

BIRMINGHAM—MUMBAI

TinyML Cookbook
Copyright © 2022 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored
in a retrieval system, or transmitted in any form or by any means,
without the prior written permission of the publisher, except in the
case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure
the accuracy of the information presented. However, the information
contained in this book is sold without warranty, either express or
implied. Neither the author(s), nor Packt Publishing or its dealers
and distributors, will be held liable for any damages caused or
alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information
about all of the companies and products mentioned in this book by
the appropriate use of capitals. However, Packt Publishing cannot
guarantee the accuracy of this information.

Publishing Product Manager: Devika Battike

Senior Editors: Roshan Kumar, Nathanya Dias

Content Development Editor: Tazeen Shaikh

Technical Editor: Rahul Limbachiya

Copy Editor: Safis Editing

Project Coordinator: Aparna Ravikumar Nair

Proofreader: Safis Editing

Indexer: Hemangini Bari

Production Designer: Shankar Kalbhor

Marketing Coordinator: Abeer Dawe

First published: April 2022

Production reference: 2290322

Published by Packt Publishing Ltd.

Livery Place

35 Livery Street

Birmingham

B3 2PB, UK.

ISBN 978-1-80181-497-3

www.packt.com

While the publisher and the author have taken every precaution to
ensure that information contained in this book is accurate, neither

http://www.packt.com/

the publisher nor the author assumes any responsibility for errors,
omissions, or damages to persons or proprieties from the use of the
information contained herein.

TinyML is a registered trademark of the TinyML foundation, and is
used with permission.

It is because of the source of support from my wife, Eleonora,
during the long nights of writing that I managed to complete
this unique journey. I dedicate this book to her, who believed in
this project from the very beginning.

Foreword
Without a doubt, the tech industry continues to have an ever-
increasing impact on our daily lives. The changes are as rapid as
they are constant and are happening all around us – in our phones,
cars, smart speakers, and the micro gadgets we use to improve
efficiency, wellbeing, and connectivity. Machine learning is one of the
most transformative technologies of our age. Businesses, academics,
and engineering communities continue to understand, evolve, and
explore the capabilities of this incredible technology, and are
unlocking the greater potential to enable new use cases across many
industries.

I am a product manager for machine learning at Arm. In this role, I
am at the center of the ML revolution that is happening in
smartphones, the automotive industry, gaming, AR, VR, and other
devices. It is clear to me that there will be ML functionality in every
single electronics device in the near future – from the world's largest
supercomputers, down to the smallest, low-powered
microcontrollers. Working in ML has introduced me to some of the
most brilliant and brightest minds in tech – those who challenge the

orthodoxies that exist in traditional industries, ask the tough
questions, and unlock new value through the use of ML.

When I first met Gian Marco, I could barely spell "ML," yet at that
time he was already a veteran in the space. I was astonished by the
breadth and depth of his knowledge and his ability to solve difficult
problems. Together with the team at Arm, he has worked to make
Arm Compute Library (ACL) the most performant library available
for ML on Arm. The success of ACL is unrivaled. It's deployed on
billions of devices worldwide – from servers to flagship smartphones,
to smart ovens.

When Gian Marco told me he was writing a book on ML, my
immediate reaction was "Which part?" The ML ecosystem is so
diverse, with many different technologies, platforms, and
frameworks to consider. At the same time, I knew that he was the
right person for the job due to his extensive knowledge of all aspects
of ML. Additionally, Gian Marco has an amazing way of explaining
things in a straightforward and logical manner.

Gian Marco's book demystifies the world of TinyML by guiding us
through a series of practical, real-world examples. Each example is
outlined like a recipe, with a clear and consistent format throughout,
providing an easy-to-follow, step-by-step guide. Beginning with the
first principles, he explains the basics of the electronics or software
techniques that will be used in the recipe. The book then introduces
the platforms and technologies used, followed by the ML – where
neural network models are developed, trained, and deployed on the
target device. This really is a "soup to nuts" guide. Each recipe is a

little more challenging than the last, and there is a nice mix of
established and nascent technologies. You don't just learn the
"how," you also get an understanding of the "why." When it comes
to edge devices, this book really does provide a panoramic view of
the ML space.

Machine learning continues to disrupt all aspects of technology and
getting started is a must for software developers. This book enables
quick onboarding through the use of readily available and
inexpensive technologies. Whether you are new to ML or have some
experience, each recipe provides a steady ramp of knowledge and
leaves enough scope for further self-development and
experimentation. Whether you use this book as a guide or a
reference, you will develop a strong foundation in ML for future
development. It will empower your team to get new insights and to
achieve new efficiencies, performance improvements, and even new
functionality for your products.

– Ronan Naughton

Senior Product Manager for Machine Learning at Arm

Contributors

About the author
Gian Marco Iodice is team and tech lead in the Machine Learning
Group at Arm, who co-created the Arm Compute Library in 2017.

The Arm Compute Library is currently the most performant library
for ML on Arm, and it's deployed on billions of devices worldwide –
from servers to smartphones.

Gian Marco holds an MSc degree, with honors, in electronic
engineering from the University of Pisa (Italy) and has several years
of experience developing ML and computer vision algorithms on
edge devices. Now, he's leading the ML performance optimization on
Arm Mali GPUs.

In 2020, Gian Marco cofounded the TinyML UK meetup group to
encourage knowledge-sharing, educate, and inspire the next
generation of ML developers on tiny and power-efficient devices.

About the reviewers
Alessandro Grande is a physicist, an engineer, a communicator,
and a technology leader with a visceral passion for connecting and
empowering humans to build more efficient and sustainable
technology. Alessandro is the director of product at Edge Impulse
and cofounded the TinyML Meetups in the UK and in Italy. Prior to
Edge Impulse, Alessandro worked at Arm as a developer evangelist
and ecosystem manager with a focus on building the foundations for
a smarter and more efficient IoT. He holds a master's degree in
nuclear and electronic physics from the University of Rome, La
Sapienza.

Daksh Trehan began his career as a data analyst. His love for data
and statistics is unimaginable. Various statistical techniques

introduced him to the world of ML and data science. While his focus
is on being a data analyst, he loves to forecast given data using ML
techniques. He understands the power of data in today's world and
constantly tries to change the world using various ML techniques
and his concrete data visualization skills. He loves to write articles on
ML and AI, and these have bagged him more than 100,000 views to
date. He has also contributed as an ML consultant to 365 Days as a
TikTok creator, written by Dr. Markus Rach, available publicly on the
Amazon e-book store.

Table of Contents
Preface

Chapter 1: Getting Started with TinyML

Technical requirements
Introducing TinyML
What is TinyML?
Why ML on microcontrollers?
Why run ML locally?
The opportunities and challenges for
TinyML
Deployment environments for TinyML
tinyML Foundation
Summary of DL
Deep neural networks
Convolutional neural networks
Quantization
Learning the difference between power
and energy
Voltage versus current
Power versus energy
Programming microcontrollers

Memory architecture
Peripherals
Presenting Arduino Nano 33 BLE Sense
and Raspberry Pi Pico
Setting up Arduino Web Editor,
TensorFlow, and Edge Impulse
Getting ready with Arduino Web Editor
Getting ready with TensorFlow
Getting ready with Edge Impulse
How to do it…
Running a sketch on Arduino Nano and
Raspberry Pi Pico
Getting ready
How to do it…

Chapter 2: Prototyping with Microcontrol lers

Technical requirements
Code debugging 101
Getting ready
How to do it...
There's more
Implementing an LED status indicator on
the breadboard
Getting ready
How to do it...
Controlling an external LED with the
GPIO
Getting ready
How to do it...
Turning an LED on and off with a push-
button
Getting ready
How to do it...

Using interrupts to read the push-button
state
Getting ready
How to do it...
Powering microcontrollers with
batteries
Getting started
How to do it...
There's more

Chapter 3: Building a Weather Station with
TensorFlow Lite for Microcontrol lers

Technical requirements
Importing weather data from
WorldWeatherOnline
Getting ready
How to do it…
Preparing the dataset
Getting ready
How to do it…
Training the ML model with TF
Getting ready
How to do it…
Evaluating the model's effectiveness
Getting ready
How to do it…
Quantizing the model with the TFLite
converter
Getting ready

How to do it…
Using the built-in temperature and
humidity sensor on Arduino Nano
Getting ready
How to do it…
Using the DHT22 sensor with the
Raspberry Pi Pico
Getting ready
How to do it…
Preparing the input features for the
model inference
Getting ready
How to do it…
On-device inference with TFLu
Getting ready
How to do it…

Chapter 4: Voice Control l ing LEDs with Edge
Impulse

Technical requirements
Acquiring audio data with a smartphone
Getting ready
How to do it…
Extracting MFCC features from audio
samples
Getting ready
How to do it…
There's more…
Designing and training a NN model
Getting ready
How to do it…
Tuning model performance with EON
Tuner
Getting ready
How to do it…
Live classifications with a smartphone

Getting ready
How to do it…
Live classifications with the Arduino
Nano
Getting ready
How to do it…
Continuous inferencing on the Arduino
Nano
Getting ready
How to do it…
Building the circuit with the Raspberry
Pi Pico to voice control LEDs
Getting ready
How to do it…
Audio sampling with ADC and timer
interrupts on the Raspberry Pi Pico
Getting ready
How to do it…
There's more…

Chapter 5: Indoor Scene Classif ication with
TensorFlow Lite for Microcontrol lers and the
Arduino Nano

Technical requirements
Taking pictures with the OV7670 camera
module
Getting ready
How to do it...
Grabbing camera frames from the serial
port with Python
Getting ready
How to do it...
Converting QQVGA images from
YCbCr422 to RGB888
Getting ready
How to do it...
Building the dataset for indoor scene
classification
Getting ready
How to do it...

Transfer learning with Keras
Getting ready
How to do it...
Preparing and testing the quantized
TFLite model
Getting ready
How to do it...
Reducing RAM usage by fusing crop,
resize, rescale, and quantize
Getting ready
How to do it...

Chapter 6: Building a Gesture-Based
Interface for YouTube Playback

Technical requirements
Communicating with the MPU-6050 IMU
through I2C
Getting ready
How to do it…
Acquiring accelerometer data
Getting ready
How to do it…
Building the dataset with the Edge
Impulse data forwarder tool
Getting ready
How to do it…
Designing and training the ML model
Getting ready
How to do it…
Live classifications with the Edge
Impulse data forwarder tool

Getting ready
How to do it…
Gesture recognition on Raspberry Pi
Pico with Arm Mbed OS
Getting ready
How to do it…
Building a gesture-based interface with
PyAutoGUI
Getting ready
How to do it…

Chapter 7: Running a Tiny CIFAR-10 Model
on a Virtual Platform with the Zephyr OS

Technical requirements
Getting started with the Zephyr OS
Getting ready
How to do it…
Designing and training a tiny CIFAR-10
model
Getting ready
How to do it…
Evaluating the accuracy of the TFLite
model
Getting ready
How to do it…
Converting a NumPy image to a C-byte
array
Getting ready
How to do it…
Preparing the skeleton of the TFLu
project

Getting ready
How to do it…
Building and running the TFLu
application on QEMU
Getting ready
How to do it…

Chapter 8: Toward the Next TinyML
Generation with microNPU

Technical requirements
Setting up Arm Corstone-300 FVP
Getting ready
How to do it…
Installing TVM with Arm Ethos-U
support
Getting ready
How to do it…
Installing the Arm toolchain and Ethos-U
driver stack
Getting ready
How to do it…
Generating C code with TVM
Getting ready
How to do it…
Generating C-byte arrays for input,
output, and labels

Getting ready
How to do it…
Building and running the model on
Ethos-U55
Getting ready
How to do it…

Other Books You May Enjoy

Preface
This book is about TinyML, a fast-growing field at the unique
intersection of machine learning (ML) and embedded systems to
make AI work with extremely low-powered devices, such as
microcontrollers.

TinyML is an exciting field full of opportunities. With a small budget,
we can give life to objects that interact with the world around us
smartly and transform the way we live for the better. However, this
field can be hard to approach if we come from an ML background
with little familiarity with embedded systems, such as
microcontrollers. Therefore, this book aims to dispel these barriers
and make TinyML also accessible to developers with no embedded
programming experience through practical examples. Each chapter
will be a self-contained project to learn how to use some of the
technologies at the heart of TinyML, interface with electronic
components such as sensors, and deploy ML models on memory-
constrained devices.

TinyML Cookbook starts with a practical introduction to this
multidisciplinary field to get you up to speed with some of the
fundamentals for deploying intelligent applications on Arduino Nano
33 BLE Sense and Raspberry Pi Pico. As you progress, you'll tackle
various problems that you may encounter while prototyping
microcontrollers, such as controlling the LED state with GPIO and a
push-button and supplying power to microcontrollers with batteries.

After that, you'll cover recipes relating to temperature, humidity, and
the three V (voice, vision, and vibration) sensors to gain the
necessary skills to implement end-to-end smart applications in
different scenarios. Then, you'll learn best practices to build tiny
models for memory-constrained microcontrollers. Finally, you'll
explore two of the most recent technologies, microTVM and
microNPU, which will help you step up your TinyML game.

By the end of this book, you'll be well versed in best practices and
ML frameworks to develop ML apps easily on microcontrollers and
have a clear understanding of the key aspects to consider during the
development phase.

Who this book is for
This book is for ML developers/engineers interested in developing
ML applications on microcontrollers through practical examples
quickly. The book will help you expand your knowledge of the
revolution of TinyML by building end-to-end smart projects with real-
world data sensors on the Arduino Nano 33 BLE Sense and the
Raspberry Pi Pico. Basic familiarity with C/C++, Python
programming, and a command-line interface (CLI) is required.
However, no prior knowledge of microcontrollers is necessary.

What this book covers
Chapter 1, Getting Started with TinyML, provides an overview of
TinyML, presenting the opportunities and challenges to bring ML on
extremely low-power microcontrollers. This chapter focuses on the
fundamental elements behind ML, power consumption, and
microcontrollers that make TinyML unique and different from
conventional ML in the cloud, desktop, or even smartphones.

Chapter 2, Prototyping with Microcontrollers, presents concise and
straightforward recipes to deal with the relevant microcontroller
programming basics. We will deal with code debugging and how to
transmit data to the Arduino serial monitor. After that, we will
discover how to program GPIO peripherals with the ARM Mbed API
and use the breadboard to connect external components, such as
LEDs and push-buttons. In the end, we will see how to power the
Arduino Nano 33 BLE Sense and the Raspberry Pi Pico with batteries.

Chapter 3, Building a Weather Station with TensorFlow Lite for
Microcontrollers, guides you through all the development stages of a
TensorFlow-based application for microcontrollers and teaches you
how to acquire temperature and humidity sensor data. The
application developed in the chapter is an ML-based weather station
for snow forecasts.

In the first part, we will focus on dataset preparation by acquiring
historical weather data from WorldWeatherOnline. After that, we will
present the relevant basics to train and test a model with

TensorFlow. In the end, we will deploy the model on the Arduino
Nano 33 BLE Sense and the Raspberry Pi Pico with TensorFlow Lite
for Microcontrollers.

Chapter 4, Voice Controlling LEDs with Edge Impulse, shows how to
develop an end-to-end keyword spotting (KWS) application with
Edge Impulse and get familiar with audio data acquisition and
analog-to-digital (ADC) peripherals. The application considered
for this chapter voice controls the LED emitting color (red, green,
and blue) and the number of times to make it blink (one, two, and
three).

In the first part, we will focus on the dataset preparation, showing
how to acquire audio data with a mobile phone. After that, we will
design a model using the mel-frequency cepstral coefficient
(MFCC) features and optimize the performance with EON Tuner. In
the end, we will finalize the KWS application on the Arduino Nano 33
BLE Sense and the Raspberry Pi Pico.

Chapter 5, Indoor Scene Classification with TensorFlow Lite for
Microcontrollers and the Arduino Nano, aims to show you how to
apply transfer learning with TensorFlow and get familiar with the
best practices to use a camera module with a microcontroller. For the
purpose of this chapter, we will develop an application to recognize
indoor environments with the Arduino Nano 33 BLE Sense and the
OV7670 camera module.

In the first part, we will see how to acquire images from the OV7670
camera module. After that, we will focus on the model design,

applying transfer learning with Keras to recognize kitchen and
bathroom rooms. In the end, we will deploy the quantized
TensorFlow Lite model on the Arduino Nano 33 BLE Sense with the
help of TensorFlow Lite for Microcontrollers.

Chapter 6, Building a Gesture-Based Interface for YouTube Playback,
aims to develop an end-to-end gesture recognition application with
Edge Impulse and the Raspberry Pi Pico to get acquainted with
inertial sensors, teach you how to use I2C peripherals, and write a
multithreading application in Arm Mbed OS.

In the first part, we will collect the accelerometer data through the
Edge Impulse data forwarder to prepare the dataset. After that, we
will design a model using features in the frequency domain to
recognize three gestures. In the end, we will deploy the application
on the Raspberry Pi Pico and implement a Python program with the
PyAutoGUI library to build a touchless interface for YouTube video
playback.

Chapter 7, Running a Tiny CIFAR-10 Model on a Virtual Platform with
the Zephyr OS, provides best practices to build tiny models for
memory-constrained microcontrollers. In this chapter, we will be
designing a model for the CIFAR-10 image classification dataset on a
virtual Arm Cortex-M3-based microcontroller.

In the first part, we will install Zephyr, the primary framework used
in this chapter to accomplish our task. After that, we will design a
tiny quantized CIFAR-10 model with TensorFlow. This model will fit
on a microcontroller with only 256 KB of program memory and 64

KB of RAM. In the end, we will build an image classification
application with TensorFlow Lite for Microcontrollers and the Zephyr
OS and run it on a virtual platform using Quick Emulator (QEMU).

Chapter 8, Toward the Next TinyML Generation with microNPU, helps
familiarize you with microNPU, a new class of processors for ML
workloads on edge devices. In this chapter, we will be running a
quantized CIFAR-10 model on a virtual Arm Ethos-U55 microNPU
with the help of TVM.

In the first part, we will learn how the Arm Ethos-U55 microNPU
works and install the software dependencies to build and run the
model on the Arm Corstone-300 fixed virtual platform. After that, we
will use the TVM compiler to convert a pretrained TensorFlow Lite
model to C code. In the end, we will show how to compile and
deploy the code generated by TVM into Arm Corstone-300 to
perform inference with the Arm Ethos-U55 microNPU.

To get the most out of this book
You will need a computer (either a laptop or desktop) with an x86-
64 architecture and at least one USB port for programming the
Arduino Nano 33 BLE Sense and the Raspberry Pi Pico
microcontroller boards. For the first six chapters, you can use
Ubuntu 18.04 (or later) or Windows (for example, Windows 10) as
an OS. However, you will need Ubuntu 18.04 (or later) for Chapter 7,
Running a Tiny CIFAR-10 Model on a Virtual Platform with the

Zephyr OS, and Chapter 8, Toward the Next TinyML Generation with
microNPU.

The only software prerequisites for your computer are:

Python (Python 3.7 recommended)

Text editor (for example, gedit on Ubuntu)

Media player (for example, VLC)

Image viewer (for example, the default app in Ubuntu or
Windows 10)

Web browser (for example, Google Chrome)

During our TinyML journey, we will require different software tools to
cover ML development and embedded programming. Thanks to
Arduino, Edge Impulse, and Google, these tools will be in the cloud,
browser-based, and with a free plan for our usage.

Arduino Nano 33 BLE Sense and Raspberry Pi Pico programs will be
developed directly in the web browser with the Arduino Web Editor
(https://create.arduino.cc). However, the Arduino Web Editor has a
limit of 200 seconds of compilation time per day. Therefore, you may
consider upgrading to any paid plan or using the free local Arduino
IDE (https://www.arduino.cc/en/software) to get unlimited
compilation time. If you are interested in the free local Arduino IDE,
we have provided on GitHub
(https://github.com/PacktPublishing/TinyML-
Cookbook/blob/main/Docs/setup_local_arduino_ide.md) the
instructions to set it up.

https://create.arduino.cc/
https://www.arduino.cc/en/software
https://github.com/PacktPublishing/TinyML-Cookbook/blob/main/Docs/setup_local_arduino_ide.md
https://github.com/PacktPublishing/TinyML-Cookbook/blob/main/Docs/setup_local_arduino_ide.md

The following table summarizes the hardware devices and software
tools covered in each chapter:

The projects may require sensors and additional electronic
components to build realistic TinyML prototypes and experience the
complete development workflow. All the components are listed at
the beginning of each chapter and in the README.md file on GitHub
(https://github.com/PacktPublishing/TinyML-Cookbook). Since you
will build real electronic circuits, we require an electronic
components kit that includes at least a solderless breadboard,
colored LEDs, resistors, push-buttons, and jumper wires. Don't worry
if you are an electronics beginner. You will learn more about these
components in the first two chapters of this book. Furthermore, we
have prepared a beginner shopping list on GitHub so you know
precisely what to buy: https://github.com/PacktPublishing/TinyML-
Cookbook/blob/main/Docs/shopping_list.md.

If you are using the digital version of this book, we advise
you to type the code yourself or access the code via the
GitHub repository (link available in the next section). Doing
so will help you avoid any potential errors related to the
copying and pasting of code.

Download the example code fi les

You can download the example code files for this book from GitHub
at https://github.com/PacktPublishing/TinyML-Cookbook. In case
there's an update to the code, it will be updated on the existing
GitHub repository.

https://github.com/PacktPublishing/TinyML-Cookbook/blob/main/Docs/shopping_list.md
https://github.com/PacktPublishing/TinyML-Cookbook/blob/main/Docs/shopping_list.md
https://github.com/PacktPublishing/TinyML-Cookbook

We also have other code bundles from our rich catalog of books and
videos available at https://github.com/PacktPublishing/. Check them
out!

Download the color images
We also provide a PDF file that has color images of the
screenshots/diagrams used in this book. You can download it here:
https://static.packt-
cdn.com/downloads/9781801814973_ColorImages.pdf.

Conventions used
There are a number of text conventions used throughout this book.

Code in text: Indicates code words in text, database table names,
folder names, filenames, file extensions, pathnames, dummy URLs,
user input, and Twitter handles. Here is an example: "Enter the
~/project_npu folder and create three folders, named binaries,
src, and sw_libs."

A block of code is set as follows:
export PATH=~/project_npu/binaries/FVP_Corstone_SSE-

300/models/Linux64_GCC-6.4:$PATH

When we wish to draw your attention to a particular part of a code
block, the relevant lines or items are set in bold:
[default]

exten => s,1,Dial(Zap/1|30)

https://github.com/PacktPublishing/
https://static.packt-cdn.com/downloads/9781801814973_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781801814973_ColorImages.pdf

exten => s,2,Voicemail(u100)

exten => s,102,Voicemail(b100)

exten => i,1,Voicemail(s0)

Any command-line input or output is written as follows:
$ cd ~/project_npu

$ mkdir binaries

$ mkdir src

Bold: Indicates a new term, an important word, or words that you
see onscreen. For example, words in menus or dialog boxes appear
in the text like this. Here is an example: "Click on Corstone-300
Ecosystem FVPs and then click on the Download Linux button."

TIPS OR IMPORTANT NOTES
Appear like this.

Sections
In this book, you will find several headings that appear frequently
(Getting ready, How to do it..., and There's more...).

To give clear instructions on how to complete a recipe, use these
sections as follows:

Getting ready

This section tells you what to expect in the recipe and describes how
to set up any software or any preliminary settings required for the

recipe.

How to do it…

This section contains the steps required to follow the recipe.

There's more…

This section consists of additional information about the recipe in
order to make you more knowledgeable about the recipe.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this
book, mention the book title in the subject of your message and
email us at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy
of our content, mistakes do happen. If you have found a mistake in
this book, we would be grateful if you would report this to us. Please
visit www.packtpub.com/support/errata, selecting your book, clicking
on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any
form on the Internet, we would be grateful if you would provide us
with the location address or website name. Please contact us at
copyright@packt.com with a link to the material.

http://www.packtpub.com/support/errata

If you are interested in becoming an author: If there is a topic
that you have expertise in and you are interested in either writing or
contributing to a book, please visit authors.packtpub.com.

Share Your Thoughts
Once you've read TinyML Cookbook, we'd love to hear your
thoughts! Please click here to go straight to the Amazon review page
for this book and share your feedback.

Your review is important to us and the tech community and will help
us make sure we're delivering excellent quality content.

http://authors.packtpub.com/
https://packt.link/r/1-801-81497-X

Chapter 1: Getting Started with
TinyML
Here we are, with our first step into the world of TinyML.

This chapter starts with an overview of this emerging field,
presenting the opportunities and challenges to bring machine
learning (ML) to extremely low-power microcontrollers.

The body of this chapter focuses on the fundamental elements
behind ML, power consumption, and microcontrollers that make
TinyML unique and different from conventional ML in the cloud,
desktops, or even smartphones. In particular, the Programming
microcontrollers section will be crucial for those with little experience
in embedded programming.

After introducing the TinyML building blocks, we shall set up the
development environment for a simple LED application, which will
officially mark the beginning of our practical TinyML journey.

In contrast to what we will find in the following chapters, this
chapter has a more theoretical structure to get you familiar with the
concepts and terminology of this fast-growing technology.

In this chapter, we're going to cover the following topics:

Introducing TinyML

Summary of deep learning

Learning the difference between power and energy

Programming microcontrollers

Presenting Arduino Nano 33 BLE Sense and Raspberry Pi Pico

Setting up Arduino Web Editor, TensorFlow, and Edge Impulse

Running a sketch on Arduino Nano and Raspberry Pi Pico

Technical requirements
To complete the practical example in this chapter, we need the
following:

Arduino Nano 33 BLE Sense board

Raspberry Pi Pico board

Micro-USB cable

Laptop/PC with either Ubuntu 18.04 or Windows 10 on x86-64

Introducing TinyML
Throughout all the recipes presented in this book, we will give
practical solutions for tiny machine learning, or, as we will refer to
it, TinyML. In this section, we will learn what TinyML is and the vast
opportunities it brings.

What is TinyML?

TinyML is the set of technologies in ML and embedded systems to
make use of smart applications on extremely low-power devices.

Generally, these devices have limited memory and computational
capabilities, but they can sense the physical environment through
sensors and act based on the decisions taken by ML algorithms.

In TinyML, ML and the deployment platform are not just two
independent entities but rather entities that need to know each
other at best. In fact, designing an ML architecture without
considering the target device characteristics will make it challenging
to deploy effective and working TinyML applications.

On the other hand, it would be impossible to design power-efficient
processors to expand the ML capabilities of these devices without
knowing the software algorithms involved.

This book will consider microcontrollers as the target device for
TinyML, and the following subsection will help motivate our choice.

Why ML on microcontrol lers?

The first and foremost reason for choosing microcontrollers is their
popularity in various fields, such as automotive, consumer
electronics, kitchen appliances, healthcare, and telecommunications.
Nowadays, microcontrollers are everywhere and also invisible in our
day-to-day electronic devices.

With the rise of the internet of things (IoT), microcontrollers saw
exponential market growth. In 2018, the market research company
IDC (https://www.idc.com) reported 28.1 billion microcontrollers
sold worldwide and forecasted growth to 38.2 billion by 2023

https://www.idc.com/

(www.arm.com/blogs/blueprint/tinyML). Those are impressive
numbers considering that the smartphone and PC markets reported
1.5 billion and 67.2 million devices, respectively, sold in the same
year.

Therefore, TinyML represents a significant step forward for IoT
devices, driving the proliferation of tiny connected objects capable of
performing ML tasks locally.

The second reason for choosing microcontrollers is that they are
inexpensive, easy to program and are powerful enough to run
sophisticated deep learning (DL) algorithms.

However, why can't we offload the computation to the cloud since it
is much more performant? In other words, why do we need to run
ML locally?

Why run ML local ly?

There are three main answers to this question – latency, power
consumption, and privacy:

Reducing latency: Sending data back and forth to and from the
cloud is not instant and could affect applications that must
respond reliably within a time frame.

Reducing power consumption: Sending and receiving data to and
from the cloud is not power-efficient even when using low-power
communication protocols such as Bluetooth.

In the following stacked bar chart, we report the power consumption
breakdown for the onboard components on the Arduino Nano 33
BLE Sense board, one of the two microcontroller boards employed in
this book:

Figure 1.1 – Power consumption breakdown for the Arduino Nano 33 BLE Sense
board

As we can see from the power consumption breakdown, the CPU
computation is more power-efficient than Bluetooth communication
(14% versus 65%), so it is preferable to compute more and transmit
less to reduce the risk of rapid battery drain. Generally, radio is the
component that consumes the most energy in typical embedded
devices.

Privacy: Local ML means preserving user privacy and avoiding
sharing sensitive information.

Now that we know the benefits of running ML on these tiny devices,
what are the practical opportunities and challenges of bringing ML to
the very edge?

The opportunities and challenges for TinyML

TinyML finds its natural home wherever a power supply from the
mains is impossible or complex to have, and the application must
operate with a battery for as long as possible.

If we think about it, we are already surrounded by battery-powered
devices that use ML under the hood. For example, wearable devices,
such as smartwatches and fitness tracking bands, can recognize
human activities to track our health goals or detect dangerous
situations, such as a fall to the ground.

These everyday objects are TinyML applications for all intents and
purposes because they are battery-powered and need on-device ML
to give meaning to the data acquired by the sensors.

However, battery-powered solutions are not limited to wearable
devices only. There are scenarios where we might need devices to
monitor environments. For example, we may consider deploying
battery-powered devices running ML in a forest to detect fires and
prevent fires from spreading over a large area.

There are unlimited potential use cases for TinyML, and the ones we
just briefly introduced are only a few of the likely application
domains.

However, along with the opportunities, there are some critical
challenges to face. The challenges are from the computational
perspective because our devices are limited in memory and
processing power. We work on systems with a few kilobytes of RAM
and, in some cases, processors with no floating-point arithmetic
acceleration.

On the other hand, the deployment environment could be unfriendly.
Environmental factors, such as dust and extreme weather
conditions, could get in the way and influence the correct execution
of our applications.

In the following subsection, we will present the typical deployment
environments for TinyML.

Deployment environments for TinyML

A TinyML application could live in both centralized and
distributed systems.

In a centralized system, the application does not necessarily
require communication with other devices.

A typical example is keyword spotting. Nowadays, we interact
with our smartphones, cameras, drones, and kitchen appliances
seamlessly with our voices. The magic words OK Google, Alexa, and

so on that we use to wake up our smart assistants are a classic
example of an ML model constantly running locally in the
background. The application requires running on a low-power
system without sending data to the cloud to be effective, instantly,
and minimize power consumption.

Usually, centralized TinyML applications aim to trigger more power-
hungry functionalities and benefit from being private by nature since
they do not need to send any data to the cloud.

In a distributed system, the device (that is, the node or sensor
node) still performs ML locally but also communicates with nearby
devices or a host to achieve a common goal, as shown in the
following figure:

Figure 1.2 – Wireless sensor network

IMPORTANT NOTE

Since the nodes are part of a network and typically communicate through wireless
technologies, we commonly call the network a wireless sensor network
(WSN).

Although this scenario could be contrasted with the power
consumption implications of transmitting data, the devices may need
to cooperate to build meaningful and precise knowledge about the
working environment. Knowing the temperature, humidity, soil
moisture, or other physical quantities from a specific node could be
irrelevant for some applications that need a global understanding of
the diffusion of those quantities instead.

For example, consider an application to improve agriculture
efficiency. In this case, a WSN might help identify what areas of the
field require less or more water than others and make the irrigation
more efficient and autonomous. As we can imagine, efficient
communication protocols will be vital for the network lifetime, and
also TinyML plays a role in achieving this goal. Since sending raw
data consumes too much energy, ML could perform a partial
computation to reduce the data to transmit and the frequency

of communications.

TinyML offers endless possibilities, and tinyML Foundation is the
best place to find out the endless opportunities given by this fast-
growing field of ML and embedded systems.

t inyML Foundation

tinyML Foundation (www.tinyml.org) is a non-profit professional
organization supporting and connecting the TinyML world.

To do this, tinyML Foundation, supported by several companies,
including Arm, Edge Impulse, Google, and Qualcomm, is growing a
diverse community worldwide (such as the US, UK, Germany, Italy,
Nigeria, India, Japan, Australia, Chile, and Singapore) between
hardware, software, system engineers, scientists, designers, product
managers, and businesspeople.

The foundation has been promoting different free initiatives online
and in-person to engage experts and newcomers to encourage
knowledge sharing, connect, and create a healthier and more
sustainable world with TinyML.

TIP
With several Meetup (https://www.meetup.com) groups in different countries, you
can join a TinyML one near you for free (https://www.meetup.com/en-
AU/pro/TinyML/) to always be up to date with new TinyML technologies and
upcoming events.

After introducing TinyML, it is now time to explore its ingredients in
more detail. The following section will analyze the one that makes
our devices capable of intelligent decisions: DL.

Summary of DL
ML is the ingredient to make our tiny devices capable of making
intelligent decisions. These software algorithms heavily rely on the
right data to learn patterns or actions based on experience. As we

http://www.tinyml.org/
https://www.meetup.com/
https://www.meetup.com/en-AU/pro/TinyML/
https://www.meetup.com/en-AU/pro/TinyML/

commonly say, data is everything for ML because it is what makes or
breaks an application.

This book will refer to DL as a specific class of ML that can perform
complex classification tasks directly on raw images, text, or sound.
These algorithms have state-of-the-art accuracy and could also be
better than humans in some classification problems. This technology
makes voice-controlled virtual assistants, facial recognition systems,
and autonomous driving possible, just to name a few.

A complete discussion of DL architectures and algorithms is beyond
the scope of this book. However, this section will summarize some of
its essential points that are relevant to understand the following
chapters.

Deep neural networks

A deep neural network consists of several stacked layers aimed at
learning patterns.

Each layer contains several neurons, the fundamental compute
elements for artificial neural networks (ANNs) inspired by the
human brain.

A neuron produces a single output through a linear transformation,
defined as the weighted sum of the inputs plus a constant value
called bias, as shown in the following diagram:

Figure 1.3 – Neuron representation

The coefficients of the weighted sum are called weights.

Weights and bias are obtained after an iterative training process to
make the neuron capable of learning complex patterns.

However, neurons can only solve simple linear problems with linear
transformations. Therefore, non-linear functions, called activations,
generally follow the neuron's output to help the network learn
complex patterns. Activation is a non-linear function performed on
the neuron's output:

Figure 1.4 – Activation function

A widespread adopted activation function is the rectified linear
unit (ReLU), described in the following code block:
float relu(float input) {

 return max(input, 0);

}

Its computational simplicity makes it preferable to other non-linear
functions, such as a hyperbolic tangent or logistic sigmoid, that
require more computational resources.

In the following subsection, we will see how the neurons are
connected to solve complex visual recognition tasks.

Convolutional neural networks

Convolutional neural networks (CNNs) are specialized deep
neural networks predominantly applied to visual recognition tasks.

We can consider CNNs as the evolution of a regularized version of
the classic fully connected neural networks with dense layers
(that is, fully connected layers).

As we can see in the following diagram, a characteristic of fully
connected networks is connecting every neuron to all the output
neurons of the previous layer:

Figure 1.5 – Fully connected network

Unfortunately, this approach does not work well for training a model
for image classification.

For instance, if we considered an RGB image of size 320x240 (width
x height), we would need 230,400 (320*240*3) weights for just one
neuron. Since our layers will undoubtedly need several neurons to
discern complex problems, the model will likely overfit given the
unmanageable number of trainable parameters.

In the past, data scientists adopted feature engineering techniques
to extract a reduced set of good features from images. However, the
approach suffered from being difficult to perform feature selection,
which was time-consuming, and domain-specific.

With the rise of CNNs, visual recognition tasks saw improvement
thanks to convolution layers that make feature extraction part of
the learning problem.

Based on the assumption that we are dealing with images, and
inspired by biological processes in the animal visual cortex, the
convolution layer borrows the widely adopted convolution operator
from image processing to create a set of learnable features.

The convolution operator is executed similarly to other image
processing routines: sliding a window application (filter or kernel) on
the entire input image and applying the dot product between its
weights and the underlying pixels, as shown in the following figure:

Figure 1.6 – Convolution operator

This approach brings two significant benefits:

It extracts the relevant features automatically without human
intervention.

It reduces the number of input signals per neuron considerably.

For instance, applying a 3x3 filter on the preceding RGB image
would only require 27 weights (3*3*3).

Like fully connected layers, convolution layers need several
convolution kernels to learn as many features as possible. Therefore,
the convolution layer's output generally produces a set of images
(feature maps), commonly kept in a multidimensional memory
object called a tensor.

When designing CNNs for visual recognition tasks, we usually place
the fully connected layers at the network's end to carry out the
prediction stage. Since the output of the convolution layers is a set
of images, typically, we adopt subsampling strategies to reduce the
information propagated through the network and then reduce the
risk of overfitting when feeding the fully connected layers.

Typically, there are two ways to perform subsampling:

Skipping the convolution operator for some input pixels. As a
result, the output of the convolution layer will have fewer spatial
dimensions than the input ones.

Adopting subsampling functions such as pooling layers.

The following figure shows a generic CNN architecture, where the
pooling layer reduces the spatial dimensionality and the fully
connected layer performs the classification stage:

Figure 1.7 – Generic CNN with a pooling layer to reduce the spatial
dimensionality

One of the most critical aspects to consider when deploying DL
networks for TinyML is the model size, generally defined as the
memory required for storing the weights.

Since our tiny platforms have limited physical memory, we require
the model to be compact to fit the target device.

However, the memory constraint is not the only challenge we could
encounter when deploying a model on microcontrollers. For
example, although the trained model commonly employs arithmetic
operations in floating-point precision, CPUs on microcontrollers could
not have hardware acceleration for it.

Therefore, quantization is an indispensable technique to overcome
the preceding limitations.

Quantization

Quantization is the process of performing neural network
computations in lower bit precision. The widely adopted technique
for microcontrollers applies the quantization post-training and
converts the 32-bit floating-point weights to 8-bit integer values.
This technique brings a 4x model size reduction and a significant
latency improvement with very little or no accuracy drop.

DL is essential to building applications that make intelligent
decisions. However, the key requirement for battery-powered
applications is the adoption of a low-power device. So far, we have
mentioned power and energy in general terms but let's see what
they mean practically in the following section.

Learning the difference between
power and energy

Power matters in TinyML, and the target we aim for is in the
milliwatt (mW) range or below, which means thousands of times
more efficient than a traditional desktop machine.

Although there are cases where we might consider using energy
harvesting solutions, such as solar panels, those could not always be
possible because of cost and physical dimensions.

However, what do we mean by power and energy? Let's discover
these terms by giving a basic overview of the fundamental physical
quantities governing electronic circuits.

Voltage versus current

Current is what makes an electronic circuit work, which is the flow
of electric charges across surface A of a conductor in a given time,
as described in the following diagram:

Figure 1.8 – Current is a flow of electric charges across surface A at a given
time

The current is defined as follows:

Here, we have the following:

I: Current, measured in amperes (A)

Q: The electric charges across surface A in a given time,
measured in coulombs (C)

t: Time, measured in seconds (s)

The current flows in a circuit in the following conditions:

We have a conductive material (for example, copper wire) to
allow the electric charge to flow.

We have a closed circuit, so a circuit without interruption,
providing a continuous path to the current flow.

We have a potential difference source, called voltage, defined as
follows:

Voltage is measured with volts (V) and produces an electric field to
allow the electric charge to flow in the circuit. Both the USB port and
battery are potential difference sources.

The symbolic representation of a power source is given in the
following figure:

Figure 1.9 – Battery symbol representation

To avoid constantly referring to V+ and V-, we define the battery's
negative terminal as a reference by convention, assigning it 0 V
(GND).

Ohm's law relates voltage and current, which says through the
following formula that the current through a conductor is
proportional to the voltage across a resistor:

A resistor is an electrical component used to reduce the current
flow. This component has a resistance measured with Ohm (Ω) and
identified with the letter R.

The symbolic representation of a resistor is shown in the following
figure:

Figure 1.10 – Resistor symbol representation
(https://openclipart.org/detail/276048/47k-ohm-resistor)

Resistors are essential components for any electronic circuit, and for
the ones used in this book, their value is reported through colored
bands on the elements. Standard resistors have four, five, or six
bands. The color on the bands denotes the resistance value, as
shown in the following example:

https://openclipart.org/detail/276048/47k-ohm-resistor

Figure 1.11 – Example of four-band resistor

To easily decode the color bands, we recommend using the online
tool from Digi-Key
(https://www.digikey.com/en/resources/conversion-
calculators/conversion-calculator-resistor-color-code).

Now that we know the main physical quantities governing electronic
circuits, we are ready to see the difference between power and
energy.

https://www.digikey.com/en/resources/conversion-calculators/conversion-calculator-resistor-color-code
https://www.digikey.com/en/resources/conversion-calculators/conversion-calculator-resistor-color-code

Power versus energy

Sometimes we interchange the words power and energy because we
think they're related, but actually, they refer to different physical
quantities. In fact, energy is the capacity for doing work (for
example, using force to move an object), while power is the rate of
consuming energy.

In practical terms, power tells us how fast we drain the battery, so
high power implies a faster battery discharge.

Power and energy are related to voltage and current through the
following formulas:

The following table presents the physical quantities in the power and
energy formulas:

Figure 1.12 – Table reporting the physical quantities in the power and energy
formulas

On microcontrollers, the voltage supply is in the order of a few volts
(for example, 3.3 V), while the current consumption is in the range
of micro-ampere (µA) or milli-ampere (mA). For this reason, we
commonly adopt microwatt (µW) or milliwatt (mW) for power
and microjoule (µJ) or millijoule (mJ) for energy.

Now, consider the following problem to get familiar with the power
and energy concepts.

Suppose you have a processing task and you have the option to
execute it on two different processors. These processors have the
following power consumptions:

Figure 1.13 – Table reporting two processing units with different power
consumptions

What processor would you use to execute the task?

Although PU1 has higher (4x) power consumption than PU2, this
does not imply that PU1 is less energy-efficient. On the contrary,
PU1 could be more computationally performant than PU2 (for
example, 8x), making it the best choice from an energy perspective,
as shown in the following formulas:

From the preceding example, we can say that PU1 is our better
choice because it requires less energy from the battery under the
same workload.

Commonly, we adopt OPS per Watt (arithmetic operations
performed per Watt) to bind the power consumption to the
computational resources of our processors.

Programming microcontrollers
A microcontroller, often shortened to MCU, is a full-fledged
computer because it has a processor (which can also be multicore
nowadays), a memory system (for example, RAM or ROM), and
some peripherals. Unlike a standard computer, a microcontroller fits
entirely on an integrated chip, and it has incredibly low power and
low price.

We often confuse microcontrollers with microprocessors, but they
refer to different devices. In contrast to a microcontroller, a
microprocessor integrates only the processor on a chip, requiring
external connections to a memory system and other components to
form a fully operating computer.

The following figure summarizes the main differences between a
microprocessor and a microcontroller:

Figure 1.14 – Microprocessor versus microcontroller

As for all processing units, the target application influences their
architectural design choice.

For example, a microprocessor tackles scenarios where the tasks are
usually as follows:

Dynamic (for example, can change with user interaction or time)

General-purpose

Compute intensive

A microcontroller addresses completely different scenarios, and in
the following list, we shall highlight some of the critical ones:

The tasks are single-purpose and repetitive:

In contrast to microprocessor applications, the tasks are generally
single-purpose and repetitive, so the microcontroller does not
require strict re-programmability. Typically, the applications are less
computationally intensive than the microprocessor ones and do not
have frequent interactions with the user. However, they can interact
with the environment or other devices.

As an example, you could consider a thermostat. The device only
requires monitoring the temperature at regular intervals and
communicating with the heating system.

We could have time frame constraints:

Certain tasks must complete execution within a specific time frame.
This requirement is the characteristic for real-time applications
(RTAs), where the violation of the time constraint may affect the
quality of service (soft real time) or be hazardous (hard real time).

An automobile safety system (ABS) is an example of a hard RTA
because the electronic system must respond within a time frame to
prevent the wheels from locking when applying brake pedal
pressure.

We require a latency-predictable device to build an effective RTA, so
all hardware components (CPU, memory, interrupt handler, and so
on) must respond in a precise number of clock cycles. Hardware
vendors commonly report the latency, expressed in clock cycles, in
the datasheet.

The time constraint poses some architectural design adaptations and
limitations to a general-purpose microprocessor.

An example is the memory management unit (MMU) that we
primarily use to translate virtual memory addresses, and we do not
usually have it in the CPU for microcontrollers.

Low-power constraints:

Applications could live in a battery-powered environment, so the
microcontroller must be low-power to extend their lifetime.

As per the time frame constraints, power consumption also poses
some architectural design differences from a microprocessor.

Without going deeper into the hardware details, all the off-chip
components generally reduce power efficiency as a rule of thumb.
That is the main reason why microcontrollers integrate both the RAM
and a kind of hard drive (ROM) within the chip.

Typically, microcontrollers also have lower clock frequency than
microprocessors to consume less energy.

Physical size constraints:

The device could live in products that are small in size. Since the
microcontroller is a computer within a chip, it is perfect for these
scenarios. The package size for a microcontroller can vary but
typically is in the range of a few square millimeters.

In 2018, a team of engineers at the University of Michigan created
the "world's smallest computer," which was 0.3 mm in size with a
microcontroller powered by an Arm Cortex-M0+ processor and a
battery-less sensor system for cellular temperature measurement
(https://news.umich.edu/u-m-researchers-create-worlds-smallest-
computer/).

Cost constraints:

All applications are cost-sensitive, and by designing a smaller chip
that integrates a CPU, memory, and peripherals, we make
microcontrollers economically more advantageous than
microprocessors.

In the following table, we have summarized what we have just
discussed for easy future reference:

https://news.umich.edu/u-m-researchers-create-worlds-smallest-computer/
https://news.umich.edu/u-m-researchers-create-worlds-smallest-computer/

Figure 1.15 – Table comparing a microprocessor with a microcontroller

In the next section, we will start going deeper into the architectural
aspects of microcontrollers by analyzing the memory architecture
and internal peripherals.

Memory architecture

Microcontrollers are CPU-based embedded systems, which means
that the CPU is responsible for interacting with all its
subcomponents.

All CPUs require at least memory to read the instructions and
store/read variables during the program's execution.

In the microcontroller context, we physically dedicate two separate
memories for the instructions and data:

Program memory (ROM)

This is non-volatile read-only memory reserved for the program to
execute. Although its primary goal is to contain the program, it can
also store constant data. Thus, program memory is similar to our
everyday computers' hard drives.

Data memory (RAM)

This is volatile memory reserved to store/read temporary data. Since
it is RAM, we lose its content when switching off the system.

Since program and data memory are functionally opposite, we
usually employ different semiconductor technologies. In particular,
we can find Flash technologies for the program memory and static
random-access memory (SRAM) for the data memory.

Flash memories are non-volatile and offer low power consumption
but are generally slower than SRAM. However, given the cost
advantage over SRAM, we can find larger program memory than
data memory.

Now that we know the difference between program and data
memory, where can we store the weights for our deep neural
network model?

The answer to this question depends on whether the model has
constant weights. If the weights are constant, so do not change
during inference, it is more efficient to store them in program
memory for the following reasons:

Program memory has more capacity than SRAM.

It reduces memory pressure on the SRAM since other functions
require storing variables or chunks of memory at runtime.

We want to remind you that microcontrollers have limited memory
resources, so a decision like this can make a difference to memory
efficiency.

Peripherals

Microcontrollers offer extra on-chip features to expand their
capabilities and make these tiny computers different from each
other. These features are the peripherals and are essential because
they can interface with sensors or other external components.

Each peripheral has a dedicated functionality, and it is assigned to a
metal leg (pin) of the integrated circuit.

We can refer to the peripheral pin assignment section in the
microcontroller datasheet to find out each pin's functionalities.
Hardware vendors typically number the pins anti-clockwise, starting
from the top-left corner of the chip, marked with a dot for easy
reference, as shown in the following figure:

Figure 1.16 – Pin assignment. Pins are numbered anti-clockwise, starting from
the top-left corner, marked with a dot

Since peripherals can be of various types, we can group them into
four main categories for simplicity.

General-purpose input/output (GPIO or
IO)
GPIOs do not have a predefined and fixed purpose. Their primary
function is to provide or read binary signals that, by nature, can only

live in two well-defined states: HIGH (1) or LOW (0). The
following figure shows an example of a binary signal:

Figure 1.17 – A binary signal can only live in two states: HIGH (1) and LOW (0)

Typical GPIO usages are as follows:

Turning on and off an LED

Detecting whether a button is pressed

Implementing complex digital interfaces/protocols such as VGA

GPIO peripherals are versatile and generally available in all
microcontrollers.

Analog/digital converters
In TinyML, our applications will likely be dealing with time-varying
physical quantities, such as images, audio, and temperature.

Whatever these quantities are, the sensor transforms them into a
continuous electrical signal interpretable by the microcontrollers.
This electrical signal, which can be either a voltage or current, is
commonly called an analog signal.

The microcontroller, in turn, needs to convert the analog signal into
a digital format so that the CPU can process the data.

Analog/digital converters act as translators between analog and
digital worlds.

An analog-to-digital converter (ADC) samples the analog signal
at fixed interval times and converts the electrical signal into a digital
format.

A digital-to-analog converter (DAC) performs the opposite
functionality: converting the internal digital format into an analog
signal.

Serial communication
Communication peripherals integrate standard communication
protocols to control external components. Typical serial
communication peripherals available in microcontrollers are I2C,
SPI, UART, and USB.

Timers
In contrast to all the peripherals we just described, the timers do
not interface with external components since they are used to
trigger or synchronize events.

With this section, we have completed the overview of the TinyML
ingredients. Now that we are familiar with the terminology and
general concepts, we can start presenting the development
platforms used in this book.

Presenting Arduino Nano 33 BLE
Sense and Raspberry Pi Pico
A microcontroller board is a printed circuit board (PCB) that
combines the microcontroller with the necessary electronic circuit to
make it ready to use. In some cases, the microcontroller board could
integrate additional devices to target specific end applications.

Arduino Nano 33 BLE Sense (in short, Arduino Nano) and Raspberry
Pico are the microcontroller boards used in this book.

Arduino Nano, designed by Arduino (https://www.arduino.cc), is a
board that combines a microcontroller (nRF52840) powered by an
Arm Cortex-M4 processor with several sensors and Bluetooth radio
for an easy TinyML development experience. We will require just a
few additional external components when developing on Arduino
Nano since most are already available on-board.

Raspberry Pi Pico, designed by the Raspberry Pi Foundation
(https://www.raspberrypi.org), does not provide sensors and the
Bluetooth module on-board. Still, it has a microcontroller (RP2040)
powered by a dual-core Arm Cortex-M0+ processor for unique and
powerful TinyML applications. Therefore, this board will be ideal for

https://www.arduino.cc/
https://www.raspberrypi.org/

learning how to interface with external sensors and build electronic
circuits.

