13

14
15

Certified Tester

Foundation Level Syllabus

v4.0

International Software Testing Qualifications Board

/

ISTOQB

International Software
[Testing Qualifications Board

16

17
18

19
20
21
22

23
24

25
26
27
28

29
30

31
32

33
34

35
36

37
38
39

40
41
42
43
44

45
46

47
48

49
50

51

/

Certified Tester ISTQB

International Software

Foundation Level Testing Qualifications Board

Copyright Notice

Copyright Notice © International Software Testing Qualifications Board (hereinafter called ISTQB®)
ISTQB® is a registered trademark of the International Software Testing Qualifications Board.

Copyright © 2022 the authors of the Foundation Level v4.0 syllabus: Renzo Cerquozzi, Wim Decoutere,
Klaudia Dussa-Zieger, Jean-Frangois Riverin, Arnika Hryszko, Martin Klonk, Michaél Pilaeten, Meile
Posthuma, Stuart Reid, Eric Riou du Cosquer (chair), Adam Roman, Lucjan Stapp, Stephanie Ulrich (vice
chair), Eshraka Zakaria

Copyright © 2019 the authors for the update 2019 Klaus Olsen (chair), Meile Posthuma and Stephanie
Ulrich.

Copyright © 2018 the authors for the update 2018 Klaus Olsen (chair), Tauhida Parveen (vice chair), Rex
Black (project manager), Debra Friedenberg, Matthias Hamburg, Judy McKay, Meile Posthuma, Hans
Schaefer, Radoslaw Smilgin, Mike Smith, Steve Toms, Stephanie Ulrich, Marie Walsh, and Eshraka
Zakaria,

Copyright © 2011 the authors for the update 2011 Thomas Miller (chair), Debra Friedenberg, and the
ISTQB WG Foundation Level.

Copyright © 2010 the authors for the update 2010 Thomas Miller (chair), Armin Beer, Martin Klonk, and
Rahul Verma.

Copyright © 2007 the authors for the update 2007 Thomas Miller (chair), Dorothy Graham, Debra
Friedenberg and Erik van Veenendaal.

Copyright © 2005, the authors Thomas Mdller (chair), Rex Black, Sigrid Eldh, Dorothy Graham, Klaus
Olsen, Maaret Pyhajarvi, Geoff Thompson, and Erik van Veenendaal.

All rights reserved. The authors hereby transfer the copyright to the ISTQB®. The authors (as current
copyright holders) and ISTQB® (as the future copyright holder) have agreed to the following conditions of
use:

e Extracts, for non-commercial use, from this document may be copied if the source is acknowledged.
Any Accredited Training Provider may use this syllabus as the basis for a training course if the
authors and the ISTQB® are acknowledged as the source and copyright owners of the syllabus and
provided that any advertisement of such a training course may mention the syllabus only after official
Accreditation of the training materials has been received from an ISTQB®-recognized Member Board.

e Any individual or group of individuals may use this syllabus as the basis for articles and books, if the
authors and the ISTQB® are acknowledged as the source and copyright owners of the syllabus.

e Any other use of this syllabus is prohibited without first obtaining the approval in writing of the
ISTQB®.

e Any ISTQB®-recognized Member Board may translate this syllabus provided they reproduce the
abovementioned Copyright Notice in the translated version of the syllabus.

v4.0 Page 2 of 70 beta release

© International Software Testing Qualifications Board

52
53

54

Certified Tester
Foundation Level

/

ISTQB

International Software
Testing Qualifications Board

Revision History

Version Date Remarks
TBA CTFL v4.0 — General release version

CTFL v4.0 3.01.2023 | CTFL v4.0 — Candidate beta version

CTFL v4.0 15.09.2022 | CTFL v4.0 — Alpha review release

CTFLv3.1.1 01.07.2021 | CTFL v3.1.1 — Copyright and logo update

CTFLv3.1 11.11.2019 | CTFL v3.1 — Maintenance release with minor updates

ISTQB 2018 27.04.2018 | CTFL v3.0 — Candidate general release version

ISTQB 2018 12.02.2018 | CTFL v3.0 — Candidate beta version

ISTQB 2018 19.01.2018 | Cross-review internal v3.0

ISTQB 2018 15.01.2018 | Pre-cross-review internal v2.9 incorporating Core Team edits.

ISTQB 2018 9.12.2017 | Alphareview v2.5 release — Technical edit of v2.0 release, no new content
added

ISTQB 2018 22.11.2017 | Alpha review v2.0 release — Certified Tester Foundation Level Syllabus
Major Update 2018 — see Appendix C — Release Notes for details

ISTQB 2018 12.06.2017 | Alpha review release - Certified Tester Foundation Level Syllabus Major
Update 2018 — see Appendix C — Release Notes

ISTQB 2011 1.04.2011 | CTFL Syllabus Maintenance Release — see Release Notes

ISTQB 2010 30.03.2010 | CTFL Syllabus Maintenance Release — see Release Notes

ISTQB 2007 01.05.2007 | CTFL Syllabus Maintenance Release

ISTQB 2005 01.07.2005 | Certified Tester Foundation Level Syllabus v1.0

ASQF V2.2 07.2003 ASQF Syllabus Foundation Level Version v2.2 “Lehrplan Grundlagen des
Software-testens®

ISEB V2.0 25.02.1999 | ISEB Software Testing Foundation Syllabus v2.0

v4.0 Page 3 of 70 beta release

© International Software Testing Qualifications Board

55

56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86

Certified Tester
Foundation Level

/

ISTQB

International Software
Testing Qualifications Board

Table of Contents

(7] o) 110 |10 A\ o) o = PSR 2

LAY 710 TN 1153 (o] Y S PPSRRR 3

TADIE OF CONENES ...ttt et et sa e b e e s b et e s re e e sn e e s sne e e nnn e e snreeennreenn 4

F o a0V T=To [1T 1=) RSP 8

O | 10T [8 ot o o PO P P PTR PR 9
0.1. PUrpose of thiS SYIADUSooiiii e 9
0.2. The Certified Tester Foundation Level in Software TeStingcoocoveeiiiiieiiniiieeee e 9
0.3. Career Path fOF TESTEISeiiiiiiiiie ittt et ettt e e e e e e nnbee e e e neee 9
0.4. BUSINESS OULCOMES ...ttt ettt ettt ettt e stk e e s et e e e e st e e e ekt e e e e enbe e e e enbreeeeneee 10
0.5. Examinable Learning Objectives and Cognitive Level of Knowledgecccccovviiiviiniiineennn 10
0.6. The Foundation Level Certificate EXAMcoouiiiiiiiiiiiiii et 11
0.7. Tt =T [7= i o] o PP PUT SRR 11
0.8. [=TT LT T 01 S5 =T o F= T o 11
0.9. [CET= o[T T LA T =T o 11
0.10. LeVel OFf DELAII......eeiiiiieiieiiieiee ettt ettt e e s e 11
0.11. How this Syllabus iS OrganiZedcccoeiiiiii i 12

1. Fundamentals of TeStiNg — 180 MINULESueiiiiiiiiiiiiiiie et 13
1.1. WAL IS TESHNG? ..ttt et e bt e e skttt e s bbbt e e s saba e e s enbbe e e s aanneeas 14
1.1.1. ODJECtVES Of TESHING ...cieiteiiieiiiiii ittt e e e e et e e e neee 14
1.1.2. Testing and DeDUGGINGeeeiiiiiiiiiiii e 15
1.2. WHhY IS TESHING NECESSAIY? ...ceeiitiiiie ittt ettt ettt sttt et e e s bbbt e e s bbbt e e s bbb e e e s annneeas 15
1.2.1. Testing’s Contributions t0 SUCCESSccciiuiiiiiiiiiiie e 15
1.2.2. Testing and Quality ASSUIaNCE (QA)uuuurerureieieieueieinrrrerererererererererer—————————————————————————. 16
1.2.3. Root Causes, Errors, Defects, and Failures............ccoviiiiiiiiiiiie e 16
1.3. TeStNG PriNCIPIES ..o 16
1.4. Test Activities, Test Work Products and Test ROIESc..ceviiiiiiiiiiiieeiiieee e 17
1.4.1. TeSt ACHVItIES BN TASKS.....ciiiiiiiiiiiiiii ittt 17
1.4.2. TESEPIOCESS IN CONEXEuiiiiiiiiiieiiiiet ettt s e e s anbe e e e 18
1.4.3. TESEWOIK PrOOUCEScoiiiiiiiieiiiiit ettt et et e e e et e e 19
1.4.4. Traceability between the Test Basis and Test Work Products...........ccccovvveeiiiiiie e 19

v4.0

© International Software Testing Qualifications Board

Page 4 of 70

beta release

87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118

Certified Tester
Foundation Level

/

ISTQB

International Software
Testing Qualifications Board

3.

1.4.5. Roles in Testing
1.5. Essential Skills and Good Practices
1.5.1. Generic Skills Required for Testing
1.5.2. Whole Team Approach
1.5.3. Independence of Testing
Testing Throughout the Software Development Lifecycles — 130 minutes
2.1. Testing in Context of Software Development Lifecycles
2.1.1. Impact of Software Development Lifecycle on Testing
2.1.2. Software Development Lifecycles and Good Testing Practices
2.1.3. Testing as a Driver for Software Development
2.1.4. DevOps and Testing
2.1.5. Shift-Left Approach
2.1.6. Retrospectives and Process Improvement
2.2. Test Levels and Test Types
2.2.1. TestLevels
2.2.2. TestTypes
2.2.3. Confirmation Testing and Regression Testing
2.3. Maintenance Testing
Static Testing — 80 minutes
3.1. Static Testing Basics
3.1.1. Work Products Examinable by Static Testing
3.1.2. Value of Static Testing
3.1.3. Differences between Static and Dynamic Testing
3.2. Feedback and Review Process
3.2.1. Benefits of Early and Frequent Customer Feedback
3.2.2. Review Process Activities
3.2.3. Roles and Responsibilities in Reviews
3.2.4. Review Types
3.2.5. Success Factors for Reviews
Test Analysis and Design — 390 minutes
4.1. Test Techniques Overview

4.2. Black-Box Test Techniques

v4.0

© International Software Testing Qualifications Board

Page 5 of 70

beta release

119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150

/

ISTQB

International Software
Testing Qualifications Board

Certified Tester
Foundation Level

4.2.1. EQUIValENCE PartitioNiNgccceiiiiiiiiiieeie e isciirie e e e e s s e e e e e e s s ae e e e e e e s s e nnnnbeeeeeaeeesannnrenes 37
4.2.2. Boundary Value ANAIYSIScccceiiiiiiiiiieei et e e e e e s e e e e e e e s s e e e e e e e s nnraees 38
4.2.3. DeCiSION TaABIE TESHNG . .eeiiiteieeiiiiiee ettt e et e e st e e et e e e s sbreeesabreeaeaas 39
4.2.4. State TranSitioN TESHINGicvureiiiiiieei ittt e e s st e e e s sbr e e e s sbreeeesbreeaeans 39
4.3. LT =T) Qi =T] oo [PO P PP PPPPPPPPPRPUPRP 40
4.3.1. Statement Testing and StatemeNnt COVEIAGEuvviiiiiieee ittt et e e srreee e 40
4.3.2. Branch Testing and Branch COVEIAQEcuuveiiiiiiieiiiiiee ettt e et e st aereee e 41
4.3.3. The Value of White-DOX TESHINGccciiiiiiiiiiiiie e 41
4.4, (oL [T Lot o T Y=o I <TS]S 41
441, EITOr GUESSING .coceei e 41
4.4.2. EXPlOratory TeSHNG .cccoeeee e 42
4.4.3. CheckKlist-Based TeStNG........cccouiiiiiiie e 42
4.5, Collaboration-based Test APPrOACHEScccoiiiiiiiice e 43
4.5.1. Collaborative User Story WILINGcooveviiiiiiiieeeee e 43
4.5.2. ACCEPLANCE CIILEITA ..ot uteiieeitiiee ittt e et e st b e e e st b e e e e sbb e e e e anbreeeeabreeaeans 43
4.5.3. Acceptance Test-driven Development (ATDD)ccoiiirieiiiiieeeiiiiee et e e 44
5. Managing the Test ACtIVItIeS — 335 MINULES.......ccciiuiiiiiiiiiie e 45
5.1. LIS L = U 11 o O PP PPUPPPRPPTPR 46
5.1.1. Purpose and Content of @ TESE PIANcoocuiiiiiiiiii e 46
5.1.2. Tester's Contribution to Iteration and Release Planning............ccccccoooeiiii e, 46
5.1.3. ENtry @nd EXit CHEEIIAcccooe i 47
5.1.4. ESHMAtioN TECHNIGUEScoeie i 47
5.1.5. TesSt Case PriOMZALIONocoiiiiiiiiiiiie ettt e e 48
B8, TESE PYIAMI ... ——————— 48
B.1.7. TeStiNg QUAAIANTS ..ot 49
5.2. RISK MANAGEMENT ...ttt e bt e e et e e e e et e e e e e nbe e e e e neee 49
5.2.1. Risk Definition and RiSK ALtHDULEScoouiiiiiiiii e 49
5.2.2. Project and ProduCt RISKSuuiiiiiiiiiiii e 49
5.2.3. Product RISK ANAIYSIS.......cuiiiiiiiiiie ettt 50
5.2.4. Product RISK CONTIOcciuiiiiiiiiiie ittt ettt e et e e e e snbee e e e neee 51
5.3. Test Monitoring, Test Control and Test COMPIEtIONeeiiiiiieiiiiiee e 51
5.3. 1. MetricS USEd iN TESHNG ...ceeieiiiiiiieiiee ettt e e e e s et e e e e e e s e snnbeeeeeaeeas 52
v4.0 Page 6 of 70 beta release

© International Software Testing Qualifications Board

/

Certified Tester ISInItEIngE;oﬂware

Foundation Level Testing Qualifications Board
151 5.3.2. Purpose, Contents and Audience for TeSt REPOIMS........ccveeeiiiiiiiiiiiiee i e e e s snireeeeee s 52
152 5.3.3. Communicating the Status Of TESINGc.cuuiiiiiiiiiiiiice e e e 53
153 5.4. Configuration MaNAGEIMENTcoiuiiieiiiiie ettt e e et e e e e e e e anbe e e e eneee 53
154 5.5. DefeCt MBNAGEIMENTeeiiiiiieie ittt ettt e e et e e ab e e e e an b et e e e nnbreeeennes 54
155 6. TESETOOIS — 20 MINULESeeiiiiiiiieiiiiit ettt ettt e et e s e b bt e e e b b et e e e s be e e e e nbne e e e annnes 56
156 6.1. e Je1IST U] o] o1o] 4 8 (o] gl K =21 1] o o OO P PP PP PPPPPPTTPUPRP 57
157 6.2. Benefits and RiSKS Of TESt AUIOMEALIONcouuiiiiiiiiiie ittt 57
158 T. RETEIEINCES ...ttt et e ettt e e bt e et e e e e e nnes 59
159 8. Appendix A — Learning Objectives/Cognitive Level of Knowledgecccc, 62
160 9. Appendix B — Business Outcomes traceability matrix with Learning Objectives 63
161 10. APPENAIX C — REICASE NOLESceiiiiieeeieieieeeieeeee ettt ettt e e e eeeeeeeeeeeeesseaesesesesssesssssssesnsnnnnnnes 68
162 11. 100 1= TP PP PP OPPTPPPPT 70
163

v4.0 Page 7 of 70 beta release

© International Software Testing Qualifications Board

164

165

166
167
168
169
170

171
172

173
174

175
176
177
178
179
180

181
182
183
184

185
186
187
188

189
190
191
192

193
194
195

/

Certified Tester ISITQBS)
Foundation Level Testing Qualifications Board
Acknowledgements

This document was formally released by the General Assembly of the ISTQB® on <date>

It was produced by a team from the ISTQB joint Foundation Level & Agile Working Groups: Laura Albert,
Renzo Cerquozzi (vice chair), Wim Decoutere, Klaudia Dussa-Zieger, Chintaka Indikadahena, Arnika
Hryszko, Martin Klonk, Kenji Onishi, Michaél Pilaeten (co-chair), Meile Posthuma, Gandhinee Rajkomar,
Stuart Reid, Eric Riou du Cosquer (co-chair), Jean-Francois Riverin, Adam Roman, Lucjan Stapp,
Stephanie Ulrich (vice chair), Eshraka Zakaria.

The team thanks Stuart Reid and Patricia McQuaid for their technical review and the review team and the
Member Boards for their suggestions and input.

The following persons participated in the reviewing, commenting and balloting of this syllabus: to be
completed

ISTQB Working Group Foundation Level (Edition 2018): Klaus Olsen (chair), Tauhida Parveen (vice
chair), Rex Black (project manager), Eshraka Zakaria, Debra Friedenberg, Ebbe Munk, Hans Schaefer,
Judy McKay, Marie Walsh, Meile Posthuma, Mike Smith, Radoslaw Smilgin, Stephanie Ulrich, Steve
Toms, Corne Kruger, Dani Almog, Eric Riou du Cosquer, Igal Levi, Johan Klintin, Kenji Onishi, Rashed
Karim, Stevan Zivanovic, Sunny Kwon, Thomas Miiller, Vipul Kocher, Yaron Tsubery and all Member
Boards for their suggestions.

ISTQB Working Group Foundation Level (Edition 2011): Thomas Miuiller (chair), Debra Friedenberg. The
core team thanks the review team (Dan Almog, Armin Beer, Rex Black, Julie Gardiner, Judy McKay,
Tuula Paakkoénen, Eric Riou du Cosquier Hans Schaefer, Stephanie Ulrich, Erik van Veenendaal), and all
Member Boards for the suggestions for the current version of the syllabus.

ISTQB Working Group Foundation Level (Edition 2010): Thomas Muller (chair), Rahul Verma, Martin
Klonk and Armin Beer. The core team thanks the review team (Rex Black, Mette Bruhn-Pederson, Debra
Friedenberg, Klaus Olsen, Judy McKay, Tuula Paakkdnen, Meile Posthuma, Hans Schaefer, Stephanie
Ulrich, Pete Williams, Erik van Veenendaal), and all Member Boards for their suggestions.

ISTQB Working Group Foundation Level (Edition 2007): Thomas Muiller (chair), Dorothy Graham, Debra
Friedenberg, and Erik van Veenendaal. The core team thanks the review team (Hans Schaefer,
Stephanie Ulrich, Meile Posthuma, Anders Pettersson, and Wonil Kwon) and all the Member Boards for
their suggestions.

ISTQB Working Group Foundation Level (Edition 2005): Thomas Mdller (chair), Rex Black, Sigrid Eldh,
Dorothy Graham, Klaus Olsen, Maaret Pyhajarvi, Geoff Thompson and Erik van Veenendaal. The core
team thanks the review team and all Member Boards for their suggestions.

v4.0 Page 8 of 70 beta release

© International Software Testing Qualifications Board

196

197

198
199

200
201
202

203
204

205

206
207

208
209

210

211
212
213
214
215
216
217

218

219
220
221
222
223
224
225
226
227
228

/

Certified Tester ISTQB

International Software

Foundation Level Testing Qualifications Board

0. Introduction

0.1. Purpose of this Syllabus

This syllabus forms the basis for the International Software Testing Qualification at the Foundation Level.
The ISTQB® provides this syllabus as follows:

1. To member boards, to translate into their local language and to accredit training providers.
Member boards may adapt the syllabus to their particular language needs and modify the
references to adapt to their local publications.

