

 1

 2

 3

Certified Tester 4

 5

Foundation Level Syllabus 6

 7

v4.0 8

 9

 10

 11

 12

 13

International Software Testing Qualifications Board 14

 15

Certified Tester

Foundation Level

v4.0 Page 2 of 70 beta release

© International Software Testing Qualifications Board

Copyright Notice 16

Copyright Notice © International Software Testing Qualifications Board (hereinafter called ISTQB®) 17

ISTQB® is a registered trademark of the International Software Testing Qualifications Board. 18

Copyright © 2022 the authors of the Foundation Level v4.0 syllabus: Renzo Cerquozzi, Wim Decoutere, 19
Klaudia Dussa-Zieger, Jean-François Riverin, Arnika Hryszko, Martin Klonk, Michaël Pilaeten, Meile 20
Posthuma, Stuart Reid, Eric Riou du Cosquer (chair), Adam Roman, Lucjan Stapp, Stephanie Ulrich (vice 21
chair), Eshraka Zakaria 22

Copyright © 2019 the authors for the update 2019 Klaus Olsen (chair), Meile Posthuma and Stephanie 23
Ulrich. 24

Copyright © 2018 the authors for the update 2018 Klaus Olsen (chair), Tauhida Parveen (vice chair), Rex 25
Black (project manager), Debra Friedenberg, Matthias Hamburg, Judy McKay, Meile Posthuma, Hans 26
Schaefer, Radoslaw Smilgin, Mike Smith, Steve Toms, Stephanie Ulrich, Marie Walsh, and Eshraka 27
Zakaria, 28

Copyright © 2011 the authors for the update 2011 Thomas Müller (chair), Debra Friedenberg, and the 29
ISTQB WG Foundation Level. 30

Copyright © 2010 the authors for the update 2010 Thomas Müller (chair), Armin Beer, Martin Klonk, and 31
Rahul Verma. 32

Copyright © 2007 the authors for the update 2007 Thomas Müller (chair), Dorothy Graham, Debra 33
Friedenberg and Erik van Veenendaal. 34

Copyright © 2005, the authors Thomas Müller (chair), Rex Black, Sigrid Eldh, Dorothy Graham, Klaus 35
Olsen, Maaret Pyhäjärvi, Geoff Thompson, and Erik van Veenendaal. 36

All rights reserved. The authors hereby transfer the copyright to the ISTQB®. The authors (as current 37

copyright holders) and ISTQB® (as the future copyright holder) have agreed to the following conditions of 38

use: 39

• Extracts, for non-commercial use, from this document may be copied if the source is acknowledged. 40
Any Accredited Training Provider may use this syllabus as the basis for a training course if the 41
authors and the ISTQB® are acknowledged as the source and copyright owners of the syllabus and 42
provided that any advertisement of such a training course may mention the syllabus only after official 43
Accreditation of the training materials has been received from an ISTQB®-recognized Member Board. 44

• Any individual or group of individuals may use this syllabus as the basis for articles and books, if the 45
authors and the ISTQB® are acknowledged as the source and copyright owners of the syllabus. 46

• Any other use of this syllabus is prohibited without first obtaining the approval in writing of the 47
ISTQB®. 48

• Any ISTQB®-recognized Member Board may translate this syllabus provided they reproduce the 49
abovementioned Copyright Notice in the translated version of the syllabus. 50

 51

Certified Tester

Foundation Level

v4.0 Page 3 of 70 beta release

© International Software Testing Qualifications Board

Revision History 52

 53

Version Date Remarks

 TBA CTFL v4.0 – General release version

CTFL v4.0 3.01.2023 CTFL v4.0 – Candidate beta version

CTFL v4.0 15.09.2022 CTFL v4.0 – Alpha review release

CTFL v3.1.1 01.07.2021 CTFL v3.1.1 – Copyright and logo update

CTFL v3.1 11.11.2019 CTFL v3.1 – Maintenance release with minor updates

ISTQB 2018 27.04.2018 CTFL v3.0 – Candidate general release version

ISTQB 2018 12.02.2018 CTFL v3.0 – Candidate beta version

ISTQB 2018 19.01.2018 Cross-review internal v3.0

ISTQB 2018 15.01.2018 Pre-cross-review internal v2.9 incorporating Core Team edits.

ISTQB 2018 9.12.2017 Alpha review v2.5 release – Technical edit of v2.0 release, no new content
added

ISTQB 2018 22.11.2017 Alpha review v2.0 release – Certified Tester Foundation Level Syllabus
Major Update 2018 – see Appendix C – Release Notes for details

ISTQB 2018 12.06.2017 Alpha review release - Certified Tester Foundation Level Syllabus Major
Update 2018 – see Appendix C – Release Notes

ISTQB 2011 1.04.2011 CTFL Syllabus Maintenance Release – see Release Notes

ISTQB 2010 30.03.2010 CTFL Syllabus Maintenance Release – see Release Notes

ISTQB 2007 01.05.2007 CTFL Syllabus Maintenance Release

ISTQB 2005 01.07.2005 Certified Tester Foundation Level Syllabus v1.0

ASQF V2.2 07.2003 ASQF Syllabus Foundation Level Version v2.2 “Lehrplan Grundlagen des
Software-testens“

ISEB V2.0 25.02.1999 ISEB Software Testing Foundation Syllabus v2.0

 54

Certified Tester

Foundation Level

v4.0 Page 4 of 70 beta release

© International Software Testing Qualifications Board

Table of Contents 55

 56

Copyright Notice ... 2 57

Revision History ... 3 58

Table of Contents ... 4 59

Acknowledgements .. 8 60

0. Introduction .. 9 61

0.1. Purpose of this Syllabus .. 9 62

0.2. The Certified Tester Foundation Level in Software Testing .. 9 63

0.3. Career Path for Testers ... 9 64

0.4. Business Outcomes ... 10 65

0.5. Examinable Learning Objectives and Cognitive Level of Knowledge 10 66

0.6. The Foundation Level Certificate Exam .. 11 67

0.7. Accreditation .. 11 68

0.8. Handling of Standards ... 11 69

0.9. Keeping It Current .. 11 70

0.10. Level of Detail .. 11 71

0.11. How this Syllabus is Organized ... 12 72

1. Fundamentals of Testing – 180 minutes ... 13 73

1.1. What is Testing? .. 14 74

1.1.1. Objectives of Testing ... 14 75

1.1.2. Testing and Debugging ... 15 76

1.2. Why is Testing Necessary? ... 15 77

1.2.1. Testing’s Contributions to Success ... 15 78

1.2.2. Testing and Quality Assurance (QA) ... 16 79

1.2.3. Root Causes, Errors, Defects, and Failures .. 16 80

1.3. Testing Principles .. 16 81

1.4. Test Activities, Test Work Products and Test Roles ... 17 82

1.4.1. Test Activities and Tasks ... 17 83

1.4.2. Test Process in Context .. 18 84

1.4.3. Test Work Products ... 19 85

1.4.4. Traceability between the Test Basis and Test Work Products .. 19 86

Certified Tester

Foundation Level

v4.0 Page 5 of 70 beta release

© International Software Testing Qualifications Board

1.4.5. Roles in Testing ... 20 87

1.5. Essential Skills and Good Practices .. 20 88

1.5.1. Generic Skills Required for Testing ... 20 89

1.5.2. Whole Team Approach .. 21 90

1.5.3. Independence of Testing ... 21 91

2. Testing Throughout the Software Development Lifecycles – 130 minutes 22 92

2.1. Testing in Context of Software Development Lifecycles ... 23 93

2.1.1. Impact of Software Development Lifecycle on Testing ... 23 94

2.1.2. Software Development Lifecycles and Good Testing Practices ... 23 95

2.1.3. Testing as a Driver for Software Development ... 24 96

2.1.4. DevOps and Testing .. 24 97

2.1.5. Shift-Left Approach .. 25 98

2.1.6. Retrospectives and Process Improvement ... 25 99

2.2. Test Levels and Test Types... 26 100

2.2.1. Test Levels .. 26 101

2.2.2. Test Types ... 27 102

2.2.3. Confirmation Testing and Regression Testing .. 28 103

2.3. Maintenance Testing ... 28 104

3. Static Testing – 80 minutes ... 30 105

3.1. Static Testing Basics ... 31 106

3.1.1. Work Products Examinable by Static Testing ... 31 107

3.1.2. Value of Static Testing .. 31 108

3.1.3. Differences between Static and Dynamic Testing ... 32 109

3.2. Feedback and Review Process ... 32 110

3.2.1. Benefits of Early and Frequent Customer Feedback .. 32 111

3.2.2. Review Process Activities ... 33 112

3.2.3. Roles and Responsibilities in Reviews .. 33 113

3.2.4. Review Types .. 34 114

3.2.5. Success Factors for Reviews .. 34 115

4. Test Analysis and Design – 390 minutes .. 36 116

4.1. Test Techniques Overview .. 37 117

4.2. Black-Box Test Techniques ... 37 118

Certified Tester

Foundation Level

v4.0 Page 6 of 70 beta release

© International Software Testing Qualifications Board

4.2.1. Equivalence Partitioning .. 37 119

4.2.2. Boundary Value Analysis .. 38 120

4.2.3. Decision Table Testing .. 39 121

4.2.4. State Transition Testing .. 39 122

4.3. White-Box Testing ... 40 123

4.3.1. Statement Testing and Statement Coverage .. 40 124

4.3.2. Branch Testing and Branch Coverage .. 41 125

4.3.3. The Value of White-box Testing .. 41 126

4.4. Experience-based Testing ... 41 127

4.4.1. Error Guessing .. 41 128

4.4.2. Exploratory Testing ... 42 129

4.4.3. Checklist-Based Testing .. 42 130

4.5. Collaboration-based Test Approaches .. 43 131

4.5.1. Collaborative User Story Writing ... 43 132

4.5.2. Acceptance Criteria ... 43 133

4.5.3. Acceptance Test-driven Development (ATDD) ... 44 134

5. Managing the Test Activities – 335 minutes .. 45 135

5.1. Test Planning ... 46 136

5.1.1. Purpose and Content of a Test Plan ... 46 137

5.1.2. Tester's Contribution to Iteration and Release Planning ... 46 138

5.1.3. Entry and Exit Criteria ... 47 139

5.1.4. Estimation Techniques .. 47 140

5.1.5. Test Case Prioritization ... 48 141

5.1.6. Test Pyramid ... 48 142

5.1.7. Testing Quadrants ... 49 143

5.2. Risk Management .. 49 144

5.2.1. Risk Definition and Risk Attributes .. 49 145

5.2.2. Project and Product Risks ... 49 146

5.2.3. Product Risk Analysis .. 50 147

5.2.4. Product Risk Control ... 51 148

5.3. Test Monitoring, Test Control and Test Completion .. 51 149

5.3.1. Metrics used in Testing ... 52 150

Certified Tester

Foundation Level

v4.0 Page 7 of 70 beta release

© International Software Testing Qualifications Board

5.3.2. Purpose, Contents and Audience for Test Reports... 52 151

5.3.3. Communicating the Status of Testing ... 53 152

5.4. Configuration Management ... 53 153

5.5. Defect Management .. 54 154

6. Test Tools – 20 minutes .. 56 155

6.1. Tool Support for Testing .. 57 156

6.2. Benefits and Risks of Test Automation .. 57 157

7. References .. 59 158

8. Appendix A – Learning Objectives/Cognitive Level of Knowledge ... 62 159

9. Appendix B – Business Outcomes traceability matrix with Learning Objectives 63 160

10. Appendix C – Release Notes .. 68 161

11. Index.. 70 162

 163

Certified Tester

Foundation Level

v4.0 Page 8 of 70 beta release

© International Software Testing Qualifications Board

Acknowledgements 164

This document was formally released by the General Assembly of the ISTQB® on <date> 165

It was produced by a team from the ISTQB joint Foundation Level & Agile Working Groups: Laura Albert, 166
Renzo Cerquozzi (vice chair), Wim Decoutere, Klaudia Dussa-Zieger, Chintaka Indikadahena, Arnika 167
Hryszko, Martin Klonk, Kenji Onishi, Michaël Pilaeten (co-chair), Meile Posthuma, Gandhinee Rajkomar, 168
Stuart Reid, Eric Riou du Cosquer (co-chair), Jean-François Riverin, Adam Roman, Lucjan Stapp, 169
Stephanie Ulrich (vice chair), Eshraka Zakaria. 170

The team thanks Stuart Reid and Patricia McQuaid for their technical review and the review team and the 171
Member Boards for their suggestions and input. 172

The following persons participated in the reviewing, commenting and balloting of this syllabus: to be 173
completed 174

ISTQB Working Group Foundation Level (Edition 2018): Klaus Olsen (chair), Tauhida Parveen (vice 175
chair), Rex Black (project manager), Eshraka Zakaria, Debra Friedenberg, Ebbe Munk, Hans Schaefer, 176
Judy McKay, Marie Walsh, Meile Posthuma, Mike Smith, Radoslaw Smilgin, Stephanie Ulrich, Steve 177
Toms, Corne Kruger, Dani Almog, Eric Riou du Cosquer, Igal Levi, Johan Klintin, Kenji Onishi, Rashed 178
Karim, Stevan Zivanovic, Sunny Kwon, Thomas Müller, Vipul Kocher, Yaron Tsubery and all Member 179
Boards for their suggestions. 180

ISTQB Working Group Foundation Level (Edition 2011): Thomas Müller (chair), Debra Friedenberg. The 181
core team thanks the review team (Dan Almog, Armin Beer, Rex Black, Julie Gardiner, Judy McKay, 182
Tuula Pääkkönen, Eric Riou du Cosquier Hans Schaefer, Stephanie Ulrich, Erik van Veenendaal), and all 183
Member Boards for the suggestions for the current version of the syllabus. 184

ISTQB Working Group Foundation Level (Edition 2010): Thomas Müller (chair), Rahul Verma, Martin 185
Klonk and Armin Beer. The core team thanks the review team (Rex Black, Mette Bruhn-Pederson, Debra 186
Friedenberg, Klaus Olsen, Judy McKay, Tuula Pääkkönen, Meile Posthuma, Hans Schaefer, Stephanie 187
Ulrich, Pete Williams, Erik van Veenendaal), and all Member Boards for their suggestions. 188

ISTQB Working Group Foundation Level (Edition 2007): Thomas Müller (chair), Dorothy Graham, Debra 189
Friedenberg, and Erik van Veenendaal. The core team thanks the review team (Hans Schaefer, 190
Stephanie Ulrich, Meile Posthuma, Anders Pettersson, and Wonil Kwon) and all the Member Boards for 191
their suggestions. 192

ISTQB Working Group Foundation Level (Edition 2005): Thomas Müller (chair), Rex Black, Sigrid Eldh, 193
Dorothy Graham, Klaus Olsen, Maaret Pyhäjärvi, Geoff Thompson and Erik van Veenendaal. The core 194
team thanks the review team and all Member Boards for their suggestions. 195

Certified Tester

Foundation Level

v4.0 Page 9 of 70 beta release

© International Software Testing Qualifications Board

0. Introduction 196

0.1. Purpose of this Syllabus 197

This syllabus forms the basis for the International Software Testing Qualification at the Foundation Level. 198

The ISTQB® provides this syllabus as follows: 199

1. To member boards, to translate into their local language and to accredit training providers. 200

Member boards may adapt the syllabus to their particular language needs and modify the 201

references to adapt to their local publications. 202

2. To certification bodies, to derive examination questions in their local language adapted to the 203

learning objectives for this syllabus. 204

3. To training providers, to produce courseware and determine appropriate teaching methods. 205

4. To certification candidates, to prepare for the certification exam (either as part of a training course 206

or independently). 207

To the international software and systems engineering community, to advance the profession of software 208

and systems testing, and as a basis for books and articles. 209

0.2. The Certified Tester Foundation Level in Software Testing 210

The Foundation Level qualification is aimed at anyone involved in software testing. This includes people 211

in roles such as testers, test analysts, test engineers, test consultants, test managers, software 212

developers and team members in Agile development. This Foundation Level qualification is also 213

appropriate for anyone who wants a basic understanding of software testing, such as project managers, 214

quality managers, product owners, software development managers, business analysts, IT directors and 215

management consultants. Holders of the Foundation Certificate will be able to go on to higher-level 216

software testing qualifications. 217

0.3. Career Path for Testers 218

The ISTQB® scheme provides support for testing professionals at all stages of their careers offering both 219

breadth and depth of knowledge. Individuals who achieved the ISTQB® Foundation certification may also 220

be interested in the Core Advanced Levels (Test Analyst, Technical Test Analyst, and Test Manager) and 221

thereafter Expert Level (Test Management or Improving the Test Process). Anyone seeking to develop 222

skills in testing practices in an Agile environment could consider the Agile Technical Tester or Agile Test 223

Leadership at Scale certifications. The Specialist stream offers a deep dive into areas that have specific 224

test approaches and test activities (e.g., in test automation, AI testing, model-based testing, mobile app 225

testing), that are related to specific test areas (e.g., performance testing, usability testing, acceptance 226

testing, security testing), or which cluster testing know-how for certain industry domains (e.g., automotive 227

or gaming). Please visit www.istqb.org for the latest information on ISTQB´s Certified Tester Scheme. 228

https://eur01.safelinks.protection.outlook.com/?url=http%3A%2F%2Fwww.istqb.org%2F&data=05%7C01%7Cfilipe.carlos%40innowave.tech%7Cb1ee83ff6521424c792908da440ce915%7C726174dc30ab40e185fc60cda0e0bd81%7C0%7C0%7C637897119663377885%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=Sgv6mR7KzlIIQ6MFZ0cBRVv6yEoTekNJEqwFQ7M%2Bx7M%3D&reserved=0

Certified Tester

Foundation Level

v4.0 Page 10 of 70 beta release

© International Software Testing Qualifications Board

0.4. Business Outcomes 229

This section lists the 14 Business Outcomes expected of a person who has achieved the Foundation 230

Level certification. 231

A Foundation Level Certified Tester can… 232

FL-BO1 Understand what testing is and why it is beneficial 233

FL-BO2 Understand fundamental concepts of software testing 234

FL-BO3 Identify the test approach and activities to be implemented depending on the context of 235

testing 236

FL-BO4 Assess and improve the quality of the documentation 237

FL-BO5 Increase the effectiveness and efficiency of testing 238

FL-BO6 Align the testing process with the software development lifecycle 239

FL-BO7 Understand test management principles 240

FL-BO8 Write and communicate clear and understandable defect reports 241

FL-BO9 Understand the factors that influence the test priorities and test efforts 242