The following figure shows a side-by-side comparison to see the
features that make our platforms different from each other:

Figure 1.18 – Arduino Nano 33 BLE Sense versus Raspberry Pi Pico

As we can see from the side-by-side comparison, they both have an
incredibly small form-factor, a USB port for power/programming, and
an Arm-based microcontroller. At the same time, they also have
unique features that make the boards ideal for targeting different
TinyML development scenarios.

Setting up Arduino Web Editor,
TensorFlow, and Edge Impulse
For TinyML, we require different software tools to cover both ML
development and embedded programming. Thanks to Arduino, Edge
Impulse, and Google, most of the tools considered in this book are
browser-based and require only a few configuration steps.

In this section, we will introduce these tools and prepare the Arduino
development environment required for writing and uploading
programs to Arduino Nano and Raspberry Pi Pico.

Getting ready with Arduino Web Editor

Arduino Integrated Development Environment (Arduino
IDE) is a software application developed by Arduino
(https://www.arduino.cc/en/software) for writing and uploading
programs to Arduino-compatible boards. Programs are written in
C++ and are commonly called sketches by Arduino programmers.

https://www.arduino.cc/en/software

Arduino IDE makes software development accessible and
straightforward to developers with no background in embedded
programming. In fact, the tool hides all the complexities that we
might have when dealing with embedded platforms, such as cross-
compilation and device programming.

Arduino also offers a browser-based IDE
(https://create.arduino.cc/editor). It is called Arduino Web Editor
and makes programmability even more straightforward because
programs can be written, compiled, and uploaded on
microcontrollers directly from the web browser. All the Arduino
projects presented in this book will be based on this cloud-based
environment. However, since the free plan of Arduino Web Editor is
limited to 200 seconds of compilation time per day, you may
consider upgrading to a paid plan or using the free local Arduino IDE
to get unlimited compilation time.

NOTE
In the following chapters of this book, we will use Arduino IDE and Arduino Web
Editor interchangeably.

Getting ready with TensorFlow

TensorFlow (https://www.tensorflow.org) is an end-to-end free
and open source software platform developed by Google for ML. We
will be using this software to develop and train our ML models using
Python in Google Colaboratory.

https://create.arduino.cc/editor
https://www.tensorflow.org/

Colaboratory (https://colab.research.google.com/notebooks), in
short, Colab, is a free Python development environment that runs in
the browser using Google Cloud. It is like a Jupyter notebook but
has some essential differences, such as the following:

It does not need setting up.

It is cloud-based and hosted by Google.

There are numerous Python libraries pre-installed (including
TensorFlow).

It is integrated with Google Drive.

It offers free access to GPU and TPU shared resources.

It is easy to share (also on GitHub).

Therefore, TensorFlow does not require setting up because Colab
comes with it.

In Colab, we recommend enabling the GPU acceleration on the
Runtime tab to speed up the computation on TensorFlow. To do so,
navigate to Runtime | Change runtime type and select GPU
from the Hardware accelerator drop-down list, as shown in the
following screenshot:

https://colab.research.google.com/notebooks

Figure 1.19 – You can enable the GPU acceleration from Runtime | Change
runtime type

Since the GPU acceleration is a shared resource among other users,
there is limited access to the free version of Colab.

TIP
You could subscribe to Colab Pro (https://colab.research.google.com/) to get
priority access to the fastest GPUs.

TensorFlow is not the only tool from Google that we will use. In fact,
once we have produced the ML model, we will need to run it on the

https://colab.research.google.com/

microcontroller. For this, Google developed TensorFlow Lite for
Microcontrollers.

TensorFlow Lite for Microcontrollers
(https://www.tensorflow.org/lite/microcontrollers), in short, TFLu, is
the key software library to unlock ML applications on low-power
microcontrollers. The project is part of TensorFlow and allows
running DL models on devices with a few kilobytes of memory.
Written in C/C++, the library does not require an operating system
and dynamic memory allocation.

TFLu does not need setting up because it is included in Arduino Web
Editor.

Getting ready with Edge Impulse

Edge Impulse (https://www.edgeimpulse.com) is a software
platform for end-to-end ML development. It is free for developers,
and in a few minutes, we can  have an ML model up and running on
our microcontrollers. In fact, the platform integrates tools for the
following:

Data acquisition from sensor data

Applying digital signal processing routines on input data

Building and training ML models

Testing ML models

Deploying ML models on microcontrollers

https://www.tensorflow.org/lite/microcontrollers
https://www.edgeimpulse.com/

Finding the best signal processing block and ML model for your
use case

INFO
All these tools are also accessible through open APIs.

Developers just need to sign up on the website to access all these
features directly within the UI.

How to do it…

The following subsections will show the steps for setting up Arduino
Web Editor:

1. Sign up to Arduino at https://auth.arduino.cc/register.

2. Log in to Arduino Web Editor (https://create.arduino.cc/editor).

3. Install the Arduino agent following the step-by-step installation at
https://create.arduino.cc/getting-started/plugin/welcome.

4. Install the Raspberry Pi Pico SDK:

Windows:

1. Download the pico-setup-windows file from
https://github.com/ndabas/pico-setup-
windows/releases.

2. Install pico-setup-installer.

Linux:

https://create.arduino.cc/getting-started/plugin/welcome
https://github.com/ndabas/pico-setup-windows/releases
https://github.com/ndabas/pico-setup-windows/releases

1. Open Terminal.

2. Create a temporary folder:

$ mkdir tmp_pico

3. Change directory to your temporary folder:

$ cd tmp_pico

4. Download the Pico setup script with wget:

$ wget wget https:

//raw.githubusercontent.com/raspberrypi/ pico-

setup/master/pico_setup.sh

5. Make the file executable:

$ chmod +x pico_setup.sh

6. Execute the script:

$./pico_setup.sh

7. Add $USER to the dialout group:

$ sudo usermod -a -G dialout $USER

5. Check whether Arduino Web Editor can communicate with
Arduino Nano:

1. Open Arduino Web Editor in a web browser.

2. Connect the Arduino Nano board to a laptop/PC through
a micro-USB cable.

The editor should recognize the board in the device dropdown and
report Arduino Nano 33 BLE and the port's name (for example,
/dev/ttyACM0):

Figure 1.20 – Expected output when Arduino Web Editor can communicate with
Arduino Nano

6. Check whether Arduino Web Editor can communicate with
Raspberry Pi Pico:

1. Open Arduino Web Editor in a browser.

2. Connect the Raspberry Pi Pico board to a laptop/PC
through a micro-USB cable.

The editor should recognize the board and report Raspberry Pi
Pico and the port's name (for example, /dev/ttyACM0):

Figure 1.21 – Expected output when Arduino Web Editor can communicate with
Raspberry Pi Pico

We have successfully set up the tools that will help us develop our
future recipes. Before ending this chapter, we want to test a basic

example on Arduino Nano and Raspberry Pi Pico to officially mark
the beginning of our journey into the world of TinyML.

Running a sketch on Arduino Nano
and Raspberry Pi Pico
In this recipe, we will blink the Arduino Nano and Raspberry Pi Pico
LED using the Blink prebuilt example from Arduino Web Editor.

This "Hello World" program consists of a simple LED blinking through
the GPIO peripheral; from there, we will be able to go anywhere.

This exercise aims to get you familiar with Arduino Web Editor and
help you to understand how to develop a program with Arduino.

Getting ready

An Arduino sketch consists of two functions, setup() and loop(), as
shown in the following code block:
void setup() {

}

void loop() {

}

setup() is the first function executed by the program when we press
the reset button or power up the board. This function is executed
only once and is generally responsible for initializing variables and
peripherals.

After setup(), the program executes loop(), which runs iteratively
and forever, as shown in the following figure:

Figure 1.22 – Diagram of the structure

These two functions are required in all Arduino programs.

How to do it…

The steps reported in this section are valid for both Arduino Nano,
Raspberry Pi Pico, and other compatible boards with Arduino Web
Editor:

1. Connect the device to a laptop/PC through a micro-USB cable.
Next, check that the Arduino IDE reports the name and port for
the device.

2. Open the prebuilt Blink example by clicking on Examples from
the left-hand side menu, BUILT IN from the new menu, and
then Blink, as shown in the following screenshot:

Figure 1.23 – Built-in LED blink example

Once you have clicked on the Blink sketch, the code will be visible
in the editor area.

3. Click on the arrow near the board dropdown to compile and
upload the program to the target device, as shown in the
following figure:

Figure 1.24 – The arrow near the board dropdown will compile and flash the
program on the target device

The console output should return Done at the bottom of the page,
and the on-board LED should start blinking.

Join us on Discord!
Read this book alongside other users, TinyML developers/engineers
and Gian. Ask questions, provide solutions to other readers, chat
with the Gian via Ask Me Anything sessions and much more.

Join Now!

https://discord.com/invite/UCJTV3A2Qp

clbr://internal.invalid/book/OEBPS/B17710_01_Final_SK_ePub.xhtml

Chapter 2: Prototyping with
Microcontrollers
Deploying machine learning (ML) applications on microcontrollers
is cool because what we develop doesn't just live within our
computer's brain. Instead, it can animate many things around us.
Therefore, before diving into the ML world, let's take a glance at
how to build basic applications on microcontrollers from a software
and hardware perspective.

In this chapter, we will deal with code-debugging and present how
to transmit data to the Arduino serial monitor. Next, we will discover
how to program GPIO peripherals with the Arm Mbed API and use
the solderless breadboard to connect external components such as
LEDs and push-buttons. At the end of the chapter, we will see
how to power the Arduino Nano and Raspberry Pi Pico with
batteries.

The aim of this chapter is to cover the relevant microcontroller
programming basics for the following topics in this book.

In this chapter, we're going to cover the following recipes:

Code debugging 101

Implementing an LED status indicator on the breadboard

Controlling an external LED with the GPIO

Turning an LED on and off with a ush-button

Using interrupts to read the push-button state

Powering microcontrollers with batteries

Technical requirements
To complete all the practical recipes of this chapter, we will need the
following:

An Arduino Nano 33 BLE Sense board

A Raspberry Pi Pico board

A micro-USB cable

1 x half-size solderless breadboard (30 rows and 10 columns)

1 x red LED

1 x 220 Ω resistor

1 x 3 AA battery holder (Raspberry Pi Pico only)

1 x 4 AA battery holder (Arduino Nano only)

4 x AA batteries

1 x push-button

5 x jumper wires

Laptop/PC with either Ubuntu 18.04+ or Windows 10 on x86-64

The source code and additional material are available in the
Chapter02 folder on the GitHub repository

(https://github.com/PacktPublishing/TinyML-
Cookbook/tree/main/Chapter02).

Code debugging 101
Code debugging is a fundamental process of software development
to uncover errors in code.

This recipe will show how to perform print debugging on an
Arduino Nano and Raspberry Pi Pico by transmitting the following
strings to the serial terminal:

Initialization completed: Once we have completed the
initialization of the serial port

Executed: After every 2 seconds

The following Arduino sketch contains the code referred to in this
recipe:

01_printf.ino:

https://github.com/PacktPublishing/TinyML-
Cookbook/blob/main/Chapter02/ArduinoSketches/01_printf.ino

Getting ready

All programs are prone to bugs, and print debugging is a basic
process that prints statements on the output terminal to give insight
into the program execution, as shown in the following example:

https://github.com/PacktPublishing/TinyML-Cookbook/tree/main/Chapter02
https://github.com/PacktPublishing/TinyML-Cookbook/tree/main/Chapter02
https://github.com/PacktPublishing/TinyML-Cookbook/blob/main/Chapter02/ArduinoSketches/01_printf.ino
https://github.com/PacktPublishing/TinyML-Cookbook/blob/main/Chapter02/ArduinoSketches/01_printf.ino

int func (int func_type, int a) {

 int ret_val = 0;

 switch(func_type){

 case 0:

 printf("FUNC0\n");

 ret_val = func0(a)

 break;

 default:

 printf("FUNC1\n");

 ret_val = func1(a);

 }

 return ret_val;

}

To get ready with this first recipe, we only need to know how the
microcontroller can send messages on the serial terminal.

The Arduino programming language offers a similar function to
printf(), the Serial.print() function.

This function can send characters, numbers, or even binary data
from the microcontroller board to our computer through the serial
port, commonly called UART or USART. You can refer to
https://www.arduino.cc/reference/en/language/functions/communic
ation/serial/print/ for the complete list of input arguments.

How to do it...

https://www.arduino.cc/reference/en/language/functions/communication/serial/print/
https://www.arduino.cc/reference/en/language/functions/communication/serial/print/

NOTE
The code reported in this recipe is valid for both the Arduino Nano and Raspberry
Pi Pico. The Arduino IDE, in fact, will compile the code accordingly with the
selected platform in the device drop-down menu.

Open the Arduino IDE and create a new empty project by clicking on
Sketchbook from the leftmost menu (EDITOR) and then click on
NEW SKETCH, as shown in the following figure:

Figure 2.1 – Click on the NEW SKETCH button to create a new project

As we saw in Chapter 1, Getting Started with TinyML, all sketches
require a file containing the setup() and loop() functions.

The following steps will show what to write in these functions to
implement our print debugging recipe:

1. Initialize the UART baud rate in the setup() function and wait
until the peripheral is open:
void setup() {

 Serial.begin(9600);

 while (!Serial);

In contrast to the standard C library printf function, the
Serial.print() function requires initialization before transmitting
data. Therefore, we initialize the peripheral with the Arduino
Serial.begin() function, which only requires the baud rate as an
input argument. The baud rate is the data transmission rate in bits
per second, and it is set to 9600 bps.

However, we can't use the peripheral immediately after the
initialization because we should wait until it is ready to transmit. So,
we use while(!Serial) to wait until the serial communication is
open.

2. Print Initialization completed after Serial.begin() in the
setup() function:

 Serial.print("Initialization completed\n");

}

We transmit the string Initialization completed with
Serial.print("Initialization completed\n") to report the
completion of the initialization.

3. Print Executed every 2 seconds in the loop() function:

void loop() {

 delay(2000);

 Serial.print("Executed\n");

}

Since the loop() function is called iteratively, we use the Arduino's
delay() function to pause the program execution for 2 seconds.
delay() accepts the amount of time in milliseconds (1 s = 1000 ms)
as an input argument.

Now, make sure the device is plugged into your computer through
the micro-USB cable.

If the device is recognized, we can open the serial monitor by
clicking on Monitor from the Editor menu. From there, we will see
any data transmitted by the microcontroller through the UART
peripheral. However, before any communication starts, ensure the
serial monitor uses the same baud rate as the microcontroller
peripheral (9600), as shown in the following figure:

Figure 2.2 – The serial monitor must use the same baud rate as the UART's
peripheral

With the serial monitor open, we can click on the arrow near the
device drop-down menu to compile and upload the program to the
target platform. Once the sketch has been uploaded, the serial
monitor will receive the Initialization completed and Executed
messages, as shown in the following screenshot:

Figure 2.3 – Expected output on the serial monitor

As we can see from the serial monitor output, Initialization
completed is printed once because the setup() function is just
called when starting the program.

There's more

Print debugging is a simple debugging approach, but it has
significant disadvantages with the increase of software complexity,
such as the following:

Needing to re-compile and flash the board every time we add or
move Serial.print().

Serial.print() costs in terms of program memory footprint.

We could make mistakes reporting the information (for example,
using print to report an unsigned int variable that is actually
signed).

We will not cover more advanced debugging in this book, but we
recommend looking at serial wire debug (SWD) debuggers
(https://developer.arm.com/architectures/cpu-architecture/debug-
visibility-and-trace/coresight-architecture/serial-wire-debug) to make
this process less painful. SWD is an Arm debug protocol for almost
all Arm Cortex processors that you can use to flash the
microcontroller, step through the code, add breakpoints, and so on
with only two wires.

Implementing an LED status
indicator on the breadboard
We have the chance to interact with the world around us with
microcontrollers. For example, we can get data from sensors or
perform physical actions, such as turning on and off an LED or
moving an actuator.

In this recipe, we will learn how to connect external components
with the microcontroller by building the following electronic circuit on
the breadboard:

https://developer.arm.com/architectures/cpu-architecture/debug-visibility-and-trace/coresight-architecture/serial-wire-debug
https://developer.arm.com/architectures/cpu-architecture/debug-visibility-and-trace/coresight-architecture/serial-wire-debug

Figure 2.4 – LED power status indicator circuit

The preceding circuit uses a red LED to indicate whether the
microcontroller is plugged into the power.

Getting ready

When connecting external components to the microcontroller, we
mean physically joining two or more metal connectors together.

Although we could solder these connectors, it is not usual for
prototyping because it is not quick and straightforward.

Therefore, this Getting ready section aims to present a solderless
alternative to connect our components effortlessly.

Making contacts directly with the microcontroller's pins can be
extremely hard for the tiny space between each pin. For example,
considering the RP2040 microcontroller, the pin space is roughly 0.5
mm since the chip size is 7x7 mm. Therefore, it would be practically
impossible to connect any of our components safely since most
terminals have a wire diameter of ~1 mm.

For this reason, our platforms provide alternative points of contact
with wider spacing on the board. These contact points on the
Arduino Nano and Raspberry Pi Pico are the two rows of pre-drilled
holes located at the platform's edge.

The simplest way to know the correspondence between these
contacts and the microcontroller pins is to refer to the datasheet of
the microcontroller boards. Hardware vendors usually provide the
pinout diagram to note the pins' arrangement and functionality.

For example, the following list reports the links to the Arduino Nano
and Raspberry Pi Pico pinout diagrams:

Arduino Nano:

https://content.arduino.cc/assets/Pinout-NANOsense_latest.pdf

Rasberry Pi Pico:

https://content.arduino.cc/assets/Pinout-NANOsense_latest.pdf

https://datasheets.raspberrypi.org/pico/Pico-R3-A4-Pinout.pdf

On top of these pre-drilled holes, which often come with a 2.54 mm
spacing, we can solder a header to insert and connect the
electronic components easily.

The header can be either a male (pin header) or a female connector
(socket header), as shown in the following figure:

Figure 2.5 – Male header versus female header (image from
https://en.wikipedia.org/wiki/Pin_header)

IMPORTANT NOTE
We recommend buying devices with pre-soldered male headers if you are not
familiar with soldering or just want a ready-to-go solution.

As we have seen, the boards provide a way to connect the external
components with the microcontroller. However, how can we attach
other electrical elements to build a complete electronic circuit?

https://datasheets.raspberrypi.org/pico/Pico-R3-A4-Pinout.pdf

Prototyping on a breadboard
The breadboard is a solderless prototyping platform to build
circuits by pushing the device's pins in a rectangular grid of metal
holes:

Figure 2.6 – Solderless breadboard

As shown in the previous figure, breadboards provide two
connecting areas for our components:

Bus rails are usually located on both sides of the breadboard
and consist of two columns of holes identified with the symbols
+ and – as shown in the following diagram:

Figure 2.7 – Bus rails labeled with + and - on both sides of the breadboard

All the holes of the same column are internally connected.
Therefore, we will have the same voltage through all its columns
when applying a voltage to whatever hole.

Since bus rails are beneficial for having reference voltages for our
circuits, we should never apply different voltages on the same bus
column.

Terminal strips are located in the central area of the
breadboard and join only the holes of the same row so that the
following occurs:

Holes on the same row have the same voltage.

Holes on the same column might have a different
voltage.

However, since we typically have a notch running parallel in the
middle of the breadboard, we have two different terminal strips per
row, as shown in the following figure:

Figure 2.8 – Terminal strips are located in the central area of the breadboard

We can place several devices on the breadboard and connect them
through jumper wires.

NOTE
The size of a breadboard is defined by the number of rows and columns in the
terminal area. In our case, we will always refer to a half-sized breadboard with 30
rows and 10 columns.

How to do it...

Before building any circuits, unplug the micro-USB cable from the
microcontroller board to remove the possibility of unintentionally
damaging any components.

Once we have disconnected the board from the power, follow the
following steps to build the circuit to turn the LED on when the
platform is plugged into the power:

1. Put the microcontroller board on the breadboard:

Figure 2.9 – Vertically mount the microcontroller board between the left and
right terminal strips

Since we have a notch running parallel, it is safe to put the platforms
in this way because the left and right pin headers touch two
different terminal strips.

2. Use two jumper wires to connect the 3.3 V and GND pins of the
microcontroller board with the + and - bus rails:

Figure 2.10 – Use the jumper wires to connect the 3.3 V and GND to the + and
- bus rails

It is important to note that all holes of the bus rails will have 3.3 V
and GND, respectively, only when the microcontroller is connected to
the power.

3. Insert the LED pins on two terminal strips:

Figure 2.11 – Insert the LED on the breadboard

In the preceding figure, we insert the longer LED terminal in (H, 24)
and the shorter one in (H, 25). Do not invert the longer and shorter
terminals because then the LED won't turn on.

4. Place the 220 Ω resistor in series with the LED:

Figure 2.12 – Place the resistor in series with the LED

The color bands of the resistor can be determined through the
Digikey web tool (https://www.digikey.com/en/resources/conversion-
calculators/conversion-calculator-resistor-color-code). For example, a
220Ω resistor with five or six bands is encoded with the following
colors:

https://www.digikey.com/en/resources/conversion-calculators/conversion-calculator-resistor-color-code
https://www.digikey.com/en/resources/conversion-calculators/conversion-calculator-resistor-color-code

First band: red (2)

Second band: red (2)

Third band: black (0)

Fourth band: black (1)

As reported in the circuit presented at the beginning of this recipe,
one terminal of the resistor should touch the shorter LED pin. In our
case, we insert one terminal in (H, 25). The remaining terminal of
the resistor goes in whichever unused terminal strip. In our case, we
insert this terminal in (H, 28).

5. Close the circuit by connecting the + bus rail (3.3 V) to the
longer LED pin and the - bus rail (GND) to the resistor terminal:

Figure 2.13 – Close the circuit by connecting 3.3 V and GND

The previous figure shows how to connect the two remaining jumper
wires used to close the circuit. One jumper wire connects the + bus
rail with the longer LED terminal (H, 24) while the other one
connects the - bus rail with the resistor (H, 28).

Now, the LED should emit light whenever you plug the
microcontroller into the power with the micro-USB cable.

Controlling an external LED with
the GPIO
Nowadays, LEDs are everywhere, particularly in our houses, because
they use less energy than older lights for the same luminous
intensity. However, the LEDs considered for our experiments are not
light bulbs but through-hole LEDs for rapid prototyping on the
breadboard.

In this recipe, we will discover how to build a basic circuit with an
external LED and program the GPIO peripheral to control its light.

The following Arduino sketch contains the code referred to in this
recipe:

03_gpio_out.ino:

https://github.com/PacktPublishing/TinyML-
Cookbook/blob/main/Chapter02/ArduinoSketches/03_gpio_out.ino

Getting ready

To implement this recipe, we need to know how the LED works and
how to program the microcontroller GPIO peripheral in output mode.

LED stands for Light-Emitting Diode and is a semiconductor
component that emits light when the current flows through it.

https://github.com/PacktPublishing/TinyML-Cookbook/blob/main/Chapter02/ArduinoSketches/03_gpio_out.ino
https://github.com/PacktPublishing/TinyML-Cookbook/blob/main/Chapter02/ArduinoSketches/03_gpio_out.ino

A through-hole LED is made of the following:

A head of transparent material from where the light comes. The
head can be of different diameters, but typically comes in 3mm,
5mm, and 10mm sizes.

Two legs (leads) of different lengths to identify the positive
(anode) from the negative (cathode) terminal. The anode is the
longer lead.

The following diagram shows the basic structure of a through-hole
LED and its symbolic representation in an electronic circuit.

Figure 2.14 – LED with symbolic representation

As mentioned, the LED emits light when the current flows through it.
However, in contrast to the resistors, the current flows only in one
direction, specifically from the anode to the cathode. This current is
commonly called forward current (If).

The brightness of the LED is proportional to If, so the higher it is,
the brighter it will appear.

The LED has a maximum operating current that we must not exceed
to avoid breaking it instantly. For standard through-hole 5 mm LEDs,
the maximum current is typically 20 mA, so values between 4 mA
and 15 mA should be enough to see the LED emitting the light.

To allow the current to flow, we need to apply a specific voltage to
the terminals' LED, called forward voltage (Vf). We define the Vf
as:

We report the typical Vf range for some LED colors in the following
table:

Figure 2.15 – Typical LED forward voltage

From the preceding table, we can observe the following about the
forward voltage range:

It depends on the color.

It is narrow and less than the typical 3.3 V required to power a
microcontroller in most cases.

From these observations, three questions come into mind:

First, how can we apply the forward voltage on the LED terminals
since we typically only have 3.3 V from the microcontroller?

What happens if we apply a voltage lower than the minimum Vf?

What happens if we apply a voltage higher than the maximum
Vf?

The answers rely on the following physical relationship between the
voltage and current of the LED:

Figure 2.16 – Voltage-current (VI) characteristic of LED

From the previous chart where the x and y axes report the voltage
and current, we can deduce the following:

If we applied a voltage much lower than Vf to the LED, the LED
would not turn on because the current would be low.

If we applied a voltage much higher than Vf on the LED, the LED
would be damaged because the current would exceed the 20 mA
limit.

Therefore, fixing the voltage at the required operating Vf is crucial to
ensure that the device works and is not damaged.

The solution is simple and only requires a resistor in series with the
LED, as shown in the following figure:

Figure 2.17 – The resistor in series with the LED limits the current

At this point, it should be clear why we included the resistor in the
circuit of the previous recipe. Since the LED has a fixed voltage drop
when it emits the light (Vf), the resistor limits the current at the
value we want, such as 4 mA–15 mA. Therefore, having the LED
current in the acceptable range means that the Vf does not fall out
of the expected operating range.

We can calculate the resistor's value using the following formula:

Where:

Vf is the forward voltage.

If is the forward current.

R is the resistance.

The forward voltage/current and LED brightness information is
generally available in the LED datasheet.

Now, let's see how we can control the status of this device with the
GPIO peripheral.

Introducing the GPIO peripheral
General-purpose input/output (GPIO) is the most common and
versatile peripheral on microcontrollers.

As the name suggests, GPIO does not have a fixed functionality.
Instead, its primary function is to provide (output) or read (input)
digital signals (1 or 0) through the external pins, commonly called
either GPIO, IO, or GP.

A microcontroller can integrate several GPIO peripherals, where each
one can control a dedicated pin of the integrated chip.

GPIO has similar behavior to std::cout and std::cin of the C++
iostream library but with the difference that it writes and reads fixed

voltages rather than characters.

The commonly applied voltages for the logical 1 and 0 levels are as
follows:

Figure 2.18 – Relation between logical levels and voltages

The LED blinking is a typical example of configuring the GPIO
peripheral in output mode to supply either 3.3 V (1) or 0 V (0)
programmatically.

There are two ways to connect the LED with the GPIO pin, and the
direction of the current makes them different. The first way is
current sourcing, where the current flows out of the
microcontroller board. To do so, we need to do the following:

Connect the LED anode to the GPIO pin.

Connect the LED cathode to the resistor in the series.

Connect the remaining resistor terminal to GND.

The following circuit shows how to drive an LED with a current
sourcing circuit:

Figure 2.19 – Current sourcing. The current goes out of the microcontroller
board

From the preceding circuit, we can observe that the GPIO pin should
supply the logical level 1 to turn on the LED.

The second and opposite way is current sinking, where the
current flows into the microcontroller board. In this case, we need to
do the following:

Connect the LED cathode to the GPIO pin.

Connect the LED anode to the resistor in series.

Connect the remaining resistor terminal to 3.3 V.

As we can observe from the following circuit, the GPIO pin should
supply the logical level 0 to turn on the LED:

Figure 2.20 – Current sinking. The current goes into the microcontroller board

Whatever solution we adopt, it is essential to keep in mind that the
pin has limits on the maximum current, which can be different
depending on its direction. For example, the Arduino Nano has a
maximum output current of 15 mA and a maximum input current of

5 mA. So, when designing the circuit to drive the LED, we should
always consider these limitations for correctly operating and not
damaging the device.

How to do it...

Disconnect the microcontroller boards from the power and keep the
LED and resistor on the breadboard as in the previous recipe.
However, unplug all the jumper wires except the one connected to
the - bus rail (GND). The following diagram shows what you should
have on the breadboard:

Figure 2.21 – We keep the microcontroller board, LED, and resistor from the
Implementing an LED status indicator on the breadboard recipe

Since the LED cathode is connected to the terminal resistor, the LED
will be driven by a current sourcing circuit.

The following steps will show how to control the LED light through
the GPIO peripheral:

1. Choose the GPIO pin to drive the LED. The following table
reports our choice:

Figure 2.22 – GPIO pin selected for driving the LED

2. Connect the LED anode to the GPIO pin with a jumper wire:

Figure 2.23 – Connect the LED anode to the GPIO pin

On the Arduino Nano, we use a jumper wire to connect (J, 6) with
(J, 24). On the Raspberry Pi Pico, we use a jumper wire to connect
(J, 12) with (J, 24).

3. Connect the terminal resistor to GND:

Figure 2.24 – Connect the resistor to GND

On both the Arduino Nano and Raspberry Pi Pico, we connect (J,
28) with the - bus rail.

The 220Ω resistor imposes an LED current of ~5 mA, which is below
the maximum 20 mA LED current and below the maximum output
GPIO current, as reported in the following table:

Figure 2.25 – Max GPIO current (sourcing) on the Arduino Nano and Raspberry
Pi Pico

Once the circuit is ready, we can focus on the GPIO programming.

4. Open the Arduino IDE and create a new sketch. Declare and
initialize a global mbed::DigitalOut object with the pin name
used for driving the LED.

For the Arduino Nano, we have the following:
mbed::DigitalOut led(p23);

And this for the Raspberry Pi Pico:
mbed::DigitalOut led(p22);

Mbed, or rather Mbed OS (https://os.mbed.com/), is a real-time
operating system (RTOS) specifically for Arm Cortex-M
processors, which offers functionalities typical of a canonical OS and

https://os.mbed.com/

drivers to control microcontroller peripherals. All programs on the
Arduino Nano 33 BLE Sense board and Raspberry Pi Pico are built on
top of this tiny operating system. In this recipe, we use the
mbed::DigitalOutput object (https://os.mbed.com/docs/mbed-
os/v6.15/apis/digitalout.html) from Mbed OS to interface with the
GPIO peripheral in output mode. The peripheral initialization requires
the GPIO pin (PinName) connected to the LED. PinName always starts
with the letter p, followed by the pin number.

On the Arduino Nano, the pin number is obtained from the y number
reported in the pin label P<x>.<y>. Therefore, PinName is p23.

On the Raspberry Pi Pico, the pin number is obtained from the y
number reported in the label GPy. Therefore, PinName is p22.

5. Set led to 1 for turning on the LED in the loop() function:
void loop() {

 led = 1;

}

Compile the sketch and upload the program to the microcontroller.

Turning an LED on and off with a
push-button
In contrast to a PC where the keyboard, mouse, or even a
touchscreen facilitates human interactions with the software

https://os.mbed.com/docs/mbed-os/v6.15/apis/digitalout.html
https://os.mbed.com/docs/mbed-os/v6.15/apis/digitalout.html

applications, a physical button represents the easiest way for a user
to interact with a microcontroller.

This recipe will teach us how to program the GPIO to read the status
of a push-button (pushed or released) to control the LED light.

The following Arduino sketch contains the code referred to in this
recipe:

04_gpio_in_out.ino:

https://github.com/PacktPublishing/TinyML-
Cookbook/blob/main/Chapter02/ArduinoSketches/04_gpio_in_out.in
o

Getting ready

To get ready for this recipe, we need to know how this device works
and program the GPIO peripheral in input mode.

The push-button is a type of button used with microcontrollers,
and it has boolean behavior since its state can either be pushed
(true) or released (false).

From an electronics point of view, a push-button is a device that
makes (a.k.a. short) or breaks (a.k.a. open) the connection between
two wires. When we press the button, we connect the wires through
a mechanical system, allowing the current to flow. However, it is not
like a standard light switch that keeps the wires connected when

https://github.com/PacktPublishing/TinyML-Cookbook/blob/main/Chapter02/ArduinoSketches/04_gpio_in_out.ino
https://github.com/PacktPublishing/TinyML-Cookbook/blob/main/Chapter02/ArduinoSketches/04_gpio_in_out.ino
https://github.com/PacktPublishing/TinyML-Cookbook/blob/main/Chapter02/ArduinoSketches/04_gpio_in_out.ino

released. When we don't apply pressure to the button, the wires
disconnect, and the current stops flowing.

Although this device has four metal legs, it is a two-terminal device
because the contacts on the opposite side (1, 4 and 2, 3) are
connected, as shown in the following figure:

Figure 2.26 – Push-button representation

When building a circuit with this component, the legs on the same
side (1,2 or 4,3 in the preceding figure) are responsible for

connecting two points. These two points will have the same voltage
when the push-button is pressed.

The state of a push-button can be read with the GPIO peripheral in
input mode. When configuring the GPIO in input mode, the
peripheral reads the applied voltage on the pin to infer the logical
level. From this value, we can guess whether the button is pressed.

In the following diagram, the voltage on the GPIO pin is GND when
we press the button. However, what is the voltage when the button
is released?

Figure 2.27 – What is the voltage on the GPIO pin when we release the push-
button?

Although the pin could only assume two logical levels, this could not
be true in some input mode circumstances. A third logical level

called floating (or high impedance) could occur if we do not take
circuit precautions. When the floating state occurs, the pin's logical
level is undefined because the voltage fluctuates between 3.3 V and
GND. Since the voltage is not constant, we cannot know whether the
push-button is pressed. To prevent this problem, we must include a
resistor in our circuit to always have a well-defined logical level
under all conditions.

Depending on what logical level we want in the pushed state, the
resistor can be as follows:

Pull-up: The resistor connects the GPIO pin to the 3.3 V. Thus,
the GPIO pin reads LOW in the pushed state and HIGH in the
released state.

Pull-down: The resistor connects the GPIO pin to GND in
contrast to the pull-up configuration. Thus, the GPIO pin reads
the logical level HIGH in the pushed state and LOW in the
released state.

The following diagram shows the difference between the pull-up and
pull-down configurations:

Figure 2.28 – Pull-up versus pull-down configurations

Typically, a 10 K resistor should be okay for both cases. However,
most microcontrollers offer an internal and programmable pull-up
resistor so the external one is often not needed.

How to do it...

Keep all the components on the breadboard. The following steps will
show what to change in the previous sketch to control the LED
status with the push-button:

1. Choose the GPIO pin for reading the push-button state. The
following table reports our choice.

Figure 2.29 – GPIO pin used to read the push-button state

2. Mount the push-button between the breadboard's left and right
terminal strips:

Figure 2.30 – The push-button is mounted between the terminal strips 21 and
23

As we can observe from the preceding diagram, we use terminal
strips not employed by other devices.

3. Connect the push-button to the GPIO pin and GND:

Figure 2.31 – The push-button is only connected to the GPIO pin and GND

The floating state will not occur because we use the microcontroller
pull-up resistor.

4. Open the sketch developed in the previous recipe. Declare and
initialize a global mbed::DigitalIn object with the pin name used
for the push-button.

For the Arduino Nano:
mbed::DigitalIn button(p30);

And this for the Raspberry Pi Pico:
mbed::DigitalIn button(p10);

mbed::DigitalIn (https://os.mbed.com/docs/mbed-
os/v6.15/apis/digitalin.html) is used to interface with the GPIO
peripheral in input mode. The initialization only requires the GPIO
pin (PinName) connected to the push-button.

5. Set the button mode to PullUp in the setup() function:

void setup() {

 button.mode(PullUp);

}

The preceding code enables the microcontroller's internal pull-up
resistor.

6. Turn on the LED when the push-button is LOW (0) in the loop()
function:

https://os.mbed.com/docs/mbed-os/v6.15/apis/digitalin.html
https://os.mbed.com/docs/mbed-os/v6.15/apis/digitalin.html

void loop() {

 led = !button;

}

We just need to set the led object to the opposite value returned by
button to light up the LED when the push-button is pressed.

Compile the sketch and upload the program to the microcontroller.

TIP
When the push-button is pressed, the switch could generate spurious logical-level
transitions due to the mechanical nature of the component. This issue is called
button bouncing because the switch response bounces between HIGH and LOW
for a short time. You may consider adopting a switch debouncing algorithm (for
example, https://os.mbed.com/teams/TVZ-Mechatronics-Team/wiki/Timers-
interrupts-and-tasks) to prevent the generation of multiple transitions.

Using interrupts to read the push-
button state
The previous recipe explained how to read digital signals with the
GPIO peripheral. However, the proposed solution is inefficient
because the CPU wastes cycles waiting for the button to be pressed
while it could do something else in the meantime. Furthermore, this
could be a scenario where we would keep the CPU in low-power
mode when there is nothing else to do.

This recipe will teach us how to read the push-button state
efficiently by using the interrupts on the Arduino Nano.

https://os.mbed.com/teams/TVZ-Mechatronics-Team/wiki/Timers-interrupts-and-tasks
https://os.mbed.com/teams/TVZ-Mechatronics-Team/wiki/Timers-interrupts-and-tasks

The following Arduino sketch contains the code referred to in this
recipe:

05_gpio_interrupt.ino:

https://github.com/PacktPublishing/TinyML-
Cookbook/blob/main/Chapter02/ArduinoSketches/05_gpio_interrupt.i
no

Getting ready

Let's prepare this recipe by learning what an interrupt is and what
Mbed OS API we can use to read the push-button efficiently.

An interrupt is a signal that temporarily pauses the main program
to respond to an event with a dedicated function, called an
interrupt handler or interrupt service routine (ISR). Once the
ISR ends the execution, the processor resumes the main program
from the point it was left at, as shown in the following diagram:

https://github.com/PacktPublishing/TinyML-Cookbook/blob/main/Chapter02/ArduinoSketches/05_gpio_interrupt.ino
https://github.com/PacktPublishing/TinyML-Cookbook/blob/main/Chapter02/ArduinoSketches/05_gpio_interrupt.ino
https://github.com/PacktPublishing/TinyML-Cookbook/blob/main/Chapter02/ArduinoSketches/05_gpio_interrupt.ino

Figure 2.32 – Interrupt pauses the main program temporarily

The interrupt is a powerful mechanism to save energy because the
CPU could enter the sleep state and wait for an event before starting
the computation.

A microcontroller has several interrupt sources, and for each one, we
can program a dedicated ISR.

Although the ISR is a function, there are limitations to its
implementation:

It does not have input arguments.

It does not return a value. Therefore, we need to use global
values to report status changes.

It must be short to not steal too much time from the main
program. We want to remind you that the ISR is not a thread
since the processor can only resume the computation when the
ISR finishes.

For GPIO peripherals in input mode, we can use the
mbed::InterruptIn (https://os.mbed.com/docs/mbed-
os/v6.15/apis/interruptin.html) object to trigger an event whenever
the logical level on the pin changes:

Figure 2.33 – Rising interrupt versus falling interrupt

https://os.mbed.com/docs/mbed-os/v6.15/apis/interruptin.html
https://os.mbed.com/docs/mbed-os/v6.15/apis/interruptin.html

As we can observe from the preceding diagram, mbed::InterruptIn
can trigger interrupts when the logical level on the pin goes from
LOW to HIGH (rising interrupts) or HIGH to LOW (falling interrupt).

How to do it...

Open the sketch built in the previous recipe and follow these steps
to turn on and off the LED with the GPIO interrupt:

1. Define and initialize the mbed::InterruptIn object with the
PinName of the GPIO pin connected to the push-button.

For the Arduino Nano:
mbed::InterruptIn button(p30);

For the Raspberry Pi Pico:
mbed::InterruptIn button(p10);

The mbed::DigitalIn object is not required anymore since
mbed::InterruptIn also controls the interface with the GPIO
peripheral in input mode.

2. Write an ISR for handling the interrupt request on the rising edge
(LOW to HIGH) of the input signal:
void rise_ISR() {

 led = 0;

}

The LED is turned off when the preceding ISR is called (led = 0).

Next, write an ISR for handling the interrupt request on the falling
edge (HIGH to LOW) of the input signal:
void fall_ISR() {

 led = 1;

}

The LED switches on when the preceding ISR is called (led = 1).

3. Initialize button in the setup() function:
void setup() {

 button.mode(PullUp);

 button.rise(&rise_ISR);

 button.fall(&fall_ISR);

}

We configure the mbed::InterruptIn object by doing the following:

Enabling the internal pull-up resistor (button.mode(PullUp))

Attaching the ISR function to call when the rising interrupt occurs
(button.rise(&rise_ISR))

Attaching the ISR function to call when the falling interrupt
occurs (button.fall(&fall_ISR))

4. Replace the code in the loop() function with delay(4000):

void loop() {

 delay(4000);

}

In theory, we could leave the loop() function empty. However, we
recommend calling delay() when nothing has to be done because it
can put the system in low-power mode.

Compile the sketch and upload the program to the microcontroller.

Powering microcontrollers with
batteries
For many TinyML applications, batteries could be the only power
source for our microcontrollers.

In this final recipe, we will learn how to power microcontrollers with
AA batteries.

The following Colab notebook contains the code referred to in this
recipe:

06_estimate_battery_life.ipynb:

https://github.com/PacktPublishing/TinyML-
Cookbook/blob/main/Chapter02/ColabNotebooks/06_estimate_batter
y_life.ipynb

Getting started

Microcontrollers don't have a built-in battery, so we need to supply
an external one to make the device work when it is not connected
through the micro-USB cable.

https://github.com/PacktPublishing/TinyML-Cookbook/blob/main/Chapter02/ColabNotebooks/06_estimate_battery_life.ipynb
https://github.com/PacktPublishing/TinyML-Cookbook/blob/main/Chapter02/ColabNotebooks/06_estimate_battery_life.ipynb
https://github.com/PacktPublishing/TinyML-Cookbook/blob/main/Chapter02/ColabNotebooks/06_estimate_battery_life.ipynb

To get ready for this recipe, we need to know what types of
batteries we need and how we can use them correctly to supply
power.

Batteries are sources of electric power and have a limited energy
capacity. The energy capacity (or battery capacity) quantifies the
energy stored and is measured in milli-ampere-hour (mAh).
Therefore, a higher mAh implies a longer battery life.

The following table reports some commercial batteries that find
applicability with microcontrollers:

Figure 2.34 – Suitable commercial batteries for microcontrollers

The battery selection depends on the required microcontroller
voltage and other factors such as energy capacity, form factor, and
operating temperature.

As we can observe from the preceding table, the AA battery provides
a higher capacity, but it supplies 1.5 V, typically insufficient for
microcontrollers.

Therefore, how can we power microcontrollers with AA batteries?

In the following subsections, we will show standard techniques to
either increase the supplied voltage or the energy capacity.

Increasing the output voltage by
connecting batteries in series
When connecting batteries in series, the positive terminal of one
battery is connected to the negative terminal of the other one, as
shown in the following figure:

Figure 2.35 – Batteries in series

IMPORTANT NOTE
This approach will not extend the battery capacity but just the supplied voltage.

The new supplied voltage () is as follows:

Where N is the number of connected batteries in series.

For example, since one AA battery supplies 1.5 V for 2400 mAh, we
could connect two AA batteries in series to produce 3.0 V for the
same energy capacity.

However, if the battery capacity is not enough for our application,
how can we increase it?

Increasing the energy capacity by
connecting batteries in parallel
When connecting batteries in parallel, the positive terminals of the
batteries are tied together with one wire. The same applies to the
negative terminals, which are joined together as shown in the
following figure:

Figure 2.36 – Batteries in parallel

IMPORTANT NOTE
This approach will not increase the output voltage but just the battery capacity.

The new battery capacity () is as follows:

Where N is the number of connected batteries in parallel.

For example, since one AA battery has a battery capacity of 2400
mAh, we could connect two AA batteries in parallel to increase the
battery capacity by two times.

Now that we know how to connect multiple batteries together to get
the desired output voltage and energy capacity, let's see how we can
use them to power the microcontrollers.

Connecting batteries to the
microcontroller board
Microcontrollers have dedicated pins for supplying power through
external energy sources, such as batteries. These pins have voltage
limits, commonly reported in the datasheet.

On the Arduino Nano, the external power source is supplied through
the Vin pin. The Vin input voltage can range from 5 V–21 V.

On the Raspberry Pi Pico, the external power source is supplied
through the VSYS pin. The VSYS input voltage can range from 1.8
V – 5.5 V.

On both platforms, the onboard voltage regulator will convert the
supplied voltage to 3.3 V.

How to do it...

Disconnect the Arduino Nano and Raspberry Pi Pico from the micro-
USB and keep all the components on the breadboard.

The battery holder considered for this recipe connects the AA
batteries in series. We recommend not inserting the batteries in the
battery holder yet. The batteries should only be inserted when the
electric circuit is completed.

The following steps will show how to power the Arduino Nano and
Raspberry Pi Pico with batteries:

1. Connect the positive (red) and negative (black) wires of the
battery holder to the + and – bus rails respectively:

Figure 2.37 – Connect the battery holder to the bus rails

2. The Arduino Nano and Raspberry Pi Pico have different voltage
limits for the external power source. Therefore, we cannot use
the same number of AA batteries on both platforms. In fact,
three AA batteries are enough for the Raspberry Pi Pico but not
for the Arduino Nano. In contrast, four AA batteries are enough
for the Arduino Nano but beyond the voltage limit on the
Raspberry Pi Pico. For this reason, we use a 4 x AA battery holder
for the Arduino Nano to supply 6 V and a 3 x AA battery holder
for the Raspberry Pi Pico to supply 4.5 V.

3. Connect the external power source to the microcontroller board,
as shown in the following diagram:

Figure 2.38 – Connect the bus rails to the microcontroller power pin and GND

As you can observe from the preceding figure, VIN (Arduino Nano)
and VSYS (Raspberry Pi Pico) are connected to the positive battery
holder terminal through the + bus rail.

4. Insert the batteries in the battery holder:

4 x AA batteries for the Arduino Nano

3 x AA batteries for the Raspberry Pi Pico

The LED application should now work again.

However, one thing we might be curious about is how can we
evaluate the lifetime of a battery-powered application?

There's more

Once we have chosen the battery for the microcontroller, we can
estimate its lifetime with the following formula:

Where:

Figure 2.39 – Physical quantities of the battery lifetime estimate formula

The following Python code calculates the battery life in hours and
days:
battery_cap_mah = 2400

i_load_ma = 1.5

battery_life_hours = battery_cap_mah / i_load_ma

battery_life_days = battery_life_hours / 24

print("Battery life:", battery_life_hours,"hours,",

battery_life_days, "days")

The preceding code estimates the battery life for the case when the
battery capacity (battery_cap_mah) is 2400 mAh, and the load
current (i_load_ma) is 1.5 mA.

The expected output is as follows:

Figure 2.40 – Expected output from the battery life estimator

Although the formula above is an estimation and valid under ideal
conditions, it is enough to understand how long the system could
last. A better model could include other factors such as battery self-
discharge and temperature.

Chapter 3: Building a Weather
Station with TensorFlow Lite for
Microcontrollers
Nowadays, it is straightforward to get the weather forecast with our
smartphones, laptops, and tablets, thanks to internet connectivity.
However, have you ever thought of what you would do if you had to
track the weather in a remote region with no internet access?

This chapter will teach us how to implement a weather station with
machine learning (ML) using the temperature and humidity of the
last three hours.

In this chapter, we will focus on dataset preparation and show how
to acquire historical weather data from WorldWeatherOnline.
After that, we will explain how to train and test a model with
TensorFlow (TF). In the last part, we will deploy the model on an
Arduino Nano and a Raspberry Pi Pico with TensorFlow Lite for
Microcontrollers (TFLu) and build an application to predict
whether it will snow.

The goal of this chapter is to guide you through all the development
stages of a TF-based application for microcontrollers and explain
how to acquire temperature and humidity sensor data.

In this chapter, we're going to implement the following recipes:

Importing weather data from WorldWeatherOnline

Preparing the dataset

Training the model with TF

Evaluating the model's effectiveness

Quantizing the model with TFLite converter

Using the built-in temperature and humidity sensor on an Arduino
Nano

Using the DHT22 sensor with a Raspberry Pi Pico

Preparing the input features for the model inference

On-device inference with TFLu

Technical requirements
To complete all the practical recipes of this chapter, we will need the
following:

An Arduino Nano 33 Sense board

A Raspberry Pi Pico board

A micro-USB cable

1 x half-size solderless breadboard (Raspberry Pi Pico only)

1 x AM2302 module with the DHT22 sensor (Raspberry Pi Pico
only)

5 x jumper wires (Raspberry Pi Pico only)

Laptop/PC with either Ubuntu 18.04+ or Windows 10 on x86-64

The source code and additional material are available in the
Chapter03 folder of the repository for this book
(https://github.com/PacktPublishing/TinyML-
Cookbook/tree/main/Chapter03).

Importing weather data from
WorldWeatherOnline
The effectiveness of ML algorithms depends heavily on the data
used for training. Hence, as we commonly say, the ML model is only
good as the dataset. The essential requirement for a good dataset is
that the input data must represent the problem we want to solve.
Considering our context, we know from physics that temperature
and humidity affect snow formation.

Hence, in this recipe, we will show how to gather historical hourly
temperature, humidity, and snowfall data to build a dataset for
forecasting snow.

The following Colab file (see the Importing weather data from
WorldWeatherOnline section in the following repository) contains the
code referred to in this recipe:

preparing_model.ipynb:

https://github.com/PacktPublishing/TinyML-
Cookbook/blob/main/Chapter03/ColabNotebooks/preparing_model.ip
ynb

https://github.com/PacktPublishing/TinyML-Cookbook/tree/main/Chapter03
https://github.com/PacktPublishing/TinyML-Cookbook/tree/main/Chapter03
https://github.com/PacktPublishing/TinyML-Cookbook/blob/main/Chapter03/ColabNotebooks/preparing_model.ipynb
https://github.com/PacktPublishing/TinyML-Cookbook/blob/main/Chapter03/ColabNotebooks/preparing_model.ipynb
https://github.com/PacktPublishing/TinyML-Cookbook/blob/main/Chapter03/ColabNotebooks/preparing_model.ipynb

Getting ready

On the internet, there are various sources from which we can gather
hourly weather data, but most of them are not free or have limited
usage.

For this recipe, WorldWeatherOnline
(https://www.worldweatheronline.com/developer/) has been our
choice, which has a free trial period for 30 days and provides the
following:

Simple API through HTTP requests to acquire the data

Historical worldwide weather data

250 weather data requests per day

IMPORTANT NOTE
The limit on the weather data requests per day has no impact on this recipe.

You only need to sign up on the website to start fetching the data.

WorldWeatherOnline has an API called the Past Historical Weather
API (https://www.worldweatheronline.com/developer/premium-api-
explorer.aspx) that allows us to gather historical weather conditions
from July 1, 2008.

However, we will not directly deal with its native API but use the
Python package wwo-hist
(https://github.com/ekapope/WorldWeatherOnline) to export the
data directly to a pandas DataFrame.

https://www.worldweatheronline.com/developer/
https://www.worldweatheronline.com/developer/premium-api-explorer.aspx
https://www.worldweatheronline.com/developer/premium-api-explorer.aspx
https://github.com/ekapope/WorldWeatherOnline

How to do it…

Open Colab and create a new notebook. In the coding area, do the
following:

1. Install the wwo-hist package:

!pip install wwo-hist

2. Import the retrieve_hist_data function from wwo-hist:
from wwo_hist import retrieve_hist_data

retrieve_hist_data is the only function required to acquire data
from WorldWeatherOnline and can export to either pandas
DataFrames or CSV files.

