructions/
https://cs.lmu.edu/~ray/notes/paradigms/

Questions

1.

e T = T =S
AW N = O

© ® N O VA W N

What is the difference between a compiler and an interpreter?

What is IEC 61131-3?

. What is a machine instruction?

What is a programming paradigm?

Does IEC 61131-3 support OOP?

What is OOP?

Is IEC 61131-3-compliant code always portable between devices?

Write an algorithm for withdrawing $20 from an ATM.

. What is a language translator?

. What are the two types of language translators explored so far?
. What are the languages that the IEC 61131-3 supports?

. In what direction does a program flow?

. What is syntax?

. What are keywords?

4

Unleashing Computer Memory

The name of the game is memory. For a program to run smoothly, it
will need adequate memory. Memory is a vital component of any
programmable system. Computers have memory, microcontrollers
have memory, and programmable logic controllers (PLCs) have
memory. However, memory is a very complex topic that many
automation engineers often take for granted. Typically, most
automation programmers have an if it can be uploaded to a device,
it’s fine mentality. This mentality can get a person through their day-
to-day activities, but it will hold them back in the long run, especially
when more complex topics such as pointers need to be utilized.

Memory is a complex topic that can often baffle inexperienced
developers. Memory has hardware aspects and software aspects that
have to work in unison for a device to effectively function. The
concepts that govern memory can often be very confusing for those
who are not well versed in computer science, and as such their
software and overall system will suffer for it.

This chapter is going to look at memory from a theoretical point of
view. Looking at memory in this manner will show the complexity
and intricacies of memory and how to effectively use memory in a
PLC program. To do this, the following topics are going to be
explored:

What is computer/PLC memory?

How does computer/PLC storage work?

Volatile memory

Non-volatile memory

Memory addresses

Common storage devices

To round out the chapter, we're going to explore what is stored in
memory. Before we begin, it should be noted that many find the
study of memory mechanics very boring. Unfortunately,
understanding how memory works is of vital importance to
effectively writing PLC software. If you fall into this category, think of
this chapter as a quick necessary evil that'll only take a short time to
read!

Technical requirements

This chapter is going to explore memory from a theoretical
perspective; no software will be needed to follow along with this
chapter.

What is memory?

Memory is often used as a catch-all term for data storage. That is,
any type of storage is referred to as memory. However, grouping all
types of storage together is not accurate. In actuality, there are two

types of memory that are used in digital devices such as a computer
or PLC.

Memory

Though it is easy to conflate storage with memory, in reality,
memory is just temporary storage. This short-term memory is often
referred to as random-access memory (RAM). RAM is used for a
machine’s immediate operations; for example, for running software
such as the operating system or PLC code.

RAM allows the central processing unit (CPU) to quickly access
program information from a storage device. As such, RAM can be
thought of as temporary, high-speed memory. Fundamentally, RAM
in itself is @ microchip. However, for devices such as personal
computers and even some PLCs, RAM will come packaged in a circuit
board that contains multiple RAM chips. This whole device,
colloquially called RAM, can then be installed in the motherboard of
the device by means of a slot on the board. In terms of modern
compact devices such as phones, tablets, and common PLCs, RAM is
often baked into the motherboard and is placed close to the CPU
chip. Common types of RAM are as follows:

e Dynamic RAM (DRAM)
o Static RAM (SRAM)
e Double Data Rate SRAM (DDR SRAM)

e Double Data Rate Synchronous Dynamic RAM (DDR3
SDRAM)

e Rambus Dynamic RAM (RDRAM)

The type of RAM in a device will vary depending on many factors
such as price and application.

The other type of storage that is often commonly referred to as
memory is called storage.

Storage

Storage is the term that most people use to refer to memory. As the
name suggests, storage is used to permanently store data such as
files, images, programs, and your operating system. In terms of
PLCs, storage is often used to store things such as logged data and
PLC programs. As logic suggests, the larger your storage volume,
the more data you can store. This means that with a larger storage
volume, more data can be stored, the larger your PLC program can
be, and so on.

For most PLC programs, the standard storage volumes that come
with CPU modules will suffice for most projects. However, in extreme
cases, extra storage may be required. This is especially true for older
PLCs that had very limited resources. Many PLCs have fixed storage,
which means they cannot be expanded. However, high-end PLCs
such as Beckhoff PLCs do have SIM card-like modules that are used

to house the PLC's program, operating system, human-machine
interface (HMI), and logged data.

Knowing whether your PLC's storage can be expanded or not is vital
to the success of a project, especially if that project uses data
logging. When large amounts of data are being constantly logged,
the storage can fill up very quickly. Couple that with a hefty PLC
program, HMI, and operating system, and the storage volume could
be easily filled in a short amount of time.

Typically, if the project requires constant logging, especially if the
logging is coming from multiple sensors, the data is usually stored
on a separate machine. For applications such as power plants and
large factories that are constantly collecting data, the PLC is
networked into a larger Supervisory Control and Data
Acquisition (SCADA) system or networked into some other
software that connects to a database of some type. The database is
usually either stored on a hefty server or, more recently, in the cloud
where applicable. The PLC is usually rigged to act as a middleman to
absorb and perform basic processing of the data and then pass the
data along to the database via the chosen means.

In short, permanently storing data on the PLC itself is possible but is
often not optimal. With the advancement of computing, and by
extension PLCs, it is usually better to try to store long-term data on
a device that isn’t the PLC. Compared to the amount of storage in a
modern server computer or the seemingly infinite storage capacity of
the cloud, a PLC’s internal memory will always be lacking, and

should therefore be used as a last resort for the long term housing
of data.

PLC memory isn’t as robust as storing data on a server or the cloud.
If one considers the environment that a PLC is often used in, one
would realize that the conditions can be dirty and rugged and are
often prone to extreme temperature fluctuations. This means that
the life of a PLC is marred by conditions hostile to electronic
components. If a PLC with fixed storage fails, all the data will be lost
with the unit. On the other hand, even with a removable memory
module, the data can easily become corrupted and lost due to
failures with the PLC.. A common example of this occurring in
higher-end PLCs, especially those that run an operating system such
as Windows, is when the PLC goes into an emergency shutdown or
rapidly loses power. If the system is writing to or reading from a file
during the shutdown or power failure, the file could become
corrupted. This means that whatever was in the file could be lost.

Overall, the only things that are wise to store on a PLC are the PLC
program, HMI, other non-critical data, and so on. Not all PLCs can
support database communication and, by extension, storage;
however, many mid- to high-end PLCs support communication
protocols that can be used to communicate with databases either on
a server or in the cloud.

People often take the storage mechanism for granted. For many, the
process of saving a file and having that file permanently accessible
on the device is an act of magic. Most don't care how the data is
stored as long as the data is there when they need it. For most, this

is perfectly fine; however, to understand memory, it is important to
understand how memory and storage work.

How computer/PLC memory and
storage work

Growing up in the late 90s and early 2000s, it wasn't unusual to
hear old-timers refer to memory as “black magic.” That is, they
would simply write storage and memory off as something computers
did just to work. However, as computer scientists, we need to be a
little more diligent and understand how memory devices work. To
begin the discussion we're going to explore how older, yet widely
used, storage devices, hard disk drives (HDDs), work.

HDDs

HDDs once ruled the world of computer storage. HDDs could hold
copious amounts of data and, for the most part, were reliable. HDDs
were common in servers and personal computers for many years but
eventually gave way to solid-state drives (SSDs).

HDDs could best be thought of as really large and reliable CDs. To
summarize, the device works by magnetically encoding data to a
disk, or as it is formally called, the platter. The platter is divided up
into tiny subsections. When data is written to the patter, a section is
either magnetized with the north pole facing up to represent a 1 or
magnetized with the south pole facing up to represent a 0. When a

program needs to be read off the disk, the head will go to where
that program is stored on the platter and read the magnetized
sections.

HDDs are excellent devices; however, they have drawbacks. One
major drawback is that the disk can get worn out over time, the
head will fail after a given amount of time, and they are very
susceptible to magnetism. HDDs are also very slow compared to
SSDs, noisy, large in physical size, consume more power, and are
prone to mechanical failures.

For the data to be read off the disk, the disk has to be spun. The
faster the disk is spun, the faster the drive is. However, there is a
limit to how fast the disk can spin. Typically, a high-end commercially
available HDD will spin at about 7,200 RPMs. SSDs, on the other
hand, are typically 100 times faster, which means quicker boot times
and program loading times.

SSDs

SSDs are the newer and faster iteration of storage devices. In many
ways, SSDs can best be thought of as flash drives on steroids.
However, unlike HDDs, SSDs do not have any moving parts, which is
why they are significantly faster than HDDs. The main difference
between the two types of devices stems from the storage
mechanism itself. Where a traditional HDD uses a magnetized disk to
store data, an SSD will usually use some form of flash memory to
store data.

Flash memory means that data is electrically written to a series of
chips. Ultimately, this means that the data can be quietly written and
read from the devices. This also means that mechanical failures such
as a stuck head or worn-out platter won't spell the end of the hard
drive. Typically, a high-end SSD will have the following advantages
over an HDD:

o Faster read/write speeds

Less power consumption

Better durability

Permanent deletion of data

No noise

These are just a few attributes that demonstrate the superiority of
SSDs over HDDs, but there are many more.

Though superior in many respects, SSDs do have a few drawbacks.
Major drawbacks include the following:

e Shorter lifespans: Lower-quality SSDs that use NAND for flash
memory often suffer from a limited number of read/write cycles.

e Price: SSDs typically cost significantly more than HDDs. The
higher the storage capacity of an SSD, the more it will typically
cost.

e Storage capacity: Though SSDs are quickly catching up in
terms of storage capacity, they are still limited compared to

HDDs. In terms of pure storage potential, HDDs are still slightly
superior.

There are also other disadvantages of SSDs. Traditionally, SSDs offer
significant advantages over HDDs. Most of the disadvantages,
including the ones listed previously, are usually found in lower-end
SSDs.

HDDs are still commonly used in manufacturing equipment. It is very
common to have to troubleshoot devices that use HDDs, and many
times those HDDs are the culprit. When applicable, it is wise to
replace HDDs with SSDs when the HDD device fails.

In terms of PLC storage, most modern PLCs use some type of solid-
state storage for both the program and any data that is stored on
the device. Generally, solid-state storage is more durable than HDD
storage, which means it will perform better in the rugged
environment in which PLCs usually operate. Now that the different
types of storage have been thoroughly explored, we can move on to
exploring the differences between the concepts of volatile and
non-volatile memory.

Volatile versus non-volatile memory

To keep things consistent with everyday speech, we're going to
continue to use the term “"memory” for any device that can store
data. Though we did make a distinction in the prior section, from
here on out, the term “memory” will refer to either a storage device

or a device such as RAM. In terms of application, there is a major
difference between volatile memory and storage. Essentially, the
difference between the two types of memory boils down to whether
or not data is permanently stored after a machine is power cycled.
To begin the discussion, let’s explore volatile memory.

Volatile memory

In a technical sense, the best way to describe volatile memory is as
non-persistent memory. Non-persistent memory is a fancy way of
saying that the data stored is lost when the chips lose power. A
common example of volatile memory is RAM. When a program loads,
it gets dumped into RAM, where it is then executed. The program
will track changes as long as there is constant power to the device.
However, once the power has been removed, all these changes will
be permanently lost.

Typically, changes made to data in the PLC's memory, called
variables, are volatile. This means that if an operator enters the
number of parts a machine needs to make, or inputs a timer to keep
track of how long a process has been running, these values will be
lost if the PLC is shut off for any reason. Typically, this won’t matter
much; however, for long-term storage of the PLC program itself,
variable values that must persist during a shutdown phase, and
more non-volatile memory must be used.

Non-volatile memory

Non-volatile memory is often referred to as persistent memory.
Persistent or non-volatile memory is memory that can keep data
stored even when the device is not powered. Traditionally, a non-
volatile memory device would be something such as an SSD or HDD.
Where RAM is an example of volatile memory, read-only memory
(ROM) would be an example of non-volatile memory.

Non-volatile memory is of essential importance to PLC programming.
All PLC programs and collected data have to be stored in non-volatile
memory. Obviously, a PLC programmer would want their program to
persist even when the PLC is powered down. However, persistent
memory is used for much more than just storing PLC programs. As
was stated before, it can be used to store data long-term as well.

Quite often, PLC programmers will find themselves needing to retain
settings even after a power cycle. One such application is calibration
data. Calibrating machines can often be a daunting task that is very
detailed and can take a lot of time. If all the calibration data was lost
when the PLC was powered down, the company could lose
thousands of dollars to get the machine operational again. For data
such as this, one has to store the data in persistent memory.

Luckily, many higher-end PLCs, especially those that follow the IEC
61131-3 standard, have what are called persistent variables. For
the most part, a persistent variable is a place in memory that is non-
volatile. For data such as calibration data or configuration settings,
the programmer can opt to store this data as a persistent variable
for permanent storage.

Memory, in general, is a very powerful computer science concept.
There are many ins and outs to how memory works and organizes
itself.

Memory addresses

Up until this point, we have explored the types of memory and
memory devices. However, what we have not explored is how
memory works. As such, this section is going to be dedicated to
exploring how memory works.

How memory works

Conceptually, memory can be visually represented by Figure 4.1:

0x01 0x02 0x03 0x04

Figure 4.1 — Computer memory representation

Computer memory can best be thought of as tiny sections that
compose the overall memory system. In the case of Figure 4.1, each
memory square is a memory block. That is, each square will hold a
piece of data such as the number of parts to make or the state of
the machine.

Each memory block has an address that is used by the PLC to
organize and keep track of the memory locations. In the case of
Figure 4.1, the address is the alphanumeric label in the diagram.
When data needs to be retrieved, the computer or PLC will invoke
the memory address and retrieve the value. On the flip side of that,
if the machine needs to insert or change the value of the data, it will
again invoke the memory address and inject the new value into it.

Computer memory — an analogy

The technical explanation for computer memory can be a bit jarring
and confusing for the inexperienced. However, the best way to think
of computer memory is as an apartment complex. A typical
apartment complex is a building subdivided into separate units. In
the case of memory, the building would be the storage medium such
as the platter on an HDD, and the apartment units would be the
memory labeled memory blocks.

Also, similar to the way apartments have unit numbers, the memory
cell has a unit number as well (that alphanumeric string). When a
new resident moves into an apartment unit, they will be assigned a
unit number. When they move out, the apartment complex owner
will be aware that the resident is leaving. This is almost exactly how
computer memory works. When something needs to be written to a
memory block, the device will select and open the memory block
and let the data move into that unit. If the data ever needs to be

retrieved, it will go to that address and pull the data out so it can be
used.

Memory addresses are very powerful concepts and can be used to
great effect in PLC programming. Most PLC programming
environments will allow a developer to directly access a memory
address and modify the data directly. This is an advanced concept
called pointers. Using pointers to directly access data in memory
comes with great risk, as it can create what are called memory
leaks, which can harm the efficiency of the PLC program or even
crash it.

Typically, the memory address that a machine will use will not be
readable by a human, nor will it provide much context as to what it
is used for. To efficiently use memory, a developer will need to use a
variable, which can be thought of as a human-readable alias, for the
address. Variables or tags will be explored in more detail in later
chapters. For now, we're going to shift our attention to storage
devices.

Common storage devices

It is hard to exist in the 21st century without knowledge of common
storage devices. However, for the sake of being thorough, it is
important to cover these concepts and how they can be used in an
automation environment. With that, the first device we're going to
explore is a USB flash drive.

USB drives

Probably the most common storage medium in use are USB
storage devices. These are small, portable storage devices that
can be used on any computer. To use a USB drive, all one has to do
is plug it into @ USB port and let the driver software automatically
install. These devices can hold copious amounts of data with some
high-end models capable of storing over 16 TB of data!

For automation applications, USB drives are mostly used to move
data from device to device. Obviously, USB devices are mostly used
with higher-end PLCs that have USB ports and utilize an operating
system that can support USB drives, such as Beckhoff PLCs, which
run Windows. These devices can also be used with automation
systems that live on computers, such as SCADA systems. These
devices are used to transport data such as files, logs, and even small
programs from machine to machine. USB drives are not the only
storage devices that utilize USB ports. Another device that utilizes
USB ports is a USB drive’s big brother, an external hard drive.

External hard-drives

Another USB storage device is an external hard-drive. In terms of
modern technology, an external hard-drive can have significantly
more storage than a USB drive. External hard-drives also work in a
similar way to USB drives. Both types of devices require a USB port
and a compatible operating system to operate. However, there are a
few advantages to external hard-drives.

Compared to a USB drive, an external drive is advantageous in that
it is more durable than a USB drive and it is a little faster. Another
feature that some consider an advantage is that external drives are
physically larger than USB drives, and are, therefore, harder to lose.
This makes them especially handy in automation applications, as
they can be integrated directly into the system. In some cases,
engineers will create brackets for the external drives and mount
them on a DIN rail where they can quickly be removed from the
bracket.

Regarding automation engineering, these devices are meant for
added long-term storage. For example, it is common to use these
drives with systems that incorporate cameras for image detection.
For systems such as these, it is often important to keep the images
long-term, so they are stored on the removable drive until they can
either be removed or backed up somewhere else. As such, these
devices make an excellent option for devices that need extra long-
term storage and are not hooked up to the cloud or other external
computer systems.

USB-based devices are not the only type of external storage that can
be used with PLCs. Another common device is one that is used with
a smartphone or tablet. That device is an SD card.

SD cards

Unlike USB devices, an SD card does not need a USB drive to plug
into. However, an SD card will need an SD card slot on the PLC, and

the PLC will have to be able to support the device. SD cards are not
meant for the same type of storage that USB drives and external
hard-drives are used for. Where USB devices are mostly used to
store data such as pictures or transport data, SD cards are mostly
used to expand the storage capacity of the device. As such, when
configured properly, the device will allow for larger and more
complex programs.

SD cards come in two types. Nowadays, the more common SD card
is called a microSD card. These cards are smaller but can store
large amounts of data like USB drives. The other type of SD card is a
regular SD card, which is just physically larger than a microSD card.
When using an SD card, it is important to know whether the device
supports a micro or regular SD card. Typically, an SD card adapter
can be used if all that is on hand is a microSD card, and the device
is set up to only support a full-sized card. The microSD card will plug
into the adapter, which will allow it to be used in ports that are
meant for full-sized cards.

Cloud storage

Though not technically a device, the newest type of storage is cloud
storage. As has been briefly mentioned in the past, cloud storage is
storing data in third-party storage devices. This is usually
accomplished by connecting your application to the internet and
routing data to an offsite storage device that exists in the cloud. The
cloud provider will offer storage for the data and regular backups.

This means that the end users will never have to worry about losing
their data. This is a very reliable and safe option for permanent
storage, but it can be costly and does require an internet
connection. If your application is air-gapped, that is, not connected
to the outside internet, or the end user does not want to pay for the
storage, this may not be an option.

Obsolete storage devices

Technology that is used in automation can be very old and outdated.
Systems can be in place with relatively minor changes for 20+ years.
As such, as an automation engineer, it is not uncommon to see very
antiquated equipment, and storage devices are no different. To be
successful as an automation engineer, it is important to have a basic
understanding of what the older storage methods were, just in case
you see one in the future.

CD and DVD-ROMs

CD and DVD-ROMs are not necessarily old technology used for long-
term storage, but they are falling out of favor. Chances are, you've
probably seen and used some type of CD and/or DVD-ROM in the
past. You may have listened to your favorite band’s latest album on
CD or watched your favorite movie on DVD. However, those still
somewhat common CD and DVD-ROMs are being used a lot less
frequently. For storage, CD and DVD-ROMs have been taken over by
external hard drives, USB thumb drives, or cloud storage.

Floppy drives

If you were born after the year 2000, there is a chance you've never
seen a floppy drive before. A floppy drive is a 3.5-inch rectangular
piece of plastic with a magnetic strip in it that is used to store data.
These storage devices ceased production around 2010 and are
incredibly rare in today’s world. However, due to the age of some
automation systems, it is not impossible to come across these
devices.

These devices have moving parts in them that can easily wear out.
This can cause a bit of a pickle since floppy disks are no longer
produced. Therefore, if you come across a system that requires a
new floppy disk, the system is automatically going to have to be
upgraded when it fails. If the drive was used to store any software,
the software will have to be rewritten and the storage mechanism
will need to be changed to something more modern, such as an
external drive.

Typically, floppy drives are used as a transfer mechanism between
old PLC-based systems and old computers. Seeing a floppy disk in a
PLC-based machine is a key indicator that the system is in desperate
need of an upgrade. Usually, these systems will require new storage
mechanisms, PLCs, and other modern hardware.

Summary

This chapter has been a crash course on computer memory with an
emphasis on storage. Topics explored include different types of
memory and storage, storage devices, and the inner workings of

memory. There is much to know about how memory works and
whole books are dedicated to it. However, by this point, you should
have a good grasp of how memory works and what it's used for.
Now that memory has been explored, in the next chapter, we will
explore another very important concept in computer science:

designing a program.

Questions

1.

_ =
= O

© © N 9 U K WD

How does an SSD work?

What is a memory address?

What is an example of an obsolete storage device?
Name two modern storage devices.

What is cloud storage?

What are two drawbacks to cloud storage?

What is a memory block?

What is volatile memory?

. What is non-volatile memory?
. What kind of memory is ROM?
. What kind of memory is RAM?

12. What is storage?
13. What does RAM stand for?
14. What does ROM stand for?

Further reading
e How A Hard Drive Works

https://cs.stanford.edu/people/nick/how-hard-drive-
works/#:~:text=The%?20hard%?20drive%20contains%20a,the%
20stored%200's%20and%?201’s

e SSD Advantages and Disadvantages

http://www.laptoppricelist.in/kb/ssd-advantages-disadvantages

o \olatile Memory vs. Nonvolatile Memory: What's the Difference?

https://www.trentonsystems.com/blog/volatile-vs-nonvolatile-
memory#:~:text=At%20a%?20high%?20level%2C%?20the,after%
20the%?20system%_20shuts%200ff.

o What is cloud storage?

https://aws.amazon.com/what-is/cloud-storage/

https://cs.stanford.edu/people/nick/how-hard-drive-works/#:~:text=The%20hard%20drive%20contains%20a,the%20stored%200%E2%80%99s%20and%201%E2%80%99s
https://cs.stanford.edu/people/nick/how-hard-drive-works/#:~:text=The%20hard%20drive%20contains%20a,the%20stored%200%E2%80%99s%20and%201%E2%80%99s
https://cs.stanford.edu/people/nick/how-hard-drive-works/#:~:text=The%20hard%20drive%20contains%20a,the%20stored%200%E2%80%99s%20and%201%E2%80%99s
http://www.laptoppricelist.in/kb/ssd-advantages-disadvantages
https://www.trentonsystems.com/blog/volatile-vs-nonvolatile-memory#:~:text=At%20a%20high%20level%2C%20the,after%20the%20system%20shuts%20off
https://www.trentonsystems.com/blog/volatile-vs-nonvolatile-memory#:~:text=At%20a%20high%20level%2C%20the,after%20the%20system%20shuts%20off
https://www.trentonsystems.com/blog/volatile-vs-nonvolatile-memory#:~:text=At%20a%20high%20level%2C%20the,after%20the%20system%20shuts%20off
https://aws.amazon.com/what-is/cloud-storage/

5

Designing Programs — Unleashing
Pseudocode and Flowcharts

Believe it or not, a quality program requires a design. Not designing
a program is a lot like driving to work without knowing where you're
going. This is something that is often overlooked by inexperienced
programmers and, especially, PLC programmers. To ensure you have
a quality, efficient program on your hands, you need to design the
algorithm before you even think about touching a keyboard.

Much like an electrical engineer would never start building a circuit
without creating a diagram, a programmer should never start writing
a program before at least a rough design is implemented. A program
design is a lot like a roadmap for the programmer. Similar to the way
a map will save a driver many hours of driving around aimlessly, a
program design will save a programmer countless hours of trial and
error, as well as provide documentation that other developers can
follow should they also contribute to the project or inherit the
project in the future.

Designing a program is multifaceted, the same way designing an
electrical or mechanical system is. A program is usually designed at
a high level, and then each component is subsequently designed.
There are a lot of different design techniques out there, but for this

book, we are going to look at two techniques called pseudocode and
flowcharts.

To understand how to design a program, we're going to look at the
following concepts:

e What are pseudocode programs and flowcharts?

Why use pseudocode and flowcharts in PLC programming?

What is the difference between flowcharts and pseudocode?

Tools needed to implement pseudocode and flowcharts

Techniques for using pseudocode and flowcharts

Example exercises that use both techniques

Finally, to round out the chapter, we are going to design a robot
startup program. For the final project, we're going to build the
program in pseudocode and with a flowchart to drive in the
concepts.

Technical requirements

To follow along with this chapter, access to draw.io Will be needed

for flowcharting, and some type of text editor will be needed for
pseudocode. For this chapter, any text editor can be used.
Recommended text editors are as follows:

e Notepad

e Notepad++

e Microsoft Word

What are pseudocode programs and
flowcharts?

The first step in developing a very robust and long-lasting program is
understanding design methodologies. Depending on the design level
— that is, if you’re working on a small component of the system or
the overarching architecture — there’s a design methodology that will
suit your needs. For this book, we're going to be concerned with the
two most common methodologies that are employed by software
developers of all types: pseudocode and flowcharts. To begin our
design discussion, we need to first look at pseudocode.

Pseudocode

One of the easiest design tools a programmer has at their disposal is
pseudocode. Pseudocode is an extremely simple concept that can
help programmers work out their programs in everyday language.
However, the sheer simplicity of the technique will often stump
inexperienced programmers.

What is pseudocode?

Pseudocode is not a programming language, nor is it meant to
produce a working product. Instead, pseudocode is a design tool
that is meant to help developers express their would-be

programming logic in a way where they are not constrained by
things such as syntax or programming structure. In other words,
pseudocode is a way for programmers to work through their
programs’ logic using everyday language.

Developing programming logic with pseudocode is unique compared
to many other design tools. Pseudocode is not defined by any rules.
There is no syntax, no grammar, symbols, or anything else to
memorize or learn. Pseudocode can be written using the developer’s
own natural language and with their natural way of speaking. This
means the only real “rule” is that the developer, along with anyone
else, should be able to understand pseudocode when they revisit it
in the future.

Now, there are no rules that directly govern pseudocode; that is,
there is no true standard to follow. However, some organizations do
implement rules on how developers should structure their
pseudocode projects. These instances are usually relegated to places
that require heavy documentation or in academia. Many
undergraduate programming programs will usually have a format for
students to follow; however, as stated before, once a student
graduates, the only time pseudocode format will matter is if they are
employed with an organization that has very strict documentation
standards.

What does pseudocode look like?

To understand what pseudocode is, the best thing to do is to look at
an example. To demonstrate pseudocode, let’s explore a simple
program that can take user input, calculate the area of a circle, and
finally display the calculated area:

radius = input
area = 3.14 * radius”?2
display (area)

As can be seen, this example uses a simple intuitive syntax. To
represent an input command, we simply used a variable assigned to
the word input. The next line takes the proverbial input on the first
line and performs a calculation with it. Finally, the last line
represents displaying the computed area on the screen.

The key takeaway from the example is that pseudocode can be
written any way you want it to be. However, you want it to make
sense to yourself and to others. For example, each line in the
example is clearly defined and clearly states what its purpose is. This
means that all one must do to turn this into a real program is to take
the lines in the example and convert them to the desired
programming language.

NOTE

Pseudocode is not meant to produce a working program; it is just the symbolic
representation of the general logic for a working program.

Overall, pseudocode is a very common design technique to help
programmers work out their logic. This technique is especially useful
for inexperienced developers looking to iron out their logic before

they are bogged down with things such as syntax and the
programming language’s grammar. Though it is a very popular and
useful tool, it is not the only design technique that can help
developers work through their logic. Another very popular design
technique is a technique called flowcharting.

Flowcharting

Many people prefer graphical representation to written tasks.
Naturally, software developers will often opt for a graphical tool as
well. One way to graphically represent programs is with flowcharts.

Flowcharts are very prevalent in automation engineering. Flowcharts
are so prevalent in automation that there is even a programming
language governed by the JIEC 61131-3 standard that uses
flowcharts to write programs. There are also programming systems
such as Flowgorithm that can be used to write actual programs,
albeit these systems are usually used as teaching tools in academia
or for beginners learning to program.

What are flowcharts?

As stated before, flowcharts are graphical representations of a
process. Since programs are processes, they are excellent tools that
graphically represent the flow of a program. Unlike pseudocode,
there are rules that govern how flowcharts should be drawn, mainly
the meaning of the symbols. As such, when learning to flowchart out

a program or process, it is first necessary to understand flowcharting
symbols and what they mean.

Flowchart symbols

Basic flowchart symbols can be found in Figure 5.1:

(= ©

Processing Function
Flow
Input/Output
—_—>

Figure 5.1 — Basic flowchart symbols

Each of these symbols is kind of like keywords in a regular
programming language. The following is a breakdown of what each
symbol does:

o Start/Stop: As the name suggests, this symbol represents the
beginning and end of the algorithm. It is not uncommon for
designers to omit these symbols. Technically, though, the very

first symbol should be a circle with the word Start in it, and the
last symbol should be the very last symbol with the word End.

Note that the words Start or End may be replaced with different
words depending on the system or standard that is being used.

Decision: This symbol represents different paths that a program
can take. In other words, these are conditional statements

equivalent to an if statement in a general-purpose programming
language. Actual flow control will be explored in detail in Chapter

statement simply means that it is a different path a program can
take under a certain condition.

Processing: Processing symbols are used to represent individual
steps in a program that “do things.” For example, a processing
command can represent adding numbers, processing a string,
declaring a variable/tag, or anything along those lines. In other
words, processing is just a representation of a generic operation
in the program.

Function: Functions are an advanced topic. A function is a block
of code that performs a task. At first glance, this may seem like a
processing symbol or keywords; however, a function is a group of
operations that perform a specific task. For example, all
languages support the basic operations of addition, subtraction,
multiplication, and division. However, many languages don't have
built-in support for calculating the area of a circle. A function
would be a group of commands that has all the necessary logic

to compute the area of a circle. More on built-in functions will be
explored in Chapter 10.

Inputs/outputs: As the name suggests, inputs and outputs
represent inputs from the user and outputs from the program
respectively. An example of an input would be an operator
inputting the number of parts that need to be created during a
production run, while an output would be the current number of
parts that have thus far been produced.

Flow: The arrow represents the flow of a program. For the
electrically inclined, these symbols can be thought of as wires in
a wiring diagram. In short, flow symbols are used to connect
other symbols together in a sequential order. The only real rule to
remember with flow symbols is that the arrow at the end of the
line will point to the next step in the process.

It should be noted that depending on the standard set by the

organization you're performing work for or the software you're using
to generate a flowchart, the symbols may vary a little, as well as the
number of available symbols that can be used. However, the general
gist of the symbols, along with the logic that governs them, will
usually be consistent.

What do flowcharts look like?

Much like pseudocode, to fully understand flowcharts, it is important
to understand what they look like. So, to get an idea of what a

flowchart looks like, let’s take the circle area program in pseudocode
form discussed earlier and convert it to a flowchart:

Input Radius

l

Area = 3.14 * Radius "2

l

Output Area

Figure 5.2 — Flowchart for the circle area program

As can be seen, the flowchart is very similar to the pseudocode. The
only real difference is that the flowchart used symbols, but the
general flow of the program is the same. In the flowchart, the
following was depicted:

e The initial oval represents the program’s start.

e The parallelogram represents a user input command — in this
case, the radius.

e The next rectangle represents the area computation.

e The second parallelogram represents the output of the computed
value. That is something akin to a print statement.

e The final oval represents the end of the program.

Flowcharts are usually drawn in a top-to-bottom manner, but this is
not a steadfast rule. The main thing to pay attention to in a
flowchart is the direction in which the arrow is pointed. Notice that
they are pointed toward the bottom of the page, which in this case
is the next step in the process or program. It is very important to
ensure that the arrow is always oriented the correct way as it can
easily cause confusion when an engineer tries to implement the
process in real life.

Understanding pseudocode code and flowcharts is only half the
battle in designing a program. The next vital step in designing a
program is understanding why one would opt to use these
techniques.

Why use pseudocode and flowcharts
in PLC programming?

So, why use pseudocode or flowcharts for designing a program? To
begin this discussion, let’s first explore why we would use
pseudocode.

Why use pseudocode?

As we established in the previous section, pseudocode is a design
technique that allows developers to express their logic in everyday
language so that they don’t get bogged down with the programming
language’s syntax or grammar. This is a grand explanation of what
pseudocode code is, but it fails to address why we should use it:

e Design tool: Above all else, pseudocode is a way for developers
to iron out logic and pitfalls in an algorithm or processes(es)
without having to worry about programming grammar. In other
words, pseudocode is a way of relaying the logic of an algorithm
from one developer to another or their future self in an easy-to-
understand format.

¢ Porting tool: Since pseudocode is language-neutral, it is
commonly used to take existing algorithms in other languages
and express them in a language-neutral way. This makes porting
code very easy as only the developer who is writing out the
pseudocode needs to understand the original programming
language.

e Documentation: Pseudocode can also be considered rough
documentation. It is not uncommon to include a conceptualized
draft of a high-level algorithm or process in the documentation.
This includes when the team hasn't fully fleshed out the design
of the system and languages that are going to be used are not
fully agreed upon yet. For example, the team may not know if
they want to use C# or Delphi for the human-machine
interface (HMI) yet, but they do have an idea of how the user
should enter data into the HMI. In cases such as these,
pseudocode is an excellent way of expressing how the algorithm
should work while keeping it language-neutral.

e Interviews: It is not uncommon for would-be employers to
“test” potential employees on their technical prowess. Whether or
not this is a quality practice is up to debate; however, if this
practice is used, a quality employer will usually request that the
candidate use pseudocode. Quality employers will typically opt
for the candidate to use pseudocode or flowcharting over writing
working code to alleviate some concerns by would-be employees
who fear their test code will be used in a real-world application
without them being compensated.

These are just a few ways to use pseudocode. Pseudocode is just a
tool; as such, the only limiting factor in how it can be used is the
developer’s imagination. Much like pseudocode, flowcharting can be
used in a very similar fashion.

Why use flowcharting?

Flowcharting is used in many different engineering fields for many
different things. One other profession where flowcharts are used
quite often is in the field of business, where business processes can
be graphically represented. Regardless of the field, flowcharts are
used to do the following:

e Design a process

¢ Identify and remove redundancies

¢ Pinpoint pinch points in a process

e Optimize a process

e Troubleshoot issues in a process

e Document processes

e Document brainstorming sessions

e Help interview candidates
Typically, flowcharting is not used to describe the steps in a
program; instead, it is used to describe the overall system. For
example, if an automation system has multiple steps in a process,
flowcharting can be used to describe how all those processes
interact with each other. In other words, a flowchart typically

wouldn’t be used to depict a program; instead, it would be used to
depict something akin to a plant process.

Brainstorming

Brainstorming is one of the biggest use cases for flowcharts. Due to
the high-level nature that is often associated with flowcharts, they
make great tools to create theoretical mockups for an automation
system. Typically, during design meetings, flowcharts are heavily
employed to depict how the data will flow in a system and how each
software component will interact with one another.

When to use one over the other?

As a developer, when should you use one technique over the other?
This is a logical question and one that we have touched on a bit.
However, we can summarize when to use the two techniques with
the following:

e Pseudocode: A developer should use pseudocode to represent
the source code. Pseudocode should be used to work out a rough
outline of a program using everyday language. Usually,
pseudocode is used to generate rough documentation for a
program’s logic, as a tool for porting logic from one programming
language to another, or as a design tool. Pseudocode can also be
used for brainstorming; however, pseudocode should be used to
brainstorm lower-level systems such as the actual program
components that are going to be implemented on a PLC. Overall,
pseudocode is used for low-level system tasks.

e Flowcharts: Flowcharts are graphical design tools that work
best for depicting high-level processes. Flowcharts can be used
to represent low-level source code, but they are best suited to

depict processes such as a whole plant process. In terms of
design, flowcharts are often used in brainstorming sessions to
depict the data flow for the system.

That said, both flowcharts and pseudocode are tools. A developer
can opt for whichever tool works best for them. If a flowchart works
better for a given task, then it is perfectly acceptable to use it. On
the other hand, if pseudocode works better for a task, then it is
perfectly acceptable to use that technique.

Hopefully, it was demonstrated that both pseudocode and
flowcharting are excellent and easy-to-use design tools. However,
how does one go about creating either a pseudocode program or a
flowchart? The answer is surprisingly simple and will be explored
next!

Tools needed for flowcharts and
pseudocode

A very common question for students and inexperienced engineers
regards which programs they should use to write pseudocodes or
draw flowcharts. These are very common and very logical questions,
and the simplicity of the answer often baffles the uninitiated. As
such, the following section will explore some common tools that can
be used to design a program.

Pseudocode tools

As can be seen from the Technical requirements section, pretty

much any text editor can be used to write pseudocode. Typically,
engineers and students will use something simple such as Notepad

in Windows to write pseudocode. For the most part, an engineer can

use anything they want to jot out pseudocode. Some will even opt to

use a pen and paper, and in interviews, it is not uncommon for

would-be employers to write out pseudocode on a whiteboard. The

following are some general editors that are often used to write

pseudocode:

Notepad

Notepad++

Word

LibreOffice

Any integrated development environment (IDE)
Vim

Nano

Text editor

Pen and paper

Whiteboards

As can be seen, a developer can use their favorite text editor to

write pseudocode.

Flowchart tools

Producing flowcharts is a bit more complex than producing
pseudocode. As was seen in the flowchart example, flowcharts
require specific symbols to make sense. This means that special
software will be needed to draw flowcharts. Any program that can
draw the symbols or similar symbols will suffice. However, common
programs that can be used to draw flowcharts are as follows:

® draw.io

Visio

Lucidchart

SmartDraw

Flowgorithm

SFC PLC programming interface

Pen and paper

Whiteboard

This is not a complete list; there are many ways to draw a flowchart.
Each program will put its own twist on how flowcharts are drawn.
This means that the symbol types and number of available symbols
might vary between the rendering software. So, it is important to
keep in mind that if an engineer is accustomed to using one type of
rendering software and they are required to switch to another
system, there may be a bit of a learning curve to get up and running
with the new program.

Flowchart programming systems

Now, the important thing to remember is that systems such as SFC
and Flowgorithm are designed to produce working software. This
means that though you can draw a flowchart with these systems,
they are ultimately meant to produce working software, not just
draw it. In other words, these interactive systems are NOT design
tools and should only be used in a pinch!

These interactive systems can be very difficult to design with. Since
they are actual programming languages, they have syntax and
grammar rules that must be followed. This means that these
systems may throw errors, change colors, or even prevent the
engineer from continuing their drawings until certain syntactical
errors are fixed. Ultimately, using an interactive system can very
easily divert attention from working out a design to writing a
working program, which is not what an engineer wants to do at this
stage.

Of all these methods, it can be argued that whiteboarding or using
pen and paper is the most common way to draw a flowchart or write
a pseudocode program. As such, the next section is going to explore
why this is so prevalent and why it is important.

Whiteboarding

Ironically, the most used medium for writing pseudocode or drawing
flowcharts is a whiteboard. This may seem oxymoronic in the
modern, hi-tech landscape. However, the following will dive into why

drawing flowcharts and writing pseudocode by hand is so prevalent
and why it is important.

Handwritten pseudocode

For organizations that do not require pseudocode, it is very common
to write code by hand when necessary. Typically, when people write
things down by hand, they grasp the information better. Following
this logic, it can be argued that it is sometimes more effective to
write pseudocode by hand.

High-level pseudocode is also heavily used in brainstorming sessions.
This ultimately means that writing pseudocode by hand is very
common for developers. It is recommended that inexperienced
programming professionals and students should get into the habit of
writing pseudocode by hand to get a feel for it. Writing pseudocode
by hand can be a different experience than writing it on a computer
for some.

Flowcharts — Whiteboarding

As with pseudocode, the most common way to draw a flowchart is
by hand. Flowcharts are often used to depict high-level systems. In
other words, they depict how individual software systems interact
with each other. For example, it is common to depict the data flow
from a PLC sensor all the way to a database via flowcharts. Because
flowcharting is commonly used in brainstorming sessions to depict
high-level mockups of theoretical systems that are under design, the
most common way to draw is with a dry-erase marker on a

whiteboard. Once a rough architecture of the system is agreed upon,
actual rendering software such as Visio or draw.io will be used to
make more permanent drawings.

Technical interviews

As has been mentioned in the previous sections, it is very common
to be asked to either draw a flowchart or write a pseudocode
program for a would-be job. Flowcharting and pseudocode exercises
are language-neutral ways to evaluate a candidate based on their
design or coding skills. Typically, the design technique used will vary
depending on the job the candidate is going for.

For coding jobs — that is, jobs for writing PLC or HMI code — the
candidate will typically be asked to write pseudocode to evaluate
their coding and thought process. During a technical interview,
candidates are sometimes asked to pick up a marker and start
pounding out a program. On the other hand, flowcharting is used
more in system design interviews. For example, if a candidate is
going for a design job that requires designing a process or the digital
side of a machine, they will usually either opt for designing the
mockup using a flowchart or be flat out required to.

Why are interviews and using these design techniques so important
to this conversation? The answer is surprisingly important. As stated
before, it is very common for a candidate to be required to do a
system mockup before a company will offer a candidate a job.
Typically, for companies that require this, they will usually design the
system by hand on a whiteboard or paper. However, for many

engineers, drawing or writing by hand in a stressful situation can
often be very challenging and requires a bit of practice, especially to
draw a coherent flowchart where symbolism matters. Therefore, it is
very important to get used to working out designs both by hand and
with some type of computer program.

Now, learning how to properly design by hand is a skill; however, it
is only half the battle. The other half is learning to think like a
machine to architect a well-crafted program, and the key to that is
practice. In the following section, we're going to work through a few
problems to get into a machine mindset so that we can create
quality algorithms and systems.

Design exercises

The biggest challenge that many programming students have with
learning to program is learning to think like a machine. The biggest
hurdle many programming students have with learning to think like a
machine is learning to think in sequential steps. As with anything
else in life, the key to learning to think algorithmically is practice,
practice, practice!

The quadradic equation

To begin, let’s assume that we must design a program that can take
three inputs and must output the results for the following equation:

x = ~b £ Vb? - 4ac
B 2a

Before continuing, try taking a moment to lay out the steps of how
the program should work and the designs.

Design logic

The first step in designing this program is working out the steps that
the program would need to follow. Since this is a math equation, we
can apply rules that are commonly used in math to write the
program. Therefore, the steps that can be used are as follows:

1. Get the inputs for a, b, and c.

2. Compute -b in the equation.

w

Compute the square of b and subtract the product of 4, a, and ¢
from it.

Add the output from step 3 to the output of step 2.
Subtract the output from step 3 to the output of step 2.
Divide step 4 by the product of 2 and a.

Divide step 5 by the product of 2 and a.

Assign the output from step 6 to a variable.

© ©® N O v b

Assign the output from step 7 to a variable.

Pseudocode

The pseudocode for this program can be easily streamlined and
could resemble the following:

a = input (A)

b = input (B)
c = input (C)
negativeX = [(-1 * b) - sqgr([b"2] - [4*a*c]) / (2*a)]
positiveX = [(-1 * b) + sqgr([b"2] - [4*a*c]) /

print rootl is negativeX

print root2 is positiveX

Now, this is one rendering of how the pseudocode can look. This
design code is not meant to be compiled and run as is; all that
matters is the logic that the pseudocode is meant to portray. This
means you can use any verbiage you want when you're working
through this exercise, and you can use as much detail as you want.

Flowchart

The following figure shows a quadratic equation flowchart:

Start

negativex = [{-1* b} + sqr{[b"2] — 4"a*c] / (2"a]]

Y

positiveX = [(-1* b} + sgr([b"2] — 4*a*c] / (2%a)] 4/print negativeX H print positiveX /

Figure 5.3 — Quadradic equation flowchart

Now that we've worked through a basic example, let’s move on to
something a little more complex. Let's work on a program with some

flow control in it.

The beer program

In the United States, a person must be 21 or older to buy alcoholic
beverages such as beer. So, for this exercise, let's design a program
that can determine if a person is eligible to buy beer in the United
States. As in the last example, take a moment to try to work out this
problem before you continue.

Design logic
For this project, the following logic can be used for the system:
e Input the customer’s age.
e Should the customer be at least 21 years old, let them buy beer.

¢ Should the customer be under 21 years old, throw a shoe at
them.

These should be the general steps for the program. At first glance,
this program may seem less complex than the quadratic equation
program. However, the logic for this program will be less linear as
the program can take two different paths. In other words, the
algorithm will require a control statement. Control statements will be
fleshed out more in Chapter 11, but for now, just think of a control

statement as a branch in a program. With that, fleshing out the
program a little more will yield the following pseudocode.

Pseudocode for beer program

In programming, flow control is usually defined with a command
called i£. In pseudocode, it is common to use the word if to denote
its programming language counterpart. Therefore, the pseudocode
could look like the following:

age = input (person's age)

if age greater than or equal to 21
print "let them buy beer"

if age is less than 21
print "throw a shoe at them"

Normally, a programmer would use an else Or else if Statement to
denote the second condition; that is, if the customer is under the

age of 21. However, that is out of the scope of this chapter. For more
on else and else if statements, see Chapter 11. However, for now,

we're going to simply use a second if statement to process the

second condition. With the pseudocode now in place, let’s tackle the
flowchart.

Flowchart

For this project, the flowchart may not be one-to-one with the
pseudocode as in the past examples:

Input age

™
R

Mo Yes

is age >= 21

>

<

k J Y

print let them buy
beer

print throw shoe

End

Figure 5.4 — Beer program flowchart

For this program, the flowchart is seemingly less complex than the
pseudocode. In this case, we can represent the program with a
single control statement. In the case of the flowchart, if the
customer’s age is less than 21, the program will display throw
shoe, and if the customer’s age is greater than 21, it will display let

them buy beer. The one diamond symbol will represent the if and
else if branches for the program.

Practice

Practice makes perfect. The best thing that a programming
instructor can tell a student struggling with how to design an
algorithm is to keep practicing. Unfortunately, that is easier said than
done. How does someone practice designing algorithms? The
answer is surprisingly simple. The best way to practice algorithm
design is to take everyday tasks and convert them into program
designs. Some examples of design tasks could be the following:

¢ Tying your shoes

Cooking an egg

Driving to the grocery store

Starting your car

Turning on a light

Taking out your trash

Packing lunch

The best thing a person can do to hammer in algorithm design is

take simple, everyday tasks that they know well and perform daily
and convert them into an algorithm. For this exercise, it is best to
create a flowchart and corresponding pseudocode.

Performing these little design exercises will provide two benefits. The
first is that it will provide practice designing algorithms. Second, it is
also a common exercise for coding interviews. It is not unusual for a
hiring manager to have a candidate pick an everyday task such as
tying their shoes and have them design a pseudocode program,
flowchart, or both that can represent the steps in the task.
Therefore, getting into the habit of converting your everyday tasks
into algorithms can very easily help land you a job.

By this point, you should have a decent grasp of designing
algorithms. To round out the chapter, we're going to build one final
project. We're going to design a program for a robot startup system.

Final project — Robot startup
system

In automation programming, it is common to have to write software
that can start a process, such as turning a robot on and getting it
ready for operation. These systems can be quite complex and have
many ins and outs. For this final project, we're going to design a
system that can be converted to real PLC code for the startup of a
stationary robotic arm.

Design requirements

For this system to work, the following steps must take place:

o If the robot is not powered on, it must be powered up.

e The robot has six joints that must be zeroed.

e The robot must go into wait mode.

This may seem like a simple program but don't be fooled, as very
simple tasks can often have the most amount of gotchas.

For this project, assume the following:

e The system must perform a network check to ensure the robot
can communicate its operations with other machines. This is a
part of powering on.

e The robot needs a 5-minute warmup period.

The system needs to verify that proper voltage is being applied to
the motors before it can operate. There is a light curtain that will
stop the system in the event someone enters the operating area.
These look like some surprise requirements. That’s because they
are. Very rarely will an engineer ever get something that is very
straightforward. Typically, a task as simple as the one described in
the initial bullets will not be that simple. Every project will usually
have a series of necessary support tasks that will need to be carried
out for the overarching process to properly work. So, as an engineer,
be expecting these gotchas, and if it’s your first time working on
something new, be sure to ask if any additional support tasks need
to be worked into the system.

Design logic

The first thing that we need to do is work out the necessary steps to
carry out the operation. To do this, let's break the program down
into a series of smaller operations and combine these in the overall
design.

Power-up sequence
This is the sequence of steps for powering up:
e Power-up sequence
e Send power-up signal to robot.

e Pause the program for 5.5 minutes to ensure the 5-
minute warmup period is completed.

¢ Ping the network 40 times. If the network is
unresponsive after 40 pings, throw an error message. If
the network responds before 40 pings, continue with
startup operations.

Zero robot joint

Since there are six joints in the robot arm, there are going to be six
motors that we need to check. As such, we can use the following
sequence:

e Zero sequence
¢ Get voltage reading for motor 1.

¢ Get voltage reading for motor 2.

¢ Get voltage reading for motor 3.
¢ Get voltage reading for motor 4.
¢ Get voltage reading for motor 5.
e Get voltage reading for motor 6.
e Check if anything is in the light curtain.

e Verify voltage readings are within limits. If everything is
in parameters, home motors.

Wait sequence

The wait sequence will depend on the success of the previous two
sequences:

e Wait sequence
e Ensure the system is fully powered on
e Ensure motors are zeroed

e Wait for system commands

With all that established, we can now move on to writing the
pseudocode for the program.

Pseudocode

With the logic laid out, let’s work out the pseudocode:

//turn on phase

send on signal to robot.
pause 5.5 minutes
loop 40 times:
ping network
if ping received back
quit loop
if no ping response:
throw error "Network not available"
//Zero phase

VoltsMotorl = voltage on motorl
VoltsMotor2 = voltage on motor?2
VoltsMotor3 = voltage on motor3
VoltsMotor4 = voltage on motor4

VoltsMotor5 = voltage on motor5
VoltsMotor6 = voltage on motorb
lightCurtain = light curtain detects movement
if VoltsMotorl - VoltsMotor6 correct volts
and lightCurtain detects no movement:
rotate motorsl - motors6 until encoder reads O
//Wait Sequence
Loop:
if ensure robot voltage > 0 and
ensure encoders position 0 and
command received:
preform command

Compared to the other programs we‘ve seen; this one is by far the
most complex. Typically, an engineer would not use pseudocode for
such a large and overarching algorithm. Instead, the engineer would
use pseudocode to work out the smaller subsections of the program
such as the zero sequence or the turn-on phase. However, as was
seen in the preceding snippet, pseudocode can still be used to
hammer out larger projects.

All things considered, a system such as the one we're designing is
much better suited to be laid out with a flowchart. Due to the
interworking sections that each have subsections of their own, a

flowchart would be much more efficient in terms of laying out the
design. Therefore, let's take a stab at designing with a flowchart.

Flowchart

For the flowchart, we could use something similar to Figure 5.5. The
flowchart in Figure 5.5 is almost one-to-one when compared to the
pseudocode. Much like the other examples, there is a clear flow from
symbol to symbol that marks the flow of the program. For the
flowchart in Figure 5.5, the line that goes between the get 1ight
curtain command and the check is oriented upward. In the past
examples, all programs flowed in a downward orientation; however,
for this diagram, the arrow had to be oriented up to fit the diagram
on a page. In terms of programmatic flow, nothing changed, and the
program would still flow in a top-down, sequential fashion. The
change in the orientation of the flow was merely a rendering
decision and did not affect the program.

Now, in Figure 5.5, you may notice that the diamond symbol is used
quite heavily. That is because the diamond can also represent a loop
in flowcharting. Until this point, we have not used the symbol in that
regard, so it may seem a bit awkward at first. However, if there is a
line pointing back to the diamond, that command represents a loop.
In this diagram, all loop diamonds have the word /oop in them as
well:

Send on signal

i

Pause b.5 mins

Loop count <40

Ping Network

Response
Recieved?

No

Light Curtain
in parameters

Throw error
"Network not
available'

Break out

.| Get voltages for

of loop

"1 motort - motor6

Get light curtain
movement

Motor - Motor 6 and

Rotate motord -
motor6 until
encoder reads 0

Loop Forever

robot voltage > 0
and encoders = 0
and command
received

Carry out

command

Figure 5.5 — Robot startup flowchart

As with the other examples, this is just one way of drawing the
system. Much like with pseudocode, if the drawing makes sense and
accurately depicts the system, an engineer can draw any way they
wish. Also, note that this program does not have a true end. This
was left out due to the program’s forever loop. In this scenario, once
the robot is turned on, it will loop forever; there will be no end to
the program. The only way the program will restart is when the
system is turned off, which was not factored into the design.

As stated before, for projects such as these that have many
interworking parts, it is usually better to draft them with a flowchart.
The flowchart seen here offers a more visual layout of how the
system works, which means that it can be studied more thoroughly
than just by reading copious amounts of pseudocode. The big
reason for this is that this robot startup program is more than just a
program; it is an overarching system that is composed of many
smaller pieces that must work in unison. This means that what we're
laying out is a high-level design. If this were a real-world project, the
flowchart would be used to lay out the full system flow, and
pseudocode would be used to draft out the individual sequences, as
mentioned in the Pseudocode section. In all, the flowchart can be
used later on to troubleshoot issues, find redundancies, and more,
which can then affect the actual code designs.

Summary

This chapter explores ways to design a program and a high-level
system. In this chapter, we have explored pseudocode and
flowcharting, as well as techniques and programs that are used to
render the designs. The important takeaway from this chapter is that
a successful program does not start with code. Instead, a successful
program starts with a decent design. A skilled engineer will spend a
good amount of time with a pen and paper or with a rendering
program, laying out the flow of a PLC program long before they
touch a keyboard. This may seem oxymoronic and even frustrating
to inexperienced PLC programmers. It is not uncommon for
inexperienced engineers to forego the design phase of a project and
jump into coding with a desire to build something. However, this
attitude is the quickest way to get into programming trouble and
have your fancy new machine doomed for the cyber scrap heap.

So far, we have explored a lot about program flow, hardware, and
program design. In terms of becoming a quality engineer, we're well
on our way, but before we can get into actual coding, we must make
one more small detour in the next chapter and explore some basic
logic functions to help us understand how our program works. In the
next chapter, we're going to learn Boolean algebra.

Questions
1. What is a flowchart?

2. What is pseudocode?

® N o v b

10.

. What are the main differences between pseudocode and

flowcharts?