FL-BO10 Work as part of a cross-functional team 243

FL-BO11 Know risks and benefits related to test automation 244

FL-BO12 Identify essential skills required for testing 245

FL-BO13 Understand the impact of risk on testing 246

FL-BO14 Effectively report on test progress and quality 247

0.5. Examinable Learning Objectives and Cognitive Level of Knowledge 248

Learning objectives support business outcomes and are used to create the Certified Tester Foundation 249

Level exams. In general, all contents of chapters 1-6 of this syllabus are examinable at a K1 level. That is, 250

the candidate may be asked to recognize, remember, or recall a keyword or concept mentioned in any of 251

the six chapters. The specific learning objectives levels are shown at the beginning of each chapter, and 252

classified as follows: 253

• K1: Remember 254

• K2: Understand 255

• K3: Apply 256

Further details and examples of learning objectives are given in Appendix A. All terms listed as keywords 257

just below chapter headings shall be remembered (K1), even if not explicitly mentioned in the learning 258

objectives. 259

Certified Tester

Foundation Level

v4.0 Page 11 of 70 beta release

© International Software Testing Qualifications Board

0.6. The Foundation Level Certificate Exam 260

The Foundation Level Certificate exam will be based on this syllabus. Answers to exam questions may require 261

the use of material based on more than one section of this syllabus. All sections of the syllabus are 262

examinable, except for the Introduction and Appendices. Standards and books are included as references, but 263

their content is not examinable, beyond what is summarized in the syllabus itself from such standards and 264

books. Refer to Exam Structures and Rules document for the Foundation Level for further details. 265

0.7. Accreditation 266

An ISTQB® Member Board may accredit training providers whose course material follows this syllabus. 267

Training providers should obtain accreditation guidelines from the Member Board or body that performs 268

the accreditation. An accredited course is recognized as conforming to this syllabus, and is allowed to 269

have an ISTQB® exam as part of the course. The accreditation guidelines for this syllabus follow the 270

general Accreditation Guidelines published by the Processes Management and Compliance Working 271

Group. 272

0.8. Handling of Standards 273

There are standards referenced in the Foundation Syllabus (e.g., IEEE or ISO standards). The purpose of 274

these references is to provide a framework (as in the references to ISO 25010 regarding quality characteristics) 275

or to provide a source of additional information if desired by the reader. The standards documents are not 276

intended for examination. Refer to chapter 7 for more information on standards. 277

0.9. Keeping It Current 278

The software industry changes rapidly. To deal with these changes and to provide the stakeholders with access 279

to relevant and current information, the ISTQB working groups have created links on the www.istqb.org 280

website, which refer to supporting documents and changes to standards. This information is not examinable 281

under the Foundation syllabus. 282

0.10. Level of Detail 283

The level of detail in this syllabus allows internationally consistent courses and exams. In order to achieve 284
this goal, the syllabus consists of: 285

• General instructional objectives describing the intention of the Foundation Level 286

• A list of terms (keywords) that students must be able to recall 287

• Learning objectives for each knowledge area, describing the cognitive learning outcomes to be 288
achieved 289

• A description of the key concepts, including references to recognized sources 290

The syllabus content is not a description of the entire knowledge area of software testing; it reflects the 291
level of detail to be covered in Foundation Level training courses. It focuses on test concepts and 292

Certified Tester

Foundation Level

v4.0 Page 12 of 70 beta release

© International Software Testing Qualifications Board

techniques that can be applied to all software projects independent of the software development lifecycle 293
employed. 294

0.11. How this Syllabus is Organized 295

There are six chapters with examinable content. The top-level heading for each chapter specifies the 296

training time for the chapter. Timing is not provided below the chapter level. For accredited training 297

courses, the syllabus requires a minimum of 18.75 hours (18 hours and 45 minutes) of instruction, 298

distributed across the six chapters as follows: 299

• Chapter 1: Fundamentals of Testing (190 minutes) 300

o The student learns the basic principles related to testing, the reasons why testing is 301

required, and what the test objectives are. 302

o The student understands the test process, the major test activities, and work products. 303

o The student understands the essential skills for testing. 304

• Chapter 2: Testing Throughout the Software Development Lifecycles (140 minutes) 305

o The student learns how testing is incorporated into different development approaches. 306

o The student learns the concepts of test-first approaches, as well as DevOps. 307

o The student learns about the different test levels, test types, and maintenance testing. 308

• Chapter 3: Static Testing (80 minutes) 309

o The student learns the static testing basics. 310

o The student learns about the feedback and review process. 311

• Chapter 4: Test Analysis and Design (390 minutes) 312

o The student learns how to apply black-box, white-box, and experience-based test 313

techniques to derive test cases from various software work products. 314

o The student learns about the collaboration-based test approach. 315

• Chapter 5: Managing the Test Activities (305 minutes) 316

o The student learns how to plan tests in general, and how to estimate test effort. 317

o The student learns how risks can influence the scope of testing. 318

o The student learns how to monitor and control test activities. 319

o The student learns how configuration management supports testing. 320

o The student learns how to report defects in a clear and understandable way. 321

• Chapter 6: Test Tools (20 minutes) 322

o The student learns to classify tools and to understands the risks and benefits of test 323

automation. 324

Certified Tester

Foundation Level

v4.0 Page 13 of 70 beta release

© International Software Testing Qualifications Board

1. Fundamentals of Testing – 180 minutes 325

Keywords 326

coverage, coverage item, debugging, defect, error, failure, quality, quality assurance, root cause, test 327
analysis, test basis, test case, test completion, test condition, test control, test data, test design, test 328
execution, test implementation, test monitoring, test object, test objective, test planning, test procedure, 329
test result, testing, testware, validation, verification 330

 331

Learning Objectives for Chapter 1: 332

1.1 What is Testing? 333

FL-1.1.1 (K1) Identify typical objectives of testing 334

FL-1.1.2 (K2) Differentiate testing from debugging 335

1.2 Why is Testing Necessary? 336

FL-1.2.1 (K2) Exemplify why testing is necessary 337

FL-1.2.2 (K1) Recall the relation between testing and quality assurance 338

FL-1.2.3 (K2) Distinguish between root cause, error, defect, and failure 339

1.3 Testing Principles 340

FL-1.3.1 (K2) Explain the seven testing principles 341

1.4 Test Activities, Test Work Products and Test Roles 342

FL-1.4.1 (K2) Summarize the different test activities and tasks 343

FL-1.4.2 (K2) Explain the impact of context on the test process 344

FL-1.4.3 (K2) Differentiate the work products that support the test activities 345

FL-1.4.4 (K2) Explain the value of maintaining traceability 346

FL-1.4.5 (K2) Compare the different roles in testing 347

1.5 Essential Skills and Good Practices in Testing 348

FL-1.5.1 (K2) Give examples of the generic skills required for testing 349

FL-1.5.2 (K1) Recall the advantages of the whole team approach 350

FL-1.5.3 (K2) Distinguish the benefits and drawbacks of independence of testing 351

Certified Tester

Foundation Level

v4.0 Page 14 of 70 beta release

© International Software Testing Qualifications Board

1.1. What is Testing? 352

Software systems are an integral part of our daily life. Most people have had experience with software 353
that did not work as expected. Software that does not work correctly can lead to many problems, 354
including loss of money, time or business reputation, and, in extreme cases, even injury or death. 355
Software testing assesses the quality of the software and contributes to reducing the risk of software 356
failure in operation. 357

Software testing is a set of activities conducted to facilitate the discovery of defects and the evaluation of 358
properties of software artifacts. These artifacts under test are known as test objects. A common 359
misconception about testing is that it only consists of executing tests (i.e., running the software and 360
checking the results). However, software testing includes also other activities (see chapter 2). 361

Another common misconception about testing is that testing focuses entirely on the verification of the test 362
object. While testing does involve checking whether the system meets specified requirements, it also 363
involves checking whether the system meets users’ and other stakeholders’ needs in its operational 364
environment, which is called validation. 365

Testing may be dynamic or static. Dynamic testing involves the execution of software, while static testing 366
does not. Static testing includes reviews (see chapter 3) and static analysis. Dynamic testing uses 367
different types of test techniques to derive test cases (see chapter 4). 368

Testing is not only a technical activity. It also needs to be properly planned, managed, estimated, 369
monitored and controlled (see chapter 5). 370

Testers use tools (see chapter 6), but it is important to remember that testing is largely an intellectual 371
activity, requiring the testers to have specialized knowledge, use analytical skills and apply critical 372
thinking and systems thinking (Myers 2011, Roman 2018). 373

The ISO/IEC/IEEE 29119-1 standard has further information about software testing concepts. 374

1.1.1. Objectives of Testing 375

The typical objectives of testing are: 376

• Evaluating work products such as requirements, user stories, designs, and code 377

• Identifying failures and finding defects 378

• Ensuring proper coverage of a test object 379

• Reducing the level of risk of inadequate software quality 380

• Verifying whether specified requirements have been fulfilled 381

• Verifying that a test object complies with contractual, legal, and regulatory requirements 382

• Providing information to stakeholders to allow them to make informed decisions 383

• Building confidence in the quality of the test object 384

• Validating whether the test object is complete and works as the stakeholders expect 385

The objectives of testing can vary, depending upon the context, which includes the work product being 386
tested, the test level, and the SDLC being followed. 387

Certified Tester

Foundation Level

v4.0 Page 15 of 70 beta release

© International Software Testing Qualifications Board

1.1.2. Testing and Debugging 388

Testing and debugging are separate activities. Testing can show failures that are caused by defects in the 389
software (dynamic testing) or can directly find defects in the test object (static testing). 390

If dynamic testing finds a failure, debugging is concerned with finding causes of this failure (defects), 391
analyzing these causes, and eliminating them. The typical debugging process in this case involves: 392

• Reproduction of a failure 393

• Diagnosis (finding the cause) 394

• Fixing the cause 395

Subsequent confirmation testing checks whether the fixes resolved the problem. Preferably, confirmation 396
testing is done by the same person who performed the initial test. Subsequent regression testing can also 397
be performed, to check whether the fixes are causing failures in other parts of the test object (see section 398
2.2.3 for more information on confirmation testing and regression testing). 399

If static testing finds a defect, debugging is concerned with eliminating it. There is no need of reproduction 400
or diagnosis, since static testing directly finds defects, not failures (see chapter 3). 401

1.2. Why is Testing Necessary? 402

The testing of components, systems and their associated documentation supports the identification of 403
defects in software. Testing also detects gaps and other deficiencies in the specifications for the software. 404
Hence, testing can help to reduce the risk of failures occurring during operation. When defects are 405
detected and fixed, this contributes to improving the quality of the test object. In addition, software testing 406
may also be required to meet contractual or legal requirements or to comply with regulatory standards. 407

1.2.1. Testing’s Contributions to Success 408

Testing helps in achieving the agreed upon goals within the set scope, time, quality, and budget 409
standards. The success can be considered in terms of: 410

• Product quality (e.g., detecting defects allows to remove them in the debugging process, 411
therefore testing contributes to increase the quality of the system under test) 412

• Process quality (e.g., introducing test automation improves the efficiency of the release process; 413
applying risk-based testing optimizes the testing effort) 414

• Project goals (e.g., using static testing early in the project reduces the software maintenance 415
costs and improves the developers’ effectiveness by reducing time spent for fixing defects) 416

• People skills (e.g., performing code reviews increases code understanding and allows less 417
experienced developers to improve their programming and designing skills) 418

Testing’s contribution to success should not be restricted to the test team activities only. Any stakeholder 419
can use their testing skills to bring the project closer to success. 420

Certified Tester

Foundation Level

v4.0 Page 16 of 70 beta release

© International Software Testing Qualifications Board

1.2.2. Testing and Quality Assurance (QA) 421

While people often use the terms “testing” and “quality assurance” (QA) interchangeably, testing and QA 422
are not the same. Testing is a form of quality control (QC). QA is typically focused on establishing, 423
introducing, monitoring, improving, and adhering to the quality-related processes. When proper processes 424
are carried out correctly, this contributes to defect prevention, and improves confidence that appropriate 425
levels of quality in the work products will be achieved. QA, when applied to software development and 426
software maintenance, should also be applied to software testing, which is part of each of these activities. 427
In addition, the use of root cause analysis to detect the causes of defects, and the application of the 428
findings of retrospective meetings to improve processes, are also important for effective QA. 429

A larger concept, quality management (QM), ties together QA and QC. QM includes all activities that 430
direct and control an organization with regard to quality. QM includes both QA and testing. 431

1.2.3. Root Causes, Errors, Defects, and Failures 432

Human beings make errors (mistakes), which produce defects (faults, bugs), which in turn may result in 433
failures. Humans make mistakes for various reasons, such as time pressure, complexity of code, 434
infrastructure or interactions, or simply because they are tired or lack adequate training. 435

The defects can be in documents, such as a requirements specification or a test script, in source code, or 436
in a supporting artifact, such as a build file. Defects in artifacts produced earlier in the lifecycle, such as 437
the requirements, if undetected, often lead to defective artifacts later in the lifecycle, such as the code. If a 438
defect in code is executed, the system may fail to do what it should do (or do something it shouldn’t), 439
causing a failure. Some defects will always result in a failure if executed, while others will only result in a 440
failure in specific circumstances, and some may never result in a failure. 441

Errors and defects are not the only cause of failures. Failures can also be caused by environmental 442
conditions, such as when radiation or electromagnetic field cause defects in firmware. 443

A root cause is a fundamental reason for the occurrence of a problem. Root cause may be a situation or 444
error that leads to a defect. Root causes are identified through root cause analysis, which is typically 445
performed when a failure occurs, and it is believed that further similar failures can be prevented or their 446
frequency reduced by addressing the root cause, such as by removing it. 447

1.3. Testing Principles 448

A number of testing principles offering general guidelines common to all testing have been suggested 449
over the past 60 years. This syllabus describes seven such principles. 450

1. Testing shows the presence, not the absence of defects. Testing can show that defects are present 451
in the test object but cannot prove that there are no defects (Buxton 1970). Testing reduces the 452
probability of undiscovered defects remaining in the test object, but, even if no defects are found, testing 453
cannot prove test object correctness. 454

2. Exhaustive testing is impossible. Testing everything is not feasible except in trivial cases (Manna 455
1978). Rather than attempting to test exhaustively, test techniques (see chapter 4), test case prioritization 456
(see section 5.1.5), and risk-based testing (see section 5.2), should be used to focus test efforts. 457

3. Early testing saves time and money. Defects that are removed early in the process will not cause 458
subsequent defects in derived work products. The total cost of quality will be reduced since fewer failures 459

Certified Tester

Foundation Level

v4.0 Page 17 of 70 beta release

© International Software Testing Qualifications Board

will occur later in the lifecycle (Boehm 1981). To find defects early, both static testing (see chapter 3) and 460
dynamic test activities (see chapter 4) should be started as early as possible. 461

4. Defects cluster together. A small number of system components usually contain most of the defects 462
discovered or are responsible for most of the operational failures (Enders 1975). This phenomenon is an 463
illustration of the Pareto principle. Predicted defect clusters, and actual defect clusters observed during 464
testing or in operation, are an important input for risk-based testing (see section 5.2). 465

5. Tests wear out. If the same tests are repeated many times, they stop being effective in detecting new 466
defects (Beizer 1990). To overcome this, existing tests and test data may need changing, and new tests 467
may need to be written. However, in some cases, repeating the same tests can have the beneficial 468
outcome, e.g., in automated regression testing (see section 2.2.3). 469

6. Testing is context dependent. There is no single universally applicable approach to testing. Testing is 470
done differently in different contexts (Kaner 2011). 471

7. Absence-of-errors fallacy. It is a fallacy (i.e., a mistaken belief) to expect that software verification will 472
ensure the success of a system. Thoroughly testing all the specified requirements and fixing all the 473
defects found could still produce a system that does not fulfill the users’ needs and expectations, that 474
does not help in achieving the customer’s business goals and that is inferior compared to other competing 475
systems. In addition to verification, validation should also be carried out (Boehm 1981). 476

1.4. Test Activities, Test Work Products and Test Roles 477

Testing is context dependent, but, at a high level, there are common sets of test activities without which 478
testing is less likely to achieve its objectives. These sets of test activities form a test process. The test 479
process can be tailored for a given situation based on various factors. Which test activities are included in 480
this test process, how they are implemented, and when they occur are normally decided as part of the 481
test planning for the specific situation (see chapter 5). 482

The following sections describe general aspects of this test process in terms of test activities and tasks, 483
the impact of context, test work products, traceability between the test basis and test work products, and 484
testing roles. 485

The ISO/IEC/IEEE 29119-2 standard has further information about test processes. 486

1.4.1. Test Activities and Tasks 487

A test process usually consists of the main groups of activities described below. Although many of these 488
activities may appear to follow a logical sequence, they are often implemented iteratively or in parallel. 489
Tailoring of these test activities within the context of the system and the project is usually required. 490

Test planning includes defining the test objectives and the test approach for meeting them within the 491

constraints imposed by the context. Test planning is further explained in section 5.1. 492

Test monitoring and control. Test monitoring involves the on-going checking of all activities and the 493
comparison of actual progress against the test plan. Test control involves taking the actions necessary to 494
meet the objectives of the test plan. Test monitoring and control are further explained in section 5.3. 495

Test analysis includes analyzing the test basis to identify testable features and to define and prioritize 496
associated test conditions, together with the related risks and risk levels (see section 5.2). Test basis and 497
test objects are also evaluated to identify defects they may contain and to assess their testability. Test 498

Certified Tester

Foundation Level

v4.0 Page 18 of 70 beta release

© International Software Testing Qualifications Board

analysis is often supported by the use of test techniques (see chapter 4). Test analysis answers the 499
question “what to test?” in terms of measurable coverage criteria. 500

Test design includes elaborating the test conditions into test cases and other testware (e.g., test 501
charters). This activity often involves the identification of coverage items, which serve as a guide to 502
specify test case inputs. Test techniques (see chapter 4) can be used to support this activity. Test design 503
also includes test data identification, designing the test environment and identifying any other required 504
infrastructure and tools. Test design answers the question “how to test?”. 505

Test implementation includes creating or acquiring the testware necessary for test execution (e.g., test 506
data). Test cases are organized into test procedures. Automated test scripts are created. Test procedures 507
are prioritized and arranged within a test execution schedule for efficient test execution (see section 508
5.1.5). Test environment is built and verified to be set up correctly. 509

Test execution includes running the test procedures in accordance with the test execution schedule. 510
Test execution may be manual or automatic. Test execution can take the form of continuous testing or 511
pair testing sessions. Actual test results are compared with expected results. Anomalies are analyzed to 512
identify their likely causes. Test execution outcome is logged. Defects are reported based on the failures 513
observed (see section 5.5). 514