3. Acquire data for ten years (01-JAN-2011 to 31-DEC-2020) with an
hourly frequency from Canazei:
frequency=1

api_key = 'YOUR_API_KEY'

location_list = [canazei]

df_weather = retrieve_hist_data(api_key,

 location_list,

 '01-JAN-2011',

 '31-DEC-2020',

 frequency,

 location_label = False,

 export_csv = False,

 store_df = True)

www-hist will export the data to df_weather, a list of pandas
DataFrames.

In this step, we set the input arguments for retrieve_hist_data.
Let's unpack all of them:

API key: The API key is reported in the WorldWeatherOnline
subscription dashboard, and it should replace the YOUR_API_KEY
string.

Location: This is the list of locations from which to acquire the
weather data. Since we are building a dataset to forecast the
snow, we should consider places where it snows periodically. For
example, you can consider Canazei
(https://en.wikipedia.org/wiki/Canazei), located in the north of
Italy, where snowfall can occur at any point between December
and March. We could also add other locations to make the ML
model more generic.

Start date/End date: The start and end dates define the
temporal interval in which to gather the data. The date format is
dd-mmm-yyyy. Since we want a large representative dataset, we
query 10 years of weather data. Therefore, the interval time is
set to 01-JAN-2011 – 31-DEC-2020.

Frequency: This defines the hourly frequency. For example, 1
stands for every hour, 3 for every three hours, 6 for every six
hours, and so on. We opt for an hourly frequency since we need

https://en.wikipedia.org/wiki/Canazei

the temperature and humidity of the last three hours to forecast
snow.

Location label: Since we might need to acquire data from
different locations, this flag binds the acquired weather data to
the place. We set this option to False because we are only using
a single location.

export_csv: This is the flag to export the weather data to a CSV
file. We set it to False because we do not need to export the
data to a CSV file.

store_df: This is the flag to export the weather data to a
pandas DataFrame. We set it to True.

Once the weather data is retrieved, the console output will report
export to canazei completed!.

4. Export temperature, humidity, and output snowfall to lists:
t_list = df_weather[0].tempC.astype(float).to_list()

h_list = df_weather[0].humidity.astype(float).to_list()

s_list =

df_weather[0].totalSnow_cm.astype(float).to_ list(

)

The generated df_weather[] dataset includes several weather
conditions for each requested date and time. For example, we can
find the pressure in millibars, cloud coverage in percentage, visibility
in kilometers, and, of course, the physical quantities that we're
interested in:

tempC: The temperature in degrees Celsius (°C)

humidity: The relative air humidity in percentage (%)

totalSnow_cm: Total snowfall in centimeters (cm)

In this final step, we export the hourly temperature, humidity, and
snowfall in cm to three lists using the to_list() method.

Now, we have all we need to prepare the dataset for forecasting the
snow.

Preparing the dataset
Preparing a dataset is a crucial phase in any ML project because it
has implications for the effectiveness of the trained model.

In this recipe, we will put into action two techniques to make the
dataset more suitable to get a more accurate model. These two
techniques will balance the dataset with standardization and bring
the input features into the same numerical range.

The following Colab file (see the Preparing the dataset section in the
following repository) contains the code referred to in this recipe:

preparing_model.ipynb:

https://github.com/PacktPublishing/TinyML-
Cookbook/blob/main/Chapter03/ColabNotebooks/preparing_model.ip
ynb

https://github.com/PacktPublishing/TinyML-Cookbook/blob/main/Chapter03/ColabNotebooks/preparing_model.ipynb
https://github.com/PacktPublishing/TinyML-Cookbook/blob/main/Chapter03/ColabNotebooks/preparing_model.ipynb
https://github.com/PacktPublishing/TinyML-Cookbook/blob/main/Chapter03/ColabNotebooks/preparing_model.ipynb

Getting ready

The temperature and humidity of the last three hours are our input
features. If you wonder why we use the last three hours' weather
conditions, it is just so we have more input features and Increase
the chance of higher classification accuracy.

To get ready for the dataset preparation, we need to know why the
dataset needs to be balanced and why the raw input features should
not be used for training. These two aspects will be examined in the
following subsections.

Preparing a balanced dataset
An unbalanced dataset is a dataset where one of the classes has
considerably more samples than the others. Training with an
unbalanced dataset could produce a model with high accuracy but
that's incapable of solving our problem. For example, consider a
dataset where one of the two classes has 99% of the samples. If the
network miss-classified the minority class, we would still have 99%
accuracy, but the model would be ineffective.

Therefore, we require a balanced dataset with roughly the same
input samples for each output category.

Balancing a dataset can be done with the following techniques:

Acquiring more input samples for the minority class: This
should be the first thing we do to ensure we have correctly
generated the dataset. However, it is not always possible to

collect more data, particularly when dealing with infrequent
events.

Oversampling the minority class: We could randomly
duplicate samples from the under-represented class. However,
this approach may increase the risk of overfitting the minority
class if we duplicate many instances.

Undersampling the majority class: We could randomly delete
samples from the over-represented class. Since this approach
reduces the dataset's size, we could lose valuable training
information.

Generating synthetic samples for the minority class: We
could develop artificially manufactured samples. The most
common algorithm for this is Synthetic Minority Over-
sampling Technique (SMOTE). SMOTE is an oversampling
technique that creates new samples instead of duplicating under-
represented instances. Although this technique reduces the risk
of overfitting caused by oversampling, the generated synthetic
samples could be incorrect near the class separation border,
adding undesirable noise to the dataset.

As we can see, despite the variety of techniques, there is not an
overall best solution to fix an unbalanced dataset. The method or
methods to adopt will depend on the problem to solve.

Feature scaling with Z-score
Our input features exist in different numerical ranges. For example,
humidity is always between 0 and 100, while the temperature on the

Celsius scale can be negative and has a smaller positive numerical
range than humidity.

This is a typical scenario when dealing with various physical
quantities and could impact the effectiveness of the training.

Generally, if the input features have different numerical ranges, the
ML model may not generalize properly because it will be influenced
more by the features with more significant values. Therefore, the
input features need to be rescaled to ensure that each input feature
contributes equally during training. Furthermore, another benefit of
feature scaling in neural networks is that it helps converge the
gradient descent faster toward the minima.

Z-score is a common scaling technique adopted in neural networks,
and it is defined with the following formula:

Let's break down this formula:

: the mean of the input features

: the standard deviation of the input features

Z-score can bring the input features to a similar numerical range, but
not necessarily between zero and one.

How to do it…

Continue working on the Colab file and follow the following steps to
discover how to balance the dataset and rescale the input features
with Z-score:

1. Visualize the extracted physical measurements (temperature,
humidity, and snow) in a 2D scatter chart. To do so, consider the
snow formation only when the snowfall (totalSnow_cm) is above
0.5 cm:
def binarize(snow, threshold):

 if snow > threshold:

 return 1

 else:

 return 0

s_bin_list = [binarize(snow, 0.5) for snow in s_list]

cm = plt.cm.get_cmap('gray_r')

sc = plt.scatter(t_list, h_list, c=s_bin_list, cmap=cm,

label="Snow")

plt.figure(dpi=150)

plt.colorbar(sc)

plt.legend()

plt.grid(True)

plt.title("Snow(T, H)")

plt.xlabel("Temperature - °C")

plt.ylabel("Humidity - %")

plt.show()

The preceding code generates the following scatter plot:

Figure 3.1 – Visualization of the temperature, humidity, and snow in a 2D chart.
Data provided by WorldWeatherOnline.com

In the preceding chart, the x-axis is the temperature, the y-axis is
the humidity, and the black dot is the snow formation.

As you can observe from the distribution of the black dots, there are
cases where the snow formation is reported for temperatures well
above 0°C.

To simplify the recipe, we can ignore these cases and consider 2° C
as the maximum temperature for the snow formation.

2. Generate the output labels (Yes and No):

def gen_label(snow, temperature):

 if snow > 0.5 and temperature < 2:

 return "Yes"

 else:

 return "No"

snow_labels = [gen_label(snow, temp) for snow, temp in

zip(s_list, t_list)]

Since we are only forecasting snow, only two classes are needed:
Yes, it snows, or No, it does not snow. At this scope, we convert
totalSnow_cm to the corresponding class (Yes or No) through the
gen_label() function. The mapping function assigns Yes when
totalSnow_cm exceeds 0.5 cm and the temperature is below 2° C.

3. Build the dataset:
csv_header = ["Temp0", "Temp1", "Temp2", "Humi0", "Humi1",

"Humi2", "Snow"]

df_dataset = pd.DataFrame(list(zip(t_list[:-2],

t_list[1:-1], t_list[2:], h_list[:-2], h_list[1:-1],

h_list[2:], snow_labels[2:])), columns = csv_header)

If t0 is the current time, the values stored in the dataset are as
follows:

Temp0/Humi0: Temperature and humidity at time t = t0 - 2

Temp1/Humi1: Temperature and humidity at time t = t0 - 1

Temp2/Humi2: Temperature and humidity at time t = t0

Snow: Label reporting whether it will snow at time t = t0

Therefore, we just need a zip and a few indices calculations to build
the dataset.

4. Balance the dataset by undersampling the majority class:
df0 = df_dataset[df_dataset['Snow'] == "No"]

df1 = df_dataset[df_dataset['Snow'] == "Yes"]

if len(df1.index) < len(df0.index):

 df0_sub = df0.sample(len(df1.index))

 df_dataset = pd.concat([df0_sub, df1])

else:

 df1_sub = df1.sample(len(df0.index))

 df_dataset = pd.concat([df1_sub, df0])

The original dataset is unbalanced because, in the selected location,
it typically snows during the winter season, which lasts from
December to March. The following bar chart shows that the No class
represents 87% of all cases, so we need to apply one of the

techniques shown in the Getting ready section to balance the
dataset.

Figure 3.2 – Distribution of the dataset samples

Since the minority class has many samples (~5000), we can
randomly undersample the majority class so the two categories have
the same number of observations.

5. Scale the input features with Z-score independently. To do so,
extract all the temperature and humidity values:
t_list = df_dataset['Temp0'].tolist()

h_list = df_dataset['Humi0'].tolist()

t_list = t_list + df_dataset['Temp2'].tail(2).tolist()

h_list = h_list + df_dataset['Humi2'].tail(2).tolist()

You can get all the temperature (or humidity) values from the Temp0
(or Humi0) column and the last two records of the Temp2 (or Humi2)
column.

Next, calculate the mean and standard deviation of the temperature
and humidity input features:
t_avg = mean(t_list)

h_avg = mean(h_list)

t_std = std(t_list)

h_std = std(h_list)

print("COPY ME!")

print("Temperature - [MEAN, STD] ", round(t_avg, 5),

round(t_std, 5))

print("Humidity - [MEAN, STD] ", round(h_avg, 5),

round(h_std, 5))

The expected output is as follows:

Figure 3.3 – Expected mean and standard deviation values

Copy the mean and standard deviation values printed in the output
log because they will be required when deploying the application on
the Arduino Nano and Raspberry Pi Pico.

Finally, scale the input features with Z-score:
def scaling(val, avg, std):

 return (val - avg) / (std)

df_dataset['Temp0']=df_dataset['Temp0'].apply(lambda x:

scaling(x, t_avg, t_std))

df_dataset['Temp1']=df_dataset['Temp1'].apply(lambda x:

scaling(x, t_avg, t_std))

df_dataset['Temp2']=df_dataset['Temp2'].apply(lambda x:

scaling(x, t_avg, t_std))

df_dataset['Humi0']=df_dataset['Humi0'].apply(lambda x:

scaling(x, h_avg, h_std))

df_dataset['Humi1']=df_dataset['Humi1'].apply(lambda x:

scaling(x, h_avg, h_std))

df_dataset['Humi2']=df_dataset['Humi2'].apply(lambda x:

scaling(x, h_avg, h_std))

The following charts compare the raw and scaled input feature
distributions:

Figure 3.4 – Raw (left charts) and scaled (right charts) input feature
distributions

As you can observe from the charts, Z-score provides roughly the
same value range (the x axis) for both features.

Now, the dataset is ready to be used for training our snow forecast
model!

Training the ML model with TF
The model designed for forecasting the snow is a binary classifier,
and it is illustrated in the following diagram:

Figure 3.5 – Neural network model for forecasting the snow

The network consists of the following layers:

1 x fully connected layers with 12 neurons and followed by a
ReLU activation function

1 x dropout layer with a 20% rate (0.2) to prevent overfitting

1 x fully connected layer with one output neuron and followed
by a sigmoid activation function

In this recipe, we will train the preceding model with TF.

The following Colab file (see the Training the ML model with TF
section in the following repository) contains the code referred to in
this recipe:

preparing_model.ipynb:

https://github.com/PacktPublishing/TinyML-
Cookbook/blob/main/Chapter03/ColabNotebooks/preparing_model.ip
ynb

Getting ready

The model designed in this recipe has one input and output node.
The input node provides the six input features to the network: the
temperature and humidity for each of the last three hours.

The model consumes the input features and returns the probability
of the class in the output node. Since the sigmoid function produces
the output, the result is between zero and one and considered No
when it is below 0.5; otherwise, it's Yes.

In general, we consider the following four sequential steps when
training a neural network:

1. Encoding the output labels

2. Splitting the dataset into training, test, and validation datasets

3. Creating the model

4. Training the model

https://github.com/PacktPublishing/TinyML-Cookbook/blob/main/Chapter03/ColabNotebooks/preparing_model.ipynb
https://github.com/PacktPublishing/TinyML-Cookbook/blob/main/Chapter03/ColabNotebooks/preparing_model.ipynb
https://github.com/PacktPublishing/TinyML-Cookbook/blob/main/Chapter03/ColabNotebooks/preparing_model.ipynb

In this recipe, we will use TF and scikit-learn to implement them.

Scikit-Learn (https://scikit-learn.org/stable/) is a higher-level
Python library for implementing generic ML algorithms, such as
SVMs, random forests, and logistic regression. It is not a DNN-
specific framework but rather a software library for a wide range of
ML algorithms.

How to do it…

The following steps show how to train the model presented in the
Getting ready section with TF:

1. Extract the input features (x) and output labels (y) from the
df_dataset pandas DataFrame:

f_names = df_dataset.columns.values[0:6]

l_name = df_dataset.columns.values[6:7]

x = df_dataset[f_names]

y = df_dataset[l_name]

2. Encode the labels to numerical values:
labelencoder = LabelEncoder()

labelencoder.fit(y.Snow)

y_encoded = labelencoder.transform(y.Snow)

This step converts the output labels (Yes and No) to numerical
values since neural networks can only deal with numbers. We use

https://scikit-learn.org/stable/

scikit-learn to transform the target labels to integer values (zero and
one). The conversion requires calling the following three functions:

1. LabelEncoder() to initialize the LabelEncoder module

2. fit() to identify the target integer values by parsing the output
labels

3. transform() to translate the output labels to numerical values

After transform(), the encoded labels are available in y_encoded.

3. Split the dataset into train, validation, and test datasets:
Split 1 (85% vs 15%)

x_train, x_validate_test, y_train, y_validate_test =

train_test_split(x, y_encoded, test_size=0.15,

random_state = 1)

Split 2 (50% vs 50%)

x_test, x_validate, y_test, y_validate =

train_test_split(x_validate_test, y_validate_test,

test_size=0.50, random_state = 3)

The following diagram shows how we split the train, validation, and
test datasets:

Figure 3.6 – The dataset is split into the train, validation, and test datasets

These three datasets are as follows:

Training dataset: This dataset contains the samples to train
the model. The weights and biases are learned with these data.

Validation dataset: This dataset contains the samples to
evaluate the model's accuracy on unseen data. The dataset is
used during the training process to indicate how well the model
generalizes because it includes instances not included in the
training dataset. However, since this dataset is still used during
training, we could indirectly influence the output model by fine-
tuning some training hyperparameters.

Test dataset: This dataset contains the samples for testing the
model after training. Since the test dataset is not employed

during training, it evaluates the final model without bias.

From the original dataset, we assign 85% to the training dataset,
7.5% to the validation dataset, and 7.5% to the test dataset. With
this split, the validation and test dataset will have roughly 1,000
samples each, enough to see if the model works properly.

The dataset splitting is done with the train_test_split() function
from scikit-learn which splits the dataset into training and test
datasets. The split proportion is defined with the test_size (or
train_size) input argument, representing the input dataset's
percentage to include in the test (or train) split.

We call this function twice to generate the three different datasets.
The first split generates the 85% training dataset by providing
test_size=0.15. The second split produces the validation and test
datasets by halving the 15% dataset from the first split.

4. Create the model with the Keras API:
model = tf.keras.Sequential()

model.add(layers.Dense(12, activation='relu', input_shape=

(len(f_names),)))

model.add(layers.Dropout(0.2))

model.add(layers.Dense(1, activation='sigmoid'))

model.summary()

The preceding code generates the following output:

Figure 3.7 – Model summary returned by model.summary()

The summary reports useful architecture information about the
neural network model, such as the layer types, the output shapes,
and the number of trainable weights required.

IMPORTANT NOTE
In TinyML, it is important to keep an eye on the number of weights because it is
related to the program's memory utilization.

5. Compile the model:
model.compile(loss='binary_crossentropy',

optimizer='adam', metrics=['accuracy'])

In this step, we initialize the training parameters, such as the
following:

Loss function: Training aims to find weights and biases to
minimize a loss function. The loss indicates how far the predicted
output is from the expected result, so the lower the loss, the
better the model. Cross-entropy is the standard loss function
for classification problems because it produces faster training
with a better model generalization. For a binary classifier, we
should use binary_crossentropy.

Performance metrics: Performance metrics evaluate how well
the model predicts the output classes. We use accuracy, defined
as the ratio between the number of correct predictions and the
total number of tests:

Optimizer: The optimizer is the algorithm used to update the
weights of the network during training. The optimizer mainly
affects the training time. In our example, we use the widely
adopted Adam optimizer.

Once we have initialized the training parameters, we can train the
model.

6. Train the model:
NUM_EPOCHS=20

BATCH_SIZE=64

history = model.fit(x_train, y_train, epochs=NUM_EPOCHS,

batch_size=BATCH_SIZE, validation_data=(x_validate,

y_validate))

During training, TF reports the loss and accuracy after each epoch
on both the train and validation datasets, as shown in the following
screenshot:

Figure 3.8 – Accuracy and loss are reported on both the train and validation
datasets

accuracy and loss are the accuracy and loss on the train data, while
val_accuracy and val_loss are the accuracy and loss on the
validation data.

It is best to rely on the accuracy and loss of the validation data to
prevent overfitting and to see how the model behaves on unseen
data.

7. Plot the accuracy and loss over training epochs:
loss_train = history.history['loss']

loss_val = history.history['val_loss']

acc_train = history.history['accuracy']

acc_val = history.history['val_accuracy']

epochs = range(1, NUM_EPOCHS + 1)

def plot_train_val_history(x, y_train, y_val, type_txt):

 plt.figure(figsize = (10,7))

 plt.plot(x, y_train, 'g', label='Training'+type_txt)

 plt.plot(x, y_val, 'b', label='Validation'+type_txt)

 plt.title('Training and Validation'+type_txt)

 plt.xlabel('Epochs')

 plt.ylabel(type_txt)

 plt.legend()

 plt.show()

plot_train_val_history(epochs, loss_train, loss_val,

"Loss")

plot_train_val_history(epochs, acc_train, acc_val,

"Accuracy")

The preceding code plots the following two charts:

Figure 3.9 – Plot of the accuracy (left chart) and loss (right chart) over training
epochs

From the plots of the accuracy and loss during training, we can see
the trend of the model's performance. The trend tells us whether we
should train less to avoid overfitting or more to prevent underfitting.
The validation accuracy and loss are at their best around ten epochs
in our case. Therefore, we should consider terminating the training
earlier to prevent overfitting. To do so, you can either re-train the

network for ten epochs or use the EarlyStopping Keras function to
stop training when a monitored performance metric has stopped
improving. You can discover more about EarlyStopping at the
following link:
https://www.tensorflow.org/api_docs/python/tf/keras/callbacks/Early
Stopping.

8. Save the entire TF model as a SavedModel:

model.save("snow_forecast")

SavedModel is a directory containing the following:

The TF model as a protobuf binary (with the .pb file extension)

A TF checkpoint (https://www.tensorflow.org/guide/checkpoint)

Training parameters such as optimizer, loss, and performance
metrics

Therefore, the preceding command creates the snow_forecast
folder, which you can explore using the file explorer pane on the left
of Colab.

We have finally in our hands a model to forecast the snow!

Evaluating the model's effectiveness
Accuracy and loss are not enough to judge the model's
effectiveness. In general, accuracy is a good performance indicator if
the dataset is balanced, but it does not tell us the strengths and

https://www.tensorflow.org/api_docs/python/tf/keras/callbacks/EarlyStopping
https://www.tensorflow.org/api_docs/python/tf/keras/callbacks/EarlyStopping
https://www.tensorflow.org/guide/checkpoint

weaknesses of our model. For instance, what classes do we
recognize with high confidence? What frequent mistakes does the
model make?

This recipe will judge the model's effectiveness by visualizing the
confusion matrix and evaluating the recall, precision, and F1-
score performance metrics.

The following Colab file (see the Evaluating the model's effectiveness
section in the following repository) contains the code referred to in
this recipe:

preparing_model.ipynb:

https://github.com/PacktPublishing/TinyML-
Cookbook/blob/main/Chapter03/ColabNotebooks/preparing_model.ip
ynb

Getting ready

To complete this recipe, we need to know what a confusion matrix is
and which performance metrics we can use to understand whether
the model works fine.

The following subsections will examine these performance indicators.

Visualizing the performance with the
confusion matrix
A confusion matrix is an NxN matrix reporting the number of
correct and incorrect predictions on the test dataset.

https://github.com/PacktPublishing/TinyML-Cookbook/blob/main/Chapter03/ColabNotebooks/preparing_model.ipynb
https://github.com/PacktPublishing/TinyML-Cookbook/blob/main/Chapter03/ColabNotebooks/preparing_model.ipynb
https://github.com/PacktPublishing/TinyML-Cookbook/blob/main/Chapter03/ColabNotebooks/preparing_model.ipynb

For our binary classification model, we have a 2x2 matrix like the
one in the following diagram:

Figure 3.10 – Confusion matrix

The four values reported in the previous confusion matrix are as
follows:

True positive (TP): The number of predicted positive results
that are actually positive

True negative (TN): The number of predicted negative results
that are actually negative

False positive (FP): The number of predicted positive results
that are actually negative

False negative (FN): The number of predicted negative results
that are actually positive

Ideally, we would like to have 100% accuracy, therefore, zero in the
gray cells (FN and FP) of the confusion matrix reported in Figure
3.10. In fact, from the confusion matrix, we can calculate the
accuracy using the following formula:

However, as previously mentioned, we are more interested in
alternative performance metrics. These performance indicators are
described in the following subsection.

Evaluating recall, precision, and F-score

The first performance metric evaluated is recall, defined as follows:

This metric tells us how many of all positive ("Yes") samples we
predicted correctly. Recall should be as high as possible.

However, this metric does not consider the misclassification of
negative samples. In short, the model could be excellent at
classifying positive samples but incapable of classifying negative
ones.

For this reason, there is another metric that takes into consideration
FPs. It is precision, defined as follows:

This metric tells us how many predicted positive classes ("yes") were
actually positive. Precision should be as high as possible.

Another key performance metric combines recall and precision with a
single formula. It is F-score, defined as follows:

This formula helps us to evaluate the recall and precision metrics at
the same time. Also, a high F-score implies a good model
performance.

How to do it…

The following steps will teach us how to visualize the confusion
matrix and calculate the recall, precision, and F-score metrics:

1. Visualize the confusion matrix:
y_test_pred = model.predict(x_test)

y_test_pred = (y_test_pred > 0.5).astype("int32")

cm = sklearn.metrics.confusion_matrix(y_test, y_test_pred)

index_names = ["Actual No Snow", "Actual Snow"]

column_names = ["Predicted No Snow", "Predicted Snow"]

df_cm = pd.DataFrame(cm, index = index_names, columns =

column_names)

plt.figure(figsize = (10,7))

sns.heatmap(df_cm, annot=True, fmt='d', cmap="Blues")

plt.figure(figsize = (10,7))

The previous code produces the following output:

Figure 3.11 – Confusion matrix for the snow forecast model

The confusion matrix is obtained with the following two steps:

1. Predict the labels on the test dataset using model.predict() and
threshold the output result at 0.5. The thresholding is required
because model.predict() returns the output of the sigmoid
function, which is a value between zero and one.

2. Use the confusion_matrix() function from the scikit-learn library
to calculate the confusion matrix (cm).

From Figure 3.11, we can see that the samples are mainly
distributed in the leading diagonal, and there are more FPs than

FNs. Therefore, although the network is suitable for detecting snow,
we should expect some false detections.

2. Calculate the recall, precision, and F-score performance metrics:
TN = cm[0][0]

TP = cm[1][1]

FN = cm[1][0]

FP = cm[0][1]

precision = TP / (TP + FP)

recall = TP / (TP + FN)

f_score = (2 * recall * precision) / (recall + precision)

print("Recall: ", round(recall, 3))

print("Precision: ", round(precision, 3))

print("F-score: ", round(f_score, 3))

The preceding code prints the following information on the output
console:

Figure 3.12 – Expected results for precision, recall, and F-score

As we can see from the expected results, Recall equals 0.983, so
our model can forecast the snow with high confidence. However, the

Precision is lower, 0.808. This metric shows that we should expect
some false alarms from our model. Finally, the value of 0.887
obtained for the F-score tells us that Recall and Precision are
balanced. Therefore, we have a good ML model in our hands
capable of forecasting the snow with the input features provided.

The model is now trained and validated. Hence, it is time to make it
suitable for microcontroller deployment.

Quantizing the model with the
TFLite converter
Exporting the trained network as SavedModel saves the training
graphs such as the network architecture, weights, training variables,
and checkpoints. Therefore, the generated TF model is perfect for
sharing or resuming a training session but not suitable for
microcontroller deployment for the following reasons:

The weights are stored in floating-point format.

The model keeps information that's not required for the
inference.

Since our target device has computational and memory constraints,
it is crucial to transform the trained model into something compact.

This recipe will teach how to quantize and convert the trained model
into a lightweight, memory-efficient, and easy-to-parse exporting
format with TensorFlow Lite (TFLite). The generated model will

then be converted to a C-byte array, suitable for microcontroller
deployments.

The following Colab file (see the Quantizing the model with TFLite
converter section in the following recipe) contains the code referred
to in this recipe:

preparing_model.ipynb:

https://github.com/PacktPublishing/TinyML-
Cookbook/blob/main/Chapter03/ColabNotebooks/preparing_model.ip
ynb

Getting ready

The main ingredients used in this recipe are the TFLite converter and
quantization.

TFLite (https://www.tensorflow.org/lite) is a deep learning
framework specifically for inference on edge devices such as
smartphones or embedded platforms.

As reported in the following diagram, TFLite provides a set of tools
for the following:

Converting the TF model into a lightweight representation

Running the model efficiently on the target device

https://github.com/PacktPublishing/TinyML-Cookbook/blob/main/Chapter03/ColabNotebooks/preparing_model.ipynb
https://github.com/PacktPublishing/TinyML-Cookbook/blob/main/Chapter03/ColabNotebooks/preparing_model.ipynb
https://github.com/PacktPublishing/TinyML-Cookbook/blob/main/Chapter03/ColabNotebooks/preparing_model.ipynb
https://www.tensorflow.org/lite

Figure 3.13 – TFLite components

The lightweight model representation used by TFLite is identified
with the .tflite extension, and it is internally represented as
FlatBuffers (https://google.github.io/flatbuffers/). The FlatBuffers
format offers a flexible, easy-to-parse, and memory-efficient
structure. The TFLite converter is responsible for converting the
TF model to FlatBuffers and applying optimizations based on 8-bit
integer quantization to reduce the model size and improve latency.

Quantizing the input model
An indispensable technique to make the model suitable for
microcontrollers is quantization.

Model quantization, or simply quantization, has three significant
advantages:

https://google.github.io/flatbuffers/

It reduces the model size by converting all the weights to lower
bit precision.

It reduces the power consumption by reducing the memory
bandwidth.

It improves inference performance by employing integer
arithmetic for all the operations.

This widely adopted technique applies the quantization after training
and converts the 32-bit floating-point weights to 8-bit integer values.
To understand how quantization works, consider the following C-like
function that approximates a 32-bit floating-point value using an 8-
bit value:
float dequantize(int8 x, float zero_point, float scale) {

 return ((float)x - zero_point) * scale;

}

In the proceeding code, x is the quantized value represented as an
8-bit signed integer value, while scale and zero_point are the
quantization parameters. The scale parameter is used to map our
quantized value to the floating-point domain and vice versa.
zero_point is the offset to consider for the quantized range.

To understand why the zero_point could not be zero, consider the
following floating-point input distribution that we want to scale to
the 8-bit range:

Figure 3.14 – Example where the distribution of the values is shifted toward the
negative range

The proceeding figure shows that the input floating-point distribution
is not zero-centered but shifted toward the negative range.
Therefore, if we simply scaled the floating-point values to 8-bit, we
could have the following:

Multiple negative input values with the same 8-bit counterpart

Many positive 8-bit values unused

Therefore, it would be inefficient to assign zero to zero_point since
we could dedicate a larger range to the negative values to reduce
their quantization error, defined as follows:

When zero_point is not zero, we commonly call the quantization
asymmetric because we assign a different range of values for the
positive and negative sides, as shown in the following diagram:

Figure 3.15 – Asymmetric quantization

When zero_point is zero, we commonly call the quantization
symmetric because it is symmetric about zero, as we can see in
the following diagram:

Figure 3.16 – Symmetric quantization

Commonly, we apply symmetric quantization to the model's weights
and asymmetric quantization to the input and output of the layers.

The scale and zero_point values are the only parameters required
for quantization and are commonly provided in the following ways:

Per-tensor: The quantization parameters are the same for all
tensor elements.

Per-channel: The quantization parameters are different for each
feature map of the tensor.

The following diagram visually describes per-tensor and per-channel
quantization:

Figure 3.17 – Per-tensor versus per-channel quantization

Commonly, we adopt the per-tensor approach except for the weights
and biases of the convolution and depth-wise convolution layers.

How to do it…

The following steps show how to use the TFLite converter to
quantize and produce a suitable model for microcontrollers:

1. Select a few hundred samples randomly from the test dataset to
calibrate the quantization:
def representative_data_gen():

 for i_value in

tf.data.Dataset.from_tensor_slices(x_test).batch(1).take(1

00):

 i_value_f32 = tf.dtypes.cast(i_value, tf.float32)

 yield [i_value_f32]

This step is commonly called generating a representative dataset,
and it is essential to reduce the risk of an accuracy drop in the
quantization. In fact, the converter uses this set of samples to find
out the range of the input values and then estimate the quantization
parameters. Typically, a hundred samples is enough and can be
taken from the test or training dataset. In our case, we used the test
dataset.

2. Import the TF SavedModel directory into TFLite converter:

converter =

tf.lite.TFLiteConverter.from_saved_model("snow_forecast")

3. Initialize the TFLite converter for the 8-bit quantization:
Representative dataset

converter.representative_dataset =

tf.lite.RepresentativeDataset(representative_data_gen)

Optimizations

converter.optimizations = [tf.lite.Optimize.DEFAULT]

Supported ops

converter.target_spec.supported_ops =

[tf.lite.OpsSet.TFLITE_BUILTINS_INT8]

Inference input/output type

converter.inference_input_type = tf.int8

converter.inference_output_type = tf.int8

In this step, we configure the TFLite converter to apply the 8-bit
quantization. The input arguments passed to the tool are as follows:

Representative dataset: This is the representative dataset
generated in the first step.

Optimizations: This defines the optimization strategy to adopt.
At the moment, only DEFAULT optimization is supported, which
tries to optimize for both size and latency, minimizing the
accuracy drop.

Supported ops: This forces the adoption of only integer 8-bit
operators during the conversion. If our model has unsupported
kernels, the conversion will not succeed.

Inference input/output type: This adopts the 8-bit
quantization format for the network's input and output.
Therefore, we will need to feed the ML model with the quantized
input features to run the inference correctly.

Once we have initialized the TFLite converter, we can execute the
conversion:
tflite_model_quant = converter.convert()

4. Save the converted model as .tflite:
open("snow_forecast_model.tflite",

"wb").write(tflite_model_quant)

5. Convert the TFLite model to a C-byte array with xxd:
!apt-get update && apt-get -qq install xxd

!xxd -i snow_forecast_model.tflite > model.h

The previous command outputs a C header file (the -i option)
containing the TFLite model as an unsigned char array with many
hexadecimal numbers. However, in the Getting ready section, we
mentioned that the model is a file with a .tflite extension.
Therefore, why do we need this extra conversion? The conversion to
a C-byte array is crucial for deploying the model on microcontrollers
because the .tflite format requires an additional software library
into our application to load the file from memory. We need to
remember that most microcontrollers do not have OS and native
filesystem support. Therefore, the C-byte array format allows us to
integrate the model directly into the application. The other important

reason for this conversion is that the .tflite file does not allow
keeping the weights in program memory. Since every byte matters
and the SRAM has a limited capacity, keeping the model in program
memory is generally more memory efficient when the weights are
constant.

Now, you can download the generated model.h file from Colab's left
pane. The TFLite model is stored in the
snow_forecast_model_tflite array.

Using the built-in temperature and
humidity sensor on Arduino Nano
As we know, the Arduino Nano and Raspberry Pi Pico have unique
hardware features that make them ideal for tackling different
development scenarios. For example, the Arduino Nano have a built-
in temperature and humidity sensor so that we do not need external
components for our project with this board.

In this recipe, we will show how to read the temperature and
humidity sensor data on an Arduino Nano.

The following Arduino sketch contains the code referred to in this
recipe:

06_sensor_arduino_nano.ino:

https://github.com/PacktPublishing/TinyML-
Cookbook/blob/main/Chapter03/ArduinoSketches/06_sensor_arduino

https://github.com/PacktPublishing/TinyML-Cookbook/blob/main/Chapter03/ArduinoSketches/06_sensor_arduino_nano.ino
https://github.com/PacktPublishing/TinyML-Cookbook/blob/main/Chapter03/ArduinoSketches/06_sensor_arduino_nano.ino

_nano.ino

Getting ready

There are no particular new things to know to accomplish this task.
Therefore, this Getting ready section will give just an overview of the
main characteristics of the built-in temperature and humidity sensor
on the Arduino Nano.

The Arduino Nano board integrates the HTS221
(https://www.st.com/resource/en/datasheet/HTS221.pdf) sensor
from ST (https://www.st.com/content/st_com/en.html) for relative
humidity and temperature measurements.

The sensor is ultra-compact (2x2mm) and provides the
measurements through two digital serial interfaces. The following
table reports the main characteristics of this sensing element:

https://github.com/PacktPublishing/TinyML-Cookbook/blob/main/Chapter03/ArduinoSketches/06_sensor_arduino_nano.ino
https://www.st.com/resource/en/datasheet/HTS221.pdf
https://www.st.com/content/st_com/en.html

Figure 3.18 – Key characteristics of the HTS221 temperature and humidity
sensor

As we can see from the table, the sensor is extremely low-power
since it has a current power consumption in the range of µA.

How to do it…

Create a new sketch on the Arduino IDE and follow the following
steps to initialize and test the temperature and humidity sensor on
an Arduino Nano:

1. Include the Arduino_HTS221.h C header file in the sketch:

#include <Arduino_HTS221.h>

2. Create function-like macros for reading the temperature and
humidity:
#define READ_TEMPERATURE() HTS.readTemperature()

#define READ_HUMIDITY() HTS.readHumidity()

The reason for defining the preceding two C macros is because the
Raspberry Pi Pico will use different functions to read the temperature
and humidity from the sensor. Therefore, it is more practical to have
a common interface so that our Arduino Nano and Raspberry Pi Pico
applications can share most of their code.

3. Initialize both the serial peripheral and the HTS221 sensor in the
setup() function:

void setup() {

 Serial.begin(9600);

 while (!Serial);

 if (!HTS.begin()) {

 Serial.println("Failed initialization of HTS221!");

 while (1);

 }

}

The serial peripheral will be used to return the classification result.

IMPORTANT NOTE

As reported in the FAQ of the Arduino Nano 33 BLE Sense Board, due to self-
heating, when the board is powered by USB, the HTS221 becomes unreliable and
shows an offset in each reading that changes with the external temperature.

We recommend disconnecting the USB cable and powering the board with
batteries through the VIN pin to obtain reliable measurements. Refer to Chapter 2,
Prototyping with Microcontrollers, to discover how to power an Arduino Nano with
batteries.

Using the DHT22 sensor with the
Raspberry Pi Pico
In contrast to the Arduino Nano, the Raspberry Pi Pico requires an
external sensor module and an additional software library to
measure the temperature and humidity.

In this recipe, we will show how to use the DHT22 sensor with a
Raspberry Pico to get temperature and humidity measurements.

The following Arduino sketch contains the code referred to in this
recipe:

07_sensor_rasp_pico.ino:

https://github.com/PacktPublishing/TinyML-
Cookbook/blob/main/Chapter03/ArduinoSketches/07_sensor_rasp_pi
co.ino

Getting ready

https://github.com/PacktPublishing/TinyML-Cookbook/blob/main/Chapter03/ArduinoSketches/07_sensor_rasp_pico.ino
https://github.com/PacktPublishing/TinyML-Cookbook/blob/main/Chapter03/ArduinoSketches/07_sensor_rasp_pico.ino
https://github.com/PacktPublishing/TinyML-Cookbook/blob/main/Chapter03/ArduinoSketches/07_sensor_rasp_pico.ino

The temperature and humidity sensor module considered for the
Raspberry Pi Pic is the low-cost AM2302 that you can get either
from Adafruit (https://www.adafruit.com/product/393) or Amazon.

As shown in the following diagram, the AM2302 module is a
through-hole component with three pins that integrates the DHT22
temperature and humidity sensor:

https://www.adafruit.com/product/393

Figure 3.19 – The AM2302 module with the DHT22 sensor

The following table summarizes the key characteristics of the DHT22
sensor:

Figure 3.20 – Key characteristics of the DHT22 temperature and humidity
sensor

NOTE
DHT11 is another popular temperature and humidity sensor from the DHT family.
However, we cannot use it in our recipe because it has a good temperature
accuracy only between 0 °C and 50 °C.

In contrast to the HTS221 sensor on the Arduino Nano, the DHT22
has a digital protocol to read the temperature and humidity values.
The protocol must be implemented through the GPIO peripheral and

requires precise timing to read the data. Luckily, Adafruit developed
a software library (https://github.com/adafruit/DHT-sensor-library)
for the DHT sensors, so we do not have to worry about it. The
library will deal with the low-level software details and provide an
API to read the temperature and humidity.

How to do it…

Create a new sketch on the Arduino IDE and follow these steps to
use the DHT22 sensor with a Raspberry Pi Pico:

1. Connect the DHT22 sensor to the Raspberry Pi Pico. Use the G10
(row 14) GPIO on the Raspberry Pi Pico for the DHT22 data
terminal:

https://github.com/adafruit/DHT-sensor-library

Figure 3.21 – Complete circuit with the Raspberry Pi Pico and the AM2302
sensor module

2. Download the latest release of the DHT sensor software library
from https://www.arduino.cc/reference/en/libraries/dht-sensor-
library/. In the Arduino IDE, import the ZIP file by clicking on the
Libraries tab on the left pane and Import, as shown in the
following screenshot:

https://www.arduino.cc/reference/en/libraries/dht-sensor-library/
https://www.arduino.cc/reference/en/libraries/dht-sensor-library/

Figure 3.22 – Import the DHT sensor library in Arduino Web Editor

A pop-up window will tell us that the library has been successfully
imported.

3. Include the DHT.h C header file in the sketch:
#include <DHT.h>

4. Define a global DHT object to interface with the DHT22 sensor:

const int gpio_pin_dht_pin = 10;

DHT dht(gpio_pin_dht_pin, DHT22);

The DHT object is initialized with the GPIO pin used by the DHT22
data terminal (G10) and the type of DHT sensor (DHT22).

5. Create function-like macros for reading the temperature and
humidity:
#define READ_TEMPERATURE() dht.readTemperature()

#define READ_HUMIDITY() dht.readHumidity()

The function's name must be the same as the ones of the previous
recipe. This step ensures a common function interface to measure
the temperature and humidity on an Arduino Nano and a Raspberry
Pi Pico.

6. Initialize the serial peripheral and the DHT22 sensor in the
setup() function:

void setup() {

 Serial.begin(9600);

 while(!Serial);

 dht.begin();

 delay(2000);

}

The DHT22 can only return new data after two seconds. For this
reason, we use delay(2000) to wait for the peripheral to be ready.

Now, the Raspberry Pi Pico can read temperature and humidity
sensor data.

Preparing the input features for the
model inference
As we know, the model's input features are the scaled and quantized
temperature and humidity of the last three hours. Using this data,
the ML model can forecast whether it will snow.

In this recipe, we will see how to prepare the input data to feed into
our ML model. In particular, this recipe will teach us how to acquire,
scale, and quantize the sensor measurements and keep them in
temporal order using a circular buffer.

The following Arduino sketch contains the code referred to in this
recipe:

08_input_features.ino:

https://github.com/PacktPublishing/TinyML-
Cookbook/blob/main/Chapter03/ArduinoSketches/08_input_features.

https://github.com/PacktPublishing/TinyML-Cookbook/blob/main/Chapter03/ArduinoSketches/08_input_features.ino
https://github.com/PacktPublishing/TinyML-Cookbook/blob/main/Chapter03/ArduinoSketches/08_input_features.ino

ino

Getting ready

Our application will acquire the temperature and humidity every hour
to get the necessary input features for the model. However, how can
we keep the last three measurements in temporal order to feed the
network the correct input?

In this recipe, we will use a circular buffer, a fixed-sized data
structure that implements a First-In-First-Out (FIFO) buffer.

This data structure is well-suited to buffering data streams and can
be implemented with an array and a pointer that tells where to store
the element in memory. The following diagram shows how a circular
buffer with three elements works:

https://github.com/PacktPublishing/TinyML-Cookbook/blob/main/Chapter03/ArduinoSketches/08_input_features.ino

Figure 3.23 – Circular buffer with three elements

As you can see from the preceding diagram, this data structure
simulates a ring since the pointer (Ptr) is incremented after each
data insertion and wraps around when it reaches the end.

How to do it…

The instructions provided in this section apply to both the Arduino
Nano and the Raspberry Pi Pico. Follow these steps to see how to
create a circular buffer and prepare the input for the model
inference:

1. Define two global int8_t arrays of size three and an integer
variable to implement the circular buffer data structure:

#define NUM_HOURS 3

int8_t t_vals [NUM_HOURS] = {0};

int8_t h_vals [NUM_HOURS] = {0};

int cur_idx = 0;

These two arrays will be used to keep the scaled and quantized
temperature and humidity measurements in temporal order.

2. Define two variables for the scale (float) and zero point
(int32_t) quantization parameters of the input features:

float tflu_i_scale = 0.0f;

int32_t tflu_i_zero_point = 0;

The following recipe will extract these quantization parameters from
the TF model. Please note that scale (tflu_i_scale) is a floating-
point number, while zero point (tflu_i_zero_point) is a 32-bit
integer.

3. Take the average of three temperature and humidity samples,
captured every three seconds in the loop() function:
constexpr int num_reads = 3;

void loop() {

 float t = 0.0f;

 float h = 0.0f;

 for(int i = 0; i < num_reads; ++i) {

 t += READ_TEMPERATURE();

 h += READ_HUMIDITY();

 delay(3000);

 }

 t /= (float)num_reads;

 h /= (float)num_reads;

Capturing more than one sample is, in general, a good way to have
a robust measurement.

4. Scale the temperature and humidity data with Z-score in the
loop() function:
constexpr float t_mean = 2.05179f;

constexpr float h_mean = 82.30551f;

constexpr float t_std = 7.33084f;

constexpr float h_std = 14.55707f;

t = (t – t_mean) / t_std;

h = (h – h_mean) / h_std;

Z-score requires the mean and standard deviation, which we
calculated in the second recipe of this chapter.

5. Quantize the input features in the loop() function:

t_vals[cur_idx] = (t / tflu_i_scale) + tflu_i_zero_point;

h_vals[cur_idx] = (h / tflu_i_scale) + tflu_i_zero_point;

The samples are quantized using the tflu_i_scale and
tflu_i_zero_point input quantization parameters. Remember that
the model's input uses the per-tensor quantization schema, so all

input features need to be quantized with the same scale and zero-
point.

6. Store the temperature and humidity sensor in the circular array:
t_vals[cur_idx] = t;

h_vals[cur_idx] = h;

cur_idx = (cur_idx + 1) % NUM_HOURS;

delay(2000);

The pointer of the circular buffer (cur_index) is updated after each
data insertion with the following formula:

In the preceding formula, is the size of the

circular buffer, while and
are the pointer's values before and after the data insertion.

IMPORTANT NOTE
At the end of the code, we have a delay of two seconds, but it should be one hour
in the actual application. The pause of two seconds is used to avoid waiting too
long in our experiments.

On-device inference with TFLu
Here we are, with our first ML application on microcontrollers.

In this recipe, we will finally discover how to use TensorFlow Lite
for Microcontrollers (TFLu) to run the TFLite model on an
Arduino Nano and a Raspberry Pi Pico.

The following Arduino sketch contains the code referred to in this
recipe:

09_classification.ino:

https://github.com/PacktPublishing/TinyML-
Cookbook/blob/main/Chapter03/ArduinoSketches/09_classification.in
o

Getting ready

To get ready with this last recipe, we need to know how inference
with TFLu works.

TFLu was introduced in Chapter 1, Getting Started with TinyML, and
is the software component that runs TFLite models on
microcontrollers.

Inference with TFLu typically consists of the following:

1. Loading and parsing the model: TFLu parses the weights and
network architecture stored in the C-byte array.

2. Transforming the input data: The input data acquired from
the sensor is converted to the expected format required by the
model.

https://github.com/PacktPublishing/TinyML-Cookbook/blob/main/Chapter03/ArduinoSketches/09_classification.ino
https://github.com/PacktPublishing/TinyML-Cookbook/blob/main/Chapter03/ArduinoSketches/09_classification.ino
https://github.com/PacktPublishing/TinyML-Cookbook/blob/main/Chapter03/ArduinoSketches/09_classification.ino

3. Executing the model: TFLu executes the model using
optimized DNN functions.

When dealing with microcontrollers, it is necessary to optimize every
line of our code to keep the memory footprint at the minimum and
maximize performance.

For this reason, TFLu also integrates software libraries to get the
best performance from various target processors. For example, TFLu
supports CMSIS-NN
(https://www.keil.com/pack/doc/CMSIS/NN/html/index.html), a free
and open source software library developed by Arm for optimized
DNN operators on Arm Cortex-M architectures. These optimizations
are relevant to the critical DNN primitives such as convolution,
depth-wise convolution, and the fully connected layer, and are
compatible with the Arm processors in the Arduino Nano and
Raspberry Pi Pico.

At this point, you might have one question in mind: How can we use
TFLu with CMSIS-NN?

We do not need to install additional libraries because TFLu for
Arduino comes with CMSIS-NN. Therefore, Arduino will automatically
include CMSIS-NN to run the inference faster when using TFLu.

How to do it…

The instructions in this section are applicable to both the Arduino
Nano and the Raspberry Pi Pico. The following steps will show how

https://www.keil.com/pack/doc/CMSIS/NN/html/index.html

to use TFLu to run the snow forecast TFLite model on our boards:

1. Import the model.h file into the Arduino project. As shown in the
following screenshot, click on the tab button with the upside-
down triangle and click on Import File into Sketch.

Figure 3.24 – Importing the model.h file into the Arduino project

A folder window will appear from which you can drag and drop the
TFLu model's file.

Once the file has been imported, include the C header in the sketch:
#include "model.h"

2. Include the header files required by TFLu:
#include <TensorFlowLite.h>

#include <tensorflow/lite/micro/all_ops_resolver.h>

#include <tensorflow/lite/micro/micro_error_reporter.h>

#include <tensorflow/lite/micro/micro_interpreter.h>

#include <tensorflow/lite/schema/schema_generated.h>

#include <tensorflow/lite/version.h>

The main header files are as follows:

all_ops_resolver.h: To load the DNN operators required for
running the ML model

micro_error_reporter.h: To output the debug information
returned by the TFLu runtime

micro_interpreter.h: To load and execute the ML model

schema_generated.h: For the schema of the TFLite FlatBuffer
format

version.h: For the versioning of the TFLite schema

For more information about the header files, we recommend reading
the Get started with microcontroller guide in the TF documentation
(https://www.tensorflow.org/lite/microcontrollers/get_started_low_le
vel).

3. Declare the variables required by TFLu:
const tflite::Model* tflu_model = nullptr;

https://www.tensorflow.org/lite/microcontrollers/get_started_low_level
https://www.tensorflow.org/lite/microcontrollers/get_started_low_level

tflite::MicroInterpreter* tflu_interpreter = nullptr;

TfLiteTensor* tflu_i_tensor = nullptr;

TfLiteTensor* tflu_o_tensor = nullptr;

tflite::MicroErrorReporter tflu_error;

constexpr int tensor_arena_size = 4 * 1024;

byte tensor_arena[tensor_arena_size]

__attribute__((aligned(16)));

The global variables declared in this step are as follows:

tflu_model: The model parsed by the TFLu parser.

tflu_interpreter: The pointer to TFLu interpreter.

tflu_i_tensor: The pointer to the model's input tensor.

tflu_o_tensor: The pointer to the model's output tensor.

tensor_arena: The memory required by the TFLu interpreter.
TFLu does not use dynamic allocation. Therefore, we should
provide a fixed amount of memory for the input, output, and
intermediate tensors. The arena's size depends on the model and
is only determined by experiments. In our case, 4,096 is more
than enough.

The preceding variables are generally required in all TFLu-based
applications.

4. Load the TFLite model from the C-byte
snow_forecast_model_tflite array in the setup() function:

tflu_model = tflite::GetModel(snow_forecast_model_tflite);

5. Define a tflite::AllOpsResolver object in the setup() function:

tflite::AllOpsResolver tflu_ops_resolver;

The TFLu interpreter will use this interface to find the function
pointers for each DNN operator.

