ING

BUILD

DESIGN

A HANDS-~-ON GUIDE TO

LINUX APPLIANCE

http://www.it-ebooks.info/

No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

LINUX APPLIANCE DESIGN

No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

LINUX APPLIANCE
DESIGN

A Handa-On Guide to
Building Linux Appliancea

by Bob Smith, John Hardin,
Graham Phillips, and Bill Pierce

=

NO STARCH
PRESS

San Francisco

No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

LINUX APPLIANCE DESIGN. Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce.
All “Tux’s Workshop” illustrations © 2006 by Jon Colton.

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means, electronic or
mechanical, including photocopying, recording, or by any information storage or retrieval system, without the prior
written permission of the copyright owner and the publisher.

"5 Printed on recycled paper in the United States of America

111009 08 07 123456789

ISBN-10: 1-59327-140-9
ISBN-13: 978-1-59327-140-4

Publisher: William Pollock

Production Editor: Elizabeth Campbell
Cover and Interior Design: Octopod Studios
Developmental Editor: William Pollock
Technical Reviewer: Bob Lynch

Copyeditor: Megan Dunchak

Compositor: Riley Hoffman

Proofreader: Publication Services, Inc.
Indexer: Publication Services, Inc.

For information on book distributors or translations, please contact No Starch Press, Inc. directly:

No Starch Press, Inc.
555 De Haro Street, Suite 250, San Francisco, CA 94107
phone: 415.863.9900; fax: 415.863.9950; info@nostarch.com; www.nostarch.com

Library of Congress Cataloging-in-Publication Data

Linux appliance design : a hands-on guide to building linux appliances / Bob Smith ... [et al.].
p. cm.

Includes index.

ISBN-13: 978-1-59327-140-4

ISBN-10: 1-59327-140-9

1. Linux. 2. Application software--Development. 3. Electric apparatus and appliances--Design and
construction. I. Smith, Robert W. (Robert William), 1952-
QA76.76.063L545115 2007
005.3--dc22

2006020778

No Starch Press and the No Starch Press logo are registered trademarks of No Starch Press, Inc. Other product and
company names mentioned herein may be the trademarks of their respective owners. Rather than use a trademark
symbol with every occurrence of a trademarked name, we are using the names only in an editorial fashion and to the
benefit of the trademark owner, with no intention of infringement of the trademark.

The information in this book is distributed on an “As Is” basis, without warranty. While every precaution has been
taken in the preparation of this work, neither the author nor No Starch Press, Inc. shall have any liability to any
person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly by the
information contained in it.

No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

BRIEF CONTENTS

Acknowledgmentsiiiiii e XV
INHTOAUCHON ...ttt et ettt xvii
Chapter 1: Appliance ArchifeCtureoouiiiiiieiiii et 1
Chapter 2: Managing DO@MONS.c...iiiiiiiiiie ettt 7
Chapter 3: Using RUN-TIME ACCESSeoviiiiiiiiiiiie ettt 19
Chapter 4: Building and Securing DAemonsccuiiiiieiiiiee et 43
Chapter 5: The Laddie Alarm System: A Sample Appliance...........cooccoeiiiiiiiiiiiiiiie 61
(@] ToT o] o R FoTe e 11T IR PSPPSR 77
Chapter 7: Laddie Event Handling...........ooooiiiiiiiiiii e 91
Chapter 8: Designing a Web Interfaceccocoiiiiiiiiiiiiiiic e, 105
Chapter 9: Designing a Command Line Interfaceccoooieiiiiiiiiiiiiie 135
Chapter 10: Building a Front Panel Interfacec.coooiiiiiiiiiii 147
Chapter 11: Designing a Framebuffer Interface...............coooiiiiiiii 169
Chapter 12: Infrared Remote Control...........c..oooiiiiiiiiiiii e 197
Chapter 13: Hands-on Introduction to SNMPooiiiiiiiiiiiiiie 223

No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 14: Designing an SNMP MIBcooiiiiiiiiiiiiie e 243

Chapter 15: Implementing Your SNMP MIB..........ooiiiiiiiiiiiiiiiiit e 261
Appendix A: RTA REFErenceoooiiiiiii e 289
Appendix B: Review of SNMP ... 309
Appendix C: Installing a Framebuffer Device Driver............ccocoviiiiiiiiiiiiieie e 325
Appendix D: A DB-to-File Utilitycooviiiiiiiiie e 331
Appendix E: The Laddie Appliance Bootable CDcccooviiiiiiiiiiiie e 337
INAEX 1. et ettt e e et en 345

Vi Brief Contents
No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS IN DETAIL

ACKNOWLEDGMENTS xv
INTRODUCTION xvii
What This Book Is ABOULcoouiiiiiiiiiiiiiiee e xviii
What This Book Is Not ABOULcouiiiiiiiiii e xviii
Who Should Read This BOOKc.cooviiriiiiiiiiiiiiiie i Xix
Wy U@ LINUXZ ..ottt ettt e e xix
Availability of Source Codeovoiiiiiiiiiii Xix
Range of Hardware Supportedoccooiiiiiiiiiiiei Xix
Availability of Linux Developerscccoviiiiiiiiiiiiiie e Xix
Reliability ... XX
Quality ComPilersooiiiiiiiiiee e XX
Good DOCUMENTAHON ...t XX
Existing Software Packagescocviiiiiiiiiiiiie XX
Low Development Costooiuiiiiiiiiiiie i XX
No Licensing Fees for Deploymentccocuiiiiiiiiiiiiiiiiiiiiie e XX
SECUTTTY ettt ettt e XXi
Linux Appliance DESIgNooiiviiiiiiie et xxi
1
APPLIANCE ARCHITECTURE 1
UIS GNA DABMONS ..ttt ettt ettt et 2
DOBMONS it 2
USer INterfacesooiiieiieie e 3
Interprocess COMMUNICATIONvviiiiiiieiriiiiiiit e 4
The Architecture of the Laddie Appliancecccooiiiiiiiiiiie e 5
SUMMOAIY et ettt ettt e e ettt te e e e e 5
2
MANAGING DAEMONS 7
Common Approaches o Managing Daemonsccccoeviiiiiiiiiiieee e 8
File-Based Managementcoouiiiiiiiiiie i 8
A Daemon-Based Web Interfacecocooiiiiiiiiii 9
An Alln-One Approachoooviiiiiiiii e 10
Control and Status Protocolsoovieiiiiiiiiii e 11
Requirements for a Control and Status Protocolcccooiiiiiiiiiiiiiiiis 12
Common Control and Status Protocolscoooieiiiiiiiiiiiiiiee e, 13
SUMMOAIY ettt ettt ettt ettt e e e e e 18
3
USING RUN-TIME ACCESS 19
RTA Appliance ArchiteCtureooiiiiiiiie e 19
RTA DAemon ArchiteCtureoouuiiiiieiiiie e 20

No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

Telling RTA About Your Columns and Tablesoccooiiiiiiiii e, 21

COIUMNS L 22
TABIES .o 24
Building Your First RTA Programcooueiiiiiiiiit et 26
Defining the Problemocccooiiiiii 26
Reviewing the Codecciiiiiiiiiiiiiiiiiie e 26
InStalling RTA Lot 31
Building and Linkingceooiiiiiiii e 32
TESHNG et ettt e 32
ALittle SQL ..o 34
SELE T e e e e e 35
UPDATE oottt 35
WHERE .o 36
LIMIT e aaae e 36
Introduction to RTA's Builtin Tablescooiiiiiii 37
O DG e e 37
PO SO e 37
O OIS oot 38
PO COIUMNS oottt e e e e 38
The RTA Table EIOroiiiiiiiii e 38
SUMMOAIY et ettt ettt e e ettt ee e e e s e e 41
4
BUILDING AND SECURING DAEMONS 43
How 10 Build @ DA@MON ...oouiiiiiiiiiie e 44
Load the Daemon’s Configurationcccooiviiiiiiiiiii e 44
Go info the Backgroundccooiiiiiiiiiei e 45
Become the Process and Session Leaderocccoiiiiiiiiiiiiiiiiiiie e 46
Set the Working DIrectoryccoouieiiiiiiiiieiie ettt 47
Redirect stdin, stdout, and stderrccoooiiimiee e 47
Set Up LOGGING ettt et 48
Set Group and User IDsc.oiiiiiiiiiiieiiii it 49
Check for a pidfileoooiiiiiii 50
Set the UMASK ...ooiiiii e 52
Set Up Signal Handlerscoooiiiiiiiie e 52
How to Secure @ DAemMONouiiiiiiiiiiiini e 53
Designing a Secure DAemonccccciiriiiiiiiiiiiiiiiii 54
Write a Secure DAemonccooiiiiiiiiiiiiiiiiiii e 55
Limit Damage in Case of a Breachccoooiiiiiii 57
A Prototype DABMONuuiiiiiiiiiiiiiii et 59
SUMMUAIY ettt ettt ettt e e e e e e 60
FUrther REAAING ...oeiie ittt 60
5
THE LADDIE ALARM SYSTEM: A SAMPLE APPLIANCE 61
Introduction fo Alarm SySIEMSooiiiiiiii it 62
SEIMSOTS .ttt ettt ettt et e e 62
ENabling @ Zone ...oooiiiiiiii i 64

viii Contents in Detail
No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

A Functional Specification for Laddieccccoiiiiiiiiiiiii 64

ladd’s Configuration and STQtUSccouviiiiiiiiiie e 65
ladd’s Alarm Handlingcooooiiiiii e 67
Laddie’s Hardware Designcoovieiiiiiiiiiiiiiee e 68
Laddie’s SOftWare Designcovviiiiiiiiiiiiii e 69
The applnit() Callback Subroutinecccoooiiiiiiiiii 70
The poll_timeout() Callback Subroutinecccoiiiiiiiiiii 71
The user_update() Callback Subroutingccccoiiiiiiiiiiiiiiie 73
Building and Testing laddcooiiiiiii e 74
SUMMOAIY ettt ettt e et e e e e e e 76
6
LOGGING 77
Do You Need Logging?c..eoivieiiiiiiiieitie it 77
Architecture of a Logging SYSIemccciiiiiiiiiiiiiie e 78
MESSAGE SOUMCES .ottt 78
Message ROUNING ..ccooeriiiiiiiiiiii et 80
Message Destinationseuiiiiiiiiiiiiiiii e 80
SYSl0g ittt 82
syslog Architectureooiiiiiiii e 82
USING SYSIOG ettt 83
The syslog Protocoliiiiiiiiiiie e 84
Using the syslogd Daemonccciiiiiiiiiiiiiiie e 85
Limitations, Advantages, and Alternatives to syslogdccccccoiviiiiiiiniincnn 86
On-Demand LOGGiNg ... eeeuiieiiiee ettt 87
SUMMOAIY ettt ettt e ettt e e e ettt ee e e e s e e 89
7
LADDIE EVENT HANDLING 91
Rationale for a New EventHandling Systemcccooviiiiiiiiiii 92
Features and Capabilities of logmuxdoccoiiiiiiiiii 93
Configuring logmuxdooiiiiii e 94
[OGMUXA SOUFCES ..entiee ittt 94
logmuxd Filters and REWritingooviiiiiiiiiiiiic i 95
logmuxd DestNGHONSueeiiieiiii ettt 97
Examples Using logmuxdcooiiiiiiiii e 98
Example 1: A logmuxd Demonstrationccoocuveviiiiiieiie e 98
Example 2: logmuxd and Accepted TCP Connectionsccccoueeeniieeniienn. 98
Example 3: logmuxd and SNMP Trapscoceviiiiiiniiiiciicciee e 102
SUMMUAIY ettt et ettt ettt e e s 104
8
DESIGNING A WEB INTERFACE 105
WED BASICS ..ttt 106
DNS aNd TCP .t 107
The WEbSEIVErccoiuiiiiiiiiiiii ittt 107
GO e 107

Contents in Detail iX
No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

JAVASEIIPE it 107

Evolving Technologiescccoiiiiiiiiiiici e 107
Establishing ReqQUIrementscoiiiiiiiiiii e 108
Choosing @ WEDBSEIVETcc.uiiiiiiiiieiiic e 108

CROICES et 108

Use PHP oo 109

Case Study: Linksys WRT54G Wireless Routerccccooivvivniiniiinien, 109

Case Study: The TUX Webserverccoceiiiiiiiniiiniiiiiiicccecce 110

Comparison of Webserversccccooviiiiiiiiiiiiiiceeecee 110
U DESIGN ettt e ettt et 114

MENU SYSTEM ..t 114

DIAlOg BOXES ..ottt 115

Error MESSAGESuvviiiiiiiiiiiiii e 115

Improving Responsiveness with AjaXccoviiiiiiiiiiniiiiciiece e, 117
IMPIEMENTATION ...ttt 118

Interfacing with the DAeMONScoiiiiiiiiiiicic e 119

Alarm SEatUs PAGe ..oeveiieiiiiie it 121

Alarm Setup PAgGe .eoimeiieeiiiie it 122

Page Layout and Menu Systemccoeiiiiiiiiiiiiiie i 123

Webserver Independencecccooiiiiiiiiiiiiiiiii 124

Asynchronous Updates Using AjaXoooiiiiiiiiiiiieeiie e 125
IMProving Our DESIgNccoiiiiiiiiiiieie e 131
RESOUICES ... 132
SUMMUAIY ettt ettt e e et e ee e e e 133
9
DESIGNING A COMMAND LINE INTERFACE 135
Why You Need @ CLI ..o e 136

SECUTTTY ettt ettt e e 136

Availability ..o 136

BANAWIALh .. 137

SCrPtABIlify oo 137

Configuration Backup and Restorecccoovviiiiiiiiiniieiiiceie e 137
TYPEs OF CLIS ot 138

SENIENCES ... 138

WIZAEAS .o 139

MENUS o 139

SHAtEfUL e 140

Character vs. Line Interfacescooiiiiiiiiiiiiici 140
Giving Users Access 10 @ CLI L.o.oiiiiiiiiiiiiii e 140
The Laddie CLI ..oouiiiii et 141

Laddie Command SUMMATYcoouiiiiiiiiiiie e 141

SEElOGS ON oo 141

UMD e e 142

RO e 143
Code Review for the test Commandcooceiiiiiiiiiiii e 143

CLI Vocabulary: token.|cccooiiiiiiiiiiiiii 144

CLIE Grammar: SYNTAX.Y oeeerimiiiieieeee ettt e 144

C LR ettt 145

Code REVIEW NOIESeiiiiiiieitie ettt 145
SUMMOAIY ettt ettt e e et e ee e e e 145

X Contents in Detail

No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

10

BUILDING A FRONT PANEL INTERFACE 147
Buttons, LEDS, aNd LCDS ..o e 148
BUHONS ot 148
LB DS e e 150
LCDS ettt e e e e e e e e e e 151
Designing a Front Panel Ul ..o 152
Be SIMPle ..o 152
Try, Fail, Try AQQin ...oooiiiiiie et 153
Use LCD Menus and Modesc.oeiiiiiiiiiieiiiiieee e 154
Be QUICK! ..o 155
The Laddie Front Panelooiiiiiiiii e 157
Laddie LCD Menu SyStemcooviiiiiiiiiie et 158
Laddie Front Panel Hardwareccccooiiiiiiiiic 159
Laddie Front Panel Uloooiiiiiiii e 164
IMProving OUr DEsSign . ..ccoiiiiiiiiiiie e 166
SUIMMUAIY ettt ettt ettt et e sttt eeeeeneeine 167
11
DESIGNING A FRAMEBUFFER INTERFACE 169
How Video Memory Worksc.cooiiiiiiiiiiiiiiic i 170
How Bytes in Video Memory are Interprefedcccccoviiiiiiiciiieniinieen, 170
How Video Memory Is Mapped to the Displaycccoceevieiiiiiiiiniiieen, 172
The Linux Framebuffer Device Drivercccooiiiiiiiiiiie e 173
Manipulating the Framebuffer with open, read, write, and close 174
Configuring the Framebuffer with the ioctl Commandccooiiiiniin, 175
A Simple Graphics Program for the Framebuffer ..., 177
Graphics LIBrariesooouiiiiiie it 181
"Hello, worldl” with SDLcooiiiiiiiiie e 182
Initialize the LIbrariescocoiiiiiiiiiiie e 183
Initialize the Framebuffer ... 183
Create @ SUMACEuiiiiiie e 184
Display the SUrfacecciiiiiiie e 184
Handle EVENtsooiiiiiiie i 185
Graphical Ul TOOIKISeeoiiiiieie e 185
Building Simple Uls with STBMeNUcccceviiiiiiiiiiiiie 187
"Hello, worldl” with STBMENUviiiiiiiiiiieecee 190
The Laddie Framebuffer Ul ... 193
SUMMOAIY ettt ettt et ee e e e 196
12
INFRARED REMOTE CONTROL 197
Communicating with Infrared Light ..o 198
Protocols for Encoding Remote Control Commandscccoooviiiiiiinieenee. 198
Reducing Interference by Modulating the Infrared Signalccccooooi 200
Controlling an Appliance with Infrared Lightccccoiiiiiiiiiiie, 200
Hardware for Remote Confrol Receiversocccoiiiiiiiiiiiiiiieicie e 201
Detecting and Demodulating the IR Signalcccooiiiiiiiiiii 201

Contents in Detail

No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

xi

http://www.it-ebooks.info/

Decoding Remote Control Waveformscccooiiiiiiiiiiiiiii 203

Infrared Remote Control Hardware for the Laddie Appliancec.ccooc.. 204
Installing and Configuring LIRC for the Laddie Applianceccccceviiiiiiiiiiiiiin, 207
Installing the LIRC SOftWarec.cooiiiiiiiiiiiiieeeee e 208
Configuring the lirc_serial Kernel Device Drivercccoovviiiiiiiniieiee 210
Testing the lirc_serial Drivercccciiiiiiiiiii i 212
Configuring the lircd Daemonoooiiiiiiiiiie e 215
Testing the lircd DAemonccooiiiiiiiiiiii e 216
LIRC Tools for Controlling Applicationscccooviiiiiiiiiiiiie e 218
Controlling the Laddie Appliancecccooviiiiiiiiiiii e 219
SUIMMOAIY ettt e ettt et e e sttt ee e e e s aeine 220
13
HANDS-ON INTRODUCTION TO SNMP 223
A Quick Note on Terminologyccceoieriiiiiiiiiiiie ittt 224
The SORWAIE ...ttt 225
INStAlling SINMP ..o 225
Download and Installccooiiiiiiiii 226
Check the Installationccceviiiiiiiiii e 226
Configure the AGentooiiiiiiiii e 227
Start the AQENt ...o.eiiiii e 227
Exploring with SNMP ..ot 228
MIB Files for Readable Namescocccoviiiiiiiiiiiic e, 229
A Networked Prinferocviiiiiiiiiieiieieee e 231
The snmptable Commandccooiiiiiiiiii e 231
MIB-2: The TCP Connection Tablecccccooiiiiiiiiiiiiiicic e 232
MIB-2: The UDP Tableccccooiiiiiiiiiiiiic ittt 233
MIB-2 CoNtENES ... 234
Writing Values with SNMP ... 235
Setting SYSCONTACT ...uviiiiiiiie ittt 235
Setting sySNAMEouiiiiiiiiii i 237
SINMP THAPS .o 238
Receiving Traps with snmptrapdcccoiiiiiiiiiiic e, 238
Traps That Carry Data: linkUp and linkDownoccoiiiiiiiiiie e, 240
SUMMOAIY ettt ettt e et e ee e e e 242
14
DESIGNING AN SNMP MIB 243
OUF GO i 244
Your Enterprise NUMbBErc.oooiiiiiiiiiiiei e 245
The MIB FIles ..ottt 246
LADDIE-GROUP-SMI ...ttt 246
Creating the LAD-MIB ..ottt 249
Module Definiioncooiiiiiiiiiiiii e 251
Version and Number of Zonescccccooviiiiiiiiiiiiiiiii 253
The Alarm Tableooouiiiiiii e 255
THE TEOAPS ottt ettt ettt ettt 257
Validating Your MIBco..iiiiiie e 259
SUIMMOAITY ettt ettt e e e e s ettt eeteenaiine 260

Xii Contents in Detail
No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

15

IMPLEMENTING YOUR SNMP MIB 261
The NEFESNMP AGENT ..ouiiiiiiiiei e 262
The MIB Skeleton: mib2co.ooiiiiiii e 265
The Header File: ladProject.hooociiiiiii e 267
The Code File: [adProject.coovviiiiiiiiie e 267
INCIUAES oo 268
The Base OIDoooiiiiieieeece e 268
MIB Obijects Definiionscocueiiiiiiiiiiiiie e 268
RTA Access ROUHNEScooiviiiiiieieiiiiec e e 271
The Initialization RoUtNeooiiiiiiiiii e 274
The Scalars ... 275
Reading the Alarm Tableccociiiiiii 277
Writing the Alarm Tablecoccoiiiiiii e, 280
Makefile Revisitedccevviieiio e 283
DEbUGGING .ttt 285
TIPS ettt et e et 285
SUMMOAIY ettt ettt e e et e ee e e e 286
A
RTA REFERENCE 289
Overview of RTA oo e 290
RTA CONSIANES 1ottt e e ettt e e e e e ae bt aaeeae e 291
DAtO SHUCIUIES .ottt e e e e e e e e e e eeaeas 292
APLSUBIOUNINGS ... 296
The dbcommand() Subroutineccccooviiviiiiiiiieiie e 297
The rta_add_table() Subroutingccccooviiiiiiiiiiieeceee e 297
The SQL_string() SUBroutingccueiiiiiiiiii e 298
The rta_config_dir() Subroutineccoooiiiiiiiiii 299
The rta_save() SUBTOUtINEccooiiiiiiiiiiiii e 299
The rta_load() SUBrOUNNEc..cooiiiiiiiiiiiiie e 300
SELECT and UPDATE SYNTaX ..vviiiiieeiiie ettt ettt 301
The SELECT Commandoouvmiiiiiiie e 301
The UPDATE Commandooooiiiiiiiieee oo 302
Internal RTA Tablesooiiiiiii e, 303
The rta_tables Table ... 303
The rta_columns Tableooiiiii e 304
Debug Configurahionoouiiiiiie e 304
Error MESSAGESvveiiiiiiie it 305
SQL REQUESE EITOTS ...ttt 305
Infernal Debug Messagesc..ooiiiiiiiiiiiie e 306
Callback ROUNINES ... 307
Read Callbacksoooooiiiiii e 307
Write Callbacksooooiii e 308
B
REVIEW OF SNMP 309
Why SNIMP2 e 310
Agents and MANAGETSccuiiiiiiiiiiiie ettt 310
Namespace, Grammar, and Protocolcccoociiiiiiiiiiiiiii e 310
The VB e 311
The OID oo 311
B e 313

Contents in Detail

No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

xiii

http://www.it-ebooks.info/

The SIMI ettt 314

The SNMP Protocoliiiiiiiiii it 316
The Basic Commands: GET, SET, GETNEXTooooiviiiiiiiiiiiii 316
Walking a MIB with GETNEXTcccoooiiiiiiiiiiiiiiecceeee e 316
Traps and Informs ..o 316
Command-Line Tools: Examplesccccooiiiiiiiiiii e 316

SNMPvT, SNMPv2, and SNMPV3 ..ot 318

SNMP Data TYPES ... 319

SNMP TADIES ..ot 320

Defining NEW TYPES ...uiiiiie et ie ettt 321

Structure of @ MIB File ...ooiiiiiiiiiiie e 322

SUIMMOAIY ettt ettt et e e sttt ee e e e s aiine 324

C

INSTALLING A FRAMEBUFFER DEVICE DRIVER 325

Finding Framebuffer Device Drivers for Your Video Cardc.ccoviviiiniiniinnnn, 326
The vesafb DFIVErccouiiiiiiiiiii i 326
Hardware-Specific DIiVErsccoviiiiiiiiiiiiiiee e 327
Drivers Not Included on the Laddie CDcccooiiviiiiiiiiiiiicice 327

Configuring the Framebuffer Device Drivercccccooviiiiiiiiiiiiiie e 328
The vesafb DFIVErcoouiiiiiiiiiii i 328
Hardware-Specific DIiVerscooiiviiiiiiiiiiieee e 329

D

A DB-TO-FILE UTILITY 331

OVBIVIBW .. 332

Table DefinIioNsccuiiiiiiii it 332
The thl2file Tablecccooiiiiii 333
The thl2field Tablecociiiiiiii 334

A tbl2filed EXamplec.ooiiiii e 335

SECUIitY NOTES ...ttt 336

E

THE LADDIE APPLIANCE BOOTABLE CD 337

Running the Laddie Applianceccooiiiiiiiiii e 337
Booting the CD ..ot 338
Navigating the Framebuffer User Interfacecoccooviiiiin 338
Accessing the Web Inferfaceccccoooiiiiiiiiiiiii 339
Experimenting with the Linux Shell and Other User Interfacesc..cc....... 339
Shutting Down the Laddie Applianceccccooiiviiiiiiiiiiii 340

Exploring the CD COonentseoiuiiieiie ittt ettt 340
Laddie Appliance Source Codeccooviiiiiiiiiiiiiie e 340
Laddie Appliance Librariescocoiiiiiiiiiiiie e 341
SHAMUP SCIIPES . eeiiiii e 341
The Linux From-Scratch Distribution and Additional Packages 342

Rebuilding the Laddie Applianceccociiiiiiiiiii e 342

INDEX 345

Xiv Contents in Detail
No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

ACKNOWLEDGMENTS

As authors of the book we would like to thank Peter Enemark, Chris Sommers,
and Keith Garrett for their unconditional support of this project and for
their contributions to the technology presented.

As readers of the book, you should thank our technical editor, Bob Lynch,
for finding many, many errors in the text and on the CD. You should also
thank Elizabeth Campbell, Riley Hoffman, and Megan Dunchak for changing
some of our technically correct but completely incomprehensible sentences
into something both readable and correct.

Our thanks also go to Jon Colton, the artist responsible for the Tux’s
Workshop series.

No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

J

COLTaA

http://www.it-ebooks.info/

INTRODUCTION

Toasters, ovens, and dishwashers are a few
of the appliances found in our everyday
lives. Though we are quite familiar with their

use, few of us stop to think about how an appliance
works under the hood, or even what makes an appli-

ance, well, an appliance. This book defines an appliance
as a device designed to primarily perform a single function. If you think about
the appliances just mentioned, you'll see that this definition holds true—
toasters toast, ovens bake, and dishwashers wash dishes. Compared to a PC,
which is capable of performing thousands of diverse functions depending on
the hardware and software installed, traditional appliances are boring and
simple.

What does this have to do with Linux? For starters, traditional appliances
are no longer so simple. What used to be electrified but still mechanical
devices, such as a vacuum cleaners, are now not only electronic, but include
processors, circuit boards, and sophisticated user interfaces. With these
changes comes the need to run an operating system on the appliance to
manage the new features. Linux is a natural fit for this because it is low cost

No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

(in most cases, it is free to use) and open source (which means you can
modify it to better suit your needs). However, the real place where Linux
fits in is with the new types of appliances that are being designed. Digital
video recorders (DVRs) were unheard of just a few years ago, but the first
and most popular DVR appliance, the TiVo, runs on Linux, as do many
other home networking and entertainment appliances.

If you were to build the next great robotic house-cleaning system,
you’d want to avoid designing it completely from scratch. You’d reuse as
many parts as possible from your earlier robots, and you’d use off-the-shelf
components wherever possible. The same reuse mentality applies to Linux
appliances, and that’s where this book can help.

What This Book Is About

This book shows you how to build a Linux appliance, and it includes a
prototype appliance that you can use as the basis for your appliance, if you
wish. We divide an appliance into daemons and user interfaces and show
how to create and manage daemons, as well as how to build five different
types of user interfaces.

We cover the following topics:
¢ Appliance architectures
¢ How to talk to running daemons
e How to build and secure a daemon
¢ Laddie, our sample appliance
¢ Logging and event handling
e Web-based user interfaces
¢ Command line interfaces (CLIs)
¢ Front panel interfaces
¢ Framebuffer interfaces, including infrared remote control
¢ SNMP interfaces including tools, MIBs, and agents

Most of the chapters have the same basic layout. We define and explain
why the feature is necessary, we describe the feature’s challenges and common

approaches, and we describe how we implemented the feature in our sample
appliance.

What This Book Is Not About

This book does not cover C programming, the Linux operating system, or
the main application that defines a particular Linux appliance. Furthermore,
this book is not about embedded Linux. We believe you will find the following
books on embedded Linux useful:

e Embedded Linux, by John Lombardo (SAMS/New Riders, 2001)

o Embedded Linux: Hardware, Software, and Interfacing, by Craig Hollabaugh
(Addison-Wesley, 2002)

xviii Introduction
No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

o Linux for Embedded and Real-Time Applications, Second Edition, by Doug
Abbott (Newnes, 2006)

o Embedded Linux System Design and Development, by P. Raghavan, Amol Lad,
and Sriram Neelakandan (Auerbach Publications, 2005)

Who Should Read This Book

This book is for Linux programmers who want to build a custom Linux
appliance and support multiple user interfaces, build secure daemons, or
provide logging and event management. The book may also be of value to
any developer who wants to minimize the effort needed to port a daemon’s
user interface to different operating systems or a different programming
language. Our only major assumption is that the reader is comfortable
programming in C on the Linux platform.

Why Use Linux?

Before diving into the common architecture found on most Linux appliances,
we should answer the question, “Why use Linux on an appliance?” While the
specific arguments vary, we’ve found the following to be true for appliances
that we’ve built.

Availability of Source Code

The availability of source code makes it possible to customize the operating
system for a particular appliance’s needs. Such customization is not possible
when using a proprietary, closed source operating system.

Range of Hardware Supported

The Linux kernel supports a wide range of processors, from low-end
embedded processors used in consumer electronics to high-end 64-bit
processors used in super-computers. For example, Linux runs on Marvell’s
ARM-based XScale processors (used in Palm handheld computers), Texas
Instruments’ ARM-based OMAP processors (used in E28 smart phones),
IBM’s PowerPC (used in the TiVo and the PlayStation 3), Hitachi’s H8/300
processors, as well Compaq Alpha AXP, Sun SPARC, IBM S/390, MIPS, HP
PA-RISC, Intel IA-64, and AMD x86-64 processors.

Availability of Linux Developers

Linux, C, and C++ form the core competence of many computer science
graduates in the United States, and indeed, worldwide. Exact estimates
vary, but the consensus is that that there are several million Linux-capable
developers worldwide.

Introduction Xix
No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

Reliability

Linux is sufficiently reliable to be widely used in data centers. Uptimes
measured in years are not uncommon for Linux, and the Blue Screen of
Death has never been a problem.

Quality Compilers

The GNU Compiler Collection is a comprehensive set of compilers,
assemblers, linkers, and debuggers that support multiple languages on
multiple platforms. It is the compiler of choice for C and C++ development
on Linux. Furthermore, it is free. See http://gcc.gnu.org for more
information.

Good Documentation

A great deal of documentation about Linux is available on the Internet.
One site that serves as a good starting point for documentation is the Linux
Documentation Project (see http://en.tldp.org). This site includes subject-
specific HOWTOs, FAQs, and in-depth guides.

Existing Software Packages

There are thousands of software packages available to help you develop an
appliance on Linux. For example, there is Net-SNMP for Simple Network
Management Protocol (SNMP) support, Im_sensors for monitoring the
appliance’s hardware environment, and lighttpd for web support.

Low Development Cost

Linux appliance programmers can typically use their desktop machines for
most software development because appliance user interfaces and services
seldom need to be developed on the target hardware. Therefore, software
development can proceed in parallel, with one team developing embedded
Linux for the appliance and another team developing the main application
and user interfaces.

No Licensing Fees for Deployment

Appliance manufacturers can generally build Linux-based appliances with-
out incurring costs for licensing fees to distribute the appliance’s software,
although there are some exceptions. For example, the Qt library from
Trolltech and the MySQL database have licenses that may require payment
for commercial use.

XX Introduction
No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

Security

Linux appliance developers use packages such as grsecurity and systrace to
tighten security to levels undreamed of by Windows developers. Appliances
have the additional advantage that a multi-purpose desktop or server can
never be as secure as a well-hardened, single-purpose device.

Linux Appliance Design

We’ve tried to write this book and the accompanying CD to be used as a
type of “parts box” that you can pull from as you assemble your appliance.
A nice overview of the components in our parts box is given in the first
chapter, which presents a high-level view of the architecture common to
most Linux appliances.

Introduction xxi
No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

APPLIANCE ARCHITECTURE

We’ll begin our adventure with a high-level
look at the architecture of a Linux appliance.
We’ll then drop a little lower in altitude and

look at a Linux appliance from the perspective of
processes. As you’'ll soon see, the view from this lower altitude matches the
organization and chapters used throughout this book.
In this chapter, we will cover the following:

e Uls and daemons

¢ The architecture of the Laddie appliance

We have worked on Linux appliances that range from small, handheld
devices to large, multi-gigabyte, multi-processor network servers. Most of
these appliances have a strikingly similar software architecture.

Figure 1-1 shows the software stack we typically see in a Linux appliance.
At the bottom of this stack is an embedded Linux kernel. Above the kernel
are the various user interfaces and common services such as network manage-
ment and logging, and at the top is the particular function that defines the
appliance.

No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

Where appliances are concerned, A Linux Appliance
the term wuser interface (UI) refers
to an interface through which

. Your Cod Defining Applicati
the user manages the appliance our-ode etining Application
configuration and views its sta- User Interfaces and
tus and statistics. The lack of a Code from This Book Common Services
screen and keyboard are hall-
marks of an appliance, but do Embedded Linux o

not let that fool you—all appli-
ances have Uls. To be sure, the
more invisible the Ul the better
the appliance, but the Ul is always there nonetheless. Also, network
appliances often have web, SNMP, and command line interfaces, while
consumer appliances have framebuffers and small, alphanumeric LCD
interfaces.

Figure 1-1: Linux appliance software stack

Uls and Daemons

Assuming that our Linux appliance will have multiple, simultaneous Uls, when
we look at the appliance from the point of view of running processes we get
an architecture something like that shown in Figure 1-2. The Ul programs
interact with the users to accept commands and configuration and to display
status and statistics. Daemons, on the other hand, interact with the hardware,
other daemons, and the Uls to provide the appliance’s defining service as
well as status and statistics.

Web Interfaces Daemons
Web Defining Application
Framebuffer Logging Daemon
Front Panel Event Handler
SNMP Security Monitor
Command Line Hardware Monitor

Figure 1-2: A common appliance architecture

Daemons

Daemons are background programs that are most often started just after
booting Linux. Daemons distinguish themselves in that they don’t have a
controlling terminal like programs started from the bash command line.
Let’s look at the kinds of daemons found on a typical appliance.

2 Chapter 1
No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

Defining Application

The defining application in the diagram refers to the daemon that provides the
unique function offered by the appliance. For example, the defining applica-
tion for an advanced telephone answering machine is the daemon that actually
answers the phone and records the call.

Logging Daemon

The logging daemon shown in Figure 1-2 collects log messages and either saves
them to disk or routes them to another host on the network. The syslog
daemon is the default logging daemon on most Linux systems.

Event Handler

The event handler provides a local, active response to events. Often the logging
daemon and the event-handling daemon are one in the same, as they are in
the logmuxd daemon that runs on our sample appliance.

Security Monitor

The security monitor controls access to critical configuration or resources, such
as identification and authentication credentials. The security monitor should
also respond to Mandatory Access Control (MAC) violations.

Hardware Monitor

The hardware monitor watches for temperature alarms and disk drive problems.
Most PC-based Linux appliances will use the 1m_sensors package to monitor
CPU and motherboard sensors and the smartd daemon to monitor the
temperature and error statistics on hard disks. A hardware monitor might
combine the information from these and other sources into a comprehensive
report of the health of the appliance.

User Interfaces

When we first started building Linux appliances we thought that the nature
of the appliance defined the type of UI it would have. Boy, were we wrong.
Customers always ask for more than one way to manage the device. Smart-
phones need a framebuffer interface and a web interface over Bluetooth.
Network appliances need a web interface and an SNMP interface. When
you look at Figure 1-2, don’t think “Which one?” Think “How many?”

The Uls depicted in Figure 1-2 are not the only possible choices. For
example, you might want an interface that runs natively on a Windows PC,
or if you’re building a network appliance, you may want to add interfaces to
an LDAP or RADIUS authentication server or to the network’s billing system
and database. Figure 1-2 shows the most common Uls and the ones described
in the book.

Appliance Architecture 3

No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce

www.it-ebooks.info

http://www.it-ebooks.info/

4

Chapter 1

Web Interface

A web interface is mandatory if your appliance has a network interface. You'll
have a lot to decide here: Do you use JavaScript or not? Is the back end
written in Perl, PHP, C, or Java? Which do you use? Do you presume that all
browsers support cascading style sheets? Chapter 8 on web Uls will help you
evaluate the trade-offs for all these issues.

Framebuffer Interface

Framebuffer interfaces are popular for television set-top boxes, such as TiVo
or a PVR, stand-alone kiosks, and some handheld devices. The hardware
in a framebuffer gives you direct control over each pixel on the screen. This
gives you great flexibility in what your interface looks like, but at the cost of
burdening you with managing every pixel on the screen. Some libraries and
graphics toolsets, such as the Simple DirectMedia Layer (SDL) can help.
The art in building a framebuffer interface is in choosing the right toolset.

Front Panel

Front panel interfaces, whether simple or complex, appear on almost all Linux
appliances. A simple front panel might have only a few lights and buttons,

while a more complex one might have an alphanumeric liquid crystal display
(LCD) or a vacuum florescent display. Even a simple front panel may require
a deep understanding of the underlying hardware.

SNMP Interface

We have heard it said that an SNMP interface makes the difference between a
commercially viable network appliance and a hobby. From our experience
we’d have to agree. SNMP is not too difficult if you break it into pieces. First,
you need to familiarize yourself with the concepts used in SNMP and with
the SNMP commands available in Linux. Then, you need to design a Man-
agement Information Base (MIB), or schema, for the data made visible by
your SNMP interface. Finally, you need to write the software that makes the
MIB available to the SNMP commands.

Command Line Interfaces

Command line interfaces (CLIs) are often used as the control interface of last
resort for network appliances. A CLI on a serial port remains available even
when the entire network is down. CLIs also find use as an appliance-specific
scripting language.

Interprocess Communication

Finally, you may have noticed the full-mesh interconnect of lines in Figure 1-2.
Don’tlet it intimidate you. Our point is that any Ul should be able to connect
to any daemon. This requirement dictates a lot of the features to look for in
the interprocess communication (IPC) mechanism used between the Uls
and the daemons. (We’ll have more to say about this in Chapter 2.)

No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce

www.it-ebooks.info

http://www.it-ebooks.info/

The Architecture of the Laddie Appliance

This book’s sample appliance is an alarm system that uses the input pins on a
parallel port for input from the alarm sensors. The Uls include web, command
line, LCD with a keypad, framebuffer with IR remote control, and SNMP.

The daemons on our appliance include the alarm system daemon and
one to respond to appliance events. We chose not to implement all of the
daemons shown in Figure 1-2 so that we could focus on describing how to
build and secure daemons in general.

Of course, our sample appliance includes ladd (the defining application),
an event handler, and a utility to make common Linux configuration files
visible using a protocol common to all the Uls.

Figure 1-3 shows the architecture of the Laddie appliance and maps the
UI, feature, or daemon to a chapter number or appendix so that you can see
how things will come together throughout the book.

(8) Web Interface % >| Configuration Files |(D)
(11,12, Q) Framebuffer ladd (5)
(9) Command Line Event Handler 6,7)
(10) Front Panel
(13-15, B) SNMP 23 A

Figure 1-3: A chapter map of the Laddie appliance

We’ve limited the functionality of our Uls to make them more useful as
tutorials. Only the web interface is full featured and representative of what a
real appliance might have.

Summary

Most Linux appliances have a common architecture: Linux on the bottom,
the defining application on top, and common services and Uls in the middle.
We discussed some of the reasons to include various daemons and Uls and
mapped this book’s chapters into an architecture diagram.

The next chapter looks at the API between the Uls and daemons, since
the chosen API impacts both Uls and daemons.

Appliance Architecture 5
No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

MANAGING DAEMONS

At their core, most appliances have an
application or daemon that performs the
defining function of the appliance, with one

or more user interfaces managing the core appli-
cation or daemon. Figure 2-1 shows a typical appliance
architecture that might already be similar to what you
have in mind for your appliance.

In the same way that the defining application is managed by user inter-
faces (Uls), the common services, such as a webserver or system logger, need
to be managed as well. Because the main application and most common
services are implemented as daemons, the problem of management comes
down to the problem of managing daemons. The focus of this chapter is how
best to manage daemons.

In this chapter, we’ll cover the following:

¢ Common approaches to managing daemons

¢ Control and status protocol

No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

8

Framebuffer
Interface

Web Defining
Interface Application

SNMP

Interface

Figure 2-1: Typical user interfaces to an application

Common Approaches to Managing Daemons

Chapter 2

By managing a daemon, we mean configuring the daemon, collecting statistics
from it, and being able to view its current status. Most Linux daemons use
ASCII text files for such communication, but there are other options for you
to consider when building your daemon. The next few sections will describe
various daemon-management methods and their pros and cons.

File-Based Management

Daemons are commonly managed or monitored through a few configuration
files that control their run-time parameters, status, and logging. For example,
the DHCP daemon, dhcpd, is controlled by the /etc/dhcpd.conf configura-
tion file; its status is displayed in /var/state/dhcp/dhcpd.leases; its start-up
scriptis in /etc/rc.d/init.d/dhcpd; and its logs are in /var/log/messages.
There is little uniformity, however, in how a daemon’s configuration is stored
or how its status is made available. Status and other state changes are often
logged using syslog(), but many applications use custom routines for logging
and store their log files in a non-standard format. Figure 2-2 shows the typical
flow of a daemon that uses files for configuration and management.

A file-based approach has the following limitations for appliances:

¢ There is no good way to get status or statistics from most running appli-
cations. While an application could write status and statistics to files, to
do so in real time (or anything close to real time) would probably be too
heavy a load on the CPU and filesystem.

¢ You need to be able to edit the configuration file, which is not always
easy on an appliance.

¢ To apply new settings, you usually have to restart a running daemon,
which may disrupt service and cause problems for users.

No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce

www.it-ebooks.info

http://www.it-ebooks.info/

Current Unix Model

/etc/service.conf

Running Application /etc/rc.d/init.d/service start

/var/logs/service.log

Figure 2-2: The most common way to manage a daemon

Despite the limitations of file-based interfaces, many applications use
them for Unix system administration, and they will probably remain popular.
If you are building a new application and you’ve chosen to use file-based
application management, consider using libini or an XML parsing library.
Also, applications like Webmin can help by offering a web front end that
allows you to display and edit many configuration files.

Keep in mind that very simple applications (including some daemons)
may never need run-time access to status, statistics, and configuration. There
might not be any reason to switch from the traditional .conf and .log file
approach of Unix. Itis up to you to decide which approach is best for your
particular application.

A Daemon-Based Web Interface

Another common approach to daemon management is to offer a web
interface directly from the daemon. For example, cupsd, the daemon for the
print spooler CUPS, provides its own web interface on TCP port 631. This
approach is viable for simple daemons, but it has two problems:

¢ You will need to maintain code in your daemon to support the HTTP
implementations in many different browsers.

¢ It can be difficult to add additional interfaces when they are required.

Case in point, we needed run-time access to status and configuration for
one of our projects, so we added a built-in web interface. What a coding night-
mare! It seemed to take forever to get all of the details of HTTP right and to

Managing Daemons 9

No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

make the resulting code compatible with all of the major web browsers. If you
decide to build a web interface directly into your daemon, do yourself a favor
and use an HTTP library like libhttpd from Hughes Technologies. Because
other coders, experts in HTTP, keep it up to date regarding the quirks of
various browsers, your maintenance will be much easier.

This same project also highlights the second problem. Once the web
interface was working, the customer requested we add an SNMP interface.
The fastest way to do this was to add SNMP directly to the daemon as we did
with the web interface. This addition put us well on the path to what we call
an “all-in-one” approach, which is described in the next section.

An All-in-One Approach

If you know that your users need to interact with your daemon while it is run-
ning, and if your running daemon needs more than one type of interface,
you might be tempted to add the necessary interfaces directly to the daemon.
Figure 2-3 shows a daemon that is not only trying to perform its real task but
is also trying to support multiple, simultaneous user interfaces.

All-in-One Approach

Port 80 Web ?
Interface |
UDP Port 141 SNMP A
_— P Daemon
Interface |
TCP Port 23 cu N
Interface T

Figure 2-3: Adding all the user interfaces directly to the daemon

We used a bundling approach like this in one of our early designs, but we
found that it created a lot of problems. Because only a few developers could
work on the appliance at a time, development became serial, so developers
had to code both the main daemon and all of the user interfaces. The tight
coupling between Ul and daemon made it more difficult to isolate changes to
one section of code. We were afraid that even simple user interface changes
might have side effects, so we made every change wait for the full regression
testing of a major release. The whole development and release cycle became
much slower.

Another problem with the all-in-one approach is performance. If all the
user interfaces run directly from the daemon, the daemon may spend all of
its CPU cycles in some possibly unimportant interface request while ignoring
the real work it needs to do.

10 Chapter 2
No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

Control and Status Protocols

One way to overcome the limitations of the approaches described above is
to use a protocol for control and status to separate the daemon from the
user interfaces. Figure 2-4 illustrates a daemon offering a single application
programming interface (API) to be used by all of the clients and user
interfaces.

One Protocol for Control and Status

Webserver ?
with cal |

SNMP

Agent -—————— Daemon

=]

Command Line /;
Interface |

Figure 2-4: Using one protocol between the daemon and user interfaces

A control and status protocol has several advantages over the
alternatives:

Reduced complexity for multiple user interfaces
A control and status protocol simplifies the user interface logic in the
daemon, since the daemon only needs to implement that protocol. The
user interfaces can be implemented independently using the languages
and tools appropriate to the interface. For example, a web interface
could be built with Apache and PHP, while an SNMP interface could be
built with Net-SNMP and C.

Access to the daemon while it is running
Users want access to an application while it is running in order to get sta-
tus, statistics, and run-time debugging information. A control and status
protocol can give you a competitive advantage over applications that are
limited to configuration file access only at startup and SIGHUP. You
might note that Microsoft users do not configure a daemon by editing a
file; they configure the daemon through the daemon itself. Therefore,
designing your daemon to be configured in this way can make it easier
for Microsoft users to migrate to your software.

Remote network access
Remote access can speed development and testing, since you can work
on the appliance from almost any networked workstation. Remote access
is useful to your customers who manage a large number of appliances
from a central operations management center. Furthermore, good
remote access will be required by your technical support staff to help
diagnose problems in the field.

Managing Daemons 11

No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

Parallel development
Decoupling the management user interfaces from the daemon means
that you can have two teams working on the project in parallel. Staffing
is easier because you can hire people with just the skills needed to develop
a specific piece of the project. Separating user interface developers and
daemon developers has another advantage: It forces you to think through
and define your daemon’s interface early in the development, when
changes are easiest to make.

Easy test scaffolding
Because the user interface is separate from the daemon, building a test
scaffold around each piece of code is a clean and easy process. Once you
build a scaffold, you can test even if all the pieces aren’t in place.

Improved security
Using a control and status protocol for your daemon can increase the
security of your appliance in two ways. First, the user interfaces need
not run with the same special privileges as the daemon, which means
that less code with special privileges is running at any given time.
Second, using a tightly defined protocol lets you focus on securing the
protocol and its API. This is much easier than securing, say, an all-in-one
approach.

A control and status protocol can use a serial connection, a Unix or TCP
socket, or file reads and writes, or it might be hidden in a library call. These
techniques are described later in this chapter. As a preview, consider the
following examples, which set a single bit called ¢ntl_pt.

AT commands ATS301=1

XML <xpc><centrl_pt><value>i</value></cntrl_pt></rpc>
Library call ret = set_cntl pt(1);

/proc echo 1 > /proc/sys/mydev/cntl_pt

SOL UPDATE my_table SET cntl pt = 1

Requirements for a Control and Status Protocol

If you design your own control and status protocol, you should judge your
design on the following criteria: its data model on client and daemon, its
re-use of existing protocols and software, the constraints it places on clients
and daemons, and the ease with which you can discover its system:

The data model
The control and status protocol should allow the client and daemon to
have the same data model. That is, if the daemon uses variables, struc-
tures, lists, and arrays, then the client on the other side of the control
and status protocol should also support variables, structures, lists, and
arrays. Having the same data models on both sides of the protocol can
make it easier to re-use code, and it helps programmers maintain a con-
sistent view of the problem they’re trying to solve.

12 Che pter 2
No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

Use existing standards and code
The control and status protocol should use existing software and stan-
dards whenever possible. You may be able to find developers who already
know the protocols and software, and existing protocols and software are
likely to have good documentation for the developers who need to learn
them. Using existing code is almost always a good idea, since less new
code means fewer new bugs.

Few constraints on the daemon and clients
Ideally, the protocol would place few constraints on how you design your
daemon and wouldn’t increase the daemon’s size. You should be able to
add the control and status protocol to your program with few changes to
the main source files. When retrofitting old programs with the control
and status protocol, you should be able to put the bulk of the new code
in separate source files, instead of interweaving the changes into the
main code base. Client binding for your protocol should be available for
all the major programming languages: at least Java and PHP for web
interfaces, and C and C++ for compiled code.

Discovery mechanism
We want to discover the information that is available from the appliance
without relying on documentation. For example, the 1s command dis-
covers which files are available in a Unix filesystem; the get-next operator
discovers what is in a SNMP MIB; and the system tables in a database
describe the database itself. In a similar way, we want a mechanism
whereby a user can discover what can be configured on an appliance
and what information is available from the appliance.

Common Control and Status Protocols

In our work we have developed several control and status protocols, which
we will describe in this section. As you’re reading, try to judge them in terms
of the four criteria presented in the previous section.

AT Commands

In our first control and status protocol, we used a variation of the Hayes AT
command set. The appliance we were working with was a radio modem, so
most of our customers were already familiar with that command set, making it
a logical choice. Our daemon listened for incoming TCP connections and
offered an AT command interpreter to accepted connections. Using TCP
gave us remote access for diagnostics and configuration.

We stored the system configuration as a list of AT commands. At system
startup the daemon would read the configuration file and run it through the
AT command interpreter. This approach meant that we did not need to add
code to process a different format for the configuration files. While XML
and INI are the standards in storing configuration, we did not want to add
code and complexity if we could easily avoid it.

Managing Daemons 13

No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

The AT command protocol had two limitations. First, we could not
conveniently access data arrays using the standard AT S-register syntax.
Second, client-side programmers had to write a lot of code to generate the
AT commands and parse the replies.

Extensible Markup Language

We used Extensible Markup Language (XML) as the control and status
format in a project to manage Juniper routers. Examples of XML protocols
include XML-RPC, SOAP, and JUNOScript. JUNOScript manages Juniper
routers through a telnet or SSH connection. It enables you to encode
commands in XML, and the router then replies with XML responses. For
example, a request for the running configuration looks like this:

<rpc>
<get-configuration/>
</rpc>

Prior to the availability of JUNOScript Juniper routers were configured via
a command-line interface (CLI). The advantages of XML over CLI become
apparent when you manage routers with a program rather than by hand
(especially if you have to write that program). It is easier to write code for
parsing XML responses than for parsing CLI responses. Other advantages of
XML include its flexibility in representing rich data and the availability of
software libraries for processing XML formats.

Exchanging XML data between a client and server requires the
addition of a transport protocol. You could use telnet or SSH, like
JUNOScript does, or you could use HTTP, as specified by the SOAP
and XML-RPC standards.

Typically, you would use a library to parse the XML on the server side,
and then marshal the parsed XML elements into the server’s internal data
structures. The code to map the XML to the internal data structures can be
complex and error prone, since the XML structure seldom maps directly
onto the data model used in the daemon.

If you build your control and status protocol using XML, you should
consider using the Simple API for XML (SAX). SAX uses an event-driven
model for processing the XML, and it is a better fit for the kinds of dialogs
found in a control and status protocol.

Library Calls

For another project, we used the popular technique of hiding the protocol
from the developer by wrapping it in the subroutines of an API. In this
case, the daemon and client programmers included shared object libraries in
their code, and neither dealt with the protocol directly. The library routines
in the API became the protocol as far as the developers were concerned. So
ubiquitous is this approach that many programmers cannot imagine an

14 Chapter 2
No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

alternative. They start a project with the assumption that they’ll build a
daemon and a library, and clients of the daemon must include the library
in order to talk to the daemon.

Our advice is to let other programmers write libraries and to avoid it
yourself. Most of the reasons for saying this distill down to minimizing the
number of lines of code you have to write and maintain. Hiding the protocol
in a library API does not remove the need to code the protocol and library.
You still need to think about which IPC to use and the actual protocol to use
over that IPC. Perhaps the biggest burden is writing and maintaining the
client-side libraries for all of the programming languages of interest—gone
are the days when you could write a C library and be done. You’ll want the
library available in Java and PHP for web interfaces, and in Perl and as a shell
command for scripts and testing. Few companies have all the experts on staff
that are needed to write and document these libraries, and fewer still have
the time to properly maintain and update the libraries after each revision
change.

We’ve gone the route of trying to write libraries for our daemons, and
one of the things we found was that we kept reinventing the wheel. Every
library, no matter how similar to the previous, was written for the daemon
at hand, so we had to write a different library for every daemon. While we
tried to re-use code, this process fell far short of ideal. How nice it would
have been to have just one library (and one underlying protocol) that we
could have used for all of our daemons.

Having one library per daemon is particularly problematic for embedded
systems, in that you may have to give up a lot of system RAM in order to load
all the libraries needed.

Structured Query Language

In an attempt to have just one control and status protocol for all of our
daemons, we tried Structured Query Language (SQL) text commands over
TCP and modeled the data in our daemon as tables in a database. The
daemon accepted a TCP connection and presented an SQL command line
interpreter to the client. This protocol allowed us to represent arrays (and
lists) in the control and status protocol, thus solving one of the limitations
of the AT command protocol. Figure 2-5 illustrates the basic idea.

User Interface Control and Daemon

SQL Client |—>2" __ _[saL Interpreter
SQL / TCpP I \

Web / CLI / SNMP

Table A Table B

Figure 2-5: SQL as a control and status protocol

Managing Daemons 15

No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce

www.it-ebooks.info

http://www.it-ebooks.info/

For example, a typical command over the TCP connection might be
the string:

SELECT Column_A FROM Table A

The command interpreter was then responsible for parsing the SQL
string and accessing the appropriate “table.” Table is in quotations because
the data in the daemon could be represented by arbitrary data structures,
and it was the responsibility of the SQL interpreter to make these arbitrary
data structures appear as tables to the client.

Similar to the AT control and status protocol, our configuration files
were stored as text files with SQL commands; this eliminated the need for
libraries to parse XML or INI files.

The best part of this approach was that the data in the daemon was already
stored as arrays of structs, so the shift to a “table” paradigm was trivially easy
for the programmers. The limitation of this protocol was the amount of code
that had to be developed on the user interface or client side. Because the
protocol was text based, we had to write client-side code to format and send
the request and to parse the response. This code had to be rewritten for each
programming language that the particular client was written in. In our case,
there was significant effort required because we developed a Windows C++
client, a Java client, a Mac OS 9 C client, and a Linux C client.

PostgreSQL

Our final control and status protocol overcomes the limitations of the
previous one. It is similar to our SQL protocol in that it models the
daemon’s data as tables in a database and it uses TCP or Unix sockets
between the daemon and the client. The difference is that instead of a
proprietary text-based protocol, it uses the PostgreSQL protocol. Using
PostgreSQL means we can use the client-side PostgreSQL binding for C,
Java, PHP, bash, and many others.

All of the hard work of offering up a daemon’s internal data structures as
database tables is handled by a library called Run-Time Access (RTA). We link
our daemons with the RTA library, and after the daemons tell RTA about our
tables, it offers them up as PostgreSQL database tables.

Although RTA uses PostgreSQL as the control and status protocol, it is not
a database. Rather, it uses a subset of the PostgreSQL protocol and client-side
bindings as a means of reading and writing memory variables in a running
daemon.

PostgreSQL and RTA have several advantages as a control and status
protocol. As mentioned, there are a number of PostgreSQL bindings already
available in various languages, including C, C++, Java, Perl, Tcl, and Python.
The availability of these bindings means that you will have less code to develop
on the Ul or client, so you are less constrained in how you write your Ul

16 Chapter 2
No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

clients. PostgreSQL has a liberal license and is exceptionally well documented,
and the system tables in RTA can be used as a way to browse the data offered
to the UI programs.

Security can be enhanced by using a Unix socket and setting the
ownership and read/write permissions carefully. Use SELinux and the
Linux Security Module for even more precise control over which programs
can connect to RTA on the daemon. Consider using Stunnel or SSH with
port forwarding for secure remote access.

While XML is popular, RTA and PostgreSQL have a few advantages over
it. PostgreSQL offers both a data exchange format and a transport protocol.
With RTA, you don’t need to marshal code to map the tree structure of XML
into the daemon’s internal data structures, so the RTA approach requires less
development than XML-based approaches. With RTA, the client can look
directly at the daemon’s internal memory variables, and this functionality
requires no additional development.

RTA is presented in greater detail in the next chapter, but a simple
example might show how RTA works as seen from the Ul client. Suppose
that the daemon has an array of the following structures:

struct Zone {
char zname[Z_NAME_LEN]; /* user edited string */
int zenabled; /* user edited value */
int zcount; /* transition count */

};

After telling RTA about the array (with rta_add_table()) you can use any
PostgreSQL-enabled client to read and write data in the array. If you use psql,
a PostgreSQL shell program, you can read the Zone table with the following
SELECT command:

psql -h localhost -p 8889
SELECT zname, zenabled FROM Zone;
zname | zenabled
_____________ +_____________________
Garage | 1
Front Door | 1
(2 rows)

This example shows a simple way to read variables from a running daemon.
There are some disadvantages to RTA. One is that the RTA library is
written in C, which means that you can’t use RTA if your server process
is written in another language—say, Java. Another disadvantage is that if
your appliance is composed of multiple daemons, you’ll need to develop
a management process to manage these daemons, while exposing only a
single management point to the clients. To be fair, this last disadvantage is
true of all control and status protocols.

Managing Daemons 17

No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

18

Summary

Chapter 2

In this chapter we discussed various ways to manage daemons. Simple
daemons can use files for all management, but we believe that for Linux
appliances with multiple user interfaces, a control and status protocol is
best. We described the reasons to use a control and status protocol and
presented some guidelines to follow if you decide to build your own.

In the next chapter we’ll show you how to incorporate RTA into a
daemon so that the client has access to the daemon’s status, configuration,
and statistics.

All of the examples used in the remainder of the book use PostgreSQL
and the RTA library as the management protocol between daemons and user
interfaces. Don’t be concerned if you choose not to use RTA, though. The
book is more about appliance design than using particular libraries.

No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce

www.it-ebooks.info

http://www.it-ebooks.info/

USING RUN-TIME ACCESS

This chapter gives you a practical intro-
duction to developing Linux appliances
with the RTA library. Consider this your

“Hello, world!” example. In this chapter, we’ll
discuss the following:

¢ RTA appliance architecture

e RTA daemon architecture

¢ Telling RTA about your columns and tables
¢ Building your first RTA program

o Alittle SQL

e Anintroduction to RTA’s built-in tables

e The RTA table editor

RTA Appliance Architecture
You may recall from the last chapter that there were several reasons to put a

well-defined protocol between the Ul programs and the daemon. A protocol

No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

20

offers reduced complexity in both the Ul and the daemon, gives access to the
daemon while it is running, lets you work on and test the Uls and daemon
independently, and helps improve security. The important requirements for
the protocol are that the protocol’s data model matches your view of the
data, that you don’t have to define or write the protocol yourself, and that
the protocol will be available for most UI programming languages.

The data model we use in this book is that of a database. Because we
view our arrays of structures as tables of data, the Ul programs (or clients)
see the data in the daemon as data in a database. While the Ul programs
think they are dealing with a PostgreSQL database, they are, in fact, talking to
the daemon. This arrangement results in an appliance architecture similar to
that shown in Figure 3-1, in which a framebuffer UI uses the PostgreSQL C
language binding in libpg.so; the web UI uses the PostgreSQL PHP binding
in pgsql.so; and the test and debug Ul uses the command line program psql.

Framebuffer | Your C/C++ | §
Interface Code =
Daemon
[0
Web | 5 o | & R Your C/C++
S T = ‘8) e S— T
Interface 2| *|ee A Code

Test and Debug

Interface psql

Figure 3-1: A sample appliance using RTA

After connecting to the daemon over a Unix or TCP socket, the Uls
shown in Figure 3-1 can display the configuration, status, and statistics avail-
able in the daemon. The librtadb.so library presents the daemon’s data as if
it were coming from a PostgreSQL database. This figure shows the PostgreSQL
client-side binding that we use in this book, but many more language bindings
are available including Java, Python, Tcl, Perl, and Microsoft C++.

Figure 3-1 offers a global view of the appliance. Now let’s look at how
RTA works inside the daemon.

RTA Daemon Architecture

Chapter 3

Adding RTA to your daemon is fairly straightforward, since it usually involves
using only two routines from the library. The first routine, rta_add_table(),
makes one of your daemon’s tables visible to the clients. The second routine,
dbcommand(), handles the protocol and SQL commands from the clients.
Figure 3-2 illustrates a daemon offering RTA access to two Ul-visible tables.

No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce

www.it-ebooks.info

http://www.it-ebooks.info/

Table A

rta_add_table() Table B
dbcommand ()
Unix/TCP \ Y
Socket <+—t—————=| RTALibrary

to Uls

Your Daemon

Figure 3-2: A daemon using RTA

The dbcommand() routine does not communicate directly with the client.
Your program must create a listening TCP or Unix socket and must be able
to accept and manage connections from the UI or other clients. Once a con-
nection is established, all data from the connection should be passed to RTA
with a call to dbcommand(). The dbcommand() routine parses the SQL command
in the request from the client; if the request is valid, it executes the SQL
command and returns a buffer with any data to be sent back to the client.

RTA would be of limited usefulness if all it could do was read and write
values in your tables. Its real power lies in its ability to call a routine when-
ever a Ul reads or writes a value into one of your tables. These read and
write callbacks are similar to traditional database triggers. Callbacks are tied
to the column definition and are specified separately for reads and writes.
(We describe callbacks in the more detail in the next section.)

Telling RTA About Your Columns and Tables

A table is an array or linked list of data structures. Each member of your data
structure is considered to be a column in a table, and each instance of the
data structure is considered to be a row. From this point on, when you see
the term column, think member of my data structure. In order to make a table
visible to clients, you need to describe the table in a way that RTA can
understand. This means describing the table as a whole and then describing
each column in the table.

A TBLDEF structure describes the table as a whole; it contains a
pointer to an array of column definitions with a COLDEF structure to
define each column in your data table. At first you may find the process of
creating COLDEFs and TBLDEFs painstaking and tedious, but once you
have a little experience, you’'ll find it simple and mechanical.

Using Run-Time Access 21
No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

Columns

One big advantage of RTA is that you don’t need to marshal the data into
and out of the protocol. RTA uses your data as it already exists in your pro-
gram. Of course, you have to describe your data so that RTA can access it
intelligently. A table is made up of columns, and we need to describe each
column in the table. This is the purpose of RTA’s COLDEF data structure.

You can also have members in your data structure that are not defined
by a COLDEF. Such hidden columns might include information that you do
not want to be visible to the Uls, or binary data that would have no meaning
if it was displayed to the user.

A COLDEF contains nine pieces of information about each of your
structure’s members.

typedef struct {

char *table; // name of column's table
char *name; // name of column for SOL requests
int type; // data type of column
int length; // width of column in bytes
int offset; // number of bytes from start of row
int flags; // flags for read-only and save-to-file
void (*readcb) (); // routine to call before reading column
int (*writecb) (); // routine to call after writing column
char *help; // description of the column
} COLDEF;
table
The table field specifies the name of the table as seen from the UI
programs.
name

The name field specifies the name of the column. Use this name when
selecting or updating this column.

type
The type of the column is used for syntax checking and for SQL SELECT
output formatting. The currently defined types include:

RTA_STR // string, (char *)

RTA_PTR // generic pointer (void *)

RTA_INT // integer (compiler native int)
RTA_LONG // long (actually a gcc 'long long')
RTA_FLOAT // floating point number

RTA_PSTR // pointer to string

RTA_PINT // pointer to integer

RTA_PLONG // pointer to long

RTA_PFLOAT // pointer to float

22 cCha pter 3
No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

length
RTA uses the native compiler data types in order to match the data types
you use in your structures. The length member is ignored for integers,
longs, floats, and their associated pointer types, but it has meaning for
strings and pointers to strings, both of which should report the number
of bytes in the string (including the terminating null).

offset
The offset is the number of bytes from the start of the data structure to
the structure member being described. For example, a table using a data
structure with an int, a 20-character string, and a long would have the
offset to the long set to 24 (assuming it was a 4-byte int).

Computing the offset of a structure member is painstaking and

error prone. The gcc compiler suite provides the offsetof() macro to
automatically compute the offset of the structure member.

flags
A column has two binary attributes that are specified by the flags mem-
ber. The first attribute specifies whether the column can be overwritten
or if it is read-only. Statistics are often marked as read-only. An error is
generated if a column marked as read-only is the subject in an UPDATE
statement. The #define for this attribute is RTA_READONLY.

The second attribute specifies whether or not values written to this
column should be saved in a configuration file associated with the table.
Values that should persist from one invocation of the program to the
next should be marked with the #define RTA_DISKSAVE attribute.

The flags field is the bitwise OR of RTA_DISKSAVE and RTA_READONLY.

readchb()
If defined, the read callback routine, readcb(), is called every time the
column’s value is used. This is handy for values that take lots of CPU
cycles to compute but that are used infrequently. A read callback is
invoked each time the column is referenced—if your SQL statement
uses the column name twice, the read callback is called twice.

The read callback is passed five parameters: the table name, the
column name, the text of the SQL request, a pointer to the row affected,
and the zero-indexed row number. A function prototype for a read
callback is shown below.

int readcb(char *tbl, char *col, char *sql, void *pr, int rowid);

A read callback returns zero on success and an error code if an error
occurred in the callback. (See Appendix A for a list of the error codes
and more details on callbacks.) Check the return value in your clients in
order to enhance reliability and security.

Using Run-Time Access 23
No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

writecb()
Write callbacks can be the real engine driving your application. If defined,
the write callback, writecb(), is called after all columns in an UPDATE
have been changed. Consider the following SQL command:

UPDATE ifcfg SET addr="192.168.1.1", mask = "255.255.255.0";

If there is a write callback on addr, it will be called after both addr and
mask have been updated. RTA does the write callback after all the fields
have updated in order to help maintain consistency.

Write callbacks are passed six parameters: the table name, the column
name, the text of the UPDATE statement, a pointer to the row affected,
the zero-indexed row number, and a pointer to a copy of the row before
any changes were made. (This last parameter is useful when you want to
know both the old and new values for the row.) The copy of the old row is
in dynamically allocated memory, which is freed after the write callback
returns. A function prototype for a write callback is shown below.

int writecb(char *tbl, char *col, char *sql, void *pr, int rowid, void
*poldrow);

The write callback returns zero on success and nonzero on failure.
On failure, the row is restored to its initial value and an SQL error,
TRIGGERED ACTION EXCEPTION, is returned to the client. Write callbacks
allow you to enforce consistency and can provide security checks for
your system.

help
Your help text for the column should include a description of how the
column is used, any limits or constraints on the column, and the side
effects caused by any read or write callbacks. (Give yourself and your
fellow developers meaningful help text for your columns to make it
easier to maintain and troubleshoot your code.)

Tables

You tell RTA about each of your tables with a call to the RTA routine
rta_add_table(). The single parameter to rta_add_table() is a pointer to a
TBLDEF structure that describes the table.

The TBLDEF structure uses 10 pieces of information to describe your
table. The most critical of these are the name of the table, the start address of
the array of structures, the width of each structure (that is, the width of each
row), the number of rows, and a pointer to an array of COLDEF structures
that describe the columns in the table. Most of the fields in the TBLDEF
structure should be self-explanatory.

typedef struct {
char *name; // the SQL name of the table
void *address; // location in memory of the table

24 Chapter 3
No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

int rowlen; // number of bytes in each row

int nIows; // number of rows
void *(*iterator) (void *cur_row, void *it_info, int rowid);
void *it_info; // transparent data for the iterator call
COLDEF *cols; // an array of column definitions
int ncol; // number of columns
char *savefile; // save table in this file
char *help; // a description of the table
} TBLDEF;
savefile

The need to save configuration data from one boot of the appliance to
the next is so common that the authors of RTA included the ability to
automatically save table data in a file when the data is updated. There is
one file per table, and the name of the file is specified in the TBLDEF
structure as the savefile string. You can mark the columns to save by
adding the RTA_DISKSAVE flag to the column definition.

The save file contains a list of UPDATE statements, one for each row
in the table. The save file is read from the disk and applied to the table
when you initialize the table with the rta_add_table() call. The combina-
tion of RTA_DISKSAVE on a column and a savefile for the table eliminates
the need to parse XML or INI files to get initial or saved configuration
values. Of course, you can use XML or INI if you prefer to—just set the
savefile pointer to a null.

iterator
An iteratoris a subroutine in your code that steps through a linked list or
other arrangement of the rows in your table. The iterator lets you treat a
linked list, a B-tree, or just about any other scheme for organizing data as
if the data was in a table.

The iterator function is called with three parameters: a pointer to
the current row, the void pointer it_info from the TBLDEF, and the
zero-indexed row number. The function returns a pointer to the next
row. When RTA asks for the first row, the current row pointer is NULL, and
the desired row index is zero. The function should return a NULL when
RTA asks for the row after the last row in the list. If an iterator is defined,
the address and nrows members in the TBLDEF are ignored. Here is its
function prototype.

void iterator(void *cur_row, void *it_info, int rowid);

There is one caveat when using iterator functions: Loading a save
file may fail if you have not already allocated all the links in the linked
list. (Remember, the save file is a list of UPDATE statements and expects
the rows to already exist.) Fortunately, there is a simple way around this
problem. Always keep one unused row available, and when that row is
written by an UPDATE statement, have a write callback allocate another
row so that you can stay one step ahead of the UPDATEs. The logmuxd
program presented in Chapter 7 uses this technique.

Using Run-Time Access 25
No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

26

Building Your First RTA Program

Now we’ll look at how to use RTA to expose a table inside a running program.
The five basic steps for doing so are:

Defining the problem.
Reviewing the code.
Installing RTA.
Building and linking.

otk 0 o=

Testing.

Defining the Problem

We want to expose the Ul program to an array of structures that contain a
user-editable string and two integers. One of the integers, zalarm, is set by the
user. The other, zcount, is incremented on each transition of zalarm from one
to zero or from zero to one. We print a message to the console each time a
transition occurs. The string, zname, is considered a configuration value and
is saved in a disk file whenever it is updated. Since zcount is a statistic, we
mark it as read-only. This sample problem is a precursor to the actual Laddie
appliance application presented in Chapter 5. The code presented below is
also available in the file myapp.c on this book’s companion CD.

Reviewing the Code

This code walk-through should give you an idea of what to expect in RTA-
enabled programs.

Includes, Defines, and Memory Allocation

First, we’ll look at the code:

/* A simple application to demonstrate the RTA package. */
/* Build with 'gcc myapp.c -lrtadb' */

#include <stdio.h>

#include <stdlib.h>

#include <stddef.h> /* for 'offsetof' */
#include <unistd.h> /* for 'read/write/close’ */
#include <sys/socket.h>

#include <netinet/in.h>

#include "/usr/local/include/rta.h"ludes string.h.

/* Forward references */
©® int zedgedetect(char *tbl, char *col, char *sql, void *pr,
int rowid, void *poldrow);
@ f#tdefine INSZ 500
#define OUTSZ 5000
#define Z NAME_LEN 20
® struct ZData {
char zname[Z_NAME_LEN]; /* user-edited string */
int zalarm; /* user-edited value */

Chapter 3
No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

int zcount;
b
O f#define ROW_COUNT 5

/* transition count of zalarm */

struct ZData zdata[ROW_COUNT];

The transitions of zalarm are detected in a write callback. Here, @ is the

forward reference for it.

We need to allocate buffers for the text of the SQL command from the
client and for the response returned to the client. At @ we are using 500 and
5,000 bytes, respectively. These values are chosen to hold the largest possible
SQL statement we expect to use and the largest possible result we expect to

get back.

The structure definition at @ is the heart of the application’s data. Each
instance of this data structure looks like a row in a database to the various Uls

and clients.

We see at @ that our table has five rows in it.

Column Definitions

Here is the array of COLDEFs that define the columns in our table. The
information in the COLDEFs is derived from the data structure we want to

make visible and from our problem statement.

COLDEF zcols[] = {

"User assigned name for this row. The names are
"saved to a disk file since they are part of the

the table name */

the column name */

it is a string */

number of bytes */

zname), /* location in struct */
flags: configuration data */
called before read */

called after write */

"configuration. Note that the maximum name length "

"is 20 characters, including the terminating NULL.

"A user read/write value. Print a message on all transitions

the table name */

the column name */

it is an integer */

number of bytes */

zalarm), /* location in struct */
no flags */

called before read */

called after write */

"from high-to-low or from low-to-high. Do not display anything "
"if a write does not cause a transition. A write callback "
"translates all nonzero values to a value of one."

{
"ztable", /*
"zname", /*
RTA_STR, /%
Z NAME_LEN, /*
offsetof(struct ZData,
RTA_DISKSAVE, /*
(int (*)()) o, %
(int (*)()) o, /%
b
{
"ztable", /*
"zalarm", /*
RTA_INT, /%
sizeof(int), /*
offsetof(struct ZData,
0, /*
(int (*)()) o, %
o zedgedetect, /*
b

Using Run-Time Access

No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

27

http://www.it-ebooks.info/

Note ® the definition of the zedgedetect write callback in the COLDEF
above. We do the transition detection of zalarm in this callback.

{
"ztable", /* the table name */
"zcount", /* the column name */
RTA_INT, /* it is an integer */
sizeof(int), /* number of bytes */
offsetof(struct ZData, zcount), /* location in struct */
RTA_READONLY, /* flags: a statistic */
(int (*)()) o, /* called before read */
(int (*)()) o, /* called after write */

"The number of transitions of zalarm. This is a"
"read-only statistic.”
1
I

Table Definition

In the TBLDEF we give the name of the table, its start address, the size of
each row, the number of rows, a pointer to the table of COLDEFs for this
table, and the number of columns in the table. The save file, /tmp/zsave.sql,
will be used to save the RTA_DISKSAVE columns, which, in this case, is only the
name column.

TBLDEF ztbl = {

"ztable", /* table name */

zdata, /* address of table */

sizeof(struct ZData), /* length of each row */

ROW_COUNT, /* number of rows */

(void *) NULL, /* linear array; no need for an iterator */
(void *) NULL, /* no iterator callback data either */
zcols, /* array of column defs */

sizeof(zcols) / sizeof(COLDEF),
/* the number of columns */
"/tmp/zsave.sql", /* Save config in /tmp directory */
"A sample table showing the use of column flags and write callbacks"

};

main() Routine

This is pretty standard code. We allocate our socket structures and other
local variables, then we initialize the table values and use rta_add_table()
to tell RTA about our table.

int main()

{
int i; /* a loop counter */
int srvfd; /* File Descriptor for our server socket */
int connfd; /* File Descriptor for conn to client */

struct sockaddr_in srvskt; /* server listen socket */
struct sockaddr_in cliskt; /* socket to the UI/DB client */

28 Chapter 3
No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

NOTE

socklen_t adrlen;

char inbuf[INSZ]; /* Buffer for incoming SOL commands */
char outbuf[OUTSZ]; /* response back to the client */

int incnt; /* SQL command input count */

int outcnt; /* SQL command output count */

int dbret; /* return value from SQL command */

/* init zdata */

for (i=0; i<ROW_COUNT; i++) {
zdata[i].zname[0] = (char) o;
zdata[i].zalarm 0;
zdata[i].zcount 0;

}

/* tell RTA it about zdata */

if (rta_add_table(&ztbl) != RTA_SUCCESS) {
fprintf(stderr, "Table definition error!\n");
exit(1);

Setting Up a Listening Socket

Remember that each Ul program treats our application as if it were a

PostgreSQL database, and we have to accept either Unix or TCP connections
from these clients. Therefore, as the final piece of initialization, we set up the

socket to listen for incoming client connections. Our program is listening on

TCP port 8888, so we need to tell our PostgreSQL clients to use this port.

The following code has some serious shortcomings (i.e., blocking 1/0, ignoring error

conditions, and making optimistic assumptions about socket I/0). Our goal, however,

is to make the code understandable by keeping it as short as possible.

/* We now need to open a socket to listen for incoming
* client connections. */
adrlen = sizeof (struct sockaddr_in);
(void) memset ((void *) &srvskt, 0, (size_t) adrlen);
srvskt.sin_family = AF_INET;
srvskt.sin_addr.s_addr = INADDR_ANY;
srvskt.sin_port = htons (8888);
srvfd = socket(AF_INET, SOCK_STREAM, 0); /* no error checks! */
bind(srvfd, (struct sockaddr *) &srvskt, adrlen);
listen (srvfd, 1);

/* Loop forever accepting client connections */
while (1) {
connfd = accept(srvfd, (struct sockaddr *) &cliskt, &adrlen);
if (connfd < 0) {
fprintf(stderr, "Error on socket/bind/listen/accept\n");
exit(1);
}
incnt = 0;
while (connfd >= 0) {

Using Run-Time Access

No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce

www.it-ebooks.info

29

http://www.it-ebooks.info/

(1] incnt = read(connfd, &inbuf[incnt], INSZ-incnt);
if (incnt <= 0) {
close(connfd);
connfd = -1;
}
outcnt = OUTSZ;drlen from int to socklen_t.

The @ read() call above uses blocking I/O. In a real application we would
want to accept the connection and use a select() or poll() to multiplex for us.
However, in this example we are trying keep the line count low.

dbcommand() Call

The following call is where the real work of RTA occurs. We pass the SQL
command read from the client into the RTA library which parses it, verifies
it, executes it, and fills outbuf with the result. We switch on the result of the
dbcommand() call to see if we should send the result back to the client or close
the connections. Under normal circumstances, the PostgreSQL client will do
an orderly close and the dbcommand() call will return RTA_CLOSE.

dbret = dbcommand(inbuf, &incnt, outbuf, &outcnt);
switch (dbret) {
case RTA_SUCCESS:
write(connfd, outbuf, (OUTSZ - outcnt));
incnt = 05
break;
case RTA_NOCMD:
break;
case RTA_CLOSE:
close(connfd);
connfd = -1;
break;
default:
break;

Write Callback

Here is the subroutine that is called after a UI/client program has set the
zalarm column. A typical SQL command for this update would be UPDATE
ztable SET zalarm = 0.

NOTE When first learning to use callbacks, you might want to add a print statement to the
callback to display the table, column, input SQL, and row number.