Test completion activities occur at project milestones (e.g., release, end of iteration, test level 515
completion). Change requests or product backlog items for any unresolved defects are created. Any 516
testware that may be useful in the future is identified and archived or handed over to the appropriate 517
teams. The test environment is shut down to an agreed state. The completed test activities are analyzed 518
to identify lessons learned and identify improvements for future iterations, releases, or projects (see 519
section 2.1.6). A test completion report is created and communicated to stakeholders. 520

1.4.2. Test Process in Context 521

Testing is not performed in isolation. Testing is subservient to the development processes carried out 522
within a specific organization. Testing is also sponsored by stakeholders and its final goal is to help fulfill 523
the stakeholders’ business needs. Therefore, the way the testing is carried out will depend on a number 524
of contextual factors including: 525

• Stakeholders (needs, expectations, requirements, willingness to cooperate, etc.) 526

• Team members (skills, knowledge, level of experience, availability, training needs, etc.) 527

• Business domain (type of software, identified risks, market needs, specific legal regulations, etc.) 528

• Technical factors (product architecture, technology used, etc.) 529

• Project constraints (scope, time, budget, resources, etc.) 530

• Organizational factors (organizational structure, existing policies, practices used, etc.) 531

• SDLC (engineering techniques, development methods, etc.) 532

• Tools (availability, difficulty of use, etc.) 533

These factors will have an impact on many test-related issues, including: test strategy, test techniques 534
used, degree of test automation, required level of test coverage in relation to requirements and identified 535
risks, level of detail of test documentation, reporting etc. 536

Certified Tester

Foundation Level

v4.0 Page 19 of 70 beta release

© International Software Testing Qualifications Board

1.4.3. Test Work Products 537

Test work products are created as outputs from the test activities described in section 1.4.1. There is a 538
significant variation in the work products and their naming across organizations, regarding the way they 539
are organized and managed. The following list of work products is by no means exhaustive. 540

Test planning work products include: test strategy (usually in larger projects), test plan, risk register, 541
and exit criteria (see section 5.1). Risk register and exit criteria are often a part of the test plan. 542

Test monitoring and control work products include: test progress reports (see section 5.3.2), 543
documentation of control directives (see section 5.3) and risk information (see section 5.2). 544

Test analysis work products include: (prioritized) test conditions, acceptance criteria (see section 545
4.5.2), and defect reports regarding defects in the test basis (if not fixed directly). 546

Test design work products include: test cases, coverage items, test data requirements and test 547
environment design. 548

Test implementation work products include: test procedures, automated test scripts, test suites, test 549
data, test execution schedule, and test environment elements. Examples of test environment elements 550
include: stubs, drivers, simulators, and service virtualizations. 551

Test execution work products include: test logs, documentation of the status of individual test cases, 552
defect reports (see section 5.5.1), and documentation about which test objects, test tools, and testware 553
were involved in the testing. 554

Test completion work products include: test completion report (see section 5.3.2), action items for 555
improvement of subsequent projects or iterations, and change requests (e.g., as product backlog items). 556

1.4.4. Traceability between the Test Basis and Test Work Products 557

In order to implement effective test monitoring and control, it is important to establish and maintain 558
traceability throughout the test process between the test basis elements, test work products associated 559
with these elements (e.g., test conditions, risks, test cases), test results, and detected defects. 560

Accurate traceability supports test coverage evaluation, so it is very useful if the test basis has 561
measurable coverage criteria defined. The coverage criteria can function as key performance indicators 562
to drive the activities that demonstrate the achievement of test objectives (see section 1.1.1). For 563
example, by using the traceability from: 564

• Test cases to requirements, the requirements coverage by test cases can be verified 565

• Test case results to risks, the level of residual risk in a test object can be evaluated. 566

In addition to the evaluation of coverage, good traceability allows to determine the impact of changes, 567
facilitates the auditing of testing, and supports the achievement of IT governance criteria. Good 568
traceability also improves the understandability of test progress reports and test completion reports by 569
including the status of test basis elements. This can also make the communication of technical aspects of 570
testing to stakeholders easier, in terms that they can understand. Good traceability provides information 571
used to assess product quality, process capability, and project progress against business goals. 572

Certified Tester

Foundation Level

v4.0 Page 20 of 70 beta release

© International Software Testing Qualifications Board

1.4.5. Roles in Testing 573

In this syllabus, two principal roles in testing are covered: a test management role and a testing role. The 574
activities and tasks assigned to these two roles depend on factors such as the project and product 575
context, the skills of the people in the roles, and the organization. 576

The test management role takes overall responsibility for the test process, test team and leadership of the 577
test activities. The test management tasks mainly concentrate on test planning, test monitoring and 578
control and test completion activities. The testing role takes overall responsibility for the engineering 579
(technical) aspect of testing. The testing tasks mainly concentrate on test analysis, test design, test 580
implementation and test execution activities. 581

The way in which the test management role is carried out varies depending on the context. For example, 582
in Agile software development, some of the test management tasks may be handled by the Agile team. 583
Tasks that span multiple teams or the entire organization may be performed by test managers outside of 584
the development team. 585

Different people may take over these roles at different times. For example, the test management role can 586
be performed by a team leader, by a test manager, by a development manager, etc. It is also possible 587
that one person can take both the testing and test management roles at the same time. 588

1.5. Essential Skills and Good Practices 589

Skill is the ability to do something well that comes from one’s knowledge, practice and aptitude. Good 590
testers should possess some essential skills to do their job efficiently and effectively. Good testers should 591
also be the effective team players and perform testing on different levels of independence. 592

1.5.1. Generic Skills Required for Testing 593

While being generic, the following skills are particularly relevant for testers: 594

• Thoroughness, carefulness, curiosity, attention to details, being methodical (to identify different 595
types of defects, especially the ones that are difficult to find) 596

• Good communication skills, active listening, being a team player (to interact effectively with all 597
stakeholders, to convey information to others, to be understood, to report and discuss defects) 598

• Analytical thinking, critical thinking, creativity (to increase effectiveness of testing) 599

• Technical knowledge (to increase efficiency of testing, e.g., by using test tools) 600

• Knowledge of estimation techniques (to estimate the test effort more accurately) 601

• Domain knowledge (to be able to understand and to communicate with end users) 602

Testers are often the bearers of bad news. It is a common human trait to blame the bearer of bad news. 603
This makes communication skills crucial for testers. Communicating testing results may be perceived as 604
criticism of the product and of its author. Confirmation bias can make it difficult to accept information that 605
disagrees with currently held beliefs. Some people may perceive testing as a destructive activity, even 606
though it contributes greatly to project progress and product quality. To try to improve this view, information 607
about defects and failures should be communicated in a constructive way. 608

Certified Tester

Foundation Level

v4.0 Page 21 of 70 beta release

© International Software Testing Qualifications Board

Defining the right set of test objectives (see section 1.1.1) can have important psychological implications 609
as most people tend to align their plans and behaviors with the set objectives. 610

1.5.2. Whole Team Approach 611

One of the important testing skills is being a team player, having the ability to work effectively in a team 612
context and to contribute positively to the team goal. The whole team approach builds upon this skill. 613

The whole team approach involves everyone with the necessary knowledge and skills to ensure project 614
success by making quality everyone’s responsibility. The team members share the same workspace, as 615
co-location facilitates communication and interaction. The whole team approach improves team 616
dynamics, enhances communication and collaboration within the team, and creates synergy by allowing 617
the various skill sets within the team to be leveraged for the benefit of the project. 618

Testers work closely with other team members to ensure that the desired quality levels are achieved. This 619
includes collaborating with business representatives to help them create suitable acceptance tests and 620
working with developers to agree on the testing strategy and decide on test automation approaches. 621
Testers can thus transfer and extend testing knowledge to other team members and influence the 622
development of the product. 623

Depending on the context, the whole team approach may be not sufficient requiring a higher level of 624
testing independence (e.g., safety-critical systems). 625

1.5.3. Independence of Testing 626

A certain degree of independence makes the tester more effective at finding defects due to differences 627
between the author’s and the tester’s cognitive biases. Independence is not, however, a replacement for 628
familiarity, and developers can efficiently find many defects in their own code. 629

Work products can be tested by its author (no independence), by the author’s peer from the same team 630
(some independence), by the testers external to the author’s team, but within the organization (high 631
independence), or by the testers external to the organization (very high independence). For most 632
projects, it is usually best to carry out testing with multiple levels of independence (e.g., developers 633
performing component and component integration testing, test team performing system and system 634
integration testing, and business representatives performing acceptance testing). 635

The main benefit of test independence is that independent testers are likely to recognize different kinds of 636
failures compared to developers because of their different backgrounds, technical perspectives, and 637
biases. Moreover, an independent tester can verify, challenge, or disprove assumptions made by 638
stakeholders during specification and implementation of the system. 639

However, there are also some drawbacks. Independent testers may be isolated from the development 640
team, which may lead to a lack of collaboration, communication problems, or an adversarial relationship 641
with the development team. Developers may lose a sense of responsibility for quality. Independent 642
testers may be seen as a bottleneck or be blamed for delays in release. 643

Certified Tester

Foundation Level

v4.0 Page 22 of 70 beta release

© International Software Testing Qualifications Board

2. Testing Throughout the Software Development Lifecycles 644

– 130 minutes 645

Keywords 646

acceptance testing, component integration testing, component testing, confirmation testing, functional 647
testing, integration testing, maintenance testing, non-functional testing, operational acceptance testing, 648
regression testing, shift-left, system integration testing, system testing, test basis, test environment, test 649
level, test object, test type, user acceptance testing, white-box testing 650

 651

Learning Objectives for Chapter 2: 652

2.1 Testing in Context of Software Development Lifecycles 653

FL-2.1.1 (K2) Explain the impact of the chosen software development lifecycle on testing 654

FL-2.1.2 (K1) Remember good testing practices regardless of the chosen software development 655
model 656

FL-2.1.3 (K1) Recall the examples of test-first approaches to development 657

FL-2.1.4 (K2) Summarize how DevOps might have an impact on testing 658

FL-2.1.5 (K2) Explain the shift-left approach 659

FL-2.1.6 (K2) Explain how retrospectives can be used as a mechanism for process improvement 660

2.2 Test Levels and Test Types 661

FL-2.2.1 (K2) Distinguish the different test levels 662

FL-2.2.2 (K2) Compare and contrast functional, non-functional and white-box testing 663

FL-2.2.3 (K2) Distinguish confirmation testing from regression testing 664

2.3 Maintenance Testing 665

FL-2.3.1 (K2) Summarize maintenance testing and its triggers 666

Certified Tester

Foundation Level

v4.0 Page 23 of 70 beta release

© International Software Testing Qualifications Board

2.1. Testing in Context of Software Development Lifecycles 667

A software development lifecycle (SDLC) model is an abstract, high-level representation of the software 668
development process. A SDLC model defines how different development phases and types of activities 669
performed within this process relate to each other, both logically and chronologically. Examples of SDLC 670
models include: sequential models (e.g., waterfall model, V-model), iterative models (e.g., spiral model), 671
and incremental models. 672

Software development processes can be also described by more detailed models, e.g., various software 673
development methods and agile practices. Examples include: acceptance test-driven development 674
(ATDD), behavior-driven development (BDD), domain-driven design (DDD), extreme programming (XP), 675
feature-driven development (FDD), Kanban, Lean IT, Scrum, test-driven development (TDD). 676

2.1.1. Impact of Software Development Lifecycle on Testing 677

Testing must be integrated into the software lifecycle to succeed. The choice of SDLC impacts on: 678

• Scope and timing of test activities (e.g., test levels and test types) 679

• Level of detail of test documentation 680

• Choice of test techniques and test practices 681

• Extent of test automation 682

In sequential models, in initial phases testers typically participate in requirement reviews and test design. 683
The product in the executable form is usually delivered in the late phases, so typically dynamic testing 684
cannot be performed early in the lifecycle. 685

In some iterative and incremental models, it is assumed that each iteration ends up with a working 686
product increment. This implies that in each iteration testing, both static and dynamic, may be performed 687
at all test levels. Frequent delivery of increments requires fast feedback and extensive regression testing. 688

Agile development methods assume that change may occur throughout the project. Therefore, lightweight 689
work product documentation and extensive test automation to make regression testing easier to handle 690
are favored in Agile projects. Also, most of the manual testing tends to be done using experience-based 691
techniques (see Section 4.4) that do not require extensive prior planning. 692

2.1.2. Software Development Lifecycles and Good Testing Practices 693

Good testing practices independent of the chosen SDLC model, include the following: 694

• For every software development activity, there is a corresponding test activity, so that the quality 695
control can cover all the aspects 696

• Each test level (see chapter 2.2.1) has test objectives specific to the appropriate SDLC phase or 697
type of activities, so that testing can check the test object to the fullest extent possible 698

• Test analysis and design for a given test level begin during the corresponding development 699
phase of the SDLC, so that testing can adhere to the early testing principle (see section 1.3) 700

• Testers are involved in reviewing work products as soon as drafts of these documents are 701
available, so that the shift-left approach is followed (see section 2.1.5) 702

Certified Tester

Foundation Level

v4.0 Page 24 of 70 beta release

© International Software Testing Qualifications Board

2.1.3. Testing as a Driver for Software Development 703

Test-driven development (TDD), acceptance test-driven development (ATDD), and behavior-driven 704
development (BDD) are similar development approaches, where tests are defined as a means of directing 705
development. Each of these approaches implements the testing principle of “Early testing saves time and 706
money” (see section 1.3) and follows a shift-left approach (see section 2.1.5), since the tests are defined 707
before the code is written. They support an iterative approach to development. Those approaches are 708
characterized as follows: 709

Test-Driven Development (TDD): 710

• TDD directs the coding through test cases (instead of extensive software design) 711

• Tests are written first, then the code is written to satisfy the tests, and then the tests and code are 712
refactored 713

Acceptance Test-Driven Development (see section 4.5.3): 714

• Derive tests from acceptance criteria as part of the design process (Gärtner 2011) 715

• Tests are written even before the part of the application is developed to satisfy the tests 716

Behavior-Driven Development (BDD): 717

• Express the desired behavior of an application by test cases written in a simple form of natural 718
language, that is easy to understand by stakeholders – usually using the given/when/then format. 719
(Chelimsky 2010) 720

• Test cases are then compiled and translated in (automatically) executable tests 721

For all the above approaches, tests may persist as automated tests to ensure the code quality in future 722
adaptions / refactoring. 723

2.1.4. DevOps and Testing 724

DevOps is an organizational transformation aiming to create synergy by getting development, testing and 725

operations to work together to achieve a set of common goals. DevOps requires a cultural shift within an 726

organization to bridge the gaps between development, testing and operations while treating their 727

functions with equal value. DevOps promotes team autonomy, fast feedback, integrated toolchains, and 728

technical practices like continuous integration (CI) or continuous delivery. This allows the teams to build, 729

test and release high-quality code faster through a DevOps delivery pipeline (Kim 2016). 730

From the testing perspective, the benefits of DevOps are: 731

• Fast feedback on the code quality, and whether changes adversely affect existing code 732

• CI creates a shift-left in testing (see section 2.1.5) by encouraging developers to submit high 733

quality code accompanied by component tests 734

• DevOps facilitates establishing stable test environments 735

• Automation through a delivery pipeline reduces the need for repetitive manual testing 736

• The risk of regression is minimized due to the scale and range of automated regression tests 737

Certified Tester

Foundation Level

v4.0 Page 25 of 70 beta release

© International Software Testing Qualifications Board

DevOps is not without its risks and challenges, which include: 738

• The DevOps delivery pipeline must be defined and established 739

• CI tools have to be introduced and maintained 740

• Test automation requires additional resources and may be difficult to establish and maintain 741

2.1.5. Shift-Left Approach 742

The testing principle “Early testing saves time and money” (see section 1.3) is sometimes referred to as 743
“shift-left” because it is an approach where testing is performed earlier in the life cycle. Shift-left normally 744
suggests that testing should be done earlier (e.g., not waiting for code to be implemented or for 745
components to be integrated), but it does not mean that testing later in the life cycle should be neglected. 746

There are some good practices that illustrate how to achieve a “shift-left” in testing, which include: 747

• Review the specification from the perspective of testing. These specification review activities 748
often find potential defects, such as ambiguities, incompleteness, and inconsistencies 749

• Write tests before the code is written and have the code run against a test harness during 750
implementation 751

• Perform CI and continuous delivery as it comes with fast feedback and automated component 752
tests to accompany source code when it is submitted to the code repository 753

• Perform static analysis of source code prior to dynamic testing, or as part of an automated 754
process 755

• Perform non-functional testing at the component testing level, where possible. This is a form of 756
shift-left as these non-functional test types tend to be performed later in the SDLC when a 757
complete system and a representative test environment are available. 758

A shift-left approach might result in extra training/effort/costs earlier in the process. 759

2.1.6. Retrospectives and Process Improvement 760

Retrospectives (also known as “lessons learned meetings” or evaluations) might be held when needed, 761
often at the end of a project, release milestone or iteration. In these meetings the participants (not only 762
testers, but also e.g., developers, architects, product owner, business analysts) discuss: 763

• what was successful, 764

• what was not successful and could be improved, and 765

• how to incorporate the improvements and retain the successes in the future. 766

The results should be recorded and might be part of e.g., the test completion report (see section 5.3.2). It 767
is important that follow-up activities occur. Retrospectives are critical to the successful self-organization of 768
the development teams and the continuous improvement. 769

Typical benefits for testing include: 770

• Increased test effectiveness / productivity 771

Certified Tester

Foundation Level

v4.0 Page 26 of 70 beta release

© International Software Testing Qualifications Board

• Increased test case quality 772

• Team satisfaction 773

• Improved requirements quality 774

• Better cooperation of development and testing 775

The timing and organization of the retrospectives depend on the particular SDLC model being followed. 776

2.2. Test Levels and Test Types 777

Test levels are groups of test activities that are organized and managed together. Each test level is an 778
instance of the test process, performed in relation to software at a given stage of development, from 779
individual components to complete systems or, where applicable, systems of systems. 780

Test levels are related to other activities within the SDLC. In sequential SDLC models, the test levels are 781
often defined such that the exit criteria of one level are part of the entry criteria for the next level. In some 782
iterative models, this rule may not apply. Development activities may span through multiple test levels. 783
Test levels may overlap. 784

Test types are groups of test activities related to specific characteristics and those test activities can be 785
performed at every test level. 786