2. To certification bodies, to derive examination questions in their local language adapted to the
learning objectives for this syllabus.

3. To training providers, to produce courseware and determine appropriate teaching methods.

4. To certification candidates, to prepare for the certification exam (either as part of a training course
or independently).

To the international software and systems engineering community, to advance the profession of software
and systems testing, and as a basis for books and articles.

0.2.The Certified Tester Foundation Level in Software Testing

The Foundation Level qualification is aimed at anyone involved in software testing. This includes people
in roles such as testers, test analysts, test engineers, test consultants, test managers, software
developers and team members in Agile development. This Foundation Level qualification is also
appropriate for anyone who wants a basic understanding of software testing, such as project managers,
quality managers, product owners, software development managers, business analysts, IT directors and
management consultants. Holders of the Foundation Certificate will be able to go on to higher-level
software testing qualifications.

0.3.Career Path for Testers

The ISTQB® scheme provides support for testing professionals at all stages of their careers offering both
breadth and depth of knowledge. Individuals who achieved the ISTQB® Foundation certification may also
be interested in the Core Advanced Levels (Test Analyst, Technical Test Analyst, and Test Manager) and
thereafter Expert Level (Test Management or Improving the Test Process). Anyone seeking to develop
skills in testing practices in an Agile environment could consider the Agile Technical Tester or Agile Test
Leadership at Scale certifications. The Specialist stream offers a deep dive into areas that have specific
test approaches and test activities (e.g., in test automation, Al testing, model-based testing, mobile app
testing), that are related to specific test areas (e.g., performance testing, usability testing, acceptance
testing, security testing), or which cluster testing know-how for certain industry domains (e.g., automotive
or gaming). Please visit www.istgb.org for the latest information on ISTQB’s Certified Tester Scheme.

v4.0 Page 9 of 70 beta release

© International Software Testing Qualifications Board

https://eur01.safelinks.protection.outlook.com/?url=http%3A%2F%2Fwww.istqb.org%2F&data=05%7C01%7Cfilipe.carlos%40innowave.tech%7Cb1ee83ff6521424c792908da440ce915%7C726174dc30ab40e185fc60cda0e0bd81%7C0%7C0%7C637897119663377885%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=Sgv6mR7KzlIIQ6MFZ0cBRVv6yEoTekNJEqwFQ7M%2Bx7M%3D&reserved=0

229

230
231

232
233
234

235
236

237
238
239
240
241
242
243
244
245
246
247

248

249
250
251
252
253

254
255
256

257
258
259

/

Certified Tester ISTQB

International Software

Foundation Level Testing Qualifications Board

0.4.Business Outcomes

This section lists the 14 Business Outcomes expected of a person who has achieved the Foundation
Level certification.

A Foundation Level Certified Tester can...

FL-BO1 Understand what testing is and why it is beneficial

FL-BO2 Understand fundamental concepts of software testing

FL-BO3 Identify the test approach and activities to be implemented depending on the context of
testing

FL-BO4 Assess and improve the quality of the documentation

FL-BO5 Increase the effectiveness and efficiency of testing

FL-BO6 Align the testing process with the software development lifecycle

FL-BO7 Understand test management principles

FL-BO8 Write and communicate clear and understandable defect reports

FL-BO9 Understand the factors that influence the test priorities and test efforts

FL-BO10 Work as part of a cross-functional team

FL-BO11 Know risks and benefits related to test automation

FL-BO12 Identify essential skills required for testing

FL-BO13 Understand the impact of risk on testing

FL-BO14 Effectively report on test progress and quality

0.5. Examinable Learning Objectives and Cognitive Level of Knowledge

Learning objectives support business outcomes and are used to create the Certified Tester Foundation
Level exams. In general, all contents of chapters 1-6 of this syllabus are examinable at a K1 level. That is,
the candidate may be asked to recognize, remember, or recall a keyword or concept mentioned in any of
the six chapters. The specific learning objectives levels are shown at the beginning of each chapter, and
classified as follows:

e Kl1: Remember
e K2: Understand
o KB3: Apply

Further details and examples of learning objectives are given in Appendix A. All terms listed as keywords
just below chapter headings shall be remembered (K1), even if not explicitly mentioned in the learning
objectives.

v4.0 Page 10 of 70 beta release

© International Software Testing Qualifications Board

260

261
262
263
264
265

266

267
268
269
270
271
272

273

274
275
276
277

278

279
280
281
282

283

284
285

286
287

288
289

290

291
292

/

Certified Tester ISTQB

International Software

Foundation Level Testing Qualifications Board

0.6. The Foundation Level Certificate Exam

The Foundation Level Certificate exam will be based on this syllabus. Answers to exam questions may require
the use of material based on more than one section of this syllabus. All sections of the syllabus are
examinable, except for the Introduction and Appendices. Standards and books are included as references, but
their content is not examinable, beyond what is summarized in the syllabus itself from such standards and
books. Refer to Exam Structures and Rules document for the Foundation Level for further details.

0.7.Accreditation

An ISTQB® Member Board may accredit training providers whose course material follows this syllabus.
Training providers should obtain accreditation guidelines from the Member Board or body that performs
the accreditation. An accredited course is recognized as conforming to this syllabus, and is allowed to
have an ISTQB® exam as part of the course. The accreditation guidelines for this syllabus follow the
general Accreditation Guidelines published by the Processes Management and Compliance Working
Group.

0.8.Handling of Standards

There are standards referenced in the Foundation Syllabus (e.g., IEEE or ISO standards). The purpose of
these references is to provide a framework (as in the references to ISO 25010 regarding quality characteristics)
or to provide a source of additional information if desired by the reader. The standards documents are not
intended for examination. Refer to chapter 7 for more information on standards.

0.9.Keeping It Current

The software industry changes rapidly. To deal with these changes and to provide the stakeholders with access
to relevant and current information, the ISTQB working groups have created links on the www.istgb.org
website, which refer to supporting documents and changes to standards. This information is not examinable
under the Foundation syllabus.

0.10. Level of Detail

The level of detail in this syllabus allows internationally consistent courses and exams. In order to achieve
this goal, the syllabus consists of:

e General instructional objectives describing the intention of the Foundation Level
o Alist of terms (keywords) that students must be able to recall

e Learning objectives for each knowledge area, describing the cognitive learning outcomes to be
achieved

e A description of the key concepts, including references to recognized sources

The syllabus content is not a description of the entire knowledge area of software testing; it reflects the
level of detail to be covered in Foundation Level training courses. It focuses on test concepts and

v4.0 Page 11 of 70 beta release

© International Software Testing Qualifications Board

293
294

295

296
297
298
299

300

301
302

303
304
305
306
307
308
309
310
311
312

313
314

315
316
317
318
319
320
321
322

323
324

/

Certified Tester ISTQB

International Software

Foundation Level Testing Qualifications Board

techniques that can be applied to all software projects independent of the software development lifecycle
employed.

0.11. How this Syllabus is Organized

There are six chapters with examinable content. The top-level heading for each chapter specifies the
training time for the chapter. Timing is not provided below the chapter level. For accredited training
courses, the syllabus requires a minimum of 18.75 hours (18 hours and 45 minutes) of instruction,
distributed across the six chapters as follows:

e Chapter 1: Fundamentals of Testing (190 minutes)

o The student learns the basic principles related to testing, the reasons why testing is
required, and what the test objectives are.

o The student understands the test process, the major test activities, and work products.
o The student understands the essential skills for testing.
e Chapter 2: Testing Throughout the Software Development Lifecycles (140 minutes)
o The student learns how testing is incorporated into different development approaches.
o The student learns the concepts of test-first approaches, as well as DevOps.
o The student learns about the different test levels, test types, and maintenance testing.
e Chapter 3: Static Testing (80 minutes)
o The student learns the static testing basics.
o The student learns about the feedback and review process.
e Chapter 4: Test Analysis and Design (390 minutes)

o The student learns how to apply black-box, white-box, and experience-based test
techniques to derive test cases from various software work products.

o The student learns about the collaboration-based test approach.
e Chapter 5: Managing the Test Activities (305 minutes)
o The student learns how to plan tests in general, and how to estimate test effort.
o The student learns how risks can influence the scope of testing.
o The student learns how to monitor and control test activities.
o The student learns how configuration management supports testing.
o The student learns how to report defects in a clear and understandable way.
e Chapter 6: Test Tools (20 minutes)
o The student learns to classify tools and to understands the risks and benefits of test

automation.

v4.0 Page 12 of 70 beta release

© International Software Testing Qualifications Board

325

326

327
328
329
330

331

332

333
334
335

336
337
338
339

340
341

342
343
344
345
346
347

348
349
350
351

/

Certified Tester ISTQB

International Software

Foundation Level Testing Qualifications Board

1. Fundamentals of Testing — 180 minutes

Keywords

coverage, coverage item, debugging, defect, error, failure, quality, quality assurance, root cause, test
analysis, test basis, test case, test completion, test condition, test control, test data, test design, test
execution, test implementation, test monitoring, test object, test objective, test planning, test procedure,
test result, testing, testware, validation, verification

Learning Objectives for Chapter 1:

1.1 What is Testing?
FL-1.1.1 (K1) Identify typical objectives of testing
FL-1.1.2 (K2) Differentiate testing from debugging

1.2 Why is Testing Necessary?

FL-1.2.1 (K2) Exemplify why testing is necessary
FL-1.2.2 (K1) Recall the relation between testing and quality assurance
FL-1.2.3 (K2) Distinguish between root cause, error, defect, and failure

1.3 Testing Principles
FL-1.3.1 (K2) Explain the seven testing principles

1.4 Test Activities, Test Work Products and Test Roles

FL-1.4.1 (K2) Summarize the different test activities and tasks

FL-1.4.2 (K2) Explain the impact of context on the test process

FL-1.4.3 (K2) Differentiate the work products that support the test activities
FL-1.4.4 (K2) Explain the value of maintaining traceability

FL-1.4.5 (K2) Compare the different roles in testing

1.5 Essential Skills and Good Practices in Testing

FL-1.5.1 (K2) Give examples of the generic skills required for testing

FL-1.5.2 (K1) Recall the advantages of the whole team approach

FL-1.5.3 (K2) Distinguish the benefits and drawbacks of independence of testing

v4.0 Page 13 of 70 beta release

© International Software Testing Qualifications Board

352

353
354
355
356
357

358
359
360
361

362
363
364
365

366
367
368

369
370

371
372
373

374

375
376
377
378
379
380
381
382
383
384
385

386
387

/

Certified Tester ISTQB

International Software

Foundation Level Testing Qualifications Board

1.1.What is Testing?

Software systems are an integral part of our daily life. Most people have had experience with software
that did not work as expected. Software that does not work correctly can lead to many problems,
including loss of money, time or business reputation, and, in extreme cases, even injury or death.
Software testing assesses the quality of the software and contributes to reducing the risk of software
failure in operation.

Software testing is a set of activities conducted to facilitate the discovery of defects and the evaluation of
properties of software artifacts. These artifacts under test are known as test objects. A common
misconception about testing is that it only consists of executing tests (i.e., running the software and
checking the results). However, software testing includes also other activities (see chapter 2).

Another common misconception about testing is that testing focuses entirely on the verification of the test
object. While testing does involve checking whether the system meets specified requirements, it also
involves checking whether the system meets users’ and other stakeholders’ needs in its operational
environment, which is called validation.

Testing may be dynamic or static. Dynamic testing involves the execution of software, while static testing
does not. Static testing includes reviews (see chapter 3) and static analysis. Dynamic testing uses
different types of test techniques to derive test cases (see chapter 4).

Testing is not only a technical activity. It also needs to be properly planned, managed, estimated,
monitored and controlled (see chapter 5).

Testers use tools (see chapter 6), but it is important to remember that testing is largely an intellectual
activity, requiring the testers to have specialized knowledge, use analytical skills and apply critical
thinking and systems thinking (Myers 2011, Roman 2018).

The ISO/IEC/IEEE 29119-1 standard has further information about software testing concepts.

1.1.1. Objectives of Testing
The typical objectives of testing are:
e Evaluating work products such as requirements, user stories, designs, and code
¢ Identifying failures and finding defects
e Ensuring proper coverage of a test object
¢ Reducing the level of risk of inadequate software quality
e Verifying whether specified requirements have been fulfilled
o Verifying that a test object complies with contractual, legal, and regulatory requirements
¢ Providing information to stakeholders to allow them to make informed decisions
e Building confidence in the quality of the test object
e Validating whether the test object is complete and works as the stakeholders expect

The objectives of testing can vary, depending upon the context, which includes the work product being
tested, the test level, and the SDLC being followed.

v4.0 Page 14 of 70 beta release

© International Software Testing Qualifications Board

388

389
390

391
392

393
394
395

396
397
398
399

400
401

402

403
404
405
406
407

408

409
410

411
412

413
414

415
416

417
418

419
420

/

Certified Tester ISTQB

International Software

Foundation Level Testing Qualifications Board

1.1.2. Testing and Debugging

Testing and debugging are separate activities. Testing can show failures that are caused by defects in the
software (dynamic testing) or can directly find defects in the test object (static testing).

If dynamic testing finds a failure, debugging is concerned with finding causes of this failure (defects),
analyzing these causes, and eliminating them. The typical debugging process in this case involves:

e Reproduction of a failure
e Diagnosis (finding the cause)
e Fixing the cause

Subsequent confirmation testing checks whether the fixes resolved the problem. Preferably, confirmation

testing is done by the same person who performed the initial test. Subsequent regression testing can also
be performed, to check whether the fixes are causing failures in other parts of the test object (see section
2.2.3 for more information on confirmation testing and regression testing).

If static testing finds a defect, debugging is concerned with eliminating it. There is no need of reproduction
or diagnosis, since static testing directly finds defects, not failures (see chapter 3).

1.2.Why is Testing Necessary?

The testing of components, systems and their associated documentation supports the identification of
defects in software. Testing also detects gaps and other deficiencies in the specifications for the software.
Hence, testing can help to reduce the risk of failures occurring during operation. When defects are
detected and fixed, this contributes to improving the quality of the test object. In addition, software testing
may also be required to meet contractual or legal requirements or to comply with regulatory standards.

1.2.1. Testing’s Contributions to Success

Testing helps in achieving the agreed upon goals within the set scope, time, quality, and budget
standards. The success can be considered in terms of:

e Product quality (e.g., detecting defects allows to remove them in the debugging process,
therefore testing contributes to increase the quality of the system under test)

e Process quality (e.g., introducing test automation improves the efficiency of the release process;
applying risk-based testing optimizes the testing effort)

e Project goals (e.g., using static testing early in the project reduces the software maintenance
costs and improves the developers’ effectiveness by reducing time spent for fixing defects)

e People skills (e.g., performing code reviews increases code understanding and allows less
experienced developers to improve their programming and designing skills)

Testing’s contribution to success should not be restricted to the test team activities only. Any stakeholder
can use their testing skills to bring the project closer to success.

v4.0 Page 15 of 70 beta release

© International Software Testing Qualifications Board

421

422
423
424
425
426
427
428
429

430
431

432

433
434
435

436
437
438
439
440
441

442
443

444
445
446
447

448

449
450

451
452
453
454

455
456
457

458
459

/

Certified Tester ISTQB

International Software

Foundation Level Testing Qualifications Board

1.2.2. Testing and Quality Assurance (QA)

While people often use the terms “testing” and “quality assurance” (QA) interchangeably, testing and QA
are not the same. Testing is a form of quality control (QC). QA is typically focused on establishing,
introducing, monitoring, improving, and adhering to the quality-related processes. When proper processes
are carried out correctly, this contributes to defect prevention, and improves confidence that appropriate
levels of quality in the work products will be achieved. QA, when applied to software development and
software maintenance, should also be applied to software testing, which is part of each of these activities.
In addition, the use of root cause analysis to detect the causes of defects, and the application of the
findings of retrospective meetings to improve processes, are also important for effective QA.

A larger concept, quality management (QM), ties together QA and QC. QM includes all activities that
direct and control an organization with regard to quality. QM includes both QA and testing.

1.2.3. Root Causes, Errors, Defects, and Failures

Human beings make errors (mistakes), which produce defects (faults, bugs), which in turn may result in
failures. Humans make mistakes for various reasons, such as time pressure, complexity of code,
infrastructure or interactions, or simply because they are tired or lack adequate training.

The defects can be in documents, such as a requirements specification or a test script, in source code, or
in a supporting artifact, such as a build file. Defects in artifacts produced earlier in the lifecycle, such as
the requirements, if undetected, often lead to defective artifacts later in the lifecycle, such as the code. If a
defect in code is executed, the system may fail to do what it should do (or do something it shouldn’t),
causing a failure. Some defects will always result in a failure if executed, while others will only result in a
failure in specific circumstances, and some may never result in a failure.

Errors and defects are not the only cause of failures. Failures can also be caused by environmental
conditions, such as when radiation or electromagnetic field cause defects in firmware.

A root cause is a fundamental reason for the occurrence of a problem. Root cause may be a situation or
error that leads to a defect. Root causes are identified through root cause analysis, which is typically
performed when a failure occurs, and it is believed that further similar failures can be prevented or their
frequency reduced by addressing the root cause, such as by removing it.

1.3. Testing Principles

A number of testing principles offering general guidelines common to all testing have been suggested
over the past 60 years. This syllabus describes seven such principles.

1. Testing shows the presence, not the absence of defects. Testing can show that defects are present
in the test object but cannot prove that there are no defects (Buxton 1970). Testing reduces the
probability of undiscovered defects remaining in the test object, but, even if no defects are found, testing
cannot prove test object correctness.

2. Exhaustive testing is impossible. Testing everything is not feasible except in trivial cases (Manna
1978). Rather than attempting to test exhaustively, test techniques (see chapter 4), test case prioritization
(see section 5.1.5), and risk-based testing (see section 5.2), should be used to focus test efforts.

3. Early testing saves time and money. Defects that are removed early in the process will not cause
subsequent defects in derived work products. The total cost of quality will be reduced since fewer failures

v4.0 Page 16 of 70 beta release

© International Software Testing Qualifications Board

460
461

462
463
464
465

466
467
468
469

470
471

472
473
474
475
476

477

478
479
480
481
482

483
484
485

486

487

488
489
490

491
492

493
494
495

496
497
498

/

Certified Tester ISTQB

International Software

Foundation Level Testing Qualifications Board

will occur later in the lifecycle (Boehm 1981). To find defects early, both static testing (see chapter 3) and
dynamic test activities (see chapter 4) should be started as early as possible.

4. Defects cluster together. A small number of system components usually contain most of the defects
discovered or are responsible for most of the operational failures (Enders 1975). This phenomenon is an
illustration of the Pareto principle. Predicted defect clusters, and actual defect clusters observed during
testing or in operation, are an important input for risk-based testing (see section 5.2).

5. Tests wear out. If the same tests are repeated many times, they stop being effective in detecting new
defects (Beizer 1990). To overcome this, existing tests and test data may need changing, and new tests
may need to be written. However, in some cases, repeating the same tests can have the beneficial
outcome, e.g., in automated regression testing (see section 2.2.3).