6. Create the TFLu interpreter in the setup() function:

tflu_interpreter = new

tflite::MicroInterpreter(tflu_model, tflu_ops_resolver,

tensor_arena, tensor_arena_size, &tflu_error);

7. Allocate the memory required for the model and get the memory
pointer of the input and output tensors in the setup() function:

tflu_interpreter->AllocateTensors();

tflu_i_tensor = tflu_interpreter->input(0);

tflu_o_tensor = tflu_interpreter->output(0);

8. Get the quantization parameters for the input and output tensors
in the setup() function:
const auto* i_quantization =

reinterpret_cast<TfLiteAffineQuantization*>(tflu_i_tensor-

>quantization.params);

onst auto* o_quantization =

reinterpret_cast<TfLiteAffineQuantization*>(tflu_o_tensor-

>quantization.params);

tflu_i_scale = i_quantization->scale->data[0];

tflu_i_zero_point = i_quantization->zero_point->data[0];

tflu_o_scale = o_quantization->scale->data[0];

tflu_o_zero_point = o_quantization->zero_point->data[0];

The quantization parameters are returned in the
TfLiteAffineQuantization object, containing two arrays for the
scale and zero point parameters. Since both input and output
tensors adopt a per-tensor quantization, each array stores a single
value.

9. Initialize the input tensor with the quantized input features in the
loop() function:

const int idx0 = cur_idx;

const int idx1 = (cur_idx - 1 + NUM_HOURS) % NUM_HOURS;

const int idx2 = (cur_idx - 2 + NUM_HOURS) % NUM_HOURS;

tflu_i_tensor->data.int8[0] = t_vals[idx2];

tflu_i_tensor->data.int8[1] = t_vals[idx1];

tflu_i_tensor->data.int8[2] = t_vals[idx0];

tflu_i_tensor->data.int8[3] = h_vals[idx2];

tflu_i_tensor->data.int8[4] = h_vals[idx1];

tflu_i_tensor->data.int8[5] = h_vals[idx0];

Since we need the last three samples, we use the following formula
to read the elements from the circular buffer:

In the preceding formula, N is the sampling instant and

 is the corresponding circular buffer's pointer. For
example, if t0 is the current instant, N = 0 means the sample at time
t = t0, N = 1 the sample at time t = t0 – 1, and N = 2 the sample at
time t = t0 – 2.

10. Run the inference in the loop() function:

tflu_interpreter->Invoke();

11. Dequantize the output tensor and forecast the weather condition
in the loop() function:

int8_t out_int8 = tflu_o_tensor->data.int8[0];

float out_f = (out_int8 - tflu_o_zero_point) *

tflu_o_scale;

if (out_f > 0.5) {

 Serial.println("Yes, it snows");

}

else {

 Serial.println("No, it does not snow");

}

The dequantization of the output is done with the tflu_o_scale and
tflu_o_zero_point quantization parameters retrieved in the setup()
function. Once we have the floating-point representation, the output
is considered No when it is below 0.5; otherwise, it's Yes.

Now, compile and upload the program on the microcontroller board.
The serial terminal in the Arduino IDE will report Yes, it snows or
No, it does not snow, depending on whether snow is forecast.

To check if the application can forecast snow, you can simply force
the temperature to -10 and the humidity to 100. The model should
return Yes, it snows on the serial terminal.

Chapter 4: Voice Controlling LEDs
with Edge Impulse
Keyword spotting (KWS) is a technology applied in a wide range
of daily-life applications to enable an entirely hands-free experience
with the device. The detection of the famous wake-up words OK
Google, Alexa, Hey Siri, or Cortana represents a particular usage of
this technology, where the smart assistant continuously listens for
the magic phrase before starting to interact with the device.

Since KWS aims to identify utterances from real-time speech, it
needs to be on-device, always-on, and running on a low-power
system to be effective.

This chapter demonstrates the usage of KWS through Edge
Impulse by building an application to voice control the light-
emitting diode (LED)-emitting color (red, green, and blue (or
RGB)) and the number of times to make it blink (one, two, and
three times).

This TinyML application could find space in smart educational toys to
learn both color and number vocabulary with peace of mind
regarding privacy and security since it does not require internet
connectivity.

This chapter will start focusing on the dataset preparation, showing
how to acquire audio data with a mobile phone. Next, we will design
a model based on Mel-frequency cepstral coefficients (MFCC),

one of the most popular features for speech recognition. In these
recipes, we will show how to extract MFCCs from audio samples,
train the machine learning (ML) model, and optimize the
performance with the EON Tuner. At the end of the chapter, we will
concentrate on finalizing the KWS application on the Arduino Nano
and the Raspberry Pi Pico.

This chapter is intended to show how to develop an end-to-end
(E2E) KWS application with Edge Impulse and get familiar with
audio data acquisition and analog-to-digital converter (ADC)
peripherals.

In this chapter, we're going to implement the following recipes:

Acquiring audio data with a smartphone

Extracting MFCC features from audio samples

Designing and training a neural network (NN) model

Tuning model performance with EON Tuner

Live classifications with a smartphone

Live classifications with the Arduino Nano

Continuous inferencing on the Arduino Nano

Building the circuit with the Raspberry Pi Pico to voice control
LEDs

Audio sampling with ADC and timer interrupts on the Raspberry
Pi Pico

Technical requirements
To complete all the practical recipes of this chapter, we will need the
following:

An Arduino Nano 33 BLE Sense board

A Raspberry Pi Pico board

Smartphone (Android phone or Apple iPhone)

Micro Universal Serial Bus (USB) cable

1 x half-size solderless breadboard

1 x electret microphone amplifier - MAX9814 (Raspberry Pi Pico
only)

11 x jumper wires (Raspberry Pi Pico only)

2 x 220 Ohm resistor (Raspberry Pi Pico only)

1 x 100 Ohm resistor (Raspberry Pi Pico only)

1 x red LED (Raspberry Pi Pico only)

1 x green LED (Raspberry Pi Pico only)

1 x blue LED (Raspberry Pi Pico only)

1 x push-button (Raspberry Pi Pico only)

Laptop/PC with either Ubuntu 18.04+ or Windows 10 on x86-64

The source code and additional material are available in the
Chapter04 folder of the GitHub repository

(https://github.com/PacktPublishing/TinyML-
Cookbook/tree/main/Chapter04).

Acquiring audio data with a
smartphone
As for all ML problems, data acquisition is the first step to take, and
Edge Impulse offers several ways to do this directly from the web
browser.

In this recipe, we will learn how to acquire audio samples using a
mobile phone.

Getting ready

Acquiring audio samples with a smartphone is the most
straightforward data acquisition approach offered by Edge Impulse
because it only requires a phone (Android phone or Apple iPhone)
with internet connectivity.

However, how many samples do we need to train the model?

Collecting audio samples for KWS
The number of samples depends entirely on the nature of the
problem—therefore, no appraoch fits all. For a situation such as this,
50 samples for each class could be sufficient to get a basic model.
However, 100 or more are generally recommended to get better
results. We want to give you complete freedom on this choice.

https://github.com/PacktPublishing/TinyML-Cookbook/tree/main/Chapter04
https://github.com/PacktPublishing/TinyML-Cookbook/tree/main/Chapter04

However, remember to get an equal number of samples for each
class to obtain a balanced dataset.

Whichever dataset size you choose, try including different variations
in the instances of speech, such as accents, inflations, pitch,
pronunciations, and tone. These variations will make the model
capable of identifying words from different speakers. Typically,
recording audio from persons of different ages and genders should
cover all these cases.

Although there are six output classes to identify (red, green, blue,
one, two, and three), we should consider an additional class for
cases when anyone is speaking or there are unknown words in the
speech.

How to do it…

Open the Edge Impulse Dashboard and give a name to your
project (for example, voice_controlling_leds).

NOTE
In this recipe, N will be used to refer to the number of samples for each output
class.

Follow the next steps to acquire audio data with the mobile phone's
microphon:

1. Click on Let's collect some data from the Acquire data
section.

Then, click on Show QR code on the Use your mobile phone
option from the menu:

Figure 4.1 – Clicking on the Show QR code to pair the mobile phone with Edge
Impulse

Scan the Quick Response (QR) code with your smartphone to pair
the device with Edge Impulse. A pop-up window on your phone will
confirm that the device is connected, as shown in the following
screenshot:

Figure 4.2 – Edge Impulse message on your phone

On your mobile phone, click on Collecting audio? and give
permission to use the microphone.

Since it is not required to have a laptop and smartphone in the same
network, we could collect audio samples anywhere. As we can
guess, this approach is well suited to recording sounds from different
environments since it only requires a phone with internet
connectivity.

2. Record N (for example, 50) utterances for each class (red, green,
blue, one, two, and three). Before clicking on Start recording,
set Category to Training and enter one of the following labels
in the Label field, depending on the spoken word:

Figure 4.3 – Labels for the output categories

Since the label encoding assigns an integer value based on
alphabetical ordering to each output category, our proposed names
(00_red, 01_green, 02_blue, 03_one, 04_two, and 05_three) will be
helpful to know whether we have a color or a number from the label

index easily. For example, if the label index is less than 3, we have a
color.

We recommend repeating the same utterance several times in a
single recording to avoid uploading too many files into Edge
Impulse. For example, you could record audio of 20 seconds (s)
where you repeat the same word 10 times with a 1-s pause in
between.

The recordings will be available in the Data acquisition section. By
clicking on the file, you can visualize the corresponding audio
waveform:

Figure 4.4 – Audio waveform

The raw audio waveform is the signal recorded by the microphone
and graphically describes the sound-pressure variation over time.
The vertical axis reports the amplitude of this vibration, while the

horizontal axis reports the time. The higher waveform amplitude
implies louder audio as perceived by the human ear.

3. Split the recordings containing repetitions of the utterance in

individual samples by clicking on near the filename and then
clicking on Split sample, as shown in the following screenshot:

Figure 4.5 – Split sample option

Edge Impulse will automatically detect spoken words, as you can
observe from the following screenshot:

Figure 4.6 – Audio waveform with repetitions of the same utterance

Set the segment length to 1000 milliseconds (ms) (1 s), and
ensure all the samples are centered within the cutting window.

Then, click on Split to get the individual samples.

4. Download the keyword dataset from Edge Impulse
(https://cdn.edgeimpulse.com/datasets/keywords2.zip) and unzip
the file. Import N random samples from the unknown dataset into
the Edge Impulse project. Go to Data acquisition and click on
the Upload existing data button from the Collect data
menu:

Figure 4.7 – Button to upload existing training data

On the UPLOAD DATA page, do the following:

Set Upload category to Training.

Write unknown in the Enter label field.

Click on Begin upload to import the files into the dataset.

5. Split the samples between training and test datasets by clicking
on the Perform train / test split button in the Danger zone
area of the Dashboard:

https://cdn.edgeimpulse.com/datasets/keywords2.zip

Figure 4.8 – Danger zone in Edge Impulse

Edge Impulse will ask you twice if you are sure about this action
because the data shuffling is irreversible.

You should now have 80% of the samples assigned to the
training/validation set and 20% to the test one.

Extracting MFCC features from
audio samples
When building an ML application with Edge Impulse, the impulse is
responsible for all of the data processing, such as feature extraction
and model inference.

In this recipe, we will see how to design an impulse to extract MFCC
features from the audio samples.

Getting ready

Let's start this recipe by discussing what an impulse is and
examining the MFCC features used for our KWS application.

In Edge Impulse, an impulse is responsible for data processing and
consists of two computational blocks, mainly the following:

Processing block: This is the preliminary step in any ML
application, and it aims to prepare the data for the ML algorithm.

Learning block: This is the block that implements the ML
solution, which aims to learn patterns from the data provided by
the processing block.

The processing block determines the ML effectiveness since the raw
input data is often not suitable for feeding the model directly. For
example, the input signal could be noisy or have irrelevant and
redundant information for training the model, just to name a few
scenarios.

Therefore, Edge Impulse offers several pre-built processing
functions, including the possibility to have custom ones.

In our case, we will use the MFCC feature extraction processing
block, and the following subsections will help us learn more about
this.

Analyzing audio in the frequency domain
In contrast to vision applications where convolutional NNs
(CNNs) can make feature extraction part of the learning process,

typical speech recognition models do not perform well with raw
audio data. Therefore, feature extraction is required and needs to be
part of the processing block.

We know from physics that sound is the vibration of air molecules
that propagates as a wave. For example, if we played a pure single
tone, the microphone would record a sine signal:

Figure 4.9 – Sine waveform

Although the sounds in nature are far from pure, every sound can be
expressed as the sum of sine waves at different frequencies and
amplitudes.

Since a frequency and amplitude characterize sine waves, we
commonly represent the components in the frequency domain

through the power spectrum:

Figure 4.10 – Representation of a signal in the frequency domain

The power spectrum reports the frequency on the horizontal axis
and the power (S) associated with each component on the vertical
axis.

The Discrete Fourier Transform (DFT) is the required
mathematical tool to decompose a digital audio waveform in all its
constituent sine waves, commonly called components.

Now that we are familiar with the frequency representation of an
audio signal, let's see what we can generate as an input feature for
a CNN.

Generating a mel spectrogram
A spectrogram can be considered an audio signal's image
representation because it visually shows the power spectrum over
time.

A spectrogram is obtained by splitting the audio waveform into
smaller segments and applying the DFT on each one, as shown in
the following screenshot:

Figure 4.11 – Audio waveform and spectrogram of the red utterance

In the spectrogram, each vertical slice represents the power
spectrum associated with each segment—in particular:

The width reports the time.

The height reports the frequency.

The color reports the power spectrum amplitude, so a brighter
color implies a higher amplitude.

However, a spectrogram obtained in this way would be ineffective for
voice speech recognition because the relevant features are not
emphasized. In fact, as we can observe from the preceding
screenshot, the spectrogram is dark in almost all regions.

Therefore, the spectrogram is adjusted considering that humans
perceive frequencies and loudness on a logarithmic scale rather than
linearly. These adjustments are as follows:

Scaling the frequency (hertz, or Hz) to Mel with the Mel
scale filter bank: The Mel scale remaps the frequencies to
make them distinguishable and perceived equidistantly. For
example, if we played pure tones from 100 Hz to 200 Hz with a 1
Hz step, we could distinctly perceive all 100 frequencies.
However, if we conducted the same experiment at higher
frequencies (for example, between 7500 Hz and 7600 Hz), we
could barely hear all tones. Therefore, not all frequencies are
equally important for our ears.

The Mel scale is commonly computed using triangular filters
overlapped (filter bank) in the frequency domain.

Scaling the amplitudes using the decibel (dB) scale: The
human brain does not perceive amplitude linearly but
logarithmically, as with frequencies. Therefore, we scale the
amplitudes logarithmically to make them visible in the
spectrogram.

The spectrogram obtained by applying the preceding transformations
is a mel spectrogram or Mel-frequency energy (MFE). The MFE
of the red word using 40 triangular filters is reported in the following
screenshot, where we can now clearly notice the intensity of the
frequency components:

Figure 4.12 – Spectrogram and Mel spectrogram of the red utterance

Although the mel spectrogram works well with audio recognition
models, there is also something more efficient for human speech

recognition regarding the number of input features—the MFCC.

Extracting the MFCC
MFCC aims to extract fewer and highly unrelated coefficients from
the mel spectrogram.

The Mel filter bank uses overlapped filters, which makes the
components highly correlated. If we deal with human speech, we
can decorrelate them by applying the Discrete Cosine Transform
(DCT).

The DCT provides a compressed version of the filter bank. From the
DCT output, we can keep the first 2-13 coefficients (cepstral
coefficients) and discard the rest because they do not bring
additional information for human speech recognition. Hence, the
resulting spectrogram has fewer frequencies than the mel
spectrogram (13 versus 40).

How to do it…

We start designing our first impulse by clicking on the Create
impulse option from the left-hand side menu, as shown in the
following screenshot:

Figure 4.13 – Create impulse option

In the Create impulse section, ensure the time-series data has the
Window size field set to 1000 ms and the Window increase field
to 500 ms.

Window increase is a parameter specifically for continuous KWS
applications, where there is a continuous audio stream and we do
not know when the utterance starts. In this scenario, we should split
the audio stream into windows (or segments) of equal length and
execute the ML inference on each one. Window size is the
temporal length of the window, while Window increase is the
temporal distance between two consecutive segments, as shown in
the following diagram:

Figure 4.14 – Window size versus Window increase

The Window size value depends on the training sample length (1
s) and may affect the accuracy results. On the contrary, the
Window increase value does not impact the training results but
affects the chances of getting a correct start of the utterance. In
fact, a smaller Window increase value implies a higher probability.

However, the suitable Window increase value will depend on the
model latency.

The following steps show how to design a processing block for
extracting MFCC features from recorded audio samples:

1. Click on the Add a processing block button and add Audio
(MFCC).

2. Click on the Add a learning block button and add
Classification (Keras).

The Output features block should report the seven output classes
to recognize (00_red, 01_green, 02_blue, 03_one, 04_two, 05_three,
and unknown), as shown in the following screenshot:

Figure 4.15 – Output features

Save the impulse by clicking on the Save Impulse button.

3. Click on MFCC from the Impulse design category. In the new
window, we can play on the parameters affecting the extraction
of MFCC features, such as the number of cepstral coefficients,
the number of triangular filters applied for the Mel scale, and so
on. All the MFCC parameters are kept at their default values.

At the bottom of the page, there are also two parameters for the
pre-emphasis stage. The pre-emphasis stage is performed before

generating a spectrogram to reduce the effect of noise by increasing
energy at the highest frequencies. If the Coefficient value is 0,
there is no pre-emphasis on the input signal. The pre-emphasis
parameters are kept at their default values.

4. Extract the MFCC features from each training sample by clicking
on the Generate features button:

Figure 4.16 – Generate features button

Edge Impulse will return Job completed in the console output at
the end of this process.

MFCC features are now extracted from all the recorded audio
samples.

There's more…

Once MFCCs have been generated, we can use the Feature
explorer tool to examine the generated training dataset in a three-
dimensional (3D) scatter plot, as shown in the following
screenshot:

Figure 4.17 – Feature explorer showing the seven output classes

From the Feature explorer chart, we should infer whether the
input features are suitable for our problem. If so, the output classes
(except the unknown output category) should be well separated.

Under the Feature explorer area, we find the On-device
performance section related to MFCC:

Figure 4.18 – MFCC performance on the Arduino Nano 33 BLE Sense board

PROCESSING TIME (latency) and PEAK RAM USAGE (data
memory) are estimated considering the target device selected in
Dashboard | Project info:

Figure 4.19 – Target device reported in Project info

From Project info, you can change the target device for
performance estimation.

Unfortunately, Edge Impulse does not support the Raspberry Pi Pico,
so the estimated performance will only be based on the Arduino
Nano.

Designing and training a NN model

In this recipe, we will be leveraging the following NN architecture to
recognize our words:

Figure 4.20 – NN architecture

The model has two two-dimensional (2D) convolution layers, one
dropout layer, and one fully connected layer, followed by a softmax
activation.

The network's input is the MFCC feature extracted from the 1-s
audio sample.

Getting ready

To get ready for this recipe, we just need to know how to design and
train a NN in Edge Impulse.

Depending on the learning block chosen, Edge Impulse exploits
different underlying ML frameworks for training. For a classification
learning block, the framework uses TensorFlow with Keras. The
model design can be performed in two ways:

Visual mode (simple mode): This is the quickest way and
through the user interface (UI). Edge Impulse provides some
basic NN building blocks and architecture presets, which are
beneficial if you have just started experimenting with deep
learning (DL).

Keras code mode (expert mode): If we want more control
over the network architecture, we can edit the Keras code
directly from the web browser.

Once we have designed the model, we can launch the training from
the same window.

How to do it…

Click on Neural Network (Keras) under Impulse design and
follow the next steps to design and train the NN presented in Figure
4.20:

1. Select the 2D Convolutional architecture preset and remove
the Dropout layer between the two convolution layers:

Figure 4.21 – Deleting the dropout layer between the two 2D convolution layers

2. Switch to Keras (expert) mode by clicking on . In the coding
area, delete the MaxPooling2D layers:

Figure 4.22 – Deleting the two pooling layers from the Keras code

Set the strides of the first convolution layer to (2,2):
model.add(Conv2D(8, strides=(2,2), kernel_size=3,

activation='relu',

kernel_constraint=tf.keras.constraints.MaxNorm(1),

padding='same'))

The pooling layer is a subsampling technique that reduces
information propagated through the network and lowers the
overfitting risk. However, this operator may increase latency and
random-access memory (RAM) usage. In memory-constraint
devices such as microcontrollers, memory is a precious resource,
and we need to use it as efficiently as possible. Therefore, the idea

is to adopt non-unit strides in convolution layers to reduce spatial
dimensionality. This approach is typically more performant because
we skip the pooling layer computation entirely, and we can have
faster convolution layers, given fewer output elements to process.

3. Launch the training by clicking on the Start training button:

Figure 4.23 – Start training button

The output console will report the accuracy and loss on the training
and validation datasets during training after each epoch.

At the end of the training, we can evaluate the model's performance
(accuracy and loss), the confusion matrix, and the estimated on-
device performance on the same page.

IMPORTANT NOTE
If you achieve 100% accuracy, this is a sign that the model is likely overfitting the
data. To avoid this issue, you can either add more data to your training set or
reduce the learning rate.

If you are not happy with the model's accuracy, we recommend
collecting more data and training the model again.

Tuning model performance with
EON Tuner
Developing the most efficient ML pipeline for a given application is
always challenging. One way to do this is through iterative
experiments. For example, we can evaluate how some target metrics
(latency, memory, and accuracy) change depending on the input
feature generation and the model architecture. However, this process
is time-consuming because there are several combinations, and each
one needs to be tested and evaluated. Furthermore, this approach
requires familiarity with digital signal processing and NN
architectures to know what to tune.

In this recipe, we will use the EON Tuner to find the best ML pipeline
for the Arduino Nano.

Getting ready

EON Tuner (https://docs.edgeimpulse.com/docs/eon-tuner) is a tool
for automating the discovery of the best ML-based solution for a
given target platform. However, it is not just an automated ML
(AutoML) tool because the processing block is also part of the
optimization problem. Therefore, the EON Tuner is an E2E optimizer
for discovering the best combination of processing block and ML

https://docs.edgeimpulse.com/docs/eon-tuner

model for a given set of constraints, such as latency, RAM usage,
and accuracy.

How to do it…

Click on the EON Tuner from the left-hand side menu and follow
the next steps to learn how to find the most efficient ML-based
pipeline for our applicatio:

1. Set up the EON Tuner by clicking on the settings wheel icon in
the Target area:

Figure 4.24 – EON Tuner settings

Edge Impulse will open a new window for setting up the EON Tuner.
In this window, set the Dataset category, Target device, and
Time per inference values, as follows:

Dataset category: Keyword spotting

Target device: Arduino Nano 33 BLE Sense (Cortex-M4F
64MHz)

Time per inference (ms): 100

Since Edge Impulse does not support the Raspberry Pi Pico yet, we
can only tune the performance for the Arduino Nano 33 BLE Sense

board.

We set the Time for inference value to 100 ms to discover faster
solutions than previously obtained in the Designing and training a
NN model recipe.

2. Save the EON Tuner settings by clicking on the Save button.

3. Launch the EON Tuner by clicking on Start EON Tuner. The
process can take from several minutes up to 6 hours, depending
on the dataset size. The tool will show the progress in the
progress bar and report the discovered architectures in the same
window, as shown in the following screenshot:

Figure 4.25 – EON Tuner reports a confusion matrix for each proposed ML
solution

Once the EON Tuner has completed the discovery phase, you will
have a collection of ML-based solutions (processing + ML model) to
choose from.

4. Select an architecture with higher accuracy and lower window
increase by clicking on the Select button. Our selected
architecture has a 250-ms window increase and uses MFE as an
input feature and 1D convolution layers.

As you can observe, the input feature is not MFCC. The EON Tuner
proposes this alternative processing block because it considers the
latency of the entire ML pipeline rather than just the model
inference. Therefore, it is true that MFE could slow down the model
inference because it returns a spectrogram with more features than
MFCC. However, MFE is considerably faster than MFCC because it
does not require extracting the DCT components.

Once you have selected an architecture, Edge Impulse will ask you
to update the primary model. Click on Yes to override the
architecture trained in the previous Designing and training a NN
model recipe. A pop-up window will appear, confirming that the
primary model has been updated.

In the end, click on Retrain model from the left-hand side panel
and click on Train model to train the network again.

Live classifications with a
smartphone
When we talk of model testing, we usually refer to the evaluation of
the trained model on the testing dataset. However, model testing in
Edge Impulse is more than that.

In this recipe, we will learn how to test model performance on the
test set and show a way to perform live classifications with a
smartphone.

Getting ready

Before implementing this recipe, the only thing we need to know is
how we can evaluate model performance in Edge Impulse.

In Edge Impulse, we can evaluate the trained model in two ways:

Model testing: We assess the accuracy using the test dataset.
The test dataset provides an unbiased evaluation of model
effectiveness because the samples are not used directly or
indirectly during training.

Live classification: This is a unique feature of Edge Impulse
whereby we can record new samples either from a smartphone
or a supported device (for example, the Arduino Nano).

The live classification approach benefits from testing the trained
model in the real world before necessarily deploying the application
on the target platform.

How to do it…

Follow the next steps to evaluate model performance with the test
dataset and the live classification tool:

1. Click on Model testing from the left panel and click on Classify
all.

Edge Impulse will take care of extracting the MFE from the test set,
running the trained model, and reporting the performance in the
confusion matrix.

2. Click on Live classification from the left panel and ensure the
smartphone is reported in the Device list:

Figure 4.26 – Device list showing that the mobile phone is paired with Edge
Impulse

Select Microphone from the Sensor drop-down list in the Live
classification section and set the Sample length (ms) value to
10000. Keep Frequency at the default value (16000 Hz).

3. Click on Start sampling and then click on Give access to the
Microphone on your phone. Record any of our six utterances
(red, green, blue, one, two, and three). The audio sample will be
uploaded on Edge Impulse once you have completed the
recording.

At this point, Edge Impulse will split the recording into 1-second-
length samples and test the trained model on each one. The
classification results will be reported on the same page and in the
following forms:

Generic summary: This reports the number of detections for
each output category:

Figure 4.27 – Generic summary reporting the number of detections for each
keyword

Detailed analysis: This reports the probability of the classes at
each timestamp, as shown in the following screenshot:

Figure 4.28 – Detailed analysis reporting the probability of the classes at each
timestamp

If you click on a table entry, Edge Impulse will show the
corresponding audio waveform in the window, as shown in Figure
4.28.

Live classifications with the Arduino
Nano

If you found live classification with the smartphone helpful, live
classification with the Arduino Nano will be even more helpful.

This recipe will show how to pair the Arduino Nano with Edge
Impulse to perform live classifications directly from our target
platform.

Getting ready

Testing model performance with the sensor used in the final
application is a good practice to have more confidence in the
accuracy results. Thanks to Edge Impulse, it is possible to perform
live classification on the Arduino Nano with a few simple steps that
you can also find at the following link:
https://docs.edgeimpulse.com/docs/arduino-nano-33-ble-sense.

How to do it…

Live classifications with the built-in microphone on the Arduino Nano
require installing additional software on your machine. The different
tools work on Linux, macOS, and Windows, and are listed here:

Edge Impulse command-line interface (CLI):
https://docs.edgeimpulse.com/docs/cli-installation

Arduino CLI: https://arduino.github.io/arduino-cli/0.19/

Once you have installed the dependencies, follow the next steps to
pair the Arduino Nano platform with Edge Impulse:

https://docs.edgeimpulse.com/docs/arduino-nano-33-ble-sense
https://docs.edgeimpulse.com/docs/cli-installation
https://arduino.github.io/arduino-cli/0.19/

1. Run arduino-cli core install arduino:mbed_nano from
Command Prompt or the terminal.

2. Connect the Arduino Nano board to your computer and press the
RESET button on the platform twice to enter the device in
bootloader mode.

The built-in LED should start blinking to confirm that the platform is
in bootloader mode.

3. Download the Edge Impulse firmware for the Arduino Nano from
https://cdn.edgeimpulse.com/firmware/arduino-nano-33-ble-
sense.zip and decompress the file. The firmware will be required
to send audio samples from the Arduino Nano to Edge Impulse.

4. In the unzipped folder, execute the flash script to upload the
firmware on the Arduino Nano. You should use the script
accordingly with your operating system (OS)—for example,
flash_linux.sh for Linux.

Once the firmware has been uploaded on the Arduino Nano, you can
press the RESET button to launch the program.

5. Execute edge-impulse-daemon from Command Prompt or the
terminal. The wizard will ask you to log in and select the Edge
Impulse project you're working on.

The Arduino Nano should now be paired with Edge Impulse. You can
check if the Arduino Nano is paired by clicking on Devices from the
left-hand side panel, as shown in the following screenshot:

https://cdn.edgeimpulse.com/firmware/arduino-nano-33-ble-sense.zip
https://cdn.edgeimpulse.com/firmware/arduino-nano-33-ble-sense.zip

Figure 4.29 – List of devices paired with Edge Impulse

As you can see from the preceding screenshot, the Arduino Nano
(personal) is listed in the Your devices section.

Now, go to Live classification and select Arduino Nano 33 BLE
Sense board from the Device drop-down list. You can now record

audio samples from the Arduino Nano and check if the model works.

IMPORTANT NOTE
If you discover that the model does not work as expected, we recommend adding
audio samples recorded with the microphone of the Arduino Nano in the training
dataset. To do so, click on Data acquisition and record new data using the
Arduino Nano device from the right-hand side panel.

Continuous inferencing on the
Arduino Nano
As you can guess, the application deployment differs on the Arduino
Nano and the Raspberry Pi Pico because the devices have different
hardware capabilities.

In this recipe, we will show how to implement a continuous keyword
application on the Arduino Nano.

The following Arduino sketch contains the code referred to in this
recipe:

07_kws_arduino_nano_ble33_sense.ino:

https://github.com/PacktPublishing/TinyML-
Cookbook/blob/main/Chapter04/ArduinoSketches/07_kws_arduino_n
ano_ble33_sense.ino

Getting ready

https://github.com/PacktPublishing/TinyML-Cookbook/blob/main/Chapter04/ArduinoSketches/07_kws_arduino_nano_ble33_sense.ino
https://github.com/PacktPublishing/TinyML-Cookbook/blob/main/Chapter04/ArduinoSketches/07_kws_arduino_nano_ble33_sense.ino
https://github.com/PacktPublishing/TinyML-Cookbook/blob/main/Chapter04/ArduinoSketches/07_kws_arduino_nano_ble33_sense.ino

The application on the Arduino Nano will be based on the
nano_ble33_sense_microphone_continuous.cpp example provided by
Edge Impulse, which implements a real-time KWS application.
Before changing the code, we want to examine how this example
works to get ready for the recipe.

Learning how a real-time KWS
application works
A real-time KWS application—for example, the one used in the smart
assistant—should capture and process all pieces of the audio stream
to never miss any events. Therefore, the application needs to record
the audio and run the inference simultaneously so that we do not
skip any information.

On a microcontroller, parallel tasks can be performed in two ways:

With a real-time OS (RTOS). In this case, we can use two
threads for capturing and processing the audio data.

With a dedicated peripheral such as direct memory access
(DMA) attached to the ADC. DMA allows data transfer without
interfering with the main program running on the processor.

In this recipe, we won't deal with this aspect directly. In fact, the
nano_ble33_sense_microphone_continuous.cpp example already
provides an application where the audio recording and inference run
simultaneously through a double-buffering mechanism. Double
buffering uses two buffers of fixed size, where the following applies:

One buffer is dedicated to the audio sampling task.

One buffer is dedicated to the processing task (feature extraction
and ML inference).

Each buffer keeps the number of audio samples required for a
window increase recording. Therefore, the buffer size can be
calculated through the following formula:

The preceding formula can be defined as the product of the
following:

SF (Hz): Sampling frequency in Hz (for example, 16 kilohertz
(kHz) = 16000 Hz)

WI (s): Window increase in s (for example, 250 ms = 0.250 s)

For example, if we sample the audio signal at 16 kHz and the
window increase is 250 ms, each buffer will have a capacity of 4,000
samples.

These two buffers are continuously switched between recording and
processing tasks, and the following diagram visually shows how:

Figure 4.30 – Recording and processing tasks running simultaneously

From the preceding diagram, we can observe the following:

1. The recording task starts filling Buffer 0 at t=T .

2. At t=T , Buffer 0 is full. Therefore, the processing task can start
the inference using the data in Buffer 0. Meanwhile, the

0

1

recording task continues capturing audio data in the background
using Buffer 1.

3. At t=T , Buffer 1 is full. Therefore, the processing task must
have finished the previous computation before starting a new
one.

Keeping the window increase as short as possible has the following
benefits:

Increases the probability of getting the correct beginning of an
utterance

Reduces the computation time of feature extraction because this
is only computed on the window increase

However, the window increase should be long enough to guarantee
that the processing task can complete within this time frame.

At this point, you might have one question in mind: If we have a
window increase of 250 ms, how can the double buffers feed the NN
since the model expects a 1-s audio sample?

The double buffers are not the NN input but the input for an
additional buffer containing the samples of the 1-s audio. This buffer
stores the data on a first-in, first-out (FIFO) basis and provides
the actual input to the ML model, as shown in the following diagram:

2

Figure 4.31 – The FIFO buffer is used to feed the NN model

Therefore, every time we start a new processing task, the sampled
data is copied into the FIFO queue before running the inference.

How to do it…

With the following steps, we will make some changes to the
nano_ble33_sense_microphone_continuous.cpp file to control the
built-in RGB LEDs on the Arduino Nano with our voice:

1. In Edge Impulse, click on Deployment from the left-hand side
menu and select Arduino Library from the Create library
options, as shown in the following screenshot:

Figure 4.32 – Create library options in Edge Impulse

Next, click on the Build button at the bottom of the page and save
the ZIP file on your machine. The ZIP file is an Arduino library
containing the KWS application, the routines for feature extraction
(MFCC and MFE), and a few ready-to-use examples for the Arduino
Nano 33 BLE Sense board.

2. Open the Arduino integrated development environment
(IDE) and import the library created by Edge Impulse. To do so,
click on the Libraries tab from the left pane and then click on
the Import button, as shown in the following screenshot:

Figure 4.33 – Import library in Arduino Web Editor

Once imported, open the nano_ble33_sense_microphone_continuous
example from Examples | FROM LIBRARIES |
<name_of_your_project>_INFERENCING.

In our case, <name_of_your_project> is
VOICE_CONTROLLING_LEDS, which matches the name given to our

Edge Impulse project.

In the file, the EI_CLASSIFIER_SLICES_PER_MODEL_WINDOW C macro
defines the window increase in terms of the number of frames
processed per model window. We can keep it at the default value.

3. Declare and initialize a global array of mbed::DigitalOut objects
to drive the built-in RGB LEDs:
mbed::DigitalOut rgb[] = {p24, p16, p6};

#define ON 0

#define OFF 1

The initialization of mbed::DigitalOut requires the PinName value of
the RGB LEDs. The pin names can be found in the Arduino Nano 33
BLE Sense board schematic
(https://content.arduino.cc/assets/NANO33BLE_V2.0_sch.pdf):

Figure 4.34 – The built-in RGB LEDs are powered by a current-sinking circuit
(https://content.arduino.cc/assets/NANO33BLE_V2.0_sch.pdf)

https://content.arduino.cc/assets/NANO33BLE_V2.0_sch.pdf
https://content.arduino.cc/assets/NANO33BLE_V2.0_sch.pdf

The RGB LEDs—identified with the labels LR, LG, and LB—are
controlled by a current-sinking circuit and are connected to
P0.24, P0.16, and P0.06:

Figure 4.35 – The RGB LEDs are connected to P0.24, P0.16, and P0.06
(https://content.arduino.cc/assets/NANO33BLE_V2.0_sch.pdf)

Therefore, the general-purpose input/output (GPIO) pin must
supply 0 volts (V) (LOW) to turn on the LEDs. To avoid using
numerical values, we can use the #define ON 0 and #define OFF 1
C defines to turn the LEDs on and off.

4. Define an integer global variable (current_color) to keep track
of the last detected color. Initialize it to 0 (red):
size_t current_color = 0;

https://content.arduino.cc/assets/NANO33BLE_V2.0_sch.pdf

5. Initialize the built-in RGB LEDs in the setup() function by turning
on just current_color:
rgb[0] = OFF; rgb[1] = OFF; rgb[2] = OFF;

rgb[current_color] = ON;

6. In the loop() function, set to false the moving average (MA)
flag in the run_classifier_continuous() function:

run_classifier_continuous(&signal, &result, debug_nn,

false);

The run_classifier_continuous() function is responsible for the
model inference. The MA is disabled by passing false after the
debug_nn parameter. However, why do we disable this functionality?

MA is an effective method to filter out false detections when the
window increase is small. For example, consider the word bluebird.
This word contains blue, but it is not the utterance we want to
recognize. However, when running continuous inference with a slight
window increase, there is the benefit of processing small pieces of
the word at a time. Therefore, the blue word may be detected with
high confidence in one piece but not in the others. So, the goal of
the MA is to average the results of classifications over time to avoid
false detections.

As we can guess, the output class must have multiple high-rated
classifications when using the MA. Therefore, what happens if the
window increase is significant?

When the window increase is significant (for example, greater than
100 ms), we process fewer segments per second, and then the
moving average could filter out all the classifications. Since our
window increase will be between 250 ms and 500 ms (depending on
the ML architecture chosen), we recommend you disable it to avoid
filtering out the classifications.

7. Remove the code after run_classifier_continuous() till the end
of the loop() function.

8. In the loop() function and after run_classifier_continuous(),
write the code to return a class with higher probability:
size_t ix_max = 0;

float pb_max = 0.0f;

for (size_t ix = 0; ix < EI_CLASSIFIER_LABEL_COUNT; ix++)

{

 if(result.classification[ix].value > pb_max) {

 ix_max = ix;

 pb_max = result.classification[ix].value;

 }

}

In the preceding code snippet, we iterate through all the output
classes (EI_CLASSIFIER_LABEL_COUNT) and keep the index (ix) with
the maximum classification value
(result.classification[ix].value). EI_CLASSIFIER_LABEL_COUNT is

a C define provided by Edge Impulse and is equal to the number of
output categories.

9. If the probability of the output category (pb_max) is higher than a
fixed threshold (for example, 0.5) and the label is not unknown,
check whether it is a color. If the label is a color and different
from the last one detected, turn off current_color and turn on
new_color:

size_t new_color = ix_max;

if (new_color != current_color) {

 rgb[current_color] = OFF;

 rgb[new_color] = ON;

 current_color = new_color;

}

If the label is a number, blink the current_color LED for the
recognized number of times:
const size_t num_blinks = ix_max0 - 2;

for(size_t i = 0; i < num_blinks; ++i) {

 rgb[current_color] = OFF;

 delay(1000);

 rgb[current_color] = ON;

 delay(1000);

}

Compile and upload the sketch on the Arduino Nano. You should
now be able to change the color of the LED or make it blink with
your voice.

Building the circuit with the
Raspberry Pi Pico to voice control
LEDs
The Raspberry Pi Pico has neither a microphone nor RGB LEDs
onboard for building a KWS application. Therefore, voice controlling
the RGB LEDs on this platform requires building an electronic circuit.

This recipe aims to prepare a circuit with the Raspberry Pi Pico, RGB
LEDs, a push-button, and an electret microphone with a MAX9814
amplifier.

Getting ready

The application we have considered for the Raspberry Pi Pico is not
based on continuous inferencing. Here, we would like to use a
button to start the audio recording of 1 s and then run the model
inference to recognize the utterance. The spoken word, in turn, will
be used to control the status of the RGB LEDs.

In the following subsection, we will learn more about using the
electret microphone with the MAX9814 amplifier.

Introducing the electret microphone
amplifier with the MAX9814 amplifier

The microphone put into action in this recipe is the low-cost
electret microphone amplifier – MAX9814. You can buy the
microphone from the following distributors:

Pimoroni: https://shop.pimoroni.com/products/adafruit-electret-
microphone-amplifier-max9814-w-auto-gain-control

Adafruit: https://www.adafruit.com/product/1713

The signal coming from the microphone is often tiny and requires
amplification to be adequately captured and analyzed.

For this reason, our microphone is coupled with the MAX9814 chip
(https://datasheets.maximintegrated.com/en/ds/MAX9814.pdf), an
amplifier with built-in automatic gain control (AGC). AGC allows
the capturing of speech in environments where the background
audio level changes unpredictably. Therefore, the MAX9814
automatically adapts the amplification gain to make the voice always
distinguishable.

The amplifier requires a supply voltage between 2.7V and 5.5V and
produces an output with a maximum peak-to-peak voltage (Vpp)
of 2Vpp on a 1.25V direct current (DC) bias.

NOTE
Vpp is the full height of the waveform.

Therefore, the device can be connected to ADC, expecting input
signals between 0V and 3.3V.

https://shop.pimoroni.com/products/adafruit-electret-microphone-amplifier-max9814-w-auto-gain-control
https://shop.pimoroni.com/products/adafruit-electret-microphone-amplifier-max9814-w-auto-gain-control
https://www.adafruit.com/product/1713
https://datasheets.maximintegrated.com/en/ds/MAX9814.pdf

As shown in the following diagram, the microphone module has five
holes at the bottom for inserting the header strip:

Figure 4.36 – Electret microphone with MAX9814

The header strip is required for mounting the device on the
breadboard, and it typically needs to be soldered.

TIP
If you are not familiar with soldering, we recommend reading the following
tutorial:

https://learn.adafruit.com/adafruit-agc-electret-microphone-amplifier-
max9814/assembly

In the following subsection, you will discover how to connect this
device with the Raspberry Pi Pico.

https://learn.adafruit.com/adafruit-agc-electret-microphone-amplifier-max9814/assembly
https://learn.adafruit.com/adafruit-agc-electret-microphone-amplifier-max9814/assembly

Connecting the microphone to the
Raspberry Pi Pico ADC
The voltage variations produced by the microphone require
conversion to a digital format.

The RP2040 microcontroller on the Raspberry Pi Pico has four ADCs
to carry out this conversion, but only three of them can be used for
external inputs because one is directly connected to the internal
temperature sensor.

The pin reserved for the ADCs are shown here:

Figure 4.37 – ADC pins

The expected voltage range for the ADC on the Raspberry Pi Pico is
between 0V and 3.3V, perfect for the signal coming from our electret
microphone.

How to do it…

Let's start by placing the Raspberry Pi Pico on the breadboard. We
should mount the platform vertically, as we did in Chapter 2,
Prototyping with Microcontrollers.

Once you have placed the device on the breadboard, ensure the USB
cable is not connected to power and follow the next steps to build
the electronic circuit:

1. Place the RGB LEDs on the breadboard:

Figure 4.38 – RGB LEDs on the breadboard

Put the resistor in series to the LEDs by connecting one of the two
terminals to the LED cathode and the other one to GND. The
following table reports which resistor to use with each LED:

Figure 4.39 – Resistors used with the RGB LEDs

The resistances have been chosen to guarantee at least a ~3
milliampere (mA) forward current through each LED.

The following diagram shows how you can connect the resistors in
series to the LEDs:

Figure 4.40 – Resistors in series to LEDs

As you can observe, you can plug the microcontroller's GND into the
- rail to insert the resistor's terminal into the negative bus rail.

2. Connect the RGB LEDs' anode to the GPIO pins:

Figure 4.41 – Resistors connected to GND

As shown in the previous diagram, the GPIOs used to drive the LEDs
are GP9 (red), GP8 (green), and GP7 (blue).

Since the resistor is connected between the LED cathode and GND,
the LEDs are powered by a current sourcing circuit. Therefore, we
should supply 3.3V (HIGH) to turn them on.

3. Place the push-button on the breadboard:

Figure 4.42 – Push-button connected to GP10 and GND

The GPIO used for the push-button is GP10.

Since our circuits will require several jumper wires, we place the
device at the bottom of the breadboard to have enough space to
press it.

4. Place the electret microphone on the breadboard:

Figure 4.43 – Electret microphone mounted on the breadboard

The ADC pin is GP26. Out of the five pins on the microphone
module, we only need to connect three of them, which are outlined
as follows:

Vdd (3.3V): This is the supply voltage of the amplifier. Vdd must
be stable and equal to the ADC supply voltage. These conditions
are required to reduce the noise on the analog signal coming
from the microphone.

Vdd should be connected to ADC_VREF, the ADC reference
voltage produced on the Raspberry Pi Pico.

GND: This is the ground of the circuit amplifier and should be
the same as the ADC peripheral. Since analog signals are more
susceptible to noise than digital ones, the Raspberry Pi Pico
offers a dedicated ground for ADCs: the analog ground
(AGND). GND should be connected to AGND to decouple the
analog circuit from the digital one.

Out: This is the amplified analog signal coming from the
microphone module and should be connected to GP26 to sample
it with the ADC0 peripheral.

The following table reports the connections to make between the
Raspberry Pi Pico and the electret microphone with the MAX9814
amplifier:

Figure 4.44 – Electret microphone connections

The remaining two terminals of the microphone are used to set the
gain and the attach&release ratio. These settings are not required
for this recipe, but you can discover more in the MAX9814 datasheet
(https://datasheets.maximintegrated.com/en/ds/MAX9814.pdf).

At this point, you can plug the Raspberry Pi Pico into your computer
through the Micro USB cable because the circuit is ready to
implement our KWS application.

Audio sampling with ADC and timer
interrupts on the Raspberry Pi Pico
All the components are now mounted on the breadboard. Therefore,
there is nothing left for us to write our KWS application.

The application consists of recording 1-s audio and running the ML
inference when pressing the push-button. The classification result
will be shown through the RGB LEDs, similar to what we have done
in the Continuous inferencing on the Arduino Nano recipe.

https://datasheets.maximintegrated.com/en/ds/MAX9814.pdf

The following Arduino sketch and Python script contains the code
referred to in this recipe:

09_kws_raspberrypi_pico.ino:

https://github.com/PacktPublishing/TinyML-
Cookbook/blob/main/Chapter04/ArduinoSketches/09_kws_raspberry
pi_pico.ino

09_debugging.py:

https://github.com/PacktPublishing/TinyML-
Cookbook/blob/main/Chapter04/PythonScripts/09_debugging.py

Getting ready

The application on the Raspberry Pi Pico will be based on the Edge
Impulse nano_ble33_sense_microphone.cpp example, where the
user speaks at well-defined times and the application executes the
ML model to guess the spoken word.

In contrast to what we implemented in the Continuous inferencing
on the Arduino Nano recipe, the audio recording and processing task
can be performed sequentially because the push-button will tell us
the beginning of the utterance.

The following subsection will introduce the approach considered in
this recipe to sample the audio signal with ADC and timer interrupts.

Audio sampling with ADC and timer
interrupts on the Raspberry Pi Pico

https://github.com/PacktPublishing/TinyML-Cookbook/blob/main/Chapter04/ArduinoSketches/09_kws_raspberrypi_pico.ino
https://github.com/PacktPublishing/TinyML-Cookbook/blob/main/Chapter04/ArduinoSketches/09_kws_raspberrypi_pico.ino
https://github.com/PacktPublishing/TinyML-Cookbook/blob/main/Chapter04/ArduinoSketches/09_kws_raspberrypi_pico.ino
https://github.com/PacktPublishing/TinyML-Cookbook/blob/main/Chapter04/PythonScripts/09_debugging.py
https://github.com/PacktPublishing/TinyML-Cookbook/blob/main/Chapter04/PythonScripts/09_debugging.py

The RP2040 microcontroller on the Raspberry Pi Pico has four ADCs
with 12-bit resolution and a maximum sampling frequency of 500
kHz (or 500 kilosamples per second (kS/s)).

The ADC will be configured in one-shot mode, which means that the
ADC will provide the sample as soon as we make the request.

The timer peripheral will be initialized to trigger interrupts at the
same frequency as the sampling rate. Therefore, the interrupt
service routine (ISR) will be responsible for sampling the signal
coming from the microphone and storing the data in an audio buffer.

Since the ADC maximum frequency is 500 kHz, the minimum time
between two consecutive conversions is 2 microseconds (us). This
constraint is largely met because the audio signal is sampled at 16
kHz, which means every 62.5 us.

How to do it…

Open the nano_ble33_sense_microphone example from Examples |
FROM LIBRARIES |
<name_of_your_project>_INFERENCING, and make the
following changes to implement the KWS application on the
Raspberry Pi Pico:

1. Delete all the references to the PDM library, such as the header
file (#include <PDM.h>) and calls to PDM class methods since
these are only required for the built-in microphone of the Arduino
Nano.

Remove the code within the microphone_inference_record()
function.

2. Declare and initialize a global array of mbed::DigitalOut objects
to drive the RGB LEDs:
mbed::DigitalOut rgb[] = {p9, p8, p7};

Declare and initialize a global mbed::DigitalOut object to drive the
built-in LED:
mbed::DigitalOut led_builtin(p25);

#define ON 1

#define OFF 0

Since a current sourcing circuit powers all LEDs, we need to supply
3.3V (HIGH) to turn them on.

3. Define an integer global variable (current_color) to keep track
of the last detected color. Initialize it to 0 (red):

size_t current_color = 0;

Initialize the RGB LEDs in the setup() function by turning on
current_color only:

rgb[0] = OFF; rgb[1] = OFF; rgb[2] = OFF; rgb[current_color]

= ON; led_builtin = OFF;

4. Declare and initialize the global mbed::DigitalIn object to read
the push-button state:
mbed::DigitalIn button(p10);

#define PRESSED 0

Set the button mode to PullUp in the setup() function:

button.mode(PullUp);

Since the button is directly connected to GND and the GPIO pin, we
must enable the internal pull-up resistor by enabling the PullUp
button mode. Therefore, the numerical value returned by
mbed::DigitalIn is 0 when the button is pressed.

5. Add the "hardware/adc.h" header file to use the ADC peripheral:
#include "hardware/adc.h"

Initialize the ADC (GP26) peripheral in the setup() function using
the Raspberry Pi Pico application programming interface (API):
adc_init(); adc_gpio_init(26); adc_select_input(0);

Raspberry Pi offers a dedicated API for the RP2040 microcontroller in
the Raspberry Pi Pico SDK (https://raspberrypi.github.io/pico-sdk-
doxygen/index.html).

Since the Raspberry Pi Pico SDK is integrated into the Arduino IDE,
we don't need to import any library. We just need to include the
header file ("hardware/adc.h") in the sketch to use the ADC's API.

The ADC is initialized by calling the following functions in setup():

1. adc_init(), to initialize the ADC peripheral.

2. adc_gpio_init(26), to initialize the GPIO used by the ADC. This
function needs the GPIO pin number attached to the ADC
peripheral. Therefore, we pass 26 because ADC0 is attached to
GP26.

https://raspberrypi.github.io/pico-sdk-doxygen/index.html
https://raspberrypi.github.io/pico-sdk-doxygen/index.html

3. adc_select_input(0), to initialize the ADC input. The ADC input
is the reference number of the ADC attached to the selected
GPIO. Therefore, we pass 0 because we use ADC0.

By calling the preceding functions, we initialize the ADC in one-shot
mode.

6. Declare a global mbed::Ticker object to use the timer peripheral:

mbed::Ticker timer;

The timer object will be used to fire the timer interrupts at the
frequency of the audio sampling rate (16 kHz).