2.2.1. Test Levels 787

In this syllabus, the following five test levels are described. 788

• Component testing (also known as unit testing) focuses on testing components in isolation. It 789

often requires specific support, such as test harnesses or unit testing frameworks. Component 790

testing is normally performed by developers in their development environments. 791

• Component integration testing (also known as unit integration testing) focuses on testing the 792

interfaces and interactions between integrated components. Component integration testing is 793

heavily dependent on the integration strategy. 794

• System testing focuses on the overall behavior and capabilities of an entire system or product, 795

often including functional testing of end-to-end tasks and the non-functional testing of quality 796

characteristics. For some non-functional quality characteristics, it is preferred to test them on a 797

complete system in a representative test environment (e.g., performance efficiency, security or 798

usability). Using simulations is also possible. System testing is normally performed by the 799

independent test team and relies heavily on specifications. 800

• System integration testing focuses on testing the interfaces and interactions between 801

integrated systems or external services. System integration testing requires suitable test 802

environments preferably similar to the operational environment. 803

• Acceptance testing focuses on validation and on demonstrating readiness for deployment, 804

which means that the system fulfills the user’s business needs. Ideally, acceptance testing should 805

be performed by the end users. The main forms of acceptance testing are: user acceptance 806

Certified Tester

Foundation Level

v4.0 Page 27 of 70 beta release

© International Software Testing Qualifications Board

testing (UAT), operational acceptance testing (OAT), contractual/regulatory acceptance testing, 807

alpha and beta testing. 808

Test levels are characterized by the following non-exhaustive list of attributes: 809

• Test object 810

• Test objectives 811

• Test basis 812

• Defects and failures 813

• Approach and responsibilities 814

2.2.2. Test Types 815

The following test types are addressed: 816

Functional testing involves tests that evaluate the functions that a component or system should perform. 817
Functional requirements may be described in work products such as requirements specifications, user 818
stories, use cases, functional specifications, or they may be undocumented. The functions are “what” the 819
test object should do. 820

Non-functional testing evaluates attributes other than functional characteristics of systems and 821
software. The ISO/IEC 25010 standard provides the following classification of the non-functional software 822
product quality characteristics: 823

• Performance efficiency 824

• Compatibility 825

• Usability 826

• Reliability 827

• Security 828

• Maintainability 829

• Portability 830

Non-functional testing is the testing of “how well the system behaves”. Non-functional testing can and 831
often should start as early as possible. The late discovery of non-functional defects can pose a serious 832
threat to the success of a project. Non-functional testing sometimes needs a very specific test 833
environment, such as a usability lab for usability testing. 834

Similar to functional testing, different test techniques can be used to derive test conditions and test cases 835
for non-functional testing. 836

White-box testing derives tests from the system's internal structure or implementation, contrary to 837
functional and non-functional testing, where tests are derived from the requirements specifications. 838
Internal structure may include code, architecture, work flows, and data flows within the system (see 839
section 4.3). White-box test design, implementation and execution requires special skills or knowledge, 840
such as the process of building code, how data is stored, and how to use coverage tools and to correctly 841
interpret their results. 842

Certified Tester

Foundation Level

v4.0 Page 28 of 70 beta release

© International Software Testing Qualifications Board

All the three above mentioned test types can be applied to all test levels, although the focus will be 843
different at each level. Every test type can also be applied using static testing. The testing quadrants 844
show the test types and test levels from different perspectives (see section 5.1.7). 845

2.2.3. Confirmation Testing and Regression Testing 846

Changes are typically made to a component or system to either enhance it by adding a new feature or to 847
fix it by removing a defect. Testing should confirm that the changes have correctly implemented the 848
functionality or corrected the defect. 849

Confirmation testing is to confirm that the original defect has been successfully fixed. Depending on the 850

risk, one can test the fixed version of the software in several ways, including: 851

• with all the test cases that previously have failed due to the defect, or 852

• adding new tests to cover any changes that were needed to fix the defect 853

However, when time or money is short, confirmation testing might be restricted to simply exercising the 854
steps that should reproduce the failure caused by the defect and checking that the failure does not occur. 855

Regression testing is to confirm that no adverse consequences have been caused by a change, 856
including a fix that has already been confirmation tested. These adverse consequences could affect the 857
same component where the change was made, other components in the same system, or even other 858
connected systems. Regression testing may not be restricted to the test object itself but can also be 859
related to the environment. 860

Confirmation and regression testing are needed on all test levels if defects are fixed and changes are 861

made on these test levels. 862

Regression test suites are run many times and generally evolve with each iteration or release, so 863
regression testing is a strong candidate for automation. Automation of these tests should start early in the 864
project (see chapter 6). Where automated builds and CI are used, such as in DevOps (see section 2.1.4), 865
it is good practice to also include automated regression testing. Depending on the situation, this may 866
include regression tests on different levels. 867

2.3. Maintenance Testing 868

Testing the changes to a system in production includes both evaluating the success of the change 869
implementation and the checking for possible regressions in parts of the system that remain unchanged 870
(which is usually most of the system). Maintenance can involve planned releases / deployments and 871
unplanned releases / deployments (hot fixes). 872

The scope of maintenance testing typically depends on: 873

• The degree of risk of the change 874

• The size of the existing system 875

• The size of the change 876

The triggers for maintenance can be classified as follows: 877

Certified Tester

Foundation Level

v4.0 Page 29 of 70 beta release

© International Software Testing Qualifications Board

• Modifications, such as planned enhancements (i.e., release-based), corrective changes or hot 878

fixes 879

• Upgrades or migrations of the operational environment, such as from one platform to another, 880

which can require tests associated with the new environment as well as of the changed software, 881

or tests of data conversion when data from another application is migrated into the system being 882

maintained 883

• Retirement, such as when an application reaches the end of its life. When a system is retired, this 884

can require testing of data archiving if long data-retention periods are required. Testing of 885

restoring and retrieving procedures after archiving may also be needed. 886

Certified Tester

Foundation Level

v4.0 Page 30 of 70 beta release

© International Software Testing Qualifications Board

3. Static Testing – 80 minutes 887

Keywords 888

anomaly, dynamic testing, formal review, informal review, inspection, review, static analysis, static testing, 889
technical review, walkthrough 890

 891

Learning Objectives for Chapter 3: 892

3.1 Static Testing Basics 893

FL-3.1.1 (K1) Recognize types of products that can be examined by the different static testing 894
techniques 895

FL-3.1.2 (K2) Explain the value of static testing 896

FL-3.1.3 (K2) Compare and contrast static and dynamic testing 897

3.2 Feedback and Review Process 898

FL-3.2.1 (K1) Identify the benefits of early and frequent feedback 899

FL-3.2.2 (K2) Summarize the activities of the review process 900

FL-3.2.3 (K1) Recognize the different roles and responsibilities in a review 901

FL-3.2.4 (K2) Compare and contrast the different review types 902

FL-3.2.5 (K1) Recall the factors that contribute to a successful review 903

Certified Tester

Foundation Level

v4.0 Page 31 of 70 beta release

© International Software Testing Qualifications Board

3.1. Static Testing Basics 904

In contrast to dynamic testing, static testing does not require the execution of the software being tested. 905
Processes, code, system architecture or other work products are evaluated through manual examination 906
(e.g., reviews) or with the help of a tool (e.g., static analysis). Goals include improving quality, detecting 907
defects and assessing characteristics like readability, completeness, correctness, testability or 908
consistency. Static testing can therefore be applied for both verification and validation. 909

Testers, business representatives and developers work together during example mappings, collaborative 910
user story writing and backlog refinement sessions to ensure user stories and related work products meet 911
certain criteria, e.g., the Definition of Ready (see section 5.1.3). Review techniques can be applied to 912
ensure user stories are complete and understandable and include testable acceptance criteria. By asking 913
the right questions, testers explore, challenge and help improve the proposed stories. 914

Static analysis (as part of static testing) can identify problems prior to dynamic testing while requiring less 915
effort, as no test cases are required, and it is typically performed using tools. Static analysis is often 916
incorporated into continuous integration (CI) frameworks (see section 2.1.4). While largely used to detect 917
specific code defects, static analysis is also used to evaluate maintainability and security. 918

3.1.1. Work Products Examinable by Static Testing 919

Almost any work product can be examined using static testing. Examples include requirement 920
specification documents, source code, test plans, test cases, test procedures, test charters, project 921
documentation, contracts, and models. 922

Any document that can be read and understood can be the subject of a review. However, for static 923
analysis, work products need a structure against which they can be checked (e.g., models, code, text with 924
a formal syntax). Work products that are not appropriate for static testing include those that are difficult to 925
interpret by human beings and that cannot be analyzed by tools (e.g., 3rd party executable code). 926

3.1.2. Value of Static Testing 927

Static testing can detect defects in the earliest phases of the SDLC, fulfilling the principle that “Early 928
testing saves time and money” (see section 1.3). It can also identify defects which cannot be detected by 929
dynamic testing (e.g., unreachable code, design patterns not followed, defects in non-executable work 930
products). 931

Static testing provides the ability to evaluate the quality of, and to build confidence in the work product 932
under review. Stakeholders can validate whether the documented requirements describe their actual 933
needs, while verifying them. Since static testing can be performed early in SDLC, a shared understanding 934
is created among those stakeholders involved in static testing. This shared understanding will also 935
improve the communication. For this reason, it is recommended to involve stakeholders from every 936
perspective. 937

Even though reviews can be expensive to implement, the overall project costs are usually much lower 938
than when no reviews are performed because less time and effort needs to be spent on fixing defects 939
later in the project. Participants in the review process also benefit from an improved shared 940
understanding of the product under review. 941

Code defects can be detected and removed using static analysis at a higher rate than dynamic testing, 942
usually resulting in both fewer defects and lower overall development effort. 943

Certified Tester

Foundation Level

v4.0 Page 32 of 70 beta release

© International Software Testing Qualifications Board

3.1.3. Differences between Static and Dynamic Testing 944

Static and dynamic testing practices complement each other. They have similar objectives, such as 945
detecting defects in work products (see section 1.1.1), but there are also some differences, such as: 946

• Static testing can find different types of defects than dynamic testing 947

• Static testing finds defects directly, while dynamic testing causes failures from which the associated 948
defects are determined through subsequent analysis 949

• Static testing may more easily detect defects that lay on paths through the code that are rarely 950
executed or hard to reach using dynamic testing 951

• Static testing can be applied to non-executable work products, while dynamic testing is only 952
applicable to executable work products 953

• Dynamic testing can be used to measure characteristics (e.g., performance efficiency) that are 954
dependent on executing code 955

Typical defects that are easier and/or cheaper to find through static testing include: 956

• Defects in requirements (e.g., inconsistencies, ambiguities, contradictions, omissions, inaccuracies, 957
duplications) 958

• Design defects (e.g., inefficient database structures, high coupling, low cohesion, poor 959
modularization) 960

• Specific types of coding defects (e.g., variables with undefined values, undeclared variables, 961
unreachable or duplicated code, excessive code complexity) 962

• Deviations from standards (e.g., lack of adherence to naming conventions in coding standards) 963

• Incorrect interface specifications (e.g., mismatched number, type or order of parameters) 964

• Specific types of security vulnerabilities (e.g., susceptibility to buffer overflows) 965

• Gaps or inaccuracies in test basis coverage (e.g., missing tests for an acceptance criterion) 966

3.2. Feedback and Review Process 967

3.2.1. Benefits of Early and Frequent Customer Feedback 968

Early and frequent feedback allows for the early communication of potential quality problems. If there is 969
little stakeholder involvement during the SDLC, the product being developed might not meet the 970
stakeholder’s original, or current, vision. A failure to deliver what the stakeholder wants can result in 971
costly rework, missed deadlines, blame games, and might even lead to complete project failure. 972

Frequent stakeholder feedback throughout the SDLC can prevent misunderstandings about requirements 973
and ensure that changes to requirements are understood and implemented earlier. This helps the 974
development team to improve their understanding of what they are building. It allows them to focus on 975
those features that deliver the most value to the stakeholders and that have the most positive impact on 976
agreed risks. 977

Certified Tester

Foundation Level

v4.0 Page 33 of 70 beta release

© International Software Testing Qualifications Board

3.2.2. Review Process Activities 978

The ISO/IEC 20246 standard defines a generic review process that provides a structured but flexible 979
framework from which a specific review process may be tailored for a particular situation. If the required 980
review is more formal, then more of the tasks described for the different activities will be needed. 981

The size of many work products makes them too large to be covered by a single review. In such cases, 982
the review process is typically applied multiple times to the individual parts that make up the work 983
product. 984

The activities in the review process are: 985

Planning. During the planning phase, the boundaries of the review are determined by answering the 986

who, what, where, when and why questions. The review types, review techniques, quality characteristics 987

to be evaluated, and standards to be followed are selected to answer the how question. 988

Review initiation. During review initiation, the goal is to make sure that everyone and everything 989
involved is prepared to start the actual review. This includes making sure that every participant has 990
access to the work product under review, understands their role and responsibilities and receives 991
everything needed to perform the review. 992

Individual review. Every reviewer performs an individual review to assess the quality of the work product 993
under review, and to identify anomalies by applying one or more review techniques (e.g., checklist-based 994
reviewing, scenario-based reviewing). The ISO/IEC 20246 standard provides more depth on different 995
review techniques. The reviewers log all their identified anomalies, recommendations, and questions. 996

Communication and analysis. Since the anomalies identified during a review are not necessarily 997
defects, all these anomalies need to be analyzed and discussed. For every anomaly, the decision should 998
be made on their status, ownership and required actions. This is typically done during a review meeting in 999
which also a decision is made regarding the quality level of the work product under review and how the 1000
required actions will be followed-up. This follow-up may include another review. 1001

Fixing and reporting. For every accepted anomaly, a defect log should be created so that corrective 1002
actions can be followed-up. Once the exit criteria are reached, the work products can be accepted. All 1003
review results are reported. 1004

3.2.3. Roles and Responsibilities in Reviews 1005

Reviews involve various stakeholders, who may take on several roles. The principal roles and their 1006
responsibilities are: 1007

• Manager – decides what is to be reviewed and provides resources, such as staff and time for the 1008
review 1009

• Author – creates and fixes the work product under review 1010

• Facilitator (also known as the moderator) – ensures the effective running of review meetings, 1011
including mediation, time management, and the setting up a safe review environment 1012

• Secretary (also known as scribe or recorder) – collates anomalies from reviewers and records review 1013
information, such as decisions and new anomalies found during the review meeting. The author 1014
should not take the role of secretary to avoid biases 1015

Certified Tester

Foundation Level

v4.0 Page 34 of 70 beta release

© International Software Testing Qualifications Board

• Reviewer – performs review. A reviewer may be someone working on the project, a subject matter 1016
expert, or any other stakeholder 1017

• Review leader – takes overall responsibility for the review such as deciding who will be involved, and 1018
organizing when and where the review will take place 1019

Other, more detailed roles are possible, as described in the ISO/IEC 20246 standard 1020

3.2.4. Review Types 1021

There exist many review types at various levels of formality, ranging from informal reviews to formal 1022
reviews. The required level of formality depends on factors such as the SDLC being followed, the maturity 1023
of the development process, the criticality and complexity of the work product being reviewed, any legal 1024
or regulatory requirements, and the need for an audit trail. 1025

Selecting the right review type is key to achieving the required review objectives. The selection is not only 1026
based on the objectives, but also on factors such as the project needs, available resources, work product 1027
type and risks, business domain, and company culture. 1028

Informal review (e.g., pair review). Informal reviews do not follow a defined process and have no formal 1029
documented output. The main objective is detecting potential anomalies. 1030

Walkthrough. A walkthrough, which is led by the author, can serve many objectives, like evaluating 1031
quality and building confidence in the work product, educating reviewers, gaining consensus, generating 1032
new ideas, motivating and enabling authors to improve and detecting potential defects. Reviewers might 1033
do an individual review before the walkthrough, but this is not required. 1034

Technical Review. The objectives of a technical review, performed by technically qualified reviewers, are 1035
to gain consensus and make decisions regarding a technical problem, but also to detect potential defects, 1036
evaluate quality and build confidence in the work product, generate new ideas, motivate and enable 1037
authors to improve. 1038

Inspection. As inspections are the most formal type of review, they follow the complete generic process 1039
as defined in section 3.2.2. The main objective is maximum defect yield. Other objectives are to detect 1040
potential defects, evaluate quality, build confidence in the work product and to motivate and enable 1041
authors to improve. Metrics are collected and used to improve the entire software development process, 1042
including the inspection process. In inspections, the author cannot act as the review leader, reader or 1043
recorder/scribe. 1044

3.2.5. Success Factors for Reviews 1045

There are several factors that determine the success of reviews, which include: 1046

Organizational success factors 1047

• Define clear objectives which can be used as measurable exit criteria. Evaluation of participants is 1048
never a good objective 1049

• Choose the appropriate review type for achieving the objectives, matching the type of work product 1050
and the review participants 1051

• Split large work products in small parts to make the required effort less intense 1052

Certified Tester

Foundation Level

v4.0 Page 35 of 70 beta release

© International Software Testing Qualifications Board

• Provide feedback from reviews and stakeholders to authors so they can improve the product and their 1053
activities (see section 3.2.1) 1054

• Provide adequate time to participants to prepare for the review 1055

• Management should support the review process 1056

• Make reviews part of the organization culture, promoting learning and process improvement 1057

People-related success factors 1058

• Select the right participants for the review, representing different perspectives, including testers 1059

• Participants should dedicate adequate time for the review and pay attention to detail 1060

• Review meetings should be facilitated, not to waste anyone’s time 1061

• Adequate training should be provided 1062

See (Gilb 1993, Wiegers 2001) for more information on software reviews. 1063

Certified Tester

Foundation Level

v4.0 Page 36 of 70 beta release

© International Software Testing Qualifications Board

4. Test Analysis and Design – 390 minutes 1064

Keywords 1065

acceptance criteria, acceptance test-driven development, black-box test technique, boundary value 1066
analysis, branch coverage, checklist-based testing, collaboration-based test approach, coverage, 1067
coverage item, decision table testing, equivalence partitioning, error guessing, experience-based test 1068
technique, exploratory testing, state transition testing, statement coverage, test technique, white-box test 1069
technique 1070

 1071

Learning Objectives for Chapter 4: 1072

4.1 Test Techniques Overview 1073

FL-4.1.1 (K2) Distinguish black-box, white-box and experience-based test techniques 1074