6. Testing is context dependent. There is no single universally applicable approach to testing. Testing is
done differently in different contexts (Kaner 2011).

7. Absence-of-errors fallacy. It is a fallacy (i.e., a mistaken belief) to expect that software verification will
ensure the success of a system. Thoroughly testing all the specified requirements and fixing all the
defects found could still produce a system that does not fulfill the users’ needs and expectations, that
does not help in achieving the customer’s business goals and that is inferior compared to other competing
systems. In addition to verification, validation should also be carried out (Boehm 1981).

1.4. Test Activities, Test Work Products and Test Roles

Testing is context dependent, but, at a high level, there are common sets of test activities without which
testing is less likely to achieve its objectives. These sets of test activities form a test process. The test
process can be tailored for a given situation based on various factors. Which test activities are included in
this test process, how they are implemented, and when they occur are normally decided as part of the
test planning for the specific situation (see chapter 5).

The following sections describe general aspects of this test process in terms of test activities and tasks,
the impact of context, test work products, traceability between the test basis and test work products, and
testing roles.

The ISO/IEC/IEEE 29119-2 standard has further information about test processes.

1.4.1. Test Activities and Tasks

A test process usually consists of the main groups of activities described below. Although many of these
activities may appear to follow a logical sequence, they are often implemented iteratively or in parallel.
Tailoring of these test activities within the context of the system and the project is usually required.

Test planning includes defining the test objectives and the test approach for meeting them within the
constraints imposed by the context. Test planning is further explained in section 5.1.

Test monitoring and control. Test monitoring involves the on-going checking of all activities and the
comparison of actual progress against the test plan. Test control involves taking the actions necessary to
meet the objectives of the test plan. Test monitoring and control are further explained in section 5.3.

Test analysis includes analyzing the test basis to identify testable features and to define and prioritize
associated test conditions, together with the related risks and risk levels (see section 5.2). Test basis and
test objects are also evaluated to identify defects they may contain and to assess their testability. Test

v4.0 Page 17 of 70 beta release

© International Software Testing Qualifications Board

499
500

501
502
503
504
505

506
507
508
509

510
511
512
513
514

515
516
517
518
519
520

521

522
523
524
525

526
527
528
529
530
531
532
533

534
535
536

/

Certified Tester ISTQB

International Software

Foundation Level Testing Qualifications Board

analysis is often supported by the use of test techniques (see chapter 4). Test analysis answers the
question “what to test?” in terms of measurable coverage criteria.

Test design includes elaborating the test conditions into test cases and other testware (e.g., test
charters). This activity often involves the identification of coverage items, which serve as a guide to
specify test case inputs. Test techniques (see chapter 4) can be used to support this activity. Test design
also includes test data identification, designing the test environment and identifying any other required
infrastructure and tools. Test design answers the question “how to test?”.

Test implementation includes creating or acquiring the testware necessary for test execution (e.g., test
data). Test cases are organized into test procedures. Automated test scripts are created. Test procedures
are prioritized and arranged within a test execution schedule for efficient test execution (see section
5.1.5). Test environment is built and verified to be set up correctly.

Test execution includes running the test procedures in accordance with the test execution schedule.
Test execution may be manual or automatic. Test execution can take the form of continuous testing or
pair testing sessions. Actual test results are compared with expected results. Anomalies are analyzed to
identify their likely causes. Test execution outcome is logged. Defects are reported based on the failures
observed (see section 5.5).

Test completion activities occur at project milestones (e.g., release, end of iteration, test level
completion). Change requests or product backlog items for any unresolved defects are created. Any
testware that may be useful in the future is identified and archived or handed over to the appropriate
teams. The test environment is shut down to an agreed state. The completed test activities are analyzed
to identify lessons learned and identify improvements for future iterations, releases, or projects (see
section 2.1.6). A test completion report is created and communicated to stakeholders.

1.4.2. Test Process in Context

Testing is not performed in isolation. Testing is subservient to the development processes carried out
within a specific organization. Testing is also sponsored by stakeholders and its final goal is to help fulfill
the stakeholders’ business needs. Therefore, the way the testing is carried out will depend on a number
of contextual factors including:

e Stakeholders (needs, expectations, requirements, willingness to cooperate, etc.)

e Team members (skills, knowledge, level of experience, availability, training needs, etc.)

¢ Business domain (type of software, identified risks, market needs, specific legal regulations, etc.)
e Technical factors (product architecture, technology used, etc.)

e Project constraints (scope, time, budget, resources, etc.)

e Organizational factors (organizational structure, existing policies, practices used, etc.)

e SDLC (engineering techniques, development methods, etc.)

e Tools (availability, difficulty of use, etc.)

These factors will have an impact on many test-related issues, including: test strategy, test techniques
used, degree of test automation, required level of test coverage in relation to requirements and identified
risks, level of detail of test documentation, reporting etc.

v4.0 Page 18 of 70 beta release

© International Software Testing Qualifications Board

537

538
539
540

541
542

543
544

545
546

547
548

549
550
551

552
553
554

555
556

557

558
559
560

561
562
563
564

565
566

567
568
569
570
571
572

/

Certified Tester ISTQB

International Software

Foundation Level Testing Qualifications Board

1.4.3. Test Work Products

Test work products are created as outputs from the test activities described in section 1.4.1. There is a
significant variation in the work products and their naming across organizations, regarding the way they
are organized and managed. The following list of work products is by no means exhaustive.

Test planning work products include: test strategy (usually in larger projects), test plan, risk register,
and exit criteria (see section 5.1). Risk register and exit criteria are often a part of the test plan.

Test monitoring and control work products include: test progress reports (see section 5.3.2),
documentation of control directives (see section 5.3) and risk information (see section 5.2).

Test analysis work products include: (prioritized) test conditions, acceptance criteria (see section
4.5.2), and defect reports regarding defects in the test basis (if not fixed directly).

Test design work products include: test cases, coverage items, test data requirements and test
environment design.

Test implementation work products include: test procedures, automated test scripts, test suites, test
data, test execution schedule, and test environment elements. Examples of test environment elements
include: stubs, drivers, simulators, and service virtualizations.

Test execution work products include: test logs, documentation of the status of individual test cases,
defect reports (see section 5.5.1), and documentation about which test objects, test tools, and testware
were involved in the testing.

Test completion work products include: test completion report (see section 5.3.2), action items for
improvement of subsequent projects or iterations, and change requests (e.g., as product backlog items).

1.4.4. Traceability between the Test Basis and Test Work Products

In order to implement effective test monitoring and control, it is important to establish and maintain
traceability throughout the test process between the test basis elements, test work products associated
with these elements (e.qg., test conditions, risks, test cases), test results, and detected defects.

Accurate traceability supports test coverage evaluation, so it is very useful if the test basis has
measurable coverage criteria defined. The coverage criteria can function as key performance indicators
to drive the activities that demonstrate the achievement of test objectives (see section 1.1.1). For
example, by using the traceability from:

e Test cases to requirements, the requirements coverage by test cases can be verified
e Test case results to risks, the level of residual risk in a test object can be evaluated.

In addition to the evaluation of coverage, good traceability allows to determine the impact of changes,
facilitates the auditing of testing, and supports the achievement of IT governance criteria. Good
traceability also improves the understandability of test progress reports and test completion reports by
including the status of test basis elements. This can also make the communication of technical aspects of
testing to stakeholders easier, in terms that they can understand. Good traceability provides information
used to assess product quality, process capability, and project progress against business goals.

v4.0 Page 19 of 70 beta release

© International Software Testing Qualifications Board

573

574
575
576

577
578
579
580
581

582
583
584
585

586
587
588

589

590
5901
592

593
594

595
596

597
598

599
600
601
602

603
604
605
606
607
608

/

Certified Tester ISTQB

International Software

Foundation Level Testing Qualifications Board

1.4.5. Rolesin Testing

In this syllabus, two principal roles in testing are covered: a test management role and a testing role. The
activities and tasks assigned to these two roles depend on factors such as the project and product
context, the skills of the people in the roles, and the organization.

The test management role takes overall responsibility for the test process, test team and leadership of the
test activities. The test management tasks mainly concentrate on test planning, test monitoring and
control and test completion activities. The testing role takes overall responsibility for the engineering
(technical) aspect of testing. The testing tasks mainly concentrate on test analysis, test design, test
implementation and test execution activities.

The way in which the test management role is carried out varies depending on the context. For example,
in Agile software development, some of the test management tasks may be handled by the Agile team.
Tasks that span multiple teams or the entire organization may be performed by test managers outside of
the development team.

Different people may take over these roles at different times. For example, the test management role can
be performed by a team leader, by a test manager, by a development manager, etc. It is also possible
that one person can take both the testing and test management roles at the same time.

1.5. Essential Skills and Good Practices

Skill is the ability to do something well that comes from one’s knowledge, practice and aptitude. Good
testers should possess some essential skills to do their job efficiently and effectively. Good testers should
also be the effective team players and perform testing on different levels of independence.

1.5.1. Generic Skills Required for Testing
While being generic, the following skills are particularly relevant for testers:

e Thoroughness, carefulness, curiosity, attention to details, being methodical (to identify different
types of defects, especially the ones that are difficult to find)

¢ Good communication skills, active listening, being a team player (to interact effectively with all
stakeholders, to convey information to others, to be understood, to report and discuss defects)

e Analytical thinking, critical thinking, creativity (to increase effectiveness of testing)
e Technical knowledge (to increase efficiency of testing, e.g., by using test tools)

o Knowledge of estimation techniques (to estimate the test effort more accurately)

¢ Domain knowledge (to be able to understand and to communicate with end users)

Testers are often the bearers of bad news. It is a common human trait to blame the bearer of bad news.
This makes communication skills crucial for testers. Communicating testing results may be perceived as
criticism of the product and of its author. Confirmation bias can make it difficult to accept information that
disagrees with currently held beliefs. Some people may perceive testing as a destructive activity, even
though it contributes greatly to project progress and product quality. To try to improve this view, information
about defects and failures should be communicated in a constructive way.

v4.0 Page 20 of 70 beta release

© International Software Testing Qualifications Board

609
610

611

612
613

614
615
616
617
618

619
620
621
622
623

624
625

626

627
628
629

630
631
632
633
634
635

636
637
638
639

640
641
642
643

/

Certified Tester ISTQB

International Software

Foundation Level Testing Qualifications Board

Defining the right set of test objectives (see section 1.1.1) can have important psychological implications
as most people tend to align their plans and behaviors with the set objectives.

1.5.2. Whole Team Approach

One of the important testing skills is being a team player, having the ability to work effectively in a team
context and to contribute positively to the team goal. The whole team approach builds upon this skill.

The whole team approach involves everyone with the necessary knowledge and skills to ensure project
success by making quality everyone’s responsibility. The team members share the same workspace, as
co-location facilitates communication and interaction. The whole team approach improves team
dynamics, enhances communication and collaboration within the team, and creates synergy by allowing
the various skill sets within the team to be leveraged for the benefit of the project.

Testers work closely with other team members to ensure that the desired quality levels are achieved. This
includes collaborating with business representatives to help them create suitable acceptance tests and
working with developers to agree on the testing strategy and decide on test automation approaches.
Testers can thus transfer and extend testing knowledge to other team members and influence the
development of the product.

Depending on the context, the whole team approach may be not sufficient requiring a higher level of
testing independence (e.g., safety-critical systems).

1.5.3. Independence of Testing

A certain degree of independence makes the tester more effective at finding defects due to differences
between the author’s and the tester’s cognitive biases. Independence is not, however, a replacement for
familiarity, and developers can efficiently find many defects in their own code.

Work products can be tested by its author (no independence), by the author’s peer from the same team
(some independence), by the testers external to the author’s team, but within the organization (high
independence), or by the testers external to the organization (very high independence). For most
projects, it is usually best to carry out testing with multiple levels of independence (e.g., developers
performing component and component integration testing, test team performing system and system
integration testing, and business representatives performing acceptance testing).

The main benefit of test independence is that independent testers are likely to recognize different kinds of
failures compared to developers because of their different backgrounds, technical perspectives, and
biases. Moreover, an independent tester can verify, challenge, or disprove assumptions made by
stakeholders during specification and implementation of the system.

However, there are also some drawbacks. Independent testers may be isolated from the development
team, which may lead to a lack of collaboration, communication problems, or an adversarial relationship
with the development team. Developers may lose a sense of responsibility for quality. Independent
testers may be seen as a bottleneck or be blamed for delays in release.

v4.0 Page 21 of 70 beta release

© International Software Testing Qualifications Board

644
645

646

647
648
649
650

651

652

653
654

655
656

657
658
659
660

661
662
663
664

665
666

/

Certified Tester ISTQB

International Software

Foundation Level Testing Qualifications Board

2. Testing Throughout the Software Development Lifecycles
— 130 minutes

Keywords

acceptance testing, component integration testing, component testing, confirmation testing, functional
testing, integration testing, maintenance testing, non-functional testing, operational acceptance testing,
regression testing, shift-left, system integration testing, system testing, test basis, test environment, test
level, test object, test type, user acceptance testing, white-box testing

Learning Objectives for Chapter 2:

2.1 Testing in Context of Software Development Lifecycles
FL-2.1.1 (K2) Explain the impact of the chosen software development lifecycle on testing

FL-2.1.2 (K1) Remember good testing practices regardless of the chosen software development
model

FL-2.1.3 (K1) Recall the examples of test-first approaches to development
FL-2.1.4 (K2) Summarize how DevOps might have an impact on testing
FL-2.1.5 (K2) Explain the shift-left approach

FL-2.1.6 (K2) Explain how retrospectives can be used as a mechanism for process improvement

2.2 Test Levels and Test Types
FL-2.2.1 (K2) Distinguish the different test levels
FL-2.2.2 (K2) Compare and contrast functional, non-functional and white-box testing

FL-2.2.3 (K2) Distinguish confirmation testing from regression testing

2.3 Maintenance Testing

FL-2.3.1 (K2) Summarize maintenance testing and its triggers

v4.0 Page 22 of 70 beta release

© International Software Testing Qualifications Board

667

668
669
670
671
672

673
674
675
676

677
678
679
680
681
682

683
684
685

686
687
688

689
690
691
692

693
694

695
696

697
698

699
700

701
702

/

Certified Tester ISTQB

International Software

Foundation Level Testing Qualifications Board

2.1.Testing in Context of Software Development Lifecycles

A software development lifecycle (SDLC) model is an abstract, high-level representation of the software
development process. A SDLC model defines how different development phases and types of activities

performed within this process relate to each other, both logically and chronologically. Examples of SDLC
models include: sequential models (e.g., waterfall model, V-model), iterative models (e.g., spiral model),
and incremental models.

Software development processes can be also described by more detailed models, e.g., various software
development methods and agile practices. Examples include: acceptance test-driven development
(ATDD), behavior-driven development (BDD), domain-driven design (DDD), extreme programming (XP),
feature-driven development (FDD), Kanban, Lean IT, Scrum, test-driven development (TDD).

2.1.1. Impact of Software Development Lifecycle on Testing
Testing must be integrated into the software lifecycle to succeed. The choice of SDLC impacts on:
e Scope and timing of test activities (e.g., test levels and test types)
e Level of detail of test documentation
e Choice of test techniques and test practices
e Extent of test automation

In sequential models, in initial phases testers typically participate in requirement reviews and test design.
The product in the executable form is usually delivered in the late phases, so typically dynamic testing
cannot be performed early in the lifecycle.

In some iterative and incremental models, it is assumed that each iteration ends up with a working
product increment. This implies that in each iteration testing, both static and dynamic, may be performed
at all test levels. Frequent delivery of increments requires fast feedback and extensive regression testing.

Agile development methods assume that change may occur throughout the project. Therefore, lightweight
work product documentation and extensive test automation to make regression testing easier to handle
are favored in Agile projects. Also, most of the manual testing tends to be done using experience-based
techniques (see Section 4.4) that do not require extensive prior planning.

2.1.2. Software Development Lifecycles and Good Testing Practices
Good testing practices independent of the chosen SDLC model, include the following:

e For every software development activity, there is a corresponding test activity, so that the quality
control can cover all the aspects

e Each test level (see chapter 2.2.1) has test objectives specific to the appropriate SDLC phase or
type of activities, so that testing can check the test object to the fullest extent possible

e Test analysis and design for a given test level begin during the corresponding development
phase of the SDLC, so that testing can adhere to the early testing principle (see section 1.3)

e Testers are involved in reviewing work products as soon as drafts of these documents are
available, so that the shift-left approach is followed (see section 2.1.5)

v4.0 Page 23 of 70 beta release

© International Software Testing Qualifications Board

703

704
705
706
707
708
709

710
711

712
713

714
715
716
717

718
719
720

721

722
723

724

725
726
727
728
729
730

731
732

733
734

735
736
737

/

Certified Tester ISTQB

International Software

Foundation Level Testing Qualifications Board

2.1.3. Testing as a Driver for Software Development

Test-driven development (TDD), acceptance test-driven development (ATDD), and behavior-driven
development (BDD) are similar development approaches, where tests are defined as a means of directing
development. Each of these approaches implements the testing principle of “Early testing saves time and
money” (see section 1.3) and follows a shift-left approach (see section 2.1.5), since the tests are defined
before the code is written. They support an iterative approach to development. Those approaches are
characterized as follows:

Test-Driven Development (TDD):
e TDD directs the coding through test cases (instead of extensive software design)

e Tests are written first, then the code is written to satisfy the tests, and then the tests and code are
refactored

Acceptance Test-Driven Development (see section 4.5.3):

¢ Derive tests from acceptance criteria as part of the design process (Gartner 2011)

e Tests are written even before the part of the application is developed to satisfy the tests
Behavior-Driven Development (BDD):

o Express the desired behavior of an application by test cases written in a simple form of natural
language, that is easy to understand by stakeholders — usually using the given/when/then format.
(Chelimsky 2010)

e Test cases are then compiled and translated in (automatically) executable tests

For all the above approaches, tests may persist as automated tests to ensure the code quality in future
adaptions / refactoring.

2.1.4. DevOps and Testing

DevOps is an organizational transformation aiming to create synergy by getting development, testing and
operations to work together to achieve a set of common goals. DevOps requires a cultural shift within an
organization to bridge the gaps between development, testing and operations while treating their
functions with equal value. DevOps promotes team autonomy, fast feedback, integrated toolchains, and
technical practices like continuous integration (CI) or continuous delivery. This allows the teams to build,
test and release high-quality code faster through a DevOps delivery pipeline (Kim 2016).

From the testing perspective, the benefits of DevOps are:
o Fast feedback on the code quality, and whether changes adversely affect existing code

o Cl creates a shift-left in testing (see section 2.1.5) by encouraging developers to submit high
quality code accompanied by component tests

e DevOps facilitates establishing stable test environments
e Automation through a delivery pipeline reduces the need for repetitive manual testing

e The risk of regression is minimized due to the scale and range of automated regression tests

v4.0 Page 24 of 70 beta release

© International Software Testing Qualifications Board

738
739
740
741

742

743
744
745
746

747

748
749

750
751

752
753

754
755

756
757
758

759

760

761
762
763

764
765
766

767
768
769

770
771

/

Certified Tester ISTQB

International Software

Foundation Level Testing Qualifications Board

DevOps is not without its risks and challenges, which include:
e The DevOps delivery pipeline must be defined and established
e Cl tools have to be introduced and maintained

e Test automation requires additional resources and may be difficult to establish and maintain

2.1.5. Shift-Left Approach

The testing principle “Early testing saves time and money” (see section 1.3) is sometimes referred to as
“shift-left” because it is an approach where testing is performed earlier in the life cycle. Shift-left normally
suggests that testing should be done earlier (e.g., not waiting for code to be implemented or for
components to be integrated), but it does not mean that testing later in the life cycle should be neglected.