7. Write the timer ISR to sample the audio coming from the
microphone:
#define BIAS_MIC ((int16_t)(1.25f * 4095) / 3.3f)

volatile int ix_buffer = 0;

volatile bool is_buffer_ready = false;

void timer_ISR() {

 if(ix_buffer < EI_CLASSIFIER_RAW_SAMPLE_COUNT) {

 int16_t v = (int16_t)((adc_read() - BIAS_MIC));

 inference.buffer[ix_buffer] = v;

 ++ix_buffer;

 }

 else {

 is_buffer_ready = true;

 }

}

The ISR samples the microphone's signal with the adc_read()
function, which returns a value from 0 to 4096 because of the ADC
resolution. Since the signal generated by the MAX9814 amplifier has
a bias of 1.25V, we should subtract the corresponding digital sample
from the measurement. The relationship between the voltage
sample and the converted digital sample is provided with the
following formula:

Here, the following applies:

DS is the digital sample.

resolution is the ADC resolution.

VS is the voltage sample.

VREF is the ADC supply voltage reference (for example,
ADC_VREF).

Therefore, a 12-bit ADC with a VREF of 3.3V converts the 1.25V bias
to 1552.

Once we have subtracted the bias from the measurement, we can
store it in the audio buffer (inference.buffer[ix_buffer] = v) and
then increment the buffer index (++ix_buffer).

The audio buffer needs to be dynamically allocated in setup() with
microphone_inference_start(), and it can keep the number of
samples required for a 1-s recording. The
EI_CLASSIFIER_RAW_SAMPLE_COUNT C define is provided by Edge
Impulse to know the number of samples in 1-s audio. Since we
sample the audio stream with a sampling rate of 16 kHz, the audio
buffer will contain 16,000 int16_t samples.

The ISR sets is_buffer_ready to true when the audio buffer is full
(ix_buffer is greater than or equal to
EI_CLASSIFIER_RAW_SAMPLE_COUNT).

ix_buffer and is_buffer_ready are global because they are used by
the main program to know when the recording is ready. Since ISR
changes these variables, we must declare them volatile to prevent
compiler optimizations.

8. Write the code in microphone_inference_record() to record 1 s
of audio:
bool microphone_inference_record(void) {

 ix_buffer = 0;

 is_buffer_ready = false;

 led_builtin = ON;

 unsigned int sampling_period_us = 1000000 / 16000;

 timer.attach_us(&timer_ISR, sampling_period_us);

 while(!is_buffer_ready);

 timer.detach();

 led_builtin = OFF;

 return true;

}

In microphone_inference_record(), we set ix_buffer to 0 and
is_buffer_ready to false every time we start a new recording.

The user will know when the recording starts through the built-in
LED light (led_builtin = ON).

At this point, we initialize the mbed::Ticker object to fire the
interrupts with a frequency of 16 kHz. To do so, we call the
attach_us() method, which requires the following:

The ISR to call when the interrupt is triggered (&timer_ISR).

The interval time for us to fire the interrupt. Since we sample the
audio signal at 16 kHz, we pass 62us (unsigned int
sampling_period_us = 1000000 / 16000).

The while(!is_buffer_ready) statement is used to check whether
the audio recording is finished.

When the recording ends, we can stop generating the timer
interrupts (timer.detach()) and turn off the built-in LED
(led_builtin = OFF).

9. Check whether we are pressing the button in the loop()
function:
if(button == PRESSED) {

If so, wait for almost a second (for example, 700 ms) to avoid
recording the mechanical sound of the pressed button:
 delay(700);

We recommend not releasing the push-button until the end of the
recording to also prevent a mechanical sound when releasing it.

Next, record 1 s of audio with the microphone_inference_record()
function and execute the model inference by calling
run_classifier():

 microphone_inference_record();

 signal_t signal;

 signal.total_length = EI_CLASSIFIER_RAW_SAMPLE_COUNT;

 signal.get_data = µphone_audio_signal_get_data;

 ei_impulse_result_t result = { 0 };

 run_classifier(&signal, &result, debug_nn);

After the run_classifier() function, you can use the same code
written in the Continuous inferencing on the Arduino Nano recipe to
control the RGB LEDs.

However, before ending the loop() function, wait for the button to
be released:
 while(button == PRESSED);

}

Now, compile and upload the sketch on the Raspberry Pi Pico. When
the device is ready, press the push-button, wait for the built-in LED

light, and try to speak loud and close to the microphone to control
the RGB LEDs with your voice.

You should now be able to control the RGB LEDs with your voice!

There's more…

What can we do if the application does not work? We may have
different reasons, but one could be related to the recorded audio.
For example, how can we know if the audio is recorded correctly?

To debug the application, we have implemented the
09_debugging.py Python script
(https://github.com/PacktPublishing/TinyML-
Cookbook/blob/main/Chapter04/PythonScripts/09_debugging.py) to
generate an audio file (.wav) from the audio captured by the
Raspberry Pi Pico.

The Python script works locally on your machine and only needs the
PySerial, uuid, Struct, and Wave modules in your environment.

The following steps show how to use the Python script for
debugging the application on the Raspberry Pi Pico:

1. Import the 09_kws_raspberrypi_pico.ino sketch
(https://github.com/PacktPublishing/TinyML-
Cookbook/blob/main/Chapter04/ArduinoSketches/09_kws_raspbe
rrypi_pico.ino) in the Arduino IDE and set the debug_audio_raw
variable to true. This flag will allow the Raspberry Pi Pico to

https://github.com/PacktPublishing/TinyML-Cookbook/blob/main/Chapter04/PythonScripts/09_debugging.py
https://github.com/PacktPublishing/TinyML-Cookbook/blob/main/Chapter04/PythonScripts/09_debugging.py
https://github.com/PacktPublishing/TinyML-Cookbook/blob/main/Chapter04/ArduinoSketches/09_kws_raspberrypi_pico.ino
https://github.com/PacktPublishing/TinyML-Cookbook/blob/main/Chapter04/ArduinoSketches/09_kws_raspberrypi_pico.ino
https://github.com/PacktPublishing/TinyML-Cookbook/blob/main/Chapter04/ArduinoSketches/09_kws_raspberrypi_pico.ino

transmit audio samples over the serial whenever we have a new
recording.

2. Compile and upload the 09_kws_raspberrypi_pico.ino sketch on
the Raspberry Pi Pico.

3. Run the 09_debugging.py Python script, providing the following
input arguments:

--label: The label assigned to the recorded utterance.
The label will be the prefix for the filename of the
generated .wav audio files.

--port: Device name of the serial peripheral used by the
Raspberry Pi Pico. The port's name depends on the OS—
for example, /dev/ttyACM0 on GNU/Linux or COM1 on
Windows. The easiest way to find out the serial port's
name is from the device drop-down menu in the Arduino
IDE:

Figure 4.45 – Device drop-down menu in Arduino Web Editor

Once the Python script has been executed, it will parse the audio
samples transmitted over the serial to produce a .wav file whenever
you press the push-button.

You can listen to the audio file with any software capable of opening
.wav files.

If the audio level of the .wav file is too low, try speaking loud and
close to the microphone when recording.

However, suppose the audio level is acceptable, and the application
still does not work. In that case, the ML model is probably not
generic enough to deal with the signal of the electret microphone.
To fix this problem, you can expand the training dataset in Edge
Impulse with the audio samples obtained from this microphone. For
this scope, upload the generated .wav audio files in the Data
acquisition section of Edge Impulse and train the model again.
Once you have prepared the model, you just need to build a new
Arduino library and import it into the Arduino IDE.

If you are wondering how this script works, don't worry. In the
following chapter, you will learn more about it.

Chapter 5: Indoor Scene
Classification with TensorFlow Lite
for Microcontrollers and the Arduino
Nano
Computer vision is what made convolutional neural networks hugely
popular. Without this deep learning algorithm, tasks such as object
recognition, scene understanding, and pose estimation would be
really challenging. Nowadays, many modern camera applications are
powered by machine learning (ML), and we just need to take the
smartphone to see them in action. Computer vision also finds space
in microcontrollers, although with limitations given the reduced
onboard memory.

In this chapter, we will see the benefit of adding sight to our tiny
devices by recognizing indoor environments with the OV7670
camera module in conjunction with the Arduino Nano 33 BLE Sense
board.

In the first part, we will learn how to acquire images from the
OV7670 camera module. We will then focus on the model design,
applying transfer learning with the Keras API to recognize
kitchens and bathrooms. Finally, we will deploy the quantized
TensorFlow Lite (TFLite) model on an Arduino Nano with the help
of TensorFlow Lite for Microcontrollers (TFLu).

The goal of this chapter is to show how to apply transfer learning
with TensorFlow and learn the best practices of using a camera
module with a microcontroller.

In this chapter, we're going to implement the following recipes:

Taking pictures with the OV7670 camera module

Grabbing camera frames from the serial port with Python

Converting QQVGA images from YCbCr422 to RGB888

Building the dataset for indoor scene classification

Applying transfer learning with Keras

Preparing and testing the quantized TFLite model

Reducing RAM usage by fusing crop, resize, rescale, and quantize

Technical requirements
To complete all the practical recipes of this chapter, we will need the
following:

An Arduino Nano 33 BLE Sense board

A micro-USB cable

1 x half-size solderless breadboard

1 x OV7670 camera module

1 x push-button

18 x jumper wires (male to female)

A laptop/PC with either Ubuntu 18.04+ or Windows 10 on x86-64

The source code and additional materials are available in Chapter05
(https://github.com/PacktPublishing/TinyML-
Cookbook/tree/main/Chapter05).

Taking pictures with the OV7670
camera module
Adding sight to the Arduino Nano is our first step to unlocking
computer vision applications.

In this first recipe, we will build an electronic circuit to take pictures
from the OV7670 camera module using the Arduino Nano. Once we
have assembled the circuit, we will use the Arduino pre-built
CameraCaptureRawBytes sketch to transmit the pixel values over the
serial.

The following Arduino sketch contains the code referred to in this
recipe:

01_camera_capture.ino:

https://github.com/PacktPublishing/TinyML-
Cookbook/blob/main/Chapter05/ArduinoSketches/01_camera_captur
e.ino

Getting ready

https://github.com/PacktPublishing/TinyML-Cookbook/tree/main/Chapter05
https://github.com/PacktPublishing/TinyML-Cookbook/tree/main/Chapter05
https://github.com/PacktPublishing/TinyML-Cookbook/blob/main/Chapter05/ArduinoSketches/01_camera_capture.ino
https://github.com/PacktPublishing/TinyML-Cookbook/blob/main/Chapter05/ArduinoSketches/01_camera_capture.ino
https://github.com/PacktPublishing/TinyML-Cookbook/blob/main/Chapter05/ArduinoSketches/01_camera_capture.ino

The OV7670 camera module is the main ingredient required in this
recipe to take pictures with the Arduino Nano. It is one of the most
affordable cameras for TinyML applications – you can buy it from
various distributors for less than $10. Cost is not the only reason we
went for this sensor, though. Other factors make this device our
preferred option, such as the following:

Frame resolution and color format support: Since
microcontrollers have limited memory, we should consider
cameras capable of transferring low-resolution images. The
OV7670 camera unit is a good choice because it can output
QVGA (320x240) and QQVGA (160x120) pictures. Furthermore,
the device can encode the images in different color formats, such
as RGB565, RGB444, and YUCbCr422.

Software library support: Camera units can be complicated to
control without a software driver. Therefore, vision sensors with
software library support are generally recommended to make the
programming straightforward. The OV7670 has a support library
for the Arduino Nano 33 BLE Sense board
(https://github.com/arduino-libraries/Arduino_OV767X), which is
already integrated into the Arduino Web Editor.

These factors, along with voltage supply, power consumption, frame
rate, and interface, are generally pondered when choosing a vision
module for TinyML applications.

How to do it...

https://github.com/arduino-libraries/Arduino_OV767X

Let's start this recipe by taking a half breadboard with 30 rows and
10 columns and mounting the Arduino Nano vertically among the left
and right terminal strips, as shown in the following figure:

Figure 5.1 – The Arduino Nano mounted vertically between the left and right
terminal strips

The following steps will show how to assemble the circuit with the
Arduino Nano, OV7670 module, and a push-button:

1. Connect the OV7670 camera module to the Arduino Nano by
using 16 male-to-female jumper wires, as illustrated in the
following diagram:

Figure 5.2 – Wiring between the Arduino Nano and OV7670

Although the OV7670 has 18 pins, we only need to connect 16 of
them.

The OV7670 camera module is connected to the Arduino Nano
following the arrangement needed for the Arduino_OV767X support
library.

TIP
You can find the pin arrangement required by the Arduino_OV767x support
library at the following link:

https://github.com/arduino-libraries/Arduino_OV767X/blob/master/src/OV767X.h

2. Add a push-button on the breadboard and connect it to P0.30
and GND:

https://github.com/arduino-libraries/Arduino_OV767X/blob/master/src/OV767X.h

Figure 5.3 – Push-button connected between P0.30 and GND

The push-button does not need an additional resistor because we
will employ the microcontroller pull-up one.

Now, open the Arduino IDE and follow these steps to implement a
sketch to take pictures whenever we press the push-button:

1. Open the CameraCaptureRawBytes sketch from Examples-
>FROM LIBRARIES->ARDUINO_OV767X:

Figure 5.4 – CameraCaptureRawBytes sketch

Copy the content of CameraCaptureRawBytes in a new sketch.

2. Declare and initialize a global mbed::DigitalIn object to read the
push-button state:
mbed::DigitalIn button(p30);

#define PRESSED 0

Next, set the button mode to PullUp in the setup() function:

button.mode(PullUp);

3. Set the baud rate of the serial peripheral to 115600 in the
setup() function:
Serial.begin(115600);

4. Add an if statement in the loop() function to check whether the
push-button is pressed. If the button is pressed, take a picture
from the OV7670 camera and send the pixel values over the
serial:
if(button == PRESSED) {

 Camera.readFrame(data);

 Serial.write(data, bytes_per_frame);

}

NOTE
The variables' names in the pre-built CameraCaptureRawBytes are in
PascalCase, so the first letter of each word is capitalized. To keep
consistency with the lowercase naming convention used in the book, we have
renamed BytesPerFrame to bytes_per_frame.

Compile and upload the sketch on the Arduino Nano. Now, you can
open the serial monitor by clicking on Monitor from the Editor
menu. From there, you will see all the pixels values transmitted
whenever you press the push-button.

Grabbing camera frames from the
serial port with Python

In the previous recipe, we showed how to take images from the
OV7670, but we didn't present a method for displaying them.

This recipe will use Python to parse the pixel values transmitted
serially to display the captured pictures on the screen.

The following Arduino sketch and Python script contain the code
referred to in this recipe:

02_camera_capture_qvga_rgb565.ino:

https://github.com/PacktPublishing/TinyML-
Cookbook/blob/main/Chapter05/ArduinoSketches/02_camera_captur
e_qvga_rgb565.ino

02_parse_camera_frame.py:

https://github.com/PacktPublishing/TinyML-
Cookbook/blob/main/Chapter05/PythonScripts/02_parse_camera_fra
me.py

Getting ready

In contrast to all Python programs developed so far, we will write the
Python script on our local machine to access the serial port used by
the Arduino Nano.

Parsing serial data with Python requires little effort with the
pySerial library, which can be installed through the pip Python
package manager:
$ pip install pyserial

https://github.com/PacktPublishing/TinyML-Cookbook/blob/main/Chapter05/ArduinoSketches/02_camera_capture_qvga_rgb565.ino
https://github.com/PacktPublishing/TinyML-Cookbook/blob/main/Chapter05/ArduinoSketches/02_camera_capture_qvga_rgb565.ino
https://github.com/PacktPublishing/TinyML-Cookbook/blob/main/Chapter05/ArduinoSketches/02_camera_capture_qvga_rgb565.ino
https://github.com/PacktPublishing/TinyML-Cookbook/blob/main/Chapter05/PythonScripts/02_parse_camera_frame.py
https://github.com/PacktPublishing/TinyML-Cookbook/blob/main/Chapter05/PythonScripts/02_parse_camera_frame.py
https://github.com/PacktPublishing/TinyML-Cookbook/blob/main/Chapter05/PythonScripts/02_parse_camera_frame.py

However, pySerial will not be the only module required for this
recipe. Since we need to create images from the data transmitted
over the serial, we will use the Python Pillow library (PIL) to
facilitate this task.

The PIL module can be installed with the following pip command:

$ pip install Pillow

However, what data format should we expect from the
microcontroller?

Transmitting RGB888 images over the
serial
To simplify the parsing of the pixels transmitted over the serial, we
will make some changes in the Arduino sketch of the previous recipe
to send images in RGB888 format. This format packs the pixel in 3
bytes, using 8 bits for each color component.

Using RGB888 means that our Python script can directly create the
image with PIL without extra conversions.

However, it is a good practice to transmit the image with metadata
to simplify the parsing and check communication errors.

In our case, the metadata will provide the following information:

1. The beginning of the image transmission: We send the  string to notify the end of
the communication.

The pixel values will be sent right after the image resolution
metadata and following the top to bottom, left to right order (raster
scan order):

Figure 5.5 – Raster scan order

The color components will be sent as strings of digits terminated
with a newline character (\n) and following the RGB ordering.

Therefore, the red channel comes first and the blue one last, as
shown in the following diagram:

Figure 5.6 – Communication protocol for the serial transmission of an RGB
image

As you can observe from the preceding illustration, the pixel values
are transmitted following the raster scanning order. Each color
component is sent as a string of digits terminated with a newline
character (\n).

However, the OV7670 camera is initialized to output images in the
RGB565 color format. Therefore, we need to convert the camera
pixels to RGB888 before sending them over the serial.

Learning how to convert RGB565 to
RGB888
As you may have noticed, RGB565 is the format used in the camera
initialization of the CameraCaptureRawBytes sketch:

Camera.begin(QVGA, RGB565, 1)

RGB565 packs the pixel in 2 bytes, reserving 5 bits for the red and
blue components and 6 bits for the green one:

Figure 5.7 – RGB565 color format

This color format finds applicability mainly in embedded systems
with limited memory capacity since it reduces the image size.
However, memory reduction is achieved by reducing the dynamic
range of the color components.

How to do it...

In the following steps, we will see what to change in the Arduino
sketch of the previous recipe to send the RGB888 pixels over the
serial. Once the sketch is implemented, we will write a Python script
to display the image transmitted over the serial on the screen:

1. Write a function to convert the RGB565 pixel to RGB888:
void rgb565_rgb888(uint8_t* in, uint8_t* out) {

 uint16_t p = (in[0] << 8) | in[1];

 out[0] = ((p >> 11) & 0x1f) << 3;

 out[1] = ((p >> 5) & 0x3f) << 2;

 out[2] = (p & 0x1f) << 3;

}

The function takes 2 bytes from the input buffer to form the 16-bit
RGB565 pixel. The first byte (in[0]) is left-shifted by eight positions
to place it in the higher half of the uint16_t p variable. The second
byte (in[1]) is set in the lower part:

Figure 5.8 – The RGB565 pixel is formed with in[0] and in[1] bytes

Once we have the 16-bit pixel, we get the 8-bit color components
from p by right-shifting each channel towards the beginning of the
least significant byte:

The 8-bit red channel (out[0]) is obtained by shifting p by 11
positions so that R0 is the first bit of the uint16_t variable. After,
we clear all the non-red bits by applying a bitmask with 0x1F (all
bits cleared except the first five).

The 8-bit green channel (out[1]) is obtained by shifting p by five
positions so that G0 is the first bit of the uint16_t variable. After,
we clear all the non-green bits by applying a bitmask with 0x3F
(all bits cleared except the first six).

The 8-bit blue channel (out[2]) is obtained without shifting
because B0 is already the first bit of the uint16_t variable.
Therefore, we just need to clear the non-blue bits by applying a
bitmask with 0x1F (all bits cleared except the first five).

In the end, we perform an extra left-shifting to move the most
significant bit of each channel to the eighth position of the byte.

2. Enable testPattern in the setup() function:

Camera.testPattern();

The Camera module will always return a fixed image with color bands
when the test pattern mode is enabled.

3. In the loop() function, replace Serial.write(data,
bytes_per_frame) with the routine to send the RGB888 pixels
over the serial:
Camera.readFrame(data);

uint8_t rgb888[3];

Serial.println("");

The communication starts by sending the  string to
signify the end of the data transmission.

Now, you can compile and upload the sketch on the Arduino Nano.

4. On your computer, create a new Python script and import the
following modules:
import numpy as np

import serial

from PIL import Image

5. Initialize pySerial with the port and baud rate used by the
Arduino Nano's microcontroller:
port = '/dev/ttyACM0'

baudrate = 115600

ser = serial.Serial()

ser.port = port

ser.baudrate = baudrate

The easiest way to check the serial port name is from the device
drop-down menu in the Arduino IDE:

Figure 5.9 – Device drop-down menu in the Arduino Web Editor

In the preceding screenshot, the serial port name is
/dev/ttyACM0.

Then, open the serial port and discard the content in the input
buffer:
ser.open()

ser.reset_input_buffer()

6. Create a utility function to return a line from the serial port as a
string:
def serial_readline():

 data = ser.readline

 return data.decode("utf-8").strip()

The string transmitted by the Arduino Nano over the serial is
encoded in UTF-8 and terminates with the newline character.
Therefore, we decode the UTF-8 encoded bytes and remove the
newline character with .decode("utf-8") and .strip().

7. Create a 3D NumPy array to store the pixel values transmitted
over the serial. Since the Arduino Nano will send the frame

resolution, you can initialize the width and height with 1 and
resize the NumPy array later when parsing the serial stream:
width = 1

height = 1

num_ch = 3

image = np.empty((height, width, num_ch), dtype=np.uint8)

8. Use a while loop to read the serial data line by line:

while True:

 data_str = serial_readline()

Check whether we have the  metadata. If so,
display the image on the screen:
 data_str = serial_readline()

 if str(data_str) == "</image>":

 image_pil = Image.fromarray(image)

 image_pil.show()

Keep the Arduino Nano connected to your machine and run the
Python script. Now, whenever you press the push-button, the Python
program will parse the data transmitted over the serial and, after a
few seconds, show an image with eight color bands, as reported at
the following link:

https://github.com/PacktPublishing/TinyML-
Cookbook/blob/main/Chapter05/test_qvga_rgb565.png

If you do not get the image with the test pattern just described, we
recommend checking the wiring between the camera and the
Arduino Nano.

Converting QQVGA images from
YCbCr422 to RGB888
When compiling the previous sketch on Arduino, you may have
noticed the Low memory available, stability may occur warning
in the Arduino IDE output log.

The Arduino IDE returns this warning because the QVGA image with
the RGB565 color format needs a buffer of 153.6 KB, which is
roughly 60% of the SRAM available in the microcontroller.

In this recipe, we will show how to acquire an image at a lower
resolution and use the YCbCr422 color format to prevent image
quality degradation.

The following Arduino sketch contains the code referred to in this
recipe:

https://github.com/PacktPublishing/TinyML-Cookbook/blob/main/Chapter05/test_qvga_rgb565.png
https://github.com/PacktPublishing/TinyML-Cookbook/blob/main/Chapter05/test_qvga_rgb565.png

03_camera_capture_qqvga_ycbcr422.ino:

https://github.com/PacktPublishing/TinyML-
Cookbook/blob/main/Chapter05/ArduinoSketches/03_camera_captur
e_qqvga_ycbcr422.ino

Getting ready

The main ingredients to reduce the image size are behind the
resolution and color format.

Images are well known for requiring big chunks of memory, which
might be a problem when dealing with microcontrollers.

Lowering the image resolution is a common practice to reduce the
image memory size.Standard resolution images adopted on
microcontrollers are generally smaller than QVGA (320x240), such as
QQVGA (160x120) or QQQVGA (80x60). Even lower-resolution
images exist, but they are not always suitable for computer vision
applications.

Color encoding is the other lever to reduce the image memory size.
As we saw in the previous recipe, the RGB565 format saves memory
by lowering the color components' dynamic range. However, the
OV7670 camera module offers an alternative and more efficient color
encoding: YCbCr422.

Converting YCbCr422 to RGB888
YCbCr422 is digital color encoding that does not express the pixel
color in terms of red, green, and blue intensities but rather in terms

https://github.com/PacktPublishing/TinyML-Cookbook/blob/main/Chapter05/ArduinoSketches/03_camera_capture_qqvga_ycbcr422.ino
https://github.com/PacktPublishing/TinyML-Cookbook/blob/main/Chapter05/ArduinoSketches/03_camera_capture_qqvga_ycbcr422.ino
https://github.com/PacktPublishing/TinyML-Cookbook/blob/main/Chapter05/ArduinoSketches/03_camera_capture_qqvga_ycbcr422.ino

of brightness (Y), blue-difference (Cb), and red-difference (Cr)
chroma components.

The OV7670 camera module can output images in YCbCr422 format,
which means that Cb and Cr are shared between two consecutive
pixels on the same scanline. Therefore, 4 bytes are used to encode 2
pixels:

Figure 5.10 – 4 bytes in YCbCr422 format packs 2 RGB888 pixels

Although YCbCr422 still needs 2 bytes per pixel as RGB565, it offers
better image quality.

The following table reports the formulas to accomplish the color
conversion from YCbCr422 to RGB888 using just integer arithmetic
operations:

Figure 5.11 – Table reporting the formulas to convert YCbCr422 to RGB888

The i subscript in R , G , B , and Y represents the pixel index, either
0 (the first pixel) or 1 (the second pixel).

How to do it...

Open the Arduino sketch written in the previous recipe and make the
following changes to acquire QQVGA YCbCr422 images from the
OV7670 camera module:

1. Resize the camera buffer (data) to accommodate a QQVGA
image in YCbCr422 color format:
byte data[160 * 120 * 2];

i i i i

The QQVGA resolution makes the buffer four times smaller than the
one used in the previous recipe.

2. Write a function to get an RGB888 pixel from the Y, Cb, and Cr
components:
template <typename T>

inline T clamp_0_255(T x) {

 return std::max(std::min(x, (T)255)), (T)(0));

}

void ycbcr422_rgb888(int32_t Y, int32_t Cb,

 int32_t Cr, uint8_t* out) {

 Cr = Cr - 128;

 Cb = Cb - 128;

 out[0] = clamp_0_255((int)(Y + Cr + (Cr >> 2) +

 (Cr >> 3) + (Cr >> 5)));

 out[1] = clamp_0_255((int)(Y - ((Cb >> 2) + (Cb >> 4) +

 (Cb >> 5)) - ((Cr >> 1) +

 (Cr >> 3) + (Cr >> 4)) +

 (Cr >> 5)));

 out[2] = clamp_0_255((int)(Y + Cb + (Cb >> 1) +

 (Cb >> 2) + (Cb >> 6)));

}

The function returns two pixels because the Cb and Cr components
are shared between two pixels.

The conversion is performed using the formulas provided in the
Getting ready section.

ATTENTION
Please note that the OV7670 driver returns the Cr component before the Cb one.

3. Initialize the OV7670 camera to capture QQVGA frames with
YCbCr422 (YUV422) color format in the setup() function:

if (!Camera.begin(QQVGA, YUV422, 1)) {

 Serial.println("Failed to initialize camera!");

 while (1);

}

Unfortunately, the OV7670 driver interchanges YCbCr422 with
YUV422, leading to some confusion. The main difference between
YUV and YCbCr is that YUV is for analog TV. Therefore, although we
pass YUV422 to Camera.begin(), we actually initialize the device for
YCbCr422.

4. In the loop() function, remove the statement that iterates over
the RGB565 pixels stored in the previous camera buffer. Next,
write a routine to read 4 bytes from the YCbCr422 camera buffer
and return two RGB888 pixels:
const int step_bytes = Camera.bytesPerPixel() * 2;

for(int i = 0; i < bytes_per_frame; i+=step_bytes) {

 const int32_t Y0 = data[i + 0];

 const int32_t Cr = data[i + 1];

 const int32_t Y1 = data[i + 2];

 const int32_t Cb = data[i + 3];

 ycbcr422_to_rgb888_i(Y0, Cb, Cr, &rgb888[0]);

 Serial.println(rgb888[0]);

 Serial.println(rgb888[1]);

 Serial.println(rgb888[2]);

 ycbcr422_to_rgb888_i(Y1, Cb, Cr, &rgb888[0]);

 Serial.println(rgb888[0]);

 Serial.println(rgb888[1]);

 Serial.println(rgb888[2]);

}

Compile and upload the sketch on the Arduino Nano. Execute the
Python script and press the push-button on the breadboard. After a
few seconds, you should see on the screen, again, an image with
eight color bands, as reported at the following link:
https://github.com/PacktPublishing/TinyML-
Cookbook/blob/main/Chapter05/test_qqvga_ycbcr422.png.

The image should be smaller but with more vivid colors than the one
captured with the RGB565 format.

Building the dataset for indoor
scene classification

https://github.com/PacktPublishing/TinyML-Cookbook/blob/main/Chapter05/test_qqvga_ycbcr422.png
https://github.com/PacktPublishing/TinyML-Cookbook/blob/main/Chapter05/test_qqvga_ycbcr422.png

Now that we can capture frames from the camera, it is time to
create the dataset for classifying indoor environments.

In this recipe, we will construct the dataset by collecting the kitchen
and bathroom images with the OV7670 camera.

The following Python script contains the code referred to in this
recipe:

04_build_dataset.py:

https://github.com/PacktPublishing/TinyML-
Cookbook/blob/main/Chapter05/PythonScripts/04_build_dataset.py

Getting ready

Training a deep neural network from scratch for image classification
commonly requires a dataset with 1,000 images per class. As you
might guess, this solution is impractical for us since collecting
thousands of pictures takes a lot of time.

Therefore, we will consider an alternative ML technique: transfer
learning.

Transfer learning is a popular method that uses a pre-trained
model to train a deep neural network with a small dataset. This ML
technique will be used in the following recipe and only requires a
dataset with just 20 samples per class to get a basic working model.

How to do it...

https://github.com/PacktPublishing/TinyML-Cookbook/blob/main/Chapter05/PythonScripts/04_build_dataset.py
https://github.com/PacktPublishing/TinyML-Cookbook/blob/main/Chapter05/PythonScripts/04_build_dataset.py

Before implementing the Python script, remove the test pattern
mode (Camera.testPattern()) in the Arduino sketch so that you can
get live images. After that, compile and upload the sketch on the
platform.

The Python script implemented in this recipe will reuse part of the
code developed in the earlier Grabbing camera frames from the
serial port with Python recipe. The following steps will show what
changes to make in the Python script to save the captured images as
.png files and build a dataset for recognizing kitchens and
bathrooms:

1. Import the UUID Python module:
import uuid

UUID will be used to produce unique filenames for .png files.

2. Add a variable at the beginning of the program for the label's
name:
label = "test"

The label will be the prefix for the filename of the .png files.

3. After receiving the image over the serial, crop it into a square
shape and display it on the screen:
crop_area = (0, 0, height, height)

image_pil = Image.fromarray(image)

image_cropped = image_pil.crop(crop_area)

image_cropped.show()

We crop the acquired image from the serial port into a square shape
because the pre-trained model will consume an input with a square
aspect ratio. We crop the left side of the image by taking an area
with dimensions matching the height of the original picture, as
shown in the following figure:

Figure 5.12 – Cropping area

The picture is then displayed on the screen.

4. Ask the user if the image can be saved and read the response
with the Python input() function. If the user types y from the
keyboard, ask for the label's name and save the image as a .png
file:
key = input("Save image? [y] for YES: ")

 if key == 'y':

 str_label = "Write label or leave it blank to use

[{}]: ".format(label)

 label_new = input(str_label)

 if label_new != '':

 label = label_new

 unique_id = str(uuid.uuid4())

 filename = label + "_"+ unique_id + ".png"

 image_cropped.save(filename)

If the user leaves the label empty, the program will use the last label
provided.

The filename for the .png file is <label>_<unique_id>, where
<label> is the label chosen by the user and <unique_id> is the
unique identifier generated by the UUID library.

5. Acquire 20 images of kitchens and the bathrooms with the
OV7670 camera. Since we only take a few pictures per class, we
recommend you point the camera to specific elements of the
rooms.

Remember to take 20 pictures for the unknown class as well,
representing cases where we have neither a kitchen nor a bathroom.

Once you have acquired all the images, put them in separate
subdirectories, matching the name of the corresponding class, as
shown in the following directory structure:

Figure 5.13 – Example of a directory structure

In the end, generate a .zip file with the three folders.

Transfer learning with Keras

Transfer learning is an effective technique for getting immediate
results with deep learning when dealing with small datasets.

In this recipe, we will apply transfer learning alongside the MobileNet
v2 pre-trained model to recognize indoor environments.

The following Colab notebook (the Transfer learning with Keras
section) contains the code referred to in this recipe:

prepare_model.ipynb:

https://github.com/PacktPublishing/TinyML-
Cookbook/blob/main/Chapter05/ColabNotebooks/prepare_model.ipy
nb

Getting ready

Transfer learning exploits a pre-trained model to obtain a working
ML model in a short time.

When doing image classification with transfer learning, the pre-
trained model (convolution based network) is coupled with a
trainable classifier (head), as shown in the following figure:

https://github.com/PacktPublishing/TinyML-Cookbook/blob/main/Chapter05/ColabNotebooks/prepare_model.ipynb
https://github.com/PacktPublishing/TinyML-Cookbook/blob/main/Chapter05/ColabNotebooks/prepare_model.ipynb
https://github.com/PacktPublishing/TinyML-Cookbook/blob/main/Chapter05/ColabNotebooks/prepare_model.ipynb

Figure 5.14 – Model architecture with transfer learning

As you can observe from the previous illustration, the pre-trained
model is the backbone of feature extraction and feeds the classifier,
commonly made of global pooling, dense, and softmax layers.

In our scenario, we will only train the classifier. Hence, the pre-
trained model will be frozen and act as a fixed feature extractor.

Keras provides different pre-trained models, such as VGG16,
ResNet50, InceptionV3, MobileNet, and so on. Therefore, which one
should we use?

When considering a pre-trained model for TinyML, model size is the
metric to keep in mind to fit the deep learning architecture into
memory-constrained devices.

From the list of pre-trained models offered by Keras
(https://keras.io/api/applications/), MobileNet v2 is the network
with fewer parameters and tailored for being deployed on target
devices with reduced computational power.

Exploring the MobileNet network design
choices
MobileNet v2 is the second generation of MobileNet networks and,
compared to the previous one (MobileNet v1), it has half as many
operations and higher accuracy.

This model is the perfect place to take a cue from the architectural
choices that made MobileNet networks small, fast, and accurate for
edge inferencing.

One of the successful design choices that made the first generation
of MobileNet networks suitable for edge inferencing was the
adoption of depthwise convolution.

As we know, traditional convolution layers are well known for being
computationally expensive. Furthermore, when dealing with 3x3 or
greater kernel sizes, this operator typically needs extra temporary
memory to lower the computation to a matrix multiplication routine.

The idea behind MobileNet v1 was to replace standard convolution
2D with depthwise separable convolution, as shown in the

https://keras.io/api/applications/

following diagram:

Figure 5.15 – Depthwise separable convolution

As you can observe from the preceding illustration, depthwise
separable convolution consists of a depthwise convolution with a 3x3
filter size followed by a convolution layer with a 1x1 kernel size (also
known as pointwise convolution). This solution brings less
trainable parameters, less memory usage, and a lower
computational cost.

TIP

Chapter 7, Running a Tiny CIFAR-10 Model on a Virtual Platform with the Zephyr
OS will provide more information on the benefits given by depthwise separable
convolution.

The computational cost on MobileNet v2 was reduced further by
performing the convolutions on tensors with fewer channels.

From an ideal computational perspective, all the layers should work
on tensors with few channels (feature maps) to improve the model
latency. Practically, and from an accuracy perspective, it means that
our compact tensors can keep the relevant features for the problem
we want to solve.

Depthwise separable convolution alone cannot help because a
reduction in the number of feature maps causes a drop in the
model accuracy. Therefore, MobileNet v2 introduced the bottleneck
residual block to keep the number of channels used in the network
smaller:

Figure 5.16 – Bottleneck residual block

The bottleneck residual block acts as a feature compressor. As
illustrated in the preceding diagram, the input is processed by the
pointwise convolution, which expands (or increases) the number of
features maps. Then, the convolution's output feeds the depthwise
separable convolution layer to compress the features in fewer output
channels.

How to do it...

Create a new Colab notebook. Next, upload the .zip file containing
the dataset (dataset.zip) by using the upload button at the top of
the file explorer:

Figure 5.17 – Upload button at the top of the file explorer

Now, follow these steps to apply transfer learning with the MobileNet
v2 pre-trained model:

1. Unzip the dataset:
import zipfile

with zipfile.ZipFile("dataset.zip", 'r') as zip_ref:

 zip_ref.extractall(".")

data_dir = "dataset"

2. Prepare the training and validation datasets:
train_ds = tf.keras.utils.image_dataset_from_directory(

 data_dir,

 validation_split=0.2,

 subset="training",

 seed=123,

 interpolation="bilinear",

 image_size=(48, 48))

val_ds = tf.keras.utils.image_dataset_from_directory(

 data_dir,

 validation_split=0.2,

 subset="validation",

 seed=123,

 interpolation="bilinear",

 image_size=(48, 48))

3. The preceding code resizes the input images to 48x48 with the
bilinear interpolation and produces the training and validation
datasets with an 80/20 split.

4. Rescale the pixel values from [0, 255] to [-1, 1]:
rescale = tf.keras.layers.Rescaling(1./255, offset= -1)

train_ds = train_ds.map(lambda x, y: (rescale(x), y))

val_ds = val_ds.map(lambda x, y: (rescale(x), y))

The reason for rescaling the pixels values from [0, 255] to [-1, 1] is
because the pre-trained model expects this interval data range for
the input tensor.

5. Import the MobileNet v2 pre-trained model with the weights
trained on the ImageNet dataset and alpha=0.35. Furthermore,
set the input image at the lowest resolution allowed by the pre-
trained model (48, 48, 3) and exclude the top (fully-connected)
layers:
base_model = MobileNetV2(input_shape=(48, 48, 3),

 include_top=False,

 weights='imagenet',

 alpha=0.35)

Keras offers more than one variant of MobileNet v2. From the list of
MobileNet v2 Keras models (https://github.com/keras-team/keras-
applications/blob/master/keras_applications/mobilenet_v2.py), we
choose mobilenet_v2_0.35_96, which has the smallest input size
(48,48,3) and the smallest alpha value (0.35).

6. Freeze the weights so that you do not update these values during
training:
base_model.trainable = False

feat_extr = base_model

7. Augment the input data:
augmen = tf.keras.Sequential([

https://github.com/keras-team/keras-applications/blob/master/keras_applications/mobilenet_v2.py
https://github.com/keras-team/keras-applications/blob/master/keras_applications/mobilenet_v2.py

tf.keras.layers.experimental.preprocessing.RandomFlip('hor

izontal'), tf.keras.layers.experimental.preprocessing.Ran

domRotation(0.2),])

train_ds = train_ds.map(lambda x, y: (augmen(x), y))

val_ds = val_ds.map(lambda x, y: (augmen(x), y))

Since we don't have a large dataset, we recommend artificially
applying some random transformations on the images to prevent
overfitting.

8. Prepare the classification head with a global pooling followed by
a dense layer with a softmax activation:
global_avg_layer =

tf.keras.layers.GlobalAveragePooling2D()

dense_layer = tf.keras.layers.Dense(3,

 activation='softmax')

9. Build the model architecture:
inputs = tf.keras.Input(shape=MODEL_INPUT_SIZE)

x = global_avg_layer(feat_extr.layers[-1].output)

x = tf.keras.layers.Dropout(0.2)(x)

outputs = dense_layer(x)

model = tf.keras.Model(inputs=feat_extr.inputs,

 outputs=outputs)

We recommend passing training=False to the feature extractor
module to not update the batch normalization layers' internal
variables (mean and variance) in MobileNet v2.

10. Compile the model with a 0.0005 learning rate:

lr = 0.0005

model.compile(

optimizer=tf.keras.optimizers.Adam(learning_rate=lr),

loss=tf.losses.SparseCategoricalCrossentropy(from_logits=F

alse),

metrics=['accuracy'])

The default learning rate used by TensorFlow is 0.001. The reason
for reducing the learning rate to 0.0005 is to prevent overfitting.

11. Train the model with 10 epochs:
model.fit(

 train_ds,

 validation_data=val_ds,

 epochs=10)

The expected accuracy on the validation dataset should be around
90% or more.

12. Save the TensorFlow model as SavedModel:

model.save("indoor_scene_recognition")

The model is now ready to be quantized with the TFLite converter.

Preparing and testing the quantized
TFLite model

As we know from Chapter 3, Building a Weather Station with
TensorFlow Lite for Microcontrollers, the model requires quantization
to 8 bits to run more efficiently on a microcontroller. However, how
do we know if the model can fit into the Arduino Nano?
Furthermore, how do we know if the quantized model preserves the
accuracy of the floating-point variant?

These questions will be answered in this recipe, where we will show
how to evaluate the program memory utilization and the accuracy of
the quantized model generated by the TFLite converter. After
analyzing the memory usage and accuracy validation, we will convert
the TFLite model to a C-byte array.

The following Colab notebook (the Preparing and testing the
quantized TFLite model section) contains the code referred to in this
recipe:

prepare_model.ipynb:

https://github.com/PacktPublishing/TinyML-
Cookbook/blob/main/Chapter05/ColabNotebooks/prepare_model.ipy
nb

Getting ready

The model's memory requirement and accuracy evaluation should
always be done to avoid unpleasant surprises when deploying the
model on the target device. For example, the C-byte array generated
from the TFLite model is typically a constant object stored in the

https://github.com/PacktPublishing/TinyML-Cookbook/blob/main/Chapter05/ColabNotebooks/prepare_model.ipynb
https://github.com/PacktPublishing/TinyML-Cookbook/blob/main/Chapter05/ColabNotebooks/prepare_model.ipynb
https://github.com/PacktPublishing/TinyML-Cookbook/blob/main/Chapter05/ColabNotebooks/prepare_model.ipynb

microcontroller program memory. However, the program memory
has a limited capacity, and usually, it does not exceed 1 MB.

The memory requirement is not the only problem we may encounter,
though. Quantization is an effective technique to reduce the model
size and significantly improve latency. However, the adoption of
arithmetic with limited precision may change the model's accuracy.
For this reason, it is crucial to assess the accuracy of the quantized
model to be sure that the application works as expected.
Unfortunately, TFLite does not provide a built-in function to evaluate
the accuracy of the test dataset. Hence, we will need to run the
quantized TFLite model through the Python TFLite interpreter over
the test samples to check how many are correctly classified.

How to do it...

Let's start by collecting some test samples with the OV7670 camera
module. You can follow the same steps presented in the early
Building the dataset for indoor scene classification recipe. You just
need to take a few pictures (for example, 10) for each output class
and create a .zip file (test_samples.zip) with the same folder
structure we had for the training dataset.

Next, upload the .zip file in Colab and follow the following steps to
evaluate the accuracy of the quantized model and examine the
model size:

1. Unzip the test_samples.zip file:

with zipfile.ZipFile("test_samples.zip", 'r') as zip_ref:

 zip_ref.extractall(".")

test_dir = "test_samples"

2. Resize the test images to 48x48 with bilinear interpolation:
test_ds = tf.keras.utils.image_dataset_from_directory(

 test_dir,

 interpolation="bilinear",

 image_size=(48, 48))

3. Rescale the pixels values from [0, 255] to [-1, 1]:
test_ds = test_ds.map(lambda x, y: (rescale(x), y))

4. Convert the TensorFlow model to TensorFlow Lite format
(FlatBuffers) with the TensorFlow Lite converter tool. Apply the
8-bit quantization to the entire model except for the output layer:
repr_ds = test_ds.unbatch()

def representative_data_gen():

 for i_value, o_value in repr_ds.batch(1).take(60):

 yield [i_value]

TF_MODEL = "indoor_scene_recognition"

converter =

tf.lite.TFLiteConverter.from_saved_model(TF_MODEL)

converter.representative_dataset =

tf.lite.RepresentativeDataset(representative_data_gen)

converter.optimizations = [tf.lite.Optimize.DEFAULT]

converter.target_spec.supported_ops =

[tf.lite.OpsSet.TFLITE_BUILTINS_INT8]

converter.inference_input_type = tf.int8

tfl_model = converter.convert()

The conversion is done in the same way we did it in Chapter 3,
Building a Weather Station with TensorFlow Lite for Microcontrollers,
except for the output data type. In this case, the output is kept in
floating-point format to avoid the dequantization of the output
result.

5. Get the TFLite model size in bytes:
print(len(tfl_model), "bytes")

The generated TFLite object (tfl_model) is what we deploy on the
microcontroller, which contains the model architecture and the
weights of the trainable layers. Since the weights are constant, the
TFLite model can be stored in the microcontroller program memory,
and the length of the tfl_model object provides its memory usage.
The expected model size is 627880, roughly 63% of the total
program memory.

6. Initialize the TFLite interpreter:
interpreter = tf.lite.Interpreter(model_content=tfl_model)

interpreter.allocate_tensors()

Unfortunately, TFLite does not offer pre-built functions to evaluate
the model accuracy as the TensorFlow counterpart. Therefore, we

require running the quantized TensorFlow Lite model in Python to
evaluate the accuracy of the test dataset. The Python TFLite
interpreter is responsible for loading and executing the TFLite model.

7. Get the input quantization parameters:
i_details = interpreter.get_input_details()[0]

o_details = interpreter.get_output_details()[0]

i_quant = i_details["quantization_parameters"]

i_scale = i_quant['scales'][0]

i_zero_point = i_quant['zero_points'][0]

8. Evaluate the accuracy of the quantized TFLite model:
test_ds0 = test_ds.unbatch()

num_correct_samples = 0

num_total_samples = len(list(test_ds0.batch(1)))

for i_value, o_value in test_ds0.batch(1):

 i_value = (i_value / i_scale) + i_zero_point

 i_value = tf.cast(i_value, dtype=tf.int8)

 interpreter.set_tensor(i_details["index"], i_value)

 interpreter.invoke()

 o_pred = interpreter.get_tensor(o_details["index"])[0]

 if np.argmax(o_pred) == o_value:

 num_correct_samples += 1

print("Accuracy:", num_correct_samples/num_total_samples)

9. Convert the TFLite model to a C-byte array with xxd:

open("model.tflite", "wb").write(tflite_model)

!apt-get update && apt-get -qq install xxd

!xxd -c 60 -i model.tflite > indoor_scene_recognition.h

The command generates a C header file containing the TensorFlow
Lite model as an unsigned char array. Since the Arduino Web Editor
truncates C files exceeding 20,000 lines, we recommend passing the
-c 60 option to xxd. This option increases the number of columns
per line from 16 (the default) to 60 to have roughly 10,500 lines in
the file.

You can now download the indoor_scene_recognition.h file from
Colab's left pane.

Reducing RAM usage by fusing
crop, resize, rescale, and quantize
In this last recipe, we will deploy the application on the Arduino
Nano. However, a few extra operators are needed to recognize
indoor environments with our tiny device.

In this recipe, we will learn how to fuse crop, resize, rescale, and
quantize operators to reduce RAM usage. These extra operators will
be needed to prepare the TFLite model's input.

The following Arduino sketch contains the code referred to in this
recipe:

07_indoor_scene_recognition.ino:

https://github.com/PacktPublishing/TinyML-
Cookbook/blob/main/Chapter05/ArduinoSketches/07_indoor_scene_r
ecognition.ino

Getting ready

To get ready for this recipe, we need to know what parts of the
application affect RAM usage.

RAM usage is impacted by the variables allocated during the
program execution, such as the input, output, and intermediate
tensors of the ML model. However, the model is not solely
responsible for memory utilization. In fact, the image acquired from
the OV7670 camera needs to be processed with the following
operations to provide the appropriate input to the model:

1. Convert the color format from YCbCr422 to RGB888.

2. Crop the camera frame to match the input shape aspect ratio of
the TFLite model.

3. Resize the camera frame to match the expected input shape of
the TFLite model.

4. Rescale the pixel values from [0, 255] to [-1, 1].

5. Quantize the floating-point pixel values.

Each of the preceding operations reads values from a buffer and
returns the computation result in a new one, as shown in the
following figure:

https://github.com/PacktPublishing/TinyML-Cookbook/blob/main/Chapter05/ArduinoSketches/07_indoor_scene_recognition.ino
https://github.com/PacktPublishing/TinyML-Cookbook/blob/main/Chapter05/ArduinoSketches/07_indoor_scene_recognition.ino
https://github.com/PacktPublishing/TinyML-Cookbook/blob/main/Chapter05/ArduinoSketches/07_indoor_scene_recognition.ino

Figure 5.18 – Input preparation pipeline

Therefore, RAM usage is also affected by the camera frame and
intermediate buffers passed from one operation to the next.

Our goal is to execute the processing pipeline described previously
using as small intermediate buffers as possible.

To achieve this goal, the data propagated throughout the pipeline
must represent a portion of the entire input to be processed. By
adopting this technique, commonly called operator fusion, the
camera frame will be the only considerable chunk of memory to
reside in RAM in addition to the input, output, and intermediate
tensors of the TFLite model.

Before showing how to implement this final recipe, let's see how to
implement resizing in more detail.

Resizing with bilinear interpolation
Resizing is an image processing function used to alter the image's
resolution (width and height), as shown in the following figure:

Figure 5.19 – Resize operation

The resulting image is created from the pixels of the input image.
Generally, the following formulas are applied to map the spatial
coordinates of the output pixels with the corresponding input ones:

From the previous two formulas, () are the spatial

coordinates of the input pixel, () are the spatial

coordinates of the output pixel, () are
the dimensions of the input image, and (

) are the dimensions of the output
image. As we know, a digital image is a grid of pixels. However,
when applying the preceding two formulas, we don't always get an
integer spatial coordinate, which means that the actual input sample
doesn't always exist. This is one of the reasons why image quality
degrades whenever we change the resolution of an image. However,
some interpolation techniques exist to alleviate the problem, such as
nearest-neighbor, bilinear, or bicubic interpolation.

Bilinear interpolation is the technique adopted in this recipe to
improve the image quality of the resized image. As shown in the
following diagram, this method takes the four closest pixels to the
input sampling point in a 2x2 grid:

Figure 5.20 – Bilinear interpolation

The interpolation function calculates the output pixel with a
weighted average of the four nearest pixels to the input sampling
point, as described by the formula in the previous figure.

In our case, we have shown an example of bilinear interpolation
applied to a single color component image. However, this method
works regardless of the number of color components since we can
interpolate the values independently.

How to do it...

Unplug the USB cable from the Arduino Nano and remove the push-
button from the breadboard. After that, open the Arduino IDE and
copy the sketch developed in the Converting QQVGA images from
YCbCr422 to RGB888 recipe in a new project. Next, import the
indoor_scene_recognition.h header file into the Arduino IDE.

In the sketch, remove the code in the loop() function and all the
references to the push-button usages.