4.2 Black-box Test Techniques 1075

FL-4.2.1 (K3) Use equivalence partitioning to derive test cases 1076

FL-4.2.2 (K3) Use boundary value analysis to derive test cases 1077

FL-4.2.3 (K3) Use decision table testing to derive test cases 1078

FL-4.2.4 (K3) Use state transition testing to derive test cases 1079

4.3 White-box Test Techniques 1080

FL-4.3.1 (K2) Explain statement testing 1081

FL-4.3.2 (K2) Explain branch testing 1082

FL-4.3.3 (K2) Explain the value of white-box testing 1083

4.4 Experience-based Test Techniques 1084

FL-4.4.1 (K2) Explain error guessing 1085

FL-4.4.2 (K2) Explain exploratory testing 1086

FL-4.4.3 (K2) Explain checklist-based testing 1087

4.5. Collaboration-based Test Approaches 1088

FL-4.5.1 (K2) Explain how to write user stories in collaboration with developers and business 1089
representatives 1090

FL-4.5.2 (K2) Classify the different options for writing acceptance criteria 1091

FL-4.5.3 (K3) Use acceptance test-driven development (ATDD) to derive test cases 1092

Certified Tester

Foundation Level

v4.0 Page 37 of 70 beta release

© International Software Testing Qualifications Board

4.1. Test Techniques Overview 1093

Test techniques support the tester in test analysis (what to test) and in test design (how to test). Test 1094
techniques help to develop a relatively small, but good enough, set of test cases in a systematic way. 1095
Test techniques also help the tester to define test conditions, identify coverage item, and identify test data 1096
during the test analysis and design. Further information on test techniques and their corresponding 1097
measures can be found in the ISO/IEC/IEEE 29119-4 standard, and in (Beizer 1990, Craig 2002, 1098
Copeland 2004, Koomen 2006, Jorgensen 2014, Ammann 2016, Forgács 2019). 1099

In this syllabus, test techniques are classified as black-box, white-box, or experience-based. 1100

Black-box test techniques (also known as specification-based techniques) are based on an analysis of 1101
the specified behavior of the test object without reference to its internal structure. Hence, the test cases 1102
are independent of how the software is implemented and so if the implementation changes, but the 1103
required behavior stays the same, then the test cases are still useful. 1104

White-box test techniques (also known as structure-based techniques) are based on an analysis of the 1105
internal structure and processing within the test object. As the test cases are dependent on how the 1106
software is designed, they can only be created after the design or implementation of the test object. 1107

Experience-based test techniques leverage the knowledge and experience of testers for the design 1108
and implementation of test cases. Effectiveness of these techniques heavily depends on the tester’s 1109
skills. Experience-based test techniques can detect defects that may be missed using the black-box and 1110
white-box test techniques. Hence, experience-based techniques are complementary to the black-box and 1111
white-box test techniques. 1112

4.2. Black-Box Test Techniques 1113

Commonly used black-box test techniques discussed in the following sections are: 1114

• Equivalence Partitioning 1115

• Boundary Value Analysis 1116

• Decision Table Testing 1117

• State Transition Testing 1118

4.2.1. Equivalence Partitioning 1119

Equivalence Partitioning (EP) divides data into partitions (known as equivalence partitions) based on the 1120
expectation that all the elements of a given partition are to be processed in the same way by the test 1121
object. The theory behind this technique is that if a test case testing one value from an equivalence 1122
partition detects a defect, this defect should also be detected by test cases testing any other value from 1123
the same partition. Therefore, only one test for each partition is sufficient. 1124

Equivalence partitions can be identified for any data element related to the test object, including inputs, 1125
outputs, configuration items, internal values, time-related values, and interface parameters. The partitions 1126
may be continuous or discrete, ordered or unordered, finite or infinite. 1127

For simple test objects, EP can be easy, but in practice, understanding how the test object will treat 1128
different values is often complicated. Therefore, partitioning should be done with care. 1129

Certified Tester

Foundation Level

v4.0 Page 38 of 70 beta release

© International Software Testing Qualifications Board

A partition containing valid values is called a valid partition. A partition containing invalid values is called 1130
an invalid partition. The definitions of valid and invalid values may vary among teams and organizations. 1131
For example, valid values may be interpreted as those that should be processed by the test object or as 1132
those for which the specification defines their processing. Invalid values may be interpreted as those that 1133
should be ignored or rejected by the test object or as those for which no processing is defined in the test 1134
object specification. 1135

In EP, the coverage items are the equivalence partitions. To achieve 100% coverage with this technique, 1136
test cases must exercise all identified partitions (including invalid partitions) by covering each partition at 1137
least once. Coverage is measured as the number of partitions exercised by at least one value, divided by 1138
the total number of identified partitions, normally expressed as a percentage. 1139

Many test objects include multiple sets of partitions (e.g., test objects with more than one input 1140
parameter), which means that each test case will cover partitions from different sets of partitions. The 1141
simplest coverage criterion in the case of multiple sets of partitions is called Each Choice coverage. Each 1142
Choice coverage requires test cases to exercise each equivalence partition at least once. Each Choice 1143
coverage does not take into account combinations of partitions. 1144

4.2.2. Boundary Value Analysis 1145

Boundary Value Analysis (BVA) is a technique based on exercising the boundaries of equivalence 1146
partitions. Hence, BVA can be used for ordered partitions only. The minimum and maximum values of a 1147
partition are its boundary values. In the case of BVA, if two elements belong to the same partition, all 1148
elements between them must also belong to that partition. 1149

BVA focuses on the boundary values of the partitions because developers are more prone to making 1150
mistakes with these boundary values. Typical boundary defects found by BVA are where implemented 1151
boundaries are displaced to positions above or below their intended positions or are omitted altogether. 1152

In this syllabus, two versions of the BVA are described: 2-value and 3-value BVA. They differ in terms of 1153
coverage items per boundary that need to be exercised to achieve 100% coverage. 1154

In 2-value BVA (Craig 2002, Myers 2011), for each boundary value there are two coverage items: this 1155
boundary value and its closest neighbor belonging to the adjacent partition. To achieve 100% coverage 1156
with 2-value BVA, test cases must exercise all coverage items, i.e., all identified boundary values. 1157
Coverage is measured as the number of boundary values exercised, divided by the total number of 1158
identified boundary values, normally represented as a percentage. 1159

In 3-value BVA (Koomen 2006, O’Regan 2019), for each boundary value there are three coverage items: 1160
this boundary value and both its neighbors. Therefore, in 3-value BVA some of the coverage items may 1161
not be boundary values. To achieve 100% coverage with 3-value BVA, test cases must exercise all 1162
coverage items, i.e., identified boundary values and their neighbors. Coverage is measured as the 1163
number of boundary values and their neighbors exercised, divided by the total number of identified 1164
boundary values and their neighbors, normally represented as a percentage. 1165

3-value BVA is more rigorous than 2-value BVA as it may detect defects overlooked by 2-value BVA. For 1166
example, if the decision “if (x ≤ 10) …” is incorrectly implemented as “if (x = 10) …”, no test data derived 1167
from the 2-value BVA (x = 10, x = 11) can detect the defect. However, x = 9, derived from the 3-value 1168
BVA, is likely to detect it. 1169

Certified Tester

Foundation Level

v4.0 Page 39 of 70 beta release

© International Software Testing Qualifications Board

4.2.3. Decision Table Testing 1170

Decision tables are used for testing the implementation of system requirements that specify how different 1171
combinations of conditions result in different outcomes. Decision tables are an effective way of recording 1172
complex logic, such as business rules. 1173

When creating decision tables, the conditions and the resulting actions of the system are defined. These 1174
form the rows of the table. Each column corresponds to a decision rule that defines a unique combination 1175
of conditions, along with the associated actions. In limited-entry decision tables all the values of the 1176
conditions and actions (except for irrelevant or infeasible ones; see below) are shown as Boolean values 1177
(true or false). Alternatively, in extended-entry decision tables some or all the conditions and actions may 1178
also take on multiple values (e.g., ranges of numbers, equivalence classes, discrete values). 1179

The notation for conditions is as follows. “T” (true) means that the condition is satisfied. “F” (false) means 1180
that the condition is not satisfied. “–” means that the value of the condition is irrelevant for the action 1181
outcome. “N/A” means that the condition is infeasible for a given rule. For actions, “T” means that the 1182
action should occur. “N” means that the action should not occur. Other notations may also be used. 1183

A full decision table has enough columns to cover every combination of conditions. The table can be 1184
simplified by deleting columns containing infeasible combinations of conditions. The table can also be 1185
minimized by merging columns, in which some conditions do not affect the outcome, into a single column. 1186
Decision table minimization algorithm is out of scope of this syllabus. 1187

In decision table testing, the coverage items are the columns containing feasible combinations of 1188
conditions. To achieve 100% coverage with this technique, test cases must exercise all these columns. 1189
Coverage is measured as the number of columns exercised, divided by the total number of feasible 1190
columns, normally represented as a percentage. 1191

The strength of decision table testing is that it provides a systematic approach to identifying all the 1192
combinations of conditions, some of which might otherwise be overlooked. It also helps in finding any 1193
gaps or contradictions in the requirements. In the case of many conditions, exercising all the rules may be 1194
time consuming, since the number of rules grows exponentially with the number of conditions. In such a 1195
case, to reduce the number of rules exercised, a minimized decision table or a risk-based approach may 1196
be used. 1197

4.2.4. State Transition Testing 1198

State transition diagram models the behavior of a system by showing its possible states and valid state 1199
transitions. A transition is initiated by an event, which may be additionally qualified by a guard condition. 1200
The transitions are assumed to be instantaneous and may sometimes result in the software taking action. 1201
The common transition labeling syntax is as follows: “event [guard condition] / action”. Guard conditions 1202
and actions can be omitted if they do not exist or are irrelevant for the tester. 1203

A state table is a model equivalent to a state transition diagram. Its rows represent states, and its 1204
columns represent events. Table entries (cells) represent transitions, and contain the target state, as well 1205
as the guard conditions, and resulting actions, if defined. In contrast to the state transition diagram, the 1206
state table explicitly shows invalid transitions, which are represented by empty cells. 1207

A test case based on a state transition diagram or state table is usually represented as a sequence of 1208
events, which results in a sequence of state changes (and actions, if needed). One test case may, and 1209
usually will, cover several transitions between states. 1210

There exist many coverage criteria for state transition testing. This syllabus discusses three of them. 1211

Certified Tester

Foundation Level

v4.0 Page 40 of 70 beta release

© International Software Testing Qualifications Board

In all states coverage, the coverage items are the states. To achieve 100% all states coverage, test 1212
cases must ensure that all the states are visited. Coverage is measured as the number of visited states 1213
divided by the total number of states, normally represented as a percentage. 1214

In valid transitions coverage (also called 0-switch coverage), the coverage items are single valid 1215
transitions. To achieve 100% valid transitions coverage, test cases must exercise all the valid transitions. 1216
Coverage is measured as the number of exercised valid transitions divided by the total number of valid 1217
transitions, normally represented as a percentage. 1218

In all transitions coverage, the coverage items are all the transitions shown in a state table. To achieve 1219
100% all transitions coverage, test cases must exercise all the valid transitions and attempt to execute 1220
invalid transitions. Testing only one invalid transition in a single test case helps to avoid fault masking, 1221
i.e., a situation in which one defect prevents the detection of another. Coverage is measured as the 1222
number of valid and invalid transitions exercised or attempted to be covered by executed test cases, 1223
divided by the total number of valid and invalid transitions, normally represented as a percentage. 1224

All states coverage is weaker than valid transitions coverage, because it can typically be achieved without 1225
exercising all the transitions. Valid transitions coverage is the most widely used coverage criterion. 1226
Achieving full all transitions coverage guarantees both full all states coverage and full valid transitions 1227
coverage and should be a minimum requirement for mission- and safety-critical software. 1228

4.3. White-Box Testing 1229

Because of their popularity and simplicity, this section focuses on two code-related white-box test 1230
techniques: 1231

• Statement testing 1232

• Branch testing 1233

There are more rigorous techniques that are used in some safety-critical, mission-critical, or high-integrity 1234
environments to achieve more thorough code coverage. There are also white-box test techniques used 1235
on higher test levels (e.g., API testing). These techniques are not discussed in this syllabus. 1236

4.3.1. Statement Testing and Statement Coverage 1237

In statement testing the coverage items are executable statements. The aim is to design test cases to 1238
exercise statements in the code until an acceptable level of coverage is achieved. Coverage is measured 1239
as the number of statements exercised by the test cases divided by the total number of executable 1240
statements in the code, normally expressed as a percentage. 1241

When 100% statement coverage is achieved, it ensures that all executable statements in the code have 1242
been exercised at least once. This means that in particular each statement with a defect will be executed, 1243
which may cause a failure, demonstrating the presence of the defect. However, exercising a statement 1244
with a test case will not detect defects in all cases. For example, it may not detect defects that are data 1245
dependent (e.g., a division by zero that only fails when a denominator is set to zero). Also, 100% 1246
statement coverage does not ensure that all the decision logic has been tested as, for instance, it may not 1247
exercise all the branches (see chapter 4.3.2) in the code. 1248

Certified Tester

Foundation Level

v4.0 Page 41 of 70 beta release

© International Software Testing Qualifications Board

4.3.2. Branch Testing and Branch Coverage 1249

A branch is a transfer of control between two nodes in the control flow graph, which shows the possible 1250
sequences in which source code statements are executed in the test object. Each transfer of control can 1251
be either unconditional (i.e., straight-line code) or conditional (i.e., a decision outcome). 1252

In branch testing the coverage items are branches and the aim is to design test cases to exercise 1253
branches in the code until an acceptable level of coverage is achieved. Coverage is measured as the 1254
number of branches exercised by the test cases divided by the total number of branches, normally 1255
expressed as a percentage. 1256

When 100% branch coverage is achieved, all branches in the code, unconditional and conditional, are 1257
exercised by test cases. Conditional branches typically correspond to a true or false outcome from an 1258
“if...then” decision, an outcome from a switch/case statement, or a decision to exit or continue in a loop. 1259

Branch coverage subsumes statement coverage. This means that any set of test cases achieving 100% 1260
branch coverage also achieves 100% statement coverage (but not vice versa). 1261

4.3.3. The Value of White-box Testing 1262

A fundamental strength that all white-box techniques share is that the entire software implementation is 1263
taken into account during testing, which facilitates defect detection even when the software specification 1264
is vague or incomplete. A corresponding weakness is that if the software does not implement one or more 1265
requirements, white box testing may not detect the resultant defects of omission (Watson 1996). 1266

White-box techniques can be used in static testing (e.g., during dry runs of a code). They are well suited 1267
to reviewing code that is not yet ready for execution (Hetzel 1988), as well as the pseudocode and other 1268
high-level or top-down logic which can be modeled with a control flow graph. 1269

If solely performing black-box testing, then no measure of actual code coverage is obtained. White-box 1270
coverage measures provide an objective measure of coverage and provide the necessary information to 1271
allow additional tests to be generated to increase this coverage, and subsequently increase confidence in 1272
the code. 1273

4.4. Experience-based Testing 1274

Commonly used experience-based test techniques discussed in the following sections are: 1275

• Error guessing 1276

• Exploratory testing 1277

• Checklist-based testing 1278

4.4.1. Error Guessing 1279

Error guessing is a technique used to anticipate the occurrence of errors, defects, and failures, based on 1280
the tester’s knowledge, including: 1281

• How the application has worked in the past 1282

• The types of errors the developers tend to make and the types of defects these errors result in 1283

Certified Tester

Foundation Level

v4.0 Page 42 of 70 beta release

© International Software Testing Qualifications Board

• The types of failures that have occurred in other, similar applications 1284

In general, errors, defects and failures may be related to: input (e.g., correct input not accepted, 1285
parameters wrong or missing), output (e.g., wrong format, wrong result), logic (e.g., missing cases, wrong 1286
operator), computation (e.g., incorrect operand, wrong computation), interface (e.g., parameter mismatch, 1287
incompatible types), or data (e.g., incorrect initialization, wrong type). 1288

Fault attacks are a methodical approach to the implementation of error guessing. This technique requires 1289
the tester to create or acquire a list of possible errors, defects and failures, and to design tests that will 1290
identify defects associated with the errors, expose the defects, or cause the failures. These lists can be 1291
built based on experience, defect and failure data, or from common knowledge about why software fails. 1292

See (Whittaker 2002, Whittaker 2003, Andrews 2006) for more information on error guessing and fault 1293
attacks. 1294

4.4.2. Exploratory Testing 1295

In exploratory testing, tests are simultaneously designed, executed, logged, and evaluated while the 1296

tester learns about the test object. The testing is used to learn more about the test object, to explore it 1297

more deeply with focused tests, and to create tests for untested areas. 1298

Exploratory testing is sometimes conducted using a session-based approach to structure the activity. In a 1299
session-based approach, exploratory testing is conducted within a defined time-box. The tester uses a 1300
test charter containing test objectives to guide the testing. The session is usually followed by a debrief 1301
that involves a discussion between the tester and stakeholders interested in the results of the session. In 1302
this approach test objectives may be treated as high-level test conditions. Coverage items are identified 1303
and exercised during the session. The tester may use test session sheets to document the steps followed 1304
and the discoveries made. 1305

Exploratory testing is useful when there are few or inadequate specifications or there is significant time 1306
pressure on the testing. Exploratory testing is also useful to complement other more formal testing 1307
techniques. This technique will be more effective if the tester is experienced, has domain knowledge and 1308
has a high degree of essential skills, like analytical skills, curiosity and creativeness (see section 1.5.1). 1309

Exploratory testing can incorporate the use of other test techniques. More information about exploratory 1310
testing can be found in (Kaner 1999, Whittaker 2009, Hendrickson 2013). 1311

4.4.3. Checklist-Based Testing 1312

In checklist-based testing, a tester designs, implements, and executes tests to cover test conditions from 1313
a checklist. Checklists can be built based on experience, knowledge about what is important for the user, 1314
or an understanding of why and how software fails. Checklist should not contain items that can be 1315
checked automatically, items better suited as entry/exit criteria, or items that are too general (Brykczynski 1316
1999). 1317

Checklist items are often phrased in the form of a question. It should be possible to check each item 1318
separately and directly. These items may refer to requirements, graphical interface properties, quality 1319
characteristics or other forms of test conditions. Checklists can be created to support various test types, 1320
including functional and non-functional testing (e.g., 10 heuristics for usability testing (Nielsen 1994)). 1321

Some checklist entries may gradually become less effective over time because the developers will learn 1322
to avoid making the same mistakes. New entries may also need to be added to reflect high severity 1323

Certified Tester

Foundation Level

v4.0 Page 43 of 70 beta release

© International Software Testing Qualifications Board

defects found recently. Therefore, checklists should be regularly updated based on defect analysis. 1324
However, care should be taken to avoid letting the checklist become too long (Gawande 2009). 1325