There are some good practices that illustrate how to achieve a “shift-left” in testing, which include:

¢ Review the specification from the perspective of testing. These specification review activities
often find potential defects, such as ambiguities, incompleteness, and inconsistencies

o Write tests before the code is written and have the code run against a test harness during
implementation

e Perform Cl and continuous delivery as it comes with fast feedback and automated component
tests to accompany source code when it is submitted to the code repository

o Perform static analysis of source code prior to dynamic testing, or as part of an automated
process

e Perform non-functional testing at the component testing level, where possible. This is a form of
shift-left as these non-functional test types tend to be performed later in the SDLC when a
complete system and a representative test environment are available.

A shift-left approach might result in extra training/effort/costs earlier in the process.

2.1.6. Retrospectives and Process Improvement

Retrospectives (also known as “lessons learned meetings” or evaluations) might be held when needed,
often at the end of a project, release milestone or iteration. In these meetings the participants (not only
testers, but also e.g., developers, architects, product owner, business analysts) discuss:

o what was successful,
e what was not successful and could be improved, and
¢ how to incorporate the improvements and retain the successes in the future.

The results should be recorded and might be part of e.g., the test completion report (see section 5.3.2). It
is important that follow-up activities occur. Retrospectives are critical to the successful self-organization of
the development teams and the continuous improvement.

Typical benefits for testing include:

e Increased test effectiveness / productivity

v4.0 Page 25 of 70 beta release

© International Software Testing Qualifications Board

/

Certified Tester Islgr:.gﬁmware
Foundation Level Testing Qualifications Board
772 e Increased test case quality
773 e Team satisfaction
774 e Improved requirements quality
775 e Better cooperation of development and testing

776 The timing and organization of the retrospectives depend on the particular SDLC model being followed.

777 2.2.Test Levels and Test Types

778 Test levels are groups of test activities that are organized and managed together. Each test level is an
779 instance of the test process, performed in relation to software at a given stage of development, from
780 individual components to complete systems or, where applicable, systems of systems.

781 Test levels are related to other activities within the SDLC. In sequential SDLC models, the test levels are
782 often defined such that the exit criteria of one level are part of the entry criteria for the next level. In some
783 iterative models, this rule may not apply. Development activities may span through multiple test levels.
784 Test levels may overlap.

785 Test types are groups of test activities related to specific characteristics and those test activities can be
786 performed at every test level.

787 2.2.1. TestLevels

788 In this syllabus, the following five test levels are described.

789 e Component testing (also known as unit testing) focuses on testing components in isolation. It

790 often requires specific support, such as test harnesses or unit testing frameworks. Component

791 testing is normally performed by developers in their development environments.

792 e Component integration testing (also known as unit integration testing) focuses on testing the

793 interfaces and interactions between integrated components. Component integration testing is

794 heavily dependent on the integration strategy.

795 e System testing focuses on the overall behavior and capabilities of an entire system or product,

796 often including functional testing of end-to-end tasks and the non-functional testing of quality

797 characteristics. For some non-functional quality characteristics, it is preferred to test them on a

798 complete system in a representative test environment (e.g., performance efficiency, security or

799 usability). Using simulations is also possible. System testing is normally performed by the

800 independent test team and relies heavily on specifications.

801 e System integration testing focuses on testing the interfaces and interactions between

802 integrated systems or external services. System integration testing requires suitable test

803 environments preferably similar to the operational environment.

804 e Acceptance testing focuses on validation and on demonstrating readiness for deployment,

805 which means that the system fulfills the user’s business needs. Ideally, acceptance testing should

806 be performed by the end users. The main forms of acceptance testing are: user acceptance
v4.0 Page 26 of 70 beta release

© International Software Testing Qualifications Board

807
808

809
810
811
812
813
814

815
816

817
818
819
820

821
822
823

824
825
826
827
828
829
830

831
832
833
834

835
836

837
838
839
840
841
842

/

Certified Tester ISTQB

International Software

Foundation Level Testing Qualifications Board

testing (UAT), operational acceptance testing (OAT), contractual/regulatory acceptance testing,
alpha and beta testing.

Test levels are characterized by the following non-exhaustive list of attributes:
e Test object
e Test objectives
e Test basis
o Defects and failures

e Approach and responsibilities

2.2.2. TestTypes
The following test types are addressed:

Functional testing involves tests that evaluate the functions that a component or system should perform.
Functional requirements may be described in work products such as requirements specifications, user
stories, use cases, functional specifications, or they may be undocumented. The functions are “what” the
test object should do.

Non-functional testing evaluates attributes other than functional characteristics of systems and
software. The ISO/IEC 25010 standard provides the following classification of the non-functional software
product quality characteristics:

e Performance efficiency

e Compatibility

o Usability
¢ Reliability
e Security

e Maintainability
o Portability

Non-functional testing is the testing of “how well the system behaves”. Non-functional testing can and
often should start as early as possible. The late discovery of non-functional defects can pose a serious
threat to the success of a project. Non-functional testing sometimes needs a very specific test
environment, such as a usability lab for usability testing.

Similar to functional testing, different test techniques can be used to derive test conditions and test cases
for non-functional testing.

White-box testing derives tests from the system's internal structure or implementation, contrary to
functional and non-functional testing, where tests are derived from the requirements specifications.
Internal structure may include code, architecture, work flows, and data flows within the system (see
section 4.3). White-box test design, implementation and execution requires special skills or knowledge,
such as the process of building code, how data is stored, and how to use coverage tools and to correctly
interpret their results.

v4.0 Page 27 of 70 beta release

© International Software Testing Qualifications Board

843
844
845

846

847
848
849

850
851

852
853

854
855

856
857
858
859
860

861
862

863
864
865
866
867

868

869
870
871
872

873
874
875
876
877

/

Certified Tester ISTQB

International Software

Foundation Level Testing Qualifications Board

All the three above mentioned test types can be applied to all test levels, although the focus will be
different at each level. Every test type can also be applied using static testing. The testing quadrants
show the test types and test levels from different perspectives (see section 5.1.7).

2.2.3. Confirmation Testing and Regression Testing

Changes are typically made to a component or system to either enhance it by adding a new feature or to
fix it by removing a defect. Testing should confirm that the changes have correctly implemented the
functionality or corrected the defect.

Confirmation testing is to confirm that the original defect has been successfully fixed. Depending on the
risk, one can test the fixed version of the software in several ways, including:

o with all the test cases that previously have failed due to the defect, or
e adding new tests to cover any changes that were needed to fix the defect

However, when time or money is short, confirmation testing might be restricted to simply exercising the
steps that should reproduce the failure caused by the defect and checking that the failure does not occur.

Regression testing is to confirm that no adverse consequences have been caused by a change,
including a fix that has already been confirmation tested. These adverse consequences could affect the
same component where the change was made, other components in the same system, or even other
connected systems. Regression testing may not be restricted to the test object itself but can also be
related to the environment.

Confirmation and regression testing are needed on all test levels if defects are fixed and changes are
made on these test levels.

Regression test suites are run many times and generally evolve with each iteration or release, so
regression testing is a strong candidate for automation. Automation of these tests should start early in the
project (see chapter 6). Where automated builds and CI are used, such as in DevOps (see section 2.1.4),
it is good practice to also include automated regression testing. Depending on the situation, this may
include regression tests on different levels.

2.3.Maintenance Testing

Testing the changes to a system in production includes both evaluating the success of the change
implementation and the checking for possible regressions in parts of the system that remain unchanged
(which is usually most of the system). Maintenance can involve planned releases / deployments and
unplanned releases / deployments (hot fixes).

The scope of maintenance testing typically depends on:
e The degree of risk of the change
e The size of the existing system
e The size of the change

The triggers for maintenance can be classified as follows:

v4.0 Page 28 of 70 beta release

© International Software Testing Qualifications Board

/

Certified Tester IS.TQ% i
nternational Software
Foundation LeVel Testing Qualifications Board
878 e Madifications, such as planned enhancements (i.e., release-based), corrective changes or hot
879 fixes
880 e Upgrades or migrations of the operational environment, such as from one platform to another,
881 which can require tests associated with the new environment as well as of the changed software,
882 or tests of data conversion when data from another application is migrated into the system being
883 maintained
884 e Retirement, such as when an application reaches the end of its life. When a system is retired, this
885 can require testing of data archiving if long data-retention periods are required. Testing of
886 restoring and retrieving procedures after archiving may also be needed.
v4.0 Page 29 of 70 beta release

© International Software Testing Qualifications Board

887

888

889
890

891

892

893

894
895

896
897

898
899
900
901
902
903

/

Certified Tester ISTQB

International Software

Foundation Level Testing Qualifications Board

3. Static Testing — 80 minutes

Keywords

anomaly, dynamic testing, formal review, informal review, inspection, review, static analysis, static testing,
technical review, walkthrough

Learning Objectives for Chapter 3:

3.1 Static Testing Basics

FL-3.1.1 (K1) Recognize types of products that can be examined by the different static testing
techniques

FL-3.1.2 (K2) Explain the value of static testing

FL-3.1.3 (K2) Compare and contrast static and dynamic testing

3.2 Feedback and Review Process

FL-3.2.1 (K1) Identify the benefits of early and frequent feedback

FL-3.2.2 (K2) Summarize the activities of the review process

FL-3.2.3 (K1) Recognize the different roles and responsibilities in a review
FL-3.2.4 (K2) Compare and contrast the different review types

FL-3.2.5 (K1) Recall the factors that contribute to a successful review

v4.0 Page 30 of 70 beta release

© International Software Testing Qualifications Board

904

905
906
907
908
909

910
911
912
913
914

915
916
917
918

919

920
921
922

923
924
925
926

927

928
929
930
931

932
933
934
935
936
937

938
939
940
941

942
943

/

Certified Tester ISTQB

International Software

Foundation Level Testing Qualifications Board

3.1. Static Testing Basics

In contrast to dynamic testing, static testing does not require the execution of the software being tested.
Processes, code, system architecture or other work products are evaluated through manual examination
(e.g., reviews) or with the help of a tool (e.g., static analysis). Goals include improving quality, detecting
defects and assessing characteristics like readability, completeness, correctness, testability or
consistency. Static testing can therefore be applied for both verification and validation.

Testers, business representatives and developers work together during example mappings, collaborative
user story writing and backlog refinement sessions to ensure user stories and related work products meet
certain criteria, e.g., the Definition of Ready (see section 5.1.3). Review techniques can be applied to
ensure user stories are complete and understandable and include testable acceptance criteria. By asking
the right questions, testers explore, challenge and help improve the proposed stories.

Static analysis (as part of static testing) can identify problems prior to dynamic testing while requiring less
effort, as no test cases are required, and it is typically performed using tools. Static analysis is often
incorporated into continuous integration (Cl) frameworks (see section 2.1.4). While largely used to detect
specific code defects, static analysis is also used to evaluate maintainability and security.

3.1.1. Work Products Examinable by Static Testing

Almost any work product can be examined using static testing. Examples include requirement
specification documents, source code, test plans, test cases, test procedures, test charters, project
documentation, contracts, and models.

Any document that can be read and understood can be the subject of a review. However, for static
analysis, work products need a structure against which they can be checked (e.g., models, code, text with
a formal syntax). Work products that are not appropriate for static testing include those that are difficult to
interpret by human beings and that cannot be analyzed by tools (e.g., 3™ party executable code).

3.1.2. Value of Static Testing

Static testing can detect defects in the earliest phases of the SDLC, fulfilling the principle that “Early
testing saves time and money” (see section 1.3). It can also identify defects which cannot be detected by
dynamic testing (e.g., unreachable code, design patterns not followed, defects in non-executable work
products).

Static testing provides the ability to evaluate the quality of, and to build confidence in the work product
under review. Stakeholders can validate whether the documented requirements describe their actual
needs, while verifying them. Since static testing can be performed early in SDLC, a shared understanding
is created among those stakeholders involved in static testing. This shared understanding will also
improve the communication. For this reason, it is recommended to involve stakeholders from every
perspective.

Even though reviews can be expensive to implement, the overall project costs are usually much lower
than when no reviews are performed because less time and effort needs to be spent on fixing defects
later in the project. Participants in the review process also benefit from an improved shared
understanding of the product under review.

Code defects can be detected and removed using static analysis at a higher rate than dynamic testing,
usually resulting in both fewer defects and lower overall development effort.

v4.0 Page 31 of 70 beta release

© International Software Testing Qualifications Board

944

945
946

947

948
949

950
951

952
953

954
955

956

957
958

959
960

961
962

963
964
965
966

967

968

969
970
971
972

973
974
975
976
977

/

Certified Tester ISTQB

International Software

Foundation Level Testing Qualifications Board

3.1.3. Differences between Static and Dynamic Testing

Static and dynamic testing practices complement each other. They have similar objectives, such as
detecting defects in work products (see section 1.1.1), but there are also some differences, such as:

e Static testing can find different types of defects than dynamic testing

» Static testing finds defects directly, while dynamic testing causes failures from which the associated
defects are determined through subsequent analysis

» Static testing may more easily detect defects that lay on paths through the code that are rarely
executed or hard to reach using dynamic testing

e Static testing can be applied to non-executable work products, while dynamic testing is only
applicable to executable work products

+ Dynamic testing can be used to measure characteristics (e.g., performance efficiency) that are
dependent on executing code

Typical defects that are easier and/or cheaper to find through static testing include:

» Defects in requirements (e.g., inconsistencies, ambiguities, contradictions, omissions, inaccuracies,
duplications)

» Design defects (e.g., inefficient database structures, high coupling, low cohesion, poor
modularization)

= Specific types of coding defects (e.g., variables with undefined values, undeclared variables,
unreachable or duplicated code, excessive code complexity)

» Deviations from standards (e.g., lack of adherence to naming conventions in coding standards)
= Incorrect interface specifications (e.g., mismatched number, type or order of parameters)
» Specific types of security vulnerabilities (e.g., susceptibility to buffer overflows)

= Gaps or inaccuracies in test basis coverage (e.g., missing tests for an acceptance criterion)

3.2.Feedback and Review Process

3.2.1. Benefits of Early and Frequent Customer Feedback

Early and frequent feedback allows for the early communication of potential quality problems. If there is
little stakeholder involvement during the SDLC, the product being developed might not meet the
stakeholder’s original, or current, vision. A failure to deliver what the stakeholder wants can result in
costly rework, missed deadlines, blame games, and might even lead to complete project failure.

Frequent stakeholder feedback throughout the SDLC can prevent misunderstandings about requirements
and ensure that changes to requirements are understood and implemented earlier. This helps the
development team to improve their understanding of what they are building. It allows them to focus on
those features that deliver the most value to the stakeholders and that have the most positive impact on
agreed risks.

v4.0 Page 32 of 70 beta release

© International Software Testing Qualifications Board

978

979
980
981

982
983
984

985

986
987
988

989
990
901
992

993
994
995
996

997
998
999
1000
1001

1002
1003
1004

1005

1006
1007

1008
1009

1010

1011
1012

1013
1014
1015

/

Certified Tester ISTQB

International Software

Foundation Level Testing Qualifications Board

3.2.2. Review Process Activities

The ISO/IEC 20246 standard defines a generic review process that provides a structured but flexible
framework from which a specific review process may be tailored for a particular situation. If the required
review is more formal, then more of the tasks described for the different activities will be needed.

The size of many work products makes them too large to be covered by a single review. In such cases,
the review process is typically applied multiple times to the individual parts that make up the work
product.

The activities in the review process are:

Planning. During the planning phase, the boundaries of the review are determined by answering the
who, what, where, when and why questions. The review types, review techniques, quality characteristics
to be evaluated, and standards to be followed are selected to answer the how question.

Review initiation. During review initiation, the goal is to make sure that everyone and everything
involved is prepared to start the actual review. This includes making sure that every participant has
access to the work product under review, understands their role and responsibilities and receives
everything needed to perform the review.

Individual review. Every reviewer performs an individual review to assess the quality of the work product
under review, and to identify anomalies by applying one or more review techniques (e.g., checklist-based
reviewing, scenario-based reviewing). The ISO/IEC 20246 standard provides more depth on different
review techniques. The reviewers log all their identified anomalies, recommendations, and questions.

Communication and analysis. Since the anomalies identified during a review are not necessarily
defects, all these anomalies need to be analyzed and discussed. For every anomaly, the decision should
be made on their status, ownership and required actions. This is typically done during a review meeting in
which also a decision is made regarding the quality level of the work product under review and how the
required actions will be followed-up. This follow-up may include another review.

Fixing and reporting. For every accepted anomaly, a defect log should be created so that corrective
actions can be followed-up. Once the exit criteria are reached, the work products can be accepted. All
review results are reported.

3.2.3. Roles and Responsibilities in Reviews

Reviews involve various stakeholders, who may take on several roles. The principal roles and their
responsibilities are:

e Manager — decides what is to be reviewed and provides resources, such as staff and time for the
review

e Author — creates and fixes the work product under review

o Facilitator (also known as the moderator) — ensures the effective running of review meetings,
including mediation, time management, and the setting up a safe review environment

e Secretary (also known as scribe or recorder) — collates anomalies from reviewers and records review
information, such as decisions and new anomalies found during the review meeting. The author
should not take the role of secretary to avoid biases

v4.0 Page 33 of 70 beta release

© International Software Testing Qualifications Board

1016
1017

1018
1019

1020

1021

1022
1023
1024
1025

1026
1027
1028

1029
1030

1031
1032
1033
1034

1035
1036
1037
1038

1039
1040
1041
1042
1043
1044

1045
1046
1047

1048
1049

1050
1051

1052

/

Certified Tester ISTQB

International Software

Foundation Level Testing Qualifications Board

e Reviewer — performs review. A reviewer may be someone working on the project, a subject matter
expert, or any other stakeholder

e Review leader — takes overall responsibility for the review such as deciding who will be involved, and
organizing when and where the review will take place

Other, more detailed roles are possible, as described in the ISO/IEC 20246 standard

3.2.4. Review Types

There exist many review types at various levels of formality, ranging from informal reviews to formal
reviews. The required level of formality depends on factors such as the SDLC being followed, the maturity
of the development process, the criticality and complexity of the work product being reviewed, any legal
or regulatory requirements, and the need for an audit trail.

Selecting the right review type is key to achieving the required review objectives. The selection is not only
based on the objectives, but also on factors such as the project needs, available resources, work product
type and risks, business domain, and company culture.

Informal review (e.g., pair review). Informal reviews do not follow a defined process and have no formal
documented output. The main objective is detecting potential anomalies.

Walkthrough. A walkthrough, which is led by the author, can serve many objectives, like evaluating
quality and building confidence in the work product, educating reviewers, gaining consensus, generating
new ideas, motivating and enabling authors to improve and detecting potential defects. Reviewers might
do an individual review before the walkthrough, but this is not required.