List three programs that can be used to write pseudocode.
List three programs that can be used to draw flowcharts.
Why use a flowchart?

Can you draw flowcharts by hand?

What is a common interview technique that requires candidates
to draw a design on a whiteboard?

. What are the two functions of the diamond symbol in a

flowchart?

Design a robot stop system that sequentially turns off all the
systems we turned on in the final project.

6

Boolean Algebra

At first glance, this chapter may seem like the most intimidating
because it revolves around math and logic. However, the material’s
bark is by far worse than its bite. The whole gist behind this chapter
is learning to manipulate binary numbers and analyzing their outputs
using what is called Boolean logic or Boolean algebra.

The term might be off-putting to most; however, the type of algebra
that will be explored in this book is not the standard algebra that is
taught in high school. Instead, the type of algebra that will be
explored here is based on two numbers, o and 1. This type of
algebra is extremely important to PLC programmers and even
electrical engineers who work on digital systems such as PLC-based
systems, as it allows engineers to model the logical behavior. More
specifically, it allows engineers to more effectively model the
behavior of switch configurations, contact configurations in Ladder
Logic, and control statements in Structured Text.

In short, all modern electronics are, for the most part, digital in
nature. Automation engineering is no different. Outside of the
analog components that were explored in Chapter 2, almost all
modern devices are either going to be digital or support a digital
device. This means that understanding Boolean algebra is vital to

the success of any automation programmer. Therefore, to begin our

exploration into the world of Boolean algebra and logic, we're going
to explore the following concepts:

e What is Boolean algebra

Boolean operators

Boolean expressions

Solving Boolean equations

Truth tables

To round out the chapter, we're going to apply what was covered in
it and create a truth table from scratch.

Technical requirements

This chapter will not require any special software and has no other
technical requirements. It will be somewhat math intensive, but no
prior experience with Boolean algebra is required.

What is Boolean algebra?

Boolean algebra sounds like a scary form of mathematics, but it's
actually quite simple by nature. As stated in the introduction,
Boolean algebra has little to do with the algebra that is normally
taught in high school or college. The goal behind Boolean algebra is
to perform a series of operations on a o or 1 to determine whether

the output of an equation is going to be either o or 1.

If one really wanted to split hairs, there is a difference between
Boolean algebra and Boolean logic. If one were to Google the
difference, one would find that a lot of the definitions overlap. Even
though there’s a slight difference between Boolean algebra and
Boolean logic, in everyday speech, the terms are used
interchangeably. In this book, we're going to follow the
conversational norm and use the terms interchangeably.

Boolean algebra is often used to model the behavior of electrical and
software systems. This is because most sophisticated hardware
systems are, at their heart, simply a series of on and off switches
baked onto a chip that is controlled via a program. Due to this
nature, engineers will represent “on” with the digit 1 and “off” with
the digit 0. Engineers can then use Boolean algebra to model their
circuit or program'’s behavior based on a given series of inputs.

All things considered, a PLC programmer, or a programmer in
general, does not spend hours of their time crunching Boolean
equations. Instead, quality programmers will use Boolean equations
to help work out things such as truth tables and model complex
control statements to understand, design, and test complex switch
configurations and control statements to save time in the long run.
Therefore, having a basic understanding of Boolean algebra and how
it relates to programming is important for any developer in any field.
To be a quality programmer, a developer will need to know how to
read a truth table to understand basic Boolean operators, be able to
evaluate “complex” Boolean equations in control statements, and so
on. Understanding Boolean algebra is even more prevalent for

automation engineers due to the electrical element that is mixed in
with PLC-based software.

As you're reading this chapter, don’t be concerned if this doesn't
come naturally. Do not simply gloss over this chapter either, because
there will come a time in your career as an automation engineer
when you need to use these techniques to either design, test, or
troubleshoot a system. With all that being said, let’s explore the
basics of Boolean algebra: logical operators.

Boolean operators

In real-world settings, very few things work in a one-to-one fashion,
for example, flipping on a single switch to power on a machine. Even
a thing as simple as turning on a light often requires a person to flip
two switches! In other words, to turn things on or off, multiple
conditions may need to be satisfied. For example, an output as
simple as a lightbulb may need at least two switches to be on to
power the bulb. Essentially, all this can be boiled down to three basic
Boolean operators, which are as follows:

e AND
e OR
e NOT

The basic operators

A Boolean operator is a word that signals an operation on one or
more conditions. For many, this explanation may not make a lot of
sense, and the best way to demonstrate it is with a few examples.
An easy way to understand operators is to examine a couple of
sentences.

The AND operator

The AND operator signals that all conditions must be true for the
final output to be true. For example, consider the following
sentence:

Both switch 1 anp switch 2 must be on for the light to be on.

If one analyzes this sentence, there are two inputs, which are switch
1 and switch 2, and the output is the state of the light bulb (on or
off). In this case, the anp word signals that both switches have to be

on for the light to be on. If this were converted to pseudocode, it
would look like the following:

If switchl = on AND switch?2 = on:
Turn on lightbulb

Overall, the anp operator is very common in the automation world.
Many times, certain processes must be on for another process to
start. In these cases, engineers will use the anpo operator to
accomplish this.

The OR operator

The or operator is kind of like the anp operator; however, it works a
little differently. Where the anp operator requires all the inputs to be
true, the or operator only requires one or more of the inputs to be

true for the output to result in a true state. With that, consider the
following example:

Either switch 1 must be on or switch 2 must be on for the lightbulb
to turn on.

In this sentence, for the lightbulb to be on, either switch 1, switch 2,
or both switches must be on for the lightbulb to be on. In
pseudocode, this would look like the following:

If switchl = on OR switch?2 = on:
Turn on lightbulb

Much like with the anp operator, the or operator is equally common.
In automation, it is also very common to require one or more
processes to be on (or true) before another process can be started.
In these cases, engineers will use the or statement to accomplish
that.

The NOT operator

Compared to the anp or or operator the nor operator works a little
differently. Unlike anp or or, which take multiple inputs, not only

takes one. Also, unlike the other two operators, which require at
least one input to be on for the output to be on, the noT operator

requires the input to be orr for the output to be on and vice versa.

In other words, the not operator inverts the input. In terms of
sentence structure, a notr operator would be something like the
following:

To turn the light on, the switch must not be in the on position.

In this case, for the light to be turned on, the switch must be off. In
terms of pseudocode, it would look something like the following:

If switchl = Off
Turn light on

If switchl = on
Turn light off

A common use case for the noT operator is with an emergency stop
switch, or, as they are more commonly known as E-Stops. Typically,
if an E-Stop is engaged or the switch is “on,” the machine will usually
stop. On the other hand, if the switch is in its naturally disengaged
state, the machine will turn on. This is the inverse at work;
essentially, for the machine to be on, the switch must be off, and for
the machine to be off, the switch must be on.

Operators are very powerful in programming. Thus far, we have only
examined operators in their purest form: anp, noT, and or operators.
Though these are often used alone, these operators can be used in
conjunction with each other to form more complex logic. Moreover,
the outputs for these complex sequences can be hard to figure out
without some basic math. As such, the next section is going to
explore the concept of Boolean expressions and how multiple logic
operators can be used in tandem with each other.

Boolean expressions

Often, whether a control statement evaluates to true and a machine
properly turns on will be dictated by a number of conditions, such as
a series of variables being true or a series of switches being on.
Boolean expressions are essentially specialized math equations that
will determine whether an output will be on or off based on the state
of the inputs.

The whole "math” concept may frighten a lot of people; however,
the math behind Boolean expressions is not scary at all and is little
more than adding or multiplying 1s and 0s. In a mathematical sense,
each of the Boolean operators we explored previously will boil down
to addition, multiplication, or simply flipping a value from 0 to 1, or
vice versa. This, for the most part, means, that if you can multiply
by 1 or 0 and add by 1 or 0, you have a solid foundation for Boolean
calculations.

Exploring NOT

To start off with Boolean expressions, let’s explore the not operator
in more depth. As was explored earlier, the noT operator simply
means inversion. The not operator is commonly denoted with the =
symbol. When you come across this symbol, all you must do is flip
the value. Consider the following example:

A=1
Then,

—|A=O

As can be seen, in the example, if the variable A = 1 then =A is 0.
Now consider the next example:

B=0
Then,
—|B = 1

Again, all we had to do was toggle the value.

Double negation rule

Now, much like traditional algebra, Boolean algebra has a set of laws
that one can use to help solve equations. In terms of the NOT or
negation operation, a very important law is the double negation rule.
Consider the following:

IfA=B,then--A=8B

Essentially, a double negation has no effect on the variable that the
NOT operator is being performed on. With that, consider the
following:

IfA=1then--A=1

If you think about it, this is valid because if we perform the first
negation on 1, it becomes a 0. Then, if we perform a negation on 0,
it reverts to 1. So, in the end, the value of A never changed.

Expanded double negation rule

If you reflect on this rule some more, you'll find that if you have an
odd number of negations, the final value will be inverted, but if you
have an even number of negations, the final value will be equal to
the original value. Consider the following:

A=1

- a-a-A=1

Because
-1=0->-0=1->-1=0->-0=1

Now, if we negate a variable three times, the value will be inverted.
To demonstrate this, consider the following:

A=1
- = =A = 0 because,
-1=0->-0=1->-1=0

Therefore, the output for the triple negation was 0.

The OR operator
In terms of Boolean mathematics, the or operator can be tied to
addition. or can be any of the following:

e 1+1=1

e 0+0=0

e1+0=1

e 0+1=1

In the case of the bullets, the numbers on the left of the equal sign
represent inputs, while the numbers to the right of the equal sign
represent outputs. These inputs can represent switches in a circuit
or an input from a PLC module. This concept will be true for any of
the operators, such as or, aND, Or NOT.

When it comes to the or operator, a shortcut to figure out whether
the output should be 1 or 0 is to simply examine the input, or in this
case, the numbers being added. If any of the numbers in the
equation is 1, then the output is also 1. This is a handy trick to
understand when it comes to PLC programming, especially when you
start working with control statements.

As you're reading along, it is important to memorize the bullets, as
these bullets are a basic truth table. If you're not familiar with truth
tables, they will be covered in more depth in the Getting to know
truth tables section of this chapter. For now, let’s explore the anp

operator

The AND operator
When one sees the anp operator, it usually signals a multiplication
operation. Here's an example:

e 1*¥1=1

e 0*1=0

e 1*¥0=0
e 0*0=0

For the anp operator to have an output of 1, all inputs must be 1.
Thinking back to basic multiplication, anything that is multiplied by 0
is always 0. In terms of the anp operator, this simple mathematical
principle is very handy in figuring out the output. Another shortcut
trick that comes in handy with the anp operator is to look at all the
inputs. If one or more inputs are 0, then the output will
automatically be 0.

Much like in mathematics, there are laws and identities that govern
how these operations behave. As such, the next section is going to
explore some of the more basic identities and laws.

Operator laws

There are a number of laws that govern 1o0gic operations; however,
we're only going to cover the following: identity law, idempotent law,
and commutative law. There are many more laws that can be used.
For now, though, we're only going to explore the more basic laws to
get familiar with things.

Identity law

Similar to how a person has an identity, so do mathematical
operations. The identity law is a Boolean law that dictates that when
a term is ored with 0 or anoed with 1, the result will always be equal

to the term. For the or operator, the following identity can be
assumed:

A+0=A

For the or operator, any value with a false input will always be the
other input (A). For example, if A = 0, then the output will be 0. If A
is 1, then A will be 1.

The identity rule for the anp operator can be summarized as follows:
A*1=A

In other words, if one of the inputs is 1, then the output will always
be A. As such, if A = 0, then the output will be 0; if the input is 1,
then the output will be 1.

Idempotent law

The idempotent law is a fancy way of saying that if all the inputs of
a logical equation are the same, then the output reflects the inputs.
In other words, the idempotent law can be boiled down to the
following for the anp and or operators:

e OROperator: A+ A=A
e AND Operator: A*A=A

Essentially, this means that any term anoed or ored with itself is

always equal to itself. All things considered, this is a very easy-to-
grasp rule. With that, we're going to explore one final law, the
commutative law.

Commutative law

The commutative law deals with the order of variables. By that, what
is meant is the way the variables are arranged in the equation.
Keeping with the two-input theme, the commutative law will boil
down to the following:

e A+B=B+A
e A¥XB=B*A

With all that we have learned thus far, let’s look at a few examples,
crunch some numbers, and work on solving Boolean equations.

Solving Boolean equations

Practice makes perfect. Just as many people learned to master
traditional algebra by solving practice problems, we're going to look
at a couple of examples to practice solving Boolean equations.

Examples

The following are a couple of examples of how to solve Boolean
equations. For most of these practice problems, there are going to
be three inputs.

Example 1
Calculate the output for the following equation:

(A+B)*C

Assume A=1,B=0,and C = 0.

In terms of PLC programming, this equation would correspond to a
system with three inputs. It could represent a switch circuit, or it
could represent a series of Boolean values in a control statement.
Either way, the math is going to be the same.

To solve this, let’s first break it down. Since A + B are enclosed in
parentheses, these can be thought of as individual inputs for a
special configuration. Since there is a plus sign, these two variables
can be said to be in an OR configuration. So, what we can do is
abstract that out and re-write the equation as follows:

D=A+B

Now, we can replace A + B with D in the original equation, which
will yield the following:

D*C
From here, we have the variables in an anp configuration, and as

stated above, Cis 0. So, we can plug in 0 for C and we'll get the
following:

D*0=0

Since C was 0, and the variables that were in an or configuration
were in turn in an anp configuration with C, the output of the
equation will be 0.

Example 2

For our next example, let’s solve the following equation:

(A + =B) * (C+ B)

For this equation, let's assume A = 1, B = 0, and C = 1. To solve this
equation, let’s break it down into two smaller equations and combine
them at the end. So, the first thing we're going to do is the
following:

D= (A + —|B)
Then, the following:
E=(C+B)

The next thing we're going to do is solve for D. As such, plugging in
the numbers will yield the following:

D=(1+-0)
D=1+1
Therefore,
D=1

Now, we can solve for E:

E=1+0
Therefore,
E=1

Now, we need to solve the original equation. Remember that the
original equation is now D * E or D AND E, which will yield the
following:

1*1=1

Therefore, the output for the equation will be 1.

By now, we should have a decent grasp of how to solve basic
Boolean equations. Once we solve a Boolean equation, we need a
way to conveniently convey what the outputs should be based on
the inputs. A simple way to do this is with what's called a truth table.

Getting to know truth tables

What are truth tables? In short, they are easy-to-read tables that
show all the outputs for all the combinations of inputs. In this
section, we're going to explore the basic truth tables for the
standard operators as well as for custom Boolean equations.

Basic operators

The following are the truth tables for the standard operators.
Typically, you shouldn’t have to worry about memorizing complex
truth tables. However, of all the truth tables, these are the ones you
should memorize because they correspond to basic operators.

NOT table

The first truth table that we need to memorize is the table for the
NoT operator:

Input Output

1 0

Input Output

0 1

Table 6.1 — NOT truth table

Reading truth tables is quite easy. All one needs to do is read each
row. The rows will show the state of the input(s) and the
corresponding output. For example, if one skims the first row, they
can easily see that when the input is 1 or True, the output will be o
or rFalse. If one were to read the second row, one would see when
the input is o or Fa1se, the output will be 1 or True.

Once you have memorized the not table, you may proceed to the
AND Operator.

AND truth table

The next table that should be memorized is the anp truth table,
which can be viewed in Table 6.2:

Input1l Input 2 Output
1 1 1
0 1 0
0 1 0
0 0 0

Table 6.2 — AND truth table

Notice that the anp table has two columns whereas the noT table
only had one. This is because, as we have seen throughout the
chapter, the not operator only depends on one Boolean value,
whereas anp and or will depend on at least two. This means that
each row on the truth table will need to account for the extra input.

OR truth table

The final basic truth table we're going to explore is for the or
operator. This truth table can be viewed in Table 6.3:

Input1l Input 2 Output
1 1 1
0 1 1
1 0 1
0 0 0

Table 6.3 — OR truth table

The anp and or operators are not constrained to only two inputs.
These operators can have any number of inputs. Typically, these
operators have two or more inputs, or Boolean values, that the
output depends on. In terms of digital logic chips, an engineer
typically will not see a chip with gates that are more than three
inputs.

The tables presented so far should be memorized, as these tables
are core to writing effective PLC code. However, in common PLC
programming, control statements are sometimes more complex than
just simple anp and or operations. As such, an important skill that
we need to develop is learning how to construct truth tables for
custom Boolean equations. In the next section, we're going to
combine what we've learned and create a custom truth table from
scratch!

Final project: Creating custom truth
tables from scratch

For the final project, we're going to create a truth table for a
Boolean equation. Before you can build custom truth tables, you
need to thoroughly understand how to solve Boolean equations and
understand how the truth tables work from the last section. For this
section, we're going to create a truth table for the following
equation:

(A*B) + B
To begin building this truth table, we first need to figure out how
many rows are needed to complete the table. To figure this out, we

need to count the number of inputs or variables, as the number of
rows is equal to the following equation:

2?1

Where n is the number variables or inputs for the equation. Since
the equation only has variables A and B, we need the following
number of rows:

2° =4

So, there will be four rows that we need to calculate. A good
strategy for creating the truth table is to insert all the input
combinations first, as this will make keeping track of things easier.
As such, the first thing we're going to do is lay out the input columns
for the truth table:

A B Output
1 1
1 0
0 1
0 0

Table 6.4 — Truth table with no output

Now that we have a skeleton of a truth table, we can start to plug in
the values for A and B.

Row 1

For row one, we're going to plug in 1 for both A and B. With that, we
can rewrite the equation to match the following:

(1*1D+1

Let’s break down the equation into pieces again:
1*1)=1

Now, we can simplify the equation again to the following:
1+1

Since this is an or statement, the final output is 1 because both
inputs are true. So, the output for the first row is 1.

Row 2

The next row has A set to 1 and B set to 0. This means that the
equations can be rewritten to match the following:

(1*0)+0

Simplifying this, we get the following:
(1*0) =0

0+0 =0

As such, the output for the second row is 0 or false.

Row 3

For the third row, we're going to invert the values for A and B so
that A will be 0 and B will be 1. Plugging in these values will render
the following:

0*1) +1
Simplifying this down, we get this:
0O+1=1

Which means that the third row will be true.

Row 4

The last row will be the easiest to calculate. In this case, both A and
B will be 0. As such, if we plug in 0 for both variables in the
equation, we get the following:

0*0)+0

In this case, since there are no negations and there are no true or 1
values, the result will be 0. Therefore, we can say that the output for
the last row will be 0.

Final truth table

Now that we have all the outputs for the table computed, we can
finish the truth table:

A B Output

1 1 1

A B Output

0 0 0

Table 6.5 — Truth table with outputs

As can be seen, the only time the output for the equation will be
true is when both outputs are true or when B is true and A is false.
Also note that the result of the equation will mirror the value of B.

Summary

In this chapter, we explored Boolean algebra, or, as it is sometimes
called, Boolean logic. We have explored the basic operators, how to
compute Boolean values, truth tables, and more. In short, this
chapter may have seemed unnecessary; however, knowing how to
calculate Boolean equations and create truth tables is a prerequisite
to becoming a quality PLC programmer.

This chapter is the last in the design/logic section. Starting in the
next chapter, we're going to move on to more practical aspects of
PLC programming and start writing working PLC code. As such, the
next chapter will focus on getting CODESYS up and running and
writing our first PLC program!

Questions

1. Solve the following equation: (A + B) + Awhere A=1and B =
0.

2. Write the truth table for question 1.
3. What is the truth table for the anp operator?
4. What does 0 represent?

5. What does 1 represent?

Further reading
e Boolean Algebra:

https://www.geeksforgeeks.org/boolean-algebra/

e Boolean Algebra:

https://www.tutorialspoint.com/computer_logical_organization/b
oolean_algebra.htm

https://www.geeksforgeeks.org/boolean-algebra/
https://www.tutorialspoint.com/computer_logical_organization/boolean_algebra.htm
https://www.tutorialspoint.com/computer_logical_organization/boolean_algebra.htm

Part 2: Introduction to Structured
Text Programming

This part is an introduction to Structured Text PLC programming.
The goal of this part is to set up the programming environment and
become familiar with Structured Text programming. This part will be
very technical and in-depth with plenty of challenges and critical
thinking problems to help apply what you learn. The core tenets of
this part are understanding Structured Text, implementing 1r
statements, using the different types of loops, learning how to use
built-in function blocks, performing calculations, and more.

This part has the following chapters:

e Chapter 8, Exploring Variables and Tags
e Chapter 9, Performing Calculations in Structured Text

Chapter 10, Unleashing Built-In Function Blocks

Chapter 11, Unlocking the Power of Flow Control

Chapter 12, Unlocking Advanced Control Statements

Chapter 13, Implementing Tight Loops

/

Unlocking the Power of ST

Alright, now it’s time for the fun stuff! Now that we have a solid
foundation in program design, computer science, hardware, and so
on, we can get into the exciting material and start writing code. This
chapter is going to be dedicated to installing the software that you'll
need to write PLC code, as well as taking an in-depth look at
Structured Text (ST).

ST, is, for lack of a better word, feared by many PLC programmers,
as it can be intimidating. However, ST does not have to be
something to be afraid of. In fact, for many applications, ST can be
easier to use and understand than the more popular Ladder Logic
(LL or LD) programming language. What you’ll find in this chapter is
that ST bears a very close resemblance to the pseudocode we used
the information presented, it's a good idea to return to it until you
feel comfortable with that material.

So far in the book, we've explored the basics of some of the PLC
programming languages such as LL, and we’ve done a high-level
comparison with ST. However, we have yet to fully explore the
benefits of ST and why we should use it over the other languages
that the IEC 61131-3 standard governs. That is going to change in

this chapter, as we're going to explore the following concepts to
really hammer home when and where ST should be used.

In this chapter, we're going to explore the following topics:

e What is ST

Why ST is important
ST versus LL

What CODESYS is

How to install CODESYS

Finally, to round out the chapter, we're going to create the first
program that every programmer writes in a new language, the
famous Helio World program.

This chapter cannot be skipped, and all examples in this chapter
must work before you can move on to the subsequent chapters.
Therefore, it is worth spending a little extra time and effort on this
chapter to ensure you have the material down; otherwise, the rest of
the book won’t make much sense.

Technical requirements

This chapter will require a working copy of CODESYS to be installed
on your machine. You can download CODESYS at the following link:

https://store.codesys.com/de/

https://store.codesys.com/de/

CODESYS is free to download and use. It has a built-in simulator
that can run your code without the need for a PLC. As such, it is not
only a great PLC programming tool but also an awesome learning
tool!

For your reference, all code examples can be retrieved from the
following GitHub URL:

https://github.com/PacktPublishing/PLCs-for-Beginners

What is ST?

To begin our exploration into the world of ST, we first need to know
what ST is. Put bluntly, ST is a text-based programming language
that allows automation programmers to write PLC code in an easy-
to-read-and-follow format that resembles natural language. In other
words, it allows PLC programmers to write code using actual words
as opposed to symbols.

ST most closely resembles the old BASIC programming language,
with a touch of Ada thrown in for good measure. Overall, ST gives
developers a very natural and friendly flow to reading and writing
software. To utilize ST effectively, all you need to do is memorize
certain keywords, as opposed to memorizing exotic symbols, as you
would normally do in Ladder Logic programming. So, what does ST
look like?

Area of a circle program in ST

https://github.com/PacktPublishing/PLCs-for-Beginners

For the inexperienced, ST may seem like an exotic concept that is
fraught with perilous complexities. However, ST is quite simple. The
following ST program will calculate the area of a circle with a radius
of 4. As can be seen, there are two blocks that each file will have — a
variable block and what can be thought of as a logic block. The
variable block for this program will look like the following:

PROGRAM PLC PRG

VAR
radius : INT := 4;
area : REAL;

END VAR

This code block has two variables that were created by us, the
programmer. The first variable is called radius and has a data type
of inT. If you don't know what that means that’s fine, we're going to
cover that in the next chapter. The second variable is called area,
and it has a datatype of rear. Again, if you don't know what that
means, don’t worry — we’ll cover it in the next chapter. Both
variables were created and named by us. The variable names are
just symbols. We could have named them literally anything, such as
Bob Or Larry. HOwever, in programming you want your variable
names to be reflective of what their job is in the program, so we
opted for the names radius to house the size of the circle’s radius
and area to house the computed area, as they logically reflect what
they do in the program.

As for the “logic” block, it should look like the following:

area := 3.14 * expt(radius, 2);

This block will carry out the program’s operations. In other words,
this is where the program does what it's supposed to do. In this
case, it takes the radius value from the variable block, squares it,
and then multiplies it by pi. As a result, when the program is run, it
produces the output in the following screenshot:

Device Application.,PLC_PRG

Expression Type Value Prepar.. Address Comm..
$ radius INT 4
9 area REAL 50.24
A Y
110 areal 302 »]:= 3.14 * expt(radius[4 | 2):FETURN]

Figure 7.1 — The circle area program output

Now, this example, much less the inner workings of the code,
probably doesn’t make any sense, and for now, that'’s fine. The main
takeaway is to demonstrate how close ST is to the English language
as well as the pseudocode we explored in Chapter 5.

Now, 90% of all PLC projects will use LL. For many PLC
programmers, LL will be enough, and ST would be largely
unnecessary. So, a logical question that a PLC programmer may ask
themselves is, why should we care about ST, and overall, why does
ST matter? The next section is going to answer those questions!

Why is ST important?

If you‘ve ever worked as a PLC programmer, you're probably
wondering, why bother with ST? Why not just stick with time-tested
LL? The truth is that LL is an excellent programming interface for
relatively straightforward projects. However, for complex projects,
such as those that require advanced math calculations or other
applications that have high complexity, ST shines.

To put it bluntly, the way ST can simplify a program still doesn’t
answer why it is important. In truth, the future of PLC programming
is ST. By no means will LL go extinct, at least not anytime soon.
However, the future of automation will incorporate technologies such
as artificial intelligence, IoT, and other advanced concepts that will
be very awkward to incorporate into LL-based programs. In other
words, ST is important because it will be more capable of handling
future-based technologies. As time ticks on, new technologies such
as IoT and artificial intelligence will become more prevalent, which
are technologies that LL was never designed for.

The following summarizes why ST is important:

e Reduced complexity: ST can drastically reduce the complexity
of a program. For applications that incorporate new technologies,
such as artificial intelligence, cloud technologies, and IoT, it is
often much easier to integrate those technologies with ST than it
is with LL.

o Ease of troubleshooting: This relates to reduced complexity,
but it is worth mentioning. ST, due to its natural language flow,
makes it much easier to read code, especially when the program

incorporates complex math such as calculations for motion
control.

* No need to understand complex symbols: ST is built on
natural language. This means that there is no need to
understand what rungs are, how to interact with contacts and
coils, and so on. Anyone who can read can usually follow along
with an ST program. Although many inexperienced automation
programmers view ST as an exotic and intimidating programming
interface, in reality, it is often much easier to understand using
the material that was presented in the previous chapters.

Now, these are just a few reasons why ST is important and why it
will be more important in the future. However, its importance cannot
be summarized fully in three bullet points. For now, we're going to
move on and really explore ST by comparing it to LL!

ST versus LL

As has been implied before, ST is often viewed as either
unnecessary, complex, downright complicated, or unimportant to
many inexperienced or non-formally trained programmers. This is a
very misleading perception that has been encouraged by many years
of programmers becoming a little too comfortable with old-school LL
programming. In all, a lot of the fear of ST stems from many
companies and engineers being unwilling to step out of their comfort
zones and try ST on a new project. This section is going to try to
dispel that myth with examples.

To really understand ST and how it relates to LL in terms of
complexity and usage, we need to compare it to LL. To do this, we're
going to look at a few examples. The first example is the area of a
circle program we wrote in ST previously to see how the code bases
compare.

Example 1 — The area of a circle program —
LL

To keep things organized for the LL version of the program, you will
need the following variables:

PROGRAM PLC PRG
VAR
radius : INT := 4;
pi : REAL := 3.14;
raduils squared : REAL;
area : REAL;
enable : BOOL := TRUE;
END VAR
As you can see, this version of the program requires more variables.
At a minimum, the enabled variable must be added to enable the
multiplication blocks. Since there isn't a standard exponent block, we
also need an extra variable (radius squared) to accommodate that.
The last extra variable that we created for this example is the pi
variable. This variable was not included in the ST version of the
program and is not technically needed here either. However, it was
added to make the value assignments in the multiplication blocks a

bit easier to follow.

NOTE

This example uses pure LL. Depending on the programming environment, there
are some LL blocks that allow users to run custom ST code. However, the key here
is to understand that ST is still needed!

Now that we've explored the variables for the program, we need to
look at the logic for the program. As you can see in Figure 7.2, the
logic is a bit more complex than what can be seen in the ST version:

W

enable MUL

| EN ENO
radius — —raduis squared

radius —

enable MUL
| | BNy ENO
raduis_squared — — area

Pi—

Figure 7.2 — The area of a circle LL version

In this version, there is an extra contact that needs to be enabled to
activate the two blocks. On top of that, the calculation is broken up
across two rungs, and the variables assignment on the multiplication
blocks is a bit more awkward to assign than in the ST version of the
program.

When the program is run, it will result in Figure 7.3:

Device Application.PLC_PRG

Expression Type Value Prepar.. Address Comm..,
@ radius INT 4
$ pi REAL 3.14
$ raduis_squared REAL 16
$ area REAL 50.24
@ enable BOOL TRUE
A Y
1
enable MUL
radius[4 |— — raduis_squared
radius[4 |—
enable MUL
—— « ER
raduis_squared — area
Pl 3.14

Figure 7.3 — The area of circle LL execution

When this program is executed, the area value is 50.2, just like with
the ST version of the program. In terms of execution and results,
there were no differences. All that changed was the overall
complexity of the program itself. The LL version is less intuitive to
follow, requires more code, and is simply more awkward.

NOTE

This code is for demonstration purposes only. It is not meant to be run, but the
code can be downloaded from GitHub to be explored. If you do not understand
the inner workings of the program or any subsequent programs in the chapter,
don'’t fret — that material will be covered throughout the various chapters.

Now, one simple example does not do justice to the difference
between the two interfaces. To fully appreciate the difference, a
couple more examples need to be presented. Let's compare and
contrast an LL program and an ST program that are responsible for
turning on and off a light.

Example 2 — Toggling a light

In this next example, let’s explore a program that can turn on and
off a light. The program will be akin to a digital switch. When the
proverbial switch is turned on, so too will the light; when the switch
is turned off, so too will the light.

The LL code

The first program we're going to write is the LL version. As such, the
first piece of code that we're going to need to produce is the
variables section:

PROGRAM PLC PRG

VAR a
switchState : BOOL := FALSE;
lightState : BOOL;

END VAR

For this program, there will only be two variables, called
swtichState and lightState. The switchstate variable will serve as
the “digital light switch.” The 1ightstate variable will mirror the
state of the switchstate variable.

In terms of the logic for this program, see Figure 7.4

F -

‘switchState! lightState

...

I ()

Figure 7.4 — The LL light switch

This program is composed of a contact and a coil. A contact is like a
switch, and a coil is an output like a light. For this program, when
the light switch is on, so is the light.

When the program is executed, the switchstate variable will be set
to ra1se, which will result in Figure 7.5:

DeiceAppcaionLC_PRG

Exprssion Toe Ve Pegar. Addes Comm,
) sitctte LS
 ligntSuate B0l

AN

ligheState

Figure 7.5 — LL — The light is off

If the light is switched on, the result will be Figure 7.6:

Device Application PLC_PRG

bresson Toe Vo P, Addes Comm,
§ sitette 0 T
§ lhtStae oo
— AY
!
LightState

Figure 7.6 — LL — The light is on

If you're reading this book, there is a decent chance that you may
not know how to program in LL. On the other hand, if you are
familiar with LL, think back to when you were first learning it. If your
boss dropped this program in your lap, would you have any idea
what is going on in this program? Would you be able to follow it
without Googling what LL is? Would you even be able to tell whether
the coil is energized? Chances are, probably not at first glance. With
that, let’s explore the ST version of this program.

The ST code

Now that we've explored the LL version of the program, let's explore
the ST version. To begin the program, we're going to recycle the
same variables. As such, for our ST program, the variable section
should look like the following:

PROGRAM PLC PRG

VAR
switchState : BOOL := FALSE;
lightState : BOOL;

END VAR

For this version of the program, the variables will serve the exact
same purposes. Therefore, we can move on to implementing the
logic, which is as simple as the following code block:

lightState := switchState;

This simple statement is all that is needed to convert the LL program
to ST. When this program is run and the switch variable is set to
True, it Will produce the output shown in Figure 7.7.

As can be seen, the 1ightstate variable directly mirrors the
switchState variable. The only real difference between the two
versions of the program is that there isn’t a blue line that denotes
whether the output or, in this case, the 1ightstate variable is
energized or not. In the case of Figure 7.7, the only way to tell
whether the light is on is by reading the vaiue column or the state
next to the variable:

Expression Type Value Prepar.. Address
switchState BOOL
lightState BOOL

| higntStaceEENE := switchState ERNEN:EETUAN

Figure 7.7 — ST — light on

When the light switch is turned off, the program output should look
like Figure 7.8:

Expression Type Value Prepar.. Address
$ switchState BOOL
lightState BOOL
1 lightState[NE = ;[RETURN]

Figure 7.8 — ST — light off

The outputs from both programs are essentially the same. Assume
you know nothing about programming or PLCs. Which program do
you think will be easier to follow or write? The LL version, which has
a bunch of non-intuitive commands that a layperson would not
readily understand, or the ST version, which is basically an equal
sign? Chances are you would probably lean toward the simplicity of
ST.

There are a lot more examples that can demonstrate the differences.
However, let's summarize the differences and similarities:

o Syntax: Much like any other written language, ST has certain
rules and grammar to follow for the program to compiler and run.
Conversely, LL has rules as well, but the biggest difference is that
ST will use written text whereas LL will use symbols. Both
languages have their own learning curves. Depending on your
background, LL may be easier to learn at first; however, ST is
more future-proof.

o Nature: LL resembles electrical circuits because it is derived
from old-fashioned relay logic. Conversely, ST is a word-based
programming language. In LL, the programmer will need to
memorize and understand what certain symbols do, whereas in
ST, the programmer must memorize and understand what
keywords do. Again, if someone has a background in electronics
or as an electrician, LL may be easier to learn upfront, but they
will still need to learn ST to future-proof their programs.

o Ease of use: As we saw in the example, and as opposed to
traditional myth, LL typically requires more rungs and code
configuration to accomplish the same results as an ST program.
The ST programs were typically shorter and easier to follow.

Again, these bullets are like the bullets listed previously. Overall,
these are just some high-level attributes that contrast the two
programming interfaces. Both lists are by no means comprehensive.

A logical question at this point would be, how can an engineer write
a PLC program? In the following section, we're going to explore the
necessary software that will be needed to write ST and get some
hands-on practice. To do this, we're going to explore a programming
software called CODESYS.

What is CODESYS?

If you went to or are currently going to school to be an automation
engineer, you're probably familiar with something such as RSLOGIX
or S7 PLCs and programming suites. It can be forgiven if entry-level
professionals and students were to believe that these were the only
programming environments on the market. However, they would be
gravely mistaken.

Enter the world of CODESYS. CODESYS is an extremely powerful
programming environment that more closely resembles a standard
IDE such as Visual Studio or PyCharm than a PLC programming
suite. CODESYS is a free-to-download-and-use development package

that has a built-in simulator, allowing developers to run their code
without the need for actual PLC hardware. This makes CODESYS one
of the premier PLC programming environments available. Above all,
CODESYS supports all the primary IEC 61131-3 languages and offers
support for many of the advanced IEC 61131-3 features, such as
object-oriented programming.

It may seem almost oxymoronic because if you ask a PLC
programmer what the most powerful PLC programming suite is, they
will probably answer with something along the lines of S7 or
RSLOGIX. However, in terms of unbridled power, CODESYS and the
systems that derive from CODESYS, such as Beckhoff’s TwinCAT,
offer significantly more features that, when used to the fullest, allow
developers to produce vastly superior software. CODESYS and
similar programming suites could very easily be the way of the
future, and if you can master the features in CODESYS, you will be
able to pick up a programming software such as RSLOGIX with ease.

The following are some of the major attributes of CODESYS that the
average developer would recognize:

e Full support for object-oriented programming

¢ A built-in simulator that allows code to be run without physical
hardware

e A built-in debugger
e Support for all IEC 61131-3 programming languages

These are just some general, high-level features; some of these
features are available in other PLC programming systems as well. For
the inexperienced, these need to be highlighted, as some of them
will be used quite often throughout this book.

Now, this book will use CODESYS as the programming environment.
However, it should be noted that this book is not a CODESYS book.
The techniques demonstrated here are simply programming
concepts that can be used in any other IEC 61131-3 programming
environment or system that closely follows the standard’s syntax.
With that, you can opt to use a system such as Beckhoff’s TwinCAT if
you wish. TwinCAT and similar systems such as WAGO and PLCnext
are built on top of CODESYS and are IEC 61131-3-compliant, which
means that what we cover here is compatible with those systems.

To follow along with this book, you're going to use a working copy of
CODESYS. If you‘ve used something akin to TwinCAT, you can use
that if you're comfortable, but if you're inexperienced and want to
follow along with the book, it is best to use CODESYS. The next
section is dedicated to installing CODESYS.

Installing CODESYS

Obviously, before you can move forward with the book, you will
need a working copy of CODESYS. CODESYS is free to download and
install. The link to download the programming system can be found
in the Technical requirements section of the chapter. The first step is
to follow the link and install the programming environment.

Before you start trying to install CODESYS, it is important to realize
that most software, no matter the vendor or purpose, will be
periodically updated and changed. This means that, depending on
when you’re reading this book, there may be changes to the
installation process or operation of the software. Typically, these
changes are minor; however, beware that as time progresses, these
changes may cause incongruities with the instructions presented
here. If you do find incongruities, usually a simple Google search will
reveal the correct course of action.

NOTE

CODESYS versions are not always backward-compatible. If you are using a newer
version of CODESYS and the examples do not run, try copying and pasting the
source code into a new project built with the version you are using.

To install the program, all you have to do is download the software
and follow the wizard. There are no gotchas when installing the
program. However, you may need to set up an account, which just
requires you to provide an email address and password, along with
some other information. In all, the process should take about 15
minutes from start to finish.

A CODESYS exploration

Once CODESYS is installed and you start the program, you should be
met with something like Figure 7.9:

¥ CODESYS - X

e Gt Vew Pogd Buld Onine Debug Took Window Hep I
o R Y S0 SRR P T A ety £
i P hX] Sathge x T

Basic operations Latest news
2 NP,
& Open e,
ﬁ] (OpenPojet from L. "

(ODESYS
Reentprojes

@ LiattProgranT
[i" Ladder Logic Ligt St
(@ Ladde Logicreaf GidePogran

Uritegd

wi

& Uttt ﬂq.

We plac conkesfor analss ofour veskorGat, o mprone our wedste
ShOWpersonalzed conten and 0 Qv 0 a et westeexpenence
Impressum Densehut

1 Clusepage atrpeetload It Akzepheren

@ Do DP 0l S0 age st

“E] lssages - Total 0 enors), 0 waming(s Umessage[s}l

b 0090 P/ mgtue o) ()

Figure 7.9 — The CODESYS home screen

Figure 7.9 is essentially the landing page for the PLC programming
system. To create a new project, click the New Project... link,
which should render Figure 7.10:

Iﬂ New Project X

Categories Templates

~{] Libraries - 2
gpabn v

Empty project Standard
project

A project containing one device, one application, and an empty implementation for PLC_PRG

Name Untitled1

Location || v¢

a(}r:amd}

Figure 7.10 — The New Project window

From here, select a location where you want to create your project.
The default directory is fine. Input a name in the Name field that

reflects the nature of the project. When you click OK, you should be
met with Figure 7.11:

Standard Project X

= objects within this project:

j You are about to create a new standard project. This wizard will create the following

- One programmable device as specified below

- A program PLC_PRG in the language specified below

- A cyclic task which calls PLC_PRG

- A reference to the newest version of the Standard library currently installed.

Device CODESYS HMI (35 - Smart Software Solutions GmbH) v

PLC_PRG in Structured Text (ST) v

0K Cancel

Figure 7.11 — The Standard Project window

Figure 7.11 is a very important window; this window is used to select
project properties such as the programming language for the
project. By default, ST should be preselected; if not, select it in the
drop-down menu and click OK.

Typically, from here, you will select a standard project that will
create the barebones skeleton of a PLC project. Then, a window like
the one in Figure 7.12 should pop up. In the case of Figure 7.12, the

pLc_PRG file has been opened. To do this, simply double-click that file
in the left-hand tree:

¥ feloMordpet - CODESS = X
e B Ve Pt b e Db s Wik g {

350800 LRRX AL NN B et 88) {5 e B

/i PLCPRG X v
= oo 1| RO ELC 86 A
« e e ' 8
Yo | o
* {
(-
PR
« { s kg
i 0
Ao 1 -
s
g e <
Musaq&-Toulﬂmr(s),ﬂwﬂng(s},ﬁmessngds]l
Lath 1)0 e/ 0

Figure 7.12 — The main project window with the PLC_PRG file open

PLC programs are often broken out among many different files. For
example, a PLC program can be broken out among files such as
function block files and function files. For this book, we're going to
only write code in the prc_pra file to keep things simple.

Exploring the PLC_PRG file

Each program file in most CODESYS-based systems is split between
a variable section and a logic section. The variable section is at the
top, and this is where variables are declared. In contrast, the bottom
section is where the core logic of the program goes. Code such as
the following goes in the bottom section of the window:

e Math computations

Assignments

Control statements

Function calls

Function block calls

Once you have CODESYS installed and you feel comfortable with the
PLC_PRG file structure, you can move on to the next section — writing
your first PLC program!

The final project — Hello World

Before you can start this section of the book, you need to ensure
that CODESYS is installed and working. Ensure you can create a new
project as outlined in the previous steps. If you can't do that, you
will need to go back and fix whatever issue caused the problem with
the program installation. Once you are sure you have a working copy
of CODESYS, you can start the process of creating your first
program.

Step 1 — Creating a new project!

Creating a project was walked through in the previous section. You
essentially want to follow the same steps that were outlined
previously. Once you have clicked Create New project, name the
project Hello World, and then click OK. Then, click the OK button
again on the following popup. Once you do that, your project should
be generated. Click on the prc_pre file in the left-hand tree, and you
should see a window like the one in Figure 7.12. When you complete
those steps, you can move on to step 2 and start implementing your
code:

Step 2 — Code implementation

For this program, we're only going to need one variable called msg.
You will want to declare the variable between the var and Exp_var
keywords in the top part of the window. Once complete, the variable
section of your file should match the following:

PROGRAM PLC PRG
VAR

msg : WSTRING;
END VAR

Now, what this code block does is allocate a memory block called
msg and assign it a datatype of wstrine. Again, don't worry if this
does not make sense at this stage; just follow along.

Once your variable is declared, you can implement your logic, which
will consist of the following line:

msg := "Hello world";

All this line does is assign the Bel1lo Wor1id message to the msg
variable. So, when the program is running, "Hello World" appears
in the vaiue column.

When all this is complete, you can move on to running the program!

Step 3 — Running the program!

For this step, the first thing you are going to want to do is put
CODESYS in simulation mode. This setting will run the code locally
as opposed to looking for an attached PLC. It is very easy to forget
this step. If this step is forgotten, CODESYS will return an error
message if there is no physical PLC attached. To do this, you will
want to find Online in the top menu bar and click Simulation.

Once you have simulation Selected, you will need to log in. To do
this, click on the highlighted button in Figure 7.13:

Figure 7.13 — The login button

Once logged in, click the OK button on the popup that appears and

then the play button next to the login button, which is highlighted in
Figure 7.14:

Figure 7.14 — The play button

After play is pressed, your program screen should morph into Figure
/.15:

=1 PLC_PRG X

Device Application.PLC_PRG

Expression Type Value Prepar.. Address Comm..
$ msg WSTRING Hello world"
AY
1 ¢ msg| “Helowod | := "Hello world";RETURN]

Figure 7.15 — Output

Note the message in the vaiue column. After the program was run,
it reflected the message that was set in step 2. After logging in and

running, if you see this message, your program has executed
successfully!

Chapter challenge

Once you have the final project working, experiment with the
message. As a first challenge, try to replace the He11o wWorida
message with your name. Once you've done that, add a second
variable of type wsTriNg, such as the msg variable, and set it to your
birthday. Finally, add a third wsTriNneG variable, set it to your place of
birth, and run the program. When you run your program, see what
each variable in the vaiue column says.

Summary

In this chapter, we explored the basics of ST and why it is important,
CODESYS, and much more! Hopefully, any fears you had about
programming in ST are now fading. At this point, you should have a
very general understanding of what CODESYS is, what ST is, and,
above all else, the confidence to continue learning the ins and outs
of PLC programming in ST. In the next chapter, we're going to take
what we learned here and apply it to variables!

Further reading

Basics of ST (Structured Text) Programming:
https://realpars.com/structured-text/

https://realpars.com/structured-text/

Questions

1. What are two programming languages that are similar to ST?
2. What are the two sections of the prc_pre file?

3. Why would you use ST over LL?

4. What does the vaiue column represent?

5. What is the process to run a PLC program in CODESYS?

8

Exploring Variables and Tags

In Chapter 4, we explored the basics of how computer memory
works. In this chapter, we're going to take those principles and apply
them to PLC programming. Unless you‘re working on a very trivial
program, you're going to have to implement variables at one point or
another. Moreover, it is a necessity for a programmer, no matter
whether they are a PLC programmer or a person writing code for
more traditional applications, to understand what variables are and

how they work.

In automation, variables are everything. If a sensor is connected to
a PLC, the software will require a variable to read the incoming data.
If the PLC needs to take an input, a variable will be needed to store
the input data. All in all, variables are the world in automation
programming. No matter what you’re doing, you're going to need to
understand variables and how to use them.

Variables are the backbone of any program, no matter the
application. This means that to be able to write a program, you will
need a solid understanding of how variables work. This chapter is
going to be another applied chapter that will explore how to use
variables with practical examples. To do this, we're going to explore
the following concepts:

What is a variable/tag?

How do variables/tags work under the hood?

Data types

How to declare a variable

Variable naming conventions

To round out this chapter, we're going to create a series of variables
for a PLC program that can calculate the area of a triangle. By the
end of this chapter, you should gain a thorough understanding of
data types, variables, and their applications.

Technical requirements

For this chapter, all that will be required is a working copy of
CODESYS. All code will be available at the following link:

https://github.com/PacktPublishing/PLCs-for-Beginners

It is recommended that you pull down the code and explore the
examples.

What are variables/tags?

memory is made of storage blocks that can have very long and
complex naming conventions that are usually unreadable to humans.

https://github.com/PacktPublishing/PLCs-for-Beginners

To remedy this, programmers will use what are known as variables
or tags to provide an alias and context to memory blocks.

A variable in programming is much like a variable in mathematics.
Ultimately, a variable is a placeholder for a value that may or may
not be known. The only area where a programming variable will
differ from a math variable is that a programming variable
represents a place or location as opposed to a value, as in
mathematics. This stems from its nature as an alias.

In traditional programming, these aliases are always called variables.
However, in automation programming, these aliases are more often
called tags, especially when working with more traditional PLC
programming software. Some programmers may split hairs about the
difference between a tag and a variable; however, in practice, the
terms can be used interchangeably. For this book, we will use the
terms interchangeably.

Applications of variables

Variables have many applications. Some common applications that
variables are used for are as follows:

o Internal data manipulation: Many times, variables are used
to hold things such as calculated values, states that were
modified by the program, and so on. For programmers who are
familiar with Ladder Logic, this concept can be thought of as an
internal contact.

e Input and output: Variables are often tied to devices such as
sensors. Essentially, something such as a pressure sensor will be
wired to an input module. Typically, in the program, the value
that is read by the PLC will be stored in a variable. On the inverse
to that, a variable is typically assigned to an output port. When a
value is written to the variable, it will reflect in the physical world.

e Operator input: All buttons, inputs, and so on that are in an
HMI will be attached to a variable of some kind under the hood.
Any control in an HMI must be attached to a variable as each
action will require a value to be mutated. For example, a button
press may change a value from True to False Or vice versa, a

knob may change a numerical value, and so on.

Now that we know a little about what variables are, we need to
understand how they work under the hood. Luckily, we explored
proceeding. With that, let’s explore what variables are under the
hood!

Variables/tags under the hood

This section will be relatively short as we've already explored how
digital memory works. In Chapter 4, we saw that a memory block is

an alphanumeric string along the lines of the following:

0x01ABC223

It may not be the same, but this would be along the lines of what a
memory address would look like. For us mere mortals, this string has
no meaning; chances are, 10 minutes after allocating the memory
block, we're going to forget what the memory block was allocated
for. This block has no context, so another programmer would have
no clue what purpose it serves in a program, and good luck
troubleshooting errors.

Why use variables?

variable is a human-readable alias that references a memory block.
Since a variable is a human-readable alias, it provides the following
benefits:

e Gives a memory block an easy-to-read name

¢ Provides context to what the memory block does

o Makes the program more maintainable

e Provides an easy way to change multiple values at once
Now, this section was just a high-level explanation of how a variable
works under the hood. However, creating a variable is a little more

complex. In the next section, we're going to look at a fundamental
of variables, which is called typing.

Data types

Understanding data types is a very important concept for any
programmer. To properly leverage any PLC programming language, a
strong knowledge of data typing is essential. Typing is a generic
concept that is used in every programming language, including
languages such as Ladder Logic. In this section, we're going to
explore what data types are and how to use them.

What is a data type?

Whether it be a computer, PLC, or any other programmable device, if
you need to create a variable, the program will need to know what
type of data that memory block can hold. In other words, the
program will need to know whether a variable is holding a whole
number, a Boolean value, a string, or whatever else it may be. This
is where data types come into play. A data type dictates what values
can and cannot be stored in the variable.

There are some rules that govern typing, such as whether a
programming language is strongly or weakly typed while also being
either dynamically or statically typed. This means that a language
will fall somewhere in Figure 8.1:

Strongly

Typed
Dynamically Statically
Typed Typed
Weakly
Typed

Figure 8.1 — Typing categories

In theory, any language will fall into one of the quadrants in Figure
8.1. This means that a language can be one of the following:

e Strongly and statically typed
e Strongly and dynamically typed
e Weakly and statically typed
e Weakly and dynamically typed
For all practical purposes, the definitions of these terms are at best

muddy, especially the true meaning of weakly and strongly typed
languages. As such, the next two sections are going to explore the

concepts at a high level. There is a lot to these terms, but we're
going to use the following definitions for this book.

Statically and dynamically typed
languages

Describing the difference between a statically and dynamically typed
language is a common interview question for traditional app

developers and even some PLC programmers interviewing at hi-tech
firms. In short, the difference can be summarized with the following:

o Statically typed: For practical purposes, in a statically typed
language, a programmer will usually explicitly declare a variable’s
data type when the variable is declared. In other words, a data
type is explicitly declared before the compilation process. This
means that the type is checked during the compilation process.
Common examples of statically typed languages are C#, Java,
and C++.

e Dynamically typed: In a dynamically typed language, the
programmer usually does not explicitly declare the data type and
the compilation system figures out the data type based on the
value assigned to it. In the case of a dynamically typed language,
a variable’s data type is determined during runtime. Common
examples of dynamically typed languages are Python, PHP,
JavaScript, List, Ruby, Objective-C, and so on.

Whether a language is statically or dynamically typed poses its own
set of challenges. For example, a statically typed language requires

more upfront thought and design work regarding the type of data
that a variable should hold. On the other hand, it can sometimes be
challenging to figure out a variable’s data type in a dynamically
typed language. The ambiguity can often cause bugs in a program
and make troubleshooting difficult. With that, the rules for a weakly
and strongly typed language are less clear.

Weakly and strongly typed languages

This is where things can get murky, quick. The definitions of a
strongly and weakly typed language and how they relate to
dynamically and weakly typed languages are not agreed upon and
can differ depending on whom you ask. For this book, we're going to
define the language types as the following:

o Strongly typed: A strongly typed language is a language that
strictly enforces typing rules. In other words, in a strongly typed
language, this line of code would result in a compilation failure:

123 = "123"

For this line of code, the compilation system will attempt to
compare an integer to a string type. For strongly typed systems,
the system will only allow operations to be performed on
compatible data types. Typically, bugs can be troubleshot more
easily in a strongly typed language due to the strict typing rules.
Moreover, bugs will be easier to find as the compilation system
will check for data mismatches and flag those errors during

compilation. Common examples of strongly typed languages are
Python, C++, C#, Java, and the like.

o Weakly typed: A weakly typed language is the opposite of a
strongly typed language. In a weakly typed language, data types
don't matter as much. By that, a program will attempt to
evaluate the statement. Depending on the language, it will
attempt to convert one of the values from a string to an integer
or vice versa and conduct the comparison. Obviously, this could
cause bugs in a program, as depending on what the program is
doing, they may not know whether the program is testing a
string comparison or a numerical value. Now, there is nothing
wrong with using a weakly typed language; in fact, one of the
most widely used programming languages, JavaScript, is weakly
typed. The only drawback to using a weakly typed language is
that programs written in the language can sometimes be difficult
to troubleshoot. With that, common examples of weakly typed
languages are JavaScript, PHP, Pearl, Ruby, and the like.

Defining weakly or strongly typed languages is a very ambiguous
task that, again, stems from how loosely defined the two concepts
are. There is also the “issue” that many modern languages such as
C# have adopted many features that can be considered dynamically,
statically, weakly, and strongly typed features. In all, this explanation
will generally get you through an interview.

IEC 61131-3 typing

If one examines the previous definitions, CODESYS would be a
statically and strongly typed language. This can be shown in Figure

8.2:
Q PLC_PRG X
. PROGRAM PLC PRG
H VAR
X : int;
y + WSTRING;
END VAR
A Y
IF f = v THEN

\\\\\\\\\\\\\\\\

Ennn:t compare type INT with type WSTRING

B IF

Figure 8.2 — Typing error

100 % @\. |

As can be seen, there is a red squiggle line in the logic block. Also

L]

notice that in the variable block, we have a variable of type 1nT and

of type wsTrING. NOw, red squiggle lines typically mean errors and if

one hovered over the red line, the message will show that there is

an issue with the data types. Since we have to explicitly declare a
variable’s data type and the system cares about the variable’s types,
we can say that we are working with a statically and strongly typed

language.