/* zedgedetect(), a write callback to print a message when
* the alarm structure member is set from zero to one or
* from one to zero. We also normalize zalarm to 0 or 1. */

30 Chapter 3
No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

NOTE

int zedgedetect(char *tbl, char *col, char *sql, void *pr,
int rowid, void *poldrow)
{

/* We detect an edge by seeing if the old value of
* zalarm is different from the new value. */

int oldalarm;

int newalarm;

/* normalize nonzero values to 1 */
if (((struct zData *) pr)->zalarm != 0) {
((struct zData *) pr)->zalarm = 1;

}

oldalarm = ((struct ZData *) poldrow)->zalarm;
newalarm = ((struct ZData *) pr)->zalarm;
if (oldalarm != newalarm) {

zdata[rowid].zcount++; /* increment counter */

printf("Transition from %d to %d in row %d\n",
oldalarm, newalarm, rowid);

}

A transition is detected by comparing the old value of zalarm with the
new value. Both old and new values of the row are passed into the routine as
parameters. We always return success in this example.

return(0); /* always succeeds */

As a reminder, if the write callback returns a nonzero value, the row affected is restored
to its old value and the client program receives an error resull from the SQL command
that it sent.

Installing RTA

You can find a copy of the RTA package on this book’s companion CD and
on the RTA project website (http://www.linuxappliancedesign.com). Check
the website for the latest version. The SQL parser in RTA is written using
yacc and lex, so your development system will need to have both installed if
you build RTA from its source code.

The default installation of RTA puts the .a and .so libraries into the
/usr/local/lib directory. If you do not want to use /usr/local/lib, you can
edit the makefile before performing the install.

Once you have downloaded the RTA package, extract the files and build
the library. The sample code below shows you how.

tar -xzf rta-X.Y.Z.tgz
cd rta-X.vY.zZ

cd src

make librtadb.so.2

make install

Using Run-Time Access 31

No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce

www.it-ebooks.info

http://www.it-ebooks.info/

Building and Linking

Now create a test directory under rta-X.Y.Z and copy myapp.c to it. Next,
build the application with this command:

gcc myapp.c -o myapp -L/usr/local/lib -lrtadb

To compile and run the application, we tell the system where to find the
RTA libraries at runtime. You can edit /etc/ld.so.conf and run ldconfig or
export the LD_LIBRARY_PATH environment variable. If the compile succeeded,
you should be able to run the application with these commands:

export LD_LIBRARY_PATH=/usr/local/lib
./myapp

That’s it! Your sample application should be up and running and ready
to respond to PostgreSQL requests.

Testing

In this section we assume you have installed PostgreSQL from your Linux
distribution or from the version included on this book’s companion CD, and
that the psql command is somewhere on your path. If all has gone well, you
should now have an application running which pretends to be a PostgreSQL
database server. Instead of a database, however, our sample application is
offering up its internal table for use by various PostgreSQL clients. The client
we will be using first is the command line tool, psql.

Assuming everything is in order, open another terminal window and
start psql, specifying the host and port of the database server as follows.
(Remember that we told our application to listen on port 8888.)

psql -h localhost -p 8888

PostgreSQL should respond with something like this:

Welcome to psql 8.1.5, the PostgreSQL interactive terminal.

Type: \copyright for distribution terms
\h for help with SQL commands
\? for help on internal slash commands
\g or terminate with semicolon to execute query
\q to quit

32 Chapter 3
No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

Let’s give psql a simple SQL command:

SELECT * FROM ztable;
zname | zalarm | zcount

If your SQL command did not display the above table, you need to
debug the RTA installation. The most common problem is a version
mismatch in the PostgreSQL protocol between the client and RTA. The
psql client may give a warning, but it is fairly forgiving of using a newer
client with an older server. This may be the case if you are using the very
latest psql client.

Check the RTA website to see if your version of RTA is compatible
with your version of PostgreSQL. If there is a mismatch, update either
RTA or PostgreSQL. This book’s companion CD contains versions of
the RTA and PostgreSQL libraries that are known to be compatible. You
can also do a netstat -natp to verify that the application is really listening
on port 8888.

Before dropping into the tutorial on SQL, let’s try a couple of commands
just to see how the application responds.

UPDATE ztable SET zalarm = 1;
UPDATE 5
#

This should cause a (ransition message to be printed on the console
where you started myapp. (Note that psql responds with the number of rows
changed, and because we did not specify which row to change, all five rows
were updated.)

Now issue the same command a second time.

UPDATE ztable SET zalarm = 1;
UPDATE 5
#

There should be no message printed to the console, since this time there
was no transition.

Using Run-Time Access 33

No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce

www.it-ebooks.info

http://www.it-ebooks.info/

Setting zalarm back to zero should cause a transition, and the count of
transitions should now be 2.

UPDATE ztable SET zalarm = 0;
UPDATE 5

SELECT * FROM ztable;

zname | zalarm | zcount

When you first started ./myapp, the saved table configuration file,
/tmp/zsave.sql, did not exist. Create it by doing an update on a column
that is marked as RTA_DISKSAVE.

UPDATE ztable SET zname = "row name";
UPDATE 5
#

You can verify the above by doing a cat on /tmp/zsave.sql. You should
see the following:

UPDATE ztable SET zname = "row name" LIMIT 1 OFFSET o
UPDATE ztable SET zname = "row name" LIMIT 1 OFFSET 1
UPDATE ztable SET zname = "row name" LIMIT 1 OFFSET 2
UPDATE ztable SET zname = "row name" LIMIT 1 OFFSET 3
UPDATE ztable SET zname = "row name" LIMIT 1 OFFSET 4

To conclude this section on RTA, let’s generate some errors and look at
the corresponding error messages.

UPDATE ztable SET zcount = 0;

ERROR: Can not update read-only column 'zcount'

UPDATE ztable SET zname = "abcdefghijklmnopqrstuvwxyz";
ERROR: String too long for 'zname'

#

A Little SQL

Structured Query Language is a standard way to manipulate data in a
database. RTA uses only two SQL commands: SELECT, to get data from a
table, and UPDATE, to write data to a table. The RTA syntax for SELECT
and UPDATE is a limited subset of the standard SQL syntax, with one minor
extension.

34 Chapter 3
No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

NOTE

SELECT

The SELECT statement reads values out of a table. The syntax for the RTA
SELECT statement is:

SELECT column_list FROM table [where_clause] [limit_clause]

The column_list is a comma-separated list of column names or a single
asterisk (*) to retrieve all columns. The variable table is the name of the table
you wish to examine. The where_clause specifies which rows to return, and the
limit_clause tells how many rows to return. Here are some simple examples.

SELECT * FROM ztable
select * from ztable
SELECT zcount, zname FROM ztable

You can specify the columns in any order, and you can ask for the same
column more than once.

The SQL parser recognizes the SQL reserved words in both upper- and lowercase letters.
We use uppercase in our examples to make the reserved words more visible.

Also, SQL does not require a semicolon at the end of the line, but the
psql command line tool does.

UPDATE

The UPDATE statement writes values into a table. The syntax for the RTA
UPDATE statement is:

UPDATE table SET update list [where_clause] [limit_clause]

The update_list is a comma-separated list of value assignments in the
following format:

column_name = value[, column_name = value...]

In the example above, value is a literal value. Let’s look at some more
examples.

UPDATE ztable SET zalarm = 44
UPDATE ztable SET zalarm = 0, zname
UPDATE ztable SET zalarm = 1, zname

Terminator
"Mr. Terminator"

Strings with spaces must be enclosed in either single or double quotes.
One kind of quote can be enclosed in the other kind of quote.

"Baker's Pride"
"Just say "no"'

UPDATE ztable SET zname
UPDATE ztable SET zname

Using Run-Time Access 35

No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce

www.it-ebooks.info

http://www.it-ebooks.info/

WHERE

A WHERE clause specifies which rows to select or update, based on the data
in the rows. WHERE might be the single biggest reason to use SQL. The
form of the WHERE clause is:

col_name rel op value [AND col_name rel op value ...]

The supported comparison operators are equality, inequality, greater
than, less than, greater than or equal to, and less than or equal to. Only
logical AND is available to link column comparisons, and value must refer to
a literal value. For example:

SELECT * FROM ztable WHERE zalarm != 0
UPDATE ztable SET zalarm = 1 WHERE zname = "Front Door"

Limit

The LIMIT clause can limit the number of rows selected to limit rows, and
can specify that the first OFFSET rows be ignored. The form of the LIMIT
clause is:

[LIMIT limit [OFFSET offset]]

Normal SQL does not support the idea of “give me only the third row,”
but this functionality is important if you’re trying to manage an embedded
application. The LIMIT and OFFSET clauses let you specify exactly how
many rows should be returned and how many candidate rows to ignore
before starting the read or write. If there is a WHERE clause, the offset
and limit apply only to the rows that match the WHERE conditions. For
example:

UPDATE ztable SET zname = "Front Door" LIMIT 2

UPDATE ztable SET zname = "Back Door" LIMIT 3 OFFSET 2
UPDATE ztable SET zalarm = 1 LIMIT 2 OFFSET 1

SELECT zname FROM ztable LIMIT 4

UPDATE ztable SET zname = "Garage" LIMIT 1 OFFSET 2
SELECT * FROM ztable WHERE zalarm = 1 LIMIT 1

NOTE A great way lo step through a table one row at a time is to set LIMIT to 1 and incre-
ment OFFSET from O up to one less than the number of rows.

You may remember that we said that we stored RTA_DISKSAVE columns in
the save file given in the table definition, and that we wanted to store the
configuration as SQL commands so that we could run it through the SQL
parser. You can see a good example of the LIMIT clause and of save files by
looking at /tmp/zsave.sql.

36 cha pter 3
No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

cat /tmp/zsave.sqgl

UPDATE ztable
UPDATE ztable
UPDATE ztable
UPDATE ztable
UPDATE ztable

SET
SET
SET
SET
SET

zname = "Front Door" LIMIT 1 OFFSET 0
zname = "Front Door" LIMIT 1 OFFSET 1
zname = "Garage" LIMIT 1 OFFSET 2

zname = "Back Door" LIMIT 1 OFFSET 3
zname = "Back Door" LIMIT 1 OFFSET 4

Real SQL purists reading this are probably pounding the table with their
shoe and shouting, “Where’s ORDER_BY and INSERT and DELETE .
.and ... ?” They are not there. Remember, RTA is not a database—lt is an
1nterface We only need SELECT and UPDATE.

Introduction to RTA’s Built-in Tables

and

The RTA library has several built-in tables. Appendix A has the full details, so
we will introduce them here. The first table has only one row.

rta_dbhg

The rta_dbg table lets you control how and what is logged. You can turn on
tracing of all SQL by setting trace to 1, and you can direct log messages to
neither, syslog, stderr, or both by setting target to 0, 1, 2, or 3, respectively.

You can also specify the priority, facility, and ident values for syslog(). From

psql we get:

select * from rta_dbg;
syserr | rtaerr | sqlerr | trace | target | priority | facility | ident

rta_stat

The rta_stat table holds statistics related to the calls into RTA. It contains
counts of the different types of errors, how many connections have been

opened into RTA, and the number of SELECTs and UPDATEs.

select * from rta_stat;

nsyserr | nrtaerr | nsqlerr | nauth | nselect | nupdate

Using Run-Time Access

No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce

www.it-ebooks.info

37

http://www.it-ebooks.info/

rta_tables

The rta_tables metatable is a collection of table definition structures. In order
to add a table into RTA, you had to fill in a data structure with a description
of your table. The collection of table definition structures is itself a table in
RTA. This is one of the RTA metatables.

select name, address, rowlen, nrows, ncol from rta_tables;

name | address | rowlen | nrows | ncol
------------- L e TN ST RSP SR
rta_tables | o | 40 | 5 | 10
rta_columns | 0 | 36 | 36 | 9
rta_dbg | 1073986432 | 48 | 1 | 8
rta_stat | 1073988768 | 48 | 1 | 6
ztable | 134517280 | 28 | 5 | 3
(5 rows)

The two RTA metatables have zero in the address field because they are
actually an array of pointers, so they use an iterator function. All of the
columns in the metatables are marked read-only, since all of the values are
set from the rta_add_table() call.

rta_columns

The rta_columns metatable is a collection of column definitions. All of the
column definitions from all of the tables are collected into the rta_columns
table. (The table actually holds pointers to the COLDEF structures.) We can
see what columns are in a table using the metatables and a WHERE clause.

SELECT table, name FROM rta_columns WHERE table = ztable;
table | name
________ fm e
ztable | zname
ztable | zalarm
ztable | zcount
(3 rows)

What do you suppose we would get if we combined the RTA metatables
with PHP? Read on.

The RTA Table Editor

The RTA package has a web/PHP-based utility called a table editor that
reads the RTA metatables and lets you view and edit any table in the system.
Figure 3-3 shows the screen that lets you choose which table to view or edit.
The screenshots in Figures 3-3, 3-4, and 3-5 were taken from our development
system while we were working on the myapp.c application. You can see a
similar screen by booting this book’s companion CD and using the browser

on another PC to view http://192.168.1.11/rta/rta_tables.php?port=8885.

38 Chapter 3
No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

. Elle Edit View Go Bockmerks Tools Window Help

ul q QQ Q I._Ig'nnp{ﬂncalhnsh'm_mm;pm

Table
Name

rta_tables

rta_columns

rta_dbg

rta_stat

ztable

rta Table Editor

Description

“The table of all tables in the system. This is a

pseudo table and not an array of structures like
other tables.

The list of all columns in all tables along with
their attributes.

Configure of debug logging. A callback on the
"target’ field closes and reopens syslog(). None of
the values in this table are saved to disk. If you
want non-default values you need to change the
rta source or do an SQL_string() to set the values
when you initialize your program.

Usage and error counts for the rta package.

A sample table showing column flags and write
callbacks

a0

Figure 3-3: The RTA Table Editor

Selecting a table from the top screen opens a web page with the contents

of the selected table. Figure 3-4 shows a display of the example program’s

ztable.

. Eile Edit View Go Bockmarks Tools Window Help

,0.0.0.0 5=

g|@

Ztable
zname |zalarm zcount
‘Front Door |0 0 (edit)
Back Door |0 0 (edit)
.Garage 0 0 (edit)
Refrigerator 0 0 (edit)
o 0 (edit)

EI=F a1

Figure 3-4: A sample table display

Using Run-Time Access
No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

39

http://www.it-ebooks.info/

You can select a row to edit from the table display. Figure 3-5 shows the
view after selecting row number 3.

Edit Row - Ne

| Ele Edi ¥iew Go Bookmarks Tools Window Hslp
, é
| \ [o ritp: _ediLphp port =] | @

Edit ztable, row 3

Column Value

Zname

User assigned name for this row. The names are saved to a
disk file since they are part of the configuration. Note that Garage

the maximum name length is 20 characters including the
terminating NULL.

zalarm

A user read/write value. Print a message on all transitions
from high-to-low or from low-to-high. Do not display i

anything if a write does not cause a transition. A write
callback translates all non-zero values to a value of one.

zcount

The count of the number of transitions of zalarm. Thisisa |[0

read-only statistic.

Submit Query

Bom S=E5l

Figure 3-5: A sample row edit screen

The RTA table editor has one HTML file and four PHP files that can be
put on any PHP-enabled webserver. In fact, the webserver does not even
need to run on the same machine as the application.

The HTML file contains a list of the RTA port numbers in use. You will
have a different port number for each RTA-enabled application that you run.
On our development machine, we have an HTML table with port numbers
and RTA application names that looks like this:

<table border=3 cellpadding=4 align=center width=60%>

<tr><th>App Name</th><th>Port Number</th></tr>

<tr><td>network</td>
<td>8884</td></tr>

<tr><td>rta2filed</td>
<td>8885¢/td></tr>

<tr><td>LCD</td>
<td>8886</td></tr>

<tr><td>Logmuxd</td>
<td>8887</td></tr>

<tr><td>LAD-D</td>
<td>8888</td></tr>

<tr><td>empd</td>
<td>8889</td></tr>

</table>

40 Chapter 3
No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

Summary

This chapter has presented the details of how to build your application using
RTA so that several different types of UI programs can manage it. You’ve
seen that you need to tell RTA about the data structures you want to make
visible by describing them with TBLDEFs and COLDEFs.

While all this may seem a little overwhelming at first, stick with it. After just
a little practice, you’ll find that writing TBLDEFs and COLDEFs is straight-
forward and mostly mechanical. The extra effort to add RTA to your daemon
is more than compensated by having run-time access to configuration, status,
and statistics.

Using Run-Time Access 41
No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

(_f.gL.‘?"o:\J

http://www.it-ebooks.info/

BUILDING AND SECURING
DAEMONS

At the heart of almost all Linux appliances
is one or more daemons, the background
programs that provide a network or system
service. You can get an idea of the daemons
available on your Linux system by looking in the /etc/
rc.d/init.d directory or by using the ps ax command to
show the daemons you have running on your system.

The term daemon refers to a program that runs in the background without
a controlling terminal. Daemons also run in their own process group in order
to avoid inadvertently receiving signals meant for other processes. A daemon
usually redirects standard input, output, and error to /dev/null or to alog file.
Many daemons use a Process ID file (or pidfile) to enforce mutual exclusion
to a resource; this prevents more than one copy of the daemon from running
at the same time.

No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

This chapter shows you how to build and secure the daemons you’ll be
using in your appliances. It’s divided into three main sections.

e How to Build a Daemon
e How to Secure a Daemon

¢ A Prototype Daemon

How to Build a Daemon

This section shows you how to build a daemon and offers a brief explanation
of why each step is needed. Your application may not require all of the steps
listed, and you may need to do them in a different order to meet your needs,
but this will give you a general idea, nonetheless.

Load the configuration.

Go into the background.

Become the process and session leader.
Set the working directory.

Redirect stdin, stdout, and stderr.

Set up logging.

Set group IDs and user IDs.

Check for a pidfile.

Set the umask.

© P N o Otk N

10. Set up signal handlers.

NOTE The sample daemon presented later in this chapter includes code for each of these steps.
Some of the following sections use code taken from the sample daemon.

Load the Daemon’s Configuration

When a daemon starts, it needs to load a set of parameters that govern its
operation. This usually means parsing options on the command line and
reading settings from a configuration file.

The command line used to start the daemon often contains entries such
as the location of the configuration file, the user and group IDs to use while
running, and whether or not the program should become a daemon or stay
as a foreground process. Some daemons let you specify the daemon’s work-
ing directory as well as whether or not to do a chroot() before starting.

There is a precedence to the configuration information. Specifically,
compiled-in values are always loaded first, since they are loaded when the
program starts. Next, the configuration values from the configuration file
are loaded, overwriting the compiled-in values. Finally, the values from the
command line are loaded, overwriting the values from the configuration file.

Compiled-in values should focus more on security than functionality,
since an attacker might delete or modify the configuration file as part of a

M4 cha pter 4
No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

NOTE

break in. As a security precaution, some daemons refuse to run if they cannot
open and load a configuration file.

Since the configuration file is often specified on the command line,
your program may need to make two passes through it: once to get the
configuration file and a second time to parse the command line again after
the configuration file has been loaded. Parameters on the command line
are often used while debugging, so their values normally override those in
the configuration file.

Make sure your program does a sanity check by verifying the consistency of the configu-
ration and that it reports errors or exits if any problems are found.

Go into the Background

Once the configuration is loaded, the next step is for the process to
(optionally) go into the background, where it can detach itself from the
controlling terminal. This is achieved by calling the fork() function to
create a child process. The parent process should exit after the fork.

In order to go into the background, the child process closes the file
descriptors of the controlling terminal. The result is that we have a
background process that is not attached to a controlling terminal.

Your code mightlook like this example in which the parent process forks
and exits, leaving the child process to continue setting up the daemon:

pid_t dpid; //daemon PID

dpid = fork();

if (dpid <o) // Error ?
exit(-1);

if (dpid > 0) // Parent?
exit(0);

// we are the child and continue setting up the daemon

There are two times when you should not send your process into the
background: when debugging (since you want your terminal to remain the
controlling terminal for the program so that you see any diagnostic messages
and can kill the program if you need to), and when you want to automatically
respawn your program if it dies. In the latter case, the daemon should remain
in the foreground so that the parent process will receive control when the
daemon exits (whether gracefully or due to some error).

The following example shell script shows how you can automatically
respawn a daemon.

#!/bin/sh
while true
do
mydaemon
logger "Restarting mydaemon"
done

Building and Securing Daemons 45

No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce

www.it-ebooks.info

http://www.it-ebooks.info/

46

Chapter 4

Two common alternatives to a shell script monitor are to add your
daemon to /etc/inittab and let the init process respawn it, or to write a
custom monitor program to respawn the various daemons on the appliance.
The /etc/inittab approach might save memory and a few entries in the
process table, and you don’t need to write any new software. The script to
respawn mydaemon could be replaced with a single line in /etc/inittab. If the
default runlevel is 3, the line might appear as:

ap:3:respawn:/usr/local/bin/mydaemon

The word respawn tells the init program to restart mydaemon if it dies.

Become the Process and Session Leader

The Linux kernel assigns each process to a process group and to a session,
both of which are used in the distribution of signals. In a session, all the
processes are typically started from an xterm window or from a virtual con-
sole login. In a process group, all the processes are started in a command-line
pipe. Each session has only one process group that receives input from the
controlling terminal; that process group is called the foreground process group.

For example, open an xterm or log in to a virtual console, and enter
these commands:

cat | sort | uniq | tr a d &
cat | sort | uniq | tr a d

From another xterm or console, the output of ps xj might appear as:

PPID PID PGID SID TTY TPGID STAT UID TIME COMMAND
2501 2504 2504 2504 pts/2 5331 S 501 0:00 bash
2504 5327 5327 2504 pts/2 5331 T 501 0:00 cat
2504 5328 5327 2504 pts/2 5331 S 501 0:00 sort
2504 5329 5327 2504 pts/2 5331 S 501 0:00 uniq
2504 5330 5327 2504 pts/2 5331 S 501 0:00 tr a d
2504 5331 5331 2504 pts/2 5331 S 501 0:00 cat
2504 5332 5331 2504 pts/2 5331 S 501 0:00 sort
2504 5333 5331 2504 pts/2 5331 S 501 0:00 uniq
2504 5334 5331 2504 pts/2 5331 S 501 0:00 tr a d

All of the processes from the first command line will appear in a process
group with @ the cat process (PID 5327 in the above example) as the process
leader.

Now look at the Process Group ID (PGID) column in the output of ps xj.
All of the programs on each command line have the PGID set to the PID of
the cat command that starts the command line. All the commands for the first
line have a PGID of 5327, and all the commands for the second line have a
PGID of 5331. The second command (@), the one you did not put into the
background, is the foreground process group for the session, so its PID
(5331) is the Session Group ID (TPGID) for all of the processes running in

No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce

www.it-ebooks.info

http://www.it-ebooks.info/

NOTE

the xterm session. Recall that the session leader (5331 in this example) is the
process that gets standard input from the terminal (hence the term Terminal
Process Group ID, TPGID).

The reason for having separate IDs for the process group and session is
that if you kill a process group, you want the kernel to send the TERM signal
to all of the processes in the group. The same is true if you want to kill the
processes in a session.

We don’t want a daemon to receive signals that were not meant for it,
and so we want the daemon to be in its own session and its own process
group. Here is code that shows how to use setsid() to make your daemon
a session and process group leader:

pid_t dpid; // setsid() return our PID or a -1

dpid = setsid(); // Be session & process group leader
if (dpid <o)
exit(1); // Should not happen

As an exercise, you might try typing the ps jax command and examining
the sessions, process groups, and foreground process groups for the daemons
running on your system. You should be able to tell which processes belong to
the different session and process groups.

As a security precaution, do another fork() after calling setsid() and have the
parent exit immediately, leaving the child to continue as the daemon. This removes
the session leader status of the daemon in such a way that it can never regain a
controlling terminal.

Set the Working Directory

Daemons traditionally use the root directory, /, as the working directory. This
allows the daemon to continue working even if most other filesystems are
unmounted. Using the root directory also makes it easier to put your daemon
into a chroot jail for added security. (Chroot jails are described in “Chroot if
Possible” on page 59.)

Some daemons let you specify the working directory in the configuration
file or on the command line. Whether you use the root directory, the /tmp
directory, or a value from the configuration file, you should be deliberate in
specifying the working directory of your daemon.

Use chdir() to set the working directory of your daemon.

Redirect stdin, stdout, and stderr

To remove itself from the controlling terminal, a daemon redirects the
stdin, stdout, and stderr file descriptors by closing and then reopening
them (usually to the /dev/null device). A daemon inherits all of the
open file descriptors of the parent. For this reason, many daemons loop

Building and Securing Daemons 47

No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce

www.it-ebooks.info

http://www.it-ebooks.info/

through all possible file descriptors and close each one. You can get the
maximum number of file descriptors from OPEN_MAX at compile time or
from mx = getdtablesize(); at run time.

Once you've closed all open files, it is good practice to reopen stdin,
stdout, and stderr; some libraries write to stderr, and therefore stderr should
be initialized with a valid file descriptor. Instead of using /dev/null, some
daemons open a log file as stderr.

The following code redirects these three file descriptors by closing them
and then reopening them to the /dev/null device. The code also closes all
file descriptors up to the maximum returned from getdtablesize().

int mx; // maximum file descriptor
int i; // loop index
int fdo, fd1, fd2; // New FDs for STDIN, OUT and ERR
if (!debug_mode) { // Close IN,OUT,ERR if not in debug
close(0);
close(1);
close(2);

// Reopen them pointing to /dev/null.
fdo = open("/dev/null", (0 RDONLY | O _NOCTTY | O NOFOLLOW);
fd1 = open("/dev/null", (0 WRONLY | O _NOCTTY | O_NOFOLLOW);
fd2 = open("/dev/null", (0 WRONLY | O_NOCTTY | O_NOFOLLOW);
if (fdo != 0 || fd1 !=1 || fd2 1= 2) {

LOG(LOG_ERR, CF, E_NoSTDIO);

exit(-1); // die on errors

}

}
mx = getdtablesize(); // get max # open files

for (i=3; i<mx; i++) {
close(i); // Make sure inherited FDs are closed
}

Set Up Logging

Your daemon should report errors and other events of interest. While you
are working on the daemon, you will want to see debugging information, and
you may want to record your daemon’s activity when it is in operation.
Logging can fill all of these needs.

The three common destinations for log messages are syslog, stderr, and a
log file. It is fairly common to see debugging information directed to stderr,
errors directed to syslog, and activity logs put into files.

NOTE Ifyou save log files to a local disk, you should probably run crond and have logrotate
delete old log files. Be sure to add any custom log files to logrotate’s configuration.

If you’re building a network appliance, you may want to send both errors
and usage logs to syslog, then configure syslog to send log messages to a log
host on the network instead of saving them in local disk files. This helps
minimize your appliance’s disk requirements and, since all log message are
saved on one host, makes it easier to analyze the messages.

48 cha pter 4
No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

Many daemons let you set the verbosity of debug logging with a parameter
on the command line. For example, typing -d 5 might turn on debugging
output with a verbosity level of 5.

There is no standard meaning for the debug levels in Linux. Some
daemons have a simple on/off option, while others use a level between 0 and
9. Some daemons let you turn debugging on and off while the program is
running by sending it SIGUSRI and SIGUSR? signals, and some daemons
read the debug level from the configuration file.

On a large project with several developers, you may want to have
separate debug levels for different parts of the code so that each developer
can independently control the logging in his or her code. It is also nice if
you can set the debug levels while the program is running. (Chapter 6
covers logging in greater detail, and shows how we use RTA to modify
debug levels at run time.)

Set Group and User IDs

Many daemons start from inittab or from the rc scripts at boot time; others
are started by cron. Thus, most daemons start with a root user ID, which
presents a security risk if the program is ever compromised.

To limit possible damage if the program is compromised, many
daemons drop root privileges as soon as possible. For example, a webserver
might drop root privileges as soon as it has bound to TCP port 80.

Likewise, your daemon should drop root privileges if at all possible.
But if not root, which user IDs and group IDs should you use? Many appli-
cations create their own users and groups. (A quick look at /etc/passwd
and /etc/group confirms this.) If you decide to create a user for your daemon,
try to keep the user shell as /bin/nologin. Your daemon can get the user IDs
and group IDs from the configuration file or from the command line.

You can drop root privileges and become another user by using the
setuid() system call. Other routines that can change the user ID include
seteuid() and setreuid(), which set both the real and effective user IDs. Your
needs should dictate which of these to use.

The following code from our sample daemon @ gets the user ID (UID)
name from Config[], a global configuration table, and calls @ getpwnam() to
convert the name to a numeric UID. A call to ® setuid() sets the UID for
the daemon. Our routine to set the group ID (GID) is similar, using setgid()
instead of setuid(). (The LOG macro is explained later.)

void do_set_uid(){
struct passwd *ppw; // pointer to passwd struct
int uid; // UID as an integer

/* The UID in the Config table is a string and may contain
either a number or a user name. We test for a numeric
value by trying a to-int conversion. If that fails we
do a passwd file look up on the name. */

® if (sscanf(Config[ED_WORKING].uid, "%d", &uid) != 1) {
2] ppw = getpwnam(Config[ED_WORKING].uid);

Building and Securing Daemons 49

No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

if (‘ppw) {
LOG(LOG_ERR, CF, E_NoUser, Config[ED WORKING].uid);
exit(-1); // die on errors

}

uid = ppw->pw_uid;

/* Got a numeric UID. Set it */
® if (setuid(uid) != 0) {
LOG(LOG_ERR, CF, E Bad uid, Config[ED WORKING].uid);
// There was a problem setting the UID. Die on errors, so ...
exit(-1);
}
}

Check for a pidfile

Many daemons require exclusive access to the computer’s resources, such as
a TCP port or a printer. In these cases, there should not be two instances of
the daemon running, as both instances cannot have exclusive access to a
resource. The most common way to reserve access is through the use of a
pidfile.

The pidfileis a text file containing the process ID (PID) of the running
daemon and is usually located at /var/run/ xxx.pid, where xxx is the name of
the daemon. For example, you might see the following in /var/run:

$ 1s /var/run/*.pid

/var/run/apmd.pid /var/run/ntpd.pid
/var/run/atd.pid /var/run/rpc.statd.pid
/var/run/crond.pid /var/run/sendmail.pid
/var/run/dhclient-etho.pid /var/run/sm-client.pid
/var/run/gdm.pid /var/run/sshd.pid
/var/run/gpm.pid /var/run/syslogd.pid
/var/run/klogd.pid /var/run/xfs.pid
/var/run/messagebus.pid /var/run/xinetd.pid

When a daemon starts, it checks to see if a pidfile exists. If the file does
not exist, the daemon creates it and writes its own PID there. If the file does
exist, the daemon checks to see if the process specified in the file is still
running. Then it reads the PID from the file and calls kil1(0) to send a signal
to the process (this is just a test, kill(0) won’t actually terminate a running
process). If the kill() succeeds, it means that the process specified in the file
was running and able to accept the signal, so the new daemon can simply exit
(optionally logging the event). There is no way to atomically check for and
create a pidfile, so you have to use a Linux file lock to be sure another instance
of the daemon does not also create a pidfile. The code given later in this
section illustrates how to use a file lock.

As a security precaution, you may want to configure your appliance so
that one process is not allowed to kill() another. To do so, check for the

50 cha pter 4
No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

NOTE

(2]

existence of the daemon by looking for its PID in the /proc directory. If the
PID specified in the pidfile is not running, the new daemon overwrites the
pidfile with its PID and continues. (Your daemon should also verify that a
process with a matching PID is an instance of your daemon and not some
other program that happens to have a PID matching the one in the pidfile.)

Stale pidfiles are a nuisance, so when your daemon exits, it should
remove its pidfile. Write a subroutine that deletes the pidfile and use atexit()
to register the subroutine for execution at program termination. You may
also want to modify your rc.sysinit or other initialization scripts to delete all
of the old pidfiles from /var/run.

Be sure to delete stale pidfiles early in the boot sequence before the daemon is started so
that your system initialization does not inadvertently remove active pidfiles.

The name and location of the pidfile is often in the configuration file;
if it is not there, it can be passed in from the command line. Being able to
specify the pidfile in the configuration file or on the command line makes it
easier to run multiple instances of the daemon should the need arise (during
debugging, for instance).

The code below is taken from our sample daemon and presents one
approach to the voluntary mutual exclusion of a pidfile. We @ get the name
of the pidfile and try to open it. If the open succeeds, we read the PID from
the file and @ try to send a signal to the process. If the kill() call succeeds,
it means the process specified in the pidfile is still running and this instance
should exit. If the pidfile exists, but the process it specifies is not running,
the pidfile is stale and should be ® removed. If this instance of the daemon
is the valid one, it @ creates a pidfile, ® locks it, and ® writes the PID into it.

void do_pidfile() {

FILE *pf; // We use a FILE to use fscanf
int fd; // File descriptor for pidfile
int fpid; // PID found in existing pidfile
int opid; // Our PID

pf = fopen(Config[ED_WORKING].pidfile, "r");
if (pf) {
if (fscanf(pf, "%d", &fpid)) {
/* We've gotten a PID out of the file. Is it running? */
if (!(kill(fpid, 0) == -1 &% errno == ESRCH)) {
/* Looks like another daemon is running. Exit. */
(void) fclose(pf);
LOG(LOG_ERR, CF, E_Not_Alone,fpid);
exit(-1);
}
}

/* stale pidfile. remove it */

(void) fclose(pf);

if (unlink(Config[ED_WORKING].pidfile) != 0) {
/* Could not remove pidfile. Exit. */
LOG(LOG_ERR, CF, E_Pid File, Config[ED WORKING].pidfile);
exit(-1);

Building and Securing Daemons 51

No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce

www.it-ebooks.info

http://www.it-ebooks.info/

52

}
}

/* No pidfile or a stale one's been removed. Write a new one. */
fd = creat(Config[ED WORKING].pidfile, 0644);
if (fd < 0) {
LOG(LOG_ERR, CF, E_Pid File, Config[ED WORKING].pidfile);
exit(-1);

}

/* get a file lock or die trying */

if (flock(fd, LOCK EX | LOCK NB) < 0) {
LOG(LOG_ERR, CF, E_Pid File, Config[ED WORKING].pidfile);
exit(-1);

}
opid = getpid(); // get our pid

/* Get a FILE pointer so we can use fprintf */
pf = fdopen(fd, "w");

if (1pf) {
LOG(LOG_ERR, CF, E_Pid File, Config[ED WORKING].pidfile);
exit(-1);

}

(void) fprintf(pf, "%d\n", opid);

fflush(pf);

(void) flock(fd, LOCK_UN);

(void) close(fd);

Set the umask

The umask command sets the default read/write permissions for files created
in the current shell. It is generally good practice to set the umask of your
daemon to 0, which forces you to explicitly set the permissions of any files
you create.

Because there is no need to save the old value of the umask, we cast the
return value to void:

(void) umask((mode_t) 000);

Set Up Signal Handlers

A signal handleris a function that is compiled with the rest of your application.
Instead of directly invoking the function, you use signal or sigaction to tell
the operating system to call the function when a signal arrives.

The last step in setting up a daemon is to configure the signal handlers.
The requirements for your application dictate which signals to catch and

No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce

www.it-ebooks.info

http://www.it-ebooks.info/

how to handle them. Running the man 7 signal command will give you an
idea of the signals you might want to catch. Some of the most common
signals and actions are:

SIGHUP Reread the configuration file and reinitialize as appropriate.
Close and reopen any log files to give logrotate a chance to work.

SIGTERM, SIGQUIT Do a graceful shutdown of the daemon and exit.
SIGUSR1 Toggle debug mode on or off.
SIGCHLD Handle the death of any child processes.

You should consult both the man page for sigaction() and your favorite
Linux programming book before implementing your signal handler, but this
simple example might help you get started:

struct sigaction sa;
volatile int Got_HUP = 0; // Clear global flag

sa.sa_handler = handle_hangup;

sa.sa_flags =0; // no flags in this example

if (sigaction(SIGHUP, &sa, NULL)) {
LOG(LOG_ERR, E_No_Signals); // report problem and die
exit(-1);

The routine that will handle the signal is passed an integer with the
signal number. The routine should be of type void.

void handle_hangup(int recv_sig)

{
}

Got_HUP = 1; // Set global flag

NOTE The code in a signal handler is not executed in the main execution path of your pro-
gram, and since a signal can occur while the signal handler itself is running, signal
handlers must be reentrant.

Writing reentrant code can be a little tricky, and you might want to
consider just setting a volatile flag and having your main loop examine the
flag periodically, leaving the real work to be done in the main loop. The flag
has to be volatile so that the compiler does not optimize away tests for it in
the main loop. If you decide to do more than set a flag in your signal
handler, make sure that all the glibc and system calls in your signal handler
are reentrant safe.

How to Secure a Daemon

This section will give you some general guidelines to help you write more
secure programs. However, because your daemon’s security is much too
important to use this document as the sole source of your security informa-
tion, we urge you to read the books listed in the bibliography at the end of

Building and Securing Daemons 53

No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

54

Chapter 4

this chapter. The information here is really just an overview of the points
you need to consider. Furthermore, this section does not tell you how to
secure the Linux kernel or your appliance in general.

We’ll break the topic of daemon security into three sections:

¢ Designing a secure daemon
¢ Writing a secure daemon

¢ Limiting damage in case of a breach

Designing a Secure Daemon

Securing your daemon starts when you begin thinking about its specification,
architecture, and design. You have the greatest ability to make your applica-
tion secure when you lay out your daemon’s foundation.

By secure, we mean that the daemon should respond to errors and
malicious attacks in a predictable way. This implies that we must first detect
errors (and attacks) and then handle them appropriately. One way to think
about this is to always have a plan for each possible error condition and
attack.

Always Have an Escape Plan

Many buildings post escape plans next to elevators and stairwells. The escape
plan is a map showing the best route to take in case of an emergency. As you
design your daemon, think about how you will recover or escape from each
possible error condition. Laying the foundation for a good escape plan early
makes it less burdensome for you to add the code after your daemon has
been developed.

An exit may mean a core dump and program termination, or it may
mean aborting a single request, closing a network connection, or performing
some other error recovery. Program termination may be appropriate if you
detect an error during startup or during a configuration change, or if for any
reason you think security has been breached. For example, if your daemon is
a network server handling client requests, it may be appropriate to close a
network connection if the daemon receives a badly formed request.

In practice, having an error escape plan usually means that all of your
subroutines return an error code. No matter how deeply nested your sub-
routine calls are, you should be able to pass an error indicator up the chain
of subroutine returns. An event-driven or state-machine-driven program can
use a flag or separate state to indicate an error.

Your escape should always begin with a log message describing the
location of the error and the inputs that generated it. You can have two log
messages, one to detect the error, and another, at a higher level, to report
how you’ve decided to handle the error.

Be Restrictive

When designing a daemon from scratch, you can specify its operation in
detail. Your specification and the resulting code should allow only the

No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce

www.it-ebooks.info

http://www.it-ebooks.info/

simplest subset of requests and configuration data. Setting a tight standard
will make your daemon more secure and may help eliminate subtle bugs.

For example, let’s consider restrictions you could place on configuration
or other internal filenames. Type the following at a bash prompt (noting the
placement of single and double quotes):

date > \
"ed ..; cd ..; cd ..; cd etc; echo 'nameserver1l.2.3.4' >resolv.conf"
1s -1 cd*

Amazing, isn’t it The above command works. The string, cd ..; cd ..;
cd ..; cd etc; echo 'nameserver 1.2.3.4'>resolv.conf is a perfectly valid Linux
filename. While bash must honor this as a valid filename, you do not need to.
Consider stating in your specification that filenames are limited to the char-
acters [_a-zA-Z/.] but the sequences .. and // are invalid. In addition, the
maximum length of a Linux path and filename is PATH_MAX in limits.h and is
usually set to 4096 characters. You might want to restrict filename lengths to
the minimum that your daemon needs.

Filenames are just one example. Give some thought to other ways in
which you can tighten your daemon’s specification.

Write a Secure Daemon

Security is only as good as the weakest link in its chain. Designing a secure
daemon is not enough. You must also writea secure daemon.

Validate Input

Many of the recent Linux vulnerabilities stem from buffer overruns that
allow an intruder to place executable code on the stack. The most effective
defense against this kind of attack is to validate all input from a user or from
any non-secure source. Verify string lengths and make sure strings do not
contain any illegal characters. Verify that integers are reasonable, relative to
their uses, and that counting integers are always positive.

Perform as much application-specific checking as possible before com-
mitting other resources. For example, make sure that HT'TP requests are well
formed and that SQL statements are valid. Checking early helps prevent the
problem of trying to back out of a request once you’ve allocated buffers,
sockets, or other resources for the request.

Do not let any malformed input into your daemon. Remember: If it’s
only 99 percent right, then it’s still wrong.

Check All Return Codes

One of the best things you can do to enhance security is to check all return
codes, especially from system calls. Normally, this would seem like a burden,
but if you’ve laid out your design with an error escape plan, you’ll find that it
does not take a lot of thought or effort to test every return code.

Building and Securing Daemons 55

No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

Avoid Buffer Overrun Attacks

Some library functions are considered unsafe because they do not limit how
much memory they will overwrite. For example, the strcpy() function is
considered unsafe, while the strncpy() function is considered safe.

Nevertheless, we are not convinced that the strn routines are all that
safe, since they do not guarantee that the resulting string is null terminated.
The best thing to do is to check the length of the string before doing a copy.
Let’s look at some examples.

VERY BAD: strcpy(dest, src);

This is an invitation to a buffer overrun attack if src has not been
previously checked.

BAD: strncpy(dest, src, MAXN);

This call does not guarantee that dest is null terminated.

BETTER: strncpy(dest, src, MAXN);
dest[MAXN -1] = (char) 0; //truncation ==> still bad

The above code protects the program in that it prevents a buffer overrun
and guarantees that dest is null terminated, but it could quietly truncate the
source string.

BEST: if (strlen(src) >= MAXN) {
LOG("String error at %s:%d\n", _ FILE_, _ LINE_);
return(ERROR_STR_LEN);

}
strncpy(dest, src, MAXN);

While it uses more code, the above protects the program and reports
source strings that might be part of an attack on your program.

Several other function families are considered unsafe. Specifically, these
include strcat(), sprintf(), gets(), and scanf().

Other Security Software

Even if you follow the best coding practices, you may want the added
protection of the following software:

IBM’s ProPolice GNU Compiler Collection (GCC) patch to help
prevent buffer overruns

StackGuard GCC patch to help prevent buffer overruns
Libsafe Alternate library for strcpy() and other unsafe functions

grsecurity Kernel patch that can (among other things) make the stack
non-executable

Systrace Kernel patch that can limit which system calls your daemon
can make

56 Chapter 4
No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

We strongly recommend using grsecurity and configuring your system
so that code is never executed from the stack. This feature uses the hard-
ware in the memory management unit and will not affect your program’s
performance.

Limit Damage in Case of a Breach

Almost every major Linux application has, at one time or another, been
found to be vulnerable. Since the same may happen to your daemon at some
point, you want to limit the amount of risk a compromised daemon might
present to the appliance.

Prevent Library and Path Attacks

If an attacker gains access to your appliance, he might be able to run your
daemon having first set LD_LIBRARY_PATH or PATH to point to compromised
libraries and commands. If your program is Set User ID (SUID) root, your
attacker has just gained complete root control over your appliance. Don’t
despair. There are a few things you can do to limit disaster in the event that
your daemon is compromised.

First, do not run your application with an SUID of root. This is easier on
an appliance than on a multi-user system where programs like passwd and the
X server must be SUID root. It is better to drop root privileges or to run as a
non-privileged user. (You’ll learn a few more details about this in the next
section.)

The second defense is to do a static build of your daemon using -static
as an option to your gcc invocation. A statically linked executable might
not increase the size of your executable as much as you’d imagine, and if
you are using chroot jails, it might actually save disk space. Statically linked
executables usually load faster, too.

Another way to prevent a library or path attack is to ignore the
environment variables that tell your program where to look for shared
object libraries and system commands. If you are really security conscious,
use the glibc clearenv() function to undefine all environment variables.
You will need to give the full path to any commands you run with system(),
but this is probably a good idea anyway.

Avoid Root Privileges

Attackers want root privileges so they can take control of your appliance.
If you run your daemon as root, you make your daemon a target for their
attacks. Avoid root privileges if at all possible. Create a new user (with the
login shell set to /bin/nologin) and use setuid() and setgid() to change to
that user. This technique is used by most web- and database servers.
Another approach is to modify your rc initialization scripts to launch
your daemon with sudo to change to the appropriate user. For example, your
rc script might start your webui daemon as user wuserwith the command:

sudo -1 wuser webui

Building and Securing Daemons 57

No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce

www.it-ebooks.info

http://www.it-ebooks.info/

Drop Root Privileges and Set Capabilities

If you must have root privileges to open network ports below 1024 or to write
to root-owned files, try to drop as many root privileges as possible. The 2.2
and later kernels make this possible with capabilities. Capabilities are separate
permissions that perform very specific operations. Your SUID root program
may drop individual capabilities and keep others.

The kernel keeps track of three sets of capabilities for each program:

Effective What is currently allowed
Permitted Maximum capabilities the process can use
Inherited What to transfer across an execve()

The system call to set capabilities is capset(). You might also be able to
use cap_set_proc(), which is more portable.

Capabilities are seeing a lot of active development in Linux. Here is a
sample of the more than 25 capabilities that your daemon should relinquish
if possible. A list of all of the capabilities is available from the output of man

capabilities.

CAP_CHOWN Allow arbitrary changes to file UIDs and GIDs. Drop this capability
to disallow changes to UIDs and GIDs.

CAP_KILL Bypass permission checks for sending signals.

CAP_MKNOD Allow creation of special files using mknod(2). Some devices, such as
/dev/mem and /dev/kmem, are particularly attractive to attackers.
Once your system is up and running, you should probably drop this
capability. You might want to remove both /dev/mem and /dev/kmenm if
you can verify that none of your appliance’s programs require them.

CAP_NET_ADMIN Allow various network-related operations—for example, sefting privi-

leged socket options, enabling multicasting, interface configuration,
and modifying routing tables.

CAP_NET_BIND_SERVICE Allow binding to Internet domain-reserved socket ports (port num-
bers less than 1024).

CAP_NET_RAW Permit use of RAW and PACKET sockets.

CAP_SYS_CHROOT Permit calls to chroot(2).

CAP_SYS_MODULE Allow loading and unloading of kernel modules.

CAP_SETPCAP Allow modifications to capability sets. After you’ve made your sys-

tem more secure by dropping unneeded capabilities, you may want
to drop all ability to change the system capabilities. Once system
CAP_SETPCAP is dropped, even full root access can't regain the
dropped capabilities.

The kernel itself honors a set of capabilities, and as the last step in your
boot process, you might want to limit what the kernel can do. For example,
if your kernel uses modules, at the end of system bootup, you may want to
completely remove the kernel’s ability to load or remove modules.

NOTE A full description of capabilities is beyond the scope of what we can present here. A good
place to start isman capabilities on your Linux system.

58 cCha pter 4
No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

Chroot if Possible

One of the oldest and most trusted techniques to limit damage in case of a
breech is to run a daemon in a chroot jail. The idea is to put all of the files
that your daemon will need in a directory subtree and to then tell your
daemon that the top of the subtree is the “root” of the filesystem. The system
call is chroot(), and it is a good way to make the rest of the real filesystem
invisible in case your daemon is breeched.

It is fairly easy for a process owned by root to break out of a chrootjail, so
be sure to drop root privileges after the chroot() call. A typical sequence of
calls to build a chroot jail looks like this:

chdir("/var/app_jail");
chroot("/var/app_jail");
setuid(500);

Following the chroot() call, the application will be able to see only the
files and directories under the directory specified in the chroot() call. You will
need to close file descriptors to directories outside of the chroot jail, since
they can provide a means to break out of the jail.

The trick in building a successful chroot jail is in limiting the number of
files and devices in the jail. Of course you will need all of your daemon’s
working files, but do not include the startup configuration directory if it
contains, for example, where to locate the chroot jail. If your program is
dynamically linked, you will need to include a /lib directory and whatever
shared object libraries your program uses. Consider doing a static build of
your application to avoid the necessity of adding the /lib directory.

The standard library logging routine, syslog(), assumes access to a Unix
socket at /dev/log. Create a /dev directory in your jail and tell the system
logging daemon, syslogd, to listen on an additional socket using the -a
command line option. Here’s an example of how to start syslogd so that it
listens on an additional socket:

syslogd -a /var/app_jail/dev/log

A common alternative to a chroot jail is a virtual machine. Programs
such as VMware, VServer, and User-mode Linux all provide more isolation
than a chroot jail but at the cost of higher memory or CPU requirements.

A Prototype Daemon

This book includes a bootable CD that turns a PC into a Linux-based appli-
ance. The programming effort for the book’s sample appliance was divided
among the authors, with each of us writing some of the programs. To make
the appliance code easier for you to read (and easier for us to write), we
decided to start by building a common core for each of our programs.

Building and Securing Daemons 59

No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

60

The code for the empty daemon is available as part of the code for our

appliance, and you can get it from the CD or from the book’s website. We’ve
tried to build the empty daemon to reflect all of the lessons learned in the
sections above, and you are welcome to copy our empty daemon code and
use it as you see fit.

Summary

In this chapter we have demonstrated the initialization steps a typical

daemon takes—for example, redirecting stdin, stdout, and stderr, and going

into the background. We’ve also introduced some concepts and techniques

that you might use to make your daemons more secure.

Further Reading

We’ve found the following books useful in determining how to secure a
daemon.

Chapter 4

Secure Programming for Linux and Unix HOWTO by David A. Wheeler
(http://www.dwheeler.com/secure-programs, 2003)

Real World Linux Security by Bob Toxen (Prentice Hall, 2000)
Network Security Hacks by Andrew Lockart (O’Reilly, 2004)

SSH, The Secure Shell: The Definitive Guide by Daniel J. Barrett and Richard
E. Silverman (O’Reilly, 2001)

Linux Security by Shadab Siddiqui (Premier Press, 2002)

No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce

www.it-ebooks.info

http://www.it-ebooks.info/

THE LADDIE ALARM SYSTEM:
A SAMPLE APPLIANCE

Previous chapters covered how to build
and secure a daemon and how to commu-
nicate with the daemon while it is running.
We’ll tie these topics together in this chapter by

building Laddie, a Linux-based alarm system.'

Laddie uses the five status inputs on a standard PC parallel port as sensor
inputs to the alarm system. The heart of the Laddie appliance is the ladd
(pronounced lad-dee) daemon that polls the status lines and reports input
transitions using syslog(). An alarm system is a good choice for a sample

application since most readers will have some familiarity with alarm systems
and because an alarm system application is simple to write, understand, and

modify.

This chapter includes the following five sections:

¢ Introduction to alarm systems

¢ A functional specification for Laddie

! Laddie is a sample appliance used to illustrate the techniques and software presented in this
book. Laddie is nota commercially viable alarm system and should never be used in place of a
real alarm system.

No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce

www.it-ebooks.info

http://www.it-ebooks.info/

¢ Laddie hardware design
¢ Laddie software design
¢ Building and testing Laddie

As you read this chapter, keep in mind that the alarm system itself is not
as important as the techniques used to build it. Don’t let the implementation
details overshadow the design principles being taught.

Introduction to Alarm Systems

This section presents the concepts and definitions used to describe alarm
systems in general and Laddie in particular.

Sensors

An alarm sensoris a small device or switch that detects movement in a room or
activity in an area. An alarm system monitors several alarm sensors and reports
any unexpected activity they pick up. The area that a sensor protects is called
a zome. Zones are given names that usually describe the area protected; typical
zone names might include Garage, Second Floor Windows, and Refrigerator.
Figure 5-1 shows an example arrangement of sensors and zones for a
small business. There are door sensors on the front and back doors and a
motion detector that looks for movement near the office and storeroom.

Small Business with Three Zones

Office
Store
PREEEEN Room
I Front Door
-
Back Door
. PIR Detector

Figure 5-1: An example alarm system

Types of Sensors

Since an alarm system can only report what its sensors detect, it is important
to choose sensors carefully. Let’s consider the types of sensors that are
available.

Magnetic reed switches
These are most often used to monitor doors; they are placed with the
switch on the doorframe and the magnet on the door.

62 cCha pter 5
No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

PIR motion detectors
Passive Infrared (PIR) motion detectors detect minute changes in the
movement of infrared (heat) sources. A person or animal can set off a
PIR motion detector, but, for example, a baseball cannot.

Acoustic sensors
Acoustic sensors detect specific sounds. They are often used to detect the
sound of breaking glass, and are so sensitive that a single acoustic sensor
can protect all of the windows in a room.

Floor mat sensors
Floor mat sensors have switches that can detect the weight of a person.
They are very thin and are usually placed under carpet at entryways.

Vibration sensors
Vibration sensors can detect very slight physical motion. They are often
used to protect cars.

Smoke and carbon monoxide detectors
These sensors are used to detect potential fires.

Temperature sensors
Thermostats and other temperature sensors trip at a certain temperature
or simply report the current temperature in the zone. They are often
used to protect temperature-sensitive equipment and supplies.

Sensor Contact Type

To the alarm system, most sensors look like switches. The switch contacts can
be either open when not in alarm (called normally open or NO sensors), or
closed when not in alarm (normally closed or NC sensors). When you install a
sensor, you have to tell the alarm system the contact type of the sensor—that is,
whether the contacts are normally open or normally closed. Most sensors are
normally closed. A normally closed sensor has the desirable property of
triggering an alarm if the wires to the sensor are cut.

Another helpful feature of the sensor-and-zone setup is that it is possible
to cascade sensors within a zone, as long as the cascaded sensors are all of the
same contact type. Figure 5-2 shows how to cascade normally open sensors
and Figure 5-3 shows how to cascade normally closed sensors.

Cascading NO Sensors

To Alarm Vd Vi Vi

System S So S3

Figure 5-2: How to cascade normally open sensors

The Laddie Alarm System: A Sample Appliance 63
No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

64

Cascading NC Sensors

To Alarm
System

Figure 5-3: How to cascade normally closed sensors

Logically, the alarm system sees just one sensor in each zone, even if
there are actually several cascaded sensors there.

Latching a Sensor

Most sensors return to the non-alarm or normal state when the detected
condition is removed—for example, when someone closes a door or steps off
of a floor mat. You usually want to configure the alarm system to latch
alarms detected by these sensors. Latched alarms remain in alarm, even if
the detected condition is removed, until they are manually cleared by a user.

However, you might not want to latch every sensor. For example, you
might want to automatically remove an alarm when the temperature in a
thermostat-protected room returns to normal.

Think about the type of sensor you’re using and your specific needs
when you set alarms in a zone to be latching or non-latching.

Enabling a Zone

Mark zones as enabled if the sensors in the zone are working and you want to
monitor the zone. Unused inputs can be ignored by disabling the zone. Also,
you may find it convenient to temporarily disable zones when you want to
leave a door or window open.

A Functional Specification for Laddie

Chapter 5

The Laddie alarm system monitors up to five zones and raises an alarm
when a change occurs in one of the monitored zones. Alarms are reported
to Laddie’s five different user interfaces. In addition to being able to view
the status of the zones that Laddie monitors, the user interfaces allow you to
test and clear alarms, view logs, and configure zones. Configuration param-
eters include the following:

e Zone name
¢ Contact type

¢ Latching or non-latching
e Enabled or disabled

No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce

www.it-ebooks.info

http://www.it-ebooks.info/

NOTE

Laddie’s functional specification is divided into two parts: one that
allows users to access alarm configuration and status and another that allows
Laddie to handle alarms.

As a reminder, Laddie refers to the whole appliance, andladd refers just to the daemon
that monitors the five input pins on the parallel port. It’s easy to confuse the two, since
they are pronounced the same.

ladd’s Configuration and Status

ladd has one configuration and status table, called Zone, that is visible to all of
the user interfaces as an RTA table. The Zone table has five rows, with each
row defined by the following data structure:

/* The structure to hold the definition, configuration, and status
of each alarm pin on the parallel port */
typedef struct {

int id; // ID number of alarm [1-5]
char name[ZONE_NAME_LEN]; // the zone name
int enabled; // ==1 if enabled
int edge; // ==1 if alarm on low to high transition
int latching; // ==1 if we should latch the alarm
int input; // is the latest raw input from the alarm pin
int alarm; // ==1 if in alarm
int count; // count of alarms on this pin
} ZONE;

Let’s consider each of these fields in turn.

id (Configuration)
Zones are identified by a number between one and five. The id field is
initialized when ladd starts, and users cannot edit it. You can use the id
field in user interface programs to uniquely identify a particular zone.

name (Configuration)
This field stores the brief mnemonic or name that the user assigns to
the zone.

enabled (Configuration)
Only zones marked enabled cause the system to enter an alarm state.
Zones marked disabled do not generate log messages or cause alarm
states. This field holds an integer instead of a boolean, since RTA does
not support a boolean data type.

edge (Configuration)
For the hardware described in the next section, a normally closed sensor
triggers an alarm on a zero-to-one edge on the input pin. Normally open
sensors on Laddie trigger an alarm on a one-to-zero edge. “Laddie’s
Hardware Design” on page 68 describes open and closed sensors in
more detail.

The Laddie Alarm System: A Sample Appliance 65

No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce

www.it-ebooks.info

http://www.it-ebooks.info/

latching (Configuration)
The user sets this field to 1 to have an alarm persist even after the sensor
pin returns to its normal state. The user must manually clear latched
alarms.

input (Status)
This field shows the most recent raw value of the input pin. This is a sta-
tus field, and the user is not able to edit it.

alarm (Status)
Each zone is said to be in either an alarm condition or in a safe condition.
This field is set by the ladd daemon in response to detected edges on the
input pin. A write callback on this field lets a user test a zone by writing a
1 to it. An alarm is cleared when the user sets this field to 0.

count (Status)
This field contains the number of input edges that have caused an
alarm. This field is incremented only when the zone is marked enabled,
it is not incremented by user-initiated tests of the zone. This is a read-
only, statistic field that is set to zero when ladd starts.

You may recall that the advantage of RTA is that it gives all of the user
interfaces the same API for daemon configuration, status, and statistics.
The API defined by RTA is that of a PostgreSQL database. The advantages
of PostgreSQL are that SQL is widely used and understood and there are
many bindings for PostgreSQL, including C, PHP, Java, and Perl. Figure 5-4
illustrates Laddie’s use of RTA to allow five different Uls to get status and
set configuration using only one daemon-side protocol.

SNMP
Web
ladd
R |
Cl T
A _/
LCD
Framebuffer

Figure 5-4: One daemon with many user interfaces

Let’s look at the SQL for some typical Laddie configuration changes
and queries.

No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce

www.it-ebooks.info

http://www.it-ebooks.info/

To disable zone 2, type:

UPDATE Zone SET enabled = 0 WHERE id = 2

To find out how many times zone 4 has gone into alarm, type:

SELECT count FROM Zone WHERE id = 4

To clear all alarms in the system, type:

UPDATE Zone SET alarm = 0

Any program that can issue commands like these can function as a user
interface for Laddie. Watch for commands like these later in the book as we
go through the five user interfaces currently available for Laddie.

ladd’s Alarm Handling

ladd responds to an alarm by sending a log message using syslog(). The
text of the log message depends on whether the alarm was detected by the
hardware or was a test alarm issued by a user. The text also depends on
whether the alarm was set or cleared. For a zone with ID n and the name
zone_name, the four log messages are:

e Alarm set on zone n, zone_name
e Alarm cleared on zone n, zone_name
e User set alarm on zone n, zone_name

e User cleared alarm on zone n, zone_name

Some users do not care which zone is in alarm; they just want to know
if any zone is in alarm. To address this need, ladd provides two other log
messages:

¢ Alarm system status: alarm

¢ Alarm system status: safe

These messages are sent when the first zone goes into alarm and after
the last zone is cleared. Laddie also sets all four control pins on the parallel
port to 1 (see Table 5-1) to indicate any alarm in the system. It sets the
control pins low when all alarms are cleared.

One nice aspect of our overall architecture for Laddie is that ladd itself
does not need to send signals to the Ul, send email, or send SNMP traps. We
leave all of this to a separate process, greatly simplifying the design and imple-
mentation of the ladd daemon. (The event processor is described in the next
chapter.) Syslog-as-output not only simplifies ladd, it makes debug and test
easier too since we can easily examine the log files for the messages we expect
and we can use the logger command to generate test events for the event
processor. The data flow for an alarm response is depicted in Figure 5-5.

The Laddie Alarm System: A Sample Appliance 67

No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce

www.it-ebooks.info

http://www.it-ebooks.info/

Email

syslog() _ Event
Processor

C ladd

SNMP Traps

Figure 5-5: Processing alarm events in Laddie

Laddie’s Hardware Design

This section presents the hardware needed to use Laddie as a real alarm
system. You can skip over this section if you are uncomfortable with elec-
tronic circuits or if you aren’t interested in seeing how the hardware works.

The pins on the parallel port are divided into three main groups: data
lines, control lines, and status lines. Each group is controlled using a register,
which is available at a particular I/O address. The data lines are at the base
address of the parallel port, the status lines are at the base address plus one,
and the control lines are at the base address plus two. Table 5-1 shows how
the pins on a 25-pin parallel port connector relate to the printer port names,
to the port registers, and to the alarm system.

Table 5-1: Laddie’s Use of the PC Parallel Port

Pin Name Register Bit Alarm input
1 STB Control 0

2 DO Data 0

3 D1 Data 1

4 D2 Data 2

5 D3 Data 3

6 D4 Data 4

7 D5 Data 5

8 D6 Data 6

9 D7 Data 7

10 ACK Status 6 Zone 4
11 BSY Status 7 Zone 5
12 PAP Status 5 Zone 3
13 OFON Status 4 Zone 2
14 ALF Control 1

15 FEH Status 3 Zone 1
16 INI Control 2

17 DsL Control 3

18-25 Ground

68 cCha pter 5
No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

The alarm daemon uses the data lines as output and the status lines
as input. Figure 5-6 shows a schematic for one alarm sensor. The daemon
initializes the parallel port by setting the output pins to 0xFF, making pin 2
a high level. When the sensor S1 is open, no current flows through the 2K
ohm resistor R1, and the voltage at pin 15 is pulled high. When the sensor
is closed, pin 15 is shorted to ground through pin 21.

In other words, pin 15 is biased high when the alarm sensor is open
and pulled low when the sensor is closed. By reading the status lines, which
includes pin 15, the daemon can detect whether the sensor is open or closed.
This description applies to all five of the status inputs on the parallel port.

R1
o W~
1[/\14
N— J
2| — ~[15
N— J
3< 3]6
AC 3]7
sl= 58 | s
6| — 192 1/_:|_
N— J
7< 320
8< 32]
9< 322
10, = =X[23 Alarm
H> —'<24 Sensor
N— J
12< 325
£

Figure 5-6: A normally open alarm sensor
from Laddie

Laddie’s Software Design

We used the empty daemon introduced in Chapter 4 to build the ladd
daemon. But whether we used the empty daemon, wrote a select()-based
program, or wrote a threads-based program, there would still be three main
subroutines:

appInit() Initialize hardware. Start timer. Register the Zone table
with RTA.
poll_timeout() Read the status lines. Log relevant changes.

user_update() Send logs for user changes to the alarm status.

These routines are described in more detail in the next few sections.

The Laddie Alarm System: A Sample Appliance 69
No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

The applnit() Callback Subroutine

The appInit() subroutine is the first callback subroutine the empty daemon
invokes. This callback subroutine is responsible for performing any applica-
tion-specific initialization, setting up any timer callback subroutines, and
registering any RTA tables. In ladd, the appInit() subroutine initializes the
Zone array of ZONE structures, calls rta_add_table() to register the Zone table
with RTA, initializes the parallel port, and starts a periodic 100-millisecond
timer with poll_timeout() as its callback subroutine. Note that once the
appInit() subroutine returns, the daemon is ready to accept connections
from the user interfaces.

Although the COLDEFs or TBLDEF for the Zone array are not shown,
Table 5-2 should give you an idea of what they contain.

Table 5-2: The Columns in Laddie’s Zone Table

Column name Type Read-only Save-to-disk

id int yes no
name char no yes
enabled int no yes
edge int no yes
latching int no yes
input int yes no
alarm int no no
count int yes no

All of the initialization code for ladd is in the appInit() routine
given below.

JRRRRskskskskskokokokokokokokskokskskkskskokskokokokokokskokok ok skkoskkoskokokokokokokokskokskskoskskoskokokokokokokokok

* appInit(): - Initialize all internal variables and tables.
Set and read control lines as needed.
*
* Input: int argc, char *argv[] --- command line parameters
* Return: None
**/
void appInit(int argc, char *argv[])
{
int value; /* input value from parallel port */
int i; /* a loop index */

/* Initialize the zone ids */
for (i = 0; i < NUM_INPUTS; i++) {
Zone[i].id = i+1;

}

/* Add the table of single bit alarm inputs */
rta_add_table(8ZoneTable);

/* Give us control of the parallel port and set data pins high */
70 cCha pter 5

No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

}

if (ioperm(PORT,3,1)) {
fprintf(stderr, "Cannot open parallel port at %x\n", PORT);
exit(1);

}

outb((unsigned char)ox00FF, PORT);

/* Now read the input pins to get initial states */
value = inb(PORT+1);
for (i = 0; i < NUM_INPUTS; i++) {

Zone[i].input = (value & (8<<i)) ? 1 : 0;

}

/* Set the output pins on the control port low since we start
* in a "no-alarm" state. Set global alarm to match. */
outb((unsigned char)ox0000, PORT+2);

GlobalAlarm = 0;

/* Setup poll timer */

if (!add_timer(ED_PERIODIC, 100, poll timeout, (void *) LINE_)) {
fprintf(stderr, "Can not set up periodic timer. Exiting\n");
exit(1);

}

The poll_timeout() Callback Subroutine

The poll_timeout() subroutine performs the bulk of the alarm daemon’s func-
tions. This subroutine reads the parallel port, processes the input pins, and
modifies the state of the appropriate ZONE data structure. This subroutine
is invoked every 100 milliseconds, as specified by the call to add_timer(). Note

the following salient features of the poll_timeout() subroutine.

The main responsibility of poll_timeout() is to set the alarm field for
each zone in the Zone table. As mentioned above, the alarmfield shows
whether or not a particular zone is in an alarm condition.

The subroutine treats each zone independently of the other zones. That is,
one zone can be in alarm condition while another is in the safe condition.

The alarm field for a particular zone is modified only if the enabled field is
nonzero. This feature allows a user to disable a zone in cases where there
is either no sensor or where the user wishes to ignore a sensor.

When poll_timeout() detects that the zone has entered the alarm condi-
tion, it sets the alarm field to 1 and sends a syslog message. In a later
chapter, we’ll show you how to convert syslog messages into email and
SNMP traps.

Similarly, when this subroutine detects that the input pin transitions
back to the normal state, it clears the alarm variable, and, if the latching
field is set to zero, it sends a syslog message. This mechanism allows the
user to configure a zone so that once it enters the alarm condition, it
must be cleared manually.

The Laddie Alarm System: A Sample Appliance 71

No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce

www.it-ebooks.info

http://www.it-ebooks.info/

¢ The poll_alarm() subroutine also maintains a global alarm variable,
GlobalAlarm, which is set to one if any zone is in alarm condition
and is set to zero if all zones are safe. The subroutine tracks when this
GlobalAlarm variable changes states. When the GlobalAlarm variable is set,
the control pins of the parallel port are set high. When the GlobalAlarm
variable changes state, then an appropriate syslog message is sent.

All of the polling for new alarms is done in the poll_timeout() routine
given below.

JRRRRskskskskskokokokokokokokskokskskokskskokskokokokokokskoksk ok skokoskkokokokokokskokosk ok skokoskskokokokokokokokok

* poll timeout(): - The background routine to read the status
lines and to set (or clear) alarms if needed.

Input: None

Return: None
**/

* X X ¥

void poll_timeout(void *handle, void *cbd)

{
int value; /* input value from parallel port */
int i; /* a loop variable */
int new; /* new state of pin */

/* Read the input pins from the parallel port */
value = inb(PORT+1);

for (i = 0; i < NUM_INPUTS; i++) {
new = (value & (8<<i)) ? 1 : 0;
if ((new != Zone[i].input) &8 (Zone[i].enabled)) {
/* We have a change of state of an enabled input pin */
/* Look for a new alarm */
if ((new == 1 8& Zone[i].edge == 1 8& Zone[i].alarm != 1) ||
(new == 0 &3 Zone[i].edge == 0 &8 Zone[i].alarm != 1)) {
Zone[i].alarm = 1;
Zone[i].count++;
syslog(LOG_ALERT, "Alarm set on zone %d, %s", Zone[i].id,
Zone[i].name);
}
/* Look for a cleared alarm */
if ((Zone[i].alarm == 1) && (Zone[i].latching == 0) &8&
((new == 0 8& Zone[i].edge == 1) ||
(new == 1 83 Zone[i].edge == 0))) {
/* We can remove an alarm */
Zone[i].alarm = 0;
syslog(LOG_ALERT, "Alarm cleared on zone %d, %s", Zone[i].id,
Zone[i].name);
}
}

Zone[i].input = new;

/* ALl inputs have been processed. Set or clear the global alarm
* status and control pins. Note that we use this code to process
* manually set or cleared alarms too. */

72 Chapter 5
No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

for (i = 0; i < NUM_INPUTS; i++) {
if (Zone[i].alarm == 1) {
if (GlobalAlarm == 0) {
/* A new alarm. Log it and set control bits (low three) high. */
syslog(LOG_ALERT, "Alarm system status: alarm");
outb((unsigned char)ox0007, PORT+2);
GlobalAlarm = 1;
}
return; // in alarm, no need to check the other zones
}
}

/* If we get here, there are no alarms */

if (GlobalAlarm == 1) {
/* Clear alarm. Log it and set control bits (low three) low. */
syslog(LOG_ALERT, "Alarm system status: safe");
outb((unsigned char)ox0000, PORT+2);
GlobalAlarm = 0;

}

}

The user_update() Callback Subroutine

The user_update() callback subroutine is invoked whenever the user manually
modifies the alarm field in a ZONE data structure. This callback subroutine

is responsible for sending a syslog message whenever the user manually clears

the alarm condition (for latched zones) or manually sets the alarm condition.
In Chapter 7, we’ll show you how to use the syslog message to update the user
interfaces.

This callback subroutine is included in the RTA COLDEF structure for
our alarm daemon. Take a look at the snippet of source code below, and
you’ll see that the user_update subroutine is included in the write callback
entry. The user_update subroutine is invoked whenever the user writes to the
alarm variable in a ZONE data structure.

COLDEF ZoneColumns[] = {

{
"Zone", // the table name
"alarm", // the column name
RTA_INT, // data type
sizeof(int), // number of bytes
offsetof(ZONE, alarm), // location in struct
0, // flags
(int (*)()) o, // called before read
user_update, // called after write
"Alarm state. The (possibly latched) state of the "
"alarm for this input. Just equals InputState for "
"non-latching alarms. The user clears this to reset "
"a latched alarm. A write callback on this column "
"logs the user action if the alarm value changes."

}

The Laddie Alarm System: A Sample Appliance 73

No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce

www.it-ebooks.info

http://www.it-ebooks.info/

The user_update() subroutine shown below checks to see if a user has set
the alarm variable and caused it to change. If the alarm variable has
changed, the user_update() subroutine writes a syslog message.

JRRRRskskskskskokokokokokokokskokskskkskskokskokokokokokskok sk skokskokoskokokokokokokskokosk ok skkoskskokokok kokokokok

* user_update(): - A write callback on the alarm column. We
* do a little sanity checking and send a syslog

* message if the user changed the alarm value.
*

* Input: None

* Return: 0 on success, -1 on error

**/

int user_update(char *tbl, char *col, char *sql, void *pr, int rowid,
void *poldrow)

{
/* Make sure we are looking at a valid row */
if (rowid >= NUM_INPUTS) {
return(-1); // An error return
}
/* Check for a change */
if (((ZONE *)pr)->alarm != ((ZONE *)poldrow)->alarm) {
if (((ZONE *)pr)->alarm) {
syslog(LOG_ALERT, "User set alarm on zone %d, %s",
Zone[rowid].id, Zone[rowid].name);
}
else {
syslog(LOG_ALERT, "User cleared alarm on zone %d, %s",
Zone[rowid].id, Zone[rowid].name);
}
}
return(0); // Success
}

In the last two sections, we showed you the alarm daemon source code
and explained how the source code works. Did you notice how easy it was to
implement the alarm daemon? The next section shows you how to build and
test the alarm daemon.

Building and Testing ladd

You don’t need to install a whole set of alarm sensors to run this daemon—
all you need is a standard PC with a parallel port. Before running the daemon,
you must create the directory /opt/laddie/ladd/, because the alarm daemon
creates a PID file in this directory. Use these commands to create this
directory as root:

mkdir /opt/laddie/ladd

74 Chapter 5
No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

The source code for ladd is on the companion CD in /Code/src/ladd.
Compile the alarm daemon and then run the daemon as root, as shown in
the following commands:

cd /Code/src/ladd
make

su

./ladd

To make sure that the alarm daemon is running and responding to user
requests, invoke the psql SQL command shown below, and verify that the
Zone table is displayed.

psql -h localhost -p 8888
SELECT * FROM Zone;

id | name | enabled | edge | latching | input | alarm | count
D Bt ommm e ommmm dommmm e Hmmmmm e Hommmm
1| | 0 | o | o | o | o | o
2| | o | o | o | o | o | o
3| | o | o | o | o | o | o

4 | | o | o | o | o | o | o

5 | | o | o | o | o | o | o
(5 rows)

Typically, you would add hardware sensors to your alarm appliance, but
you can simulate an alarm without the hardware sensors.

Consider zone 1. Our approach is to invoke the alarm write callback
using this command:

UPDATE Zone SET name = "BackDoor", enabled=1, edge=0, WHERE id=1;

Next, we’ll simulate an alarm on the input of zone 1 with the following
command:

UPDATE Zone SET alarm=1 WHERE id=1;

Verify that ladd generated a log saying User set alarm on zone 1. Then
manually clear the alarm, as such:

UPDATE Zone SET alarm=0 WHERE id=1;

Again verify that ladd generates a message for syslog. We’ll show you
how to build more accessible user interfaces to the alarm daemon in future
chapters.

The Laddie Alarm System: A Sample Appliance 75

No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce

www.it-ebooks.info

http://www.it-ebooks.info/

Summary

This chapter tied the previous chapters together by showing you how to
build ladd, a simple alarm daemon, using RTA and the empty daemon. You
saw the design of ladd’s RTA table, the control point by which the user
interfaces manage the alarm daemon. You also saw the alarm daemon’s
source code, including the three subroutines used by the empty daemon to
implement the alarm daemon’s run-time behavior. Finally, you saw how to
configure the alarm daemon and how to manually set and clear an alarm
from the command line.

The next chapter continues to develop Laddie’s design by showing you
how to handle events on an appliance, including events such as ladd sending
messages to syslog.

76 Chapter 5
No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

LOGGING

A log message is an asynchronous report of
an event of interest. This chapter discusses
logging in general and then looks in some

detail at syslog, the default logging system on
Linux. We also describe how to control logging
thresholds while a daemon is running.

We’ve organized this chapter into the following sections:

¢ Do You Need Logging?

¢ Architecture of a Logging System
¢ syslog

¢ On-Demand Logging

Do You Need Logging?

Before getting into the mechanics of logging, let’s discuss why you might
want logging on your appliance.

No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

Uptime
The number one reason for logging is to increase the system availability
of your appliance. Proper routing and displaying of log messages like
CPU fan speed below 1000 RPM can help your end users keep their systems
up and running. A regression or trend analysis of the system’s collected
log messages can help identify problems before they interrupt service.
Trend analysis is particularly useful in spotting problems with fans,
disks, and power supplies.

Security
If your appliance is on a network, it will almost certainly come under
attack at some point. You can use log messages to trigger changes in the
firewall rules or to notify the system operator or the end user that the sys-
tem is under attack.

Debug
The first step in fixing a bug is recognizing that a bug exists. Log mes-
sages that report any inconsistency in input or output of a subroutine
are invaluable for finding bugs. You can use the on-demand logging
described later in this chapter to trace program execution and to
record subroutine inputs and outputs when a bug is detected.

Integral to the application
Laddie is a good example of an application with integrated logging and
event processing. It simplified our design of the ladd daemon to have it
report all alarm transitions using only a log message.

You may be unable to use logging on some deeply embedded Linux
systems with limited connectivity and limited disk space. But for most systems,
logging will be a real asset for your appliance.

Architecture of a Logging System

This section describes the architecture and properties of an “ideal” logging
system. The next section describes syslog and compares it to the ideal
presented below.

A logging system can be divided into three major sections: one to collect
log messages, one to route them, and one to deliver them (or to start other
actions). Figure 6-1 illustrates the architecture of a logging system.

Let’s consider each of these three sections in more detail.

Message Sources

The ideal logging system is a clearing house for messages from anywhere on
the appliance, and it should be able to accept messages from many sources,
including Unix sockets, UDP and TCP sockets, named pipes, and from
following a file (the output of tail -f).

78 cCha pter 6
No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

Sources Routing Destinations

/\/Nefwork

/ fj Files
\ |:|:|:|:| Database

tail-f (J o

Figure 6-1: Log message flow in an appliance

syslog()

Network "M Routing

The source code of the logging system should be well documented and
modular to make it easy to add new types of message sources. The configura-
tion of the system should make it easy to add new sources while the system is
running.

Let’s discuss three common message sources in a little more detail.

Unix sockets
Syslog, the most popular logging system on Linux, uses a Unix socket as
its message collection point. Stream-oriented communication channels,
such as a Unix socket, must have a delimiter to separate the messages.
The two most common delimiters are a null character, which syslog uses,
and a carriage return.

Network sockets
Network messages might arrive in a UDP datagram or over a TCP con-
nection. Some applications accept TCP connections and broadcast their
log messages to all connected sockets. The logging system should be able
to accept TCP connections as well as initiate them. If the log messages
are going to traverse an insecure network link, the system should encrypt
them in transit using either Stunnel or SSH with port forwarding.

Following a file
Many applications write log messages directly to a file. If you want to cap-
ture the events reported in these log messages, you must watch the file
for new messages. The tail -f command does this. Most often, you’ll see
this as the command string:

tail -f app_log file | logger

It seems a waste to create two processes just to capture an application’s
log messages, and a good logging system should handle following a file
as part of its core functionality.

logging 79
No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

80

Chapter 6

Message Routing

The routing section identifies the appropriate destinations for each
message. The routing criteria vary from one system to another, but most
systems include the ability to route based on event importance and source
programs (such as mail, cron, kernel, and authentication). Some systems
include filters that recognize and route based on the text in the log message.

In this chapter, we define a filter as a set of routing rules and the desti-
nation associated with each rule. The routing rules and their associated
destinations are stored in a configuration file (or, in the case of Laddie, in
an RTA table). Filters only make sense if the system supports (and you use)
multiple message destinations.

Message Destinations

Alogging system finishes processing a message by sending it to a destination.
Common destinations are discussed below. While the following list of message
destinations may seem quite long, there are in fact many possible destina-
tions not described.

Files
Files are the most common destination for log messages. Log files are
the accepted norm, perhaps because they are so easy to access for peri-
odic post-processing analysis. Unfortunately, files pose a problem for
many embedded systems that do not have hard disks: RAM is volatile,
and flash memory is too expensive to use for archiving log messages.
Your choices for a diskless appliance are to filter messages heavily and
only save a few to flash, to send them to a server on the network, or to
just not save log messages.