Technical Review. The objectives of a technical review, performed by technically qualified reviewers, are
to gain consensus and make decisions regarding a technical problem, but also to detect potential defects,
evaluate quality and build confidence in the work product, generate new ideas, motivate and enable
authors to improve.

Inspection. As inspections are the most formal type of review, they follow the complete generic process
as defined in section 3.2.2. The main objective is maximum defect yield. Other objectives are to detect
potential defects, evaluate quality, build confidence in the work product and to motivate and enable
authors to improve. Metrics are collected and used to improve the entire software development process,
including the inspection process. In inspections, the author cannot act as the review leader, reader or
recorder/scribe.

3.2.5. Success Factors for Reviews
There are several factors that determine the success of reviews, which include:
Organizational success factors

» Define clear objectives which can be used as measurable exit criteria. Evaluation of participants is
never a good objective

e Choose the appropriate review type for achieving the objectives, matching the type of work product
and the review participants

e Split large work products in small parts to make the required effort less intense

v4.0 Page 34 of 70 beta release

© International Software Testing Qualifications Board

/

Certified Tester ISTQB

International Software

Foundation Level Testing Qualifications Board

1053 e Provide feedback from reviews and stakeholders to authors so they can improve the product and their
1054 activities (see section 3.2.1)

1055 e Provide adequate time to participants to prepare for the review

1056 e Management should support the review process

1057 e Make reviews part of the organization culture, promoting learning and process improvement
1058 People-related success factors

1059 e Select the right participants for the review, representing different perspectives, including testers
1060 e Participants should dedicate adequate time for the review and pay attention to detail

1061 ¢ Review meetings should be facilitated, not to waste anyone’s time

1062 e Adequate training should be provided

1063 See (Gilb 1993, Wiegers 2001) for more information on software reviews.

v4.0 Page 35 of 70 beta release

© International Software Testing Qualifications Board

1064

1065

1066
1067
1068
1069
1070

1071

1072

1073
1074

1075
1076
1077
1078
1079

1080
1081
1082
1083

1084
1085
1086
1087

1088

1089
1090

1091
1092

/

Certified Tester ISTQB

International Software

Foundation Level Testing Qualifications Board

4. Test Analysis and Design — 390 minutes

Keywords

acceptance criteria, acceptance test-driven development, black-box test technique, boundary value
analysis, branch coverage, checklist-based testing, collaboration-based test approach, coverage,
coverage item, decision table testing, equivalence partitioning, error guessing, experience-based test
technique, exploratory testing, state transition testing, statement coverage, test technique, white-box test
technique

Learning Objectives for Chapter 4:

4.1 Test Techniques Overview

FL-4.1.1 (K2) Distinguish black-box, white-box and experience-based test techniques

4.2 Black-box Test Techniques

FL-4.2.1 (K3) Use equivalence partitioning to derive test cases
FL-4.2.2 (K3) Use boundary value analysis to derive test cases
FL-4.2.3 (K3) Use decision table testing to derive test cases

FL-4.2.4 (K3) Use state transition testing to derive test cases

4.3 White-box Test Techniques

FL-4.3.1 (K2) Explain statement testing

FL-4.3.2 (K2) Explain branch testing

FL-4.3.3 (K2) Explain the value of white-box testing

4.4 Experience-based Test Techniques
FL-4.4.1 (K2) Explain error guessing
FL-4.4.2 (K2) Explain exploratory testing
FL-4.4.3 (K2) Explain checklist-based testing

4.5. Collaboration-based Test Approaches

FL-4.5.1 (K2) Explain how to write user stories in collaboration with developers and business
representatives

FL-4.5.2 (K2) Classify the different options for writing acceptance criteria

FL-4.5.3 (K3) Use acceptance test-driven development (ATDD) to derive test cases

v4.0 Page 36 of 70 beta release

© International Software Testing Qualifications Board

1093

1094
1095
1096
1097
1098
1099

1100

1101
1102
1103
1104

1105
1106
1107

1108
1109
1110
1111
1112

1113
1114
1115
1116
1117
1118

1119

1120
1121
1122
1123
1124

1125
1126
1127

1128
1129

/

Certified Tester ISTQB

International Software

Foundation Level Testing Qualifications Board

4.1.Test Techniques Overview

Test technigues support the tester in test analysis (what to test) and in test design (how to test). Test
techniques help to develop a relatively small, but good enough, set of test cases in a systematic way.
Test techniques also help the tester to define test conditions, identify coverage item, and identify test data
during the test analysis and design. Further information on test techniques and their corresponding
measures can be found in the ISO/IEC/IEEE 29119-4 standard, and in (Beizer 1990, Craig 2002,
Copeland 2004, Koomen 2006, Jorgensen 2014, Ammann 2016, Forgacs 2019).

In this syllabus, test techniques are classified as black-box, white-box, or experience-based.

Black-box test techniques (also known as specification-based techniques) are based on an analysis of
the specified behavior of the test object without reference to its internal structure. Hence, the test cases
are independent of how the software is implemented and so if the implementation changes, but the
required behavior stays the same, then the test cases are still useful.

White-box test techniques (also known as structure-based techniques) are based on an analysis of the
internal structure and processing within the test object. As the test cases are dependent on how the
software is designed, they can only be created after the design or implementation of the test object.

Experience-based test techniques leverage the knowledge and experience of testers for the design
and implementation of test cases. Effectiveness of these techniques heavily depends on the tester’s
skills. Experience-based test techniques can detect defects that may be missed using the black-box and
white-box test techniques. Hence, experience-based techniques are complementary to the black-box and
white-box test techniques.

4.2.Black-Box Test Techniques

Commonly used black-box test techniques discussed in the following sections are:
¢ Equivalence Partitioning
e Boundary Value Analysis
o Decision Table Testing

e State Transition Testing

4.2.1. Equivalence Partitioning

Equivalence Partitioning (EP) divides data into partitions (known as equivalence partitions) based on the
expectation that all the elements of a given partition are to be processed in the same way by the test
object. The theory behind this technique is that if a test case testing one value from an equivalence
partition detects a defect, this defect should also be detected by test cases testing any other value from
the same patrtition. Therefore, only one test for each partition is sufficient.

Equivalence partitions can be identified for any data element related to the test object, including inputs,
outputs, configuration items, internal values, time-related values, and interface parameters. The partitions
may be continuous or discrete, ordered or unordered, finite or infinite.

For simple test objects, EP can be easy, but in practice, understanding how the test object will treat
different values is often complicated. Therefore, partitioning should be done with care.

v4.0 Page 37 of 70 beta release

© International Software Testing Qualifications Board

1130
1131
1132
1133
1134
1135

1136
1137
1138
1139

1140
1141
1142
1143
1144

1145

1146
1147
1148
1149

1150
1151
1152

1153
1154

1155
1156
1157
1158
1159

1160
1161
1162
1163
1164
1165

1166
1167
1168
1169

/

Certified Tester ISTQB

International Software

Foundation Level Testing Qualifications Board

A partition containing valid values is called a valid partition. A partition containing invalid values is called
an invalid partition. The definitions of valid and invalid values may vary among teams and organizations.
For example, valid values may be interpreted as those that should be processed by the test object or as
those for which the specification defines their processing. Invalid values may be interpreted as those that
should be ignored or rejected by the test object or as those for which no processing is defined in the test
object specification.

In EP, the coverage items are the equivalence partitions. To achieve 100% coverage with this technique,
test cases must exercise all identified partitions (including invalid partitions) by covering each partition at

least once. Coverage is measured as the number of partitions exercised by at least one value, divided by
the total number of identified partitions, normally expressed as a percentage.

Many test objects include multiple sets of partitions (e.g., test objects with more than one input
parameter), which means that each test case will cover partitions from different sets of partitions. The
simplest coverage criterion in the case of multiple sets of partitions is called Each Choice coverage. Each
Choice coverage requires test cases to exercise each equivalence partition at least once. Each Choice
coverage does not take into account combinations of partitions.

4.2.2. Boundary Value Analysis

Boundary Value Analysis (BVA) is a technique based on exercising the boundaries of equivalence
partitions. Hence, BVA can be used for ordered partitions only. The minimum and maximum values of a
partition are its boundary values. In the case of BVA, if two elements belong to the same patrtition, all
elements between them must also belong to that partition.

BVA focuses on the boundary values of the partitions because developers are more prone to making
mistakes with these boundary values. Typical boundary defects found by BVA are where implemented
boundaries are displaced to positions above or below their intended positions or are omitted altogether.

In this syllabus, two versions of the BVA are described: 2-value and 3-value BVA. They differ in terms of
coverage items per boundary that need to be exercised to achieve 100% coverage.

In 2-value BVA (Craig 2002, Myers 2011), for each boundary value there are two coverage items: this
boundary value and its closest neighbor belonging to the adjacent partition. To achieve 100% coverage
with 2-value BVA, test cases must exercise all coverage items, i.e., all identified boundary values.
Coverage is measured as the number of boundary values exercised, divided by the total number of
identified boundary values, normally represented as a percentage.

In 3-value BVA (Koomen 2006, O’Regan 2019), for each boundary value there are three coverage items:
this boundary value and both its neighbors. Therefore, in 3-value BVA some of the coverage items may
not be boundary values. To achieve 100% coverage with 3-value BVA, test cases must exercise all
coverage items, i.e., identified boundary values and their neighbors. Coverage is measured as the
number of boundary values and their neighbors exercised, divided by the total number of identified
boundary values and their neighbors, normally represented as a percentage.

3-value BVA is more rigorous than 2-value BVA as it may detect defects overlooked by 2-value BVA. For
example, if the decision “if (x £ 10) ...” is incorrectly implemented as “if (x = 10) ...”, no test data derived
from the 2-value BVA (x = 10, x = 11) can detect the defect. However, x = 9, derived from the 3-value
BVA, is likely to detect it.

v4.0 Page 38 of 70 beta release

© International Software Testing Qualifications Board

1170

1171
1172
1173

1174
1175
1176
1177
1178
1179

1180
1181
1182
1183

1184
1185
1186
1187

1188
1189
1190
1191

1192
1193
1194
1195
1196
1197

1198

1199
1200
1201
1202
1203

1204
1205
1206
1207

1208
1209
1210

1211

/

Certified Tester ISTQB

International Software

Foundation Level Testing Qualifications Board

4.2.3. Decision Table Testing

Decision tables are used for testing the implementation of system requirements that specify how different
combinations of conditions result in different outcomes. Decision tables are an effective way of recording
complex logic, such as business rules.

When creating decision tables, the conditions and the resulting actions of the system are defined. These
form the rows of the table. Each column corresponds to a decision rule that defines a unique combination
of conditions, along with the associated actions. In limited-entry decision tables all the values of the
conditions and actions (except for irrelevant or infeasible ones; see below) are shown as Boolean values
(true or false). Alternatively, in extended-entry decision tables some or all the conditions and actions may
also take on multiple values (e.g., ranges of numbers, equivalence classes, discrete values).

The notation for conditions is as follows. “T” (true) means that the condition is satisfied. “F” (false) means
that the condition is not satisfied. “—” means that the value of the condition is irrelevant for the action
outcome. “N/A” means that the condition is infeasible for a given rule. For actions, “T” means that the
action should occur. “N” means that the action should not occur. Other notations may also be used.

A full decision table has enough columns to cover every combination of conditions. The table can be
simplified by deleting columns containing infeasible combinations of conditions. The table can also be
minimized by merging columns, in which some conditions do not affect the outcome, into a single column.
Decision table minimization algorithm is out of scope of this syllabus.

In decision table testing, the coverage items are the columns containing feasible combinations of
conditions. To achieve 100% coverage with this technique, test cases must exercise all these columns.
Coverage is measured as the number of columns exercised, divided by the total number of feasible
columns, normally represented as a percentage.

The strength of decision table testing is that it provides a systematic approach to identifying all the
combinations of conditions, some of which might otherwise be overlooked. It also helps in finding any
gaps or contradictions in the requirements. In the case of many conditions, exercising all the rules may be
time consuming, since the number of rules grows exponentially with the number of conditions. In such a
case, to reduce the number of rules exercised, a minimized decision table or a risk-based approach may
be used.

4.2.4. State Transition Testing

State transition diagram models the behavior of a system by showing its possible states and valid state
transitions. A transition is initiated by an event, which may be additionally qualified by a guard condition.
The transitions are assumed to be instantaneous and may sometimes result in the software taking action.
The common transition labeling syntax is as follows: “event [guard condition] / action”. Guard conditions
and actions can be omitted if they do not exist or are irrelevant for the tester.

A state table is a model equivalent to a state transition diagram. Its rows represent states, and its
columns represent events. Table entries (cells) represent transitions, and contain the target state, as well
as the guard conditions, and resulting actions, if defined. In contrast to the state transition diagram, the
state table explicitly shows invalid transitions, which are represented by empty cells.

A test case based on a state transition diagram or state table is usually represented as a sequence of
events, which results in a sequence of state changes (and actions, if needed). One test case may, and
usually will, cover several transitions between states.

There exist many coverage criteria for state transition testing. This syllabus discusses three of them.

v4.0 Page 39 of 70 beta release

© International Software Testing Qualifications Board

1212
1213
1214

1215
1216
1217
1218

1219
1220
1221
1222
1223
1224

1225
1226
1227
1228

1229

1230
1231

1232
1233

1234
1235
1236

1237

1238
1239
1240
1241

1242
1243
1244
1245
1246
1247
1248

/

Certified Tester ISTQB

International Software

Foundation Level Testing Qualifications Board

In all states coverage, the coverage items are the states. To achieve 100% all states coverage, test
cases must ensure that all the states are visited. Coverage is measured as the number of visited states
divided by the total number of states, normally represented as a percentage.

In valid transitions coverage (also called 0-switch coverage), the coverage items are single valid
transitions. To achieve 100% valid transitions coverage, test cases must exercise all the valid transitions.
Coverage is measured as the number of exercised valid transitions divided by the total number of valid
transitions, normally represented as a percentage.

In all transitions coverage, the coverage items are all the transitions shown in a state table. To achieve
100% all transitions coverage, test cases must exercise all the valid transitions and attempt to execute
invalid transitions. Testing only one invalid transition in a single test case helps to avoid fault masking,
i.e., a situation in which one defect prevents the detection of another. Coverage is measured as the
number of valid and invalid transitions exercised or attempted to be covered by executed test cases,
divided by the total number of valid and invalid transitions, normally represented as a percentage.

All states coverage is weaker than valid transitions coverage, because it can typically be achieved without
exercising all the transitions. Valid transitions coverage is the most widely used coverage criterion.
Achieving full all transitions coverage guarantees both full all states coverage and full valid transitions
coverage and should be a minimum requirement for mission- and safety-critical software.

4.3.White-Box Testing

Because of their popularity and simplicity, this section focuses on two code-related white-box test
techniques:

e Statement testing
e Branch testing

There are more rigorous techniques that are used in some safety-critical, mission-critical, or high-integrity
environments to achieve more thorough code coverage. There are also white-box test techniques used
on higher test levels (e.g., API testing). These techniques are not discussed in this syllabus.

4.3.1. Statement Testing and Statement Coverage

In statement testing the coverage items are executable statements. The aim is to design test cases to
exercise statements in the code until an acceptable level of coverage is achieved. Coverage is measured
as the number of statements exercised by the test cases divided by the total number of executable
statements in the code, normally expressed as a percentage.

When 100% statement coverage is achieved, it ensures that all executable statements in the code have
been exercised at least once. This means that in particular each statement with a defect will be executed,
which may cause a failure, demonstrating the presence of the defect. However, exercising a statement
with a test case will not detect defects in all cases. For example, it may not detect defects that are data
dependent (e.g., a division by zero that only fails when a denominator is set to zero). Also, 100%
statement coverage does not ensure that all the decision logic has been tested as, for instance, it may not
exercise all the branches (see chapter 4.3.2) in the code.

v4.0 Page 40 of 70 beta release

© International Software Testing Qualifications Board

1249

1250
1251
1252

1253
1254
1255
1256

1257
1258
1259

1260
1261

1262

1263
1264
1265
1266

1267
1268
1269

1270
1271
1272
1273

1274
1275
1276
1277
1278

1279

1280
1281

1282
1283

/

Certified Tester ISTQB

International Software

Foundation Level Testing Qualifications Board

4.3.2. Branch Testing and Branch Coverage

A branch is a transfer of control between two nodes in the control flow graph, which shows the possible
sequences in which source code statements are executed in the test object. Each transfer of control can
be either unconditional (i.e., straight-line code) or conditional (i.e., a decision outcome).

In branch testing the coverage items are branches and the aim is to design test cases to exercise
branches in the code until an acceptable level of coverage is achieved. Coverage is measured as the
number of branches exercised by the test cases divided by the total number of branches, normally
expressed as a percentage.

When 100% branch coverage is achieved, all branches in the code, unconditional and conditional, are
exercised by test cases. Conditional branches typically correspond to a true or false outcome from an
“if...then” decision, an outcome from a switch/case statement, or a decision to exit or continue in a loop.

Branch coverage subsumes statement coverage. This means that any set of test cases achieving 100%
branch coverage also achieves 100% statement coverage (but not vice versa).

4.3.3. The Value of White-box Testing

A fundamental strength that all white-box techniques share is that the entire software implementation is
taken into account during testing, which facilitates defect detection even when the software specification
is vague or incomplete. A corresponding weakness is that if the software does not implement one or more
requirements, white box testing may not detect the resultant defects of omission (Watson 1996).

White-box techniques can be used in static testing (e.g., during dry runs of a code). They are well suited
to reviewing code that is not yet ready for execution (Hetzel 1988), as well as the pseudocode and other
high-level or top-down logic which can be modeled with a control flow graph.

If solely performing black-box testing, then no measure of actual code coverage is obtained. White-box
coverage measures provide an objective measure of coverage and provide the necessary information to
allow additional tests to be generated to increase this coverage, and subsequently increase confidence in
the code.

4.4.Experience-based Testing

Commonly used experience-based test techniques discussed in the following sections are:
e Error guessing
e Exploratory testing

e Checklist-based testing

4.4.1. Error Guessing

Error guessing is a technique used to anticipate the occurrence of errors, defects, and failures, based on
the tester’s knowledge, including:

e How the application has worked in the past

e The types of errors the developers tend to make and the types of defects these errors result in

v4.0 Page 41 of 70 beta release

© International Software Testing Qualifications Board

1284

1285
1286
1287
1288

1289
1290
1291
1292

1293
1294

1295

1296
1297
1298

1299
1300
1301
1302
1303
1304
1305

1306
1307
1308
1309

1310
1311

1312

1313
1314
1315
1316
1317

1318
1319
1320
1321

1322
1323

/

Certified Tester ISTQB

International Software

Foundation Level Testing Qualifications Board

e The types of failures that have occurred in other, similar applications

In general, errors, defects and failures may be related to: input (e.g., correct input not accepted,
parameters wrong or missing), output (e.g., wrong format, wrong result), logic (e.g., missing cases, wrong
operator), computation (e.g., incorrect operand, wrong computation), interface (e.g., parameter mismatch,
incompatible types), or data (e.g., incorrect initialization, wrong type).