The following are the necessary steps to recognize indoor
environments with the Arduino Nano:

1. Include the indoor_scene_recognition.h header file:

#include "indoor_scene_recognition.h"

2. Include the header files for using the TFLu runtime:
#include <TensorFlowLite.h>

#include <tensorflow/lite/micro/all_ops_resolver.h>

#include <tensorflow/lite/micro/micro_error_reporter.h>

#include <tensorflow/lite/micro/micro_interpreter.h>

#include <tensorflow/lite/schema/schema_generated.h>

#include <tensorflow/lite/version.h>

The header files are the same ones described in Chapter 3, Building
a Weather Station with TensorFlow Lite for Microcontrollers.

3. Declare the variables related to TFLu initialization/runtime as
global:
const tflite::Model* tflu_model = nullptr;

tflite::MicroInterpreter* tflu_interpreter = nullptr;

TfLiteTensor* tflu_i_tensor = nullptr;

TfLiteTensor* tflu_o_tensor = nullptr;

tflite::MicroErrorReporter tflu_error;

constexpr int tensor_arena_size = 144000;

uint8_t *tensor_arena = nullptr;

float tflu_scale = 0.0f;

int32_t tflu_zeropoint = 0;

4. The variables reported in the preceding code are the same ones
used in Chapter 3, Building a Weather Station with TensorFlow
Lite for Microcontrollers, with the only exception being the output
quantization parameters since they are not required in this case.

The tensor arena size is set to 144000 to accommodate the input,
output, and intermediate tensors of the TFLite model.

5. Declare and initialize the resolutions of the cropped camera
frame and input shape as global variables:
int height_i = 120; int width_i = hi;

int height_o = 48; int width_o = 48;

Since we crop the camera frame before resizing it, we can make
cropping simpler by taking a square area matching the height of the
camera frame on the left side.

6. Declare and initialize the resolution scaling factors to resize the
camera frame as global variables:
float scale_x = (float)width_i / (float)width_o;

float scale_y = scale_x;

7. Write the function to calculate the bilinear interpolation for a
single color component pixel:
uint8_t bilinear_inter(uint8_t v00, uint8_t v01,

 uint8_t v10, uint8_t v11,

 float xi_f, float yi_f,

 int xi, int yi) {

 const float wx1 = (xi_f - xi);

 const float wx0 = (1.f – wx1);

 const float wy1 = (yi_f - yi);

 const float wy0 = (1.f - wy1);

 return clamp_0_255((v00 * wx0 * wy0) +

 (v01 * wx1 * wy0) +

 (v10 * wx0 * wy1) +

 (v11 * wx1 * wy1));

}

The preceding function calculates the distance-based weights and
applies the bilinear interpolation formula described in the Getting
ready section of this recipe.

8. Write the function to rescale the pixel values from [0,255] to
[-1,1]:

float rescaling(float x, float scale, float offset) {

 return (x * scale) - offset;

}

Next, write the function to quantize the input image:
int8_t quantize(float x, float scale, float zero_point) {

 return (x / scale) + zero_point;

}

TIP
Since rescaling and quantizing are executed one after the other, you may think of
fusing them in a single function to make the implementation more efficient in
terms of arithmetic instructions executed.

9. In the setup() function, dynamically allocate the memory for the
tensor arena:

tensor_arena = (uint8_t *)malloc(tensor_arena_size);

We allocate the tensor arena with the malloc() function to place the
memory in the heap. As we know, the heap is the area of RAM
related to the dynamic memory and can only be released explicitly
by the user with the free() function. The heap is opposed to the
stack memory, where the data lifetime is limited to the scope.
The stack and heap memory sizes are defined in the startup code,
executed by the microcontroller when the system resets. Since the
stack is typically much smaller than the heap, it is preferable to
allocate the TFLu working space in the heap because the tensor
arena takes a significant portion of RAM (144 KB).

10. Load the indoor_scene_recognition model, initialize the TFLu
interpreter, and allocate the tensors: shankar
 tflu_model = tflite::GetModel(

 indoor_scene_recognition);

 tflite::AllOpsResolver tflu_ops_resolver;

tflu_interpreter = new

tflite::MicroInterpreter(tflu_model, tflu_ops_resolver,

tensor_arena, tensor_arena_size, &tflu_error);

 tflu_interpreter->AllocateTensors();

Next, get the pointers to the input and output tensors:
 tflu_i_tensor = tflu_interpreter->input(0);

 tflu_o_tensor = tflu_interpreter->output(0);

Finally, get the input quantization parameters:

 const auto* i_quantization =

 reinterpret_cast<TfLiteAffineQuantization*>(

 tflu_i_tensor->quantization.params);

 tflu_scale = i_quantization->scale->data[0];

 tflu_zeropoint = i_quantization->zero_point->data[0];

}

11. Iterate over the spatial coordinates of the MobileNet v2 input
shape in the loop() function. Then, calculate the corresponding
sampling point position for each output coordinate. Next, round
down to the nearest integer value the sampling point coordinate:
for (int yo = 0; yo < height_o; yo++) {

 float yi_f = (yo * scale_y);

 int yi = (int)std::floor(yi_f);

 for(int xo = 0; xo < width_o; xo++) {

 float xi_f = (xo * scale_x);

 int xi = (int)std::floor(xi_f);

As you can observe from the code, we iterate over the spatial
coordinates of the MobileNet v2 input shape (48x48). For each xo
and yo, we calculate the sampling position (xi_f and yi_f) in the
camera frame required for the resize operation. Since we apply
bilinear interpolation to resize the image, we round down to the
nearest integer xi_f and yi_f to get the spatial coordinates of the
top-left pixel in the 2x2 sampling grid.

Once you have the input coordinates, calculate the camera buffer
offsets to read the four YCbCr422 pixels needed for the bilinear
interpolation:
 int x0 = xi;

 int y0 = yi;

 int x1 = std::min(xi + 1, width_i - 1);

 int y1 = std::min(yi + 1, height_i - 1);

 int stride_in_y = Camera.width() * bytes_per_pixel;

 int ix_y00 = x0 * sizeof(int16_t) + y0 * stride_in_y;

 int ix_y01 = x1 * sizeof(int16_t) + y0 * stride_in_y;

 int ix_y10 = x0 * sizeof(int16_t) + y1 * stride_in_y;

 int ix_y11 = x1 * sizeof(int16_t) + y1 * stride_in_y;

12. Read the Y component for each of the four pixels:

 int Y00 = data[ix_y00];

 int Y01 = data[ix_y01];

 int Y10 = data[ix_y10];

 int Y11 = data[ix_y11];

Next, read the red-difference components (Cr):

 int offset_cr00 = xi % 2 == 0? 1 : -1;

 int offset_cr01 = (xi + 1) % 2 == 0? 1 : -1;

 int Cr00 = data[ix_y00 + offset_cr00];

 int Cr01 = data[ix_y01 + offset_cr01];

 int Cr10 = data[ix_y10 + offset_cr00];

 int Cr11 = data[ix_y11 + offset_cr01];

After, read the blue-difference components (Cb):
 int offset_cb00 = offset_cr00 + 2;

 int offset_cb01 = offset_cr01 + 2;

 int Cb00 = data[ix_y00 + offset_cb00];

 int Cb01 = data[ix_y01 + offset_cb01];

 int Cb10 = data[ix_y10 + offset_cb00];

 int Cb11 = data[ix_y11 + offset_cb01];

13. Convert the YCbCr422 pixels to RGB888:
 uint8_t rgb00[3], rgb01[3], rgb10[3], rgb11[3];

 ycbcr422_rgb888(Y00, Cb00, Cr00, rgb00);

 ycbcr422_rgb888(Y01, Cb01, Cr01, rgb01);

 ycbcr422_rgb888(Y10, Cb10, Cr10, rgb10);

 ycbcr422_rgb888(Y11, Cb11, Cr11, rgb11);

14. Iterate over the channels of the RGB pixels:
 uint8_t c_i; float c_f; int8_t c_q;

 for(int i = 0; i < 3; i++) {

For each color component, apply bilinear interpolation:
 c_i = bilinear(rgb00[i], rgb01[i],

 rgb10[i], rgb11[i],

 xi_f, yi_f, xi, yi);

Next, rescale and quantize the color component:

 c_f = rescale((float)c, 1.f/255.f, -1.f);

 c_q = quantize(c_f, tflu_scale, tflu_zeropoint);

In the end, store the quantized color component in the input tensor
of the TFLite model and close the for loop that iterates over the
spatial coordinates of the MobileNet v2 input shape:
 tflu_i_tensor->data.int8[idx++] = c_q;

 }

 }

}

15. Run the model inference and return the classification result over
the serial:
TfLiteStatus invoke_status = tflu_interpreter->Invoke();

 size_t ix_max = 0;

 float pb_max = 0;

 for (size_t ix = 0; ix < 3; ix++) {

 if(tflu_o_tensor->data.f[ix] > pb_max) {

 ix_max = ix;

 pb_max = tflu_o_tensor->data.f[ix];

 }

 }

 const char *label[] = {"bathroom", "kitchen",

"unknown"};

 Serial.println(label[ix_max]);

Compile and upload the sketch on the Arduino Nano. Your
application should now recognize your rooms and report the
classification result in the serial monitor!

Chapter 6: Building a Gesture-
Based Interface for YouTube
Playback
Gesture recognition is a technology that interprets human
gestures to allow people to interact with their devices without
touching buttons or displays. This technology is now in various
consumer electronics (for example, smartphones and game
consoles) and involves two principal ingredients: a sensor and a
software algorithm.

In this chapter, we will show you how to use accelerometer
measurements in conjunction with machine learning (ML) to
recognize three hand gestures with the Raspberry Pi Pico. These
recognized gestures will then be used to play/pause, mute/unmute,
and change YouTube videos on our PC.

We will start by collecting the accelerometer data to build the
gesture recognition dataset. In this part, we will learn how to
interface with the I2C protocol and use the Edge Impulse data
forwarder tool. Next, we will focus on the Impulse design, where
we will build a spectral-features-based fully connected neural
network for gesture recognition. Finally, we will deploy the model on
a Raspberry Pi Pico and implement a Python program with
PyAutoGUI to build a touchless interface for YouTube video
playback.

This chapter aims to help you develop an end-to-end gesture
recognition application with Edge Impulse and the Raspberry Pi Pico
so that you can learn how to use I2C peripheral, get acquainted with
inertial sensors, write a multithreading program in Arm Mbed OS,
and discover how to filter out redundant classification results during
model inference.

In this chapter, we're going to cover the following recipes:

Communicating with the MPU-6050 IMU through I2C

Acquiring accelerometer data

Building the dataset with the Edge Impulse data forwarder tool

Designing and training the ML model

Live classifications with the Edge Impulse data forwarder tool

Gesture recognition on the Raspberry Pi Pico with Arm Mbed OS

Building a touchless interface with PyAutoGUI

Technical requirements
To complete all the practical recipes in this chapter, you will need the
following:

A Raspberry Pi Pico

A micro-USB cable

1 x half-size solderless breadboard

1 x MPU-6050 IMU

4 x jumper wires

A laptop/PC with either Ubuntu 18.04+ or Windows 10 on x86-64

The source code for this chapter and additional material are
available in Chapter06 (https://github.com/PacktPublishing/TinyML-
Cookbook/tree/main/Chapter06).

Communicating with the MPU-6050
IMU through I2C
The dataset is the core part of any ML project because it has
implications regarding the model's performance. However, recording
sensor data is often a challenging task in TinyML since it requires
low-level interfacing with the hardware.

In this recipe, we will use the MPU-6050 Inertial Measurement
Unit (IMU) to teach the fundamentals behind a common
communication protocol for sensors: the Inter-Integrated Circuit
(I2C). By the end of this recipe, we will have an Arduino sketch to
read out the MPU-6050 address.

The following Arduino sketch contains the code that will be referred
to in this recipe

01_i2c_imu_addr.ino:

https://github.com/PacktPublishing/TinyML-
Cookbook/blob/main/Chapter06/ArduinoSketches/01_i2c_imu_addr.i
no.

https://github.com/PacktPublishing/TinyML-Cookbook/tree/main/Chapter06
https://github.com/PacktPublishing/TinyML-Cookbook/tree/main/Chapter06
https://github.com/PacktPublishing/TinyML-Cookbook/blob/main/Chapter06/ArduinoSketches/01_i2c_imu_addr.ino
https://github.com/PacktPublishing/TinyML-Cookbook/blob/main/Chapter06/ArduinoSketches/01_i2c_imu_addr.ino
https://github.com/PacktPublishing/TinyML-Cookbook/blob/main/Chapter06/ArduinoSketches/01_i2c_imu_addr.ino

Getting ready

For this recipe, we need to know what an IMU sensor is and how to
retrieve its measurements with the I2C communication protocol.

The IMU sensor is an electronic device that's capable of measuring
accelerations, angular rates, and, in some cases, body orientations
through a combination of integrated sensors. This device is at the
heart of many technologies in various industries, including
automotive, aerospace, and consumer electronics, to give position
and orientation estimates. For example, IMU allows the screen of a
smartphone to auto-rotate and enables augmented
reality/virtual reality (AR/VR) use cases.

The following subsection provides more details about the MPU-6050
IMU.

Introducing the MPU-6050 IMU
MPU-6050 (https://invensense.tdk.com/products/motion-tracking/6-
axis/mpu-6050/) is an IMU that combines a three-axis accelerometer
and three-axis gyroscope sensors to measure accelerations and the
angular rate of the body. This device has been on the market for
several years, and due to its low-cost and high performance, it is still
a popular choice for DIY electronic projects based on motion
sensors.

The MPU-6050 IMU can be found via various distributors, such as
Adafruit, Amazon, Pimoroni, and PiHut, and it is available in different
form factors. In this recipe, we have considered the compact
breakout board that's offered by Adafruit

https://invensense.tdk.com/products/motion-tracking/6-axis/mpu-6050/
https://invensense.tdk.com/products/motion-tracking/6-axis/mpu-6050/

(https://learn.adafruit.com/mpu6050-6-dof-accelerometer-and-
gyro/overview), which can be powered by 3.3V and does not require
additional electronic components.

IMPORTANT NOTE
Unfortunately, the IMU module comes with unsoldered header strips. Therefore, if
you are not familiar with soldering, we recommend reading the following tutorial:

https://learn.adafruit.com/adafruit-agc-electret-microphone-amplifier-
max9814/assembly

The MPU-6050 IMU can communicate through the I2C serial
communication protocol with the microcontroller. The following
subsection describes some of the main features worth mentioning of
I2C.

Communicating with I2C
I2C is a communication protocol that's based on two wires,
commonly called SCL (clock signal) and SDA (data signal).

The protocol has been structured to allow communication between a
primary device (for example, the microcontroller) and numerous
secondary devices (for example, the sensors). Each secondary
device is identified with a permanent 7-bit address.

IMPORTANT NOTE
The I2C protocol refers to the terms master and slave rather than primary and
secondary devices. In this book, we have decided to rename those terms so that
the language is more inclusive and to remove unnecessary references to slavery.

https://learn.adafruit.com/mpu6050-6-dof-accelerometer-and-gyro/overview
https://learn.adafruit.com/mpu6050-6-dof-accelerometer-and-gyro/overview
https://learn.adafruit.com/adafruit-agc-electret-microphone-amplifier-max9814/assembly
https://learn.adafruit.com/adafruit-agc-electret-microphone-amplifier-max9814/assembly

The following diagram shows how the primary and secondary
devices are connected:

Figure 6.1 – I2C communication

As we can see, there are only two signals (SCL and SDA), regardless
of the number of secondary devices. SCL is only produced by the
primary device and is used by all I2C devices to sample the bits that
are transmitted over the data signal. Both the primary and
secondary devices can transmit data over the SDA bus.

The pull-up resistors (Rpullup) are required because the I2C device
can only drive the signal to LOW (logic level 0). In our case, the pull-
up resistors are not needed because they are integrated into the
MPU-6050 breakout board.

From a communication protocol perspective, the primary device
always starts the communication by transmitting as follows:

1. 1 bit at LOW (logical level 0) on SDA (start condition).

2. The 7-bit address of the target secondary device.

3. 1 bit for the read or write intention (R/W flag). Logic level 0
indicates that the primary device will send the data over SDA
(write mode). Otherwise, logical level 1 means that the primary
device will read the data that's transmitted by the secondary
device over SDA (read mode).

The following diagram shows an example of a bit command
sequence in the scenario where the primary device in Figure 6.1
starts communicating with secondary 0:

Figure 6.2 – Bit command sequence transmitted by the primary device

The secondary device that matches the 7-bit address will then
respond with 1 bit at logical level 0 (ACK) over the SDA bus.

If the secondary device responds with the ACK, the primary device
can either transmit or read the data in chunks of 8 bits accordingly
with the R/W flag set.

In our context, the microcontroller is the primary device, and it uses
the R/W flag to do the following:

Read data from the sensor: The microcontroller requests
what it wants to read (write mode) before the MPU-6050 IMU
transmits the data (read mode).

Program an internal feature of the IMU: The microcontroller
only uses write mode to set an operating mode of MPU-6050
(for example, the sampling frequency of the sensors).

At this point, you may have a question in mind: what do we read
and write with the primary device?

The primary device reads and writes specific registers on the
secondary device. Therefore, the secondary device works like a form
of memory where each register has a unique 8-bit memory address.

TIP
The register map for MPU-6050 is available at the following link:

https://invensense.tdk.com/wp-content/uploads/2015/02/MPU-6000-Register-
Map1.pdf

How to do it…

Let's start this recipe by taking a breadboard with 30 rows and 10
columns and mounting the Raspberry Pi Pico vertically among the
left and right terminal strips. We should place the microcontroller
platform in the same way as we did in Chapter 2, Prototyping with
Microcontrollers.

Next, place the accelerometer sensor module at the bottom of the
breadboard. Ensure that the breadboard's notch is in the middle of
the two headers, as shown in the following diagram:

https://invensense.tdk.com/wp-content/uploads/2015/02/MPU-6000-Register-Map1.pdf
https://invensense.tdk.com/wp-content/uploads/2015/02/MPU-6000-Register-Map1.pdf

Figure 6.3 – MPU-6050 mounted at the bottom of the breadboard

As you can see, the I2C pins are located on the left terminal strips of
the MPU-6050 module.

The following steps will show you how to connect the accelerometer
module with the Raspberry Pi Pico and write a basic sketch to read
the ID (address) of the MPU-6050 device:

1. Take four jumper wires and connect the MPU-6050 IMU to the
Raspberry Pi Pico, as reported in the following table:

Figure 6.4 – Connections between the MPU-6050 IMU and the Raspberry Pi Pico

The following diagram should help you visualize how to do the
wiring:

Figure 6.5 – Connections between the MPU-6050 IMU and Raspberry Pi Pico

As we mentioned in the Getting ready section of this recipe, we do
not need pull-up resistors on SDA and SCL because they have
already been integrated into the IMU's breakout board.

2. Create a new sketch in the Arduino IDE. Declare and initialize the
mbed::I2C object with the SDA and SCL pins:
#define I2C_SDA p6

#define I2C_SCL p7

I2C i2c(I2C_SDA, I2C_SCL);

The initialization of the I2C peripheral only requires the pins that are
dedicated to the SDA (p6) and SCL (p7) buses.

3. Use a C define to keep the 7-bit address of the MPU-6050 IMU
(0x68):

#define MPU6050_ADDR_7BIT 0x68

Next, use a C define to keep the 8-bit address required that's for
mbed::I2C. The 8-bit address can easily be obtained by left-shifting
the 7-bit address by one bit:
#define MPU6050_ADDR_8BIT (0x68 << 1) //0xD1

4. Implement a utility function to read the data from an MPU-6050
register:
void read_reg(int addr_i2c, int addr_reg, char *buf, int

length) {

 char data = addr_reg;

 i2c.write(addr_i2c, &data, 1);

 i2c.read(addr_i2c, buf, length);

 return;

}

As per the I2C protocol, we need to transmit the address of the
MPU-6050 IMU and then send the address of the register to read.
So, we must use the write() method of the mbed::I2C class, which
needs three input arguments, as follows:

The 8-bit address of the secondary device (addr_i2c)

A char array containing the registered address (char data =
addr_reg)

The number of bytes to transmit (1 since we're only sending the
registered address)

After sending the request to read the data from the register, we can
get the data that's been transmitted by MPU-6050 with the read()
method of the mbed::I2C class, which needs the following input
arguments:

The 8-bit address of the secondary device (addr_i2c)

A char array to store the received data (buf)

The size of the array (length)

The function will return once the read is complete.

5. In the setup() function, initialize the I2C frequency at the
maximum speed that's supported by MPU-6050 (400 KHz):
void setup() {

 i2c.frequency(400000);

6. In the setup() function, use read_reg() to read the WHO_AM_I
register (0x75) of the MPU-6050 IMU. Transmit the MPU-6050
found message over the serial if the WHO_AM_I register contains
the 7-bit device address (0x68):
 #define MPU6050_WHO_AM_I 0x75

 Serial.begin(115600);

 while(!Serial);

 char id;

 read_reg(MPU6050_ADDR_8BIT, MPU6050_WHO_AM_I, &id, 1);

 if(id == MPU6050_ADDR_7BIT) {

 Serial.println("MPU-6050 found");

 } else {

 Serial.println("MPU-6050 not found");

 while(1);

 }

}

Compile and upload the sketch on the Raspberry Pi Pico. Now, you
can open the serial Monitor from the Editor menu. If the

Raspberry Pi Pico can communicate with the MPU-6050 device, it will
transmit the MPU-6050 found string over serial.

Acquiring accelerometer data
The accelerometer is one of the most common sensors that's
incorporated into the IMU.

In this recipe, we will develop an application to read the
accelerometer measurements from the MPU-6050 IMU with a
frequency of 50 Hz. The measurements will then be transmitted over
the serial so that they can be acquired with the Edge Impulse data
forwarder tool in the following recipe.

The following Arduino sketch contains the code that's referred to in
this recipe

02_i2c_imu_read_acc.ino0:

https://github.com/PacktPublishing/TinyML-
Cookbook/blob/main/Chapter06/ArduinoSketches/02_i2c_imu_read_
acc.ino.

Getting ready

The accelerometer is a sensor that measures accelerations on one,
two, or three spatial axes, denoted as X, Y, and Z.

In this and the following recipes, we will use the three-axis
accelerometer that's integrated into the MPU-6050 IMU to

https://github.com/PacktPublishing/TinyML-Cookbook/blob/main/Chapter06/ArduinoSketches/02_i2c_imu_read_acc.ino
https://github.com/PacktPublishing/TinyML-Cookbook/blob/main/Chapter06/ArduinoSketches/02_i2c_imu_read_acc.ino
https://github.com/PacktPublishing/TinyML-Cookbook/blob/main/Chapter06/ArduinoSketches/02_i2c_imu_read_acc.ino

measure the accelerations of three orthogonal directions.

However, how does the accelerometer work, and how can we take
the measurements from the sensor?

Let's start by explaining the basic underlying working principle of this
sensor. Consider the following system, which has a mass attached to
a spring:

Figure 6.6 – Mass-spring system

The preceding diagram models the physical principle of an
accelerometer working on a single spatial dimension (that is, a one-
axis accelerometer).

What happens if we place the accelerometer on the table?

In this case, we will see the mass go down because of the constant
gravitational force. Therefore, the lower spring on the Z-axis would
have a displacement from the rest position, as shown in the
following diagram:

Figure 6.7 – The mass-spring system under the influence of gravitational force

From physics class, we know that Hooke's law gives the spring
force (restoring force):

Here, is the force, is the elastic constant, and is the
displacement.

From Newton's second law, we also know that the force that's
applied on the mass is as follows:

Here, is the force, is the mass, and is the acceleration.

Under the constraint, we can

infer that the spring displacement, , is proportional to the
acceleration.

Hence, when a one-axis accelerometer is placed on the table, it
returns ~9.81 m/s2, which is the object's acceleration when it's
falling under the influence of gravity. The 9.81 m/s2 acceleration is
commonly denoted with the g symbol (9.81 m/s2 = 1 g).

As we can imagine, the spring goes up and down whenever we
move the accelerometer (even slightly). Therefore, the spring
displacement is the physical quantity that's acquired by the sensor to
measure acceleration.

An accelerometer that's working on two or three spatial dimensions
can still be modeled with the mass-spring system. For example, a
three-axis accelerometer can be modeled with three mass-spring

systems so that each one returns the acceleration for a different
axis.

Of course, we made some simplifications while explaining the
device's functionality. Still, the core mechanism that's based on the
mass-spring system is designed in silicon through the micro-
electromechanical systems (MEMS) process technology.

Most accelerometers have a programmable measurement range (or
scale) that can vary from ±1 g (±9.81 m/s2) to ±250 g (±2,452.5
m/s2). This range is also proportional to the sensitivity, which is
commonly expressed as the least-significant bit over g (LSB/g)
and defined as the minimum acceleration to cause a change in the
numerical representation. Therefore, the higher the sensitivity, the
smaller the minimum detectable acceleration.

In the MPU-6050 IMU, we can program the measurement range
through the ACCEL_CONFIG register (0x1C). The following table
reports the corresponding sensitivity for each one:

Figure 6.8 – Measurement range versus sensitivity on MPU-6050

As we can see, the smaller the measurement range, the higher the
sensitivity. A ±2 g range is typically enough for acquiring
accelerations due to hand movements.

The measurements that are returned by the MPU-6050 IMU are in
16-bit integer format and stored in two 8-bit registers. These two
registers' names are marked with the _H and _L suffixes to identify
the high and low bytes of the 16-bit variable. The following diagram
shows the names and addresses of each register:

Figure 6.9 – Registers for the accelerometer measurements in the MPU-6050
IMU

As you can see, the registers are placed at consecutive memory
addresses, starting with ACCEL_XOUT_H at 0x3B. To read all the
accelerometer measurements without sending the address of each
register, we can simply access ACCEL_XOUT_H and read 6 bytes.

How to do it…

Let's keep working on the sketch from the previous recipe. The
following steps will show you how to extend the program to read
accelerometer data from the MPU-6050 IMU and transmit the
measurements over the serial:

1. Implement a utility function to write one byte into an MPU-6050
register:
void write_reg(int addr_i2c, int addr_reg, char v) {

 char data[2] = {addr_reg, v};

 i2c.write(addr_i2c, data, 2);

 return;

}

As shown in the preceding code, we use the write() method of the
mbed::I2C class to transmit the following details:

1. The MPU-6050 address

2. The register address to access

3. The byte to store into the register

The write_reg() function will be required to initialize the MPU-6050
device.

2. Implement a utility function to read the accelerometer data from
MPU-6050. To do so, create a function called
read_accelerometer() with three input floating-point arrays:
void read_accelerometer(float *x, float *y, float *z) {

The x, y, and z arrays will contain the sampled accelerations for the
three orthogonal spatial directions.

3. In the read_accelerometer() function, read the accelerometer
measurements from the MPU-6050 IMU:
 char data[6];

 #define MPU6050_ACCEL_XOUT_H 0x3B

 read_reg(MPU6050_ADDR_8BIT, MPU6050_ACCEL_XOUT_H, data,

6);

Next, combine the low and high byte of each measurement to get
the 16-bit data format representation:
 int16_t ax_i16 = (int16_t)(data[0] << 8 | data[1]);

 int16_t ay_i16 = (int16_t)(data[2] << 8 | data[3]);

 int16_t az_i16 = (int16_t)(data[4] << 8 | data[5]);

Once you have these 16-bit values, divide the numbers by the
sensitivity that's been assigned to the selected measurement range

and multiply it by g (9.81 m/s2). Then, store the accelerations in the
x, y, and z arrays:

 const float sensitivity = 16384.f;

 const float k = (1.f / sensitivity) * 9.81f;

 *x = (float)ax_i16 * k;

 *y = (float)ay_i16 * k;

 *z = (float)az_i16 * k;

 return;

}

The preceding code converts the raw data into an m/s2 numerical
value. The sensitivity is 16384 because the MPU-6050 IMU will
operate in the ±2 g range.

4. In the setup() function, ensure that the MPU-6050 IMU is not in
sleep mode:
#define MPU6050_PWR_MGMT_1 0x6B

#define MPU6050_ACCEL_CONFIG 0x1C

if (id == MPU6050_ADDR_7BIT) {

 Serial.println("MPU6050 found");

 write_reg(MPU6050_ADDR_8BIT, MPU6050_PWR_MGMT_1, 0);

When the IMU is in sleep mode, the sensor does not return any
measurements. To ensure the MPU-6050 IMU is not in this operating
mode, we need to clear the sixth bit (bit 6) of the PWR_MGMT_1

register. This can easily be done by clearing the PWR_MGMT_1 register
directly.

5. In the setup() function, set the accelerometer measurement
range of the MPU-6050 IMU to ±2 g:
 write_reg(MPU6050_ADDR_8BIT, MPU6050_ACCEL_CONFIG, 0);

}

6. In the loop() function, sample the accelerometer measurements
with a frequency of 50 Hz (50 three-axis accelerometer samples
per second) and transmit them over the serial. Send the data
with one line per accelerometer reading and the three-axis
measurements (ax, ay, and az) comma-separated:

#define FREQUENCY_HZ 50

#define INTERVAL_MS (1000 / (FREQUENCY_HZ + 1))

#define INTERVAL_US INTERVAL_MS * 1000

void loop() {

 mbed::Timer timer;

 timer.start();

 float ax, ay, az;

 read_accelerometer(&ax, &ay, &az);

 Serial.print(ax);

 Serial.print(",");

 Serial.print(ay);

 Serial.print(",");

 Serial.println(az);

 timer.stop();

 using std::chrono::duration_cast;

 using std::chrono::microseconds;

 auto t0 = timer.elapsed_time();

 auto t_diff = duration_cast<microseconds>(t0);

 uint64_t t_wait_us = INTERVAL_US - t_diff.count();

 int32_t t_wait_ms = (t_wait_us / 1000);

 int32_t t_wait_leftover_us = (t_wait_us % 1000);

 delay(t_wait_ms);

 delayMicroseconds(t_wait_leftover_us);

}

In the preceding code, we did the following:

1. Started the mbed::Timer before reading the accelerometer
measurements to take the time required to acquire the samples.

2. Read the accelerations with the read_accelerometer() function.

3. Stopped mbed::Timer and retrieved the elapsed time in
microseconds (µs).

4. Calculated how much time the program needs to wait before the
next accelerometer reading. This step will guarantee the 50 Hz
sampling rate.

5. Paused the program.

The program is paused with the delay() function, followed by
delayMicroseconds(), due to the following reasons:

delay() alone would be inaccurate since this timer needs the
input argument in ms.

delayMicroseconds() works up to 16 383 µs, which is insufficient
for a sampling frequency of 50 Hz (2,000 µs).

So, we find out how much time to wait in milliseconds by dividing
t_wait_us by 1,000. Then, we calculate the remaining time to wait
in microseconds by calculating the remainder of the t_wait_us /
1000 division (t_wait_us % 1000).

The format that's used to send the accelerometer data over the
serial (one line per reading with the three-axis measurements
comma-separated) will be necessary to accomplish the task
presented in the following recipe.

Compile and upload the sketch to the Raspberry Pi Pico. Next, open
the serial monitor and check whether the microcontroller transmits
the accelerometer measurements. If so, lay the breadboard flat on
the table. The expected acceleration for the Z-axis (third number of
each row) should be roughly equal to the acceleration due to gravity
(9.81 m/s2), while the accelerations for the other axes should be
approximately close to zero, as shown in the following diagram:

Figure 6.10 – Accelerations displayed in the Arduino serial monitor

As you can see, the accelerations could be affected by offset and
noise. However, we don't need to worry about the accuracy of the
measurements because the deep learning model will be capable of
recognizing our gestures.

Building the dataset with the Edge
Impulse data forwarder tool
Any ML algorithm needs a dataset, and for us, this means getting
data samples from the accelerometer.

Recording accelerometer data is not as difficult as it may seem at
first glance. This task can easily be carried out with Edge Impulse.

In this recipe, we will use the Edge Impulse data forwarder tool to
take the accelerometer measurements when we make the following
three movements with the breadboard:

Figure 6.11 – Gestures to recognize – circle, cross, and pan

As shown in the preceding diagram, we should ensure that the
breadboard is vertical, have our Raspberry Pi Pico in front of us, and
make the movements that are shown by the arrows.

Getting ready

An adequate dataset for gesture recognition requires at least 50
samples for each output class. The three gestures that we've
considered for this project are as follows:

Circle: For moving the board clockwise in a circular motion.

Cross: For moving the board from the top left to the bottom right
and then from the right top to the bottom left.

Pan: For moving the board horizontally to the left, then right, and
then left again.

Each gesture should be performed by placing the breadboard
vertically and with the Raspberry Pi Pico in front of us. Since we will
consider training samples with a duration of 2.5 seconds, we
recommend completing each movement in roughly 2 seconds.

Although we have three output classes to identify, an additional one
is required to cope with the unknown movements and the case
where there are no gestures (for example, the breadboard lying flat
on the table).

In this recipe, we will use the Edge Impulse data forwarder to build
our dataset. This tool allows us to quickly acquire the accelerations
from any device that's capable of transmitting data over the serial
and import the sample directly in Edge Impulse.

The data forwarder will run on your computer, so you will need to
have the Edge Impulse CLI installed. If you haven't installed the
Edge Impulse CLI yet, we recommend following the instructions in

the official documentation: https://docs.edgeimpulse.com/docs/cli-
installation.

How to do it…

Compile and upload the sketch that we developed in the previous
recipe on your Raspberry Pi Pico. Ensure the Arduino serial monitor
is closed; the serial peripheral on your computer can only
communicate with one application at a time.

Next, open Edge Impulse and create a new project. Edge Impulse
will ask you to write the name of the project. In our case, we have
named the project gesture_recognition.

Now, follow these steps to build the dataset with the data forwarder
tool:

1. Run the edge-impulse-data-forwarder program on your
computer with a 50 Hz frequency and 115600 baud rate:
$ edge-impulse-data-forwarder -- frequency 50 --baud-rate

115600

The data forwarder will ask you to authenticate on Edge Impulse,
select the project you are working on, and give your Raspberry Pi
Pico a name (for example, you can call it pico).

Once you have configured the tool, the program will start parsing
the data that's being transmitted over the serial. The data forwarder
protocol expects one line per sensor reading with the three-axis

https://docs.edgeimpulse.com/docs/cli-installation
https://docs.edgeimpulse.com/docs/cli-installation

accelerations either comma (,) or tab separated, as shown in the
following diagram:

Figure 6.12 – Data forwarder protocol

Since our Arduino sketch complies with the protocol we just
described, the data forwarder will detect the three-axis
measurements that are being transmitted over the serial and ask
you to assign a name. You can call them ax, ay, and az.

2. Open Edge Impulse and click on the Data acquisition tab from
the left-hand side menu.

As shown in the following screenshot, use the Record new data
area to record 50 samples for each gesture (circle, cross, and pan):

Figure 6.13 – The Record new data window in Edge Impulse

The Device and Frequency fields should already report the name
of the device that's connected to the data forwarder (pico), as well
as the sampling frequency (50Hz).

For each gesture, enter the label's name in the Label field (for
example, circle for the circle gesture) and the duration of the
recording in Sample length (ms.).

Although each sample has a duration of 2.5 seconds, you can
conveniently acquire 20 seconds of data where you repeat the same
gestures multiple times, as shown in the following screenshot:

Figure 6.14 – A single recording with multiple motions of the same type

However, we recommend waiting 1 or 2 seconds between
movements to help Edge Impulse recognize the motions in the
following step.

3. Split the recording into samples of 2.5 seconds by clicking on
near the filename and then clicking Split sample, as shown in
the following screenshot:

Figure 6.15 – The Split sample option in Edge Impulse

Set segment length (ms.) to 2500 (2.5s) in the new window and
click Apply. Edge Impulse will detect the motions and put a cutting
window of 2.5 seconds on each one, as shown in the following
screenshot:

Figure 6.16 – Sample splits in windows of 2.5 seconds

If Edge Impulse does not recognize a motion in the recording, you
can always add the window manually by clicking the Add Segment

button and clicking on the area you want to cut.

Once all the segments have been selected, click Split to get the
individual samples.

4. Use the Record new data area to record 50 random motions
for the unknown class. To do so, acquire 40 seconds of
accelerometer data where you move the breadboard randomly
and lay it flat on the table.

5. Split the unknown recording into samples of 2.5 seconds by

clicking on near the filename and then Split sample. In the
new window, add 50 cutting windows and click on Split when
you are done.

6. Split the samples between the training and test datasets by
clicking on the Perform train/test split button in the Danger
zone area of the dashboard.

Edge Impulse will ask you twice if you are sure that you want to
perform this action. This is because the data shuffling operation is
irreversible.

The dataset is now ready, with 80% of the samples assigned to the
training/validation set and 20% to the test set.

Designing and training the ML
model
With the dataset in our hands, we can start designing the model.

In this recipe, we will develop the following architecture with Edge
Impulse:

Figure 6.17 – Fully connected neural network to train

As you can see, the spectral features are the input for the model,
which consists of just two fully connected layers.

Getting ready

In this recipe, we want to explain why the tiny network shown in the
preceding diagram recognizes gestures from accelerometer data.

When developing deep neural network architectures, we commonly
feed the model with raw data to leave the network to learn how to
extract the features automatically.

This approach proved to be effective and incredibly accurate in
various applications, such as image classification. However, there are
some applications where hand-crafted engineering features offer
similar accuracy results to deep learning and help reduce the
architecture's complexity. This is the case for gesture recognition,
where we can use features from the frequency domain.

NOTE
If you are not familiar with frequency domain analysis, we recommend reading
Chapter 4, Voice Controlling LEDs with Edge Impulse.

The benefits of spectral features will be described in more detail in
the following subsection.

Using spectral analysis to recognize
gestures
Spectral analysis allows us to discover characteristics of the signal
that are not visible in the time domain. For example, consider the
following two signals:

Figure 6.18 – Two signals in the time domain

These two signals are assigned to two different classes: class 0 and
class 1.

What features would you use in the time domain to discriminate
class 0 from class 1?

Whatever set of features you may consider, they must be shift-
invariant and robust to noise to be effective. Although there may be
a set of features to distinguish class 0 from class 1, the solution

would be straightforward if we considered the problem in the
frequency domain, as shown by their power spectrums in the
following diagram:

Figure 6.19 – Frequency representations of the class 0 and class 1 signals

As we can see, the two signals have different dominant
frequencies, defined as the components with the highest
magnitude. In other words, the dominant frequencies are the
components that carry more energy.

Although signals from an accelerometer are not the same as class 0
and class 1, they still have repetitive patterns that make the
frequency components suitable for a classification problem.

However, the frequency representation also offers another benefit
related to the possibility of getting a compressed representation of
the original signal.

For example, let's consider our dataset samples, which are three-axis
accelerations that we acquired with a frequency of 50 Hz for 2.5
seconds. Each instance contains 375 data points (125 data points
per axis). Now, let's apply the Fast Fourier Transform (FFT) with
128 output frequencies (FFT length) on each sample. This domain
transformation produces 384 data points (128 data points per axis).
Hence, FFT appears to be reducing the amount of data. However, as
we saw in the previous example with class 0 and class 1, not all
frequencies bring meaningful information. Therefore, we could just
extract the frequencies that get the most energy (dominant
frequencies) to reduce the amount of data and then facilitate signal
pattern recognition.

For gesture recognition, we commonly produce spectral features by
doing the following:

1. Applying a low-pass filter to the frequency domain to filter out
the highest frequencies. This step generally makes feature
extraction more robust against noise.

2. Extracting the frequency components with the highest
magnitude. Commonly, we take the three frequencies with the

highest peak.

3. Extracting the power features in the power spectrum. Generally,
these features are the root mean square (RMS) and the
power spectral density (PSD), which describe the power
that's present in an interval of frequencies.

In our case, we will extract the following features for each
accelerometer axis:

One value for the RMS

Six values for extracting the frequencies with the highest peak
(three values for the frequency and three values for the
magnitude)

Four values for the PSD

Therefore, we would only get 33 features, which means a data
reduction of over 11 times compared to the original signal, which is
enough to feed a tiny fully connected neural network.

How to do it…

Click on the Create Impulse tab from the left-hand side menu. In
the Create Impulse section, set Window size to 2500ms and
Window increase to 200ms.

As we saw in Chapter 4, Voice Controlling LEDs with Edge Impulse,
the Window increase parameter is required to run ML inference at
regular intervals. This parameter plays a crucial role in a continuous

data stream since we do not know when the event may start.
Therefore, the idea is to split the input data stream into fixed
windows (or segments) and execute the ML inference on each one.
Window size is the temporal length of the window, while Window
increase is the temporal distance between two consecutive
segments.

The following steps will show how to design the neural network
shown in Figure 6.17:

1. Click the Add a processing block button and look for Spectral
Analysis:

Figure 6.20 – The Spectral Analysis processing block

Click the Add button to integrate the processing block into Impulse.

2. Click the Add a learning block button and add Classification
(Keras).

Output features block should report the four output classes we
must recognize (circle, cross, pan, and unknown), as shown in
the following screenshot:

Figure 6.21 – Output classes

Save the Impulse by clicking the Save Impulse button.

3. Click on the Spectral features button from the Impulse design
category:

Figure 6.22 – Spectral features button

In the new window, we can play with the parameters that are
affecting the feature extraction, such as the following:

The type of filter to apply to the input signal: We can either
select a low-pass or high-pass filter and then set the cut-off
frequency, the frequency at which attenuation occurs due to the
filter increasing rapidly. Since we want to filter out the
contribution of the noise, we should use a low-pass filter.

The parameters that are affecting the spectral power
features being extracted: This includes the FFT length, the
number of frequency components with the highest peak to
extract, and the power edges that are required for the PSD.

We can keep all the parameters at their default values and click on
the Generate features button to extract the spectral features from
each training sample. Edge Impulse will return the Job completed
message in the output log when the feature extraction process ends.

4. Click on the Neural Network (Keras) button under the
Impulse design section and add a Dropout layer with a 0.2
ratio between the fully connected layers. Ensure that the first
fully connected layer has 33 neurons while the other has 10
neurons, as shown in the following screenshot:

Figure 6.23 – Neural network architecture

Set the number of training epochs to 100 and click on Start
training.

The output console will report the accuracy and loss on the training
and validation datasets during training after each epoch.

Now, let's evaluate the model's performance on the test dataset. To
do so, click the Model testing button from the left panel and then
click Classify all.

Edge Impulse will provide this progress in Model testing output
and generate the confusion matrix once the process is completed:

Figure 6.24 – Model testing results

As you can see, our tiny model, which is made up of just two fully
connected layers, achieved 88% accuracy!

Live classifications with the Edge
Impulse data forwarder tool
Model testing is the step we should always take before exporting the
final application to the target platform. Deploying on microcontrollers
is error-prone because the code may contain bugs, the integration
could be incorrect, or the model could not work reliably in the field.

Therefore, model testing is necessary to exclude at least ML from
the source of failures.

In this recipe, we will learn how to perform live classifications via
Edge Impulse using the Raspberry Pi Pico.

Getting ready

The most effective way to evaluate the behavior of an ML model is
to test the model's performance on the target platform.

In our case, we have already got a head start because the dataset
was built with the Raspberry Pi Pico. Therefore, the accuracy of the
test dataset should already give us a clear indication of how the
model behaves. However, there are cases where the dataset may
not be built on top of sensor data coming from the target device.
When this happens, the model that's been deployed on the
microcontroller could behave differently from what we expect.
Usually, the reason for this performance degradation is due to sensor
specifications. Fundamentally, sensors can be of the same type but
have different specifications, such as offset, accuracy, range,
sensitivity, and so on.

Thanks to the Edge Impulse data forwarder tool, it is straightforward
to discover how the model performs on our target platform.

How to do it…

Ensure your Raspberry Pi Pico is still running the program we
developed in the Acquiring accelerometer data recipe and that the
edge-impulse-data-forwarder program is running on your computer.
Next, click the Live classification tab and check whether the
device (for example, pico) is being reported in the Device drop-
down list, as shown in the following screenshot:

Figure 6.25 – The Device dropdown menu in Edge Impulse

If the device is not listed, follow the steps provided in the How to do
it… subsection of the Acquiring accelerometer data recipe to pair
your Raspberry Pi Pico with Edge Impulse again.

Now, follow these steps to evaluate the model's performance with
the live classification tool:

1. In the Live classification window, select Sensor with 3 axes
from the Sensor drop-down list and set Sample length (ms)
to 20000. Keep Frequency at the default value (50 Hz).

2. With your Raspberry Pi Pico in front of you, click Start sampling
and wait for the Sampling… message to appear on the button.

When the recording begins, make any of the three movements that
the model can recognize (circle, cross, or pan). The sample will be
uploaded to Edge Impulse when the recording ends.

Edge Impulse will then split the recording into samples of 2.5
seconds and test the trained model on each. The classification
results will be reported on the same page, similar to what we saw in
Chapter 4, Voice Controlling LEDs with Edge Impulse.

Gesture recognition on Raspberry Pi
Pico with Arm Mbed OS
Now that the model is ready, we can deploy it on the Raspberry Pi
Pico.

In this recipe, we will build a continuous gesture recognition
application with the help of Edge Impulse, Arm Mbed OS, and an
algorithm to filter out redundant or spurious classification results.

The following Arduino sketch contains the code that will be referred
to in this recipe:

06_gesture_recognition.ino:

https://github.com/PacktPublishing/TinyML-
Cookbook/blob/main/Chapter06/ArduinoSketches/06_gesture_recog
nition.ino.

Getting ready

In this recipe, we will make our Raspberry Pi Pico capable of
recognizing gestures with the help of the library that's generated by
Edge Impulse for Arduino IDE. In Chapter 4, Voice Controlling LEDs

https://github.com/PacktPublishing/TinyML-Cookbook/blob/main/Chapter06/ArduinoSketches/06_gesture_recognition.ino
https://github.com/PacktPublishing/TinyML-Cookbook/blob/main/Chapter06/ArduinoSketches/06_gesture_recognition.ino
https://github.com/PacktPublishing/TinyML-Cookbook/blob/main/Chapter06/ArduinoSketches/06_gesture_recognition.ino

with Edge Impulse, we used a pre-built example to accomplish this.
However, here, we will implement the entire program from scratch.

Our goal is to develop a continuous gesture recognition application,
which means that the accelerometer data sampling and ML inference
must be performed concurrently. This approach guarantees that we
capture and process all the pieces of the input data stream so that
we don't miss any events.

The main ingredients we will need to accomplish our task are as
follows:

Arm Mbed OS for writing a multithreading program

An algorithm to filter out redundant classification results

Let's start by learning how to perform concurrent tasks easily with
the help of real-time operating system (RTOS) APIs in Arm
Mbed OS.

Creating working threads with RTOS
APIs in Arm Mbed OS
Any Arduino sketches that have been developed for the Arduino
Nano 33 BLE Sense board and Raspberry Pi Pico are built on top of
Arm Mbed OS, an open source RTOS for Arm Cortex-M
microcontrollers. So far, we have only used Mbed APIs for interfacing
with peripherals such as GPIO and I2C. However, Arm Mbed OS also
offers functionalities that are typical of a canonical OS, such as
managing threads to perform different tasks concurrently.

Once the thread has been created, we just need to bind the thread
to the function that we want to run and execute it when we are
ready.

TIP
If you are interested in learning more about the functionalities of Arm Mbed OS,
we recommend reading the official documentation, which can be found at the
following link: https://os.mbed.com/docs/mbed-os/v6.15/bare-metal/index.html.

A thread in a microcontroller is a piece of a program that runs
independently on a single core. Since all the threads run on the
same core, the scheduler is responsible for deciding on what to
execute and for how long. Mbed OS uses a pre-emptive
scheduler and uses a round-robin priority-based scheduling
algorithm (https://en.wikipedia.org/wiki/Round-robin_scheduling).
Therefore, every thread is assigned to a priority that's provided by
us when we create the thread object through the RTOS API of Mbed
OS (https://os.mbed.com/docs/mbed-os/v6.15/apis/thread.html).
The supported priority values can be found at
https://os.mbed.com/docs/mbed-os/v6.15/apis/thread.html.

For this recipe, we will need two threads:

Sampling thread: The thread that's responsible for acquiring
the accelerations from the MPU-6050 IMU with a frequency of 50
Hz

Inference thread: The thread that's responsible for running
model inference after every 200 ms

https://os.mbed.com/docs/mbed-os/v6.15/bare-metal/index.html
https://en.wikipedia.org/wiki/Round-robin_scheduling
https://os.mbed.com/docs/mbed-os/v6.15/apis/thread.html
https://os.mbed.com/docs/mbed-os/v6.15/apis/thread.html

However, as we mentioned at the beginning of this Getting ready
section, a multithreading program is not the only ingredient that's
required to build our gesture recognition application. A filtering
algorithm will also be necessary to filter out redundant and spurious
predictions.

Filtering out redundant and spurious
predictions
Our gesture recognition application employs a sliding window-based
approach over a continuous data stream to determine whether we
have a motion of interest. The idea behind this approach is to split
the data stream into smaller windows of a fixed size and execute the
ML inference on each one.. As we already know, ML is a powerful
tool for gathering robust classification results, especially if we use
temporal shifts on the input data. Therefore, neighboring windows
will have similar and high probability scores, leading to multiple and
redundant detections.

In this recipe, we will adopt a test and trace filtering algorithm
to make our application robust against spurious detections.
Conceptually, this filtering algorithm only wants to consider the ML
output class as valid if the last N predictions (for example, the last
four) reported the following:

The same output class but it's different from the unknown one.

The probability score is above a fixed threshold (for example,
greater than 0.7).

To visually understand how this algorithm works, look at the
following diagram:

Figure 6.26 – Example of a valid ML prediction

In the preceding diagram, each rectangular bar is the predicted class
at a given time, where the following occurs:

The symbol represents the predicted output class

The bar's height is the probability score associated with the
predicted class

Therefore, considering N as four and the probability threshold as 0.7,
we can consider the ML output class as valid only at T=8. The
previous four classification results returned circle and had probability
scores greater than 0.7.

How to do it…

Click on Deployment from the left-hand side menu and select
Arduino Library from the Create library options, as shown in the
following screenshot:

Figure 6.27 – Edge Impulse deployment section

Then, click on the Build button at the bottom of the page. Save the
ZIP file on your computer.

Next, import the library into the Arduino IDE. After that, copy the
sketch that we developed in the Acquiring accelerometer data recipe
in a new sketch. Follow these steps to learn how to extend this code
to make the Raspberry Pi Pico capable of recognizing our three
gestures:

1. Include the <edge_impulse_project_name>_inferencing.h
header file in the sketch. For example, if the Edge Impulse
project's name is gesture_recognition, you should include the
following information:
#include <gesture_recognition_inferencing.h>

This header file is the only requirement for using the constants,
functions, and C macros that have been built by Edge Impulse
specifically for our project.

2. Declare two floating-point arrays (buf_sampling and
buf_inference) that have 375 elements each:

#define INPUT_SIZE EI_CLASSIFIER_DSP_INPUT_FRAME_SIZE

float buf_sampling[INPUT_SIZE] = { 0 };

float buf_inference[INPUT_SIZE];

In the preceding code, we used the Edge Impulse
EI_CLASSIFIER_DSP_INPUT_FRAME_SIZE C macro definition to get the

number of input samples that are required for 2.5 seconds of
accelerometer data (375).