If you save log messages to a file, you can use logrotate to periodically
remove the oldest file, rotate the newest file into a numbered archive, and
send a SIGHUP signal to the process that is the source of the messages.
A SIGHUP should cause the application to open a new log file.

Named pipes

Named pipes are an easy way to pass your filtered log messages to another
program. A helper application opens the named pipe for reading and
then blocks while waiting for log messages to arrive. When the logging
system has a message to send, it writes the message to the named pipe,
unblocking the helper application. Make sure your helper application
can handle “broken pipe” errors, since they can occur if the logging sys-
tem is restarted.

Named pipes and helper applications are very useful for destinations
that are too big or too complex for inclusion in the logging daemon
itself. A named pipe is a great way to tie the logging system to a custom
application that is specific to your appliance.

One alternative to a named pipe is a fanout device, a kernel module
and associated /dev entries that act as a one-to-many multiplexer. Unlike
named pipes, fanout devices let many readers get the same message

No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce

www.it-ebooks.info

http://www.it-ebooks.info/

(hence the name fanout). This book’s website hosts the fanout project,
including source files and more detailed documentation. Please visit
http://www .linuxappliancedesign.com for more information.

Remote UDP/syslog host
If your appliance is a network appliance designed for a large data center,
be sure to include the ability to forward log messages to another host in
the network. The syslogd logging daemon can receive and/or forward
log messages to other hosts using UDP.

TCP multiplexer
If you want to route some reports to other programs, you can define a
listening TCP socket that accepts connections. When a message arrives
at the multiplexer, it is replicated and sent down each open TCP con-
nection on the socket.

For example, in our Laddie appliance we have a command line
interface (CLI) that can show Laddie alarm messages.1 When a CLI
user gives the command set logs on, the CLI opens a TCP connection
to logmuxd, Laddie’s logging daemon, and log messages are sent down
each accepted TCP connection to the CLI at the other end. (logmuxd
is described in the next chapter.)

Email
It is nice to have significant events reported to you via email, since email
is ubiquitous, if not timely. Also, email is often used as a gateway to pag-
ers and cell phones (so that really important disasters can find you no
matter where you hide).

Console
Output to /dev/console or to a serial port is a must for debugging. Some
large network centers still prefer to collect log messages over a physically
secure and non-shared channel like an RS-232 cable.

Database
Some messages require an immediate response, but most of the time you
are interested more in trends or changes in the pattern of a system’s
events. A relational database is an ideal repository for log messages, since
it has a wide range of tools to sort and count log messages. Since data-
bases can use a lot of CPU cycles while they are sorting and counting, you
might want to put the DB somewhere else on the network instead of on
your appliance.

SNMP traps
Most large networks have one or more dedicated network-management
workstations that run an SNMP manager. The operators of these net-
works often insist that all network equipment use SNMP for status,
configuration, and error reporting.

! Log messages give a report of an event. An alarm is a system state of failure or reduced
availability. Log messages are used to report the transitions in to and out of an alarm state,
and the two terms are sometimes confused.

logging 81
No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

system()
A system() call to run a utility is another common destination. While
simple and flexible, this approach uses more memory and CPU cycles
than the other destinations and is not appropriate for processing large
numbers of log messages.

The use of system() is almost always considered a security risk. We
mention system() for completeness, but discourage its use. If you must
run an external command, try to use popen() in place of system(). We
solve this problem on Laddie by using the RTA-to-file utility described
in Appendix D.

We do not have space here to describe all of the many possible desti-
nations. For example, we did not discuss pagers, voice mail, or instant
messaging.

syslog

A logging system needs a standard way to report events, a lingua franca for log
messages. That standard, for most of us, is syslog. There are several advantages
to syslog. It is the primary event-reporting mechanism used by all legacy
Linux applications, and it is well known and understood. In conjunction
with the kernel logging daemon, klogd, syslog captures kernel and other
system log messages that you may want to make visible to the appliance user.
This section describes how syslog works, how to use it in your applications,
and how to configure its message filters. We give enough detail that you
should have no trouble using syslog as the basis for your logging system.

syslog Architecture

Messages from syslog are generated in your program by a call to the glibc
C-library routine syslog(). Then, glibc formats the message and tries to
write it to /dev/log, a Unix socket that is opened when syslogd starts.
syslogd reads the message from /dev/log and handles it according to
filters defined in /etc/syslog.conf, the syslogd configuration file. Figure 6-2
shows the overall architecture and message flow of syslog.

Message Generation Message Processing

/var/log/messages

|
|
I
syslog() —=| glibc —»:—» syslogd /var/log/mail
I
|

/var/log/secure

I
/dev/log

(a Unix socket)

Figure 6-2: Message flow with syslog

82 cha pter 6
No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

NOTE

Using syslog

Almost all Linux programming languages have a routine to send a syslog
message. The C-library prototype shown below is fairly typical of most
languages.

void syslog(int priority, const char *format, ...);

Priority is combination of the log level, the importance or severity of the
event, and the facility, the type of program that generated the message.2 Most
programmers specify only the log level when using the syslog routine. There
are eight log levels, ranging in importance from emergency to debug. This
excerpt from syslog.h shows the eight levels available.

#define LOG_EMERG
#define LOG_ALERT
#define LOG_CRIT
#define LOG_ERR
#define LOG_WARNING
#define LOG_NOTICE
#define LOG_INFO
#define LOG_DEBUG

/* system is unusable */

/* action must be taken immediately */
/* critical conditions */

/* error conditions */

/* warning conditions */

/* normal but significant condition */
/* informational */

/* debug-level messages */

Nouphd wWwN R O

The syslog() routine uses a printf style format string that can have a
variable number of arguments. The text in the format string should form a
clear, unambiguous description of the event, and any arguments to the
format string should give further details of the event.

When we build appliances, a big part of what we deliver is documenta-
tion, and a big part of our documentation is a list of all the appliance log
messages and their meanings. This list is easy to generate using grep on the
source code. A list of log messages will be exceptionally valuable to your
customers, and generating it requires only a little discipline on your part.

Generale a list of all log messages in your appliance as part of your appliance’s
documentation.

You have more control over what is sent to syslogd than just the priority
and text of the message. In particular, you can also use the optional openlog()
routine to control the syslog facility, the message prefix, and whether or not to
include the process ID with the log message. The openlog() calling syntax is:

void openlog(const char *ident, int option, int facility);

The ident is a short string that syslog prepends to each log message. If
you do not specify one, ident defaults to the name of the program that called

2 Unfortunately, the documentation for syslog and syslog.conf are not in full agreement. One
defines priority as the bitwise OR of facility and log level, and the other defines priority as what we
call log level. While this book is self-consistent, you should use care when reading other syslog
documentation.

logging 83

No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce

www.it-ebooks.info

http://www.it-ebooks.info/

syslog(). The option parameter lets you control things such as what to do if
/dev/log is not available and whether or not to include the PID of the calling
program. The option is the bitwise OR of zero or more of the following:

e LOG_CONS—write log to console on failure to write to /dev/log

e LOG_NDELAY—open socket to /dev/log immediately

e LOG_ODELAY—wait until first message to open socket to /dev/log
e LOG_PERROR—write log to standard error as well as /dev/log

e L0G_PID—include PID with each message

The facility is meant to correspond to the type of program sending the
log message. It defaults to LOG_USER if openlog() is not called. There are 24
standard facilities defined in syslog.h; the following excerpt shows the defini-
tions for the most common ones. Note that the values are shifted up by three
bits to keep the lower three bits reserved for the log level.

/* facility codes */

#define LOG_KERN (0<<3) /* kernel messages */

#define LOG_USER (1<<3) /* random user-level messages */
#define LOG_MAIL (2¢<3) /* mail system */

#define LOG_DAEMON (3¢<<3) /* system daemons */

#define LOG_AUTH (4<<3) /* security/authorization messages */
#define LOG_SYSLOG (5¢<<3) /* messages generated by syslogd */
#define LOG_LPR (6<<3) /* line printer subsystem */
#define LOG_NEWS (7<<3) /* network news subsystem */
#define LOG_UUCP (8<<3) /* UUCP subsystem */

#define LOG_CRON (9¢<<3) /* clock daemon */

#define LOG_AUTHPRIV (10<<3) /* security messages (private) */
#define LOG_FTP (11<<3) /* ftp daemon */

While the priority and facility are used by syslogd for routing, their values
are not part of the saved text; however, you can infer the priority and facility
of saved log messages by setting up syslogd to save messages with different
priority and facility values to different files.

The syslog Protocol

Before going into a description of how to set up syslogd, let’s examine the
protocol used to send syslog messages. As mentioned earlier, syslogd opens a
Unix datagram socket on /dev/log and blocks while waiting for messages to
arrive on the socket. The information passed from the application to the
syslogd daemon includes a facility, a log level, and the message itself. The
daemon uses the facility and level as its sole filtering criteria.

The original authors of syslog combined the priority and facility into a
32-bit integer, with the priority using the low three bits for the log level. The
combined facility/level is ASCII encoded and placed between angle brackets
before being written to /dev/log.

For example, say your program sets the facility to LOG_USER and sends an
INFO log message with the following code.

84 cha pter 6
No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

#include <syslog.h>

main() {
openlog("my_prog", 0, LOG_USER); //LOG_USER = 0x0008
syslog(LOG_INFO, "abc=%d", 2); //LOG_INFO = 0x0006

}

If we looked at the message just after syslogd reads it from its Unix
socket, we would see:

<14>Aug 2 13:18:31 my_prog: abc=2

Notice how LOG_USER (8) and LOG_INFO (6) are combined into <14>. A
newline or other termination character is not needed, since syslog() adds a
null character before writing the message to the /dev/log socket. If you
don’tinclude a newline, syslogd will append one before writing the message
to the log file.

Using the syslogd Daemon

The syslog daemon reads the messages from the /dev/log Unix socket and
routes the messages based on their facility and log level. The destinations for
a syslog message are called actions and include files, named pipes, the system
console (or other TTY port), other syslogd systems on the network, and
users.

The filters and actions for syslogd are defined in /etc/syslog.conf. The
configuration file usually has one line per destination, with a list of as many
facilities and levels as needed for that destination. The facilities in the action
are separated by commas, followed by a dot and then a log level. An asterisk
can be used to represent all facilities or levels, and specifying a log level
implies including that level and all the levels more severe than it. For
example:

* K all log messages
mail, lpr.* all messages from the mail and printer daemons
*.crit all messages with a critical log level or higher

The most common destinations for syslog messages include files, pipes,
and other log daemons on the network. Pipes are specified by giving a pipe
symbol, |, at the start of the destination. A network destination starts with an
at symbol, @. The man page for syslog.conf gives a more complete description
on how to specify which facility and priorities are routed to which actions.
The lines of syslog.conf that route all mail logs to /var/log/mail and all
critical or higher print spooler and FTP logs to a network log server are:

mail.* /var/log/mail
lpr, ftp.crit @loghost.myintranet.com

logging 85

No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce

www.it-ebooks.info

http://www.it-ebooks.info/

86

Chapter 6

Recall that the facility is part of the priority integer passed from syslog()
to syslogd, and that you can define your own facilities. This lets you build a
private logging system on top of syslog. You could add the new facility integer
and name to syslog.h, then rebuild glibc and syslogd. However, it is probably
easier to use an explicit integer for the new facility. There are 24 predefined
facilities, so choose a number much larger, say 1,000. The code that sends an
INFO log with this facility might look like the following:

syslog((1000<<3) | LOG_INFO, "an event occurred");

We’ve shown the shift and OR explicitly to illustrate what is happening.
We suggest that you use the equivalent LOG_MAKEPRI(facility, level) macro.

To continue with this example, say you have a program listening for your
new log messages on the named pipe /usr/local/private_pipe. You could
configure syslogd to deliver all logs with the new facility by adding the
following line to syslog.conf and restarting syslogd.

1000.* | /usr/local/private_pipe

Desktop developers might cringe at the thought of using syslog for event
processing. But then again, Linux desktop systems typically have more RAM
and CPU resources than an appliance, so they can afford the (relatively)
high disk, memory, and CPU overhead of D-Bus. We recommend syslog for
its simplicity, availability in almost all programming languages, and its small
memory and CPU overhead.

Limitations, Advantages, and Alternatives to syslogd

There are a few limitations with the default syslogd daemon. As mentioned
previously, it does not save the message level or facility (although you can
get them indirectly by routing based on them). Syslogd can not route based
on regular expressions, it only accepts messages from Unix sockets, and it
has a somewhat limited set of actions. Some programmers find the limited
numbers of levels a problem when setting up debug and trace mechanisms.
On the plus side, syslogd is universally accepted and is thoroughly debugged,
tested, and secure.

The logger utility (which we saw briefly in the beginning of this chapter)
lets you work around the limited set of message sources for syslogd. Logger
sends log messages to syslogd, getting the log messages from either its
command line or from each line of its standard input. If you wish, you can
specify level, facility, and a prefix string. See the logger man page for more
details. You can also combine netcat (a simple utility to read and write from
network connections) and a logger to accept log messages from a single
accepted TCP connection using a command similar to the one shown below.

nc -1 -p 2250 | logger

No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce

www.it-ebooks.info

http://www.it-ebooks.info/

The logger utility lets you “watch” other log files. For example, say you
want to have each line thatis added to /usr/www/error.log to also be sent to
syslog. The following command line does this.

tail -f /usr/www/error.log | logger

One other logging helper program worth mentioning is klogd. Since the
Linux kernel does not use glibc, it cannot use syslog() to send kernel log
messages. Instead, kernel log messages are made available either with the
system call sys_syslog() or from the circular buffer visible in /proc/kmsg.
The daemon klogd translates kernel log messages from either source into
syslog messages. In addition, klogd translates the hex addresses in the kernel
log messages into their equivalent symbolic names. To get the symbol from a
hex address, klogd reads the memory map in the System.map file. If you load
or unload kernel modules after starting klogd, be sure to tell klogd to reload
its symbol table using the command klogd -i.

Popular alternatives to syslogd include nsyslog, which supports TCP
using SSL; minirsyslogd, which is a minimalist logger that can handle a very
high volume of traffic; and syslog-ng, which can filter on regular expressions,
does message rewriting, and supports TCP sources and destinations. The
evlog package is one of the best in terms of recognizing and responding to
log messages. The latest information on these alternatives can be found with
a web search on the package name.

On-Demand Logging

Wouldn’t it be nice if you could dynamically control how verbose the logging
is in your program? Sure, you can use a -v switch on the command line when
starting the program, but that’s not exactly dynamic. Also, it would be nice
if you could independently control the log level in different parts of your
program. That way, you could zoom in to study a particular piece of code.
This section describes how you use an RTA table called Logit and code
from the Laddie appliance to independently control the log thresholds

in different parts of your code, while your program is running. Figure 6-3
illustrates the idea of giving different parts of a program different thresholds
for logging.

Here is the definition for a row in the Logit table:

typedef struct

char sect[LOGIT_NAME_LEN]; /* the section name */

int thres; /* log threshold. 0-6=normal 7-15=debug */
int output; /* 0=none,1=stderr,2=syslog,3=both */
char comment[LOGIT_COMMENT_LEN]; /* description of section */
} LOGIT;
logging 87

No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

Initialization
threshold = 5 Buffer
Management
threshold = 11
select()
threshold = 5
VSN Image
i Processing
Timers
threshold = 5 threshold = 10
~ /

Figure 6-3: Independent control of logging in each
program section

The idea is to have a separate logging threshold for each section of code,
and to send a log message only if the message’s level is numerically below the
log threshold for that section. Our implementation of Logit has 12 rows, the
first five of which are used internally by the Laddie prototype daemon. You
can easily change LOGIT_NROWS in logit.c to add more rows if you wish.

Let’s work through an example. Say you want to add on-demand logging
control to two different sections of code, image processing (IM) and buffer
management (BM). During its initialization your program must create its
entries in the Logit table. You can do this directly, or you can use the wrapper
function logitSetEntry(). The code below shows both methods.

#include "empd.h" /* defines for the prototype daemon */
#define IM 5
#define BM 6

/* Initialize on-demand logging for the image-processing section */
strncpy(Logit[IM].sect, "img proc", LOGIT_NAME_LEN-1);
Logit[IM].thres = LOG_DEBUG;

Logit[IM].output = 2; /* output to syslog() */
strncpy(Logit[IM].comment, "IM, image process",LOGIT_COMMENT LEN-1);

/* Initialize on-demand logging for buffer management */
logitSetEntry(BM, "buf mgmt", LOG_DEBUG, 2, "BM, buffer management");

With the above initialization in place, you can now add log messages that
you can control by raising or lowering the threshold in the Logit table.

The L0G() macro defined in the Laddie empty daemon header file,
empd.h, will send a message to syslog() or send a standard error if the
threshold set in the LOG call is numerically lower than the threshold in
Logit for that section of code. For example, to selectively trace the operation
of the image-processing and buffer-management code, you might have a few
lines like the following.

88 cha pter 6
No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

LOG(LOG_DEBUG, IM, "Deep into image processing");
LOG(DBG_2, BM, "Freeing buffer ID=%d", buf_id);

The file empd.h defines five additional log levels (DBG_0 to DBG_4) below
LOG_DEBUG to give you more precise control over the verbosity of debug
messages.

With all of the above in place, you can enable and disable log messages
in individual sections of your program. For example, the SQL commands to
disable all logging except for the IM section might be:

0
10 WHERE sect = "IM"

UPDATE Logit SET thres
UPDATE Logit SET thres

Summary

Logging is a valuable addition to almost all appliances, even those with
limited disk, memory, and CPU power. An ideal logging system has many
sources and destinations for log messages and allows for the addition of
new sources and destinations.

There are two components to syslog, the default logging system on Linux:
a library routine to send log messages, and a daemon to process them. The
syslog() library routine is available in every major programming language
available on Linux. The syslog daemon, syslogd, routes messages based on
the source of the message (the facility) and on the severity of the event
reported (the log level). In this chapter, you learned how to add your own
facility to syslog in order to route log messages specific to your appliance.

On-demand logging gives us the ability to dynamically control the
verbosity of logging in different parts of our application. While RTA makes
on-demand logging easier, it is not required for on-demand logging.

This chapter reviewed logging and the collection and archiving of log
messages. The next chapter describes a logging system that can recognize
specific text in log messages and then rewrite and route the messages on a
case-by-case basis.

logging 89
No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

LADDIE EVENT HANDLING

Your appliance needs to respond when
alarms or other critical events occur.
Whether it’s CPU temperature, battery level,

low disk space, or paper level, something is going
to occur that requires action from your appliance.

The idea of having a general purpose event-handling system is, surpris-
ingly, not common in Linux. Too often the need for event handling is not
apparent until near the end of system testing of the appliance, so it is usually
addressed as an afterthought—with ad hoc and poorly integrated code.

The authors have built enough Linux appliances to know that we should
build event handling into the core of our design for Laddie. As part of the
Laddie project, we built our own event-handling system that uses logging to
capture the events of interest. Our event-handling daemon is called logmuxd,
and this chapter explains why we built it, describes its features, presents its
major tables, and gives complete examples of its use. This chapter may be
of value even if you choose not to use logmuxd, since it shows the kinds of
processing needed for any event-aware appliance.

No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

92

This chapter discusses event handling in the context of logging, but bear
in mind that the goal is event handling, and logging is just the mechanism
used to reach that goal.

We’ve organized this chapter into the following sections:

¢ Rationale for a New Event-Handling System
¢ Features and Capabilities of logmuxd
¢ Configuring logmuxd

¢ Examples Using logmuxd

Rationale for a New Event-Handling System

NOTE

Chapter 7

We’ve found that the only code we’ve ever delivered on time and bug free
was code that we did not write. That is, our most successful projects were the
ones in which we were most able to avoid writing new code. New code always
has bugs, and new code is always late. Why, then, did we decide to write a
logging daemon to do event handling? There are really two parts to the
answer: why we chose to use logging as the mechanism, and why we chose
not to use an existing logging system.

Chapter 6 explains why we think logging is the right mechanism for
event reporting. All events that are of interest to us are already captured by,
or can easily be captured by, syslog messages. There are syslog libraries for
almost every programming language, and syslog is well understood, fairly
secure, and is both CPU and memory efficient.

A distant second to syslog for event handling is D-Bus, an open source
package often used to distribute desktop events. D-Bus offers libraries and an
API that allows processes to exchange messages, provided that both processes
are D-Bus aware. (Because of this, legacy applications that use syslog must be
rewritten to add D-Bus support.) However, D-Bus does not offer the same
breadth of languages that syslog offers, and D-Bus usually requires two running
daemons, which makes it relatively RAM and CPU intensive (compared to

syslog).

D-Bus comes standard on most Linux desktops, but it’s probably inappropriate for
event handling on most Linux appliances.

If syslog is the event reporting mechanism, then why not use the syslog
daemon for event handling? The major feature that we found missing from
the currently available logging systems was the ability to easily duplicate log
messages and broadcast them on accepted TCP connections.

The Laddie Alarm System needs to have Laddie alarm messages routed
to several running programs and Uls. Figure 7-1 illustrates a typical case.
When an alarm occurs, ladd sends a log message to report the event. We
need to send a copy of the resulting log message to every CLI that has
logging enabled and to every web page that is looking at the system status.
The problem is that we don’t know beforehand how many of each of these
interfaces are open.

Our new logging daemon, logmuxd, solves this problem by allowing
us to route messages to many destinations, even if those destinations are

No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce

www.it-ebooks.info

http://www.it-ebooks.info/

transitory. No other logging system supports multiple, transitory destinations.
When ladd detects an alarm, it sends a log using syslog(); then logmuxd
captures the event, rewrites it if needed, and multiplexes it out to each of
the accepted TCP connections.

Front Panel
Browser

syslog()
»| logmuxd

ladd

Cu

Cu

Figure 7-1: The need for a multiplexing log daemon

We decided to invest the time to build a new logging system for event
handling because we wanted the ability to capture, rewrite, and route event
reports from all applications and daemons on the appliance. As an appliance
designer, you may find that your appliance needs to capture event reports
from many sources and route the messages to many destinations. If so, you
should consider using logmuxd in your appliance.

Features and Capabilities of logmuxd

We want logmuxd to work either with an existing syslogd installation or as a
replacement for it. That is, we need to be able to read and write messages in
the syslog style of angle brackets surrounding an integer. We want our logging
daemon to support many types of input and many types of destinations, to be
able to route based on a regex, and to be able to rewrite a log message before
forwarding it on to its destination.

Each destination has its own set of routing and rewriting rules. This is
similar to syslogd and means that you may have otherwise identical filters
with the output of each filter going to a different destination.

Filters use the regex() library for pattern matching and for extracting
relevant fields from the log messages. Messages can optionally be rewritten
using the fields extracted from the regex pattern.

Figure 7-2 presents the overall architecture of logmuxd. In the next
section we discuss each of the blocks in this diagram.

Files

/dev/log logmuxd
\ TCP In
TCPIn 2 TCP Out
TCP Out —| Sources — R;roufl.ng/ »| Destinations UDP
ewriting
uDP / SNMP
Email
tail-f
PostgreSQL

Figure 7-2: Architecture of logmuxd

Laddie Event Handling 93
No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

94

The use of logmuxd might be easier to understand if we start with a list
of its configuration tables! grouped according to the three processing blocks
shown in Figure 7-2. Table 7-1 doesn’t describe all of the tables in detail, so
you might want to use the RTA table editor to examine them more closely.

Table 7-1: Configuration Tables Grouped According to Processing Block

Section Table Contents
Source Muxin, Rawlog, Accpt Descriptions of all input sources, last 10 raw log
messages, and accepted input TCP connections

Routing Filters Patterns to match, rewriting rules, and destinations

Destinations FileDest, NetDest, Destinations existing in a filesystem, TCP and UDP
AccptDest, SnmpDest, destinations on the network, accepted output TCP
PgdbDest, MailDest, connections, SNMP trap destinations, RTA and
TbIDest PostgreSQL DB destinations, email destinations, and

a local table with the last 20 Laddie log messages

logmuxd has several limitations. It does not have any flood filtering
(for example, syslog’s “Last message repeated 10 billion times”). It uses
regex, which gives it a lot of power and flexibility, but at the expense of CPU
cycles. Finally, it is a relatively new logging daemon and is still in flux to a
certain degree, as new features are added and as bugs are found and fixed.

You can overcome most of the limitations of logmuxd by pairing it with
syslogd. Configure syslogd to output all messages to a FIFO, and configure
logmuxd to read from the FIFO and to filter and rewrite only those few
messages that you want to capture for further processing.

Configuring logmuxd

RTA tables store the configuration and statistics for logmuxd. The following
discussion describes the tables, and the examples in the next section give the
SQL for using them.

logmuxd Sources

You tell logmuxd about your event sources by describing them in the four
editable fields in logmuxd’s MuxIn table. These fields are source, port, type,
and term.

The sourcefield contains the filename if the source is a file, pipe, or Unix
socket, or the IP address if the source is a UDP or TCP socket.

The port field contains the port number for UDP and TCP sockets and is
ignored for sources with an entry from a filesystem.

The type field specifies one of the six possible types for the source.
Table 7-2 describes the six source types.

! Other programming books might give configuration as a file format or set of subroutine
calls. Instead, we present logmuxd configuration in terms of its RTA table interface. You
should now think of all status and configuration information in terms of how it would
appear in an RTA table.

No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce

www.it-ebooks.info

http://www.it-ebooks.info/

Table 7-2: Six Possible Source Types

Type Meaning
The read end of a named FIFO

The “tail” of the specified file
A UDP socket

A TCP connection that logmuxd opens fo the specified address and port

A TCP connection that logmuxd accepts on the specified listen address and port

o~ 0 NN =

A Unix datagram socket

The term field specifies how the source terminates log messages. A zero
indicates that log messages are terminated with a null character. Messages
from syslog use a null terminator. A one indicates that each read() on the
source will receive a complete message. This termination is used on UDP
sockets, for example. A two indicates that a newline terminates the message.
Newline termination is used for tail -f types of sources.

The MuxIn table also has read-only fields that hold usage statistics, error
statistics, and the file descriptor for the source. For more information on
these fields, use the RTA table editor to examine them on a running Laddie
appliance.

Two other logmuxd tables are associated with message input processing.
The Rawlog table acts as a FIFO to hold the 10 most recent messages. This is
useful when debugging filters or monitoring the raw input to the logger.
The Accpt table holds the file descriptor and other information needed
by accepted TCP connections and by open Unix sockets. There are no
configurable fields in either Rawlog or Accpt.

logmuxd Filters and Rewriting

One of the main reasons to use logmuxd is that it rewrites messages and
forwards them on to another process. For example, when a user sets a test
alarm in a zone, ladd sends the log message “User set alarm on zone n,
zone_name” (where n and zone_name are replaced by the zone number and
user-assigned name). We want this log message to appear on the front panel
LCD display, but the LCD display can only display 16 characters, so we use
the rewriting capability of logmuxd to rewrite the message to fit on the LCD
display. The original message is rewritten from this:

Aug 12 22:28:31 ladd[3820]: User set alarm on zone 5, Refrigerator

to this:

22:28 Usr set 5

All of the configuration data to recognize and rewrite a log message is
contained in the Filters table. This table contains the type and name of the
destination, the regular expression to match, and an snprintf() format string
for the rewritten message. Let’s look at each of these fields in turn.

Laddie Event Handling 95

No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce

www.it-ebooks.info

http://www.it-ebooks.info/

Two fields are used to specify the destination: desttype and destname. There
is a separate table for each type of destination. This is necessary because, for
example, an email destination needs different configuration information
than an SNMP trap destination does. The type of the destination and its
destination table are set by the desttype field. There are nine valid destina-
tion types. The types for 1 and 2 are not included in Table 7-3, since they are
strictly source types.

Table 7-3: The Nine Valid Destination Types

desttype Destination Table Meaning

0 None No destination (useful for collecting statistics)
3 NetDest Accepted TCP connections

4 NetDest Outgoing TCP connections

5 NetDest UDP socket destinations

7 FileDest File (includes both FIFOs and regular files)

8 PgdbDest PostgreSQL DB (or an RTA table)

9 SnmpDest SNMP trap destinations

10 MailDest Email destinations

11 TbIDest logmuxd'’s internal table for output messages

There can be several distinct destinations described in each of the desti-
nation tables. Each destination has its own unique name (a destname) in one
of the destination tables. For example, if you have two different SNMP desti-
nations, you may call one of them allsnmp and the other laddiesnmp. By giving
them different names, you can define different routing and rewriting rules
for them. To link a filter in the Filters table to a specific destination, you
need to specify both the destination type and destination name.

Logmuxd routes messages based on the message’s facility, log level, and
on a text pattern match. These three corresponding fields in the Filters table
are facility, level, and regex. The facilities and log levels are the same as those
defined for syslogd. The regex pattern is a regular expression used for both
pattern matching and subpattern extraction.

The regex library is a good choice for pattern matching and extraction,
since the patterns can be precompiled to improve the speed of the pattern
match, and regex lets you easily extract subpatterns from the search pattern.
In our use of logmuxd, we’ve found that we don’t really need to know too
much about regex patterns. The following example illustrates most of what
you need to know.

Say that you are processing the event of a train’s arrival at a station, and
the log message is Train from San Jose arriving on Track number 15. To rewrite
this message as San Jose : 15, you need to extract both the city and the track
number. The regex pattern to capture the city is [A-Za+ -]+. This pattern
matches any combination of at least one upper- or lowercase alphabetic char-
acter, a space, or a dash. The pattern for the track number is just [0-9/+. Here’s
the trick: If you put parentheses around a pattern, regex makes that pattern
available separately in the regex output. The following is a regex pattern to
match the message and extract the city and train number.

96 cCha pter 7
No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

Train from ([A-Za-z -]+) arriving on Track number ([0-9]+)

The Filter table’s rewrite field contains the snprintf() format string used
to rewrite the log message. The format string contains text of your choosing
and can contain the strings extracted from the regex pattern. The matches
to the regex patterns are available as explicit parameters to the snprintf().
Table 7-4 lists the parameters available to you.

Table 7-4: Available Parameters to the snprintf()

Parameter Meaning

%1$s to %99%s Up to nine regex subpatterns

%10%s The entire match to the full regex pattern
%11$s The date and time per the time_fmt field
%12$s A newline character

Continuing the example above, you can get the message San Jose : 15
with a rewrite format string of % 18s : %2§s.

You can add a date and time to your rewritten message by including
% 11$s in your rewrite string. The format of the date and time is set by the
time_fmt field, which is passed to strftime() for the conversion. Common
examples of time_fmt include %F %7, which gives a date and time display
of YYYY-MM-DD hh:mm:ss, and %R, which displays only the time as hh:mm.

The explicit parameter for a newline is handy, since it can be difficult to
get a newline character into an RTA table. Remember, to PostgreSQL, a \n is
a two-character string with a backslash and the letter n.

We’ll show more examples of regex pattern matching and message
rewriting in the section “Examples Using logmuxd” on page 98.

logmuxd Destinations

Each type of destination has a table to hold the parameters unique to that
type. You can easily figure out most of the tables and their content by
browsing them with the RTA table editor, but three destination tables
deserve some additional comments.

The MailDest table has a subject field that contains the subject of the email
message to send. The to_list field is a space-separated list of recipients of the
email. For security reasons, the only characters allowed in to_list are alpha-
numerics, periods, underscores, at signs (@), and spaces. If you are going to
use email as a destination, be sure to run Sendmail, Postfix, or another mail
transfer agent on your appliance.

The SnmpDest table contains the name of the destination, the IP address
of the SNMP trap daemon, the community string for the SNMP daemon, the
port number, and the type of trap to send (version 2 trap or version 2 inform).
The values in these fields are passed as parameters to the snmptrap command,
which actually sends the trap.

Laddie Event Handling 97

No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce

www.it-ebooks.info

http://www.it-ebooks.info/

98

The TblDest table holds 20 log messages, with the most recent message
always at the top of the table. In Laddie we use this table to hold the log
messages that we make visible to the end user.

Examples Using logmuxd

Chapter 7

Let’s go over a few examples to help clarify how to use logmuxd.

Example 1: A logmuxd Demonstration

In the previous sections, you saw that one of the nice features of the Laddie
Alarm System is that when an alarm occurs, all of the Uls are updated to
reflect the new alarm and the new system status. This demonstration shows
how to see the log messages that are distributed to all of the Uls.

1. Boot the Laddie CD. After the system is up, verify that you can see
Laddie’s web interface on the web browser of another PC.

2. On Laddie, logmuxd is configured to broadcast alarm system events
down all accepted TCP connections to port 4444. Open a terminal
window and telnet to port 4444 on the Laddie PC. For example:

telnet 192.168.1.11 4444

3. Use the web interface to test a few zones, and then clear all the
alarms. Your telnet session should display log messages similar to
the ones below.

2007-10-07 12:03:35 User set alarm on zone 2, Back Door
2007-10-07 12:03:35 Alarm system status: alarm

2007-10-07 12:03:37 User set alarm on zone 3, Garage
2007-10-07 12:03:38 User cleared alarm on zone 2, Back Door
2007-10-07 12:03:40 User cleared alarm on zone 3, Garage
2007-10-07 12:03:40 Alarm system status: safe

As simple as this example is, it shows logmuxd’s ability to multiplex log
messages.

Example 2: logmuxd and Accepted TCP Connections

Our rationale for building a new logger was that we wanted the ability to open
a TCP connection to the logging daemon and have log messages delivered to
us over that connection. The last example showed us this ability in action, and
in this example we see how to configure logmuxd to accept TCP connections.
We use logmuxd to replace syslogd, the logger command to generate a “train
arriving” message, and a telnet connection to logmuxd to view the rewritten
log messages. In this example we are going to rewrite log messages of the form
“Train arriving from city_name on track track_number” to the form “city_name:
track_number”.

No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce

www.it-ebooks.info

http://www.it-ebooks.info/

You can copy the source from the CD and build logmuxd on your develop-
ment system, or you can boot the Laddie CD and use its running version of
logmuxd. Don’t worry about changing the logmuxd tables on Laddie, a reboot
will restore them to their original state. We are going to use psql for the table
updates, but you can also use the table editor, if you wish. Figure 7-3 illustrates
the data flow in this example.

/dev/log telnet
Logger »| logmuxd fF——>

Figure 7-3: A logmuxd example using telnet

The basic steps in the configuration are:

1. Configure logmuxd to accept syslog messages from /dev/log. Verify the
setup.

2. Configure logmuxd to recognize and rewrite “train arriving” messages.
Configure logmuxd to accept TCP connections on port 3333.

4. Use logger and telnet to verify that messages are distributed to connec-
tions to TCP port 3333.

We start by clearing the configuration in all of the tables that we are going
to use. Using the console or telnet, log in on the PC that is running logmuxd
(the PC booted from the book’s CD). The RTA interface on logmuxd listens
on port 8887; you can start the SQL session and clear the tables with these
commands:

psql -h localhost -p 8887

UPDATE MuxIn SET source = "", type =0;

UPDATE Filters SET desttype = 0, destname = "", regex = "",
rewrite = "", time_fmt = "";

UPDATE NetDest SET destname = "", dest = "", port = 0;

MuxIn

We want logmuxd to replace syslogd in this example, so we need to configure
it to listen at the Unix socket /dev/log and to read log messages in the syslog
style. We specify the source as /dev/log, the type as 6 (syslog format), and
the log message terminator as 0 (null character between messages).

UPDATE MuxIn SET source = "/dev/log", type = 6, term = 0 LIMIT 1;

If everything is working at this point, the above command opened a
Unix socket on /dev/log, and a display of the MuxIn table should show a
valid file descriptor for our source. (A netstat command should also show
the /dev/log socket.)

Laddie Event Handling 99
No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

SELECT source, fd FROM MuxIn;

If we are now listening on /dev/log, we should be able to see log
messages sent with logger. Open another terminal window and telnet
into the PC running logmuxd a second time. Issue the following command
in the new window:

logger "Hello, world!"

Verify that logmuxd received the message by looking at the Rawlog table.

SELECT source, log FROM Rawlog;

Filters

Continuing with the example, we are going to use the first row in Filters, but
we are going to update it one or two columns at a time so that we can better
explain just those columns.

desttype
You may recall that the desttype is an integer that implicitly selects which
of the destination tables this filter will use as its destination. A desttype of
3 is used for accepted TCP connections.

destname
There may be multiple, independent destinations within a destination
table. We need some way to distinguish one destination from another, so
we give each destination a name. The destype in the Filter table selects
which destination table to use, and the destname selects which row in
that table to use. For this example we will assign a name of example_2.

UPDATE Filters SET desttype = 3, destname = "example 2" LIMIT 1;

regex
If we combine the regex pattern we built when we first looked at the
train arrival example with some simple SQL, we get the command to set
the regex pattern in our filter.

UPDATE Filters SET regex =
"Train from ([A-Za-z -]+) arriving on Track number ([0-9]+)"
LIMIT 1;

level and facility
The logmuxd daemon routes based on the level and facility of the
incoming log message. In this example we do not care which level and
facility were used to send the message, so we set the level to a high value,
and we clear the facility mask.

UPDATE Filters SET level = 15, facility = o LIMIT 1,

100 Chapter 7
No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

At this point in our example, we can test the pattern-matching ability
of our regex pattern. Use the terminal with the bash prompt to issue the
following command.

logger "Train from Phoenix arriving on Track number 22"

Verify that the count of matches in our filter has gone up by one.

SELECT * FROM Filters LIMIT 1;

Repeat the above two steps a few times using different city names and
track numbers. Issue a few logger commands where the pattern does not
quite match, and verify that the count does not increment.

rewrite
You may recall that the magic of regex patterns is that you can extract a
subpattern by placing parenthesis around it. Here, we are extracting the
city name and the track number and rewriting them as city_name :
track_number. The regex subpatterns are available to the rewriting string
as % 1$s to % 9%s. We want the first two patterns, and we want to add a
newline to the output, so we set the rewrite string with the command:

UPDATE Filters SET rewrite = "%1$s : %2%s %12%s" LIMIT 1;

We are done with the Filters table and can now finish the configuration
by editing the NetDest table.

NetDest

We want to set up a TCP socket listening on port 3333. Let’s give everyone on
the network access to the port by binding to 0.0.0.0. The name of this
network destination should be example_2, and the type of this network
destination should be an accepted TCP connection, which is type 3:

UPDATE NetDest SET destname = "example 2", dest = "0.0.0.0",
port = 3333, type = 3 LIMIT 1;

If all has gone well, there should be a listening socket on port 3333. Use
netstat -nat to verify that the port is open and bound to the right address.
Use the following SQL to see the file descriptor of the socket.

SELECT * FROM NetDest LIMIT 1;

We can now verify the whole system. Open a third terminal window and
connect to port 3333. Your command might look something like this:

telnet 192.168.1.99 3333

Laddie Event Handling 101
No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

You should now be able to verify that logmuxd has accepted your telnet
connection. Enter the following on the terminal, still at the psql prompt:

SELECT * FROM AccptDest;

It should all be working. Enter the following on a terminal with the bash
prompt:

logger "Train from Phoenix arriving on Track number 22"
logger "Train from San Jose arriving on Track number 15"
logger "Train from San Francisco arriving on Track number 9"

Verify that the city and track number are extracted and displayed on the
connection to port 3333. Your output should appear as:

Phoenix : 22
San Jose : 15
San Francisco : 9

This has been a long example, but it has illustrated both how to configure
logmuxd and how to debug that configuration.

Example 3: logmuxd and SNMP Traps

The Simple Network Management Protocol (SNMP)is an Internet standard that is
used to manage network devices such as routers. The protocol has commands
to read and write values (GET and SET) as well as traps, which are its equivalent to
log messages. Network appliances are often required to send SNMP traps
when specific events occur. This example shows how to use logmuxd to
translate syslog-style log messages into SNMP traps. (SNMP and traps are
covered in detail in later chapters, and you might want to delay going
through this example until after reading those chapters.)

The Laddie Alarm System sends SNMP trap messages when the system
enters or leaves an alarm state. To send the SNMP traps, logmuxd uses a
helper application, snmptrap. The snmptrap command sends SNMP traps in
the same manner that logger sends syslog messages.

You may recall that ladd uses syslog to send logs similar to the following
when a zone goes into alarm.

Alarm set on zone 2, Back Door
User set alarm on zone 3, Garage

The snmptrap commands corresponding to the above two log messages
are shown below.

snmptrap -v2c -c public snmp_mgr:162 '' ladAlarm ladTrapZoneld \
i 2 ladTrapZoneName s "Back Door"

snmptrap -v2c -c public snmp_mgr:162 '' ladTestAlarm ladTrapZoneld \
i 3 ladTrapZoneName s "Garage"

102 Chapter 7
No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

In the above lines, publicis the community name, and it comes from the
SnmpDest table since it is specific to the destination. The same is true for
snmp_mgr:162, which is the destination name (or IP address) and the port
number used by snmptrapd. If the type field of SnmpDest is set to 3, a -Ci is
added to the command, making it an SNMP version 2 inform. The SnmpDest
fields for destination name, port, community string, and type of trap to send
should all appear in your U, since the end user must configure these with
values that match the end user’s installation.

You can use the name of the trap if your MIB? is installed and accessible
to the snmptrap command. If the MIB is not installed, you need to put the full,
numeric object ID (OID) of the trap on the command line. The two single
quotes in the command line tell the snmptrap command to send the current
uptime in the trap. Be sure to read the man page for snmptrap to learn more
about the command and its options. The SNMP chapters in this book will
answer many of your questions regarding SNMP and its event notification
system, traps.

Information about the SNMP trap server comes from user information
entered into the SnmpDest table. Some information for the traps must be
extracted from the log messages. For example, to send our SNMP traps, we
need to translate these:

Alarm set on zone 2, Back Door
User set alarm on zone 3, Garage

into these:

ladAlarm ladTrapZoneId i 2 ladTrapZoneName s "Back Door"
ladTestAlarm ladTrapZoneld i 3 ladTrapZoneName s "Garage"

This is where regex pattern matching and rewriting come into play.
Using the regex patterns given in the train station example above, you have
everything you need to fill in the tables.

The destination type 9 indicates an SNMP destination, and the name
we’ve given this destination is snmp_monitor. We need two rows from the
Filters table, one row for the “User set” message that is sent when a user tests
a zone, and another row for the “Alarm set” messages generated by real
alarms. We use Filters rows 1 and 2 so that we don’t overwrite row 0, which
was used in the previous example. We show the configuration here using
SQL, but the table editor would work just as well.

UPDATE Filters SET desttype = 9 LIMIT 1 OFFSET 1;

UPDATE Filters SET destname = "snmp_monitor" LIMIT 1 OFFSET 1;

UPDATE Filters SET regex = "User set alarm on zone ([1-5]), (.*)"
LIMIT 1 OFFSET 1;

UPDATE Filters SET rewrite = "ladTestAlarm ladTrapZoneld i %1%s
ladTrapZoneName s '%2$s'" LIMIT 1 OFFSET 1;

21f the SNMP GET and SET commands correspond to the SQL SELECT and UPDATE commands, then
the SNMP Management Information Base (MIB) corresponds to a database table.

Laddie Event Handling 103
No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

104

UPDATE Filters SET desttype = 9 LIMIT 1 OFFSET 2;

UPDATE Filters SET destname = "snmp_monitor" LIMIT 1 OFFSET 2;

UPDATE Filters SET regex = "Alarm set on zone ([1-5]), (.*)"
LIMIT 1 OFFSET 2;

UPDATE Filters SET rewrite = "ladAlarm ladTrapZoneld i %1%s
ladTrapZoneName s '%2$s'" LIMIT 1 OFFSET 2;

The values in the SnmpDest table are specific to the network computer
that is configured to receive the traps, so you should provide user access to
these values from one or more of your Uls. (The Laddie web interface lets
you specify where to send Laddie’s SNMP traps.) In this example we set the
values manually using SQL. Let’s assume that the trap destination is on a
network host named snmp_host.

UPDATE SnmpDest SET destname = "snmp_monitor" LIMIT 1,
UPDATE SnmpDest SET dest = "snmp_host" LIMIT 1;

UPDATE SnmpDest SET community = "public", port = 162 LIMIT 1;
UPDATE SnmpDest SET version = 2 LIMIT 1;

You can test this configuration by running snmptrapd on one of your
network hosts. (See Chapter 13 for details.)

Summary

Chapter 7

Traditional logging handles an event by putting the report of the event (the
log message) into one or more files on disk. A better approach is to examine
each event individually and then decide how best to handle it. Making your
appliance aware of events and able to respond to those events is one of the
best things you can do for your customers.

In earlier chapters we showed you how to use the PostgreSQL protocol
and API for control and status of your appliance. But control and status is
only half of the solution—in this chapter we presented event handling, the
other half of a successful appliance design.

No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce

www.it-ebooks.info

http://www.it-ebooks.info/

DESIGNING A WEB INTERFACE

The web browser has become the user
interface of choice for configuring net-
worked appliances, particularly home-based

routers from companies like Linksys and Netgear.
The driving force behind the popularity of web inter-

faces is that they are easy to use and don’t require
specialized client software. Customers now expect to be able to access
web interfaces for their devices, and so it is no surprise that leading
manufacturers of home-based networked appliances provide them.

This is the first of several chapters devoted to user interface (UI) design.
This chapter covers web Uls in general, and the development of Laddie’s
web Ul in particular. In the chapters that follow, we’ll look at Laddie’s
other Uls: the CLI interface in Chapter 9, the front panel LCD interface
in Chapter 10, the framebuffer interface in Chapter 11, and the infrared
remote control interface in Chapter 12. All of these Uls communicate
with the back-end daemons via the PostgreSQL protocol.

No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce

www.it-ebooks.info

http://www.it-ebooks.info/

This chapter covers the following topics:

¢ An overview of web technology

¢ Establishing requirements for your appliance’s web interface
¢ Choosing a webserver

¢ Designing the look and feel of the web interface

¢ Highlights of our implementation

¢ Lessons learned and future improvements

Web Basics

Web browsers communicate with webservers using the HyperText Transfer
Protocol (HTTP), a clientserver protocol. The communication is initiated from
the web browser (the client) when it requests a web page via a particular
Uniform Resource Locator (URL), for example, http://www.google.com.
When the webserver receives this request, it checks that the requested page
is available, and if it is, it sends the page to the web browser.

Because the HTTP protocol is text based, you can use telnet to imitate
the browser request as follows:

telnet www.google.com 80

Once the telnet session has connected, enter the following:

GET / HTTP/1.0

Then press ENTER twice (the empty line created by the second ENTER
causes the webserver to respond to the GET request). The page returned is
formatted using HTML; an example page appears below. (Obviously, this
page would look different if you opened it in a browser, because the browser
would interpret the HTML markup and present it in a human-readable way.)
Note that the middle portion of the page has been replaced by ellipses (. . .)
to reduce its size.

HTTP/1.0 200 OK

Cache-Control: private

Content-Type: text/html

Set-Cookie:
PREF=ID=9dad60d4761f019c:TM=1156611888:LM=1156611888: S=p7NO7cVNpUMK6VXX;
expires=Sun, 17-Jan-2038 19:14:07 GMT; path=/; domain=.google.com
Server: GWS/2.1

Date: Sat, 26 Aug 2006 17:04:48 GMT

<html><head><meta http-equiv="content-type" content="text/html;

About Google<p>©2006
Google</p></center></body></html>

106 Chapter 8
No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

DNS and TCP

The network protocols DNS (Domain Name System) and TCP (Transmission
Control Protocol) make this client-server exchange possible. Given the URL
(e.g., http://www.google.com), the client uses DNS to determine the IP
address of the server. HT'TP uses TCP for error-free data transmission
between client and server.

These protocols are defined by the Internet Engineering Task Force
(IETF), the authoritative Internet standards body. (For more information on
IETF standards, see http://www.ietf.org; for more information on TCP/IP,
see The TCP/IP Guideby Charles M. Kozierok, No Starch Press, 2005.)

The Webserver

The webserver finds and returns the web page for the given URL. This page
may reside in the server’s filesystem or in memory, or it may be generated
dynamically at the time of the request.

CGl

The Common Gateway Interface (CGI) emerged as a way for a webserver to
communicate with a purpose-built program, which would in turn generate
the web page on behalf of the webserver. In the Unix world, the early CGI
programs were written in languages like bash, Perl, and C. Today, web-
specific scripting languages like PHP are more common. Furthermore,
modern webservers like Apache can be configured to run PHP scripts
within the same process as the Apache webserver, thereby avoiding the
CGI communication mechanism.

JavaScript

JavaScript has become accepted as the client-side programming language
for web pages. JavaScript code is embedded in the HTML page, and tags in
the web page tell the web browser when to execute the JavaScript functions.
One of JavaScript’s main advantages is that it provides a more responsive
user experience. One of JavaScript’s main disadvantages is that not all browsers
support it, and those that do don’t necessarily support it in a standard way.

Evolving Technologies

Coupled with developments on the client side and server side, the HTML
protocol has undergone many revisions and has expanded to include
XHTML, CSS, XSL, and XPath.

The bottom line is that web technology is still evolving. This evolution
introduces challenges for developers striving for interoperability and longevity
for their web pages. Therefore, as a web developer, it is prudent to plan
ahead for changes in web technology.

Designing a Web Interface 107
No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

108

Establishing Requirements

Before developing a web UI for the Laddie alarm appliance, we established
the following requirements to guide us with its design:
¢ The web interface should be easy to use.

¢ The web interface should support a wide variety of browsers, including
text-based ones.

¢ The web pages should update automatically as the state on the appliance
changes.

¢ The web pages should adhere to Internet standards, avoiding propri-
etary features.

¢ The implementation should work with various webservers so that the
appliance webserver can be replaced should a better one become
available.

¢ The implementation should be simple so that it can be easily maintained.

Choosing a Webserver

Which webserver should you use when building your appliance? In this
section we’ll review several webservers suitable for Linux appliances.

Choices

Webservers come in several different flavors. Many support the CGI interface,
which allows the webserver to spawn an arbitrary process to generate the web
page content on behalf of the webserver.

¢ The Apache webserver can be compiled with a PHP interpreter so that
PHP scripts are interpreted within the Apache process. This approach
reduces inter-process communication and improves response time.

¢ The lighttpd webserver supports the FastCGI interface. The FastCGI
mechanism spawns multiple PHP interpreters and load balances
requests for PHP web pages between them. For more information,
see http://www.fastcgi.com.

¢ The GoAhead webserver allows the webserver and all web pages to be
packaged into a single executable, which allows the webserver to run
without a filesystem.

¢ The webserver in the Linksys WRT54G wireless router is written entirely
in C and includes handcrafted functions for each web page.

e The TUX webserver runs in the Linux kernel.

Perhaps the first thing to consider when choosing a webserver is the
license. If you don’t want to release your source code modifications, then you
should avoid webservers with GPL and Apache licenses. On the other hand,
if you do select a mature webserver like Apache, it is unlikely that you will
have to modify it, and consequently, you won’t have to worry about having to
release source code.

No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce

www.it-ebooks.info

http://www.it-ebooks.info/

We suggest that you resist developing your own webserver. It is cheaper
to select an existing one and to develop the web pages in a server-agnostic
way. The advantage to this approach is that you don’t have to spend your
development resources maintaining a webserver, and you can replace the
webserver should a better one become available.

Use PHP

We suggest using PHP as the language to generate dynamic web pages.
Though you can write smaller CGI programs in C, if you use a compiled
language and need to modify a web page once the appliance has been
deployed, you will need a compile environment, which would typically not
be available on the deployed appliance.

When you use an interpreted language like PHP, you can easily modify
and test the web pages on the deployed appliance.

PHP is a good language for generating web content because it is popular,
mature, has an active developer community, and is well integrated into open
source webservers such as Apache, thttpd, and lighttpd. Even for webservers
that don’t support PHP, you can still write CGI programs using PHP. Thus,
you can use PHP with just about any webserver. It is for these reasons that
we selected PHP to develop the Laddie web Ul

Case Study: Linksys WRT54G Wireless Router

Let’s examine the approach taken by the Linksys WRT54G wireless router.
The webserver in this router is a handcrafted combination of both the
micro_httpd and mini_httpd webservers, enhanced with specialized C func-
tions that generate the dynamic content of the web pages. The code is GPL
licensed and is available from http://www.linksys.com under the GPL Code
Center. (Both micro_httpd and mini_httpd were written by Jef Poskanzer
and are available at http://www.acme.com.)

The specialized C functions are responsible for generating dynamic
content for the web pages. Because these functions are compiled into the
webserver, there is no need for a script interpreter like PHP.

For example, the C function dump_route_table() is invoked from a web
page by placing the function name between a matching pair of tags, as
follows:

<% dump_route_table(""); %>

This tag mechanism is similar to the approach taken by PHP, except that
here, the function is implemented in C and compiled into the webserver.

The advantage of this approach is that it has smaller memory require-
ments. However, as mentioned earlier, the problem with this approach is
that the development cycle is extended because any change to a specialized
C function requires a recompile.

Designing a Web Interface 109
No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

110

Chapter 8

Case Study: The TUX Webserver

Unlike most other webservers, which run in user space, the TUX webserver
runs in the Linux kernel. Running in kernel space allows TUX to avoid
communication between kernel space and user space; therefore, TUX offers
better server response time than other webservers.

TUX supports both static and dynamic web page content, but for it
to support dynamic content, another webserver must be running in user
space. TUX operates by responding to requests for static web pages itself
and forwarding requests for dynamic content to a user space webserver like
Apache. As you might imagine, TUX doesn’t offer speed advantages when
it comes to support for dynamic web pages. Thus, for websites that have
mostly dynamically generated content, the extra TUX configuration might
not be worth the trouble.

Comparison of Webservers

In the previous section, we listed a range of webservers from Apache to
TUX. In this section, we’ll narrow our focus to comparing only webservers
that support PHP as the scripting language. For space reasons, we’ve limited
the set of webservers to Apache, Boa, BusyBox’s httpd, Cherokee, GoAhead,
lighttpd, and thttpd. These webservers have been selected because they
are either used in commercial products or they are tailored for embedded
applications.
Possible criteria for comparing webservers include:

¢ Memory footprint

e Size of executable file

e Performance

¢ Security support

¢ Ongoing maintenance and development
¢ Debugging support

e Documentation

o Cost

Regardless of how you weigh the different criteria, choosing a webserver
will require a compromise. For example, the memory footprint may be critical
for some appliances, but not for others.

Rather than advocating one webserver for your appliance, we’ve
compiled Table 8-1, which shows how the various webservers in our limited
set compare in each area. You can use this table as a starting point when
selecting a webserver.

You can use different webservers for different stages of development. For
example, you could use one webserver that has good debugging support in
the development phase, and then switch to another one with a small memory
footprint during testing and deployment. If you choose to use different web-
servers, plan ahead to ensure that you use features supported by all of them.

No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce

www.it-ebooks.info

http://www.it-ebooks.info/

Table 8-1: Comparison of Various Webservers

Apache 2 thttpd lighttpd Cherokee BusyBox Boa GoAhead
Version tested ~ 2.2.3 2.21b 1.4.13 0.5.5 1.2.1 0.94.14rc21 2.1.8
Virtual memory 4276 3152 972 1224 396 732 640
(KB)
Executable size 439 1663 134 5 22 68 100
(KB)
Response time 23.9 8.4 19.8 21.5 86.9 32.0 583.8
(ms)
Supports CGI2 Yes Yes Yes Yes Yes Yes Yes
Supports Yes No Yes Yes No No No
FastCGle
Supports in- Yes, PHP Yes, PHP No No No No Yes,
process Active
scripting? Server
Pages
Server APl used Apache Apache FastCGI FastCGI CGl CGl CGl
Last release July 2006 December October September July 2006 February December
2003 2006 2006 2006 2003
Debugging Yes, Zend No No No No No No
Documentation Good Poor Good Poor Poor Poor Poor
Cost Free Free Free Free Free Free Free
Security chroot, Unix chroot & chroot & chroot & Unix file Unix file Minimal
file permissions Unix file Unix file Unix file permissions permissions
& config file permissions permissions permissions
License Apache BSD-like BSD GPL GPL GPL GoAhead

About the Tabular Data

Let’

s look at Table 8-1 in more detail.

Version tested This is the software version of the webserver that we
tested.

Virtual memory
running webserver consumed. The virtual memory was measured using

This is the virtual memory (in kilobytes) that the

the Unix top command, which displays virtual memory under the SIZE
column. For webservers that spawn multiple processes, we recorded the
maximum value. In each case, the virtual memory was recorded during
the performance test. (See Response time on the next page.)

Executable size This is the size (in kilobytes) of the executable file after
compiling it with mostly default options and then manually stripping it
with the strip command. This metric is not as good of an indication of
required memory as virtual memory is because libraries are sometimes
linked dynamically and sometimes linked statically.

When programs are linked dynamically, much of the code can be in
dynamically linked libraries. When you view the size of the executable, the
code in these libraries will not be factored in. So the size of a dynamically
linked executable is not a good indication of how much memory will be

1

Designing a Web Interface

No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce

www.it-ebooks.info

http://www.it-ebooks.info/

required when the executable is run (when all the libraries are linked-in
atload-time). Typically, what’s important is how much memory a program
requires to run, because memory is the precious resource.

Response time This is the average response time (in milliseconds)

to access Laddie’s status.php page, as recorded by the httperf utility
(available at http://www.hpl.hp.com/research/linux/httperf). The
motivation for this performance test is to measure how quickly the web-
server responds to requests for the status web page. The following steps
were taken for each webserver:

a. The webserver’s software was compiled with default options, except
for those options necessary to make it work correctly. Detailed instruc-
tions on how each webserver was configured is available in /Code/
src/web/INSTALL_WEB_SERVER.txt on this book’s companion CD.
We used PHP version 5.0.3.

b. The resulting webserver executable was stripped with the strip
command.

c. The back-end Laddie process, ladd, was run.

d. The following command was used to measure the response time:

httperf --hog --server 192.168.1.11 --uri=/cgi-bin/status.php --num-conn 200 --rate 1

The resultant dynamically generated status.php page was 4546 bytes.
The server we used for testing consisted of an Intel Celeron 2.4 GHz
processor running Linux Red Hat 9 with otherwise idle processes. The
client consisted of an AMD Duron 1 GHz processor running Linux Red
Hat 9. The server and client had 10 MHz NICs with a Linksys switch/
router between them.

Supports CGI This denotes whether or not the webserver supports the
Common Gateway Interface (CGI).

Supports FastCGI This denotes whether or not the webserver supports
FastCGl, a performance enhancement to CGI. Documentation about
FastCGI may be found at http://www.fastcgi.com.

Supports in-process scripting This denotes whether the webserver sup-
ports a built-in PHP interpreter (or some other script interpreter). This
functionality provides faster performance because it avoids interprocess-
communication in the CGI interface.

Server API used This is the Server API interface used during the
response time performance test. The Server API is the communication
mechanism between the webserver and the scripts, for example, Apache,
CGI, and FastCGI. As you can see from the table, some webservers sup-
port only one Server API, while others support more than one.

Last release This is the last time the software was released at the time
of writing. This value is an indication of whether the software is actively
maintained. In most cases, the version we tested was the last version
released. However, there is one exception—the last version of thttpd

112 Chapter 8
No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

released as of this writing was 2.25b, but we tested version 2.21b, because
2.21b was the last version that supported in-process scripting.

Debugging This denotes whether or not you can debug scripts with
the webserver. In the case of Apache and PHP, there is a commercial
development environment called Zend Studio that allows you to
debug PHP scripts using Internet Explorer. Using Zend, you can step
though PHP scripts one line at a time and view PHP variables.

Documentation This is a rough measure of whether or not the docu-
mentation specifies clearly which features the webserver supports and
whether it provides instructions on how to use each feature.

Cost This is the monetary cost of distributing the webserver in an appli-
ance. Note that we have not included any webservers for which there is a
monetary cost.

Security These are the security features that prevent users from accessing
files that they shouldn’t be able to access. The most secure webservers are
those that enforce access through a configuration file.

License This is the type of software license the webserver has. The
Apache, BSD, and GPL licenses are well known. The GoAhead license
requires that you notify GoAhead prior to shipping your product and
that you display a GoAhead logo on your initial web page.

Considering Memory Requirements

If memory is not a factor in your appliance, the Apache webserver would be a
good choice. The advantage of Apache is its mature feature set, good develop-
ment tools (like Zend Studio), and an active development community.

If memory is at a premium, then the BusyBox webserver might be a good
choice; it has the smallest virtual memory requirements of the webservers we
tested. The GoAhead webserver has the next smallest memory requirements;
however, the disadvantage of GoAhead is that it uses Active Server Pages, a
Microsoft technology, rather than PHP, an open source technology. (You
can still run PHP scripts in GoAhead using the CGI mechanism, but it isn’t
as seamless as using a webserver with a built-in PHP interpreter.)

Considering Response Time

The top three webservers in terms of response time are thttpd, Apache, and
lighttpd. Both thttpd and Apache get their speed from running PHP scripts
in the same process as the webserver itself, which avoids the inter-process
communication used by the other webservers. The thttpd webserver has the
disadvantage that it only services one request at a time, so it will block sub-
sequent requests until previous requests have been completed. This behavior
may be fine for some web pages, but it will be a problem if the web page is
written to block requests for a certain length of time, or to block until a state
change. One of the Laddie web pages does block for a state change, and so
this web page behavior rules out using thttpd webserver for the Laddie appli-
ance. (We’ll discuss this particular web page in the section “Asynchronous
Updates Using Ajax” on page 125.)

Designing a Web Interface 113
No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

114

Our Choice

When we were developing Laddie, we used the Apache webserver because
of its debugging support, while for the production appliance, we selected
lighttpd because of its smaller memory requirement and its speed. We chose
which webserver to use in the production appliance rather late in the develop-
ment cycle. We were able to make this decision later because we had written
our PHP scripts to work under Apache, CGI, and FastCGI.

In his book about embedded Linux, Yaghmour advises against using
Apache because it is difficult to cross-compile (Building Embedded Linux
Systems, by Karim Yaghmour, O’Reilly, 2003). There was no need to cross-
compile for our appliance, but if your appliance’s CPU differs from your
development machine’s CPU, you should keep this in mind.

Ul Design

Chapter 8

In this section, we’ll review various approaches to designing the UI look and
feel, and the trade-offs they require. We will weigh these trade-offs when
making implementation decisions in the “Implementation” section on

page 118.

Menu System

One of the most important functions of a menu system is that it allows users
to quickly grasp the system’s capabilities. A menu with lots of top-level options
can make it difficult for the user to choose an action, because there are

so many choices. On the other hand, a menu with lots of nesting, though
reducing the crowding on the top-level menu, tends to increase the time it
takes to find an action.

Menu systems can be divided into those in which the top-level menu
runs vertically down the left side of the window (see Figure 8-1), and those
in which the top-level menu runs horizontally, near the top of the window
(see Figure 8-2). While the vertical menu can be useful, it can quickly become
difficult to navigate as the number of menu items increases (note the scroll-
bars in Figure 8-1). The horizontal menu is usually superior because it can be
more compact because the second-level menus share the same real estate.

NETGEAR

108 Mbps Wireless Firewall Router

Advanced Wireless Settings

Wireless Router Settings
[Enable Wireless Router Radio
[~ Enable SSID Broadcast

Fragmentation Threshold (256 - 2346): 2346
CTS/RTS Threshold (256 - 2346): 2346
Preamble Mode Automatic -

Figure 8-1: A vertical menu

No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce

www.it-ebooks.info

http://www.it-ebooks.info/

I - Tomahawk
« Overview
o License n
« Extensions Filier Overview of the Apache MyFaces Components
« Documentation
= Javadoc
- Wiki
+ Components Custom Components
a JSCook Menu

Figure 8-2: A horizontal menu

One disadvantage to the vertical MyFaces menu in Figure 8-2 is that it is
not visually clear that the second-level menus (e.g., Tomahawk, Documentation,
and Components) are not selectable; they look like the third-level menus, but
they behave differently. The MyFaces menu could be improved by making
the non-selectable menu items more distinct. For example, see the menus
shown in Figure 8-3.

Essentials .
S ‘Jetspeed-z Overview
Getting Started
Localization
User Attributes
Sub Projects
Maven Plugin
Documentation

Security
Security Overview

Jetspeed-2 is the next-generation enterprise portal at Apache. Jetspq
and improvements over Jetspeed 1.0. First, Jetspeed-2 is conforman
standard mechanism for the deployment of portlets. Second, Jetspee
featuring multi-threaded functionality. Third, Jetspeed-2 is decoupled
Jetspeed-2 is based on a component architecture.

Figure 8-3: A menu with distinct non-selectable items

Dialog Boxes

Our advice on dialog boxes is simple: Avoid them. Dialog boxes halt proceed-
ings because the user cannot continue until he or she clicks a button to close
the box. Alan Cooper argues against dialog boxes because they break the
flow of the user experience and don’t move users closer to their goal (About
Face 2.0: The Essentials of User Interaction Design by Alan Cooper and Robert
Reimann, Wiley, 2003).

An alternative to dialog boxes is to place informational messages into the
web page itself. We’ll demonstrate this in the next section.

Error Messages

Good error messages can greatly improve the usability of your web UI
Experts generally agree on the following guidelines:

¢ If possible, make the program smarter to either avoid the particular
error condition or recover from it.

¢ Ifan unrecoverable error has been detected, provide an explicit error
message—that is, don’t suppress the error.

Designing a Web Interface 115

No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce

www.it-ebooks.info

http://www.it-ebooks.info/

¢ The error message should be human readable.

¢ The error message should be detailed.

¢ The error message should advise how to fix the problem.

¢ The error message should be close to the field with the error.

¢ The fields with errors should be clearly identified.

Some error conditions are caused by the user (when the user enters a
bad value in a web form), while others are caused by external events (when
the appliance disk becomes full). When designing your appliance’s web
pages, think about how these different errors will be handled.

One way to present error messages is to use dialog boxes (see Figure 8-4),
but as we mentioned before, we discourage this approach. A second approach
is to insert the error message into the refreshed web page (see Figure 8-5).
The salient feature with this approach is that the error message is displayed
in the form field, so that users can immediately re-enter their data.

Laddie Alarm System

Setup | Status | Reports | Help
Network
SNMP
Alarm

Setup Alarm Zones

e YA [avascript Application] 3] contact Type

1 Garage Dog Zon nimes shoukd start with & letier Mormally Closed

2 Mahon Dt

3 Front Normally Open 3
4 K Enabled] | Latching - Mormally Closed &
5 SHemgeraton Enabled Latching ot Normally Closed &
(asma])

Figure 8-4: An error dialog box

Laddie Alarm System

Setup | Status | Reports | Help

Network
SNMP

Alarm

Setup Network
Refrash |

—Network Devices
Device Enabled? DHCP? IP Address Netmask

lo Enabled Static 127.0.0.1 255.0.0.0
ethl | Enabiod & | (255256255
sit0 [Disabled | [Swmic | [o0

The IP Address for the eth0 Interface was Invalid. Please use dotted-decimal notation for the 1P
Address.

Updatir

Figure 8-5: An in-line error message

116 Chapter 8
No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

A third approach is to annotate the labels where an error has occurred,
as shown in Figure 8-6. In this example, errors are shown by displaying the
labels in another color. In this figure, all of the field labels are in black,
except for Lan IP and Control IP, which are in red (they’re circled here
because they appear gray); this tells you that there is a problem with those
fields. One problem with this approach is that it fails to provide a detailed
message. While some systems provide a tooltip with a message, such a
mechanism is usually not explicit enough, and the user must mouse over
the label to see more detail, which makes the user do unnecessary work.

APS Mode

Mode Marne: |deve 1

Lan Interface Properties

il Lan TP Address

[x192.169.5. 198

Control Interface Properties

Control IP Address

Control IF: |

35L Certificate Mapping

Map the Wan IP ko a Web Server

‘Wan IP: |

Web Server: | none v|

Cancel

Figure 8-6: An annotated error message

Improving Responsiveness with Ajax

Ajax (Asynchronous JavaScript and XML) is a set of technologies that enables
partial updates of web pages. Because only parts of a web page are refreshed,
the update occurs more quickly than it would if the entire web page was
refreshed. Furthermore, the partial update may be triggered by user events
like mouse clicks and key presses. This behavior makes the Ul more responsive
than that of a traditional web page.

For example, Gmail, Google’s email service, uses Ajax. When you compose
an email and start typing the name of a contact, the browser responds to
every key, reducing the list of matches as you type. The responsiveness is
impressive.

Designing a Web Interface 117

No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 8-7 shows an example of how the Ajax communication mechanism
works. The exchange in this figure is initiated when the user mouses over an
active element on the web page at event ®. An onmouseover action is triggered
and JavaScript code is executed in the web browser at event @. The JavaScript
code creates an XMLHttpRequest object with the URL of the server-side script
and a JavaScript callback function, and the web browser then sends the
XMLHttpRequest object to the server at event ®. On the server side, the
particular script identified by the URL responds with XML data at event ®.

Web Browser Webserver
User JavaScript
@ L Interface @ Interpreter ®

_— — >

Mouse onmouseover XMLHttpRequest
M t

ovemen - ® ®

Page Update XML Data

Figure 8-7: Typical Ajax sequence.

NOTE The format of the XML is known by the client and the server, so that when the server
sends the XML data, the client understands its format. Typically, the XML data will
contain the updated information to be displayed on some portion of the web page in the
browser.

Back on the client side, the web browser receives the XML data and
invokes the JavaScript callback function. This callback function extracts the
data from the XML message and modifies some portion of the web page
using the XML Document Object Model (DOM) API at event &®.

Mouse movements are not the only events that are supported by Ajax,
but they are the most popular, along with mouse button clicks, key presses,
text selections, and keyboard focuses on editable fields—and more events
are made available with each browser upgrade.

Implementation

In this section, we’ll discuss the implementation of Laddie’s web UL We’ll
show some screenshots of the web UI and discuss how it works.

The web Ul supports at least the following web browsers: Internet
Explorer (version 5.0 and later), Netscape Navigator (version 4.72 and
later), Firefox (version 1.0 and later), Safari (version 1.0 and later), Opera
(version 5.0 and later), and Lynx (version 2.8.2 and later). These versions
were determined through direct testing with archived browsers available
from http://browsers.evolt.org.

NOTE Unlike the other graphical browsers, the Lynx browser is text-based.

118 Chapter 8
No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

Interfacing with the Daemons

The Laddie web UI presents information from several running daemons.

As you know, each of these daemons communicates using the PostgreSQL
protocol. In this section, we’ll discuss how the web Ul interacts with ladd, the
Laddie alarm daemon. Once you understand this interaction, you’ll under-
stand how the web Ul interacts with the other daemons as well. Figure 8-8
shows a typical sequence where a user requests a web page and the web page
is generated dynamically, based on the state of a daemon.

The figure shows the Linux appliance with the webserver and the ladd
alarm daemon running on it. For simplicity, we’ve shown the PHP interpreter
running in the same process as the webserver, as in the case of Apache, but it
could be running as a different process if you’re using CGI scripts.

As mentioned, the figure shows a typical request-response sequence for a
web page. First, the user requests a particular page at event O. The webserver
locates the web page from the filesystem, and because the webserver finds PHP
tags in the page, it invokes the PHP interpreter, which interprets the PHP
code. In our case, the particular PHP code includes PHP functions pg_connect()
and pg_exec(), which are invoked by the PHP interpreter at events @ and ®.
The PHP code generates the web page at event @, and this new page is then
sent back to the browser at event ®.

Linux Appliance
Webserver
PHP
Interpreter
® _ @ _
HTTP Request pg_connect () ladd
Alarm
® »| Daemon
® ® pg_exec()
-t HTML St L —
results and
generate HTML

Figure 8-8: Interfacing with a daemon

Connecting to the Daemon

As you can see in the illustration, before you can read and write to the ladd
daemon, you must establish a connection using the pg_connect() function,
which is built into the PHP interpreter when you configure PHP with the
--with-pgsql option. The pg_connect() function takes a string argument that
specifies the hostname (or IP address) of the server and the port. In our

Designing a Web Interface 19
No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

case, the server is on the same machine as the webserver, and the ladd
daemon is listening on port 8888. More information on pg_connect() can be
found by searching for PostgreSQL Functions in the PHP manual at http://
us2.php.net/pgsql.

The following code fragment shows how to open a connection to the
daemon:

$connection = pg_connect("host=127.0.0.1 port=8888");
if (!$connection) {
// some error
} else {
// valid connection
}

Reading from the Daemon

Once a connection has been established, you can read from and write to
the ladd daemon. We use the pg_exec() function to do this. This function
requests that a given statement be executed, in our case a SELECT state-
ment. For more details on pg_exec(), see the PostgreSQL Functions at
http://us2.php.net/pgsql.

The following PHP code fragment shows how to read the alarm status:

$result = pg_exec($connection, "SELECT id,name,enabled,alarm FROM Zone");
if (!$result) {
// some error
return;
}
for ($row = 0; $row < pg_NumRows($result); $row++) {
$id = pg_result($result, $row, 0);
$name = pg result($result, $row, 1);
$enabled = pg result($result, $row, 2);
$alarm = pg_result($result, $row, 3);
// do something with $id, $name, $enabled, $alarm

pg_freeresult($result);

In this example, the names id, name, enabled, and alarm in the SELECT
command are the column names in the Zone RTA table in the ladd daemon.
Generally, the SELECT command will have the same form for different daemons,
but the number of columns and their names may differ. The value returned by
the pg_exec() function is an object handle, which is then used to extract the
number of rows with pg_NumRows () and each row’s contents with pg_result().

NOTE All the functions with names that start with pg are part of the PostgreSQL PHP library
and are not unique to our daemon.

Once the information has been read from the daemon, you can use this
information to generate an HTML page. For example, we would use the
results in $id, $name, $enabled, and $alarm to generate an HTML table.

120 Chapter 8
No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

Writing to the Daemon

To write to the ladd daemon and set alarm zone 3 into the alarm state, you
could use the following code:

$id = 3;
$value = 1; // 1 for alarm, 0 for no alarm
$result = pg_exec($connection, "UPDATE Zone SET alarm=$value WHERE id=$id");
if (!$result) {
// some error
return;

pg_freeresult($result);

Note that you use the same pg_exec() function call as when reading infor-
mation from the daemon; the difference is that the SQL command is UPDATE
rather than SELECT. The SQL command in the preceding code snippet specifies
to update the alarm column in the Zone table to the value $value, but only in
the case where the id column matches $id.

In the preceding code snippet we’ve set the $value and $id variables to
arbitrary values, but typically the $id and $value variables would be extracted
from an HTML form.

The interaction between the web Ul and the ladd daemon is straight-
forward enough. The web UI can read information from the ladd daemon
and it can write information to the ladd daemon. The web Ul interacts with
the other daemons in the same way, so there is nothing new to learn about
those interactions. (The interaction is straightforward because we are using
an established protocol, PostgreSQL, and the function bindings to this
protocol are readily available to PHP programs.)

Alarm Status Page

Figure 8-9 shows Laddie’s alarm status page. This page allows you to view the
status of each alarm zone, clear alarm conditions, and set an alarm condition
(for testing purposes).

Laddie Alarm System

Setup | Status | Reports | Table Editor | Help

Zone Status
Zone Status

Zone Name Status

1 Garage Door Safe Set |
2 Motion Detector Alarm
3 Front Door safe [Sat

4 Kitchen Window Safe Sat |

5 Refrigerator Safe Sat |

Figure 8-9: Laddie status page

Designing a Web Interface 121
No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

An alarm condition can be shown either as a gray horizontal bar or with
the label Alarm under the Status column. If you were to actually use this inter-
face, you would probably find that the horizontal bar is much easier to read
than the label because it offers a quick visual cue. When designing your web
interface, think about how you might augment your interface with similar
visual cues to convey information quickly.

Unlike traditional web pages, which require a user to refresh the page to
update status, this status page automatically updates when an alarm condition
changes. To observe this automatic update behavior, start two browsers and
point them to the alarm status page. In one browser, modify the alarm con-
dition by clicking the Clear and Set buttons. If JavaScript is enabled in your
two browsers, you should see a page update on both browsers.

You can find the PHP code that generates this web page on this book’s
companion CD in the file /opt/laddie/htdocs/web/cgi-bin/status.php.

Alarm Setup Page

The alarm setup page, shown in Figure 8-10, allows you to configure the names
of the alarm zones. When designing this page, we considered two UI design
approaches: an Update button for each zone and a single Update button for
all zones. We chose the single button because it reduces the navigation
required to configure all the zones; you simply modify the parameters of
several zones and click Update.

Laddie Alarm System

Setup | Status | Reports | Table Editor | Help

Network

SNMP

il Setup Alarm Zones
Zone Name State Latch Type Contact Type
1 Garage Door Enabled | |Mondatching 8| |Nomally Closed &

Enablad & Lstching - Mommally Open |8

Enabled 8| |Lasching & | Nom

nddaw Enabled #| |Laxhng

5 Refrigerator Enabled M| |Latching » Nomally Closed [

Update

Figure 8-10: Laddie alarm setup page

This web page allows the user to enter the names of each alarm zone.
We’ll now describe how the web page works and in particular how to work with
the tabular data shown there. On the browser side, the web page includes an
HTML form, which is a mechanism for accepting input from a user and
sending it to the webserver when the user presses a Submit button. If you
take a look at the web page’s HTML source, you will see the following line:

<td> <input type=text name=Name_1 value="Garage Door" /> </td>

122 Chapter 8
No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

The input tag tells the browser to display a field for textual input. The
name tag tells the browser how to name the field, and the value tag tells the
browser how to populate the initial value for the field. When the user hits the
Submit button, the names and values of all form fields are sent to the server.
When the server receives this request, our PHP code will extract the zone
names from the request and update the Laddie daemon.

PHP provides a simple mechanism to extract the field values. For example,
to extract the value for the field with name Name_1, you would use the follow-
ing PHP code:

$name = $_REQUEST["Name_1"];

The _REQUEST variable is a global variable that is populated by the PHP
interpreter, while the Name_1 string corresponds to the name of the field in
the HMTL form. Once this statement is executed on the server, the $name
variable will contain the text that the user entered in the browser.

For tabular forms we need to be careful about field naming because the
HTML specification requires that all fields in a form must have a unique
name. One common approach to naming such form fields in HTML is to
append a row number to the column name. For example, we append the
row number I to Name (using underscore as a separation character) to get
Name_1 for the Name column for Zone 1.

The PHP code to generate this web page can be found on this book’s
companion CD in the file /opt/laddie /htdocs/web/ cgi-bin/setup_alarm.php.
Take a look at the function displayZoneForm. The PHP code that handles the
web form updates is in the same file.

Page Layout and Menu System

In this section, we’ll describe Laddie’s web page layout and menu system.
This simple scheme is handled by two PHP files. The first file, layout.php,
defines Laddie’s two-level menu system as a two-dimensional array (see the
global variable $menu_system on this book’s companion CD in /opt/laddie/
htdocs/web/cgi-bin/layout.php) and it defines the function display_page().
This function refreshes the page whenever the user navigates the menu.
The second file, alarmstyle.css, controls color, fonts, and indentation (see
/opt/laddie/htdocs/web/alarmstyle.css on the CD). Figure 8-11 shows an
example web page; the PHP code that generated this web page follows.