Fault attacks are a methodical approach to the implementation of error guessing. This technique requires
the tester to create or acquire a list of possible errors, defects and failures, and to design tests that will
identify defects associated with the errors, expose the defects, or cause the failures. These lists can be
built based on experience, defect and failure data, or from common knowledge about why software fails.

See (Whittaker 2002, Whittaker 2003, Andrews 2006) for more information on error guessing and fault
attacks.

4.4.2. Exploratory Testing

In exploratory testing, tests are simultaneously designed, executed, logged, and evaluated while the
tester learns about the test object. The testing is used to learn more about the test object, to explore it
more deeply with focused tests, and to create tests for untested areas.

Exploratory testing is sometimes conducted using a session-based approach to structure the activity. In a
session-based approach, exploratory testing is conducted within a defined time-box. The tester uses a
test charter containing test objectives to guide the testing. The session is usually followed by a debrief
that involves a discussion between the tester and stakeholders interested in the results of the session. In
this approach test objectives may be treated as high-level test conditions. Coverage items are identified
and exercised during the session. The tester may use test session sheets to document the steps followed
and the discoveries made.

Exploratory testing is useful when there are few or inadequate specifications or there is significant time
pressure on the testing. Exploratory testing is also useful to complement other more formal testing
techniques. This technique will be more effective if the tester is experienced, has domain knowledge and
has a high degree of essential skills, like analytical skills, curiosity and creativeness (see section 1.5.1).

Exploratory testing can incorporate the use of other test techniques. More information about exploratory
testing can be found in (Kaner 1999, Whittaker 2009, Hendrickson 2013).

4.4.3. Checklist-Based Testing

In checklist-based testing, a tester designs, implements, and executes tests to cover test conditions from
a checklist. Checklists can be built based on experience, knowledge about what is important for the user,
or an understanding of why and how software fails. Checklist should not contain items that can be
checked automatically, items better suited as entry/exit criteria, or items that are too general (Brykczynski
1999).

Checklist items are often phrased in the form of a question. It should be possible to check each item
separately and directly. These items may refer to requirements, graphical interface properties, quality
characteristics or other forms of test conditions. Checklists can be created to support various test types,
including functional and non-functional testing (e.g., 10 heuristics for usability testing (Nielsen 1994)).

Some checklist entries may gradually become less effective over time because the developers will learn
to avoid making the same mistakes. New entries may also need to be added to reflect high severity

v4.0 Page 42 of 70 beta release

© International Software Testing Qualifications Board

1324
1325

1326
1327
1328

1329

1330
1331
1332

1333

1334
1335

1336
1337
1338

1339
1340

1341
1342
1343
1344
1345

1346

1347
1348
1349
1350

1351
1352
1353
1354
1355
1356
1357

/

Certified Tester ISTQB

International Software

Foundation Level Testing Qualifications Board

defects found recently. Therefore, checklists should be regularly updated based on defect analysis.
However, care should be taken to avoid letting the checklist become too long (Gawande 2009).

In the absence of detailed test cases, checklist-based testing can provide guidelines and some degree of
consistency for the testing. If the checklists are high-level, some variability in the actual testing is likely to
occur, resulting in potentially greater coverage but less repeatability.

4.5. Collaboration-based Test Approaches

Each of the above-mentioned techniques (see sections 4.2, 4.3, 4.4) has a particular objective with
respect to defect detection. Collaboration-based approaches, on the other hand, focus on defect
avoidance by collaboration and communication.

4.5.1. Collaborative User Story Writing

A user story represents an increment that will be valuable to either a user or purchaser of a system or
software. User stories are composed of three aspects (Jeffries 2000), called together the “3 C’s”:

e Card — the medium describing a user story (e.g., an index card, an entry in an electronic board)
e Conversation — explains how the software will be used (can be documented or verbal)
e Confirmation — the acceptance criteria (see section 4.5.2)

The most common format for a user story is “As a [role], | want [goal to be accomplished], so that | can
[resulting business value for the role]”, followed by the acceptance criteria.

The collaborative authorship of the user story can use techniques such as brainstorming and mind
mapping. Good user stories should be: Independent, Negotiable, Valuable, Estimable, Small and
Testable (INVEST). If a stakeholder does not know how to test a user story, this may indicate that the
user story is not clear enough, or that it does not reflect something valuable to them, or that the
stakeholder just needs help in testing (Wake 2003).

4.5.2. Acceptance Criteria

Acceptance criteria are the conditions that an implementation of a user story must meet to be accepted
by stakeholders. From this perspective, acceptance criteria may be viewed as the test conditions that
should be exercised by the tests. Acceptance criteria are usually a result of the conversation (see section
4.5.1).

Acceptance criteria are used to:
o Define boundaries of a user story
¢ Reach consensus between the stakeholders
e Describe both positive and negative scenarios
e Serve as a basis for the user story acceptance testing (see section 4.5.3)
e Allow accurate planning and estimation

There is no single way to write acceptance criteria for a user story. The two most common formats are:

v4.0 Page 43 of 70 beta release

© International Software Testing Qualifications Board

1358
1359

1360
1361

1362

1363
1364
1365

1366
1367
1368
1369
1370
1371
1372

1373
1374

1375
1376
1377
1378
1379
1380

1381
1382
1383

1384
1385
1386

/

Certified Tester ISTQB

International Software

Foundation Level Testing Qualifications Board

e Scenario-oriented (e.g., Given/When/Then format used in the BDD, see section 2.1.3)
¢ Rule-oriented (e.g., bullet point verification list, or tabulate form of input-output mapping)

Most acceptance criteria can be documented in one of these two formats. However, the team may use
another, custom format, as long as the acceptance criteria are well-defined and unambiguous.

4.5.3. Acceptance Test-driven Development (ATDD)

ATDD is a test-first approach (see section 2.1.3). Test cases are created prior to implementing the user
story. The test cases are created by the team members with different perspectives, e.g., customers,
developers, and testers (Adzic 2009). Test cases may be manual or automated.

The first step is a specification workshop where the user story and (if yet defined) its acceptance criteria
are analyzed, discussed, and written by the team members. Incompleteness, ambiguities, or defects in
the user story are fixed during this process. The next step is to create the tests. This can be done by the
team together or by the tester individually. In any case, an independent person such as a business
representative validates the tests. The tests are examples, based on the acceptance criteria, that
describe the specific characteristics of the user story. These examples will help the team implement the
user story correctly.

Since examples and tests are the same, these terms are often used interchangeably. During the test
design the test techniques described in sections 4.2, 4.3 and 4.4 may be applied.

Typically, the first tests are the positive tests, confirming the correct behavior without exceptions or error
conditions, comprising the sequence of activities executed if everything goes as expected. After the
positive tests are done, the team should perform negative testing, and cover non-functional attributes as
well (e.g., performance, usability). Tests should be expressed in a way that is understandable for the
stakeholders. Typically, tests contain sentences in natural language involving the necessary
preconditions (if any), the inputs, and the related outputs.

The examples must cover all the characteristics of the user story and should not go beyond the story.
However, the acceptance criteria may detail some of the issues described in the user story. In addition,
no two examples should describe the same characteristics of the user story.

When captured in a format supported by a functional test automation framework, the developers can
automate the tests by writing the supporting code as they implement the feature described by a user
story. The acceptance tests then become the executable requirements.

v4.0 Page 44 of 70 beta release

© International Software Testing Qualifications Board

1387

1388

1389
1390
1391
1392

1393

1394

1395
1396
1397
1398
1399
1400
1401
1402

1403
1404
1405
1406
1407

1408
1409
1410
1411

1412
1413

1414
1415

/

Certified Tester ISTQB

International Software

Foundation Level Testing Qualifications Board

5. Managing the Test Activities — 335 minutes

Keywords

defect management, defect report, entry criteria, exit criteria, product risk, project risk, risk, risk analysis,
risk assessment, risk control, risk identification, risk level, risk management, risk mitigation, risk
monitoring, risk-based testing, test approach, test completion report, test control, test estimation, test
monitoring, test plan, test planning, test progress report, test pyramid

Learning Objectives for Chapter 5:

5.1 Test Planning

FL-5.1.1 (K2) Exemplify the purpose and content of a test plan

FL-5.1.2 (K1) Recognize how a tester adds value to iteration and release planning

FL-5.1.3 (K2) Compare and contrast entry and exit criteria, Definition of Ready, and Definition of Done
FL-5.1.4 (K3) Use estimation techniques to calculate the required testing effort

FL-5.1.5 (K3) Apply test case prioritization

FL-5.1.6 (K1) Recall the concepts of the test pyramid

FL-5.1.7 (K2) Summarize the testing quadrants and their relationships with test levels and test types

5.2 Risk Management

FL-5.2.1 (K1) Identify risk level by using likelihood and impact

FL-5.2.2 (K2) Distinguish between project and product risks

FL-5.2.3 (K2) Explain how product risk analysis may influence thoroughness and scope of testing

FL-5.2.4 (K2) Explain what measures can be taken in response to analyzed product risks

5.3 Test Monitoring, Test Control and Test Completion
FL-5.3.1 (K1) Recall metrics used for testing
FL-5.3.2 (K2) Summarize the purposes, contents, and audiences for test reports

FL-5.3.3 (K2) Exemplify how to communicate the status of testing

5.4 Configuration Management

FL-5.4.1 (K2) Summarize how configuration management supports testing

5.5 Defect Management
FL-5.5.1 (K3) Prepare a defect report

v4.0 Page 45 of 70 beta release

© International Software Testing Qualifications Board

1416

1417
1418
1419
1420
1421
1422

1423
1424
1425

1426
1427
1428
1429
1430
1431

1432
1433
1434

1435
1436

1437
1438

1439
1440
1441
1442
1443
1444

1445
1446
1447
1448

/

Certified Tester ISTQB

International Software

Foundation Level Testing Qualifications Board

5.1.Test Planning

5.1.1. Purpose and Content of a Test Plan
A test plan describes the objectives, resources and processes for a test project. A test plan:
e Documents the means and schedule for achieving test objectives
e Helps to ensure that the performed test activities will meet the established criteria
e Serves as a means of communication with team members and other stakeholders
o Demonstrates that testing will adhere to the existing test policy and test strategy

Test planning guides the testers’ thinking and forces the testers to confront the future challenges related
to risks, schedules, people, tools, costs, effort, etc. The process of preparing a test plan is a useful way to
think through the efforts needed to achieve the test project objectives.

The typical content of a test plan includes the information about:
o Context of testing (scope, objectives, constraints, test basis)
e Assumptions and constraints of the test project
e Stakeholders (roles, responsibilities, relevance to testing, hiring and training needs)
e Communication (forms and frequency of communication, documentation templates)
¢ Risk register (product risks, project risks)

e Test approach (e.g., test levels, test types, test techniques, test deliverables, entry and exit
criteria, degree of independence, metrics to be collected, test data requirements, test
environment requirements, deviations from the organizational test practices)

e Schedule
More details about the test plan and its content can be found in the ISO/IEC/IEEE 29119-3 standard.

5.1.2. Tester's Contribution to Iteration and Release Planning
In iterative SDLCs, typically two kinds of planning occur: release planning and iteration planning.

Release planning looks ahead to the release of a product. Release planning defines and re-defines the
product backlog, and may involve refining larger user stories into a collection of smaller stories. Release
planning provides the basis for a test approach and test plan spanning all iterations. Testers involved in
release planning define testable user stories and acceptance criteria (see section 4.5), participate in
project and quality risk analyses (see section 5.2), estimate testing effort associated with user stories (see
section 5.1.4), select the necessary test levels, and plan the testing for the release.

Iteration planning looks ahead to the end of a single iteration and is concerned with the iteration backlog.
Testers involved in iteration planning participate in the detailed risk analysis of user stories, determine the
testability of user stories, break down user stories into tasks (particularly testing tasks), estimate testing
effort for all testing tasks, and identify functional and non-functional aspects of the system to be tested.

v4.0 Page 46 of 70 beta release

© International Software Testing Qualifications Board

1449

1450
1451
1452
1453

1454
1455
1456

1457
1458
1459
1460

1461
1462
1463

1464
1465

1466

1467
1468
1469
1470
1471

1472

1473
1474
1475
1476
1477
1478
1479

1480
1481
1482
1483
1484

1485
1486
1487
1488
1489
1490

/

Certified Tester ISTQB

International Software

Foundation Level Testing Qualifications Board

5.1.3. Entry and Exit Criteria

Entry criteria define the preconditions for undertaking a given activity. If entry criteria are not met, it is
likely that the activity will prove more difficult, be more time-consuming, more costly, and riskier. Exit
criteria define what must be achieved in order to declare an activity completed. Entry and exit criteria
should be defined for each test level and test type, and will differ based on the test objectives.

Typical entry criteria include: availability of resources (e.g., people, tools, environments, test data, budget,
time), availability of testware (e.qg., test basis, testable requirements, user stories, test cases), and initial
quality level of a test object (e.g., all smoke tests have passed).

Typical exit criteria include: measures of diligence (e.g., achieved level of coverage, number of
unresolved defects, estimated defect density, number of failed test cases), and completion criteria (e.g.,
planned tests have been executed, static testing has been performed, all defects found are reported, all
regression tests are automated).

Running out of time or budget, or pressure to bring the product to market can be also viewed as valid exit
criteria. Even without other exit criteria being satisfied, it can be acceptable to end testing under such
circumstances, if the stakeholders have reviewed and accepted the risk to go live without further testing.

In Agile development, exit criteria applied to an increment are called Definition of Done. Entry criteria that
a user story must meet to be moved from the backlog to development are called Definition of Ready.

5.1.4. Estimation Techniques

Testing effort estimation involves predicting the amount of test-related work needed in order to meet the
objectives of a test project. It is important to make it clear to the stakeholders that the estimate is based
on a number of assumptions and is always subject to estimation error. Estimation for small tasks is
usually more accurate than for the large ones. Therefore, when estimating a large task, a decomposition
technique called Work Breakdown Structure (WBS) can be used.

In this syllabus the following four estimation techniques are described.

Estimation based on ratios. In this metrics-based technique, the greatest possible amount of
experience figures is collected, which makes it possible to derive “standard” ratios for similar projects. The
own ratios of an organization (e.g., taken from historical data) are generally the best source to use in the
estimation process. These standard ratios can then be used to estimate the testing effort for the new
project. For example, if in the previous project development-to-testing effort ratio was 3:2, and in the
current project the development effort is expected to be 600 person-days, the testing effort can be
estimated to be 400 person-days.

Extrapolation. In this metrics-based technique, measurements are made as early in the project as
possible to gather real, historical data. Having enough observations, the effort required for the remaining
work can be approximated by extrapolating these data. This method is very suitable in iterative SDLCs.
For example, the team may extrapolate the test effort in the forthcoming iteration as the averaged effort
from the last three iterations.

Wideband Delphi. In this iterative, expert-based technique, experts make experience-based estimations.
Each expert, in isolation, estimates the effort. The results are collected and experts discuss their current
estimates. Each expert is then asked to make a new prediction based on that feedback. This process is
repeated until a consensus is reached. Planning Poker is a variant of Wideband Delphi, commonly used
in Agile software development. In Planning Poker, estimates are done using the cards with numbers that
represent the effort size.

v4.0 Page 47 of 70 beta release

© International Software Testing Qualifications Board

1491
1492
1493
1494
1495
1496

1497

1498

1499
1500
1501
1502

1503
1504

1505
1506
1507
1508

1509
1510
1511

1512
1513
1514
1515

1516
1517

1518

1519
1520
1521
1522
1523
1524
1525
1526
1527
1528

/

Certified Tester ISTQB

International Software

Foundation Level Testing Qualifications Board

Three-point estimation. In this expert-based technique, three estimations are made by the experts: most
optimistic estimation (a), most likely estimation (m) and most pessimistic estimation (b). The final estimate
(E) is their weighted arithmetic mean calculated as E = (a + 4*m + b) / 6. The advantage of this technique
is that it allows the experts to calculate the measurement error: SD = (b —a) / 6. For example, if the
estimates (in person-hours) are: a=6, m=9 and b=18, then the final estimation is 10£2 person-hours (i.e.,
between 8 and 12 person-hours), because E= (6 +4*9 +18) /6 =10and SD=(18-6)/6 = 2.

See (Kan 2003, Koomen 2006, Westfall 2009) for these and many other test estimation techniques.

5.1.5. Test Case Prioritization

Once the test cases and test procedures are produced and assembled into test suites, these test suites
can be arranged in a test execution schedule that defines the order in which they are to be run. When
prioritizing test cases, different factors can be taken into account. The most commonly used test case
prioritization strategies are as follows.

¢ Risk-based prioritization, where test execution order is based on the results of the risk analysis
(see section 5.2.3). Test cases covering the most important risks are executed first.

e Coverage-based prioritization, where test execution order is based on coverage (e.g., statement
coverage). Test cases achieving the highest coverage are executed first. In another variant,
called additional coverage prioritization, the test case achieving the highest coverage is executed
first. Each subsequent test case is the one that achieves the highest additional coverage.

¢ Requirements-based prioritization, where test execution order is based on the priorities of the
requirements traced back to the corresponding test cases. Requirement priorities are defined by
stakeholders. Test cases related to the most important requirements are executed first.

Ideally, test cases would be ordered to run based on their priority levels, using, for example, one of the
above-mentioned prioritization strategies. However, this practice may not work if the test cases or the
features being tested have dependencies. If a test case with a higher priority is dependent on a test case
with a lower priority, the lower priority test case must be executed first.

Test execution order has also to take into account the availability of resources. For example, the required
tools, environments or people may be available only for a specific time window.

5.1.6. Test Pyramid

The test pyramid is a metaphor showing that different tests may have different granularity. The test
pyramid model supports the team in test automation and in test effort allocation. The pyramid layers
represent groups of tests. The higher the layer, the lower the test granularity, test isolation and test
execution speed. Tests in the bottom layer are small, isolated, fast, and check a small piece of
functionality, so usually a lot of them are needed to achieve a reasonable coverage. The top layer
represents large, high-level, end-to-end tests. These high-level tests are slower than the tests from the
lower layers, and they typically check a large piece of functionality, so usually just a few of them are
needed to achieve a reasonable coverage. The number and naming of the layers may differ. For
example, the original test pyramid model (Cohn 2009) defines three layers: “unit tests”, “service tests” and
“Ul tests”. Another popular model defines unit (component), integration, and end-to-end tests.

v4.0 Page 48 of 70 beta release

© International Software Testing Qualifications Board

1529

1530
1531
1532
1533
1534
1535

1536
1537

1538
1539

1540
1541
1542

1543
1544

1545
1546

1547

1548
1549
1550
1551

1552
1553
1554

1555
1556

1557

1558
1559

1560
1561

1562
1563

/

Certified Tester ISTQB

International Software

Foundation Level Testing Qualifications Board

5.1.7. Testing Quadrants

The testing quadrants, defined by Brian Marick (Marick 2003, Crispin 2008), group the test levels with the
appropriate test types, activities, techniques and work products in the Agile methodology. The model
supports test management in ensuring that all important test types and test levels are included in the
development lifecycle and in understanding that some test types are more related to certain test levels
than the others. This model also provides a way to differentiate and describe the types of tests to all
stakeholders, including developers, testers, and business representatives.