The buf_sampling array will be used by the sampling thread to store
the accelerometer data, while the buf_inference array will be used
by the inference thread to feed the input to the model.

3. Declare an RTOS thread with a low priority schedule for running
the ML model:
rtos::Thread inference_thread(osPriorityLow);

The inference thread should have a lower priority (osPriorityLow)
than the sampling thread because it has a longer execution time due
to ML inference. Therefore, a low priority schedule for the inference
thread will guarantee that we do not miss any accelerometer data
samples.

4. Create a C++ class to implement the test and trace filtering
algorithm. Make the filtering parameters (N and probability
threshold) and the variables that are needed to trace the ML
predictions (counter and the last output valid class index) as
private members:
class TestAndTraceFilter {

private:

 int32_t _n {0};

 float _thr {0.0f};

 int32_t _counter {0};

 int32_t _last_idx_class {-1};

 const int32_t _num_classes {3};

The algorithm mainly needs two variables to trace the classification
results. These variables are as follows:

_counter: This variable is used to keep track of how many times
we had the same classification with a probability score above the
fixed threshold (_thr).

_last_idx_class: This variable is used to find the output class
index of the last inference.

In this recipe, we will assign -1 to the _last_idx_class variable
when the last inference returns either unknown or a probability
score below the fixed threshold (_thr).

5. Declare the invalid output index class (-1) as a public member:

public:

 static constexpr int32_t invalid_idx_class = -1;

6. Implement the TestAndTraceFilter constructor to initialize the
filtering parameters:
public:

 TestAndTraceFilter(int32_t n, float thr) {

 _thr = thr;

 _n = n;

 }

7. In the TestAndTraceFilter class, implement a private method
to reset the internal variables (_counter and _last_idx_class)
that will be used to trace the ML predictions:
 void reset() {

 _counter = 0;

 _last_idx_class = invalid_idx_class;

 }

8. In the TestAndTraceFilter class, implement a public method to
update the filtering algorithm with the latest classification result:
 void update(size_t idx_class, float prob) {

 if(idx_class >= _num_classes || prob < _thr) {

 reset();

 }

 else {

 if(prob > _thr) {

 if(idx_class != _last_idx_class) {

 _last_idx_class = idx_class;

 _counter = 0;

 }

 _counter += 1;

 }

 else {

 reset();

 }

 }

 }

The TestAndTraceFilter object works in two states – incremental
and reset – as shown in the following diagram:

Figure 6.28 – Test and trace filtering flowchart

As you can see, the incremental state occurs when the most recent
classification is a valid output class and the probability is greater
than the minimum probability value. In all the other cases, we enter
the reset state, where we set _counter to 0 and _last_idx_class to
-1.

In the incremental state, _counter is incremented by one, and
_last_idx_class keeps the index of the valid output class.

9. In the TestAndTraceFilter class, implement a public method to
return the filter's output:
 int32_t output() {

 if(_counter >= _n) {

 int32_t out = _last_idx_class;

 reset();

 return out;

 }

 else {

 return invalid_idx_class;

 }

 }

As you can see, if _counter is greater than or equal to _n, we return
_last_idx_class and put the test and trace filter function in the
reset state.

If _counter is smaller than _n, we return invalid_idx_class.

10. Write a function to run the ML inference (inference_func) in an
infinite loop (while(1)). This function will be executed by the
RTOS thread (inference_thread). Before you start this inference,
wait for the sampling buffer to become full:
void inference_func() {

 delay((EI_CLASSIFIER_INTERVAL_MS *

EI_CLASSIFIER_RAW_SAMPLE_COUNT) + 100);

Next, initialize the test and trace filter object. Set N and probability
threshold to 4 and 0.7f, respectively:
 TestAndTraceFilter filter(4, 0.7f);

After the initialization, run the ML inference in an infinite loop:
 while (1) {

 memcpy(buf_inference, buf_sampling,

 INPUT_SIZE * sizeof(float));

 signal_t signal;

 numpy::signal_from_buffer(buf_inference, INPUT_SIZE,

 &signal);

 ei_impulse_result_t result = { 0 };

 run_classifier(&signal, &result, false);

Before we run the inference, we need to copy the data from
buf_sampling to buf_inference and initialize the Edge Impulse
signal_t object with the buf_inference buffer.

11. Get the output class with the highest probability and update the
TestAndTraceFilter object with the latest classification result:

 size_t ix_max = 0; float pb_max = 0;

#define NUM_OUTPUT_CLASSES EI_CLASSIFIER_LABEL_COUNT

 for (size_t ix = 0; ix < NUM_OUTPUT_CLASSES; ix++) {

 if(result.classification[ix].value > pb_max) {

 ix_max = ix;

 pb_max = result.classification[ix].value;

 }

 }

 filter.update(ix_max, pb_max);

12. Read the output of the TestAndTraceFilter object. If the output
is not -1 (invalid output), send the label that was assigned to the
predicted gesture over the serial:
 int32_t out = filter.output();

 if(out != filter.invalid_idx_class) {

 Serial.println(result.classification[out].label);

 }

Next, wait for 200 ms (window increase set in the Edge Impulse
project) before running the subsequent inference:
 delay(200);

NOTE

delay() puts the current thread in a waiting state. As a rule of thumb, we should
always put a thread in a waiting state when it does not perform computation for a
long time. This approach guarantees that we don't waste computational resources
and that other threads can run in the meantime.

13. Start the RTOS inference thread (inference_thread) in the
setup() function:

inference_thread.start(mbed::callback(&inference_func));

14. In the loop() function, replace the prints to the serial port with
the code that's required to store the accelerometer
measurements in buf_sampling:

 float ax, ay, az;

 read_accelerometer(&ax, &ay, &az);

 numpy::roll(buf_sampling, INPUT_ SIZE, -3);

 buf_sampling[INPUT_SIZE - 3] = ax;

 buf_sampling[INPUT_SIZE - 2] = ay;

 buf_sampling[INPUT_SIZE - 1] = az;

Since the Arduino loop() function is an RTOS thread with high
priority, we don't need to create an additional thread to sample the
accelerometer measurements. Therefore, we can replace the
Serial.print functions with the code that's required to fill the
buf_sampling buffer with the accelerometer data.

The buf_sampling buffer is filled as follows:

First, we shift the data in the buf_sampling array by three
positions using the numpy::roll() function. The numpy::roll()

function is provided by the Edge Impulse library, and it works
similarly to its NumPy counterpart.
https://numpy.org/doc/stable/reference/generated/numpy.roll.ht
ml).

Then, we store the three-axis accelerometer measurements (ax,
ay, and az) in the last three positions of buf_sampling.

This approach will ensure that the latest accelerometer
measurements are always in the last three positions of
buf_sampling. By doing this, the inference thread can copy this
buffer's content into the buf_inference buffer and feed the ML
model directly without having to perform data reshuffling.

Compile and upload the sketch on the Raspberry Pi Pico. Now, if you
make any of the three movements that the ML model can recognize
(circle, cross, or pan), you will see the recognized gestures in the
Arduino serial terminal.

Building a gesture-based interface
with PyAutoGUI
Now that we can recognize the hand gestures with the Raspberry Pi
Pico, we must build a touchless interface for YouTube video
playback.

In this recipe, we will implement a Python script to read the
recognized motion that's transmitted over the serial and use the

https://numpy.org/doc/stable/reference/generated/numpy.roll.html
https://numpy.org/doc/stable/reference/generated/numpy.roll.html

PyAutoGUI library to build a gesture-based interface to play, pause,
mute, unmute, and change YouTube videos.

The following Python script contains the code that's referred to in
this recipe:

07_gesture_based_ui.py:

https://github.com/PacktPublishing/TinyML-
Cookbook/blob/main/Chapter06/PythonScripts/07_gesture_based_ui.
py.

Getting ready

The Python script that we will develop in this recipe will not be
implemented in Google Colaboratory because that requires accessing
the local serial port, keyboard, and monitor. Therefore, we will write
the program in a local Python development environment.

We only need two libraries to build our gesture-based interface:
pySerial and PyAutoGUI.

PySerial will be used to grab the predicted gesture that will be
transmitted over serial, similar to what we saw in Chapter 5, Indoor
Scene Classification with TensorFlow Lite for Microcontrollers and the
Arduino Nano.

The identified movement, in turn, will perform one of the following
three YouTube video playback actions:

https://github.com/PacktPublishing/TinyML-Cookbook/blob/main/Chapter06/PythonScripts/07_gesture_based_ui.py
https://github.com/PacktPublishing/TinyML-Cookbook/blob/main/Chapter06/PythonScripts/07_gesture_based_ui.py
https://github.com/PacktPublishing/TinyML-Cookbook/blob/main/Chapter06/PythonScripts/07_gesture_based_ui.py

Figure 6.29 – Table reporting the gesture mapping

Since YouTube offers keyboard shortcuts for the preceding actions
(https://support.google.com/youtube/answer/7631406), we will use
PyAutoGUI to simulate the keyboard keys (keystrokes) that are
pressed, as shown in the following table:

Figure 6.30 – Keyboard shortcuts for the YouTube playback actions

For example, if the microcontroller returns circle over the serial, we
will need to simulate the press of the m key.

https://support.google.com/youtube/answer/7631406

How to do it…

Ensure you have installed PyAutoGUI in your local Python
development environment (for example, pip install pyautogui).
After that, create a new Python script and import the following
libraries:
import serial

import pyautogui

Now, follow these steps to build a touchless interface with
PyAutoGUI:

1. Initialize pySerial with the port and baud rate that's used by the
Raspberry Pi Pico::
port = '/dev/ttyACM0'

baudrate = 115600

ser = serial.Serial()

ser.port = port

ser.baudrate = baudrate

Once initialized, open the serial port and discard the content in the
serial input buffer:
ser.open()

ser.reset_input_buffer()

2. Create a utility function to return a line from the serial port as a
string:
def serial_readline():

 data = ser.readline

 return data.decode("utf-8").strip()

3. Use a while loop to read the serial data line by line:

while True:

 data_str = serial_readline()

For each line, check whether we have a circle, cross, or pan
motion.

If we have a circle motion, press the m key to mute/unmute:

if str(data_str) == "circle":

 pyautogui.press('m')

If we have a cross motion, press the k key to play/pause:

if str(data_str) == "cross":

 pyautogui.press('k')

If we have a pan motion, press the Shift + N hotkey to move to the
next video:
if str(data_str) == "pan":

 pyautogui.hotkey('shift', 'n')

4. Start the Python script while ensuring your Raspberry Pi Pico is
running the sketch that we developed in the previous recipe.

Next, open YouTube from your web browser, play a video, and have
your Raspberry Pi Pico in front of you. Now, if you make any of the
three movements that the ML model can recognize (circle, cross, or

pan), you will be able to control the YouTube video playback with
gestures!

Chapter 7: Running a Tiny CIFAR-10
Model on a Virtual Platform with the
Zephyr OS
Prototyping a TinyML application directly on a physical device is
really fun because we can instantly see our ideas at work in
something that looks and feels like the real thing. However, before
any application comes to life, we need to ensure that the models
work as expected and, possibly, among different devices. Testing
and debugging applications directly on microcontroller boards often
requires a lot of development time. The main reason for this is the
necessity to upload a program into a device for every change in
code. However, virtual platforms can come in handy to make testing
more straightforward and faster.

In this chapter, we will build an image classification application with
TensorFlow Lite for Microcontrollers (TFLu) for an emulated
Arm Cortex-M3 microcontroller. We will start by installing the
Zephyr OS, the primary framework used in this chapter to
accomplish our task. Next, we will design a tiny quantized CIFAR-
10 model with TensorFlow (TF). This model will be capable of
running on a microcontroller with only 256 KB of program memory
and 64 KB of RAM. In the end, we will deploy an image classification
application on an emulated Arm Cortex-M3 microcontroller through
Quick Emulator (QEMU).

The aim of this chapter is to learn how to build and run a TFLu-
based application with the Zephyr OS on a virtual platform and
provide practical advice on the design of an image classification
model for memory-constrained microcontrollers.

In this chapter, we're going to implement the following recipes:

Getting started with the Zephyr OS

Designing and training a tiny CIFAR-10 model

Evaluating the accuracy of the TFLite model

Converting a NumPy image to a C-byte array

Preparing the skeleton of the TFLu project

Building and running the TFLu application on QEMU

Technical requirements
To complete all the practical recipes of this chapter, we will need the
following:

A laptop/PC with either Ubuntu 18.04+ or later on x86_64

The source code and additional material are available in the
Chapter07 file (https://github.com/PacktPublishing/TinyML-
Cookbook/tree/main/Chapter07).

Getting started with the Zephyr OS

https://github.com/PacktPublishing/TinyML-Cookbook/tree/main/Chapter07
https://github.com/PacktPublishing/TinyML-Cookbook/tree/main/Chapter07

In this recipe, we will install the Zephyr project, the framework used
in this chapter to build and run the TFLu application on the emulated
Arm Cortex-M3 microcontroller. At the end of this recipe, we will
check whether everything works as expected by running a sample
application on the virtual platform considered for our project.

Getting ready

To get started with this first recipe, we need to know what the
Zephyr project is about.

Zephyr (https://zephyrproject.org/) is an open source Apache 2.0
project that provides a small-footprint Real-Time Operating
System (RTOS) for various hardware platforms based on multiple
architectures, including Arm Cortex-M, Intel x86, ARC, Nios II, and
RISC-V. The RTOS has been designed for memory-constrained
devices with security in mind.

Zephyr does not provide just an RTOS, though. It also offers a
Software Development Kit (SDK) with a collection of ready-to-
use examples and tools to build Zephyr-based applications for
various supported devices, including virtual platforms through
QEMU.

QEMU (https://www.qemu.org/) is an open source machine emulator
that allows us to test programs without using real hardware. The
Zephyr SDK supports two QEMU Arm Cortex-M-based
microcontrollers, which are as follows:

https://zephyrproject.org/
https://www.qemu.org/

The BBC micro:bit (https://microbit.org/) with the Arm Cortex-M0

Texas Instruments' LM3S6965
(https://www.ti.com/product/LM3S6965) with the Arm Cortex-M3

From the preceding two QEMU platforms, we will use the
LM3S6965. Our choice fell to the Texas Instruments board because
it has a bigger RAM capacity than the BBC micro:bit. In fact,
although the devices have the same program memory size (256 KB),
LM3S6965 has 64 KB of RAM. Unfortunately, the BBC micro:bit has
only 16 KB of RAM, not enough for running a CIFAR-10 model.

How to do it…

The Zephyr installation consists of the following steps:

1. Installing Zephyr prerequisites

2. Getting Zephyr source code and related Python dependencies

3. Installing the Zephyr SDK

IMPORTANT NOTE
The installation guide reported in this section refers to Zephyr 2.7.0 and the
Zephyr SDK 0.13.1.

Before getting started, we recommend you have the Python Virtual
Environment (virtualenv) tool installed to create an isolated
Python environment. If you haven't installed it yet, open your
terminal and use the following pip command:

https://microbit.org/
https://www.ti.com/product/LM3S6965

$ pip install virtualenv

To launch the Python virtual environment, create a new directory
(for example, zephyr):
$ mkdir zephyr && cd zephyr

Then, create a virtual environment inside the directory just created:
$ python -m venv env

The preceding command creates the env directory with all the
executables and Python packages required for the virtual
environment.

To use the virtual environment, you just need to activate it with the
following command:
$ source env/bin/activate

If the virtual environment is activated, the shell will be prefixed with
(env):

(env)$

TIP
You can deactivate the Python virtual environment at any time by typing
deactivate in the shell.

The following steps will help you prepare the Zephyr environment
and run a simple application on the virtual Arm Cortex-M3-based
microcontroller:

1. Follow the instructions reported in the Zephyr Getting Started
Guide

(https://docs.zephyrproject.org/2.7.0/getting_started/index.html)
until the Install a Toolchain section. All Zephyr modules will be
available in the ~/zephyrproject directory.

2. Navigate into the Zephyr source code directory and enter the
samples/synchronization folder:
$ cd ~/zephyrproject/zephyr/samples/synchronization

Zephyr provides ready-to-use applications in the samples/ folder to
demonstrate the usage of RTOS features. Since our goal is to run an
application on a virtual platform, we consider the synchronization
sample because it does not require interfacing with external
components (for example, LEDs).

3. Build the pre-built synchronization sample for qemu_cortex_m3:

$ west build -b qemu_cortex_m3 .

The sample test is compiled with the west command
(https://docs.zephyrproject.org/latest/guides/west/index.html). West
is a tool developed by Zephyr to manage multiple repositories
conveniently with a few command lines. However, West is more than
a repository manager. In fact, the tool can also plug additional
functionalities through extensions. Zephyr exploits this pluggable
mechanism to offer the commands to compile, flash, and debug
applications
(https://docs.zephyrproject.org/latest/guides/west/build-flash-
debug.html).

https://docs.zephyrproject.org/2.7.0/getting_started/index.html
https://docs.zephyrproject.org/latest/guides/west/index.html
https://docs.zephyrproject.org/latest/guides/west/build-flash-debug.html
https://docs.zephyrproject.org/latest/guides/west/build-flash-debug.html

The west command used to compile the application has the following
syntax:
$ west build -b <BOARD> <EXAMPLE-TO-BUILD>

Let's break down the preceding command:

<BOARD>: This is the name of the target platform. In our case, it
is the QEMU Arm Cortex-M3 platform (qemu_cortex_m3).

<EXAMPLE-TO-BUILD>: This is the path to the sample test to
compile.

Once we have built the application, we can run it on the target
device.

4. Run the synchronization example on the LM3S6965 virtual
platform:
$ west build -t run

To run the application, we just need to use the west build
command, followed by the build system target (-t) as a command-
line argument. Since we had specified the target platform when we
built the application, we can simply pass the run option to upload
and run the program on the device.

If Zephyr is installed correctly, the synchronization sample will run
on the virtual Arm Cortex-M3 platform and print the following
output:
threadA: Hello World from arm!

threadB: Hello World from arm!

threadA: Hello World from arm!

threadB: Hello World from arm!

You can now close QEMU by pressing Ctrl + A.

Designing and training a tiny
CIFAR-10 model
The tight memory constraint on LM3S6965 forces us to design a
model with extremely low memory utilization. In fact, the target
microcontroller has four times less memory capacity than Arduino
Nano.

Despite this challenging constraint, in this recipe, we will be
leveraging the following tiny model for the CIFAR-10 image
classification, capable of running on LM3S6965:

Figure 7.1 – A model tailored for CIFAR-10 dataset image classification

The preceding network will be designed with TF and the Keras API.

The following Colab file (in the Designing and training a tiny CIFAR-
10 model section) contains the code referred to in this recipe:

prepare_model.ipynb

(https://github.com/PacktPublishing/TinyML-
Cookbook/blob/main/Chapter07/ColabNotebooks/prepare_model.ipy
nb).

Getting ready

The network tailored in this recipe takes inspiration from the success
of the MobileNet V1 on the ImageNet dataset classification. Our
model aims to classify the 10 classes of the CIFAR-10 dataset:
airplane, automobile, bird, cat, deer, dog, frog, horse, ship, and
truck.

The CIFAR-10 dataset is available at
https://www.cs.toronto.edu/~kriz/cifar.html and consists of 60,000
RGB images with 32 x 32 resolution.

To understand why the proposed model can run successfully on
LM3S6965, we want to outline the architectural design choices that
make this network suitable for our target device.

As shown in Figure 7.1, the model has a convolution base, which
acts as a feature extractor, and a classification head, which takes the

https://github.com/PacktPublishing/TinyML-Cookbook/blob/main/Chapter07/ColabNotebooks/prepare_model.ipynb
https://github.com/PacktPublishing/TinyML-Cookbook/blob/main/Chapter07/ColabNotebooks/prepare_model.ipynb
https://github.com/PacktPublishing/TinyML-Cookbook/blob/main/Chapter07/ColabNotebooks/prepare_model.ipynb
https://www.cs.toronto.edu/~kriz/cifar.html

learned features to perform the classification.

Early layers have large spatial dimensions and low Output Feature
Maps (OFMs) to learn simple features (for example, simple lines).
Deeper layers, instead, have small spatial dimensions and a high
OFMs to learn complex features (for example, shapes).

The model uses pooling layers to halve the spatial dimensionality of
the tensors and reduce the risk of overfitting when increasing the
OFM. Generally, we want several activation maps for deep layers to
combine as many complex features as possible. Therefore, the idea
is to get smaller spatial dimensions to afford more OFMs.

In the following subsection, we will explain the design choice in
using Depthwise Separable Convolution (DWSC) layers instead
of the standard convolution 2D.

Replacing convolution 2D with DWSC
DWSC is the layer that made MobileNet V1 a success on the
ImageNet dataset and the heart of our proposed convolution-based
architecture. This operator took the lead in MobileNet V1 to produce
an accurate model that can also run on a device with limited
memory and computational resources.

As seen in Chapter 5, Indoor Scene Classification with TensorFlow
Lite for Microcontrollers and the Arduino Nano, and shown in the
following figure, DWSC is a depthwise convolution followed by a
convolution layer with a 1 x 1 kernel size (that is, pointwise
convolution):

Figure 7.2 – The DWSC

To demonstrate the efficiency of this operator, consider the first
DWSC layer in the network presented in Figure 7.1. As shown in the
following diagram, the input tensor has a 32 x 32 x 16 dimension
while the output tensor has a 32 x 32 x 24 dimension:

Figure 7.3 – The first DWSC in the CIFAR-10 model

If we replace the DWSC with a regular convolution 2D with a 3 x 3
filter size, we will need 3,480 trainable parameters, of which 3,456
are weights (3 x 3 x 16 x 24), and 24 are biases. The DWSC,
instead, just needs 560 trainable parameters, distributed as follows:

144 weights and 16 biases for the depthwise convolution layer
with a 3 x 3 filter size

384 weights and 24 biases for the pointwise convolution

Therefore, in this particular case, the DWSC layer yields roughly six
times fewer trainable parameters than a regular convolution 2D
layer.

The model size reduction is not the only benefit this layer offers. The
other advantage in using the DWSC is given by the reduction of the

arithmetic operations. In fact, although both layers are made of
several Multiply-Accumulate (MAC) operations, the DWSC needs
considerably fewer MAC operations than convolution 2D.

This aspect is demonstrated by the following two formulas for the
calculation of the total MAC operations for convolution 2D and the
DWSC:

The formula is broken down as follows:

: The total MAC operations for
convolution 2D

: The total MAC operations for the DWSC

: The filter size

: The width and height of the output
tensor

: The number of input and output feature
maps

The calculation of the total MAC for the DWSC has two parts. The

first part
calculates the MAC operations for depthwise convolution, assuming
that the input and output tensors have the same feature maps. The

second part
calculates the MAC operations for the pointwise convolution.

If we use the preceding two formulas for the case reported in Figure
7.3, we will discover that convolution 2D needs 3,583,944 operations
while DWSC needs only 540,672 operations. Therefore, there is a
computational complexity reduction of over six times with DWSC.

Hence, the efficiency of the DWSC layer is double since it decreases
the trainable parameters and arithmetic operations involved.

Now that we know the benefits of this layer, let's discover how to
design a model that can run on our target device.

Keeping the model memory requirement
under control
Our goal is to produce a model that can fit in 256 KB of program
memory and run with 64 KB of RAM. The program memory usage
can be obtained directly from the .tflite model generated.
Alternatively, you can check the Total params value returned by
the Keras summary() method
(https://keras.io/api/models/model/#summary-method) to have an
indication of how big the model will be. Total params represents

https://keras.io/api/models/model/#summary-method

the number of trainable parameters, and it is affected mainly by the
OFM and layers. In our case, the convolution base has five trainable
layers with a maximum of 192 activation maps. This choice will make
our model utilize just 30% of the total program memory.

The estimation of the RAM utilization is a bit more complicated and
depends upon the model architecture. All the non-constant variables,
such as the network input, output, and intermediate tensors, stay
in RAM. However, although the network may need several tensors,
TFLu has a memory manager capable of efficiently providing
portions of memory at runtime. For a sequential model such as ours,
where each layer has one input and one output tensor, a ballpark
figure for the RAM utilization is given by the sum of the following:

The memory required for the model input and output tensors

The two largest intermediate tensors

In our network, the first DWSC produces the largest intermediate
tensor with 24,576 elements (32 x 32 x 24), as shown in the
following figure:

Figure 7.4 – The first DWSC produces the biggest intermediate tensor

As you can see from the preceding diagram, the first DWSC
produces a tensor with 24 OFMs, which we found as a good
compromise between accuracy and RAM utilization. However, you
may consider reducing this further to make the model even smaller
and more performant.

How to do it…

Create a new Colab project and follow these steps to design and
train a quantized CIFAR-10 model with TFLite:

1. Download the CIFAR-10 dataset:
(train_imgs, train_lbls), (test_imgs, test_lbls) =

datasets.cifar10.load_data()

2. Normalize the pixel values between 0 and 1:

train_imgs = train_imgs / 255.0

test_imgs = test_imgs / 255.0

This step ensures that all data is on the same scale.

3. Define a Python function to implement the DWSC:
def separable_conv(i, ch):

 x = layers.DepthwiseConv2D((3,3), padding="same")(i)

 x = layers.BatchNormalization()(x)

 x = layers.Activation("relu")(x)

 x = layers.Conv2D(ch, (1,1), padding="same")(x)

 x = layers.BatchNormalization()(x)

 return layers.Activation("relu")(x)

The separable_conv() function accepts the following input
arguments:

i: Input to feed to the depthwise convolution 2D

ch: The number of OFMs to produce

The batch normalization layer standardizes the input to a layer and
makes the model training faster and more stable.

4. Design the convolution base, as described in Figure 7.1:
input = layers.Input((32,32,3))

x = layers.Conv2D(16, (3, 3), padding='same')(input)

x = layers.BatchNormalization()(x)

x = layers.Activation("relu")(x)

x = separable_conv(0, x, 24)

x = layers.MaxPooling2D((2, 2))(x)

x = separable_conv(0, x, 48)

x = layers.MaxPooling2D((2, 2))(x)

x = separable_conv(0, x, 96)

x = separable_conv(0, x, 192)

x = layers.MaxPooling2D((2, 2))(x)

We use pooling layers to reduce the spatial dimensionality of the
feature maps through the network. Although we can use DWSC with
non-unit strides to accomplish a similar sub-sampling task, we
preferred pooling layers to keep the number of trainable parameters
low.

5. Design the classification head:
x = layers.Flatten()(x)

x = layers.Dropout(0.2)(x)

x = layers.Dense(10)(x)

6. Generate the model and print its summary:
model = Model(input, x)

model.summary()

As shown in the following screenshot, the model summary returns
roughly 60,000 parameters:

Figure 7.5 – A CIFAR-10 model summary (trainable parameters)

In the case of 8-bit quantization, 60,000 floating-point parameters
correspond to 60,000 8-bit integer values. Therefore, the weights
contribute to the model size with 60 KB, well away from the 256 KB
maximum target. However, we should not consider this number as
the model size, since what we deploy on a microcontroller is the
TFLite file, which also contains the network architecture and the
quantization parameters.

A ballpark figure for the RAM utilization can be estimated from the
tensor size of each intermediate tensor in the network. This
information can be extrapolated from the output of
model.summary(). As anticipated in the previous Getting ready
section, the intermediate tensors of the first DWSC layer have the
largest number of elements. The following screenshot is taken from
the output of model.summary() and reports the tensor shapes for
these two tensors:

Figure 7.6 – A CIFAR-10 model summary (the first DWSC)

As you can see from the DWSC area marked in the preceding
screenshot, the tensors with the largest number of elements are as
follows:

The output of act0_dwsc2: (None, 32, 32, 16)

The output of conv0_dwsc2: (None, 32, 32, 24)

Therefore, the expected memory utilization for the intermediate
tensor should be in the order of 41 KB. To this number, we should
add the memory for the input and output nodes to get a more
precise ballpark figure of the RAM usage. The input and output
tensors need 3,082 bytes, of which 3,072 bytes are for the input and
10 bytes are for the output. In total, we expect to use 44 KB of RAM
during the model inference, which is less than the 64 KB target.

NOTE
In Figure 7.6, there are three layers with the (None, 32, 32, 16) output shape:
conv0_dwsc2, bn1_dwsc2, and act1_dwsc2. However, only the pointwise
convolution layer (conv0_dwsc2) counts for memory utilization of the
intermediate tensors because batch normalization (bn1_dwsc2) and activation
(act1_dwsc2) will be fused into the convolution (conv0_dwsc2) by the TFLite
converter.

7. Compile and train the model with 10 epochs:
model.compile(optimizer='adam', loss =

tf.keras.losses.SparseCategoricalCrossentropy(from_logits=

True), metrics=['accuracy'])

model.fit(train_imgs, train_lbls, epochs=10,

validation_data=(test_imgs, test_lbls))

After 10 epochs, the model should obtain an accuracy of 73% on the
validation dataset.

8. Save the TF model as SavedModel:

model.save("cifar10")

Our CIFAR-10 model is now ready for being quantized with the
TFLite converter.

Evaluating the accuracy of the
TFLite model
The tiny model just trained can classify the 10 classes of CIFAR-10
with an accuracy of 73%. However, what is the model's accuracy of
the quantized variant generated by the TFLite converter?

In this recipe, we will quantize the model with the TFLite converter
and show how to perform this accuracy evaluation on the test
dataset with the TFLite Python interpreter. After the accuracy
evaluation, we will convert the TFLite model to a C-byte array.

The following Colab file (the Evaluating the accuracy of the
quantized model section) contains the code referred to in this recipe:

prepare_model.ipynb:

https://github.com/PacktPublishing/TinyML-
Cookbook/blob/main/Chapter07/ColabNotebooks/prepare_model.ipy
nb.

Getting ready

In this section, we will explain why the accuracy of the TFLite model
may differ from the trained one.

https://github.com/PacktPublishing/TinyML-Cookbook/blob/main/Chapter07/ColabNotebooks/prepare_model.ipynb
https://github.com/PacktPublishing/TinyML-Cookbook/blob/main/Chapter07/ColabNotebooks/prepare_model.ipynb
https://github.com/PacktPublishing/TinyML-Cookbook/blob/main/Chapter07/ColabNotebooks/prepare_model.ipynb

As we know, the trained model needs to be converted to a more
compact and lightweight representation before being deployed on a
resource-constrained device such as a microcontroller.

Quantization is the essential part of this step to make the model
small and improve the inference performance. However, post-training
quantization may change the model accuracy because of the
arithmetic operations at a lower precision. Therefore, it is crucial to
check whether the accuracy of the generated .tflite model is
within an acceptable range before deploying it into the target device.

Unfortunately, TFLite does not provide a Python tool for the model
accuracy evaluation. Hence, we will use the TFLite Python
interpreter to accomplish this task. The interpreter will allow us to
feed the input data to the network and read the classification result.
The accuracy will be reported as the fraction of samples correctly
classified from the test dataset.

How to do it…

Follow these steps to evaluate the accuracy of the quantized CIFAR-
10 model on the test dataset:

1. Select a few hundred samples from the train dataset to calibrate
the quantization:
cifar_ds =

tf.data.Dataset.from_tensor_slices(train_images).batch(1)

def representative_data_gen():

 for i_value in cifar_ds.take(100):

 i_value_f32 = tf.dtypes.cast(i_value, tf.float32)

 yield [i_value_f32]

The TFLite converter uses the representative dataset to estimate
the quantization parameters.

2. Initialize the TFLite converter to perform the 8-bit quantization:
tflite_conv =

tf.lite.TFLiteConverter.from_saved_model("cifar10")

tflite_conv.representative_dataset =

tf.lite.RepresentativeDataset(representative_data_gen)

tflite_conv.optimizations = [tf.lite.Optimize.DEFAULT]

tflite_conv.target_spec.supported_ops =

[tf.lite.OpsSet.TFLITE_BUILTINS_INT8]

tflite_conv.inference_input_type = tf.int8

tflite_conv.inference_output_type = tf.int8

For quantizing the TF model to 8-bit, we import the SavedModel
directory (cifar10) into the TFLite converter and enforce full integer
quantization.

3. Convert the model to the TFLite file format and save it as
.tflite:

tfl_model = tfl_conv.convert()

open("cifar10.tflite", "wb").write(tfl_model)

4. Evaluate the TFLite model size:

print(len(tfl_model))

The expected model size is 81,304 bytes. As you can see, the model
can fit in 256 KB of program memory.

5. Evaluate the accuracy of the quantized model using the test
dataset. To do so, start the TFLite interpreter and allocate the
tensors:
tfl_inter = tf.lite.Interpreter(model_content=tfl_model)

tfl_inter.allocate_tensors()

Get the quantization parameters of the input and output nodes:
i_details = tfl_inter.get_input_details()[0]

o_details = tfl_inter.get_output_details()[0]

i_quant = i_details["quantization_parameters"]

i_scale = i_quant['scales'][0]

i_zero_point = i_quant['zero_points'][0]

o_scale = o_quant['scales'][0]

o_zero_point = o_quant['zero_points'][0]

Initialize a variable to zero (num_correct_samples) to keep track of
the correct classifications:
num_correct_samples = 0

num_total_samples = len(list(test_imgs))

Iterate over the test samples:
for i_value, o_value in zip(test_imgs, test_lbls):

 input_data = i_value.reshape((1, 32, 32, 3))

 i_value_f32 = tf.dtypes.cast(input_data, tf.float32)

Quantize each test sample:
 i_value_f32 = i_value_f32 / i_scale + i_zero_point

 i_value_s8 = tf.cast(i_value_f32, dtype=tf.int8)

Initialize the input node with the quantized sample and start the
inference:
 tfl_conv.set_tensor(i_details["index"], i_value_s8)

 tfl_conv.invoke()

Read the classification result and dequantize the output to a floating
point:
 o_pred = tfl_conv.get_tensor(o_details["index"])[0]

 o_pred_f32 = (o_pred - o_zero_point) * o_scale

Compare the classification result with the expected output class:
 if np.argmax(o_pred_f32) == o_value:

 num_correct_samples += 1

6. Print the accuracy of the quantized TFLite model:
print("Accuracy:", num_correct_samples/num_total_samples)

After a few minutes, the accuracy result will be printed in the output
log. The expected accuracy should still be around 73%.

7. Convert the TFLite model to a C-byte array with xxd:
!apt-get update && apt-get -qq install xxd

!xxd -i cifar10.tflite > model.h

You can download the model.h and cifar10.tflite files from
Colab's left pane.

Converting a NumPy image to a C-
byte array
Our application will be running on a virtual platform with no access
to a camera module. Therefore, we need to supply a valid test input
image into our application to check whether the model works as
expected.

In this recipe, we will get an image from the test dataset that must
return a correct classification for the ship class. The sample will then
be converted to an int8_t C array and saved as an input.h file.

The following Colab file (refer to the Converting a NumPy image to a
C-byte array section) contains the code referred to in this recipe:

prepare_model.ipynb:

https://github.com/PacktPublishing/TinyML-
Cookbook/blob/main/Chapter07/ColabNotebooks/prepare_model.ipy
nb

Getting ready

To get ready for this recipe, we just need to know how to prepare
the C file containing the input test image. The structure of this file is
quite simple and reported in the following figure:

https://github.com/PacktPublishing/TinyML-Cookbook/blob/main/Chapter07/ColabNotebooks/prepare_model.ipynb
https://github.com/PacktPublishing/TinyML-Cookbook/blob/main/Chapter07/ColabNotebooks/prepare_model.ipynb
https://github.com/PacktPublishing/TinyML-Cookbook/blob/main/Chapter07/ColabNotebooks/prepare_model.ipynb

Figure 7.7 – The C header file structure for the input test image

As you can observe from the file structure, we only need an array
and two variables to describe our input test sample, which are as
follows:

g_test: An int8_t array containing a ship image with the
normalized and quantized pixel values. The pixels stored in the
array (// data) should be comma-separated integer values.

g_test_len: An integer variable for the array size. Since the input
model is an RGB image with a 32 x 32 resolution, we expect an

array with 3,072 int8_t elements.

g_test_ilabel: An integer variable for the class index of the
input test image. Since we have a ship image, the expected class
index is eight.

The input image will be obtained from the test dataset. Therefore,
we will need to implement a function in Python to convert an image
stored in NumPy format to a C array.

How to do it…

Follow the these steps to generate a C header file containing a ship
image from the test dataset:

1. Write a function to convert a 1D NumPy array of np.int8 values
into a single string of comma-separated integer values:
def array_to_str(data):

 NUM_COLS = 12

 val_string = ''

 for i, val in enumerate(data):

 val_string += str(val)

 if (i + 1) < len(data):

 val_string += ','

 if (i + 1) % NUM_COLS == 0:

 val_string += '\n'

 return val_string

In the preceding code, the NUM_COLS variable limits the number of
values on a single row. In our case, NUM_COLS is set to 12 so that we
can add a newline character after every 12 values.

2. Write a function to generate a C header file containing the input
test image stored in an int8_t array. To do so, you can have a
template string with the following fields:

The size of the array (size)

The values to put in the array (data)

The index of the class assigned to the input image
(ilabel)

def gen_h_file(size, data, ilabel):

 str_out = f'int8_t g_test[] = '

 str_out += "\n{\n"

 str_out += f'{data}'

 str_out += '};\n'

 str_out += f"const int g_test_len = {size};\n"

 str_out += f"const int g_test_ilabel = {ilabel};\n"

 return str_out

As you can see from the preceding code, the function expects
{data} to be a single string of comma-separated integer values.

3. Create a pandas DataFrame from the CIFAR-10 test dataset:
imgs = list(zip(test_imgs, test_lbls))

cols = [Image, 'Label']

df = pd.DataFrame(imgs, columns = cols)

4. Get only ship images from the pandas DataFrame:

cond = df['Label'] == 8

ship_samples = df[cond]

In the preceding code, 8 is the index for the ship class.

5. Iterate over the ship images and run the inference:
c_code = ""

for index, row in ship_samples.iterrows():

 i_value = np.asarray(row['Image'].tolist())

 o_value = np.asarray(row['Label'].tolist())

 o_pred_f32 = classify(i_value, o_value)

6. Check whether the classification returns a ship. If so, convert the
input image into a C-byte array and exit the loop:
 if np.argmax(o_pred_f32) == o_value:

 i_value_f32 = i_value / i_scale + i_zero_point

 i_value_s8 = i_value_f32.astype(dtype=np.uint8)

 i_value_s8 = i_value_s8.ravel()

 # Generate a string from NumPy array

 val_string = array_to_str(i_value_s8)

 # Generate the C header file

 c_code = gen_h_file(i_value_s8.size,

val_string, "8")

 break

7. Save the generated code in the input.h file:
with open("input.h", 'w') as file:

 file.write(c_code)

You can download the input.h file containing the input test image
from Colab's left pane.

Preparing the skeleton of the TFLu
project
Only a few steps are separating us from the completion of this
project. Now that we have the input test image, we can leave
Colab's environment and focus on the application with the Zephyr
OS.

In this recipe, we will prepare the skeleton of the TFLu project from
the pre-built TFLu hello_world sample available in the Zephyr SDK.

The following C files contain the code referred to in this recipe:

main.c, main_functions.cc, and main_functions.h:

https://github.com/PacktPublishing/TinyML-
Cookbook/blob/main/Chapter07/ZephyrProject/Skeleton

Getting ready

https://github.com/PacktPublishing/TinyML-Cookbook/blob/main/Chapter07/ZephyrProject/Skeleton
https://github.com/PacktPublishing/TinyML-Cookbook/blob/main/Chapter07/ZephyrProject/Skeleton

This section aims to provide the basis for starting a new TFLu
project with the Zephyr OS from scratch.

The easiest way to create a project is to copy and edit one of the
pre-built samples for TFLu. The samples are available in the
~/zephyrproject/zephyr/samples/modules/tflite-micro folder. At
the time of writing, there are two ready-to-use examples:

hello_world: A sample showing the basics of TFLu to replicate a
sine function:
https://docs.zephyrproject.org/latest/samples/modules/tflite-
micro/hello_world/README.html

magic_wand: A sample showing how to implement a TFLu
application to recognize gestures with accelerometer data:
https://docs.zephyrproject.org/latest/samples/modules/tflite-
micro/hello_world/README.html

In this recipe, we will base our application on the hello_world
application, and the following screenshot shows what you should
find in the sample directory:

Figure 7.8 – The contents of the hello_world sample folder

https://docs.zephyrproject.org/latest/samples/modules/tflite-micro/hello_world/README.html
https://docs.zephyrproject.org/latest/samples/modules/tflite-micro/hello_world/README.html
https://docs.zephyrproject.org/latest/samples/modules/tflite-micro/hello_world/README.html
https://docs.zephyrproject.org/latest/samples/modules/tflite-micro/hello_world/README.html

The hello_world folder contains three subfolders, but only src/ is of
interest to us because it contains the source code for the application.
However, not all the files in src/ are essential for our project. For
example, assert.cc, constants.h, constants.c, model.cc, model.h,
output_handler.cc, and output_handler.h are only required for the
sine wave sample application. Therefore, the only C files needed for
a new TFLu project are as follows:

main.c: This file contains the standard C/C++ main() function,
responsible for starting and terminating the program execution.
The main() function consists of a setup() function called once
and a loop() function executed 50 times. Therefore, the main
function replicates more or less the behavior of an Arduino
program.

main_functions.h and main_functions.cc: These files contain
the declaration and definition of the setup() and loop()
functions.

In the end, the CMakeList.txt and prj.conf files in the hello_world
directory are required for building the application. We will learn more
about these files in the last recipe of this chapter.

How to do it…

Open the terminal and follow these steps to create a new TFLu
project:

1. Navigate into the
~/zephyrproject/zephyr/samples/modules/tflite-micro/

directory and create a new folder named cifar10:
$ cd ~/zephyrproject/zephyr/samples/modules/tflite-micro/

$ mkdir cifar10

2. Copy the content of the hello_world directory to cifar10:
$ cp -r hello_world/* cifar10

3. Navigate into the cifar10 directory and remove the following
files from the src/ directory:

constants.h, constants.c, model.c, model.h, output_handler.cc,
output_handler.h, and assert.cc

These files can be removed because they are only required for the
sine wave sample application, as explained in the Getting ready
section of this recipe.

4. Copy the model.h and input.h files generated in the previous
two recipes into the cifar10/src folder.

Once you have copied the files, the cifar10/src folder should
contain the following files:

Figure 7.9 – The contents of the hello_word/src folder

Before continuing, ensure you have the files listed in the previous
screenshot.

Now, open your default C editor (for example, Vim) to make some
code changes in the main.c and main_functions.cc files.

5. Open the main.c file and replace for (int i = 0; i <
NUM_LOOPS; i++) with while(true). The code in the main.c file
should become the following:
int main(int argc, char *argv[]) {

 setup();

 while(true) {

 loop();

 }

 return 0;

}

This preceding code replicates exactly the behavior of an Arduino
sketch, where setup() is called once and loop() is repeated
indefinitely.

6. Open main_functions.cc and remove the following:

constants.h and output_handler.h from the list of
header files.

The inference_count variable and all its usages. This
variable will not be required in our application.

The code within the loop() function.

Next, replace g_model with the name of the array in model.h. The
g_model variable is used when calling tflite::GetModel().

Now that we have the project structure ready, we can finally
implement our application.

Building and running the TFLu
application on QEMU
The skeleton of our Zephyr project is ready, so we just need to
finalize our application to classify our input test image.

In this recipe, we will see how to build the TFLu application and run
the program on the emulated Arm Cortex-M3-based microcontroller.

The following C files contain the code referred to in this recipe:

main.c, main_functions.cc, and main_functions.h:

https://github.com/PacktPublishing/TinyML-
Cookbook/blob/main/Chapter07/ZephyrProject/CIFAR10

Getting ready

Most of the ingredients required for developing this recipe are
related to TFLu and have already been discussed in earlier chapters,
such as Chapter 3, Building a Weather Station with TensorFlow Lite
for Microcontrollers, or Chapter 5, Indoor Scene Classification with

https://github.com/PacktPublishing/TinyML-Cookbook/blob/main/Chapter07/ZephyrProject/CIFAR10
https://github.com/PacktPublishing/TinyML-Cookbook/blob/main/Chapter07/ZephyrProject/CIFAR10

TensorFlow Lite for Microcontrollers and the Arduino Nano. However,
there is one small detail of TFLu that has a big impact on the
program memory usage that we haven't discussed yet.

In this section, we will talk about the
tflite::MicroMutableOpResolver interface.

As we know from our previous projects, the TFLu interpreter is
responsible for preparing the computation for a given model. One of
the things that the interpreter needs to know is the function pointer
for each operator to run. So far, we have provided this information
with tflite::AllOpsResolver. However, tflite::AllOpsResolver is
not recommended because of the heavy program memory usage.
For example, this interface will prevent building our application
because of the low program memory capacity on the target device.
Therefore, TFLu offers tflite::MicroMutableOpResolver, an
alternative and more efficient interface to load only the operators
required by the model. To know which different operators the model
needs, you can visualize the TFLite model (.tflite) file with the
Netron web application (https://netron.app/).

How to do it…

Let's start this recipe by visualizing the architecture of our TFLite
CIFAR-10 model file (cifar10.tflite) with Netron.

The following screenshot shows a slice of our model visualized with
this tool:

https://netron.app/

Figure 7.10 – A visualization of a slice of the CIFAR-10 model in Netron
(courtesy of netron.app)

Inspecting the model with Netron, we can see that the model only
uses five operators: Conv2D, DepthwiseConv2D, MaxPool2D,
Reshape, and FullyConnected. This information will be used to
initialize tflite::MicroMutableOpResolver.

Now, open your default C editor and open the main_functions.cc
file.

Follow these steps to build the TFLu application:

1. Use the #include directives to add the header file of the input
test image (input.h):

#include "input.h"

2. Increase the arena size (tensor_arena_size) to 52,000:

constexpr int tensor_arena_size = 52000;

NOTE
The original variable name for the tensor arena is kTensorArenaSize. To
keep consistency with the lower_case naming convention used in the book,
we have renamed this variable to tensor_arena_size.

The TFLu tensor arena is the portion of memory allocated by the
user to accommodate the network input, output, intermediate
tensors, and other data structures required by TFLu. The arena size
should be a multiple of 16 to have a 16-byte data alignment.

As we have seen from the design of the CIFAR-10 model, the
expected RAM usage for the model inference is in the order of 44
KB. Therefore, 52,000 bytes is okay for our case because it is

greater than 44 KB, a multiple of 16, and less than 64 KB, the
maximum RAM capacity.

3. Replace uint8_t tensor_arena[tensor_arena_size] with
uint8_t *tensor_arena = nullptr:
uint8_t *tensor_arena = nullptr;

The tensor arena is too big for being placed in the stack. Therefore,
we should dynamically allocate this memory in the setup() function.

4. Declare a global tflite::MicroMutableOpResolver object to load
only the operations needed for running the CIFAR-10 model:
tflite::MicroMutableOpResolver<5> resolver;

This object is created by providing the maximum number of different
operations that the model requires as a template argument.

5. Declare two global variables for the output quantization
parameters:
float o_scale = 0.0f;

int32_t o_zero_point = 0;

6. In the setup() function, remove the instantiation of the
tflite::AllOpsResolver object. Next, load the operators used
by the model into the tflite::MicroMutableOpResolver object
(resolver) before the initialization of the TFLu interpreter:

resolver.AddConv2D();

resolver.AddDepthwiseConv2D();

resolver.AddMaxPool2D();

resolver.AddReshape();

resolver.AddFullyConnected();

static tflite::MicroInterpreter static_interpreter(model,

resolver, tensor_arena, tensor_arena_size,

error_reporter);

interpreter = &static_interpreter;

7. In the setup() function, get the output quantization parameters
from the output tensor:
const auto* o_quantization =

reinterpret_cast<TfLiteAffineQuantization*>(output-

>quantization.params);

o_scale = o_quantization->scale->data[0];

o_zero_point = o_quantization->zero_point->data[0];

8. In the loop() function, initialize the input tensor with the content
of the input test image:
 for(int i = 0; i < g_test_len; i++) {

 input->data.int8[i] = g_test[i];

 }

Next, run the inference:
 TfLiteStatus invoke_status = interpreter->Invoke();

9. After the model inference, return the output class with the
highest score:
 size_t ix_max = 0;

 float pb_max = 0;

 for (size_t ix = 0; ix < 10; ix++) {

 int8_t out_val = output->data.int8[ix];

 float pb = ((float)out_val - o_zero_point) * o_scale;

 if(pb > pb_max) {

 ix_max = ix;

 pb_max = pb;

 }

}

The preceding code iterates over the quantized output values and
returns the class (ix_max) with the highest score.

10. In the end, check whether the classification result (ix_max) is
equal to the label index assigned to the input test image
(g_test_label):
if(ix_max == g_test_ilabel) {

If so, print CORRECT classification! and return the classification
result:
 static const char *label[] = {"airplane", "automobile",

"bird", "cat", "deer", "dog", "frog", "horse", "ship",

"truck"};

 printf("CORRECT classification! %s\n", label[ix_max]);

 while(1);

}

Now, open the terminal, and use the following command to build the
project for qemu_cortex_m3:

$ cd ~/zephyrproject/zephyr/samples/modules/tflite-

micro/cifar10

$ west build -b qemu_cortex_m3 .

After a few seconds, the west tool should display the following
output in the terminal, confirming that the program has been
successfully compiled:

Figure 7.11 – The memory usage summary

From the summary generated by the west tool, you can see that our
CIFAR-10-based application uses 52.57% of program memory
(FLASH) and 6.92% of RAM (SRAM). However, we should not be
misled by RAM usage. In fact, the summary does not consider the
memory that we allocate dynamically. Therefore, to the 4,536 bytes
statically allocated in RAM, we should add the 52,000 bytes of the
tensor arena, which brings us to 88% of RAM utilization.

Now that the application is built, we can run it on the virtual
platform with the following command:
$ west build -t run

The west tool will boot the virtual device and return the following
output, confirming that the model correctly classified the image as a

ship:

Figure 7.12 – The expected output after the model inference

As you can see from the preceding screenshot, the virtual device
outputs the CORRECT classification message, confirming the
successful execution of our tiny CIFAR-10 model!

Join us on Discord!
Do not miss out on the opportunity to take your reading experience
beyond the pages. We have a dedicated channel on the Embedded
System Professionals community over Discord for you to read the
book with other users.

Join now to share your journey with the book, discuss queries with
other users and the author, share advice with others wherever you
can, and importantly build your projects in collaboration with so
many other users who have already joined us on the book club.

See you on the other side!

https://discord.com/invite/UCJTV3A2Qp

clbr://internal.invalid/book/OEBPS/B17710_07_Final_SK_ePub.xhtml

Chapter 8: Toward the Next TinyML
Generation with microNPU
Here, we are at the last stop of our journey into the world of
TinyML. Although this chapter may look like the end, it is actually the
beginning of something new and extraordinary for Machine
Learning (ML) at the very edge. In our journey, we have learned
how vital power consumption is for effective and long-lasting TinyML
applications. However, computing capacity is the key to unlocking
new use cases and making the "things" around us even more
intelligent. For this reason, a new, advanced processor has been
designed to extend the computational power and energy efficiency
of ML workloads. This processor is the Micro-Neural Processing
Unit (microNPU).