In the absence of detailed test cases, checklist-based testing can provide guidelines and some degree of 1326
consistency for the testing. If the checklists are high-level, some variability in the actual testing is likely to 1327
occur, resulting in potentially greater coverage but less repeatability. 1328

4.5. Collaboration-based Test Approaches 1329

Each of the above-mentioned techniques (see sections 4.2, 4.3, 4.4) has a particular objective with 1330
respect to defect detection. Collaboration-based approaches, on the other hand, focus on defect 1331
avoidance by collaboration and communication. 1332

4.5.1. Collaborative User Story Writing 1333

A user story represents an increment that will be valuable to either a user or purchaser of a system or 1334
software. User stories are composed of three aspects (Jeffries 2000), called together the “3 C’s”: 1335

• Card – the medium describing a user story (e.g., an index card, an entry in an electronic board) 1336

• Conversation – explains how the software will be used (can be documented or verbal) 1337

• Confirmation – the acceptance criteria (see section 4.5.2) 1338

The most common format for a user story is “As a [role], I want [goal to be accomplished], so that I can 1339
[resulting business value for the role]”, followed by the acceptance criteria. 1340

The collaborative authorship of the user story can use techniques such as brainstorming and mind 1341
mapping. Good user stories should be: Independent, Negotiable, Valuable, Estimable, Small and 1342
Testable (INVEST). If a stakeholder does not know how to test a user story, this may indicate that the 1343
user story is not clear enough, or that it does not reflect something valuable to them, or that the 1344
stakeholder just needs help in testing (Wake 2003). 1345

4.5.2. Acceptance Criteria 1346

Acceptance criteria are the conditions that an implementation of a user story must meet to be accepted 1347
by stakeholders. From this perspective, acceptance criteria may be viewed as the test conditions that 1348
should be exercised by the tests. Acceptance criteria are usually a result of the conversation (see section 1349
4.5.1). 1350

Acceptance criteria are used to: 1351

• Define boundaries of a user story 1352

• Reach consensus between the stakeholders 1353

• Describe both positive and negative scenarios 1354

• Serve as a basis for the user story acceptance testing (see section 4.5.3) 1355

• Allow accurate planning and estimation 1356

There is no single way to write acceptance criteria for a user story. The two most common formats are: 1357

Certified Tester

Foundation Level

v4.0 Page 44 of 70 beta release

© International Software Testing Qualifications Board

• Scenario-oriented (e.g., Given/When/Then format used in the BDD, see section 2.1.3) 1358

• Rule-oriented (e.g., bullet point verification list, or tabulate form of input-output mapping) 1359

Most acceptance criteria can be documented in one of these two formats. However, the team may use 1360
another, custom format, as long as the acceptance criteria are well-defined and unambiguous. 1361

4.5.3. Acceptance Test-driven Development (ATDD) 1362

ATDD is a test-first approach (see section 2.1.3). Test cases are created prior to implementing the user 1363
story. The test cases are created by the team members with different perspectives, e.g., customers, 1364
developers, and testers (Adzic 2009). Test cases may be manual or automated. 1365

The first step is a specification workshop where the user story and (if yet defined) its acceptance criteria 1366
are analyzed, discussed, and written by the team members. Incompleteness, ambiguities, or defects in 1367
the user story are fixed during this process. The next step is to create the tests. This can be done by the 1368
team together or by the tester individually. In any case, an independent person such as a business 1369
representative validates the tests. The tests are examples, based on the acceptance criteria, that 1370
describe the specific characteristics of the user story. These examples will help the team implement the 1371
user story correctly. 1372

Since examples and tests are the same, these terms are often used interchangeably. During the test 1373
design the test techniques described in sections 4.2, 4.3 and 4.4 may be applied. 1374

Typically, the first tests are the positive tests, confirming the correct behavior without exceptions or error 1375
conditions, comprising the sequence of activities executed if everything goes as expected. After the 1376
positive tests are done, the team should perform negative testing, and cover non-functional attributes as 1377
well (e.g., performance, usability). Tests should be expressed in a way that is understandable for the 1378
stakeholders. Typically, tests contain sentences in natural language involving the necessary 1379
preconditions (if any), the inputs, and the related outputs. 1380

The examples must cover all the characteristics of the user story and should not go beyond the story. 1381
However, the acceptance criteria may detail some of the issues described in the user story. In addition, 1382
no two examples should describe the same characteristics of the user story. 1383

When captured in a format supported by a functional test automation framework, the developers can 1384
automate the tests by writing the supporting code as they implement the feature described by a user 1385
story. The acceptance tests then become the executable requirements. 1386

Certified Tester

Foundation Level

v4.0 Page 45 of 70 beta release

© International Software Testing Qualifications Board

5. Managing the Test Activities – 335 minutes 1387

Keywords 1388

defect management, defect report, entry criteria, exit criteria, product risk, project risk, risk, risk analysis, 1389
risk assessment, risk control, risk identification, risk level, risk management, risk mitigation, risk 1390
monitoring, risk-based testing, test approach, test completion report, test control, test estimation, test 1391
monitoring, test plan, test planning, test progress report, test pyramid 1392

 1393

Learning Objectives for Chapter 5: 1394

5.1 Test Planning 1395

FL-5.1.1 (K2) Exemplify the purpose and content of a test plan 1396

FL-5.1.2 (K1) Recognize how a tester adds value to iteration and release planning 1397

FL-5.1.3 (K2) Compare and contrast entry and exit criteria, Definition of Ready, and Definition of Done 1398

FL-5.1.4 (K3) Use estimation techniques to calculate the required testing effort 1399

FL-5.1.5 (K3) Apply test case prioritization 1400

FL-5.1.6 (K1) Recall the concepts of the test pyramid 1401

FL-5.1.7 (K2) Summarize the testing quadrants and their relationships with test levels and test types 1402

5.2 Risk Management 1403

FL-5.2.1 (K1) Identify risk level by using likelihood and impact 1404

FL-5.2.2 (K2) Distinguish between project and product risks 1405

FL-5.2.3 (K2) Explain how product risk analysis may influence thoroughness and scope of testing 1406

FL-5.2.4 (K2) Explain what measures can be taken in response to analyzed product risks 1407

5.3 Test Monitoring, Test Control and Test Completion 1408

FL-5.3.1 (K1) Recall metrics used for testing 1409

FL-5.3.2 (K2) Summarize the purposes, contents, and audiences for test reports 1410

FL-5.3.3 (K2) Exemplify how to communicate the status of testing 1411

5.4 Configuration Management 1412

FL-5.4.1 (K2) Summarize how configuration management supports testing 1413

5.5 Defect Management 1414

FL-5.5.1 (K3) Prepare a defect report 1415

Certified Tester

Foundation Level

v4.0 Page 46 of 70 beta release

© International Software Testing Qualifications Board

5.1. Test Planning 1416

5.1.1. Purpose and Content of a Test Plan 1417

A test plan describes the objectives, resources and processes for a test project. A test plan: 1418

• Documents the means and schedule for achieving test objectives 1419

• Helps to ensure that the performed test activities will meet the established criteria 1420

• Serves as a means of communication with team members and other stakeholders 1421

• Demonstrates that testing will adhere to the existing test policy and test strategy 1422

Test planning guides the testers’ thinking and forces the testers to confront the future challenges related 1423
to risks, schedules, people, tools, costs, effort, etc. The process of preparing a test plan is a useful way to 1424
think through the efforts needed to achieve the test project objectives. 1425

The typical content of a test plan includes the information about: 1426

• Context of testing (scope, objectives, constraints, test basis) 1427

• Assumptions and constraints of the test project 1428

• Stakeholders (roles, responsibilities, relevance to testing, hiring and training needs) 1429

• Communication (forms and frequency of communication, documentation templates) 1430

• Risk register (product risks, project risks) 1431

• Test approach (e.g., test levels, test types, test techniques, test deliverables, entry and exit 1432
criteria, degree of independence, metrics to be collected, test data requirements, test 1433
environment requirements, deviations from the organizational test practices) 1434

• Schedule 1435

More details about the test plan and its content can be found in the ISO/IEC/IEEE 29119-3 standard. 1436

5.1.2. Tester's Contribution to Iteration and Release Planning 1437

In iterative SDLCs, typically two kinds of planning occur: release planning and iteration planning. 1438

Release planning looks ahead to the release of a product. Release planning defines and re-defines the 1439
product backlog, and may involve refining larger user stories into a collection of smaller stories. Release 1440
planning provides the basis for a test approach and test plan spanning all iterations. Testers involved in 1441
release planning define testable user stories and acceptance criteria (see section 4.5), participate in 1442
project and quality risk analyses (see section 5.2), estimate testing effort associated with user stories (see 1443
section 5.1.4), select the necessary test levels, and plan the testing for the release. 1444

Iteration planning looks ahead to the end of a single iteration and is concerned with the iteration backlog. 1445
Testers involved in iteration planning participate in the detailed risk analysis of user stories, determine the 1446
testability of user stories, break down user stories into tasks (particularly testing tasks), estimate testing 1447
effort for all testing tasks, and identify functional and non-functional aspects of the system to be tested. 1448

Certified Tester

Foundation Level

v4.0 Page 47 of 70 beta release

© International Software Testing Qualifications Board

5.1.3. Entry and Exit Criteria 1449

Entry criteria define the preconditions for undertaking a given activity. If entry criteria are not met, it is 1450
likely that the activity will prove more difficult, be more time-consuming, more costly, and riskier. Exit 1451
criteria define what must be achieved in order to declare an activity completed. Entry and exit criteria 1452
should be defined for each test level and test type, and will differ based on the test objectives. 1453

Typical entry criteria include: availability of resources (e.g., people, tools, environments, test data, budget, 1454
time), availability of testware (e.g., test basis, testable requirements, user stories, test cases), and initial 1455
quality level of a test object (e.g., all smoke tests have passed). 1456

Typical exit criteria include: measures of diligence (e.g., achieved level of coverage, number of 1457
unresolved defects, estimated defect density, number of failed test cases), and completion criteria (e.g., 1458
planned tests have been executed, static testing has been performed, all defects found are reported, all 1459
regression tests are automated). 1460

Running out of time or budget, or pressure to bring the product to market can be also viewed as valid exit 1461
criteria. Even without other exit criteria being satisfied, it can be acceptable to end testing under such 1462
circumstances, if the stakeholders have reviewed and accepted the risk to go live without further testing. 1463

In Agile development, exit criteria applied to an increment are called Definition of Done. Entry criteria that 1464
a user story must meet to be moved from the backlog to development are called Definition of Ready. 1465

5.1.4. Estimation Techniques 1466

Testing effort estimation involves predicting the amount of test-related work needed in order to meet the 1467
objectives of a test project. It is important to make it clear to the stakeholders that the estimate is based 1468
on a number of assumptions and is always subject to estimation error. Estimation for small tasks is 1469
usually more accurate than for the large ones. Therefore, when estimating a large task, a decomposition 1470
technique called Work Breakdown Structure (WBS) can be used. 1471

In this syllabus the following four estimation techniques are described. 1472

Estimation based on ratios. In this metrics-based technique, the greatest possible amount of 1473
experience figures is collected, which makes it possible to derive “standard” ratios for similar projects. The 1474
own ratios of an organization (e.g., taken from historical data) are generally the best source to use in the 1475
estimation process. These standard ratios can then be used to estimate the testing effort for the new 1476
project. For example, if in the previous project development-to-testing effort ratio was 3:2, and in the 1477
current project the development effort is expected to be 600 person-days, the testing effort can be 1478
estimated to be 400 person-days. 1479

Extrapolation. In this metrics-based technique, measurements are made as early in the project as 1480
possible to gather real, historical data. Having enough observations, the effort required for the remaining 1481
work can be approximated by extrapolating these data. This method is very suitable in iterative SDLCs. 1482
For example, the team may extrapolate the test effort in the forthcoming iteration as the averaged effort 1483
from the last three iterations. 1484

Wideband Delphi. In this iterative, expert-based technique, experts make experience-based estimations. 1485
Each expert, in isolation, estimates the effort. The results are collected and experts discuss their current 1486
estimates. Each expert is then asked to make a new prediction based on that feedback. This process is 1487
repeated until a consensus is reached. Planning Poker is a variant of Wideband Delphi, commonly used 1488
in Agile software development. In Planning Poker, estimates are done using the cards with numbers that 1489
represent the effort size. 1490

Certified Tester

Foundation Level

v4.0 Page 48 of 70 beta release

© International Software Testing Qualifications Board

Three-point estimation. In this expert-based technique, three estimations are made by the experts: most 1491
optimistic estimation (a), most likely estimation (m) and most pessimistic estimation (b). The final estimate 1492
(E) is their weighted arithmetic mean calculated as E = (a + 4*m + b) / 6. The advantage of this technique 1493
is that it allows the experts to calculate the measurement error: SD = (b – a) / 6. For example, if the 1494
estimates (in person-hours) are: a=6, m=9 and b=18, then the final estimation is 10±2 person-hours (i.e., 1495
between 8 and 12 person-hours), because E = (6 + 4*9 + 18) / 6 = 10 and SD = (18 – 6) / 6 = 2. 1496

See (Kan 2003, Koomen 2006, Westfall 2009) for these and many other test estimation techniques. 1497

5.1.5. Test Case Prioritization 1498

Once the test cases and test procedures are produced and assembled into test suites, these test suites 1499
can be arranged in a test execution schedule that defines the order in which they are to be run. When 1500
prioritizing test cases, different factors can be taken into account. The most commonly used test case 1501
prioritization strategies are as follows. 1502

• Risk-based prioritization, where test execution order is based on the results of the risk analysis 1503
(see section 5.2.3). Test cases covering the most important risks are executed first. 1504

• Coverage-based prioritization, where test execution order is based on coverage (e.g., statement 1505
coverage). Test cases achieving the highest coverage are executed first. In another variant, 1506
called additional coverage prioritization, the test case achieving the highest coverage is executed 1507
first. Each subsequent test case is the one that achieves the highest additional coverage. 1508

• Requirements-based prioritization, where test execution order is based on the priorities of the 1509
requirements traced back to the corresponding test cases. Requirement priorities are defined by 1510
stakeholders. Test cases related to the most important requirements are executed first. 1511

Ideally, test cases would be ordered to run based on their priority levels, using, for example, one of the 1512
above-mentioned prioritization strategies. However, this practice may not work if the test cases or the 1513
features being tested have dependencies. If a test case with a higher priority is dependent on a test case 1514
with a lower priority, the lower priority test case must be executed first. 1515

Test execution order has also to take into account the availability of resources. For example, the required 1516
tools, environments or people may be available only for a specific time window. 1517

5.1.6. Test Pyramid 1518

The test pyramid is a metaphor showing that different tests may have different granularity. The test 1519
pyramid model supports the team in test automation and in test effort allocation. The pyramid layers 1520
represent groups of tests. The higher the layer, the lower the test granularity, test isolation and test 1521
execution speed. Tests in the bottom layer are small, isolated, fast, and check a small piece of 1522
functionality, so usually a lot of them are needed to achieve a reasonable coverage. The top layer 1523
represents large, high-level, end-to-end tests. These high-level tests are slower than the tests from the 1524
lower layers, and they typically check a large piece of functionality, so usually just a few of them are 1525
needed to achieve a reasonable coverage. The number and naming of the layers may differ. For 1526
example, the original test pyramid model (Cohn 2009) defines three layers: “unit tests”, “service tests” and 1527
“UI tests”. Another popular model defines unit (component), integration, and end-to-end tests. 1528

Certified Tester

Foundation Level

v4.0 Page 49 of 70 beta release

© International Software Testing Qualifications Board

5.1.7. Testing Quadrants 1529

The testing quadrants, defined by Brian Marick (Marick 2003, Crispin 2008), group the test levels with the 1530
appropriate test types, activities, techniques and work products in the Agile methodology. The model 1531
supports test management in ensuring that all important test types and test levels are included in the 1532
development lifecycle and in understanding that some test types are more related to certain test levels 1533
than the others. This model also provides a way to differentiate and describe the types of tests to all 1534
stakeholders, including developers, testers, and business representatives. 1535

In this model, tests can be business facing or technology facing. Tests can also support the team or 1536
critique the product. The combination of these two characteristics determines the four quadrants: 1537

• Quadrant Q1 (technology facing, support the team). This quadrant contains component and 1538
component integration tests. These tests should be automated and included in the CI process. 1539

• Quadrant Q2 (business facing, support the team). This quadrant contains functional tests, examples, 1540
user story tests, user experience prototypes, API testing, and simulations. These tests check the 1541
acceptance criteria and can be manual or automated. 1542

• Quadrant Q3 (business facing, critique the product). This quadrant contains exploratory testing, 1543
usability tests, user acceptance testing. These tests are often manual and are user-oriented. 1544

• Quadrant Q4 (technology facing, critique the product). This quadrant contains smoke tests and non-1545
functional tests (except usability tests). These tests are often automated. 1546

5.2. Risk Management 1547

Organizations face many internal and external factors that make it uncertain whether and when they will 1548
achieve their objectives (ISO 31000). Risk management allows the organizations to increase the 1549
likelihood of achieving objectives, improve the quality of their products and increase the stakeholders’ 1550
confidence and trust. 1551

The main risk management activities are: 1552

• Risk analysis (consisting of risk identification and risk assessment; see section 5.2.3) 1553

• Risk control (consisting of risk mitigation and risk monitoring; see section 5.2.4) 1554

Test approach, in which test activities are managed, selected, and prioritized based on risk analysis and 1555
risk control, is called the risk-based testing. 1556

5.2.1. Risk Definition and Risk Attributes 1557

In this syllabus a risk is defined as the factor or event, whose potential occurrence causes an adverse 1558
effect. Risk can be characterized by two factors, which express the risk level. These factors are: 1559

• Likelihood – the probability of the factor or event occurrence 1560

• Impact (harm) – the consequences of this occurrence 1561

5.2.2. Project and Product Risks 1562

In software testing one is generally concerned by two types of risks: project risks and product risks. 1563

Certified Tester

Foundation Level

v4.0 Page 50 of 70 beta release

© International Software Testing Qualifications Board

Project risks are related to the management and control of the project. Project risk factors include: 1564

• Organizational issues (e.g., delays in work products delivery, inaccurate estimates, cost-cutting) 1565

• People issues (e.g., insufficient skills, conflicts, communication problems, shortage of staff) 1566

• Technical issues (e.g., scope creep, poor tool support) 1567

• Supplier issues (e.g., third-party delivery failure, bankruptcy of the supporting company) 1568