So, what does this mean? Why should we care? In short, this means
we need to take a deep dive into data types and what they mean.

The IEC 61131-3 data types

The IEC 61131-3 standard supports a bunch of different data types.
You'll find that as a PLC programmer, you’ll use some data types
more than others. However, it is important to understand the data
types that the standard supports. With that, the first thing we need
to do is establish what a bit and a byte are.

Bits and bytes

It is almost impossible to get through a day without hearing the
term bit or byte, especially if you work in information technology
(IT) or automation. However, what do they mean and what do they
represent?

Bits

A bit is very easy to understand. A bit can be either a 0 or a 1. In
other words, a bit can be thought of as a switch. Much like a switch,
a bit can be either on or off and nothing else. Bits are the
fundamental backbone of computer science and by extension,
automation programming. Bits can be thought of as protons and
neutrons, the fundamental particles that make up an atom, because
when you have enough bits, they form what’s called a byte.

Bytes

If bits are analogous to protons and neutrons, a byte can be thought
of as an atom. A byte is typically composed of eight bits for a
standard system. The combination of the bits that comprise the byte
will determine what the byte is. This is a very important concept to
understand, as most of the data types that we're about to explore
will use bytes as the metric for the size of the value it can hold.

Representation

Anyone who has ever purchased high-speed internet has seen
something akin to 60Mbps. For the uninitiated, this would mean 60
megabytes per second. However, there is a gotcha here. Bytes and
bits are denoted with an uppercase and lowercase b respectively.
This means that if you‘ve ever bought high-speed internet or data of
some kind and it was denoted with a lowercase b and you thought
or were told you bought megabytes, your speed is actually one-
eighth the speed or less!

The denotation of bits and bytes is very important because
sometimes, documentation can use either metric. Many
communication protocols also use the metrics interchangeably. As
such, when working with variables and you need to know how large
of a value you can store in the variable, you must know how the
units are represented, especially when you're integrating PLCs with
general-purpose programming languages such as C# or Java.

Why are bytes and bits important?

This may seem trivial; however, as technology progresses, traditional
programming languages such as C/C++, C#, Java, Python, Delphi,
JavaScript, and so on are finding their way into the automation
world. For example, Beckhoff offers the TwinCat system that allows
developers to write HMIs in a .NET or Delphi language. In cases like
this, what constitutes an integer on the PLC side is equivalent to a
short int or 16-bit integer in a .NET language and is sometimes
denoted as such. This means that when the HMI sends data to the
PLC or vice versa, there could be data compatibility issues if the data
types are not declared correctly. As technology progresses even
further and newer technologies such as the cloud, machine learning,
and IoT become more prevalent, these traditional, general-purpose
programming languages will become more ingrained in the
automation world. As such, it will become ever more important to
understand how many bytes or bits represent a data type and the
units each system uses.

Now that we have a little background about how data types work
and the difference between bytes and bits, we can move on to some
practical applications for variables. To do this, we are going to
explore the data types in a very practical sense. To start the journey,
we're going to explore some of the most common data types that a
programmer will use.

Common data types

In programming, some data types are used way more than others.
In practice, most programmers will find themselves using the
following data types the most:

o Integer: An integer is denoted by the inT keyword in most
languages as well as the IEC 61131-3 standard. This data type
signals that the variable will hold a single whole number. An
example of an 1nT is a value such as 1, 23, 1001, or so on. You
will typically use an Int for logic such as counting parts, inputting
the number of parts to make, and similar things. Essentially, any
logic that will handle whole numbers will usually utilize the InT
data type.

¢ Floating point: A floating-point data type is a type that holds
decimal values. Essentially, any value that has a decimal is
typically considered a float. Unlike integers, which are typically
denoted by the 1inT keyword or a derivative of the three letters, a
floating point is declared with different keywords depending on
the language. Common keywords that denote a floating point are
as follows:

e Float
e Double

e Real

This data type is used to hold values that are the result of
division, analog inputs, or outputs from devices such as pressure
sensors, temperature sensors, scales, and so on. In an IEC

61131-3-compliant language such as CODESYS or Beckhoff, use
the rear keyword to denote a floating point and an LreaL

keyword to denote an 8-byte floating point.

Boolean: A Boolean value can either be a 0 or a 1 and nothing
else. Basically, a Boolean value is a bit. Boolean variables are
typically expressed with the keyword bool or Boolean. As was
explored in Chapter 6, bools are mostly used to determine the
output of something based on the input or vice versa. A common
example of a Boolean variable may be to read or write a switch
attached to a digital I/O module, a light curtain, IR sensors, LED
torches, buzzers, and so on. The main use case for a Boolean
variable is in a control statement such as an if statement. In IEC

61131-3, a bool variable is denoted with the BooL keyword.

Char/string: Chars and strings are two different types of data
but are very similar in nature to the inexperienced. A char type
can be thought of as a single alphanumerical character such as a
letter, number, or symbol whereas a string is one or more
alphanumerical characters. For example, the letter a and the
symbol ' are char types where abc123e is a string. Some
languages such as Python don’t support a char type per se, but
they support a string type. However, most languages such as C#
or Java treat strings like an array of characters under the hood.
Where an array can be thought of as one variable that can hold
multiple values. Typically, it is more common to use a string than
a char but, again, that depends on the language. In terms of PLC
programming, it is common to use strings over char and they are

typically employed to do things such as naming files, reading
error strings, debugging, and so on. On the other hand, chars are
common for things such as taking simple inputs, such as y/n for
yes or no. In IEC 61131-3, a string is denoted with the sTriNG Or
wSTRING keyword and a char with cHar.

Of all the data types, these are the ones that you must know to
function as a PLC programmer. Many of the other data types that
IEC 61131-3 supports are derivatives of these types. These other
types include data types such as long INT (LINT), short INT
(SINT), and so on. There are many more data types like these to
explore, so much so that a whole book could probably be dedicated
to just those. The Wikipedia page on the IEC 61131-3 data types is
an excellent resource to explore.

If you wish to explore more about the different data types, you can
visit this page on Wikipedia:

https://en.wikipedia.org/wiki/IEC_61131-3

The variables that were explored are the ones we will use the most
in this book. When other data types are needed, they will be
explored at that time.

As such, for now, we're going to switch gears and explore how to
declare variables.

How to declare variables

https://en.wikipedia.org/wiki/IEC_61131-3

In previous chapters, we've declared variables just enough to limp
through our examples. However, we have not explored their syntax
in any real depth. At this point, you may have a rough idea of how
to declare a variable but in this section, we're going to do a deep
dive into how to declare and use variables.

Variable section of a file

All files in CODESYS and similar systems have a special area where
variables are declared. As you may have noticed, a file, such as the
pLC_PRG file, is split in two. The bottom section is where the
program’s logic is declared, as we have seen, while the top section is
used to define variables.

Any time you create a file, the top section will always have the
following lines of code in it by default:

VAR
END_ VAR

This is a special block of code, as this block of code is where all the
variables for that particular file will be declared.

Declaring a variable

On its own, this block of code doesn’t do anything since there is no
code in between the two keywords. To add life to this code block,
we, at the minimum, need to declare a variable. Declaring a variable
is basically just telling the PLC to create a new variable of whatever
type we need. The exact syntax for declaring a variable is as follows:

VAR
Variable name : data type;
END_ VAR

So, if you needed to declare a variable called counter of type 1nT,
you would use the following:

VAR
counter : INT;
END VAR

This code will declare a variable called counter of type 1nT, but that

value will be empty. For some cases, this is fine, but for others, you
may want to preload a value into the variable.

Initializing a variable

Often, we will want to assign a value to a variable when it is
declared. This is especially true if you're working with a dynamically
typed language such as Python, as a language like that will need to
know the data type when the variable is declared. For our purposes,
we can technically skimp on this since we are statically telling the
PLC what type of data that memory block is going to hold. Though it
is not necessary, it is considered a best practice by some to assign a
dummy value such as 0 to a variable at declaration, just so it is not

empty.

An example of this may be an industrial oven. For industrial ovens, it
is common to have a preloaded cutoff temperature that will serve as
the default cutoff temperature for most of the parts that go into it.
For the most part, a programmer should not have to worry about
coding this value in the logic. In fact, that would be a bad idea. In

practice, they should just declare the variable and assign a value to
it all-in-one shot. To do this, they could use the following syntax:

VAR
oven temp : INT := 320;
END VAR

The key here is the := sign. In the IEC 61131-3 standard, that
syntax means assign. In other words, drop a value into the variable.
As can be seen in the syntax, we are declaring a variable in a nhormal
fashion, but we are assigning a value to it at the same time. In this
case, we are initializing the variable at declaration. As such,
anywhere oven_temp is referenced, the value will be 320 unless that
value is changed somewhere else in the logic.

Variable naming

Believe it or not, one of the keys to a well-written program is the
naming conventions of variables. If you think back to our apartment
going to go visit the residents in apartment 123 at 456 Jay Street?
Chances are, you've never said that. On the contrary, you've
probably said you're going to go visit your friends Bob and Sarah.
Memorizing Bob and Sarah’s address is simply too difficult to do and
keep track of, especially when you are a social butterfly and have
thousands of friends. Programming is no different. A variable’s name
adds context to what the value is and its purpose in the program as
such, so to keep your code base clean and concise, effective naming

is @ must! So, in this section, we're going to look at how to properly
name variables and proper naming conventions.

Rules to naming a variable

Before we start exploring proper naming conventions, we need a
little computer history lesson. Up until recently, and even today
when using some old PLCs, computer memory was precious.
Computers and PLCs alike did not have the resources necessary for
long variable names. It was common to have code bases with x and
Y as variable names. These names are technically better than a raw
memory address but they’re not very helpful in understanding what
the variable is and its purpose in a program, especially when the
program has thousands of variables. Fast forward to today, and
computer and PLC memory isn't as precious anymore and variable
names that add context are the new norm.

In today’s landscape, a variable has three main tasks:
e Add context to the memory address’s purpose
¢ Provide a logical, human-readable alias for a memory block
e Store a value in a central location
This means that naming a variable X or Y isn't a good practice
anymore.

A good rule of thumb is to name a variable based on what it is
meant to do. For example, suppose you want to use a variable to set

the speed of a motor and suppose a device has three motors.
Logical names for the motors would be as follows:

e motorlSpeed
e motor2Speed

e motor3Speed

Or

e speedMotorl
e speedMotor2
e speedMotor3

As can be seen, each of the variables clearly indicates what the
variable does and what device it controls. So, if another programmer
or your future self is examining the code, the responsibility of the
variable is clear.

Now, there is no silver bullet to naming variables; however, a good
pattern to follow is to include the device, responsibility, and device
number if applicable. This pattern will generally serve you well;
however, sometimes you’ll name a variable something like greenLED.
Depending on what you’re working on, you could probably get away
with this. However, a better name would be something along the
lines of startLEDON. All in all, learning to name a variable is a bit of
an art and a science.

With that, the next thing we need to look at is naming conventions.

Naming conventions

Naming conventions are more than just naming a variable. Proper
naming conventions also include tasks such as properly formatting
the variable’s name. There are three main conventions that are
commonly used to do this.

Camel casing

Arguably the most common naming convention is what's called
camel casing. As was explored in the last section, many variable
names are composed of multiple words. In camel casing, the first
word is spelled using all lowercase while the first letter of each
subsequent word is capitalized. This means that if someone wanted
to declare a speed variable for motor 1, they would use the
following:

motorlSpeed : <data type>

Camel casing is very common, but it is not the only nhaming
convention. Another common naming convention is pascal casing.

Pascal casing

Another popular schema is to use what is known as pascal casing.
For this schema, the first letter of each word in the variable is
capitalized. Circling back to the motor speed variable, in pascal
casing, the variable would be written as follows:

MotorlSpeed : <data type>

Pascal casing and camel casing are both very common and easy-to-
use naming conventions. However, there is one more naming
convention that is commonly used called snake casing.

Snake casing

Snake casing is an excellent convention to use but it can be
difficult to use compared to the other two. In snake case, each word
is separated by an underscore, which makes the variable look like a
snake! Of all the naming conventions, this one can be the most
awkward to use due to the placement of the underscore button on a
keyboard. For this convention, every word is typically spelled with all
lowercase letters and each word is separated by an underscore. This
means that if one wanted to make a motor speed variable with
snake case, they would use the following:

motor speed

In any case, it doesn’t matter which convention you use if it is
consistent throughout the program. Usually, an organization will
have a coding standard that dictates what schema to use. For this
book, we're going to exclusively use camel casing.

We now have the information needed to properly declare variables.
Now that we understand data types and naming conventions, we
can move on to our final project. For the final project, we're going to
declare the variables necessary to calculate the area of a triangle.

Final project — declare the variables
of a triangle

In PLC programming, it is common to have to calculate the area of
shapes. A common shape that is often seen in automation is the
good ‘ol triangle. For this project, we're going to set up the
necessary variables to calculate the area of a triangle. We're going to
pretend that the our program is going to control a pump that will
pump cement into triangular containers that are all the same size.

The first thing we need to establish is what the area of a triangle is.
The equation to accomplish this task is as follows:

Base* Height

Area = 5

For this program, we're going to make two assumptions. We're going
to assume that both the height and the base are whole humbers.
We're also going to assume that the base is 2 and the height is 10.

Code implementation

Breaking down the aforementioned scenario list, we know that the
height and the base are both whole numbers, so they can be
declared as an integer type. Also, for the equation, we know that the
calculated area is the resultant of division, so that needs to be a
floating-point data type. As such, we can use the following code to
implement the skeleton of the variables:

VAR
area . REAL;

base : INT;
height : INT;
END_ VAR
Now, there’s one more step. Since the scenario stated that the base
and height are constant, we can modify the code to accommodate

for that. We can initialize the base and height variables with the

following:
VAR
area : REAL;
base : INT := 2;
height : INT := 10;
END VAR

In this case, we preloaded the values, so we don’t have to modify
the logic to do this. All in all, our variables are declared and satisfy
the requirements of the scenario.

Challenge — declare the variable for a
rectangle’s perimeter

As a special challenge, assume the perimeter of a rectangle is
defined with the following equation:

Perimeter = 2(length + width)

For this challenge, assume that the length and the width can be
either a whole number or a decimal number. Declare all the variables
for this program.

Summary

In summary, we've explored the basics of typing, common data
types, variables, and more in this chapter. By this point, you should
be able to effectively declare and name a variable to create quality
code. Now, dont be discouraged if you don't fully understand the ins
and outs of variables yet, because typing and naming conventions
can often be confusing to the inexperienced. You'll get much more
practice in the next chapter, when we explore math calculations in
Structured Text!

Further reading
e A guide to common naming conventions:.

https://www.theserverside.com/feature/A-guide-to-common-

variable-naming-
conventions#:~:text=The%?20standard%20naming%?20conventio
ns%?20used,snake%20case

e Static and Dynamic typing? Strong and weak typing?:

https://dev.to/leolas95/static-and-dynamic-typing-strong-and-
weak-typing-5b0m

Questions
1. What data type is used to store whole numbers?
2. What is a floating-point number?

3. What data type is used to store a floating-point number?

https://www.theserverside.com/feature/A-guide-to-common-variable-naming-conventions#:~:text=The%20standard%20naming%20conventions%20used,snake%20case
https://www.theserverside.com/feature/A-guide-to-common-variable-naming-conventions#:~:text=The%20standard%20naming%20conventions%20used,snake%20case
https://www.theserverside.com/feature/A-guide-to-common-variable-naming-conventions#:~:text=The%20standard%20naming%20conventions%20used,snake%20case
https://www.theserverside.com/feature/A-guide-to-common-variable-naming-conventions#:~:text=The%20standard%20naming%20conventions%20used,snake%20case
https://dev.to/leolas95/static-and-dynamic-typing-strong-and-weak-typing-5b0m
https://dev.to/leolas95/static-and-dynamic-typing-strong-and-weak-typing-5b0m

4. What data type would you use to store the result of 3/2?
5. What is a strongly typed language?
6. What is a data type?
7. What is a weakly typed language?
8. What is a dynamically typed language?
9. What is a statically typed language?
10. Is CODESYS dynamically or statically typed?

9

Performing Calculations in
Structured Text

Math — the nightmare fuel for many students around the world and
the one subject that everyone loves to hate. Unfortunately, to be
successful as a PLC programmer, you must understand how to
program mathematical equations. Luckily, performing math for PLC
programs does not require any calculations that must be done by
hand. This means that you don’t need a math degree to be a great
PLC programmer.

As an automation engineer, you'll often find yourself working on
machines that require complex mathematics. Machines that must
calculate fill rates, pressure, and of course motion control will all
require the program to handle complex math. Put bluntly, math is a
major area of PLC programming that all programmers must be
competent in.

This chapter is going to focus on crunching numbers in Structured
Text (ST). Generally, doing complex calculations such as those that
are required for proper motion control, fill rates, and so on can be
quite complex, awkward, and, in many cases, nearly impossible to
effectively program in Ladder Logic (LL). In short, when it comes
to math that is more complex than basic four-function calculations

and relatively simple algebraic equations, ST is vastly superior in
terms of writability, understandability, and maintainability. However,
those not well-versed in ST can find it daunting.

To explore mathematics in ST, we're going to cover the following
concepts:

e Math in ST

Assignments

Basic mathematical functions in ST

Complex mathematical functions in ST

Trigonometry functions in ST

Order of operation in ST

Complex equations in ST

Unlike the previous chapter in this book, we're going to do two final
projects. The first project to get our feet wet will be the solution to
the previous chapter’s project challenge; for this, we will calculate
the perimeter of a rectangle. To round out this chapter, we're going
to write a PLC program to calculate the hypotenuse of a triangle
using the Pythagorean theorem.

Technical requirements

For this chapter, all that will be required is a working copy of
CODESYS. As such, if you have not already done so, you will need to

that, you will be able to follow along with this chapter. All the code
examples are available at https://github.com/PacktPublishing/PLCs-

for-Beginners.

To understand this chapter, you will need to understand the data
types that were explored in the previous chapter. As such, if you do
not understand that material or haven't at least read the material in
the previous chapter, you need to go back to that chapter.

Math in ST

Math and automation go hand in hand. Most machinery will need to
crunch numbers at some point to safely and successfully carry out its
can be rather challenging and awkward, especially for large, complex
equations that are synonymous with tasks such as motion control
and precision operations.

closely resembles what we all grew up with. Equations are written in
an easy-to-read and understandable format using common
mathematical symbols. Though it can seem intimidating at first,
math in ST is very straightforward and can save you lots of
development time in the long run, especially when you must
compute large complex equations. In all, ST helps in computing
complex equations as it allows you to do the following:

o Write equations naturally.

https://github.com/PacktPublishing/PLCs-for-Beginners
https://github.com/PacktPublishing/PLCs-for-Beginners

e Program equations in an easy-to-read format.

e Quickly troubleshoot complex equations.

To begin our exploration of math in ST, we'll start by looking at one
of the core basics of math: assigning numbers.

Assigning numbers

The first step in calculating numbers is assigning values to variables.
In the previous chapter, we touched on the concept of initializing a
variable with a value, during declaration, in the variable section of
the program file. However, as stated in that chapter, it is possible to
assign a value in the logic section. Typically, you’ll assign a value to a
variable in the logic section of the file when you do a computation.

Unlike most other programming languages, such as Java, C++, or
C#, the assignment operator is not the typic equals sign. For the IEC
61131-3 standard, the assignment operator is denoted with the
following symbol:

Essentially, this operator tells the PLC to assign a value to a variable.
For example, this block of code will assign the number 3 to the x

variable:

X = 33

The following block of code will assign the value in the a variable to
the b variable:

b = a;

As we can see there is a pattern for assignments. The value on the
left of the assignment operator is the target value, which means this
is the value that will change when that line of code is run. The value
on the right of the operator is the value that will be placed in the
target variable.

With assignments under our belts, we can move on to more
interesting programming: numeric programming. With that, we're
going to begin exploring numerical programming by covering the
four fundamental operations of mathematics: addition, subtraction,
multiplication, and division.

Basic calculations

As logic has it, the basics of any calculations are the four basic
operations of addition, subtraction, multiplication, and division. If
you've worked with LL in the past, you may have noticed that the
programming interface utilizes function blocks that have to be strung
together, which can make long equations relatively complex. This is
where ST shines as equations that are comprised of many variables
can be easily programmed.

Solution variable

All operations have solutions — that is, all equations have an output
value that is the result of the calculation. In programming, it's

usually wise to have an extra variable to hold the resultant of an
equation. For example, if you were to add two numbers together,
you may have a third variable called sum and your code may look like
something akin to the following:

sum = a + b

Using a solution variable will help keep your code cleaner and easier
to maintain. However, there are times when you won't need a
resultant variable and you can simply manipulate the output;
however, for this chapter, we're going to keep things simple and
clean. Therefore, all equations will utilize an extra variable to hold
the resultant.

The four basic functions

The easiest place to start exploring mathematics is with the four
basic operations we all learned about in grade school. As we all
know, the four basic operations of mathematics are as follows:

e Addition, which is denoted with the + symbol

e Subtraction, which is denoted with the - symbol

e Multiplication, which is denoted with the * symbol
¢ Division, which is denoted with the / symbol

Using these operations is quite easy. The basic pattern for using
these operational functions is as follows:

result variable := valuel <symbol> value2

This pattern is all you will need to start computing basic equations.
Now, let’s experiment with the four basic operations.

Basic operation demonstration

To demonstrate the four basic functions, we'll create four variables
called sum, difference, product, and quotient. All the variables will
be of the InT type, except for the quotient, Which will be of the
REAL type. Hence, you should set up the variable section of your
pLC_PRG file so that it matches the following:

PROGRAM PLC PRG

VAR
sum ¢ INT;
difference : INT;
product : INT;
quotient : REAL;
END VAR

The main logic will perform the following operations:
e Add 3to 3
e Subtract 2 from 5
e Multiply 6 and 6
e Divide 9 by 3

To do this in ST, you should use the following code:

sum = 3 + 3;

difference :=
product
quotient 1=

.
14

O o Ul
w o N

.
14

.
14

~ * |

When the code is executed, you should see what’s shown in Figure
9.1:

Device Application.PLC_PRG

Expression Type Value
sum INT <]
& difference INT 3
% product INT 36
& quotient REAL 3
[+ sum] =3+ 3;
2 difference[3] :=5 - 2;
3 product] 36 | = 6 * 63
4 quotient] 3 | := % / 3;RETURN

Figure 9.1 — Basic math output

Notice that the outputs are what we would expect if we plugged
these values into a calculator.

Real-world calculation example

Now, it is very common to only need to perform a function that
requires something such as addition or subtraction. However, you
will also encounter problems that will require more complex
calculations. For example, suppose you are programming a PLC to
control a cement mixing process. Imagine that in the last stage of
the operation, the machine has two nozzles that will fill two bags of

cement. Once the bags are full, the machine will take the weights of
both bags before sending them for palletization. For this machine to
work properly, cement must be loaded into the machine’s main
hopper. For the machine to be topped off, the PLC must send a
signal to the hopper when there is less than 20 Ibs of cement left in
the hopper. The hopper does not have a scale, so the PLC will have
to estimate when the hopper needs to be filled again. To do this, we
can use the following equation:

Current Weight = Amount in Hopper — (Bagl Weight + Bag2 Weight)

In the real world, this value would be constantly updated since the
batch process would fill more than one bag, as stated in the
scenario. For this program, we will need the following variables:

PROGRAM PLC PRG

VAR
currentHopperWeight : REAL := 250;
baglWeight : REAL;
bag2Weight : REAL;

END VAR

In this example, we have three variables. Two variables represent
the weight of the bags, while the other represents the current
weight of cement in the hopper. Now, this is one of those programs
where it makes more sense to reassign the solution to the equation
to the hopper weight variable as opposed to making an extra
variable. This is because this variable will be a dynamic part of the
equation — that is, the variable will change with each set of bags
that are set to be filled. Also, in this example, we are initializing the

variable to be 250. In the case of this scenario, this will represent a
starting weight of 250 Ibs.

In terms of the data types, notice that they are all set to rear. This
is very important due to the nature of the application. The weight of
the bags can be — and probably will be — decimal values for two
reasons. The first obvious reason is that the operator may want bags
that are 22.2 Ibs or 5.25 Ibs. On the other hand, nho matter how
precise the equipment is, it will never give an exact target weight.
For example, if a target weight for a bag is a whole number, such as
45 |bs, the machine will probably overfill or underfill by a certain
margin — for example, it may fill the bag to 44.97 Ibs or 45.02 Ibs. In
other words, the machine will have a tolerance, but the PLC will
need to know as accurately as possible what each bag’s weight is so
that it can account for it in the hopper weight equations. If we were
to use integers for these numbers, chances are the decimal values
would be shaved off and when the equation is running, it would
produce an inaccurate weight for the cement in the hopper. This
could mean that the bags could be drastically underfilled, or cement
that is loaded into the hopper could be wasted. Overall, this is why a
clear understanding of data types is vital in PLC programming!

With all that, the logic for the equation can mirror the equation:

currentHopperWeight := currentHopperWeight - (baglWeight +
bag2Weight) ;

In this equation, the currentHopperWeight variable is used as a
reference point. When the bags are weighed, the sum of the weights

is subtracted from currentHopperweight and then that value is
reassigned to the currentHopperweight Vvariable.

To test the program, we can run the program and write two values
for the bag variables. For the example, we will use 50 for each bag
of cement. Enter 50 in the prepared values field in the grid, as
shown in Figure 9.2:

Device Application.PLC_PRG

Expression Type Value Prepared value
$ currentHopperWeight REAL 250
$ bagiWeight REAL 0 50
$ bag2Weight REAL 0 50

Figure 9.2 — Prepared values

Once you have the values in the field, as shown in Figure 9.2, you
will need to right-click in the grid and press Write All Values, as
shown in Figure 9.3. This will overwrite the current value in the
fields — that is, the 0 weight for each bag — with the number 50.
Now, watch the currentHopperWeight variable continuously tick
down until it is a negative number. Essentially, the program will
simulate 100 Ibs of cement leaving the hopper each time a bag
passes.

As the program runs, currentHopperWeight Will keep getting smaller
and smaller. This is not a bug but intended behavior. What's
happening is that the ST PLC program will continuously loop the
same way an LL PLC program will. This means that even though we
have no looping logic, the currentHopperWeight variable will get

continuously recalculated each cycle and since the bag weights are
statically set to 50, each 100 will be subtracted from the original 250
value that resided in currentHopperweight. In a real-world setting, a
programmer would utilize sensors and other components to detect a
bag, which would prevent runaway calculations:

Cut
Copy

Paste

Delete
Select All
Browse 3

44 Add to Watchlist

Advanced b
nput Assistant..
Refactoring »

&M New Breakpoint...
Teggle Breakpoint

Run to Cursor
Set Next Statement
Write All Values of 'Device.Application’

Force All Values of 'Device.Application’

Unforce All Values of 'Device.Application’

Display Mode »

Figure 9.3 — The Write All Values option

So, now that we have some basics of computational programming
under our belts, let’s look at the advanced mathematical functions.

Complex mathematical functions

Chances are you're going to be doing much more than simple
addition, subtraction, multiplication, and division in your PLC
programs. Most likely (especially for motion control), you're going to
utilize some more advanced mathematical functions, such as square
roots, exponents, and trigonometric functions. So, in this section,
we're going to explore those functions and how to use them in a PLC
program.

Square root function

Outside of addition, subtraction, multiplication, and division, square
roots are one of the most common math functions there are. Many
basic geometry and trigonometric operations that PLC programmers
will use in their day-to-day lives will depend on the square root of a
number. The best way to explore this function is to use it in an
example.

As usual, the first thing you should do is set up the program
variables. As we progress through this section, we're going to add
more variables and functions, but for now, set your variable section
so that it matches the following code block:

PROGRAM PLC PRG
VAR

root : REAL;
END VAR

A square root is simply some number squared that will produce the
original number. This means that unless the number you feed into
the square root function is a perfect square, which it most likely
isnt, you will have a floating point as a return value; consequently,
you will want to have your output variable be of the rear type.

In terms of the actual logic, your program body should look like this:

root := SQRT(9);

The number we want to find the square root of is in between the
parentheses of the sgrT function; in this case, the number is 9.
When the program is running, your variable grid should look like
what’s shown in Figure 9.4

Expression Type Value
$ root REAL 3

Figure 9.4 — Square root output

As can be seen, the output is 3. Now that we've seen the square
root in action, let’s explore its cousin, the exponent function.

Exponent function

The exponent function works very similarly to the square root
function. However, this function will take two parameters — that is, it
takes two numbers instead of one as inputs. To understand this
function, it is important to first understand the following equation:

result = basefove

This equation will translate into the following code:

EXPT (base, power)

If we wanted to calculate 42, we would need to modify the variable
code so that it matches the following:

PROGRAM PLC PRG

VAR
root . REAL;
square : REAL;
END VAR

We will also need to modify the logic so that it matches the
following:

root := SQRT(9);

square := EXPT (4,2);
In this case, we are simply adding to the square root example from
before. If you are following along, you can omit the square root code
if you wish. When you run the code, you should get the output
shown in Figure 9.5:

Expression Type Value
$ root REAL 3
@ square REAL 16

Figure 9.5 — Exponent output

As we can see, the square of 4 is 16, just as expected. The next
important math function that we will explore is the ABS function.

ABS function

The ABS function will simply return the absolute value of a number.
In other words, if a value is negative, it will return a positive value
and if the value is positive, it will still return a positive number. We
will continue to expand our previous examples and modify the
variable section so that it matches the following:

PROGRAM PLC PRG

VAR
root : REAL;
square : REAL;
abs value : REAL;
END VAR

Next, we will modify the logic so that it matches the following:

root := SQRT(9);
square := EXPT (4,2);
abs value := ABS(-3);

When the code is running, you should see an output similar to
what’s shown in Figure 9.6:

Expression Type Value
@ root REAL 3
& square REAL 16
& abs_value REAL 3

Figure 9.6 — Absolute value output

As you can see, the ABS function converted the negative 3 into
positive 3, as expected. Now, there are a lot of built-in math
functions in the IEC 61131-3 standard. Most programmers will not
memorize every function a language or programming technology
offers. So, learning to read and understand documentation is key to

being a successful programmer. Now, try to solve the following
challenge.

Math challenge

Assume you are working on two types of widgets. Suppose Widget A
needs its packaging to be rounded down to the smallest whole
number and Widget B needs its packaging to be rounded up to the
highest whole number. For this challenge, write a simple program
that can take numbers for Widget A and Widget B and round the
numbers accordingly.

Hint
Do some research online and look for a ceiling and floor function.

Once you figure out the challenge, you are free to move on to the
next sections. In the next section, we're going to switch gears and
look at some trigonometry functions.

Trigonometric functions

As a PLC programmer, you will often have to use trigonometric
principles to accomplish tasks. This means having a solid
understanding of how to use trigonometric functions will be vital to
your success as an automation engineer and, by extension, a PLC
programmer. This section will explore the basic trigonometry
functions that are supported by the IEC 61131-3 standard. To begin
our exploration, we will look at the tangent function.

NOTE

For this section, a rudimentary understanding of trigonometry will be required and
assumed. If you do not have an understanding of basic trigonometric functions,
you should spend a little time brushing up on the SIN, COS, and TAN functions.

Anyone who has taken a high school-level trigonometry class will be
familiar with the sine, cosine, and tangent functions. Essentially,
these are angle properties that can be derived from the sides of a
right triangle. As a PLC programmer, it is often necessary to
integrate these functions into our program to find things such as
height, the length of a makeshift hypotenuse, or another application.
Much like the other complex math functions, the IEC 61131-3
standard supports functionality for these operations. To demonstrate
these functions, let’s set up a new program with the following
variables:

PROGRAM PLC PRG

VAR
tan of angle : REAL;
sin of angle : REAL;
cos of angle : REAL;
END VAR

Next, we will need to implement the following code into the body of
the logic file:

tan of angle := TAN(45);
sin of angle := SIN(45);
cos of angle := COS(45);

In this example, we're going to pass in 45 for all the input values.
When the program is run, you should be met with the output shown

in Figure 9.7

Device Application.PLC_PRG

Expression Type Value
@ tan_of_angle REAL 1.61577518
sin_of_angle REAL 0.8509035
& cos_of angle REAL 0.525321%6

Figure 9.7 — Basic trigonometric function outputs

NOTE

Now, the thing to remember is that the trigonometric function will return its values
in radians. This can be a gotcha as some programmers may assume the return
value is in degrees.

Arc functions

The next set of trigonometric functions to explore are arc functions.
An arc function is simply the inverse of the functions that we just
explored. These will also often be utilized in automation engineering.
To utilize the arc function, all you have to do is append a to the front
of the trigonometric functions that we just explored. This means the
arc functions are as follows:

ATAN (input) ;
ASIN (input) ;
ACOS (input) ;

The past two sections have been a crash course on how to use built-
in math functions. At this point, you should have a decent idea of
how to perform basic mathematical operations, as well as perform

more complex operations, such as finding the absolute value, square
roots, and so on. With that, we can now move on and explore the
order in which an equation will be calculated.

Order of operations for math
calculations

For anyone who has taken a high school-level algebra course, the
term PEMDAS may be familiar. In short, PEMDAS stands for
Parentheses, Exponents, Multiplication, Division, Addition,
and Subtraction. What this entails is the order of operation in
which an equation is calculated. For example, let’s say we were
presented with the following equation:

2+3*3+(4+4)°

We would need to solve the equation by performing the following
steps:

1. (4+4)=28.

2. 8% = 64,
3.3*3 =09,
4.2+9+64 = 75.

The same general rules apply to writing a PLC program or a program
in any other language.

NOTE

You must understand the order of operation as not understanding the order of
operation can easily lead to wrong calculations, which, in turn, can lead to adverse
and potentially dangerous situations.

As you program equations, you'll naturally get a grasp of math
ordering. However, following the PEMDAS hierarchy will serve as a
good starting point.

You should now have a decent grasp of how to perform calculations
in @ PLC program. Now, let’s take what we've learned and attempt to
compute some complex equations that we may run across in our
day-to-day lives as PLC programmers.

Computing complex equations

The term complex is subjective, to say the least. For this book, a
complex question will refer to a calculation that requires a mixture of
the four basic mathematical operations, as well as a complex math
function that was previously explored. The first equation that we're
going to program is commonly used in automation programming —
that is, calculating the distance between two points.

Distance between two points

Calculating the distance between two points is a very common task
in PLC programming. It is often necessary to know how long to
power motors and so on to ensure the machine reaches its new
destination. To figure out the distance, it is common to use the
following equation:

Distance = \/(xz X))+ (0,)’

In this equation, we will need to subtract two sets of humbers,
square two numbers, sum them, and finally take the square root of
that sum. As such, we will need to use the exer function and the
sortT function.

There are two ways that this equation can be programmed. We can
program this equation all on one line, or we can break this equation
down into multiple lines. For an equation this short, it will be fine to
program it all on one line. The first step in programming this
equation is to set up the variables that are needed for the program,
which will be defined as follows:

PROGRAM PLC PRG

VAR
distance : REAL;
x1 : REAL;
x2 : REAL;
yl : REAL;
y2 : REAL;
END VAR

The workhorse of the program — that is, the logic — can be defined
with the following code:

x2 = 4;
X1l = 2;
y2 1= 6;
vyl := 3;
distance := SQRT (EXPT ((x2-x1),2) + EXPT((y2-yl), 2)):

This logic will set the values for the x and y variables and then
perform the calculations presented previously. If you programmed

the equations correctly, you should be met with the output shown in
Figure 9.8. As we can see, the calculated value is about 3.61.
Typically, for equations like these, you will want to verify your output
by plugging the numbers into a calculator. To test and more easily
verify the equation, you will want to use very simple whole numbers.

Challenge

As a challenge, modify this program so that each step of the
equation is on separate lines. Once you've done that, run the
program and compare your results to the previous example code.
Are they the same? If not, check your code:

Device Application.PLC_PRG

Expression Type Value
@ distance REAL 3.60555124
¥ x1 REAL .
REAL 4
? vl REAL 3
P v REAL 6

Figure 9.8 — Distance calculations

There is no sure-fire way to program an equation. To master this
skill, you'll just have to practice humerical programming. As such,
we're going to move on to our final projects.

Final projects

As stated earlier this chapter, will have two final projects. To start
exploring numerical programming, we're going to look at the final
challenge from the previous chapter and program the perimeter of a
rectangle.

Final project 1 — programming the perimeter
of a rectangle

The perimeter of a rectangle can be described with the following
equation:
Perimeter = 21+ 2w

This will be a relatively simple equation to program. However, before
looking at the code, take a moment and try to solve the problem
yourself if you haven't already.

Solution

Our first step is to declare our variables. Since this equation is based
around three variables, 1ength, width, and prim, to keep this
program as flexible as possible, the data types should be of the reaL
type and can be declared with the following code:

PROGRAM PLC PRG

VAR
prim : REAL;
width : REAL := 5;
length : REAL := 6;

END_ VAR

As can be seen, for this program, we're going to set 1ength to 6 and

width to 5.

As we have discussed many times throughout this book, the first
step to wiring the program is to break everything down into pieces.
The first thing we're going to do is tackle the length calculation. For
this, all we have to do is use the following snippet:

2 * length

We can satisfy the widath section of the equation with the following
snippet:

2 * width

Combining the two snippets will render the following logic:

prim := 2*width + 2*length;

When the program is run, you should hopefully see 22 for prim.
Once you have this program worked out, you can move on to the
next project.

Final project 2 — Pythagorean theorem

The goal of this program is to write a PLC program that can compute
the hypotenuse of a right triangle. Depending on what you're
working on and what you're doing, this is a very common program
to write. As such, it's a good idea to get some experience writing it
now. If you're rusty on geometry, the length of a hypotenuse can be
described with the following equation:

a’*+b* = ¢?

In this equation, a and b are the length of the sides and c is the
length of the hypotenuse. As with all the other projects, take a
pause and try to solve this program before moving forward.

Solution

This equation is dependent on three variables, a, b, and ¢, all of
which make up the hypotenuse. The a and » variables can either be
INT or REAL. However, for this real-world scenario, it would be best
to use the reaL data type so that they can accept real-world values
that will more than likely be floating points. In terms of the
hypotenuse, that value should always be reaw since it will likely be a

floating point due to the sqrt function. As such, we can declare the
following variables:

PROGRAM PLC PRG

VAR
hyp : REAL;
a : REAL;
b : REAL;
END VAR

Now, the logic for this program can be as follows:

o o0 o
"
I o o

vp := SQRT (EXPT (a,2) + EXPT(b,2));
In this case, we are setting the a and b sides of the triangle to 5 and
6, respectively. You can alter these values to any values you want.

However, if you keep these numbers, you will get the following

output:
Expression Type Value
hyp REAL 7.81025
P a REAL 5
$b REAL 6

Figure 9.9 — Hypotenuse length

To experiment, try changing the structure of the logic and see if you
can write the program differently.

Summary

This chapter has been a crash course in the basic mathematics of
PLC programming. We have explored the basics of adding,
subtracting, multiplication, and division, trigonometric functions,
order of operations, and more. Knowing how to program equations
into a PLC is a pivotal skill for any automation engineer. At the end
of the day, if a PLC programmer cannot program mathematical
equations, they can’t function as an automation engineer!

One of the biggest takeaways from this chapter is the use of built-in
functions. Functions are very important in the realm of PLC
programming and many more functions are supported that are non-
mathematical. As such, the next chapter will be dedicated to
exploring some of the fundamental functions that PLC programmers
will often encounter.

Questions

Answer the following questions to test your knowledge of this
chapter:

1.
2.
3.

What does the floor function do?
What is the ABS of -37?
What is the aTan function?

How would you write a program that can calculate a quadratic
equation?

. How would you write a program that can calculate 4 to the

power of 3?

. What is the order of operations for a program?

What is the assignment operator?

Further reading

IEC 61131-3 Mathematical Functions:
https://www.fernhillsoftware.com/help/iec-61131/common-

elements/functions-mathematical.html.

https://www.fernhillsoftware.com/help/iec-61131/common-elements/functions-mathematical.html
https://www.fernhillsoftware.com/help/iec-61131/common-elements/functions-mathematical.html

10

Unleashing Built-In Function Blocks

As a PLC programmer, whether you're a professional, student, or
hobbyist, you’ve almost certainly run into situations where you
needed to copy and paste a series of instructions in multiple places.
In programming, having code in more than one location is a terrible
practice that should only be exercised in extenuating circumstances.
This can lead to a catch-22; on one hand, you may legitimately need
the functionality, but on the other, it's a sloppy practice to have the
same functionality in more than one location. In that case, what
should one do?

A core tenet of any modern programming system is a concept known
as code reusability. To accomplish this, entities known as functions
and function blocks are employed. Functions and function blocks are
complex topics that are core to a quality program architecture. All
modern programming languages support some type of “built-in”
functionality that is packaged in either a function or function block.
This built-in functionality is typically part of what is called a standard
library and is often included in a project automatically, while other
functionality can be imported manually. A PLC programmer can also
create their own custom function blocks.

For this book, we're going to explore built-in function blocks, that is,
function blocks that are already included with the CODESYS

software. Manually importing function blocks or creating custom
function blocks is well beyond the scope of this book; however,
knowing how to use the basic functionality that is included in your
environment is a must for any PLC programmer. Luckily, if you read
the last chapter or you've ever used something like a counter, timer,
or sequencer in Ladder Logic before, you're already light years
ahead of the game. However, chances are if you're reading this
book, you're probably not too sure of how they work under the hood
nor how to express those functions in Structured Text.

To explore built-in functions, we're going to explore the following:
e What prebuilt function blocks are
e Internal workings of function blocks
¢ Rising and falling edges
e Common prebuilt function blocks

To round out the chapter, we're going to utilize a few of the
functions and build an industrial washing machine.

Technical requirements

For this chapter, all that will be needed is a working copy of
CODESYS installed on your machine. As with all the other chapters
in the book, the source code for the projects can be downloaded at
the following link:

https://github.com/PacktPublishing/PLCs-for-Beginners

https://github.com/PacktPublishing/PLCs-for-Beginners

It is highly recommended that you pull down the code and try to
modify it to gain an in-depth explanation of how the functions work.

What are prebuilt function blocks?

Some operations are so common in PLC programming or
programming in general that the developers of the programming tool
will often build them into the system. What can be considered a
function will vary by name from device manufacturer to device
manufacturer; however, for this book, we're simply going to refer to
this prebuilt code as functions. Thus far, we have seen prebuilt
functions in the form of mathematical operations such as the trig
functions, and the more complex math functions, such as the ABS
operation and so on. Prebuilt functions extend well beyond
mathematical applications and can be found for a variety of tasks.
For those who are familiar with Ladder programming, the counter
function and the timer function may ring a bell.

There is a difference between a function and a function block in IEC
61131-3. A function is akin to the mathematics functions that were
explored in the last chapter. On the other hand, a function block is
akin to what is called a class in a modern language like C++, C#,
Java, or Python. Not every programming system will support
function blocks as they are presented here. Function blocks are an
object-oriented programming concept, and that paradigm is novel to
the PLC programming world. However, all PLC programming
environments will have something akin to functions, which will follow

the same general rules as the ones explored here. With that, in
terms of usage, what are functions and function blocks and how are
they used in a PLC program?

Functions, function blocks, and keywords

On the surface, a function block may look and behave a lot like a
keyword. For the inexperienced, this is an acceptable misconception.
However, there are key differences between functions, function
blocks, and keywords. The following should clarify the difference
between the three entities:

commands built into the PLC programming language. Depending
on the programming system that you're using, the word keyword
may be substituted with a synonym, but the core concept is the
same. In short, a keyword is simply a special word in a PLC
programming language that will perform a specific task such as
declaring a variable, comparing two values, creating a function
block, or doing any other number of tasks. To invoke a keyword,
all one has to do is type it in with the appropriate surrounding
syntax when necessary.

e Function blocks: A function block is a digital blueprint. A
function block offers condensed functionality to perform a task
such as creating a timer or a counter unit. Function blocks will
offer the ability to cut down on redundant code and allow code
portability across compatible PLC code bases. Function blocks

have many unique features that neither a keyword nor a function
has, such as the ability to share code between different blocks,
hiding data in blocks, and so on. To invoke some functionality of
a block, all one has to do is create a variable of the function
block type name. Once the variable has been created, that
variable can be used to access functions and data that is visible
in the function block.

e Functions: A function is not to be confused with a function
block. A function is simply a piece of callable code that can be
invoked to do a minor task at any given time. Unlike a function
block, a function is not a digital blueprint. Where a function block
serves as a larger functional unit, a function is simply a small
snippet of callable code that does something such as calculating
a special equation. A function can exist independently or inside of
a function block. When a function resides in a function block, it is
referred to as a method. Though there are some differences in
capabilities between a function and a method, they are
essentially the same, especially for this book. A function can be
invoked simply by calling its name and providing any of the
necessary arguments (inputs) that the function requires. If the
function is embedded in a function block, the variable that
references the function block is required to access the function.

At face value, invoking any of the three entities is as simple as
invoking the name. However, that is where the similarities end. A
keyword is baked into the programming language and new keywords
can’t be added, at least not easily. Function blocks and functions can

and will usually be added to give a PLC program functionality
without the need to add redundant code.

NOTE

A function is not the same as a function block. A function is a callable block of
code that can take multiple inputs if necessary. A function block is a data structure
using what are known as classes in a modern object-oriented programming
language such as C++, C#, or Java. Many PLC programming environments will
support functions, especially mathematical functions, but not all will support
function blocks. Some systems may also use different names for both functions
and function blocks, but the core data structure will still usually be the same.

A PLC programmer cannot and should not solely rely on keywords.
Ironically, some older PLC programmers will avoid the use of
functions and function blocks as they view them with suspicion. On
the contrary, functions and function blocks are of vital importance in
the modern PLC landscape. With the added complexities of the
modern automation landscape, code will need to be condensed and
reused as much as possible, and the first place to do that is by
utilizing prebuilt functionality.

To some, there still may be some confusion as to what a function
block is. Therefore, to get a better idea of what a function block is
and what prebuilt function blocks offer, let’s explore the guts of a
function block.

Function blocks under the hood

Thus far, we've explored function blocks a little, mostly how they
work at a high level. However, only knowing how a function block
works in practice will only get you so far. To fully understand what a
function block is, we need to explore function blocks at a conceptual
level.

What is a function block?

Okay, so we have established that a function block is analogous to a
class in C++ or Java, and that a function block is a digital blueprint,
but what exactly does that mean? Well, in short, a function block is a
thing and contains all the necessary support logic for that thing to
function. For example, consider a car. For a car to work, it needs
things such as an engine, wheels, and a chassis. It will also need
certain data such as the number of miles the car gets per gallon of
gas. If you think about it in terms of manufacturing, you don’t want
to have to draw a blueprint for each car that comes off an assembly
line. Instead, you want to build a series of cars based on the same
blueprint. A function block is similar to this. You have multiple
references, such as multiple timers or counters that utilize the same
code. Essentially, you can have timer1 and timer2, which are both

derived from Ton.

A function block works the same way. A function block will contain
all the necessary logic and data for a specific functionality. For
example, a timer will have all the necessary variables and functions
to trigger a bit after a given amount of time. In other words, a

function block is a series of contained functions and variables that
work in unison to accomplish a goal.

When correctly architected, a function block will do the following:
e Reduce redundant code for a given project
¢ Allow functionality to be ported across compatible projects

¢ Provide all the necessary functionality and data to perform a
certain task

Some of these prebuilt functions may seem a bit odd to use at first.
This is mostly because they rely on what is known as a rising or
falling edge. For entry-level PLC programmers and automation
engineers, the whole concept of rising and falling edges can be a bit
confusing, so we're going to dedicate the next section to exploring
rising and falling edges.

Rising and falling edges

A lot of functionality will depend on what is known as a rising or
falling edge. In the most lay sense, a rising or falling edge can be
thought of as some type of user action such as pressing or releasing
a button. This may seem trivial, but this is very important. For
example, consider a counter; it needs to know when to increase. For
some applications, the incrementation may need to occur during a
button release, and for others, it will need to occur during a button
press.

Conceptually, a rising and falling edge can be seen graphically in
Figure 10.1:

Positive Voltage

Rising Edge Falling Edge

Figure 10.1 — Rising and falling edge

Essentially, a rising edge can be thought of as a rise to the peak
voltage such as pressing a button to create a closed circuit. On the
other hand, a falling edge is a discharge from a positive voltage to
Ov when a button is released, and the circuit is opened.

NOTE

A rising edge is the result of something such as a switch closing and energizing a
circuit, while a falling edge is akin to a circuit opening and a circuit de-energizing.

A logical question is why is this relevant in a discussion about
functions and function blocks? As stated before, many functions will
work whether a rising or falling edge is detected. Again, this stems
back to certain functions needing to know whether to increment
when a button is pressed or a button is released. Understanding

what rising and falling edges are is vital to the next steps in the
exploration of functions and function blocks.

The role of rising and falling edges will vary depending on the
function or function block. So, what are some function blocks that an
IEC 61131-3 PLC programmer uses in their day-to-day tasks? The
next section is dedicated to answering that question, as in the next
section, we're going to explore some of the most common function
blocks that a PLC programmer will interact with.

Common PLC function blocks

As with anything else in programming, there are certain features
that you’ll use more than others. Depending on what job you're

working on, you're likely to use either a counter or a timer. Let’s
explore a counter function block.

Counter function blocks

As the name suggests, a counter block counts. These function blocks
are often used to measure the number of parts that pass through a
given point, the number of times a button has been pressed, the
number of times a machine has been started, or any other counting
operation. The easiest way to explore this function block is to see it
in action. The first thing we're going to do is create the following
variables in the code snippet:

PROGRAM PLC PRG

VAR

counter . CTU;

count : REAL;

buttonPress : BOOL;
END VAR

In this variable list, the heart and soul is the counter variable. As
can be seen, this variable is of type cru. This means the counter
variable is a reference to a counter function block that that counts
up. There is another type of counter, ctp, that counts down. For this
book, we're only going to explore the CTU block as both blocks work
in a similar manner. A function block can be thought of as a special
data type; however, we're going to leave it at that for now because
more complex knowledge of object-oriented programming is needed
to fully understand this, which is beyond the scope of this book. The
next variable (count) will keep track of the number of increments,
and the buttonPress variable will act as our rising edge.

Once you have the variables set up, you can move on to the core
logic of the program, which should match the following:

counter (CU := buttonPress):;
count := counter.CV;
buttonPress := 0;

In this code snippet, counter is what is responsible for creating the
timer. In terms of Ladder Logic, this line is the same as dropping in a
counter instruction like in Figure 10.2, only with more of the
variables filled in:

Nl cU Ol Q
o 1 vl 222
] RESET

77—

Figure 10.2 — Empty CTU function block

Now, notice in Figure 10.2 that there are multiple inputs and
outputs, such as the pv, cu, reseT, and so on. The text-based
version of the ctu block will also have these, but for the text-based
version they are known as arguments, and they can be viewed in
the core logic code snippet. As can be seen in the code snippet,
each one of these inputs can be set in parentheses with the
following syntax:

Counter var (input name := variable, ..);

Like with the Ladder version of the function block, you will only need
to set the fields that are relevant to your project. For this example,
we are only going to set a buttonpPress variable to the cu field. In
other words, in this case, every time there is a rising edge for the
buttonPress Variable, the counter will increase by exactly one.

In terms of the outputs, we need to worry about the cv field. This
field holds the current count. As in the code snippet, we created a
variable called count, which will be assigned the current count from

the counter variable. In all, when the code is run, you should see
something like the following:

Device Application.PLC_PRG

Expression Type Value
+ @ counter CTU

@ count REAL 3

@ buttonPress BOOL

Figure 10.3 — Counter example

To increment the counter, simply write a TrRuE to the buttonpress
variable. Notice that each time you write TRUE tO buttonPress, the
value will increment by one.

A PLC programming professional will often need to use more
function blocks than just the cru block. Another common function

block that a PLC programmer will use is a timer block.

Timer function blocks

Often, things have to be timed in automation. Mixers may need to
run for a pre-defined amount of time, a batch mixer may have to
wait a certain amount of time before it can start, and so on. To do
this, a prebuilt function block called a Ton or Tor can be used.
However, before we dive into the actual timer function blocks, we
need to first explore time variables.

Exploring time variables

For a timer to work, we need to tell it how long to wait before it
turns on or off. This is unlike most other programming languages
where you can simply pass a humber to a special function that will

pause the program. However, in the IEC 61131-3 standard, there is
a special syntax and data type that are used specifically for timing
intervals.

First and foremost, the IEC 61131-3 standard has a special data type
called time that is designed to support temporal units. To declare a
time variable, you will use the TiMe data type. For example, if one
wanted to create a variable called delay that is meant to be used for
a timer, you would use the following syntax:

delay : TIME;

Now, actually assigning a time value to this variable can be a bit
tricky, as it will have a unique format. Essentially, the temporal value
will match the following format:

T#<Time><time unit><optional time><optional time units>

If you needed 500 ms, you would use the following:

delay := T#500MS
Now, if you needed 2 seconds and 500 ms, you would use the
following syntax:

delay := T#2S500MS

Once you understand this basic syntax, you will be able to move on
to utilizing these temporal units for timers.

Exploring the TON function block

The first timer function block that we're going to explore is the Ton
block. The Ton or Timer on Will turn a bit on after a given amount of
time. These function blocks are good for delaying something such as
the start of something like an industrial oven, mixer, or the like. To
demonstrate this, let’s set up the following variables:

PROGRAM PLC PRG

VAR
timer : TON;
delay : TIME;
in : BOOL;
out : BOOL;
END VAR

In this case, the variable timer is a reference to the Ton function
block, the de1ay variable will be used for timer wait time, the in
variable will serve as the rising edge, and finally, out will be the bit
that we are turning on when the timer turns on.

Once you have those variables in place, you can set up the core logic
of the program with the following:

delay := T#2S500MS;
timer (IN := in, PT := delay);
out := timer.Q;

The first line will set the delay (time to wait until the timer is on) to
2 seconds and 500 milliseconds. Line two is the setup for the Ton
function block. Finally, line three is simply the state of the time, that
is whether or not the bit has turned on or not yet. In the case of a
time, the g output is the state of the timer. When the timer is off, ¢

will be false, and when the timer fires, ¢ will be True. So, essentially,
o is the state of the timer.