In this final chapter, we will discover how to run a quantized CIFAR-
10 model on a virtual Arm Ethos-U55 microNPU.

We will start this chapter by learning how this processor works and
installing the software dependencies to build and run the model on
the Arm Corstone-300 Fixed Virtual Platform (Corstone-300
FVP). Next, we will use the TVM compiler to convert the pretrained
TensorFlow Lite (TFLite) model into C/C++ code. In the end, we
will show how to compile and deploy the code generated by TVM
into Corstone-300 FVP to perform the inference with the Ethos-U55
microNPU.

The purpose of this chapter is to get familiar with the Arm Ethos-
U55 microNPU, a new class of processor for ML workloads on
microcontrollers.

ATTENTION
Since some of the tools presented in this chapter are still under heavy
development, there is the possibility that some instructions and tools may change
in the future. Therefore, we recommend checking out the software library
repositories using the Git commit hash reported.

In this chapter, we're going to implement the following recipes:

Setting up Arm Corstone-300 FVP

Installing TVM with Arm Ethos-U support

Installing the Arm toolchain and Ethos-U driver stack

Generating C code with TVM

Generating C-byte arrays for input, output, and labels

Building and running the model on Arm Ethos-U55

Technical requirements
To complete all the practical recipes of this chapter, we will need the
following:

Laptop/PC with Ubuntu 18.04+ on x86-64

The source code and additional material are available in Chapter08
folder (https://github.com/PacktPublishing/TinyML-

https://github.com/PacktPublishing/TinyML-Cookbook/tree/main/Chapter08

Cookbook/tree/main/Chapter08).

Setting up Arm Corstone-300 FVP
Arm Ethos-U55 is the first microNPU designed by Arm to extend the
ML capabilities of Cortex-M-based microcontrollers. Unfortunately,
there is no hardware availability with this new processor at the time
of writing. However, Arm offers a free Fixed Virtual Platform
(FVP) based on the Arm Corstone-300 system to quickly experiment
with ML models on this processor without the need for physical
devices.

In this recipe, we will give more details on the computational
capabilities of the Arm Ethos-U55 microNPU and install the Corstone-
300 FVP.

Getting ready

Let's start this first recipe by introducing Corstone-300 FVP and
Ethos-U55 microNPU.

Corstone-300 FVP (https://developer.arm.com/tools-and-
software/open-source-software/arm-platforms-software/arm-
ecosystem-fvps) is a virtual platform based on an Arm Cortex-M55
CPU and Ethos-U55 microNPU.

Arm Ethos-U55 (https://www.arm.com/products/silicon-ip-
cpu/ethos/ethos-u55) is a processor for ML inference that works
alongside a Cortex-M CPU, as shown in the following diagram:

https://github.com/PacktPublishing/TinyML-Cookbook/tree/main/Chapter08
https://developer.arm.com/tools-and-software/open-source-software/arm-platforms-software/arm-ecosystem-fvps
https://developer.arm.com/tools-and-software/open-source-software/arm-platforms-software/arm-ecosystem-fvps
https://developer.arm.com/tools-and-software/open-source-software/arm-platforms-software/arm-ecosystem-fvps
https://www.arm.com/products/silicon-ip-cpu/ethos/ethos-u55
https://www.arm.com/products/silicon-ip-cpu/ethos/ethos-u55

Figure 8.1 – Microcontroller with an Arm Cortex-M CPU and Ethos-U55
microNPU

The role of the CPU is to drive the ML workload on the microNPU,
which independently runs the model inference. Arm Ethos-U55 has

been designed to efficiently compute most of the elementary
operations that we may find in quantized 8-bit/16-bit neural
networks, such as the Multiply and Accumulate (MAC) at the
heart of convolution, fully connected, and depthwise convolution
layers.

The following table reports some of the operators supported by Arm
Ethos-U55:

Figure 8.2 – Table reporting some of the operators supported by the Arm Ethos-
U55 microNPU

From a microcontroller programming perspective, we still need to
provide the model as a C/C++ program and upload it into the
microcontroller. Furthermore, the weights, biases, and quantization
parameters can still be stored in program memory, while the input
and output tensors are stored in SRAM, as shown in the following
figure:

Figure 8.3 – Weights and biases can still be stored in the program memory

Therefore, nothing changes from what we have seen in the previous
chapters regarding memory locations for the ML parameters and the
input/output tensors. However, what differs from the traditional
computation on a Cortex-M CPU is how we program the model
inference on Arm Ethos-U55. When running the model inference on
a microNPU, the program is a sequence of commands (that is, a
command stream) to tell the processor the operations to execute
and where to read/write data from/to memory.

Once the program has been uploaded into the microcontroller, we
can offload the computation on the microNPU by specifying the
memory location of the command stream and the region of SRAM
dedicated to the input and output tensors. Next, Arm Ethos-U55
runs all commands independently, writing the output in the user-
defined data memory region and sending an interrupt on
completion. The CPU can use the interrupt to know when to read the
output data.

How to do it…

Open the terminal and create a new folder named project_npu in
the home directory (~/):
$ cd ~/ && mkdir project_npu

Enter the ~/project_npu folder and create three folders named
binaries, src, and sw_libs:

$ cd ~/project_npu

$ mkdir binaries

$ mkdir src

$ mkdir sw_libs

These three folders will contain the following:

The binaries to build and run the application on Arm Corstone-
300 FVP (binaries/)

The application source code (src/)

The software library dependencies for our project (sw_libs/)

Now, take the following steps to install Arm Corstone-300 on an
Ubuntu/Linux machine:

1. Open the web browser and go to Arm Ecosystem FVPs
(https://developer.arm.com/tools-and-software/open-source-
software/arm-platforms-software/arm-ecosystem-fvps).

2. Click on Corstone-300 Ecosystem FVPs and then click on the
Download Linux button, as shown in the following screenshot:

https://developer.arm.com/tools-and-software/open-source-software/arm-platforms-software/arm-ecosystem-fvps
https://developer.arm.com/tools-and-software/open-source-software/arm-platforms-software/arm-ecosystem-fvps

Figure 8.4 – Download Linux button for Corstone-300 FVP

Download the .tgz file and extract the FVP_Corstone_SSE-300.sh
script.

3. Open Terminal again and make the FVP_Corstone_SSE-300.sh
executable:
$ chmod +x FVP_Corstone_SSE-300.sh

4. Execute the FVP_Corstone_SSE-300.sh script:

$./FVP_Corstone_SSE-300.sh

Follow the instructions on Terminal to install the binaries for
Corstone-300 FVP under the ~/project_npu/binaries folder. To do
so, enter ~/project_npu/binaries/FVP_Corstone_SSE-300 when the
Where would you like to install to? question is prompted.

5. Update the $PATH environment variable to store the path of the
Corstone-300 binaries. To do so, open the .bashrc file with any
text editor (for example, gedit):
$ gedit ~/.bashrc

Then, add the following line at the bottom of the file:
export PATH=~/project_npu/binaries/FVP_Corstone_SSE-

300/models/Linux64_GCC-6.4:$PATH

The preceding line updates the $PATH environment variable with the
location of the Corstone-300 binaries.

Now, save and close the file.

6. Reload the .bashrc file in Terminal:
$ source ~/.bashrc

Alternatively to using the source command, you can simply close
and re-open the terminal.

7. Check whether the Corstone-300 binaries are installed by printing
the version info of FVP_Corstone_SSE_Ethos-U55:

$ FVP_Corstone_SSE_Ethos-U55 --version

If the $PATH environment variable has been updated successfully, the
preceding command should return the Corstone-300 version in
Terminal, as shown in the following figure:

Figure 8.5 – Output message displayed after the command

As shown in the previous figure, the command returns the version of
the Corstone-300 executable.

The virtual hardware with Arm Cortex-M55 and Ethos-U55 is now
installed and ready to be used.

Installing TVM with Arm Ethos-U
support
In the previous recipe, we briefly talked about the Ethos-U55
program, a command stream used to instruct the operations to
execute on the microNPU. However, how is the command stream
generated? In this chapter, we will be using TVM, a Deep Learning
(DL) compiler technology that aims to generate C code from an ML
model for a specific target device.

In this recipe, we will learn what TVM is by preparing the
development environment that we will use later on in the chapter.

Getting ready

The goal of this recipe is to install the TVM compiler from the
source. The installation needs the following prerequisites:

CMake 3.5.0 or later

C++ compiler with C++14 support (for example, g++ 5 or later)

LLVM 4.0 or later

Python 3.7 or Python 3.8

Before getting started, we recommend that you have the Python
virtual environment (virtualenv) tool installed to create an
isolated Python environment. You can refer to Chapter 7, Running a
Tiny CIFAR-10 Model on a Virtual Platform with the Zephyr OS, to
learn how to install and activate the virtual environment.

However, before showing how to install TVM straight away, we want
to give you an overview of the main characteristics of this
technology since you may not have prior knowledge about this tool
and DL compiler stacks.

Learning the motivation behind TVM
TensorFlow Lite for Microcontrollers (TFLu) is the software
library that made the creation of our DL applications possible in the
previous chapters. TFLu takes advantage of vendor-specific
optimized operator libraries (performance libraries) to execute
the model on the target device efficiently. For example, TFLu can
delegate the computation to the CMSIS-NN library, which yields

superior performance and low memory usage on Arm Cortex-M-
based microcontrollers.

Generally, these performance libraries provide a collection of
handwritten operators optimized per processor architecture (for
example, Arm Cortex-M0 or Cortex-M4) and underlying hardware
capabilities. With the need to bring DL to a wide range of devices
and the numerous functions to optimize, the significant engineering
effort required to develop these libraries becomes clear. Therefore,
driven by the necessity to bring efficient DL accelerations on various
platforms, a research team at the University of Washington
developed TVM, a compiler stack to generate optimized code from
DL models.

Learning how TVM optimizes the model
inference
Apache TVM (https://tvm.apache.org/) is a full-fledged open source
compiler that aims to translate DL models (for example, TFLite
models) to optimized code for any processor types:

https://tvm.apache.org/

Figure 8.6 – TVM generates optimized code from a pretrained model

The significant benefit of having a compiler stack is getting efficient
code automatically for new DL accelerators without being an expert
on performance optimizations.

As shown in the previous diagram, TVM accepts a pretrained model
in various formats (for example, TFLite and PyTorch) and performs
the code optimizations in two main steps, as shown in the following
diagram:

Figure 8.7 – Main optimization stages in TVM

The previous diagram shows that TVM first converts the input model
into an internal high-level neural network language (relay). Next,
the compiler does the first optimization step at the model level
(graph optimizations). Fusion is the common optimization

technique applied at the graph level, which aims to join two or more
operators together to improve computational efficiency. When TVM
spots fusion patterns, it transforms the model by replacing the
original operators with the new fused one, as shown in the following
example:

Figure 8.8 – Conv2D + ReLU fusion

In the preceding example, fusion aims to create a single operator for
Convolution 2D (Conv2D) and ReLU activation instead of having
two separate ones as in the original model.

When fusion happens, generally, the computation time decreases
because the code has fewer arithmetic instructions and memory
transfers from/to main memory.

The second optimization step performed by TVM is at the operator
level (operator scheduling), which aims to find the most efficient
way to execute each operator on the target device. This optimization
is at the code level and affects the adoption of computing strategies
such as tiling, unrolling, and vectorization. As we can imagine, the
best compute method will depend on the target platform.

NOTE
What we have just described are just the main points to give you the big picture
of how this compiler technology works. For more information about TVM
architecture, please refer to the TVM introduction guide, which provides a step-by-
step explanation of the model optimizations:
https://tvm.apache.org/docs/tutorial/introduction.html#sphx-glr-tutorial-
introduction-py.

How to do it…

The installation of TVM is made up of three parts:

1. Installing TVM prerequisites

2. Building the TVM C++ library from source

https://tvm.apache.org/docs/tutorial/introduction.html#sphx-glr-tutorial-introduction-py
https://tvm.apache.org/docs/tutorial/introduction.html#sphx-glr-tutorial-introduction-py

3. Setting up the Python environment

With the following steps, we will explain how to install TVM:

1. Use the Ubuntu Advanced Packaging Tool (APT) to install the
required TVM dependencies:
$ sudo apt-get install -y python3 python3-dev python3-

setuptools gcc libtinfo-dev zlib1g-dev build-essential

cmake libedit-dev libxml2-dev llvm-dev

Verify the Python, CMake, g++, and llvm-config versions:

$ python –version && cmake –version && g++ --version && llvm-

config –version

Check whether the versions satisfy the minimum required version for
TVM, reported in the Getting ready section. If not, you can refer to
the following links to update their versions manually:

CMake: https://cmake.org/download/

LLVM: https://apt.llvm.org/

g++: https://gcc.gnu.org/

Python: https://www.python.org/downloads/

2. Enter the ~/project_npu folder and clone the TVM source code
from the GitHub repository:
$ git clone –recursive https:// github.com/ apache/tvm tvm

3. Enter the tvm/ folder and make TVM point to the dbfbd164c3
commit:

https://cmake.org/download/
https://apt.llvm.org/
https://gcc.gnu.org/
https://www.python.org/downloads/

$ cd ~/project_npu/tvm

$ git checkout dbfbd164c3

4. Create a new directory named build inside the tvm/ folder:

$ mkdir build

5. Copy the cmake/config.cmake file to the build/ directory:
$ cp cmake/config.cmake build

6. Edit the build/config.cmake file to enable microTVM, Ethos-U
support, and LLVM. To do so, you must have set(USE_MICRO
ON), set(USE_LLVM ON), and set(USE_ETHOSU ON) in
build/config.cmake. As we will see later in this chapter,
microTVM is an extension of TVM for microcontroller platforms.

7. Build the TVM C++ library from the source:
$ cd build

$ cmake ..

$ make -j8

We recommend specifying the -j flag to run the building process
simultaneously on different jobs. The number of jobs should be set
accordingly with the number of cores available in the system, for
example, 8 for a system with eight cores.

8. Update the $PYTHONPATH environment variable to tell Python
where to locate the library built in the previous step. To do so,
open the .bashrc file with any text editor (for example, gedit):
$ gedit ~/.bashrc

9. Add the following line at the bottom of the file:
export PYTHONPATH=~/project_npu/tvm/python:${PYTHONPATH}

Save and close the file once you have updated the $PATH
environment variable.

10. Reload the .bashrc file:

$ source ~/.bashrc

If you had virtualenv activated in the same shell, start the Python
virtual environment again.

11. Check whether Python is correctly locating the TVM Python
library in the ~/project_npu/tvm/python directory:

$ python -c "import sys; print(sys.path)"

The preceding code prints the list of directories that the Python
interpreter inspects to search modules. Since sys.path is initialized
from PYTHONPATH, you should see the ~/project_npu/tvm/python
path from the list of directories printed in the console.

12. Install the necessary Python dependencies for TVM:
$ pip3 install --user numpy decorator attrs scipy

13. Check whether TVM is correctly installed:
$ python -c "import tvm; print('HELLO WORLD,')"

The preceding code should print HELLO WORLD in the output terminal.

14. Install the Python dependencies listed in
~/project_npu/tvm/apps/microtvm/ethosu/requirements.txt:

$ cd ~/project_npu/tvm/apps/microtvm/ethosu

$ pip3 install -r requirements.txt

TVM requires some of the dependencies installed with this step to
generate code for the Ethos-U55 microNPU.

TVM can now generate C code for Cortex-M CPUs with an Ethos-U
microNPU.

Installing the Arm toolchain and
Ethos-U driver stack
TVM generates C code for the target device provided using the
TFLite model as input. However, the generated source code needs to
be compiled manually to run it on Corstone-300 FVP. Furthermore,
the Cortex-M55 CPU needs additional software libraries to drive the
computation on the Ethos-U55 microNPU.

In this recipe, we will install the Arm GCC toolchain to cross-
compile the code for Arm Cortex-M55 and the remaining software
libraries' dependencies required for our application.

Getting ready

In this section, we will give you an overview of the three remaining
dependencies for our application: the Arm GCC toolchain, the

Ethos-U core driver, and the Ethos-U core platforms.

Corstone-300 FVP is a virtual platform based on Arm Cortex-M55 and
needs a dedicated compiler to build the application for this target
device. The compiler is commonly called a cross-compiler because
the target CPU (for example, Arm Cortex-M55) is different from the
CPU of the computer building the application (for example, x86-64).
To cross-compile for Arm Cortex-M55, we need the GNU Arm
Embedded toolchain (https://developer.arm.com/tools-and-
software/open-source-software/developer-tools/gnu-toolchain/gnu-
rm/downloads/product-release), which offers a free collection of
programming tools that includes the compiler, linker, debugger, and
software libraries. The toolchain is available for various Operating
Systems (OSs), such as Linux, Windows, and macOS.

The toolchain is not the only thing required, though. The Cortex-M55
CPU needs the Arm Ethos-U core driver
(https://review.mlplatform.org/plugins/gitiles/ml/ethos-u/ethos-u-
core-driver/) to offload the ML workload on Arm Ethos-U55. The Arm
Ethos-U core driver offers an interface to execute command streams
on the Ethos-U microNPU. The driver is OS-agnostic, which means
that it does not use any OS primitives, such as queues or mutexes.
Therefore, it can be cross-compiled for any supported Cortex-M CPU
and work with any Real-Time Operating System (RTOS).

The last remaining library required for our application is the Arm
Ethos-U core platform
(https://review.mlplatform.org/plugins/gitiles/ml/ethos-u/ethos-u-
core-platform/). This project primarily contains demonstrations to

https://developer.arm.com/tools-and-software/open-source-software/developer-tools/gnu-toolchain/gnu-rm/downloads/product-release
https://developer.arm.com/tools-and-software/open-source-software/developer-tools/gnu-toolchain/gnu-rm/downloads/product-release
https://developer.arm.com/tools-and-software/open-source-software/developer-tools/gnu-toolchain/gnu-rm/downloads/product-release
https://review.mlplatform.org/plugins/gitiles/ml/ethos-u/ethos-u-core-driver/
https://review.mlplatform.org/plugins/gitiles/ml/ethos-u/ethos-u-core-driver/
https://review.mlplatform.org/plugins/gitiles/ml/ethos-u/ethos-u-core-platform/
https://review.mlplatform.org/plugins/gitiles/ml/ethos-u/ethos-u-core-platform/

run ML workloads on Arm Ethos-U platforms, including Corstone-300
FVP. From this project, we will use the Makefile to build the
application.

How to do it…

Open the terminal and take the following steps to install the GNU
Arm Embedded toolchain and get the remaining software
dependencies for our application:

1. Enter the ~/project_npu/binaries folder and install the GNU
Arm Embedded toolchain for Linux x86-64. To do so, create a
new folder named toolchain in the ~/project_npu/binaries
directory:
$ cd ~/project_npu/binaries

$ mkdir toolchain

2. Download the GNU Arm Embedded toolchain. You can
conveniently use the curl tool and uncompress the downloaded
file into the toolchain folder:
$

gcc_arm='https://developer.arm.com/-/media/Files/downloads

/gnu-rm/10-2020q4/gcc-arm-none-eabi-10-2020-q4-major-

x86_64-linux.tar.bz2?revision=ca0cbf9c-9de2-491c-ac48-

898b5bbc0443&la=en&hash=68760A8AE66026BCF99F05AC017A6A50C6

FD832A'

$ curl --retry 64 -sSL ${gcc_arm} | \

tar -C toolchain --strip-components=1 -jx

NOTE
This operation can take some minutes, depending on the internet connection
speed.

3. Open the .bashrc file with any text editor (for example, gedit):

$ gedit ~/.bashrc

4. Add the following line at the bottom of the file to include the
toolchain path to the $PATH environment variable:

export PATH=~/project_npu/binaries/toolchain/gcc-arm-none-

eabi-10.3-2021.10/bin:$PATH

After updating the $PATH environment variable, save and close the
file.

5. Reload the .bashrc file:

$ source ~/.bashrc

6. Check whether the GNU Arm Embedded toolchain is installed
correctly by printing the list of supported CPUs:
$ arm-none-eabi-gcc -mcpu=.

The returned list of supported CPUs should include the Cortex-M55
CPU, as shown in the following screenshot:

Figure 8.9 – The list of supported CPUs should include cortex-m55

7. Enter the ~/project_npu/sw_libs folder and clone the CMSIS
library:
$ cd ~/project_npu/sw_libs

$ git clone "https: //github.com/ARM-software/

CMSIS_5.git" cmsis

Next, check out the 5.8.0 release:

$ cd cmsis

$ git checkout -f tags/5.8.0

$ cd ..

8. Enter the ~/project_npu/sw_libs folder and clone the Arm
Ethos-U core driver:
$ cd ~/project_npu/sw_libs

$ git clone "https:// review.mlplatform.org/ml /ethos-

u/ethos-u-core-driver" core_driver

Next, check out the 21.11 release:

$ cd core_driver

$ git checkout tags/21.11

$ cd ..

9. Clone the Arm Ethos-U core platform:
$ git clone "https: //review.mlplatform. org/ml/ethos-

u/ethos-u-core-platform" core_platform

$ cd core_platform

Next, check out the 21.11 release:

$ git checkout tags/21.11

$ cd ..

Now, we are definitely ready to prepare our application and run it on
Corstone-300 FVP!

Generating C code with TVM
Compiling the TFLite model to C code is straightforward with TVM.
TVM only needs an input model, a target device, and a single
command line to generate a TAR package with the generated C
code.

In this recipe, we will show how to convert a pretrained CIFAR-10
model into C code with microTVM, an extension of TVM for
microcontroller deployment.

The following Bash script contains the commands referred to in this
recipe:

compile_model_microtvm.sh:

https://github.com/PacktPublishing/TinyML-
Cookbook/blob/main/Chapter08/BashScripts/compile_model_microtv
m.sh

Getting ready

In this section, we will examine how TVM can generate C code and
explain what microTVM is.

TVM is a DL compiler technology that we can use in Python and in
the same environment where we build, train, and quantize the
model with TFLite. Although TVM natively offers a Python API, there
is an alternative and more straightforward API that is based on a
command-line interface: TVMC.

TVMC is a command-line driver that exposes the same features that
TVM offers with the Python API but with the advantage of reducing
the number of lines of code. Only a single command line will be
required to compile the TFLite model to C code in our specific case.

At this point, you may wonder: where can we find the TVMC tool?

TVMC is part of TVM Python installation, and you will just need to
execute python -m tvm.driver.tvmc compile <options> in your
terminal to compile the TFLite model. The options required by the
compile command will be presented in the How to do it… section.

TIP

https://github.com/PacktPublishing/TinyML-Cookbook/blob/main/Chapter08/BashScripts/compile_model_microtvm.sh
https://github.com/PacktPublishing/TinyML-Cookbook/blob/main/Chapter08/BashScripts/compile_model_microtvm.sh
https://github.com/PacktPublishing/TinyML-Cookbook/blob/main/Chapter08/BashScripts/compile_model_microtvm.sh

To discover more about TVMC, we recommend reading the following
documentation: https://tvm.apache.org/docs/tutorial/tvmc_command_line_driver.

Although we have said that we will generate C code from the model,
traditionally, TVM produces the following output files:

.so: A C++ library containing the optimized operators to execute
the model. The TVM C++ runtime will be responsible for loading
this library and running the inference on the target device.

.json: A JSON file containing the computation graph and
weights.

.params: A file containing the parameters of the pretrained
model.

Unfortunately, the preceding three files are not suitable for
microcontroller deployment for the following reasons:

Microcontrollers do not have the Memory Management Unit
(MMU), so we cannot load dynamic libraries at runtime.

The weights are stored in an external file (.json), which is not
ideal on microcontrollers for two reasons: the former is that we
may not have an OS that provides an API to read external files.
The latter is that weights loaded from an external file go into
SRAM, which is generally smaller than the program memory.

For the preceding reasons, an extension to TVM was proposed to
produce a suitable output for microcontrollers: microTVM.

https://tvm.apache.org/docs/tutorial/tvmc_command_line_driver

Running TVM on microcontrollers with
microTVM
microTVM (https://tvm.apache.org/docs/topic/microtvm/index.html)
is an extension of TVM, which provides an alternative output format
that does not require an OS and dynamic memory allocation.

NOTE
Devices without an OS are commonly called bare-metal devices.

The output format we refer to is Model Library Format (MLF), a
TAR package containing C code. Therefore, the code generated by
TVM/microTVM will need to be integrated into the application and
compiled for the specific target platform.

How to do it…

The following steps will show how to convert a pretrained CIFAR-10
quantized model into C code with TVM/microTVM:

1. Create a new folder named build/ in the ~/project_npu/src
directory:
$ cd ~/project_npu/src

$ mkdir build

2. Download the pretrained CIFAR-10 quantized model from the
TinyML-Cookbook GitHub repository:
https://github.com/PacktPublishing/TinyML-
Cookbook/blob/main/Chapter08/cifar10_int8.tflite.

https://tvm.apache.org/docs/topic/microtvm/index.html
https://github.com/PacktPublishing/TinyML-Cookbook/blob/main/Chapter08/cifar10_int8.tflite
https://github.com/PacktPublishing/TinyML-Cookbook/blob/main/Chapter08/cifar10_int8.tflite

Alternatively, you can reuse the CIFAR-10 model you generated in
Chapter 7, Running a Tiny CIFAR-10 Model on a Virtual Platform with
the Zephyr OS.

Save the model in the ~/project_npu/src/ folder.

3. Enter the ~/project_npu/src/ folder and compile the CIFAR-10
model into MLF with TVMC:
$ cd ~/project_npu/src/

$ python3 -m tvm.driver.tvmc compile \

--target="ethos-u -accelerator_config=ethos-u55-256, c" \

--target-c-mcpu=cortex-m55 \

--runtime=crt \

--executor=aot \

--executor-aot-interface-api=c \

--executor-aot-unpacked-api=1 \

--pass-config tir.disable_vectorize=1 \

--output-format=mlf \

cifar10_int8.tflite

In the preceding code, we pass several arguments to TVMC's
compile subcommand. Let's unpack the most important ones:

--target="ethos-u -accelerator_config=ethos-u55-256, c":
This option specifies the target processors for the ML inference.
In our case, we have two target processors: Arm Ethos-U55 and
Cortex-M CPU. The primary target is the Ethos-U55 microNPU. As

we know, the Ethos-U microNPU is a processor capable of
performing MAC operations very efficiently. When passing ethos-
u55-256, we tell TVM that the Ethos-U55 compute engine has
256 MACs. This value is not programmable by the user but fixed
in hardware. Therefore, Corstone-300 FVP must use the same
Ethos-U55 configuration to run the application properly. The
other processor specified in the –target argument is the Cortex-
M CPU through the c option. The CPU executes only the layers
that cannot be offloaded on the microNPU.

--target-c-mcpu=cortex-m55: This option tells the target CPU to
execute the unsupported layers on the microNPU.

--runtime=crt: This option specifies the runtime type. In this
case, we must specify the C runtime (crt) since we will run the
application on a bare-metal platform.

--executor=aot: This option instructs microTVM to build the
model graph Ahead of Time (AoT) rather than at runtime. In
other words, it means that the application does not need to load
the model during the program execution because the graph is
already generated and known beforehand. This executor allows
reducing SRAM usage.

--executor-aot-interface-api=c: This option specifies the
interface type for the AoT executor. We pass the c option
because we generate C code.

--pass-config tir.disable_vectorize=1: This option tells TVM
to disable the code vectorization since C has no native vectorized
types.

--output-format=mlf: This option specifies the output generated
by TVM. Since we want an MLF output, we must pass mlf.

cifar10_int8.tflite: This is the input model to compile to C
code.

After a few seconds, TVM will generate a TAR package file named
module.tar and print the following output on the console:

Figure 8.10 – TVM output after the code generation

The files and directories printed by TVM on the console are included
in the module.tar file.

4. Untar the generated module.tar file into the
~/project_npu/src/build folder:

$ tar -C build -xvf module.tar

Now, you should have the same files and directories listed by TVM in
Figure 8.10 in the ~/project_npu/src/build directory.

Generating C-byte arrays for input,
output, and labels
The C code produced by TVM does not include the input and output
tensors because they need to be allocated explicitly by the user.

In this recipe, we will develop a Python script to generate three C-
byte arrays containing the input and output tensors and labels
required to report the classification result in the application. The
input tensor will also be filled with a valid image to test the inference
on a microNPU.

The following Python script contains the code referred to in this
recipe:

prepare_assets.py:

https://github.com/PacktPublishing/TinyML-
Cookbook/blob/main/Chapter08/PythonScripts/prepare_assets.py

Getting ready

To get ready with this recipe, we need to know how to structure the
Python script for the C-byte array generation.

https://github.com/PacktPublishing/TinyML-Cookbook/blob/main/Chapter08/PythonScripts/prepare_assets.py
https://github.com/PacktPublishing/TinyML-Cookbook/blob/main/Chapter08/PythonScripts/prepare_assets.py

The Python script should produce a C header file for each C-byte
array. The generated files must be saved in the
~/project_npu/src/include folder and named as follows:

inputs.h: Input tensor

outputs.h: Output tensor

labels.h: Labels

IMPORTANT NOTE
The C header files must use the preceding filenames because our application
will be based on a prebuilt example that expects these files.

To create the C-byte array for the input tensor, the script should
accept the path to an image file as a command-line argument to fill
the array with a valid image.

However, we cannot directly add the raw input image. As we know
from Chapter 7, Running a Tiny CIFAR-10 Model on a Virtual
Platform with the Zephyr OS, the CIFAR-10 model needs an RGB
input image with 32x32 resolution with normalized and quantized
pixel values. Therefore, the image needs to be preprocessed before
storing it in the array.

The generation of the C-byte arrays for the output and labels is
easier than the input one because of the following:

The output array has 10 values of the int8_t type and can be
initialized with all zeros.

The labels array has 10 strings reporting the name of each class
(airplane, automobile, bird, cat, deer, dog, frog, horse, ship,
and truck).

As we mentioned in the first recipe of this chapter, the Cortex-M CPU
needs to inform the Ethos-U55 microNPU of the location of the input
and output tensors. However, not all parts of the memory system are
accessible for reading and writing by the microNPU. Therefore, we
need to pay attention to where we store these arrays. The following
table gives us an overview of what memory Corstone-300 FVP has
and which can be accessed by Arm Ethos-U55:

Figure 8.11 – System memory on Corstone-300 FVP

As you can see from the preceding table, Ethos-U55 cannot access
Instruction Tightly Coupled Memory (ITCM) and Data Tightly
Coupled Memory (DTCM), which are the program and data
memory for the Cortex-M CPU.

If we do not explicitly define the memory storage for the input and
output arrays, their contents could be placed in ITCM or DTCM. For
example, if we initialize the input array with fixed values, the
compiler may assume that it is constant data storage that can be

placed in program memory. To ensure that the input and output
tensors are in memory spaces accessible by the Ethos-U55
microNPU, we need to specify the memory section attribute
when declaring the arrays. In this project, we will store the input
and output tensors in DDR.

The following code shows how to place an int8_t array named K in
the DDR storage with a 16-byte alignment on Corstone-300 FVP:
int8_t K[4] __attribute__((section("ethosu_scratch"),

aligned(16)));

The name passed into the __attribute__ section specification
(ethosu_scratch) and the alignment (16) must match what is
reported in the Linker script used to compile our application. In our
case, we will be using the Linker file available at the following link:
https://github.com/apache/tvm/blob/main/apps/microtvm/ethosu/co
rstone300.ld.

How to do it…

Before developing the Python script, let's extract the input
quantization parameters from the CIFAR-10 model. You can simply
use the Netron web application (https://netron.app/) for this
purpose. On Netron, click on the Open Model… button and read
the quantization parameters displayed for the first layer of the
network, as shown in the following screenshot:

https://github.com/apache/tvm/blob/main/apps/microtvm/ethosu/corstone300.ld
https://github.com/apache/tvm/blob/main/apps/microtvm/ethosu/corstone300.ld
https://netron.app/

Figure 8.12 – Netron output for the first layer

The quantization field reports the formula to convert the 8-bit
quantized value into a floating point, also described in Chapter 3,
Building a Weather Station with TensorFlow Lite for Microcontrollers.
Therefore, the scale parameter is 0.0039215688… while the zero
point is -128.

ATTENTION
Pay attention to the zero point value. This parameter is not +128 because the 8-
bit quantization formula subtracts the zero point from the integer 8-bit value.

Now, open your preferred Python editor and create a new file named
prepare_assets.py in the ~/project_npu/src folder.

Open the prepare_assets.py file and take the following steps to
generate the C-byte arrays for the input, output, and labels:

1. Use two variables to keep the input quantization parameters of
the CIFAR-10 model:
input_quant_offset = -128

input_quant_scale = 0.003921568859368563

2. Write a function to generate the content of the input and output
C header files:
def gen_c_array(name, size, data):

 str_out = "#include <tvmgen_default.h>\n"

 str_out += f"const unsigned int {name}_len = {size};\n"

 str_out += f'int8_t {name}[]

__attribute__((section("ethosu_scratch"), aligned(16))) =

'

 str_out += "\n{\n"

 str_out += f'{data}'

 str_out += '\n};'

 return str_out

Since the format, type, and data storage are the same for the input
and output tensors, we can have a template string to replace only
the different parts, which are as follows:

The name of the array (name)

The size of the array (size)

The values to store in the array (data)

As you can see from the preceding code, the function expects
{data} to be a single string of integer values that are comma-
separated.

3. Write a function to convert a 1D NumPy array of np.int8 values
into a single string of integer values that are comma-separated:
def array_to_str(data):

 NUM_COLS = 12

 val_string = ''

 for i, val in enumerate(data):

 val_string += str(val)

 if (i + 1) < len(data):

 val_string += ','

 if (i + 1) % NUM_COLS == 0:

 val_string += '\n'

 return val_string

In the preceding code, the NUM_COLS variable limits the number of
values on a single row. In our case, NUM_COLS is set to 12 to add a
new-line character after every 12 values.

4. Define the function for generating the input C-byte array:
def gen_input(img_file):

 img_path = os.path.join(f"{img_file}")

 img_resized = Image.open(img_path).resize((32, 32))

In the previous code, the gen_input() function takes the path to the
image file (image_name) as an argument. The image is then loaded
and resized to 32x32 using the Python Pillow library.

5. Convert the resized image into a NumPy array of floating-point
values:
 img_data = np.asarray(img_resized).astype("float32")

Next, normalize and quantize the pixel values:
 img_data /= 255.0

 img_data /= input_quant_scale

 img_data += input_quant_offset

6. Cast the quantized image to np.int8 and convert it into a single
string of integer values:
 input_data = img_data.astype(np.int8)

 input_data = input_data.ravel()

 val_string = array_to_str(input_data)

In the previous code, we used the NumPy ravel() function to return
a contiguous flatten array since the array_to_str() function only
accepts the input array as a 1D object.

7. Generate the input C-byte array as a string and save it as the C
header file (inputs.h) in the include/ folder:
 c_code = gen_c_array("input", input_data.size,

val_string)

 with open("include/inputs.h", 'w') as file:

 file.write(c_code)

8. Write a function to generate the C header file of the output
tensor (outputs.h) in the include/ folder:

def gen_output():

 output_data = np.zeros([10], np.int8)

 val_string = array_to_str(output_data)

 c_code = gen_c_array("output", output_data.size,

val_string)

 with open("include/outputs.h", 'w') as file:

 file.write(c_code)

9. Write a function to generate the C header file of the labels
(labels.h) in the include/ folder:
def gen_labels():

 val_string = "char* labels[] = "

 val_string += '{"airplane", "automobile", "bird", '

 val_string += '"cat", "deer", "dog", '

 val_string += '"frog", "horse", "ship", "truck"};'

 with open("include/labels.h", 'w') as file:

 file.write(val_string)

10. Execute the gen_input(), gen_output(), and gen_labels()
functions:
if __name__ == "__main__":

 gen_input(sys.argv[1])

 gen_output()

 gen_labels()

As you can see from the preceding code, we pass the first
command-line argument to gen_input() to provide the path of the
image file supplied by the user.

At this point, the Python script is ready, and we just need to finalize
the application to run the CIFAR-10 model on the Ethos-U55
microNPU.

Building and running the model on
Ethos-U55
Here we are. Just this recipe keeps us from completing this book. All
the tools are installed, and the TFLite model is converted to C code,
so where does that leave us? We still need to build an application to
recognize images with the CIFAR-10 model. Once the application is
ready, we need to compile it and run it on Corstone-300 FVP.

Although it seems there is still a lot to do, in this recipe, we will
modify a prebuilt sample for the Ethos-U microNPU to simplify all the
remaining technicalities.

In this recipe, we will show you how to modify the Ethos-U example
available in TVM to run the CIFAR-10 inference. The application will
then be compiled with the Makefile and Linker scripts provided in the
prebuilt sample and finally executed on Corstone-300 FVP.

The following Bash script contains the commands referred to in this
recipe:

build_and_run.sh:

https://github.com/PacktPublishing/TinyML-
Cookbook/blob/main/Chapter08/BashScripts/build_and_run.sh

Getting ready

The prebuilt example considered in this recipe is available in the
TVM source code within the tvm/apps/microtvm/ethosu folder. The
sample is a demo to perform a single image classification inference
with MobileNet V1 on Ethos-U55. Inside the sample folder, you'll find
the following:

Application source code in the include/ and src/ subdirectories

Scripts to build the demo for Corstone-300 FVP (Makefile, arm-
none-eabi-gcc.cmake, and corstone300.ld)

Python scripts to generate the input, output, and label C header
files (convert_image.py and convert_labels.py)

Script to run the demo on Corstone-300 FVP (run_demo.sh)

From the preceding files, we just need the application source code
and the scripts to build the demo.

How to do it…

https://github.com/PacktPublishing/TinyML-Cookbook/blob/main/Chapter08/BashScripts/build_and_run.sh
https://github.com/PacktPublishing/TinyML-Cookbook/blob/main/Chapter08/BashScripts/build_and_run.sh

Open the terminal and take the following steps to build and run the
CIFAR-10 inference on Ethos-U55:

1. Copy the application source code from the
~/project_npu/tvm/apps/microtvm/ethosu/ sample folder to the
~/project_npu/src directory:
$ cp -r ~/project_npu/tvm/apps/microtvm/ethosu/include

~/project_npu/src/

$ cp -r ~/project_npu/tvm/apps/microtvm/ethosu/src

~/project_npu/src/

2. Copy the build scripts (Makefile, arm-none-eabi-gcc.cmake, and
corstone300.ld) from the
~/project_npu/tvm/apps/microtvm/ethosu/ sample folder to the
~/project_npu/src directory:

$ cp -r ~/project_npu/tvm/apps/microtvm/ethosu/Makefile

~/project_npu/src/

$ cp -r ~/project_npu/tvm/apps/microtvm/ethosu/arm-none-

eabi-gcc.cmake ~/project_npu/src/

$ cp -r

~/project_npu/tvm/apps/microtvm/ethosu/corstone300.ld

~/project_npu/src/

3. Download the ship.jpg image from the TinyML-Cookbook GitHub
repository: https://github.com/PacktPublishing/TinyML-
Cookbook/blob/main/Chapter08/ship.jpg (source: Pixabay). Save
the file in the ~/project_npu/src folder.

https://github.com/PacktPublishing/TinyML-Cookbook/blob/main/Chapter08/ship.jpg
https://github.com/PacktPublishing/TinyML-Cookbook/blob/main/Chapter08/ship.jpg

4. Show the list of directories and files in the ~/project_npu/src
folder:
$ sudo apt-get install tree

$ cd ~/project_npu/src/

$ tree

The expected output in the terminal is shown in the following figure:

Figure 8.13 – Expected output after the tree command

Before continuing with the next step, check whether you have all the
files and directories listed in the previous figure.

5. Use the prepare_assets.py Python script to generate the C
header files for the input, output, and labels:

$ cd ~/project_npu/src

$ python3 prepare_assets.py ship.jpg

In the preceding code, we pass the ship.jpg file as a command-line
argument to initialize the input tensor with the content of a ship
image.

The Python script will save the C header files in the
~/project_npu/src/include folder.

6. Open the demo.c file in the ~/project_npu/src/src directory and
go to line 46. Replace the .input field's name with the name
used by TVM in the tvmgen_default_inputs struct. The
tvmgen_default_inputs struct is declared in the
~/project_npu/src/build/codegen/host/include/tvmgen_defaul

t.h file. If you have downloaded the pretrained CIFAR-10 model
from the TinyML-Cookbook GitHub repository, the name should
be serving_default_input_2_0. Therefore, the demo.c file should
have the following edit:
.serving_default_input_2_0 = input;

7. Open the Makefile script in the ~/project_npu/src directory
with any text editor. Go to line 25 and replace the
/opt/arm/ethosu path with ${HOME}/project_npu/sw_libs:
ETHOSU_PATH=${HOME}/project_npu/sw_libs

The preceding change is required to inform the Makefile script on
the location of the software libraries installed in the Installing the

Arm toolchain and Ethos-U driver stack recipe. Next, save and close
the file.

8. Build the application using the make command:

$ make

The Makefile script will generate a binary named demo in the
~/project_npu/src/build folder.

9. Run the demo executable on the Corstone-300 FVP:
$ FVP_Corstone_SSE-300_Ethos-U55 -C cpu0.CFGDTCMSZ=15 \

-C cpu0.CFGITCMSZ=15 -C mps3_board.uart0.out_file=\"-\" \

-C mps3_board.uart0.shutdown_tag=\"EXITTHESIM\" \

-C mps3_board.visualisation.disable-visualisation=1 \

-C mps3_board.telnetterminal0.start_telnet=0 \

-C mps3_board.telnetterminal1.start_telnet=0 \

-C mps3_board.telnetterminal2.start_telnet=0 \

-C mps3_board.telnetterminal5.start_telnet=0 \

-C ethosu.extra_args="--fast" \

-C ethosu.num_macs=256 ./build/demo

From the previous command, pay attention to the
ethosu.num_macs=256 argument. This option refers to the number of
MACs in the compute engine of the Ethos-U55 microNPU and must
match what is specified in TVM when compiling the TFLite model.

Once you have launched the Corstone-300 command, you should
see the following output in the console:

Figure 8.14 – Expected output after the CIFAR-10 inference

As reported at the bottom of the previous screenshot, the image is
correctly classified as a ship.

And…that's it! With this last recipe but first application on Arm
Ethos-U55, you are definitely ready to make even smarter TinyML
solutions on Cortex-M-based microcontrollers!

Packt.com

Subscribe to our online digital library for full access to over 7,000
books and videos, as well as industry leading tools to help you plan
your personal development and advance your career. For more
information, please visit our website.

Why subscribe?
Spend less time learning and more time coding with practical
eBooks and Videos from over 4,000 industry professionals

Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Fully searchable for easy access to vital information

Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book
published, with PDF and ePub files available? You can upgrade to the
eBook version at packt.com and as a print book customer, you are

https://packt.com/

entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical
articles, sign up for a range of free newsletters, and receive
exclusive discounts and offers on Packt books and eBooks.

Other Books You May Enjoy
If you enjoyed this book, you may be interested in these other books
by Packt:

https://www.packt.com/

Intelligent Workloads at the Edge

Indraneel Mitra, Ryan Burke

ISBN: 9781801811781

https://packt.link/9781801811781
https://packt.link/9781801811781

Build an end-to-end IoT solution from the edge to the cloud

Design and deploy multi-faceted intelligent solutions on the edge

Process data at the edge through analytics and ML

Package and optimize models for the edge using Amazon
SageMaker

Implement MLOps and DevOps for operating an edge-based
solution

Onboard and manage fleets of edge devices at scale

Review edge-based workloads against industry best practices

Artificial Intelligence for IoT Cookbook

Michael Roshak

ISBN: 9781838981983

https://packt.link/9781838981983
https://packt.link/9781838981983

Explore various AI techniques to build smart IoT solutions from
scratch

Use machine learning and deep learning techniques to build
smart voice recognition and facial detection systems

Gain insights into IoT data using algorithms and implement them
in projects

Perform anomaly detection for time series data and other types
of IoT data

Implement embedded systems learning techniques for machine
learning on small devices

Apply pre-trained machine learning models to an edge device

Deploy machine learning models to web apps and mobile using
TensorFlow.js and Java

Packt is searching for authors like
you
If you're interested in becoming an author for Packt, please visit
authors.packtpub.com and apply today. We have worked with
thousands of developers and tech professionals, just like you, to help
them share their insight with the global tech community. You can
make a general application, apply for a specific hot topic that we are
recruiting an author for, or submit your own idea.

https://authors.packtpub.com/

Share Your Thoughts
Now you've finished TinyML Cookbook, we'd love to hear your
thoughts! If you purchased the book from Amazon, please click here
to go straight to the Amazon review page for this book and share
your feedback or leave a review on the site that you purchased it
from.

Your review is important to us and the tech community and will help
us make sure we're delivering excellent quality content.

clbr://internal.invalid/book/OEBPS/B17710_BM_Final_SK_ePub.xhtml
clbr://internal.invalid/book/OEBPS/B17710_BM_Final_SK_ePub.xhtml

	TinyML Cookbook
	Foreword
	Contributors
	About the author
	About the reviewers
	Preface
	Who this book is for
	What this book covers
	To get the most out of this book
	Download the example code files

	Download the color images
	Conventions used
	Sections
	Getting ready
	How to do it…
	There's more…

	Get in touch
	Share Your Thoughts

	Chapter 1: Getting Started with TinyML
	Technical requirements
	Introducing TinyML
	What is TinyML?
	Why ML on microcontrollers?
	Why run ML locally?
	The opportunities and challenges for TinyML
	Deployment environments for TinyML
	tinyML Foundation

	Summary of DL
	Deep neural networks
	Convolutional neural networks
	Quantization

	Learning the difference between power and energy
	Voltage versus current
	Power versus energy

	Programming microcontrollers
	Memory architecture
	Peripherals

	Presenting Arduino Nano 33 BLE Sense and Raspberry Pi Pico
	Setting up Arduino Web Editor, TensorFlow, and Edge Impulse
	Getting ready with Arduino Web Editor
	Getting ready with TensorFlow
	Getting ready with Edge Impulse
	How to do it…

	Running a sketch on Arduino Nano and Raspberry Pi Pico
	Getting ready
	How to do it…

	Join us on Discord!

	Chapter 2: Prototyping with Microcontrollers
	Technical requirements
	Code debugging 101
	Getting ready
	How to do it...
	There's more

	Implementing an LED status indicator on the breadboard
	Getting ready
	How to do it...

	Controlling an external LED with the GPIO
	Getting ready
	How to do it...

	Turning an LED on and off with a push-button
	Getting ready
	How to do it...

	Using interrupts to read the push-button state
	Getting ready
	How to do it...

	Powering microcontrollers with batteries
	Getting started
	How to do it...
	There's more

	Chapter 3: Building a Weather Station with TensorFlow Lite for Microcontrollers
	Technical requirements
	Importing weather data from WorldWeatherOnline
	Getting ready
	How to do it…

	Preparing the dataset
	Getting ready
	How to do it…

	Training the ML model with TF
	Getting ready
	How to do it…

	Evaluating the model's effectiveness
	Getting ready
	How to do it…

	Quantizing the model with the TFLite converter
	Getting ready
	How to do it…

	Using the built-in temperature and humidity sensor on Arduino Nano
	Getting ready
	How to do it…

	Using the DHT22 sensor with the Raspberry Pi Pico
	Getting ready
	How to do it…

	Preparing the input features for the model inference
	Getting ready
	How to do it…

	On-device inference with TFLu
	Getting ready
	How to do it…

	Chapter 4: Voice Controlling LEDs with Edge Impulse
	Technical requirements
	Acquiring audio data with a smartphone
	Getting ready
	How to do it…

	Extracting MFCC features from audio samples
	Getting ready
	How to do it…
	There's more…

	Designing and training a NN model
	Getting ready
	How to do it…

	Tuning model performance with EON Tuner
	Getting ready
	How to do it…

	Live classifications with a smartphone
	Getting ready
	How to do it…

	Live classifications with the Arduino Nano
	Getting ready
	How to do it…

	Continuous inferencing on the Arduino Nano
	Getting ready
	How to do it…

	Building the circuit with the Raspberry Pi Pico to voice control LEDs
	Getting ready
	How to do it…

	Audio sampling with ADC and timer interrupts on the Raspberry Pi Pico
	Getting ready
	How to do it…
	There's more…

	Chapter 5: Indoor Scene Classification with TensorFlow Lite for Microcontrollers and the Arduino Nano
	Technical requirements
	Taking pictures with the OV7670 camera module
	Getting ready
	How to do it...

	Grabbing camera frames from the serial port with Python
	Getting ready
	How to do it...

	Converting QQVGA images from YCbCr422 to RGB888
	Getting ready
	How to do it...

	Building the dataset for indoor scene classification
	Getting ready
	How to do it...

	Transfer learning with Keras
	Getting ready
	How to do it...

	Preparing and testing the quantized TFLite model
	Getting ready
	How to do it...

	Reducing RAM usage by fusing crop, resize, rescale, and quantize
	Getting ready
	How to do it...

	Chapter 6: Building a Gesture-Based Interface for YouTube Playback
	Technical requirements
	Communicating with the MPU-6050 IMU through I2C
	Getting ready
	How to do it…

	Acquiring accelerometer data
	Getting ready
	How to do it…

	Building the dataset with the Edge Impulse data forwarder tool
	Getting ready
	How to do it…

	Designing and training the ML model
	Getting ready
	How to do it…

	Live classifications with the Edge Impulse data forwarder tool
	Getting ready
	How to do it…

	Gesture recognition on Raspberry Pi Pico with Arm Mbed OS
	Getting ready
	How to do it…

	Building a gesture-based interface with PyAutoGUI
	Getting ready
	How to do it…

	Chapter 7: Running a Tiny CIFAR-10 Model on a Virtual Platform with the Zephyr OS
	Technical requirements
	Getting started with the Zephyr OS
	Getting ready
	How to do it…

	Designing and training a tiny CIFAR-10 model
	Getting ready
	How to do it…

	Evaluating the accuracy of the TFLite model
	Getting ready
	How to do it…

	Converting a NumPy image to a C-byte array
	Getting ready
	How to do it…

	Preparing the skeleton of the TFLu project
	Getting ready
	How to do it…

	Building and running the TFLu application on QEMU
	Getting ready
	How to do it…

	Join us on Discord!

	Chapter 8: Toward the Next TinyML Generation with microNPU
	Technical requirements
	Setting up Arm Corstone-300 FVP
	Getting ready
	How to do it…

	Installing TVM with Arm Ethos-U support
	Getting ready
	How to do it…

	Installing the Arm toolchain and Ethos-U driver stack
	Getting ready
	How to do it…

	Generating C code with TVM
	Getting ready
	How to do it…

	Generating C-byte arrays for input, output, and labels
	Getting ready
	How to do it…

	Building and running the model on Ethos-U55
	Getting ready
	How to do it…

	Why subscribe?

	Other Books You May Enjoy
	Packt is searching for authors like you
	Share Your Thoughts