Project risks, when they occur, may have an impact on the project schedule, budget or scope, which 1569

affects the project's ability to achieve its objectives. 1570

Product risks are related to the product quality characteristics (e.g., described in the ISO 25010 quality 1571

model). Examples of product quality risks include: missing or wrong functionality, incorrect calculations, 1572

runtime errors, poor architecture, inefficient algorithms, inadequate response time, poor user experience, 1573

security vulnerabilities. Product risks, when they occur, may result in various negative consequences, 1574

including: 1575

• User dissatisfaction 1576

• Loss of revenue 1577

• Damage to third parties 1578

• High maintenance costs 1579

• Overload of the helpdesk 1580

• Damage to the image 1581

• Loss of trust 1582

• Criminal penalties 1583

• In extreme cases, physical damage, injuries or even death 1584

5.2.3. Product Risk Analysis 1585

The goal of risk analysis is to provide an awareness of risk in order to focus the testing effort in a way that 1586
minimizes the residual level of product risk. Ideally, risk analysis begins early in the SDLC. 1587

Risk analysis consists of risk identification and risk assessment. Risk identification is about generating a 1588
comprehensive list of risks. Stakeholders can identify risks by using various techniques and tools, e.g., 1589
brainstorming, workshops, interviews, or cause-effect diagrams. Risk assessment involves: categorization 1590
of identified risks, determining their likelihood, impact and level, prioritizing, and proposing ways to handle 1591
them. Categorization helps in assigning mitigation actions, because usually the risks falling into the same 1592
category can be mitigated using a similar approach. 1593

Risk assessment can use a quantitative or qualitative approach, or a mix of them. In the quantitative 1594
approach the risk level is calculated as the multiplication of likelihood and impact. In the qualitative 1595
approach the risk level can be calculated using a risk matrix. 1596

Product risk analysis may influence the thoroughness and scope of testing. Its results are used to: 1597

Certified Tester

Foundation Level

v4.0 Page 51 of 70 beta release

© International Software Testing Qualifications Board

• Determine the scope of testing to be carried out 1598

• Determine the particular test levels and propose test types to be performed 1599

• Determine the test techniques to be employed and the coverage to be achieved 1600

• Estimate the test effort required for each task 1601

• Prioritize testing in an attempt to find the critical defects as early as possible 1602

• Determine whether any activities in addition to testing could be employed to reduce risk 1603

5.2.4. Product Risk Control 1604

Risk control comprises all measures that are taken in response to identified and assessed product risks. 1605
Risk control consists of risk mitigation and risk control. Risk mitigation involves implementing the actions 1606
proposed in risk assessment to reduce the risk level. The aim of risk monitoring is to ensure that the 1607
mitigation actions are effective, to obtain further information to improve risk assessment, and to identify 1608
emerging risks. 1609

With respect to risk control, once a risk has been analyzed, several response options to risk are possible, 1610
e.g., risk acceptance, risk transfer, contingency plan, or risk mitigation by testing (Veenendaal 2012). 1611
Actions that can be taken to mitigate the product risks by testing are as follows: 1612

• Select the testers with the right level of experience, suitable for a given risk type 1613

• Apply an appropriate level of independence of testing 1614

• Conduct reviews and perform static analysis 1615

• Apply the appropriate test design technique and coverage level 1616

• Perform dynamic testing, including regression testing 1617

5.3. Test Monitoring, Test Control and Test Completion 1618

Test monitoring and control are test management activities concerned with ensuring that the planned 1619
testing goes as smoothly as possible. Test monitoring gathers information about the testing being done, 1620
while test control is used to manage the testing to ensure it keeps to the test plan in an efficient manner. 1621

Test monitoring is concerned with gathering information, and visibility of test activities, together with 1622
feedback on them. This information is used to assess test progress and to measure whether the test exit 1623
criteria or the testing tasks associated with the Definition of Done are satisfied, such as meeting the 1624
targets for coverage of product risks, requirements, or acceptance criteria. 1625

Test control uses the information from test monitoring to provide guidance and the necessary corrective 1626
actions to achieve the most effective and efficient testing. Test control activities include: 1627

• Re-prioritize tests when an identified risk becomes an issue 1628

• Re-evaluate whether a test item meets an entry or exit criterion due to rework 1629

• Adjust the test schedule to address a delay in the delivery of the test environment 1630

• Adding new resources when and where needed 1631

Certified Tester

Foundation Level

v4.0 Page 52 of 70 beta release

© International Software Testing Qualifications Board

Test completion activities collect data from completed test activities to consolidate experience, testware, 1632
and any other relevant information. Test completion activities occur at project milestones such as when a 1633
software system is released, a test project is completed (or cancelled), an Agile project iteration is 1634
finished, a test level is completed, or a maintenance release has been completed. 1635

5.3.1. Metrics used in Testing 1636

Test metrics are gathered to show progress against the planned schedule and budget, the current quality 1637
of the test object, and the effectiveness of the test activities with respect to the objectives or a sprint goal. 1638
Test monitoring gathers a variety of metrics to inform the test control activity. 1639

Common test metrics include: 1640

• Project progress metrics (e.g., task completion, resource usage, test effort) 1641

• Test progress metrics (e.g., test case implementation progress, test environment preparation 1642
progress, number of test cases run/not run, passed/failed, test execution time) 1643

• Defect metrics (e.g., number of defects found/fixed, defect density, defect detection percentage) 1644

• Risk metrics (e.g., residual risk level) 1645

• Coverage metrics (e.g., requirements coverage, code coverage) 1646

• Cost metrics (e.g., cost of testing, organizational cost of quality) 1647

5.3.2. Purpose, Contents and Audience for Test Reports 1648

Test reporting summarizes and communicates test information during and after testing. Test progress 1649

reports support the ongoing control of the testing and must provide enough information to make 1650

modifications to the testing schedule, resources, or test plan. Test completion reports summarize a 1651

specific stage of testing (e.g., test level, test cycle, iteration) and can give information for subsequent 1652

testing. 1653

During test monitoring and control, the test team generates test progress reports for stakeholders to keep 1654

them informed. Test progress reports are usually generated on a regular basis (e.g., daily, weekly, etc.) 1655

and include: 1656

• Testing period 1657

• Test status (e.g., ahead or behind schedule, perhaps using a traffic lights system) 1658

• Test progress, including any notable deviations 1659

• Factors currently impeding testing, and their workarounds 1660

• Test metrics (see section 5.3.1 for examples) 1661

• New and changed risks within testing period 1662

• Testing planned for the next period 1663

Certified Tester

Foundation Level

v4.0 Page 53 of 70 beta release

© International Software Testing Qualifications Board

A test completion report is prepared during test completion, when a project, test level, or test type 1664

concludes and ideally when its exit criteria are met. This report uses test progress reports and other data. 1665

Typical test completion reports include: 1666

• Test summary 1667

• Testing and product quality evaluation based on original test plan (i.e., test objectives and exit 1668

criteria or Definition of Done) 1669

• Deviations from the test plan (e.g., differences from the planned schedule, duration, and effort). 1670

• Testing impediments and workarounds 1671

• Test metrics, based on test progress reports 1672

• Unmitigated risks 1673

• Lessons learned that are relevant to the testing 1674

Different audiences require different information in the reports, and influences the formality and frequency 1675

of reporting. Reporting on test progress to others in the same team is often frequent and informal, while 1676

reporting on testing for a complete project follows a set template and occurs only once. 1677

The ISO/IEC/IEEE 29119-3 standard includes templates and examples for the two types of test reports: 1678

test status reports and test completion reports. 1679

5.3.3. Communicating the Status of Testing 1680

The best means of communicating test status varies, depending on test management concerns, 1681
organizational test strategies, regulatory standards, or, in the case of the self-organizing teams (see 1682
section 1.5.2), by the team itself. The options include: 1683

• Verbal communication with team members and other stakeholders 1684

• Dashboards (e.g., CI/CD dashboards, task boards, and burn-down charts) 1685

• Dashboard-style emails 1686

• Online documents 1687

• Formal test reports (see section 5.3.2) 1688

One or more of these options can be used. More formal communication may be more appropriate for 1689
distributed teams where direct face-to-face communication is not always possible due to geographical or 1690
time differences. 1691

5.4. Configuration Management 1692

Configuration management (CM) provides a mechanism for identifying, controlling and tracking the work 1693

products, including test work products, and making them available as needed. These work products are 1694

known as configuration items. In the testing context, examples of these are test plans and strategies, test 1695

conditions, test cases, test results, test runs and test reports. Configuration items can consist of many 1696

other configuration items, and as they are changed their version changes. For a complex configuration 1697

Certified Tester

Foundation Level

v4.0 Page 54 of 70 beta release

© International Software Testing Qualifications Board

item (e.g., a test environment), CM records the configuration items that make up this complex item, their 1698

relationships and their versions. If this complex item is approved for testing, then it becomes a baseline 1699

and can only be changed through a formal change control. Changes to configuration items are tracked 1700

and when a new baseline is created with changed configuration items, CM has a full record of the 1701

changed items and the changes that led to the current version. It should also be possible to revert to the 1702

previous baseline, e.g., when the previous test results need to be reproduced. 1703

To properly support testing, CM ensures the following: 1704

• All configuration items, including test items (individual parts of the test object), are uniquely 1705

identified, version controlled, tracked for changes, and related to other configuration items so that 1706

traceability can be maintained throughout the test process 1707

• All identified documents and software items are referenced unambiguously in test documentation 1708

Continuous integration, continuous delivery, continuous deployment and the associated testing are 1709

typically implemented as part of an automated DevOps pipeline (see section 2.1.4), in which automated 1710

CM is normally included. 1711

5.5. Defect Management 1712

Since one of the major objectives of testing is to find defects, an established defect management process 1713
is essential. Defects may be reported during any phase of the SDLC. The process must be followed by all 1714
stakeholders. At a minimum, the defect management process includes a workflow for handling individual 1715
defects from their discovery to their closure and rules for their classification. The workflow typically 1716
comprises activities to log the reported defect (in static testing) or failure (in dynamic tests), analyze and 1717
classify the issue, decide on a suitable response, such as to fix or ignore, and finally to close the defect. 1718

Typical defect reports have the following objectives: 1719

• Provide those responsible for handling and resolving reported defects with sufficient information 1720

to resolve the problem 1721

• Provide a means of tracking the quality of the work product 1722

• Provide ideas for development and test process improvement 1723

A defect report logged during dynamic testing typically includes: 1724

• Unique identifier 1725

• Title and a short summary of the defect being reported, including when it was observed 1726

• Date of the defect report, issuing organization, and author, including their role 1727

• Identification of the test object and test environment 1728

• Context of the defect (e.g., test case being run, test activity being performed, SDLC phase, and 1729
other relevant information, such as the test technique, checklist or test data being used) 1730

• Description of the defect to enable reproduction and resolution, including the steps that detected 1731
the defect, and any relevant log files, database dumps, screenshots, or recordings 1732

• Expected and actual results 1733

Certified Tester

Foundation Level

v4.0 Page 55 of 70 beta release

© International Software Testing Qualifications Board

• Severity (degree of impact) of the defect on the interests of stakeholders 1734

• Urgency/priority to fix 1735

• Status of the defect (e.g., open, deferred, duplicate, waiting to be fixed, awaiting confirmation 1736
testing, re-opened, closed) 1737

• References (e.g., to the test case) 1738

Some of this data may be automatically included or managed when using defect management tools (e.g., 1739
identifier, date, author and initial status). It is advisable to handle defects from static testing in a similar 1740
way. 1741

A document template for a defect report and example defect reports can be found in the ISO/IEC/IEEE 1742
29119-3 standard, which refers to defect reports as incident reports. 1743

Certified Tester

Foundation Level

v4.0 Page 56 of 70 beta release

© International Software Testing Qualifications Board

6. Test Tools – 20 minutes 1744

Keywords 1745

test automation 1746

 1747

Learning Objectives for Chapter 6: 1748

6.1 Tool Support for Testing 1749

FL-6.1.1 (K2) Explain how different types of test tools support testing 1750

6.2 Benefits and Risks of Test Automation 1751

FL-6.2.1 (K1) Recall the benefits and risks of test automation 1752

Certified Tester

Foundation Level

v4.0 Page 57 of 70 beta release

© International Software Testing Qualifications Board

6.1. Tool Support for Testing 1753

Test tools support and facilitate many testing activities. Examples include, but are not limited to: 1754

• Management tools – increase the test process efficiency by facilitating management of 1755

application lifecycle, requirements, tests, defects, configuration 1756

• Static testing tools – support the tester in performing reviews and static analysis 1757

• Test design and implementation tools – facilitate generation of the test case, test data and test 1758

procedures 1759

• Test execution and coverage tools – facilitate automated test execution and coverage 1760

measurement 1761

• Non-functional testing tools – allow the tester to perform non-functional testing that is difficult or 1762

impossible to perform manually 1763

• DevOps tools – support the DevOps delivery pipeline, workflow tracking, build automation 1764

process, automated software deployment, continuous integration 1765

• Collaboration tools – facilitate communication 1766

• Tools supporting scalability and deployment standardization (e.g., virtual machines, 1767

containerization tools, etc.) 1768

Test tool is any tool that assists in testing, which supports one or more testing activities (e.g., a 1769
spreadsheet is a test tool in this context). 1770

6.2. Benefits and Risks of Test Automation 1771

Simply acquiring a tool does not guarantee success. Each new tool will require effort to achieve real and 1772
lasting benefits (e.g., for tool introduction, maintenance or training). There are also some risks, which 1773
need analysis and mitigation to avoid test automation failures. 1774

Potential benefits of using test automation tools include: 1775

• A reduction in repetitive manual work that saves time. (e.g., execute regression tests, re-enter the 1776
same test data, compare expected vs actual results, and check against coding standards) 1777

• Greater consistency and repeatability which prevents simple human errors. (e.g., tests are 1778
consistently derived from requirements, test data is created in a systematic manner, and tests are 1779
executed by a tool in the same order with the same frequency) 1780

• More objective assessment (e.g., coverage) and provides measures that are too complicated for 1781
humans to derive 1782

• Easier access to information about the testing to support test management and reporting (e.g., 1783
statistics, graphs, and aggregated data about test progress, defect rates, and execution duration) 1784

• Reduced test execution times to provide earlier defect detection, faster feedback and faster time 1785
to market 1786

Certified Tester

Foundation Level

v4.0 Page 58 of 70 beta release

© International Software Testing Qualifications Board

• Allows more time for testers to design new, deeper, more effective tests if using robust and 1787
efficient tools 1788

Potential risks of using test automation tools include: 1789

• Unrealistic expectations for the benefits of a tool (including functionality and ease of use). 1790

• Inaccurate estimations of time, costs, effort required to introduce a tool, maintain test scripts and 1791
change of the existing manual test process 1792

• Using a testing tool when manual testing is more appropriate 1793

• Relying on a tool, when human critical thinking is what is needed 1794

• The dependency on the tool vendor which may go out of business, retire the tool, sell the tool to a 1795
different vendor or provide poor support (e.g., responses to queries, upgrades, and defect fixes) 1796

• The plan of using an open-source project may be abandoned, meaning that no further updates 1797
are available, or its internal components may require quite frequent updates as a further 1798
development of the tool 1799

• Platform and the tool are not compatible 1800

• Failure to follow regulatory requirements and/or safety standards by the tool 1801

Certified Tester

Foundation Level

v4.0 Page 59 of 70 beta release

© International Software Testing Qualifications Board

7. References 1802

Standards 1803

ISO/IEC/IEEE 29119-1 (2022) Software and systems engineering – Software testing – Part 1: General 1804
Concepts 1805

ISO/IEC/IEEE 29119-2 (2021) Software and systems engineering – Software testing – Part 2: Test 1806
processes 1807

ISO/IEC/IEEE 29119-3 (2021) Software and systems engineering – Software testing – Part 3: Test 1808
documentation 1809

ISO/IEC/IEEE 29119-4 (2021) Software and systems engineering – Software testing – Part 4: Test 1810
techniques 1811

ISO/IEC 25010, (2011) Systems and software engineering – Systems and software Quality Requirements 1812
and Evaluation (SQuaRE) System and software quality models 1813

ISO/IEC 20246 (2017) Software and systems engineering – Work product reviews 1814

ISO 31000 (2018) Risk management – Principles and guidelines 1815

Books 1816

Adzic, G. (2009) Bridging the Communication Gap: Specification by Example and Agile Acceptance 1817
Testing, Neuri Limited 1818

Ammann, P. and Offutt, J. (2016) Introduction to Software Testing (2e), Cambridge University Press 1819

Andrews, M. and Whittaker, J. (2006) How to Break Web Software: Functional and Security Testing of 1820
Web Applications and Web Services, Addison-Wesley Professional 1821

Beizer, B. (1990) Software Testing Techniques (2e), Van Nostrand Reinhold: Boston MA 1822

Boehm, B. (1981) Software Engineering Economics, Prentice Hall, Englewood Cliffs, NJ 1823

Buxton, J.N. and Randell B., eds (1970), Software Engineering Techniques. Report on a conference 1824
sponsored by the NATO Science Committee, Rome, Italy, 27–31 October 1969, p. 16. 1825

Chelimsky, D. et al. (2010) The Rspec Book: Behaviour Driven Development with Rspec, Cucumber, and 1826
Friends, The Pragmatic Bookshelf: Raleigh, NC 1827

Cohn, M. (2009) Succeeding with Agile: Software Development Using Scrum, Addison-Wesley 1828

Copeland, L. (2004) A Practitioner’s Guide to Software Test Design, Artech House: Norwood MA 1829

Craig, R. and Jaskiel, S. (2002) Systematic Software Testing, Artech House: Norwood MA 1830

Crispin, L. and Gregory, J. (2008) Agile Testing: A Practical Guide for Testers and Agile Teams, Pearson 1831
Education: Boston MA 1832

Forgács, I., and Kovács, A. (2019) Practical Test Design: Selection of traditional and automated test 1833

design techniques, BCS, The Chartered Institute for IT 1834

Gawande A. (2009) The Checklist Manifesto: How to Get Things Right, New York, NY: Metropolitan 1835
Books 1836

Certified Tester

Foundation Level

v4.0 Page 60 of 70 beta release

© International Software Testing Qualifications Board

Gärtner, M. (2011), ATDD by Example: A Practical Guide to Acceptance Test-Driven Development, 1837
Pearson Education: Boston MA 1838

Gilb, T., Graham, D. (1993) Software Inspection, Addison Wesley 1839

Hendrickson, E. (2013) Explore It!: Reduce Risk and Increase Confidence with Exploratory Testing, The 1840
Pragmatic Programmers 1841