To test this program, simply run the program and write the in
variable as True. Once you have waited the allocated amount of
time, that is, approximately 2.5 seconds, the out variable will be set
to True and the output should match Figure 10.4-

Device. Application.PLC_PRG

Expression Type Value

+ @ timer TON
delay TIME T#2s5500ms
in BOOL
out BOOL

Figure 10.4 — TON in on state

If you're not familiar with how these bits change, the transition can
be easy to miss, and as a sanity check, you may want to run the
timer a few times to really observe the change. To reset the timer, all
you need to do is set the in variable to raLse and then set the in
variable back to True. You may also want to change the delay
variable to a larger or smaller value for exploratory purposes. Now
that we've explored the Ton timer, we need to move on to its sister
function block and explore the Tor function block.

Exploring the TOF function block

The Tor function is very similar to the Ton function block, but it
works in reverse. Instead of the output bit being off by default as

with the Ton function block, the Tor will remain on or True (when
the input bit activates the timer and then goes to false) until the
allocated time unit has passed, and then it will toggle to FaLse. A
ToF iS often used for running processes for a given period. For
example, if @ mixer needs to run for 30 minutes, it is common to use
a ror with a 30-minute time allocation. There is another gotcha to a
toF; unlike a Ton, which requires the in bit to be Trug, a Tor will
only activate when the in variable is set to FaLsE.

We're going to use the same code as we did before, with one minor
modification to the variables portion. In short, your variable section
should look like the following:

PROGRAM PLC PRG
VAR
timer : TOF;
delay : TIME;

in : BOOL;
out : BOOL;
END VAR

For the same core logic, nothing will change and we’re going to use
the following:

delay := T#2S500MS;
timer (IN := in, PT := delay);
out := timer.Q;

When the program is running, set the in variable to True. Then, set
the in variable to rarse and observe the behavior of the out

variable. After about 2.5 seconds, the variable should toggle itself
off.

There are many more prebuilt function blocks that can be utilized in
a PLC program. The cTu, Ton, and Tor function blocks are just three
very common examples of heavily used function blocks. CODESYS

comes built with a few more and supports a very large ecosystem of
libraries and third-party modules that can be utilized in your project.
Examples for function blocks that can be used include the following:

¢ Cloud computing

Machine learning

Reading/writing CSV files

Motor drives

Complex mathematics

There exists a function block for pretty much anything you could
possibly need. For now, we're going to move on to our final project
and create an industrial washing machine.

Challenge

More often than not, you will run into a function block that you don't
know how to use. This means that you will have to research how to
use it and use it effectively. A good example of this is the cTp
function block that was mentioned before. Before you move on to
the final project challenge, research the cTp function block and try to
use it in a program that can count down from 100 to 0.

Final project

Industrial washing machines are common applications for timers.
Typically, an operator will press a button and the washing machine
will run for a given amount of time; then, a spin cycle will start.
Essentially, this project will be an exercise in cascading timers. When
one timer fires, it will trigger the start of another timer. Therefore, to
begin this project, we will need the following variables.

Variables
To start off, let’s declare the following variables:

PROGRAM PLC PRG

VAR
wash : TON; //washing machine timer
spin : TON; //spin timer
start : BOOL; //simulated start button
washOn : BOOL; //washing state
spinOn : BOOL; //spin state
delay: TIME; //delay

END VAR

Take a second to study what the variables do. Essentially, start will
trigger the whole washing process by triggering the timers. When
you have the variables in place, implement the following for the core
logic:

delay := T#1S;

wash (IN := start, PT := delay);
washOn := wash.Q;

spin (IN := wash.Q, PT := delay);

spinOn := spin.Q;

As can be seen in the logic, we will run the wash cycle for 1 second
then the spin cycle will start after 1 second. To test the program, run
the program and pay attention to the washon and spinon variables.

When the program is running, you should see something like the
following after about 2 seconds of changing the start variable to

TRUE.

Device Application.PLC PRG

Expression Type Value

+ & wash TON

+ @ spin TON
& start BOOL TRUE
washOn BOOL
spinOn BOOL
¢ delay TIME T#1s

Figure 10.5 — Washing machine

To restart the process, simply toggle the start variable back to
FALSE and set the start variable to True again.

Summary

In this chapter, we explored pre-built function blocks such as the
ctu, ToF, and Ton blocks. We have also explored the time data type
and the syntax to create a time variable. The key takeaway for this
chapter should be that there are a lot of prebuilt functionalities that
can make life as a PLC programmer very easy. Another key takeaway
should be that each function block has different inputs and outputs.

This means that learning how to use function blocks will take a bit of
research.

Thus far, all of our programs have flowed very linearly. That is, all
our programs have flowed from top to bottom with no branches
involved. Though we can add a lot of advanced functionality to our
programs with function blocks, our programs will always lack any
real intelligence due to the straight linear flow. As such, in the next
chapter, we're going to explore flow control and how we can control
the output of our program based on certain inputs.

Questions

1. What is a function block?

Can a function live in a function block?

. Do all PLC programming systems support function blocks?
Name three common function blocks in CODESYS.

Do all function blocks have the same inputs and outputs?

What is the main difference between a TON and a TOF timer?

N o U kR WD

What is the main difference between a timer and a counter?

Further reading
e CTU CODESYS documentation:

https://help.codesys.com/webapp/ctu; product=codesys;version=

e TOF CODESYS documentation:

https://help.codesys.com/webapp/tof; product=codesys;version=

e TON CODESYS documentation:

https://help.codesys.com/webapp/ton; product=codesys;version=

https://help.codesys.com/webapp/ctu;product=codesys;version=3.5.11.0
https://help.codesys.com/webapp/ctu;product=codesys;version=3.5.11.0
https://help.codesys.com/webapp/tof;product=codesys;version=3.5.11.0
https://help.codesys.com/webapp/tof;product=codesys;version=3.5.11.0
https://help.codesys.com/webapp/ton;product=codesys;version=3.5.11.0
https://help.codesys.com/webapp/ton;product=codesys;version=3.5.11.0

11

Unlocking the Power of Flow
Control

So far in this book, we've only explored programs with a linear flow.
That is, all the programs that we explored have started at the top
and ended at the bottom. No matter what, this is the natural flow of
all software. However, the route we take to get to the bottom will
often vary.

Typically, a program will have no one defined path to the bottom. A
program will usually branch off into multiple paths to get to the
bottom. These paths will have different logic that will be executed,
which will alter the program’s behavior depending on which path it
takes. To conceptualize this, consider the logic that turns on a motor.
The type of VDF a customer chooses will often dictate a start
sequence. A quality program will either detect the motor brand or
allow the operator to input the motor brand, and the program will
run the proper logic based on the selection.

Flow control is a very important topic in both traditional and PLC
programming. As with many of the other topics that have been
covered so far, if you do not understand flow control you will not
succeed as a PLC programmer. To remedy this and help you master
the concept, we're going to cover the following:

e Exploring what a control statement is

e Exploring why flow control is important

e Exploring logical expressions

e Exploring the 1r statement

¢ Designing a program using flow control

e Exploring the case statemen
Finally, to round out the chapter, we are going to design and build a
color sorting program that can sort based on color input. This

chapter is going to depend heavily on pseudocode and flowcharting;
as such, if you do not have a quality grasp on those concepts, you

Technical requirements

For this chapter, you will need a working copy of CODESYS installed
on your machine. As with all the other chapters, this chapter will
have example code that can be downloaded at the following URL:

https://github.com/PacktPublishing/PLCs-for-Beginners

As with the other chapters, it is highly recommended that you
download and experiment with the code to better grasp the material
presented in this chapter.

Exploring what flow control is

https://github.com/PacktPublishing/PLCs-for-Beginners

Similar to how your behavior varies based on certain conditions, so
too will your program. Flow control is the mechanism by which your
program will choose what route to take to get to the bottom.
Consider the famous beer example that we explored earlier in the
book:

Input age
If age >= 21 then
Let them drink heavily
Else 1if age < 21 then
Throw a shoe at them and call the cops

In this case, there are two paths that the program can take. One
path will allow a person to drink heavily, while the other path will
throw a shoe at the perpetrator and have the operator call the cops.
This is the heart of flow control. Essentially, there are multiple paths,
and the PLC will choose the correct path to take based on the given
inputs: in the case of the beer program, the person’s age.

In terms of decision based flow control, there are two special
keywords that the IEC 61131-3 standard supports. The two
keywords are as follows:

¢ IF

® CASE

There are a couple of other derivatives of the 1r statement that are
also supported, but those will be explored in the next chapters. The
1F and cask statements will ultimately do the same thing, but they
work differently. We're going to explore both keywords later on in

the chapter, but for now, we're going to explore why we need flow
control for a program.

Exploring why flow control is
important

As stated before, a program will rarely take a straight path from top
to bottom. The necessary logic that needs to run will often vary
based on a given input. Think about the motor example at the
beginning of the chapter. For different VDFs to operate properly, they
need certain logic such as special startup commands, startup
sequences, and so on. Flow control is vital for applications such as
this. The motor type can be considered the input, and the
specialized logic is the varying output.

A more conceptual application for flow control is the aforementioned
beer-buying example. In short, that program determines if a person
can buy beer or not. A user is inputting an age, and the program
determines if a person can drink. This program may seem trivial, but
applications such as this are very common in the PLC realm. It is
very common to have to take an input value such as a motor’s
voltage, current, or temperature and adjust the VDF’s parameters
based on that input.

Essentially, flow control helps with the following:

e Adjusting operational parameters based on a given input

e Running or ignoring logic blocks based on inputs or internal
conditions

¢ Modifying the general behavior of a program based on certain
conditions

With that, what are the basics of flow control? How does one
program these conditions? The first step in doing that is
understanding logical expressions.

Exploring logical expressions

For a control statement to work, it will need some type of logical
expression to evaluate to True for the code in the statement to be
executed. A logical expression can be thought of as something akin
to comparing two numbers to see if they are equal, if one number is
less than the other, or if one humber is greater than the other. The
IEC 61131-3 standard uses the following for logical comparisons:

e Equal: The equals operator compares two values and will
evaluate to True if the two numbers are equal. In IEC 61131-3,
the equals operator is denoted with the = symbol.

¢ Not equal: The not equals operator is the inverse of the equals
operator. In short, when the two values in the expression are not
the same, the expression will return True. Not equal is denoted
by the <> symbol in IEC 61131-3.

¢ Less than: The less-than operator will check if one number is
less than the other. If the number on the left is less than the

number on the right of the symbol, the expression will evaluate
to True. Less than is expressed with the < operator. An example
expression would be 2 < 3. In this case, the expression would
return True.

o Greater than: The greater-than operator works the exact same
way as the less-than operator and is denoted with the > symbol.
Unlike the less-than operator, if the number on the left is greater
than the number on the right, the expression will return True.

o Less than or equal to: This expression will evaluate to True in
two circumstances. The expression will evaluate to True when

the value on the left is less than the one on the right or is equal
to that value. For IEC 61131-3, the symbol to denote this is <=.

o Greater than or equal to: This expression is very similar to the
less-than or equal to expression, except it will evaluate to True
when either the value on the left is greater than the value on the
right or equal to it. The symbol to denote this is >=.

These logical expressions must be memorized at all costs to be
successful as a PLC programmer because they are not only used in
decision statements but loops as well.

These expressions will all return a Boolean value. These expressions
will either return True or Faise. Therefore, you assign the output to
a variable or simply use them in a loop or control statement. To see
these expressions in action, we're going to explore the almighty 1r
statement.

Exploring the IF statement

The most rudimentary control statement that all PLC developers will
need to master is the 1r statement. As the name suggests, this
command will run a block of code if, and only if, a certain logical
expression evaluates to True. Much as with logical expressions, the
1Fr statement must be mastered, especially for PLC programming.

IF statement syntax

The IEC 61131-3 syntax for the 1Fr statement is somewhat like the
var declaration block. The basic structure for the 1r statement is as
follows:

IF <expression> THEN
//code to run
END IF

For this structure, the expression is a logical expression such as
determining if two values are equal. In between 1r and END_IF iS
what'’s called the body. The body is the code that will run when the
expression is True. Technically, you can have as much code in the
body as you want, but it is advisable to keep the body as short as
possible. To really understand the 1r statement, we need to
implement a working example to explore.

Checking if two values are the same!

The easiest and arguably most logical way to explore the 1r
statement is to see if two numbers are equal. For many, this is their
first experience with the code structure, and, in many ways, it can
be thought of as the Hello World of control statements. To explore
the equals operator, we're going to write a simple program that can
determine if one variable is 3 or not. For this program, we're going
to declare two variables. We're going to declare a simple integer
variable that we'll call x that we're going to initialize to 3 and a bool
variable that we'll call state and initialize it to rFaise. When
implemented, the variable section of your program should look like
the following snippet:

PROGRAM PLC PRG

VAR

X : INT := 3;

state : BOOL := FALSE;
END_ VAR

The logic for this program will match the following:

IF x = 3 THEN
state := TRUE;
END IF

The way this program will work is simple. When x is 3, the state
variable will toggle from raise t0 True. When the program is run,
you should get the output that can be seen in Figure 11.1:

Device Application.PLC_PRG

Expression Type Value
? x INT 3
state BOOL

Figure 11.1 — IF statement execution

To demonstrate how the 1r statement would not execute, modify the
logic to match the following:

IF x = 5 THEN

state := TRUE;
END IF

In this example, all we did was change the logic expression from x =
3 to x = 5. If nothing else is changed, the expression will evaluate to
False Since x is still set to 3. As such, the state variable should not

change. When the code is run, you should be met with the output
seen in Figure 11.2:

Device Application.PLC_PRG

Expression Type Value

P x INT
@ state BOOL

Figure 11.2 — IF statement False condition

As can be seen in Figure 11.2, the state variable did not change
from ra1se because the code was never run due to the expression in
the 1r statement evaluating to Faise.

In many circumstances, we want to determine if two values are not
equal. In other words, there are situations when we want the state

to be True When x is not equal to 5. Basically, we want the inverse of

what we got for Figure 11.2. To do that, we would use the not
equals operator, which we’re going to explore next.

Exploring the not equals operator

As stated at the end of the last section, it is very common to need to
run a block of code when two values are not the same. This means
that there will be times when we want the 1r statement to evaluate
to True when the two numbers are not the same. This may seem
oxymoronic, but it is a very common application. For example, if you
have a machine with a proximity switch that will produce a 1 or migh
value When the sensor is tripped, you will generally want to shut
down the machine. Otherwise, you'll want the machine on. You can
use something like the following to accomplish the task:

Sensor Input = input from sensor
If (Sensor Input <> 1) then:
Turn on machine
Else if (Sensor Input == 1) then:
Turn off machine

Now that we have an idea of what the pseudocode looks like, let’s
move on to a working example.

Real code example

To demonstrate the not equals operator, we're going to use the
same variables from the equals example but modify the core logic to
match the following:

IF x <> 5 THEN
state := TRUE;
END IF

The x variable should be initialized to the integer 3 as it was before.

So, when the program is executed, we should be met with the
output seen in Figure 11.3:

Expression Type Value

P x INT 3

stote BOOL

Figure 11.3 — Not equals output

The output from this example is the inverse of what we saw before.
In the previous example, the state variable was toggled to True
when the values were equal and stayed raise when they were not.
In this example, the state variable was toggled to True when the
two numbers were not equal.

A program can have as many 1r statements as is necessary to
complete the job. However, a bunch of 1r statements can make a
code base messy and unmaintainable. Therefore, there will be a
balancing act between having enough 1r statements to implement
the code while keeping your code base clean and maintainable.

Thus far, we have only explored the equals and not equals logical
operators. However, there are still a few more operators that were
mentioned in the Exploring logical expressions section. Take a
moment to see if you can solve the following challenge.

Challenge

In terms of syntax, the logical operator will affect nothing. In other
words, the same general structure of the 1r statement will not
change. The only thing that will change is the operator you will use.
So, for a challenge, write a program with the following requirements:

e The program should have two Boow variables called 1essThan and
greaterThan. There should also be one 1nT variable called input.

o If the input is less than 5, set 1essThan t0 True and all others to

false.

e If the input is greater than 5, set greaterThan t0 True and the
rest to false.

There is no right or wrong answer to this challenge. The only thing
that matters is whether the program works or not. Do your best to
implement this program; take as much time as you need. Once you
complete this challenge, feel free to move on to designing a program
with control statements.

Designing control statements

Flow control can be somewhat confusing at first. It can be difficult
for inexperienced programmers to visualize the flow of a program.
This is where flowcharting can help new programmers visualize the
flow of the program. Flowcharting may appear to be a pointless
design technique. However, it can greatly help alleviate confusion

and make the flow of the code more understandable where multiple
flow paths exist. To better under this concept, let’s design and
implement a simple bank account overdraft program.

Overdraft program

Most bank accounts will throw some type of warning message when
a user withdraws too much money from their bank account. In real-
world practice, a lot goes into the software that governs bank
accounts; nonetheless, a simple 1r statement can easily simulate the
same behavior. The first phase in implementing this program is
designing the flow of the program.

Program design

For this program, we can use a design like the one in Figure 11.4:

Amount In Account

l

Subtract withdraw
amount from
amount in account

Amount left in Yes

account<O

Send Warning

End

Figure 11.4 — Program design

In this design, we will start off with a given amount in the account,
then we will withdraw another amount. If the amount of money is
less than 0 (overdrawn), the program will send a warning and then
end. If the amount is not less than 0, the program will simply end.
Now, since this is a PLC program, the software will not end but loop;
this is important to remember since we are writing a program that
will live and run on a PLC.

Code implementation

Now that we have a design to work from, we can start implementing
the code. As usual, the first thing we need to do is declare the
variables. For this example, we're going to use the following:

PROGRAM PLC PRG

VAR
initalAmount : INT;
withdrawAmount : INT;
currentAmount : INT;
message : WSTRING;
END VAR

For this example, the initalamount variable will hold the amount of
money that we're starting off with, the withdrawamount variable will
represent how much we're going to take out of the account, and the
currentAmount Variable will represent the amount left in the account

after a withdrawal. The message variable is there to alert the user if
the account has been overdrawn or not.

Now, before you proceed, try to write the program from the
flowchart design; we're starting off with $200 in the bank account,
and we are withdrawing $100. Remember there are no right or
wrong answers, as long as the program works. After you take a stab
at the PLC code, compare your answer to the following:

initalAmount := 200;
withdrawAmount := 100;
currentAmount := initalAmount - withdrawAmount;
IF currentAmount < 0 THEN
message := "you are overdrawn";
END IF

When this code is run, you should get the values shown in Figure
11.5:

Device Apphcation.PLC_PRG

Expression Type Value
initalAmount INT 200
withdrawAmount INT 100
wrrentAmount INT 100
message WSTRING e

Figure 11.5 — No overdraft output

In this case, there was no overdraft. This is because we had $200 in
the bank, and we only took out $100. Now, to test the overdraft
warning, modify the code to match the following:

initalAmount := 200;
withdrawAmount := 250;
currentAmount = initalAmount - withdrawAmount;

IF currentAmount < 0 THEN

message := "you are overdrawn";
END IF

In this case, all we did was change 100 to 250 on the second line.
Though a small change, this change will have a profound impact on
the behavior of the program. After you modify the code, run it, and
you should be met with the same outputs that are presented in
Figure 11.6:

Device Application.PLC_PRG

Expression Type Value
@ initalAmount INT 200
& withdrawAmount INT 250
& currentAmount INT -50
message WSTRING "you are overdrawn”

Figure 11.6 — Overdraft notice

This means that our design worked, and we successfully
implemented a program from a flowchart. Now, this may have
seemed too trivial for a flowchart, especially if you‘ve worked with 1r
statements in the past. However, for large complex control structures
such as that of a state machine, learning how to implement a design
from a flowchart is quite beneficial as it'll help you keep track of the
larger picture.

By this point, you should have a pretty good feel for how 1r
statements work. As stated before, 1rs are not the only type of
control statement. In fact, 1r statements can be awkward and even

detrimental for certain applications such as state machines, which
will often use a numerical code to determine which block of code to

run. This mostly stems from a much larger code overhead required
for the 1r statement to properly run. In cases such as these, there is
a much better alternative called the case statement that we're going
to explore in the next section.

Exploring the CASE statement

If you've ever programmed in a language such as C/C++, Java, C#,
or any other modern programming language, you might be familiar
with a swiTcu statement. The IEC 61131-3 standard doesn't support
a swiTcH statement per se, but it does support a case statement,
which is, for all purposes, the same. The case statement is like the
1F statement, except it requires less overhead in terms of code.
However, there is a drawback to the case statement in that it can
only check for equality. This makes the case statement ideal for
applications that require comparison of data such as status codes
but less than ideal for applications that check for inequality.

State machines and CASE statements

A common application for the case statement is what is known as a
state machine. State machines are an advanced concept that are
only going to be touched on here. There is a lot of theory that needs
to be understood to fully understand state machines. Therefore,
we're only going to explore them at a high level in this book.

A state machine can be thought of as a code block whose output is
determined by its input. Consider the following pseudocode:

Input state //numerical value 0 = off, 1 = on, 2 = standby
CASE state
Case state = 0:
Turn machine off

Case state = 1:
Turn machine on
Case state = 2:

Put machine in standby mode

As can be seen in the example, when the state equals a certain
value, a certain block of code will be executed. This is a very simple
state machine that uses a case statement.

All things considered, the example pseudocode is easy to follow.
Unlike most other things in programming, the actual implementation
of a working case statement is much simpler. The basic syntax for

the case statement is the following:

CASE <variable> OF
<val 1>:
Code
<val 2>:
Code
<val N>:
Code
END CASE

In the next section, we're going to put this syntax to work and turn
the pseudocode design into a working state machine!

Implementing the state machine

To begin, we're going to start off with two variables: one called
input Of type 1InT and another called state of type wsTrinG. TO dO
this, match your variable section with the following code:

PROGRAM PLC PRG
VAR
input : INT;
state : WSTRING;
END VAR

For this example, the input variable will be used to take in a state.
For the program, we will use the same number codes that were used
in the pseudocode example, while the output string will hold the
current machine state, as with the pseudocode example. Once you
implement your variables, you can move on to implementing your
core logic, which should look like the following:

CASE input OF
0:

state := "Machine OFF";
1:
state := "Machine ON";
2:
state := "Machine STANDBY";

END CASE

When you start the program and set input to 0, you should be met
with the following outputs:
Expression Type Value

& input INT 0
$ state WSTRING *"Machine OFF"

Figure 11.7 — Machine OFF state

Now, write the value 1 to input, and you should be met with the
output seen in Figure 11.8:

Device Application.PLC_PRG

Expression Type Value
input INT 1
$ state WSTRING "Machine ON"

Figure 11.8 — Machine ON state

Finally, when you write the number 2 to input, you should be met
the output shown in Figure 11.9:

Device Application.PLC_PRG

Expression Type Value
@ input INT 2
& state WSTRING "Machine STANDBY"

Figure 11.9 — Machine standby state

Now, this program could have been accomplished with a series of 1r
statements; however, as can be observed, this is a much cleaner and
more concise approach.

Flowcharting and CASE statements

cask statements are for code blocks with a lot of would-be 1r
statements. It is meant to keep the code base cleaner and easier to
follow. This usually means that there are many more branches for
the program to follow. As a result, it is wise to have a visual aid to

follow when working with applications such as state machines. As
I'm sure you've guessed, this is where flowcharts come in handy. If
we were to flowchart the state machine we just implemented, it
would look something like the following:

Take Input

Input=0

No

Input =1

No

Input =2

No

Loop To Top

-

Yes
» Machine OFF
Yes
» Machine ON
Yes
Machine
Standby

Figure 11.10 — State machine flowchart

As can be seen in Figure 11.10, the program will keep looping
regardless of the input state. However, when one of the conditionals
is returned True, it will change its message and then loop again.

NOTE

Flowcharting is an excellent way to design complex control statements. However,
many experienced engineers will either skip the design phase altogether or use
pseudocode for the design. Flowcharting usually helps lay people, such as
customers, to better understand how an operation will work and is a good idea to
use.

A logical question that many students and inexperienced
programmers will often ask is, What is a real-world application for
the case statement? In other words, what are some common
examples that the case statement will be used for?

Real-world applications for the CASE
statement

First, the example that we explored is a real-world example. Having
a machine’s state be dictated by an input is a common caske
statement application. It is very common for engineers to set up a
series of codes that when fed into a case statement will perform
certain power-on or power-off functions for a machine or machine
feature. For example, a programmer may rig up a system that, when

fed in the number 1, will start the machine, and then rig up another
case statement that, when fed in the number 2, will start a saw.

Another common use for a case statement is with status codes.
Typically, VDFs and other devices will send status codes to the PLC
via some type of communication protocol. Once the PLC picks up the
status code, it is common to use a state machine with a case
statement, such as the one presented here, to run the necessary
code to accommodate the status. For example, if an error code is
999, a PLC programmer will usually set up a case for 999 and do
something such as turn off that operation or put the machine in
standby mode.

By this point, you should have a decent understanding of how flow
control works. Let's now move on to our final project and implement
a color-sorting device, which is a device that is becoming very
common in the automation world!

Final project

Color sorting has become a staple of modern automation. Often,
machines will tag parts with different colored stickers that will
dictate their fate. For example, a red sticker may mean reject, a blue
sticker may mean Line B, and a green sticker may mean part
accepted. It'll all depend on the manufacturing process. For our final
project, we're going to make a simulated color sorter to help sort
boxes based on sticker color.

Requirements

The following are the actions and conditions that the machine will
need to take:

e The machine will have an input variable that will dictate which
state the machine is in. When the input is 1, the machine will
turn on; when the input is 2, the machine will turn off; and when
the input is 3, the machine will go into standby mode.

e When the machine is running, it must read the color-code
variable that will store the color code of the sticker it is reading.

o If the color code is red, we need to reject the part; if the color is
green, we can accept the part; and finally, if the color is yellow,
we will send the part back for inspection.

Now that we have a few basic requirements, we will move on to
designing the program.

Program design

This program may sound intimidating, but it is quite simple. Most

color detection modules work off an RGB system that will return a
value that is indicative of the actual color. For our purposes, we're
going to assume that 1 means red, 2 means green, and 3 means

yellow. In a real-world application, the color codes would be more
complex, but for our purposes, we're going to keep things simple

and use only a single digit.

The first task that we need to tackle is coming up with a design for
the program. You should take a moment to try to draft out a
pseudocode program for this machine. After you have completed

this, compare your pseudocode to the following:

Input state
Read colorCode

Case state

1:

End Case

Challenge

Turn on machine
If colorCode = 1 then
Reject part
End if
IF colorCode = 2 then
Accept part
End if
If ColorCode = 3 then
Send part back for inspection
End if

Machine off

Machine in Standby

For this example, only the pseudocode will be provided. In this case,

the pseudocode will be enough to implement a working program;

however, a flowchart would really help a layperson, such as a

customer, understand the process that we're attempting here. As

such, as an exercise, try to render a flowchart that represents this

mock program. As usual, there are no right or wrong answers, as

long as your flow logically depicts the flow of the program. Once you

do that, you can move on to the code implementation phase.

Code implementation

For this phase of the project, we need to take our design and turn it
into working code. As we did before, try to implement the code on
your own before looking at the working example.

Variables

The first bit of code we're going to implement is the variables. For
this program to work, use the following code:

PROGRAM PLC PRG

VAR
input : INT;
machineState : WSTRING;
colorCode : INT;
machineAction : WSTRING;
END VAR

Once you have the variables in place, you can implement the core
logic for the PLC program, which should look like this:

CASE input OF
1:

machineState := "Machine On";
IF colorCode = 1 THEN
machineAction := "Reject part";
END IF
IF colorCode = 2 THEN
machineAction := "Accept Part";
END TF
IF colorCode = 3 THEN
machineAction := "send back for inspection";
END IF

machineState := "Machine off";

machineState := "Machine Standby";
END_ CASE

The way this code works is simple; we have a simple state machine,
and when the machine is on, it will read the colorcode variable.
Depending on the color code, the machine will perform a certain
action such as accepting, rejecting, or sending the part back for
inspection.

For our first example, write 2 for input and 1 for colorcode. This

should put the machine in an off state, and the color code should be
ignored, like what can be seen in Figure 11.11:

Device Application.PLC_PRG

Expression Type Value
@ input INT 2
@ machineState WSTRING "Machine off"
colorCode INT 1
@ machineAction WSTRING "

Figure 11.11 — Machine off color code ignored

Next, put the machine in standby mode, and again the color code
should be ignored.

Device Application.PLC_PRG

Expression Type Value
@ input INT 3
machineState WSTRING "Machine Standby’
@ colorCode INT 1
& machineAction WSTRING -

Figure 11.12 — Machine standby mode and color code ignored

Finally, to see this machine in action, turn the machine on by writing
1 for input. When you do that, you should see the same output that

is in Figure 11.13:

Device Application.PLC_PRG

Expression

#

L4
L
>

input
machineState
colorCode
machineAction

Type Value

INT 1

WSTRING "Machine On"
INT 1

WSTRING "Reject part”

Figure 11.13 — Machine rejects part

Now that the machine is in an on state, the 1r statements in that
case block are being read. Since we had 1 already written to the
colorCode Variable, the part was rejected. In other words, we
simulated a color detection module reading a red sticker. Next, we
need to verify that the machine can accept a part. So, what we're
going to do is write the number 2 to the machinestate variable.
When you do that, you should be met with the output seen in Figure

Device Application.PLC_PRG

11.14

»

& % 9

Expression

input
machineState
colorCode
machineAction

Type Value

INT 1

WSTRING "Machine On"
INT 2

WSTRING "Accept Part”

Figure 11.14 — Machine accepts part

Finally, we need to test the last condition and check to ensure that
the machine can send a part back for inspection. To do this, write 3
to the co1orcode variable. When you do, you should see the output

that is in Figure 11.15:

Device Application.PLC_PRG

Expression Type Value
$ input INT 1
@ machineState WSTRING "Machine On"
colorCode INT 3
$ machineAction WSTRING "send back forinspection”

Figure 11.15 — Machine sends part back for inspection

Eureka! The machine performs as expected. Now, as stated before,
this was using a simple color schema for simplicity. In real life, we
would use something akin to an RGB indicator that sends back some
type of string for the PLC to be read. This leads us to our final
challenge!

Final challenge

Comparing a string of alphanumerical text is the same as comparing
two numbers. For example, if we wanted to see if one wsTine
variable is aBc123, we would use a block of code like this:

IF string var = "ABC123" Then
MachineAction := "some action";

END IF

In this case, when string var is ABC123, the machineAction variable

will be set t0 "some action".

Typically, color modules may either return a numerical value or some
type of code for a color, which may look like #rrr. For this challenge,
modify the code so that when you enter #rrr for a wsTrING variable
called nexcolor, it will return white. Also, expand the program to
take in some hex codes for red, blue, black, green, and yellow.

Summary

In this chapter, we explored 1F and cask statements, which are the
backbone of flow control for any ST PLC programming environment.
More importantly, we learned what flow control is and how to design
programs that have many branches using a combination of
pseudocode and flowcharts. In all, understanding how to control the
flow of a program is one of the most basic and important skills a PLC
programmer can have. As such, feel free to reread this chapter until
you are comfortable with the material. Then, come back to it later
when you're in the field working on a real-world project in ST.

Now, the 1F statements in the case block are what are known as
nested 1r statements; essentially, that means that they are inside of
another control structure. Also, it should be noted that the 1r

statements were structured in a less-than-ideal way. A more
appropriate configuration would have been what's known as an 1r-

ELSE-IF configuration, which is a concept we haven't covered yet.

This configuration, nested statements, and more are going to be

explored in the next chapter!

Questions
1. What direction does a program always flow in?
2. When will an zr statement run?
3. Will an 1F statement be executed if the condition evaluates to
false?
4. What is a state machine?
5. What is a common way to implement state machines?
6. What is a case statement?
7. What is the casEe statement syntax?
8. Can you have an 1r statement inside of a case statement?
9. What is the major difference between an 1r and a case
statement?
10. How can flowcharting help with flow control?
11. What is the difference between “less than or equal to” or just
“less than” instructions?
12. What symbol is used to test for “not equals” in an 1r statement?
13. What symbol is used to test for “greater than” in an 1r

statement?

14. What is the minimum amount of code needed for an 1F
statement?

15. What happens to the code in an 1r statement when the
expression evaluates to true?

12

Unlocking Advanced Control
Statements

In the previous chapter, we took a deep dive into the world of flow
control. If you found flow control confusing, you're in good company
because many students and programmers inexperienced in ST are in
the same boat and find the concept equally confusing. However,
what we explored in the last chapter was just the tip of the iceberg
when it comes to flow control. Flow control is much richer, and there
are a few add-on commands that can be employed to really spruce
up your PLC program.

Often, a block of code will need multiple conditions to be satisfied
for the block of code that it contains to run. For example, if you
think back to the beer example that we've explored multiple times
throughout this book, not only does a person have to be at least 21
to buy a beer in the United States but they must also have enough
money to cover it. This is an example of a situation that needs
multiple conditions to be true for a person to buy beer. There is
another caveat to this situation: what if the person is not in the
United States? The legal drinking age varies wildly from country to
country. As such, the past examples we've explored simply will not
work. To create software that can accommodate situations like this,
a more sophisticated variation of flow controls is nheeded.

Advanced flow control is used for so much more than just
determining whether a person can buy beer. In this chapter, we're
going to explore more advanced flow control and how to use it in
the PLC world by exploring the following concepts:

e Nested control statements
e ELSE Statements
e rLSIF Statements

e Logical operators

Finally, to round out the chapter, we're going to modify the color
sorter from the last chapter to account for shapes, too.

Technical requirements

This chapter requires a solid understanding of Chapter 11, Boolean

logic and program design. If you are not comfortable with those
concepts, you should review them before trying to tackle this
chapter. In terms of technology, all that will be needed is a working
copy of copesys. The code for the examples can be pulled down
from the following URL:

https://github.com/PacktPublishing/PLCs-for-Beginners

As usual, you are encouraged to pull the code and explore it
firsthand. It is also advisable to try to modify the code to gain a
better understanding of the material that will be explored here.

https://github.com/PacktPublishing/PLCs-for-Beginners

Nested control statements

In the last chapter, we briefly looked at nested control statements.
We had a cask conditional with an 1r statement inside it. When one
control statement is nested inside another, they are typically referred
to as either nested or embedded 1F or case statements. A simple
example of a nested 1r statement is the beer and money analogy
from before. Consider the following pseudocode:

Input age
Input money
If age >= 21 then
If money >= 45 then
Let them drink

For this example, two conditions must be true. First, the age of the
person must be at least 21 years old. If so, they can move to the
next conditional, which checks the amount of money they have. If
they have at least $45, they can drink the beer. If any one of these
conditionals is false, nothing will happen. In other words, they will
not be able to drink! An easy way to think of these conditionals is as
gatekeepers. To get to the glorious beer, a person would need to
pass through the age gate and the money gate.

In terms of automation, nested control statements like these are
very common. For example, suppose you're working on an industrial
oven. For the oven to turn on, the door would have to be closed.
Once the door is closed, the operator will be able to push a button
to set the temperature of the oven. Consider the following
pseudocode:

If doorState = "closed" then
Turn off standby light
If buttonlPressed then
Set temperature 100°F
If button2Pressed then
Set temperature 200°F
If button3Pressed then
Set temperature then 300°F
If doorState = "open" then
Turn on standby light
Set temperature to 0

In the case of this pseudocode, the door can be either in an open or
closed State. If the door is c1osed, the temperature can be set to
three different settings depending on the button that is pressed. If
the door is in an open state, the temperature setting will be

completely ignored and will have no effect.

To translate this into working code, we would need to implement the
following variables:

PROGRAM PLC PRG

VAR
doorState : WSTRING;
buttonl : BOOL;
button2 : BOOL;
button3 : BOOL;
temp : INT;
standby : bool;

END_ VAR

For this code, we have three BooL-type variables that represent
buttons on a control panel. Whichever button is set to True will
represent a button that is pressed. However, the heart and soul of
this program is the doorstate variable, which will determine whether

the machine is in standby mode or not and whether the button will
even be set. Finally, the temp variable will hold the oven’s current set
point temperature, and the standby variable will hold the state of
the machine — that is, whether the machine is in standby mode or
not.

Once you have those variables implemented, you can move on to
implementing the logic for the program. This program’s logic is long
compared to previous examples but it is not complicated. The code

is as follows:
IF doorState = "closed" THEN
standby := FALSE;
IF buttonl = TRUE THEN
temp := 100;
END IF
IF button?2 = TRUE THEN
temp := 200;
END IF
IF button3 = TRUE THEN
temp := 300;
END IF
END IF
IF doorState = "open" THEN
standby := TRUE;
temp := 0;
END IF

Once you're done implementing the code, the first test you can do is
to check the door’s open functionality, which should set the
temperature setpoint to o and put the machine in standby mode. To
do this, set doorstate t0 open. Once you do this, your output should
match Figure 12.1:

Device. Application.PLC_PRG

Expression

@ doorState
buttonl
button2
button3
temp
standby

- % 9 9 9

Type Value
WSTRING “open”
BOOL

BOOL

BOOL
INT 0
BOOL

Figure 12.1 — Machine standby mode

To explore how this code disables the button logic, try setting one of
the button variables to True and observe both the temp and standby

variables’ states.

Once you explore the standby functionality, you can move on to

setting the temperature. For this functionality, set doorstate to

closed and set any of the button variables to True. For this

example, we are going to set the oven to its highest setting by
setting button3 to TrRUE. ONnce you do that, you should be met with

Figure 12.2:

Device Application.PLC_PRG

Expression
@ doorState
@ buttonl
@ button2
button3
$ temp
@ standby

Type Value
WSTRING "closed”
BOOL

BOOL

BOOL | TRUE
INT 300
BOOL FALSE

Figure 12.2 — Door closed and high temp mode

For an experiment, test the other settings by turning the current
temperature button to raLse and any of the other buttons to Truk.
Observe the temperature output. Also, set the door state to open to
observe the temperature and machine state.

Challenge

Is there a bug in this code? Learning how to verify embedded
control statements is a pivotal yet hard-to-acquire skill. Before you
move on to exploring the next section, take a moment to explore
what happens when you have multiple buttons pressed at the same
time. Can you spot anything out of the ordinary? Once you feel
satisfied with your answer, you can move on to the almighty eLse

statement!

ELSE statements

Oftentimes, we'll need a default block of code to run if the 1r
statement does not evaluate to True. To accomplish this, the ELsE
statement is employed. The eELse statement is like a catcher in a
baseball game. If the batter misses the ball, it's the catcher’s job to
catch the ball and throw it back to the pitcher. Consider the following
example:

If motorl = selected then
turn on motorl
turn off motor2

Else

turn on motor?2
turn off motorl

For this example, if motor1 is selected, that motor will turn on. If
motorl iS Not selected, then motor2 will turn on. Again, the eLse
block is like the catcher; if motor1 is not selected, it will catch that
and turn on motor2. To see this in action, implement the following

variables:

PROGRAM PLC PRG

VAR
selectMotorl : BOOL;
isMotorlSelected : BOOL;
isMotor2Selected : BOOL;
END VAR

This example uses selectMotor1 as the main input that will
determine the state of isMotorlselected Or isMotor2Selected. The
logic for the program will look like the following:

IF selectMotorl = TRUE THEN

isMotorlSelected := TRUE;

ismotor2Selected := FALSE;
ELSE

isMotorlSelected := FALSE;

ismotor2Selected := TRUE;
END IF

When the code is executed, selectMotor1 Will default to FaLse and
will render Figure 12.3:

Device Application.PLC_PRG

Expression Type Value
$ selectMotorl BOOL FALSE
@ isMotoriSelected BOOL
& isMotor2Selected BOOL

Figure 12.3 — The selectMotor1 variable default of FALSE

When the selectMotorl variable is toggled to Trug, it will produce
Figure 12.4.

Device Application.PLC_PRG

Expression Type Value
@ selectMotorl BOOL

isMotoriSelected BOOL
@ isMotor2Selected BOOL

Figure 12.4 — The selectMotor1 variable set to TRUE

When selectMotorl is toggled to Trug, that 1r statement will run
that code block. This will result in motor1 turning on and motor2
turning off.

There is a caveat to the eLse statement. Since the eLse statement is
like a default statement, you can only have one per 1r statement. As
such, it is important to always remember the saying “One 1r
statement, one eLsE statement!”

NOTE

The ELSE statement can also be used in the same way as a CASE statement. All
of the rules that apply to the IF statement also apply to the CASE statement.

ELSE iS @ very important addition to augmenting 1r statements;
however, it's not the only addition that can be used. In the next
section, we're going to combine multiple zr statements together to
form one large cohesive unit!

ELSIF statements

Typically, in automation, a program will usually have multiple code
blocks that will run under different situations. An example of this
would be the state machines we explored with cask in the last
chapter. Now, case statements are excellent ways to build state
machines and orchestrate multiple code blocks; however, they are
not the only way. Another very common way of constructing
something akin to a state machine is with the erLs1r command.

When coupled with an 1r statement, eLs1F will create a cohesive

conditional block that will accommodate multiple conditions. For
example, consider our beer discussion. If a person is in the United
States, they must be at least 21 years old to purchase beer. On the
other hand, if a person is in Mexico, they must only be 18 years old.
If we needed a program that could handle this, we could use
something like the following pseudocode:

Input age
If country = "usa" then
If age >= 21 then
Let them drink!
Else If country = "mexico" then
If age >= 18 then
Let them drink!

To see how this code would work, let’s explore a working example!
The first thing we need to do is declare the necessary variables as

usual:

PROGRAM PLC PRG

VAR
country : WSTRING;
buyBeer : BOOL;
age ¢ INT;

END VAR

For this code, we have a country variable that will determine the
drinking age. The next variable is a Boolean that will determine
whether we can buy beer or not. It will be set to True if we can buy
beer; otherwise, it will be set to raLse. Finally, we have an age
variable that can be used to take in a user’s age.

The logic for this program will look like the following:

IF country = "usa" THEN
IF age >= 21 THEN
buyBeer := TRUE;
ELSE
buyBeer := FALSE;
END IF
ELSTF coantry = "mexico" THEN
IF age >= 18 THEN
buyBeer := TRUE;
ELSE
buyBeer := FALSE;
END IF
END IF

When you run the program, enter usa for country and 28 for age.
Once done, you should see the same output that’s in Figure 12.5:

Device Application.PLC_PRG

Expression Type Value
country WSTRING "usa”
& buyBeer BOOL
& age INT 28

Figure 12.5 — Over 21 in USA output

Now, if we were to input 18 for age and keep the country variable

set to usa, we would get the following:

Device Application.PLC_PRG

Expression Type Value
@ country WSTRING "usa"”
@ buyBeer BOOL FALSE
& age INT 18

Figure 12.6 — 18 in the USA output

Notice that since we are in the USA, we can’t buy beer. Now, if we
change country to mexico, We'll get Figure 12.7:

Device Application.PLC_PRG

Expression Type Value
country WSTRING "mexico”
& buyBeer BOOL
$ age INT 18

Figure 12.7 — 18 in Mexico output

In this case, the buyBeer variable toggles to True! This is because
changing which of the 1r statements we are in will affect the age
check. In other words, the country variable is the main gatekeeper

to the drinking age. This is a very important concept to remember,
especially when troubleshooting. Many times, it's easy to forget
which block is running. As a result, you can be troubleshooting a
block that is working as it should be!

Our beer-buying program is a great example of how an 1r-ELsIF
statement works. However, it's not exactly how one would use it in
real life. A common 1r-eLsIF is something akin to a temperature
monitoring application. Typically, for an application like this, a
programmer will usually program a series of 1r-eLsIF Statements
with the intention of performing certain functions, such as turning on
warning lights or locking/unlocking doors when a certain
temperature is detected. Consider the following pseudocode design:

Read temp

IF temp >= 300 then
Turn on red light
Turn off yellow light
Turn off green light

ELSIF temp >= 200 then
Turn on yellow light
Turn off green light
Turn off red light

ELSIF temp >= 100 then
Turn on green light
Turn off yellow light
Turn off red light

This design will essentially read the temperature and turn off the
unnecessary lights while turning on the correct light. To see this
program implemented, set up the following variables:

PROGRAM PLC PRG

VAR

temp : INT;

redLight : BOOL;

yvellowLight : BOOL;

greenLight : BOOL;
END VAR

In this case, we have three light variables that are Boolean data
types. To represent an on state for the light, the variable will be set
to True. Whether a light is on will depend on the temp variable,
which will hold a simulated temperature reading. As for the logic, we
can use the following:

IF temp >= 300 THEN

redLight := TRUE;
greenLight = FALSE;
yellowLight := FALSE;
ELSIF temp >= 200 THEN
redLight := FALSE;
greenLight = FALSE;
yellowLight := TRUE;
ELSIF temp >= 100 THEN
redLight := FALSE;
greenLight := True;
yellowLight := FALSE;
END IF

The temperature will essentially dictate which code block to run and,
by extension, which light will be turned on. When the program is run
and the temp variable is set to 100, we should get the output that
can be seen in Figure 12.8. As can be seen in Figure 12.8, when the
temperature is greater than 100 but still less than 200, the green
light will turn on while all the other lights will be put into an off
state:

Device Application.PLC_PRG

Expression Type Value
temp INT 100
& redLight BOOL
& yellowLight BOOL
greenLight BOOL

Figure 12.8 — Green light on

Now, the next thing to test is the functionality of the yellow light. To
do this, set the temperature to a value between 200 and 300. In the
case of Figure 12.9, 250 will be used:

Device Application.PLC_PRG

Expression Type
@ temp INT
@ redLight BOOL
& yellowLight BOOL
@ greenLight BOOL

Figure 12.9 — Yellow light on

As can be seen, the yellow light is switched on and the green light
that was on before was turned off. The last thing to test is the red
light. For this, we will set the temp variable to 311:

Device Application.PLC_PRG

Expression Type Value
@ temp INT
@ redLight BOOL
& yellowLight BOOL

& greenLight BOOL

Figure 12.10 — Red light on

As can be seen, the red light was switched on while all the others
were switched off.

An 1r-ELSIF block is like a race condition. The first 1F or ELsIF
statement to evaluate to True will “win” and that code will execute.
As such, order matters with these blocks, especially when one is
working with number comparisons, kind of like the example we just
explored.

Consider the following example:

Read temp
IT temp >= 100 then
Turn on green light
ELSEIF temp >= 200 then
Turn on yellow light
ELSETIF temp >= 300 then
Turn on red light

Working off the assumption that the first block to evaluate to True
will *win” or execute, what do you think will happen when the
temperature reaches 201°F? If you answered that the green light
will turn on, you would be right. Again, this is because 201 is greater
than 100. Since the first zr block will evaluate to True when it reads
a temperature greater than 100, such as 201, it will turn on the
green light, and then the 1r-eLszF block will terminate.

Challenge

Here is a challenge to see how the race condition works. Take the
working code for the original temperature program and modify it so
that the program checks for temperature in ascending order. In
other words, convert the pseudocode from the last explanation into
working code. Once you implement that code, play with your input
values and see how the program behaves. Chances are, you will see
the bug.

Now that we have explored the 1F, ELSE, and ELsIF statements, we
need to switch our attention to creating more complex logical
statements. That is, we need to explore what happens when we
start mixing multiple True or rFaLse conditions into the same control
statement!

Logical operators

In automation, it is very common for multiple conditions to be met
before a system can perform a task. For example, in some cases, we
may need to ensure that all the safety switches are open and the
start button is engaged before the machine can start up. In other
cases, we may need two motor drives to be on before the machine
can try to move. To accomplish this, we need to look at more
complex logical expressions.

So far, we have seen some code (nested 1r statements) that will
behave in such a way that multiple conditions need to be met before
a certain task can be carried out. Nested states are suitable when
some code needs to be executed based on a single condition while

other code requires an extra condition to be satisfied. However, for
many cases where all the code needs to be executed when multiple
conditions are met, the nested statements can be cumbersome and
bloat the code. This is mainly because all of our 1F or ELSIF
statements have only been used as single logical conditions to
determine whether the block of code should run or not. As stated
before, this is not optimal. As such, enter the world of complex logic
statements.

What we're going to call a complex logical statement is a control
statement that will use more than one condition to evaluate to TruE.
In essence, these conditionals will be applied to Boolean equations.

NOW.

The main workhorse that we're going to use for this section is truth
tables. For control statements like the ones we're about to explore, a
truth table can often be a handy troubleshooting tool and really help
speed up the development process. As such, for our first example,
let’s revisit our beer and money program.

If you remember, in the original beer and money program, we used
a nested 1r statement to determine whether the person was old
enough to buy beer and had the necessary money to buy it. That
example worked fine; however, it wasn’t the most optimal solution.
In the IEC 61131-3 standard, complex logical statements are
produced using the following keywords to determine their
corresponding logical operations:

® AND

¢ OR

® XOR

¢ NOT

The simplest way to demonstrate these operations is to see one in
action. Let's modify our beer and money program to use the anp

statement. To do this, let’s start off by looking at some pseudocode
to give us a quality roadmap to the real program:

Input age
Input money

If money >= 45 AND age >=21 then

Let them drink heavily

Else

Throw a shoe at them

The magic in this program resides in the ano keyword. Essentially,
we can use the following truth table to determine whether we can

buy beer or not:

Money >= 45 Age >= 21 |Can they drink heavily?
Yes Yes Yes
Yes No No
No Yes No
No No No

Table 12.1 — Can they drink?

In this case, the only way they can drink is if they have more than
$45 and they are at least 21. To see this behavior, let’s implement
the program.

For this program, we're going to use the following variables:

PROGRAM PLC PRG

VAR

money : INT;

age : INT;

msg : WSTRING;
END VAR

These variables are self-explanatory, so once you have those
implemented, use the following code for the program’s main logic:

IF money >= 45 AND age >= 21 THEN

msg := "Let them drink heavily";
ELSE

msg := "Throw a shoe at them";
END IF

Once you have all that implemented, run the program and input s0
for money and 22 for age. When you write those variables, you should
be met with Figure 12.11:

Device Application.PLC_PRG

Expression Type Value
$ money INT 50
% age INT 22
® msg WSTRING “Let them drink heavily"

Figure 12.11 — The AND statement for the beer program, age 22

As can be seen, since we have more than $45 and we are older than
21, the program says we can drink heavily. Now, let’s change our
age to 19. When you do that, you should be met with Figure 12.12;

Device Application.PLC_PRG

Expression Type Value
@ money INT 50
$ age INT 19
® msg WSTRING "Throw a shoe at them”

Figure 12.12 — The AND statement for the beer program, age 19

As can be seen, when we enter 19 for age, our program will throw a
shoe at the patron. This is because if we consider the truth table, for
the patron to buy beer, they must be at least 21 and have at least
$45. In the case of Figure 12.12, one of those conditions is FaLSE,
and as such, the whole statement will evaluate to Farsk.

The anp keyword is commonly used; however, it's not the only

operator that can be used. In the next example, we're going to
explore the or operator.

Exploring the OR operator

As we explored in Chapter 6, for the or operator to produce a TrRuE
or on state, at least one of the expressions needs to evaluate to
TRUE. An example application for this would be a machine that has
redundant power sources and only needs one to turn on. A

pseudocode design for a program like this would be as follows:

Read powersourcel

Read powersource?

If powersourcel == on or powersource2 == on then
Turn on machine

Else
Turn off machine

End if

If we were to turn this into working code, it would look like the
following:

PROGRAM PLC PRG

VAR
powersourcel : BOOL;
powersourceZ : BOOL;
machineState : BOOL := FALSE;
END_ VAR

In this example, we have three Boolean variables. The two
powersource Variables will serve as input variables. If either of these

variables is Trug, then the machine state will toggle to True. The
logic for this program is as follows:

IF powersourcel = TRUE OR powersourceZ2 = TRUE THEN

machineState := TRUE;
ELSE

machineState := FALSE;
END IF

The logic for this program is quite simple. The or statement will
trigger the machinestate variable to toggle to True when either of
the powersource variables is on. As such, once you run the program
and set either or both of the powersource variables to Trug, the
machineState variable will change. Consider Figure 12.13:

Device Application.PLC_PRG

Expression Type
powersourcel BOOL
& powersource2 BOOL
machineState BOOL

Figure 12.13 — Powersourcel on

As can be seen, the machinestate variable is True. Next, set
powersourcel t0 FALSE and powersource2 to TRUE. The output should

match Figure 12.14:

Device Application.PLC_PRG

Expression Type
@ powersourcel BOOL
® powersourced BOOL
& machineState BOOL

Figure 12.14 — Powersource2 on

Again, with only one powersource Vvariable set to on, machinestate iS
still True. Next, we're going to turn on both power sources:

Device Application.PLC_PRG

Expression Type Value
powersourcel BOOL
powersource2 BOOL TRUE
& machineState BOOL

Figure 12.15 — Both power sources on

Again, Figure 12.15 shows that with both power sources on, the
machine state does not change to raLse. To see a change in the

machine state, you will need to turn both powersource variables off:

Device Application.PLC_PRG

Expression Type Value
$ powersourcel BOOL
$® powersource2 BOOL
@ machinaState BOOL

Figure 12.16 — Both powersource variables off

To set machineState t0 FALSE, both powersource variables must be
set to FaLse. This is the nature of the or operator. As long as at least
one of the conditions evaluates to Trug, the code block will run. The
next operator that we need to explore is the xor operator.

Exploring the XOR operator

Of all the logical operators, xor is arguably used the least. Since this
operator will only result in a True condition when one and only one
of the inputs is Trug, there is often little use for the operator.
However, as with anything else, there is a time and a place for it.
Consider the power source example we explored with the or
statement. Sometimes in automation, you will only want one power
source to power the machine at a time. Depending on how the
machine is designed, two power supplies being on at the same time
can result in damage. This is where the xor statement comes into
play. For this example, we're going to rework the or operator
example and create a program that will only power on when one
power supply is on. As such, we're going to keep the same variables

we used in the last example and modify the logic to match the
following:

IF powersourcel = TRUE XOR powersourceZ = TRUE THEN

machineState := TRUE;
ELSE

machineState := FALSE;
END IF

When you run the code, set one of the powersource variables to
TRUE and you should be met with Figure 12.17:

Device. Application.PLC_PRG

Expression Type
@ powersourcel BOOL
$ powersource2 BOOL
machineState BOOL

Figure 12.17 — One powersource variable on

As can be seen, the machine state goes to True or on. Now, turn
both powersource variables on. When you do, you should be met

with Figure 12.18:

Device Application.PLC_PRG

Expression Type Value
@ powersourcel BOOL
® powersource2 BOOL

machineState BOOL

Figure 12.18 — Both powersource variables on

As is depicted in the figure, the machine state is raLse or off.

Now that we've explored the operators that take two inputs, we
need to switch our attention to the not operator.