Laddie Alarm System

Setup | Status | Reports | Help

Netwaork
ShMP

Alarm Hel |O, world!

line 1
line 2

Figure 8-11: Laddie’s “Hello, world!” example

Designing a Web Interface 123
No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

124

Chapter 8

<?php
include_once "layout.php";
$widget = "<h2> Hello, world! </h2>";

$widget .= "line 1
";

$widget .= "line 2
";

display page("Setup", "Alarm", $widget);
?>

The first two parameters in the call to display_page() are indices into the
menu structure (defined by the global variable $menu_system in layout.php).
The first parameter, "Setup" in this example, is the top-level index, while
the second parameter is the second-level index. The third parameter is
an HTML-formatted string, which is displayed in the main window. In this
example, the main window consists of the heading Hello, world! and two
lines. It is the main window that is different for each web page, and typically
this content is generated dynamically, depending on the state of the system.

In summary, the presentation logic for page layout is encapsulated by the
function display_page(). For another example of how to use display_page(), see
/opt/laddie/htdocs/web/cgi-bin/help_contact_us.php on the CD.

Webserver Independence

PHP works with many different webservers, each having a slightly different
way of interacting with the PHP interpreter. The API with which PHP inter-
acts with the webserver is called the Server API. The Server API used by PHP
is determined when compiling PHP, so as a developer you probably know
this before writing the PHP scripts. But what if you decided to use another
webserver? If you didn’t plan ahead, you would have to modify a lot of code
to get it to work with the new webserver.

As an aside, PHP provides the function php_sapi_name() to programmati-
cally determine which API is currently in use. This function returns one of
many possible strings, three of which are apache, cgi, and cgi-fcgi, corresponding
to Apache, CGI, and FastCGI. There’s not too much documentation on the
Server API, but try searching for it on Google.

Early in the design phase, we decided to write our PHP scripts so that
they would work with these three Server APIs, because the webservers that we
investigated supported at least one of them. This would mean that our PHP
scripts would work without modification under any webserver that supported
one of these APIs. This server-independent approach offers two advantages:
It avoids locking you in with a particular webserver (should a better one
become available) and it allows you to develop scripts using a different
webserver than the one deployed in your appliance.

Script input parameters are defined by name-value strings. For example,
an input parameter might have the name disp_id and a value of 51. The
script’s input parameters are provided by the HTTP request that invokes the

No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce

www.it-ebooks.info

http://www.it-ebooks.info/

script; for example, the following request will set the input parameter disp_id
for the script wait_for_status.php:

http://127.0.0.1/wait_for_status.php?disp_id=51

The trick to supporting Apache, CGI, and FastCGI lies in handling the
script’s input parameters the same way, regardless of which environment the
script is running in. (There is no problem with the output because these
three Server APIs handle output the same way.)

For CGI scripts, the script’s input parameters are extracted from STDIN,
whereas for Apache and FastCGI scripts, they are extracted from PHP global
variables. Actually, the Apache and FastCGI cases are identical, so there are
only two cases, CGI and Apache. We chose to abstract these two cases with a
function called read_params(). The implementation of read_params() handles
the details of both cases, but from the caller’s perspective, it provides a
uniform way to extract the input parameters.

The PHP code fragment below shows how the function is used:

include_once "php_params.php";

$params = read_params();

if (array key exists('disp_id', $params) {
$disp_id = $params['disp_id'];

} else {
// handle error; missing parameter

}

The read_params() function returns an array containing all the script’s
input parameters. The calling script can then retrieve a particular parameter
value using the parameter’s name (which is known at design time). Note that
the function array_key exists is a PHP built-in function that determines
whether or not a given index exists in a given array.

The implementation of the read_params() function can be found in the
file /opt/laddie/htdocs/web/cgi-bin/php_params.php on the CD. You’ll
find another example of its use in /opt/laddie/htdocs/web/cgi-bin/
setup_snmp.php.

Asynchronous Updates Using Ajax

Consider the status web page shown in Figure 8-9. How should the web page
react to changes in the state of an alarm?

Preferably, the web page should be updated automatically, rather than
requiring the user to repeatedly click the browser’s Refresh button. One
approach is to poll the server at a fixed frequency, for example, using the
Refresh HTML meta tag as follows:

<META HTTP-EQUIV="Refresh" CONTENT="5;URL=refreshed-page.html">

Designing a Web Interface 125
No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

Another approach is to use Ajax so that the web page updates only when
there is a state change on the server. The disadvantage with Ajax is that it
requires JavaScript to be enabled in the web browser; if the user disables
JavaScript, the update mechanism breaks. On the other hand, when Ajax is
used, the web page updates quickly in response to state changes on the server.

In the section “Improving Responsiveness with Ajax” on page 117, we
described how a typical Ajax exchange works. However, note that this typical
exchange is initiated by the client, rather than the server. We need a way to
modify Ajax so that the browser responds to state changes on the server.

It turns out that we can modify the Ajax exchange so that the system
behaves as if the webserver initiates the exchange. The trick is twofold. First,
replace the onmouseover event with the onload event, so that the XMLHttpRequest
is sent as soon as the web page is loaded. Second, write the webserver script
so that it blocks while waiting for an event. By implementing this modified
Ajax exchange, the web page will update whenever the particular event
occurs on the server. The experienced Ajax programmer will note that there
is another mechanism that achieves a similar result, notably the HTTP
Streaming pattern documented at http://www.ajaxpatterns.org (and in the
associated book, Ajax Design Patterns, by Michael Mahemoff, O’Reilly, 2006).
Both our approach and the HTTP Streaming pattern have the disadvantage
of using a long-lived TCP connection, which may be a problem for webservers
that allow only a finite number of concurrent connections. However, for
our approach we can control how long the request waits for a server event,
thereby limiting the number of concurrent connections.

Before we describe the details of this modified Ajax exchange, let’s
review the big picture. Figure 8-12 shows the sequence for a user requesting
a new web page, with the first full page update and subsequent partial page
updates. In terms of timing, events @ through @ occur in quick succession
after the user requests the particular web page. At this point, the web page
is loaded with the latest alarm state. When some alarm state changes at
event @, it triggers events @ through ® in quick succession, at which point
the web page is refreshed with the new alarm state. This latter sequence
repeats until the user navigates away from the web page.

Browser Sends First HTTP Request

The sequence from events @ through @ is the standard HTML request
response exchange. In step @, the user requests a web page, the server
responds by sending the web page and, in step @, the browser displays the
page. These steps are performed for all web requests regardless of whether
the web page includes JavaScript. The remaining sequence from event
through ® is more interesting, and it is this sequence that we’ll describe
in more detail.

126 Chapter 8
No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

JUaA® [DUIBiX® UD Joj @duanbas xply 8y iz |-g @inbiy

uowanq

pxnwboj apopdp) eBny
TWX ®iiouss) WX ~ S N

@ @ @
yyyy Hod
TRENTYYN ¥ojqun
@ @
A
6 ®
° :ﬂ_w_ﬂ_cﬁ 8o1/n3p/ Yy Hod uo puesey
»| @opdn poay Buiyolg ®
® @ @ asuodsey ajopdn

TWIH apieuss dlIH . aboy ||n4 .

uowsang ® ® ©

LRy Isenbay abod gom
PPR| ()29xa 8d dLIH 3sanbax SpPOo| Jas)
- 19joidiaju] dHd |- -t -
@® ®l® G] O]
19ja1d1ayu) QD94
I3AIBSqI M jdungpApp Jas()
aupiddy xnun Josmoug qo

127

Designing a Web Interface

No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

Browser Sends Second HTTP Request

On the client side, event ® is triggered as soon as the web page is loaded
for the first time at event @. In particular, the function GetCurrentStatus()

is invoked. Take a look at the HTML source for the Zone Status web page by
booting up this book’s companion CD and using a browser to visit http://
192.168.1.11.

The default IP address of the Laddie alarm appliance is 192.168.1.11
(and the default netmask is 255.255.0.0). When you insert this book’s CD
into your computer and reboot it, you will then be able to connect to the web
Ul by typing the URL http://192.168.1.11 in any web browser on another
computer. If the default IP address conflicts with an existing node on your
network, you can change the IP address for Laddie with the following steps.
Quit the framebuffer interface (press Q for quit), then at the shell prompt,
enter root for the user and press ENTER for the password (there is no
password). Then enter lynx at the command prompt. From lynx you can
navigate to the Network Setup page and modify the IP address of the
network interfaces. Once you have changed the IP address with lynx, you
can re-type the URL (with your new IP address) in a browser on another
computer.

If you view the source for this web page, you will see the following line:

<body onload="GetCurrentStatus()">

The GetCurrentStatus() function then makes an XMLHttpRequest with the
URL wait_for_status.php (at event @). You’ll see the following code in the
file /opt/laddie/web/cgi-bin/status.php on this book’s companion CD:

function GetCurrentStatus() {
// The ms= portion is to make the url unique so that IE doesn't retrieve
// a cached copy.
url = "wait_for_ status.php?disp_id=" + curr_id + "8&ms=" + new
Date().getTime();

if (window.XMLHttpRequest) {

// branch for Firefox/Netscape XMLHttpRequest

req_status = new XMLHttpRequest();

if (req_status) {
req_status.abort();
req_status.onreadystatechange = GotStatus;
req_status.open("GET", url, true);
// Header necessary for lighttpd
req_status.setRequestHeader ("Accept", "*/*");
req_status.send(null);

128 Chapter 8
No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

This code snippet instructs the browser to send a HTTP GET request
with the URL wait_for_status.php. It also instructs the browser to invoke the
callback function GotStatus() when a response is received from the server.

Server Blocks Waiting for Alarm State Change

On the server side, the script wait_for_status.php is invoked. This script does
a blocking read on port 4444 at event @. Whenever there is a change in
alarm state in the ladd daemon at event @, the logmuxd daemon writes a
message to port 4444 at event ®. The contents of what is written to the port
are unimportant; what is important is that the message unblocks the PHP
thread at event @.

Notice in the code above that curr_id is sent with the URL. This variable
prevents the browser from losing log events when the events come too quickly.
This variable is passed like a token between the server and the browser, and it
increases in lock-step with the number of log events. If the curr_id value from
the browser does not match the number of log events on the server, the PHP
thread skips blocking on port 4444. This way, if there are new log events
during the time interval that the PHP thread is not blocking on port 4444,
the PHP thread will continue.

Server Sends Alarm State as XML

Once the blocking read returns, the PHP script reads the alarm status from
the ladd alarm daemon (at event ®), and combines the data into an XML
document (at event ®). The webserver then passes this XML document to
the browser (at event @). An example XML document looks like this:

<?xml version="1.0" ?>

<laddie_status>

<zone id="1" name="Front Door" enabled="1">1</zone>

<zone id="2" name="Back Door" enabled="1">0</zone>

<zone id="3" name="Garage" enabled="1">0</zone>

<zone id="4" name="Motion Detector" enabled="0">1</zone>

<zone id="5" name="Smoke Detector" enabled="0">0</zone>
<logcount>294</logcount>

<log>2005-11-11 06:23:54 Alarm system status: safe</log>
<log>2005-11-11 06:23:54 User cleared alarm on zone 4, Motion Detector</log>
<log>2005-11-11 06:23:54 User cleared alarm on zone 1, Front Door</log>
<log>2005-10-28 09:29:11 Alarm system status: alarm</log>
<log>2005-10-28 09:29:11 Alarm set on zone 4, Motion Detector</log>
<log>2005-10-28 09:29:04 Alarm system status: safe</log>
</laddie_status>

Browser Updates Portion of Web Page

Back on the client side, the browser receives the XML document, and
generates an HTML fragment from it; it uses this fragment to update

Designing a Web Interface 129
No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

the web page (event ®). The function GotStatus() in status.php has the
following code.

var zones = req_status.responseXML.getElementsByTagName("zone");
table = generateHtmlTable(zones);

mdiv = document.getElementById('status_table');

mdiv.innerHTML = table;

The first line extracts the zone data from the XML response, the second
line generates an HTML fragment specifically for the Laddie status page,
and the last line inserts the HTML fragment into the displayed page.

Browser Repeats by Sending Another HTTP Request

The browser then invokes another XMLHttpRequest and the process repeats
(at event ®). After a small delay, the GotStatus() function invokes
GetCurrentStatus() with the following line:

setTimeout ("GetCurrentStatus()", 2000);

You can see how this behavior works by opening two web browsers to the
status page at http://192.168.1.11. If you change the state of an alarm zone
in one of the browsers, you should see this state change on the other web
browser, as well.

To summarize, we have shown a technique for using Ajax to update web
pages where the update is triggered by events on the server rather than by
events on the client.

Graceful Degradation Without JavaScript

When designing a web-based appliance, you must decide which web browsers
you will support. Do you support non-graphical browsers like Lynx, or do you
only support fully featured browsers? By reducing the level of required browser
functionality, you can support a wide variety of browsers, but it will be at the
expense of an increased effort in development. At the other extreme, you
could dictate that a specific browser be used, with the advantage of using
proprietary features, but with the risk of some customers disliking your
browser selection. Customer input would be invaluable in helping you to
make this decision.

We chose to support a wide variety of browsers, then sought to reduce the
developmental effort by avoiding browser-specific code. That is, we avoided
code that didn’t work the same way on all major browsers.

Of particular concern was the ability to support browsers without
JavaScript. One of the difficulties with JavaScript is that it can be disabled
by the user, and even worse, the user may not know that it is disabled.

One approach for supporting browsers with and without JavaScript is to
structure the website as two “universes”—one universe in which JavaScript is
used and another in which itisn’t. The home page is written to detect whether
JavaScript is enabled on the browser and to then redirect the browser to the

130 Chapter 8
No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

appropriate universe. Unfortunately, this solution does not work if the user
disables JavaScript and then reloads a particular page. The work-around is
for the user to turn on JavaScript and then revisit the home page.

We took another approach, one which allows the user to enable or
disable JavaScript and then simply reload the particular page. This means
that each web page must support a JavaScript version and a non-JavaScript
version. In the past, this problem might have been tricky to solve because
browsers that didn’t support JavaScript were confused by JavaScript code.
But this problem is easily solved today, because the majority of browsers
(even those like Lynx that don’t support JavaScript) understand the HTML
<SCRIPT> tag. When a modern browser has JavaScript disabled, it ignores all
HTML code between the pair of tags <SCRIPT> and </SCRIPT>.

Hiding JavaScript

The following pattern for hiding JavaScript content from browsers is known
to work for Internet Explorer (version 5.0 and later), Netscape Navigator
(version 4.72 and later), Firefox (version 1.0 and later), Safari (version 1.0
and later), Opera (version 5.0 and later), and Lynx (version 2.8.2 and later).

<SCRIPT TYPE="text/javascript">
<!-- hide from old browsers

// javascript code goes here

// end of script hiding -->
</SCRIPT>

The HTML comments <!-- and --»> are included as a fail-safe mechanism
for those old browsers that don’t understand the <SCRIPT> tags. Similarly, you
can use <NOSCRIPT> and </NOSCRIPT> tags to provide alternate content when
JavaScript is not enabled.

Using these patterns, each web page can support both JavaScript and
non-JavaScript versions, and consequently, the user can change the browser’s
JavaScript setting and reload the page. Because the user doesn’t have to find
and reload some site-wide redirection page, the user’s experience is greatly
simplified.

Improving Our Design

Having implemented the web UI, we are in a better position to review and
improve our design. What are some areas that could use improvement?
One problem with the current design is that the logic for configuring
network interfaces is contained in setup_network.php, and unfortunately,
this logic is not available to other Uls, like the command line interface
(CLI). When we first implemented the network setup page, we did not
foresee how complex this configuration logic would be, and so we decided
that all UIs would duplicate this “simple” logic. In hindsight, we feel that the

Designing a Web Interface 131
No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

design would be improved by subsuming the network configuration logic
into a single manager, notably the networkd daemon. That way, the CLI
user interface could provide the same functionality as the network setup
web page, without duplicating much of the logic in setup_network.php.

We could improve the web UI’s usability by clarifying the relationship
between the second-level and top-level menus. This might be done using
different colors for the top-level and second-level menus, as shown in
Figure 8-2. Note in this figure that it is easy to see that the second-level
item Components falls under the first-level menu Tomahawk.

Another improvement would be to add error-checking functionality on
the client side. This improvement would be achieved by adding JavaScript
functions to check the validity of form fields, resulting in a more responsive UI.

We could enhance functionality by adding a web page that would provide
diagnostics functions for network connectivity and hardware health, such as
temperature and fan speed. This functionality would allow management
software to remotely monitor the appliance for degrading performance.

Resources

The following resources will be useful for further study of web page design,
Ajax, debugging, and testing.

Ul design The book About Face 2.0: The Essentials of User Interaction
Design by Alan Cooper and Robert Reimann (Wiley, 2003) is a good book
about UI design.

JavaScript A good reference book on JavaScript is the JavaScript Bible,
5th Edition by Danny Goodman and Michael Morrison (Wiley, 2004).

Ajax The Wikipedia web page on Ajax programming is a starting point
for learning about the technique and includes the history of Ajax. See
http://en.wikipedia.org/wiki/Ajax_(programming).

HTML validation The World Wide Web Consortium (W3C) provides a
free HTML validation service at http://validator.w3.org. A CSS valida-
tion service is also available.

Web browsers Older web browsers, useful for testing your web pages,
are archived at http://browsers.evolt.org.

Debuggers The Zend Studio debugger allows you to debug PHP code
using Microsoft’s Internet Explorer and the Apache webserver. Using
this browser, you can step through PHP code that is executing under
Apache. Itis a commercial software package, available at http://
www.zend.com.

132 Chapter 8
No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

Summary

In this chapter, we have discussed the development of web Uls for Linux-
based appliances, in particular, the web UI for Laddie. It has not been our
goal to discuss all of web technology—you will find entire books on that
subject.

This chapter highlighted the pertinent features of Laddie’s web UlI:

¢ The web Ul degrades gracefully for browsers that don’t support JavaScript
so that the web UI functionality is accessible to a wide variety of browsers.

¢ The alarm status page updates automatically whenever there is a change
in the alarm state on the appliance:

¢ When an alarm is triggered, each browser viewing the status web
page is refreshed automatically.

¢ When any browser is used to clear an alarm, the change is reflected
on all other browsers.

After implementing the web UI, we looked back at our design and
suggested some future improvements. In particular, we suggested that the
logic for configuring network interfaces should be moved from PHP into the
network daemon, networkd. This restructuring would have the advantage
that other Uls, for example the CLI, could configure network interfaces
without duplicating the complex logic in PHP. Other improvements include
restructuring the menu system and adding JavaScript error-checking
functions.

Designing a Web Interface 133
No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

DESIGNING A COMMAND LINE
INTERFACE

A command line interface (CLI) gives
your customers a secure, low-bandwidth,
easily scripted way to configure and manage
your appliance. As a Linux developer, you are

already familiar with bash, Linux’s most popular CLI.
For the same reasons that you would not want to manage a Linux box with-

out a bash command line, your customers might not want to manage your
appliance without a similarly easy-to-manage CLI.
This chapter covers the following topics:

¢ Why you need a CLI

¢ Types of CLIs

¢ Giving users access to a CLI
e The Laddie CLI

e Code review for the test command

No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

Why You Need a CLI

Despite their age, CLIs are still one of the most-requested features for Linux
appliances, especially network appliances that will be installed in a server
room or network operations center. Let’s look in turn at each of the major
reasons to have a CLI on your appliance:

¢ Security

¢ Availability
e Bandwidth
¢ Scriptability

¢ Configuration backup and restore

Security

Many service providers will reject an appliance that places its control and
status protocol on the same wire as user data; the setup they prefer is an
entirely separate physical channel that is dedicated to management of the
appliance. Historically, this separate channel has been an RS-232 interface
with a CLI on it. The RS-232 lines are routed to the control center using
terminal servers or port concentrators.

When an appliance has a serial port, users expect it to also have a
character or command line interface. Of course, you could attach a PPP
daemon to the serial port and make it a network interface, but this is seldom
done. Newer network appliances feature a second (or even third) Ethernet
interface to provide the separate physical channel required for appliance
control and status. Separate LANSs that are dedicated to secure control and
status are starting to appear, but the installed base of Network Management
Systems (NMS) that deal with serial ports will make CLIs and appliance serial
ports standard requirements for some time to come.

Availability

Network-based Uls, such as web interfaces, require that the network be
correctly configured and running before the UI becomes accessible. The
problem with this is that if something goes wrong with the network config-
uration, you can lose all ability to fix the configuration. A serial port, on the
other hand, does not need an address, so a UI running on it is always available.
There is another popular solution for unavailability due to a miscon-
figured network. Many appliances have a hidden or difficult-to-reach switch
that will reset the appliance to its factory default configuration if it remains
in the closed position while the appliance boots up. If you don’t intend to
use a serial port, you should consider having a hidden switch or some other
mechanism to allow the user to reset the appliance’s configuration.

136 Chapter 9
No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

Bandwidth

CLIs are useful when you want to access an appliance over a low-bandwidth
channel. A low-bandwidth channel might be a slow radio link or an otherwise
fast network that is overloaded or failing. Low bandwidth capabilities can
also be advantageous if your appliances are to be dispersed geographically
but managed centrally.

Scriptability

One of the biggest advantages of a CLI is that it usually allows you to collect a
series of command lines into a file, or script, and execute the commands as if
a user had interactively entered them. This can offer huge advantages over
web or other graphical Uls, which are difficult to automate. Scripts are parti-
cularly useful to help automate repetitive or tedious tasks. A CLI can allow
users to build their own commands, using the commands in your CLI as their
primitives or base operations.

Not all CLIs are equal in their ability to be scripted. We’ll have more to
say about this later in the chapter.

Configuration Backup and Restore

One of the biggest problems you should anticipate as an appliance developer
is your customer’s need to preserve or migrate configuration data across a
software upgrade. We’ve approached this problem several ways, and the
worst of our solutions was to give users a web page where they could initiate
an FTP transfer of a binary file that contained the configuration data. This
was a disaster for several reasons. Customers objected to the hassle of setting
up an FTP site to accept files, and they really objected to not being able to see
the configuration.

Upgrades were a hassle, as well. We had to write and distribute programs
to read the binary file and convert it to the format required by the new
software. Paying attention to version numbers, finding a place to run the
converter, and getting the new file back onto the appliance was a real mess.
Saving the configuration as XML helped, but it didn’t help that much.

The solution that really worked was providing a web page that displayed
the entire configuration as a list of CLI commands. Our customers loved this.
They could see the configuration at a glance, and making a backup of the
configuration was as simple as visiting a web page and selecting Save As in the
browser. Of course, we also had a matching web form in which users could
paste the CLI commands of the saved configuration and so easily restore the
original settings. Tools such as wget allow configuration backups to be auto-
mated, too. You’ll see an example later in the chapter when we review the
Laddie CLI command that dumps Laddie’s configuration as a series of CLI
commands.

Designing a Command Line Interface 137

No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

This approach made upgrades easier for us as well. The CLI was fairly
stable, and changes to it were almost always backward-compatible extensions.
After switching to this approach, we no longer had to write and distribute
programs to convert one version of a configuration file to the next version
of the file.

Having the appliance configuration saved as a list of CLI commands in a
script has other advantages. One of our customers wanted the master copy of
all his configurations to reside in his NMS. He configured our appliances to
use DHCP and set up his DHCP and NMS to use wget to send the
appropriate configuration to our appliances as soon as he received an IP
address from the DHCP server. In one instance, he ordered 10 new servers,
and we gave him the Ethernet MAC addresses before shipment. He had the
configurations for the 10 new servers ready for download before the
appliances arrived, and all of the new appliances were configured and
running within a few minutes of initial power on.

Types of CLls

The default CLI on most Linux systems is bash, but bash is just one type of
CLI. There are other types that might be more applicable to your needs, and
your CLI may switch from one type to another, as you choose the type to
match the task at hand. Let’s look at the different types of CLIs: sentences,
menus, and wizards, and at two CLI attributes: statefulness and whether the
CLI is line- or character-oriented.

Sentences

The sentence CLI, the most common type of CLI, maps actions and objects
in the appliance into verbs and nouns. Consider a simple bash command:

m -f backup.sxw

Here, 1mis the verb, -f is an adverb, and backup.sxw is the noun. The key
to a successful CLI of this type is to select the verbs and nouns that map well
into the customer’s understanding of the appliance.

Of course, you can use other sentence structures like verb-adverb-noun,
verb-noun-adjective, or noun-verb-adjective—it’s up to you. The idea is to
make reading the CLI line sound like a sentence. You’ll know that you’ve
gotten it right when customers, field support, and engineers all describe a
configuration using the same vocabulary and syntax as that of your CLI.

Typically, you will need verbs to view status or statistics, to change the
configuration, and to initiate actions. For example, the verbs in the Laddie
CLI are view, set, test, and clear.

The big advantage of the sentence CLI is that it is the most easily and
reliably scripted type of CLI. The major disadvantage of this CLI is that there
can be a steep learning curve for it. The user has to remember a fair amount
of vocabulary and syntax in order to use this type of CLI effectively. However,
users who spend a lot of time in the CLI usually prefer the sentence CLI.

138 Chapter 9
No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

Wizards

A wizardis a type of interface that prompts the user with a series of questions,
usually giving the user some descriptive text before asking the question. For
example, the following might appear as part of a wizard configuration for
Laddie.

Type of Sensor:

Alarm sensors come in two different types, normally closed (nc)
and normally open (no). The switch in a normally closed sensor
is closed, or making electrical contact, while the sensor is
not in an alarm state. A normally open sensor does not make
electrical contact when in the normal, or non-alarm, state.
Look for the sensor type on the body of the sensor or on its
packaging.

Type of Sensor: [NO, nc, q] ?

If there is a reasonable default value, you should show it in the prompt
for the question. The convention is to show the default in all caps. You
should also give the user the ability to abort the wizard at any point in the
series of questions. Common abort sequences include q and CTRL-C. At the
end of the series of questions, you should display a summary of the responses
and ask the user to confirm that these are the values he or she wants.

Here is a tip to help the user and yourself. Your web interface has forms
with fields that the user fills in before hitting the Submit button. If you are
building a wizard, map the same fields from the web form to the wizard. For
example, if the web form for network configuration asks for host name, boot
protocol, and default gateway, the network wizard should ask for host name,
boot protocol, and default gateway. This helps the user by letting him or her
transfer training from one interface (web) to another (CLI). It also helps you
because your back-end processing only needs to deal with one type of
request, regardless of the source of the request.

Wizards are a great way to help a new or infrequent user through a con-
figuration. Wizards are also nice if you need a synchronous update of all of
the fields presented in the wizard. For example, you would probably want to
change a static IP address and its associated netmask with one atomic update.

Since wizards are used only to collect configuration information, they
are usually used in conjunction with one of the other types of CLIs that offer
better scriptability and easier access to system status.

Menus

A menu CLI offers the user a well-defined list of commands or choices at
each step. For example, if we were to give Laddie a menu CLI, the top menu
might look like this.

Welcome to Laddie. Please select from the following options:
1) View Laddie system status

2) View recent Laddie log messages

3) Change Laddie system configuration

Designing a Command Line Interface 139

No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce

www.it-ebooks.info

http://www.it-ebooks.info/

4) Help
5) Quit
[1-5] :

Selecting one item in the menu might prompt the user with a sub-menu
or drop him into a wizard to collect configuration information.

Menu CLIs have fallen from favor but remain the right choice if you
expect your CLI to be used infrequently or by untrained users. There is
practically no learning curve to using a menu CLI.

Menu CLIs can be scripted, but the scripts are fragile since they can be
broken by even a small change to the menu layout.

Stateful

Stateful CLIs maintain a sense of where the user is. For example, bash is
stateful in that it supports a current working directory with the cd verb to
manipulate its state. Another good example of a stateful CLI is the help
system in the graphics package gnuplot. However, statefulness may be more
accurately described as a property of CLIs rather than a separate type of
them, since wizard, menu, and sentence CLIs can all be stateful.

Stateful CLIs are nice if you expect your users to spend a lot of time in
your CLI. They help the user by presenting context-sensitive help (i.e., help
based on state or location) and by reducing how much typing the user has
to do.

Stateful CLIs require more documentation and training to explain the
states and state manipulation, and they can be a little tricky in scripts since it
is easy to forget to set the state as part of the script. (How many of us have
forgotten to put a cd at the top of a bash script?)

Character vs. Line Interfaces

A term coming into popular usage is character interface, which refers to an
interface that looks at each character as it is entered. In contrast, a classic
line interface looks at the command only when the newline is entered. The
editor vi has a character interface, while its precursor, ed, has a CLI in the
classic sense. Another common example of character interface is bash, with
its tab-completion and line-editing capabilities.

Character interfaces, such as the one in vi, can greatly reduce the amount
of typing a user needs to do, and tab completion can be a great help to new
and infrequent users; however, character interfaces require a lot of work on
the part of the interface designers and coders.

Giving Users Access to a CLI

Once you have a CLI, you need to give your users access to it. One way to do
this is to let them log in and have them start the CLI from a bash prompt.
This can make scripting easier, but few appliances allow direct access to a
Linux login.

140 Chapter 9
No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

Perhaps the most common type of access is to add the path to the CLI
executable to the /etc/shells file and to create a user with the login shell set
to the CLI. The advantage of this is that the CLI is equally accessible on the
serial port, over telnet, and over SSH. This is the approach we take for
Laddie.

A very small appliance might not support logins. In this case you can tie
standard-in and standard-out of the CLI directly to a serial port. The security
model here is that of physical access to the serial port.

As we’ll see in the next section, a CLI can be useful even if it is used only
for configuration backup and is only accessible from a web page.

The Laddie CLI

Laddie’s CLI uses a verb-adjective-noun approach; it is not stateful, and it is
line oriented, not character oriented. Our commands allow the CLI user to
view status, view logs, set the configuration, and get help. Laddie’s CLI is not
complete in that it does not allow the user to configure, view, or set the
appliance’s network, SNMP, or logging configuration.

You can get to the Laddie CLI several ways. You can telnet to 192.188.1.11
as user cli without a password. You can also telnet to Laddie as root and start
Laddie’s CLI from the bash prompt with the command cli.

Laddie Command Summary

Here are all of the Laddie CLI commands with their syntax and brief

descriptions.

clear [all|1-5] - clear an alarm

test [1-5] - manually set an alarm

view - view system status

view [all|1-5] - view status for a zone

view logs - list last 20 log messages

set zone [1-5] enabled [yes|no] - enable or disable a zone

set zone [1-5] latching [yes|no] - set a zone to latch alarms

set zone [1-5] name "zone name" - give a zone a name

set zone [1-5] contact [no|nc] - set to normally-open or -closed
set logs [yes|no] - stream logs to this CLI session
help - view general help on Laddie
dump - view configuration as CLI commands
(comments) - a comment line

quit - exit the command line interface

You are already familiar with the configuration of Laddie, so we won’t
give a detailed explanation of every command. There are, however, a few
commands that deserve special mention.

set logs on

One of the nice features of Laddie’s logger is that you can open a telnet
connection to it and have log messages sent to you over the connection.

Designing a Command Line Interface 141

No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

142

Chapter 9

The set logs command opens (or closes) a connection to the logger to
receive these messages. A sample session might make this more clear.

> set logs on

> test 2

2006-06-21 14:40:29 User set alarm on zone 2, Back Door
2006-06-21 14:40:29 Alarm system status: alarm

> set logs off

> clear all

>

Note that no log messages were displayed after the clear all command,
since we had closed the connection to the logger with the set logs off
command.

The system prints log messages as they occur, and the output of a log
message can appear in the middle of a command that is being entered. This
can be annoying, so you might suggest that your users open two xterm
windows and start a CLI session in each, using one for log messages and the
other for interactive commands.

Having log messages appear in a CLI session can be a plus for your
appliance. Your customers can use the CLI as a way to send log messages
from the appliance to their network management system. Also, having log
messages appear in the CLI is a big help to anyone trying to remotely
manage the appliance.

dump

The dump command displays Laddie’s configuration as a list of CLI commands
that can be fed back into the CLI. The first line of output is a comment to
identify what is being displayed, and more importantly, when it was displayed.
Although we didn’t include the CLI version number in the top comment
line, it would be helpful to do so.

> dump

Laddie Alarm System Configuration as of 2008-06-21 15:01:02
set enabled 1 yes

set name 1 "Front Door"

set contact 1 no

set latching 1 no

set enabled 2 yes

set name 2 "Back Door"

set contact 2 nc

set latching 2 yes

set enabled 3 yes

set name 3 "Garage"

set contact 3 no

set latching 3 no

set enabled 4 no

set name 4 "Motion Detector”
set contact 4 nc

set latching 4 no

No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce

www.it-ebooks.info

http://www.it-ebooks.info/

set enabled 5 yes

set name 5 "Smoke Detector"
set contact 5 no

set latching 5 no

>

A few Linux commands, such as setserial, also have an option to print
configuration information in a way that can be fed back into the command.

help

The Laddie CLI provides a help command to give the user a quick way to see
which commands are available. Without any parameters, help gives suggestions
for other help commands.

> help
Help is available on the following topics:
- help intro - an introduction to the Laddie Alarm System
- help commands - a list of CLI commands available
- help howto - a list of "how to" help topics
- help whatif - a list of "what if" help topics

Help on an individual command is available by typing help and the
command name, for example: "help view" or "help set zone enabled".

The help intro command gives a brief description of the Laddie alarm
system, and help commands gives a list of all CLI commands with a brief
description for each.

We initially tried to make our help single source—that is, we tried to make
the help system use the same source files for both CLI help and web help.
While we hope you succeed where we failed, we found that there were too
many differences in the body of the help text for each interface and that the
code and libraries that needed to use a shared file format were too big and
too complex. Our CLI help text is in a single file; it uses a file format built for
the Laddie CLI. Laddie’s help file format is pretty simple, leaving open the
possibility of authoring the help text with OpenOffice.org and writing a
simple output filter to convert it to the help file format. Since help text is
meant to be read by end users, we recommend that you give responsibility
for the help text to the technical writers in your group.

Code Review for the test Command

We implemented the Laddie CLI using lex, yacc, and RTA. The vocabulary
of Laddie’s verb-adjective-noun CLI is recognized by a parser generated by
lex, and the grammar of the CLI is recognized in a C file generated by yacc.
A tutorial on lex or yacc or a full code review of the CLI is beyond the scope
of this book, but we can give an overview of our code and look at all of the
incremental code used to implement one command. This review might make
a nice introduction to yacc and lex if you’ve never used them, as it will give
you a sense of their power and elegance.

Designing a Command Line Interface 143

No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

144

Chapter 9

The code is broken into four files: main.c, syntax.y, token.l, and
commands.c. The file main.c has the main() routine, which is select()-based,
since the CLI needs to listen for both user input and log messages. The file
syntax.y is a yacc input file that has the syntax of the CLI commands. The
file token.l is a lex file with the definitions of the key words used in the CLI
vocabulary. The file commands.c has the C code that actually implements
the commands. Both yacc and lex produce C files that are compiled into the
CLI. Entering make in the source directory uses the following commands to
translate, compile, and link the four source files.

gcc -fPIC -c -I. -pedantic -std=gnu99 -g -ggdb -Wall main.c -o main.o

yacc -d -bsyntax syntax.y

lex -it token.l > token.c

gcc -fPIC -c -I. -pedantic -std=gnu99 -g -ggdb -Wall token.c -o token.o

gcc -fPIC -c -I. -pedantic -std=gnu99 -g -ggdb -Wall -o syntax.tab.o syntax.tab.c
gcc -fPIC -c -I. -pedantic -std=gnu99 -g -ggdb -Wall commands.c -o commands.o

gcc main.o token.o syntax.tab.o commands.o -o cli -Ipq

CLI Vocabulary: token.!

The file token.] has a series of regular expressions which define the words in
the vocabulary of our CLI The lex program translates the regular expressions
in token.]l into a C program, which implements a finite state machine that
recognizes words in our vocabulary.

The form of the Laddie test command is test [zone id], where the zone
ID is a number between one and five. Our lex input file, token.l, contains the
following code to define both a zone ID and the CLI verb test.

[1-5][\t]* { Zone = (int) (*yytext - '0');
return(ZONE_ID); }
test[\t]+ { return(TEST); }

The [1-5] indicates a number in the range of one to five, inclusive. The
[\t] indicates either a space or a tab. The * following [\t] indicates that
there can be zero or more spaces or tabs following the zone ID. The yytext
variable points into the command line at the start of the token, so (int)
(*yytext - '0") is the zone ID as an integer. The code sets the global variable
Zone before returning ZONE_ID to indicate that a valid zone ID was found.

The lex pattern test[\t]+indicates the word test followed by one or
more spaces or tabs. At least one space or tab is required to separate the test
token from the zone ID token.

CLI Grammar: syntax.y

Just as a grammar describes valid sentences in a language, a grammar defined
in the yacc file syntax.y defines valid command lines in our CLI. yacc converts
the grammar in syntax.y into a C-based state machine to recognize valid
command lines.

No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce

www.it-ebooks.info

http://www.it-ebooks.info/

The grammar for the test command is defined by the following lines.

%token ZONE_ID
%token TEST

test_command :
TEST ZONE_ID { test_zone(Zone); }

)

The token definitions for ZONE_ID and TEST are converted to #define
statements and passed into the lex file token.l. The syntax definition for
the test command requires a TEST token followed by a ZONE_ID token. If the
command line has a valid test command, the C subroutine test_zone() is
called with the zone ID passed as a parameter.

C Code

The C subroutine test_zone(), in commands.c, is where the real work is done
to test a zone; it sets the alarm field in the Zone table to one. The routine,
test_zone(), is presented below in its entirety.

void test_zone(int zone)
char cmd[100]; /* a place to build the SQL command */

sprintf(cmd, "UPDATE Zone SET alarm = 1 WHERE id = %d", zone);
update(cmd);

The update() subroutine is a utility routine that sends a PostgreSQL
update command to the ladd daemon. The code for this routine is almost
identical to the SQL update code presented in Chapter 5, so we will not
present the code for the routine here.

Code Review Notes

By our count, the incremental cost of adding the test command was about 15
lines of code. Not bad. Clearly yacc, lex, and RTA can make building a CLI
fairly straightforward. The danger, in fact, might be the tendency to add a lot
of CLI commands. Don’t forget that each new command places a larger
burden on your users to learn that command, which can thus slow the
adoption of your CLI.

Summary

In this chapter we looked at the reasons to include a CLI in your appliance
and the types of CLIs available to you. We presented the CLI for Laddie and
gave a minimalist code review for the test command.

Designing a Command Line Interface 145
No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce

www.it-ebooks.info

http://www.it-ebooks.info/

Knowing that you would not want to use the Laddie CLI as is, the pro-
grammer for our CLI was particularly careful to document the source code
to make it easy for you to modify. Also, the help system was built to easily
port to your appliance.

In the next chapter, we continue our discussion of Uls by presenting
techniques for incorporating buttons, light-emitting diodes (LEDs), and
simple text-based liquid crystal displays (LCDs) into your appliance. While
the next chapter won’t call it a CLI, we consider the LCD interface to be a
menu system with a character interface.

146 Chapter 0
No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

BUILDING A FRONT PANEL
INTERFACE

Buttons, light-emitting diodes (LEDs),
and small alphanumeric displays are
so common that we hardly notice them
anymore. Printers, microwave ovens, phones,
and DVD and CD players all use buttons, LEDs, and
LCDs as part of their user interfaces—and it is likely
that you will want to have buttons and LEDs on the
front panel of your appliance, as well.

In this chapter, we will describe how to build a front panel Ul First, we
will discuss the hardware used on front panels, and we will then show you
how to design a Ul and menu system for a front panel by reviewing the
requirements and design of Laddie’s front panel UL

We divided our coverage of the front panel interface into these sections:

e Buttons, LEDs, and LCDs
¢ Designing a front panel Ul

No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

148

Buttons,

Chapter 10

¢ The Laddie front panel

¢ Improving our design

We’ll start by looking at the details of front panel hardware. (If you're
uncomfortable with hardware or wiring diagrams, feel free to just skim this
chapter.)

LEDs, and LCDs

This section introduces the kinds of hardware that you’ll find on an appli-
ance’s front panel, including buttons, LEDs, and LCDs.

Buitons

The size of your production run may determine the type of hardware you use
in your design, especially where buttons are concerned. When your appliance
is produced as part of a large production run, buttons will usually be built
directly onto the printed circuit board. Small production runs or prototypes,
on the other hand, often use either a pre-built assembly or individual switches.

Electrically speaking, buttons are simply switches that are, most often,
normally open. Each button usually requires one digital input line that can
be read by your processor. (Chapter 5 explains how you can use an input line
to read the state of a single switch.)

Keypads

A keypad is an array of buttons that is scanned for a closure. Scanning for a
closure can reduce the total number of input and output lines needed in
your hardware. The idea behind scanning a keypad is dividing the switches
into an array of rows and columns and then examining the switches one row
at a time. Keypads are described as n-by-m, indicating a array of switches with
n rows and m columns. Each row is assigned an output line and each column
is assigned an input line. Sixteen switches arranged as a 4-by-4 keypad would
use eight I/O lines from the CPU, not 16.

Using a keypad becomes a viable option when you have more than
five or six buttons. You can use a microprocessor to help with keyboard
scanning and other hardware-based I/0, but in a cost-sensitive appliance,
your Linux-based code may need to do all of the scanning and low-level I/O.
Some system-on-chip processors, such as the PXA270 from Marvell, have
dedicated hardware on board to do keypad scanning.

Consider the 2-by-2 keypad circuit shown in Figure 10-1. The pull-up
resistors bias the column lines to V+, or a logic one, so the two inputs will
read a logic one when no switches are closed. The two diodes on the output
lines isolate one row from the other row. To scan the keypad, the processor
puts zero volts (a logic zero) on row 0 and a logic one on row 1. The processor
reads the input port, and if input 0 is a logic zero, then it knows button A
(at row 0, column 0) is being pressed. If the input 1 is a zero, then it knows
button B (at row 0, column 1) is being pressed. The processor then sets

No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce

www.it-ebooks.info

http://www.it-ebooks.info/

output 0 to a logic one and output 1 to a logic zero. Now if input 0 is a zero,
it knows button C (at row 1, column 0) is being pressed, and if input 1 is a
zero, then it knows button D (at row 1, column 1) is being pressed.

2-by-2 Scanned Keypad

V+ L <L

= -
_O|4
)
o] T A N B el
—_— ldd
- C;\t D}‘\q
— O
5

Figure 10-1: A 2-by-2 keypad

Here is some simple code to scan the above keypad.

// Scan a 2x2 keypad. Return A-D if closed, and 0 if no closures
// OUT: low two bits of I/O port 0x378, (second parallel port)
// IN: low two bits of I/0 port 0x379

char scan2x2() {

int in_state; // state of a given row's switches

outb(0x02, 0x378); // put 0 on row O

in_state = inb(0x379) & 0x03; // switch state in low two bits

if (in_state & 0x01 == 0x00) // remember: closed=0, open=1
return('A");

if (in_state & 0x02 == 0x00) // look at switch on column 1
return('B");

outb(0x01, 0x378); // put 0 on row 1

in_state = inb(0x301) & 0x03;

if (in_state & 0x79 == 0x00) // look at switch on column 0
return('C");

if (in_state & 0x02 == 0x00) // look at switch on column 1

return('D");

return(0); // no keys pressed

This code illustrates the sequence of events fairly well, but you’ll
probably want to use a loop if you are scanning more than a few rows.

Switch Bounce

If you drop a ball bearing onto a steel plate, it will bounce. Switch closures
can also be thought of as two metal pieces colliding with each other. Switch
contacts bounce when they are closed and when they are opened. If you scan
the keypad too quickly, you can erroneously detect a bounce as a new switch
closure. The duration of switch bounces depends on the physical properties

Building a Front Panel Interface 149
No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

of the switch, so they can vary widely. The manufacturer of your switch can
give you specifications, but you should be sure to measure the bounce time
yourself. One way to avoid switch bounce is to scan the keypad more slowly,
but slowing the scan too much can make the keypad seem sluggish. You can
make the keypad more responsive and still avoid switch bounce by keeping a
history of the last few scan values and reporting a new closure only when the
saved values are the same but are different from the current value. This is the
technique we use in the following subroutine that waits for a new keypress
and returns the ASCII value of the key.

// 01d keypad scan values; debounce time = three scan times

int oldkeyo = 0; // most recent keyscan value
int oldkey1
int oldkey2 = 0;

n
o
[y

// Scan the keypad waiting for a new key to be pressed.

// Return the ASCII value of the key.

char get_keypad() {

while (1) {

// Shift values for debounce and get current value
oldkey2 = oldkey1;
oldkey1l = oldkeyo;
oldkeyo = scan2x2(); // get current key status

// new key only if CLOSED and all previous values are OPEN

if ((oldkeyo !'= 0) 83 (oldkey1l == 0) &3 (oldkey2 == 0)) {
return(oldkeyo);
}

mdelay(10); // scan rate is once every 10 milliseconds

It is important that the scan rate for a keypad be constant. It is possible
to do keypad scanning in a user-space program, but you may find that the
scan rate varies widely and that the program uses much more of the CPU
than necessary. It is best to use a real-time Linux kernel to get accurate scan
timing if you want to scan from user space, or do what we did for Laddie: Put
the keypad scanning into a simple character device driver so that accurate
scan timing is provided by the Linux kernel.

LEDs

Using light-emitting diodes (LEDs) is one of the most intuitive, easiest, and
cheapest ways to present status information from your application or appli-
ance to the user or developer. LEDs come in round or rectangular plastic
packages as well as in the form of surface mount chips. They also come in a
wide variety of colors, with red, yellow, and green being the most popular.
Some LED packages have two LED chips in them and can light with more

150 Chapter 10
No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

than one color; these bi-color LEDs are great for a go-or-no-go status
indication. Consider using a bezel or a diffuser if your application requires
that the LED be easily visible. In our alarm application, we use a bright LED
with a bezel so that it is easy to see when the system is in alarm.

Usually, each LED uses one digital output line from your hardware. If you
have a lot of LEDs (such as the 28 segments in a four-digit, seven-segment
display on a digital clock, for example), you can scan the LEDs similarly to
how you would scan a keypad, as described above. If you need to scan your
LEDs, especially if they are seven-segment displays, you should use a device
driver to make the scan timing precise.

The human eye is drawn toward movement, and you can use this to
your advantage in your front panel design. A flashing LED attracts much
more attention than a static one. Color can also give meaning to an LED,
but color blindness and the various cultural associations of colors make it
a good idea to not rely too heavily on color to convey meaning.

Some popular vendors for LEDs and LED hardware include:

¢ Digi-Key, Inc. (http://www.digi-key.com)
¢ Jameco Electronics, Inc. (http://www.jameco.com)

¢ Super Bright LEDs, Inc. (http://www.superbrightleds.com)

LCDs

Small liquid crystal displays (LCDs) are standard interfaces for consumer appli-
ances. Your use of an LCD will depend on the nature of your appliance and
your customer’s expectations, but there are several reasons to include an
LCD in your design:

Primary UI A text-based LCD display can be the primary UI for your
appliance. This is often the case for audio equipment, such as satellite
receivers and network-attached audio players.

Reliability Network equipment often needs fail-safe access to configu-
ration and status information. While using a serial port and a CLI is
common, high-end network appliances often provide a keypad and
LCD on the front panel for configuration.

Perceived value There is nothing like an LCD (or even better, a vacuum
florescent display) to distinguish one beige box from its competitors and
to convince customers that they’re buying a high-end piece of equipment.

There are two common architectures used to interface an LCD to an
appliance. The first is to have the Linux processor drive the LCD directly.
This architecture is appropriate for low-cost, low-power, and high-volume
appliances that require a graphic display. Common uses of this architecture
include PDAs and cell phones. Several members of the ARM processor family
have on-chip support for LCD displays. Examples include the EP9307 from
Cirrus Logic and the AT91SAM926 from Atmel. Chapter 11 describes how to
build a UI for memory-mapped graphics displays.

Building a Front Panel Interface 151
No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

The second common architecture is to have the Linux processor deal
with the LCD through a controller chip that is attached to a serial, parallel,
or USB port. This architecture is appropriate for small production runs and
appliances based on personal computer motherboards.

LCDs for this architecture usually have one to four lines of text with
between 10 and 40 characters per line. The most common controller chip
for these displays is the ubiquitous HD44780, originally from Hitachi, but
now available from several vendors. Displays based on the HD44780 usually
have parallel input, but many have a daughter card that offers a serial or USB
input, keyboard scanning, and LED outputs. Some displays with a daughter
card give you the ability to program flash memory with text to display when
the unit is first powered up. Programmable power-up text is particularly
important for an appliance since responsiveness is critical to a successful UL
Displays with a daughter card and flash memory usually also have a program-
mable character set, which is useful if you want to display a logo or other
simple graphic. We’ll have much more to say about the HD44780 later in
this chapter when we review Laddie’s front panel hardware.

There are several web pages and packages that support alphanumeric
LCD displays under Linux. Two websites that you may find of particular value
are http:/ /lcd4linux.sourceforge.net and http://lcdproc.org. Alphanumeric
LCD displays with serial, parallel, or USB inputs are available from several
vendors. Here are a few that you might want to consider:

¢ Scott Edwards Electronics, Inc. (http://www.seetron.com)
¢ Crystalfontz America, Inc. (http://www.crystalfontz.com)
e Matrix Orbital, Inc. (http://www.matrixorbital.com)

¢ Cwlinux Limited (http://www.cwlinux.com)

¢ Decade Engineering (http://www.decadenet.com)

¢ EarthLCD (http://store.earthlcd.com)

Using a standard I/O port does not preclude having a graphic display.
For example, Decade Engineering’s BOB-4 takes commands and characters
from a serial port and outputs to composite sync video, and the ezLCD from
EarthLLCD is a color graphic LCD with a 240-by-160—pixel resolution.

Designing a Front Panel Ul

This section gives some tips on how to build a front panel UL We’ll discuss
various approaches to building 2 menu system for LCD displays, and we’ll
offer some ideas on how to make your front panel responsive as soon as
possible after your user powers on the appliance.

Be Simple

The primary goal of an appliance is for it to do one thing well. To call your
product an appliance is to promise that you will not overwhelm users with

152 Chapter 10
No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

functions and options that they do not need. Your goal is to keep the appli-
ance simple enough that a new or non-technical user can install the appliance
in a few minutes without reading the manual. You can accomplish this by
having reasonable defaults and by designing the Uls so they are easy to
navigate. You can still give technical and sophisticated users access to all
configuration options, but you should hide this complexity from novice
users by putting it in an “Advanced Options” sub-menu.

The simplest UI on your appliance should be the buttons, LEDs, and
LCDs on the front panel. When you design your front panel, consider assign-
ing one button or LED to one function or status. A one-button interface is
especially useful for the most common functions.

Try, Fail, Try Again

Don’t expect to get your front panel right on the first try. It is very difficult
to accurately anticipate what kind of menu flow and button labeling will be
the most intuitive for users. Don’t be afraid to wear out the good will of
your friends and neighbors by giving them a mock-up of your appliance
and asking them to navigate the menu system. You may need to build and
try several front panels before choosing the right one for your appliance.

We’ve found several tricks that help in this area. The first is to build a
prototype display with interchangeable paper faceplates. Install the paper
faceplate, and ask new users to perform specific tasks. How quickly and easily
the new users can navigate the menu system is the major criteria we used to
select the best menu layout for Laddie. Figure 10-2 shows the paper faceplates
we used for prototyping the Laddie front panel.

Figure 10-2: A front panel with paper faceplates

Another technique is to recognize that a menu system is a state machine
and can be stored as a table. Instead of hard coding the states and transitions
in a program, build a table that contains the state, event, next state, and
processing to perform. Then store the state transition table in a separate file
and load it when the LCD UI program initializes.

Building a Front Panel Interface 153
No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

While nothing beats the user feedback from using real front panel hard-
ware, you may find that you want to start by building a working prototype
of the front panel using a web page, Tcl/Tk, or a character interface built
with the curses library. You’ll appreciate being able to test various front panel
designs before specifying your front panel hardware. An advantage of a web
or Tcl/Tk version of the front panel is that you can use it as another type of
Ul on the finished appliance. For instance, we’ve found that the curses version
of the Laddie front panel is sometimes easier to use and more capable than
the Laddie CLI, though both run in an xterm session.

Laddie has front panel emulators written using curses, Tcl/Tk, and
JavaScript combined with PHP. The web-based front panel uses an image
map on top of a photograph of the front panel hardware. The Tcl/Tk
version is shown in Figure 10-3.

o |A1arm in Zones:

2 Display |

Command | Zohe | Execute |

Figure 10-3: A Laddie front panel implemented in Tel/Tk

Use LCD Menus and Modes

If your appliance has an LCD display, you can add menus and status to your
front panel UIL. A menu, in this context, is a linear list of items to select.
These items might be commands, configuration settings, or pathways into
sub-menus. The interface will need to have buttons that allow users to
navigate the list and to select desired items. Common navigation buttons
include next item, previous item, select this item, and previous menu. The
best way to avoid building a menu system that is a maze of twisty passages, all
alike is to map out the menu system with a state transition diagram. Try to
keep your transition diagram orthogonal so that directions like up, down,
left, and right have meaning. Many LCD menu systems treat the LCD
display as a window that sees part of the state transition diagram. An LCD
assembly from Matrix Orbital that is made for this kind of menu structure
is shown in Figure 10-4.

Eniel.
u'r:ll;_ Jflé:jl F2
F1

Figure 10-4: A typical front panel with menu navigation buttons

154 Chapter 10
No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

You can save on cost and front panel space by eliminating the Up and
Left buttons and having the Down and Right buttons wrap from the last
menu option back to the first. Of course, some type of Enter button would
still be required.

Most LCD-based Uls operate in one of two modes: They display status if
no buttons are pressed, and they display a menu when a button is pressed.
For example, some printers have a one-line LCD display that reports Ready if
there is no activity, shows Printingif it is receiving or printing, and enters a
configuration menu if any button is pressed. Laddie has three modes: one to
display status, one to display log messages, and one to display a menu for
configurations changes and clearing alarms.

Be Quick!

The rule of thumb is that the front panel Ul should be functional within two
seconds of turning on the appliance. This section discusses some common
techniques that can help you meet this goal.

Boot Linux Faster

There is quite a bit that can be done to improve the boot time for Linux.
One technique avoids a boot entirely by doing a suspend and resume,
instead. A suspend copies the memory and state of the computer to a file
or disk partition. A resumereloads the previously saved memory. To set up a
suspend and resume on your system, build your kernel with software suspend
enabled, and get your appliance into the state that you want your users to see
after power on. Issue the suspend command (this may be hibernate, swsusp, or
a write into /proc, depending on your system) to save the system state to
the swap partition. Properly handled, the suspend image on the swap parti-
tion can actually be the software that ships on your appliance. There are
configurable scripts that can run on suspend and resume, and you can
modify these scripts to restart network connections and to reset the clock.
See http://www.suspend2.net for more details. Be sure to read the HOWTO
section on Keep image mode.

Software suspend does not improve the load time for the kernel itself,
but there are several techniques that do. For example, you can build your
kernel with module support disabled and with only the minimum number of
device drivers that you need. This reduces the time needed to load modules
and should remove the need for an initial RAM disk (initrd). You might be
able to avoid loading the kernel entirely if you can execute it directly from
ROM or flash memory. This technique is called execute in place (XIP). Using
the kernel option quiet to disable printk messages during boot can save
several hundred milliseconds. These and many other techniques are
explained on the Consumer Electronics Linux Forum website at http://
www.celinuxforum.org.

After the kernel starts, the first program to run is usually /sbin/init,
which executes the script /etc/rc.d/rc.sysinit. The rc.sysinit file sets up vital
services and starts the other init scripts. On a consumer appliance you should

Building a Front Panel Interface 155
No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

156

probably replace the entire set of init scripts with one or two custom scripts.
This can be a lot of work, but the time savings can be tremendous. A good
way to start is to boot your system with the kernel option init=/bin/sh and
manually bring up your appliance one command at a time. Try to get the
button and LED Uls running as quickly as possible, deferring the non—front
panel programs until the end of the initialization. Start programs in the back-
ground if you can, but be careful not to background a program if it must
complete before another program you need can start. The InitNG package
by Jimmy Wennlund is a popular init script alternative that is optimized for a
faster boot.

If the above techniques are not sufficient to get your front panel working
quickly, you may want to add a microcontroller to your design.

Use a Microcontroller

You can use a microcontroller to handle the buttons, LEDs, and LCD in your
UI Microcontrollers are single-chip computers with on-board RAM, ROM,
CPU, and I/0O. Common microcontrollers include the Microchip PIC and
the Atmel AVR.! These controllers are a great way to display messages on an
LCD immediately after boot and to make the buttons and keypad responsive
immediately. Let’s consider a DVD player as an example. After power-on, the
user will usually open the disc drawer, insert a disc, close the drawer, and
press Play. If the drawer mechanism is tied directly to your Linux system, the
user must wait for Linux to boot before starting the above process. If, on the
other hand, you have a microcontroller handling the drawer mechanism and
Open button, you can immediately display Ready on the LCD and make the
button usable. By the time the user has opened the drawer, loaded the disc,
and pressed Play, the Linux part of the DVD player will probably be done
booting. Of course, once Linux is running, it will want to control the drawer
mechanism directly by treating the microcontroller as one of its peripherals.

Use the Main CPU as a Microcontroller

Adding a microcontroller increases the cost, power requirement, and printed
circuit board space of an appliance. An alternative is to carve out a piece of
the main CPU to use as a microcontroller while Linux is starting. You can
modify the bootloader to set up a timer interrupt and use the interrupt
handler to provide a front panel Ul You’ll need to modify Linux so that it
does not touch the timer or interrupt handler while booting. Once Linux is
running, it can take over the timer and interrupt, making the front panel
hardware just another device that it manages. This technique describes a
form of virtual machine (VM); as they become more popular, you may find
that a VM provides all the hooks necessary to be used as an I/O controller.

Don’t Shut Down

A common technique to make an appliance more responsive is to never shut
it down. Instead, you can build your appliance to enter a low power state

'You can program the Atmel AVR using C on a Linux workstation. See http://
www.avrfreaks.org for more information.

No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce

www.it-ebooks.info

http://www.it-ebooks.info/

when the user presses the Off button. A low power state might include having
a slower CPU clock and removing power to as many peripherals as possible.
However, you should be aware that this approach has fallen into disfavor as
more and more consumers demand that Off means zero power consumption.

Give Feedback

If you can’t be quick, at least try to give the user an idea of what the system
is doing. Don’t be afraid to modify the Linux kernel to send simplified boot
status messages to the LCD. Telling the user what is happening can help him
or her tolerate the 10- to 20-second boot time of Linux.

Giving feedback should not be limited to just the boot process. Give the
user constant feedback by bringing the Ethernet activity LED to the front
panel or having the LCD display rotate through various appliance statistics.
Be sure to indicate error conditions clearly and unambiguously.

The Laddie Front Panel

Our requirements for the Laddie front panel UI were that we be able to view
either system status or log messages, and that we have the minimal set of
commands necessary to manage the system. We gave Laddie’s LCD UI three
modes: Status, Logs, and Menu. The Status display reports whether there are
any alarms, the Logs mode shows the last two log messages, and the Menu
mode lets a user clear, test, enable, and disable an alarm zone. There are
four buttons for navigating the menu system, and a flashing LED indicates an
alarm in the system.

The Laddie LCD Ul listens for log messages from logmuxd and opens a
PostgreSQL/RTA connection to the alarm daemon (ladd). The DB connec-
tion to ladd is used for configuration changes and to request the current
status. The diagram in Figure 10-5 illustrates how these daemons connect.

Laddie Front Panel User Interface

ladd

Front Panel | /dev/lad_pad
Hardware lad216 A

logmuxd

Figure 10-5: Architecture of the Laddie front panel Ul

Our front panel uses a parallel port to control a HD44780-based LCD
(with two lines of 16 characters each) and to scan a 4-button, 2-by-2 keypad.
The frame is made of wood, and a paper faceplate made it easy to try different
front panel labeling. Figure 10-6 shows a picture of the front panel showing
alarms in zones 2 and 5.

Building a Front Panel Interface 157
No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

Figure 10-6: A picture of the Laddie front panel

Laddie LCD Menv System

The menu system we chose for Laddie’s front panel is always in one of three
modes: Status, Logs, or Menu. This description of Laddie’s menu system might
make more sense if you can see one in action as you read. If you have a PC
running the Laddie CD, you can use the web-based front panel emulator at
http://192.168.1.11/front_panel. We’ll show just the text of the display and
you can picture what it would look like on a real display.

Status mode shows which, if any, zones are in alarm.

|Laddie Status | Laddie Status
[No Alarms | Mo Alarms

Logs mode shows the last two log messages that were received. Alarm
system log messages are rewritten and forwarded by logmuxd. They include
the time that the event occurred, as well as a description of the event. For
example:

|112:24 Alrm in 4 |
|11:26 Usr Clr 4 |

The user can toggle between Status and Logs modes by pressing the
Display button. The default mode at program start is Status.

If the user presses the Command, Zone, or Enter button, the display
switches to Menu mode. When going into Menu mode, the system saves the
previous mode (Status or Logs). This lets the user revert to the previous mode
when he or she exits Menu mode.

158 Chapter 10
No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

The first screen displayed in Menu mode lets the user clear all the alarms
with one more button press. The display is:

| Laddie Menu |
|Clear All Alarms |

Subsequent presses of the Command button rotate through the available
commands. The top line of the display does not change; only the second line
rotates through:

|Clear Zone 1
|Test Zone 1
|Enable Zone 1
|Disable Zone 1

The Zone button increments the zone from one to five and then back
to one.

After the user has selected a command and a zone, a press of the Enter
button sends the SQL command to the LAD daemon to make the requested
change. After sending the command, the menu system displays:

| Laddie Menu |
| Command Sent |

The Command Sent message is displayed for about two seconds, and then
the display reverts to the mode (Status or Logs) it saved before it went into
Menu mode. The user can exit Menu mode at any time by pressing the Display
button, which recalls the previous mode (Status or Logs) and reverts to that
mode. In addition, if the user abandons a Menu session by not pressing any
button for about 10 seconds, the system times out and reverts to the previous
display (Status or Logs).

We hope our simple menu system for Laddie gives you some ideas for
what to include in your front panel menu.

Laddie Front Panel Hardware

The Laddie front panel uses a parallel port to scan a 2-by-2 keypad, to control
an alarm LED, and to control an HD44780-based, two-line, 16-character LCD
display. We provide a Linux 2.6 character device driver for the keypad, LED,
and alphanumeric display.

Schematics

The wiring diagram for the hardware of our prototype front panel is shown
in Figure 10-7. Signal frequencies in this circuit are fairly low, so either wire
wrap or point-to-point wiring should be fine. None of the component
values are critical, and the values shown should be taken as guides, not as
requirements.

Building a Front Panel Interface 159
No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

+5 volts
9 14 3
D, D, Vag
b, |8 13)p,
5 L6 11p
Parallel 4 4 HD44780 v |2 25KQ
Port D, 5 10 D, LCD Display e S]OTurn
D, -4 ? |p,
D, |3 8 Ip,
2 1
Do 7o, E R/S R/W v,
o) 4 5
| * xIN914 -
Cco = -
il 14
112 22KQ 5 volt
15 a/o/ >)/0’ +5 volts +5 volts
53 304 68Q |
Y| > Alarm
s413 2% —2 ED
22KQ 8.2KQ
C216 MV

2N3904

Figure 10-7: Schematic of the Laddie front panel

Our prototype uses a second parallel port for the front panel. (The first
parallel port was used, you may recall, for the alarm system zone sensors.) We
use the data lines of the parallel port for the character input to the display.
Two of the parallel port’s control lines are used for the register select and
write strobe. A third control line from the parallel port controls the alarm
LED. Two data lines and two status lines are used for scanning the four-
button keypad. From your understanding of how a scanned keypad works,
you may be able to add the five zone switches to this schematic, putting all
the Laddie hardware on one parallel port.

The HD44780 Display Controller

An HD44780-based alphanumeric display can be thought of as a mini-
terminal. Like any terminal, you write ASCII characters to it and it displays
them. This terminal’s eight-bit character set includes the printable ASCII
characters, a subset of the Katakana character set, and 16 user-defined
characters. The actual character set depends on which version of HD4478 you
have, but the character set for the Samsung KS0066U shown in Figure 10-8 is
fairly typical. Note that the character code corresponds mostly to the ASCII
code. For example, the code for A is 0x41, which is also the ASCII code for A.

160 Chapter 10
No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

D=

—
HKewx 0000

W 000]

Hewx 0010

M 0011

| 3

#0100

A

Hrwx 0101

HKewx 0110

W 0111

W 1000

SO AT 0])W) S |0

e 1001

Hwx 1010

+| ¥| =

Hewx 1011

=== I oM m a5 M D) eyco—0

W 1100

a

o}
1
i
F-
o
b
=
L
u L]
L
W
:{
o
z
i
I
¥

AT Se o S D0] =]] 2|] s [OO
NEI=] R RS R IIE El EN S T =t

e 1101

B) Y = s = s e Y i Sl =Pt

FIA A H S AP S 2[5 | @ O] T

| o] L] |] | S [] =] T |0

Wip [H|][]l

Hewx 1110

HEwx 1111

"~ EERE
] [| me| D] 0] =])]] el Pl] |~ —0 0

o= =

"3'|"_l".-|

T I I O Y

<
-
=

Figure 10-8: A typical HD44780 character set

The HD44780 Command Set

An HD44780 display accepts both commands and characters. Figure 10-9
shows a typical command set for the HD44780. Initialization commands can
clear the display, turn it on or off, and specify whether the interface uses four
or eight bits. Cursor commands control the cursor type (block or underline),
whether or not the cursor is visible, whether the cursor or the display moves
after displaying a character, and whether the movement is to the left or the

right. Other commands let you move the cursor to a specific location and to

read and write to the user-defined character generator.

Command Binary Hex
D7 D6 D5 D4 D3 D2 D1 DO
Clear Display 0 0 0 0 0 0 0 1 01
Display & Cursor Home 0 0 0 0 0 0 1 X 02 or 03
Character Entry Mode 0 0 0 0 0 1 1/D S 04 or 07
Display On/Off & Cursor 0 0 0 0 1 D U B 08 or OF
Display/Cursor Shift 0 0 0 1 D/C | R/L X x 10to 1F
Function Set 0 0 1 8/4 2/1 10/7 X X 20 to 3F
Set CGRAM Address 0 1 A A A A A A 40 to 7F
Set Display Address 1 A A A A A A A 80 to FF
1/D: 1 = Increment*, O = Decrement D/C: 1 = Display shift, 0 = Cursor move x = Don't care

S: 1 = Display shift on, 0 = Off*

D: 1 = Display on, 0 = Off*

U: 1 = Cursor underline on, 0 = Off*
B: 1 = Cursor blink on, 0 = Off*

R/L: 1 = Right shift, O = Left shift
8/4: 1 = 8bit interface*, O = 4-bit interface
2/1:1 =2 line mode, 0 = 1 line mode*

10/7: 1 = 5x10 dot format, O = 5x7 dot format*

Figure 10-9: The HD44780 command set

* = Initialization seftings

Building a Front Panel Interface

No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

161

http://www.it-ebooks.info/

Our initialization of the HD44780 consists of the following command
sequence:

0x01 /* clear display */

0x38 /* 8 bits / 2 lines / 5x7 font */
0x14 /* move cursor / move right */
0x03 /* home display */

0x0C /* Display=On, No cursor */

We’ve found that after initialization, the only command we use is the
move cursor command—and we only use it to move the cursor to the first
column of either the top or bottom row.

Sending Commands and Characters to the Laddie Front Panel

You can read status and configuration information from the HD44780 if
you want, but many designs, including ours, connects the read/write pin
to ground, making the part write only. This saves a pin (since it is not
controlling the R/W line), and it is just as easy to maintain any necessary
state information—cursor location, for example—in the controlling
software.

Our HD44780 design has 10 pins that tie to the microprocessor: eight
data lines, a pin to specify either command or character data (RS), and a
strobe pin to tell to tell the HD44780 that new data is available (E). The eight
output lines on the parallel port connect directly to the eight data pins on
the HD44780. If your hardware design has fewer pins, you can configure the
part to use a four-bit bus instead of an eight-bit bus. Of course, this doubles
the number of steps needed to write a byte to the part.

Since both characters and commands are eight bits in length, we need
another way to differentiate commands and data. Consider, for example, the
byte 0x20. Is this a space or a configuration command? Since both commands
and characters are eight bits, the HD44780 uses another pin, the RS pin, to
distinguish between the two. You can set the RS pin to a zero for commands
and to a one for character data. One of the issues to decide in designing the
device driver is how to control this pin.

Data is transferred to the HD44780 on the high-to-low transition of the E
pin. The data must be valid for at least half a microsecond before the E line
goes low. The actual setup time is a function of the brand of HD44780 and its
oscillator frequency. In our device driver we use usleep() to delay two micro-
seconds before setting E low.

Relative to the schematic given above, the sequence for writing to the
HD44780 is:

¢ Output the character or command to the data register.

¢ Set the RS line high or low.

¢ Set the E line high.

e Wait two microseconds.

e Set the E line low.

¢ Wait at least five milliseconds before writing the next byte.
162 Chapter 10

No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

The HD44780 can take several milliseconds to execute some commands.
You can read the status of the display to tell you when to write the next byte,
or you can do what we did, which is just wait at least five milliseconds between
writes. The exact time is dependent on the version of HD44780 that you use.
For this book we used a display we bought on the surplus market, so we had
to experiment a little to find the right delay.

Design Notes

While the HD44780-based display can be thought of as a simple ASCII
terminal, there were a couple of decisions we needed to make when we
designed our API and device driver. The first was how to handle the RS pin.
Since both commands and display characters are eight bits in length, we
could not mix display characters and commands in the same byte stream. We
saw three ways to get around this problem: We could send commands using
an ioctl, we could use an escape sequence to bury the commands in the
character stream, or we could have two different devices for the display, one
for characters and one for commands. We chose to use an escape sequence.
The HD44780 we used had no display characters in the range of 0x10 to
0x1F, so we used 0x10 as the escape code for HD44780 commands and 0x11
as the escape code for commands to control the front panel LED.

The other consideration in our design was how to handle the five-
millisecond delay between writes. We could have put a usleep(5000) between
writes, but this would have been a problem when updating all 32 characters
on our display. (You may recall that the whole reason for writing a device
driver was to have a guaranteed scan rate for the keypad.) We handled the
five-millisecond delay by writing all output bytes into a circular buffer and
reading one byte from the buffer each time we scanned the keypad. This
slowed the maximum rate that we can output characters but was simple and
effective.

The Linux device driver that we wrote to drive our display is available on
the CD. Look in the source files under front_panel.

Further Reading

The HD44780 came out quite some time ago and is in fact no longer
available. Nonetheless, it set the standard for alphanumeric LCD displays,
and HD44780-compatible parts are still available from several vendors. A
web search will locate data sheets for several HD44780-compatible parts,
including the Samsung KS0066U that we used.

Our review of the HD44780 is very far from complete. If you are consid-
ering using any alphanumeric displays on your appliance, you might want to
make use of some of the online references that we used:

http://www.epemag.wimborne.co.uk/resources.htm A simple but
complete introduction to the HD44780

http://home.iae.nl/users/pouweha/lcd/lcd.shtml Offers details on
HD44780 interfacing

http://www.eio.com/datashet.htm Data sheets on HD44780-
compatible parts

Building a Front Panel Interface 163

No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce

www.it-ebooks.info

http://www.it-ebooks.info/

Laddie Front Panel Ul

In earlier sections of this chapter we reviewed the requirements, operations,
and hardware for the Laddie front panel. In this section we’ll look at the
software that implements the front panel UL We’ll break our discussion into
three areas: the software for the front panel, the various front panel emu-
lators, and the software architecture common to both. Let’s start with the
common architecture.

Ul Software Architecture

The front panel software uses an event-driven state machine. Events include
button presses, the expiration of a timer, and arriving log messages that
indicate a possible change of state in the alarm system. Output from the
program includes SQL commands sent to the Laddie daemon, a flag to flash
(or not flash) the LED, and the text displayed on the LCD.

Laddie

LED/LCD ~#———— Front Panel

Bes
Buttons ————~| Ul Software 4
9s
: h
logmuxd

Timeout

Figure 10-10: Laddie front panel architecture

Several state variables are used. The primary state variable, unimagi-
natively called State, indicates the type of information displayed on the
LCD: status, log, or menu. There are also states for the brief Command Sent
message and for an indication that the program could not open an SQL
connection to the ladd daemon. Another state variable, Curcmd, contains an
integer that indicates which command to show when the user is in the menu.
The Command button cycles Curcmd through the five possible front panel
commands. The Zone state variable holds the zone number to use for the
current command. The Zone button cycles Zone through the five possible
zone numbers.

Events — States — Curcmd — Zones
Button “Display” Status Clear All Alarms 1
Button “Command” Logs Clear Zone n 2
Button “Zone” Menu Test Zone n 3
Button “Enter” Command Sent Enable Zone n 4
Log Message Arrival | Unavailable Disable Zone n 5
Timer Expiration

Figure 10-11: Events and states in the front panel menu system

The code to handle the state and event processing is fairly easy to read
once you’ve reviewed the operation of the front panel. The state machine

164 Chapter 10
No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

code is implemented twice—once in C for the hardware and several emulators,
including a web-based emulator written in JavaScript and PHP.

lad216

The C code to generate the proper escape sequences is in the 1ad216
program. The program uses standard in and out, so if you build the hard-
ware described above and install our /dev/lad_pad driver, you could tie
the 1ad216 program to the hardware with the command:

lad216 </dev/lad pad >/dev/lad_pad

The code is in three files: main.c which has the select loop, menu.c
which has the state machine, and lad216.c which encodes the output for
display on the lad_pad hardware. Using standard input and output makes it
easy to connect lad216 to the various front panel emulators described below.

Front Panel Emulators

A front panel emulator is a great way to test a front panel design without
actually building it. Front panel emulators that ship with the finished product
are particularly nice for end users who do not want to be burdened with
learning different Uls.

We went a little overboard building front panel emulators for Laddie,
building one that uses C and curses, one that uses Tcl/ Tk and the X Window
system, and one that uses JavaScript and HTML. You can choose which emu-
lator to examine based on your preferred programming language.

The curses version replaces lad216.c with cur216.c, but still uses the main.c
and menu.c files. You can try the curses front panel emulator by booting the
Laddie CD and telnetting into the appliance. The cur216 executable is in the
default path.2

The Tcl/Tk version, x216.tcl, is based on the 1lad216 executable, using
Tcl/Tk to replace the lad_pad hardware with a Tcl equivalent. The Laddie
CD does not include the X Window system so you can not run x216.tcl on a
booted Laddie appliance.

You can try the web-based front panel emulator by booting Laddie and
pointing your browser to http://192.168.1.11/front_panel. The index.html
file should open a window with a photograph of our actual front panel hard-
ware. The buttons are tied to an image map and operate the same way the
buttons do on the real system. The LED is either a static image of the LED
in the off state, or is an animated GIF image of the flashing LED. The HTML
of the LCD uses CSS to specify a fairly large monospaced font.

The techniques used in the web emulator are simple, and you may find
them of use if you ever build a web emulator of your own front panel. To
illustrate these techniques, let’s look at how the LED image is controlled. In
the HTML we specify the exact location of the image and give it a name, led.

2You may need to set the terminal type, since telnet does not set it for you. I use xterm on my
desktop, so when I telnet to the Laddie appliance, I set the terminal type with the command
export TERM=xterm.

Building a Front Panel Interface 165
No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

<div id="led" style="position:absolute; left:27; top:20;"></div>

The JavaScript code uses XMLHttpRequest() to request the alarm status
from a PHP script tied to the webserver running on the appliance. The value
returned is zero if there are no alarms. The JavaScript to control the LED
image is straightforward.

if (alarms > 0) {
document.getElementById("led").innerHTML="";
}

else {
document.getElementById("led").innerHTML="";

The JavaScript program uses the exact same architecture and state
machine as described above, and it uses XMLHttpRequest() instead of select()
to asynchronously wait for log messages. After the arrival of any log message,
the code queries ladd for the latest status and redraws the web page based
on the new status information.

Improving Our Design

The Laddie front panel could be improved in several ways. The lad_pad driver
could have been simplified had we separated the LCD data lines from the two
output lines used for keypad scanning. Separating them would have allowed
the convenient use of a second timer just for LCD output characters, which
would have made the LCD more responsive to output. Another improvement
in the driver would have been to pull more than one character from the
queue if the characters were not sent to the LCD. For example, there is
no reason to wait 20 milliseconds between characters if the character is an
escape code or an LED command.

The photograph in the web front panel is of the hardware we built.
This is a little backward. Normally, you would build and test the emulated
web-based version before building the actual hardware.

The web-based front panel has a more subtle problem. It uses
XMLHttpRequest() to wait for arriving log messages, and after receiving
one, it sets a timer to make the next request.

setTimeout("GetLogMsg()", 100);

This arrangement, no matter how short the timer, will miss log messages
that arrive close together. You can see this in action by setting three alarms
and clearing them all at once. The log display will capture the log of the first
alarm being cleared, but it will miss one or both of the logs for the next two.
The main web interface has the same problem, but solves it by numbering
the log messages. After updating the web page, the JavaScript code in the
main web Ul reads the ID of the last message received from logmuxd. If the
ID of the log in the web page does not include the most recent log message,
the page is redrawn using the most recent log messages.

166 Chapter 10
No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

Summary

In this chapter we’ve looked at how you can build an effective front panel
using buttons, LEDs, and small, text-only LCDs. We saw that scanning a
keypad or LED array can reduce the number of I/O lines you need, and that
movement, such as a blinking LED, can draw the eye and let the user know
that the appliance is running. We also noted that how well your appliance is
accepted may depend on how quickly you make user interaction possible and
how easily users can navigate your menu system.

We reviewed Laddie’s front panel design, including its menu system,
hardware, Ul software, and various front panel emulators. Our hardware
design includes an HD44780 display and a 2-by-2 keypad. The source for
our 2.6 character device driver, lad_pad, is on the CD and might be a nice
introduction to kernel modules.

The Ul menu system is implemented as a state machine, and is imple-
mented twice. The first implementation, using C, uses standard in and out so
that it can be tied to either a Tcl/Tk emulator or to the real front panel. The
second implementation uses JavaScript and image maps for the front panel
buttons and uses XMLHttpRequest() to receive the asynchronous log messages.

Building a Front Panel Interface 167
No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

DESIGNING A FRAMEBUFFER
INTERFACE

If you decide to add a graphical user
interface (GUI) to your appliance, you
will be faced with the following challenge.
On one hand, your appliance’s graphics

hardware is controlled by low-level commands that
manipulate video memory. On the other hand, your users don’t want

to manipulate video memory; they want to manipulate high-level objects like
menus and buttons. In order to build the kind of interface your users want,
you will use a set of software layers known collectively as the graphics stack.

The graphics stack, as used for the Laddie appliance, is illustrated in
Figure 11-1. The Linux framebuffer device driver provides a low-level but
uniform interface to the graphics hardware’s video memory. The graphics
library provides support for manipulating points, lines, images, and text. The
GUI toolkit provides widgets and manages user input for the appliance GUIL

Here, we will present the graphics stack layers we used to design the
Laddie framebuffer Ul But first, we will provide a brief review of how video
memory works, since this will make the remainder of the chapter easier to
understand.