In this model, tests can be business facing or technology facing. Tests can also support the team or
critique the product. The combination of these two characteristics determines the four quadrants:

e Quadrant Q1 (technology facing, support the team). This quadrant contains component and
component integration tests. These tests should be automated and included in the CI process.

e Quadrant Q2 (business facing, support the team). This quadrant contains functional tests, examples,
user story tests, user experience prototypes, API testing, and simulations. These tests check the
acceptance criteria and can be manual or automated.

e Quadrant Q3 (business facing, critique the product). This quadrant contains exploratory testing,
usability tests, user acceptance testing. These tests are often manual and are user-oriented.

e Quadrant Q4 (technology facing, critique the product). This quadrant contains smoke tests and non-
functional tests (except usability tests). These tests are often automated.

5.2.Risk Management

Organizations face many internal and external factors that make it uncertain whether and when they will
achieve their objectives (ISO 31000). Risk management allows the organizations to increase the
likelihood of achieving objectives, improve the quality of their products and increase the stakeholders’
confidence and trust.

The main risk management activities are:
¢ Risk analysis (consisting of risk identification and risk assessment; see section 5.2.3)
e Risk control (consisting of risk mitigation and risk monitoring; see section 5.2.4)

Test approach, in which test activities are managed, selected, and prioritized based on risk analysis and
risk control, is called the risk-based testing.

5.2.1. Risk Definition and Risk Attributes

In this syllabus a risk is defined as the factor or event, whose potential occurrence causes an adverse
effect. Risk can be characterized by two factors, which express the risk level. These factors are:

e Likelihood — the probability of the factor or event occurrence

e Impact (harm) — the consequences of this occurrence

5.2.2. Project and Product Risks

In software testing one is generally concerned by two types of risks: project risks and product risks.
v4.0 Page 49 of 70 beta release

© International Software Testing Qualifications Board

1564
1565
1566
1567
1568

1569
1570

1571
1572
1573
1574
1575

1576
1577
1578
1579
1580
1581
1582
1583
1584

1585

1586
1587

1588
1589
1590
1591
1592
1593

1594
1595
1596

1597

/

Certified Tester ISTQB

International Software

Foundation Level Testing Qualifications Board

Project risks are related to the management and control of the project. Project risk factors include:
e Organizational issues (e.g., delays in work products delivery, inaccurate estimates, cost-cutting)
e People issues (e.g., insufficient skills, conflicts, communication problems, shortage of staff)
e Technical issues (e.g., scope creep, poor tool support)
e Supplier issues (e.g., third-party delivery failure, bankruptcy of the supporting company)

Project risks, when they occur, may have an impact on the project schedule, budget or scope, which
affects the project's ability to achieve its objectives.

Product risks are related to the product quality characteristics (e.g., described in the ISO 25010 quality
model). Examples of product quality risks include: missing or wrong functionality, incorrect calculations,
runtime errors, poor architecture, inefficient algorithms, inadequate response time, poor user experience,
security vulnerabilities. Product risks, when they occur, may result in various negative consequences,
including:

e User dissatisfaction

e Loss of revenue

o Damage to third parties
¢ High maintenance costs
e Overload of the helpdesk
¢ Damage to the image

e Loss of trust

e Criminal penalties

e |n extreme cases, physical damage, injuries or even death

5.2.3. Product Risk Analysis

The goal of risk analysis is to provide an awareness of risk in order to focus the testing effort in a way that
minimizes the residual level of product risk. Ideally, risk analysis begins early in the SDLC.

Risk analysis consists of risk identification and risk assessment. Risk identification is about generating a
comprehensive list of risks. Stakeholders can identify risks by using various techniques and tools, e.g.,
brainstorming, workshops, interviews, or cause-effect diagrams. Risk assessment involves: categorization
of identified risks, determining their likelihood, impact and level, prioritizing, and proposing ways to handle
them. Categorization helps in assigning mitigation actions, because usually the risks falling into the same
category can be mitigated using a similar approach.

Risk assessment can use a quantitative or qualitative approach, or a mix of them. In the quantitative
approach the risk level is calculated as the multiplication of likelihood and impact. In the qualitative
approach the risk level can be calculated using a risk matrix.

Product risk analysis may influence the thoroughness and scope of testing. Its results are used to:

v4.0 Page 50 of 70 beta release

© International Software Testing Qualifications Board

1598
1599
1600
1601
1602
1603

1604

1605
1606
1607
1608
1609

1610
1611
1612

1613
1614
1615
1616
1617

1618

1619
1620
1621

1622
1623
1624
1625

1626
1627

1628
1629
1630
1631

/

Certified Tester ISTQB

International Software

Foundation Level Testing Qualifications Board

e Determine the scope of testing to be carried out

o Determine the particular test levels and propose test types to be performed

e Determine the test techniques to be employed and the coverage to be achieved
e Estimate the test effort required for each task

e Prioritize testing in an attempt to find the critical defects as early as possible

o Determine whether any activities in addition to testing could be employed to reduce risk

5.2.4. Product Risk Control

Risk control comprises all measures that are taken in response to identified and assessed product risks.
Risk control consists of risk mitigation and risk control. Risk mitigation involves implementing the actions
proposed in risk assessment to reduce the risk level. The aim of risk monitoring is to ensure that the
mitigation actions are effective, to obtain further information to improve risk assessment, and to identify
emerging risks.

With respect to risk control, once a risk has been analyzed, several response options to risk are possible,
e.g., risk acceptance, risk transfer, contingency plan, or risk mitigation by testing (Veenendaal 2012).
Actions that can be taken to mitigate the product risks by testing are as follows:

e Select the testers with the right level of experience, suitable for a given risk type
o Apply an appropriate level of independence of testing

e Conduct reviews and perform static analysis

o Apply the appropriate test design technique and coverage level

e Perform dynamic testing, including regression testing

5.3. Test Monitoring, Test Control and Test Completion

Test monitoring and control are test management activities concerned with ensuring that the planned
testing goes as smoothly as possible. Test monitoring gathers information about the testing being done,
while test control is used to manage the testing to ensure it keeps to the test plan in an efficient manner.

Test monitoring is concerned with gathering information, and visibility of test activities, together with
feedback on them. This information is used to assess test progress and to measure whether the test exit
criteria or the testing tasks associated with the Definition of Done are satisfied, such as meeting the
targets for coverage of product risks, requirements, or acceptance criteria.

Test control uses the information from test monitoring to provide guidance and the necessary corrective
actions to achieve the most effective and efficient testing. Test control activities include:

e Re-prioritize tests when an identified risk becomes an issue
e Re-evaluate whether a test item meets an entry or exit criterion due to rework
e Adjust the test schedule to address a delay in the delivery of the test environment

e Adding new resources when and where needed

v4.0 Page 51 of 70 beta release

© International Software Testing Qualifications Board

1632
1633
1634
1635

1636

1637
1638
1639

1640
1641

1642
1643

1644
1645
1646
1647

1648

1649
1650
1651
1652
1653

1654
1655
1656

1657
1658
1659
1660
1661
1662
1663

/

Certified Tester ISTQB

International Software

Foundation Level Testing Qualifications Board

Test completion activities collect data from completed test activities to consolidate experience, testware,
and any other relevant information. Test completion activities occur at project milestones such as when a
software system is released, a test project is completed (or cancelled), an Agile project iteration is
finished, a test level is completed, or a maintenance release has been completed.

5.3.1. Metrics used in Testing

Test metrics are gathered to show progress against the planned schedule and budget, the current quality
of the test object, and the effectiveness of the test activities with respect to the objectives or a sprint goal.
Test monitoring gathers a variety of metrics to inform the test control activity.

Common test metrics include:
e Project progress metrics (e.g., task completion, resource usage, test effort)

e Test progress metrics (e.g., test case implementation progress, test environment preparation
progress, number of test cases run/not run, passed/failed, test execution time)

o Defect metrics (e.g., number of defects found/fixed, defect density, defect detection percentage)
e Risk metrics (e.g., residual risk level)
e Coverage metrics (e.g., requirements coverage, code coverage)

e Cost metrics (e.g., cost of testing, organizational cost of quality)

5.3.2. Purpose, Contents and Audience for Test Reports

Test reporting summarizes and communicates test information during and after testing. Test progress
reports support the ongoing control of the testing and must provide enough information to make
modifications to the testing schedule, resources, or test plan. Test completion reports summarize a
specific stage of testing (e.qg., test level, test cycle, iteration) and can give information for subsequent
testing.

During test monitoring and control, the test team generates test progress reports for stakeholders to keep
them informed. Test progress reports are usually generated on a regular basis (e.g., daily, weekly, etc.)
and include:

e Testing period

e Test status (e.g., ahead or behind schedule, perhaps using a traffic lights system)
e Test progress, including any notable deviations

e Factors currently impeding testing, and their workarounds

e Test metrics (see section 5.3.1 for examples)

e New and changed risks within testing period

e Testing planned for the next period

v4.0 Page 52 of 70 beta release

© International Software Testing Qualifications Board

1664
1665
1666

1667

1668
1669

1670
1671
1672
1673
1674

1675
1676
1677

1678
1679

1680

1681
1682
1683

1684
1685
1686
1687
1688

1689
1690
1691

1692

1693
1694
1695
1696
1697

/

Certified Tester ISTQB

International Software

Foundation Level Testing Qualifications Board

A test completion report is prepared during test completion, when a project, test level, or test type
concludes and ideally when its exit criteria are met. This report uses test progress reports and other data.
Typical test completion reports include:

e Test summary

e Testing and product quality evaluation based on original test plan (i.e., test objectives and exit
criteria or Definition of Done)

e Deviations from the test plan (e.g., differences from the planned schedule, duration, and effort).
e Testing impediments and workarounds

e Test metrics, based on test progress reports

e Unmitigated risks

e Lessons learned that are relevant to the testing

Different audiences require different information in the reports, and influences the formality and frequency
of reporting. Reporting on test progress to others in the same team is often frequent and informal, while
reporting on testing for a complete project follows a set template and occurs only once.

The ISO/IEC/IEEE 29119-3 standard includes templates and examples for the two types of test reports:
test status reports and test completion reports.

5.3.3. Communicating the Status of Testing

The best means of communicating test status varies, depending on test management concerns,
organizational test strategies, regulatory standards, or, in the case of the self-organizing teams (see
section 1.5.2), by the team itself. The options include:

¢ Verbal communication with team members and other stakeholders

e Dashboards (e.g., CI/CD dashboards, task boards, and burn-down charts)
o Dashboard-style emails

e Online documents

e Formal test reports (see section 5.3.2)

One or more of these options can be used. More formal communication may be more appropriate for
distributed teams where direct face-to-face communication is not always possible due to geographical or
time differences.

5.4. Configuration Management

Configuration management (CM) provides a mechanism for identifying, controlling and tracking the work
products, including test work products, and making them available as needed. These work products are
known as configuration items. In the testing context, examples of these are test plans and strategies, test
conditions, test cases, test results, test runs and test reports. Configuration items can consist of many
other configuration items, and as they are changed their version changes. For a complex configuration

v4.0 Page 53 of 70 beta release

© International Software Testing Qualifications Board

1698
1699
1700
1701
1702
1703

1704

1705
1706
1707

1708

1709
1710
1711

1712

1713
1714
1715
1716
1717
1718

1719

1720
1721

1722
1723
1724
1725
1726
1727
1728

1729
1730

1731
1732

1733

/

Certified Tester ISTQB

International Software

Foundation Level Testing Qualifications Board

item (e.g., a test environment), CM records the configuration items that make up this complex item, their
relationships and their versions. If this complex item is approved for testing, then it becomes a baseline
and can only be changed through a formal change control. Changes to configuration items are tracked
and when a new baseline is created with changed configuration items, CM has a full record of the
changed items and the changes that led to the current version. It should also be possible to revert to the
previous baseline, e.g., when the previous test results need to be reproduced.

To properly support testing, CM ensures the following:

e All configuration items, including test items (individual parts of the test object), are uniquely
identified, version controlled, tracked for changes, and related to other configuration items so that
traceability can be maintained throughout the test process

o Allidentified documents and software items are referenced unambiguously in test documentation

Continuous integration, continuous delivery, continuous deployment and the associated testing are
typically implemented as part of an automated DevOps pipeline (see section 2.1.4), in which automated
CM is normally included.

5.5. Defect Management

Since one of the major objectives of testing is to find defects, an established defect management process
is essential. Defects may be reported during any phase of the SDLC. The process must be followed by all
stakeholders. At a minimum, the defect management process includes a workflow for handling individual
defects from their discovery to their closure and rules for their classification. The workflow typically
comprises activities to log the reported defect (in static testing) or failure (in dynamic tests), analyze and
classify the issue, decide on a suitable response, such as to fix or ignore, and finally to close the defect.

Typical defect reports have the following objectives:

¢ Provide those responsible for handling and resolving reported defects with sufficient information
to resolve the problem

e Provide a means of tracking the quality of the work product
e Provide ideas for development and test process improvement
A defect report logged during dynamic testing typically includes:
¢ Unique identifier
e Title and a short summary of the defect being reported, including when it was observed
o Date of the defect report, issuing organization, and author, including their role
o |dentification of the test object and test environment

e Context of the defect (e.g., test case being run, test activity being performed, SDLC phase, and
other relevant information, such as the test technique, checklist or test data being used)

e Description of the defect to enable reproduction and resolution, including the steps that detected
the defect, and any relevant log files, database dumps, screenshots, or recordings

o Expected and actual results
v4.0 Page 54 of 70 beta release

© International Software Testing Qualifications Board

1734
1735

1736
1737

1738

1739
1740
1741

1742
1743

/

Certified Tester ISTQB

International Software

Foundation Level Testing Qualifications Board

e Severity (degree of impact) of the defect on the interests of stakeholders
e Urgency/priority to fix

e Status of the defect (e.g., open, deferred, duplicate, waiting to be fixed, awaiting confirmation
testing, re-opened, closed)

o References (e.g., to the test case)

Some of this data may be automatically included or managed when using defect management tools (e.g.,
identifier, date, author and initial status). It is advisable to handle defects from static testing in a similar
way.

A document template for a defect report and example defect reports can be found in the ISO/IEC/IEEE
29119-3 standard, which refers to defect reports as incident reports.

v4.0 Page 55 of 70 beta release

© International Software Testing Qualifications Board

1744

1745
1746
1747

1748

1749
1750

1751
1752

/

Certified Tester ISTQB

International Software

Foundation Level Testing Qualifications Board

6. Test Tools — 20 minutes

Keywords

test automation

Learning Objectives for Chapter 6:

6.1 Tool Support for Testing
FL-6.1.1 (K2) Explain how different types of test tools support testing

6.2 Benefits and Risks of Test Automation

FL-6.2.1 (K1) Recall the benefits and risks of test automation

v4.0 Page 56 of 70 beta release

© International Software Testing Qualifications Board

1753
1754

1755
1756

1757

1758
1759

1760
1761

1762
1763

1764
1765

1766

1767
1768

1769
1770

1771

1772
1773
1774

1775

1776
1777

1778
1779
1780

1781
1782

1783
1784

1785
1786

/

Certified Tester ISTQB

International Software

Foundation Level Testing Qualifications Board

6.1. Tool Support for Testing

Test tools support and facilitate many testing activities. Examples include, but are not limited to:

Management tools — increase the test process efficiency by facilitating management of
application lifecycle, requirements, tests, defects, configuration

Static testing tools — support the tester in performing reviews and static analysis

Test design and implementation tools — facilitate generation of the test case, test data and test
procedures

Test execution and coverage tools — facilitate automated test execution and coverage
measurement

Non-functional testing tools — allow the tester to perform non-functional testing that is difficult or
impossible to perform manually

DevOps tools — support the DevOps delivery pipeline, workflow tracking, build automation
process, automated software deployment, continuous integration

Collaboration tools — facilitate communication

Tools supporting scalability and deployment standardization (e.g., virtual machines,
containerization tools, etc.)

Test tool is any tool that assists in testing, which supports one or more testing activities (e.g., a
spreadsheet is a test tool in this context).

6.2. Benefits and Risks of Test Automation

Simply acquiring a tool does not guarantee success. Each new tool will require effort to achieve real and
lasting benefits (e.g., for tool introduction, maintenance or training). There are also some risks, which
need analysis and mitigation to avoid test automation failures.

Potential benefits of using test automation tools include:

v4.0

A reduction in repetitive manual work that saves time. (e.g., execute regression tests, re-enter the
same test data, compare expected vs actual results, and check against coding standards)

Greater consistency and repeatability which prevents simple human errors. (e.g., tests are
consistently derived from requirements, test data is created in a systematic manner, and tests are
executed by a tool in the same order with the same frequency)

More objective assessment (e.g., coverage) and provides measures that are too complicated for
humans to derive

Easier access to information about the testing to support test management and reporting (e.g.,
statistics, graphs, and aggregated data about test progress, defect rates, and execution duration)

Reduced test execution times to provide earlier defect detection, faster feedback and faster time
to market

Page 57 of 70 beta release

© International Software Testing Qualifications Board

1787
1788

1789
1790

1791
1792

1793
1794

1795
1796

1797
1798
1799

1800
1801

/

Certified Tester ISTQB

International Software

Foundation Level Testing Qualifications Board

Allows more time for testers to design new, deeper, more effective tests if using robust and
efficient tools

Potential risks of using test automation tools include:

v4.0

Unrealistic expectations for the benefits of a tool (including functionality and ease of use).

Inaccurate estimations of time, costs, effort required to introduce a tool, maintain test scripts and
change of the existing manual test process

Using a testing tool when manual testing is more appropriate
Relying on a tool, when human critical thinking is what is needed

The dependency on the tool vendor which may go out of business, retire the tool, sell the tool to a
different vendor or provide poor support (e.g., responses to queries, upgrades, and defect fixes)

The plan of using an open-source project may be abandoned, meaning that no further updates
are available, or its internal components may require quite frequent updates as a further
development of the tool

Platform and the tool are not compatible

Failure to follow regulatory requirements and/or safety standards by the tool

Page 58 of 70 beta release

© International Software Testing Qualifications Board

1802

1803

1804
1805

1806
1807

1808
1809

1810
1811

1812
1813

1814
1815

1816

1817
1818

1819

1820
1821

1822
1823

1824
1825

1826
1827

1828
1829
1830

1831
1832

1833
1834

1835
1836

/

Certified Tester ISTQB

International Software

Foundation Level Testing Qualifications Board

7. References

Standards

ISO/IEC/IEEE 29119-1 (2022) Software and systems engineering — Software testing — Part 1: General
Concepts

ISO/IEC/IEEE 29119-2 (2021) Software and systems engineering — Software testing — Part 2: Test
processes

ISO/IEC/IEEE 29119-3 (2021) Software and systems engineering — Software testing — Part 3: Test
documentation

ISO/IEC/IEEE 29119-4 (2021) Software and systems engineering — Software testing — Part 4: Test
techniques

ISO/IEC 25010, (2011) Systems and software engineering — Systems and software Quality Requirements
and Evaluation (SQuaRE) System and software quality models

ISO/IEC 20246 (2017) Software and systems engineering — Work product reviews
ISO 31000 (2018) Risk management — Principles and guidelines

Books

Adzic, G. (2009) Bridging the Communication Gap: Specification by Example and Agile Acceptance
Testing, Neuri Limited

Ammann, P. and Offutt, J. (2016) Introduction to Software Testing (2e), Cambridge University Press

Andrews, M. and Whittaker, J. (2006) How to Break Web Software: Functional and Security Testing of
Web Applications and Web Services, Addison-Wesley Professional

Beizer, B. (1990) Software Testing Techniques (2e), Van Nostrand Reinhold: Boston MA
Boehm, B. (1981) Software Engineering Economics, Prentice Hall, Englewood Cliffs, NJ

Buxton, J.N. and Randell B., eds (1970), Software Engineering Techniques. Report on a conference
sponsored by the NATO Science Committee, Rome, Italy, 27-31 October 1969, p. 16.