Exploring the NOT operator

The last logic operator that we need to explore is the not operator.
The noT operator is a very simple operator that merely inverts the
logical expression. In other words, it will turn Trut to FaLse and
FALSE to TRUE. This operator is handy when you need to perform a
check on the same variable and require one condition to be True and
one to be raLse. Consider the following pseudocode:

Var = False
If NOT var == True

Var is false but will read as true
Else if NOT var == False

Var 1s true but will read as false

Translating this into real code will yield the following result.

In terms of variables, the code should look like the following:

PROGRAM PLC PRG

VAR
variable : BOOL;
msg : WSTRING;
END VAR

In terms of the code, the logic should be the following:

IF (NOT variable) = FALSE THEN
msg := "variable is set to True";
ELSE

msg := "variable is set to False";
END IF

When you run the code and set variable t0 TRUE, you should get
what’s in Figure 12.19:

Device Application.PLC_PRG

Expression Type Value
@ variable BOOL
® msg WSTRING "variable is set to True"

Figure 12.19 — A NOT example (True input)

If you look at the 1r statement, it will only run when the expression
equals FaLse; however, our input variable is set to True. If you
notice, the output the block ran. This is because the noT statement
inverted the expression and set the overall conditional to Trug, which
allowed the block to run.

Now that you‘ve finished this section, you should have a solid
understanding of complex logical expressions. The expressions we've
explored were essentially one or two inputs. However, you can string
as many operators as you need together to simulate more inputs. In
all, you should now have enough understanding to finish the chapter
with our final project.

Final project

For our final project, we're going to make a derivative of the color
sorter we made in the last project; however, this time, there will be
a catch. Our program is going to sort not just colors but shapes as

well. Therefore, the first order of business we're going to do is lay
out a list of requirements.

Requirements

For this project, we're going to need to meet the following
requirements:

1. Red shapes will either be squares or rectangles:

If a shape is detected as a square or rectangle, it will go down
the square line, else it will be rejected

2. Green shapes will always be stars:

If a shape is a star, it will go down the star line, else it will go
down the reject line

3. Blue shapes will always be triangles:

If a shape is a triangle, it will go down the triangle line, else it
will go down the reject line

4. Any other color will be rejected.
With these requirements, we should have enough information to
build our program. As with all of our other examples, try to take a

moment and implement the program based on the requirements
before proceeding.

Variables

The variables for this program will be as follows:

PROGRAM PLC PRG

VAR
color : WSTRING;
shape : WSTRING;
line : WSTRING;
END VAR

In short, the 1ine variable will hold the line the part is going down,
shape Will hold the shape type, and finally, co1ox will hold the color
of the part that the machine detects. Once these variables are
implemented, we can write the logic.

Color and shape sorter logic

The core logic for the program will be as follows:

IF color = "red" THEN
IF shape = "square" OR shape = "rectangle" THEN
line := "square line";
ELSE
line := "reject";
END IF
ELSIF color = "green" THEN
IF shape = "star" THEN
line := "star line";
ELSE
line := "reject";
END IF
ELSIF color = "blue" THEN
IF shape = "triangle" THEN
line := "triangle line";
ELSE
line := "reject";

END IF

ELSE
line := "rejected";
END IF

As can be seen, this program is a series of nested 1rF-ELSIF
statements. The first check will determine what the color is. The
reasoning behind this is that the requirements group the shapes by
color. In other words, the color kind of acts as a key to the shape
category. As such, we have three checks for red, green, and blue. If
a shape is none of those colors, it gets sorted to the reject line.

Nested inside the color checks is the shape check. This logic will
ensure that the shape is the correct color. For example, we don't
want a green square going into production. Therefore, if one of the
colors we're checking for is detected, a secondary check will be
conducted to determine the shape of the part. If the part is not
recognized for that color, it will also be rejected (the eLse statement

logic).

Pay attention to the nested logic in the red block. Notice that there is
an or statement there. This is because both squares and rectangles
can be red. Therefore, since both shapes can be red, we need to
check to see whether the shape is one or the other. This is an
important detail in the requirements, and this is a requirement that
can trip up a lot of inexperienced programmers. Since they see the
word “and” in the requirements, they will try to use the anp operator
in the code.

In all, once the code has been implemented, test it out!

Testing conditions

The first condition we're going to test is for red colors. Enter square

for shape and red for color:

Device Application.PLC_PRG

Expression Type Value
@ color WSTRING "red"”
@ shape WSTRING “square”
® line WSTRING "square line"

Figure 12.20 — Red square check
As can be seen, the part went down the correct line. Now that we
know the system can detect a red square, let’s make sure it can

detect a red rectangle:

Device Application.PLC_PRG

Expression Type Value
@ color WSTRING "red"”
shape WSTRING ‘rectangle”
#® line WSTRING "square line"

Figure 12.21 — Red rectangle check

Figure 12.21 shows that the part is still going down the correct line.
We can now move on to testing for a blue rectangle. To do this,

simply change the color from red t0 biue:

Device Application.PLC_PRG

Expression Type Value
@ color WSTRING "blue"
® shape WSTRING ‘rectangle”
® line WSTRING “reject”

Figure 12.22 — Blue rectangle check

Again, the program is working, as this part was rejected. With the
squares out of the way, let's check the green logic functionality. For
this test, set shape t0 triangle and color tO green:

Device Application.PLC_PRG

Expression Type Value
@ color WSTRING “green”
shape WSTRING “triangla”
line WSTRING "reject”

Figure 12.23 — Green triangle check

As expected, the part was rejected because triangles are always
blue, and only stars can be green. So, to confirm the program will

accept a green star, let’s change the shape variable to star:

Device Application.PLC_PRG

Expression Type Value
$ color WSTRING "green”
shape WSTRING "star”
@ line WSTRING "star line"

Figure 12.24 — Green star check

Figure 12.24 shows that the green block is working as expected, as
it rejected a green triangle but put a green star down the correct
line. We can now test out the functionality for the blue logic block.
So, set color tO blue and shape tO hexagon:

Device Application.PLC_PRG

Expression Type Value
@ color WSTRING "Blue"
shape WSTRING “hexagon”
line WSTRING "reject”

Figure 12.25 — Blue hexagon check

This test was a little bit of a curve ball because hexagon is not
mentioned anywhere in the program. This means that since we
detected a blue hexagon, the logic in the blue 1r block still rejected
the part because only triangles can be blue. In other words, the
program is performing as expected. To put the final touches on the
blue logic block, set shape t0 triangle:

Device Application.PLC_PRG

Expression Type Value
@ color WSTRING "bBlue"
% shape WSTRING "triangle”
® line WSTRING "triangle line"

Figure 12.26 — Blue triangle check

Figure 12.26 shows that the part went down the expected line. Now,
there is still one last condition to check. To ensure our program is
working as expected, we need to ensure that any part, regardless of

shape, IS rejected if the color is not red, green, or blue. The ELSE
statement at the end of the program should handle this condition.
Simply change the co1lor variable to any other color, such as biack:

Device Application.PLC_PRG

Expression Type Value
@ color WSTRING "bBlack™
shape WSTRING “triangle”
& line WSTRING "rejected”

Figure 12.27 — Black color check

As can be seen in Figure 12.27, though the part is still a triangle, it
was automatically rejected because it was black and not red, green,
or blue. Overall, we can mark this program as a major success
because it works!

Summary

This chapter has been a fast-paced introduction to complex flow
control statements. The major takeaways from this chapter should
be how to use nested control statements, complex logical
expressions, and eLs1F/ELSE Statements. As we progress through
the book, we will use these principles more. If you do not yet
understand these concepts, please read the chapter again to ensure
you understand the material. With that, we're going to move on to
our next chapter and learn about implementing loops!

Further reading

Fernhill SCADA — 1r statements:
https://www.fernhillsoftware.com/help/iec-61131/structured-text/st-
if.html#:~:text=The%20IEC%2061131%2D3%20ST,ELSEIF%20con
dition%20THEN%20Statement%3B%20

Questions

1. What is the difference between anp and or operators?

2. What is the not operator used for?

3. What is a nested 1r statement?

4. What' the difference between erse and ers1F statements?
5. Can a cask statement use an eLse statement?

6. Can an eLse statement accept a logical expression?

7. What is the truth table for an xor statement?

https://www.fernhillsoftware.com/help/iec-61131/structured-text/st-if.html#:~:text=The%20IEC%2061131%2D3%20ST,ELSEIF%20condition%20THEN%20Statement%3B%20
https://www.fernhillsoftware.com/help/iec-61131/structured-text/st-if.html#:~:text=The%20IEC%2061131%2D3%20ST,ELSEIF%20condition%20THEN%20Statement%3B%20
https://www.fernhillsoftware.com/help/iec-61131/structured-text/st-if.html#:~:text=The%20IEC%2061131%2D3%20ST,ELSEIF%20condition%20THEN%20Statement%3B%20

13

Implementing Tight Loops

Almost every program, regardless of whether it is a PLC program or
a normal application, will loop in some fashion. If a PLC program did
not loop, it would be relatively worthless because unless the
operators had near-perfect timing for starting an operation, the
program would almost immediately stop. Even if the operator did
manage to kickstart a run, as soon as the program reached its final
command, it would stop. Without some type of loop, a PLC program
would be relatively useless.

PLCs will often implement a loop that will iterate over a program and
prevent the PLC program from needing to be restarted. However,
programmers will often need loops to be a bit more specific. More
specifically, a programmer will often need to create a loop to loop
over a smaller portion of code in the PLC program until a condition is
met.

In programming, there are many different types of loops. Each type
of loop will have its own applications and optimization for certain
tasks. Understanding which type of loop to implement is paramount
to writing quality PLC code. Using the wrong type of loop can result
in program bugs, a bloated, inefficient code base, or in a worst-case
scenario, create situations that can put the machine or operators in

danger. It goes without saying that knowing how to design quality
loops is a must for any PLC programmer.

Using quality loops is vital to the successful implementation of a PLC
program. This chapter is going to explore the types of loops that are
governed by the IEC 61131-3 standard and how to properly use
them. To do this, we're going to explore the following concepts:

e Types of loops

Loops with a flowchart and pseudocode

e FoR loops

* WHILE loOpsS

* REPEAT lOOpS

® Nested lOOpS
To round out this chapter, we're going to create a factory assembly
line with three states. One line state will be used to build a certain
number of parts, another line state will build at least one part, and

finally, the third line state will be used to build parts only under
certain conditions.

Technical requirements

The code for this chapter can be found at the following link:
https://github.com/PacktPublishing/PLCs-for-Beginners

https://github.com/PacktPublishing/PLCs-for-Beginners

This chapter will also require flowchart designs, so you can use
draw.io to draw the flowcharts at the following URL, or use any
other drawing method you like: https://app.diagrams.net/

Exploring the different types of
loops

The IEC 61131-3 standard governs three different types of loops.
The three types of governed loops are as follows:

e Counter loops
e Precheck loops

e Postcheck loops

If you‘ve programmed in a language such as C++, Java, or C#
before, you're probably already familiar with these types of loops. In
practice, the loops will behave the same as in ST. Regardless, we're
going to explore what they are and how they work.

Counter loop

A counter loop is straightforward. A counter loop will loop over a
block of code a certain number of times. This means that a counter
loop will start with a specific number, increment, and then terminate
when a numerical condition is met. For example, a counter loop may
use a counter variable that starts at 1 and will loop for as long as the
counter variable is less than, say, 20.

Most programming languages use what'’s called a ror loop to
implement a counter loop, and ST is no different. Of all the loops
you're going to use throughout your career, you'll use the ror loop
the most. Applications for the ror loop can be as follows:

¢ Looping through arrays
e Running a process to create a certain number of parts

e Sending pulses to a motor

There is a near-infinite number of applications for the ror loop.
However, these are just a few commonly used applications for a PLC
programmer.

Let’s now explore another commonly used but not as popular loop
that’s called a precheck loop.

Precheck loops

Though not as common as a counter loop, precheck loops are
probably the second most common type of loop to implement. A
precheck loop will check some type of logical expression, similar to
an 1r statement. As long as that condition is Trug, the loop will loop
over a block of code.

When the program first detects the loop, it will evaluate the
condition. This means that you are not guaranteed that the code
inside the loop will run. This is very important and can confuse many
inexperienced programmers. It is a common pitfall for many new

programmers to think they are guaranteed at least one iteration with
this loop when, in reality, they are not.

Much like the counter loop, most programming languages usually
use the wazre keyword to signal the precheck loop. If you have
programmed in a traditional programming language, you'll notice the
ST syntax is similar to that of a language such as C++ or Java with
extra keywords.

With that, we can move on to post check loops.

Post check loops

Post check loops are not available in every programming language.
For example, the programming language Python does not support
this type of loop; however, many other popular languages do. This
type of loop is similar to the precheck loop with one caveat. A post
check loop will evaluate a logical condition, much like a precheck
loop; however, the difference is that the post check loop will
evaluate the condition at the end of the loop. This means that you
are guaranteed at least one iteration of the code inside the loop.

In terms of applications, the post check loop can be leveraged to
great success in PLC programming. This loop is handy for
applications such as automated saws, welding machines, or drills.
For example, suppose you're working on an automated welding
machine. A machine may create a quality weld on the first run, or
the machine may have to move over the part multiple times to
ensure a quality weld. For applications such as these, the post check

loop is an ideal loop. In this case, a post check loop will guarantee
that you will get at least one welding pass over a part, but if the part
has to be reworked, it can iterate again and instruct the machine to
do so.

Most languages call a post check loop a po or bo unTIL loOp.
However, unlike the other types of loops we've explored, ST uses a
different set of keywords for the loop. In ST, a post check loop is
called a repEaT lOOp. Remembering this piece of information is vital
to a PLC programmer, as it is not that uncommon for a developer
who is experienced with a traditional language to try and use a
similar syntax.

NOTE

It is important to remember that the Do keyword does exist in ST. However, the
DO keyword is used in conjunction with the WHILE and FOR loops and does not
trigger a loop on its own.

Infinite loops

Normally, we want a loop to eventually stop. There are exceptions to
this rule, such as a PLC program needing to continuously loop or a
user interface (UI) needing to be constantly able to accept user
inputs. Regardless of the type of loop, the loop will require some
condition that is used to terminate the loop. As long as the
expression is TrRUE, a loop will continue to iterate over a block of
code. If the condition fails to evaluate to raLsg, the loop will not

terminate, and you’ll have what is called an infinite loop.

Infinite loops are generally considered bugs and usually stem from a
flawed logical expression in the termination section of the loop. Any
type of loop can result in an infinite loop; however, they are mostly
caused by waILE loops and, in terms of ST, repeaT loops. A For loop
can also cause an infinite loop condition; however, it is much harder
to cause an infinite loop with a For loop in ST.

An infinite loop can cause a plethora of problems, such as the
program hanging up, consuming hardware resources, which can
cause the system to lock up, and, in terms of PLCs, crashing the
system altogether. Therefore, it is vitally important to have a logical
expression that will terminate the loop.

Now that we've explored the basics of how loops work, let’s look at
designing them!

Exploring loops in pseudocode and
flowcharts

The nature of loops can often confuse inexperienced programmers,
especially when designing a program. Typically, the easiest way to
hammer in the concept is to first look at the concept of loops in
terms of both pseudocode and flowchart examples. Therefore, in this
section, we're going to look at designing loops in both pseudocode
and with a flowchart.

Exploring loops with pseudocode

Depending on what you're working on or where you’re at in your
programming journey, working out a loop with pseudocode can often
greatly help conceptualize the needed logic. To teach the concept of
loops, a good example to work through is a blinking light program.
The steps to make a light blink are straightforward. The program will
turn on a light, wait for a period of time, and then turn the light off.
However, this will only flash the light once, and we want to
continuously blink the light. To accomplish this, we need to loop the
program. For this example, we can use the following pseudocode:

Top of loop:
Turn on light
Wait for 1 second
Turn light off
Wait for 1 second
Go to top of loop

As soon as this program starts, the program will enter the loop. The
logic in the loop will turn on, wait for one second, turn off, wait for
one second, and once all that is done, it will start the process over
again. This means that this particular program will cause the light to
blink indefinitely.

The key here is the loop. In practice, all loops will have a starting
point and an ending point. When the loop reaches the end of the
loop, it will go back to the top of the loop. So, in this case, the loop
will continuously run, and we'll have an infinite loop. Now, this isn't
ideal. Typically, we only want to blink a light under certain
conditions, such as an emergency or when a part run has been
completed. For this program to serve a useful purpose in a PLC-

based machine, we should use a precheck loop. So, let's modify this
example to only blink a light when there is an emergency.

For this next design example, let’s assume that when the
temperature of an oven is over 200 °F, the PLC will blink an
emergency light. However, when the temperature falls below 200 °F,
the light will stop blinking. With these requirements, we can design
our program with the following pseudocode:

Read temp

While temp > 200:
Turn light on

Wait 1 second

Turn light off

Wait 1 second

End Loop

As can be deduced in this example, there is a conditional in the
while line. This means that as long as that condition is Trug, the
blink code will run. If you recall, we want the light to blink only
when our temperature reading is above 200. The condition in the
example will only execute the blink code when the temperature is
above 200. To summarize, when the temperature is above 200, the
condition will result in a True condition. When the temperature is
below 200, the condition will result in a raLse condition and the loop
will break.

Why not use a counter loop or a post check loop for this program?
The answer is simple. A counter or ror loop will cause the light to
blink a certain number of times. So, when the program reaches to
loop, it would blink the light a certain number of times, no matter

what. On the other hand, if we used a post check loop such as a
REPEAT |loop, the light would blink at least once, no matter what. In
this case, we only want to blink the light when the temperature is
above 200 and we want the light to blink indefinitely until the
temperature is below 200; as such, the wazLe loop or precheck loop
is the most appropriate for this task because we are not guaranteed
that the code in the loop will run.

Now that we've seen a pseudocode loop, we need to see how these
look visually. To do this, we're going to draw out the loop in a
flowchart.

Representing a loop in a flowchart

Figure 13.1 shows what the blinking light program would look like as
a flowchart:

Read temp

True

Y

While temp = 200

Turn light on

A

False

wait 1 second

Turn light off

wait 1 second

Y

Rest of Program

Figure 13.1 — The blinking light flowchart

In this diagram, we're using a rectangle with rounded edges to
represent the loop. Many flowcharting systems will use a derivative
of a rectangle or even the same diamond we use for an 1r
statement to represent a loop. To avoid confusion, in this chapter,

we're going to use the rounded edge rectangle to represent the
loop. However, keep in mind that different symbols may be used in
different organizations and programs.

Regardless of what symbol you use, the core to understanding the
program is following the arrows. If you follow the arrows, you will
see that there is a loop with a logical expression in it. When the
logical expression evaluates to Trug, it begins the code sequence to
blink the light. When the 1r condition is FaLsg, the loop will either
terminate or be skipped altogether, and the program will continue
on.

Not all loops have to be drafted out. For simple loops such as the
blinking light program, developers will typically not draft out the
program. However, it is wise to either use pseudocode or a flowchart
for loops that are complex or contain a lot of logic. If you're new to
programming, loops can be very confusing, and analyzing their
execution can be quite difficult. Therefore, when you're first learning
how to utilize loops, it is a good idea to use a flowchart or
pseudocode to map out their execution.

Now that we've drafted out a few loop examples, we can move on
and see loops in action. With that, let’s explore the popular ror loop!

Implementing a FOR loop

Since the ror loop is a counter loop, it needs three things to
function. The needed components are as follows:

o A starting value (typically 0, but it can be other values)
¢ A termination condition

¢ Incrementing/decrementing logic

In the IEC 61131-3 standard, there is a fourth, optional component
that can be used to determine the step. In other words, it controls
how much the loop will increase or decrease by. By default, the ror
loop will increase by 1. The general syntax for the ror loop is as
follows:

FOR <variable> := start value to end value <BY step> DO
Code
END FOR;

In this example, the By step is the optional code that will increase
or decrease the ror loop by a stipulated value.

As with every other concept explored in this book, let’s implement
the loop to see how it behaves. For this example, let’s create a loop
that will count from 0 to 100. To do this, we will need to implement
the following variables:

PROGRAM PLC PRG

VAR
counter : INT;
iteration : INT := 0;
END VAR

The counter variable will be responsible for keeping track of which
iteration the loop is on. In other words, this variable will ultimately
be responsible for the loop’s starting point, termination, and

incrementation. The iteration variable will serve as our dummy
logic. For this program, all that variable will do is increase by 1 each
time the loop iterates. This variable is not necessary for the loop to
function; it only serves as something for the loop to do.

The logic for this example is as follows:

IF counter <= 0 THEN

FOR counter := 0 TO 100 DO
iteration := iteration + 1;
END FOR
END IF

For this example, we have the ror loop wrapped in an 1r statement.
In general, the 1r statement is not necessary for the ror loop to
function. We are only using it in this example to control the loop’s
execution, so the ror loop will terminate and not restart when the
program loops back on itself. Again, it is important to remember that
all PLC programs will automatically loop, so essentially, the ror loop

is a loop inside of a loop. If the 1F statement is omitted, the loop will
increment forever.

When the program is executed, you should be met with Figure 13.2:

Device Application.PLC_PRG

Expression Type Value
& counter INT 101
@ iteration INT 101

Figure 13.2 — A FOR loop execution

As you can see, both variables were initialized to. Now, consider the
values in the variables. Our loop is programmed to stop at 100;

however, the values both read 101. A logical question is “why”? The
reason why we have 101 instead of 100 has to do with our
initialization of o for both variables. Since our initial value in the ror
loop is 0, we end up with what seems an extra incrementation in our

execution.

If you ran the example, you may have noticed that the iteration
essentially jumped to the final value — in this case, 101. For
demonstration purposes, we can slow down the counting by adding
two Ton function blocks and an extra start variable. To demonstrate

this, we can add the following variables:

PROGRAM PLC PRG
VAR a
start : BOOL := FALSE;
tl : TON;
t2 : TON;
counter : INT := 10;
iteration : INT := 0;
END VAR

The logic for this example will be as follows:

IF start = TRUE AND iteration <> 10 THEN
FOR counter := 1 TO 10 DO
tl (IN:= start AND t2.Q = FALSE, PT:=T#1S);
t2 (IN:=tl1l.Q, PT:=T#1S);

IF t2.Q THEN
iteration := iteration + 1;
END IF

END_FOR
END_IF

For this example, ensure that iteration is set to a value that is not
10 and set start to TruE. When this code runs, the iteration variable
will increase about once a second until it reaches 10. When the
variables reach 10, the program will halt its execution. For simplicity,
we will not slow the loops that will be explored throughout the rest
of the chapter. However, you can add the Ton variables to the future
examples and copy the code in the body of the ror loop. From
there, you can modify the code in the 1r statement to count or do
whatever else you want it to do!

Now that we have a basic understanding of the ror loop, let’s take a

look at changing the step of the counter. To do this, simply modify
the main logic to match the following code:

IF counter <= 0 THEN

FOR counter := 0 TO 100 BY 2 DO
iteration := iteration + 1;
END FOR
END TIF

The only difference between this ror loop and the previous
examples is the By 2 code. With this additional code, the loop will
increment by 2 instead of its default value of 1. To run this example,
set the iteration and counter variables to 0. You're also going to
want to remove any other variables that may have been
implemented in the slow ror loop example. When you're all set up,
and run this example, you should be met with Figure 13.3:

Device Application.PLC_PRG

Expression Type Value
@ counter INT 102
iteration INT a1

Figure 13.3 — A FOR loop with BY

In this output, you may notice that the iteration will only stop at s1
while the counter variable is 102. These values are due to the new
step value. This means that we are only going to loop 51 times
instead of 100 times because we are incrementing by 2.

All things considered, changing a step value is something that is
either going to be done a lot on a project or never done at all.
Typically, programmers will stick with the default incrementation of
1. However, knowing how to change the step is nonetheless
important.

As stated before, the ror loop is the most commonly used type of
loop in programming but it's not the only one. The next step in
understanding loops is learning how to implement a precheck loop.
Therefore, the next section is going to be dedicated to implementing
the wuzLE loop.

Implementing the WHILE loop

The second most common type of loop is the almighty waILE-DO
loop. In everyday speech, most PLC developers will refer to the loop
simply as a wazLE loop. The wuiLE loop is a precheck loop, which

means the first operation that happens is a check that will determine
whether the loop should run at all. The general syntax for the waILE

loop is as follows:
WHILE <condition> DO

Code
END_WHILE

For this syntax, the <condition> can be any logical expression. You
can use the same logical expression or logical operators that you use
with the 1r statement in that expression.

To see this code block in action, let’s look at an example. The first
thing to do is set up the necessary variables. For this project, we're
going to use the following:

PROGRAM PLC PRG

VAR

condition : INT;

msg : WSTRING;
END VAR

The condition variable will hold a value that will determine whether
the loop should start or continue, while the msg variable will hold a
certain message while in the loop and another message when
outside the loop.

The main logic for this example will be as follows:

WHILE condition >= 10 DO
msg := "in loop";

END WHILE

msg := "outside of loop";

This program will loop as long as the condition value is set to a
value of 10 or greater. As long as the loop is running, the msqg
variable should say in 100p. However, when the loop terminates or

is skipped, it will continue to the last line of the program and change
the loop t0 outside of loop.

To test the program, start it up and set the condition to a value of
10. Once you start the program and set the value, you should be
met with Figure 13.4:

Device Application.PLC_PRG

Expression Type Value
condition INT 10
msg WSTRING "in loop"

Figure 13.4 — In the WHILE loop

Now, set the conditional value to a value less than 10, such as 9.
When you do that, you should see Figure 13.5:

Device Application.PLC_PRG

Expression Type Value
condition INT g
$ msg WSTRING "outside ofloop”

Figure 13.5 — Outside the WHILE loop

As can be seen, once the value is less than 10, the conditional in the
wHILE loop will result in a FaLse state and the loop will terminate.

When the loop terminates, the program will be allowed to move on
and the msg will change.

It is important to remember that this is a precheck loop. This means
that when you first start the program, this message may read that it
is outside of the loop. This is accurate, as the default value for the

variable is 0. This means that the loop will be skipped over when the
program is first started. Therefore, if you see this when you first fire
up the program, rest assured that everything is working as it should.

Now that we've explored counter loops (ror loops) and precheck
loops (wazLE loops), we can move on and explore post check loops.

Exploring the REPEAT loop

The repEAT-UNTIL lOOpP, Often simply called a repearT loOp, is very
similar to the wurLe loop that we explored in the previous section.
However, as we established before, the repeaT loop is a post check
loop, which means that we are guaranteed at least one execution of
the code in the loop body.

The syntax for the repear loop is as follows:

REPEAT

Code
UNTIL <condition>
END REPEAT

The conditional is at the bottom of the loop, which is why it is a post
check loop. Just like with the wazie loop, the condition can be any
logical expression that we've seen thus far. As long as the condition
evaluates to raLsg, the code in the loop will continue to run.

As with all the other loops that we've explored thus far, we're going
to utilize an example to observe the loop in action. To do this, we're
going to implement the following variables:

PROGRAM PLC PRG

VAR
testVar : INT := 10;
inLoop : BOOL := FALSE;
msg : WSTRING;

END VAR

In this case, we have three variables. The first is testvar. This
variable will simply serve as a variable that the loop can test against;
by default, this variable will be initialized to 10. The next variable is
the msg variable. This variable will hold a message to determine
whether the program is in the loop or not. Lastly, the inLoop variable
will be initialized to raLse but will only toggle to True when the code
in the loop runs.

The main logic for the program should look like the following:

REPEAT
msg := "less than 12";
inLoop := TRUE;

UNTIL testVar > 12

END REPEAT

msg := "greater than 12";

When the code is executed, you should be met with Figure 13.6:

Device Application.PLC_PRG

Expression Type Value
$ testVar INT 10
inLoop BOOL
$ msg WSTRING “less than 12°

Figure 13.6 — A False condition

Since 10 is not greater than 12, the conditional will result in a FaLSE.
As such, inLoop Will toggle to True and the message will say 1ess
than 12 because it is stuck in the loop. If you set the testvar
variable to 20, the loop will terminate and change the message, as in
Figure 13.7:

Device Application.PLC_PRG

Expression Type Value
$ testVar INT 20
inLoop BOOL
$ msg WSTRING ‘“greater than 127

Figure 13.7 — The True condition

In this case, the message changed because we broke out of the
loop. If you want to slow this example down, to observe it more
closely, you can add the Ton function blocks as well as the

supporting code that was explored in the ror loop sections.

Now, using conditionals is a great way to terminate a loop. However,
there will come a time when a loop must be terminated when there
is an unexpected circumstance that isn’t supported in the loop’s

termination logic. To do this, the exzT keyword can be used to
prematurely exit the loop.

Exporting the EXIT keyword

The ex1T keyword will terminate a loop without the need for the
loop’s termination condition to run. For example, suppose you have
a counter loop and you encounter a number that, for some reason,
can cause an unsafe condition, and the loop needs to be
immediately exited out of. Also, suppose that this value may not
appear often during a program run. In cases such as this, the ex1T
keyword can be used to terminate the loop before the main
termination logic is executed. To demonstrate this, we're going to
modify the ror loop example from before. This example will have the
same general structure as the past ror loop example but will include

a couple of extra variables:

PROGRAM PLC PRG

VAR
counter : INT;
iteration : INT := 0;
loopPos : WSTRING;
msg : WSTRING;
END VAR

For this example, the counter and the iteration variables will serve
the same purpose as they did in the past examples. However, this
time, the program will include the msg variable and the 10oppros
variable. The msqg variable will hold a message stating the iteration is

equal to 5, while the 100pPos variable will show where the program

is in its execution.

The main logic for this program will be as follows:

IF counter <= 0 THEN

FOR counter := 0 TO 100 DO
iteration := iteration + 1;
IF iteration = 5 THEN
msg := "iteration = 5";
EXIT,;
END IF
END FOR
loopPos := "outside of loop";
END IF

For this example, we're setting up a ror loop that should iterate
from o to 100. However, the catch for this example is that when the
iteration is equal to 5, we're going to set our msg variable to
iteration = 5 and we're going to terminate the loop. We'll be able
to tell whether the loop is terminated with the 100pPos variable, as
it'll set the message to outside of loop When the program exits out
of the loop either by the exxT command or by simply letting the loop

terminate on its own.

When the program is executed, you should be met with Figure 13.8:

Device Application.PLC_PRG

Expression Type Value
@ counter INT 4
@ iteration INT 5
& loopPos WSTRING “outside of |...
msg WSTRING ‘“iteration = 5°

Figure 13.8 — The Exit command in action

As can be seen, Figure 13.8 shows the loop terminating when the
iteration is 5, as opposed to 100 as it did in the first example.

There is a gotcha with the exzT command that many inexperienced
programmers will stumble into. In short, it will be the last command
executed in the loop. You can obviously have commands after the
exiT command, like in the example; however, no command that is in
the execution line will run after the exxT command. This means that
the exxT command will effectively kill the ror loop until the program
circles back around on it.

The exzT command is mostly used to terminate a loop when there is
a condition that invalidates the code. Suppose you have a program
that depends on a calculation with division and for whatever reason,
the denominator gets set to o, which will result in a catastrophic
program error. In a case such as this, the exxT command will be
embedded in either an 1r statement, such as the one in the
example, or some other type of error handler block.

Though we only demonstrated the exiT command in a For loop, it
can be used in any of the other types of loops. When it comes to a
REPEAT OfF WHILE loop, it is best to try to use its own conditional
expression to terminate the loop, as exiT commands can add
confusion to the loop’s execution. However, the exxT command will
terminate the loop at the position it is called, so if certain logic needs
to be ignored, you'll usually put in a control statement with the exzT
command before that potential erroneous area.

By this point, we've covered the basics of loops and how they work.

We've explored how all the loops work and seen them in action.

We've even learned how to prematurely terminate them. This means
the next step is to learn how to embed them.

Understanding nested loops

Sometimes, we will need to iterate over another loop. To accomplish

this, we use what are called nested or embedded loops.
Essentially, a nested or embedded loop is a loop within a loop.

To conceptualize this, let’s look at some pseudocode:

For counterl

1 to 100 do

Print "counter 1 is:" + counterl
For counter?2 =1 to 50
Print "counter 2 is: " + counter?
End For
End For

If you've never seen a nested loop before, the output might be hard
to picture. To alleviate this, consider the following theoretical output:

counter
counter
counter

counter
counter
counter
counter

N

NN DN

is:
is:
is:

is:
is:
is:
is:

1 <- Outer loop iterates
1
2

50
2 <- Outer loop iterates
1
2

counter 2 is: 50
counter 1 is: 3 <- Outer loop iterates

As you can see in the theoretical output, counter1 will fire and
counter2 Will loop 50 times, then counter1 will iterate once more,
causing the inner loop (counter2) to loop 50 more times. The flow
for this program can be kind of hard to visualize for inexperienced
programmers. For applications such as this, a flowchart is often
handy to visualize the flow of the PLC program. As such, consider

Figure 13.9, which is the graphical representation of the presented
pseudocode:

Start

Y

|, For counter = 1 to 1 Loop counter 1

100 J

A

Y

Done counter 1

Printer counter1
iteration

Y

50

[For counter2 =1 to 1

Loop counter 2

)

Done counter 2

A

End

l

Print counter?
iteration

Figure 13.9 — The flow of a nested loop

Figure 13.9 may look confusing at first. However, to understand this
flowchart, follow the arrows from top to bottom. If you look at the
flow of the program, the program will start and then move to the
first loop (counter1). The first loop will iterate 100 times, and with
each iteration, the inner loop (counter2) will iterate 50 times. Once

the first loop iterates 100 times, the program will end.

Challenge — creating a behavior report

If you followed along with the examples, you should have a decent
grasp of how to implement different types of loops. A nested loop is
just a loop within a loop. So, for a challenge, convert the program
represented in the pseudocode and flowchart (both the same
program) into a working PLC program.

Now, a common task that most PLC programmers will be forced to
do on a regular basis is to write small memos or reports about a
machine’s behavior. Typically, these reports will inform laypeople or
other engineers about problems, machine behaviors, and so on.
These reports will usually involve you, as the engineer/programmer,
making a series of observations about a machine and putting those
observations into layperson’s terms. So, for practice, make the
following observations and write a short report of around 250 words
that addresses the following questions:

1. How many times does the counter2 loop iterate in total?

2. How many times does the counter1 looOp iterate in total?

3. What is the final output of the program?

4. Does the final output of the program meet expectations?

5. What can you do to ensure the program does meet expectations?
Also, note that if you simply translated the code without any control

statements, the program would simply count to infinity due to the
looping nature of a PLC program.

Take some time to write this report. Believe it or not, one of the
most valuable skills a PLC developer can have is the ability to
effectively convey information via text.

When you complete this challenge, you can move on to the final
project.

Final project

For this project, we're going to make a hypothetical factory that has
three assembly line states. As stated in the chapter introduction, one
assembly line state will create a certain number of parts, another will
create at least one part, and finally, the last line state will only create
parts under certain conditions. To do this, we're going to need a
simple case statement to direct the part down the correct assembly

line.

In terms of real-world operations, a setup such as this isn’t unheard
of. Depending on the type of assembly/process, a machine may be
put into certain modes either to produce a certain number of parts,
examine previous process results to determine whether the part
should continue production, or create a test product for quality
assurance or whatever other reasons. Typically, applications such as
these are controlled with state machines. To begin, let’s create a
pseudocode mockup.

Design

This program is going to be a simple case statement. When the
assembly line number is selected, the program will go into that case
statement. For example, if the user selects 1, the program will create
a certain number of parts, while an input of 2 will create at least one
part, 3 will not guarantee a part to be created, and finally, 4 will put
the machine into a standby mode:

Case assemblylLine
1:
FOR numOfParts := 1 to parts
Create Part
END_FOR

REPEAT

Create Part
UNTIL partCreated >= numOfParts
END REPEAT

WHILE partsCreated < numOfParts DO
Create Part
END WHILE

Put machine into standby

Now that we have a design in place, we can move on to
implementing the working program.

Code implementation

With a solid design in place, let’s start implementing the code. As
usual, we're going to start with creating the variables for the
program:

PROGRAM PLC PRG

VAR
assemblyLine INT;
numOfParts INT;
parts INT;
partsCreated : INT
END VAR

0;

For this project, there will only be four integer variables. The

assemblyLine Variable will be used to determine which line will be

used, the numofParts variable will be used to determine the number

of parts that will be created, and the parts variable will be used to

hold the number of parts that need to be created. The last variable,

PartsCreated, Will be initialized to o. This variable will keep track of

the number of parts that have already been created.

Once the variables are created, we can implement the main logic:

CASE assemblyLine OF
1:

partsCreated := 0;

FOR numOfParts :=
partsCreated :

END FOR

2

partsCreated := 0;

REPEAT
partsCreated :

UNTIL partsCreated
END REPEAT

partsCreated :=0;
WHILE partsCreated

partsCreated :

END WHILE

1 TO parts DO

partsCreated + 1;

partsCreated + 1;
>= numOfParts

< numOfparts DO
partsCreated + 1;

numOfParts

parts :

partsCreated :
END CASE

[
(@]

This implementation is pretty straightforward and closely follows the
pseudocode with some minor tweaks. For example, we set
numOfParts tO 0 in each case. We do this to reset that value for a
fresh run, as the initialization value will be overwritten after the first
run. Technically, you don't have to initialize that value, but it is
typically a good idea just as a sanity check. We also defined what
case 4 actually is in terms of functionality — that is, it sets all the
values to o.

Once you've finished implementing the logic, you can move on to
testing it.

Testing the program

In these sections, we are going to be looking at testing each case.
Since there are a few different cases to check, these sections will be
broken down into a series of subsections that will cover each case.
As such, if you are more comfortable with a certain loop, you can
start at that section and work your way up to harder ones.

Case 1 — creating a certain number of
parts with a FOR loop

The first simulated assembly line state that we're going to test is the
one that will always make a certain number of parts, case 1. A real-

world example of this line state would be a mode that creates a
certain number of specialized parts. To run this line, we will need to
choose this case or state as well as provide the number of parts we
want to make. For this example, we're going to create five parts in
total. So, for this example, write 1 t0 assemblyLine and 5 to parts:

Device Application.PLC_PRG

Expression Type Value

assemblyLine INT 1
numOfParts INT &
® parts INT 5
% partsCreated INT 5

Figure 13.10 — The FOR loop assembly line

The number to watch is the partscreated variable in the bottom
row. Notice that we wanted to make five parts. Also, notice that the
value in that row is 5. As such, we can call this assembly line a
success, since it essentially says it made five parts!

With this line tested, let's move on to the second line.

Case 2 — making at least one part with a
REPEAT loop

This line state is going to be a little tricky to test. We're always going
to make one part, no matter what. In essence, what we're doing is
creating a series of test parts. So, the first thing we're going to do is
reset all the variables back to o and simply write 2 to the

assemblyLine Variable. When you do this, you should be met with
Figure 13.11:

Device Application.PLC_PRG

Expression Type Value
@ assemblyLine INT 2
@ numOfParts INT
@ parts INT 0
$ partsCreated INT 1

Figure 13.11 — Producing one part by default

Now, if you notice the last row in the screenshot, you will see that
the number of parts we created was 1. This is because we are using

a REPEAT loop, and we are guaranteed at least one iteration, or, in
this case, one part. So, we can safely say that this logic is working.

Now, we need to move on and test it to ensure it is producing the
correct number of parts. To do this, write 5 t0 numofparts:

Device Application.PLC_PRG

Expression Type Value
assemblyLine INT 2
& numOfParts INT 5
@ parts INT 0
® partsCreated INT 5

Figure 13.12 — Producing five parts

Again, if you examine the last row in Figure 13.12, you will see that
the number of parts created is indeed s. This means that, coupled
with the other data from the first test, the state is working as

intended, and we can now move on to test the final assembly line
state!

Case 3 — creating a specified number of
parts with a WHILE loop

The last assembly line we're going to test is the one that will
continuously create parts. In a real-life setting, this line would be a
main production line that would make parts until a condition, such as
pressing a button, is performed by an operator. In this example, we
have the functional equivalent of a ror loop. The reason for this is to
avoid a runaway loop that would produce different results between
the test data presented here and the value that you, the reader, may
get when you run your example. So, just be warned that in a real-
life situation, you wouldn’t use logic like in the example; you would
really use a Boolean variable and have the process repeat until that
variable is FaLSE!

With that out of the way, our goal will be, again, to make five parts.
However, since this is a production line, we need to ensure that
when no parts are ordered, the assembly line is virtually off. To do
this, set all the variables to o, with the exception of the
assemblyLine Variable, which should be set to 3:

Device. Application.PLC_PRG

Expression Type Value
assemblyLine INT 3
$ numOfParts INT 0
& parts INT 0
partsCreated INT 0

Figure 13.13 — Do not create any parts

In the case of Figure 13.13, our goal was to not create any parts. In
this case, we used a waiLE loop, which means that we are not
guaranteed any parts. If you think about the logic, you will see that
this line should only run when the number of parts created
(partscCreated) is less than the number of parts ordered
(numofParts). This means that the data in Figure 13.13is indeed as

it should be, and this test case worked!

So, now that we know our line will not produce any parts until we
essentially tell it to, let’s create five parts. To do this, simply write 5
to numofrarts and you should be met with Figure 13.14:

Device Application.PLC_PRG

Expression Type Value
@ assemblyLine INT 3
$ numOfParts INT 5
@ parts INT 0
$ partsCreated INT 5

Figure 13.14 — Creating five parts on line 3

Now, as can be seen, we have five parts created, so this line works.
This means we can nhow move on to the machine standby state.

Case 4 — machine standby

This case is very simple. All it does is reset all the variables to o. In
other words, if this were a real machine, this case would reset all the
data and wait for further instructions. So, to test this case, all you
have to do is write 4 t0 assemblyLine and you should be met with

Figure 13.15:

Device.Application.PLC_PRG

Expression Type Value
assemblyLine INT 4
numOfParts INT 0
@ parts INT 0
partsCreated INT 0

Figure 13.15 — Machine standby

If all goes well, your output should match that of Figure 13.15. If it
does, this means you have a working factory!

Summary

In this chapter, we explored a variety of loops such as the ror loop,
wHILE loop, and repeEAT loop. We also explored the theoretical side of
loops, such as what counter, post check, and precheck loops are, as
well as all the mechanics that go behind them. In all, you should
have a decent understanding of how loops work by this point. Now,
if you are still a little unsure, that’s okay. Loops can be tricky to
understand, and many entry-level programmers will often struggle
with them at first. If you do find yourself in this category, please go

back and work through the example again and try to make a few of

your own. Above all else, be patient and practice!

Now, there are many applications for loops. What we explored in this
chapter barely scratched the surface of what loops are capable of
and how they are used in a real-world setting. In the next chapter,

we are going to explore how loops can help us do a very vital task:

sorting!

Questions

1.

—_ =
= O

© ® N O U A W N

What type of loop is a WHILE loop?
What type of loop is a FOR loop?

. What type of loop is a REPEAT loop?

What is a post check loop?

What is a precheck loop?

What is a counter loop?

How many iterations are you guaranteed with a WHILE loop?

How many iterations are you guaranteed with a REPEAT loop?

. When will a FOR loop terminate?
. What does the EXIT command do?

. Does the FOR loop use a custom logic statement to terminate?

e Yes

e No

Further reading

e FOR Statement. https://www.fernhillsoftware.com/help/iec-
61131/structured-text/st-for.html

o WHILE Statement. https://www.fernhillsoftware.com/help/iec-
61131/structured-text/st-while.html

o REPEAT Statement. https://www.fernhillsoftware.com/help/iec-
61131/structured-text/st-repeat.html

https://www.fernhillsoftware.com/help/iec-61131/structured-text/st-for.html
https://www.fernhillsoftware.com/help/iec-61131/structured-text/st-for.html
https://www.fernhillsoftware.com/help/iec-61131/structured-text/st-while.html
https://www.fernhillsoftware.com/help/iec-61131/structured-text/st-while.html
https://www.fernhillsoftware.com/help/iec-61131/structured-text/st-repeat.html
https://www.fernhillsoftware.com/help/iec-61131/structured-text/st-repeat.html

Part 3: Algorithms, AI, Security, and
More

This part will introduce exotic concepts and emerging technologies
that are usually glossed over in automation programming. This part
will be an applied section that is built on previous chapters. It will
cover concepts such as generative Al (ChatGPT), provide basic
cybersecurity awareness for PLC-based systems, explore sorting
algorithms, and more. The part will end with a comprehensive
project that will cover topics that were covered throughout the book.

This part has the following chapters:
o Chapter 14, Sorting with Loops

Chapter 15, Secure PLC Programming — Stopping Cyberthreats

Chapter 16, Troubleshooting PLCs — Fixing Issues

Chapter 17, Leveraging Artificial Intelligence (AI)

Chapter 18, The Final Project — Programming a Simulated Robot

14

Sorting with Loops

In automation, it is often necessary to have to figure out the range
of certain characteristics of the part your machine produces. For
example, it is quite common to need to know how heavy the
heaviest part was or how short the shortest part was. Sorting
characteristics of parts is often required in many manufacturing
environments to ensure proper quality. Typically, to effectively
perform the necessary statistics calculations, it is helpful to have all
the data sorted.

Sorting is a vital concept in computer science. Sorting can be a very
costly operation in terms of memory, CPU power, and most
importantly, time. As logic dictates, the more data you have to sort
through, the more time and resources you will need at your disposal.
Therefore, when sorting, you have to choose an appropriate sorting
methodology that is easy to implement while still being efficient
enough to get the job done in a timely manner.

The key to sorting is looping. More specifically, ror loops are a vital
component of sorting. This chapter is going to be dedicated to
learning about sorting, sorting algorithms, and all the necessary
components needed to efficiently sort. Now, before we proceed, this
chapter is meant only to expose you to the basics of sorting and
programming algorithms. Sorting is an advanced concept and

requires advanced knowledge of pointers and scalable arrays, which
goes beyond the scope of this book. However, after reading this
chapter, you should understand the basics of sorting, algorithms,
and the mechanics of sorting. To help you do this, we're going to
explore the following concepts:

e What sorting is and why it is important

The basics of arrays

What is a sorting algorithm?

Efficiency metrics with Big O and Big Omega

Common sorting algorithms

Finally, to round out the chapter, we're going to implement one of
the simplest yet one of the least efficient sorting algorithms there is,
bubble sort, to find the heaviest and lightest bag of cement that was
filled during a production run.

Technical requirements

The code for this chapter can be found at the following URL:
https://github.com/PacktPublishing/PLCs-for-Beginners

Unlike with most chapters, you can pull down and explore the code,
but the guts of the examples cannot be heavily modified. This may
seem odd, but we'll dig deeper into this in the upcoming sections.

How to use this chapter

https://github.com/PacktPublishing/PLCs-for-Beginners

This chapter is going to focus on sorting and sorting algorithms.
Sorting is one of many applications for algorithms. Sorting is a very
important concept but as you work through this chapter, think of
sorting as a catalyst for learning algorithms.

As we will see in the upcoming section, there are countless sorting
algorithms and new algorithms are being invented all the time. This
means that not every single sorting algorithm will be covered in this
book. Learning algorithms is less about memorizing the actual
algorithm and more about learning the mechanics of algorithms in
general. So, as you work through this chapter, try not to focus on
memorizing the algorithms presented and focus more on the core
theory presented. Therefore, let’s start off with learning what sorting
is.

What is sorting?

Before you can implement an algorithm, it is very important that you
understand what the core problem is that the algorithm is meant to
solve. In other words, before you implement a sorting algorithm, you
need to understand what sorting is. We all know that sorting is the
systematic process of placing items in an increasing or decreasing
order based on a certain characteristic. For example, in
manufacturing, it is common to sort items such as bags of sand or
cement in a certain order based on their weight or another
characteristic, such as their overall size.

Sorting is a simple concept that can be done in many ways. This
means that there are many different algorithms that can be used to
sort items. In terms of computer science, sorting can be a very
resource-intensive task. For example, a computer or PLC may need
to sort through millions of data points to find the smallest or largest
characteristic of a part or parts. Sorting through copious amounts of
data points can tax the CPU and memory of a PLC to the max and,
of course, take a prolonged amount of time. As such, as alluded to
before, sorting has to be done correctly to ensure that the code is
not only easy to maintain but also gets the job done quickly and
efficiently.

So, how is sorting done? What are the needed components that a
PLC programmer will need to implement an efficient sorting
program? At a very high level, a programmer will typically use what
is called an array and a sorting algorithm to sort items. As such,
the first thing that we're going to explore is arrays. Arrays can be
very complex and there is a lot that goes into using an array;
however, the next section is going to be dedicated to the basics of
arrays and how to use them. If you are not familiar with arrays, you
must read the following section and understand it! A solid
understanding of arrays is vital to sorting!

Exploring what arrays are and how
to use them!

There are many times in programming when many related values
will need to be sorted. For example, suppose you are creating a
machine that can produce 100 parts for a given run. Now suppose
that for each part, the machine will need to store the part’s weight,
length, and height. If you created a variable for each part’s attribute,
you would need to create 300 variables. Put simply, that would be a
poorly implemented program that would be nearly impossible to
troubleshoot and debug. A much easier approach would be to make
three variables that can each hold 100 values. Until now, we haven't
been able to do this. As we've seen until now, one variable holds one
and only one value. So, how can we store 100 values in a single
variable? Enter the world of arrays!

What is an array?

Put simply, an array is a variable that can hold multiple related
values. The easiest way to think about an array is as the crew of a
battleship. Just as each battleship has a crew that is made of
multiple sailors who all have multiple jobs, an array is a set of
multiple values that describe something such as a production run.
The syntax for declaring an array in IEC 61131-3 is as follows:

Array Name : ARRAY [starting point..end point] OF <type>;

If you've programmed in traditional languages such as C++ or Java,
you may remember that arrays in those languages are 0-indexed.
That means that the first element is 0. However, in IEC 61131-3, you
can pick the first element. Therefore, it is not uncommon for a PLC

programmer to see an array that starts at 1. Now, the endpoint is
essentially the last value in the array. So, the whole syntax will
determine the number the array starts with and the endpoint it ends
at:

Array Name : ARRAY [1..3] OF INT;

The array would essentially be Array Name[l], Array Name[2], and

Array Name[3].

Now that we understand the array structure, we need to understand
what array elements are.

Array elements

Array elements are essentially the individual variables in the array. In
other words, you can think of array Name[n] as an element. This
means that each array Name is an element and the 1. .3 of the code
snippet allocates the elements. Now, for an array to be useful, you
need to be able to access each individual element in the array to
retrieve the value that lives in it. To do this, consider the following
scenario.

Suppose you have an array that was declared with the following
snippet:
Array Name : Array [0..10] OF INT;

This array starts at o, or in regular programming lingo, is 0 indexed.
Now assume for this example that we want to access the fourth

element of the array. To do this, we would simply use the following
code snippet:

Array Name[3];

Notice that we used 3 instead of 4 to access the fourth array. This
again stems from the array being 0 indexed. Now, this example is
merely conceptual; in reality, these arrays are empty, which means
that the array does not contain any values. As usual, to explore the
behavior of an array, let's implement one in CODESYS.

Initializing an array

There are multiple ways to initialize an array. For this example, we're
going to use a ror loop to load data into the array. As such, the first
thing we're going to do is declare our variables with the following
code:

PROGRAM PLC PRG

VAR
sizes : ARRAY [1..3] OF INT;
i : INT;

END VAR

For this example, we're going to have an array called sizes that will
have a total of three elements, starting at 1 and ending at 3. The i
variable will be used as a counter variable for the ror loop.

To load data into the array, we're going to use the following logic:

FOR i := 1 TO 3 DO

sizes[i] := 1;
END_FOR

When the program is executed, you should be met with Figure 14.1:

Device Application.PLC_PRG

Expression Type Value
= @ sizes ARRAY ..,
@ sizes[1] INT 1
@ sizes[2] INT 2
P sizes[3] INT 3
®i INT 3

Figure 14.1 — The array output

Now, this is just one way of loading data into an array. Another way

of loading data into the array is when you declare it. For example,

you could use the following syntax to load five values into the array:
sizes : ARRAY [0..5] OF INT := [5,9,1,3,2,7];

When this code is executed, you should see the output in Figure
14.2:

Device Application.PLC_PRG

Expression Type Value
= @ sizes ARRAY ...

& sizes[0] INT 5

& sizes[1] INT 9

$ sizes[2] INT 1

@ sizes[3] INT 3

@ sizes[4] INT 2

@ sizes[5] INT 7

Figure 14.2 — An initialized array

For this book, we're going to use the second method to load data
into an array. Arrays can be a bit confusing and can be considered a
somewhat advanced concept to most. As such, we're going to use
the second array method exclusively throughout this book.

Retrieving the number of elements in an
array

For many applications, we will need to determine the size of the
array. Depending on what you're doing, you may be working with
multiple arrays that all have a different number of elements in them.
This means that it is important to understand how to calculate the
size of the array with code. To do this, we will use the s1zeor
command. In short, the szzeor command will return the size of
something. Now, the size that the command returns is the size of an
array in bytes. This means that to calculate the number of elements
in the array, we must do a little math.

To calculate the size of an array, you would use the following code:

arrSize := SIZEOF (arry)/SIZEOF (arry[1l]);

Essentially, this code will find the total bytes of the array and divide
the number by the size of a single element. Since all the elements
will be of the same size, the result will be the number of elements in
the array! Consider the following example.

Suppose we have the following variables:

PROGRAM PLC PRG

VAR

sizes : ARRAY [0..5] OF INT := [1,9,5,3,2,71;
arrSize : INT;
END_ VAR

Put simply, we have an array and a variable called arrsize that will
house the number of elements in the array.

In terms of logic, we will use the following:

arrSize := SIZEOF (sizes)/SIZEOF (sizes[1l]);

For this example, we can use any element we want in the
denominator of the equation. We're simply using element 1 because
we know it should always be there. In all, you can use whichever
element you want, but it is best to use element 1 since arrays
typically start at either 0 or 1. When the code is run, we should get
the following output:

Device Application.PLC_PRG

Expression Type Value
+ @ sizes ARFAY ...
& arrSize INT [+

Figure 14.3 — Array size

Now, this example can be thought of as a code pattern or code
recipe. You can use this snippet any time you need to calculate the
number of elements in an array. Typically, it is advisable to do this
calculation anytime you are working with a sorting algorithm.

Now, a logical question is =" Why are we exploring arrays in a
chapter about sorting?’ Many students will often get frustrated with

arrays when trying to master sorting algorithms. For an in-depth
answer to why arrays are important, please read the next sections!

Why are arrays important for sorting
algorithms?

Okay, now that we know how arrays work, why should we care
about them, especially since we're learning about algorithms and
sorting? Well, that’s a logical question, and the answer is that most
sorting and searching algorithms use arrays as a data structure to
hold the data. In other words, you can think of arrays as holders to
house the data for the given operation, whether that be sorting,
searching, or whatever it may be. In all, once you get the array to
output the correct data — that is, the data in Figure 14.2 — you can
move on and explore sorting algorithms!