No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

Linux Appliance GUI

GUI Toolkit

Graphics Library

Linux Framebuffer Device Driver

Graphics Hardware

Figure 11-1: The graphics stack
In this chapter, we will cover the following topics:

¢ How video memory works

¢ The Linux framebuffer device driver

¢ Graphics libraries

¢ “Hello, world!” with Simple DirectMedia Layer
¢ Graphical UI toolkits

e The Laddie framebuffer Ul

How Video Memory Works

From a programming point of view, the most important part of the graphics
hardware is the video memory. Software creates graphical images by manip-
ulating this video memory, and hardware interprets this memory to render
images on the display. Before we can effectively display text or graphics, we
need to understand how bytes in video memory are interpreted, and in what
order they are mapped onto the display.

How Bytes in Video Memory are Interpreted

To understand the different ways in which hardware can interpret video
memory, it’s useful to remember that memory has historically been an
expensive resource. Many of the earliest computers didn’t display arbitrary
graphics; instead, they interpreted each byte of video memory as a single
character (see Figure 11-2). A character might be drawn as a 7-by-9-pixel
image, which would be quite efficient—a single byte would represent 63
pixels, and 2KB of memory could support a display of 32 lines with 64 char-
acters each. However, only text could be rendered, and only 256 different
characters could be displayed at a time.

Incidentally, we can think of character graphics as a form of image
compression. The number of repeating pixel patterns that occur in a
displayable text “image” are fewer than 256, so we can use a single byte

170 Chapter 11
No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

to encode each one. All other pixel patterns occur with frequency zero,
and therefore, are not encoded at all.

Video H
Memory Hello, world!
0Ox48 7‘X 9 \
Character | pixels | Video 63 mono-
: Character | CGenerator " | Encoder chrome pixels
Index
Text with up to 256
different characters

Figure 11-2: Character graphics

With additional memory, graphics cards can dedicate one bit to every
pixel. This creates monochrome graphics, which are illustrated in Figure 11-3.
Although this approach requires roughly an eight-fold increase in memory
over using character graphics, it removes all limitations on the character set.
It supports all typefaces, styles, and sizes, and even Kanji can be displayed as
easily as Roman characters.

Video

1001 1110 \
. _|—> Video - 8 black-and-

Encoder white pixels

Black-and-white image
Figure 11-3: Monochrome graphics

If we dedicate an entire byte to each pixel, we have a few options. For
single-color displays, the graphics hardware could be designed to produce 256
different intensity (grayscale) levels. This would be appropriate for rendering
text with anti-aliasing, in which shades of gray are used to soften jagged edges.

Alternatively, we could use each pixel’s byte to signify one of 256 different
colors. In this approach, known as pseudocolor, the graphics hardware maintains
a 256-entry table of colors, known as a palette or colormap. Each color in the
palette is typically represented by three bytes, one each for the red, green,
and blue intensity levels. This approach is illustrated in Figure 11-4. In this
example, the first pixel in the displayed image is represented by the value
0x3F, which indexes a 3-byte entry with red, green, and blue intensity levels
that correspond to a light blue pixel, with a touch of green.

As in the character graphics case, we can think of pseudocolor as a form
of compression, driven by the need to conserve memory. To display an image
in pseudocolor, we choose the 256 most important colors and represent each
with one byte, neglecting all other colors.

Using even more memory, we can dedicate two or three bytes to each
pixel and directly represent the red, green, and blue intensity levels, without
the use of a look-up table. With two bytes (highcolor), we might, for example,

Designing a Framebuffer Interface 171
No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce

www.it-ebooks.info

http://www.it-ebooks.info/

use 5 bits for red, 6 for green, and 5 for blue. This supports over 65 thousand
colors in an image, but it is still limited. For example, it only supports 2% =32
different shades of gray.

Palette
R G B
0x00
Video :)
Memory .
Ox3F —|_>ox35 70| co [FC _ | R o \
' 0x3F| 731 C5 | FF EVIdedo G 1 pixel, light blue
Color ncoder B with a touch of green
Index 0x40| 76| C7 | FF ——
Image with up to 256
) different characters
OxFF

256 out of 2% colors

Figure 11-4: Pseudocolor graphics

The three-byte case, with one byte each for red, green, and blue, is
illustrated in Figure 11-5. This is referred to as {ruecolor, since it is capable of
representing images with near-photographic quality.

Video
Memory
73] Cs [e \
Video G 1 pixel, light blue
: Encoder B with a touch of green
2 -
Image with up to 224 colors

Figure 11-5: Truecolor graphics

How Video Memory Is Mapped to the Display

If the video memory provided by a graphics card is the same size (in pixels)
as the display, then the mapping between video memory pixels and display
pixels is straightforward: The first pixel of video memory corresponds to the
pixel at the top left of the display, and the following pixels are mapped from
left to right and top to bottom, the same way we read a page in English.
To state this mathematically:

address of pixel at (x, y) = address of video memory + (y*xres + x) *pix_width

where xres (the xresolution) is the number of pixels in a row, and pix_width is
the number of bytes in a pixel.

But memory is no longer the critical resource it once was, and it is now
common for graphics hardware to provide more video memory than necessary
to fill the display. In one approach to using this extra memory, we can think

No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce

www.it-ebooks.info

http://www.it-ebooks.info/

of the available video memory as corresponding to a virtual display. The visible
display is too small to show us all the virtual pixels at once, but we can pan
the visible display left and right or up and down in order to expose any
portion of the virtual display we are interested in. This situation is illustrated
in Figure 11-6. If we want to find the memory address of a pixel at position
(x, y) in the visible display, we have to consider where the pixel resides in the
virtual display. If the visible display is panned xoffset pixels to the right and
yoffset pixels down, then the virtual position of our pixel is (x+xoffsel, y+yoffset).
If line_length is the length of a virtual row, then, applying the earlier formula,
we have a memory address of:

address of video memory + ((y+yoffset) *line_length+x+xoffset) *pix_width

xoffset xres
: |
| I
| I
yoffset I !
I
: |
I X !
, Visible
Y i Display
yres ==k
pixel at (x, y)
Virtual
Display

line_length
Figure 11-6: Virtual and visible displays

If we have an object that we want to render on the visible display, we can
use this formula to determine which bytes to manipulate in video memory.
In the remainder of the chapter, we will look at the layers that allow us to
effectively manipulate video memory in software.

The Linux Framebuffer Device Driver

Linux provides access to video memory (also known as the framebuffer) the
same way it provides access to most other devices—via a device file. The frame-
buffer device file is /dev/fb0, and as with other files, we can access the data in
the file using the system calls open, read, write, and close. You can learn more
about these system calls from their man pages (e.g., execute man 2 write). Most
system calls that access files do so using a small integer called a file descriptor.
The system call open is an exception; it returns a file descriptor using a path
to a file.

Designing a Framebuffer Interface 173
No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

Manipulating the Framebuffer with open, read, write, and close

Because of this device file interface, it is easy to exercise the framebuffer
with some simple Unix commands. At this point, we recommend you boot
the Laddie CD and try these commands yourself. (You could also try these
examples on your own system. See Appendix C if you need help setting up
your framebuffer.)

Once you've booted the Laddie CD, wait for the framebuffer UI to load,
then press ESC to get a login prompt. Log in as root with an empty password.
Now execute the following commands:

laddie:~# cat /dev/fbo > /tmp/screen
laddie:~# clear
laddie:~# cat /tmp/screen > /dev/fbo

The cat command, as used in the first line, invokes the open, read, and
close system calls to make a copy of the framebuffer in a separate file. The
second line clears the console display. In the third line, the redirection
invokes the open, write, and close system calls to replace the contents of the
console display with what was originally there. The result may be confusing,
since the cursor position will no longer match the display (you can clean up
the display with another clear command). However, this experiment illus-
trates that, to the cat command, the framebuffer is just another file.

If your graphics adapter has a large amount of video memory, the first
cat command may take a while (and produce a large file in /tmp). If the first
command (cat /dev/fbo > /tmp/screen) returns immediately with

cat: /dev/fbo: No such file or directory

you need to use mknod to create the /dev/fb0 device file. Do so by running:

laddie:~# mknod /dev/fbo c 29 0

If the command cat /dev/fbo > /tmp/screen produces the error

cat: /dev/fbo: No such device

the framebuffer device driver has not been loaded successfully. Again, see
Appendix C if you need help setting up the framebuffer device.

NOTE [For the remainder of this chapter, we will assume that you have a working framebuffer.

To experiment with the relationship between pixel data and what is
displayed on the screen, try any of the following commands:

laddie:~# yes | cat > /dev/fbo
laddie:~# while [1]; do echo 01234567; done | cat > /dev/fbo
laddie:~# cat /dev/urandom > /dev/fbo

174 Chapter 11
No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

On successful completion of each command (which may take a while for
large framebuffers) you should see the error:

cat: write error: No space left on device

You see this error because you are attempting to cat an infinite supply of
bits into a finite supply of memory. After each experiment, type the command
clear to restore the console.

Configuring the Framebuffer with the ioct| Command

In our experiments so far, we have manipulated video memory without any
regard to the way pixel data is interpreted. The way that graphics hardware
interprets video memory is determined by the framebuffer configuration
data, which also includes the physical address of video memory, the screen
resolution (virtual and visible), the placement of the visible screen relative
to the virtual one, as well as timing and other information that is outside the
scope of this chapter. To access the video mode, we need an additional system
call, ioctl, which allows us to access or modify parameters for devices.

The ioctl system call takes a file descriptor for a device and an integer
representing a request (see the ioctl man page for details). In the case of the
framebuffer, the possible ioctl commands are listed in the /usr/include/
linux/fb.h header file and include the following:

#define FBIOGET_VSCREENINFO 0x4600
#define FBIOPUT_VSCREENINFO 0x4601
#define FBIOGET_FSCREENINFO 0x4602

The first two ioctl requests allow us to retrieve or update variable
framebuffer parameters, and the third allows us to retrieve fixed frame-
buffer parameters. The variable parameters are summarized in the
following data structure (with some fields omitted), taken from fb.h:

struct fb_var_screeninfo {

__u32 xres; /* visible resolution */

__u32 yres;

__u32 xres_virtual; /* virtual resolution */

__u32 yres_virtual;

__u32 xoffset; /* offset from virtual to visible */
__u32 yoffset; /* resolution */

__u32 bits_per_pixel; /* guess what */

__u32 grayscale; /* 1= 0 Graylevels instead of colors */
struct fb_bitfield red; /* bitfield in fb mem if true color, */

struct fb_bitfield green; /* else only length is significant */
struct fb_bitfield blue;

};

Designing a Framebuffer Interface 175

No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce

www.it-ebooks.info

http://www.it-ebooks.info/

For the most part, it should be clear from the identifiers how the fields
in this data structure correspond to the notions we discussed in the section
“How Video Memory Works” on page 170. The fb_bitfield structs charac-
terize the way pixel bits are interpreted when they are used to specify color
intensities directly (as in truecolor mode).

For the Laddie appliance, we had no need to modify the variable frame-
buffer data. In fact, the VESA framebuffer driver that we used does not easily
support modification after system startup. If you are using a non-VESA frame-
buffer and you need to modify its configuration at run time, consult the
documentation for the fbset utility.

The fixed framebuffer configuration parameters are provided by the
following data structure (with some fields omitted), also in fb.h:

struct fb_fix_screeninfo {

char id[16]; /* identification string eg "TT Builtin" */
unsigned long smem_start; /* Start of frame buffer mem */
/* (physical address) */
__u32 smem_len; /* Length of frame buffer mem */
__u32 type; /* see FB_TYPE_* */
__u32 visual; /* see FB_VISUAL_* */
__u32 line_length; /* length of a line in bytes */

};

The main fields we will use here are visual, which specifies how pixels
are interpreted (e.g., monochromatic, pseudocolor, or truecolor), and
line_length, which we need when computing the mapping between video
memory and the display.

Finally, the following ioctl requests allow us to retrieve or update the
palette (colormap) for video modes that use one.

#define FBIOGETCMAP 0x4604
#define FBIOPUTCMAP 0x4605

We will show an example of how to update colormaps in the next
section.

At this point, we can determine the way pixel data is interpreted, so we
can also update framebuffer memory in a meaningful way. We could use the
write system call, just as the cat utility does, but making system calls with every
framebuffer update is too expensive. A better approach is provided by a
different system call: mmap. The mmap system call takes the file descriptor for
our framebuffer, maps the framebuffer memory into the virtual address
space of our process, and returns a pointer to the beginning of that memory.
With this mapping in place, updating the framebuffer becomes as simple as
writing to memory.

In summary, to efficiently manipulate the framebuffer, we open the
appropriate device file, use ioctl commands to establish the graphics hard-
ware configuration, use mmap to provide simple access to pixel data, and write
the appropriate pixel data for our application.

176 Chapter 11
No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

NOTE

A Simple Graphics Program for the Framebuffer

In the remainder of this section, we’ll illustrate the Linux framebuffer
interface by writing a simple graphics program. Our program, hazy_moon,
will display a disk, 240 pixels in diameter, that fades from bright cyan at the
top to a hazy red at the bottom. The picture we have in mind, rendered in
grayscale, is shown in Figure 11-7. Our program will illustrate the use of a
colormap and will provide a quick, visual indication of whether or not we
have configured the framebuffer correctly.

Figure 11-7: A hazy moon

The complete source for this program is on the Laddie CD in the
directory /Code/src/examples/hazy_moon. Before working through the
rest of this section, we recommend building and running the program.
After booting the CD and logging in, change to the program’s directory,
type make, and then type ./hazy_moon. You should see the disk in the middle
and a thin cyan border around the visible screen. If you don’t see all of
the border lines, try adjusting the width and height of the image on your
monitor. To return to the original virtual terminal, use CTRL-ALT-F1. If the
dimensions of the graphics virtual terminal are not what you expected, try
the command deallocvt at the bash prompt to deallocate resources for the
unused terminals, and then run the test program again.

When using the Laddie CD, you can view source files using vim or less. Use the
commands man vim orvimtutor ¢f youre not familiar with the vim editor.

Now we’ll discuss the details of the hazy_moon program. The first detail
requires a little working knowledge of virtual terminals.

A Virtual Terminal for Graphics

One of the advantages and challenges of Linux is that it uses framebuffers
for text consoles. This use of framebuffers is an advantage because it supports
colored text and a wide range of fonts and character sets. However, using
framebuffers in this way also presents a challenge, because while developing
a framebuffer application, it’s easy to trip over Linux’s machinery for
managing consoles.

Designing a Framebuffer Interface 177

No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce

www.it-ebooks.info

http://www.it-ebooks.info/

For example, a program that prints a one-line message to the console
can modify the position of the visible display relative to the virtual display;
the result is that a displayed graphic is misplaced by the width of that line.
Or, if the graphics hardware is configured to use a palette, and if a program
modifies the colors used to display text in the console, printed messages may
become hard to read or even invisible.

For these reasons, it’s best to use a separate virtual terminal for graphical
displays. We accomplish this in the hazy_moon program with the following
lines.

#include <fcntl.h>
#include <linux/vt.h>

console_fd = open("/dev/tty", O_RDWR);
ioctl(console fd, VT_ACTIVATE, 7);
ioctl(console fd, VT_WAITACTIVE, 7);

Note that we’re using the familiar open and ioctl system calls, though in
this case, it’s not with the framebuffer. The first call (console_fd = open("/dev/
tty", O_RDWR);) opens the console device; the second (ioctl(console_fd,
VT_ACTIVATE, 7);) requests a switch to virtual terminal 7; and the third
(ioctl(console_fd, VT_WAITACTIVE, 7);) waits until the switch is complete.
(We chose virtual terminal 7 because our system uses terminals 1 through 6
for consoles.)

open

Now we use the open system call on the framebuffer device file, specifying the
device file as read/write.

fb_fd = open("/dev/fbo", O_RDWR);

The function open returns —1 on error; otherwise, it returns an integer file
descriptor that we will use in making subsequent system calls for this device.

NOTE T7eopen system call returns an error value that should be handled. We won’t discuss
error handling here, but you can see how we handled errors by looking at the full source
in the hazy_moon.c file.

ioctl

Using the framebuffer’s file descriptor, we can make the ioctl calls to retrieve
the fixed and variable configuration data for a framebuffer.

#include <linux/fb.h>

struct fb_fix_screeninfo fixed_ info;
struct fb_var_screeninfo var_info;

ioctl(fb_fd, FBIOGET FSCREENINFO, &fixed_info);
ioctl(fb_fd, FBIOGET VSCREENINFO, &var_info);

178 Chapter 11
No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

Before updating the display, hazy_moon calls two helper routines to
display the fixed and variable data. This information can be useful when
you’re trying to debug—or simply understand—a framebuffer application.

display fb_fixed_info(&fixed_info);
display fb_var_info(&var_info);

If you ran the program earlier, you saw this output after returning to the
virtual terminal from which you launched the program. The output would
have shown, in particular, that our display screen is 640 by 480, that we have
8 bits per pixel, and that our visual type is pseudocolor.

The following code first @ creates a new colormap using a helper function
new_fb_cmap. This function is defined in the accompanying file colormap.c.
The program then @ copies the current values from the framebuffer using
an ioctl call and ® updates the entries to provide a gradient from cyan to
dark red. Finally, the program @ updates the framebuffer with the new
colormap using a second ioctl call.

#include "colormap.h" /* for new_fb_cmap() */

struct fb_cmap *new_cmap;
int entry;

® new_cmap = new_fb_cmap(256); /* Create a new, empty colormap */
/* with 256 entries. */
® ioctl(fb_fd, FBIOGETCMAP, new_cmap); /* Copy the current colormap. */

/* Fill in the new colormap with a gradient. */
/* We'll leave the first 16 colors intact for the linux console. */
if(new_cmap->len >= 256){
(3] for(entry=16; entry < 256; entry++){
/* Fade from bright cyan to dark red. Color values are 16 bit. */
new_cmap->red[entry] = 64*256;
new_cmap->green[entry] = entry * 256 +255;
new_cmap->blue[entry] = entry * 256 +255;

}

® ioctl(fb_handle, FBIOPUTCMAP, new_cmap);

mmap

We now use the mmap() system call to map the framebuffer into our program’s
address space.

#include <sys/mman.h> /* For mmap. */
unsigned char *frame;

frame = mmap(0, fixed_info.smem_len, PROT_READ|PROT_WRITE, MAP_SHARED, fb_fd, 0);

Designing a Framebuffer Interface 179

No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

180

Chapter 11

The first argument to mmap is 0, indicating that mmap will choose where the
framebuffer is mapped. The value fixed_info.smem_len is the length of the
framebuffer. We specify that the framebuffer can be read or written with
PROT_READ|PROT_WRITE, and we use MAP_SHARED to indicate that changes to this
memory region will propagate to the actual framebuffer. The file descriptor
for the opened framebuffer device is fb_fd, and we specify an offset of 0,
since we want to map the entire framebuffer.

If this call succeeds (again, see the source on the CD for error handling),
frame will point to the start of framebuffer memory.

Writing Pixel Data

Now that we have a colormap and a way to place pixels on the screen, we can
write a simple graphics program. The following code will create the promised
240-by-240-pixel hazy moon, as well as the single-pixel border around the

perimeter of the display.

/* Compute offset of visible frame */
visible frame = frame + var_info.yoffset*fixed_info.line_length + var_info.xoffset;

/* Paint the top and bottom borders of the visible display. */
for(col=0; col<var_info.xres; col++){

visible frame[col] = 255;

visible frame[(var_info.yres-1)*fixed_info.line length + col] = 255;

}

/* Paint the left and right borders of the visible display. */
for(row=0; row<var_info.yres; rowt+){

visible frame[row*fixed_info.line length] = 255;

visible frame[row*fixed_info.line length + var_info.xres - 1] = 255;

}

/* Compute the offset for a 240x240 square in the middle of the screen. */
img off = ((var_info.yres-240)*fixed_info.line length + (var_info.xres-240))/2;

/* Paint a 240x240 disk in the center of the visible screen. */
for(row = 0; Tow < 240; row++){
for(col = 0; col < 240; col++){
/* Only display points that lie within a circle. */
if((row-120)*(row-120) + (col-120)*(col-120) <= 120%120){
visible frame[img_off + row*fixed info.line length + col] = 255 - row;
}
}
}

As we illustrated in Figure 11-6, the visible display might be a subset of
the available framebuffer memory. We first find the beginning of displayed
memory, ® visible_frame, using the xoffset, yoffset, and line_length values
from the framebuffer device’s variable information. In the rest of this code,
we compute memory offsets relative to visible_frame, and therefore have no
further need for xoffset or yoffset. However, we have to use @ line_length
consistently whenever we compute an offset for a number of rows.

No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce

www.it-ebooks.info

http://www.it-ebooks.info/

Cleaning Up

At this point, we can clean up and exit the program.

munmap(frame, fixed_info.smem_len);
free_fb_cmap(new_cmap);

This program is meant to be a simple demonstration; to build a useful
framebuffer interface would require a good deal more work. For example,
we haven’t discussed displaying text or responding to keyboard input, and we
haven’t written code to recover the screen after blanking out or to get rid of
the cursor in the upper-left corner. We could write code to address these
problems, but in fact, they have already been solved by graphics libraries
that work on top of the framebuffer interface. In the next section, we’ll
consider two choices for graphics libraries and work through an example
with one of them, the Simple DirectMedia Library. If you would still like
to spend more time mastering the framebuffer interface, see the header
file /usr/src/linux/include/linux/fb.h and the documentation files in the
directory /usr/src/linux/Documentation/fb.

Graphics Libraries

Using the Linux framebuffer interface, we have reduced the problem of
manipulating pixels on the display to the problem of writing bytes to memory.
But think of some of the ways in which we would like to manipulate display
pixels: drawing lines of a specified thickness, drawing windows with rounded
edges and a three-dimensional look, transferring images, or drawing text with
a given font and size. These are nontrivial problems; that’s why we need a
graphics library. With an appropriate graphics library, we can write programs
that manipulate lines, windows, images, and text, and let the underlying
library decide what to do with the pixels.

The most common library for manipulating graphics objects in Linux is
Xlib. Xlib is actually more than a graphics library; it is the interface by which
clients access an X Window display server. In particular, it also manages user
input events. Because of its popularity, building a Linux appliance on top of X
can be a good choice. Xlib is cumbersome to program directly, but with an
X system, a UI developer can choose among several competing GUI toolkits
(for example, Qt, which is used by the KDE desktop, or GTK+, which is used
by the Gnome desktop). Alternatively, UI developers can include an X-based
web browser on the appliance and provide the Ul as a set of web pages. In
any of these cases, UI development for the appliance would be little different
from UI development on a Linux desktop.

On the other hand, the X Window system is complex and provides
features that will often not be needed on an appliance. Because X is
network-oriented, it involves an additional network layer between Xlib
and the Xserver. X incorporates support for multiscreen displays and
multiple clients, and it also provides for window management that is not
controlled by the client application. These are nice features for a distributed
networking environment, but their complexity makes X an expensive option

Designing a Framebuffer Interface 181

No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

for appliances with tight memory and storage budgets. If you have resource
constraints but would still like to use X, you may want to investigate TinyX,
described at http://XFree86.org as “a family of X servers designed to be
particularly small.” For more information on Xlib, see the Xlib Programming
Manual by Adrian Nye, (O’Reilly, 1994). There are also several articles about
X on Wikipedia, such as http://en.wikipedia.org/wiki/Xlib.

Another option for a graphics library is the Simple DirectMedia Layer (SDL),
a multimedia library originally designed for developing and porting games.
Like Xlib, SDL is cross-platform and manages user input as well as graphics.
Unlike Xlib, SDL provides only minimal support for managing windows. It
has a small footprint; the libraries for SDL (including SDL_ttf for TrueType
fonts) take up about 330KB, stripped.

Because of its simplicity (we didn’t need windowing support), we chose
SDL as the graphics library for the Laddie appliance, and we will demonstrate
this library with a simple example in the next section. For more details on SDL,
especially on multimedia support, see Programming Linux Games by John R.
Hall, (No Starch Press, 2001). The SDL website (http://www.libsdl.org) also
provides good documentation on the SDL API. We used the SDL_ttf library
as a wrapper for TrueType fonts, which in turn required the FreeType package
from http://www.freetype.org. See http://www.libsdl.org/projects/SDL_ttf
for links to documentation.

“Hello, world!” with SDL

To introduce SDL, let’s work through a simple program to display Hello, world!,
monitor the keyboard, and exit gracefully when the spacebar is pressed (see
Figure 11-8).

This program is on the Laddie CD; before looking at the details, we
recommend building and running the program. Boot the Laddie CD and,
after the framebuffer Ul loads, exit by pressing ESC.

Figure 11-8: “Hello, world!” with SDL

NOTE [t’s important that the framebuffer isn’t running, because it would interfere with our
current example. Incidentally, if the framebuffer UI didn’t start automatically when
you booted the CD, you may have problems with your framebuffer. In this case, see
Appendix C for help. The framebuffer Ul display is shown in Figure 11-10.

182 Chapter 11
No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

®©0Q

o
e

Log in as root with an empty password, change to the sdl_hello directory,
then build and run the program.

laddie:~# cd /Code/src/examples/sdl_hello
laddie:~# make
laddie:~# ./sdl_hello

You should see the display shown in Figure 11-8. When you press the
spacebar, the display will disappear and you will be back at the command
prompt. In the remainder of this section we’ll show how we implemented
the sdl_hello program.

Our program uses a single main function and includes five steps: initialize
the libraries, initialize the framebuffer, create a surface (SDL’s term for a
rectangular area of pixels), display the surface, and handle events. As in our
earlier example, we will not show error handling here. Please see the source
for the sdl_hello program on the CD in the /Code/src/examples/sdl_hello
directory for example error-handling code.

Initialize the Libraries

The following lines from our example program initialize the SDL and
SDL._ttf libraries.

#include "SDL.h"
#include "SDL_ttf.h"

SDL_Init(SDL_INIT VIDEO);
TTF_Init();

atexit(SDL_Quit);
atexit(TTF_Quit);

SDL supports several subsystems, including TIMER, AUDIO, VIDEO,
CDROM, and JOYSTICK, and we @ select these when calling SDL_Init().
(We will only use the VIDEO subsystem in this chapter.) In order to display
text, we @ initialize SDL’s support for TrueType fonts. The calls to ©
atexit() provide functions (SDL_Quit and TTF_Quit) to be invoked at
program exit; they ensure that SDL quits cleanly at the end of the program.

Initialize the Framebuffer

To configure the framebuffer’s resolution and bits per pixel, we use the
function SDL_SetVideoMode.

SDL_Surface* Screen;

Screen = SDL_SetVideoMode(640, 480, 8, 0);
SDL_ShowCursoxr(SDL_DISABLE);

Designing a Framebuffer Interface 183

No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce

www.it-ebooks.info

http://www.it-ebooks.info/

When a desired video mode is unavailable, SDL will emulate it; however,
we will keep things simple and choose a mode that works natively with most
graphics adapters: 640 by 480, with 8 bits per pixel. The final argument to
SDL_SetVideoMode provides flags for features such as whether to use video
memory or system memory, whether to support double buffering, and
whether to support OpenGL. For our purposes, the defaults are fine. The
return value, @ Screen, has type SDL_Surface. These surfaces represent
rectangular collections of pixels and are characterized by height, width, pixel
format, scanline length, a clipping rectangle, and, of course, the actual pixel
data. The Screen surface is special, since it corresponds directly to the displayed
memory. But surfaces can also represent any graphical object, such as an
image or a piece of text. For the examples in this chapter, we will create
graphical objects from bitmaps or by rendering text, but it is also possible
to create an empty surface and then manipulate its pixel data directly.

After setting the video mode, we @ call the function SDL_ShowCursor to
hide the cursor, since we are not using a mouse for input.

Create a Surface

To create a text object, we need to open a font and then render the text to
create a surface.

TTF_Font *helloFont;
SDL_Surface *helloSurface;
©® SDL_Color helloColor = {128,128,255,0}; /* light blue */

helloFont = TTF_OpenFont("/usr/local/share/fonts/bitstream/VeraBI.ttf", 42);
helloSurface = TTF_RenderText_Solid(helloFont, "Hello, world!", helloColor);

o0

The @ TTF_OpenFont() function requires a pathname to a TrueType font
file and a font size. The @ TTF_RenderText_Solid() function uses a font, a string
of text, and a color to create a surface. An @ SDL color consists of four 16-bit
values for red, green, blue, and an alpha channel. The alpha channel value is
used for blending translucent surfaces and is not practical when using pseudo-
color graphics; we won’t consider it further in this chapter.

Since fonts are subject to copyright, you will need to put some thought
into the fonts you choose for your application. For the Laddie CD, we chose
the liberally licensed Bitstream Vera fonts, associated with the GNOME
foundation (available from http://www.gnome.org/fonts). These include
monospace and proportionally spaced fonts, serif and sans-serif, normal,
italicized, bold, and bold-italicized. These may already be installed on your
system in /usr/X11R6/1lib/X11/fonts/truetype.

Display the Surface

Displaying rendered text is no different than displaying any other object in
SDL: We just blit (transfer) the surface onto the screen (i.e., the Screen
surface).

184 Chapter 11
No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

SDL_Rect helloRect = {150,100,0,0}; /* {x, y, width, height} */

® SDL_BlitSurface(helloSurface, NULL, Screen, &helloRect);
® SDL_UpdateRects(Screen, 1, 8helloRect);

The @ SDL_BlitSurface function takes a source surface, a rectangle
specifying a subset of this surface (NULL for the entire surface), a destination
surface, and a rectangle whose x and y values indicate the position where
the source is to be placed. The SDL_BlitSurface function fills out the width
and height values for the destination rectangle based on the portion of the
destination that was updated. We use this rectangle to update the Screen
surface with @ the SDL_UpdateRects function.

Handle Events

At this point, we have displayed the Hello, world! message. Now we need to
monitor the keyboard and exit when the spacebar is pressed.

enableQuit = 0;
while(!enableQuit){
® SDL WaitEvent(&event);
switch(event.type){
case SDL_KEYDOWN:
2] switch(event.key.keysym.sym){
© case SDLK_SPACE:
enableQuit = 1;
break;
}
break;
}
}

This code could be simplified for the “Hello, world!” application, but in
this form it represents a general approach to event handling with SDL. The
© SDL_WaitEvent function suspends the main thread until an event occurs.
The event variable has a union type corresponding to more than a dozen SDL
events, including keyboard, mouse, and user-defined events. SDL also distin-
guishes keypresses from key releases. In the case of a keyboard event, we can
check the particular key using @ the event.key.keysym.sym field, which can
take on values such as © SDLK_SPACE, SDL_TAB, SDLK_0, SDLK_a, and so on.

Graphical Ul Toolkits

While the SDL API is easier to use than the framebuffer interface, it is not, in
itself, a convenient library for developing a GUI SDL supports event handling
and graphics, but the two are only loosely coupled. When building a GUI, we
use objects for which the display and the input mechanism are inherently

connected. Examples include scroll bars, drop-down menus, and text-entry

Designing a Framebuffer Interface 185
No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce

www.it-ebooks.info

http://www.it-ebooks.info/

186

forms. GUI toolkits support GUI development by providing a collection of
these objects (widgets). Figure 11-9 illustrates the relationships between a
widget, a user, and the underlying application.

User Input

Mouse movements

> Widget

Keypresses

Data Control

Application

Figure 11-9: A typical, full-featured widget

User input events (e.g., mouse movements or keypresses), update the
widget and control the underlying application by initiating callbacks. The
application can control the widget or exchange data with it by calling
the widget’s functions.

In addition to providing widgets, a GUI toolkit also provides a framework
for managing them. The framework is typically built on top of a window
manager. It routes events, determines which widget has focus, and ensures
that overlapping widgets are displayed appropriately.

The two most popular GUI toolkits for Linux are GTK+ (http://
www.gtk.org) and Qt (http://www.trolltech.com); if you choose one of
these, your decision will probably come down to cost and licensing. GTK+
is released under the more liberal LGPL license, allowing you to link your
proprietary software to GTK+ libraries. Qt may be licensed under the GPL,
but this requires that your GUI application also be released under the
GPL. To build a proprietary application on top of Qt, you will need to pay
Trolltech for the commercial license.

If your application will be licensed under GPL or if money is not an
object, there are other differences to consider. GTK+ is written in C, though
it does have many object-oriented features. Qt is written in C++. Both have a
broad user base: GTK+ is the basis for the Gnome desktop, and Qt is the basis
for the KDE desktop.

In case you are not using X on your appliance, Qt also has support for
the Linux framebuffer. Some work has been done on a framebuffer back
end for GTK+ using DirectFB, which is also released under the LGPL. See
http://www.directfb.org/wiki/index.php/Projects:GTK_on_DirectFB for
more information.

The Fast Light Toolkit (FLTK; http://www.fltk.org) is a promising
choice for a free GUI toolkit if you would like a smaller footprint than
GTK+ but are still willing to adopt X. FLTK is designed for tight, statically
linked applications, and its modified LGPL license allows static linking in
proprietary applications. It is written in C++ and supports Windows in
addition to Linux.

No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce

www.it-ebooks.info

http://www.it-ebooks.info/

We won’t discuss the popular GUI toolkits any further here; they are
documented well elsewhere.! In fact, for the Laddie appliance, we found that
these toolkits provided a good deal of functionality that we didn’t need, and,
because of their orientation toward the mouse and keyboard, they didn’t
cleanly match our approach of using a simple, handheld remote control.
In the remainder of this section, we will describe STBmenu, a thin layer
built on SDL that we developed with set-top box interfaces in mind.

Building Simple Uls with STBmenu

Besides having a framework that functioned naturally with remotes, we saw
two other advantages of writing our own GUI toolkit. We thought it would be
useful for illustrating how GUI toolkits work (at about 1,300 lines including
comments, it doesn’t take long to read), and, in keeping with the philosophy
of this book, we wanted to see how clean a separation we could make between
the UI and the underlying application.

At this point, we recommend taking a quick tour of the Laddie frame-
buffer Ul in order to see the kind of GUI STBmenu can support. As we noted
in the section ““Hello, world!” with SDL” on page 182, when you boot the
Laddie CD, it will attempt to launch the Laddie framebuffer UI automatically.
(If it doesn’t, see Appendix C for help on setting up your framebuffer.) If you
are already running the CD and have a command prompt, start the frame-
buffer UI with the fbmenuctl start command. If the Ul is already running, but
isn’t visible, use CTRL-ALT-F7 to switch to the appropriate virtual terminal.

The Laddie framebuffer Ul consists of two pages, as illustrated in
Figure 11-10. We will discuss remote control in the next chapter; for now,
use the arrow keys to navigate the UI and the ENTER key to activate a
selection. Use the Setup and Status buttons to switch between pages. As you
make changes, use CTRL-ALT-F1 to switch to a command prompt and check
the results with the cli utility described in Chapter 9. Make changes using the
cli utility, and confirm these by returning to the framebuffer UI with CTRL-
ALT-F7. (Alternatively, you could use another machine on the network to
check results using the web interface described in Chapter 8.)

Laddie Alarm System - Status

Laddie Alarm System - Setup

Front Door Front Door [X] 6] |
:E oor [x1 [x]

[x] []

Door

age

Motion Detector [x] [X]
Smoke Detector [1] 1]

Motion Detector

Smoke Detector

Clear All < Status <

Figure 11-10: The Laddie framebuffer Ul

! For example, Beginning Linux Programming, 3rd ed., by Richard Stones, Neil Matthew, and Alan
Cox (Wrox, 2004) includes one chapter each on GTK+ and Qt.

Designing a Framebuffer Interface 187

No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

The STBmenu Framework

Having experimented a bit with the Laddie framebuffer UI, you will have
noticed some differences between it and a fully featured GUI. The Laddie
framebuffer UI does not have windows that can be moved around the screen;
it consists, instead, of a series of full-screen pages. There is no free-floating
cursor that can select any point on the screen; instead, it is the two-
dimensional geometry of the input widgets that determines how the arrow
keys shift focus. And finally, the input options for widgets are minimal:
There is only one, and it corresponds with pressing ENTER.

NOTE When experimenting with DVD interfaces, we’ve been surprised that pressing arrow
keys to get to the icon you want can be like solving a puzzle. One attribute of the
STBmenu framework is that each of the arrow keys is guaranteed to traverse all input
widgets. It may seem like a trivial point, but when you re trying to disable a home
alarm that is unnecessarily waking up the neighbors, you don’t want to be tripped
up by a challenging UL

The STBmenu Widgets

The Status page, shown on the left of Figure 11-10, contains 25 visible widgets.
Eight of these are static displays (the title, the column headings, and the
zone numbers); five present variable text (the zone descriptions); five display
the state of the alarm; and the remaining seven are buttons. (The background
screen is not a widget.) Figure 11-11 illustrates the relationships between an
STBmenu widget, a user, and the underlying application.

Two Events
Activate
Widget
Update
Control |8ingle 5y [single string
CCI”chk) or integer)

\

Application

Figure 11-11: An STBmenu widget

Comparing the STBmenu widget to the full-featured widget of Figure 11-9,
we notice several simplifications. The STBmenu widget responds to only two
kinds of events: Activate, and Update. The Activate event invokes the widget’s
single callback, and the Update event tells the widget to redraw itself, since
the data it represents may have changed. With full-featured widgets, the
application can call functions to configure the widget (e.g., change its size
or position) and retrieve its input data (e.g., its entered text or its scrollbar
position). However, STBmenu widgets are fully configured when they are
constructed, and data is only passed to the application when the Activate
callback is invoked. With full-featured widgets, the application can call

188 Chapter 11
No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

functions to change the widget’s output data (e.g., status text or meter
position), but STBmenu widgets use static pointers into application data
structures to retrieve the data they display. Finally, the type of data displayed
by STBmenu widgets is limited to integers and strings.

Because there are no functions for configuring STBmenu widgets or
setting their displayed data, the developers of the underlying application
don’t have to be familiar with the toolkit. All they are required to do is
expose the displayed application data and provide appropriate callbacks for
user input.

We summarize the STBmenu API below. Class constructors are in bold,
and methods are in italics.

Menu(nPages, width, height, bpp);
AttachPage(n, page);
SetCursor(page, row, col);
DisplayCurrentPage();
CursorLeft();

CursorRight();
CursorUp();
CursorDown();
Activate();
Update();

Page(nRows, nCols, background);
AttachWidget(row, col, xPos, yPos, widget);

Font(fontPath, fontSize);

Surface(width, height, color);

Surface(font, color, text);

Surface(imagePath);

SurfaceArray(n, &surface,...);

Button(nfSurface, fSurface);

ButtonArray(n, &button,...);

Here are the STBmenu Widgets:

Wicon(font, color, text) and WIcon(imagePath)
Display a static image created from a constant text string or an image file.

WText(font, color, text)
Displays a variable text string.

WIlconArray(surfaceArray, trackedIndex)
Displays one of an array of static images, depending on an application
index variable.

WButton (button, callback, data)
Displays a button consisting of one static image when highlighted, and
another when not highlighted. When activated, invokes an application
callback with specified data.

Designing a Framebuffer Interface 189

No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce

www.it-ebooks.info

http://www.it-ebooks.info/

WButtonArray(buttonArray, trackedIndex, callback, data)
Displays one of an array of buttons, depending on an application
index variable. When activated, invokes an application callback with
specified data.

“Hello, world!” with STBmenu

In the remainder of this section, we will demonstrate the STBmenu toolkit by
working through a simple example. This example is on the Laddie CD in the
directory /Code/src/examples/stb_hello. At this point, we recommend you
return to the Laddie CD and exit the Laddie framebuffer UlI, if it’s still run-
ning (remember to switch between consoles with CTRL-ALT-F1 or CTRL-ALT-F7,
and use the arrow keys and ENTER to navigate the framebuffer menu). Then
change to the stb_hello directory, make and run the example using the
following commands.

laddie:~# cd /Code/src/examples/stb_hello
laddie:~# make
laddie:~# ./stb_hello

You should see the display illustrated in Figure 11-12.

Hello <

Exit

Figure 11-12: “Hello, world!” with STBmenu

This example implements two button widgets. You can select the buttons
by pressing the arrow keys on your keyboard, and you can activate them with
the ENTER key. When you activate the Hello button, it prints Hello, world! to the
standard output, which you can verify after closing the UI by activating the Exit
button.

In the remainder of this section, we will work through the implemen-
tation of the stb_hello example.

Building a UI with STBmenu involves three steps:

1. Define any data structures and callbacks required for monitoring and
controlling the application.

2. Build the UI with widgets that point to these data structures and
callbacks.

3. Handle events using the STBmenu framework’s methods.
190 Chapter 11

No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

We’ll demonstrate these steps for the two-button example.

Define Data Structures and Callbacks

In this simple example, there is no data to monitor. Control consists of
printing a message or exiting the program, and it requires a single piece
of data and two callbacks.

int enableQuit = 0;

©® static void Hello(InputClass* const widget)

{
printf("Hello, world!\n");

}

® static void QuitApplication(InputClass* const widget)

{
©® enableQuit = 1;

}

The @ Hello() callback (invoked by the Hello button) will print a message
to the console. The @ QuitApplication() callback (invoked by the Exit button)
will set @ the enableQuit variable to 1. All widget callbacks take a pointer to
the widget that invoked them as an argument. All such widgets will have the
STBmenu type InputClass and may provide additional data useful to the
callback; however, we don’t use that capability here.

Build the Ul

The first step in building a Ul is to declare a menu object.

#include "STBmenu.h"

Menu* menu = new Menu(1, 640, 480, 8);

This has to be done before any other Ul objects are declared, since it
initializes the underlying SDL video context. We specify the number of pages
(1), the width (640) and height (480)of the UI’s screen (in pixels), and the
number of bits per pixel (8).

Next, we declare and attach the single page for the menu object.

#define BLACK 0x000000

Surface background(640,480,BLACK);
Page page(2, 1, background);
menu->AttachPage(0, page);

For a real UI, we would want a more interesting background, but for a
quick example, we specify a black, 640-by-480—pixel surface. Then we declare
the page, providing the number of rows (2), number of columns (1), and
background. We attach the page to the menu object using AttachPage(),
specifying a page number.

Designing a Framebuffer Interface 191

No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

We can now specify the button widgets. Here is the code for the Test
button.

#define CYAN O0XOOFFFF
#define YELLOW OxFFFFO0O

Font font("/usr/local/share/fonts/bitstream/VeraBI.ttf",42);
Surface nfHello(font,CYAN, "Hello");

Surface fHello (font,YELLOW,"Hello <");

Button helloButton(nfHello,fHello);

WButton wHello(helloButton,Hello,NULL);

20000

We declare a TrueType font by @ specifying a pathname and a font size.
We use that font to construct two surfaces, @ one with cyan text for the button
when it isn’t selected (i.e., doesn’t have focus), and © one with yellow text
and a < symbol for the button when it is selected. We @ construct a button
from the two surfaces, specifying the surface without focus first. Finally, we
© construct a button widget, specifying the button, the callback, and any
data that callback might require (NULL, in this case).

After constructing the button widget, we attach it to the page.

page.AttachWidget(o, 0, 250, 200, wHello);

Recall that we declared this page to have two rows and one column.
When attaching the widgets, we specify their row (0) and column (0) within
the page, as well as their absolute x (250) and y (200) pixel positions. The
row and column will determine how the Up, Down, Left, and Right cursor
inputs will select the various button widgets.

The Exit button is constructed and attached analogously to the Hello
widget. You can see the example code on the CD in /Code/src/examples/
stb_hello.

With the menu, pages, and widgets constructed, we can now display
the menu.

©® menu->SetCursor(0, 0, 0);
@® menu->DisplayCurrentPage();

Here, the @ SetCursor() method specifies a page, row, and column for the
initially highlighted widget. In the current case, this is the Hello button. The
@ DisplayCurrentPage() method produces the screen shown in Figure 11-12.
Handle Events

The rest of our program includes a simple event loop.

enableQuit = 0;

while(!enableQuit){
SDL_WaitEvent(8event);
switch(event.type){

192 Chapter 11
No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

case SDL_KEYDOWN:
switch(event.key.keysym.sym){
case SDLK_LEFT:
(1] menu->CursorLeft();
break;
case SDLK_RIGHT:
menu->CursorRight();
break;
case SDLK_UP:
menu->CursoxUp();
break;
case SDLK_DOWN:
menu->CursorDown();
break;
case SDLK_RETURN:
2] menu->Activate();
break;
}

break;

® menu->Update();

When arrow key events are received, the menu’s four navigation methods
(® Cursorleft(), CursorRight(), etc.) are used to update the highlighted button.
The ENTER key invokes @ the Activate() method, which invokes the callback
for the currently highlighted button. We’ll learn in the next chapter how to
use an infrared remote control in place of the keyboard, but this segment of
code won’t have to change, since we will use the IR interface to produce SDL
keyboard events.

Each time an event occurs, we use ® the Update() method to redraw any
widgets that have changed.

The Laddie Framebuffer Ul

As we saw in the previous section, an application that uses STBmenu has two
obligations: provide pointers to data to be displayed, and provide callbacks
for Ul inputs. Figure 11-13 illustrates how the Laddie framebuffer UI meets
these two obligations.

On the user side, keyboard or remote control events select a widget and
then invoke that widget’s Activate method. This action invokes a callback in
the application interface, which controls the alarm daemon via the RTA/
PostgreSQL protocol. On the application side, logmuxd relays events indi-
cating that the Laddie alarm daemon’s status has changed. Responding to
these events, the UpdateZoneData code uses the RTA/PostgreSQL protocol
to update a local copy of the alarm daemon’s Zone data and invoke the
menu’s Update method. This action prompts the menu’s widgets to redraw
themselves, based on the new Zone data.

Designing a Framebuffer Interface 193
No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

Left, Right, |che
Up, Down
—— »|Page

Activate
_—T Selected
> Widget

A
Control
Data ¥
Update
Zone Data Callbacks
A
Y
Update | _
Zone Data | RTA
| !
logmuxd |- ladd

Figure 11-13: Using STBmenu for the Laddie framebuffer Ul

NOTE Ifyou're veading this book’s chapters out of order, please refer to Chapter 3 for a descrip-
tion of the RTA /PostrgeSQL protocol, Chapter 5 to learn about the alarm daemon
ladd, and Chapter 6 for an introduction to logmuxd.

In the “Hello, world!” example, we saw how to build widgets with callbacks.
Now, using the Laddie framebuffer UI as an example, we’ll demonstrate how
to build widgets that display application data.

We start by providing data structures that capture the state of the Laddie
alarm daemon.

typedef enum{INACTIVE, SAFE, ALARM} AlarmState;

typedef struct

char name[17]; // the alarm name with null-termination
AlarmState state; // 0=INACTIVE, 1=SAFE, or 2=ALARM

int alarm; // ==1 if in alarm

int enable; // ==1 if enabled

int latch; // ==1 if the alarm should latch

int contact; // ==1 if alarm on low to high (normally closed)

©® } LaddZone;

extern LaddZone laddZones[5];
® extern int laddAlarm; // Indicates at least one LADD zone is in alarm

The fields in @ the LaddZone data structure correspond directly to the
fields that are displayed on the two menu pages. The @ laddAlarm variable is
nonzero when at least one zone is in alarm, and it is used to enable the Clear
All button.

194 Chapter 11
No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

Recall from Chapter 6 that the event handler logmuxd can be con-
figured to route events through pipes. We configure logmuxd (using the
files Filters.sql and FileDest.sql in the directory /opt/laddie/logmuxd) to
route all Laddie Alarm events to the pipe /opt/laddie/fbmenu/laddevents.
The framebuffer UI’s main thread uses a select() system call to wait on
messages received via this pipe, then uses the alarm daemon’s RTA inter-
face to update the array of LaddZone structures.

For our UI, we will provide several columns of widgets to display the
laddZones alarm data. Let’s just consider the State column from the Status
page. As we saw in Figure 11-10, these widgets display an Inactive, Safe, or
Alarm indication, depending on the state of each zone. We use a WlconArray
widget, as demonstrated in the following code, to display the alarm states.

©® Surface stateInactive(stateFont,INACTIVE_COLOR,"Inactive");
Surface stateSafe (stateFont, SAFE_COLOR, "Safe");
Surface stateAlarm (stateFont,ALARM_COLOR, "Alarm");

@® SurfaceArray alarmState(3, &stateInactive,8stateSafe,8stateAlarm);

© WIconArray wAlarmStatel(alarmState, (int*)&laddZones[0].state);
WIconArray wAlarmState2(alarmState, (int*)&laddZones[1].state);
WIconArray wAlarmState3(alarmState, (int*)&laddZones[2].state);
WIconArray wAlarmState4(alarmState, (int*)&laddZones[3].state);
WIconArray wAlarmStates(alarmState, (int*)&laddZones[4].state);

Here we @ declare three surfaces, corresponding to the three alarm
states, with appropriate colors. We form @ a SurfaceArray from these surfaces
and use it to build the alarm state widgets. In declaring ® a WlconArray
widget, we provide a pointer to an integer value in the application interface’s
local data structures. Note that the order of the alarmState surfaces corre-
sponds to the possible values for laddZones[N].state.

To complete this UI, we have to define additional widgets to display the
remaining data in the laddZones array and, where appropriate, to update the
Laddie alarm daemon with callbacks. As in the “Hello, world!” example, we
also have to attach the widgets to pages and the pages to the main menu.
One item we haven’t discussed yet is how to switch between pages. Fortunately,
this is straightforward. The STBmenu framework provides a SetCursor function
for selecting a page and cursor position. Therefore, we switch pages by
providing button widgets on each page with callbacks to set the cursor to
the opposite page.

The event handler for the Laddie framebuffer Ul is a little different than
that of the stb_hello example. Instead of waiting on SDL events, it uses a
select system call to wait on Laddie alarm daemon events from logmuxd.
It uses a time-out of 100 milliseconds, and when it completes or times out,
it uses the function SDL_PollEvent to check for keypresses. As in the stb_hello
example, we only need five inputs, so we monitor and respond to the arrow
keys and ENTER key. In the next chapter we’ll see how to control this UI using
a handheld remote.

Designing a Framebuffer Interface 195

No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

For the details we’ve omitted, please see the code on the Laddie CD
in the directory /Code/src/fbmenu. The code for STBmenu is included in
/Code/src/stbmenu.

Summary

As illustrated in Figure 11-14, building an appliance’s GUI requires the use
of several layers.

Laddie Framebuffer User Interface

: ||
Laddie |Ml Application Event Keyboard or

Al - -
Do:r:gn RTA | Interface Menu Handler LIRC Events

i

| GUI Toolkit: STBmenu

| Graphics Library: SDL

| Video Driver: Linux Framebuffer

Figure 11-14: The Laddie framebuffer Ul and graphics stack

The Linux framebuffer device driver provides an abstraction of video
hardware that facilitates configuring the video mode and manipulating pixel
memory. Various graphics libraries are available that use this device driver,
and these libraries provide support for manipulating graphical objects and
text. These libraries typically provide support for event handling, as well. We
chose to use the Simple DirectMedia Layer for the Laddie appliance because
it is well supported, well documented, and lightweight. GUI toolkits supply
the next layer; they provide and manage widgets, objects for which the input
events and the graphical display are tightly coupled. For the Laddie appliance,
we developed a thin GUI toolkit, STBmenu, which is intended for use with
simple, handheld remotes, and which facilitates adding a GUI layer to an
existing application with little additional effort. In support of this last point,
we also showed how we connected the Laddie framebuffer Ul to the Laddie
alarm daemon using the RTA/PostgreSQL protocol and the logmuxd event
handler. In the next chapter, we will complete the Laddie framebuffer UI by
adding support for remote control.

196 Chapter 11
No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

INFRARED REMOTE CONTROL

Remotes have become our most natural
means of controlling certain appliances,
and if you’re like us, you'll occasionally spend

several minutes trying to locate a remote control
rather than trying to engage some device’s obscure

front panel. In the future, we expect to see more
appliances forfeiting the front panel altogether in favor of the keypad of a
simple remote. Here’s a rule of thumb: If you are building an appliance that
might be enjoyed by people while they are sitting on a couch, include a
remote control.

In this chapter we will cover the following topics:

¢ Communicating with infrared light
e Hardware for remote control receivers

¢ Installing and configuring LIRC for the Laddie appliance

No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

Communicating with Infrared Light

The infrared (IR) light used by remote controls has a wavelength close to,
but greater than, visible light. Because it’s close to visible light, it travels in
straight lines and reflects off of surfaces, but it doesn’t go through opaque
objects. This limits the applications for which IR is useful. It’s good for
controlling a set-top box, but not so good for opening a garage door, if
there’s a solid wall between the transmitter and the receiver.

For the most part, the fact that IR is invisible is a good thing. It may be
harder to debug something that’s invisible, but when you’re watching the
late-night movie on your new Linux-based DVR, it’s nice to know you can
turn down the volume without shining visible light onto the screen.

NOTE [fyou wish you could see the light from a remote control, perhaps to verify that a unit
isn’t broken, you can look at it using a cell phone camera. These cameras are sensitive
to infrared, and on cameras we’ve experimented with, they display this “color” as bright
white.

Protocols for Encoding Remote Control Commands

In order to transfer information, a remote control transmitter and its receiver
must use the same standard or protocol for encoding commands. A remote
control protocol specifies the following three things:

¢ How it represents ones and zeros
¢ How these ones and zeros are combined or framed to form messages

¢ How these different messages are to be interpreted

Companies that build remote-controlled devices don’t generally
publish their protocols, but it’s not hard to reverse engineer the basic
commands, and the Internet has plenty of information from people who
have done just that. As an example, we’ll consider a protocol Sony has
used for some of its televisions. If you do some research on the Internet,
you might see this protocol referred to as the Sony Integrated Remote
Control System (SIRCS) protocol. We chose to use this protocol for the
Laddie appliance because the protocol is easy to understand. It is also
easy to produce: We purchased a universal remote (RCA RCU410) and
programmed it to “Sony TV” (Code 002).

This Sony TV protocol uses pulse-coded data encoding. With this
encoding, a bit is represented as a variable-width pulse, or presence of
light, followed by a constant-width space, or absence of light. Based on
our own timing measurements with our handheld remote, a zero has a
650-microsecond pulse, a one has a 1,300-microsecond pulse, and each is
followed by a 500-microsecond space. These encodings are illustrated in
Figure 12-1.

198 Chapter 12
No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

I I I I I I
1 650 ps I 500 ps 1 I 1,300 ps 1 500 ps 1
I I I I I I

I -

zero one

Figure 12-1: Zeros and ones in the Sony TV protocol

A frame in the Sony TV protocol (again, as measured for our particular
remote) begins with a header consisting of a single 2,500-microsecond pulse
followed by a 500-microsecond space. A seven-bit command immediately
follows the header, and a five-bit address follows the command. Both the
command and the address are transmitted with the least-significant bit (Isb)
first. Figure 12-2 shows the waveform for the TV/Volume- command.

1 1 "1 0'0 'l 0'o0 1 0O'0'O0

I

12,500 ps : :
|<_>

: : Isb msb : Isb msb:
I Header 1 Command | Address |
|

Figure 12-2: The TV/Volume- command in the Sony TV protocol

The address specifies a device (in our case, always 0x01 for TV), and
the command specifies the input to that device. Table 12-1 lists some of the
command codes for the Sony TV protocol.

Table 12-1: Device Addresses and Command
Codes in the Sony TV Protocol

Command code Command
0x00-0x09 1-9,0
0x10 Channel+
Ox11 Channel-
0x12 Volume+
0x13 Volume-
0x15 Power

For the Laddie appliance, we use the commands Channel+, Channel-,
Volume+, Volume—, and Power. Of course, the Laddie appliance doesn’t
really have channels or volume levels; we have simply chosen these as
convenient inputs for the framebuffer menu navigation.

There are many other remote control protocols, and each represents a
set of engineering trade-offs. For example, Panasonic’s REC-80 protocol uses
constant-width pulses and encodes zeros and ones by the length of the space

Infrared Remote Control 199

No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce

www.it-ebooks.info

http://www.it-ebooks.info/

between pulses. This approach can lead to longer battery life because it mini-
mizes the amount of time the remote control spends emitting light. Other
protocols save battery life by transmitting a short “Repeat” command when a
button is held down, rather than repeatedly transmitting the entire command,
as the Sony TV protocol does.

NOTE 7o learn about some of these other protocols, visit http://sbprojects.com/knowledge/ir/
w.hitm.

Reducing Interference by Modulating the Infrared Signal

So far, we’ve treated infrared pulses as if they corresponded to steady beams
of light. But consider Figure 12-2, and suppose that some flickering light
bulb were to generate pulses of IR that overlapped some of the spaces in a
message. Clearly, such interference could make it impossible for a receiver to
correctly interpret the message. The solution is to modulate the pulses of IR
light. In a modulated pulse, the IR light is actually turning on and off at a
fixed frequency, typically between 30 and 60 kHz (kilohertz). Like picking
out a voice in a crowded room, the receiver can use this frequency as a
signature to discriminate the intended signal from the background noise.
Because of this modulation, the pulse-coded zeros and ones of the Sony TV
protocol are more accurately depicted as in Figure 12-3.

I I I I
650 ps 1 500 ps 1 1,300 ps 1 500 ps 1
I I

I I
I I
I I I |
Figure 12-3: Modulated pulses in the Sony TV protocol

zero one

We measured the modulation frequency for our remote as roughly
40 kHz. Thus, for our remote, the zero “pulse” in Figure 12-3 actually
consists of 40,000 * 0.000650 = 26 much shorter pulses.

Controlling an Appliance with Infrared Light

Now that we’ve seen how infrared light can convey information, we can design
a system for implementing remote control of an application. Figure 12-4
illustrates such a system.

@® @ ®
Keypad Encoder Modulator IR Emitter i‘
® ® @
~ i18 JUL Vok- ..
IR Detector Demodulator Decoder Application

Figure 12-4: A complete remote control system

200 Chapter 12
No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

On the transmitting side, a typical handheld remote control performs
the following steps:

It scans a keypad.
It encodes the input as a waveform according to some protocol.

It modulates this encoding with a frequency between 30 and 60 kHz.

0 o=

It emits a corresponding pattern of infrared light.

On the receiving side, a typical IR receiver performs the following stages:

5. An infrared detector converts the input signal to a voltage waveform.
6. A demodulator removes the 30 to 60 kHz modulation.
7. A decoderanalyzes this waveform and determines the corresponding

command.

8. An application responds appropriately to this input.

Hardware for Remote Control Receivers

In this section we’ll focus on IR receiver hardware. Designing remote control
transmitters is beyond the scope of this chapter, but our recommendation is
to take the same approach we took with the Laddie appliance: Use an off-the-
shelf, universal remote.

Detecting and Demodvlating the IR Signal

The two stages of detecting and demodulating an IR input can be handled
by a single, commercial, off-the-shelf component. Figure 12-5 shows three
examples of this part, all produced by Sharp Microelectronics.

Figure 12-5: Infrared detector/demodulators

Infrared Remote Control 201
No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

For the Laddie appliance, we chose the 40 kHz unit from Sharp’s
GP1UV70QS series (pictured on the right in Figure 12-5). Also popular is
the TSOP17XX series from Vishay. Each of these parts is easy to use with
perfboard or solderless breadboard prototyping materials. Each requires a
5V power supply and provides an output corresponding to the demodulated
IR waveform (see step 6 in Figure 12-4). When evaluating a particular device,
make sure the demodulation frequency is appropriate for your chosen
protocol. For low-power applications, you’ll also want to compare the
power requirements for different devices.

There isn’t a standard nomenclature for these devices. When you’re
searching for information, expect to see names like “IR Remote Receiver,”
“Photo Module for Remote Control,” or “Infrared Detecting Unit for Remote
Control.” In the remainder of this chapter, we’ll refer to them as infrared
detector/demodulators to emphasize the two functions they provide.

BUILDING A SIMPLE IR DETECTOR

If you have access to an oscilloscope and would like to see a remote control signal
before it is demodulated, you can build the simple IR detector circuit depicted in
Figure 12-6. All you need is a power supply (a 9V battery is fine), an appropriately
valued resistor, and a phototransistor.

V+

Resistor

Output Voltage

y

\Li Phototransistor

Figure 12-6: A simple IR detector

You'll want to choose the resistor so that the output voltage is about half of the
supply voltage when the remote control is off. When we tried this, we used a 100K
resistor, and we held the remote control very close to the detector. We had good
results both with a Radio Shack infrared phototransistor (catalog number 276-142)
and when using another, unidentified, phototransistor we happened to have lying
around. The output will be weak, but it should be adequate for an oscilloscope. By
the way, this experiment is also useful if you need to determine the modulation
frequency for an unfamiliar protocol.

202 Chapter 12
No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

Decoding Remote Control Waveforms

In the previous section we introduced off-the-shelf devices that will respond
to a remote control IR signal and produce a demodulated voltage waveform.
Before designing a circuit to take advantage of these devices, we need to
decide how we will decode that waveform. Decoding can be broken into
two steps: measuring the timing of the pulses and spaces that comprise a
waveform and interpreting this sequence of timings to identify the intended
message. We have three options for designing a decoder, depending on
which of these two tasks we assign to external hardware and which we assign
to the appliance’s processor. We’ll briefly discuss these three options before
describing the approach we took for the Laddie appliance.

Measuring and Interpreting in External Hardware

It’s possible to build receiver hardware that performs all of the decoding
tasks: measuring the waveform, determining the corresponding command,
and then transmitting that command as one or more serial bytes to the
appliance’s processor. Figure 12-7 illustrates this approach. Here, the receiver
has recognized the waveform for the Volume— command and has produced
the single ASCII character D for down.

! 1,300 ps I 500ps 1 650ps 1 500 ps !
! ! ! ! Infrared

I
| B

Figure 12-7: Decoding waveforms in external hardware

The website http:/ /linuxtoys.org/xirrc/xirrc.html describes an example
of this approach in which a preprogrammed Microchip PIC microcontroller
is used to decode Sony remote control commands and transmit command
characters to a serial port.

A limitation of this approach is that the receiver supports only one remote
control protocol. On the positive side, this approach makes it incredibly easy
to add remote control to your appliance. Just plug in the receiver and listen
for commands on the serial port.

Measuring in Hardware and Interpreting on the Appliance

In order to accommodate any remote control protocol, we can build receiver
hardware that measures waveforms but passes the timing information to the
appliance’s processor for interpretation. Figure 12-8 illustrates an approach
in which the timing of the pulses and spaces is encoded as a series of bytes,
each representing time in 50-microsecond increments.

1 1 1 I I
1 1,300 ps I 500ps 1 650ps 1 500 ps !
! ! ! : Infrared

I
NV NR____

Figure 12-8: Measuring waveform timing in external hardware

Infrared Remote Control 203
No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

Since the appliance is given a complete representation of the input wave-
form, it can, in theory, decode waveforms for any protocol. The LIRC website
provides a link for a protocol called Universal Infrared Remote Transceiver,
second version (UIRTZ2), which works out the details of this approach. It is
described at http:/ /users.skynet.be/sky50985.

As arelated example, the Irman remote control receiver, available at
http://www.evation.com/irman/index.html, takes an innovative approach
and encodes any remote control command waveform by creating “pseudo-
random” signatures of six bytes. Irman works on the assumption that different
waveforms from a given remote will almost invariably have different signatures.
Because this technique applies to any waveform, this type of receiver can
work with any of the common remote control protocols, but the user has to
train it to interpret the signatures it derives.

As a third example, the LIRC website refers to the USB-IR-Boy project.
This project uses the inexpensive Freescale MC68HC908]B8 microcontroller
with built-in USB support to provide IR waveform timing values. It also
includes a Linux device driver to make these timing values available via the
/dev/usbirboy device file. Information is available at http://usbirboy
.sourceforge.net.

Measuring and Interpreting on the Appliance

The third approach to decoding waveforms is appealing because of its simple
hardware requirements. All the hardware has to do is power an infrared
detector/demodulator and provide the signal as an input to the appliance’s
processor. On the negative side, this method does place extra demands on
the processor. Specifically, the processor must respond to an interrupt every
time the input signal transitions high or low in order to measure timing
information. Nevertheless, because of the simple hardware requirements,
we have chosen this third approach for the Laddie appliance. In the next
section we will work through the details of building this kind of receiver.

Infrared Remote Control Hardware for the Laddie Appliance

If you’re not comfortable with building hardware, you might seek out a friend
who is, or—this is our recommendation—jump in and build it yourself anyway.
It’s a good first project and a satisfying one because of the new mode of control
it gives you for your Linux projects. You will certainly find the remainder of
this chapter more educational if you have hardware to experiment with.
To integrate our simple IR receiver with an appliance, we need two
things: a power source for the IR detector/demodulator and an input that
generates interrupts. The good news is that a typical serial port satisfies
both requirements. The output pins on a serial port provide adequate
power, and its Data Carrier Detect (DCD) input pin generates interrupts.
The bad news is that the serial port output voltages range from 3.7V to 12V
on the positive side and from -3.7V to =12V on the negative side. Moreover,
the serial port inputs require a swing between these same positive and
negative ranges. An IR detector, however, expects a clean 5V power supply
(for some parts, 3.3V); it outputs a OV to 5V signal (for some parts, OV to

204 Chapter 12
No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

NOTE

3.3V). Thus, if you want to use a serial port input, you will need additional
circuitry to provide the required voltage for the detector and to shift the
detector output to valid serial port levels. Figure 12-9 illustrates this kind of
circuit.

5V Regulator
—] RTS
3.7 to 12V
+5V
—a| Detector/ OUTm
| Demodulator DCD -+-4-F-
Infrared Light Level
? Shifter
GND Output to PC
-12 t0o -3.7V XD

Figure 12-9: A block diagram for a simple IR receiver

Here we assume the serial port has been configured to keep the Request
to Send (RTS) output at a high voltage level and the Transmit Data (TXD)
output at a low voltage level. The 5V regulator provides the voltage required
by the detector. The level shifter provides the correct voltage levels to the
DCD input.

If you look at IR recetver circuits presented on the Web, you'll find some that take a
simpler approach, omitting the level-shifter and providing an output that swings
between OV and 5V. This may work for your compulter. If not, or if you want a more
robust solution, take the approach we’ve chosen here.

Figure 12-10 shows the schematic we chose for the Laddie IR receiver.

D1
+5 V+ | RTS
GND J_ !
o E——4 T R2
Ul [+5v 12
—| Detector/
| Demodulator | T ——DCD
GND RI P DCD
-
XD

Figure 12-10: The IR receiver schematic used for the Laddie appliance

Here, Ul is an off-the-shelf IR detector/demodulator, U2 is a linear
voltage regulator that provides 5V to U1, and the transistor/resistor circuit is
the level-shifter that provides an output appropriate for the serial port. The
diode, D1, protects the circuitin case the RTS signal is improperly initialized,

Infrared Remote Control 205

No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce

www.it-ebooks.info

http://www.it-ebooks.info/

which may cause it to go negative relative to TXD. Table 12-2 provides the
specific parts that we’ve used, with their approximate costs. Where we’ve listed
multiple parts, you can assume they are interchangeable. Between Digi-Key
(http:/ /www.digikey.com) and Jameco Electronics (http://www.jameco.com),
you shouldn’t have any trouble finding these parts.

Table 12-2: Parts List for the Laddie Appliance’s IR Receiver

Ref Part Cost Description

Ul Sharp GP1UV701QsS, $1.50 Infrared detector/demodulator
GP1UV70QS, GP1TUW701QS,
GPTUW700QS

u2 LM78L05, LP2950CZ5 $0.80 5V linear voltage regulator

Cl1 0.47 uF or higher $0.15 Electrolytic capacitor

Cc2 0.47 uF or higher $0.15 Electrolytic capacitor

D1 1N4148, BAT46 $0.35 Diode

R1 220K, V4 watt $0.06 Resistor

R2 100K, V4 watt $0.06 Resistor

11,72 PN2222A, 2N3904 $0.20 NPN transistor

T3 PN2907A, 2N3906 $0.20 PNP transistor

CONN1 DB9 socket $0.50 9-pin d-sub serial connector, female

Figure 12-11 shows a few of our prototypes. We recommend starting with
a solderless breadboard and 22 AWG solid (non-stranded) wire, as pictured
on the left. You’ll also need a wire stripper for the 22 AWG wire and a volt-
meter for debugging. The one place you’ll want to use a soldering iron is to
connect wires to the DB9 serial connector. In the left picture, two wires from
the DB9 connector provide power and ground to the strips along the edges
of the breadboard. The third wire provides the DCD signal back to the
computer via the serial cable.

Figure 12-11: Two prototypes for an infrared remote receiver

206 Chapter 12
No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

Once you have a working circuit, you can build something more perma-
nent using perfboard and a plastic enclosure. In the picture on the right,
only one side of the enclosure is shown. We drilled a hole at one side for
the IR detector/demodulator and cut a hole on the other side for the DB9
connector. A piece of cardboard holds the detector/demodulator in place.

When building your prototype, follow these steps to make sure the
circuit is operating properly:

1. Build the circuit, but don’t connect the serial port or the IR detector/
demodulator. In place of the RTS and TXD pins, use a 9V battery for
power. Use the positive battery terminal in place of the RTS input and
the negative terminal in place of the TXD input.

2. Verify that the voltage between the regulator output and the negative
battery terminal is 5V.

3. Verify that the voltage between the circuit output and the negative bat-
tery terminal is at least 8V. (The “circuit output” is the point that you will
later connect to the DCD pin of the serial port.)

4. Now connect the open end of R1 to the 5V output of the regulator, and
verify that the voltage between the circuit output and the negative bat-
tery terminal is zero volts.

5. Finally, complete the circuit by adding the IR detector/demodulator
and connecting your computer’s serial port.

The remaining tests for your IR receiver hardware require the LIRC
software. In the next section, we’ll introduce the LIRC software package and
describe how we incorporated it into the Laddie appliance.

Installing and Configuring LIRC for the Laddie Appliance

The LIRC software package can be downloaded from http://www.lirc.org; it
includes an extensive collection of device drivers, daemons, and tools for
controlling user applications with remote control hardware. We don’t have
room to cover all of these elements here, but we will present the layers that
make up this software architecture, and we will describe in detail the
particular device driver and daemon that are appropriate for the Laddie
appliance. Once you’ve understood this subset, you should find it easy to
master any other parts of the architecture required for your own appliance.

Figure 12-12 provides a high-level view of the LIRC software architecture
as it applies to the Laddie appliance. At the right of the diagram, we’ve
shown how elements of the LIRC architecture correspond to our earlier,
more general discussion of IR receivers.

Infrared Remote Control 207
No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

User Application
Application
e LIRC Tools
pace

(interpretation)
Space (measurement)
External) IR Detector/
Hardware IR Receiver Demodulator

Figure 12-12: The LIRC architecture

In kernel space, a device driver accesses the receiver hardware through an
external port. For our appliance, this driver is provided by the LIRC package
and uses interrupts to perform waveform timing on the input waveform.

NOTE As you saw in the section “Decoding Remote Control Waveforms” on page 203, there
are some IR receivers that perform the waveform timing and possibly even the waveform
interpretation in external hardware. For these receivers, the kernel device driver may be
a generic Linux serial driver or a USB driver.

In user space, for systems such as ours that don’t perform interpretation in
external hardware, we use the lircd daemon. This daemon accesses a config-
uration file that characterizes the remote control’s command protocol and
analyzes the timing information provided by the device driver to generate the
corresponding commands. In some cases, the user application will access the
output of the lircd daemon directly. The Laddie appliance takes this approach.
For applications that were not built with the lircd daemon in mind, several
LIRC tools are available to process the output of the lircd daemon and
provide program input, execute appropriate commands, or simulate mouse
or keyboard events. We’ll discuss these tools later in the section “LIRC Tools
for Controlling Applications” on page 218.

In the remainder of this chapter, we will describe in detail the elements
of the LIRC architecture and show how we configured LIRC for the Laddie
appliance.

Installing the LIRC Software

The LIRC package is included on this book’s companion CD, and we
recommend you use the CD when working through the examples in this
chapter. However, if you need to set up your own system in the future, we
will describe the steps we took to install the package.

208 Chapter 12
No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

We downloaded version lirc-0.8.1 from http://www.lirc.org and installed
it with these commands:

./setup.sh

./configure --with-kerneldir=/usr/src/linux-2.6.10 --with-driver=serial
make

make install

The setup.sh script asked us to make choices about our installation.
Under the Driver Configuration (driver:serial i0:0x3f8 irq:4) menu, we chose
the Home-brew (16x50 UART compatible serial port) driver, selected COM1
(0x3£8, 4) for the base address and IRQ, and disabled all driver-specific
options. Under the Software Configuration menu, we disabled all options.
Then we selected Save Configuration and exit.

LIRC is a package that allows you to decode and send IR and other signals
of many (but not all) commonly used remote controls. It includes daemons
that decode the received signals as well as user space applications that allow
controlling a computer with a remote control.

The ./configure --help command provided a long list of driver choices, as
well as a dauntingly long list of configuration options. For our appliance, the
defaults were generally appropriate. We only needed to provide the location
of our Linux kernel source tree using the --with-kerneldir option and to
specify the serial driver with the --with-driver option.

Figure 12-13 shows how representative components installed by the LIRC
package fit into the LIRC software architecture. Although the LIRC package
includes utilities that support the X Window System, we don’t show them here,
since the Laddie appliance doesn’t use X.

irw
Laddie ircat, irexec,
Framebuffer Ul irpty, irxevent
User (/etc/lircre)
Space e Vol-
lircd Daemon mode2,
(/etc/lircd.conf) irrecord
: Pulse: 654 ps
/dev/lirc Space: 503 ps
Kernel . .
S lirc_serial
pace

Serial Port: DCD

External .
Hardware ml IIII —| IR Receiver

Figure 12-13: Components of the LIRC package

Infrared Remote Control 209
No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

Before we dive into the details, let’s start with a quick, bottom-to-top tour
and explain how the LIRC receiver controls the Laddie appliance’s frame-
buffer UI, which is described in Chapter 11. The IR receiver external hardware
provides the remote control waveform to the DCD pin of a serial port. In
kernel space, the lirc_serial device driver (one of many included in the LIRC
package) monitors this pin and produces a binary stream of timing data via
the device file /dev/lirc. In user space, the lircd daemon analyzes the timing
data from the /dev/lirc device file to provide a sequence of command strings
on the Unix socket /dev/lircd. The framebuffer UI connects directly to this
socket in order to respond to user input.

Now for all the details we left out. In the remainder of this section, we will
look more carefully at each of the layers of the LIRC software architecture.

Configuring the lirc_serial Kernel Device Driver

The lirc_serial device driver is actually implemented by two kernel modules,
lirc_serial.ko and lirc_dev.ko, which were placed in the directory /lib/
modules/2.6.10/misc/ when we installed the software. In order to use
these modules, we had to perform three additional steps: free up a serial
port, create a device file, and load the modules into the kernel. We created
a startup script, lircd, to perform these steps. We will review the steps here;
you can see the complete code on the CD in the /etc/rc.d/init.d directory.

Freeing Up a Serial Port

For the Laddie appliance’s IR receiver input port, we chose COM1 (/dev/
ttyS0). The Linux kernel typically enables COMI1 through COM4 as serial
ports at startup; thus, we needed to free up COMI1 for LIRC. To do this, we
used the setserial command:

setserial /dev/ttySO uart none

By setting the type of the hardware (the UART) to none, this command
disabled the specified port.

NOTE UART stands for Universal Asynchronous Receiver Transmitter. A UART handles the
low-level implementation of a serial link so that the CPU need only be concerned with
providing bytes to transmit and processing bytes that are received.

For the remainder of this chapter, we recommend that you boot the
Laddie appliance using the Laddie CD and follow along with the exercises.
After booting the CD, exit the framebuffer UI (press ESC), and log in as root
with an empty password. Verify that port COMI1 was configured properly by
executing the following command at the laddie:~# prompt:

laddie:~# setserial /dev/ttySo

210 Chapter 12
No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

You should see the following output:

/dev/ttySo, UART: unknown, Port: 0x03f8, IRQ: 4

The UART type is unknown, which means the port is available.

Creating a Device File

You may recall from the previous chapter that we used a device file /dev/fb0
to expose the framebuffer functionality. Similarly, we had to provide a device
file to expose the lirc_serial functionality. The following code created the
character device file /dev/lirc with major number 61 and minor number 0,
as required for the lirc driver.

mknod /dev/lirc c 61 0

With the Laddie CD, verify that the /dev/lirc device file exists by using
the command:

laddie:~# 1s -1 /dev/lirc

You should see the output:

dcrw------- 1 root root ®61, ©0 2007-01-27 08:03 /dev/lirc

This indicates that the file represents a character device that is @
readable and writable by root, ® with major number 61, and ® with minor
number 0.

Loading the lirc_serial Modules into the Kernel

With the serial port available and the device file in place, we were able to
load the lirc_serial device driver using the modprobe command:

modprobe lirc_serial

To verify that the lirc_serial device driver is loaded, execute the
following:

laddie:~# lsmod | grep lirc

You should see output like this:

lirc_serial 13152 1
®lirc_dev 14804 1 @lirc_serial

The first column shows the loaded modules; the fourth column shows
dependencies. Here we see that @ the lirc_serial module depends on @ the
lirc_dev module.

Infrared Remote Control 211
No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

NOTE [fwe had wanted to use a different port than COMI for our IR recetver, we would
have provided additional arguments to the lirc_serial driver with the modprobe com-
mand. To specify COM2, we would have used the command modprobe lirc_serial
irq=3 io=0x2f8. The default irq and io values for COM3 and COM4 are (4, Ox3e8)
and (3, 0x2e8), respectively.

Testing the lirc_serial Driver

Now that we’ve verified that the lirc_serial driver is loaded properly, we can
use the Laddie CD to test the IR receiver hardware we built earlier. We’ll
begin by reviewing what we want to test.

Recall that the signal provided by our LIRC receiver looks something
like Figure 12-14 (atleast in the case of a Sony TV Volume- command).

I 1T "1 0'0 'l 0'o0 1 0'0"'O

2,500 ps| ! :
|—
: : Isb msb : Isb msb!
I Header 1 Command I Address I
I I

Figure 12-14: Waveform for the Sony TV Volume— command

The job of the lirc_serial kernel device driver is to measure the timing of
spaces and pulses in this signal and provide that information via a device file.
The particular waveform shown here complies with the Sony TV protocol,
but the lirc_serial driver is designed to work with any protocol. The driver
includes an interrupt handler that is invoked every time the DCD pin changes
state. The handler uses a system timer to measure the pulses and spaces in
microseconds, and then it emits this timing information via the /dev/lirc
device file as a sequence of 32-bit words. In each word, bits 0 through 23
specify the length of the space or pulse in microseconds (with a maximum
value of OxFF FFFF). Bit 24 is zero for a space and one for a pulse. Bits 25
through 31 are always zero. To test the lirc_serial device driver, we’d like to
verify that these values are generated when we press a remote control button.

Before we can access the /dev/lirc device file, we need to make sure
it’s not already in use by some other process. When the Laddie CD boots, it
launches the lircd daemon in order to support the framebuffer Ul. Since
the lircd daemon accesses /dev/lirc, we prepare for our test by killing that
process.

Execute the following commands at the Laddie appliance command
prompt:

laddie:~# laddie stop
laddie:~# kill $(pidof lircd)

212 Chapter 12
No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

After the first command, you will need to wait a few moments for the
Laddie application to stop. In the second command, the pidof function out-
puts the process ID of the lircd process. The $(...) construct provides this
output as a parameter to the kill command, which terminates the specified
process. We can now access the /dev/lirc device file for our own purposes.