Chelimsky, D. et al. (2010) The Rspec Book: Behaviour Driven Development with Rspec, Cucumber, and
Friends, The Pragmatic Bookshelf: Raleigh, NC

Cohn, M. (2009) Succeeding with Agile: Software Development Using Scrum, Addison-Wesley
Copeland, L. (2004) A Practitioner’s Guide to Software Test Design, Artech House: Norwood MA
Craig, R. and Jaskiel, S. (2002) Systematic Software Testing, Artech House: Norwood MA

Crispin, L. and Gregory, J. (2008) Agile Testing: A Practical Guide for Testers and Agile Teams, Pearson
Education: Boston MA

Forgacs, |., and Kovacs, A. (2019) Practical Test Design: Selection of traditional and automated test
design techniques, BCS, The Chartered Institute for IT

Gawande A. (2009) The Checklist Manifesto: How to Get Things Right, New York, NY: Metropolitan
Books

v4.0 Page 59 of 70 beta release

© International Software Testing Qualifications Board

1837
1838

1839

1840
1841

1842

1843
1844

1845
1846
1847

1848
1849

1850

1851
1852

1853
1854
1855

1856
1857

1858
1859

1860
1861

1862
1863

1864
1865

1866
1867

1868

1869
1870

1871
1872

/

Certified Tester ISTQB

International Software

Foundation Level Testing Qualifications Board

Gartner, M. (2011), ATDD by Example: A Practical Guide to Acceptance Test-Driven Development,
Pearson Education: Boston MA

Gilb, T., Graham, D. (1993) Software Inspection, Addison Wesley

Hendrickson, E. (2013) Explore It!: Reduce Risk and Increase Confidence with Exploratory Testing, The
Pragmatic Programmers

Hetzel, B. (1988) The Complete Guide to Software Testing, 2™ ed., John Wiley and Sons

Jeffries, R., Anderson, A., Hendrickson, C. (2000) Extreme Programming Installed, Addison-Wesley
Professional

Jorgensen, P. (2014) Software Testing, A Craftsman’s Approach (4e), CRC Press: Boca Raton FL
Kan, S. (2003) Metrics and Models in Software Quality Engineering, 2™ ed., Addison-Wesley
Kaner, C., Falk, J., and Nguyen, H.Q. (1999) Testing Computer Software, 2™ ed., Wiley

Kaner, C., Bach, J., and Pettichord, B. (2011) Lessons Learned in Software Testing: A Context-Driven
Approach, 1st ed., Wiley

Kim, G., Humble, J., Debois, P. and Willis, J. (2016) The DevOps Handbook, Portland, OR

Koomen, T., van der Aalst, L., Broekman, B. and Vroon, M. (2006) TMap Next for result-driven testing,
UTN Publishers, The Netherlands

Myers, G. (2011) The Art of Software Testing, (3e), John Wiley & Sons: New York NY
O’Regan, G. (2019) Concise Guide to Software Testing, Springer Nature Switzerland
Pressman, R.S. (2019) Software Engineering. A Practitioner’'s Approach, 9" ed., McGraw Hill

Roman, A. (2018) Thinking-Driven Testing. The Most Reasonable Approach to Quality Control, Springer
Nature Switzerland

Van Veenendaal, E (ed.) (2012) Practical Risk-Based Testing, The PRISMA Approach, UTN Publishers:
The Netherlands

Watson, A.H., Wallace, D.R. and McCabe, T.J. (1996) Structured Testing: A Testing Methodology Using
the Cyclomatic Complexity Metric, U.S. Dept. of Commerce, Technology Administration, NIST

Westfall, L. (2009) The Certified Software Quality Engineer Handbook, ASQ Quality Press
Whittaker, J. (2002) How to Break Software: A Practical Guide to Testing, Pearson

Whittaker, J. (2009) Exploratory Software Testing: Tips, Tricks, Tours, and Techniques to Guide Test
Design, Addison Wesley

Whittaker, J. and Thompson, H. (2003) How to Break Software Security, Addison Wesley
Wiegers, K. (2001) Peer Reviews in Software: A Practical Guide, Addison-Wesley Professional
Articles and Web Pages

Brykczynski, B. (1999) “A survey of software inspection checklists,” ACM SIGSOFT Software Engineering
Notes, 24(1), pp. 82-89

Enders, A. (1975) “An Analysis of Errors and Their Causes in System Programs,” IEEE Transactions on
Software Engineering 1(2), pp. 140-149

v4.0 Page 60 of 70 beta release

© International Software Testing Qualifications Board

1873
1874

1875
1876

1877
1878
1879

1880
1881

/

Certified Tester ISTQB

International Software

Foundation Level Testing Qualifications Board

Manna, Z., Waldinger, R. (1978) “The logic of computer programming,” IEEE Transactions on Software
Engineering 4(3), pp. 199-229

Marick, B. (2003) Exploration through Example, http://www.exampler.com/old-
blog/2003/08/21.1.html#agile-testing-project-1

Nielsen, J. (1994) “Enhancing the explanatory power of usability heuristics,” Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems: Celebrating Interdependence, pp. 152-158, ACM
Press

Wake, B. (2003) “INVEST in Good Stories, and SMART Tasks, ” https://xp123.com/articles/invest-in-good-
stories-and-smart-tasks/

v4.0 Page 61 of 70 beta release

© International Software Testing Qualifications Board

1882
1883

1884
1885
1886

1887
1888

1889
1890
1891
1892

1893
1894

1895
1896

1897
1898
1899
1900
1901
1902
1903

1904
1905

1906
1907
1908
1909
1910

1911
1912

1913

/

Certified Tester ISTQB

International Software

Foundation Level Testing Qualifications Board

8. Appendix A — Learning Objectives/Cognitive Level of
Knowledge

The following learning objectives are defined as applying to this syllabus. Each topic in the syllabus will
be examined according to the learning objective for it. The learning objectives begin with an action verb
corresponding to its cognitive level of knowledge as listed below.

Level 1: Remember (K1) — the candidate will remember, recognize and recall a term or concept.
Action verbs: identify, recall, recognize.

Examples:
o ‘“ldentify typical objectives of testing.”
o “Recall the concepts of the test pyramid.”

¢ “Recognize the different roles and responsibilities in a review.”

Level 2: Understand (K2) — the candidate can select the reasons or explanations for statements related
to the topic, and can summarize, compare, classify and give examples for the testing concept.

Action verbs: classify, compare, contrast, differentiate, distinguish, exemplify, explain, give examples,
interpret, summarize.

Examples:
o “Classify the different options for writing acceptance criteria.”
e “Compare the different roles in testing” (look for similarities, differences or both).
o “Distinguish between project and product risks” (allows concepts to be differentiated).
o “Exemplify the purpose and content of a test plan.”
o “Explain the impact of context on the test process.”
e “Summarize the activities of the review process.”

Level 3: Apply (K3) — the candidate can carry out a procedure when confronted with a familiar task, or
select the correct procedure and apply it to a given context.

Action verbs: apply, implement, prepare, use.

Examples:
o “Apply test case prioritization” (should refer to a procedure, technique, process, algorithm etc.).
e “Prepare a defect report.”
e “Use boundary value analysis to derive test cases.”

References for the cognitive levels of learning objectives:
Anderson, L. W. and Krathwohl, D. R. (eds) (2001) A Taxonomy for Learning, Teaching

Assessing: A Revision of Bloom's Taxonomy of Educational Objectives, Allyn & Bacon

v4.0 Page 62 of 70 beta release

© International Software Testing Qualifications Board

1914

1915
1916
1917

1918

Certified Tester
Foundation Level

/

ISTOQB

International Software
Testing Qualifications Board

9.

Appendix B — Business Outcomes traceability matrix with Learning Objectives

This section lists the number of Foundation Level Learning Objectives related to the Business Outcomes and the traceability between Foundation

Level Business Outcomes and Foundation Level Learning Objectives.

i e R e Y e [s s e i B B I e B

Business Outcomes: Foundation Level gl e|g|g|g|&g|g|lg|g|8|8|83|38 |8
= N w IN a =} ~ 3 ©) = ~ s =

BO1 Understand what testing is and why it is beneficial 6

BO2 Understand fundamental concepts of software testing 22

BO3 Identify the test approach and activities to be implemented depending on the 6

context of testing

BO4 Assess and improve the quality of the documentation 9

BOS Increase the effectiveness and efficiency of testing 20

BO6 Align the testing process with the software development lifecycle 6

BO7 Understand test management principles 6

BO8 Write and communicate clear and understandable defect reports 1

BO9 Understand the factors that influence the test priorities and test efforts 7

BO10 | Work as part of a cross-functional team 8

BO11 | Know risks and benefits related to test automation. 1

BO12 | Identify essential skills required for testing 5

BO13 | Understand the impact of risk on testing 4

BO14 | Effectively report on test progress and quality 4

v4.0 Page 63 of 70 beta release

© International Software Testing Qualifications Board

1919

Certified Tester
Foundation Level

/

ISTOB

International Software

Testing Qualifications Board

BUSINESS OUTCOMES

Chapter/ K- S I I N
section/ Learning objective e I I I e I I I e L i B
subsection el 518185 (5/8|85(8/8|8|8|8|8
PN |FR|a|d|J|o|le|B5|lBIBIRIRE
1.11 Identify typical objectives of testing K1 X
Differentiate testing from debugging K2 X
121 Exemplify why testing is necessary K2 X
1.2.2 Recall the relation between testing and quality assurance K1 X
1.2.3 Distinguish between root cause, error, defect, and failure K2 X
Explain the seven testing principles X
141 Summarize the different test activities and tasks K2 X
1.4.2 Explain the impact of context on the test process K2 X X
143 Differentiate the work products that support the test activities K2 X
1.4.4 Explain the value of maintaining traceability K2 X | X
145 Compare the different roles in testing K2 X
1.5.1 Give examples of the generic skills required for testing K2 X
1.5.2 Recall the advantages of the whole team approach K1 X
1.5.3 Distinguish the benefits and drawbacks of independence of testing K2 X
2.1.1 Explain the impact of the chosen software development lifecycle on testing K2 X
v4.0 Page 64 of 70 beta release

© International Software Testing Qualifications Board

Certified Tester
Foundation Level

/

ISTOB

International Software
Testing Qualifications Board

212 Remember good testing practices regardless of the chosen software development K1
- model
2.1.3 Recall the examples of test-first approaches to development K1 X
2.1.4 Summarize how DevOps might have an impact on testing K2 X X
2.1.5 Explain the shift-left approach K2 X
Explain how retrospectives can be used as a mechanism for process improvement K2 X X
2.2.1 Distinguish the different test levels K2
2.2.2 Compare and contrast functional, non-functional and white-box testing K2
2.23 Distinguish confirmation testing from regression testing K2
Summarize maintenance testing and its triggers
311 Recognize types of products that can be examined by the different static testing K1 X
- techniques
3.1.2 Explain the value of static testing K2 X X
Compare and contrast static and dynamic testing K2 X
3.2.1 Identify the benefits of early and frequent feedback K1 X X
3.2.2 Summarize the activities of the review process K2
3.2.3 Recognize the different roles and responsibilities in a review K1 X
3.24 Compare and contrast the different review types K2
3.25 Recall the factors that contribute to a successful review K1 X X
Distinguish black-box, white-box and experience-based test techniques
421 Use equivalence partitioning to derive test cases K3 X
4.2.2 Use boundary value analysis to derive test cases K3 X
v4.0 Page 65 of 70 beta release

© International Software Testing Qualifications Board

Certified Tester
Foundation Level

/

ISTOB

International Software

Testing Qualifications Board

4.2.3

Use decision table testing to derive test cases

K3

4.2.4

Use state transition testing to derive test cases

K3

441

Explain error guessing

43.1 Explain statement testing K2
4.3.2 Explain branch testing K2
433 Explain the value of white box testing K2

K2

4.4.2

Explain exploratory testing

K2

Explain checklist-based testing

451 Explain how. to write user stories in collaboration with developers and business K2
representatives

4.5.2 Classify the different options for writing acceptance criteria K2

453 Use acceptance test-driven development (ATDD) to derive test cases K3

5.1.1 Exemplify the purpose and content of a test plan K2
5.1.2 Recognize how a tester adds value to iteration and release planning K1 X
513 Compare and contrast entry and exit criteria, Definition of Ready, and Definition of K2
Done
5.14 Use estimation techniques to calculate the required testing effort K3
5.1.5 Apply test case prioritization K3
5.1.6 Recall the concepts of the test pyramid K1
517 Summarize the testing quadrants and their relationships with test levels and test types | K2

5.2.1 Identify risk level by using likelihood and impact K1 X
5.2.2 Distinguish between project and product risks K2 X
5.2.3 Explain how product risk analysis may influence thoroughness and scope of testing K2 X
v4.0 Page 66 of 70 beta release

© International Software Testing Qualifications Board

1920

Certified Tester
Foundation Level

/

ISTOB

International Software
Testing Qualifications Board

5.24 Explain what measures can be taken in response to analyzed product risks K2 X

5.3.1 Recall metrics used for testing K1 X
5.3.2 Summarize the purposes, contents, and audiences for test reports K2 X
5.3.3 Exemplify how to communicate the status of testing K2 X X

6.2.1

Summarize how configuration management supports testing
Prepare a defect report

Explain how different types of test tools support testing

Recall the benefits and risks of test automation

K1

v4.0

© International Software Testing Qualifications Board

Page 67 of 70

beta release

1921

1922
1923
1924
1925
1926
1927
1928

1929
1930
1931
1932
1933
1934

1935
1936
1937
1938

1939

1940
1941
1942

1943
1944

1945
1946

1947
1948
1949
1950

1951
1952

1953
1954
1955
1956
1957

/

Certified Tester ISTQB

International Software

Foundation Level Testing Qualifications Board

10. Appendix C — Release Notes

ISTQB® Foundation Syllabus v4.0 is a major update based on the Foundation Level syllabus (v3.1.1) and
the Agile Tester 2014 syllabus. For this reason, there are no detailed release notes per chapter and section.
However, a summary of principal changes is provided below. Additionally, in a separate Release Notes
document, ISTQB® provides traceability between the learning objectives (LO) in the version 3.1.1 of the
Foundation Level Syllabus, 2014 version of the Agile Tester Syllabus, and the learning objectives in the
new Foundation Level v4.0 Syllabus, showing which LOs have been added, updated, or removed.

In 2022 more than one million people in more than 100 countries have taken the Foundation Level exam,
and almost 700,000 are certified testers worldwide. With the expectation that all of them have read the
Foundation Syllabus to be able to pass the exam, this makes the Foundation Syllabus likely to be the most
read software testing document ever! This major update is made in respect of this heritage and to improve
the views of hundreds of thousands more people on the level of quality that ISTQB® delivers to the global
testing community.

In this version all LOs have been edited to make them atomic, and to create one-to-one traceability between
LOs and syllabus sections, thus not having content without also having a LO. The goal is to make this
version easier to read, understand, learn, and translate, focusing on increasing practical usefulness and
the balance between knowledge and skills.

This major release has made the following changes:

e Size reduction of the overall syllabus. Syllabus is not a textbook, but a document that serves to
outline the basic elements of an introductory course on software testing, including what topics
should be covered and on what level. Therefore, in particular:

o In most cases examples are excluded from the text. It is a task of a training provider to
provide the examples, as well as the exercises, during the training

o The “Syllabus writing checklist” was followed, which suggests the maximum text size for
LOs at each K-level (K1 = max. 10 lines, K2 = max. 15 lines, K3 = max. 25 lines)

¢ Reduction of the number of LOs compared to the Foundation v3.1.1 and Agile v2014 syllabi
o 14 K1 LOs compared with 21 LOs in FL v3.1.1 (15) and AT 2014 (6)
o 42 K2 LOs compared with 53 LOs in FL v3.1.1 (40) and AT 2014 (13)
o 8K3LOs compared with 15 LOs in FL v3.1.1 (7) and AT 2014 (8)

e More extensive references to classic and/or respected books and articles on software testing and
related topics are provided

e Major changes in chapter 1 (Fundamentals of Testing)
o Section on test skills expanded and improved
o Section on the whole team approach (K1) added
o Section on the independence of testing moved to Chapter 1 from Chapter 5

e Major changes in chapter 2 (Testing Throughout the SDLCs)

V4.0 Page 68 of 70 beta release

© International Software Testing Qualifications Board

1958
1959
1960

1961
1962

1963

1964
1965

1966
1967

1968
1969

1970
1971
1972
1973
1974

1975
1976
1977
1978

1979
1980

1981
1982

1983

1984
1985
1986

1987
1988

/

Certified Tester ISTQB

International Software

Foundation Level Testing Qualifications Board

o Sections 2.1.1 and 2.1.2 rewritten and improved, the corresponding LOs are modified
o More focus on practices like: test-first approach (K1), shift-left (K2), retrospectives (K2)
o New section on testing in the context of DevOps (K2)

o Integration testing level split into two separate test levels: component integration testing
and system integration testing

e Major changes in chapter 3 (Static Testing)

o Section on review techniques, together with the K3 LO (apply a review technique)
removed

e Major changes in chapter 4 (Test Analysis and Design)
o Use case testing removed (but still present in the Advanced Test Analyst syllabus)

o More focus on collaboration-based approach to testing: new K3 LO about using ATDD to
derive test cases and two new K2 LOs about user stories and acceptance criteria

o Decision testing and coverage replaced with branch testing and coverage (first, branch
coverage is more commonly used in practice; second, different standards define the
decision differently, as opposed to “branch”; third, this solves a subtle, but serious flaw
from the old FL2018 which claims that ,,100% decision coverage implies 100% statement
coverage” — this sentence is not true in case of programs with no decisions)

o Section on the value of white-box testing improved
e Major changes in chapter 5 (Managing the Test Activities)
o Section on test strategies/approaches removed
o New K3 LO on estimation techniques for estimating the test effort

o More focus on the well-known Agile-related concepts and tools in test management:
iteration and release planning (K1), test pyramid (K1), and testing quadrants (K2)

o Section on risk management better structured by describing four main activities: risk
identification, risk assessment, risk mitigation and risk monitoring

e Major changes in chapter 6 (Test Tools)

o Content on some test automation issues reduced as being too advanced for the
foundation level — section on tools selection, performing pilot projects and introducing
tools into organization removed

V4.0 Page 69 of 70 beta release

© International Software Testing Qualifications Board

/

Certified Tester ISTQB

International Software

Foundation Level Testing Qualifications Board

1989 |11. Index

1990 Allterms are defined in the ISTQB® Glossary (http://glossary.istgb.org/).

1991 To be done after the beta release.

V4.0 Page 70 of 70 beta release

© International Software Testing Qualifications Board

http://glossary.istqb.org/