Exploring sorting algorithms

What is a sorting algorithm? Better yet, what is an algorithm? To
understand what a sorting algorithm is, one must first understand
what an algorithm is in general. Therefore, the next section is going
to be dedicated to understanding what an algorithm is at a high
level!

What is an algorithm?

Often, computer scientists will casually throw the word “algorithm”
around to represent any program. This is especially true in academic
research. Now, technically, any program can be considered an
algorithm, but the way the word is used by everyday programmers is
to represent a specific series of instructions to accomplish a task.

There are many algorithms that do many different things. For
example, if one were to look at machine learning, there are many
different algorithms that can be used to implement neural networks,
natural language processing, and many other advanced artificial
intelligence attributes. On the other hand, there are also algorithms
that perform simple tasks such as efficiently finding a single value in
a large collection of values. A partial list of some common algorithm
applications is as follows:

e Machine learning/artificial intelligence

Hashing (security)

Encryption/decryption (security)

Searching (finding a value in a dataset)

Sorting (sorting a dataset)

These are just a few areas where algorithms are used. Put bluntly,
every aspect of computer science has algorithms associated with it.
Regardless of the task, there is probably a set of instructions that
can accomplish it. So, what exactly is a sorting algorithm?

What is a sorting algorithm?

A sorting algorithm is a specific algorithm that is designed to
efficiently sort values in an array from greatest to largest or vice
versa. As stated before, some sort of sorting algorithm is often
employed during production runs to sort parts by certain attributes
such as length, weight, height, and so on. Many times, the values
are displayed on an HMI or other display unit so operators or
engineers can easily see the upper and lower bounds of a production
run.

Now, there are many different sorting algorithms that can be used.
For example, one could opt to use the bubble sort, the heap sort,
the merge sort, or any of the countless other sorting algorithms to
accomplish their task. At the end of the day, each one of these
algorithms will sort the values in an array; however, how efficiently
they do so and how complex the code is will vary. To get a better
grasp on efficiency, we're going to explore some efficiency metrics
called Big O and Big Omega!

Algorithm efficiency metrics

It is important to understand how well your algorithm is going to
perform. To understand this vital statistic, Big O and Big Omega
(Big Q) metrics are used. This section is going to be dedicated to
exploring and understanding these metrics at a high level.
Therefore, let’s start our discussion with Big O!

Exploring the Big O notation

The most common efficiency metric for a sorting algorithm is the Big
O notation. The Big O notation, or simply Big O, represents the
upper bound of an algorithm'’s time complexity. In other words, in
terms of sorting, you can think of Big O as the worst-case execution
time for an algorithm. In terms of software development, you want
as small a Big O value as possible. The following are some common
Big O time complexities:

o Constant time complexity: Represented as o (1), this is the
most ideal time complexity. With this Big O time complexity, that
worst-case runtime will never change, regardless of the number
of elements in an array.

¢ Logarithmic time complexity: This is represented as o (10g
n), where n can be thought of as the number of items to sort or
the number of elements in an array. This time complexity grows
logarithmically with the number of items the algorithm has to
sort.

e Linear time complexity: This is represented as o (n), where n
is the number of items to sort. This time complexity will increase
linearly with the number of items.

¢ Linearithmic time complexity: This is represented as (n 1og
n) where nis again the number of items the algorithms will sort.
This is typically considered a good time complexity as many
common sorting algorithms, such as merge sort and quicksort,
utilize this time complexity. If you opt to use a prebuilt sorting

algorithm, like one that found in a library, it will probably be one
of those algorithms and have this particular time complexity.

e Quadratic time complexity: This is represented as o (»?. This
time complexity is most associated with bubble sort. This time
complexity is typically not ideal, and depending on what you're
doing, it is better to try to use a different algorithm.

There are many more common time complexities, and a very well-
versed computer scientist can derive time complexities based on the
algorithm; however, those concepts are beyond the scope of this
book. In all, these are arguably the most common ones that a
developer will run across in the field. Typically, a good developer will
use an algorithm based on the worst-case scenario. Generally, no
matter what you're doing, you want to develop your software for the
worst conditions possible.

However, there is another metric that, though not as commonly
used, is also very important to understand. That metric is called Big
Q.

Exploring the Big Q notation

Sometimes, it is not enough to simply understand the worst-case
scenario. Often, it is helpful to understand what the best-case
scenario is for an algorithm. To accomplish this, the Big Q notation is
often used. In short, where Big O is the worst-case scenario, the Big
Q is the best-case execution for an algorithm. As can be assumed,

the same notation that was explored before can also be used with
Big Q.

As stated before, the most common time complexity notation to use
is the Big O notation. When you're asked about efficiency, it is
usually assumed that the answer will be in terms of Big O. As such,
though Big Q is an important time complexity notation, this book will
focus on implementing algorithms in terms of Big O.

With that, let’s look at some common sorting algorithms!

Common sorting algorithms

There are more sorting algorithms than you can shake a stick at.
Choosing the correct algorithm for a particular task will depend on
factors such as the size of the dataset, how unsorted the dataset is
expected to be, and so on. The following section is going to explore
two of the most popular sorting algorithms and their possible use
cases. The dataset we're going to use for this section is going to be
the following array:

[11915131217];

For this chapter, we're not going to screenshot the output for each
algorithm. The way you can tell whether the algorithm worked is
whether the data is sorted from least to greatest. To begin the
discussion, we're going to look at the famous, or as some would call
it, infamous bubble sort algorithm.

Exploring bubble sort

In academia, a student’s first shake with a sorting algorithm is
usually what’s called the bubble sort algorithm. The bubble sort
algorithm is typically used for small datasets or datasets that are
nearly sorted. In terms of automation, that means arrays with small
numbers of items in them or arrays where only a few numbers need
to be swapped with numbers that are relatively close in the array.
What the bubble sort lacks in speed, it makes up for in simplicity.

To implement the algorithm, first, start by implementing the
following variables:

PROGRAM PLC PRG

VAR
sizes : ARRAY [1l..6] OF INT := [1,9,5,3,2,7];
i, j, temp: INT;

END VAR

The size array is the set of values that will be sorted. The i and ;5

variables are used as counter variables for the two loops in the
algorithm, while the temp variable is used to swap values in the
array. The main logic for the algorithm will look like the following:

FOR 1 := 1 TO 6 DO
FOR j := 1 TO 6 - i DO
IF sizes[]J] > sizes[j + 1] THEN
// Swap elements
temp := sizes[]J];
sizes[]] := sizes[] + 11];
sizes[] + 1] := temp;
END IF
END_FOR
END_FOR

Bubble sort works by comparing numbers. If the value next to the
value the algorithm is analyzing is larger, the algorithm will swap the
two values. Hence, the temp variable. This process will continue until
the values are all sorted. In other words, the larger values will
bubble up the array.

Now that we've explored bubble sort, another simple algorithm to
explore is the insertion sort algorithm!

Exploring insertion sort

Insertion sort is another o (n~2) algorithm. This means that in terms
of worst-case scenarios, it will perform in part with bubble sort. The
algorithm works in a similar way to sorting cards in your hands. We
start off with the first card, which we assume is sorted, then when
we draw a second card, if it is greater, we put it to the right, or else
we put it to the left. To see this algorithm in action, implement the
following variables:

PROGRAM PLC PRG

VAR
sizes : ARRAY [0..5] OF INT := [1,9,5,3,2,7]1;
i, j, key, temp: INT;

END VAR

In this case, all we have is the array and a few variables that are
going to be used in the main logic, which is as follows:

(* Insertion Sort Algorithm *)
FOR 1 := 1 TO 5 DO
key := sizes[i];

J =1 -1;
WHILE j >= 0 AND sizes[j] > key DO
sizes[J + 1] := sizes[]];
=3 -1
END WHILE;
sizes[] + 1] := key;
END FOR;

Now, since we assume the first element is sorted, we start at 1 as
opposed to 0. Outside of that, the algorithm is straightforward. For
both these algorithms, you will be able to tell whether they are
working by simply examining the output. In short, the values should
be sorted from least to greatest.

Now that we have a rough idea of how to implement an algorithm,
we can move on to a challenge.

Challenge — Merge sort

A more efficient sorting algorithm is the merge sort algorithm. The
Merge sort algorithm has a Big O of n*10g(n). This algorithm is
much more complicated to implement than bubble sort. However, it
is one of the most used sorting algorithms. This algorithm uses
what'’s called divide-and-conquer. In its most rudimentary sense,
the algorithms will divide the problem (sorting array) into small
portions, sort them, and then combine them again. Typically, this
algorithm is divided up into multiple files called functions, or uses a
data structure called a function block, which is like a class in C++ or
Java.

The pseudocode for merge sort can be viewed in the following
snippet. Typically, this algorithm uses a concept called functions
and recursion to easily implement. However, since those are
advanced topics, they are beyond the scope of this book. Therefore,
a simplified version of the algorithm is presented further ahead.

Now, algorithms are generally presented in a language-agnostic
manner. In other words, when you're presented with an algorithm,
you are typically given pseudocode to translate into whatever
language you're working with. This challenge is going to be a little
more complex than the ones presented thus far in the book. For this
challenge, take the following pseudocode example and convert it to
a working program. This challenge will take some time, so be patient
and revisit it if necessary:

IterativeMergeSort (arr) :

n = length(arr)
for current size =1 ton - 1 by 2 * current size:
for left start = 0 ton - 1 by 2 * current size:
mid = min(left start + current size - 1, n - 1)

right end = min(left start + 2 * current size -
1, n - 1)
left size = mid - left start + 1
right size = right end - mid
left = arr[left start to mid]
right = arr[mid + 1 to right end]
i=20
3 =20
k = left start
while 1 < left size and j < right size:
if left[i] <= right[]j]:
arr[k] = left[i]
i=1+1
else:

arr[k] = right[j]

j=3+1
k =k +1

while 1 < left size:
arr[k] = left[i]
i=1i+1
k =k +1

while j < right size:
arr[k] = right[j]
J=3 +1
k =k +1

Again, this challenge will take you some time to get working.
However, you will need to practice this skill. It is a very common
interview technique to have a candidate convert an algorithm in
pseudocode to a working program. As such, getting as much
practice as possible will only help you in the long run! Nonetheless,
whenever you're ready to continue, you can move on to the next
section and tackle our final project!

Final project — cement bag sorter

If you find yourself working on some type of bagging line, such as a
line that fills cement bags, you will often need to know the lightest
and heaviest bags that were produced. Typically, these statistics are
used to give the overseers of the production lines a solid range of
the amount of material in the bags. The overseers will often use this
range as a quick check to ensure all the bags are in spec and
nothing was over- or under-filled.

With this information about the project, we can now move on to
laying out the requirements for it.

Requirements

The following are the requirements for the project:

1. For this project, we're going to assume that the customer is in a
hurry and needs a quick patch that can implement the sorting
behavior.

2. We can also assume that each production run is going to be
small — that is, no more than four bags of cement per run.

3. The lightest and heaviest bags need to be highlighted.

Analysis

These requirements mean that we need an easy-to-implement
algorithm. Also, since there will at most be four bags per run, the
time complexity won’t matter much so we can choose any easy-to-
implement algorithm, regardless of time complexity. This means that
a good candidate for this project is the bubble sort algorithm. For
this project, we're going to sort all the bag weights in an array, sort
the array, and assign the first element of the array (the lightest bag)
to a variable called 1ightest and the last element in the array (the
heaviest bag) to a variable called neaviest. The heaviest and

lightest Variables will be used to highlight those statistics.

Implementation

Based on what we concluded in the analysis, this project will be very
straightforward. All we have to do is modify our bubble sort
example. Now, to the inexperienced, reusing an existing example
may seem like cheating; however, when it comes to algorithms, it is
quite common to simply cut and paste the code from one project or
example to another, as long as it doesn’t violate more advanced
rules that go beyond the scope of this book. However, with that
being said, we can use the following logic:

PROGRAM PLC PRG

VAR
sizes : ARRAY [1..4] OF INT := [1,5,9,3]1;
i, j, temp: INT;
numOfBags : INT;
lightest : INT;
heaviest : INT;
END VAR

In this case we have all the standard bubble sort variables (i, j) in
an array that we're going to assume holds the weights of the cement
bags. Next, we have a variable that will hold the overall number of
bags made and a variable that will store the lightest bag made and
the heaviest bag made.

The sorting logic will be as follows:

numOfBags := SIZEOF (sizes)/SIZEOF (sizes[1]);
FOR i := 1 TO numOfBags DO
FOR j := 1 TO numOfBags - 1 DO

IF sizes[J] > sizes[j + 1] THEN
// Swap elements
temp := sizes[]];
sizes[]] := sizes[] + 1];
sizes[] + 1] := temp;

END IF

END FOR

END FOR

lightest := sizes[1l];
heaviest := sizes[numOfBags];

The core of this logic is the bubble sort algorithm that will sort the
bag weights. The first line of the program will calculate the number
of bags in the production run and finally, the last two lines will
retrieve the lightest and heaviest bags respectively. In short, after
sorting, the first element will always be the smallest value and the
last element - in this case - the total number of bags will be the
heaviest.

When the program is executed, you should be met with Figure 14.4:

E] PLC_PRG X
Expression Type Value
+ @ sizes ARRAY ...
®i INT 5
v) INT 1
@ temp INT 5
¢ numOfBags INT 4
$ lightest INT 1
@ heaviest INT 9

Figure 14.4 — The final project output

As you can see in the screenshot, the heaviest bag is 9 and the
lightest bag is 1. These are the values that we would expect by
simply analyzing the array. Now, this program is very generic in
nature, as it should be for a real-world program. The program should

be able to sort an array of any size, so whether we need to sort 3
bags of cement or 300, this program can accommodate that by
simply adding more elements to the array.

For all intents and purposes, this bubble sort algorithm could be
used in a real-world project if necessary. All one would have to do is
modify the array accordingly. If one really wanted to get fancy, they
could package the final project in a function and simply import the
function into a real-world project!

Summary

In summary, this chapter has focused heavily on algorithms and how
algorithms can be used for sorting. After reading this chapter, you
should now be familiar with algorithms, metrics to denote an
algorithm’s efficiency, arrays, and more. As stated before, the key to
this chapter is not memorizing the algorithms explored but
understanding how to introduce yourself to algorithms and the
necessary metrics and components to use them. In all, by now you
should be able to Google an algorithm for a certain task and have
the necessary experience to understand whether it will accomplish
your task or not.

Now, as stated earlier in the chapter, there are algorithms for
everything. Another area where algorithms are heavily used is in
security. Security is a very important and often overlooked aspect of
PLC programming. So, in the next chapter, we're going to explore
how we can harden PLC against cyberattacks!

Questions

10.
11,

What is an algorithm?

How is pseudocode used with algorithms?

. What does O(1) mean?

What is a more efficient time complexity: O(n*log(n)) or O(n2)?
How does merge sort work?

Which is more efficient: bubble sort or merge sort?

. For an array (0..238), how do you retrieve the first element in

the array?

For an array (1..299), how do you retrieve the last element in the
array?

. How do you calculate the number of elements in an array?

Name three sorting algorithms.

Name three areas where an algorithm can be used.

Further reading

Bubble Sort — Data Structure and Algorithm Tutorials:

https://www.geeksforgeeks.org/bubble-sort/

Merge Sort — Data Structure and Algorithms Tutorials:

https://www.geeksforgeeks.org/merge-sort/

What is Big O Notation Explained: Space and Time Complexity:

https://www.geeksforgeeks.org/bubble-sort/
https://www.geeksforgeeks.org/merge-sort/

https://www.freecodecamp.org/news/big-o-notation-why-it-
matters-and-why-it-doesnt-1674cfa8a23c/

https://www.freecodecamp.org/news/big-o-notation-why-it-matters-and-why-it-doesnt-1674cfa8a23c/
https://www.freecodecamp.org/news/big-o-notation-why-it-matters-and-why-it-doesnt-1674cfa8a23c/

15

Secure PLC Programming —
Stopping Cyberthreats

When it comes to programmable logic controllers (PLC)
programming, cybersecurity is often not given a second thought.
Many PLC programmers do not factor security into their software
design. As such, automation software for PLCs, human-machine
interfaces (HMIs), and even full-blown Supervisory Control and
Data Acquisition (SCADA) systems have recently become a major
attack vector. One only has to look to recent history to see how
sophisticated computer viruses have crippled PLC systems. For
example, the infamous Stuxnet virus that destroyed Iranian PLC-
controlled nuclear centrifuges or the Colonial Pipeline incident in
2021. Barring geopolitics and other reasons, these cyberattacks have
proved beyond a shadow of a doubt that PLCs and automation
software, in general, are now targets.

No matter what you’re working on, cybersecurity is one of the most
important aspects to consider when developing an automation
system. When developing PLC software, one must remember that
the software could be controlling heavy machinery, high voltage
systems, or even doing critical tasks such as regulating power grids
or manufacturing medicine. Imagine that you're working on a PLC
project that controls crossing guards for railways. Consider that the

software had a vulnerability in it and an attacker not only found it
but exploited it. Suppose, for whatever twisted reason, they disabled
the crossing guards so that they dont go down. In this scenario,
drivers are blind to oncoming trains. Crossing the train tracks is now
a potentially deadly venture. In short, people could easily die due to
an unsecured PLC system.

Cybersecurity is not something that any programmer in any field
should ever take lightly. Whole books, certifications, and college
degrees are dedicated to securing systems, which, as you can
deduce, means it's a complex topic. Nonetheless, this chapter is
going to be dedicated to understanding and defending against basic
attacks and exploring the basics of how you can harden your PLC-
based systems. To do this, we're going to explore the following
topics:

e What cybersecurity is and why it's important
e The basics of cybersecurity
e Common cyberattacks
o Attack prevention methods
To round out the chapter, we're going to create a simple lock-out

program that can disable itself if a user inputs the wrong activation
code too many times.

Now, this chapter is going to give an overview of the landscape for
cybersecurity from a more theoretical point of view. Memorizing
code examples will only get you so far in cybersecurity as each

system will be written differently and, as such, will require different
software patterns to defend the system. So, as you go through this
chapter, ensure you are learning and understanding the concepts
presented.

PLCs that run operating systems such as Windows or Linux distros
can become prey to viruses. This is because, depending on how the
malware is compiled or run, it may indeed be compatible with a
sophisticated Windows or Linux PLC. An attack is much easier and
more devastating to carry out on these systems. Keep this in mind
as we progress through this chapter, most of the tips explored here
are going to be geared toward protecting a network with PLCs on it
as opposed to a single PLC.

Technical requirements
The code for this chapter can be found at the following URL:

https://github.com/PacktPublishing/PLCs-for-Beginners

As usual, you can download the code and modify it to gain a better
understanding of how it works.

What cybersecurity is and why it’s
important

The goal of cybersecurity is to prevent unauthorized access to a
network or system. In a more lay sense, cybersecurity aims to
prevent hackers from breaking into a system and stealing data or

https://github.com/PacktPublishing/PLCs-for-Beginners

using a system’s functionality. In terms of automation, this could be
someone who breaks into a system to tamper with it by shutting it
down, damaging it by having it move uncontrollably, or any other
nefarious action. Again, think of the railroad crossing example from
the introduction. Put simply, cybersecurity is there to ensure that
only the right people with the right intentions can access and control
a machine or view its data.

Recently, cyberattacks have been on the rise. This increase has been
due to many factors such as COVID-19, the rise of remote work,
and, of course, artificial intelligence (AI). With the rise of digital
systems, bad actors are increasingly using cyberattacks for financial
gains, political/military (Stuxnet) advantages, or anything else that
could give the cybercriminal some type of advantage. The alarming
part is that the attacks are working. Military equipment and critical
infrastructure have been damaged, as well as millions of dollars paid
out to cybercriminals for the release of data and systems.

This is a very high-level explanation of what cybersecurity is. You've
probably heard this spiel on the news a million times over. To really
grasp why cybersecurity is important, we need to take a deep dive
into the basics of digital security.

The basics of cybersecurity

Before we can start hardening our PLC systems from an attack, we
first need to understand the basics. To start our exploration, we
need to understand how bad actors can get into our system.

Vulnerabilities, threats, and risk

For a bad actor to get into a system, they need to find an entry
point. Since they aren’t supposed to have access to the system, they
need to find a weak point that they can use to gain entry. This weak
point is called a vulnerability. A day-to-day analogy of a
vulnerability is like leaving your car unlocked. In terms of computer
science, a vulnerability can best be thought of as a flaw in the
software that leaves the software unlocked for someone to break
into. For instance, a common flaw might be not locking out a user
after they enter the wrong password three times or not encrypting a
maintenance screen on an HMI panel. Flaws such as these can easily
be exploited by bad actors to gain access and even exert control
over a system. Just like leaving your car unlocked doesn’t mean that
a car thief is going to automatically steal your car, a security
vulnerability doesn’t mean that someone is going to break into your
system. However, just like when there is a car thief in the
neighborhood looking for unlocked cars, a security flaw can easily
become a threat.

A threat is defined as a potential danger. For example, the car thief
is a threat. A threat seeks to exploit a vulnerability; again, this is like
a car thief looking for unlocked cars. So, essentially, a threat and a
vulnerability are two halves of the same whole. If you remove the
threat, you're safe, and if you remove the vulnerability, you're safe.
As logic dictates, the trick to cybersecurity is to limit potential
vulnerabilities so that threat actors cannot exploit them.

Suppose you find a vulnerability: a regular PLC programmer may
panic; however, all hope is not lost. Once you become aware of a
vulnerability, the first thing to do is either report or understand the
risk. Essentially, the next step to take will depend on the
organization you work for. For larger organizations that have more
resources, there may be a dedicated team of experts such as a
security team that is tasked with finding and eliminating issues or a
development team that is responsible for the system’s security.
However, for many smaller organizations, this person might be you,
and the first step in fixing the problem is understanding it. All
vulnerabilities are not created equally. This means that some
vulnerabilities may be very easy to exploit while others may be hard
to exploit. Some vulnerabilities may cause a lot of damage if they
are exploited, while others won't. Finally, there may be a high threat
level for some vulnerabilities while others have a low threat level.
Basically, the amount of risk involved with a vulnerability varies
drastically.

All threats require a threat actor. In the next section, we're going to
take a look at who could be attacking you and for what reasons!

Threat actors

For a vulnerability to become an issue, someone or something has to
try to exploit it. In cybersecurity, this entity is called a threat actor. A
threat actor is a person or group that tries to exploit a vulnerability

in a system to gain unauthorized access to the system or data. In
everyday lingo, these people are called hackers.

Hackers come in a variety of skill levels, ranging from nation-states
(countries) that attempt to disrupt adversaries to unskilled computer
enthusiasts who try to access systems for the thrill of it. No matter
the intentions, as a software developer, your job is to write code in
such a way that threat actors cannot gain a foothold in your system.
Common types of threat actors are as follows:

o Script kiddies: Low-skilled hackers that utilize tools and
techniques developed by others; in other words, beginner
hackers.

e Crackers: This is what the term hacker typically refers to. A
hacker, by definition, is just a computer enthusiast; however, the
term got hijacked and is now synonymous with crackers, who are
people who try to gain unauthorized access to a system.

o Hacktivist: A person or group that attempts to illegally access
systems for a cause. An example of a hacktivist group is the
Anonymous group. In terms of automation, threats could stem
from groups that are against a given industry.

¢ Nation-state: Usually, a government or government agency
with access to advanced resources. The attacker(s) can pull off
sophisticated attacks that are hard or nearly impossible to defend
against. In terms of automation- and PLC-based systems, this is
a prevalent threat. For example, many power grids, oil pipelines,

and other critical infrastructure are prime targets for cyber
terrorism and cyber warfare in general.

o Insider threat: A person or group that has been given access
to a system that is now using that authorization for nefarious
purposes, intentionally or not. This is a very common threat in
the automation world. It is common for insider threats to be
unintentional. For example, an employee could click on a
malicious link, install a program that contains malware, or
accidentally do any number of things that could adversely impact
or cause damage to a system.

o Competitor: This is typically a rival organization that illegally
accesses a target organization, usually for economic gain, by
accessing sensitive data or disrupting processes. This is another
major threat to automation systems.

The list goes on. There are many more types of threat actors out
there. However, these are the most common. The first step to
protect a system from a security threat is to consider
authentication, authorization, and accounting (AAA)!

Exploring AAA

The first thing that a developer can do to minimize threats and
vulnerabilities is to employ AAA. The following is a high-level
overview of AAA.

Understanding authentication

As the name suggests, authentication means the user or operator
has to prove they are who they say they are. In its simplest form,
this is done with a username and password; however, modern
security advances now allow for biometrics, facial recognition, and
multi-factor authentication (MFA) to help enhance security.
When the operator inputs the correct username and password
combination along with any other additional security features, they
are granted access to the machine or data. For automation, this is
especially useful. For example, you don’t want an untrained operator
toying around with calibration data, and you don’t want a random
person to press a button and start a machine. Typically, it is a good
idea to assign each machine operator a username and password that
they can use to access the machine’s operational controls. Due to
the air-gapped (not connected to the internet) nature of machines,
this can sometimes be less than optimal to do. When a user cannot
be easily added to a machine or group of machines, many will opt
for the less-than-secure method of shared accounts. Sometimes,
companies will create an account such as operator Or admin and
give the necessary credentials to only trusted users. These shared
accounts are not recommended and are very insecure and
dangerous, but it is very common to see these accounts in the
automation world. Regardless of the type of account, once a user
has been authenticated, the system needs to determine what they’re
allowed to do.

Understanding authorization

Where authentication is accessing a system, authorization is
permitting a user to perform an action. In terms of automation, it is
common to only allow certain users to access certain features of a
machine. For example, only maintenance technicians should be
allowed to enter calibration data, while only a production engineer
should be allowed to alter production parameters. To accomplish
this, certain accounts will come with certain privileges. These
privileges typically come packaged with a user’s account.

Usually, users are placed into what are called groups. A group is a
collection of users that have the same privileges in a system.
Essentially, when a user logs in to the system, they will authenticate
their credentials. After verifying the user, the system will then
determine which group a user is placed in and determine what they
can do and what data they can access. Creating and adding users to
groups is basically a shortcut to having to assign the same
permissions to multiple individuals. Now, creating groups can be
tricky on a traditional PLC. To pull this off, you'll need to implement
either an advanced SCADA system, use a general-purpose
programming language to create an HMI that lives on an actual
computer, or use an advanced PLC that can utilize complex logic
such as a high-end Beckhoff, Siemens, Rockwall, or other advanced
PLC brand.

For most PLC projects that are not connected to a network, creating
a group or assigning individual permission on multiple machines is
going to be impractical. This is why many industrial settings use

shared accounts. In the case of shared accounts, a manager or
other person will simply give certain people a shared username and
password that have the appropriate levels of permissions. For many
applications, this will typically work; however, it makes the final "A”
very difficult to implement.

Understanding accounting

Accounting is easy to understand. In short, accounting is tracking
who logged in to a system and what they did. What is logged will
vary greatly; however, at the very minimum, you should log the
following:

e Who logged in to the system?: This will usually include things
such as users, IP addresses, and location details.

e How long was the person logged in to the system?:
Typically, you want to log when the person signed in to the
system and when they signed out.

e What did the person do?: For critical systems, it is vital to log
who did what and when. For example, if person Xlogged in to
the system and adjusted the flow of oil through a pipeline and
the pipeline breaks, there is a clear record of who did it. Once
the person is identified, they can be questioned as to the
circumstance in terms of why the action was taken.

When it comes to machines such as everyday manufacturing
equipment that is not connected to a network and shared user
accounts are used, accounting may not be totally necessary. When it

comes to cases such as these, it will be almost impossible to
accurately tell who logged in and performed whatever action,
rendering accounting inaccurate and unnecessary. However, if you're
working on critical infrastructure such as power grids, important oil
pipelines, railroads, pharmaceutical systems, or anything of the sort,
accounting and unique user accounts are mandatory.

When it comes to critical applications, accounting is of vital
importance. Having accurate records of who logged in to the system,
where they logged in from, and, most importantly, what they did
while logged in is critical to the safety and security of the
applications the software governs. This information is important for
cyber forensics because if someone does break into a critical system
and causes severe damage or death, the logs will at the very least
have some information to help catch the perpetrator. Now, as stated
before, if this is a simple machine that is not in control of critical
infrastructure, accounting may not be necessary. However, some
industries do require by law that proper accounting is implemented,
SO ensure you know what laws and guidelines govern the project.
With AAA understood, let's move on to another vital concept: air-
gapped systems!

Air-gapped systems

Air-gapped systems are simply systems that are not connected to
the internet. Since air-gapped systems are not connected to the
internet, they are hard, if not impossible, to hack. An air-gapped

system may be connected to other systems; however, the overall
system is disconnected from the raw internet. In more standard
automation, such as machines for traditional manufacturing
environments, many systems are going to be air-gapped. This isn't
necessarily for security reasons, as air-gapped systems are often
easier to make.

Just because a system is air-gapped, it doesn’t mean that it can’t be
infected. A general rule of thumb is no system is hackproof. In the
following section, we're going to explore cyberattacks and how bad
actors can infiltrate systems.

Common cyberattacks

Cyberattacks come in many shapes and sizes. There are many, many
ways to break into a digital system and either take full control of the
machine, steal data, or perform other malicious actions. The
following is going to be a rundown of how some basic cyberattacks
are pulled off and how to defend against them. The first area that
we're going to explore is information gathering.

Exploring information gathering

The first step in pulling off an attack is understanding your target. In
today’s day and age, this has never been easier. With the
widespread adoption of social media, gathering information on a
target is very easy and, more importantly, legal. Information

gathering is used to scout people who may have access to a specific
system in an attempt to gain information that can be used
nefariously to access the system. Suppose a hacker wants access to
an oil pipeline that’s controlled by Really Sweet Oil Co. A common
tactic is to scout out LinkedIn for active employees of the company.
Once the attacker identifies a person who may have access to the
target system, they’ll attempt to gather information about them.
Usually, they gather as much information about their target as
possible, such as the technologies they work with, contact
information, common themes, and so on. They’ll also explore other
social media sites such as Facebook, Instagram, and so on to gather
personal information such as the following:

e Special dates such as birthdays or anniversaries

Names such as pet’s names, spouses/significant other’s names,
maiden names, children’s names, and the like

Addresses

Contact information

Blackmail information

The purpose behind gathering this information is to build a profile of
the target. Once the profile is built, the attacker can then use that
information to try to find vulnerabilities so that they can infiltrate the
system. Another concept that can loosely be thought of as
information gathering is social engineering.

Exploring social engineering

The whole concept of social engineering is tricking a victim into
revealing sensitive data or doing something that is against their best
interest, such as clicking a malicious link. Social engineering comes
in many forms, with the most common being phishing. However,
other social engineering tactics can include the following:

e Spear phishing
e Scareware

e Pharming

There are many more tactics. There is a lot to social engineering,
and a single book section will not do it justice. So, to get our feet
wet, this section is going to focus on one of the most common
tactics: phishing!

Understanding phishing

If you‘ve ever been contacted by a royal family member who's
asking you to click a link to redeem King Tut’s hidden treasure,
you've encountered a phishing attempt. Out of all the social
engineering methods that attackers employ, phishing is arguably the
most common and, in many cases, the most effective. To summarize
what phishing is, it is simply some type of malicious email, text,
social media communication, or other digital communication that
attempts to trick you into entering sensitive information that will be
sent back to the attacker. The message will usually come disguised

as a link to a popular bank brand, a credit card organization, the
Internal Revenue Service (IRS), or anything that looks
legitimate. If clicked, the link will usually route you to a login form or
something of the sort. It will usually prompt you to enter your login
info, which will be sent back to the attacker. An example of a mock
phishing email can be viewed in Figure 15.1:

Office of Taxation

Friend,

We write you because you over paid taxes by 51000 USD. | humbly request that you click the link below
and enter your username and password. Upon completion please enter your bank information so we

can deposit your funds in the next 2-4 business days. Please keep this information confidential.

https://we-are-phishing

Sincerely,

Tax Agent Simth

Figure 15.1 — Mock phishing email

This is @ mock email whose goal is to make you click the link. Notice
the spelling and awkward wording. Though phishing attacks are
becoming more sophisticated, bad and awkward wording is still
common in these attacks. Contrary to popular belief, bad spelling
and grammar do not stem from a poor understanding of the English
language. Attackers will usually do this to test the victim. If the

victim still goes along with the email, the attacker/scammer knows
that the person is going to be more easily duped into providing the
information they are after. Also, notice the link; it is clearly not an
IRS or tax office link. Illegitimate links will often be nonsensical links
or strings of random characters. In general, if you get a message
that includes things such as promises of large sums of money,
money that you didn’t know you were owed/owe, love requests, bad
grammar, nonsensical email addresses/links, or so on, it’s,
unfortunately, a phishing attempt!

What does this threat mean in terms of automation? Social
engineers will often send messages to employee email addresses or
work phones. These messages will look legit, and they will attempt
to get users to input information such as their login credentials and
so on. If the system can be accessed remotely, the attacker will
usually try to do so with the stolen credentials. This means that any
system the stolen credentials have access to can be accessed by the
perpetrator. If you're working with air-gapped machines such as
individual welders, bagger systems, and so on, you won't have much
of a problem. However, if your system is not air-gapped, the attacker
can cause all kinds of havoc on your system or network.

This is just one form of social engineering, and, as with many other
concepts explored so far, whole books have been dedicated to the
art of social engineering. For now, it is enough to be familiar with
the concept and phishing. We will now switch gears and explore
some common ways to crack a password.

Exploring password hacking

When one thinks of hacking, one will often conjure up the notion of
stealing passwords. Unlike most stereotypes, this one is very often
true. Many common attacks are designed to guess or crack a
password. PLC-based systems are often more vulnerable to this kind
of attack because it is common to have system functionalities
protected with a very weak password and no username. Therefore,
the best way to defend against a password-cracking attack is to
understand how to implement a password-cracking attack. The first
attack we're going to look at is the password-guessing technique!

Understanding password guessing

As the name suggests, password guessing is the act of trying to
guess a password. Simply put, password guessing is where an
attacker inputs different passwords until one works. Password
guessing isn’t just inputting random passwords until one works.
Typically, an attacker will gather information about the target before
attempting this. The attacker will attempt to use common
passwords, a combination of information about the target, and more
to try to generate a correct password. In all, password guessing is
typically a very low-tech solution to password cracking. This attack
can be automated with specialized scripts and programs or carried
out manually. Due to the simplicity of the attack, it can be carried
out by anyone, but it is commonly performed by script kiddies. A
more advanced derivative of this attack is called a dictionary attack.

Understanding dictionary attacks

A dictionary attack is a more sophisticated and automated version
of a password-guessing attack. A dictionary attack uses a list of
passwords and password combinations along with a password-
cracker program such as John the Ripper. For these attacks, the
password-cracker program will read from the dictionary and run
those passwords against the system. These dictionaries are text files
that are gigabytes in size, so they contain massive amounts of
passwords. If you think of how fast a computer is, it can test
hundreds, if not thousands, of passwords a second. These attacks
are much more effective and faster than password-guessing attacks
as more passwords can be tried out in @ much shorter amount of
time. There is another derivative of this attack that does not use a
dictionary called a brute force attack.

Understanding brute force attacks

A brute force attack, on the surface, is very similar to a dictionary
attack. They are both automated attacks that can try many
passwords in a short amount of time. However, where a dictionary
attack uses a password list, a brute force attack does not. A brute
force attack will try every different combination of characters until it
finds one that works. Brute force attacks are not limited to the
passwords in a file. In theory, a brute force attack can be carried out
indefinitely until it finds a password that works. Now that we
understand password cracking, we need to move and explore the
different types of malware programs.

Malware

No conversation on cyberthreats is complete without exploring
malware. In its most simplistic sense, malware is malicious
software. Malicious programs come in many different shapes, forms,
and functionalities. The following are the most common forms of
malware, along with what they do:

e Trojan Horse: A Trojan Horse, or simply a Trojan, is a program
that masquerades as a legitimate program that tries to trick the
victim into installing it. Once installed, the program will
implement its malicious payload and do whatever it was designed
to do.

e Worms: Worms are self-replicating programs. Once installed, the
malicious program will start to reproduce itself and spread to
other connected systems.

e Rootkit: A program that gives admin-level access to the
attacker. Admin-level access is basically the highest level of
permissions a user can obtain on a system. As such, once an
attacker has this level of access, they can essentially do whatever
they want with the system. These are exceptionally dangerous
malware infections.

e Virus: A catch-all term that is used by most to refer to malware.
By definition, a virus is a program that behaves like a biological
virus. These programs infect other files and programs and cause
all kinds of issues on a host system.

o Keyloggers: A keylogger is a program that, when installed on a
victim machine, will record keystrokes and send them back to the
attacker. These programs are commonly used to capture sensitive
information such as usernames and passwords.

There are many more types of malware programs, such as
backdoors, spyware, adware, and so on. In practice, malware
programs will often exhibit behaviors of many of these program
types. In all, malware is usually not a one-size-fits-all thing. Malware
programs are often complex and sophisticated pieces of software
that have many attributes from many different categories of the
aforementioned list.

There are many more types of cyberattacks that can be pulled off
and malware programs that can cripple a system. The attacks and
malware listed are just some common ones. However, since these
are very common, they are easy to defend against.

Attack prevention methods

Preventing cyberattacks starts with understanding access controls.
Traditionally, there are three categories of access controls:

e Technical: Software and hardware that help prevent
cyberattacks. This could be software as simple as implementing
password protection for sensitive controls and data to more
advanced techniques such as implementing firewalls.

o Administrative: Things such as policies and procedures that are
not technology-based but help prevent cyberattacks.
Administrative controls can be company policies such as
preventing shared user accounts or requiring mandatory
cybersecurity training for operators.

e Physical: As the name suggests, physical controls are security
measures such as fencing, security guards, access cards, and so
on.

Depending on what you’re working on, you may only need technical
or a combination of administrative and technical controls. Physical
controls are only necessary when the project is critical in nature or
high value, such as an oil pipeline, military factory, smart factor, or
something along those lines. For an average factory environment,
technical and administrative controls will typically suffice. This
section is mostly going to focus on technical controls. However, the
first cyber defense we're going to look at is how to defend against
social engineering.

Stopping social engineering

Okay — so, you can't stop social engineering; unfortunately, the
attacker has a vote in whether they’re going to attack you or not.
However, there are administrative controls that can help protect not
only you but your organization as well. When you think about what
social engineering is and how it is carried out, you will find you can
defend against it with both administrative and technical controls.

Since a common vector for social engineering is digital
communication such as emails or SMS, there are a couple of controls
we can put in place to thwart would-be attackers. For starters, to
stop phishing attacks, companies can invest heavily in spam
blockers. In terms of administrative controls, an organization can
require all employees who have a company cell phone to block calls
and messages from unknown callers. Organizations can also invest
heavily in cybersecurity training and auditing. In short, organizations
should require all employees to take cybersecurity training on a
regular basis to educate them on how to spot social engineering
attacks. At the same time, companies should routinely send phishing
emails to employees to ensure they understand the training. If the
employee fails, they should be required to take an intermittent
refresher course. Is this going to be a foolproof way of preventing
social engineering attacks? Well, no! However, the first step in
preventing an issue is understanding the issue. So, what about
password-cracking attacks? How can one defend against those?

Defending against password crackers

The first rule in mounting a cyber defense is not to give an attacker
a clue. In the early days of the internet, it was very common to put
a prompt under a password box that said something along the lines
of, Please Enter Your Six Character Password. This gave
attackers an obvious clue about the password length. They knew
that at the very least, the password was going to be six characters
long. As such, when you're creating an HMI or writing a PLC

program, never give a clue to the possible number of characters in a
password. Outside of that, we can set password sizes behind the
scenes.

Password length

In technical lingo, the length of a password refers to the number of
characters in a password. The longer the password is, the harder the
password will be to crack. In short, a long password is going to be
much harder to guess, and it will take a lot longer for a brute force
attack to figure out. Today, most passwords should be at least eight
characters long. This can be done very easily in CODESYS. In short,
we can use the following code:

PROGRAM PLC PRG

VAR
password : STRING(255) := 'password';
length : UINT;
acceptPass : bool;

END VAR

In this variable block, the password variable will hold the password,
the 1ength variable will hold the length of the password, and the
acceptPass Variable will toggle to True if the password is at least
eight characters long and raise if it is not. The logic is as follows:

length := LEN (password) ;
IF length >= 8 THEN
acceptbPass := TRUE;
ELSE
acceptPass := FALSE;
END IF

The key to this program is the LEn function. This function will return
the length of the password. If the password is at least eight
characters long, the program will set acceptpass to True; else, it will
set it to False.

When the program is executed with the default password value set
to password, you should be met with the output seen in Figure 15.2:

Device Application.PLC_PRG

Expression Type Value
password STRING... 'password’
@ length UINT 8
& acceptPass BOOL TRUE

Figure 15.2 — Accepted password

If you were to set the password variable to something such as passw,
you should be met with the output seen in Figure 15.3:

Device Apphcation.PLC_PRG

Expreccion Type Value
$® password STRING... ‘passw’
length UINT c
$ acceptPass BOOL “

Figure 15.3 — Rejected password

Even if a password is eight characters or more, this still doesn't
mean that the password is strong or safe. Most cybersecurity experts
will now say that instead of using a password, a user should use a
passphrase. That is, instead of using riuf£y for a password, a user
should use FiuffyisMybog. A hacker would have a much tougher

time cracking the lateral. Most experts also agree that all passwords
or phrases should include numbers and special characters. For
example, an even better password would be FiuffyIseMyD0G13*.
This passphrase would be even tougher to crack.

In terms of development, a general rule of thumb is to keep your
HMI as dumb as possible. This essentially means you want your HMI
to do as little computing as possible. However, checking strings for
complexity can be difficult in @ PLC program. This is mostly because
few utilities can be used to easily check complexity. Also, if you
consider how PLCs work, it is very easy to download and upload the
PLC program if the PLC does not prevent the code from being
downloaded without a key. This means that for certain PLCs, if
someone were to be able to download the code, they could get
password information, get clues on what passwords include, or
bypass security controls altogether. When you consider these facts, it
makes much more sense to put the security logic in the HMI, if
possible, especially if the PLC code cannot be locked out. If you are
using a general-purpose programming language such as C#, Java,
C++, or something similar, it will be much harder for an attacker to
get their hands on the HMI binaries and reverse-compile them, and
those programming languages often have built-in security utilities.
Even if you're using a canned HMI programming system or SCADA
system, there will usually be features that will allow developers to
set password characteristics and protect HMI screens that will lock
out the machine’s functionality.

NOTE

There are a lot of opinions about where one should store a password if the system
is simple and does not contain storage components such as databases. Storing the
password in the PLC can offer more control and ease of access for
troubleshooting, however, storing the password in the HMI is technically safer.

Storing a password in an HMI or a PLC program is never a good
idea. At best, this should be considered a necessary evil. When it
comes to storing passwords, the best solution is to encrypt the
password and store it somewhere safe, such as in a database.
However, for many machines, especially air-gapped systems, this
may not always be possible.

NOTE

The safest way to store a password is typically in some type of storage system
such as a database. It is often required that the password is hashed before it is
stored. Hashing a password is a mathematical operation on a string of text that
will transform it into a fixed-length string of alphanumeric characters, which will
obfuscate the true meaning of the password.

The next prevention method that we need to explore is pen testing.

Pen testing

Another common technique that can help protect systems is pen
testing. Pen testing is an advanced cybersecurity auditing technique
that is used to find vulnerabilities in a system. This auditing
technique is, essentially, hacking a system; however, instead of
hacking for some type of nefarious gain, pen testing attempts to find
vulnerabilities in a system so that they can be fixed.

Pen testing can be very complicated and will usually need dedicated
resources such as people well versed in pulling off various types of
attacks. For smaller organizations that do not have the resources to
have a pen tester, it will often be up to the dev team to do the
testing. For such organizations, pen testing will often be overlooked;
however, if possible, it is wise to become familiar with conducting
basic cyberattacks and try to use them on a system that is under
development.

A quality pen-test audit will usually require specific technologies that
are specifically designed for breaking into systems, such as the Kali
operating system, which may not be available in all organizations.
However, very basic penetration techniques can be performed
manually. For example, cracking a password to test its strength can
be done manually using the password-cracking technique mentioned
previously.

To get some practice with this rudimentary pen-testing technique,
let’s try to manually crack a password. To practice this, download the
Pen Test program from the GitHub link in the chapter 15 folder.
Without examining the code, try to guess the password. If you guess
the password correctly, the accessGranted variable should toggle to
True. AS a hint, the password is a common dog’s name that starts
with Foo, ends with £y, and the developer’s favorite number, which is

123.

In the real world, it is best to give no hints to the person trying to
crack the password. This pen-testing example is just to give a little

hands-on practice. In the real world, it is best to use pen-testing
tools; however, using those tools, especially for testing automation
software, is beyond the scope of this book. Nonetheless, if you're
working for a small organization and the passwords do not protect
anything super critical and are only protecting things such as HMI
screens or the like, trying to manually crack the passwords will have
to do.

Before we move on to the final project and explore the ultimate way
to defend against password-cracking attacks, we need to explore
how to defend against malware.

Malware defense

Malware can be a problem on any system, even an air-gapped
machine. However, there are some things you can do to protect
yourself and your machines. The first and most obvious is to be
cautious about what you plug into your USB ports!

Exploring USB control

USB drives can be vectors of cyber disease. If you're working with a
PLC that supports USB devices or a PLC that is connected to a
system that supports USB devices, you will need to implement
strong administrative, physical, and technical controls to limit their
use. First and foremost, an organization should put policies in place
that prevent any unapproved USB from being plugged into a PLC or
network. USBs of unknown origins, such as USBs that were found,

should never be allowed to be plugged into a PLC or network. In
short, USB drives from unknown origins can easily house malware
that can be installed on the system as soon as it is plugged in.

Since USB drives are vital for data transfer and maintenance, what
should one do? The first thing an organization should do is heavily
monitor the USB ports of a network or system. This could include
locking out unused USB ports, using monitoring software and the
like. This should be coupled with an administrative policy that
dictates that only authorized USBs can be plugged into the system.
There should only be a few authorized USB drives that are guarded
by a trusted person such as a manager. The drives should be in a
secure location that is constantly locked. When someone needs to
use one of the drives, there should be a sign-in sheet that includes
information such as the following:

e Who is checking the drive out?

At what time are they checking the drive out?

Why are they checking the drive out?

Work area where they are using the drive

When did they check the driver back in?

Checkout sheets such as these can be vital in figuring out when and
where an infection originated from if malware is introduced to the
system. With this information, the malware can be easily pinpointed,
and counteractions can be quickly taken to prevent the spread to
other machines. Another vital defense that can be taken by

organizations to prevent the spread of malware is air gapping when
possible!

Air gapping when possible

Whenever possible, machines and networks should be air-gapped.
Air gapping has pros and cons, but in terms of security, it is usually a
good idea to air gap a system. As stated before, air-gapped
machines cannot reach the raw internet. This means it is very
difficult to attack and introduce malware from outside the network.
If malware is ever introduced into the network or system, it is
already quarantined to only connected devices. Another effective
way to prevent malware is an old-fashioned anti-virus program.

Understanding anti-virus software

Anti-virus software, as you can guess, will remove malicious
software such as viruses from a computer. Of course, this is not an
optimal solution for many PLCs; however, these can be used to great
effect on PLCs that run a common operating system or on PC-
controlled systems. If the controller does not use a typical operating
system, it will be impossible to run a normal anti-virus on the device;
however, for a PLC such as this, a virus is going to have to be
specifically designed to attack that brand and, in many cases, model
of PLC. Therefore, unless it is a virus such as Stuxnet, there is a low
probability of anything happening. Typically, malware will not attack
a PLC. Instead, a malware program will attack the network that a
PLC is attached to and send erroneous commands to the PLC. So, if

your PLC is attached to a control network that is Linux- or Windows-
based, you want to ensure that you have adequate anti-virus
software protecting the devices on the network.

There are many other ways to protect against malware. These few
topics are just some high-level, common-sense defenses to get you
thinking. Whole books have been dedicated to malware defense, and
it is advisable for any PLC developer to explore this topic more. With
that, we're going to move on to our final project and create a simple
PLC-based login system!

Final project — a PLC-based
activation system

As stated before, you typically don’t want your PLC to be responsible
for handling login and account maintenance, mostly due to how easy
it is to download PLC code and bypass any security systems. A
common example of this is customers trying to bypass activation
codes. PLC-based equipment is often very costly, and organizations
that build machines will often allow the customer to make payments
on the machine. However, some customers are less than ethical in
this area. It is not that uncommon for a customer to try to guess the
activation password to avoid paying for the rest of the machine. This
means as developers, we have to be clever and put in safeguards to
prevent this.

Design

When you think about it, cracking an activation code is the same as
cracking a password. Simply put, a person can use the exact same
techniques. They could guess the password, use a brute force
attack, or if they have the necessary experience, they could try to
use a dictionary attack with a custom dictionary. No matter which
attacks they use, they all have the same main weakness: it will
usually take multiple attempts to guess the correct password. Unless
the attacker is very lucky, each attack will require multiple attempts
to crack the activation code. We can use this to our advantage when
we create the activation software. All we must do to defeat any
password-cracking attempt is to limit the number of password
attempts!

For this program, we're going to give the user three chances to input
the correct activation code. After three attempts, we're going to
assume that the user is trying to guess the code and we're going to
lock the machine out. To do this, we're going to use the loop nature
of the PLC and implement a program based on the following
pseudocode:

Code = 0
Password = 8869
Count = 1;
Activate = false
Lockout = false

Input code
If count > 3 then
Lockout = true
End if
If code <> 0 then
If code <> 8869 then
Count = Count + 1;

Code = 0;

Else
Activate = true
End if
End if

To implement this code, start with the following variables:

PROGRAM PLC PRG

VAR
code : INT := 0;
count : INT := 1;
activate : BOOL := FALSE;
lockout : BOOL := FALSE;
END VAR

For this program, the code variable will hold the access code that the
user inputs, the count variable will keep track of the number of
activation attempts made, the activation variable will determine if
the machine is activated, and finally, the 1ockout variable will
determine if the machine is locked out or not.

The main logic for this program will mirror the pseudocode and be
as follows:

IF count > 3 THEN
lockout := TRUE;
END IF
IF code <> 0 THEN
IF code <> 8869 THEN

count := count + 1;
code := 0;
ELSE
activate := TRUE;
END TF

END IF

For this code, the first thing the program will do is check the number
of attempts made. We're going to assume that there is at least one
check to account for the user’s first activation attempt. Each time the
program iterates, it will perform this check first. If this check fails
(the user still has attempts left), it will move on to check the
activation code. If there are no attempts left, it will lock the machine
out by setting the 1ockout variable to True.

The second check will be to ensure the code is not o. This logic
prevents a runaway code situation by ensuring the user inputs data
into that field. The nested 1r statement will check if the codes are a
mismatch. If they are, it will increment our attempts counter and
reset our code to 0. If the codes match, the machine will activate by
setting the activate variable to True. To test this, write 1111 to the
code variable three times. You should be met with the output seen in
Figure 15.4.

Device Application.PLC_PRG

Expression Type Value
$ code INT 0
& count INT 4
& activate BOOL
$ lockout BOOL

Figure 15.4 — Machine locked out

Once you get to this point, reset count to 1 and lockout to Faise.
This time, enter sse69 for the code, and you should be met with the
output seen in Figure 15.5:

Device Application.PLC_PRG

Expression Type Value
$ code INT 8869
@ count INT 1
$ activate BOOL
lockout BOOL

Figure 15.5 — Activated machine

In this case, since we input the correct code, the machine activated
itself. Now, as stated before, having this code in the PLC isn't ideal.
However, depending on the HMI system that you’re using, network
setup, and so on, you may have to code the logic in the PLC. If you
can avoid doing this, you should; if you can’t, then it's better than
nothing. Regardless, the code presented can be easily ported over to
any programming system you use. As such, you can always
reference this if you need to lock out a real-world machine.

Certifications

In the IT world, security certifications are important. As an
automation professional, it would be advisable to seek out a few
certifications to help you grow and bulk up your cyber defenses. The
following is a short list of some good certifications that you should
investigate if you feel you would like to pursue cybersecurity more:

¢ Linux Professional Institute (LPI) Security Essentials
e CompTIA Security+
e CompTIA Security Analyst (CySA+)

e CompTIA PenTest+

¢ International Information System Security Certification
Consortium Certified Information Systems Security
Professional (ISC2 CISSP)

These are just a few common IT security certs. You don't technically
need them, but they are good learning resources for mounting cyber
defenses. Though these are geared toward traditional IT systems,
they cover material that can be used to take the security of your PLC
systems to the next level!

Summary

In summary, this has been a crash course in cybersecurity for
automation systems. We've explored many security-related topics
such as common attacks, defenses, malware, and more. Security is a
very complex topic, and many aspects go well beyond the scope of
this book. Nonetheless, this chapter has laid down the basics of
cybersecurity; in short, security starts with this chapter. With security
established, we need to move on to troubleshooting systems!

Questions
1. Is the activation code in the final project a weak password?
2. What would be a better activation code for the final project?

3. What is social engineering?

10.
11,

12,
13.
14.

15.
16.
17.
18.
19.
20.

© ©® N O v b

What is a brute force attack?
What is a dictionary attack?
What is an air-gapped system?
Should you air-gap a system?

What are the triple As of security?

. What is a threat?

What is a vulnerability?

If you find a USB drive, should you plug it into your network?
Why/why not?

Can a PLC be infected with malware?
Should you secure a PLC or the network the PLC is on?

Should you store passwords in the PLC or HMI, considering
neither is attached to a network?

What is an insider threat?

What is a script kiddy?

Who can be a hacker?

What is the difference between a hacker and a cracker?
What is a hacktivist?

What is a nation-state attacker?