As we saw in the previous chapter, we can use the cat command to
access output that is provided via device files. Now we don’t want to simply
cat the output of /dev/lirc to the console, because some of the output data
might be interpreted as control characters and the console could end up
in an unusable state. One thing we can do is pipe that output through the
hexdump utility, which translates binary data into printable ASCII hexadecimal
characters.

Enter the following command:

laddie:~# cat /dev/lirc | hexdump

Now, any pulses that arrive on the DCD pin of serial port COM1 will be
measured by the lirc_serial device driver, read by the cat command via the
/dev/lirc device file, and displayed in ASCII hex by hexdump. To generate
such pulses, connect your IR receiver to the COMI1 port, point your remote
control at the IR detector/demodulator, and press a button. (At this point,
the particular kind of remote doesn’t matter.) If everything is working
properly, you should see output like the following:

0000000 df67 0061 099d 0100 01fb 0000 04f6 0100
0000010 0216 0000 04fd 0100 01fa 0000 026e 0100
0000020 022d 0000 028a 0100 01fb 0000 04f7 0100
0000030 01fd 0000 02a1 0100 O1fa 0000 02a0 0100
0000040 01fb 0000 04fc 0100 01fb 0000 02a0 0100
0000050 01fa 0000 0283 0100 0218 0000 0289 0100

This is the output we generated by briefly tapping the Volume- button
on the universal remote that we programmed for Sony TV.

If you’re not sure your IR receiver hardware is working (or if you don’t
have an IR receiver at this point), you can still test the lirc_serial device driver
by creating random pulses on the DCD pin of the serial port. One way to do
this is to intermittently connect pin 1 (DCD) to pin 7 (RTS) of the serial
port. If this doesn’t produce a result, try intermittently connecting pin 1 to
pin 3 (TXD). If your computer’s serial portis built to standard specifications,
itwon’t be a problem if you connect the wrong pins by mistake. Still, if you’ve
just purchased a fancy, new laptop, you might want to try this experiment on
a friend’s Linux box first.

Using the cat /dev/lirc | hexdump command is a good exercise because it
demonstrates that the output of /dev/lirc is simply binary data that can be
read like a file. Neither cat nor hexdump know anything about infrared, yet
they display the data just fine. But the output of hexdump isn’t easy to read.

Infrared Remote Control 213
No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

Fortunately, the LIRC package includes a utility, mode2, that does understand
the output of the lirc_serial driver and can display it as pulse and space
timing data.

Press CTRL-C to terminate the previous command, and execute the
following one:

laddie:~# mode2

Now point an IR remote control at the receiver while pressing buttons.
The command mode2 reads the output of /dev/lirc, parses the 23-bit timing
data and the one-bit pulse or space indicator, and produces a stream of pulse
and space timing information. As an example, we observed the following
train of space and pulse timings from mode2 when we stimulated our IR
receiver with a single Sony TV Volume- command.

laddie:~# mode2 space 568 pulse 1265

space 5794213 pulse 663 space 517
pulse 2471 space 494 pulse 663
space 496 pulse 1260 space 516
pulse 1282 space 497 pulse 633
space 546 pulse 685 space 546
pulse 1263 space 518 pulse 639
space 517 pulse 661 space 496
pulse 611 space 515 pulse 682

If you refer to “Protocols for Encoding Remote Control Commands”
on page 198, you will notice that these timing values are noisier than the
idealized waveform would suggest. The first pulse is roughly 2,500 milli-
seconds and corresponds to the header. The other pulses are roughly 1,300
or 650 milliseconds, corresponding to ones and zeros, respectively. The spaces
are roughly 500 milliseconds, but note the large initial space value corre-
sponding to the time between button presses. It is the job of the lircd daemon
to reject the pulse trains that do not correspond to valid waveforms and to
correctly interpret the ones that do. When you are finished experimenting
with mode2, press CTRL-C to terminate the utility.

At this point, we have established that the lirc_serial device driver is
working. In the next section we will provide instructions on configuring the
lircd daemon, which will use the output of this device driver.

NOTE Ifyou would like to write a program that uses the output of the lirc_serial device driver
directly, the source code for the mode2 utility provides an example of how to access the
/dev/lirc device file. This source is available from hitp://www.lirc.org and is also
provided in the lirc-0.8.1.tar.bz2 tarball in the /usr/src/packages/ divectory of this
book’s companion CD.

214 Chapter 12
No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

Configuring the lircd Daemon

The cleverest part of the LIRC package is the lircd daemon. This is the part
that analyzes the noisy timing values coming from the /dev/lirc device file
and produces a sequence of commands that are easily parsed by downstream
LIRC tools or user applications.

In order for the lircd daemon to interpret the timing data from /dev/
lirc, it has to understand the remote control protocol. The configuration
file /etc/lircd.conf captures this protocol information. The following is the
lircd.conf file used by the Laddie appliance with comments and a few of the
button entries removed to save space.

begin remote

name SONY-TV
bits 12
flags SPACE_ENC
eps 30
aeps 100
header 2457 525
one 1269 520
zero 650 520
gap 26076
toggle bit 0
begin codes
POWER 0xA90
ENTER 0xD10
VOL- 0xC90
VOL+ 0x490
CH- 0x890
CH+ 0x090
end codes
end remote

You don’t need to understand the entries in this file to use LIRC, but
we’ll make a few comments here in case you want to edit the file manually.
The name can be any string you like that describes the remote. The bits field
is the total number of data bits (in our case, command-code bits plus address
bits). The epsand aeps fields represent relative and absolute error tolerances
(in our case, 30 percent and 100 microseconds). The header, one, and zero
fields represent the pulse and space timings (in microseconds) for the header
and data bits. There is a gap of about 26,000 microseconds between repeated
commands, and there is no toggle bit that changes for repeated commands.
Note that these fields reflect actual timings measured by the device driver
and can vary from the protocol standard. The codes are the actual data bit
sequences for the various commands. For the additional fields that may apply
for other remotes, you can see the details at the WinLIRC web page, http://
winlirc.sourceforge.net/technicaldetails.html.

Infrared Remote Control 215
No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

If you have a remote that uses the same protocol as ours, you should be
able to control the Laddie appliance without updating the /etc/lircd.conf
file. (Again, we are using an RCA RCU410 universal remote, programmed as
a Sony TV, code 002.) The LIRC website also provides configuration files for
many remotes, but using the LIRC irrecord utility, it’s easy enough to generate
these files from scratch. The irrecord utility creates configuration files by
monitoring the output of /dev/lirc while prompting the user for remote
control input.

Now let’s create a configuration file for your remote. As we mentioned
when we were testing the lirc_serial device driver, we need to kill the lircd
daemon before we access /dev/lirc. If you didn’t kill lircd earlier, do so now:

laddie:~# kill $(pidof lircd)

To create a new lircd configuration file, rename or delete the old one,
then run the irrecord command:

laddie:~# mv /etc/lircd.conf /etc/lircd.conf.bak
laddie:~# irrecord /etc/lircd.conf

Read the instructions printed by the irrecord utility carefully. The utility
will prompt you to press remote control buttons in a particular sequence, and
it will also ask you to assign names for the buttons you choose to program.
Since you will be using the remote to control the Laddie framebuffer UlI,
you will need to provide the button names that the Laddie appliance expects.
It doesn’t matter how you assign the actual buttons, but you will need to
use the following names in uppercase letters: POWER, VOL+, VOL-, CH+,
and CH-. If you restart the irrecord utility, be sure to rename or delete the
previous /etc/lircd.conf file first. Once you’re satisfied with the configuration
file, you are ready to test the lircd daemon.

NOTE Ifyou choose to download a configuration file for your remote from hitp://www.livc.org,
you will need to edit it to make sure the button names are the ones the Laddie appliance
expects. Keep in mind that any updated configuration files will be replaced with the
original files when you reboot the Laddie CD.

Testing the lircd Daemon

To use your new lircd configuration file, start the lircd daemon with the
command:

laddie:~# lircd

This command will complete immediately without printing anything. To
verify that the daemon is running, execute the command:

laddie:~# pidof lircd

216 Chapter 12
No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

NOTE

and verify that it returns an integer. The lircd daemon will read timing data
from the /dev/lirc device file and, using the configuration specified in /etc/
lircd.conf, provide button-press information at the Unix socket /dev/lircd in
the form of newline-delimited ASCII strings.

Unix sockets are different from regular files or device files. In particular,
you can’t use the system call open() to access them; you have to use connect()
instead. This means that we can’t simply use cat to examine the output of
/dev/lircd the way we did with /dev/lirc. Let’s write a simple program,
socket_cat, that does allow us to view this output.

If you are eager to test the lircd daemon and would rather skip this exercise, you can use
the LIRC utility irw, with no arguments, to display the output of /dev/lired. However,
the program socket_cat will help you understand how the Laddie appliance works,
since it uses the same approach as socket_cat to access remote control button presses.

If you’ve programmed with sockets before, the following program will
look familiar. We use the function @ socket to create an unnamed, Unix
internal socket. We use the function ® connect to connect to the named
socket /dev/lircd. Then we ® loop forever, copying all received data to the
standard output.

#include <unistd.h> /* read, write */
#include <sys/un.h> /* sockaddr_un */
#include <sys/types.h> /* socket, connect */
#include <sys/socket.h> /* socket, connect */
#include <string.h> /* strcpy */

int main(int argc,char *argv[])

{

int fd,i;

char buf[128];

struct sockaddr_un address;

address.sun_family=AF_UNIX;

if(arge<2){
printf("Usage: socket_cat <unix socket path>\n");
return;

strcpy(address.sun_path,argv[1]);

fd=socket (AF_UNIX,SOCK_STREAM,0);
if(connect(fd, (struct sockaddr *)&address,sizeof(address)) == -1){
perror("Connect");
exit(1);

}

for(;;){

i=read(fd,buf,128);

write(STDOUT_FILENO,buf,i);

b

}

Infrared Remote Control 217

No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce

www.it-ebooks.info

http://www.it-ebooks.info/

This program is on the CD at /Code/src/examples/socket_cat.c. Build
and run the program, using the following commands:

laddie:~# cd /Code/src/examples/socket_cat
laddie:~# make
laddie:~# ./socket_cat /dev/lircd

Then press a few buttons on your remote. You should see output like the
following.

0000000000000c90 00 VOL- /etc/lircd.conf
0000000000000490 00 VOL+ /etc/lircd.conf
0000000000000890 00 CH- /etc/lircd.conf

0000000000000090 00 CH+ /etc/lircd.conf

0000000000000a90 00 POWER /etc/lircd.conf
0000000000000a90 01 POWER /etc/lircd.conf
0000000000000a90 02 POWER /etc/lircd.conf

Each string includes a 16-character hexadecimal command code, a
hexadecimal repetition count, a command string, and a name for the remote
(which defaults to the name of the lircd config file). Note how, at the end
of this sequence, the repetition count increases when the POWER button is
held down continually.

The 16-character command codes are generally not useful, since all
relevant information is captured by the names of the commands and the
remote. However, it is interesting to see how the command code corresponds
to the input waveform. Note, for example, that Oxc90is the hexadecimal
representation for the 12 bits (left to right) in the command waveform for
the Sony TV Volume- command that we saw in “Protocols for Encoding
Remote Control Commands” on page 198. When you are done with
socket_cat, press CTRL-C to terminate the program.

NOTE When a remote control button is pushed, depending on the button and the protocol, the
commands can repeat pretty quickly. For the Laddie framebuffer UI, we took advantage
of the repetition count associated with the lircd output to ignore all but the first command
associated with each button press.

LIRC Tools for Controlling Applications

As you saw in the previous section, it is simple to write a program that
responds to remote control commands via the /dev/lircd socket. But what
if you want to use a remote to control a program that already exists, but was
designed, say, for keyboard input rather than remote control input? In fact,
the LIRC package addresses this need with tools that connect to the /dev/
lircd socket and produce the kinds of output that many programs do expect.
The ircat tool is a good example because it is the simplest; it prints user-
specifiable, newline-delimited strings to the standard output when remote
control buttons are pressed. If you have a program that takes commands

218 Chapter 12
No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

from standard input, you can control it with LIRC by piping the output of
ircat to your program. To map remote control buttons to appropriate output,
configure the file /etc/lircrc. The HTML documentation provided with the
LIRC package provides details on the format of this file.

Similarly, the LIRC package provides an irpty utility for simulating
keyboard input, an irexec utility for invoking system calls, and an irxevent
utility that generates X events (for systems running X). Again, these actions
are mapped to remote control buttons according to the /etc/lircrc file. All
of these utilities use an API called the lirc_client library to access the /dev/
lircd socket. The source code for the ircat tool provides a simple example of
how to use this library.

Finally, the LIRC package contains a daemon lircmd that uses remote
control input to emulate a mouse. This daemon connects to the /dev/lircd
socket and produces mouse events on the pipe /dev/lircm. The configura-
tion file /etc/lircmd.conf selects the protocol for X mouse events (e.g.,
IntelliMouse) and specifies how remote commands map to mouse move-
ments and button presses. The XF86Config file must be updated to include
/dev/lircm as an input device. Again, the LIRC HTML documentation
provides details.

Controlling the Laddie Appliance

For the Laddie appliance, we installed the LIRC package and configured the
lirc_serial driver and lircd daemon as described in the previous sections. Since
we built the Laddie appliance from scratch, we did not need to use LIRC tools
like ircat or irpty; instead, we wrote code similar to the socket_cat example,
which accessed the /dev/lircd socket directly.

As discussed in the previous chapter, Laddie’s framebuffer user interface
is built on the Simple DirectMedia Layer (SDL) library. Since SDL includes
its own event handler which, in particular, handles keyboard presses, it was a
simple matter to incorporate remote control events. We created a separate
lircHandler() thread to read commands from the /dev/lircd socket, parse
these commands, and then push appropriate keyboard events onto the SDL
event queue. Specifically, we responded to the Channel+/- and Volume+/—
remote control commands by simulating the SDL keypress events for the Up,
Down, Right, and Left arrow keys, respectively. We responded to the remote
control Power command with the SDL Enter keypress event. In Laddie’s SDL
event handler, we responded to these keypress events by calling navigation
commands in Laddie’s menu object. This use of the /dev/lircd output to
control Laddie’s framebuffer menu is illustrated in Figure 12-15.

; . Laddie’s SDL Laddie’s
/dev/lircd lircHandler() Event Handler Mo @)

SDL Event:
SDLK_LEFT

... VOL-. ..

CursorDown()
Figure 12-15: Controlling the Laddie framebuffer Ul
Infrared Remote Control 219

No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

220

If you would like to see the details of the lircHandler() thread, you can
take a look at the /Code/src/fbmenu/lirc_if.cc file on the CD.

If you have built the IR receiver we described in this chapter and success-
fully worked through the exercises, you should be able to use it to control the
Laddie framebuffer UI. We had stopped the Laddie appliance daemons in
order to do the exercises; you will need to restart them now. Do this with the
following command:

laddie:~# laddie start

This will take a few moments, after which you should see the frame-
buffer UI. Now experiment with the buttons you programmed when you
used irrecord to create the lircd.conf file. You should be able to navigate
through the menu buttons and switch menu pages.

Summary

Chapter 12

Infrared light is a useful means for controlling an appliance when the appli-
ance is in the line of sight. To be effective, infrared light must be modulated
by the transmitter with a signature frequency, and this modulation must be
removed by the receiver. Fortunately, there are commercial devices that
make it easy to meet these requirements. For IR receivers, we introduced
infrared detector/demodulators and showed how to use them in simple IR
receiver circuits. For IR transmitters, we recommended using universal
remotes.

We also described the Linux Infrared Remote Control (LIRC) package
as a useful tool for controlling appliances. This package provides device drivers
and daemons for measuring and interpreting infrared waveforms, as well as
utilities for controlling appliances. Although we didn’t discuss the entire
LIRC package, we did describe those elements of the package that we used
for the Laddie appliance. We hope this overview of infrared communications
and this example application of the LIRC software package will be a useful
starting point if you decide to use infrared remote control for your own
appliance.

No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce

www.it-ebooks.info

http://www.it-ebooks.info/

A\

0]

\ T
2 —{Z
5’) -,

—\ = RN

No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

HANDS-ON INTRODUCTION
TO SNMP

We like to say that the difference between a
hobby and a commercial network appliance
is SNMP. Any corporation with a large net-
work will use Simple Network Management
Protocol (SNMP) as part of its network- and system-
management solution. You simply cannot sell into
the large enterprise and telecommunications carrier
markets without SNMP support on your appliance.

If your target market includes companies with large networks and you are
not confident in your knowledge of SNMP, this chapter is for you. If, however,
you will be targeting the home or small business market (or your appliance
will not be networked at all), you can safely skip this and the SNMP chapters
that follow.

This chapter will introduce SNMP and provide you with an appreciation
of some of the things SNMP can do. The topics covered in this chapter are:

¢ A brief introduction to SNMP terminology
¢ Finding the software

No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce

www.it-ebooks.info

http://www.it-ebooks.info/

224

¢ Installing the software

e Starting the agent

¢ Exploring with SNMP

¢ Writing values with SNMP
¢ SNMP traps

A Quick Note on Terminology

Here is a quick tour of the most basic concepts and terms you will need in
order to understand the material in this chapter. For a complete introduction
to SNMP concepts and terminology, see Appendix B.

SNMPis a protocol designed to facilitate the reading and writing of small
amounts of information over a network, like single numbers and character
strings. You would not use SNMP for large volumes of data, like file transfer.

A read operation in SNMP is called a GET, while a write is called a SET. The
target of a SET or GET operation is called an object. An object is like a field in a
database record.

SNMP treats objects as if they were organized into a single large database
called the Management Information Base (MIB). It may be helpful to think of
SNMP as an API to the information on a device. It hides the details of object
retrieval beneath an organized hierarchical namespace. An SNMP agent on
each system provides this API. The agentis a background (daemon) process
listening for SNMP requests on UDP port 161. Beneath the API, the agent
may interact with the kernel or some application process running on the
system; it may also read several pieces of information from different sources
and apply a mathematical formula to furnish the value defined in a MIB.
An object in the MIB may also represent functionality rather than data;
for example, setting a MIB object to a particular value might trigger a
reboot or the restarting of a service.

The MIB hierarchical namespace is much like the Unix filesystem, but it
uses numbers instead of directory and filenames, and it uses the . character
instead of the / directory separator. So, whereas a file path may look like this:

/usr/sbin/ifconfig

the name (called an Object Identifier, or OID) for an object in the MIB might
look like this:

.1.3.6.1.2.1.1.1

MIB files describe portions of the complete MIB database. Typically,
each MIB file describes a MIB module, which is a subtree of the overall
database. MIB files are both human readable and program readable. They
document the MIB for humans, and they provide a means for programs to
translate between these number strings and their human-readable names.
Although we have talked about the MIB as the SNMP-addressable universe,
the more common use of the term MIB is for one of these named subtrees.

No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce

www.it-ebooks.info

http://www.it-ebooks.info/

For example, you will hear talk of the Host Resources MIB, or the HP Printer
MIB, or MIB-2. These are all subtrees, but they are also all addressable within
the overall namespace.

First and foremost among MIBs is the cryptically named MIB-II. When
SNMP was first created, the SNMP working group of the IETF! defined a
core set of information. This was the first MIB, or MIB-I. A few years later,
the SNMP WG revised this core set and it became MIB-II. We use MIB-2,
rather than MIB-II, in this chapter to match the name used in the MIB file
that defines this MIB.

Once you have the right MIB files installed (you’ll see how to do this
later), you can use the snmptranslate command to give you the human-
readable names for a numeric ID (more on this later, too). For example:

$snmptranslate -O0f .1.3.6.1.2.1.1.1
.iso.org.dod.internet.mgmt.mib-2.system.sysDescr

$

This should be enough terminology to get started.

The Software

The Net-SNMP is an excellent free package containing all you’ll need to follow
along in this chapter. Net-SNMP will provide you with commands (snmpget,
snmpset, snmpwalk, snmptrap), an SNMP agent, and the standard MIB files.
Normally, the commands and agent would be running on different systems,
but for simplicity you’ll be running both on the same system. If you have
two systems available, you can perform the full installation on both systems;
then you can run snmpget, for example, on one system, and talk to the agent
on the other. If you use two systems, remember to change all instances of
localhost or 127.0.0.1 in this chapter’s code to the name or address of the
system running the SNMP agent.

Installing SNMP

Before installing, check to see if Net-SNMP is already installed on your
system—many common Linux distributions provide some version of it.

If you have a very old Linux distribution (like Red Hat 7.x) you may find
UCD-SNMP instead; this is an older version—or parent—of Net-SNMP.
Although its behavior is very similar to that of Net-SNMP, there are enough
differences to confuse someone trying to follow this tutorial; you should
remove it, and follow the instructions here to install Net-SNMP. If you find
some other package installed, definitely remove it before continuing.

! The Internet Engineering Task Force (IETF), started in 1986, is the principle standards
organization for the Internet. Participation is voluntary and open to anyone. Most of its work is
performed in working groups (WGs), which are ad hoc groups composed of parties interested in
some specific topic.

Hands-on Introduction to SNMP 225
No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

226

Chapter 13

Even if Net-SNMP is not currently installed on your system, it may be
packaged with your Linux distribution, so check your CDs. Be aware, though,
that various Linux distributions may have modified Net-SNMP to comply with
their own ideas of default file locations and it may include different patches.
Naturally, the closer your version of Net-SNMP is to the one used in this
chapter (version 5.2.1), the closer your results will be to the ones shown here.

Download and Install

If Net-SNMP is not included with your Linux distribution, you can download
it from http://net-snmp.sourceforge.net. You can install either from RPM
(assuming you are running an RPM-based distribution like Fedora) or source,
but for now let’s install the binary RPM. (By the way, if rpm complains about
missing dependencies, you may have to take care of them first and then retry
this command.)

$ 1rpm -Uvh net-snmp-5.2.1.fc4.1686.rpm

Preparing... HHHHHRHHHHHHHEHERHHHEHHHHH R RS [100%]
1:net-snmp HHHHHHHHHHHHHE R HHHEHHHHH R RS [100%]

$

Check the Installation

Now test that it worked. First, test the agent.

$ /usr/sbin/snmpd --version

NET-SNMP version: 5.2.1

Web: http://www.net-snmp.org/
Email: net-snmp-coders@lists.sourceforge.net
$

Now check the tools. Use which to find out where they were installed,
then list all the commands in that directory that start with snmp.

$ which snmpwalk
/usr/bin/snmpwalk

$ 1s /usr/bin/snmp*

/usr/bin/snmpbulkget /usr/bin/snmpdf /usr/bin/snmpstatus
/usr/bin/snmpusm /usr/bin/snmpbulkwalk /usr/bin/snmpget
/usr/bin/snmptable /usr/bin/snmpvacm /usr/bin/snmpcheck
/usr/bin/snmpgetnext /usr/bin/snmptest /usr/bin/snmpwalk
/usr/bin/snmpconf /usr/bin/snmpnetstat /usr/bin/snmptranslate
/usr/bin/snmpdelta /usr/bin/snmpset /usr/bin/snmptrap

We’ll only use a handful of these commands, but feel free to explore
others once you’ve mastered the basics.

No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce

www.it-ebooks.info

http://www.it-ebooks.info/

Now let’s check the version to make sure it is what we just installed and
not some older version that’s lurking on your path.

$ snmpwalk --version
NET-SNMP version: 5.2.1
$

Configure the Agent

So far, so good—you have the client-side programs. Now you need to get the
agent running so these programs have something to query.

The agent runs as a daemon and listens for incoming SNMP requests on
UDP port 161, by default. It requires some configuration information that it
normally picks up from the file snmpd.confin the directory /etc/snmp.
(Note the d in snmpd.conf; it indicates daemon—our agent. Do not confuse
this with snmp.conf, which we will introduce later on.) Snmpd.conf tells the
agent how to authenticate incoming requests, where to send traps (which are
SNMP alarm notifications), and so forth.

Net-SNMP provides a program called snrnpconf2 that generates the
snmpd.conf file from the answers to a series of questions, but because your
needs here are pretty simple, you can generate the configuration by hand.
Your snmpd.conf file should contain:

rocommunity public
syslocation "my den"
syscontact me@myaddr.com

The rocommunity macro sets your read-only community string, which for
now you can think of as something like a password. Net-SNMP gives you much
more precise access control than this, but that’s beyond our needs right now.

The syslocation and syscontact lines set the values for the sysLocation
and sysContact objects in the MIB-2 system group. When you are managing
only a small set of systems all in one location, this information may not be
very interesting, but in a large corporate network with multiple sites, it may
be invaluable to know how to locate a system and find out who is in charge
of it. (A little later in this chapter, you’ll see how to access this information
across the network with SNMP queries.)

Place this snmpd.conf file into the /etc/snmp directory. The three lines
above are all you’ll need to get started.

Start the Agent

Start the agent, and put it into the background. The agent listens on port
161, so you’ll need to be logged in as root to issue this command:

/usr/sbin/snmpd -c /etc/snmp/snmpd.conf -C &

2In the parlance of the CLI chapter, snmpconf would be called a wizard.

Hands-on Introduction to SNMP 227
No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

228

The -c /etc/snmp/snmpd.conf tells the agent to use the given configuration
file, and -C tells the agent to use only this configuration file.

For now, you can just type the above command (as root), but on your
appliance you’ll want the SNMP agent to start up with the system.

Exploring with SNMP

Now let’s turn our attention to the client side. The commands snmpget, snmpwalk,
and snmpset are all SNMP client commands, or SNMP management applications,
in SNMP-speak. SNMP uses the term manager or management application for the
client side and agent for the server side. The agent serves up the data on the
appliance, and the SNMP manager is the client requesting the appliance’s
information. You won’t need to be logged in as root to use these client
commands.

Let’s use snmpget to test our agent install.

$ snmpget -v2c -c public localhost syslLocation.o
SNMPv2-MIB: :sysLocation.0 = STRING: "my den"?
$

You’ve told snmpget to use SNMPv2c (community—based4 SNMP version 2)
and the community string public to send a query to the local machine asking
for the value of the sysLocation variable, which you configured in your
snmpd.conf file.® The .0 appended to the sysLocation name is SNMP’s way
of indicating that you want the instance of this variable. In object-oriented
language, think of sysLocation as a class that has one instance. If this were
an array (table) of locations, the .0 would be replaced by the row number
of the variable (.1, .2, .3, and so on). Row numbers always start with 1, so
there is no confusion between a row index and a scalar indicator.

You need to tell the snmpget command to use SNMPv2c, because it defaults
to SNMPv3; you can change that by generating an snmp.conf file with a
different default. You could use snmpconf to generate the file, this time
selecting snmp.conf (no d), but you can also just create the snmp.conf file
by hand with this single command (run as root).

echo "defversion 2c" > /etc/snmp/snmp.conf

Now you can stop typing the -v2c with each command.

*1If you get the message Timeout: No Response from localhost instead, you may have something
blocking UDP requests to port 161. Check your firewall settings and your /etc/hosts.deny file.
If you find ALL:ALL in your hosts.deny file, comment it out and try the snmpget again.

*SNMPv2c is called “community-based” because it retains the use of SNMPv1 community strings
(think of these as passwords) for authentication. There was disagreement about the new security
framework that was intended for SNMPv2, so SNMPv2c was released without it. When it was
ready, the new security framework was released in SNMPv3.

% Notice that the MIB object is sysLocation, but the command in the snmpd.conf file is syslocation.
There is no significance to this; it was just the implementer’s design choice to use all lowercase
letters for the key words in the configuration file.

No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce

www.it-ebooks.info

http://www.it-ebooks.info/

If you have access to any other networked devices, you might try
querying them. For example, here’s the snmpwalk command run against an
Apple AirPort Base Station:

$ snmpwalk -c public 10.0.1.1

SNMPv2-MIB: :sysDescr.0 = STRING: Apple Base Station V3.84 Compatible
SNMPv2-MIB: :sysObjectID.0 = OID: SNMPv2-SMI::zeroDotZero
DISMAN-EVENT-MIB: :sysUpTimeInstance = Timeticks: (4971188) 13:48:31.88
SNMPv2-MIB: :sysContact.0 = STRING: me@myaddr.com

SNMPv2-MIB: :sysName.0 = STRING: MyAirport

SNMPv2-MIB: :sysLocation.0 = STRING: my den

SNMPv2-MIB: :sysServices.0 = INTEGER: 79

SNMPv2-MIB: :sysServices.0 = No more variables left in this MIB View (It is
past the end of the MIB tree)

$

Clearly, the device’s sysDescr.0 (system description) identifies this as
an Apple Base Station. You’ll also recognize the sysLocation and sysContact
information for this device. This device doesn’t offer up a lot of informa-
tion, but there is enough to identify what it is, where it is, and who to
contact about any issues you have with this box, should you discover that
it’s misbehaving. Of course, the availability of the system contact and
location both rely on the administrator of that system, who is configuring
these values on the target device. An inattentive system administrator may
leave you little to work with.

Notice that for this query we used snmpwalk instead of snmpget because we
wanted to see what other information might be furnished by this device. The
snmpget command retrieves a single object instance using an SNMP GET protocol
data unit, while snmpwalk uses multiple SNMP GETNEXT PDUs to “walk” an entire
MIB. You pick a starting point, and snmpwalk asks for the lexically next object
instance; the agent returns that object and its OID, and snmpwalk asks for the
next object instance after the new OID. Eventually, the agent responds that
there is nothing more to return, and the walk terminates.

MIB Files for Readable Names

The display of nice, readable names for OIDs—Ilike sysDescr and sysLocation—
depends on having the right MIB files registered on your client system. In
the case of Net-SNMP, registration simply means putting these files in the
right directory and telling the SNMP commands (like snmpget and snmpwalk)
to use them. You can set a few environment variables to do this job for you.
Just put these lines in your shell startup file (e.g., .bashrc):

export MIBS=ALL
export MIBDIRS=/usr/share/snmp/mibs

When you installed Net-SNMP, it placed a set of standard MIB files in
/usr/share/snmp/mibs, as you can see in the list below. These are all plain-
text files written using a human-readable and machine-parseable syntax.

Hands-on Introduction to SNMP 229
No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

Some of these actually describe MIBs. Others are support files that define
information needed by the files that describe the MIBs, just as header files
are used in the Clanguage.

$ 1s /usr/share/snmp/mibs

AGENTX-MIB. txt RFC1155-SMI. txt
DISMAN-EVENT-MIB.txt RFC1213-MIB.txt
DISMAN-SCHEDULE-MIB. txt RFC-1215.txt
DISMAN-SCRIPT-MIB.txt RMON-MIB. txt
EtherLike-MIB.txt SMUX-MIB. txt

HCNUM-TC. txt SNMP-COMMUNITY-MIB. txt
HOST-RESOURCES-MIB.txt SNMP - FRAMEWORK-MIB. txt
HOST-RESOURCES-TYPES. txt SNMP-MPD-MIB.txt
TANA-ADDRESS-FAMILY-NUMBERS-MIB.txt SNMP-NOTIFICATION-MIB.txt
IANAifType-MIB.txt SNMP-PROXY-MIB. txt
TANA-LANGUAGE-MIB. txt SNMP-TARGET-MIB. txt
IF-INVERTED-STACK-MIB.txt SNMP-USER-BASED-SM-MIB.txt
IF-MIB.txt SNMPv2-CONF. txt
INET-ADDRESS-MIB. txt SNMPv2-MIB.txt
IP-FORWARD-MIB. txt SNMPv2-SMI.txt

IP-MIB.txt SNMPv2-TC.txt
IPV6-ICMP-MIB. txt SNMPv2-TM.txt
IPV6-MIB.txt SNMP-VIEW-BASED-ACM-MIB. txt
IPV6-TCP-MIB.txt TCP-MIB. txt

IPV6-TC. txt UCD-DEMO-MIB. txt
IPV6-UDP-MIB.txt UCD-DISKIO-MIB.txt
NET-SNMP-AGENT-MIB.txt UCD-DLMOD-MIB. txt
NET-SNMP-EXAMPLES-MIB. txt UCD-IPFWACC-MIB. txt
NET-SNMP-MIB.txt UCD-SNMP-MIB. txt
NET-SNMP-TC. txt UDP-MIB. txt
NOTIFICATION-LOG-MIB.txt

$

Without these MIB files, the display of the Apple Base Station system
group would have looked like this:

$ snmpwalk -On -v2c -c public 10.0.1.1 system

.1.3.6.1.2.1.1.1.0 = STRING: Apple Base Station V3.84 Compatible
.1.3.6.1.2.1.1.2.0 = 0ID: .0.0

.1.3.6.1.2.1.1.3.0 = Timeticks: (629726) 1:44:57.26

.1.3.6.1.2.1.1.4.0 = STRING: me@myaddr.com

.1.3.6.1.2.1.1.5.0 = STRING: MyAirport

.1.3.6.1.2.1.1.6.0 = STRING: my den

.1.3.6.1.2.1.1.7.0 = INTEGER: 79

.1.3.6.1.2.1.1.7.0 = No more variables left in this MIB View (It is past the
end of the MIB tree)

$

You can still tell a lot about the device just from examining the responses,
but it’s nice to know what the OIDs mean.

230 Chapter 13
No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

A Networked Printer

Let’s try another query against a different kind of device:

$snmpwalk -c public 10.0.1.9

SNMPv2-MIB: :sysDescr.0 = STRING: HP ETHERNET MULTI-ENVIRONMENT,ROM
L.20.07,JETDIRECT,ID84,EEPROM L.20.24

SNMPv2-MIB: :sysObjectID.0 = OID: SNMPv2-SMI::enterprises.11.2.3.9.1
SNMPv2-MIB: :sysUpTime.0 = Timeticks: (354480750) 41 days, 0:40:07.50
SNMPv2-MIB: :sysContact.0 = STRING:

SNMPv2-MIB: :sysName.0 = STRING: BW2

SNMPv2-MIB: :sysLocation.0 = STRING:

SNMPv2-MIB: :sysServices.0 = INTEGER: 79

$

This time, the administrator has not set sysContact and sysLocation.
However, we can at least determine the type of device being used. One clue is
in the sysDescr field: HP ETHERNET . . . [JETDIRECT. . . . This is a networked
HP]Jetdirect printer.

Another clue, though one much harder for a novice to read, is in the
sysObjectID—the OID in this field indicates the type of device. This OID starts
with enterprises, indicating that the next number (11) is the enterprise
number of the manufacturer; you can find a list of manufacturers’ enterprise
numbers at http://www.iana.org/assignments/enterprise-numbers. Here
you will find that 11 is registered to Hewlett Packard. The rest of the OID
(.2.3.9.1) would identify the type of device, if you had the right MIB file on
your system.

The snmptable Command

This printer’s SNMP agent offers much more information than just the system
group, giving us a chance to illustrate another command, snmptable. This
command behaves much like snmpwalk, but it formats the output differently.
We use it here to look at the TCP Connection Table on the same HP Jetdirect
printer.

$ snmptable

-vl -c public 10.0.0.183 tcpConnTable

SNMP table: TCP-MIB::tcpConnTable

tcpConnState
listen
listen
listen
listen
listen
listen
listen
listen
timeWait
timeWait
listen

tcpConnlocalAddress tcpConnLocalPort tcpConnRemAddress tcpConnRemPort

0.0.0.0 21 0.0.0.0 0
0.0.0.0 23 0.0.0.0 0
0.0.0.0 80 0.0.0.0 0
0.0.0.0 280 0.0.0.0 0
0.0.0.0 515 0.0.0.0 0
0.0.0.0 631 0.0.0.0 0
0.0.0.0 1782 0.0.0.0 0
0.0.0.0 9100 0.0.0.0 0
10.0.0.183 80 10.0.1.3 1933
127.0.0.1 2872 127.0.0.1 8000
127.0.0.1 8000 0.0.0.0 0

Hands-on Introduction to SNMP 231

No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce

www.it-ebooks.info

http://www.it-ebooks.info/

From this table you can see the TCP ports on which the printer is listening.
You can also see that two connections are in timeWail state, one between the
printer (10.0.0.183, port 80) and a remote system (10.0.1.3, port 19333), and
another between two TCP ports on the local system itself.

MIB-2: The TCP Connection Table

Now we’ll take a look at our own system. Here is the TCP Connection Table
from our local system:

$ snmptable -c public localhost tcpConnTable
SNMP table: TCP-MIB::tcpConnTable

tcpConnState tcpConnlLocalAddress tcpConnlLocalPort tcpConnRemAddress tcpConnRemPort

listen 0.0.0.0 22 0.0.0.0 0
listen 0.0.0.0 111 0.0.0.0 0
listen 0.0.0.0 199 0.0.0.0 0
listen 0.0.0.0 32770 0.0.0.0 0
listen 127.0.0.1 25 0.0.0.0 0
listen 127.0.0.1 631 0.0.0.0 0
listen 127.0.0.1 32771 0.0.0.0 0
$
Compare this to the information about our TCP listening habits from
the output of netstat:
$ netstat -tlp
tcp 0 0 0.0.0.0:32770 0.0.0.0:* LISTEN 1789/rpc.statd
tcp 0 0 127.0.0.1:32771 0.0.0.0:* LISTEN 1955/xinetd
tcp 0 0 0.0.0.0:199 0.0.0.0:* LISTEN 9828/snmpd
tcp 0 0 0.0.0.0:111 0.0.0.0:* LISTEN 1769/portmap
tcp 0 0 0.0.0.0:22 0.0.0.0:* LISTEN 1939/sshd
tcp 0 0 127.0.0.1:631 0.0.0.0:* LISTEN 3633/cupsd
tcp 0 0 127.0.0.1:25 0.0.0.0:* LISTEN 2000/sendmail: acce
It is clearly the same information, right? SNMP lets you access this
information not only on your local system, but on other systems across the
network, as well.
Now open Firefox, point your browser to http://www.cnn.com, and then
look at the TCP Connection Table again:
State LocalAddress LocalPort RemAddress RemPort
listen 0.0.0.0 22 0.0.0.0 0
listen 0.0.0.0 111 0.0.0.0 0
listen 0.0.0.0 199 0.0.0.0 0
listen 0.0.0.0 32770 0.0.0.0 0
established 10.0.1.5 32852 64.236.24.4 80
established 10.0.1.5 32853 64.236.16.137 80
established 10.0.1.5 32854 64.12.174.121 80
established 10.0.1.5 32855 64.236.16.137 80
232 Chapter 13

No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

established 10.0.1.5 32856 64.236.44.88 80
established 10.0.1.5 32857 64.236.44.88 80
timeWait 10.0.1.5 32859 64.70.10.83 80
listen 127.0.0.1 25 0.0.0.0 0
listen 127.0.0.1 631 0.0.0.0 0
listen 127.0.0.1 32771 0.0.0.0 0

Several connections have been added to the table, all from ephemeral
ports on your local system to port 80 on several remote systems. These are
the connections used by the browser to fetch the various parts of the CNN
main page.

MIB-2: The UDP Table

Another table from MIB-2 that might be of interest is the UDP table.

$ snmptable -c public localhost udpTable
SNMP table: UDP-MIB::udpTable

udpLocalAddress udplLocalPort

0.0.0.0 68
0.0.0.0 111
0.0.0.0 123
0.0.0.0 161
0.0.0.0 631
0.0.0.0 691
0.0.0.0 32768
0.0.0.0 32769
127.0.0.1 123
10.0.1.5 123

This table shows the open UDP ports on your system, that is, the ports
where some application on your system is listening. (The SNMP agent itself is
listening on port 161.) For reference, the address of this system is 10.0.1.5.

Compare this with the netstat output. You’ll have to run netstat as root
to get the program names.

netstat -ulp
Active Internet connections (only servers)
Proto Recv-Q Send-Q Local Address Foreign Address State PID/Program name

udp 0 0 *:32768 *ix 1787/xpc.statd
udp 0 0 *:snmp koK 2553/snmpd

udp 0 0 *:691 *i¥ 1787/xpc.statd
udp 0 0 *:bootpc koK 1694/dhclient
udp 0 0 *:sunrpc koK 1767/portmap
udp 0 0 *:ipp *ox 2656/cupsd

udp 0 0 10.0.1.5:ntp koK 1977/ntpd

udp 0 0 localhost.localdoma:ntp *:* 1977/ntpd

udp 0 0 *:ntp koK 1977/ntpd

#

Hands-on Introduction to SNMP 233
No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

MIB-2 Contents

In SNMP, the term group refers to a subdivision of a MIB consisting of a
collection of objects or tables that are related in some way. For example,
MIB-2’s UPD and TCP groups are all about UDP and TCP traffic, respec-
tively. The Net-SNMP agent can be built to support a variety of MIBs, but
you can always expect to find the MIB-2 groups system, interfaces, ip, icmp,
tcp, udp, and snmp. These are not all of the groups defined in MIB-2, but
they are the ones most likely to be supported by any SNMP agent. Figure 13-1
shows the location of MIB-2 in the overall MIB address space and breaks
out some of the groups that comprise MIB-2. Also notice the location of the
private.enterprises branch. That’s where you can find the HP Printer MIB
objects you saw earlier.

iso(1)

org(3)
dod(6)
internet(1)
mgmt(2)
private(4)
mib-2(1) |
enterprises(1)
system(1) snmp(11)
interfaces(2) udp(7)
ip(4 (<
pl4) icpm(5) tcp(6)

Figure 13-1: MIB-2

Try walking these groups:

snmpwalk -c public localhost system
snmpwalk -c public localhost interfaces
snmpwalk -c public localhost ip
snmpwalk -c public localhost icmp
snmpwalk -c public localhost tcp
snmpwalk -c public localhost udp
snmpwalk -c public localhost snmp

If you feel up to a challenge, try comparing the output of the above
commands with the contents of the MIB files.® The output of the snmpwalk

51n case you've forgotten, the MIB files are in the directory /usr/share/snmp/mibs.

234 Chapter 13
No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

commands listed here will indicate, at the beginning of each output line,
the MIB file where you can find the definition of the object displayed.

SNMPv2-MIB: : snmpInPkts.0 = Counter32: 5998
SNMPv2-MIB: : snmpOutPkts.0 = Counter32: 5998
SNMPv2-MIB: : snmpInBadVersions.0 = Counter32: 0

These lines indicate that you can find these definitions in the MIB file
SNMPv2-MIB.txt. For help interpreting what you find in the MIB file, you
can read Appendix B.

You are also likely to find that your SNMP agent has been built to include
the Host Resources MIB, the UCDavis MIB, and the newer Net-SNMP MIB.
Try walking these with the following commands:

snmpwalk -c public localhost enterprises ucdavis
snmpwalk -c public localhost enterprises netSnmp

One of the objects that might interest you is the version of your own agent.

$snmpget -c public localhost versionTag.0
UCD-SNMP-MIB::versionTag.0 = STRING: 5.2.1

Writing Values with SNMP

As well as reading information from an agent, SNMP can be used to set the
values of objects on a remote system. Let’s pick an object that is defined to
have read-write access and experiment with it a little.

Setting sysContact

Look through the MIB defining the system group in MIB-2. Remember that
when we accessed the system group, the resulting display contained lines that
looked like this:

SNMPv2-MIB: :sysContact.0 = STRING: me@myaddr.com
SNMPv2-MIB: :sysName.0 = STRING: localhost.localdomain
SNMPv2-MIB: :sysLocation.0 = STRING: "the den"

See the SNMPV2-MIB at the start of each line? That indicates that these
objects are defined in the file SNMPv2-MIB.txt. If you look at the definitions
of these objects in that file, you’ll see this snippet:

sysContact OBJECT-TYPE

SYNTAX DisplayString (SIZE (0..255))
MAX-ACCESS read-write

STATUS current

DESCRIPTION

"The textual identification of the contact person for
this managed node, together with information on how

Hands-on Introduction to SNMP 235
No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

236

to contact this person. If no contact information is
known, the value is the zero-length string."

1:= { system 4 }
sysName OBJECT-TYPE
SYNTAX DisplayString (SIZE (0..255))
MAX-ACCESS read-write
STATUS current
DESCRIPTION

"An administratively-assigned name for this managed
node. By convention, this is the node's fully-qualified
domain name. If the name is unknown, the value is
the zero-length string."

1:= { system 5 }

sysLocation OBJECT-TYPE

SYNTAX DisplayString (SIZE (0..255))

MAX-ACCESS read-write

STATUS current

DESCRIPTION
"The physical location of this node (e.g., 'telephone
closet, 3rd floor'). If the location is unknown, the
value is the zero-length string."

1:= { system 6 }

You can see from this snippet that the MIB file defines the three objects
we read the values of above: sysContact, sysName, and sysLocation. Each of these
is described as an OBJECT-TYPE with a syntax of DisplayString, read-write access,
and a status of current.” Each object has a description and a line starting
with ::=, meaning is defined as. Systemis a group in MIB-2 that has an OID of
{.1.3.6.1.2.1.1 }. These lines in the MIB file indicate that these three object
types are defined as objects 4, 5, and 6 following system (.1.3.6.1.2.1.1), so
their OIDs are:

sysContact 0ID = .1.3.6.1.2.1.1.4
sysName 0ID = .1.3.6.1.2.1.1.5
sysLocation OID = .1.3.6.1.2.1.1.6

Notice that these are OIDs of the 0BJECT-TYPE definitions, not their
instances. Remember, if you want to use snmpget to read the value of the
instance, you need to add a .0 to the end of the type OID.

Enough of reading MIBs—we just want to find a read-write type so we
can try a SET. Let’s try setting sysContact.

$ snmpset -c public localhost sysContact.0 s "me@myself.com"
snmpset: Unknown host (Permission denied)®

$

"The term current means that it’s an active type in the MIB, and you can expect to get a value
back for it.

¥Your error message may be different depending on your version of Net-SNMP and whether you
are using SNMPv1 or SNMPv2, but you will get an error in any case.

Chapter 13

No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

NOTE

The agent refused the request. Why? Remember your configuration file?

rocommunity public
syslocation "the den"
syscontact me@myaddr.com

You set a read-only community string, but not a read-write one, so you
don’t have permission to set any values. You’ll have to configure a read-write
community name. Add the following line to your snmpd.conf file to configure
a read-write community string writer:

rwcommunity writer

Now you’ll need to bring this change to the attention of the SNMP agent.
Send the agent a SIGHUP signal to make it re-read its configuration. You will
have to do this as root:

killall -s HUP snmpd

Now try snmpset again.

$ snmpset -c writer localhost sysContact.0 s "me@myself.com"
Error in packet.

Reason: notWritable (that object does not support modification)
Failed object: SNMPv2-MIB::sysContact.0

The agent refused again! This time, the reason is a little less obvious.
The Net-SNMP agent will refuse requests to set new values if the object’s
value has been configured in the snmpd.conf file. This is not part of the
SNMP standard, it’s just how Net-SNMP works. It presumes that since you
configured these values through the snmpd.conf file, you probably don’t
want someone else changing them remotely. If you want these values to be
writable, you need to set their values using local snmpset commands, rather
than by using the configuration file.

Apologies for leading you astray here. Our intent was to highlight this non-obvious
behavior of Net-SNMP and possibly save you some time later.
Setting sysName

Now that you know sysContact and sysLocation are not writable for you
because of their definitions in the configuration file, try sysName. You
haven’t configured a value for that.

$ snmpset -c writer localhost sysName.0 s "NewName"
SNMPv2-MIB: :sysName.O = STRING: NewName

The snmpset command requires that you use the read-write community
string and that you specify the name of the object instance, the type, and the

Hands-on Introduction to SNMP 237

No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce

www.it-ebooks.info

http://www.it-ebooks.info/

new value. The s indicates that you are writing a string value. This tells the
snmpset command how to format the SET packet. Had you written an integer
variable, the type would have been i. For a full list of types, read the man
page for snmpset. The type of the value you set, of course, must match the
type of the object you are setting.

Here’s what sysContact, sysName, and sysLocation look like now:

$ snmpget -c public localhost sysContact.0 sysName.0 syslLocation.o
SNMPv2-MIB: :sysContact.0 = STRING: me@myaddr.com

SNMPv2-MIB: :sysName.O = STRING: NewName

SNMPv2-MIB: :sysLocation.0 = STRING: "the den"

$

SNMP Traps

As well as responding to SNMP requests like SET and GET, SNMP-enabled
devices in the network can send out spontaneous notifications of local
events. These notifications are sent either as SNMP traps or informs. Traps
are datagrams sent without the expectation of a response. Informs are an
improvement over traps because they expect a confirmation response and
are re-sent when the trap receiver does not confirm them in a timely
fashion. The time-out and the number of retries can be set by the trap
sender as parameters to the snmptrap command.

Receiving Traps with snmptrapd

You can use snmptrapd to receive traps. In the 5.2.1 release of Net-SNMP, which
we have been using in this chapter, all you have to do is open a separate
terminal window and execute the following command as root:

snmptrapd -0s -Le -f

As of the 5.3 release, however, the security of snmptrapd was tightened so
that it no longer defaults to accepting traps with any community name. In
later versions, you need to create an snmptrapd.conf file in the /etc/snmp
directory and include a line telling it which communities to accept. We will
be using public, so our snmptrapd.conf file would contain the following:

authCommunity log public

Now you can issue the snmptrapd command described above to view the
traps you receive.

This command normally runs in the background where it can receive
traps, format them, and write them to a log file. However, you are using
the -f parameter here to tell snmptrapd to stay in the foreground and the
-Le parameter to send its output to stderr. You can also use the -0s parameter
to tell snmptrapd to print only the last symbolic part of the OID, which will save
space and make the output more readable.

238 Chapter 13
No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

Use a separate command window for sending traps using the snmptrap
command. You’ll need to run snmptrapd as root, because it wants to listen on
UDP port 162. To give it a quick try, run either of the following as root:?

snmptrap -c public localhost "" coldStart

or

snmptrap -c public localhost "" .1.3.6.1.6.3.1.1.5.1

You can change the format of the output to be much more readable
than we show below, but that would require formatting instructions that are
beyond what you need here. The default format for output from snmptrapd
looks like this:

2007-02-14 20:43:26 localhost.localdomain [127.0.0.1]:
sysUpTimeInstance = Timeticks: (4694125) 13:02:21.25
snmpTrapOID.0 = OID: cold Start

Keep in mind that you are using SNMPv2. The format for sending an
SNMPvl1 trap is different and a bit more complicated.

A coldStart trap technically means the network management software has
restarted with no change in configuration. Typically, this only happens when
the system running the agent has rebooted, so many users think of coldStart
as a reboot indicator; however, it will also be sent any time the agent restarts.
If you configure a trap target in the snmpd.conf file and restart the agent,
your snmptrapd will receive a trap from it. Give it a try—add the following line
to your snmpd.conf file:

trap2sink localhost public

Now kill the agent and restart it, or send it another SIGHUP; snmptrapd will
indicate that it has received a coldStart trap. Now that the agent has the trap
target configured, restart it again. Here’s what snmptrapd will display this time:

2007-02-14 12:06:17 localhost.localdomain [127.0.0.1]:

sysUpTimeInstance = Timeticks: (33324) 0:05:33.24 snmpTrap0ID.0 = OID:
nsNotifyShutdown

2007-02-14 12:06:37 localhost.localdomain [127.0.0.1]:

sysUpTimeInstance = Timeticks: (36) 0:00:00.36 snmpTrapOID.0 = OID: coldStart
snmpTrapEnterprise.0 = 0ID: netSnmpAgentOIDs.10

This is a bit of a jumble, but you can find the beginning of each
trap by looking for the time stamp. You will have received two traps:
nsNotifyShutdown and coldStart. The agent had the trap target configured

9You need to be logged in as root because the command will want to write to /var/net-snmp/
snmpapp.conf, which is the persistent data storage. As of Net-SNMP 5.3, it appears to want to
write an SNMPv3 engine ID there, even though we are not using SNMPv3 here. (SNMPv3 is not
covered in this book.)

Hands-on Introduction to SNMP 239
No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

at the time it was shut down, so it sent out a trap indicating it was going
away. When we started it again (20 seconds later, by the time stamp in this
example) it sent a coldStart.

Unlike the coldStart, nsNotifyShutdown is not a trap defined in the
SNMP specification, but rather in the NET-SNMP-AGENT-MIB.txt file.
It is one of the Net-SNMP enterprise traps, meaning it has OIDs under the
private.enterprises section of the MIB tree. This is where you will define
your traps when you develop your own MIB in the next chapter.

Traps That Carry Data: linkUp and linkDown

The traps you’ve seen here, coldStart and nsNotifyShutdown, do not carry
any extra data. They only tell you that a shutdown or startup happened. The
generic traps linkDown and linkUp are different; they contain extra informa-
tion as specified in the 0BJECTS line of their definitions:

linkDown NOTIFICATION-TYPE

OBJECTS { ifIndex, ifAdminStatus, ifOperStatus }

STATUS current

DESCRIPTION
"A linkDown trap signifies that the SNMP entity, acting
in an agent role, has detected that the ifOperStatus
object for one of its communication links is about to
enter the down state from some other state (but not
from the notPresent state). This other state is
indicated by the included value of ifOperStatus."

1:= { snmpTraps 3 }

linkUp NOTIFICATION-TYPE

OBJECTS { ifIndex, ifAdminStatus, ifOperStatus }

STATUS current

DESCRIPTION
"A linkUp trap signifies that the SNMP entity, acting in an
agent role, has detected that the ifOperStatus object for
one of its communication links left the down state and
transitioned into some other state (but not into the
notPresent state). This other state is indicated by the
included value of ifOperStatus."

1:= { snmpTraps 4 }

The O0BJECTS line in each trap definition is the list of parameters that will
be sent in the trap. The first is ifIndex, which is the index into the interface
table in the interfaces section under MIB-2. The others define the adminis-
trative and operational status of the interface. Try viewing this table on your
own system. It is a little wide to display with the snmptable command, so here’s
an snmpwalk of ifTable.

$ snmpwalk -c public localhost ifTable
IF-MIB::ifIndex.1 = INTEGER: 1
IF-MIB::ifIndex.2 = INTEGER: 2

240 Chapter 13
No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

IF-MIB:
IF-MIB:
IF-MIB:
IF-MIB:
IF-MIB:
IF-MIB:
IF-MIB:
IF-MIB:
IF-MIB:
IF-MIB:
IF-MIB:
IF-MIB:
IF-MIB:
IF-MIB:
IF-MIB:
IF-MIB:
IF-MIB:
IF-MIB:
IF-MIB:
IF-MIB:
IF-MIB:
IF-MIB:
IF-MIB:
IF-MIB:
IF-MIB:
IF-MIB:
IF-MIB:
IF-MIB:
IF-MIB:
IF-MIB:
IF-MIB:
IF-MIB:
IF-MIB:
IF-MIB:

:ifDescr.1
:ifDescr.2
1ifType.1
:ifType.2
:ifMtu.1 =
:ifMtu.2 =
:ifSpeed.1
:ifSpeed.2
:ifPhysAddress.
:ifPhysAddress
:ifAdminStatus
:ifAdminStatus
:ifOperStatus.1 = INTEGER: up(1)
:ifOperStatus.2 = INTEGER: down(2)
:ifInOctets.1 = Counter32: 4501945
:ifInOctets.2 = Counter32: 312184
:ifInUcastPkts.1 = Counter32: 21113
:ifInUcastPkts.2 = Counter32: 2865

STRING: lo
STRING: etho

INTEGER: softwareLoopback(24)
INTEGER: ethernetCsmacd(6)
INTEGER: 16436

INTEGER: 1500

Gauge32: 10000000
Gauge32: 0

1 = STRING:

2
1
2

STRING: 0:10:5a:ce:72:c3
= INTEGER: up(1)
INTEGER: up(1)

:ifInDiscards.1 = Counter32: 0
:ifInDiscards.2 = Counter32: 0
:ifInErrors.1 = Counter32: 0
:ifInErrors.2 = Counter32: 0
:ifOutOctets.1 = Counter32: 4503127
:ifOutOctets.2 = Counter32: 312697
:ifOutUcastPkts.1 = Counter32: 21129
:ifOutUcastPkts.2 = Counter32: 3471
:ifOutDiscards.1 = Counter32: 0
:ifOutDiscards.2 = Counter32: 0
:ifOutErrors.1 = Counter32: 0
:ifOutErrors.2 = Counter32: 0
:ifOutQLen.1 = Gauge32: 0
:ifOutQLen.2 = Gauge32: 0

:ifSpecific.1 = 0ID: SNMPv2-SMI::zeroDotZero
:ifSpecific.2 = 0ID: SNMPv2-SMI::zeroDotZero

Try sending a linkDown trap like this:

snmptrap -c public localhost "" linkDown \
ifIndex i 2
ifAdminStatus i 1
ifOperStatus i 2

\
\

This is what snmptrapd displays:

2007-02-14 12:48:15 localhost.localdomain [127.0.0.1]:

sysUpTimeInstance = Timeticks: (10483057) 1 day, 5:07:10.57
ifIndex = INTEGER: 2

= 0ID: linkDown
ifOperStatus = INTEGER: down(2)

snmpTrapOID.0
ifAdminStatus = INTEGER: up(1)

This trap shows that interface 2 (which you can see is etho, from the walk

of ifTable above) is administratively up but operationally down. Since this

machine only has a single Ethernet interface, you’re unlikely to see any traps

Hands-on Introduction to SNMP

No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

LY

http://www.it-ebooks.info/

242

of this kind (you can’t send a trap from an interface that’s offline), but you
would see the linkUp trap when the interface comes back up.

2007-02-14 12:52:15 localhost.localdomain [127.0.0.1]:

sysUpTimeInstance = Timeticks: (10507037) 1 day, 5:11:10.37 snmpTrap0ID.0
= 0ID: linkUp ifIndex = INTEGER: 2 ifAdminStatus = INTEGER: up(1)
ifOperStatus = INTEGER: up(1)

By this time, you should be able to figure out how to send the trap that
generated this output. Give it a try.

Summary

Chapter 13

This chapter has given you a taste of what SNMP can do. You have installed,
configured, and started the Net-SNMP agent on your own computer. You
have explored what SNMP can tell you about a networked machine using the
snmpget, snmpwalk, and snmptable commands provided by Net-SNMP. You have
modified one of the settings on your system (sysName) with SNMP. You have
also sent and received some traps. Except for the brief probes of a wireless
access point and networked printer, we have limited ourselves to the local
machine so that even readers not currently on a network can still have some
fun exploring.

We have also limited our tools to those which come with the Net-SNMP
package. The nice thing about standard protocols is that software from
multiple sources can interoperate. You might try taking a look at a MIB
browser from another source. MIB browsers walk a MIB for you and give
you a graphical view of the MIB tree offered by the target system. You can
find one such browser at http://www.mibble.org.

We hope this chapter has given you a taste for how useful SNMP can
be to a network manager or IT professional. SNMP can be used to discover
devices on a network, identify the type of device based on its IP address, or
even reconfigure options on a device. This perspective will be helpful when
it comes to designing your own MIB in the next chapter.

No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce

www.it-ebooks.info

http://www.it-ebooks.info/

DESIGNING AN SNMP MIB

If you read the previous chapter, you
already have some idea of why you may
need an SNMP interface and how it can be
useful. In this chapter and the next, you’ll see

how the information specific to an appliance can be

added to this interface. Like the web, LCD, and CLI interfaces, the SNMP
interface will also be based on the information available from RTA tables
within the Laddie application itself.

This chapter is concerned primarily with the design of the MIB and
creation of a valid MIB file. The topics covered here are:

¢ Applying for an enterprise number
e Designing the MIB

¢ Creating the MIB file

¢ Validating the MIB

You will learn how to implement the agent in the next chapter.

No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

244

Our Goadl

In Chapter 5 you saw several of the Laddie application’s user interfaces to
the ZONE structure: framebuffer, CLI, and web. Here’s the ZONE struct
from the Laddie source:

typedef struct

int id;

// ID number of alarm [1-5]

char name[ZONE_NAME_LEN]; // the alarm name

int enabled;
int edge;

int latching;

int input;
int alarm;
int count;

}
ZONE;

// 1 if enabled

// 1 if alarm on low to high transition
// 1 if should latch the alarm

// is the latest raw input from the alarm
// 1 if in alarm

// count of alarms on this pin

Figure 14-1 shows how this looked in the RTA table editor.

Zone

’E‘ name ‘enabled ‘edge ‘latching ‘input ‘alarm ‘count ‘

1 || Garage Door 1 0 0 1 0 7 {edit)
2_ Motion Detector ||1 1 0 0 o] 2281 || {edity
3 |[Front Door 1 o o 1 0 0 (edit)
4_ Kitchen Windowr |1 1 o] 1 o] 4] {edit)
5 [Refrigerator 1 'R 0 0 0 (edit)

Figure 14-1: The ZONE struct in the RTA table editor

Jumping ahead a bit, this is how the same information will look in our
SNMP interface when we’re done designing and implementing our MIB.

$ snmptable -c public -v2c myappliance ladAlarmTable
SNMP table: LAD-MIB::ladAlarmTable

ladAlarmZoneName ladAlarmEnable ladAlarmLatching ladAlarmState ladAlarmCount

Garage Door
Motion Detector
Front Door
Kitchen Window
Refrigerator

true 0 0
true 0 0
true 0 0
true 0 0
true true 0

7
2281
0
0
0

Our task in this chapter and the next is to show you how to go from the
ZONE struct to the above SNMP interface, step by step. When we are done,
you should understand how to do the same thing in your own application,
doing a fair amount of cutting and pasting from this MIB.

Chapter 14

No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce

www.it-ebooks.info

http://www.it-ebooks.info/

You may have noticed that we did not include the id, edge, and input
columns in our SNMP view of this table. This was not an oversight. Itis up to
the MIB designer (or any interface designer, for that matter) to decide what
makes sense in light of the intended use of the interface. In our case, we
decided that the edge and inputinformation was too hardware specific to be
necessary in this interface. The id column is not returned by our SNMP agent,
but will be used as an index into the alarm table whenever access to a specific
row is necessary.

Your Enterprise Number

Now that your interest is piqued, we’ll build suspense by taking a little detour
for those of you actually in the process of starting a small company to sell
your appliance. You may remember the brief discussion about enterprise
numbers in the last chapter when we were identifying a printer using SNMP.
Every MIB needs to be anchored to the overall namespace, and if you are
designing a private MIB, you need an enterprise number of your own. These
are assigned by IANA (Internet Assigned Numbers Authority). Each company
or organization only needs one enterprise number because IANA grants you
the authority to manage the tree beneath your number.

Obtaining an enterprise number from IANA may take awhile, so you
should get the ball rolling early. Once you apply, IANA will tell you to expect
the process to take about a month. You can design and implement your MIB
while IANA is processing your request.

The process itself is pretty easy. Just use your favorite web browser to
navigate to the IJANA website (http://www.iana.org) and click Application
Forms in the menu. On the next page, select Private Enterprise Numbers
(SNMP). You’ll be presented with an online form to fill out.

At the bottom of the web page, there’s a link to the current list of
registered numbers. You might want to check it out just to see who’s on the
list. You’ll notice some pretty recognizable names near the beginning; these
companies have been in the SNMP game since the beginning. IBM’s number
is 2. Cisco has 9. Hewlett Packard has 11. You can scroll down to the bottom
to see what the current high number is. You might also recognize the entry at
number 23528. It is the start of the subtree where we will anchor the Laddie
MIB we will develop in this chapter.

When you start your application, you will be asked to provide the
following information:

¢ Your company or organization name
¢ The company’s address
¢ The company’s phone number
¢ The name of the contact person
¢ The contact person’s address
¢ The contact person’s phone number
¢ The contact person’s email address
e A fax number
Designing an SNMP MIB 245

No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

246

As you may have noticed when looking at the current list, only the enter-
prise number, company name, contact person’s name, and contact’s email
address are listed online. It’s a good idea to use something other than your
general email address here, since it’s likely that spambots will harvest it. It’s
handy to have a separate address for this purpose, something generic you
can forward to whomever is responsible for your SNMP work in the future.

Just enter your information in the form and click the Submit Application
button.

The MIB Files

TANA grants you the authority to manage your own subtree, but it’s up to you
to do a good job of it. Plan for success and don’t think of this appliance as
the end of the line—leave room for expansion. You might want to define
your enterprise number in a separate file where you can put information
common to all your MIBs. (By the way, reading other people’s MIBs is a very
good idea. You’ll find out what is common usage and you may pick up styles
you find attractive along the way.)

Here are the two files we’ll be creating in this chapter:

LADDIE-GROUP-SMI.txt
This is the file where we’ll define the Laddie Group enterprise number
and our product identification OIDs.!

LAD-MIB.txt
This file will hold the Laddie product MIB. This MIB will be anchored
under an OID defined in the LADDIE-GROUP-SMI.txt file.

We’ll run these files through a utility supplied by Net-SNMP to produce
skeleton code for our MIB implementation. You’ll also want these files on
any system that will be running the management applications (snmpget,
snmpset, snmpwalk, and so on) or interpreting traps and informs.

The network management system you are using will define where you
place these files. The Net-SNMP management applications tend to want
them in the directory /usr/local/share/snmp/mibs, though you can modify
this, and it’s subject to the preferences of the OS distribution you are using.
For our appliance we will place them in /opt/snmp/share/snmp/mibs.

LADDIE-GROUP-SMI

This is the file that describes the top-level structure we will be using to organize
our Laddie enterprise subtree. It holds our enterprise number and product
identification OID. This file is small, so let’s look at the whole thing and
then discuss its structure. (The address, phone number, and fax number
are bogus to protect Bob’s privacy, but you’ll get the general idea.)

1 OIDs used to identify products are returned as the value of sysobjectId in MIB-2.

No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce

www.it-ebooks.info

http://www.it-ebooks.info/

LADDIE-GROUP-SMI DEFINITIONS ::= BEGIN

IMPORTS
MODULE-IDENTITY,
enterprises

FROM SNMPv2-SMI

b

laddieGroup MODULE-IDENTITY
LAST-UPDATED "200502220000Z"
ORGANIZATION "The Laddie Group"
CONTACT-INFO
"Contact: Bob Smith

Postal: 221B Baker Street
Santa Clara, California, USA 12345

Phone: 408-555-1138
FAX: 408-555-1234

Web: www.runtimeaccess.com
Email: bsmith@linuxtoys.org"

DESCRIPTION
"The Laddie Group MIB.

Copyright 2005 The Laddie Group
All rights reserved.

This MIB module specifies the anchor point of the
Laddie Group MIBs and definitions common to these MIBs."

REVISION "200502220000Z"
DESCRIPTION
" 1.0 - Initial Document.
::= { enterprises 23528 }

-- MIBs are defined here:
laddieMgmt OBJECT IDENTIFIER ::= { laddieGroup 1 }

-- Products are registered here:

laddieProducts OBJECT IDENTIFIER ::= { laddieGroup 2 }
laddieAppliance OBJECT IDENTIFIER ::= { laddieProducts 1 }
END

Now let’s go through this file again in more detail. We’ll show you a
section of the MIB file first and then discuss it. The best way to read this is
to scan the MIB text briefly, then read the description while referring to
the MIB text.

Designing an SNMP MIB 247
No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

LADDIE-GROUP-SMI DEFINITIONS ::= BEGIN

This line gives the MIB a name and tells the reader (human or program)
that this is the beginning of our definitions for this MIB. Look for a match-
ing END at the bottom of the file to tell the reader when all definitions are
complete.

IMPORTS
o MODULE-IDENTITY,
e enterprises
FROM SNMPv2-SMI

The IMPORTS section is like the #include section in a C program—it tells
where to find the terms used in this MIB but not defined here. We included
© the MODULE-IDENTITY macro and @ the enterprises for use below.

Next, we defined the laddieGroup module:

©® laddieGroup MODULE-IDENTITY
e LAST-UPDATED "200502220000Z"
ORGANIZATION "The Laddie Group"
CONTACT-INFO
"Here is where you tell your users who you are and
how to contact you."

DESCRIPTION
"Here is where you describe the general purpose of
this MIB. This is also where you will want to put
a copyright notice."

REVISION "200502220000Z"
DESCRIPTION
" 1.0 - Initial Document."
(3] ::= { enterprises 23528 }

We'll give @ the name laddieGroup to this module and define it as having
© the value of 23528 under enterprises, so the full OID looks like this:

.1.3.6.1.4.1.23528

The funny-looking string in the LAST-UPDATED and REVISION lines is a time
stamp specifying the year, month, day, hour, and minute of the last change
or revision. The Zstands for GMT (Greenwich Mean Time), sometimes
called Zulu Time. The hours and minutes are generally zeros, because no one
really cares what hour and minute a revision was made. The @ number
“200702220000Z” means February 22, 2007. With separators, it would look
like this: 2007-02-22 00:00.

-- MIBs are defined here:
laddieMgmt OBJECT IDENTIFIER ::= { laddieGroup 1 }

248 Chapter 14
No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

This is where we’ll anchor the LAD-MIB we’ll be defining in the next
section.

-- Products are registered here:
laddieProducts OBJECT IDENTIFIER ::= { laddieGroup 2 }
laddieAppliance OBJECT IDENTIFIER ::= { laddieProducts 1 }

The laddieProducts section is where we defined the OIDs that identify
our products (or entire product lines, if you’re thinking really big). We have
defined an OID for our Laddie appliance here, and we’ll be setting sysObjectID
in MIB-22 to this value on our appliances. This will allow someone polling the
box with an SNMP utility like snmpget to determine that this box is a Laddie
appliance. Large corporations may put the OIDs that identify all their products
into a single file. Cisco, for example, has a CISCO-PRODUCTS file where it
gathers all these OIDs. For now, Laddie only has a single product OID, so we
won’t go to this trouble.

END

Here’s that END we were looking for. This is the end of the LADDIE-SMI-
MIB.txt file and wraps up our discussion of it.

Creating the LAD-MIB

In this section, we’ll create our appliance MIB. Refer to the illustration of the
LAD-MIB structure in Figure 14-2 for a better idea of how the MIB compo-
nents interrelate. It may be helpful to refer to this picture as you follow along
with the development of the MIB file.

The LAD-MIB is divided into three main sections:

¢ ladTraps, containing definitions of traps

¢ ladTrapInfo, containing definitions of information objects sent in traps
¢ ladSystem, containing definitions of pollable objects
Let’s start the detailed walk-through. Again, we’ll be showing one or

more lines followed by a discussion of what we’ve shown.
We'll start with the BEGIN statement and the definition of our MIB name:

LAD-MIB DEFINITIONS ::= BEGIN

Hopefully this looks familiar. If not, take another look at the beginning
of the LADDIE-GROUP-SMI.txt file. The BEGIN line says we are starting the
definition of the LAD-MIB, which is the name we gave the MIB for our
appliance.

2You can find sysObjectID defined in the SNMPv2-MIB.txt file, which is included with the Net-
SNMP package.

Designing an SNMP MIB 249
No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

ladProject

ladTraps ladTrapInfo
ladAlarm ladTestAlarm ladTrapZonelId ladTrapZoneName
ladSystem
ladSystemScalars ladSystemTables
ladVersion ladNumberOfZones ladAlarmTable
ladAlarmEntry
- ladAlarmZoneId
- ladAlarmZoneName
- ladAlarmEnable
- ladAlarmLatching
- ladAlarmState
- ladAlarmCount

Figure 14-2: LAD-MIB Structure

Next, we’ll import the externally defined types and macros that we will
be using from other files:

IMPORTS
NOTIFICATION-TYPE,
MODULE-IDENTITY,
OBJECT-TYPE,
Counter32,
Integer32,

Gauge32
o FROM SNMPv2-SMI
DisplayString,
TruthValue
e FROM SNMPv2-TC
© laddieMgmt
FROM LADDIE-GROUP-SMI

The first set comes from @ SNMPv2-SMI just like in the LADDIE-GROUP-
SMI.txt file we covered in the previous section.

The next set comes from @& SNMPv2-TC. The letters 7C stand for textual
conventions. SNMPv2-TC is basically a file that defines new, commonly used
object types.

The © laddieMgmt OID from the LADDIE-GROUP-SMI.txt file will be
our starting point in the overall namespace for our appliance MIB. We’ll
use laddieMgmt as our link to the overall namespace by defining the module in
this group below laddieMgmt in the code portion of the “Module Definition”
section next.

250 Chapter 14
No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

The SNMPv2-SMI and SNMPv2-TC MIB definitions are supplied with the
Net-SNMP package. When you installed Net-SNMP on your system in the
Chapter 13, these files were probably put into either /usr/share/snmp/mibs
or /usr/local/share/snmp/mibs. Look for the files SNMPv2-SMI.txt and
SNMPv2-TC.txt there.

Module Definition

We start by defining a module, ladProject, to contain our appliance MIB.
This is where we put the copyright, revision history, contact information,
and a general description of what the module contains.

ladProject MODULE-IDENTITY
LAST-UPDATED "200505280000Z"
ORGANIZATION "The Laddie Group"
CONTACT-INFO
"Here we put contact information."

DESCRIPTION
"The LAD MIB.

Copyright 2005 Laddie Group
A1l rights reserved.

This MIB module specifies the pollable and set-able
objects in the Linux Appliance Design demonstration
application: an alarm system monitor. This MIB also
describes traps associated with this demo appliance.”

o REVISION "200505280000Z"
DESCRIPTION
" 1.1 - Traps added along with trapInfo section.”

e REVISION "200502220000Z"
DESCRIPTION

" 1.0 - Initial Document."

::= { laddieMgmt® 1 }

The MODULE-IDENTITY section is like one long sentence. The first and last
lines, taken together, say that ladProject is a module defined directly below ©
laddieMgmt in the namespace and that its OID is laddieMgmt.1. Here’s the OID
in numeric form:

.1.3.6.1.4.1.3382.1

The rest of the MODULE-IDENTITY section should be fairly clear after our
discussion of the LADDIE-SMI in the previous section. You may notice that we
have two REVISION clauses listed at lines @ and . If you make changes to

Designing an SNMP MIB 251
No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

your MIB in the future, you will need to add revision clauses to explain what
you did. The convention is to keep revision clauses in reverse-chronological
order (that is, the most recent change appears at the top). This does not
mean you should feel free to make any changes you want to your MIB; you
will just be creating confusion for your customers if you change anything
(names, OIDs, and so on) that is already defined in your MIB. You may,
however, find it necessary to enhance your MIB with new information
required by customer demand or to help manage new features you’ll be
adding to your appliance. You may add new structure, but do not change
existing structure!

Clearly your LAST-UPDATED time stamp will match that of your most recent
revision clause, as ours does above.

The next set of lines defines the sections we will be fleshing out later:

-- top level MIB headings of the LAD MIB

©® ladTraps OBJECT IDENTIFIER ::= { ladProject 0 }
ladSystem OBJECT IDENTIFIER ::= { ladProject 1 }
ladTrapInfo OBJECT IDENTIFIER ::= { ladProject 2 }

Putting all of the section heading OIDs together at the top, as we have
done here, is a stylistic choice we feel can help communicate the structure
of the rest of the MIB. We’re making it clear that there will be a section for
defining traps, one for system information (where we will be putting our
Alarm Table), and another section for the non-pollable information we will
only send along with traps.

Numbering in SNMP usually begins with 1, not zero, but you may have
noticed that we gave @ the ladTraps section above the OID of ladProject.o.
Our reason for doing this dates back to the early days of SNMPv2 (SNMP
version 2), when compatibility with SNMPvl (SNMP version 1) was being
crafted. For more details, you may want to read RFC 1908: Coexistence between
Version 1 and Version 2 of the Internet-Standard Network Management Framework.

We’ll continue our review of our MIB with the ladSystem section and leave
the traps for later. That will allow us to immediately follow our discussion
of the trap with the ladTrapInfo section.

-- LAD System Information
ladSystemScalars OBJECT IDENTIFIER ::= { ladSystem 1 }
ladSystemTables OBJECT IDENTIFIER ::= { ladSystem 2 }

Here we further subdivide the ladSystem section into a section for scalars
and another for tables. Scalars are just objects that are not columns in tables.
Experience has taught us to keep scalars and tables separate to avoid having
scalars sprinkled around between tables as the MIB evolves over time.

252 Chapter 14
No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

Version and Number of Zones

Next, we’ll define some scalars in our ladSystemScalars section.

ladVersion OBJECT-TYPE

SYNTAX DisplayString
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"This string represents the version of the LAD Alarm
appliance software."
::= { ladSystemScalars 1 }

ladNumberOfZones OBJECT-TYPE

SYNTAX Integer32 (1..128)
MAX-ACCESS read-only

STATUS current
DESCRIPTION

"The number of alarm zones, therefore the number of rows
in the ladAlarmTable."
::= { ladSystemScalars 2 }

Here we have defined two objects (note the 0BJECT-TYPE keyword):
ladVersion and ladNumberOfZones. The SYNTAX clause tells us that ladversion is
a DisplayString, meaning it is represented as a string of displayable (printable)
characters, and ladNumberOfZones is a 32-bit integer with values ranging from
1 through 128. If you refer back to our IMPORT section at the start of this
MIB, you will see that both of these syntaxes were imported from SNMPv2-
TG, the textual conventions file.

The MAX-ACCESS clause tells us that each of these objects is read-only.
Some objects we will encounter later in this MIB will have read-write, not-
accessible, or accessible-for-notify access. Read-wrile just means you can read
the object’s value as well as write a new value. You can’t read or write objects
defined as not-accessible, but you might use one as an index into a table.
Accessible-for-notify is how we define information sent with a trap but that
otherwise is not pollable.

One point to keep in mind here is that the MAX-ACCESS clause defines
maximum access, not actual access. You will never be able to write an object
that has max-access read-only, but you may not be able to write to an object
whose max-access is read-write, either. The ability to write to the object may
be restricted by other factors. For example, in Net-SNMP, you may not write
to any object that has a value set in the snmpd.conf file, regardless of what
the MAX-ACCESS clause indicates in the MIB file.

Designing an SNMP MIB 253
No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

The STATUS clause indicates that both objects are current, that is, they
are are valid objects in this version of the MIB. To remove an object from a
MIB, you would make its status deprecated. This is a brand new MIB, so
nothing is deprecated.

The DESCRIPTION clause is intended specifically for the human
reader of the MIB, rather than a computer program. It should contain a
brief description of the object. It might also contain possible uses of the
value and any caveats the reader may need to know.

The last line of each section defines the OID. The ::= means is defined as.
Each OID is described as appending to a previous OID. The ladNumberOfZones
object’s OID is the same as ladSystemScalars with a 2 appended to the end. Its
whole numeric OID looks like this:

.1.3.6.1.4.1.23528.1.1.1.1.2

The first six numbers in this string are from standard MIBs and can be
read like this:

.iso(1).0org(3).dod(6).internet(1).private(4).enterprises(1)

The next number is where IANA gave us our own enterprise number,
23528. So after enterprises, the rest of the OID continues

laddieGroup.laddieMgmt.ladProject.ladSystem.ladSystemScalars.ladNumberOfZones

See Figure 14-3 for the correspondence between each number in the
OID and its descriptive name.