Hetzel, B. (1988) The Complete Guide to Software Testing, 2nd ed., John Wiley and Sons 1842

Jeffries, R., Anderson, A., Hendrickson, C. (2000) Extreme Programming Installed, Addison-Wesley 1843
Professional 1844

Jorgensen, P. (2014) Software Testing, A Craftsman’s Approach (4e), CRC Press: Boca Raton FL 1845

Kan, S. (2003) Metrics and Models in Software Quality Engineering, 2nd ed., Addison-Wesley 1846

Kaner, C., Falk, J., and Nguyen, H.Q. (1999) Testing Computer Software, 2nd ed., Wiley 1847

Kaner, C., Bach, J., and Pettichord, B. (2011) Lessons Learned in Software Testing: A Context-Driven 1848

Approach, 1st ed., Wiley 1849

Kim, G., Humble, J., Debois, P. and Willis, J. (2016) The DevOps Handbook, Portland, OR 1850

Koomen, T., van der Aalst, L., Broekman, B. and Vroon, M. (2006) TMap Next for result-driven testing, 1851
UTN Publishers, The Netherlands 1852

Myers, G. (2011) The Art of Software Testing, (3e), John Wiley & Sons: New York NY 1853

O’Regan, G. (2019) Concise Guide to Software Testing, Springer Nature Switzerland 1854

Pressman, R.S. (2019) Software Engineering. A Practitioner’s Approach, 9th ed., McGraw Hill 1855

Roman, A. (2018) Thinking-Driven Testing. The Most Reasonable Approach to Quality Control, Springer 1856
Nature Switzerland 1857

Van Veenendaal, E (ed.) (2012) Practical Risk-Based Testing, The PRISMA Approach, UTN Publishers: 1858
The Netherlands 1859

Watson, A.H., Wallace, D.R. and McCabe, T.J. (1996) Structured Testing: A Testing Methodology Using 1860
the Cyclomatic Complexity Metric, U.S. Dept. of Commerce, Technology Administration, NIST 1861

Westfall, L. (2009) The Certified Software Quality Engineer Handbook, ASQ Quality Press 1862

Whittaker, J. (2002) How to Break Software: A Practical Guide to Testing, Pearson 1863

Whittaker, J. (2009) Exploratory Software Testing: Tips, Tricks, Tours, and Techniques to Guide Test 1864
Design, Addison Wesley 1865

Whittaker, J. and Thompson, H. (2003) How to Break Software Security, Addison Wesley 1866

Wiegers, K. (2001) Peer Reviews in Software: A Practical Guide, Addison-Wesley Professional 1867

Articles and Web Pages 1868

Brykczynski, B. (1999) “A survey of software inspection checklists,” ACM SIGSOFT Software Engineering 1869
Notes, 24(1), pp. 82-89 1870

Enders, A. (1975) “An Analysis of Errors and Their Causes in System Programs,” IEEE Transactions on 1871
Software Engineering 1(2), pp. 140-149 1872

Certified Tester

Foundation Level

v4.0 Page 61 of 70 beta release

© International Software Testing Qualifications Board

Manna, Z., Waldinger, R. (1978) “The logic of computer programming,” IEEE Transactions on Software 1873
Engineering 4(3), pp. 199-229 1874

Marick, B. (2003) Exploration through Example, http://www.exampler.com/old-1875
blog/2003/08/21.1.html#agile-testing-project-1 1876

Nielsen, J. (1994) “Enhancing the explanatory power of usability heuristics,” Proceedings of the SIGCHI 1877
Conference on Human Factors in Computing Systems: Celebrating Interdependence, pp. 152–158, ACM 1878
Press 1879

Wake, B. (2003) “INVEST in Good Stories, and SMART Tasks,” https://xp123.com/articles/invest-in-good-1880
stories-and-smart-tasks/ 1881

Certified Tester

Foundation Level

v4.0 Page 62 of 70 beta release

© International Software Testing Qualifications Board

8. Appendix A – Learning Objectives/Cognitive Level of 1882

Knowledge 1883

The following learning objectives are defined as applying to this syllabus. Each topic in the syllabus will 1884
be examined according to the learning objective for it. The learning objectives begin with an action verb 1885
corresponding to its cognitive level of knowledge as listed below. 1886

Level 1: Remember (K1) – the candidate will remember, recognize and recall a term or concept. 1887

Action verbs: identify, recall, recognize. 1888

Examples: 1889

• “Identify typical objectives of testing.” 1890

• “Recall the concepts of the test pyramid.” 1891

• “Recognize the different roles and responsibilities in a review.” 1892

Level 2: Understand (K2) – the candidate can select the reasons or explanations for statements related 1893

to the topic, and can summarize, compare, classify and give examples for the testing concept. 1894

Action verbs: classify, compare, contrast, differentiate, distinguish, exemplify, explain, give examples, 1895
interpret, summarize. 1896

Examples: 1897

• “Classify the different options for writing acceptance criteria.” 1898

• “Compare the different roles in testing” (look for similarities, differences or both). 1899

• “Distinguish between project and product risks” (allows concepts to be differentiated). 1900

• “Exemplify the purpose and content of a test plan.” 1901

• “Explain the impact of context on the test process.” 1902

• “Summarize the activities of the review process.” 1903

Level 3: Apply (K3) – the candidate can carry out a procedure when confronted with a familiar task, or 1904

select the correct procedure and apply it to a given context. 1905

Action verbs: apply, implement, prepare, use. 1906

Examples: 1907

• “Apply test case prioritization” (should refer to a procedure, technique, process, algorithm etc.). 1908

• “Prepare a defect report.” 1909

• “Use boundary value analysis to derive test cases.” 1910

References for the cognitive levels of learning objectives: 1911

Anderson, L. W. and Krathwohl, D. R. (eds) (2001) A Taxonomy for Learning, Teaching 1912

Assessing: A Revision of Bloom's Taxonomy of Educational Objectives, Allyn & Bacon 1913

Certified Tester

Foundation Level

v4.0 Page 63 of 70 beta release

© International Software Testing Qualifications Board

9. Appendix B – Business Outcomes traceability matrix with Learning Objectives 1914

This section lists the number of Foundation Level Learning Objectives related to the Business Outcomes and the traceability between Foundation 1915
Level Business Outcomes and Foundation Level Learning Objectives. 1916
 1917

Business Outcomes: Foundation Level

FL-B
O

1

FL-B
O

2

FL-B
O

3

FL-B
O

4

FL-B
O

5

FL-B
O

6

FL-B
O

7

FL-B
O

8

FL-B
O

9

FL-B
O

1
0

FL-B
O

1
1

FL-B
O

1
2

FL-B
O

1
3

FL-B
O

1
4

BO1 Understand what testing is and why it is beneficial 6

BO2 Understand fundamental concepts of software testing 22

BO3
Identify the test approach and activities to be implemented depending on the
context of testing

 6

BO4 Assess and improve the quality of the documentation 9

BO5 Increase the effectiveness and efficiency of testing 20

BO6 Align the testing process with the software development lifecycle 6

BO7 Understand test management principles 6

BO8 Write and communicate clear and understandable defect reports 1

BO9 Understand the factors that influence the test priorities and test efforts 7

BO10 Work as part of a cross-functional team 8

BO11 Know risks and benefits related to test automation. 1

BO12 Identify essential skills required for testing 5

BO13 Understand the impact of risk on testing 4

BO14 Effectively report on test progress and quality 4

 1918

Certified Tester

Foundation Level

v4.0 Page 64 of 70 beta release

© International Software Testing Qualifications Board

 1919

Chapter/
section/
subsection

Learning objective
K-

level

BUSINESS OUTCOMES

FL-B
O

1

FL-B
O

2

FL-B
O

3

FL-B
O

4

FL-B
O

5

FL-B
O

6

FL-B
O

7

FL-B
O

8

FL-B
O

9

FL-B
O

1
0

FL-B
O

1
1

FL-B
O

1
2

FL-B
O

1
3

FL-B
O

1
4

Chapter 1 Fundamentals of Testing

1.1 What is Testing?

1.1.1 Identify typical objectives of testing K1 X

1.1.2 Differentiate testing from debugging K2 X

1.2 Why is Testing Necessary?

1.2.1 Exemplify why testing is necessary K2 X

1.2.2 Recall the relation between testing and quality assurance K1 X

1.2.3 Distinguish between root cause, error, defect, and failure K2 X

1.3 Testing Principles

1.3.1 Explain the seven testing principles K2 X

1.4 Test Activities, Work Products and Roles

1.4.1 Summarize the different test activities and tasks K2 X

1.4.2 Explain the impact of context on the test process K2 X X

1.4.3 Differentiate the work products that support the test activities K2 X

1.4.4 Explain the value of maintaining traceability K2 X X

1.4.5 Compare the different roles in testing K2 X

1.5 Essential Skills and Good Practices

1.5.1 Give examples of the generic skills required for testing K2 X

1.5.2 Recall the advantages of the whole team approach K1 X

1.5.3 Distinguish the benefits and drawbacks of independence of testing K2 X

Chapter 2 Testing Throughout the Software Development Lifecycles

2.1 Testing in the Context of Software Development Lifecycles

2.1.1 Explain the impact of the chosen software development lifecycle on testing K2 X

Certified Tester

Foundation Level

v4.0 Page 65 of 70 beta release

© International Software Testing Qualifications Board

2.1.2
Remember good testing practices regardless of the chosen software development
model

K1 X

2.1.3 Recall the examples of test-first approaches to development K1 X

2.1.4 Summarize how DevOps might have an impact on testing K2 X X X X

2.1.5 Explain the shift-left approach K2 X X

2.1.6 Explain how retrospectives can be used as a mechanism for process improvement K2 X X

2.2 Test Levels and Test Types

2.2.1 Distinguish the different test levels K2 X X

2.2.2 Compare and contrast functional, non-functional and white-box testing K2 X

2.2.3 Distinguish confirmation testing from regression testing K2 X

2.3 Maintenance Testing

2.3.1 Summarize maintenance testing and its triggers K2 X X

Chapter 3 Static Testing

3.1 Static Testing Basics

3.1.1
Recognize types of products that can be examined by the different static testing
techniques

K1 X X

3.1.2 Explain the value of static testing K2 X X X

3.1.3 Compare and contrast static and dynamic testing K2 X X

3.2 Feedback and Review Process

3.2.1 Identify the benefits of early and frequent feedback K1 X X X

3.2.2 Summarize the activities of the review process K2 X X

3.2.3 Recognize the different roles and responsibilities in a review K1 X X

3.2.4 Compare and contrast the different review types K2 X

3.2.5 Recall the factors that contribute to a successful review K1 X X

Chapter 4 Test Analysis and Design

4.1 Test Techniques Overview

4.1.1 Distinguish black-box, white-box and experience-based test techniques K2 X

4.2 Black-box Testing

4.2.1 Use equivalence partitioning to derive test cases K3 X

4.2.2 Use boundary value analysis to derive test cases K3 X

Certified Tester

Foundation Level

v4.0 Page 66 of 70 beta release

© International Software Testing Qualifications Board

4.2.3 Use decision table testing to derive test cases K3 X

4.2.4 Use state transition testing to derive test cases K3 X

4.3 White-box Testing

4.3.1 Explain statement testing K2 X

4.3.2 Explain branch testing K2 X

4.3.3 Explain the value of white box testing K2 X X

4.4 Experience-based Testing

4.4.1 Explain error guessing K2 X

4.4.2 Explain exploratory testing K2 X

4.4.3 Explain checklist-based testing K2 X

4.5 Testing in an Agile context

4.5.1
Explain how to write user stories in collaboration with developers and business
representatives

K2 X X

4.5.2 Classify the different options for writing acceptance criteria K2 X

4.5.3 Use acceptance test-driven development (ATDD) to derive test cases K3 X

Chapter 5 Managing the Test Activities

5.1 Test Planning

5.1.1 Exemplify the purpose and content of a test plan K2 X X

5.1.2 Recognize how a tester adds value to iteration and release planning K1 X X X

5.1.3
Compare and contrast entry and exit criteria, Definition of Ready, and Definition of
Done

K2 X X X

5.1.4 Use estimation techniques to calculate the required testing effort K3 X X

5.1.5 Apply test case prioritization K3 X X

5.1.6 Recall the concepts of the test pyramid K1 X

5.1.7
Summarize the testing quadrants and their relationships with test levels and test types K2 X X

5.2 Risk Management

5.2.1 Identify risk level by using likelihood and impact K1 X X

5.2.2 Distinguish between project and product risks K2 X X

5.2.3 Explain how product risk analysis may influence thoroughness and scope of testing K2 X X X

Certified Tester

Foundation Level

v4.0 Page 67 of 70 beta release

© International Software Testing Qualifications Board

5.2.4 Explain what measures can be taken in response to analyzed product risks K2 X X X

5.3 Test Monitoring and Control

5.3.1 Recall metrics used for testing K1 X X

5.3.2 Summarize the purposes, contents, and audiences for test reports K2 X X X

5.3.3 Exemplify how to communicate the status of testing K2 X X

5.4 Configuration Management

5.4.1 Summarize how configuration management supports testing K2 X X

5.5 Defect Management

5.5.1 Prepare a defect report K3 X X

Chapter 6 Test Tools

6.1 Tool Support for Testing

6.1.1 Explain how different types of test tools support testing K2 X

6.2 Benefits and Risks of Test Automation

6.2.1 Recall the benefits and risks of test automation K1 X X

 1920

Certified Tester

Foundation Level

V4.0 Page 68 of 70 beta release

© International Software Testing Qualifications Board

10. Appendix C – Release Notes 1921

 1922
ISTQB® Foundation Syllabus v4.0 is a major update based on the Foundation Level syllabus (v3.1.1) and 1923
the Agile Tester 2014 syllabus. For this reason, there are no detailed release notes per chapter and section. 1924
However, a summary of principal changes is provided below. Additionally, in a separate Release Notes 1925
document, ISTQB® provides traceability between the learning objectives (LO) in the version 3.1.1 of the 1926
Foundation Level Syllabus, 2014 version of the Agile Tester Syllabus, and the learning objectives in the 1927
new Foundation Level v4.0 Syllabus, showing which LOs have been added, updated, or removed. 1928

In 2022 more than one million people in more than 100 countries have taken the Foundation Level exam, 1929
and almost 700,000 are certified testers worldwide. With the expectation that all of them have read the 1930
Foundation Syllabus to be able to pass the exam, this makes the Foundation Syllabus likely to be the most 1931
read software testing document ever! This major update is made in respect of this heritage and to improve 1932
the views of hundreds of thousands more people on the level of quality that ISTQB® delivers to the global 1933
testing community. 1934

In this version all LOs have been edited to make them atomic, and to create one-to-one traceability between 1935
LOs and syllabus sections, thus not having content without also having a LO. The goal is to make this 1936
version easier to read, understand, learn, and translate, focusing on increasing practical usefulness and 1937
the balance between knowledge and skills. 1938

This major release has made the following changes: 1939

• Size reduction of the overall syllabus. Syllabus is not a textbook, but a document that serves to 1940
outline the basic elements of an introductory course on software testing, including what topics 1941
should be covered and on what level. Therefore, in particular: 1942

o In most cases examples are excluded from the text. It is a task of a training provider to 1943
provide the examples, as well as the exercises, during the training 1944

o The “Syllabus writing checklist” was followed, which suggests the maximum text size for 1945
LOs at each K-level (K1 = max. 10 lines, K2 = max. 15 lines, K3 = max. 25 lines) 1946

• Reduction of the number of LOs compared to the Foundation v3.1.1 and Agile v2014 syllabi 1947

o 14 K1 LOs compared with 21 LOs in FL v3.1.1 (15) and AT 2014 (6) 1948

o 42 K2 LOs compared with 53 LOs in FL v3.1.1 (40) and AT 2014 (13) 1949

o 8 K3 LOs compared with 15 LOs in FL v3.1.1 (7) and AT 2014 (8) 1950

• More extensive references to classic and/or respected books and articles on software testing and 1951
related topics are provided 1952

• Major changes in chapter 1 (Fundamentals of Testing) 1953

o Section on test skills expanded and improved 1954

o Section on the whole team approach (K1) added 1955

o Section on the independence of testing moved to Chapter 1 from Chapter 5 1956

• Major changes in chapter 2 (Testing Throughout the SDLCs) 1957

Certified Tester

Foundation Level

V4.0 Page 69 of 70 beta release

© International Software Testing Qualifications Board

o Sections 2.1.1 and 2.1.2 rewritten and improved, the corresponding LOs are modified 1958

o More focus on practices like: test-first approach (K1), shift-left (K2), retrospectives (K2) 1959

o New section on testing in the context of DevOps (K2) 1960

o Integration testing level split into two separate test levels: component integration testing 1961
and system integration testing 1962

• Major changes in chapter 3 (Static Testing) 1963

o Section on review techniques, together with the K3 LO (apply a review technique) 1964
removed 1965

• Major changes in chapter 4 (Test Analysis and Design) 1966

o Use case testing removed (but still present in the Advanced Test Analyst syllabus) 1967

o More focus on collaboration-based approach to testing: new K3 LO about using ATDD to 1968
derive test cases and two new K2 LOs about user stories and acceptance criteria 1969

o Decision testing and coverage replaced with branch testing and coverage (first, branch 1970
coverage is more commonly used in practice; second, different standards define the 1971
decision differently, as opposed to “branch”; third, this solves a subtle, but serious flaw 1972
from the old FL2018 which claims that „100% decision coverage implies 100% statement 1973
coverage” – this sentence is not true in case of programs with no decisions) 1974

o Section on the value of white-box testing improved 1975

• Major changes in chapter 5 (Managing the Test Activities) 1976

o Section on test strategies/approaches removed 1977

o New K3 LO on estimation techniques for estimating the test effort 1978

o More focus on the well-known Agile-related concepts and tools in test management: 1979
iteration and release planning (K1), test pyramid (K1), and testing quadrants (K2) 1980

o Section on risk management better structured by describing four main activities: risk 1981
identification, risk assessment, risk mitigation and risk monitoring 1982

• Major changes in chapter 6 (Test Tools) 1983

o Content on some test automation issues reduced as being too advanced for the 1984
foundation level – section on tools selection, performing pilot projects and introducing 1985
tools into organization removed 1986

 1987

 1988

Certified Tester

Foundation Level

V4.0 Page 70 of 70 beta release

© International Software Testing Qualifications Board

11. Index 1989

All terms are defined in the ISTQB® Glossary (http://glossary.istqb.org/). 1990

To be done after the beta release. 1991

http://glossary.istqb.org/