Further reading

Threat Actors:

https://www.sophos.com/en-us/cybersecurity-explained/threat-
actors

5 Password Cracking Techniques Used in Cyber Attacks:

https://www.proofpoint.com/us/blog/information-
protection/password-cracking-techniques-used-in-cyber-
attacks#:~:text=Password%20cracking%?20typically%?20refers%
20to,access%20t0%20systems%20and%20resources

The 12 Most Common Types of Malware:

https://www.crowdstrike.com/cybersecurity-101/malware/types-
of-malware/

What is social engineering?.

https://www.ibm.com/topics/social-
engineering#:~:text=Social%?20engineering%?20attacks%?20mani
pulate%?20people,their%20personal%?200r%?20organizational%?2
Osecurity

https://www.sophos.com/en-us/cybersecurity-explained/threat-actors
https://www.sophos.com/en-us/cybersecurity-explained/threat-actors
https://www.proofpoint.com/us/blog/information-protection/password-cracking-techniques-used-in-cyber-attacks#:~:text=Password%20cracking%20typically%20refers%20to,access%20to%20systems%20and%20resources
https://www.proofpoint.com/us/blog/information-protection/password-cracking-techniques-used-in-cyber-attacks#:~:text=Password%20cracking%20typically%20refers%20to,access%20to%20systems%20and%20resources
https://www.proofpoint.com/us/blog/information-protection/password-cracking-techniques-used-in-cyber-attacks#:~:text=Password%20cracking%20typically%20refers%20to,access%20to%20systems%20and%20resources
https://www.proofpoint.com/us/blog/information-protection/password-cracking-techniques-used-in-cyber-attacks#:~:text=Password%20cracking%20typically%20refers%20to,access%20to%20systems%20and%20resources
https://www.crowdstrike.com/cybersecurity-101/malware/types-of-malware/
https://www.crowdstrike.com/cybersecurity-101/malware/types-of-malware/
https://www.ibm.com/topics/social-engineering#:~:text=Social%20engineering%20attacks%20manipulate%20people,their%20personal%20or%20organizational%20security
https://www.ibm.com/topics/social-engineering#:~:text=Social%20engineering%20attacks%20manipulate%20people,their%20personal%20or%20organizational%20security
https://www.ibm.com/topics/social-engineering#:~:text=Social%20engineering%20attacks%20manipulate%20people,their%20personal%20or%20organizational%20security
https://www.ibm.com/topics/social-engineering#:~:text=Social%20engineering%20attacks%20manipulate%20people,their%20personal%20or%20organizational%20security

16

Troubleshooting PLCs — Fixing
Issues

One of the most common tasks a PLC programmer is going to
perform is troubleshooting issues. This might be troubleshooting
issues related to software or related to hardware. No matter how old
a machine is, how complex it is, or how sophisticated it is, there are
going to be problems that prevent it from carrying out its duties.

PLC-based systems, or, for that matter, any system that has software
and hardware components, can be very tricky to troubleshoot,
especially when the system is new or there have been modifications
to it. There are an infinite number of issues that can cripple or, at
the very least, hinder a machine. Unfortunately, there is no one-size-
fits-all solution; however, there are common issues that can arise
that will present similar behaviors.

This chapter will explore common issues that can arise in a PLC-
based system. The chapter will also provide an overview of how to
diagnose them and repair them. To do so, this chapter will cover the
following:

e Common causes of PLC issues

e Hardware-related issues

e Troubleshooting techniques

Finally, to round out the chapter, we're going to troubleshoot a
theoretical issue causing intermittent issues that are causing the PLC
to deviate from its normal behavior.

Now, there is no silver bullet to troubleshooting a piece of hardware
or software. Though common tips and tricks will be presented, the
goal of this chapter is to present you with a mindset of
troubleshooting issues. As such, think of this chapter as more of a
framework as opposed to prebuilt patterns.

Technical requirements

This chapter is going to be focused on troubleshooting. This means
we're not going to develop any code in this chapter. Instead, this
chapter is going to use prebuilt code that we're going to
troubleshoot. Before you proceed, please download the code for this
chapter:

https://github.com/PacktPublishing/PLCs-for-Beginners

tackle this chapter.

Common causes of PLC issues

PLC issues come in all shapes and sizes. However, there are factors
such as age, environment, and so on that will contribute to the

https://github.com/PacktPublishing/PLCs-for-Beginners

demise of a system. To begin the discussion, we're going to talk
about the all-too-common broken software problem.

Broken software

If you've worked as a PLC programmer for more than a few weeks,
you've probably heard someone complaining about broken software,
especially if you work directly with third-party customers. Now, it is
nearly impossible to break software. Broken software is usually the
result of malfunctioning hardware, or more commonly, user error.
Typically, what a layperson will perceive as broken software will stem
from operator errors. It is not uncommon for new or poorly trained
operators to use a machine in an unattended way. This will almost
certainly result in a bizarre behavior.

The other most common cause for broken software is hardware
malfunctions. Typically, software is designed to read inputs from
hardware such as sensors and send commands to other types of
hardware such as valves, motors, and so on. If a hardware
component starts to fail, it will usually behave in unusual ways. For
example, valves may not open or close in their expected manner,
motor drives will not respond as they should, and so on. It is very
common for small problems in the hardware to mimic malfunctioning
software. Sometimes, these problems are so small that if a
technician is not experienced with malfunctioning hardware or the
nature of software, they will often mistake the issue for faulty
software.

As we will explore later, there are some causes that could result in
software malfunctions. However, these issues are usually not due to
issues with source code; instead, these issues are caused by the PLC
itself. Before we get into determining whether there is a
programmatic issue, we need to look at how the environment can
disrupt the PLC's operations.

Exploring environmental issues

It's no secret that most PLCs will operate in very harsh conditions.
These environments can have extreme temperatures, extreme
temperature fluctuations, adverse weather conditions, or be exposed
to extreme humidity or moisture. It's important to remember that
even the most basic PLC is a computer, and moreover, an electrical
device. One of the silent killers of PLC is temperature.

How temperature affects your PLC

Believe it or not, one of the most crippling environmental factors
that a PLC can face is temperature. All electronic devices have an
optimal temperature range. If the device is exposed to temperatures
outside of its normal operating range for a long time, it will begin to
behave erratically and then eventually fail. Normally, if the device is
either heated or cooled depending on which side of the temperature
spectrum it was exposed to, it will return to its normal operational
behavior. However, if the part is exposed to temperatures outside of

its normal operating range for too long, it will suffer permanent
damage.

In the automation industry, temperature is often overlooked. It is
quite common to see PLC stuffed into control panels with very poor
ventilation and the machine itself stuffed into areas that will never
get any ventilation. For example, machines that are too tall for
buildings, such as cranes or even some industrial welding machines,
will often be installed in holes in the ground. For machines that are
too tall to fit into a given area, organizations will often dig out an
area in the flooring to place the machine. Now, these are not normal
holes that people dig out with a shovel; these are areas that are cut
into the building, cemented over, and converted into workstations.
These modified areas will allow organizations to fit the machine in
the building; however, these areas will by nature often get little to
no airflow. If you take into consideration that a normal
manufacturing environment is usually not climate-controlled and that
electronics generate heat, you can understand that temperatures
inside of an electronic enclosure can easily reach triple digits,
especially in the summer.

Outside of temperature, another factor that can cause issues with
PLCs is debris.

Damaging debris

Another often-overlooked critical issue with PLCs is debris. Debris is
often not even considered when troubleshooting a system. However,
debris can be a very stealthy killer. Debris, especially the conductive

kind, can easily kill a PLC if not properly accounted for. Due to the
dirtiness of many PLC environments, corrosive and/or conductive
material can find its way into the PLC. This problem is especially
prevalent in PLC modules that have ventilation holes. In short,
particles will find their way in through the holes and corrode the
electronics or, if they are conductive, cause short circuits.

Debris can also lead to overheating. For modules that do require
ventilation holes, dust, grime, and particles in the air can eventually
clog the ventilation holes if left unchecked. This in turn will cause an
excess of heat to build up in the unit, which will eventually lead to
permanent damage to the module.

In all, most manufacturing environments often have copious
amounts of debris floating in the air. This stems from the nature of
manufacturing in general where there is often a dirty environment.

The final environmental factor that we're going to explore that easily
has an adverse impact on the PLC is humidity.

The adverse impact of humidity on
hardware

When designing or installing a machine, a silent killer that is
overlooked is humidity. Humidity is especially dangerous in areas
that are naturally moist and hot. Moisture is often a slow killer. The
danger of moisture doesn’t stem from the water droplets shorting
out electronics (though they can); instead, moisture is often
associated with corrosion. As moisture collects for long periods of

time, it will often cause a buildup of rust and general corrosion that
will eat away traces on a printed circuit board (PCB) and damage
components on the PCB. In short, long-term moisture can have the
same effects on a PLC as water does.

So far, we've explored a few common environmental issues that can
have an adverse impact on PLCs. Though there are many more
environmental issues that can adversely impact the performance of a
PLC, we're going to explore a few common issues that are not
necessarily environmental that can adversely affect it.

Understanding non-environmental issues

PLCs are machines just like your car, computer, or any other device.
Much like those devices, there is a plethora of issues that can
adversely affect your system. For PLCs, the first and most obvious
problem is network issues.

Network issues

Whether you realize it or not, almost all PLC-based systems will use
networks at some level. Even if your machine is not connected to a
network, the PLC device will probably use some type of network
communication protocol to communicate with peripheral devices
such as HMI screens, wireless controllers, motor drives, and if
applicable, other machines. Networking issues are among the most
common issues that one will face in the day-to-day maintenance of a
downed machine.

Network issues can come in many different forms and are often a
root cause of the whole broken software fallacy. When network
issues arise, you'll often see issues with devices such as motor drives
not turning on, HMIs not displaying information, and a lack of
communication between machines where applicable. Another
common symptom is erroneous data that appears either on a PLC
display, on the HMI, or on the computer controller itself. This data
may be error codes or flat-out network warnings.

If networking is not the issue, another common problem is simple
wear and tear.

Exploring wear and tear

It's no secret that most PLC systems are in constant use all day,
every day. This means that parts wear out quickly and without
warning. Though industrial components are designed to be much
more rugged and have a longer lifespan than most off-the-shelf
components, they will eventually wear out. It can often be hard to
diagnose a failed component as the symptoms of a failed component
can often be caused by other factors such as an environmental issue
or other issues such as a poor network condition. Though it will be
tempting to just replace a part that could be the culprit, you should
only do so if absolutely necessary.

Another issue that may cause an issue with a machine’s performance
is calibration.

Exploring calibration

Calibration is vital for many machines. As parts wear in and get old
or the general environment changes, machines will have to be
adjusted to accommodate. In terms of unusual behavior, calibration
is probably in the number-one slot. Most industries will require a
machine to be routinely calibrated. The calibration interval can vary
from industry to industry, machine to machine, and organization to
organization. Many organizations will require at least a yearly and
more often quarterly calibration. A good starting point in
troubleshooting a machine is calibrating it. Generally speaking, a
good calibration will clear up many erroneous behaviors.

So far, we have explored many issues not related to software that
can cause erroneous behavior in @ machine. Typically, if you hear an
end user complaining of broken software, the error is typically one of
the aforementioned. However, in extremely rare cases, software too
can be the culprit.

Exploring erroneous software

Software will never just randomly stop working. If a program was
working yesterday and the day before, and nothing has changed,
the software is fine. However, there are times when software can be
the culprit.

Software updates

Automation software is very dynamic. This means that, unlike
traditional firmware, PLC software is often updated to accommodate
for new processes and hardware. This can lead to erroneous

behavior. Depending on the way the system is programmed, the
update may wipe out the old calibration data or other preset values.
There is also the possibility of bugs. When software is updated, a
bug may have been accidentally introduced. This is especially true if
the software is modified to accommodate a new hardware
component.

One needs to be very cautious when updating software. Anytime you
touch the source code of a machine, you must assume the machine
is broken. This means when you’re working on an update, you need
to run a series of tests to ensure the machine still performs as
expected. You also must allocate time after the initial test is
conducted in case there are bugs in the system that are not
immediately spotted.

Outside of software updates, another software-related issue can
come in the form of corrupted software.

Exploring corrupted software

Source code will never change. A program typically lives in a file on
the programmable device or is flashed to a chip. For software that is
housed in a file, it is not unheard of for the file to become corrupted.
Software that is flashed to a chip is not immune to this either and
can sometimes become corrupted as well. Regardless, corrupted
software will generally follow catastrophic events such as a sudden
power outage, a hard power cycle, or an inexperienced programmer
tampering with the wrong onboard systems such as kernel files.

In terms of behavior, all corrupted software will generally behave the
same. It typically won't load. The corrupted software will, a vast
majority of the time, prevent a program from properly loading. This
is due to the nature of corruption. As we've explored throughout this
book, software must adhere to a strict set of rules for it to compile
and run. When corruption occurs, those rules will be turned
effectively into mush, which will prevent the program from even
loading.

All these issues that have been explored thus far are errors that will
affect the PLC as a whole. These are common issues that can affect
every module in the PLC except for the software errors, which will
only affect the CPU modules. However, the PLC itself is not the only
place where issues can stem from. In fact, it is often more prevalent
to see faulty hardware than anything else. Therefore, in the next
section, we're going to explore some common issues with hardware.

Common hardware issues

It is not usual to have to constantly change parts in a machine.
Again, this stems back to the high usage of most PLC-based
equipment, which causes wear and tear. In this section, we're going
to explore some basic symptoms of faulty hardware. To begin this
exploration, we're going to look at power issues.

Exploring power supply issues

As logic dictates, all PLCs and by extension, hardware in general,
require a stable voltage of some kind. In the United States, most
PLC-based equipment will draw power from a wall outlet or a high-
voltage power drop of some kind. Typically, most PLC equipment will
require a large power supply that is usually around 480 volts
alternating current (AC). In other countries, this may vary
depending on the local infrastructure, especially in places such as
Europe where direct current (DC) power supplies are the norm.
However, if you're in a place that utilizes AC power supplies, there
will be a need for AC-to-DC converters that will drop the power
down and convert the current type for digital devices, such as PLCs,
that require lower DC voltages to operate. The way different AC-to-
DC converters work will vary from device to device, but the general
flow of a power supply will typically step down the voltage/current
and then perform the conversion from AC to DC. The final output will
be a steady supply of DC power.

As stated before, the way in which the power is converted will vary
from converter to converter. However, as logic dictates, each
converter is made of electrical components, which means they will
eventually fail. As was covered in Chapter 2, most PLCs and
industrial electronics in general require a stable 24 V DC to operate.
When a power supply starts to fail, the voltage output will become
unstable and start to either rise or dip. This will cause erroneous
behavior with the PLC system. When a power supply has failed or

begins to fail, you may notice some of the following symptoms:

e Intermittent reboots

e Random shutdowns and restarts

e Excess heat in the cabinet, more specifically near the power
supply
e Smoke

e Qver- or under-power messages from devices such as the PLC or
supporting modules

e Completely dead system
e Blown fuses/breakers

e Random loss of data such as recently inputted job parameters

When symptoms such as these arise, you need to be very cautious
with the machine. Not only could there be major safety issues such
as the risk of fire or electrocution, but the PLC and other hardware
could be put in danger too. Constantly power cycling (hard
rebooting) a device can cause permanent damage to the electronics
in the device. When the system constantly reboots itself, the
software may become corrupted as well, especially if you're using a
high-end PLC that uses an operating system such as Windows or
Linux. Most higher-end PLCs will have onboard electronics that will
prevent the device from dying in the event of a power loss; however,
these are only temporary measures that are mostly used to protect
the electronics. In many cases, the software can still be corrupted,
especially if the problem persists. When symptoms of a bad power
supply are noticed, it is best to shut the machine down and check
the power supply out.

If you experience power issues, the power supply may not be the
only culprit. If the device is drawing power from a wall drop, which
most will, there is also a chance that the wall drop is bad. Having a
bad wall drop or something wrong with the main power line,
excluding something simple such as a blown breaker or fuse, is
much rarer in most cases than a damaged power supply. If there is
no power coming into the machine, the power supply will obviously
not power up, which in turn means the rest of the machine is going
to be powered down. In cases such as these, one can easily tell
whether there is indeed a problem with the drop as other machine
components, such as hydraulics, motors, and so on that do not rely
on the power supply, will be dead as well.

NOTE

Wall voltage of any kind can be deadly. If you suspect that the problem is a wall
drop, have a qualified electrician troubleshoot the issue!

Voltage may not be the issue you have. Other common issues you
may experience will stem from the PLC itself.

Common PLC problems

In the previous section, we explored some basic issues that could
affect a PLC-based system. However, what we have yet to explore
in-depth are some of the behaviors that were alluded to. To begin
the discussion, we're going to explore the effects of heat on a PLC
unit.

Bad behavior due to heat

As we already explored, temperature can have a very adverse effect
on a PLC's performance. A PLC will more often fail from overheating
than from freezing. Typically, when the CPU module of a PLC starts
to overheat, the PLC will start to behave abnormally. The way in
which the PLC will fail varies, but systems that run Windows or Linux
will typically freeze and then turn off. A key giveaway for any
overheating problem is the system will freeze or fail to turn on for a
period of time, usually about 10 to 30 minutes. Then the system wiill
turn on again and, after a period of time, will repeat the same
behavior.

The reason for the freezing and restarting stems from the
temperature limits of the electronics. Depending on the system, the
PLC may shut down due to being programmed to do so or the parts
just reaching their operational limits. When the PLC is allowed to
cool down, the PLC will restart and run normally again until it heats
back up. As we will see later, this can be an easy problem to
diagnose and fix.

Temperature may not be the only problem that can lead to
unexpected shutdowns. Sometimes, if your PLC is shutting down and
you know it’s not your power supply, you may have a bad battery.

Bad batteries

Believe it or not, a common problem that can cause issues with PLCs
is simple batteries. Many CPU modules, such as ones manufactured

by Beckhoff, will often use small CMOS batteries to keep track of
times and dates among other things. The batteries will usually last
years and the issues that stem from the bad battery may vary
depending on the device, manufacturer, and so on. Common
behaviors of a bad battery will be akin to wrong dates/times, error
messages, beeping noises, PLC shutdowns, and of course, warning
lights coming on or blinking. Therefore, if you see unusual lights
blinking, hear beeping sounds, experience shutdowns, or have
erroneous dates and times, you could have a bad battery. Typically
this is a CR2032 CMOS battery. Due to the size and shape of the
battery they are commonly referred to as watch batteries.

Outside the issues mentioned previously, a catastrophic issue that
can pop up is often a very unexpected one. A major problem that is
often associated with bad batteries comes into play when the battery
is installed backward, or the insulator tape isn’t taken off. Depending
on the make or model of the device, if the tape is left on or the
battery is installed backward, the PLC won't turn on. Outside of not
turning on, a battery that is installed backward can lead to device
damage! So, be very careful when it comes to battery maintenance.

When it comes to maintenance, a very common issue that we
explored earlier is communication failure between devices. There are
an infinite number of root problems that can cause these issues;
however, the symptoms will usually be the same: erroneous
communication between devices. In the upcoming section, we're
going to explore some common hardware symptoms that stem from
networking issues.

Bad behavior from networks

All digital devices have addresses. An address to a digital device is
like @ home address to a house, like the way a person can send mail
to another person by using their address. Digital devices will send
data to each other using their unique addresses. With the
widespread adoption of wireless devices such as wireless controllers
and smart devices, networking issues are becoming more prevalent.
As we explored before, a common hiccup in many modern PLC
systems is networking. The root cause of many issues stems from
the hardware having the wrong addresses.

There are many different types of addresses that are used in
networks and, more specifically, automation. A common type of
address is the classic IP address. An IPv4 address will look like the
following: 192.168.10.99

For an IP address to properly send data through the network, the
address must typically share the first three numbers while the fourth
must be unique. For example, if you wanted two devices to
communicate, they would need to have the following address:
192.168.10.xxx

One device could have the last digits as 10 while a second could
have the last digits as 999.

Another issue that might pop up is whether there are two devices
with the same address. Many systems will safeguard against this,
but it can still happen. In short, having two devices with the same
address is like having two houses with the same address. When the

post person tries to deliver the mail, they may not know which
mailbox to put the letters in. In the case of the digital system, when
a data packet is sent, the system may get confused and not know
which device should receive it!

Typically, if two devices are no longer communicating or are getting
unexpected data communications, especially after a hard reboot,
there could be a problem with the systems’ addressing configuration.
In terms of automation, there are many ways to set an address for a
device. Some addresses are programmed into the device and others
are set manually with switches, while other, more sophisticated
devices use traditional IP addresses. No matter what mechanism is
used, if they are being set manually, it is very common and easy to
introduce issues by mistake. So, if you're having issues with devices
communicating with each other, the first step should be checking
communication between the devices.

Outside of addressing, another major issue that can arise is with
network cabling.

Network cabling issues

Outside of addressing, another major issue that is often associated
with bad networking is cabling. Even in today’s wireless-dominated
world, network cables of all kinds are still widely used, especially in
automation. Due to the movement and high-maintenance nature of
most PLC-based machines, it is very common to break cabling.
Depending on how the machine is set up, it is very common to pinch
the cable and sever its internal connections; that means it's common

to break the wires in the cable. This is mostly due to the moveable
nature of most PLC-based machines. For systems such as robots or
other devices that move, it's common to need snake communication
cables such as drive cables in the machine. Unfortunately, as
machines are poorly maintained or as they simply age, the cables
can get pinched and break.

Outside of pinching the cable, simply unplugging and plugging the
cable can lead to damage. If it is not properly removed or inserted
into its port, pins can be bent, wires can be broken internally when
the technician pulls on them, and of course, the plastics that secure
certain cables in the port can break. When any of these failures are
experienced, communication can become unstable at best. There
may be intermittent drops or flat-out communication failures.

Devices that usually communicate via network cabling are as
follows:

e HMI screens

Motor drives

Robots

Certain sensors

General network equipment

Pretty much anything that transmits data can use a network cable of
some kind.

Though it goes well beyond the scope of this book, many networks
have physical hardware components such as routers and switches.
This is especially true for systems that are integrated across a plant
or factory. Much like any other physical hardware, these parts can
fail. Therefore, if you encounter networking issues, and the cables
are good and the addressing is set right, there could very easily be a
problem with a switch, router, or other routing component.

So far, we have explored some common causes of issues as well as
some of the symptoms and hardware components that could cause
the issues. However, as we have seen, certain symptoms can be
caused by different things. In the next section, we're going to look
at some techniques to troubleshoot and pinpoint the problem.

Exploring troubleshooting
techniques

We now know what some problems that could affect the
performance of a PLC are, and their common causes. As anyone who
has ever worked on an electromechanical system knows, simply
knowing what a cause could be is not the same as knowing what the
cause is. In this section, we're going to explore some
troubleshooting techniques to help pinpoint a problem.

Before we get into troubleshooting, we need to look at the tools that
every engineer should have in their toolkit.

The PLC toolkit

There is nothing more embarrassing than showing up to a service
call or being asked to troubleshoot a PLC and not having the
necessary tools. The following is a list of common tools that
everyone who is tasked with troubleshooting a PLC-based machine
should have:

e Screwdrivers: Everyone tasked with fixing a machine should, at
the minimum, have a series of flathead and Phillips screwdrivers
of varying sizes. Usually, it's a good idea to get at least two of
each size. Generally, a better idea is to pick up two packs of
assorted screwdrivers of both types.

e Pliers: A technician or engineer should have at least a pair of
needle noses, channel locks, wire cutters, and other assorted
pliers. Usually, one pair of each will work but ideally, you would
want a couple of pairs of each.

o Wire strippers: Often, a tech or engineer will have to rewire
things, and a decent pair of wire strippers will be needed to strip
the ends off the wires.

e Wire crimps: These are plier-like devices that can be used to
attach solderless connectors to the ends of wires.

e Thermal gun: An often-overlooked tool that many techs or
engineers will not always have on hand is a thermal gun. This
tool is vital for troubleshooting temperature issues.

e Multimeter: Every tech/engineer should always have at least
one quality multimeter such as a Fluke on them at all times.
Typically, a pair of alligator clips, probes, and fuses should also

be included. It is also wise to include several fresh 9V batteries
for the meter as well.

o Laptop computer: The toolkit should always include a laptop
computer with the necessary programming software and source
code loaded onto it.

e Network cable: It is wise to include a programming cable to
interface with the PLC. One should also include multiple cables
such as networking cables that are used in the system.

e Flashlights: Every kit should include a magnetic flashlight that
can stick to the wall of the cabinet. It is also wise to have
batteries on hand for the flashlight. A tech/engineer should have
at least one flashlight; however, two are ideal.

e Brushes: It is usually a good idea to have paintbrushes of
varying sizes on hand. These brushes can come in handy when
you need to clean out ventilation ports or other small crevasses.

Now that we have a toolkit, let’s start troubleshooting by looking at
possible power supply issues.

Diagnosing power supply issues

One of the easiest issues to troubleshoot is a power supply issue.
The power supply is usually an obvious problem. Typically, when the
power supply fails, the system will not turn on. However, a dead
machine does not necessarily mean a bad power supply. There could

be a problem with a breaker, a fuse, a switch, or even the wall
power drop.

The first step in troubleshooting is to simply check the wall breaker.
Believe it or not, it is very common for someone to flip a breaker and
forget to turn it back on. Before you even touch a tool, you want to
check to ensure all the breakers and wall switches are on. If the wall
breaker is on, you want to move down the line and check inside the
cabinet. Typically, machines will have either a main fuse(s) or
breaker(s). The breakers will be easy enough to check. Checking a
fuse can be a little more in-depth but it is still easy to do. All you
need to do is use the diode setting on your multimeter to check the
fuse. If the meter beeps, you typically have a good fuse.

If all is good, the next thing to do is check the power supply. To do
this, check the voltage at the DC output with your meter. Typically,
power supplies will output 24V; however, that value may vary from
supply to supply so be sure to check what the power supply output
should be. Regardless, if you have the correct voltage on the power
supply output, move down the line again and check at the end of
the wire(s) leaving the power supply. If the output is good in the
power supply but dead at the end of the wire, this is typically
indicative of a bad connection, and more than likely, a bad connector
at the wire end(s). If you do have stable voltage at the end of the
wires, the problem is more than likely with the electronics.

If you are getting sporadic booting issues or have a dead PLC, you
can try checking the temperature.

Diagnosing temperature issues

If the PLC is dead and you do have power going into the PLC, the
next thing to check is the temperature. Depending on the PLC, there
may be built-in warnings; however, you may not always have that
luxury. If the PLC is constantly rebooting or shutting down
sporadically, it may be a temperature problem as explored
previously. To confirm, turn the device on and let it run for a little
while. While the PLC is running, try to use a thermal gun to see
whether the PLC or any other component is heating up.

If the device is heating up, there could be multiple reasons, as were
already explored. It could be due to the ventilation holes becoming
clogged with debris, metallic debris causing shorts in the devices, a
failed electrical component, or simply the heat in the cabinet building
up. In terms of troubleshooting this problem, the first thing you can
do is try cleaning out the ventilation ports. You can typically do this
with a small brush or paper towel. If this isn’t enough, there could
be something in the device itself causing a short. This is a much
harder problem to fix as the debris will be hard to remove. However,
you can get lucky by trying to blow out the device with compressed
air. If the problem persists, there is a good chance an electrical part
has failed. If a part has failed, the module will need to be repaired or
replaced. Now, if @ module has failed, they are usually not worth
repairing. It is usually cheaper and easier to simply swap the part
out.

Moving on to the next topic, we're going to look at troubleshooting
network connections!

Diagnosing networks

Troubleshooting networks can be a daunting task if you're not
familiar with how network devices work or are not experienced with
IT in general. PLC programming software usually has a built-in way
of detecting devices. This means if you're working with a device of
those types, you can simply use built-in tools to troubleshoot device
communication. If your device is a typical piece of IT equipment or a
Windows or Linux PLC, you can also connect to the device or
network and ping it using the ping utility. The way you ping a device
is to first give your PC a compatible IP address and connect to the
network. Once you connect to the network, you should open the
command prompt on a Windows or Linux terminal and run the
following command:

Ping XXX .XXX.XXX.XXX

Here, the x represents a digit in the IP address.

If you get a response, the network connection is working as
expected; if you do not get a response, there is an issue. This will
work at a high level with devices such as the PLC, network devices,
and certain other hardware. When it comes to devices such as
modules, motor drives, and so on, pinging may not work and you
may need to depend on the device software to troubleshoot.

If you suspect there is a problem with the network communication,
there could be any number of problems. However, some common
fixes are as follows:

e Change the communication cables
e Power cycle the device

e Check whether there is a firewall that is preventing
communication

e Temporarily change out a suspected defective device to see
whether it fixes the problem

Network issues can either be hardware or software-related; however,
if the system has been up and running for a while, chances are
something went wrong with a piece of hardware. For many existing
applications, a problem with networking will usually boil down to
broken cables, hardware that needs to be power cycled, or hardware
that needs to be replaced.

There are many other issues that can cripple a machine or series of
machines. Though it is very rare, software can still pose an issue if it
is modified or newly installed. As such, before we move on to the
final project, we're going to look at some basic software
troubleshooting techniques.

Troubleshooting software

If a problem is software-related, it is usually because the software
was recently installed (new machine) or modified. Troubleshooting
can be a very complicated task and takes experience and skills to
accurately troubleshoot. This section is going to give a quick crash
course in some basic troubleshooting techniques, starting with
learning how to back up software.

NOTE

It is never a good idea to modify the software to work around a broken or
malfunctioning part.

Backups

Before you even think about touching the software on any machine,
you need to have a backup of the software handy. If PLC systems
support them, there are technologies such as Acronis that can clone
and restore an entire system. Many of these technologies will create
a shapshot of the current system along with its configuration. If you
have a PLC or system that can support the technologies, it is worth
the money to invest in it. If your system does not support these
technologies or you don’t have access to them, you can still archive
the software. Almost all PLCs have the capability to download the
code that is currently burned on the PLC. Usually, the only software
that is hard to download from the source is the HMI. However, the
HMI should be as "dumb” as possible and you typically won't need to
archive it.

In terms of troubleshooting, the very first thing you should do is
either make a clone of the system, using a technology such as
Acronis, or download the current PLC code along with any other
piece of software that you can preserve. This may seem
counterintuitive; however, you want these backups as a restore point
if the problem cannot be resolved or the problem is accidentally
made worse. Once you have fixed or modified the code base, you
need to save it somewhere.

Introducing version control

There is nothing quite as bad as arriving at a service call and being
asked to fix a machine’s software and having the wrong
code/backup, or having to flat-out tell a customer that their
machine’s code is simply lost. This is where version control can come
in handy. Version control is very important, but many automation
companies do not see the need for it, nor are they willing to invest
in or use it. Not using version control can cost a company copious
amounts of money by causing unnecessary rewrites for lost
software. Version control is a software tool that can version
software. This means that when a new version of the program is
committed, the changes are tracked. If you need to use an older
version of the program, the changes from the subsequent commits
can be ignored and you have the needed version of the program. So,
if you made a change to support Motor Drive A and you need the
original program that supported Motor Drive B, you can simply pull
that version of the software. Source control also allows an

organization to store archives such as Acronis backups, wiring
diagrams, and any other type of machine documentation.

There are many different version control tools out there. One can
use the following:

e GitLab
GitHub

TortoiseSVN

e TFS
BitBucket

Many others can also be used. A great example of a version or
source control system is GitHub, which stores all the code for this
book. Most of these will either use Git or SVN. SVN is much older,
and Git is by far more popular. In all, adopting one of these systems
will provide the following benefits:

e Prevent the loss of older iterations of the program

Prevent code from being lost

Keep code bases in a single location

Allow for sharing and collaboration of a given project

Allow you to store documentation and archives

Though it will cost a small amount of money to use a version control
system and it will require a bit of training, it is well worth it in the
long run as it'll save you money.

Now that we know how to archive and store software, let’s look at
troubleshooting software.

The basics of troubleshooting software

Learning how to troubleshoot software is as much an art as it is a
science. This section is going to explore the basics of finding or
troubleshooting a problem in code. The first troubleshooting
technique we're going to look at is print debugging.

Print debugging

Print debugging is a troubleshooting technique that allows you to
view the various locations of the program. For example, suppose we
want a program to display a message when a number is greater
than 23. To do this, we could use the following code:

PROGRAM PLC PRG

VAR
debugMsg : STRING[20];
outputMsg : STRING[15];
number : INT := 21;
END VAR

In this example, we have a debugMsg variable that will have 20
characters, outputMsg that will hold a message, and finally, @ number
variable for the program to test against. The logic of the program
will be as follows:

IF number > 23 THEN

outputMsg := 'number is greater than 23';
END IF

If you run the program, you will notice that the program does not
produce the message as expected. As such, we can put some debug
messages in to help see where the program is failing. We can modify

the code to match the following:
debugMsg := 'start of program';
IF number > 23 THEN
debugMsg := 'In the 1if';

outputMsg := 'number is greater than 23';
END IF

Here, we have a debugMsg at the top, and since the message we
want is in the Ir statement, we can drop one in there too. When we
run the program, we should get the result shown in Figure 16.1.
Notice that the debugMsg value is set to start of program:

Device Application.PLC_PRG

Expression Type Value
$ debugMsg STRING... 'startof program'
@ outputMsg STRING... "
@ number INT 21

Figure 16.1 — Debugging output

This output means that for some reason, the code in the 1F
statement is not running. If we examine the code and consider the
original use case for the program, we can see that this program is
designed to test whether a number is greater than 23, and our
number is set to 21. This looks like a mistake, and we can check it
by writing a new value.

Exploring writing values as a
troubleshooting technique

So far in the book, we've used writing to change values; in a sense,
we've also used writing to explore code behavior. We can use this
same technique to troubleshoot as well. This is a very common
practice for PLCs that can support dynamic writing.

NOTE

Writing a value and forcing a value are similar in nature but operate differently. A
forced variable is permanent and must be changed by the user, while writing a
value can be easily overwritten. Forcing a value can be very dangerous and the
value must be unforced by the user!

For this example, we can write a value to troubleshoot. Since we
have the number set to 21 and our program is testing for a number
that is greater than 23, we can write a value of 24 to see what
happens:

Device. Application.PLC_PRG

Expression Type Value |
$ debugMsg STRING... 'In theif
@ outputMsg STRING... 'number is great’
number INT 24

Figure 16.2 — Writing value output

As we can see, this time, when we wrote 24 to the number variable,

the program worked as expected. We got the message we put in the
1F statement, and we got the message that we originally expected!

Now that we've explored software troubleshooting, we should have a
decent grasp of the basics of troubleshooting. This means that we
can move on to the final project.

Final project
For the final project, let’'s assume the following scenario.

You were recently contacted by a customer about a machine with
broken software. The machine will boot up and run as expected for
about 25 minutes, then unexpectedly shut down. The customer says
the issues started about two days ago and is sure that the software
broke unexpectedly.

With that, let’s look at how we can troubleshoot this.

Troubleshooting

First, since the machine has been running as expected for at least 25
minutes and the system has just started behaving this way, we can
assume that the software is not broken. There could technically be
an issue with the PLC's operating software such as the operating
system, or the user is doing something that the machine wasn’t
intended for and programmed it to do something out of its bounds.
However, that whole scenario is unlikely. Based on what we learned,
this sounds like there is an issue with the PLC overheating or with
the power supply.

When we get to the site, the first thing we notice is that the machine
was in a pit — that is, in a carved-out hole in the facility to
accommodate the height of the machine. When walking into the
facility, we notice that it is hot and humid. Since the device is
powering up, there is probably nothing wrong with the breakers,
fuses, or wall power.

Challenge 1

Try to think of a few possible issues that could arise from the
environment.

Solution

Right off the bat, the power cycles, humidity, and heat could mean
that the system is overheating.

Troubleshooting steps
The following steps can be used to for troubleshooting:

1. Inspect the machine in the off state. Look for water droplets and
feel whether the inside of the cabinet is hotter than usual. Also,
visually inspect the ventilation ports on the devices.

2. Turn the machine on and let it run. When the device cuts off,
quickly open the cabinet and use the thermal gun to check the
temperature.

Results

The device reads about 90 °F. This is toward the high end of the
spectrum but still within range. So, we're going to clean off the
ventilation ports and leave the cabinet door open to vent any excess
heat.

Upon doing this, the machine still shuts down after about 25 to 30
minutes. So, we can move on to the next possible issue: the power

supply.

To troubleshoot the power supply, we turn on the machine.

Challenge 2 — troubleshoot the power
supply
Think out the steps needed to check the power supply.

Solution

Power on the machine and use your multimeter to measure the
power going into the PLC. After about 15 minutes of running the
power supply, you notice that the output voltage is starting to drop.
You also notice that the power supply is starting to heat up.

Troubleshooting steps

1. Keep measuring your voltage output.

2. Use your thermal gun to measure the temperature of the power
supply.

3. Visually inspect the ventilation ports on the power supply.

Results

You notice that as the temperature rises on the power supply, the
voltage begins to drop. This means that the power supply could be
overheating and failing for that reason. So, you try cleaning out the
power supply ventilation ports. After running the machine, it stays
on this time without shutting down. The problem is solved!

In this case, debris that built up in the power supply ventilation ports
was causing excess heat buildup and causing it to fail. At this point,
you can either opt to call it a day or swap out the supply. It would
be a best practice to change out the supply, but some customers
may not want to pay for the part if the old one is working.

Summary

This chapter covered the basics of troubleshooting. We explored
hardware issues including common problems such as heat and
common component failures. We also explored software-related
issues such as bad source code and even networking issues. There is
no magic bullet to troubleshooting a problem. What you'll find is that
no two problems will ever be the same. Nonetheless, this chapter
has provided some basic techniques and issues that could be used in
your day-to-day life!

Wouldn't it be nice if we could ask our computer what’s going on
and it gives us a list of possible solutions? Well, that dream can be
somewhat of a reality with generative Al. In the next chapter, we're

going to explore how generative Al (ChatGPT) can be used to help
us.

Questions

1. What is a symptom of a bad power supply?

. What are a few tools you should have in your toolkit?
. What does the ping command do?

What is a symptom of a network issue?

What is a possible symptom of a failed CMOS battery?
What is version control?

Name two benefits of version control.

What is print debugging?

© ® N O VA W N

. What is the difference between forcing and writing a value?

[
o

. How should you respond to broken software?

17

Leveraging Artificial Intelligence
(AI)

Over the past two years, two little letters have taken the world by
storm. Those letters are Artificial Intelligence (AI). The last two
years have seen a revolution in the way everyone, from students to
content creators, are going about their daily lives. Software
engineers and, by extension, automation programmers, are no
different. Systems such as Copilot, Gemini, Devin, and, of course,
the all-too-famous ChatGPT have captivated the attention and
imagination of developers, and many are desperately trying to
integrate these systems into their daily work lives.

The world is abuzz with how developers are trying to integrate
generative AI (GenAl) into their daily workloads. Due to the
novelty of the technology, many are still struggling to figure out just
what GenAl can and cannot do. There are many articles saying how
it can be used as an assistant for programmers, while others say
that GenAl will render human programmers obsolete. This chapter is
going to look at how to use generative technology such as ChatGPT
and dispel some misinformation along the way. To do so, we're going
to look at the following topics:

e What is GenAI?

What GenAl can’t do

Reasonable expectations with GenAl

The basics of prompt engineering

Producing workable code with ChatGPT

To round out the chapter, we're going create some prompts that will
generate an 1r block for a temperature range program that we can
use in a project!

Technical requirements

This chapter will use ChatGPT to generate our code for us. This
means we're not going to write any code. The code generated by
ChatGPT can be downloaded at the following URL:

https://github.com/PacktPublishing/PLCs-for-Beginners

To follow along with this chapter, you will also need a free account
for ChatGPT. For this chapter, we're going to use the free version,
3.5 at the time of writing this book, to experiment with. You can sign
up for free at the following link:

https://openai.com/

What is GenAlI?

The term Al is obnoxiously overused in today’s world. Al is used by
laypersons to refer to almost anything. Up until recently, anything

https://github.com/PacktPublishing/PLCs-for-Beginners
https://openai.com/

that was related to automation was considered AI. However, the
terms have gotten a little more accurate as of late, and true Al is
starting to be distinguishable from general automation. So, the first
topic that we need to explore is what Al is!

What is AI?

The most accurate definition of Al is a program that can perform a
task without being specifically programmed to do so. This means
that though PLC-based systems are sometimes referred to as Al,
they really don’t meet the qualifications of being Al. Automation
systems, such as the theoretical ones explored in this book, must be
programmed to do a certain task. For example, if you recall back to
our color and shape sorter, we had to specifically program it to sort
parts based on their shape and color. A true Al would be trained
using data and a model to recognize things such as stars and colors
and sort them accordingly. Al can be integrated with PLC-based
systems, but by default, they are not Al systems. An Al system will
require two vital components to work: one is called a model, and
the other is called data. To begin our exploration into AI, we're first
going to explore what training data is!

What is training data?

Training data is used to teach an Al system how to do something.
Data comes in many shapes and forms; for example, a system can
use labeled data or unlabeled data. Labeled data is data that is

preprocessed by a human. That is, if the dataset consists of various
pictures of fruit, a human will need to go in and mark what’s an
apple and what'’s an orange. Unlabeled data does not have any
markers and is not processed in any way. The system will process
the data using what is called a model to try to find patterns within
the data. This means the next step is understanding what a model
is.

What is a machine learning/AI model?

model is an algorithm that is used to process data. As we previously
discussed, there are many different types of models, and many of
the types have subtypes. Regardless of the model type, it can be
supervised, unsupervised, or a hybrid of the two. A supervised

model will use labeled training data, while an unsupervised model
will use unlabeled data. Finally, a hybrid model will use a
combination of both. The next logical step in understanding what a
GenAI model is to explore what a large language model (LLM) is.

Understanding LLMs

An LLM is simply an Al model that is specialized in understanding
and producing human language. The best way to think of an LLM is
as a chatbot on steroids. These models are trained on very large
datasets and excel at things such as language generation, text
completion, language translation, and more. More specifically, LLMs
are designed for natural language processing (NLP), where NLP

is an AI system in which humans can use natural speech to interact.
That is, an NLP system, unlike a PLC, does not use a specific
programming language for interactions. The NLP is really what
makes GenAl what it is.

What is GenAlI?

GenAl is a type of Al that can be used to generate content. That is,
GenAl is used to create text, music, images, and even programs
among other things. For our purposes, we're going to use Al to help
write PLC code. Systems such as ChatGPT will draw on very large
training data to do any number of programming tasks that go well
beyond simply writing code. These generative systems can be used
for any number of tasks, from writing code to providing
troubleshooting feedback. In all, when used properly, these
generative models can produce fairly high-quality code.

At the time of writing this book, anyone who has been paying
attention to the news may notice that many companies are
experimenting heavily with these Al systems. There is a lot of talk
about what these systems can do and how they can replace human
programmers. With all that, the next section is going to explore what
these generative systems can’t or shouldn’t do.

What GenAlI can’t do

At the time of writing this book, there is a bunch of hoopla about
companies trying desperately to leverage Al to replace their human

workforce. As of late, there has been a lot of talk of AI replacing
human workers, and this is further compounded by many news
stories of large companies laying off thousands of workers. So, a
logical question is, what does this mean for us programmers?

Much as with any new technology, it is drastically overrated. Though
it is still early in its development, this infant technology cannot fully
replace human software developers. Though it can produce quality
code and help developers understand and diagnose issues, we will
see later on that stock Al systems such as ChatGPT 3.5 produce
quality, but compared to the hype, underwhelming code. In all
fairness, this is with the standard, non-optimized version of the Al
systems. As time progresses and the technology matures and
becomes optimized, this may change. However, for now, a company
that tries to replace all its programmers with GenAl is a company
that is trying to doom itself.

As of right now, the technology is very immature. As stated before,
this may change, but right now, the limit of a stock GenAI’s ability is
limited to what is on the internet. This means if you're facing a novel
problem or need a novel solution to an existing problem, GenAl
probably isn’t going to help much. The best you're going to get out
of these stock GenAl systems is a point in the right direction.
Unfortunately for those hoping to replace their human development
team soon, the technology simply isn't there yet.

Stock generative systems are currently not very good with the
following:

Analyzing complex problems

Producing high-quality code bases

Carrying out complex tasks

Replacing human developers

This is mostly true for stock platforms such as ChatGPT; however, as
stated before, there are some optimized systems that are used for
software development. These systems claim to be able to analyze
and produce complex software. They are also very new, and
whether they can actually replace a human programmer or not is still
up for debate. If GenAl can’t replace a human development team,
what can one expect when utilizing a GenAl system?

Reasonable expectations with
GenAl

It is true that GenAl is changing the landscape, especially for entry-
level software developers and, by extension, entry-level PLC
programmers. It is arguable that the true benefits of GenAl have
been vastly blown out of proportion. This book utilized ChatGPT to
generate some basic example code, mainly with sorting, and the
results were marginal at best. The code worked, and it did look like
a fairly experienced programmer wrote it in terms of structure and
efficiency, but it did take some know-how to implement it. When it
comes to GenAl, we first need to look at what not to expect.

What not to expect with GenAl

As touched upon before, all you potential hiring managers looking to
replace your dev team with ChatGPT are going to be disappointed.
ChatGPT and other similar systems are not suitable replacements for
human programmers. The jury is also still out as to whether the
GenAl systems that are designed to program are going to be able to
replace developers anytime soon. The biggest hang-up to GenAl
systems is producing solutions for novel problems. That is, if you
have a unique problem that is outside of the model’s training data,
the model is at best going to give you a general direction of how to
proceed. Most of these models were trained on data that was
collected from the internet. This means that if the problem is unique
to your code base, the Al is going to have a tough time figuring out
how to solve it.

Another area GenAl is going to let you down is with implementing
code. Quite often, systems such as ChatGPT will go off into the
weeds with generated code. Depending on how you write your
query, aka prompt, the generated code may be nearly useless.
There are also issues with deploying the code. One aspect of
ChatGPT that a lot of people overlook is that, at best, it's only going
to give you code. Unless you're using an optimized GenAl that can
interface with your respective PLC, you will still need a human to go
in and physically upload the code to the device. Sure, there are
workarounds for this, such as using a GenAl application
programming interface (API) and developing a system that can
do that for you or using a specialized system; however, this will cost

more time and money in the long run and still probably won't give
you the results you're looking for.

What can a GenAlI be used for? If it can’t replace a human
programmer or give us usable code 100% of the time, what good is
it? Why should we even consider using it? This is where reasonable
expectations come into play. In the next section, we're going to look
at some use cases as to how GenAl can help!

What to expect when using GenAl

The best way to think of Al is to think of it as an assistant. The
fallacy that is going to sink many companies is that they are trying
to think of GenAl as a programmer. That is, companies are
desperately trying to replace carpenters with automatic screwdrivers.
A better way to think of GenAl is as a tool that can be used to help
programmers be more productive.

One way that GenAl can be used to help developers is to have it
write standard code. For example, if a user needs to implement a
sorting algorithm but may not remember the code off the top of
their head or just wants a quick and easy solution, a system such as
ChatGPT can come in handy.

Another use for a GenAl is to help troubleshoot small blocks of code.
In cases such as this where maybe a value is being computed wrong
or a piece of code is crashing, systems such as ChatGPT can be used
to help pinpoint the problem.

GenAl systems can also be used as research assistants. In
automation programming, things aren’t always as well documented
as their traditional programming counterparts are. This means that it
can take an exorbitant amount of time to find relatively simple
solutions to common problems. For tasks such as these, GenAl can
come in handy. Due to the NLP nature of these systems, needing an
answer to a common problem is as simple as asking a question!

To summarize, GenAl is best suited for tasks such as the following:
e Answering common questions
¢ Generating simple solutions for common problems
e Helping a developer troubleshoot a problem

e Helping a developer solve common problems

On the other hand, GenAl is not so well suited for the following:
¢ Replacing developers
¢ Finding solutions to complex or novel problems
¢ Single-handedly writing large and complex code bases
e Deploying solutions
The key takeaway here is that GenAl is a tool. Though this is a
rapidly growing and changing field, as of writing this book, GenAI

cannot and should not replace programmers. As generative
technology progresses, this may change in a few years, but as of

now, anyone who tries to use GenAl as anything other than a tool,
at least in the development world, is doomed to failure.

The next step in understanding GenAl is understanding how to
interact with it. On the surface, using a system such as ChatGPT is
straightforward and not that different from using a search engine. In
the next section, we're going to explore the basics of interacting with
ChatGPT!

The basics of prompt engineering

For this section, you will need to set up an account to use ChatGPT.
You will have the choice between a free account that uses GPT 3.5
or a paid account that uses 4.0. For this book, we're going to use
the free account. At any point, if you want to, you can upgrade to
the paid account! Once you're set up, you will be free to move on to
creating your first prompt!

Creating a prompt

The key to interacting with ChatGPT or any other GenAl is
understanding what a prompt is. In my earlier writings about
ChatGPT, for better or worse, I almost always exclusively referred to
a prompt as a query. I did that because, in my opinion, the best way
to interact with GPT is as a tool that can answer questions. These
questions may command the system to generate a code block,
email, or simply answer a general question, and though they may be

worded as commands to ChatGPT, they have their roots in questions.
In my opinion, a great prompt has its mental basis in the form of a
query. That is, you need to know something, and you're asking
ChatGPT to answer it.

Our first prompt

There is no better place to start learning how to write prompts than
by asking ChatGPT what its suggestions are. So, for this tutorial, log
in to ChatGPT and enter the following:

What are the basics of prompt engineering?

Run the prompt, and ChatGPT will output something akin to the
following:

Prompt engineering involves crafting effective prompts or
instructions to direct a language model's responses towards
desired outcomes. Here are the basics:

1. **Understanding the Goal**: Define the objective or
desired outcome of the prompt. This could be generating
creative content, answering questions, completing tasks, or
any other specific goal.

2. **Analyze Examples**: Review existing examples to
understand how the language model responds to different
prompts. This helps in identifying patterns and formulating
effective prompts.

3. **Keyword Selection**: Choose keywords or phrases that
are likely to elicit the desired response from the model.
These keywords should be relevant to the task at hand and
provide clear direction.

4., **Clarity and Simplicity**: Keep prompts clear, concise,
and easy to understand. Avoid ambiguity or complex language
that could confuse the model.

5. **Provide Context**: Contextualize the prompt if
necessary to provide the model with additional information

or background to generate accurate responses.

6. **Experimentation**: Test different variations of
prompts to see which ones yield the best results. This
involves tweaking keywords, adjusting phrasing, and
exploring different formats.

7. **Iterative Process**: Prompt engineering is an
iterative process. Continuously evaluate the model's
responses and refine the prompts accordingly to improve
performance over time.

8. **Consider Ethics**: Be mindful of the ethical
implications of the prompts you create. Avoid biases,
stereotypes, or prompts that may generate harmful or
inappropriate content.

9. **Documentation**: Keep track of successful prompts and
their corresponding outcomes. Documenting your experiments
and findings can help inform future prompt engineering
efforts.

10. **Community Engagement**: Engage with the prompt
engineering community to share insights, exchange ideas,
and learn from others' experiences. Collaboration can lead
to new approaches and best practices in prompt design.

The prompt response may vary. ChatGPT will sometimes give
radically different answers even if you input the exact same prompt..
Therefore, your response may look very different especially when it
comes to the code it generates. It is important to remember that the
response you receive will be the same at heart but may and
probably will differ. As can be seen, prompt engineering is a skill,
and it’s an iterative process. The best way to interface with ChatGPT
is to approach it the same way you would have a conversation with
a living person.

The key to prompt engineering is detail; you want to add sufficient
detail the same way you would with a living person. The more

information you can give the system, the better your responses are
going to be. For example, consider the following prompt:

What are the basics of prompt engineering, limit the
response to the five most important.

This prompt asks ChatGPT to give the basics of prompt engineering,
but we added the extra detail of only wanting the top five most
important features of prompt engineering. The response to the
prompt is the following:

Certainly! Here are the five most important basics of
prompt engineering:

1. **Clear Objective**: Clearly define the goal or desired
outcome of the prompt to guide the model's response
effectively.

2. **Keyword Selection**: Choose relevant keywords or
phrases that direct the model towards the desired task or
topic.

3. **Clarity and Simplicity**: Craft prompts that are easy
to understand and free from ambiguity to ensure accurate
responses from the model.

4., **Contextualization**: Provide necessary context or
background information if required to help the model
generate appropriate responses.

5. **Iterative Improvement**: Continuously refine and
adjust prompts based on the model's responses,
experimenting with variations to optimize performance over
time.

This prompt produced a similar result; however, the key points were
a little more targeted.

Learning how to produce quality prompts is a lot like producing
quality Google searches. When you're first learning how to
effectively google things, you stumble around until you find your

own unique way to query the search engine. The same can be said
with prompt engineering. It'll take some time and a little practice to
get used to using the system, but once you do, you'll have a very
powerful tool at your disposal.

The same can be said for engineering prompts that produce
workable software. In the next section, we're going to explore
writing a few prompts that will produce workable code that we can
plug into cobesys.

Producing workable code with
ChatGPT

As stated before, code from ChatGPT may need a little massaging
for it to compile and run. A part of this stems from the way prompts
are written, while some of it is due to the way the system was
trained. To see the type of code that ChatGPT produces, let’s ask it
to create a program that can count from 1 to 10. To do this we're
going to use the following prompt:

Write an IEC 61131-3 Structured Text program that can count
from 1 to 10.

After running the prompt, ChatGPT is going to return something like
the following:

PROGRAM CountingFromlTolO
VAR

count : INT := 1; (* Counter variable *)
BEGIN

WHILE count <= 10 DO

(* Output the current count *)
(* Replace this line with your output method
depending on your PLC *)
// For example: Display (count) ;
(* Increment the count *)
count := count + 1;
END WHILE;
END PROGRAM;

As we can see right off the bat, the generated script will produce
code that cannot be copied and pasted into cobesys. We have some
odd keywords that are not necessary, such as the exp_proGram and
BEGIN keywords. If you copy and paste in this code, you're going to
get something akin to the output seen in Figure 17.1:

BEGIN

]n'HILE count <= 10 DO

{* Qutput the current nt
Bamlamra + T P - ¥ oy e s Ras| = BT/

| Madl - - - - MU L Al L
(* Incr=m=nt the count *
count := count + 1;

EM{ﬁHHB:

END PROGRAM:

g g e o B

Figure 17.1 — Errored-out ChatGPT-generated code

The red lines mean there are errors in the program. If you hover
over the erroneous commands, you will see that the Becin keyword
is not identified; in other words, it does not exist. This means that
we need to do some massaging to make this work. The first thing
we need to do is declare the count variable the system gave us, like
the following:

PROGRAM PLC PRG
VAR

count : INT := 1; (* Counter variable *)
END VAR
Once you have that variable implemented, you can move on to
implementing the main logic, which is the following:

WHILE count <= 10 DO
count := count + 1;
END_WHILE;

In this example, we gutted out the BeciN and END PROGRAM

commands as well as the comments. In all, when the program is
fully implemented, it should look like Figure 17.2:

£] PLC_PRG X
1 PROGRAM PLC PRG
= 2 VAR
3 count : INT := 1; (* Counter wvariable
4 END VAR

= 1 WHILE count <= 10 DO
2 count := count + 1;
END WHILE;

Figure 17.2 — Modified ChatGPT code

When this program is run, it should produce the output seen in
Figure 17.3:

£] PLC_PRG X

Device.Application.PLC_PRG

Expression Type Value Prepar.. Address Comm...
@ count INT 11 Counter...