.1.3.6.1.4.1.25528.1.1.1.1.2
AL AAA A

iso
org
dod

internet

private

enterprises

laddieGroup
laddieMgmt

ladProject
ladSystem

ladSystemScalars
ladNumberOfZones

Figure 14-3: OID for ladNumber0fZones

No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce

www.it-ebooks.info

http://www.it-ebooks.info/

The Alarm Table

Now for the core of our MIB: the Alarm Table. This is the table we displayed
at the beginning of this chapter, showing the zones and alarm states. Here is
how we define this table in our MIB:

ladAlarmTable OBJECT-TYPE
SYNTAX SEQUENCE OF LadAlarmEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"A table of alarms."
::= { ladSystemTables 1 }

ladAlarmEntry OBJECT-TYPE
SYNTAX LadAlarmEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"An entry in the Alarm Table."
INDEX { ladAlarmZoneld }
::= { ladAlarmTable 1 }

LadAlarmEntry ::=
SEQUENCE {

ladAlarmZoneId Integer32,
ladAlarmZoneName DisplayString,
ladAlarmEnable TruthValue,
ladAlarmLatching TruthValue,
ladAlarmState TruthValue,
ladAlarmCount Counter32

}

Notice that we have three blocks of definition above: ladAlarmTable,
ladAlarmEntry, and LadAlarmEntry. SNMP requires that all object names begin
with a lowercase letter (hence, ladAlarmTable, ladAlarmEntry). However,
LadAlarmEntry is not an object, but rather a definition of the syntax of the table
entry. It is common practice to define the syntax of a table with the same name
as the table entry, but starting with an uppercase letter (IadAlarmEntry versus
LadAlarmEntry). The syntax of ladAlarmTableEntry is a sequence (list or array)
of other object types which are the columns in the table.

After the definition of the table entry syntax, we’ll list the detailed
definitions of each of the columns listed in the SEQUENCE clause:

ladAlarmZoneld OBJECT-TYPE
SYNTAX Integer32 (1..128)
MAX-ACCESS not-accessible

Designing an SNMP MIB 255
No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

STATUS current
DESCRIPTION

"The index (table row number) of this zone."
::= { ladAlarmEntry 1 }

ladAlarmZoneName OBJECT-TYPE
SYNTAX DisplayString
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"A user-configured name for this zone."
::= { ladAlarmEntry 2 }

ladAlarmEnable OBJECT-TYPE

SYNTAX TruthValue

MAX-ACCESS read-write

STATUS current

DESCRIPTION
"Set to true to enable this alarm input.
Set to false to disable this alarm input."”

::= { ladAlarmEntry 3 }

ladAlarmLatching OBJECT-TYPE

SYNTAX TruthValue

MAX-ACCESS read-write

STATUS current

DESCRIPTION
"If set to to True, this alarm will persist after
the alarm pin returns to its normal state. Latching
alarms must be reset by clearing the alarm state.”

::= { ladAlarmEntry 4 }

ladAlarmState OBJECT-TYPE

SYNTAX TruthValue

MAX-ACCESS read-write

STATUS current

DESCRIPTION
"Alarm state. The (possibly latched) state of the
alarm for this input. The user sets this field
to false to clear a latched alarm."

::= { ladAlarmEntry 5 }

ladAlarmCount OBJECT-TYPE

SYNTAX Counter32

MAX-ACCESS read-only

STATUS current

DESCRIPTION
"A count of the number of times the
alarm has triggered."”

::= { ladAlarmEntry 6 }

256 Chapter 14
No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

The MAX-ACCESS clause in each of these objects defines how it may be
used. We have made ladAlarmZoneld not-accessible because we will only be
using it to index into the table to read or write the other values. Notice
that ladAlarmEnable, ladAlarmLatching, and ladAlarmState are read-write, but
ladAlarmZoneName is read-only. We wanted to be able to use SNMP commands
to enable or disable alarms, change whether or not they latch, and clear alarms
by setting their state to false. We felt, however, that changing the name of a
zone is a static configuration that should be done through another interface,
like the web interface or the CLI. The ladAlarmCount is a history of the number
of times the alarm has triggered, so we have made this read-only.

There is nothing mandatory about the MAX-ACCESS choices we have made
here. You might well disagree with some of these choices and design your
MIB differently. Look at the SNMP display of the Zone structure in the
section “Our Goal” on page 244. Had we defined our ladAlarmZoneId as
readable, you would see the row number at the start of each row right
before the zone name. We also could have defined the count field as
writable so you could reset it to zero periodically; this would allow you to
see how many times the alarm has triggered over a period without having
to save the old value and subtract it from the new one. These choices
belong to the designer.

The Traps

Now let’s leave the Alarm Table and move on to our traps:

ladAlarm NOTIFICATION-TYPE
OBJECTS { ladTrapZoneld, ladTrapZoneName }
STATUS current
DESCRIPTION
" Trap issued when an alarm is triggered.
::= { ladTraps 1 }

ladAlarmClear NOTIFICATION-TYPE
STATUS current
DESCRIPTION
" Trap issued when last raised alarm returns to normal state.
::= { ladTraps 2 }

We have included two traps: one to raise a red flag when an intrusion has
been detected and the other to let you know when everything has returned
to normal. These look a lot like the 0BJECT-TYPE definitions above, but we use
NOTIFICATION-TYPE for traps.

Designing an SNMP MIB 257

No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce

www.it-ebooks.info

http://www.it-ebooks.info/

The OBJECTS clause in the ladAlarm trap definition tells what other
information will accompany the trap. This is often called the varbind list,
for variable bindings. These variables, which explain why the trap was sent,
are bound to the trap when it is sent.

ladTrapZoneId OBJECT-TYPE

SYNTAX Integer32

MAX-ACCESS accessible-for-notify
STATUS current

DESCRIPTION

"This is the ID (row number in the ladAlarmTable) of the
zone generating the alarm.”
::= { ladTrapInfo 1 }

ladTrapZoneName OBJECT-TYPE

SYNTAX DisplayString
MAX-ACCESS accessible-for-notify
STATUS current

DESCRIPTION

"This is the name of the zone generating the alarm."
::= { ladTrapInfo 2 }

These are the definitions of the objects in our varbind list. The MAX-ACCESS
of these is set to accessible-for-notify, meaning they cannot be polled; they
merely define the objects for the benefit of the trap receiver. These objects
only have meaning when attached to a trap.

Early SNMP documents (RFCs) were created with concern for keeping
SNMP traffic to a minimum to prevent burdening networks with extra traffic.
Traps were intended just to draw attention to a possible problem; you were
supposed to poll the device for specifics about what was wrong. Today,
however, some network administrators use trap logs as a history of what’s
been happening on the device. They want all pertinent information sent
with the trap and logged by the trap-receiving software.

You’ll also want to take care that your device doesn’t become too chatty
with its traps. Laddie is unlikely to have this problem, but if you are building
an appliance intended to sit on a major corporate, ISP, or carrier network,
you had better consider this. If you check for error conditions every minute
and generate a trap each time some measure is over an acceptable threshold,
an appliance that notices an error on Friday night will be able to send about
3,500 traps by Monday morning, all reporting the same problem. Any other
problem from a different device will be lost in the jabber. You may want to
just report the problem once when it is first noticed, then send another trap
to indicate when the problem is corrected.

The argument in favor of sending lots of traps is that SNMP is unreliable
by design. It uses UDP packets to report problems with the assumption that
any problem of importance will be noticed more than once, so the loss of a

258 Chapter 14
No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

single trap will not be a problem. If you can’t be sure your trap was received,
you had better keep sending it until someone notices, right? Well, that’s one
approach. Another is just to use informs instead of traps. Informs became
available with SNMPv2 and are essentially traps with some built-in reliability.
Informs expect a confirmation message from the receiver and will retry some
number of times if they don’t see the confirm. If this isn’t good enough for
you, then you might want to consider some reduced frequency schedule for
resending your trap if your device has not received some attention.

END

Last but not least, there’s the END marker that signals the end of the MIB.

Validating Your MIB

Now that the MIB has been written, we need to test it for validity. The MIB
must be not only human-readable, but machine parse-able. The syntax of a
MIB must be as correct as the syntax of a computer program, or the applica-
tions using the MIB will be unable to interpret it. Lucky for us, multiple free
MIB validators are available online. All you need is a browser and your MIB
files. There’s always the risk that any online resources discussed here may
be unavailable by the time you read this book, but the one we will be using
here is on the SimpleWeb website, shown in Figure 14-4. You can find it at
http://wwwsnmp.cs.utwente.nl/ietf/mibs/validate. It has been around
since 1997 and is run by the Universiteit Twente in the Netherlands.

SimpleWeb MIB module validation

Validate a MIB module by uploading your file(s)

Enter the local file name of your MIB module:
IjrmijAD—MlB.rxt Browse...

Enter local file names of any imported MIB modules which are not already
in the standard search path (**):

/ tmpl/ LADDIE-GROUP-SMI.txt Browse...
Browse...
Browse...
Browse...
Browse...
Severity level: |3 =] Submit Reset
Importentries: (5 -

Don't use built-in

search path for Imports: r

Figure 14-4: The SimpleWeb MIB validator

Another free validator we have used is the one provided by Muonics at
http://www.muonics.com/Tools/smicheck.php.

Make sure you do not skip the validation step! If you don’t get the syntax
of your MIB exactly right, nothing will work for you from here on.

Designing an SNMP MIB 259
No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

260

Summary

In this chapter you have seen how to apply for an enterprise number, develop
an MIB, and validate that MIB. The hard part is trying to design the MIB
structure to accommodate future changes. Our task for Laddie has been
fairly simple because our whole MIB revolves around a simple RTA table,
and the MIB is unlikely to evolve much over time. A designer working on

a MIB for a real appliance doesn’t have it so easy. We suggest thinking about
the basic types of information you may need to have, regardless of what
direction your product takes in the future. For example, you may have:

Configuration information
Statistics

Historical information
Miscellaneous run-time states
Performance measures
Usage levels

Service or resource saturation levels

This may guide you in structuring your MIB to make your life easier as

future demands are made on you and your MIB.

Chapter 14

No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce

www.it-ebooks.info

http://www.it-ebooks.info/

IMPLEMENTING YOUR
SNMP MIB

In this chapter we will implement the MIB
we developed in Chapter 14 by writing an
extension to the Net-SNMP agent to add

support for the LAD-MIB. We’ll cover the
following topics:

¢ The Net-SNMP Agent

e The MIB skeleton: mib2c

¢ The header file: ladProject.h
¢ The code file: ladProject.c

e Makefile revisited

¢ Debugging

o Traps

Remember that our goal is to implement a working SNMP agent that
supports our MIB. When queried for the objects we have defined, the agent
will respond with the current values of those objects. We will also be able to
assign values to the objects we defined with read-write access. For example,

No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

we will be able to use the snmptable command to retrieve values from the
Alarm table, as shown below. Don’t be too concerned with the format of this
command (though if you read Chapter 13, you should be familiar with it).
The snmptable command retrieves the ladAlarmTable from a system called
myappliance using SNMPv2 and the community name public; then it displays
the table row by row to make it easy to read.

$ snmptable -c public -v2c myappliance ladAlarmTable
SNMP table: LAD-MIB::ladAlarmTable

ladAlarmZoneName ladAlarmEnable ladAlarmlLatching ladAlarmState ladAlarmCount

Garage Door true 0 0 7
Motion Detector true 0 0 2281
Front Door true 0 0 0
Kitchen Window true 0 0 0
Refrigerator true true 0 0

The SNMP commands will allow remote access to information kept
within the ladd daemon’s internal data structures. As shown in Figure 15-1,
SNMP is used between the remote system and the SNMP agent. The agent
then uses PostgreSQL to request the information from RTA running within
the ladd daemon.

SNMP Requests PostgreSQL
on UDP port 161 SNMP Protocol
— ~«———— laddie
gent

Figure 15-1: SNMP agent as go-between

NOTE You will notice some differences in file placement in this chapter compared with
Chapter 13, because here we are designing the agent for the appliance itself. For
clarity, we will be keeping our files under /opt rather than distributing them
around the filesystem in their normal default locations.

The Net-SNMP Agent

We’ll be extending the Net-SNMP agent, so we’ll need to download the
source tarball, which we can find at http://net-snmp.sourceforge.net. As of
this writing, version 5.2.1 is current, so we’ll retrieve net-snmp-5.2.1.tar.gz.
No doubt by the time you read this, Net-SNMP will be several releases ahead,
but you can just grab the most current version. The process for extending
the agent that we will be describing in this chapter hasn’t changed signifi-
cantly in all the time the we have been working with it (that is, since at least
UCD-SNMP 4.1).

Our goal is to set up a way of building our agent that will make it easy to
download a new release of Net-SNMP in the future and just drop it into a
build. The plan is to create a Makefile that will untar Net-SNMP, copy the
agent extensions into the right location in the build tree, configure the
Net-SNMP agent to include the extensions, and then build it. To upgrade to

262 Chapter 15
No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

anewer version of Net-SNMP, all you need to do is drop a new version of the
Net-SNMP source tarball into the directory and change the one line of the
Makefile that defines the Net-SNMP version. We don’t have our extension
ready yet, so let’s just start by untarring and building the vanilla agent. This
will allow us to test the process before we complicate things with our MIB.
The following is a simplified version of the Makefile you’ll find on the CD
that comes with this book:

NETSNMP_VERSION
BUILD DIR

5.2.1
./net-snmp-$(NETSNMP_VERSION)

#

Targets

#

all: clean setup config build

clean:
rm -rf $(BUILD DIR)
m -xf /oft/snmp/*
setup:
tar zxf net-snmp-$(NETSNMP_VERSION).tar.gz
config:
cd $(BUILD DIR); \
./configure --prefix=/opt/snmp <../configure.input; \
ad ..
build:
cd $(BUILD DIR); \
make
install:
cd $(BUILD DIR); \
install

If you are using a newer version of Net-SNMP, just drop your tarball into
the same directory as the Makefile, change @ the NETSNMP_VERSION line to match
your version, and continue with the instructions below.

We’ll put the Makefile and configure.input files into the same directory
as the tarball we just downloaded. Configure.input contains the interactive
answers expected by the configure step. The -prefix option tells configure
to use the /opt/snmp prefix to our file locations. Installation of Net-SNMP
follows the familiar

./configure
make
make install

steps of most Linux source packages, though we will let the Makefile do this
for us.

Implementing Your SNMP MIB 263

No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce

www.it-ebooks.info

http://www.it-ebooks.info/

Here’s what our configure.input looks like:

<blank line>

2

Not Set

Not Set
/var/log/snmpd.log
/var/net-snmp

The first line must be blank because the configure script asks us to hit
ENTER when we are ready to enter the input.

The 2 selects SNMPv2 as our default version of SNMP. This doesn’t really
apply to the agent because it takes its cue from the requests received, but the
Net-SNMP package contains the source for management applications like
snmpget and snmpwalk, as well.

The two Not Set lines are for system contact and system location (objects
available in MIB-2). We will be overriding these values in our agent config-
uration file, so we’ll just set these objects to the string Not Set.

The next two lines are the default log file and persistent storage locations.

Give this a try by typing make. It will build the Net-SNMP applications
(snmpget, snmpwalk, etc.), the libraries, and the agent. If it doesn’t work, try
executing the steps by hand, without the Makefile. First untar the tarball and
drop down into the directory it generates. Then run ./configure and answer
the questions as we have laid them out in configure.input, above. Check the
output from configure to see if you are missing something, like a library you
need to install. If you don’t see anything wrong, type make (in the net-
snmp.5.2.1 directory) and watch for errors. You can’t move on until this
works.

Once you get make working, install Net-SNMP onto your development
system. As root, type

make install

This will install files in several directories under /opt/snmp.

$ 1s /opt/snmp
bin/ include/ 1ib/ man/ sbin/ share/

The /opt/snmp directory tree is our staging area for the files we will need
to copy to our appliance to get the agent working there. We won’t need the
include or man directories on our appliance.

We may also decide to remove client applications like snmpget and
snmpset from the bin directory on our appliance, but be sure not to remove
snmptrap, since we will be using that to send traps from our appliance. The
other commands may come in handy if we ever need to log in to the box for
debugging or if we want to invoke them from the CLI or web interface for
diagnostic purposes, but they are not necessary for the functioning of the
agent or the sending of traps.

264 Chapter 15
No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

The agent itself, snmpd, will be in the /opt/snmp/sbin directory, along
with snmptrapd. We can remove snmptrapd, because it will not be needed
on our appliance. You should keep it on your development system, though—
it will come in handy when you want to test your ability to send traps.

MIB files reside in /opt/snmp/share/snmp/mibs. They are not strictly
necessary for the appliance, but there are reasons we may want to include
them. First, we may want to simplify creation of the filters used to send traps
(see the example on logmuxd and SNMP traps in Chapter 7). Second, we
may want to deliver them on the appliance for use by the customer’s network
management software.

If we want to use the human-readable names for numeric object identifiers
(OIDs) in logmuxd filters, we will have to tell the snmptrap command where
to find these MIB files. We can either add these options to the command line
used to invoke snmptrap:

-m ALL -M /opt/snmp/share/snmp/mibs

or make these environment variables available to it:

export MIBS=ALL
export MIBDIRS=/opt/snmp/share/snmp/mibs

This tells the SNMP commands (snmpget, snmpset, snmpwalk, snmptrap, and
so on) to use all the MIB files found in the /opt/snmp/share/snmp/mibs
directory.

Although you may be removing things from this staging area before
installing the software on your appliance, let’s not do that quite yet. We’ll
need some of what’s there for creating our MIB extension. In fact, you
should add /opt/snmp/bin to your environment variable, like so:

export PATH=/opt/snmp/bin:$PATH

Now it’s time to move on and create the agent extension and implement
the MIB.

The MIB Skeleton: mib2c¢

NOTE

Net-SNMP kindly provides a utility that can read an MIB file and produce
skeleton code for an agent extension. Later in this chapter, we’ll show you
how to flesh out this skeleton into a complete implementation of your MIB.

Net-SNMP provides multiple output code styles for mib2¢; we will be using the older
UCD-SNMP code style. The newer, so-called “MIB for Dummies” style is not what this
chapter describes. We have chosen to use the older style because it’s sufficient for our
needs (and it’s also where our experience lies).

Before we can run mib2c, you’ll need to install the SNMP Perl module,
which is provided in the Net-SNMP tarball. When you ran make earlier, it
decompressed this tarball and created the directory netsnmp-5.2.1 (or what-
ever version you used). Drop down into this directory and then to perl/SNMP.

Implementing Your SNMP MIB 265

No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce

www.it-ebooks.info

http://www.it-ebooks.info/

266

Chapter 15

There you’ll find a README file to explain how to build and install the SNMP
Perl module. Alternatively, you can install the libsnmp-perl package if one is
provided by your Linux distribution.

We also need to make our MIB files (LADDIE-GROUP-SMI.txt and
LAD-MIB.txt, which we created in Chapter 12) available to mib2c by copy-
ing them into the directory containing our other MIBs (/opt/snmp/share/
snmp/mibs). Or, if you prefer, you can add a period (.) to your MIBDIRS list
like this:

export MIBDIRS=.:/opt/snmp/share/snmp/mibs

Now let’s run mib2c to generate the skeleton code. You’ll want to be in
the same directory as your MIB files if you added the . to your directory path.
Please note that we provide mib2c with a MIB module or OID, not the name
of the MIB file.

$ mib2c LAD-MIB:ladProject

writing to -

mib2c has multiple configuration files depending on the type of
code you need to write. You must pick one depending on your need.

You requested mib2c to be run on the following part of the MIB tree:

0ID: ladProject

numeric translation: .1.3.6.1.4.1.23528.1.1
number of scalars within: 4

number of tables within: 1

number of notifications within: 2

First, do you want to generate code that is compatible with the
ucd-snmp 4.X line of code, or code for the newer Net-SNMP 5.X code
base (which provides a much greater choice of APIs to pick from):

1) ucd-snmp style code
2) Net-SNMP style code

Select your choice : 1
>k 3k ok 3k 3k sk ok ok ok ok ok ok 3k ok 3k sk ok sk sk sk ok ok ok ok ok Sk ok 3k 3k sk sk ok ok ok ok ok ok >k 3k sk ok sk sk sk ok ok ok ok ok sk ok k sk ok sk ok ok ok >k k ok >k sk sk ok sk dkk ok

GENERATING CODE FOR THE 4.X LINE OF CODE (THE OLDER API)

>k 3k ok 3k 3k sk sk ok ok ok ok ok 3k ok 3k sk ok sk sk sk ok ok ok ok ok sk ok 3k sk sk sk ok ok ok ok >k ok ok 3k sk ok sk sk sk ok ok ok ok ok sk ok k sk ok sk ok ok ok >k k ok >k sk sk ok sk kk ok

using the mib2c.old-api.conf configuration file to generate your code.
writing to ladProject.h
writing to ladProject.c

>k 3k ok 3k 3k sk sk ok okook ok ok 3k ok 3k sk ok sk sk sk ok ok ok ok ok sk ok 3k sk sk ok ok ok ok ok ok ok >k 3k sk ok sk sk sk ok ok ok ok ok sk ok k sk ok sk ok ok ok >k k ok >k sk sk ok sk kok ok

* NOTE WELL: The code generated by mib2c is only a template. *YOU* *
* must fill in the code before it'll work most of the time. In many *
* cases, spots that MUST be edited within the files are marked with *
* /* XXX */ or /* TODO */ comments. *
>k 3k ok 3k 3k sk sk ok ok ok ok ok sk ok sk sk ok sk sk sk ok ok ok ok ok sk ok 3k sk sk sk ok ok ok ok >k ok >k 3k sk ok sk sk sk ok ok ok ok ok sk ok k 3k ok sk ok ok ok >k k ok >k sk sk ok sk kk k
running indent on ladProject.c

running indent on ladProject.h

No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce

www.it-ebooks.info

http://www.it-ebooks.info/

In the middle of all this, you will see the following at line @:

1) ucd-snmp style code
2) Net-SNMP style code

Select your choice : 1

We use option one because that’s where we have experience. You may
want to try the newer and more flexible Net-SNMP type, but we don’t need
that flexibility for what we’re doing here.

The Header File: ladProject.h

Two files have been generated for us: ladProject.c and ladProject.h. The
header file, ladProject.h, is short and sweet, and we won’t need to bother
ourselves with it further. Here’s what it looks like:

/*

* Note: this file originally auto-generated by mib2c using

* : mib2c.old-api.conf,v 1.4 2004/07/28 08:04:58 dtsi2 Exp $
*/

#ifndef LADPROJECT_H
#define LADPROJECT_H

/*
* function declarations
*/
void init_ladProject(void);

FindVarMethod var_ladProject;
FindVarMethod var_ladAlarmTable;
WriteMethod write_ladAlarmEnable;
WriteMethod write_ladAlarmLatching;
WriteMethod write_ladAlarmState;

#endif /* LADPROJECT_H */

These are prototypes for routines generated for us in the code file,
ladProject.c.

The Code File: ladProject.c

The ladProject.c file is the one we’ll be modifying. Rather than describing
the generated code and then making a second pass through it to add our
modifications, we’ll just step through it, making our changes as we go. We’ll
distinguish the code we add from what mib2c generated using bold text.
Specifically, we need to make the following modifications to the generated
skeleton code:

1. Include the header for libpq (the PostgreSQL library).

2. Provide a function to connect to RTA in the ladd daemon.

Implementing Your SNMP MIB 267
No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

3. Provide functions to read and write RTA tables over the connection to
the ladd daemon.

Provide code to read each scalar in the MIB.
5. Provide code to read each table object in the ladAlarmTable.

Provide a write function for each writable object in the MIB.

Includes

We begin by including the necessary header files. Remember, we will be
marking our additions and modifications in bold.

/*

* Note: this file originally auto-generated by mib2c using

* : mib2c.old-api.conf,v 1.4 2004/07/28 08:04:58 dtsi2 Exp $
*/

#include <net-snmp/net-snmp-config.h>
#include <net-snmp/net-snmp-includes.h>
#include <net-snmp/agent/net-snmp-agent-includes.h>

® #include "pgsql/libpq-fe.h" /* 1libpq header file */
#include "ladProject.h"

Here we have accomplished our first goal by including @ the header file
that defines the libpq PostgreSQL API.

The Base OID

In this code, the comment generated by mib2c basically says it all. This is the
base OID for all the objects defined in our MIB.

* ladProject_variables_oid:
this is the top level oid that we want to register under. This
is essentially a prefix, with the suffix appearing in the

* variable below.

*/

oid ladProject_variables oid[] =
{ 1, 3, 6, 1, 4, 1, 23528, 1, 1 };

MIB Objects Definitions

The next bit of code defines all the leaf objects in our MIB, by which we mean
all the objects for which we will be returning values. A define is generated for
each of these leaf objects to give a unique number to each object we will be
processing. The name of the define is an all-uppercase version of the object
name from the MIB file; for example, ladVersion becomes LADVERSION.

268 Chapter 15
No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

Each object also has its own entry in the ladProject_variables table
(shown below), which provides the following information for the object:

¢ A unique identifier to be used later in our case statements (the define
name we just discussed)

¢ The data type
¢ Whether it is read-only or read-write
¢ The function that will be called to read the object’s value

¢ The OID suffix, which, when appended to the base OID, will give the
complete OID of the object

We find the raw output of mib2c to be a little hard to read because the
defines for the unique identifier values are mixed in with the table row def-
initions. In an attempt to make this more accessible, we have rearranged it
a bit to put all the defines together and line everything up in columns. Unfor-
tunately, mib2c has not generated perfect code for us, but we’ll take advantage
of this to give a lesson on what should have been generated. Tools like mib2c
are great time savers, but you should always be aware of what should have been
generated and remember to check the output. Ultimately, you will be respon-
sible for the code working properly. First, let’s take a look at the code, and
then we’ll discuss the problems we see.

#define LADVERSION
#define LADNUMBEROFZONES
#define LADTRAPZONEID
#define LADTRAPZONENAME
#define LADALARMZONEID
#define LADALARMZONENAME
#define LADALARMENABLE
#define LADALARMLATCHING
#define LADALARMSTATE
#define LADALARMCOUNT

O oo~NOTUVT B~ WN B

=
o

/*

* variable4 ladProject_variables:

* this variable defines function callbacks and type return information
* for the mib section

*/

struct variable4 ladProject_variables[] = {

/*
* magic number, variable type, ro/rw , callback fn, L, oidsuffix
*/
{LADVERSION, ASN_OCTET STR, RONLY, var ladProject, 1, {1}},
{LADNUMBEROFZONES, ASN_INTEGER, RONLY, var ladProject, 1, {2}},

© {LADTRAPZONEID, ASN_INTEGER, RONLY, var ladProject, 1, {1}},

© {LADTRAPZONENAME, ASN OCTET STR, RONLY, var ladProject, 1, {2}},

{LADALARMZONEID, ~ ASN_INTEGER, RONLY, var_ladAlarmTable, 3, {1, 1, 1}},
{LADALARMZONENAME, ASN_OCTET STR, RONLY, var_ladAlarmTable, 3, {1, 1, 2}},
{LADALARMENABLE, ~ ASN_INTEGER, RWRITE, var_ladAlarmTable, 3, {1, 1, 3}},

Implementing Your SNMP MIB 269
No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

{LADALARMLATCHING, ASN_INTEGER, RWRITE, var_ladAlarmTable, 3, {1, 1, 4}},
{LADALARMSTATE, ~ ASN_INTEGER, RWRITE, var_ladAlarmTable, 3, {1, 1, 5}},
{LADALARMCOUNT, ~ ASN_COUNTER, RONLY, var_ladAlarmTable, 3, {1, 1, 6}},

};

/*
* (L = length of the oidsuffix)
*/

The first problem above is that the generated code includes @
ladTrapZoneld and @ ladTrapZoneName as readable objects, but it shouldn’t.
These objects are only used in traps, and they are not readable or writable
by the agent, so we have no code to write for them and will not need to
indicate a callback for them here. We should remove these two lines.

Second, the OID suffix field is wrong for every object here. You append
this suffix to the base OID (ladProject_variables_oid, defined in the previous
section) to get the OID of the individual object. This is how we defined the
base OID:

oid ladProject_variables oid[] =
{ 1, 3, 6, 1, 4, 1, 23528, 1, 1 };

So, for example, the OID for ladAlarmState in the generated code
should be:

{ 1) 3) 6) 1) 4) 1) 23528) 1) 1} 1} 1) 5 };

Let’s see if this is right. We can check it by running snmptranslate.

$ snmptranslate -On LAD-MIB:ladAlarmState
.1.3.6.1.4.1.23528.1.1.1.2.1.1.5

That’s certainly not right. We’re missing two nodes from our OID
hierarchy. If you perform this snmptranslate test on each of the scalars in
the LAD-MIB, you’ll find they are all missing the numbers for ladSystem (1)
and ladSystemScalars (1). If you repeat the test for the table columns, you’ll
see that they are missing ladSystem (1) and ladSystemTables (2). This is like
missing a few directory levels from a file pathname.

Let’s fix this table before we move on. Here is the corrected code, with
the added numbers in bold:

struct variable7 ladProject variables[] = {

/*

* magic number, variable type, ro/rw , callback fn, L, oidsuffix
*/

{LADVERSION, ASN_OCTET STR, RONLY, var ladProject, 3, {1, 1, 1}},

{LADNUMBEROFZONES, ASN INTEGER, RONLY, var ladProject, 3, {1, 1, 2}},

270 Chapter 15
No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

{LADALARMZONEID, ~ ASN_INTEGER, RONLY, var ladAlarmTable, 5, {1, 2, 1, 1, 1}},
{LADALARMZONENAME, ASN OCTET STR, RONLY, var ladAlarmTable, 5, {1, 2, 1, 1, 2}},
{LADALARMENABLE, ~ ASN_INTEGER, RWRITE, var ladAlarmTable, 5, {1, 2, 1, 1, 3}},
{LADALARMLATCHING, ASN INTEGER, RWRITE, var ladAlarmTable, 5, {1, 2, 1, 1, 4}},
{LADALARMSTATE, ~ ASN_INTEGER, RWRITE, var ladAlarmTable, 5, {1, 2, 1, 1, 5}},
{LADALARMCOUNT, ~ ASN_COUNTER, ~RONLY, var ladAlarmTable, 5, {1, 2, 1, 1, 6}},

1N

That’s better. We’ve removed the objects from the trapInfo section,
corrected the OIDs, and corrected the length of the suffix. Note also that we
had to change the struct type we are using as a template for this array from
variable4 to variable7, because our OIDs are now longer. A few different
structs are provided by the Net-SNMP headers for different lengths of OIDs.
You don’t want to use excess memory, but you do need a struct long enough
for the longest suffix you will be defining. When we increased our suffix length
from three to five for our table objects, we exceeded the length of variables,
and the next longer one is variable7. You can find these structures defined in
var_struct.h in the directory include/net-snmp/agent, under the net-snmp-
5.2.1 directory. You can look here for what’s available in case you need an
even longer struct. See how variable7 is defined:

struct variable7 {

u_char magic; /* passed to function as a hint */
u_char type; /* type of variable */
u_short acl; /* access control list for variable */
FindVarMethod *findVar; /* function that finds variable */
u_char namelen; /* length of name below */

(1] oid name[7]; /* object identifier of variable */

};

Notice the length of @ the name field.

RTA Access Routines

Now we need to insert the functions we’ll be using to connect and communi-
cate with the ladd daemon: lad_connect(), query(), and update().

/* LAD-specific variables */

© PGconn *conn; /* holds database connection */
/
* Connect to the application
/
static
® int lad_connect (void)
{

conn = PQconnectdb("host=1ocalhost port=8888");

if (PQstatus(conn) == CONNECTION_BAD) {
DEBUGMSGTL(("LAD", "Connection to application failed.\n"));
DEBUGMSGTL(("LAD", "%s", PQerrorMessage(conn)));
PQfinish(conn);

Implementing Your SNMP MIB 7
No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

return (-1);

}
DEBUGMSGTL(("LAD", "Connection to application succeeded.\n"));

return (0);

We have defined @ a global variable to hold the handle for our connec-
tion to Laddie and @ the function to establish this connection, lad_connect.
Notice the use of PQconnectdb, PQStatus, PQerrorMessage, and PQfinish. These are
functions provided in libpq; you can read more about them in the documen-
tation PostgreSQL provides for this library. Basically, we are attempting a
connection to port 8888 (the port the ladd daemon decided to use) on local-
host. If we fail, we return resources (PQfinish), log an error message using the
DEBUGMSGTL macro we saw earlier, and return an error. Otherwise, we return
success. Take note that DEBUGMSGTL takes a format statement and parameters
like printf, but it requires an extra set of parentheses. We have replaced the
default ladProject strings in the DEBUGMSGTL calls with the shorter LAD, just to
save some horizontal space in our examples. The unchanged generated code
you will see below uses ladProject by default. You should make these consistent
in your code; that is, if you add new DEBUGMSGTL statements, use the same value
mib2c generated. You are not required to keep the DEBUGMSGTL strings consistent
with your project name, but it avoids confusion to do so. We only make the
change in these examples to prevent line wrap, due to the limited horizontal
space on a book’s printed page. You won’t need to do this in your code.

We follow this with our function to read values from RTA tables. You
pass it the table and field names, a filter string (you might use this to select a
table row), options, a buffer to return the value from the table, and the length
of that buffer. We haven’t made any provisions for querying more than a
single field from an RTA table at one time. (This isn’t really a problem, since
Net-SNMP will only pass us one MIB object at a time to read.) While it’s true
that a single MIB object could require reading multiple RTA tables—that is,
there needn’t be a one-to-one correspondence between RTA fields and MIB
objects—our MIB for Laddie does not require this.

/
* query() - request a value from a table.

static
int query(char *table, char *field, char *filter, char* options, char
*output_str, int output_len)

{
char query_string[256]; /* holds constructed SQL query */
PGresult *result; /* holds query result */
ExecStatusType status; /* return type from PQresultStatus */
char *errMsg;
o /* check connection to LAD application */

if (PQstatus(conn) != CONNECTION_OK) {

272 Chapter 15
No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

/* try to re-connect */
if (0 != 1lad_connect()) {

return(-1); /* fail the query */
}

}

/* Construct query string */
if (strlen(filter) > 0) {
sprintf (query_string, "select %s from %s where %s %s;",
field, table, filter, options);
} else {
sprintf (query_string, "select %s from %s %s;", field, table, options);
}

DEBUGMSGTL(("LAD", "sending query '%s'\n", query_string));

2] result = PQexec(conn, query string); /* send the query */
if ((status = PQresultStatus(result)) != PGRES_TUPLES OK) {
DEBUGMSGTL(("LAD", "query failed: PQresultStatus returned %d; %s",
status, PQerrorMessage(conn)));
printf ("%s", errMsg);
POclear(result);
PQfinish(conn);
(3] return (-1);
}
DEBUGMSGTL(("LAD", "success! result = %d\n", status));
strncpy (output_str, PQgetvalue(result, 0, 0), output_len);
DEBUGMSGTL(("LAD", "query suceeded; returning '%s'\n", output_str));
o return (0);

We start by checking that @ our connection to Laddie is still valid. If it is
not, we reconnect by calling lad_connect(). Then we construct our query string
and @ execute the query using Pgexec(). The application programming inter-
face (API) of the PostreSQL library allows you to request multiple values in a
single query, which is why the result is returned as a list of tuples. We check
that our tuples are okay. If they aren’t, we clean up, return resources, and ©
return an error to our caller. Otherwise, we extract the first value returned
(there should only be one, in our case), return it in the buffer provided to
us, then @ return success.

The code below is very similar to the query routine above, but it builds
an update request for writing to the field, then passes it to libpq. This is the
routine our MIB write routines will call.

/
* update() - update a value in a table.

/
static
int update(char *table, char *field, char *filter, char *newval_str)

char update_string[256]; /* holds constructed SQL update */
PGresult *result; /* holds update result */
ExecStatusType status; /* return type from PQresultStatus */
char *errMsg;

Implementing Your SNMP MIB 273
No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

/* check connection to LAD application */
if (PQstatus(conn) != CONNECTION_ OK) {
/* try to re-connect */
if (0 != lad_connect()) {
return(-1); /* fail the update */
}

}

sprintf (update_string, "update %s SET %s=%s where %s;",
table, field, newval str, filter);
DEBUGMSGTL(("LAD", "sending update '%s'\n", update_string));

result = PQexec(conn, update_string); /* send the update */
if ((status = PQresultStatus(result)) != PGRES_COMMAND OK) {
DEBUGMSGTL(("LAD", "update failed: PQresultStatus returned %d; %s",
status, PQerrorMessage(conn)));
printf ("%s", erxMsg);
POclear(result);
PQfinish(conn);
return (-1);
}
DEBUGMSGTL(("LAD", "success! result = %d\n", status));
return (0);

We should point out that these are just simple, generic routines for
reading from and writing to a PostgreSQL database and, thus, RTA tables.
There is nothing SNMP-specific or Laddie-specific about them. You could
use them in any application written in C that needs to access RTA tables
from another application on the same system—the only thing you’d need
to change is the port number.

The Initialization Routine

Now we come to the fairly simple initialization routine that mib2c generated
for us. Notice that we made no changes to the generated code. We could
have put a call to lad_connect() here, but we refrained, for the sake of sim-
plicity. Our first call to the query() or update() routines we defined above will
detect that the connection does not exist and then create it for us.

/** Initializes the ladProject module */
void
init_ladProject(void)

DEBUGMSGTL(("LAD", "Initializing\n"));

/*
* register ourselves with the agent to handle our mib tree
*/

(1] REGISTER_MIB("ladProject", ladProject variables, variable7,

ladProject_variables_oid);

274 Chapter 15
No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

/*
* place any other initialization junk you need here
*/

The @ REGISTER_MIB line will register your OID subtree with the central
agent code so it will know to call you to read and write the objects in this
subtree. Notice that we had to change the variable4 to variable7 here, as well.

The Scalars

The next routine is where all reads of scalars are processed. Scalars are leaf
objects in the MIB (that is, they are not accessed by indexing into a table).

Before we dive into this function, let’s take a moment to look at the
input parameters. They are described quite nicely in the AGENT.txt file that
is provided with the Net-SNMP package (highly recommended reading, by
the way), but we’ll summarize them here:

e vpisa pointer to the relevant entry in the ladProject_variables array we
discussed in the section “MIB Objects Definitions” on page 268.

¢ name is the OID from the request, and length is the length of this OID.

¢ exact indicates whether you are processing a request for the exact OID
passed to you, like a GET or SET, or one that requires you to find the OID
to process, like a GETNEXT. (GETNEXT is why name and length are also output
parameters. You have to set them appropriately for GETNEXT requests to
indicate the OID for which you are returning a value.)

e var_lenis an output parameter that the function must set to the length of
the data being returned.

e write_method is also an output parameter and is used to point to the func-
tion that will handle a SET for any of the OIDs you have made SET-able.

¢ The function returns the value of the data requested, or a NULL if the data
is not available.

Now let’s tackle the body of the function. We have reformatted some of
the lines to better fit the printed page, but otherwise, most of this routine
remains as it was generated. We have highlighted the few lines that needed
to be added or changed to retrieve the values from the RTA tables in the
Laddie daemon. As you can see, very little work needs to be done in the SNMP
agent to retrieve the readable values in our MIB. Each object requires a
single access of a field in Laddie’s RTA-accessible tables.

* var_ladProject():

* This function is called every time the agent gets a request for
* a scalar variable that might be found within your mib section

* registered above. It is up to you to do the right thing and

* return the correct value.

* You should also correct the value of "var_len" if necessary.
*

Implementing Your SNMP MIB 275

No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce

www.it-ebooks.info

http://www.it-ebooks.info/

276

Chapter 15

No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce

o000

* Please see the documentation for more information about writing
* module extensions, and check out the examples in the examples
* and mibII directories.

*/

unsigned char *
var_ladProject(struct variable *vp,

oid *name,
size t *length,
int exact,

size t *var_len,
WriteMethod **write_method)

/* variables we may use later */

static long long_ret;

static u_long ulong_ret;

static unsigned char string[SPRINT_MAX_LEN];
static oid objid[MAX_OID_LEN];
static struct counter64 cb64;

if (header_generic(vp,name,length,exact,var_len,write_method)
== MATCH_FAILED)
return NULL;

/*
* this is where we do the value assignments for the mib results.
*/
switch(vp->magic) {
case LADVERSION:
if (0 == query("Config",
"version",
I
"LIMIT 1 OFFSET 1",
string,
SPRINT MAX_LEN)) {
*var_len = strlen(string);
return (u_char*) &string;

break;

case LADNUMBEROFZONES:
if (0 == query("rta_tables",
"nrows",
"name=Zone",
" "’
string,
SPRINT_MAX_LEN)) {
long_ret = atol(string);
return (u_char*) &long_ret;

}

break;

default:
ERROR_MSG("");

}
return NULL;

www.it-ebooks.info

http://www.it-ebooks.info/

Our only changes are in the switch statement. We call our query() routine
to retrieve values from RTA tables in Laddie to fulfill the request. The value
of ladVersion comes from the version field of Laddie’s Config table. We added
O the options LIMIT 1 OFFSET 1 because the Config table has multiple rows for
different purposes. Each row has a version field, but we only want one answer
to our request, so we use the option LIMIT 1. We also want the second row of
the table, so we add the option OFFSET 1.

We don’t have any such problem with the number of zones, which we
take simply from @ the nrows (number of rows) field in @ the rta_tables
table, but we do have to use the filter parameter to query() and select the
row for which @ the name field is Zone. The rta_tables table has a row for
every RTA table in the ladd daemon, so we can just go to the row describing
the Zone table to find the number of rows.

Reading the Alarm Table

The var_ladAlarmTable() function processes reads of objects in the
ladAlarmTable. Again, most of our work will be to add code to the switch
statement. The main difference in routines for reading tables is the need to
handle the index to the table row and the determination of the table size.

/*

* var_ladAlarmTable():

* Handle this table separately from the scalar value case.

* The workings of this are basically the same as for var_ above.
*/

unsigned char *

var_ladAlarmTable(struct variable *vp,

oid *name,
size_ t *length,
int exact,

size t *var_len,
WriteMethod **write_method)

{
/* variables we may use later */
static long long_ret;
static u_long ulong_ret;
1] static u_long table_size;
(2] static u_long table_index;

static unsigned char string[SPRINT_MAX_LEN];

(3] static unsigned char filter[SPRINT_MAX_LEN];
static oid objid[MAX_OID_LEN];
static struct counter64 c64;

The beginning of var_ladAlarmTable looks a lot like var_ladProject, where
we implemented our scalars. All we’ve done so far is add a few local variables,
specifically:

© table_size, which will hold the number of rows in our table.
@ table_index, which shows the table row we want to retrieve.

© filter, which is what we will pass to query() to tell it which row we want.

Implementing Your SNMP MIB 277
No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

if (0 == query("rta_tables", "nrows", "name=Zone", "", string, SPRINT_MAX_LEN)) {
table_size = atol(string);
} else {
/* This shouldn't fail, but if it does just return an error */
(1] return NULL;

This should be familiar from our discussion of LADNUMBEROFZONES in the
section “The Scalars” on page 275. We need the length of the table for our
processing below. Notice that the reaction to a failure to retrieve the table
length is @ returning NULL. This should never fail, but we still need to cover
this case. If we fail to get the length of the table, the agent will just bypass this
table as if it didn’t exist when someone walks our MIB.

/*
* This assumes that the table is a 'simple' table.
* See the implementation documentation for the meaning of this.
* You will need to provide the correct value for the TABLE_SIZE
* parameter
*
* If this table does not meet the requirements for a simple table,
* you will need to provide the replacement code yourself.
* Mib2c is not smart enough to write this for you.
* Again, see the implementation documentation for what is required.
*/
o if (header_simple_table(vp,
name,
length,
exact,
var_len,

write_method,
table_size)
== MATCH_FAILED)
return NULL;

In the code above we take advantage of @ the header_simple_table() func-
tion provided by Net-SNMP. The AGENT.txt file defines a simple table as one
that is singly indexed by an integer running from 1 to some determinable
maximum value; all rows within that range are valid (no holes) and the data
can be retrieved directly—for example, by indexing into an underlying data
structure, such as our RTA Zone table.

The comment block was generated by mib2c, and it includes a constant
called TABLE_SIZE that we have replaced with the variable table_size, as we
discussed earlier.

(1] table_index = name[*length-1];
(2] sprintf(filter, "id=%d", table_index);

278 Chapter 15
No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

We simply @ take our table index from the end of our OID. The OID
of the instance of an object is the OID of the object definition, suffixed by the
instance index. In the case of any simple table, as defined above, the instance
index will be the table row number (the first row starting with row 1, not row
0). We then use this to create the filter string for our calls to query the Zone
table. We are getting all of our values for the objects in the ladAlarmTable from
the Zone table, so we can just @ create this filter once and use it in all of our

queries.
The rest of the routine (below) is a switch statement indexed by the
object requested.

/*

* this is where we do the value assignments for the mib results.
*/

switch(vp->magic) {

case LADALARMZONENAME :
DEBUGMSGTL(("LAD", "reading ladAlarmZoneName\n"));
if (0 == query("Zone", "name", filter, "", string, SPRINT_MAX_LEN)) {
DEBUGMSGTL(("LAD", "ladAlarmZoneName[%d]=%s\n", table_index, string));
*var_len = strlen(string);
return (u_char*) &string;

}

break;

case LADALARMENABLE:
DEBUGMSGTL(("LAD", "reading ladAlarmEnable\n"));
if (0 == query("Zone", "enabled", filter, "", string, SPRINT_MAX_LEN)) {
DEBUGMSGTL(("LAD", "ladAlarmZoneEnable[%d]=%s\n", table_index, string));
*write_method = write_ladAlarmEnable;
long_ret = atol(string);
return (u_char*) &long_ret;

}

break;

case LADALARMLATCHING:
DEBUGMSGTL(("LAD", "reading ladAlarmLatching\n"));
if (0 == query("Zone", "latching", filter, "", string, SPRINT_MAX_LEN)) {
DEBUGMSGTL(("LAD", "ladAlarmZonelLatching[%d]=%s\n", table_index, string));
*write_method = write_ladAlarmLatching;
long_ret = atol(string);
return (u_char*) &long_ret;

}

break;

case LADALARMSTATE:
DEBUGMSGTL(("LAD", "reading ladAlarmState\n"));
if (0 == query("Zone", "alarm", filter, "", string, SPRINT_MAX_LEN)) {
DEBUGMSGTL(("LAD", "ladAlarmZoneState[%d]=%s\n", table_index, string));
*write_method = write_ladAlarmState;
long_ret = atol(string);
return (u_char*) &long_ret;

}

break;

Implementing Your SNMP MIB
No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

279

http://www.it-ebooks.info/

case LADALARMCOUNT:
DEBUGMSGTL(("LAD", "reading ladAlarmCount\n"));
if (0 == query("Zone", "count", filter, "", string, SPRINT_MAX_LEN)) {
DEBUGMSGTL(("LAD", "ladAlarmZoneCount[%d]=%s\n", table_index, string));
long_ret = atol(string);
return (u_char*) &long_ret;

}

break;

default:
ERROR_MSG("");

}
return NULL;

In each of the cases, we query some field in the Zone table to get the
value in our switch statement. If the query fails, we break out of the switch
and return NULL, which tells the agent this value is not retrievable.

Another thing to notice here is that we have to return a write_method for
each of the objects we have defined as having read-write access. Each writable
object has its own write method—that is, a pointer to the routine called to
handle SETs. Whenever a write (snmpset) is done, the main agent code first
calls the read routine to find the appropriate write routine.

Writing the Alarm Table

Each of the write routines for writable objects looks basically the same, so
we’ll just take the ladAlarmEnable object as an example.

The write routines all center around a switch statement selecting between
different processing based on the action parameter. The cases in the switch
will always be as follows:

e RESERVE1
e RESERVE2
e FREE

e ACTION

e UNDO

e COMMIT

Writing is much more complex than reading. When the agent receives an
SNMPSET command for one of your objects, the read code we discussed above
will be called to return the write_method (a pointer to the write routine for
the specific object). This write function will then be called repeatedly with a
different action parameter each time. If everything goes without a hitch,
the write method will be called for RESERVE1, RESERVE2, ACTION, and COMMIT, in
succession. The second RESERVE is to allow for dependencies between objects
when a write is received for more than one object. If there is a failure returned
from either RESERVE, you will be called with FREE to allow any allocated resources
to be released. UNDO is provided for cases that fail further into the process.

280 Chapter 15
No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

You have to promise (cross your heart and hope to die) that UNDO cannot fail,
so your settings do not become inconsistent—or at least do your best, and
keep this in mind. More information on this subject is provided with the Net-
SNMP package in the AGENT.txt file in the top directory. Here is the code
we have modified for Laddie’s agent.

int

write ladAlarmEnable(int action,
u_char *var_val,
u_char var_val_type,
size t var_val_len,
u_char *statP,
oid *name,
size_t name_len)

{

static long value;
int size;
static int saved_value;

We have changed the code generated by mib2c to make value static and
to add another static variable to hold a saved value. This function will be
called repeatedly with a sequence of action parameters, so we can save some
information from call to call.

/* variables we will need for query and update calls */
static u_long table_index;

static unsigned char string[SPRINT_MAX_LEN];

static unsigned char filter[SPRINT_MAX_LEN];

These should look familiar from our scalar and ladAlarmTable queries,
above. Here, we’ll be using them for both queries and updates.

table_index = name[name_len-1];

This should look familiar, too. We’re grabbing the table index from the
end of the OID.

switch (action) {
case RESERVE1:
if (var_val_type != ASN_INTEGER) {
DEBUGMSGTL(("LAD", "write to ladAlarmEnable - not ASN_INTEGER\n"));
return SNMP_ERR_WRONGTYPE;

if (var_val_len > sizeof(long)) {
DEBUGMSGTL(("LAD", "write to ladAlarmEnable - bad length\n"));
return SNMP_ERR_WRONGLENGTH;
}
value = *((long *) var_val);
if (value > 1) {
DEBUGMSGTL(("LAD", "write to ladAlarmEnable - wrong value %x\n", value));
return SNMP_ERR_WRONGVALUE;

Implementing Your SNMP MIB 281

No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce

www.it-ebooks.info

http://www.it-ebooks.info/

}
DEBUGMSGTL(("LAD", "\nRESERVE1 ok; value is %d\n", value));

break;

The RESERVE1 action checks the value type and length for accuracy. The
code to check for wrong type and wrong length was generated for us, but
we’ve changed it a bit, replacing the printfs with DEBUGMSGTL macros. We’ve
also added @ a range check for the value being written. The enable value
should always be either O or 1.

case RESERVE2:
size = var_val_len;
value = * (long *) var_val;

DEBUGMSGTL(("LAD", "\nRESERVE2 ok; value is %d\n", value));
break;

case FREE:
/* Release any resources that have been allocated */
DEBUGMSGTL(("LAD", "\nFREE ok; value is %d\n", value));
break;

In Laddie we don’t have any use for RESERVE2 and FREE. Normally, RESERVE2
would be used for checking interdependencies between the objects in the var-
bind list of the SNMP SET, and FREE would be used to free any resources we
tied up temporarily, but neither of these apply to our Laddie MIB. No code is
highlighted in RESERVE2 because we didn’t add anything. Even the comments
were generated for us by mib2c.

case ACTION:
/*
* The variable has been stored in 'value' for you to use,
* and you have just been asked to do something with it.
* Note that anything done here must be reversable in the UNDO case
*/
DEBUGMSGTL(("LAD", "\nACTION; value is %d\n", value));
DEBUGMSGTL(("LAD", "writing ladAlarmEnable in row %d\n", table_index));
sprintf(filter, "id=%d", table_index);
if (0 != query("Zone", "enabled", filter, "", string, SPRINT_MAX_LEN)) {
saved_value = -1; /* ... so we can tell the query failed */
return SNMP_ERR_RESOURCEUNAVAILABLE;
}

saved_value = atol(string); /* save current value in case of undo later */

sprintf(filter, "id=%d", table_index);

sprintf(string, "%d", value);

if (0 != update("Zone", "enabled", filter, string)) {
return SNMP_ERR_RESOURCEUNAVAILABLE;

}

break;

282 Chapter 15
No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

In ACTION, we are retrieving the current value and saving it in saved_value
before we write the new value to the RTA Zone table. If we run into trouble,
we return an error. The value we save may be used in the UNDO case.

case UNDO:
/* Back out any changes made in the ACTION case */
sprintf(filter, "id=%d", table_index);
sprintf(string, "%d", saved_value);
if (saved_value != -1) {
/* if we have a saved_value, write it back */
if (0 !'= update("Zone", "enabled", filter, string)) {
return SNMP_ERR_RESOURCEUNAVAILABLE;
}

}

break;

We UNDO by writing the saved value back, but only if ACTION got as far as
retrieving the old value.

case COMMIT:
/*
* Things are working well, so it's now safe to make the change
* permanently. Make sure that anything done here can't fail!
*/

/* Can't fail here. There's nothing left to do! */
break;

We have nothing to do in the COMMIT case. ACTION already wrote the value
to the RTA table in the Laddie daemon.

}
return SNMP_ERR_NOERROR;

If we didn’t return an error before this point, we return a successful
completion.

All of the other write routines look just like this, so that wraps up our
discussion of the LAD-MIB implementation. The next step is to build it.

Makefile Revisited

In “The Net-SNMP Agent” on page 262, we used a Makefile to generate our
agent. Now we just have to modify this Makefile to include our LAD-MIB
code.

NETSNMP_VERSION = 5.2.1
BUILD DIR = ./net-snmp-$(NETSNMP_VERSION)

#

Implementing Your SNMP MIB 283
No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

284

Chapter 15

Targets
#
all: clean setup config build

clean:
rm -rf $(BUILD DIR)
m -xrf /opt/snmp/*

setup:
tar zxvf net-snmp-$(NETSNMP_VERSION).tar.gz; \
mkdir $(BUILD_DIR)/agent/mibgroup/lad; \
cp ladProject.[ch] $(BUILD_DIR)/agent/mibgroup/lad

config:
cd $(BUILD DIR); \
export LDFLAGS="-1pq"; \
./configure --prefix=/opt/snmp \
--with-mib-modules="1ad/ladProject"<../configure.input; \
a ..

build:
cd $(BUILD DIR); \
make

install:
cd $(BUILD DIR); \
install

The changes are fairly minor. We’ve added two lines to the setup case to @
create the lad directory under agent/mibgroup and @ copy our ladProject
header and C file there.

The config case © adds "-1pgq" to LDFLAGS to tell the linker to include libpg
for the PostgreSQL code used by our update and query routines. We also @
tell configure to include our MIB in the build.

That’s it! If Net-SNMP releases new security improvements, bug fixes, or
new features, all we have to do is drop a new source tarball into the build
directory, change the NETSNMP_VERSION line in the Makefile, and rebuild. Each
Net-SNMP release has maintained backward compatibility since we started
using it, when Net-SNMP was still UCD-SNMP, and it has been blissfully easy
to roll a new Net-SNMP version into new releases of our appliance software.
For this (among other things) we are eternally grateful to the maintainers of
UCD/NET-SNMP.

In Chapter 14 we mentioned that our SNMP agent uses the old style,
non-RTA configuration method (thatis, a .conf file somewhere under /etc).
You may have wondered why we didn’t discuss how to RTA-ize the SNMP
agent so we could change its configuration on the fly, as we can with Laddie.
Well, this is the reason. We don’t want to customize the basic agent because
that would complicate rolling in new releases as they become available. Right
now it’s simple—we don’t have changes to port to the agent each time we
update, and all of our customizations are localized in our MIB extension.

No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce

www.it-ebooks.info

http://www.it-ebooks.info/

All we need to do now is build and install it.

make
make install

You’ll also need to copy the files you need from /opt/snmp into your
appliance build, but that’s beyond the scope of this chapter.

Debugging

Traps

Thanks to the DEBUGMSGTL macros, we have dropped in our MIB extension as
we wrote it, and we are all set to trace the flow of control in our agent, should
this become necessary. Just shut down the agent running in the background

/etc/rc.d/init.d/snmpd stop

and run your own copy from the command line:

/opt/snmp/sbin/snmpd -D "LAD" -Le -f -c /opt/snmp/etc/snmp/snmpd.conf -C

The -c <path to config file> -Cis from the normal command string to
run the agent. We discussed this in Chapter 14. What’s new are the first three
options.

The -D "LAD" activates our DEBUGMSGTL statements, which specified "LAD".
Here’s one taken from the code we discussed above:

DEBUGMSGTL(("LAD", "reading ladAlarmState\n"));

The -Le tells the agent to send the output to stderr. Other options are
stdout, syslog, or a file. See the man page for snmpd for more information.

The -f tells the agent not to fork and go into the background. This keeps
it tied to our current terminal window so we can see the output.

Now query the agent using snmpget, snmpset, or snmpwalk from another
terminal window and watch the output, or capture it to a file.

We have defined two traps in our MIB, but we will not be discussing how to
send these traps in this chapter. In Chapter 14 we discussed the use of the
snmptrap utility to send traps for us, and in Chapter 7 we explained how to
use a log event to trigger an SNMP trap. Just keep in mind that the traps we
have defined in our LAD-MIB are not generated by the SNMP agent. They are
generated through the logging subsystem from events recorded by the ladd
daemon, itself.

Implementing Your SNMP MIB 285

No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce

www.it-ebooks.info

http://www.it-ebooks.info/

286

Summary

Chapter 15

In Chapter 14 you learned how to create a MIB to match an application, and
in this chapter you learned how to create a MIB extension for the Net-SNMP
agent to implement that MIB, as well as how to use the PostgreSQL interface
library and RTA to retrieve the MIB data values from another daemon
process. At this point you should feel comfortable that you could do this
yourself from scratch.

You should also feel familiar enough with the structure of MIB and a
Net-SNMP agent extension to hack new objects into the MIB and the code.
There is no need to go back through generating skeleton code with mib2c.
All you have to do is add the new objects to the MIB file (mostly cut-and-paste
work), define new numbers for these variables in the list of defines, add the
appropriate rows to the ladProject_variables array, and then add cases to the
to the appropriate switch statements. Just keep in mind that while you can
add things to a MIB, you cannot reassign OIDs. If you always add to the end
of a branch, you should be in good shape.

In Chapter 14 we mentioned that we had neglected to include the edge
and input columns from our Laddie table in our MIB. A good test of your
understanding of these two chapters would be to go back and add one or
both of these fields to the MIB and agent yourself.

No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce

www.it-ebooks.info

http://www.it-ebooks.info/

\ ¥
k?: =0 s
= (<]
— o | N
© A\
) r 3 “l\ [
e ¢ = 9)
>) = =
"
™~ =

£ouTon

No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce

www.it-ebooks.info

http://www.it-ebooks.info/

No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

RTA REFERENCE

Run Time Access (RTA)is a library that
displays your program’s internal structures
and arrays as database tables. RTA uses a

subset of the PostgreSQL protocol and is com-
patible with the PostgreSQL bindings for C and PHP,
as well as for the PostgreSQL command-line tool, psql.
This appendix contains the definitions, data structures,
and function prototypes for the RTA package.

The contents of this appendix that are taken from the RTA include
excerpts from the file rta.h. We use the exact text of rta.h wherever possible.
A less technical description of the material in this appendix is given in
Chapters 2 and 3.

This appendix covers:

e Overview of RTA
e RTA constants

e Data structures

No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

e API subroutines

¢ SELECT and UPDATE syntax
e Internal RTA tables

¢ Debug configuration

e Error messages

e (allback routines

Linux appliances lack real-time access to status and statistics, as well as
the ability to configure a service once it has started. As Linux users, we
assume that to configure an application we will be able to use SSH or telnet
to gain access to the service, use an editor to modify the /etc configuration
file, and use the kill -1 command to terminate the process—so real-time
status and statistics are features Linux programmers don’t even think to
request. The lack of run-time access poses a particular challenge for network
appliances where SSH is unavailable, either because it is not installed or it is
not allowed.

Another challenge for appliance designers is that more than one type of
user interface may be required. Many appliances have some combination of
web, command-line, SNMP agent, front panel, and framebuffer interfaces. It
is a nontrivial task to give the end user a consistent view regardless of the UI.

Overview of RTA

The RTA package addresses the challenges described above by giving real-
time access to the data structures and arrays inside a running program. With
minimal effort, we can use RTA to make a program’s data structures appear
as PostgreSQL tables in a PostgreSQL database.

Using RTA, a structure definition is also the definition for a table row,
and an array of structures will appear as a table. For example, the code below
shows a definition of a data structure for TCP connection information.

struct tcpconn {

int fd; // conn's file descriptor
int lport; // local port number
int dport; // destination port number

long nsbytes; // number of sent bytes

long nrbytes; // number of received bytes

long nread; // number of reads on the socket
long nwrite; // number of writes on the socket

};

The tcpconn structure describes a single connection. An array of these
structures is needed if there’s more than one connection. This array might
be allocated with

struct tcpconn Conns[10];

290 Appendix A
No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

The above array of structures could be considered a database table, with
each structure in the array as a row and each member in the structure as a
column. RTA allows you to use any programming language with a PostgreSQL
binding to query this table of TCP connections. Here are two sample SQL
statements to manipulate the data in the Conns table:

SELECT lport, dport FROM Conns WHERE fd != -1;
UPDATE Conns SET dport = 0 WHERE fd = -1;

Don’t worry if the above statements do not make sense; there is a short
tutorial on SQL later in this appendix.

The addition of a database API offers several advantages. For one,
debugging is made easier because you can use simple PostgreSQL tools to
view much of your program’s state. The PostgreSQL database API also makes
it easier to build UI programs, since it includes bindings for PHP, Tcl/ Tk,
Perl, C, Java, Visual C++, and many other programming languages.

A database API can also help speed up development. When the tables
used by the Ul programs are carefully defined, the core application team
can build the application while the UI developers work on the web pages,
wizards, and MIBs of the various UI programs.

In order to make your arrays and structures available to the database
API, you must tell RTA about the tables (including things like the name, start
address, number of rows, and length of each row) and columns (including
things like the associate table name, column name, column’s data type, and
whether special functions called callbacks are to be called when the column is
read or written).

RTA Constants

Here is an excerpt from the rta.h file showing the constants that describe the
internal size limits for the RTA package. You can change these limits, but if
you do, be sure to recompile the RTA package using your new settings.

#include <limits.h> /* for PATH_MAX */

/** Maximum number of tables allowed in the system.
* Your database may not contain more than this number
* of tables. */

#define MX_TBL (500)

/** Maximum number of columns allowed in the system.
* Your database may not contain more than this number
* of columns. */

#define MX_COL (2500)

/** Maximum number of characters in a column name, table
* name, and in help. See TBLDEF and COLDEF below. */
ttdefine MXCOLNAME (30)
ttdefine MXTBLNAME (30)
t#define MXHELPSTR (1000)

RTA Reference 291
No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

#define MXFILENAME (300)

/** Maximum number of characters in the 'ident' field of
* the openlog() call. See the rta_dbg table below. */
ttdefine MXDBGIDENT (20)

/** Maximum line size. SQL commands in save files may
* contain no more than MX_LN_SZ characters. Lines with
* more than MX_LN_SZ characters are silently truncated
* to MX_LN_SZ characters. */

#define MX_LN SZ (1500)

/* Maximum number of columns allowed in a single table */
t#define NCMDCOLS (40)

Data Structures

Recall that each column in a table corresponds to a structure member, and
each row in a table corresponds to an array element. In order for RTA to
treat your arrays of structures as tables, you have the tell RTA about the
tables. You describe each column by filling in a COLDEF structure, and you
describe each table by filling in a TBLDEF structure. Here is an excerpt from
rta.h that completely defines the data structures and constants associated
with tables and columns.

/** The column definition (COLDEF) structure describes
* one column of a table. A table description has an
* array of COLDEFs to describe the columns in the
* table. */

typedef struct

/** The name of the table that has this column. */
char *table;

/** The name of the column. This must be at most MXCOLNAME
* characters in length and unique within a
* table. The same column name may be used in more
* than one table. */
char *name;

/** The data type of the column. This must be int, long,
* string, pointer to void, pointer to int, pointer
* to long, or pointer to string. The DB types are
* defined immediately following this structure. */
int type;

/** The number of bytes in the string if the above
* type is RTA_STR or RTA_PSTR. The length includes
* the null at the end of the string. */

int length;

292 Appendix A
No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

/** Number of bytes from the start of the structure to

*

* X X ¥ X *x

this column. For example, a structure with an int,
a 20 character string, and a long, would have the
offset of the long set to 24. Use of the function
offsetof() is encouraged. If you have structure
members that do not start on word boundaries and
you do not want to use offsetof(), then consider
using -fpack-struct with gcc. */

int offset;

/** Boolean flags which describe attributes of the

*
*
*
*
*

columns. The flags are defined after this
structure and include a "read-only" flag and a
flag to indicate that UPDATEs to this column
should cause a table save. (See table savefile
described below.) */

int flags;

/** Read callback. This routine is called before the

*

¥ OX X X X X X ¥

column value is used. Input values include the
table name, the column name, the input SOL command,
a pointer to the row affected, and the (zero indexed)
row number for the row that is being read.
This routine is called *each* time the column is
read so the following would produce two calls:
SELECT intime FROM inns WHERE intime >= 100;
The callback returns zero on success and nonzero on
failure. */

int (*readcb) (char *tbl, char *column, char *SQL, void *pr,

int row_num);

/** Write callback. This routine is called after an

*

¥ X K K K K K K K K K K ¥ ¥

* X ¥ *

UPDATE in which the column is written. Input values

include the table name, the column name, the SQL

command, a pointer to the row affected, the (zero

indexed) row number of the modified row, and a pointer

to a copy of the row before any modifications. See the

callback section below.

This routine is called only once after all column

UPDATEs have occurred. For example, if there were

a write callback attached to the addr column, the

following SOL statement would cause the execution

of the write callback after both mask and addr

have been written:

UPDATE ethers SET mask="255.255.255.0", addr = \
"192.168.1.10" WHERE name = "eth1";

The callback is called once for each row modified.

The callback returns zero on success and nonzero on
failure. On failure, the table's row is restored

to it's initial values and an SQL error is returned

to the client. The error is TRIGGERED ACTION EXCEPTION

*/
int (*writecb) (char *tbl, char *column, char *SQL, void *pr,

RTA Reference

No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce

www.it-ebooks.info

293

http://www.it-ebooks.info/

int row_num, void *poldrow);

/** A brief description of the column. This should
* include the meaning of the data in the column, the
limits, if any, and the default values. Include
a brief description of the side effects of changes.
This field is particularly important for tables
which are part of the "boundary" between the UI

* developers and the application programmers. */
char *help;

*
*
*
*

}
COLDEF;
/** The data types.
* String refers to an array of char. The 'length' of
* column must contain the number of bytes in the array.
*/
#define RTA_STR 0
/** Pointer to void. Use for generic pointers */
#define RTA_PTR 1
/** Integer. This is the compiler/architecture native
* integer. On Linux/gcc/Pentium an integer is 32 bits.
*/
#define RTA_INT 2
/** Long. This is the compiler/architecture native
* long long. On Linux/gcc/Pentium a long long is 64
* bits. */
#define RTA_LONG 3
/** Pointer to string. Pointer to an array of char, or
* a (**char). Note that the column length should be
* the number of bytes in the string, not sizeof(char *).
*/
#define RTA_PSTR 4
/** Pointers to int and long. */
#define RTA_PINT 5
#define RTA_PLONG 6
/** Float and pointer to float */
#define RTA_FLOAT 7
#define RTA_PFLOAT 8
#define MXCOLTYPE (RTA_PFLOAT)

/** The boolean flags.

* If the disksave bit is set, any writes to the column

* causes the table to be saved to the "savefile". (See

* savefile described in the TBLDEF section below.) */
#define RTA DISKSAVE (1<<0)

/** If the readonly flag is set, any writes to the
* column will fail and a debug log message will be

294 Appendix A
No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

* sent. (For unit test you may find it very handy to
* leave this bit clear to get better test coverage of
* the corner cases.) */

#define RTA READONLY (1<<1)

/** The table definition (TBLDEF) structure describes
* a table and is passed into the DB system by the
* rta_add_table() subroutine. */

typedef struct

{
/** The name of the table. This name must be less than
* MXTLBNAME characters in length and must be unique
* within the DB. */

char *name;

/** The address of the first element of the first row of
* the array of structs that make up the table. */
void *address;

/** The number of bytes in each row of the table.

* This is usually a sizeof() of the structure

* associated with the table. (The idea is that we

* can get to data element E in row R with ...

* data = *(address + (R * rowlen) + offset(E)) */
int rowlen;

/*¥* The number of rows in the table. */
int nrows;

/** An 'iterator' on the rows of the data. This is

* useful if you want to have a linked list (or other
arrangement) instead of a linear array of struct.

Your iterator should return a pointer to the first
row when the input is NULL and return a NULL

when asked for the row after the last row. The rowid
is the zero-indexed number of the row desired. */
void *(*iterator) (void *cur_row, void *it_info, int rowid);

* X X X *x

/** This is a pointer to any kind of information that the
* caller wants passed into each iterator call.

For example, to have one iterator for all of your
linked lists you could pass in a unique identifier

for each table for the function to handle each one

as appropriate. */

void *it_info;

*
*
*
*

/** An array of COLDEF structures which describe each
* column in the table. These must be in statically
* allocated memory since the rta system references
* them while running. */
COLDEF *cols;

/** The number of columns in the table which is the
* number of COLDEFs defined by 'cols'. */

RTA Reference 295
No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

int ncol;

/** Save file. Path and name of a file which stores
* the non-volatile part of the table. The file has
* all of the UPDATE statements needed to rebuild the
* table. The file is rewritten in its entirety each
* time a 'savetodisk' column is UPDATEd. No file
* save is attempted if savefile is blank. */

char *savefile;

/** Help text. A description of the table, how it is
* used, and what its intent is. A brief note to
* describe how it relates to other parts of the system
* and description of important callbacks is a nice
* thing to include here. */

char *help;

}
TBLDEF;

API Subroutines

There are only six subroutines in the RTA API. Table A-1 summarizes them.

Table A-1: Subroutines for the RTA PostgreSQL API

Subroutine Description

dbcommand() Provides an interface to PostgreSQL clients
rta_add_table() Adds a table and its columns to the RTA database
SQL_string() Executes an SQL statement in the RTA database
rta_config_dir() Sets the default path to the savefiles directory
rta_save() Saves a table to a file

rta_load() Loads a table from a file

The subroutines in the RTA libraries usually return one of the following
values.

/* successfully executed request or command */
#define RTA SUCCESS (0)

/* input did not have a full command */
#define RTA NOCMD (1)

/* encountered an internal error */
#define RTA ERROR (2)

/* DB client requests a session close */
#define RTA CLOSE (3)

/* Insufficient output buffer space */
#define RTA NOBUF (4)

296 Appendix A
No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

The dbcommand() Subroutine

The main application in your appliance accepts TCP connections from
PostgreSQL clients and passes the stream of bytes (encoded SQL requests)
from the client into RTA via the dbcommand() subroutine. In turn, dbcommand()
writes the stream of bytes to an input buffer to be parsed for an SQL
command.

If the input buffer contains a complete command, the command will be
executed, the number-of-characters-in (nin) variable will be decreased by the
number of bytes consumed, and RTA_SUCCESS will be returned. If there is not a
complete command in the input buffer, RTA_NOCMD will be returned and no
bytes will be removed from the input buffer.

If a command is executed, the results will be encoded into the PostgreSQL
protocol and placed in the output buffer (out). When the subroutine is called,
the input variable, number-of-characters-out (nout), has the number of free
bytes available in the output buffer. When the subroutine returns, the nout
variable will be decremented by the size of the response placed in the output
buffer. An error message is generated if the number of available bytes in the
output buffer is too small to hold the response from the SQL command.

The list below summarizes the input buffers and bytes for the dbcommand()
subroutine.

Buffer/Bytes Description

cmd The buffer with PostgreSQL packets

nin On entry, the number of bytes in the cmd buffer; on exit, the number of bytes
remaining in the cmd buffer

out The buffer that holds responses back to the client

nout On entry, the number of free bytes in the out buffer; on exit, the number of

remaining free bytes in the out buffer

The list below summarizes the returns for the dbcommand() subroutine.

Returns Description

RTA_SUCCESS One command was executed.

RTA_NOCMD The input was not a complete command.
RTA_CLOSE The client requested an orderly close.

RTA_NOBUF There was insufficient space in the output buffer.

The prototype for the dbcommand() subroutine is shown below.

int dbcommand(char *cmd, int *nin, char *out, int *nout);

The rta_add_table() Subroutine

The rta_add_table() subroutine registers a table for inclusion in the
database interface, which gives external PostgreSQL clients access to

RTA Reference 297

No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce

www.it-ebooks.info

http://www.it-ebooks.info/

the contents of the table. You need to call rta_add_table() for each of
your tables.

Note that the TBLDEF structure must be statically allocated. RTA keeps
only the pointer to the table and does not copy the information. This means
that you can change the contents of the table definition by changing the
contents of the TBLDEF structure, which is useful if you need to allocate
more memory for the table and change its row count and address.

When you add an RTA table, you will see an error message if another
table with the same name already exists in the database or if the table is
defined without any columns.

If you specify a savefile, the SQL. commands in the savefile will be
loaded as part of the rta_add_table() call. See “The rta_load () Subroutine”
on page 300 for more details.

This list summarizes the input for the rta_add_table() subroutine.

Input Description

ptbl A pointer to the TBLDEF structure to add a table

This list summarizes the returns for the rta_add_table() subroutine.

Returns Description
RTA_SUCCESS One table was successfully added.
RTA_ERROR A table was not added due to an error.

The prototype of the rta_add_table() subroutine is shown below.

int rta_add_table(TBLDEF *ptbl);

The SQL_string() Subroutine

The SOL_string() subroutine executes the SQL command placed in the null-
terminated input string, cmd. The results are encoded into the PostgreSQL
protocol and placed in the output buffer, out. When the subroutine is called,
the input variable, nout, has the number of free bytes available in the output
buffer, out. When the subroutine returns, nout has been decremented by the
size of the response placed in the output buffer. An error message is generated
if the number of available bytes in the output buffer is too small to hold the
response from the SQL command.

This subroutine may be most useful when updating a table value in order
to invoke the write callbacks. (The output buffer has the results encoded in
the PostgreSQL protocol and might not be too useful directly.)

298 Appendix A
No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

The list below summarizes the input for the SQL_string() subroutine.

Input Description

cnd The buffer with the SQL command

out The buffer that holds responses back to client

nout On entry, the number of free bytes in the out buffer; on exit, the number of

remaining free bytes in the out buffer

The SOL_string() subroutine returns nothing.
The prototype for the SQL_string() subroutine is shown below.

void SQL_string(char *cmd, char *out, int *nout);

The rta_config_dir() Subroutine

The rta_config_dir() subroutine sets the default path to the savefile
directory. The string that the input parameter, configdir, points to is
saved and prepended to the savefile names for tables with savefiles.

You should call the rta_config_dir() subroutine before you load your
application tables. This subroutine is intended to simplify applications that
let the user specify a configuration directory on the command line.

If the savefile uses an absolute path (starting with /), it is not prepended
with the configuration directory.

This list summarizes the input for the rta_config_dir() subroutine.

Input Description

configdir The target configuration directory

This list summarizes the return values for the rta_config_dir()

subroutine.

Returns Description

RTA_SUCCESS The configuration path was set correctly.

RTA_ERROR No path was set due to an error, such as an invalid directory.

The prototype of the rta_config_dir() subroutine is shown below.

int rta_config_dir(char *configdir);

The rta_save() Subroutine

The rta_save() subroutine saves a table to a file, including all savetodisk
columns to the path and file specified. Only savetodisk columns are saved.

RTA Reference 299

No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce

www.it-ebooks.info

http://www.it-ebooks.info/

The resulting file is a list of UPDATE commands containing the desired data.
There is one UPDATE command for each row in a table.

The rta_save() subroutine tries to prevent corrupted save files by
opening a temporary (temp) file in the same directory as the target file.
The subroutine saves the data in the temp file and then automatically calls
the rename() subroutine to atomically move the temp file to the savefile. The
rta_save() subroutine generates errors if it cannot open the temp file or if it
is unable to rename the temp file with rename().

NOTE As a general warning, keep in mind that any disk I/O can cause a program to block
briefly. Therefore, saving and loading tables can cause your program to block for a
moment.

This list summarizes the input for the rta_save() subroutine.

Input Description

ptbl A pointer to the TBLDEF structure for the table to save

fname A nullterminated string with the path and filename for the stored data

This list summarizes the return values for the rta_save() subroutine.

Returns Description

RTA_SUCCESS ~ One table was successfully saved.

RTA_ERROR No table was saved due to an error.

The prototype of the rta_save() subroutine is shown below.

int rta_save(TBLDEF *ptbl, char *fname);

The rta_load() Subroutine

The rta_load() subroutine loads a table from a file of UPDATE commands. The

file format is a series of UPDATE commands with one command per line.

Any write callbacks are executed as each UPDATE occurs. Note that a call to

rta_load() occurs automatically when you add the table using rta_add_table().
This list summarizes the input for the rta_load() subroutine.

Input Description
ptbl A pointer to the table to be loaded
fname A string with name of the load file

This list summarizes the return values for the rta_load() subroutine.

Returns Description
RTA_SUCCESS ~ One table was successfully loaded.
RTA_ERROR RTA could not open the file specified.

300 Appendix A
No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

The prototype of the rta_save() subroutine is shown below.

int rta_load(TBLDEF *ptbl, char *fname);

SELECT and UPDATE Syntax

The next two sections give a brief introduction to the two SQL commands
implemented by the RTA API. Neither the RTA UPDATE command nor the
RTA SELECT command adhere strictly to their PostgreSQL equivalents. RTA
does not allow JOIN clauses, and the WHERE clause supports only the
boolean AND operator. There are no locks or transactions.

The SELECT Command

The prototype for the RTA SELECT command is shown below.

SELECT column_list FROM table [where_clause] [limit_clause]

Most NCMDCOLS (defined above) columns can be specified in the column_list
or in the WHERE clause. The reserved word LIMIT restricts the number of
rows returned to the number specified. The reserved word OFFSET skips the
number of rows specified and begins output with the next row.

A column_list can contain * (a wild card character that represents all
columns), a single column name, or a comma-separated list of column names.

A sample of the where_clause syntax is shown below:

col_name = value [AND col name = value ..]

In this example, all the col_name = value pairs must match for a row to
match. Note that you can use five other comparison operators in addition to
equality. The list below shows the six available comparison operators.

Operator Description

= Is equal to

I= Is not equal to

> Is greater than

< Is less than

>= Is greater than or equal to
<= Is less than or equal to

A sample of the limit_clause syntax is shown below:

LIMIT 5

You will find the LIMIT and OFFSET columns to be very useful because
they prevent a buffer overflow on the output buffer of dbcommand(). They are

RTA Reference 301
No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

also useful for web-based Uls in which users want to be able to view data one
page at a time.

There are eight reserved words that can not be used as column or table
names. The reserved words are AND, FROM, LIMIT, OFFSET, SELECT, SET,
UPDATE, and WHERE. These are not case sensitive.

Strings may contain any of the following characters:

le#s$ %2 ~&* () _+-={3}Y[I\N]|:;<>2,./7~"

If a string contains a double quote, use a single quote to wrap it. The string
below is enclosed in single quotes since the string contains double quotes
surrounding the Hi mom!substring.

'The sign says "Hi mom!"'

Use double quotes to wrap strings with embedded single quotes.
Examples of the SELECT command are shown below.

SELECT * FROM rta_tables
SELECT destIP FROM conns WHERE fd != 0
SELECT destIP FROM conns WHERE fd != 0 AND lport = 80
SELECT destIP, destPort FROM conns \
WHERE fd !'= 0 \
LIMIT 100 OFFSET 0
SELECT destIP, destPort FROM conns \

WHERE fd != 0 \
LIMIT 100 OFFSET o

The UPDATE Command

The UPDATE command writes values into a table. The prototype for the
RTA UPDATE command is shown below.