Figure 17.3 — Modified ChatGPT output code

Notice that the value counted to 11, not 10 as we wanted. This
means that more modifications would be needed to make the
program run as intended. We could fix this by having the system
regenerate the code or fix it manually.

NOTE

This is where prompt tuning would normally come into play. A dedicated prompt
engineer would rewrite the prompt until the system produced the correct code.

All in all, ChatGPT did produce code that was usable; we just had to
modify it a little to make it work. If you think about it, we generated
several lines of code, variables, and so on with a single line of text.
Could we refine the prompt to produce 100% accurate code? Of
course! Is doing this worth the added effort? Probably not.

This example shows that GenAl needs to be thought of as an
assistant. Though the system didn’t produce code that we could just
plug in and run, it did produce code that could be easily tweaked to
run. In all, we did save some time. With some knowledge of how to
generate code with ChatGPT under our belt, we can move on to our
final project!

Final project

For our final project, we're going to use ChatGPT to produce a
program that will do the following:

¢ Set a message variable to 1ocked When the temperature is above

100 degrees

¢ Set a message Vvariable to warning when the temperature is
between 95 and 100 degrees

¢ Set a message Vvariable to sate when the temperature is below 95

degrees

Before you move on, try to write a prompt that can generate a
program.

Prompt and code
For this project, we could use something like the following prompt:

Generate a Structured Text PLC program that will set a
message to locked when a temperature variable is above 100,
set a message to warning with the temperature variable is
between 95 and 100, and set the message to safe when the
temperature is under 95.

The code that ChatGPT will produce is as follows:

PROGRAM TemperatureMonitoring
VAR

Temperature : REAL := 0.0; (* Temperature variable
*)

Message : STRING (20); (* Message variable *)

END_ VAR
PROGRAM TemperatureMonitoring

VAR
Temperature : REAL := 0.0; (* Temperature variable ¥*)
Message : STRING (20) ; (* Message variable *)
END VAR
(* Main program ¥*)
BEGIN

(* Check temperature conditions ¥*)
IF Temperature > 100 THEN
Message := 'Locked'; (* Set message to
'Locked' if temperature is above 100 *)
ELSTIF Temperature >= 95 THEN

Message := 'Warning'; (* Set message to
'Warning' 1f temperature is between 95 and 100 ¥*)
ELSE
Message := 'Safe'; (* Set message to
'Safe' if temperature is under 95 *)
END IF;

END PROGRAM;

Again, notice that the system produces code that will need to be
massaged for it to work. To make this code compile and run, we're
going to ignore everything but the 1r block and the variables. In
other words, the variable section should look like the following:

PROGRAM PLC PRG

VAR
Temperature : REAL := 0.0;
Message : STRING(20) ;

END VAR

The main body of the program should look like this:

IF Temperature > 100 THEN

Message := 'Locked';
ELSIF Temperature >= 95 THEN
Message := 'Warning';

ELSE

Message := 'Safe';
END IF;

Run the program and type in the value 101, and you should get the
output seen in Figure 1/.4-

|5) PLC_PRG X
Expression Type Value Prepar.. Address Comm..
$ Temperature REAL 101 Temper...
® Message STRING... ‘Locked' Messad...

Figure 17.4 — Locked case

As can be seen, the message is set to 1ocked, as expected. Next, we
can try for a warning message by inputting 96 for the Temperature
variable. Figure 17.5 shows that the message is set correctly:

5] PLC_PRG X

Device Application.PLC_PRG

Expression Type Value Prepar... Address Comm..
® Temperature REAL 96 Temper...
® Message STRING... 'Warning' Messaag...

Figure 17.5 — Warning case

Finally, we can check the safe case by entering 76 into the

Temperature Vad riable:

£] PLC_PRG X

Device Application.PLC_PRG

Expression Type Value Prepar.. Address Comm..
$ Temperature REAL 76 Temper...
$ Message STRING.., 'Safe’ Messag...

Figure 17.6 — Safe case

As can be seen, all the cases work. This means with minor omissions
in the code, ChatGPT produced a working program.

Summary

In this chapter, we covered GenAl, ChatGPT, prompt engineering,
and more. We also explored how well ChatGPT produces code. In all
fairness, it produced code at the same level a junior PLC
programmer would. It's not bad code, but it did take some
massaging for it to work. As of now, and with the average prompt
engineering skill level of most people, ChatGPT cannot be a stand-in
for human programmers. In all fairness, a talented prompt writer
with lots of time and an optimized system could probably produce
grand code with the tool; however, for the average user, ChatGPT is
not going to be a fill-in anytime soon. The key takeaway here is that
ChatGPT is a tool. Just as a screwdriver is useless without a
carpenter, ChatGPT and other systems are going to be equally
useless without knowledgeable engineers driving. With the way the
technology currently is, it is far better to think of ChatGPT and other
Al systems as an assistant as opposed to an engineer.

By this point in the book, you should have a pretty good background
in computer science, ST, and general PLC programming. As we
conclude the book, the final chapter will be dedicated to putting
everything together for our final project!

Questions
1. What is NLP?
. What is GenAI?
. What is a prompt?

. What mindset should you have when developing a prompt?

2
3
4
5. What are the five main aspects of prompt engineering?
6. Will ChatGPT always produce 100% usable code?

7. What is the best way to think of GenAI?

8

. State your opinion as to whether or not GenAI will replace
human programmers.

Further reading
e ChatGPT as an Assistant for PLC Programmers:

https://www.packtpub.com/article-hub/chatgpt-as-an-assistant-

for-plc-programmers

e ChatGPT for Ladder Logic:
https://www.packtpub.com/article-hub/chatgpt-for-ladder-logic

https://www.packtpub.com/article-hub/chatgpt-as-an-assistant-for-plc-programmers
https://www.packtpub.com/article-hub/chatgpt-as-an-assistant-for-plc-programmers
https://www.packtpub.com/article-hub/chatgpt-for-ladder-logic

18

The Final Project — Programming a
Simulated Robot

Congratulations — you have made it to the final chapter! This chapter
is going to be the conclusion of our exploration into the basics of
PLC and Structured Text programming. This chapter is going to be
unique compared to the rest of the book in that it will be a
comprehensive project that will draw on the main topics that were
previously explored throughout this book. This means that a solid
understanding of the rest of the book is going to be necessary to
follow along. So, if you skipped to the end, you need to go back and
explore the rest of the book before tackling this project.

This project is going to explore programming a simulated robot. In
modern automation, more and more robots are being designed to
interface directly with PLCs. This project is going to be a very simple
programming scenario that one could face in the real world. Keep in
mind that the code we build could be massaged enough to control
an actual robot; this project is going to be a simulated example.

In automation, robots are pivotal pieces of equipment. One common
application for robots is to sort parts. For example, many factories
will integrate a robot into a machine that can sort parts, as we
explored previously. The robot will move to a certain point, tag

certain parts with a sticker, and send them down their respective
lines to be rejected, reworked, or packaged. For our final project, we
are going to create a simulated robot that can do this.

To accomplish this, we're going to break this chapter down into the
following sections:

¢ Defining the scope of the project

e Defining the project’s requirements

e Designing a flowchart to describe the overall process
e Designing pseudocode for the project

Finally, we're going to round out the chapter by implementing and
testing the code for our simulated robot.

Technical requirements

To complete this chapter, you will need a working copy of CODESYS
and a ChatGPT account. The code for this chapter will be available at
the following URL:

https://github.com/PacktPublishing/PLCs-for-Beginners

This chapter will include most of what we explored in the previous
chapters. This means it is advisable that you fully read and
understand the material presented throughout the book. Of all the
material this project will focus on, program design, flow control
(mostly zr and cask statements), and sorting.This chapter will also

draw heavily on prompt engineering from the previous chapter.

https://github.com/PacktPublishing/PLCs-for-Beginners

Project scope

Recently, we have been tasked with creating an automation system
that can integrate a robot into a sorting system. The system will be
based around a robot; the system will sort parts if the largest part is
4 mm and the smallest is 3 mm, then the robot will tag the parts as
acceptable and send them for packaging. If the largest part is
between 4 mm and 4.5 mm and the smallest part is between 2 mm
and 3 mm, the robot will tag them for rework and send them down
the rework line. Any parts that do not meet either of these
requirements will be tagged for recycling and sent down the recycle
line.

The scope of this project is clear in what we need to do. We can
easily build our requirements off of this scope. So, before you
proceed, try to lay out the requirements on your own. When you're
done, you can move on and compare your requirements to the
actual requirements!

Project requirements

This system is going to have two parts that will work in unison: one
is the robot and the other is the sorter. The sorter will need to sort
the parts from least to greatest, and the robot will need to measure
the smallest and largest parts. Once the parts are measured, it will
tag the lots and send them down the proper line. This means we can
set the following requirements:

e The sorter will need to sort all parts in an incoming lot from least
to greatest

e Each lot will contain five parts
e The robot will need to measure the parts

e If the largest part is 4 mm and the smallest is 3 mm, the
robot will tag the part for packaging

e If the largest part is between 4 mm and 4.5 mm and the
smallest part is between 3 mm and 2 mm, then the robot
will tag the parts for rework

o If the largest part exceeds 4.5 mm and the smallest is
under 2 mm, then the robot will tag the parts for
recycling and send them for recycling

o If the part is tagged for packaging, send it down line 1

o If the part is tagged for rework, send it down line 2

o If the part is tagged for recycling, send it down line 3

e The system will need to reset itself and prepare for the next run
o Keep track of the number of rejected, packaged, and reworked

orders

These are the high-level requirements. These requirements should
be good enough for us to design a system to complete the task.
Therefore, the next step is to flowchart the process.

Flowchart for the system

For this section, the first step in implementing a quality system is to
first design a system flow based on the requirements. We can
graphically represent this process in Figure 18.1. The process
represented by the flowchart is straightforward and nearly mirrors
the requirements. The process will start with sorting the parts from
greatest to largest. After the parts are sorted, the robot will measure
the largest and smallest parts. The system will then check the part
range; if the parts are determined to be 4 mm and 3 mm for the
largest and smallest part respectively, the robot will send them down
the packaging line. If the parts are less than 4.5 but larger than 4
mm for the largest and are less than 3 mm but more than 2 mm for
the smallest, the part will be tagged as needing rework and sent
down that line:

Sort Parts

r

Measure Smallest]

Y

Measure Largest

Largest Part =
4dmm AND Smallest
Part = 3mm

Largest part between
(4mm and 4.5mm)
and Smallest between
(83mm and 2mm)

Tag Package

—

Have robot send

down Package line ™

Increment number|
of packaged parts

Tag reword

Have robot send
down rework line

Increment number
of reworked parts

h

Tag recycle

" down recycle line

Have robot send

| |Increment number| |

of recycled parts

Y

Restart Process

Figure 18.1 — System process

From the preceding diagram, this system is a great candidate for a

state machine. The next step in designing the system is to work out
the pseudocode.

Designing the pseudocode

The following pseudocode can be used as a basis for the code:

Counter (increment)
If start = True Then
CASE

1:

2

3:

4

//sort parts
Use bubble sort to sort parts
Robot position = "home pos"
set case 2
//measure parts
Direct robot to measure parts
Robot position = "measure rack"
set case 3
//tag parts
Robot position = "tag position"
If largePart = 4mm AND smallPart = 3mm Then
Tag part for package
Else if largePart (between 4.5mm and 4mm) OR
SmallPart (between 3mm and 2mm) Then
Tag part for package
Else
Tag for recycle
Set case 4
//send down line
If tag = package Then
Send to package line
Increment packaged number
Else if tag = rework Then
Send to rework line

Increment rework number
Else if tag = recycle Then
Send to recycle line
Increment recycle number
Robot position = "move package"
Set case b5:
5: //restart
Start = false
Robot position = "home"
Set case 1

This pseudocode will provide a quality roadmap for our working
program. To prevent the program from running continuously, we
embedded the state machine in an 1 block that is controlled by a
start variable. This variable will simulate a button that an operator
will press to start the process. To keep track of the number of
processes run, we're going to use a ctu instruction to keep track of
that.

The only code that could be tricky to implement is the bubble sort
algorithm that we explored in Chapter 14. However, to make things

easier, we're going to have ChatGPT implement that algorithm for
us. Now that we have a design for our process and our program, we
can move on to implementing the code!

Implementing the program

The first step on the road to turning our designs into a working
program is to start with getting the code for the sorting algorithm
ready. As stated before, we're going to use ChatGPT to quickly
generate code for the sorting algorithms.

Using ChatGPT to implement bubble sort

The pseudocode stated that the sorting algorithm we are going to
use is the bubble sort algorithm. As was explored in Chapter 14, the
bubble sort algorithm isn’t necessarily hard to implement, but it can
be tedious. So, to speed things along, we're going to use ChatGPT to

generate code for us.

Before using the following prompt, try to design the prompt on your
own to get a bubble sort algorithm. To generate our bubble sort
algorithm, we're going to use the following prompt:

Generate a bubble sort algorithm in Structured Text for an
array with five elements.

This prompt will produce the following code:

PROGRAM BubbleSort

VAR
i, j, temp : INT;
arrayToSort : ARRAY[1..5] OF INT := [5, 3, 1, 4,
2]; (* Example array to be sorted *)
END VAR
(* Bubble sort algorithm *)
FOR 1 := 1 TO 4 DO
FOR j := 1 TO (5 - i) DO
IF arrayToSort[]j] > arrayToSort[]j + 1] THEN
(* Swap elements ¥*)
temp := arrayToSort[]j];
arrayToSort[j] := arrayToSort[j + 1];
arrayToSort[] + 1] := temp;
END IF;
END FOR;

END FOR;

The only things we need to change are the data types of the array
variable and the temp variable. Since the requirements state that
there is one condition that requires decimal values, we need to
change those values to rear. The only thing that will need to be
modified is the values in the array. To use this code, all we must do
is use the variables and pass that labeled bubble sort algorithm into
the first case in the case statement. With the bubble sort portion of
the program squared away, we can move on to the code
implementation, starting with the variables.

Challenge

Notice that ChatGPT generated a code block that sorted integers.
For our purposes, this is fine because we can easily modify the code
to fit our needs. However, ChatGPT can also easily generate the
correct code with minor tweaks to the prompt. As a challenge,
rewrite the prompt to accommodate the decimal values that will be
needed.

Final project variables

This program will require the following variables:

PROGRAM PLC PRG

VAR
//start process
start : BOOL := FALSE;
//robot pos
robotPos : WSTRING;

//state of the process

processState : INT;
//run counter

partRun : CTU;
partRunCount : INT;

//smallest

smallestPart : REAL;
largestPart : REAL;

//tag

tag : WSTRING;

//1line

line : WSTRING;

//parts stats
numOfRecycledParts : INT := 0;
numOfReworkedParts : INT := 0;
numOfPackagedParts : INT := 0;

//bubble sort vars
i, j : INT;
temp : REAL;
arrayToSort : ARRAY[1..5] OF REAL := [3, 3, 3, 4, 3]1;
END VAR

The variables’ functions are noted in the source code. This variable
list also includes the variables that were generated with ChatGPT
with their modified data type. After you implement the variables, you
can move on to implementing the logic.

Main program logic
The main program logic should look like the following:

partRun (CU := start);
partRunCount := partRun.CV;
IF start = TRUE THEN
CASE processState OF
1: //sort
robotPos := "home pos";
FOR 1 := 1 TO 4 DO

FOR j := 1 TO (5 - i) DO
IF arrayToSort[]J] > arrayToSort[] +
THEN
(* Swap elements *)
temp := arrayToSortl[j];
arrayToSort[j] := arrayToSort|[j

arrayToSort[] + 1] := temp;
END IF;
END FOR
END FOR
processState := 2;
2:// measure parts
robotPos := "measure rack";
smallestPart := arrayToSort[l];
largestPart := arraytoSort[5];
processState := 3;
3:// tag parts
robotPos := "tag position";
IF largestPart = 4 AND smallestPart = 3 THEN
tag := "Package";
ELSIF (largestPart > 4 AND largestPart < 4.5)
(smallestPart < 3 AND smallestPart > 2) THEN
tag
ELSE
tag
END IF
processState := 4;
4: //send down line
IF tag = "Package" THEN
line := "Package Line";
numOfPackagedParts := numOfPackagedParts

"Rework";

"Recycle";

ELSIF tag = "Rework" THEN
line := "Rework Line";

1]

+

OR

+

numOfReworkedParts := numOfReworkedParts +

ELSIF tag = "Recycle" THEN
line := "Recycle Line";

numOfRecycledParts := numOfRecycledParts +

END IF

robotPos := "move package";
processState := 5;

5: //restart
start := FALSE;
robotPos := "home";
processState := 1;

END CASE

END IF

This code closely mirrors the pseudocode. As stated before, this
overarching architecture utilizes a state machine, which is
represented in the case statement. The whole system is dependent
on the start variable, which simulates a button press by the
operator. When this variable is toggled to True, the number of runs
represented by the partruncount variable will increase by one. As

each subprocess, such as the tag or measure process, finishes, the
processState variable will also change to the next phase in the

process. With the code and logic of how the program was
established, we can move on to testing it.

Testing the program

For the very first test run, we're going to test the package
functionality. For this, we can use the array we set in the variable
section of the code.

Testing the packaging function

For this test, simply set start t0 True and processstate t0 1:

Device.Application.PLC_PRG

Expression Type Value Prepar.. Address Comm...
 start BOOL start pr..
robotPos WSTRING "home™ robot pos
processState INT 1 state of ...
+ partRun cTu fun cou...
partRunCount INT 1
smallestPart INT 3 smallest
largestPart INT 4
$ tag WSTRING "Package” tag
line WSTRING "Package Line” line
numOfRecycledParts INT 0 partsstats
numOfReworkedParts INT 0
$ numOfPackagedParts INT 1
P i INT 5 bubble s...
®] INT 2 bubble s...
$ temp INT 4 bubble s...
+ @ arrayToSort ARRAY ..

Figure 18.2 — Packaging output

As can be seen in Figure 18.2, the tag and line are both correct.
That is, they are both the package line and tag. Another important
attribute is partruncount. This value started off at o and was
increased to 1 as expected. Finally, we can move on to the robotpos
variable, which says nome. This means that a theoretical robot resets
itself and is not waiting for its next run. In all, the packaging
functionality is working as expected, so we can now move on to test
the rework functionality of the machine!

Testing the rework function

To test this feature, we're going to use the following array:

arrayToSort : ARRAY[1..5] OF REAL := [2, 2, 3, 4.4, 3]1;

When you run the program, ensure you log in with download, and
you should be met with the following:

Device Application.PLC_PRG

Expression Type Value Prepar.. Address Comm...
$ start BOOL start pr...
robotPos WSTRING "home” robot pos
processState INT 1 state of ...
* @ partRun CTu run Cou...
$ partRunCount INT 1
smallestPart REAL 2 smallest
largestPart REAL 4.4
P tag WSTRING "Rework” tag
line WSTRING "Rework Line" line
$ numOfRecycledParts INT] partsstats
numOfReworkedParts INT 1
numOfPackagedParts INT 0
P i INT g bubble s...
(I INT 2 bubble s...
$ temp REAL 44
+ § arrayToSort ARRAY ..

Figure 18.3 — Rework functionality

As can be seen in Figure 18.3, our part sizes triggered the robot to
send the part down the rework line. This is the expected behavior,
which means we can move on to testing the final functionality: the
recycle functionality!

Testing the recycling function

The first step in testing the recycling functionality is to adjust the
array to trigger the recycling process. To do this, we can adjust the
array to the following:

arrayToSort : ARRAY[1..5] OF INT := [1, 1, 3, 4, 5];
As can be seen, in this array, the smallest number is 1 and the

largest is 5. This will trigger multiple cases in the 1r statements that

will trigger the recycling functionality. When the program is run,
ensure you log in with download, and you should be met with the

output shown in Figure 18.4:

Device Application.PLC_PRG

Figure 18.4 — Recycling line

Expression Type Value Prepar.. Address Comm...
@ start BOOL start pr...
robotPos WSTRING "home" robot pos
processState INT | state of ...
partRun CTuU run COU...
$ partRunCount INT 1
f smallestPart INT 1 smallest
$ largestPart INT 5
$ tag WSTRING "Recyde” tag
line WSTRING "Recyde Line" line
numOfRecycledParts INT 1 partsstats
numOfReworkedParts INT 0
$ numOfPackagedParts INT 0
P i INT g bubble s...
P INT 2 bubble s...
f temp INT 0 bubble s...
+ @ arrayToSort ARRAY

Figure 18.4 shows that the program is triggering the recycling
process as expected and the robot has reset itself for a new run!

Challenge

In terms of the simulated robot, there is a robotpos variable that will
track where the robot is in the process. This variable will change
rapidly, and the changes may not be noticed during runtime. For this
challenge, add in some pauses using a Tor instruction to add a
pause in between process changes.

Summary

Congratulations — you have now finished the book! By this point in
the book, you should have a good grasp of ST, which is something
that typical PLC programmers lack. You should also have a quality
grasp of computer science topics in general. This book has also
introduced you to new and rarely considered concepts in PLC
programming, such as generative AI (GenAI) and security
respectively.

The main takeaway from this book is that PLC programming is way
more than just basic Ladder Logic. Though Ladder Logic can get you
through the day in some jobs, your flexibility to meet new and ever-
increasing challenges that PLC programmers are either facing or will
face soon will require you to understand not only Structured Text but
also how to write safe, efficient, and malleable code. In all, this book
has been an introduction to those concepts. However, modern PLC

programming has much more to offer, such as the very rich world of
object-oriented programming (OOP). Therefore, it is highly
recommended that you continue your learning with the second part
of this book, Mastering PLC Programming — The Software
Engineering Survival Guide to Automation Programming, which will
take the concepts that you learned here, greatly expand on them,
and introduce you to what is the next generation of automation
programming.

Assessments

Chapter 1

1. What are three use cases for a PLC?

There are many uses cases; however, common uses cases are as
follows:

e Streetlights

e Amusement parks

e Factories

e Cranes

e Nuclear reactors

e Space launch systems

e Dams

2. Can a PLC be used in a space launch system?
Yes.

3. Why is computer science important to an automation
programmer?

Computer science is the study of writing software for digital
systems such as PLCs and other devices. Therefore, it can
improve the quality of your PLC code!

4. What are two use cases for a microcontroller?

e Toys

e Consumer electronics

. Name three emerging technologies for industrial automation.
¢ Cloud computing

e IoT

e Al/Machine Learning

. What is computer science?
The study of computation such as information processing.

. Why should automation programmers care about computer
science?

Computer science can help PLC programmers write safer, faster,
and more effective software.

. Name three common microcontrollers.
e PICs
e AVRs

e Arduinos

. What are some common microcontroller programming
languages?

There are many like:
e The Arduino programming language

e A BASIC dialect

e A C dialect

Chapter 2

1. Name three types of PLC modules.

There are many types of modules such as:

e A CPU module

A power supply

A analog input

A digital input

A chassis

A safety variant of any of these

2. What is the difference between a regular PLC module and a
safety module?

A safety module is designed to fail gracefully.
3. What is a stepper motor?

A motor whose angle is controlled by pulses.
4. What is a servo motor?

A closed loop motor.

5. How many pulses are required to move a stepper 180 degrees if
the resolution is 1.8?

100.

10.

11,

12,

13.

. What is a motor encoder?

A device that gives positional feedback.
What is a motor drive?

A device that sends control signals to the motor.

. What is the difference between an analog module and a digital

module?

An analog module will take in or send out a range of values. A
digital module will only produce a full on or fully off condition.

. What is a discrete module?

A module whose input or output is either fully on or fully off.
What is a BOM?

Bill Of Material.

What type of module should an E-Stop be wired into?
Safety module.

What is an analog input?

An I/O module that takes a range of signal inputs usually from
temperature, pressure, weight, and various other sensors.

What is a discrete input?

A digital input.

Chapter 3

1.

What is the difference between a compiler and an interpreter?

A compiler will translate the code base all at one time and find
errors before the program can run. An interpreter will translate a
program line-by-line.

. What is IEC 61131-37?

A standard that governs the programming languages for
compliant PLCs.

. What is a machine instruction?

Typically defined as an instruction that a family of CPUs use to
carry out tasks.

. What is a programming paradigm?

A way in which code is architected and implemented. Examples
are object-oriented, procedural, and so on.

. Does IEC 61131-3 support OOP?

Yes.

. What is OOP?

Object-Oriented Programming.
Is IEC 61131-3-compliant code always portable between devices?

No.

8. Write an algorithm for withdrawing $20 from an ATM.
A. Enter credit card
B. Enter pin number
C. Press withdraw button
D. Input $20
E. Take money from ATM
F. Put money in wallet

G. Walk off

9. What is a language translator?

A program that translates human-readable code into machine
readable instructions.

10. What are the two types of language translators explored so far?
o Compiler

o Interpreter

11. What are the languages that the IEC 61131-3 supports?

e Structured Text

Sequential Function Charts

Ladder Logic

Instruction List

Function Block Diagram

12. In what direction does a program flow?
Top to bottom.
13. What is syntax?
The grammar of a programming language
14. What are keywords?

Reserved words that trigger actions when coupled with the
correct syntax.

Chapter 4

1. How does an SSD work?

SSDs use flash memory to store data.
2. What is @ memory address?
A computer readable name for a location in memory.
3. What is an example of an obsolete storage device?
A floppy drive.
4. Name two modern storage devices.
e An SSD drive
e A USB drive

5. What is cloud storage?

Computer storage the is usually offered by a third-party that
utilizes the internet as a transfer medium.

6. What are two drawbacks to cloud storage?

e Requires a connection to the storage medium (typically
an internet connection)

e Can be costly

7. What is a memory block?

A unit of computer memory

10.

11,

12,

13.

14,

. What is volatile memory?

Memory that will lose data when power is withdrawn from it.

. What is non-volatile memory?

Memory that will not lose data when power is withdrawn from it.
What kind of memory is ROM?

Non-volatile memory.

What kind of memory is RAM?

Volatile memory.

What is storage?

Long term retention of data.

What does RAM stand for?

Read Access Memory

What does ROM stand for?

Read Only Memory.

Chapter 5

1. What is a flowchart?

A graphical representation of a program’s flow.
2. What is pseudocode?

A language-based representation of a program using common
language semantics.

3. What are the main differences between pseudocode and
flowcharts?

e Pseudocode is language based

¢ Flowcharts are graphical

4, List three programs that can be used to write pseudocode.
A programmer could use:
e Microsoft Word
e Notepad

e Notepad++

5. List three programs that can be used to draw flowcharts.
e Visio
e Draw.io

e Flowgorithm

6.

10.

Why use a flowchart?
Its graphical nature can help:
¢ Visualize the flow of the program
e Help find redundancies in the program

e Help find pinpoints in the program

Can you draw flowcharts by hand?

Yes.

. What is a common interview technique that requires candidates

to draw a design on a whiteboard?

Whiteboarding.

. What are the two functions of the diamond symbol in a

flowchart?

e Though it will vary from program to program a diamond
symbol can represent an 1r statement or a loop.

e For the remainder of this book a simple square will be
used to alleviate confusion with 1r statements.

Design a robot stop system that sequentially turns off all the
systems we turned on in the final project.

There is no right or wrong answer as this will vary from
programmer to programmetr.

Chapter 6

1. Solve the following equation: (A + B) + AwhereA=1and B =
0.

1.

2. Write the truth table for question 1.

A B (A+B) + A
1 1 1
1 0 1
0 1 1
0 0 0

3. What is the truth table for the anp operator?

A B Output
1 1 1
1 0 0

0 0 0

4. What does 0 represent?
Off or false.
5. What does 1 represent?

On or true

Chapter 7

1.

What are two programming languages that are similar to ST?

In terms of PLC languages, the closes one would be Instruction
List. Outside of PLC languages, one could say C/C++, Java, C#,
Visual Basic, Ada, and so on.

. What are the two sections of the prc_pre file?

e The variable section

e The logic sections

. Why would you use ST over LL?

ST provides and easy to use read interface that makes following
the flow of a program much easier and can require less overall
code.

. What does the vaiue column represent?

It shows the current value a variable is set to.

. What is the process to run a PLC program in CODESYS?

A. Put CODESYS in simulation mode.
B. Click the login button.

C. Press the play button.

Chapter 8

1. What data type is used to store whole numbers?

INT

2. What is a floating-point number?
A decimal number.

3. What data type is used to store a floating-point number?
REAL O LREAL

4. What data type would you use to store the result of 3/2?
REAL O LREAL

5. What is a strongly typed language?

A language that evaluates data types before an operation is
preformed.

6. What is a data type?

The type of data a variable can hold. For example, a whole
number or string of characters.

7. What is a weakly typed language?

A language that does not evaluate data types before operations
are preformed .

8. What is a dynamically typed language?
A language that figures out the data type for you.

9. What is a statically typed language?

A language that requires you to explicitly declare the data type of
a variable.

10. Is CODESYS dynamically or statically typed?
Statically typed.

Chapter 9

1. What does the floor function do?

Return the next lowest whole number.
2. What is the ABS of -3?
3

3. What is the aran function?

Inverse of the Tan function.

4. How would you write a program that can calculate a quadratic

equation?

PROGRAM PLC PRG

VAR
a : INT;
b : INT;
c : INT;
rootl : REAL;
root2 : REAL;
END VAR
rootl := ((-1 * b) + SORT(EXPT (b,2) - (4*a*c))) /
root2 := ((-1 * b) - SORT (EXPT (b,2) - (4*a*c))) /

5. How would you write a program that can calculate 4 to the
power of 3?

EXPT (4, 3)

6. What is the order of operations for a program?

Parentheses, exponents, multiplication, division, addition, and
subtraction.

7. What is the assignment operator?

Chapter 10

1.

What is a function block?

A digital blueprint that is equivalent to a class in a general-
purpose programming language.

. Can a function live in a function block?

Technically, no. Methods which are equivalent to functions live in
function blocks.

. Do all PLC programming systems support function blocks?

Generally, yes.

Name three common function blocks in CODESYS.
® TON
¢ TOF

¢ CTU

. Do all function blocks have the same inputs and outputs?

No.

. What is the main difference between a TON and a TOF timer?

TON on hold a bit off for a given amount of time while a TOF will
be on for a given amount of time.

What is the main difference between a timer and a counter?

A counter will increment with a rising edge while a timer will
toggle a bit after a give period of time.

Chapter 11

1.

What direction does a program always flow in?

Top to bottom.

. When will an zr statement run?

When the logical expression it contains evaluates to true.

. Will an 1r statement be executed if the condition evaluates to

false?

No.

. What is a state machine?

A programming structure where an input dictates a machine
state.

. What is a common way to implement state machines?

A cask statement.

. What is a case statement?

A cask statement is an easy way to implement a series of
branches in a program.

What is the case statement syntax?

CASE input OF
0:
//code
1:
//code

10.

11,

12.

13.

2
//code
END CASE

. Can you have an 1r statement inside of a case statement?

Yes.

. What is the major difference between an 1r and a case

statement?

An 1r statement can only evaluate one condition while a case
can evaluate many.

How can flowcharting help with flow control?

Allows you to graphically depict the flow of a program and its
many branches.

What is the difference between “less than or equal to” or just
“less than” instructions?

Less than or equal to will evaluate to true when the value on the
left is less than or equal to the number on the right of the
symbol. Less than will only evaluate to true when the number on
the left is less than the number on the right of the symbol.

What symbol is used to test for “not equals” in an 1r statement?

<>

What symbol is used to test for “greater than” in an 1r
statement?

14. What is the minimum amount of code needed for an 1F
statement?

IF <expression> THEN

//code
END IF

15. What happens to the code in an zr statement when the
expression evaluates to true?

The code embedded in the 1r statement will run.

Chapter 12

1.

What is the difference between anp and or operators?

For the expression that contains the anp operator to evaluate to
true all conditions must evaluate to true. For the expression that
contains the or operator to evaluate to true only one condition
must evaluate to true.

. What is the not operator used for?

Use to invert the logical expression’s output.

. What is a nested 1r statement?

An 1F statement inside of another 1F statement or case
statement.

. What's the difference between erse and erLs1F statements?

The eLsezr is like an extra 1F statement. The ELsE is a general-
purpose conditional branch that will execute when all other 1F
and eLse1F statements evaluate to false.

. Can a case statement use an eLse statement?

Yes.

. Can an eLsk statement accept a logical expression?

No.

What is the truth table for an xor statement?

Output

Chapter 13

1. What type of loop is a waiLE loop?

Precheck loop.

2. What type of loop is a For loop?
Counter loop.

3. What type of loop is a repeaT loOp?
Post check loop.

4. What is a post check loop?

A loop that is guaranteed at least one iteration. Implemented

with REPEAT.
5. What is a precheck loop?

A loop that is not guaranteed an iteration. Implemented with

WHILE.
6. What is a counter loop?

A loop that will iterate a given number of times. Implemented
with For.

7. How many iterations are you guaranteed with a warLe loop?
None.
8. How many iterations are you guaranteed with a rRepeaT loop?

1.

9. When will a For loop terminate?
When a certain number of iterations have been completed.
10. What does the exiT command do?
Prematurely terminates a loop.
11. Does the ror loop use a custom logic statement to terminate?

No.

Chapter 14

1.

What is an algorithm?

A predefined set of computer instructions that complete a specific
task.

. How is pseudocode used with algorithms?

Pseudocode is often used to present an algorithm in a language
agnostic manner.

. What does O(1) mean?

Constant time complexity.

. What is a more efficient time complexity: O(n*log(n)) or O(n"2)?

O(n*log(n))

. How does merge sort work?

Merge sort uses a divide and conquer methodology.

. Which is more efficient: bubble sort or merge sort?

Merge sort.

For an array (0..238), how do you retrieve the first element in
the array?

Access element 0.

. For an array (1..299), how do you retrieve the last element in the

array?

Access element 299.
9. How do you calculate the number of elements in an array?
SIZEOF (Array)/SIZEOF (Array[1])
10. Name three sorting algorithms.
e Bubble sort
e Merge sort

e Insertion sort

11. Name three areas where an algorithm can be used.
e Al/Machine Learning
e Security
e Sorting

e Encryption/decryption

Chapter 15

1.

Is the activation code in the final project a weak password?

Yes.

. What would be a better activation code for the final project?

Anything that would have 8 characters or more and contain
letters, numbers, and special characters. For example, a1ey7+2!.

. What is social engineering?

Usually, a link or electronic message meant to dupe an individual
into providing sensitive information.

. What is a brute force attack?

A password cracking attack that uses a program to try different
combination of characters to guess a password.

. What is a dictionary attack?

A password cracking attack that uses a program that reads from
a file to try out different passwords.

. What is an air-gapped system?

A network or computer that is not connected to outside networks
like the internet.

Should you air-gap a system?

When possible.

10.

11,

12,

13.

14,

. What are the triple As of security?

e Authentication
e Authorization

e Accounting

. What is a threat?

A potential danger in a program.
What is a vulnerability?
A weak spot in a program’s security.

If you find a USB drive, should you plug it into your network?
Why/why not?

No. The USB drive may contain malware that can load itself onto
the system.

Can a PLC be infected with malware?

Yes, but depending on the brand it may require a specialized
piece of malware.

Should you secure a PLC or the network the PLC is on?
Yes.

Should you store passwords in the PLC or HMI, considering
neither is attached to a network?

Varies. Typically, the HMI will be harder to access; however, you
can also store the password in a PLC.

15.

16.

17.

18.

19.

20.

What is an insider threat?

A person that is authorized to use a system or access data and
carries out nefarious actions knowingly or not.

What is a script kiddy?

Unskilled individuals that attempt to gain unauthorized access to
a network or system.

Who can be a hacker?
Technically, anyone that is a computer professional or enthusiast.
What is the difference between a hacker and a cracker?

A hacker is a computer enthusiast or professional while a cracker
is a person that attempts to gain unauthorized access to a
network or system.

What is a hacktivist?

A group of individuals that break into networks or systems for a
cause.

What is a nation-state attacker?

Usually, @a government or government agency with advanced
resources.

Chapter 16

1. What is a symptom of a bad power supply?

e Random reboots
e Random shutdowns
e Fluctuating power output

e Machine not turning on

2. What are a few tools you should have in your toolkit?
e Screwdrivers
e Pliers
e Thermal gun
e Cables
o Wire strippers
e Multimeter
o Wire crimps/strippers
e Flashlights

e Computer with necessary programming software installed
on it.

3. What does the ping command do?

It sees if the target device is responsive over the network.
4. What is a symptom of a network issue?
Can’t communicate with other devices on the network.
5. What is a possible symptom of a failed CMOS battery?
e Warning lights

Blinking lights

Wrong date/time

Beeping sounds

PLC shutdown

Error messages

6. What is version control?

Special software that allows you to keep different versions of a
program.

7. Name two benefits of version control.
Can be any of the following:
e Promote collaboration
o Keep code in a centralized connection
e Prevent the loss of older iterations of the code

e Prevent the loss of the current version of the code

8. What is print debugging?

10.

A debugging technique where you program messages throughout
the code base to see how far the program can execute and see
its current location.

. What is the difference between forcing and writing a value?

A variable this is written can be easily written over; thereby,
changing its value. A variable that is forced must be forced to
change its value, making it a more complex process.

How should you respond to broken software?

Gather information about the situation. Typically, the issue will
stem from another cause such as faulty hardware or an update.

Chapter 17

1. What is NLP?

Natural Language Processing.
2. What is GenAI?

Al systems that can generate content.
3. What is a prompt?

A query to the Al system that asks it to perform a task or answer
a question.

4. What mindset should you have when developing a prompt?

You should have a question framework in mind when developing
a prompt.

5. What are the five main aspects of prompt engineering?

For this question write a prompt and ask ChatGPT!
6. Will ChatGPT always produce 100% usable code?

Sometimes. Most of the time the code will need to be massaged.
7. What is the best way to think of GenAI?

As an assistant.

8. State your opinion as to whether or not GenAl will replace
human programmers.

State YOUR opinion!

Index

As this ebook edition doesn't have fixed pagination, the page
numbers below are hyperlinked for reference only, based on the
printed edition of this book.

.
ABS function 140, 141

exploring 237

Artificial Intelligence (AI) 252, 293, 294

authentication, authorization, and accounting (AAA)

accounting 256

automation

exploring, through computer science 6, 7
automation programmers

perspective, on computer science principles 7-10

automation programming 5, 6

B
backups 286

basic calculations 133

Big Q notation
exploring 243

Big O notation

complexities 242

Boolean equations

bubble sort

exploring 244

bubble sort, with ChatGPT
implementing, challenges 313
bytes 121

C

calibration

exploring 277

CASE statement

exploring 172

implementation 248, 249

color sorter derivate project

color and shape sorter logic 204, 205

exploring 203

color-sorting device

challenge 179

complex equations

computing 144

complex mathematical functions 138

ABS function 140, 141

computer science principles
automation programmers perspective on 7-10

control statements

designing 169

custom truth tables

creating 90-92

significance 252

distance between two points

calculating 144, 145

distance calculations

challenges 145

environmental issues

adverse impact of humidity on hardware 276

debris, damaging 275

exploring 275

erroneous software

corrupted software, exploring 278

exploring 277

EXIT keyword
exporting 221-223

symbols 60, 61

H
hackers 254

specified number of parts, creating with WHILE loop 229, 230

I

IF statement

checking, if two values are same 166-168

exploring 166

not equals operator, exploring 168, 169

syntax 166

insertion sort

exploring 245

K

keylogger 261

light toggling program
LL code 103, 104

logical expressions

exploring 165, 166

loops

counter loop 210

USB control, exploring 266
math calculations

order of operations 143, 144
math in ST 132

networks

bad behavior from 281

numbers

assigning 133

0]

order of operations

for math calculations 143, 144

OR operator 81, 84

exploring 198-200

P

Parentheses, Exponents, Multiplication, Division, Addition, and
Subtraction (PEMDAS) 143, 144

pascal casing 127

password crackers

defending against 262

password hacking

brute force attacks 260

phishing 258, 259

prebuilt function blocks 150

power supply issues

diagnosing 284

programmer

skills 40

pseudocode

loops, exploring 212, 213

REPEAT loop
at least one part, making with 228

exploring 219-221

rising and falling edges

exploring 153

S

safety modules 19

simulated robot

flowchart, for system 309, 310

simulated robot program

challenge 318

social engineering

exploring 258

bubble sort, exploring 244

challenges 245-247

temperature issues

diagnosing 284, 285

threat actors 254

time variables
exploring 156

TOF function block
exploring 158, 159

TON function block

exploring 156, 157

challenge 290

troubleshooting techniques

exploring 283

U

USB control

exploring 266

Vv

variable declaration, of rectangle’s perimeter

challenge 129

variables of triangle
code implementation 128
declaring 128

wear and tear
exploring 277

WHILE loop

implementing 218, 219

writing values

exploring, as troubleshooting technique 289

X

XOR operator
exploring 200, 201

<pAcKkD

packtpub.com

Subscribe to our online digital library for full access to over 7,000
books and videos, as well as industry leading tools to help you plan
your personal development and advance your career. For more
information, please visit our website.

Why subscribe?

Spend less time learning and more time coding with practical
eBooks and Videos from over 4,000 industry professionals

Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Fully searchable for easy access to vital information

Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book
published, with PDF and ePub files available? You can upgrade to the
eBook version at packtpub.com and as a print book customer, you
are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

http://packtpub.com/
http://packtpub.com/
mailto:customercare@packtpub.com

At www.packtpub.com, you can also read a collection of free
technical articles, sign up for a range of free newsletters, and receive
exclusive discounts and offers on Packt books and eBooks.

Other Books You May Enjoy

If you enjoyed this book, you may be interested in these other books
by Packt:

http://www.packtpub.com/

<packn

Industrial Automation
from Scratch

A hands-on guide to using sensors, actuators, PLCs,
HMIs, and SCADA to automate industrial processes

OLUSHOLA AKANDE

Industrial Automation from Scratch

https://packt.link/1800569386
https://packt.link/1800569386
https://packt.link/1800569386

Olushola Akande

ISBN: 978-1-80056-938-6

Get to grips with the essentials of industrial automation and
control

Find out how to use industry-based sensors and actuators
Know about the AC, DC, servo, and stepper motors

Get a solid understanding of VFDs, PLCs, HMIs, and SCADA and
their applications

Explore hands-on process control systems including analog signal
processing with PLCs

Get familiarized with industrial network and communication
protocols, wired and wireless networks, and 5G

Explore current trends in manufacturing such as smart factory,
IoT, AI, and robotics

<packt

Mastering

PLC Programming

A software engineering survival guide for PLC programming

M.T WHITE

Mastering PLC Programming

https://packt.link/180461288X
https://packt.link/180461288X
https://packt.link/180461288X

Mason White
ISBN: 978-1-80461-288-0

e Find out how to write PLC programs using advanced
programming techniques

e Explore OOP concepts for PLC programming

¢ Delve into software engineering topics such as libraries and
SOLID programming

e Explore HMIs, HMI controls, HMI layouts, and alarms
e Create an HMI project and attach it to a PLC in CODESYS

¢ Gain hands-on experience by building simulated PLC and HMI
projects

Packt is searching for authors like
you

If you're interested in becoming an author for Packt, please visit
authors.packtpub.com and apply today. We have worked with

thousands of developers and tech professionals, just like you, to help
them share their insight with the global tech community. You can
make a general application, apply for a specific hot topic that we are
recruiting an author for, or submit your own idea.

Share Your Thoughts

http://authors.packtpub.com/

Now you've finished PLCs for Beginners, we'd love to hear your
thoughts! If you purchased the book from Amazon, please click here

to go straight to the Amazon review page for this book and share

your feedback or leave a review on the site that you purchased it
from.

Your review is important to us and the tech community and will help
us make sure we're delivering excellent quality content.

Download a free PDF copy of this
book

Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print
books everywhere?

Is your eBook purchase not compatible with the device of your
choice?

Don’t worry, now with every Packt book you get a DRM-free PDF
version of that book at no cost.

Read anywhere, any place, on any device. Search, copy, and paste
code from your favorite technical books directly into your application.

The perks don't stop there, you can get exclusive access to
discounts, newsletters, and great free content in your inbox daily

Follow these simple steps to get the benefits:

1. Scan the QR code or visit the link below

https://packt.link/r/1803230932
https://packt.link/r/1803230932

https://packt.link/free-ebook/9781803230931

2. Submit your proof of purchase

3. That's it! We'll send your free PDF and other benefits to your
email directly

https://packt.link/free-ebook/9781803230931

	PLCs for Beginners
	Contributors
	About the author
	About the reviewers
	Preface
	Who this book is for
	What this book covers
	To get the most out of this book
	Download the example code files
	Conventions used
	Get in touch
	Share Your Thoughts
	Download a free PDF copy of this book

	Part 1: Basics of Computer Science for PLC Programmers
	Chapter 1: Computer Science Versus Automation Programming
	Technical requirements
	What is computer science?
	Why study computer science?

	What is automation programming?
	What is a PLC?

	Exploring automation through computer science
	How does computer science help automation programmers?

	Why should automation programmers care?
	Cloud technologies
	The internet of things
	Machine learning
	What does this mean for automation engineering?

	PLCs versus microcontrollers
	What are microcontrollers?
	Surface-level differences
	PLC and microcontroller programming languages
	Use cases

	PLC versus computers
	What is a computer?
	PLC versus computers

	Summary
	Questions

	Chapter 2: PLC Components – Integrating PLCs with Other Modules
	Technical requirements
	PLC types
	Common PLC modules
	Power supply
	Chassis
	CPU modules
	I/O modules
	Safety modules

	Sinking versus sourcing
	NPN versus PNP

	Sensors
	Motors and motor controls
	What is a motor?
	Open and closed-loop control systems
	Stepper motors
	Servo motors
	Encoders
	Motor drives

	Communication protocols
	What is a communication protocol, and what is it used for?

	Wiring diagrams
	Final project
	Specs
	BOM

	Summary
	Questions
	Further reading

	Chapter 3: The Basics of Programming
	Technical requirements
	Understanding what a program is
	What is the purpose of a program?
	Why use software over hardware?
	How to view software and hardware in a system
	Software is not a cure-all solution

	Understanding programming languages
	Syntax
	Translators
	Machine instruction
	Language paradigms

	Keywords
	Dos and don’ts of learning keywords and syntax

	Program flow
	Program iteration

	Exploring the IEC 61131-3 standard
	IEC 61131-3 pitfalls

	Final project
	Strategy

	Summary
	Further reading
	Questions

	Chapter 4: Unleashing Computer Memory
	Technical requirements
	What is memory?
	Memory
	Storage

	How computer/PLC memory and storage work
	HDDs
	SSDs

	Volatile versus non-volatile memory
	Volatile memory
	Non-volatile memory

	Memory addresses
	How memory works
	Computer memory – an analogy

	Common storage devices
	USB drives
	External hard-drives
	SD cards
	Cloud storage
	Obsolete storage devices
	Floppy drives

	Summary
	Questions
	Further reading

	Chapter 5: Designing Programs – Unleashing Pseudocode and Flowcharts
	Technical requirements
	What are pseudocode programs and flowcharts?
	Pseudocode
	What does pseudocode look like?
	Flowcharting
	What do flowcharts look like?

	Why use pseudocode and flowcharts in PLC programming?
	Why use pseudocode?
	Why use flowcharting?
	When to use one over the other?

	Tools needed for flowcharts and pseudocode
	Pseudocode tools
	Flowchart tools
	Whiteboarding

	Design exercises
	The quadradic equation
	The beer program

	Final project – Robot startup system
	Design requirements
	Design logic
	Wait sequence
	Pseudocode
	Flowchart

	Summary
	Questions

	Chapter 6: Boolean Algebra
	Technical requirements
	What is Boolean algebra?
	Boolean operators
	The basic operators
	The OR operator
	The NOT operator

	Boolean expressions
	Exploring NOT
	The OR operator
	The AND operator
	Operator laws
	Idempotent law

	Solving Boolean equations
	Examples

	Getting to know truth tables
	Basic operators

	Final project: Creating custom truth tables from scratch
	Row 1
	Row 2
	Row 3
	Row 4
	Final truth table

	Summary
	Questions
	Further reading

	Part 2: Introduction to Structured Text Programming
	Chapter 7: Unlocking the Power of ST
	Technical requirements
	What is ST?
	Area of a circle program in ST

	Why is ST important?
	ST versus LL
	Example 1 – The area of a circle program – LL
	Example 2 – Toggling a light

	What is CODESYS?
	Installing CODESYS
	A CODESYS exploration
	Exploring the PLC_PRG file

	The final project – Hello World
	Step 1 – Creating a new project!
	Step 2 – Code implementation
	Step 3 – Running the program!

	Chapter challenge
	Summary
	Further reading
	Questions

	Chapter 8: Exploring Variables and Tags
	Technical requirements
	What are variables/tags?
	Applications of variables

	Variables/tags under the hood
	Why use variables?

	Data types
	What is a data type?

	The IEC 61131-3 data types
	Bits and bytes
	Common data types

	How to declare variables
	Variable section of a file
	Declaring a variable
	Initializing a variable

	Variable naming
	Rules to naming a variable
	Naming conventions

	Final project – declare the variables of a triangle
	Code implementation
	Challenge – declare the variable for a rectangle’s perimeter

	Summary
	Further reading
	Questions

	Chapter 9: Performing Calculations in Structured Text
	Technical requirements
	Math in ST
	Assigning numbers
	Basic calculations
	Solution variable
	The four basic functions
	Basic operation demonstration

	Complex mathematical functions
	Square root function
	Exponent function
	ABS function

	Trigonometric functions
	Arc functions

	Order of operations for math calculations
	Computing complex equations
	Distance between two points

	Final projects
	Final project 1 – programming the perimeter of a rectangle
	Final project 2 – Pythagorean theorem

	Summary
	Questions
	Further reading

	Chapter 10: Unleashing Built-In Function Blocks
	Technical requirements
	What are prebuilt function blocks?
	Functions, function blocks, and keywords

	Function blocks under the hood
	What is a function block?

	Rising and falling edges
	Common PLC function blocks
	Counter function blocks
	Timer function blocks

	Final project
	Variables

	Summary
	Questions
	Further reading

	Chapter 11: Unlocking the Power of Flow Control
	Technical requirements
	Exploring what flow control is
	Exploring why flow control is important
	Exploring logical expressions
	Exploring the IF statement
	IF statement syntax
	Checking if two values are the same!
	Exploring the not equals operator

	Designing control statements
	Overdraft program

	Exploring the CASE statement
	State machines and CASE statements
	Implementing the state machine
	Flowcharting and CASE statements
	Real-world applications for the CASE statement

	Final project
	Requirements
	Program design
	Code implementation
	Final challenge

	Summary
	Questions

	Chapter 12: Unlocking Advanced Control Statements
	Technical requirements
	Nested control statements
	ELSE statements
	ELSIF statements
	Challenge

	Logical operators
	Exploring the OR operator
	Exploring the XOR operator
	Exploring the NOT operator

	Final project
	Requirements
	Variables
	Color and shape sorter logic
	Testing conditions

	Summary
	Further reading
	Questions

	Chapter 13: Implementing Tight Loops
	Technical requirements
	Exploring the different types of loops
	Counter loop
	Precheck loops
	Post check loops
	Infinite loops

	Exploring loops in pseudocode and flowcharts
	Exploring loops with pseudocode
	Representing a loop in a flowchart

	Implementing a FOR loop
	Implementing the WHILE loop
	Exploring the REPEAT loop
	Exporting the EXIT keyword

	Understanding nested loops
	Challenge – creating a behavior report

	Final project
	Design
	Code implementation
	Testing the program

	Summary
	Questions
	Further reading

	Part 3: Algorithms, AI, Security, and More
	Chapter 14: Sorting with Loops
	Technical requirements
	How to use this chapter
	What is sorting?
	Exploring what arrays are and how to use them!
	What is an array?
	Array elements
	Initializing an array
	Retrieving the number of elements in an array
	Why are arrays important for sorting algorithms?

	Exploring sorting algorithms
	What is an algorithm?
	What is a sorting algorithm?

	Algorithm efficiency metrics
	Exploring the Big O notation
	Exploring the Big Ω notation

	Common sorting algorithms
	Exploring bubble sort
	Exploring insertion sort
	Challenge – Merge sort

	Final project – cement bag sorter
	Requirements
	Analysis
	Implementation

	Summary
	Questions
	Further reading

	Chapter 15: Secure PLC Programming – Stopping Cyberthreats
	Technical requirements
	What cybersecurity is and why it’s important
	The basics of cybersecurity
	Vulnerabilities, threats, and risk
	Threat actors
	Exploring AAA
	Air-gapped systems

	Common cyberattacks
	Exploring information gathering
	Exploring social engineering
	Exploring password hacking
	Malware

	Attack prevention methods
	Stopping social engineering
	Defending against password crackers
	Password length
	Malware defense

	Final project – a PLC-based activation system
	Design

	Certifications
	Summary
	Questions
	Further reading

	Chapter 16: Troubleshooting PLCs – Fixing Issues
	Technical requirements
	Common causes of PLC issues
	Broken software
	Exploring environmental issues
	Understanding non-environmental issues

	Common hardware issues
	Exploring power supply issues
	Common PLC problems
	Bad batteries

	Exploring troubleshooting techniques
	The PLC toolkit
	Diagnosing power supply issues
	Diagnosing temperature issues
	Diagnosing networks
	Troubleshooting software
	The basics of troubleshooting software

	Final project
	Troubleshooting

	Summary
	Questions

	Chapter 17: Leveraging Artificial Intelligence (AI)
	Technical requirements
	What is GenAI?
	What is AI?

	What GenAI can’t do
	Reasonable expectations with GenAI
	What not to expect with GenAI
	What to expect when using GenAI

	The basics of prompt engineering
	Creating a prompt

	Producing workable code with ChatGPT
	Final project
	Prompt and code

	Summary
	Questions
	Further reading

	Chapter 18: The Final Project – Programming a Simulated Robot
	Technical requirements
	Project scope
	Project requirements
	Flowchart for the system
	Designing the pseudocode
	Implementing the program
	Using ChatGPT to implement bubble sort
	Final project variables
	Main program logic
	Testing the program

	Summary

	Assessments
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	Chapter 9
	Chapter 10
	Chapter 11
	Chapter 12
	Chapter 13
	Chapter 14
	Chapter 15
	Chapter 16
	Chapter 17

	Index
	Why subscribe?

	Other Books You May Enjoy
	Packt is searching for authors like you
	Share Your Thoughts
	Download a free PDF copy of this book