UPDATE table SET UPDATE_list [where_clause] [limit_clause]

The format of UPDATE_list looks like this:

col_name = val [, col name = val ...]

The where_clause syntax is:

col_name = value [AND col_name = value ..]

The limit_clause syntax is:

LIMIT n

302 Appendix A
No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

Internal

An UPDATE invokes write callbacks on the affected columns. All data in
the UPDATE_list is written before the callbacks are invoked.

The LIMIT clause for UPDATE is not standard PostgreSQL, but this
clause can be useful for stepping through a table one row at a time. To
change only the nth row of a table, use a limit clause like the one below.
Note that n is zero indexed.

LIMIT 1 OFFSET n

See the examples of the UPDATE command below.

UPDATE conn SET lport = 0

UPDATE ethers SET mask = "255.255.255.0", addr = "192.168.1.10" \

WHERE name = "etho"

UPDATE conn SET usecount = 0 WHERE fd != 0 AND lport = 21

RTA Tables

When you use the RTA library, your application will include the following
four RTA tables.

Table Name Description

rta_tables A table of all tables

rta_columns A table of all columns

rta_dbg A table of logging control variables
rta_stats A table of usage and error statistics

The rta_tables Table

The rta_tables table gives SQL access to all internal and registered tables. The
data in the table is exactly the same as the data in the TBLDEF structures
registered with the rta_add_table() subroutine. This table is the generic table
editor, which is used for application debugging. The columns in the rta_tables
table are shown below and correspond to the fields in the RTA_TABLE data
structure described above.

Column Name Description

name The name of the table

address The start address of the table in memory
rowlen The number of bytes in each row of the table
nrows The number of rows in the table

iterator A subroutine to advance from one row to next
it_info Transparent data for the iterator

(continued)

RTA Reference 303

No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce

www.it-ebooks.info

http://www.it-ebooks.info/

Column Name Description

cols A pointer to the array of column definitions
ncol The number of columns in the table
savefile The file used to store non-volatile columns
help A description of the table

The rta_colvmns Table

The rta_columns table lists the column definitions for all the columns in the
database. The data in the table is exactly the same as the data in the COLDEF
structures registered with the rta_add_table() subroutine. This table is used
for the generic table viewer and table editor applications, which are used
mostly for application debugging.

The columns in the rta_columns table are shown below.

Column Name Description

table The name of the column'’s table

name The name of the column.

type The column data type

length The number of bytes in the column’s data type
offset The number of bytes from the start of the structure
flags A bit field for read-only and save-to-disk

readcb A pointer to the subroutine called before reads
writech A pointer to the subroutine called after writes
help A description of the column

Debug Configuration

The RTA package does not generates any user-level log messages, only debug
messages. The rta_dbgconfig table specifies the handling of these debug
log messages. All of the fields in this table are volatile. You need to set the
values in your main program to make them seem persistent. See the sample
SQL string subroutine below.

SQL_string("UPDATE rta_dbgconfig SET target = 3")

The columns in the rta_dbgconfig table are shown below.

Column Name Description

syserr Integer. Zero means no log; 1 means log. Logs OS call errors such as
malloc() failures. The default is 1.

rtaerr Integer. Zero means no log; 1 means log. Enables logging of errors internal
to the RTA package itself. The default is 1.

(continued)

304 Appendix A
No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

Column Name Description

sqlerr Integer. Zero means no log; 1 means log. Logs the SQL request that generates
an error reply. An error reply occurs if an SQL request is malformed or if it
requests a non-existent table or column. The default is 1. (SQL errors are
usually client programming errors.)

trace Integer. Zero means no log;1 means log all SQL requests. The default is 0.

target 0: Disable all debug logging
1: Log debug messages to syslog()
2: Log debug messages to stderr
3: Log to both syslog() and stderr

level Integer. Syslog() requires a priority as part of all log messages. The integer
specifies the log level to use when sending rta debug messages. Changes to
this do not take effect until dbg_target is UPDATEd.
0: LOG_EMERG

. LOG_ALERT

. LOG_CRIT

. LOG_ERR

. LOG_WARNING

. LOG_NOTICE

. LOG_INFO

. LOG_DEBUG

The default is 3.

facility Integer. Syslog() requires a facility as part of all log messages. This specifies
the facility to use when sending rta debug messages. It is best to use the
defines in .../sys/syslog.h to set this. The default is LOG_USER. Changes to
this do not take effect until dbg_target is UPDATEd.

ident String. Syslog() requires an ident string as part of all log messages. This
specifies the ident string to use when sending rta debug messages. This is
normally set to the process or command name. The default is rta. Changes to
this do not take effect until dbg_target is UPDATEd. This can be, at most,
MXDBGIDENT characters in length.

NO O AN WN —

Error Messages

There are two types of error messages available in the RTA package: SQL
request messages and internal debug messages.

SOL Request Errors

SQL request messages include the error messages returned as part of an SQL
request. The six messages of this type are listed below.

ERROR: Relation '%s' does not exist

This reply indicates that a table requested in a SELECT or UPDATE state-
ment does not exist. The %s is replaced by the name of the requested table.

ERROR: Attribute '%s' not found

RTA Reference 305
No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

This reply indicates that a column requested in a SELECT or UPDATE
statement does not exist. The %s is replaced by the name of the requested
column.

ERROR: SQL parse error

This reply indicates a malformed SQL request or a mismatch in the types
of data in a where clause or in an UPDATE list.

ERROR: Output buffer full

This reply indicates that the size of the response to a request exceeds the
size of the output buffer. (See dbcommand() and the out and nout parameters.)
This error can be avoided with a large enough output buffer, or, preferably,
with the use of LIMIT and OFFSET.

ERROR: String too long for '%s'

This reply indicates that an UPDATE to a column of type string or
pointer to string would have exceeded the width of the column. The %s is
replaced by the column name.

ERROR: Can not UPDATE read-only column '%s'

This reply indicates an attempt to UPDATE a column marked as read-
only. The %s is replaced by the column name.

Internal Debug Messages

The RTA program logs internal errors using the standard syslog() facility,
which is available on all Linux systems. The default syslog() facility is LOG_USER,
but you can change the default by setting facility in the rta_dbg table.

You can modify syslogd in order to do post-processing, such as generating
SNMP traps from these debug messages. The RTA program sends all internal
debug error messages to syslog() in this format:

rta[PID]: FILE LINE#: error_message

The RTA program will replace PID, FILE, and LINE# with the process
ID, the source filename, and the line number where the error was detected.

Here are the definitions used to generate debug and error messages.
The RTA program will replace %s %d at the start of each error string with the
filename and line number where the error was detected.

System Errors

#define Er_No_Mem "%s %d: Cannot allocate memory"
#idefine Er_No_Save "%s %d: Table '%s' save failure. Cannot open %s"
#idefine Er_No_Load "%s %d: Table '%s' load failure. Cannot open %s"

306 Appendix A
No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

RTA Errors

#define Er_Max_Tbls "%s %d: Too many tables in DB"

#define Er_Max_Cols "%s %d: Too many columns in DB"

#define Er_Tname_Big "%s %d: Too many characters in table name: %s"
#define Er_Cname_Big "%s %d: Too many characters in column name: %s"
#define Er_Hname_Big "%s %d: Too many characters in help text: %s"
#define Er_Tbl Dup "%s %d: DB already has table named: %s"

#idefine Er_Col Dup "%s %d: Table '%s' already has column named: %s"
#idefine Er_Col_Type "%s %d: Column contains an unknown data type: %s"
#define Er_Col_Flag "%s %d: Column contains unknown flag data: %s"
#idefine Er_Col_Name "%s %d: Incorrect table in column definition: %s"
#define Er_Cmd_Cols "%s %d: Too many columns in table: %s"

#define Er_No_Space "%s %d: Not enough buffer space"

#define Er_Reserved "%s %d: Table or column is a reserved word: %s"
SQL Errors

#define Er_Bad_SQL "%s %d: SQL parse error: %s"

#define Er_Readonly "%s %d: Attempt to UPDATE readonly column: %s"

Trace Messages

#define

Er_Trace SOQL

"o

%d:

SQL command: %s (%s)"

Callback Routines

As mentioned above, read callbacks are executed before a column value is
used, and write callbacks are called after all columns have been UPDATEd.
Both read and write callbacks return zero on success and nonzero on error.

Read Callbacks

Read callbacks have the following calling parameters:

Read Callback

Description

char *tblname:

char *colname:

char *sqlcmd:

void *pr;

int rowid:

The name of the table referenced

The name of the column referenced

The text of the SQL command

A pointer fo the affected row in the table

The zero-indexed row number of the row being read or written

Read callbacks are particularly useful for computing values like sums and
averages. These values are not worth the effort to compute continuously if
it’s possible to compute them only when the values are required.

RTA Reference 307

No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

308

Appendix A

Write Callbacks

Write callbacks are most applicable when tied to configuration changes. As
such, a write callback is also a good place to log configuration changes.

Write callbacks have the same parameters as read callbacks, with the
addition of a pointer to a copy of the row before it was modified. Access to a
copy of the unmodified row is useful to detect changes in the row’s data. This
is useful since some Uls can generate an UPDATE even if nothing actually
changed.

The callback returns zero on success and nonzero on failure. On failure,
the table’s row is restored to its initial values and an SQL error is returned
to the client. The returned error is TRIGGERED ACTION EXCEPTION.

Write callbacks have the following calling parameters:

Write Callback Description

char *tblname: The name of the table referenced

char *colname: The name of the column referenced

char *sqlcmd: The text of the SQL command

void *pr; Pointer to affected row in table

int rowid: The zero-indexed row number of the row being read or written
void *poldrow; Pointer to a copy of the row before any changes were made

No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce

www.it-ebooks.info

http://www.it-ebooks.info/

REVIEW OF SNMP

This appendix is supplied for those who
would like additional details or background
information on SNMP.

In this appendix, we will cover the following topics:

e Why SNMP
¢ Agents and managers

¢ Namespace, grammar, and protocol

e The MIB
e The OID
e MIB2

e The SMI

¢ The SNMP protocol

e SNMPvl, SNMPv2, and SNMPv3
¢ SNMP data types

¢ Defining new types

e Structure of an MIB file

No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

310

Why SNMP?

In the early 1970s, computers and their I/O devices were large enough to
need air-conditioned rooms of their own. Most large companies performed
their computing tasks on stand-alone systems. It wasn’t hard to tell when
something went wrong—an error would print on the system console, and the
front panel lights would stop blinking.

Today, even small technology companies have a server room with racks of
computers and network appliances from multiple vendors, including switches,
routers, print servers, webservers, RAID servers, and so forth. Network printers
are distributed at convenient locations around the site, and each desk has
a desktop or laptop computer. In fact, high-tech firms typically have more
computers than employees.

Unlike those large computers of yore, the failure of any single component
in this network of devices is not so easy to detect. I'T managers need some
form of automation to help them manage all these devices.

The automation may be as simple as a roll-your-own script that performs
periodic ping sweeps, but larger networks are likely to rely on a Network
Management System (NMS) that uses SNMP, such as Hewlett Packard’s
OpenView. Such a system can tell much more than when a device breaks
down. It can record performance statistics, keep a restart history, and main-
tain a log of notifications sent from the devices themselves about impending
problems. Devices may report excessive packet drops or retransmissions;
connectivity failures; a fan running slowly or a CPU running too hot;
excessive CPU, memory, or disk utilization; as well as system restarts.

Agents and Managers

The managed devices (routers, switches, web hosts, desktop computers,
network printers, and so on) each run a server process (daemon) called an
SNMP agent. This agent listens on a particular UDP port (usually, but not
always, port 161) for read (GET) and write (SET) commands. It’s the agent’s
responsibility to fetch the requested data and return it. This agent, as well as
other monitoring software on the device, may also send spontaneous notifi-
cations called traps or informs to one or more configured target systems.

Management applications (managers) poll the agents for information.
They may keep historical information, generate reports, or create graphical
maps of the devices in your network. Some management applications are just
simple command-line tools (like the snmpwalk, snmpget, and snmpset commands
supplied with Net-SNMP).

Namespace, Grammar, and Protocol

Appendix B

SNMP stands for Simple Network Management Protocol, but it is actually more
than just a protocol—it’s a way of naming data, a grammar for describing data,
and a protocol for exchanging data over a network. These components are
called the MIB (the naming scheme), SM/ (the grammar) and the SNMP
protocol. The RFCs that describe SNMP include a common set of information

No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce

www.it-ebooks.info

http://www.it-ebooks.info/

useful in managing networked devices. This is called called MIB-2 (it took
two tries to get it right). We’ll be discussing more about MIB-2 later.

The MIB

MIB stands for Management Information Base. That’s a mouthful, but you can
just think of it as a hierarchical naming scheme for a virtual database. This is
a “virtual” database because the data may not exist anywhere in storage until
the agent receives a request to read the data. When asked for an object
(think of this as a field in a record in the database) the agent retrieves the
information and returns it in a process that may involve getting multiple
pieces of information from the managed system and computing the value to
be returned. (You might think of this as a just-in-time database.) The very act
of requesting a piece of information may trigger the creation of the value.
Although there is one universal addressing scheme, we break it down into
subdivisions, which we also call MIBs. Normally, when people use the word
MIB, they are referring not to the overall namespace, but to one of these
subdivisions. MIB-2 is one of them, and many others are defined by different
groups for different purposes. Some are produced by standards groups, while
others are defined by private companies to describe proprietary data furnished
by their networked products. (In Chapter 14 we describe how you can define a
private MIB for your own appliance and find a place for it in the namespace.)

The OID

Every object in every MIB has an object identifier (OID). An OID is a unique
name consisting of a sequence of decimal digits separated by periods, or dots,
like this:

.1.3.6.1.2.1.1.2.0

This name represents the object’s location in the namespace. The first
dot represents the root of the tree, and each number represents a node (the
base of a branch) in the tree. Everything nameable in SNMP is located some-
where in this OID tree, and every name (OID) contains the entire path to
that object from the root of the tree.

This may look strange at first, but it works in the same way as the Unix
filesystem, with which you should be familiar. Paths to files start at root,
indicated by an initial slash (/), proceed through a number of named nodes
(derectories) separated by more slashes, and end with the name of the file itself.

Let’s take the example of a file on a Unix filesystem:

/usr/local/bin/myprog

If we use a dot to separate directories instead of a slash, the path to the
file would look like this:

.usr.local.bin.myprog

Review of SNMP 31
No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

Suppose the following table defined a map between the directory names
and a set of numbers:

Directory No.
usr 1
local 3
bin 6
myprog 1

If we use the numbers in place of the names, the path would look like this:

.1.3.6.1

Figure B-1 shows part of the OID tree (or namespace). Note that some
nodes in the tree are named for organizations: ISO is the International
Standards Organization, and DOD is the US Department of Defense.
(The DOD is in this structure because it was instrumental in the creation
of DARPANet, which originally consisted of a four-computer network.

By 1972, DARPANet had grown to a network of 37 computers and was
renamed ARPANet, which led to today’s Internet. End of history lesson.)

e [dof]

iso

(1)

PN

org

(3)
dod
(6)

/

internet

(1

TR

directory mgmt experimental private security snmpV2

(1) (2) (3) (4) (5) (6)

mib-2 enterprises

M M
Figure B-1: The OID tree

The Internet Assigned Numbers Authority (IANA) is responsible for
assigning numbers to companies and organizations under the enterprises node,

giving the company or organization the authority to administer the OIDs in
their own subtrees.

312 Appendix B
No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

MiB-2

The part of the tree that we’re most interested in is under .1.3.6.1 (.iso.org
.dod.internet). Beneath this node are the mgmt.mib-2 (.1.3.6.1.2.1) subtree
and the private.enterprises (.1.3.6.1.4.1) subtree. MIB-2 is the common set
of objects that we mentioned earlier; it is supported by all networked devices
that are manageable by SNMP. The enterprises OID is where organizations
register their private MIBs. (For more on this topic, see Chapter 14.)

MIB-2, defined in RFC 1213, describes a core set of information that is
helpful for managing networked devices. MIB-2 is organized into the ten
groups shown below. Not all groups are supported on all networked devices,
but you can generally expect to find most of them.

System
This group contains objects such as sysDescr (a printable description of
the operating system, hardware, networking software, etc.), sysContact
(typically the email address of the person administering this system),
sysLocation (a printable description of where the system is located), and
sysObjectID (an OID that can be used to determine the type of device).

Interfaces
This group is a table describing the network interfaces available on the
system. The interfaces table contains information on the speed of each
interface and the activity on the interface (octets in and out). By polling
the in and out octets periodically, you can tell what percent of the band-
width available in the interface is being used. This can help you monitor
the capacity of routers in a network.

AT
This is the Address Translation group. MIB-2 deprecates this group and
includes it only for compatibility with devices implementing MIB-1. You
should ignore this group unless you have a particular interest in SNMP
history.

P
This group includes information related to the IP (network) layer,
including ipAddrTable (IP Address Table), which describes the IP address
of the interfaces available on the system.

ICMP
This group includes various Internet Control Message Protocol (ICMP)
statistics.

TCP
This group includes various TCP layer statistics, including the tcpConnTable
(TCP Connection Table) describing the current TCP connections
between this and other systems in the network. This table is often used
in network discovery. Once you have the address of this system, you can
find out the addresses of other systems that are in contact with it.

! Network Working Group, Request For Comments: 1213. Management Information Base for
Network Management of TCP/IP-based internets: MIB-II. K. McCloghrie and M. Rose, March 1991.

Review of SNMP 313

No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce

www.it-ebooks.info

http://www.it-ebooks.info/

UDP
This group includes various User Datagram Protocol (UDP) datagram
statistics.

EGP
This group contains Exterior Gateway Protocol (EGP) statistics for those
systems supporting the EGP protocol.

Transmission
This group contains information related to managing transmission media.

SNMP
This group includes various statistics related to the SNMP protocol, itself.

The SMI

MIBs are described using a grammar defined by the Structure of Manage-
ment Information (SMI), which is a subset of Abstract Syntax Notation One
(ASN.1). ASN.1 was created to allow description of data in a way independent
of machine architecture (for example, no assumptions about endian-ness or
word size). The SNMP SMI adopted a subset of the object types definable
under ASN.1 and then simplified the notation.

All you really need to know about all this is how to read and write the nota-
tion used to describe a MIB. This is best accomplished with minimal notation
definitions illustrated by examples. You can create a new MIB largely by cutting
and pasting from other MIBs.

NOTE We've attempted to keep our discussion of MIBs as simple as possible. For more in-depth
coverage, pick up a copy of Understanding SNMP MIBs by David Perkins and Evan
McGinnis (Prentice Hall, 1996).

Here is an example of an object definition using the grammar described
in the SMI:

system OBJECT IDENTIFIER ::= { mib-2 1 }

sysDescr OBJECT-TYPE

SYNTAX DisplayString (SIZE (0..255))

ACCESS read-only

STATUS mandatory

DESCRIPTION
"A textual description of the entity. This value
should include the full name and version
identification of the system's hardware type,
software operating-system, and networking
software. It is mandatory that this only contain
printable ASCII characters."

t:= { system 1 }

314 Appendix B
No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

The ::=reads is defined as, and {mib-2 1} means that if mib-2 is .1.3.6.1.2.1,
then systemis .1.3.6.1.2.1.1. Therefore, sysDescris.1.3.6.1.2.1.1.1. Each defini-
tion describes a single step in the OID tree.

Note that some object identifiers simply describe nodes in the tree
structure and others describe objects you may actually read (leaf nodes).
These are like directories and files in a filesystem. In fact, when you try to
read sysDescr, you must ask for .1.3.6.1.4.1.1.1.0. This is where we diverge a
bit from the filesystem analogy. The ending zero says you are retrieving an
instance of the object. Scalar object instances (scalars are just stand-alone
objects not in a table) are always .0 (dot zero). In object-oriented termi-
nology, it’s like .1.3.6.1.2.1.1.1 is the class, while .0 describes an object that
is an instance of the class.

This may make more sense if you think of objects as fields in a table
structure that must be retrieved by a row index. The table row number would
replace the zero. For example, ifDescr is a field in a table whose rows each
describe information about a particular network interface on the machine.
Another node under mib-2, interfaces, is described as

interfaces OBJECT IDENTIFIER ::= { mib-2 2 }

If you retrieved the ifDescr field for the first two interfaces on a system,

you might get this:
interfaces.ifTable.ifEntry.ifDescr.1 = lo
interfaces.ifTable.ifEntry.ifDescr.2 = etho

Contrast this with what you might retrieve when asking for sysDescr:

system.sysDescr.0 = Linux localhost.localdomain 2.4.18-27.8.0 #1 Fri Mar 14 06:45:49 EST 2003 i686

The .1 and .2 at the end of the ifDescr OIDs indicate the table row from
which they were retrieved. In SNMP table rows are numbered from 1, which
leaves 0 to indicate a scalar.

The SMI description of a MIB is normally distributed in a MIB file.
This is a text file containing the unambiguous description of a portion of
the universal MIB.

Sometimes descriptions of individual tables are placed in separate files.
Other files just contain common objects or definitions, such as textual conven-
tions, used by a set of other MIB files. Generally, a private MIB for a particular
product is described in a single file or a small set of files, importing types and
conventions as needed from other files, much like the use of the #include
statement in the C language.

The MIB file is used as a formal definition of the MIB for humans, but it is
also used programmatically to interpret SNMP responses for display to human
beings. (We’ll see this below.) MIB files, therefore, must be as syntactically
correct as any computer program. There are MIB compilers and checkers

Review of SNMP 315
No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

(the equivalent of the lint program for C) to help verify the correctness of a
MIB file. (We discuss this further in Chapter 14, where we cover the creation
and validation of our own MIB.)

The SNMP Protocol

Although worthy of a chapter all its own, we can understand most of what
we need to know about the SNMP protocol from the Protocol Data Units
(PDUgs) it defines and their uses.

The Basic Commands: GET, SET, GETNEXT

The SNMP protocol is used to exchange information between managed
systems and the applications written to manage them. Managed systems
host a daemon called an agent, usually named snmpd, which provides the
ability to read information from or write information to one or more
MIBs. The GET, SET, and GETNEXT PDUs are used to read from, write to,
and walk a MIB.

Walking a MIB with GETNEXT

GETNEXT allows you to name one object and ask the agent to return the OID
and value of the next object in the MIB tree. Walking a MIB means starting at
some point in the OID tree and traversing the entire subtree below it with
repeated use of the GETNEXT command. The walk is finished when the OID
returned is not within the subtree defined by the first OID. An application
can find out which MIBs are supported on a managed system by walking the
entire MIB tree in this way.

Traps and Informs

Managed systems can also spontaneously send information to a configured
target-management node, a process called sending an SNMP trap or inform.
A trap is sent toward a target system, but the sender never knows if it got
there. An inform is an improvement over a trap because it expects a reply
from the receiver; it can be retried if the reply is not received in a reasonable
amount of time.

Command-Line Tools: Examples

Let’s look at some examples of using command-line tools that use the SNMP
PDUs we have just discussed to achieve their function. These commands are
supplied as part of the Net-SNMP package (http://netsnmp.sourceforge.net),
which we use throughout the SNMP chapters in this book.

To retrieve the sysDescr field shown in the previous section, you might
issue the command

snmpget -c public 10.1.1.21 .1.3.6.1.2.1.1.1.0

316 Appendix B
No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

This asks for the instance of the sysDescr object from the system whose IP
address is 10.1.1.21, using the community name public (think of this as a
password). As you can guess from its name, the snmpget command generates

an SNMP GET PDU.

Now let’s walk a subtree. The snmpwalk command uses a series of GETNEXT

PDUs. If you issue the following command to retrieve the interface table
from a system:

snmpwalk -c public 10.1.1.21 .1.3.6.1.2.1.2

This is what you might get back:

interfaces.ifNumber.o = 2

interfaces.ifTable.ifEntry.ifIndex.1 = 1
interfaces.ifTable.ifEntry.ifIndex.2 = 2
interfaces.ifTable.ifEntry.ifDescr.1 = lo
interfaces.ifTable.ifEntry.ifDescr.2 = etho
interfaces.ifTable.ifEntry.ifType.1 = softwareLoopback(24)
interfaces.ifTable.ifEntry.ifType.2 = ethernetCsmacd(6)
interfaces.ifTable.ifEntry.ifMtu.1 = 16436
interfaces.ifTable.ifEntry.ifMtu.2 = 1500
interfaces.ifTable.ifEntry.ifSpeed.1 = Gauge32: 10000000
interfaces.ifTable.ifEntry.ifSpeed.2 = Gauge32: 100000000
interfaces.ifTable.ifEntry.ifPhysAddress.1 =
interfaces.ifTable.ifEntry.ifPhysAddress.2 = 0:8:74:93:4d:29
interfaces.ifTable.ifEntry.ifAdminStatus.1 = up(1)
interfaces.ifTable.ifEntry.ifAdminStatus.2 = up(1)
interfaces.ifTable.ifEntry.ifOperStatus.1 = up(1)
interfaces.ifTable.ifEntry.ifOperStatus.2 = up(1)
interfaces.ifTable.ifEntry.ifInOctets.1 = Counter32: 199082
interfaces.ifTable.ifEntry.ifInOctets.2 = Counter32: 291688668
interfaces.ifTable.ifEntry.ifInUcastPkts.1 = Counter32: 3380
interfaces.ifTable.ifEntry.ifInUcastPkts.2 = Counter32: 1579204
interfaces.ifTable.ifEntry.ifInDiscards.1 = Counter32: 0
interfaces.ifTable.ifEntry.ifInDiscards.2 = Counter32: 0
interfaces.ifTable.ifEntry.ifInErrors.1 = Counter32: 0
interfaces.ifTable.ifEntry.ifInErrors.2 = Counter32: 0
interfaces.ifTable.ifEntry.ifOutOctets.1 = Counter32: 199082
interfaces.ifTable.ifEntry.ifOutOctets.2 = Counter32: 61187262
interfaces.ifTable.ifEntry.ifOutUcastPkts.1 = Counter32: 3380
interfaces.ifTable.ifEntry.ifOutUcastPkts.2 = Counter32: 682356
interfaces.ifTable.ifEntry.ifOutDiscards.1 = Counter32: o
interfaces.ifTable.ifEntry.ifOutDiscards.2 = Counter32: o
interfaces.ifTable.ifEntry.ifOutErrors.1 = Counter32: o
interfaces.ifTable.ifEntry.ifOutErrors.2 = Counter32: o
interfaces.ifTable.ifEntry.ifOutQLen.1 = Gauge32: 0
interfaces.ifTable.ifEntry.ifOutQLen.2 = Gauge32: 0
interfaces.ifTable.ifEntry.ifSpecific.1 = OID: .ccitt.zeroDotZero
interfaces.ifTable.ifEntry.ifSpecific.2 = OID: .ccitt.zeroDotZero

Review of SNMP
No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

317

http://www.it-ebooks.info/

This output is a little awkward to read because it is a depth-first walk;
that is, it walks down each column before going back to row one and starting
down the next column. This is a result of the lexical ordering of the OIDs.
For example, since ifDescr is ifEntry.1 and ifType is ifEntry.2, you see all
ifDescr fields before any ifType fields.

KNOWING AN APPLIANCE BY ITS MIBS

Walking can often identify the type of a machine by the MIBs it supports. For example,
one of the authors was once assigned an IP address for a new workstation and found
that someone else was already using this address. Since he had been assigned this
address through proper channels, he assumed someone else was invalidly using it.
He turned off his system and used another system to read system.sysContact from the
offending system; this should have been set to the contact information for the admin-
istrator for that node, but it was not. He then tried walking all the MIBs supported by
that system and found that it supported the printer MIB. Hmm . . . As it turned out, he
had been incorrectly given the IP address of the department’s printer!

SNMPv1, SNMPv2, and SNMPv3

There are three main variants of SNMP. The original, SNMPv1 (version 1), is
the simplest, but it has some drawbacks that newer versions seek to remedy.
Its shortcomings include:

¢ No support for integers larger than 32 bits.
¢ No means to ask for bulk data (each object must be asked for by name).
¢ No mechanism to ensure that a trap reaches its destination.

¢ Security/authentication is accomplished using community names, which
are like passwords, but are transmitted on the network in the clear (that
is, unencrypted).

SNMPv2c¢ (community-based SNMPv2) addressed the first three of these
problems, but reaching an agreement on a new security mechanism proved
more difficult, so SNMPv2c still relies on community names for authentication.
SNMPv2c includes 64-bit integers, the GETBULK command, and introduces
informs, which are confirmed traps.

SNMPv3 replaces the community-name authentication mechanism with
more secure authentication and encryption, but in-depth discussion of it is
beyond the scope of this book.

NOTE SNMPul has been moved to “historical” status, but many applications used by IT
organizations still use it. Your network appliance may need to speak SNMPv1 for
compatibility with these older applications. Expect, however, that in the not-too-distant

Sfuture, some of your customers will want to disable the older, less secure versions
of SNMP.

318 Appendix B
No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

SNMP Data Types

SNMP data types are a subset of ASN.1 types. A complete description of
the SNMP data types and their uses is beyond the scope of this brief intro-
duction, but this section is a summary of the major types. SNMP defines
three kinds of data types: primitive, defined, and constructor. We won’t
dwell on the differences here, other than to say primitives are the basic types,
defined types have special meanings but have underlying primitive types, and
constructor types are the tables we will discuss below. Although it may look a
little strange, we’ll try to stay consistent here with SNMP’s standard of using
all capital letters in the names of primitive types, but just initial capitals for
the defined types.

INTEGER
An INTEGER may be positive or negative. Its values may be enumerated, a
range of legal values specified in the form of (lowValue..highValue), or a
fixed size (e.g., Size(4)). In SNMPv2 INTEGER becomes Integer32, explicitly
indicating the size as 32 bits. SNMPv2 also adds an Unsigned32 type for a
32-bit integer of only positive values.

Gauge
Gauges are integers that take only non-negative values and whose values
rise or fall within a specified range (e.g., between 0 and 100 percent,
or between 0 and some maximum capacity). SNMPv2 redefines this as
Gauge32.

Counter
Like Gauge, Counter is an integer that takes only non-negative values.
Unlike Gauge, the value of a counter only increases until it wraps back to
zero at its maximum limit. SNMPv2 replaced Counter with Counter32 and
Counter64.

TimeTicks
TimeTicks are integers describing time in 1/100ths of a second. They are
generally used to describe the time since some significant event or start-
ing point, such as system boot or last configuration change.

OCTET STRING
An OCTET STRING is a string of eight-bit bytes. It is not necessarily a null-
terminated C string; each octet can contain any value (0..255) at any
position (i.e., there may be nulls in the middle). SNMPv2 added the
restriction that an OCTET STRING may be no longer than 65,535 (i.e., its
length must be expressible in 16 bits).

OBJECT IDENTIFIER
This is used to contain SNMP OID values. SNMPv2 added the restriction
that an OBJECT IDENTIFIER may contain no more than 128 components,
each of which must be expressible in a maximum of 32 bits.

IpAddress
The IpAddress string is an octet string of length four. (Note that this
allows expression only of Ipv4 addresses.)

Review of SNMP 319
No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

Opaque
This type is much like OCTET STRING in that it is a string of octets with
similar restrictions. Opaque was defined to allow extensions of the SMI.
Defining new types based on the Opaque type is strongly discouraged.

BITS
BITS was added in SNMPv2 to provide a way to express bit fields of
labeled bits (i.e., where each bit has a separate meaning).

NOTE Types that have been removed from the later revisions of SNMP are not shown in the
above list.

SNMP Tables

In addition to the simple types described above, tables may be described using
SEQUENCE and SEQUENCE OF. A table in a MIB is described as a SEQUENCE OF a type
that describes the entry. The table entry is then described as a SEQUENCE con-
taining the individual fields of the entry. The entry type describes the columns
that constitute each row in the table, while the table itself is described as an
array of these entry structures.

For example, here’s the definition of the interfaces table from MIB-2:

ifTable OBJECT-TYPE

SYNTAX SEQUENCE OF IfEntry
MAX-ACCESS not-accessible
STATUS current

DESCRIPTION

"A list of interface entries. The number of entries is
given by the value of ifNumber."
::= { interfaces 2 }

ifEntry OBJECT-TYPE

SYNTAX IfEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION

"An entry containing management information applicable to a
particular interface."

INDEX { ifIndex }

::= { ifTable 1 }

IfEntry ::=
SEQUENCE {

ifIndex Interfacelndex,
ifDescr DisplayString,
ifType IANAifType,
ifMtu Integer32,
ifSpeed Gauge32,
ifPhysAddress PhysAddress,
ifAdminStatus INTEGER,
ifOperStatus INTEGER,
ifLastChange TimeTicks,

320 Appendix B
No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

ifInOctets Counter32,

ifInUcastPkts Counter32,

ifInNUcastPkts Counter32, -- deprecated
ifInDiscards Counter32,

ifInErrors Counter32,
ifInUnknownProtos Counter32,

ifOutOctets Counter32,

ifOutUcastPkts Counter32,
ifOutNUcastPkts Counter32, -- deprecated
ifOutDiscards Counter32,

ifOutErrors Counter32,

ifoutQLen Gauge32, -- deprecated
ifSpecific OBJECT IDENTIFIER -- deprecated

Note the use of both ifEntry and IfEntry, one initial-capped and the
other not. All object names start with lowercase; for example, ifTable and
ifEntry. Because IfEntry is initial-capped, we know that it describes a type,
rather than an object.

The IfEntry type is like a struct in G; it describes the layout of each
table row. The lowercase ifEntry is a node in the OID tree beneath which
the column objects will be defined. Thus, the description of a particular
interface will have an OID like this:

ifTable.ifEntry.ifDescr.x

where x is the row index.

Following the definition of the entry type will be the definitions of each
of the objects that make up the entry sequence. You will see this format again
and again in MIB definitions; much MIB information is organized into tables.

Defining New Types

Although the data types defined in the SMI are sufficient, it is sometimes
convenient to be a bit more specific. For example, you may want to restrict
the possible values in an OCTET STRING or the range covered by an Integer32;
if your MIB uses the same restricted values repeatedly, it will become tedious
to describe these same restrictions repeatedly.

RFC 1903 describes the textual convention, a macro that allows you to
bind your clarifications together into a new type. The following textual
convention is taken from the file SNMPv2-TC.txt distributed with Net-SNMP
(version 5.0.8).

DisplayString ::= TEXTUAL-CONVENTION
DISPLAY-HINT "255a"
STATUS current
DESCRIPTION
"Represents textual information taken from the NVT ASCII
character set, as defined in pages 4, 10-11 of RFC 854.

Review of SNMP 321

No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce

www.it-ebooks.info

http://www.it-ebooks.info/

To summarize RFC 854, the NVT ASCII repertoire specifies:
- the use of character codes 0-127 (decimal)

- the graphics characters (32-126) are interpreted as
US ASCII

- NUL, LF, CR, BEL, BS, HT, VT and FF have the special
meanings specified in RFC 854

- the other 25 codes have no standard interpretation
- the sequence 'CR LF' means newline
- the sequence 'CR NUL' means carriage-return

- an 'LF' not preceded by a 'CR' means moving to the
same column on the next line.

- the sequence 'CR x' for any x other than LF or NUL is
illegal. (Note that this also means that a string may
end with either 'CR LF' or 'CR NUL', but not with CR.)

Any object defined using this syntax may not exceed 255
characters in length."
SYNTAX OCTET STRING (SIZE (0..255))

This describes a type called DisplayString that can take up to 255 octets
whose values are restricted to those that correspond to displayable characters.
The DISPLAY-HINT clause shows how a DisplayString may appear. 255a means
it can take the form of up to 255 ASCII characters. RFC 1903 describes the
complete syntax for the display hint.

Structure of a MIB File

When you read a MIB file, you will notice that itis named and defined between
BEGIN and END statements. It will describe what it includes from other MIB files,
and it will name the module being defined in this MIB file, the contact infor-
mation for the person responsible for the MIB, and the revision history. Next
you will see the definition of the objects in the MIB.

If you look at the IF-MIB, again distributed with the Net-SNMP package,
you can see all of these parts. The MIB is enclosed within these lines

IF-MIB DEFINITIONS ::= BEGIN

END

The first section states the external dependencies.

IMPORTS
MODULE-IDENTITY, OBJECT-TYPE, Counter32, Gauge32, Counter64,
Integer32, TimeTicks, mib-2,

322 Appendix B
No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

NOTIFICATION-TYPE FROM SNMPv2-SMI
TEXTUAL-CONVENTION, DisplayString,

PhysAddress, TruthValue, RowStatus,

TimeStamp, AutonomousType, TestAndIncr FROM SNMPv2-TC
MODULE-COMPLIANCE, OBJECT-GROUP,

NOTIFICATION-GROUP FROM SNMPv2-CONF
snmpTraps FROM SNMPv2-MIB
IANAifType FROM IANAifType-MIB;

Then comes the definition of the module.

ifMIB MODULE-IDENTITY

LAST-UPDATED "200006140000Z"

ORGANIZATION "IETF Interfaces MIB Working Group"
CONTACT-INFO
" Keith McCloghrie

Cisco Systems, Inc.

170 West Tasman Drive
San Jose, CA 95134-1706
us

408-526-5260
kzm@cisco.com"
DESCRIPTION
"The MIB module to describe generic objects for
network interface sub-layers. This MIB is an
updated version of MIB-II's ifTable, and incorporates
the extensions defined in RFC 1229."

REVISION "200006140000Z"
DESCRIPTION
"Clarifications agreed upon by the Interfaces MIB WG,
and published as RFC 2863."
REVISION "199602282155Z"
DESCRIPTION
"Revisions made by the Interfaces MIB WG, and
published in RFC 2233."
REVISION "199311082155Z"
DESCRIPTION
"Initial revision, published as part of RFC 1573."
ti= { mib-2 31 }

This describes the module ifMib, which takes the location { mib-2 31 }

in the overall MIB address space. The organization and contact information
are clearly identifiable, followed by the descriptions of the various revisions

of this MIB in reverse chronological order. The time and date look pretty
cryptic, but they are just a concatenation of year, month, day, hour, and
minute in GMT (indicated by the Zfor Zulu Time). Therefore, the most

recent revision (200006140000Z) was made on June 14, 2000.
Next, you'll see the definition of the actual structure of the MIB objects,

along with any textual conventions new to this MIB.

Review of SNMP

No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce

www.it-ebooks.info

323

http://www.it-ebooks.info/

324

Summary

Appendix B

This has been a whirlwind tour of SNMP. We’ve covered the basic parts of
SNMP: the protocol, the grammar, and the first group of managed objects.
You should now understand the acronyms SMI, MIB, and OID, and the terms
object and trap. You should also be familiar with the term MIB-2 and have an
idea of what it contains. We have discussed the various data types, both scalars
and tables. At this point, you should be able to take an unfamiliar MIB and
read through it, understanding its basic structure and what it is trying to
describe. We have also touched on a couple of the command-line utilities
you may find useful to probe an SNMP-enabled device: snmpwalk and snmpget.

With a little cut and paste and some judicious modifications, you may
now be able to develop a simple MIB.

No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce

www.it-ebooks.info

http://www.it-ebooks.info/

INSTALLING A FRAMEBUFFER
DEVICE DRIVER

The Laddie CD was designed to work with
as many video cards as possible. To accom-
plish this, it defaults to a framebuffer device
driver for a widely adopted video standard and
configures it for a low-resolution display with only eight
bits per pixel. If this driver fails, the system then attempts

to find a hardware-specific driver for your video card
and loads that driver with its default configuration. This approach will provide
a minimal, working framebuffer for most systems. However, if you would like

to take better advantage of your particular hardware, you will need to take
some additional steps.

In this appendix, we will cover the following topics:

¢ Finding framebuffer device drivers for your video card

¢ Configuring the framebuffer device driver

No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce

www.it-ebooks.info

http://www.it-ebooks.info/

326

Finding Framebuffer Device Drivers for Your Video Card

Appendix C

To find available device drivers for your video card, boot your PC with the
Laddie CD.

If the Laddie CD succeeds in finding a driver for your video card, it will
launch the Laddie framebuffer Ul, shown in Figure C-1. Otherwise, it will
display the message The framebuffer (/dev/fb0) is unavailable before the login
prompt.

Laddie Alarm System - Status

Front Door

Motion Detector

Smoke Detector

Clear All <

Figure C-1: The Laddie framebuffer Ul

For now, we’ll assume that a framebuffer driver loaded successfully. To
determine which driver was loaded, first exit the framebuffer UI by pressing
ESC. Then type the following at the command prompt:

laddie:~# dmesg | grep fb

The dmesg command displays the buffer of messages produced by the
kernel since startup, and the grep command selects those that might have
something to do with framebuffers.

The vesafb Driver

The Laddie CD first attempts to load the vesfab video driver, since this is the
most likely candidate for an unknown graphics card. The vesafb driver sup-
ports an interface developed by the Video Electronics Standards Association
(VESA) known as VESA BIOS Extensions (VBE). The driver relies on the BIOS
and must therefore be configured at system startup. This means that the vesafb
driver has to be compiled into the kernel, rather than be supplied as a separate
module. The Laddie appliance configures the driver using a boot prompt
command, which we will describe later.

Here is example output from one of our systems on which a vesafb driver
installed successfully:

vesafb: framebuffer at 0xd8000000, mapped to 0xf8880000, using 600k, total 32768k
vesafb: mode is 640x480x8, linelength=640, pages=11

vesafb: protected mode interface info at c000:0f03

vesafb: scrolling: redraw

No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce

www.it-ebooks.info

http://www.it-ebooks.info/

vesafb: Pseudocolor: size=8:8:8:8, shift=0:0:0:0
vesafb: Mode is VGA compatible
fbo: VESA VGA frame buffer device

Hardware-Specific Drivers

If your system successfully loaded the vesafb driver, you will need to disable
that driver at boot time in order to check for other drivers. To do this, reboot
the Laddie CD. When you see the boot prompt, type novesa and press ENTER.
If the framebuffer UI launches, that means the system found an appropriate
driver. Exit the framebuffer Ul, and type the command dmesg | grep fb. When
we did this for one of our systems, the command produced the following:

vesafb: probe of vesafbo failed with error -6

rivafb: nVidia device/chipset 10DE002D

rivafb: nVidia Corporation NV5M64 [RIVA TNT2 Model 64/Model 64 Pro]
rivafb: RIVA MTRR set to ON

rivafb: could not retrieve EDID from DDC/I2C

rivafb: setting virtual Y resolution to 52428

rivafb: PCI nvidia NV4 framebuffer ver 0.9.5b (32MB @ 0xF8000000)
[additional lines omitted...]

Here we see that the vesafb driver failed to load, and a device-specific
driver succeeded. The rivafb is a video driver for NVIDIA graphics cards.

You can also check which hardware-specific framebuffer driver your
system loaded with the 1smod command. Execute the following at the console:

lsmod | grep fb

The 1smod command lists all the modules currently loaded by the kernel;
framebuffer names typically include the letters /b, for example nvidiafb,
radeonfb, savagefb, or matroxfb_g450. By the way, the 1smod command won’t
work for the vesafb driver, since the vesafb driver isn’t a module—it’s compiled
into the kernel.

Drivers Not Included on the Laddie CD

If the Laddie CD did not find a driver for your graphics card, it is possible
that a newer kernel will support it. In this case, use the 1spci command to
identify your graphics card. If your card is AGP, PCI, or PCI-Express, this com-
mand will report it. The following is one of several lines produced when
running the 1spci command on one of our development machines.

01:00.0 VGA compatible controller: nvidia Corporation NV15 [GeForce2 GTS/Pro] (rev a4)

This output shows us that we have an NVIDIA VGA-compatible controller
(VGA stands for Video Graphics Array). At this point, you may need to spend
some time on the Internet finding a driver for your graphics card. Also keep
in mind that Linux doesn’t support all graphics cards, so you may have to
install a different card in order to use the Linux framebuffer.

Installing a Framebuffer Device Driver 327
No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

Configuring the Framebuffer Device Driver

Once you've found the right video driver for your hardware, you’ll need to
configure it for your desired video mode.

The vesafb Driver

Since the vesafb driver relies on real-mode BIOS functions for initialization,
it must be built into the kernel and configured at boot time. This configura-
tion is specified at the kernel command line and may be provided at the boot
prompt or in the bootloader’s configuration file. For the vesafb driver, the
kernel command line should include the following:

video=vesafb vga=<Linux video mode>

The Linux video mode is a number that specifies a particular resolution
and number of bits per pixel. This number is formed by adding 0x200 to the
video mode numbers specified by the VESA BIOS Extensions standard. These
Linux video modes are summarized in Table C-1.

Table C-1: Linux Video Mode Numbers

Bits per pixel 320x200 640x400 640x480 800x600 1024x768 1280x1024

4 - - 0x302 0x304 0x306
8 - 0x300 0x301 0x303 0x305 0x307
15 (1:5:5:5) 0x30d - 0x310 0x313 0x316 0x319
16 (5:6:5) 0x30e - 0x311 0x314 0x317 Ox31a
24 (8:8:8) 0x30f - 0x312 0x315 0x318 0x31b

Choose an Appropriate Video Mode

A typical VBE-compliant graphics card will not support all of these modes, so
you may need to experiment to find one that works. The easiest way to do this
is to specify

video=vesafb vga=ask

at the Linux boot prompt. (If you are experimenting with the Laddie CD,
the complete boot prompt line would be linux vga=ask.) The kernel initiali-
zation code will display a list of modes and ask for a mode number. You can
ignore the ones it presents, since these are for text-only consoles.

Also, don’t bother to choose the scan option. At best, this will provide a
longer list of text modes; at worst, it will hang the system and you will have
to reboot. In fact, whenever you enter an unsupported number, the kernel
responds immediately with Unknown mode ID. Try again, so it doesn’t take
long to find one that works. When entering a mode, just provide the hex
digits without the leading Ox.

328 Appendix C
No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

NOTE

Update the Kernel Command Line

Once you have found a VBE video mode that works, you can update the kernel
command line in your bootloader configuration file. In this case, you do need
to use the leading Ox. For example, the command

video=vesafb vga=0x311 3

would be appropriate for a VBE-compatible video card that supports a resolu-
tion of 640 by 480 with 16 bits per pixel. The final 3 specifies runlevel 3 to
prevent the X display manager from loading a separate video driver.

The vesafb driver does accept optional parameters for features like efficient scrolling.
See /usr/src/linux/Documentation/fb/vesafb.txt for details.

Hardware-Specific Drivers

If you booted the Laddie CD with the novesa option and if the system was
able to find a hardware-specific video driver, it will have come up with default
settings for the video mode.

In this section, we will describe how you can experiment with those settings
using the Laddie CD, and then how you can select your preferred settings at
boot time for your own system. These comments also apply to video drivers
that the Laddie CD doesn’t support, though you will have to use your own
system to experiment with them.

Experiment with Different Video Modes

Unlike the vesafb driver, non-VBE drivers can change modes after startup.
To change video mode, use the fbset utility. This utility accesses the file
/etc/fb.modes to associate mode names with geometry and timing parameters.
For example, the command

fbset 640x480-60

will find the geometry and timing parameters associated with the string
640x480-60 and use these to switch the framebuffer to a resolution of 640 by 480
at 60 Hz. If this command is successful, you will probably see the console screen
change (e.g., to a larger font) as it switches to a different graphics mode.

If the fbset utility is not available on your distribution, you can down-
load it from http://packages.debian.org/stable/admin/fbset. If you install
it yourself, be sure to install an appropriate fb.modes file in /etc. You can
use one of the fb.modes files provided with the fbset package (which is what
we did), but do so with caution, because incorrect timing values can damage
some monitors.

Select the Desired Video Mode at Startup

The Laddie CD maintains hardware-specific video drivers as modules, but
once you’ve found the appropriate framebuffer device driver for your system,

Installing a Framebuffer Device Driver 329

No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce

www.it-ebooks.info

http://www.it-ebooks.info/

you may want to build it into the kernel. This is not an option with the Laddie
CD, of course, but if you rebuild the kernel for your own system, you will need
to configure the driver at the kernel boot prompt. Many non-VBE framebuffer
device drivers now support a common syntax for providing the video mode
on the kernel command line. Following this syntax, the examplefb driver
would be selected at boot time with the following command:

video=examplefb:1024x768-24@76

This specifies a width of 1,024 pixels, a height of 768 pixels, 24 bits per
pixel, and a refresh rate of 76 Hz.

NOTE No timing information has been provided except for the refresh rate. The kernel includes
a database of timing parameters (see the file /usr/src/linux/drivers/video/modedb.c for
details) and will search for an entry that matches the provided resolution and refresh
rate. If it fails to find a match, it will use a default video mode, and if that fails, it will
attempt all modes in the database.

In general, the following format is used to specify the video mode:

<xres>x<yres>[M][R][-<bpp>][@<refresh>][i][m]

Here, an optional M requests the use of VESA Coordinated Video Timings, a
systematic method for determining appropriate timings based on resolution,
refresh rate, the type of monitor (CRT or digital display), and interlacing.
The optional R specifies reduced blanking for digital displays. The optional
i specifies an interlaced mode, and the optional m requests an additional
1.8 percent margin in the timing calculations.

Besides the common syntax outlined here, specific drivers may support
other options, such as disabling acceleration. There is little commonality
among drivers; you may need to consult your driver’s source code to find
these options.

Verify the Settings for Your Framebuffer Driver

If you have successfully loaded a framebuffer driver and would like to learn
more about its configuration, you can use the fbset -i command to report
your framebuffer’s geometry, timings, and various other parameters.

To see configuration data on a loaded framebuffer driver, try using cat to
examine the contents of /proc/fb and the files in the /sys/class/graphics/fb0
directory. Not all drivers update the /sys directory, but when they do, these
files provide a convenient way to access framebuffer parameters such as
bits_per pixel and color_map.

For more information on the Linux framebuffer, see the (somewhat
dated) HOWTO at http://tldp.org/HOWTO/Framebuffer-HOWTO.html.
The VBE 3.0 specification is available at http://www.vesa.org/public/VBE/
vbe3.pdf.

330 Appendix C
No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

A DB-TO-FILE UTILITY

This appendix describes tbl2filed, a
daemon that allows you to use SQL to
read and write values in Linux configuration
files as if those values were in a database instead

of a file. This utility is convenient if you want to use

RTA for new daemons and want to keep the same database metaphor for

reading and writing values into traditional, non-RTA configuration files.
Topics discussed in this appendix include:

Overview
Table definitions
Usage and API

Security notes

No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce

www.it-ebooks.info

http://www.it-ebooks.info/

332

Overview

The goal of the tbl2filed daemon is to allow your UI programs to use a
PostgreSQL library to read or write (SELECT or UPDATE) an RTA table and
have an underlying system configuration file scanned or modified as part of
the SELECT or UPDATE. This utility tries to mimic the common tasks of:

¢ Viewing values in a configuration file (SELECT value . . .)

¢ Editing the values in a configuration file (UPDATE value . . .)

¢ Atomically writing a file to disk (UPDATE tbl2file SET do_commit. . .)

¢ Restarting a service if necessary (UPDATE tbl2file SET do_script . ..)
The tbl2filed daemon allows you to read and write configuration

files by using PostgreSQL commands on two RTA tables. The first table,

tbl2file, describes the files managed by the daemon, and the second

table, tbl2field, describes the managed fields.

Figure D-1 illustrates how this utility maps two tables into text fields
inside of disk files.

tbl2filed
bl2file Filesystem
SQL
T iblfield

Figure D-1: Use SQL to access data in files.

This daemon also lets us put all of the restart scripts for system services in
a single file and use a single method (a write callback) to invoke them. This
approach might help security because it allows a non-privileged UI program
to safely change the system configuration files.

Table Definitions

An example is given later in this appendix, but for that example to make
sense, you need some understanding of the contents of the two tbl2filed
tables. Laddie uses tbl2filed to help with the networking configuration, and
you may find the tables easier to understand by looking at them in a running
Laddie system. Boot the Laddie CD and follow the tbl2filed link at http://
192.168.1.11/table_editor/rta/rta_apps.html.

No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce

www.it-ebooks.info

http://www.it-ebooks.info/

The thi2file Table

The table of managed file information, tbl2file, has the following columns:

name // name of the file

path // full path to the file

do_commit // flush values to the file on 0->1
timestamp // time we last read/parsed file
do_script // run script on 0->1 transition
script_parms // the parameters passed to the script

The name of the file is the name as seen by the UI. It is also used as part
of the index into tbl2field table. This can just be shorthand or a mnemonic
for the file, for example, resolv.

The path is the full path to the file, including the filename. For
example, the name field might be resolv, while the path might be
/etc/resolv. conf.

Writing a 1 to the do_commit flag causes the managed file’s values to be
written back to the disk file. The file is written to a temporary file first and
then rename() is called to move the temporary file to the destination file.
This mechanism helps maintain consistency in the system by trying to make
a write of the entire file as atomic as possible. A SELECT on do_commit always
returns a zero.

Reading and parsing the values from a file is expensive in terms of time
and CPU cycles. Since the files won’t change often, we can improve the
system’s responsiveness by caching the file’s values in the tbl2field table and
only rereading the file if it has been modified since the last time we read it.
The timestamp marks the last time we read and parsed the file; time is measured
as the number of seconds since the last write. When a Ul asks for a value, our
daemon compares the mtime (time of last modification) in the file’s inode to
our time stamp, and either rescans the file if necessary or returns the values
directly from the fields table, if the cached values are still valid.

Setting do_script to 1 starts the script /usr/local/tbl2filed/tb12script.sh.
(The script location is set in the tbl2filed Makefile.) The script_parms field
has a set of space-separated parameters that are passed to the script. The
parameters are not passed on the command line; rather, they are passed in
on standard input and parsed into parameters using a cut command. This
script is spawned and forgotten—that is, we ignore any return value from it.
The script is only run by an explicit write of 1 to the do_script column, and the
column is only used for its write callback. A SELECT on this column will always
return a zero. Laddie uses this script, for example, to restart networking when
the user changes the appliance’s IP address.

A DB-to-File Utility 333
No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

The thi2field Table

The tbl2field table that holds the values for the individual fields and has the
following columns:

name // name of the file, e.g., "resolv"

field // field name, e.g., "search_domain"

pattern // regex to extract value from line

regerr // nonzero if any errors in the pattern string
skip // skip this many patterns to target

format // printf format to replace line

value // current value of field

The name is the name of the file and must match the name column in the
tbl2file table.

The field is the name of the field as seen by all of the UI programs.
This is always used in a WHERE clause to identify the exact field to read and
update.

The pattern is a regular expression that, in combination with the skip
count, uniquely identifies the field in the file. The pattern should include
exactly one set of parentheses to extract the value from the text of the line.
For example, to get the first DNS name server from the resolv.conf file, we
might use the following regular expression:

“nameserver[\t]+([0-9\.]+)

The regerr field is nonzero if the pattern can not be parsed as a
regular expression. It should be necessary to examine regerr only during
development.

The skip column tells the daemon how many of the above patterns to
skip before selecting a line as the source of the value. For example, we’d use
a skip value of 1 to read the second DNS nameserver from resolv.conf. This
would skip over one nameserver and read the second one.

The format field is used to reproduce the line of configuration data in the
target file. We could get this from the regular expression, but having a printf
format string is a lot easier. If this column is left blank, the field is considered
a read-only field. Any of the read-only values in /proc or /sys should have a
blank format field. You can see a good example of a read-only value by look-
ing at the uptime field in tbl2field table. For a nameserver line in resolv.conf,
the format string would be nameserver %s. There’s no need for a \n in the
format string, since it is added automatically by the print statement.

The value is the current value of the field as a string. Doing a SELECT
on this column will cause the file to be read and parsed if necessary (see
timestamp in tbl2file above). If the cached value is still valid, the value is
taken directly from the table. A write on this column saves the value in the
table but does not actually write the value to the file; writing a 1 to do_commit
does that.

334 Appendix D
No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

A tbl2filed Example

Let’s look at a complete example by continuing with the nameserver config-
uration for Laddie. The /etc/resolv.conf file on a running Laddie system
looks like this:

nameserver 204.117.214.10
nameserver 199.2.252.10
nameserver 65.173.40.10

Our goal is to be able to read the first DNS nameserver with a SELECT
statement as follows:

psql -h localhost -p 8885
> SELECT * FROM tbl2field where name = “"nameserver_1";
> \q

Similarly, to modify the second DNS server, Laddie uses the following
UPDATE statement:

psql -h localhost -p 8885

> UPDATE tbl2field SET value="192.168.1.1"

> WHERE name=resolv AND field="nameserver_ 2";
> \q

You can verify the above by booting the Laddie CD, exiting from the frame-
buffer menu, logging in as root, and executing the commands given above. Be
sure to verify that the file has been modified after the UPDATE command.

Now let’s look at the tbl2file and tbl2field configuration that gives us the
ability to read and write the nameserver IP addresses as if they were in a
PostgreSQL database. We’ll start by listing the file we want to manage in the
tbl2file table:

UPDATE tbl2file SET name=resolv, path=/etc/resolv.conf,
script_parms="" LIMIT 1 OFFSET 0

We don’t need to run a script after editing the resolv.conf file, so we can
leave script_parms blank. You can use either full or relative path names, but as
a security precaution, it is a good idea to use the full path name.

In this example, we want to manage the three DNS nameservers.

The SQL for this is taken from tbl2field.sql (perhaps use the full path,
i.e., /opt/laddie/tbl2filed/. . .) and is as follows:

UPDATE tbl2field SET name="resolv", field="nameserver 1", skip=0,
pattern=""nameserver[\t]+([0-9\.]+)” LIMIT 1 OFFSET 1

UPDATE tbl2field SET name="resolv", field="nameserver 2", skip=1,
pattern=""nameserver[\t]+([0-9\.]+)" LIMIT 1 OFFSET 2

UPDATE tbl2field SET name="resolv", field="nameserver 3", skip=2,
pattern=""nameserver[\t]+([0-9\.]+)" LIMIT 1 OFFSET 3

A DB-to-File Utility 335
No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

336

The pattern recognizes the line with the parameter, and the single set
of parentheses in the pattern extracts the actual field value. In the above
examples, the value of a nameserver field must have only the digits zero
through nine and/or decimal points. The parentheses are not part of the
recognition—they are only used to extract the field value.

One nice feature of the tbl2filed daemon is that when you write a value
to a field, the daemon uses the format string to build a copy of what the new
configuration line will look like. Then it runs the pattern against the new line
and rejects the update if the pattern doesn’t recognize the new line. In this
example, an update for a nameserver of 11.22.33.44 would succeed, since it
contains the required digits and decimal points; however a nameserver update
of Bob's fun house would fail, since it does not contain the required digits and
decimals.

The nameserver example also illustrates the use of the skip column.
The primary nameserver has skip set to zero, meaning that we use the first
line with a matching pattern. The secondary nameserver is specified with
skip set to 1, meaning we skip one matching line and use the second
matching line.!

Security Notes

Depending on how you use it, this daemon can either enhance or hurt
your system security. At first glance, having a daemon that runs with root
privileges and accepts database connections seems like a bad idea. On the
other hand, this might allow you to improve security by running only one
daemon as root and running each of the Ul programs as a non-root user.
This way, if an attacker breaks into one of your Ul programs, he or she
only gains the privileges of that non-root user. Compare this to most
Linux appliances, in which a Ul needs to run as root in order to make
system changes.

The daemon reads tbl2file.sql and tbl2field.sql when it starts, and
then marks all of its configuration columns as read-only. Not allowing
updates to the managed files or script parameters helps security, but it
also means that you cannot update any part of the configuration after
the program starts. You must edit the tbl2file.sql and tbl2field.sql files
directly before starting the tbl2filed daemon. If you must mark any
column as read-write to make development easier, be sure to change it
back to read-only before you ship your product. Also, be sure to protect
the write privileges on the directory and files with the daemon’s initial
configuration.

! The resolv.conf file is different from most Linux configuration files in that switching to or
from DHCP as the boot configuration protocol can completely destroy any values you’ve
previously written into it. The simple solution to this problem is to keep a template file and
copy it to /etc/resolv.conf when necessary.

No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce

www.it-ebooks.info

http://www.it-ebooks.info/

THE LADDIE APPLIANCE
BOOTABLE CD

The CD accompanying this book serves
two purposes. First, it allows you to demon-
strate the techniques described in this book
by turning your x86 PC into a working appliance.
Second, it allows you to study, in as much detail as you

care to, the source code that implements this appliance.
In this appendix, we show you how to boot and run the Laddie appliance
CD, and we provide a tour of the CD’s contents. We also provide a simple
example of how the CD supports modifying, rebuilding, and reinstalling

the appliance.

Running the Laddie Appliance

The Laddie CD doesn’t require that your machine be running a specific
operating system, you don’t need to install anything, and the CD won’t place
anything on your hard drive. In fact, you don’t even need a hard drive. The
CD creates a ramdisk for the root filesystem with links back to the CD, and in

No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

338

NOTE

Appendix E

this context it runs the Laddie appliance. When you’re finished using the
CD, simply remove it and reboot your original operating system. You'll find
that nothing has changed.

What you do need in order to run the Laddie appliance is an x86-based
PC with at least 64 megabytes of system memory, a VESA-compliant video
card (if you wish to run the framebuffer user interface), and a BIOS that is
configured to boot from a CD-ROM.

In this section we’ll explain how to boot the CD, show you how to verify
that the framebuffer and web interfaces are working, and then explain how
to access the other user interfaces. We’ll also explain how to shut down the
appliance.

Booting the CD

With the Laddie CD in the drive, reboot your computer. If the CD boots
successfully, you’ll be greeted with a message like the following:

ISOLINUX 2.08 0x4072248c Copyright (C) 1994-2003 H. Peter Anvin
Welcome to LAD distro 2007.02.25

*** To abort, hit <SPACE>, then eject the CD. ***

Select "linux", "svga", "novesa", or "shell"

Booting default (linux) in 6 seconds...

boot:

At this point, you should press ENTER or wait six seconds to continue the
boot sequence.

A commercial appliance would typically hide boot messages from the user.
Since this is an educational system, we want you to see them. A commercial
appliance designed for a specific hardware configuration would also boot up
more quickly. But this CD is designed to work with a broad range of hardware
configurations and provide a flexible environment for users to experiment
with and build from, so the process takes a little longer. In particular, the
startup scripts load drivers for any hardware the system recognizes, even
hardware that isn’t required for the Laddie appliance.

Navigating the Framebuffer User Interface

Once the CD boots successfully, the system will present you with the main
screen for the Laddie framebuffer user interface (see Figure E-1). If you see
this screen, you’ve succeeded in running the appliance and you should now
be able to use your keyboard’s arrow keys and ENTER key to navigate the
Laddie framebuffer user interface. (If your keyboard doesn’t have arrow
keys, use i for up, j for left, k for down, and 1 for right.)

If the boot up process completes and a login prompt appears instead of the screen
shown in Figure E-1, your video card is probably not VESA-compliant. In that case,
the Laddie appliance will still run, but you won’t be able to experiment with the
framebuffer interface.

No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce

www.it-ebooks.info

http://www.it-ebooks.info/

NOTE

Laddie Alarm System - Status

Front Door
Garage

Motion Detector

Smoke Detector

Clear All <

Figure E-1: The Laddie framebuffer user interface

Accessing the Web Interface

The Laddie appliance boots up with the static IP address 192.168.1.11. If your
PC is connected to a local area network with an Ethernet card recognized
by Laddie’s operating system, the appliance will serve web pages that allow
you to monitor and control the appliance (see Figure E-2). You can access
this web interface with a browser on the local network by using the URL
http://192.168.1.11.

Laddie Alarm System

Satup | Status | Reports | Table Editor | Help
Zone Status

Zone Status

Zone Name Status
1 Garage Door safe [Gm]

Motion Detector Alarm e
3 Front Door safe [Em]
4 Kitchen Window Safe [Sa]

Refrigerator Safe [Ea)

Figure E-2: The Laddie web interface

You can also use the text-based web browser Lynx to access the Laddie web pages.
Type lynx at a command prompt, and then navigate by following the instructions at
the bottom of the display.

Experimenting with the Linux Shell and Other User Interfaces

In addition to the framebuffer and web interfaces, the Laddie appliance
supports a command line interface, a front panel interface, and an SNMP
interface. When experimenting with these other interfaces, you will find it
useful to have a Linux shell so that you can interact directly with the operating
system. If the Laddie appliance is on a network, you can access a login shell
using telnet (i.e., telnet 192.168.1.11). To log in, enter the username root
and an empty password. You can also switch from the framebuffer user inter-
face to alogin prompt by pressing CTRL-ALT-F1. (If you want to return to the
framebuffer interface later, press CTRL-ALT-F7.)

The Laddie Appliance Bootable CD 339

No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce

www.it-ebooks.info

http://www.it-ebooks.info/

340

Please see the appropriate chapters for instructions on accessing the CLI,
front panel, and SNMP interfaces.

Shutting Down the Laddie Appliance

The Laddie operating system will not eject the CD while the system is running
because it relies on the CD for necessary system files. To eject the CD and
return to your original operating system, reboot your computer by typing
reboot in a Linux shell. When you see the Laddie boot prompt (as shown in
“Booting the CD” on page 338), press the spacebar to interrupt the auto-
matic boot, eject the CD, then press CTRL-ALT-DEL to reboot your computer
with your original operating system.

Exploring the CD Contents

Appendix E

If you boot the Laddie appliance and then explore the root filesystem from
a Linux shell, you’ll find that most of the top-level directories exist in the
ramdisk, and only the /bin, /lib, /sbin, and /usr directories are linked back
to the CD. In particular, all the directories related to the Laddie appliance
are read-write, so you can use the CD to experiment with, rebuild, and
reinstall the appliance.

Laddie Appliance Source Code

The Laddie Appliance software is provided in /Code/src and is partitioned

into packages corresponding to the various user interfaces and services. The
binaries and related files are installed in /opt/laddie. Table E-1 identifies the
source and install directories for each of the Laddie appliance components.

Table E-1: Source and Install Directories for Laddie Appliance Components

Component Source (in /Code/src) Install Directories
Command line interface cli /opt/laddie/{cli,bin}
Empty daemon empd n/a
(used by other components)
Framebuffer user interface fbmenu /opt/laddie/{fbmenu,bin}
Front panel front_panel /opt/laddie/bin,
/opt/laddie/htdocs/front_panel
Laddie alarm daemon ladd /opt/laddie/{ladd,bin}
System logger logmuxd /opt/laddie/{logmuxd,bin}
Network daemon network /opt/laddie/{networkd,bin}
SNMP agent and MIB snmpapp /opt/snmp/sbin,
/opt/snmp/share/snmp/mibs
STBmenu stbmenu /usr/local/{include,lib}
DB-tofile utility tbl2filed /opt/laddie/{tbl2filed,bin}
Web interface web /opt/laddie/htdocs/web

No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce

www.it-ebooks.info

http://www.it-ebooks.info/

In addition to these components, the /Code/src directory contains the
buildapp subdirectory, which contains scripts and files that support building
the appliance. This subdirectory also contains an examples subdirectory that
includes the example programs we discuss in the text.

Where appropriate, component subdirectories include Makefiles. There
is also a top-level Makefile in /Code/src that allows you to build and re-install
the entire appliance with these commands:

laddie:~# make
laddie:~# rm -rf /opt/laddie
laddie:~# make install

If you’d like to study the source code, a good place to start is the alarm
code in the /Code/src/ladd subdirectory. This is a simple application, but it
demonstrates both the empty daemon and the RTA library. The entry point
for this service is in /Code/src/empd/main.c. The function main calls applInit
in ladd.c, which uses RTA to publish a table of alarm zones.

Laddie Appliance Libraries

The Laddie appliance uses several libraries. The RTA library source is
provided in the /usr/src/packages/rta-0.7.5.tgz tarball, and it is installed
in /usr/local/lib and /usr/local/include.

The PostgreSQL client, the lighttpd daemon, and the SNMP utilities
are well-documented open-source projects that we have compiled and
installed without patches. The source code for the versions we use is
provided in /usr/src/packages:

e postgresql-base-8.0.1.tar.bz2
¢ lighttpd-1.4.10.tar.gz
¢ netsnmp-5.1.3.1.tar.gz

The RTA library and PostgreSQL client do not have configuration files.
The lighttpd daemon uses the configuration file /etc/lighttpd.conf. PHP’s
configuration file is in /etc/php.ini.

Startup Scripts

In order to launch the appliance at system startup, we add scripts to the
/etc/rc.d/init.d directory. We also provide links from /etc/rc.d/rc3.d so
that these scripts will be invoked in runlevel 3. The Laddie startup scripts
include ladd, logmuxd, networkd, snmpd, and tbl2filed. Each of these scripts
also provides for the graceful termination of the appliance when the operating
system shuts down. The framebuffer user interface is launched at startup
using the fbmenuctl script, but because the console must be launched first,
we invoke it from the /etc/inittab file.

The Laddie Appliance Bootable CD k7Y

No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce

www.it-ebooks.info

http://www.it-ebooks.info/

For convenience when testing, we provide the laddie script in /opt/
laddie/bin. This script invokes all of the startup scripts specific to the
appliance.

The Linux From-Scratch Distribution and Additional Packages

Had this been a real Linux appliance, we might have opted for a simpler Linux
environment. We might have used a smaller kernel, BusyBox utilities, and
uclibc libraries, for example. But our emphasis is not embedded Linux, and
we feel a more generic Linux environment keeps the focus on the appliance
architecture.

As a starting point, we used Linux From Scratch (http://www
Jinuxfromscratch.org), a distribution that includes most of the tools we
needed to build our appliance, and does not include the X Window System
(which we didn’t need). All the packages required to rebuild the Laddie
appliance are included in the /usr/src/packages directory. Most of these
packages were installed according to instructions from the Linux From
Scratch documentation, which is also included in the usr/src/packages
directory as LFS-BOOK-6.0.pdf. Additional packages include the following:

PostgreSQL FreeType2 and Bitstream fonts SNMP

PHP utelnetd nettools, libnet, libcap, and arping
SNMP gdbserver lynx

dhcped dialog pciutils

fbset setserial lighttpd

SDLand SDL_ttf LIRC fanout

Pure-FTPd

See the file /usr/src/packages/HISTORY for detailed installation notes
for these additional packages.

Rebuilding the Laddie Appliance

As a quick illustration of the CD’s filesystem structure, let’s modify and
reinstall a portion of the Laddie appliance. This won’t be permanent;
we won’t create a new CD. We’ll just add a line to a .c file in the alarm
daemon, recompile it at the Linux shell prompt, reinstall it, and run it.

If you’d like to follow along, boot up an x86 PC using the Laddie CD and
bring up a shell console. See “Booting the CD” on page 338 for instructions.

NOTE This exercise assumes you can use the vi editor. If you're not familiar with vi, you can
get up to speed quickly with vimtutor, which is also provided on the CD.

342 Appendix E
No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

NOTE

Since the alarm daemon will already be running, kill it with this
command:

laddie:~# laddie stop

Then use the following commands to enter the alarm daemon source
directory and open the ladd.c file for editing:

laddie:~# cd /Code/src/ladd
laddie:~# vi ladd.c

In the function user_update() at the end of the file, find the following lines:

syslog(LOG_ALERT, "User set alarm on zone %d, %s",
Zone[rowid].id, Zone[rowid].name);

Immediately after these lines, insert the following:

syslog(LOG_ALERT, "Hello, world! I've modified the alarm daemon!");

Save the file and then quit vi. Build and reinstall ladd with the commands:

laddie:~# export DEF_APPDIR=/opt/laddie
laddie:~# make -e
laddie:~# make -e install

The Laddie appliance components use the environment variable DEF_APPDIR to specify
the install location. The default is the more conventional location /usr/local, but we
use /opt/laddie instead to make it easier for you to identify the components that are
specific to the appliance. The -e option tells the make utility to let environment
variables override variables that occur in the Makefiles.

This will create a new executable and install it in /opt/laddie/bin.
Then start the alarm daemon by entering this command:

laddie:~# laddie start

Press ESC to exit the framebuffer user interface. Then monitor the sys-
tem logs with this command:

laddie:~# cat /var/log/messages

Log messages are routed to the pipe /var/log/messages by the
logmuxd event handler. Using cat, we can display these messages at the
console. The command will do nothing until an event occurs.

The Laddie Appliance Bootable CD 343

No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce

www.it-ebooks.info

http://www.it-ebooks.info/

7. To create a user update event, use CTRL-ALT-F2 to switch to console 2,
and then run the command line interface:

laddie:~# cli

8. Create an update event with the following commands:

clear all
test 1
quit

9. Now use CTRL-ALT-F1 to switch back to the original console. If your
reinstall worked, the displayed log messages will contain a time-
stamped entry with your new “Hello, world!” message.

10. Use CTRL-C to terminate the logging display.

344 Appendix E
No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

INDEX

A

Ajax (Asynchronous JavaScript
and XML), 117-118,
125-126, 132

alarm, defined, 81

alarm system

defined, 62
enabling zones, 64
latching, 64
sensor contact types, 63-64
sensor types, 62—-63
alarm zones, 62-63
defined, 62
enabling, 64

Apache, 108, 110, 111, 114

API (application programming
interface), 11

appInit() subroutine, 70-71

appliances, Linux, common
architecture, b

application programming interface
(API), 11

Asynchronous JavaScript and
XML (Ajax), 117-118,
125-126, 132

AT commands, 13-14

Boa webserver, 110, 111

boot faster, for Linux, 155-156

building daemons
checking for pidfiles, 50-52
configuration loading, 44—45
group IDs, 49-50

process groups, 46—47
redirecting stderr, 47-48
redirecting stdin, 47-48
redirecting stdout, 47-48
respawning, 456—46
running in the background,
45-46
sanity checking, 45
session leader, 46-47
setting up logging, 48—49
setting working directory, 47
signal handlers, 52-53
umask, 52
user IDs, 49-50
BusyBox httpd, 110, 111
buffer overruns, 56

C

CGI (Common Gateway Interface),
107, 125
character graphics, 171
Cherokee, 110, 111
chroot jail, 59
client-side libraries, 15
CLI. See command line interface
(CLI); Laddie command
line interface
close system call, 174
COLDEF structure, 22-24
colormap, 171
command line interface (CLI)
access for users, 140-141
accessing, 140-141
availability, 136
backups, 137

No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

command line interface (CLI),

continued
bandwidth, 137
character versus line
orientation, 140

configuration, 138
defined, 4
fields, 22-24

flags, 23

help, 24

length, 23

name, 22

offset, 23

readcb(), 23

table, 22

type, 22

writecb(), 24
grammar using yacc, 144-145
menu driven, 139-140
need for, 136-137
scriptability, 137
security, 136
sentence type, 138
stateful, 140
types of, 138-140
vocabulary, using lex, 144
wizards, 139

Common Gateway Interface (CGI),

107, 125

control and status protocols

advantages of, 11-12
API, 11

AT commands, 13-14
library calls, 14-15
PostgreSQL, 16-17
requirements for, 12-13
security, 17

SQL, 15-16

XML, 14

daemons, 2-3

building. See building daemons

control and status protocols,
11-17. See also control and
status protocols

defined, 2, 43

DHCP, 8, 138

klogd, 87

Laddie appliance. See Laddie
appliance; ladd daemon

lircd. See LIRC software package

logmuxd. Seelogmuxd daemon
managing. See managing
daemons
networkd, 132-133
and pidfiles, 43
prototype, 59-60
securing. See securing daemons
SNMP. See SNMP
snmpd, 227-228
syslog. See syslog daemon
tbl2filed. See tb12filed

dbcommand() RTA subroutine, 30, 297

D-bus, 92
DB-to-file utility. See tbl2filed
defining application, 3
definitions
alarm, 81
alarm sensor, 62
alarm systems, 62
command line interface, 4
daemon, 2
defining application, 3
event handler, 3
framebuffer interface, 4
front panel interface, 4
hardware monitor, 3
logging daemon, 3
log message, 77
MIB, 311
pidfiles, 50
RTA, 289
security monitor, 3
sensors, 62
signal handler, 52
SNMP agent, 310
SNMP interface, 4
video mode, 328
degradation, graceful, 130-131
demodulator, 201, 204-208, 213
/dev/1b0, 211
/dev/lirc, 210-217

346 iNDEX
No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce

www.it-ebooks.info

http://www.it-ebooks.info/

/dev/lired, 210, 217-219

DHCP daemon, 8, 138

DNS (Domain Name System), 107
dump command, 142-143

emulators
front panel, 165-166
Tcl/Tk-based, 165
web-based, 165-166
escape sequence codes, 165
event handler defined, 3
event-handling systems
D-Bus, 92
logmuxd. See logmuxd daemon
need for event handling, 91-92
rationale for a new system, 92-93
syslog, 92
Extensible Markup Language
(XML), 14, 118
alarm status, 129
SAX, 14

F

Fast Light Toolkit (FLTK), 186
fbset, 329-330
FLTK (Fast Light Toolkit), 186
framebuffer device drivers
closing, 174-175
configuration, 175-176, 328-330
defined, 4
drivers not included on the
Laddie CD, 327
finding drivers for your video
card, 326
graphics libraries. See graphics
libraries
hardware-specific, 327, 329
installing, 325-330
ioctl command, 175-176
kernel command line
updates, 329
opening, 174-175
reading, 174-175
sample graphics program,

177-182

verifying settings, 330
vesafb driver, 326-327
for video cards, 326
video modes for, 328, 329-330
virtual terminals for graphics, 177
writing, 174-175
framebuffer interface. See also
Laddie framebuffer
interface
architecture, 170
character graphics, 171
defined, 4
for Laddie appliance, 193-196.
See also Laddie framebuffer
interface
mapping to display, 172-173
monochrome graphics, 171-172
truecolor graphics, 172
video memory, 170-173
front panel emulators, 165-166
front panel interface. See also
Laddie front panel interface
architecture, 157, 164-166
buttons, 148
defined, 4
designing, 152-157
emulator, 154
faster booting, 155-156
giving feedback, 157
hardware, 159-163
HD44780 alphanumeric display,
161-163
keypads, 148-149
keypad schematic, 149
for Laddie appliance, 153-167
LCDs, 151-152
menus, 154
modes, 155
LEDs, 150-151
menus, 154, 158-159
microcontrollers, using, 156
never shutting down, 156-157
prototyping in Tcl/Tk, 154
shutdown, 156-157
start-up speed, 155-157
switch bounce, 149-150
user feedback, 157

INDEX 347

No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

G

GET request, 106
GetCurrentStatus() function,
128-129
GETNEXT, walking an MIB with, 316
Gnome, 186
GoAhead, 108, 111
graceful degradation, 130-131
grammar using yacc, 144-145
graphical user interface. See GUI
(graphical user interface)
toolkits
graphics libraries
SDL, 182-185
Xlib, 181-182
with X Window System, 181-182
group IDs and daemons, 49-50
GTK+, 186
GUI (graphical user interface)
toolkits
FLTK, 186
Gnome, 186
GTK+, 186
KDE, 186
licenses for, 186
Qt, 186
STBmenu. See STBmenu
widgets, 186

hardware monitor, defined, 3
hazy_moon program, 177
“Hello, world!” with STBmenu, 190
help command, 143
HD44780 display controller,
160-163
HTTP (HyperText Transfer
Protocol), 106
and CGI, 107
and DNS and TCP, 107
GET request, 106
httperf testing tool, 112
and JavaScript, 107
performance testing tool
(httperf), 112
and telnet, 106

web basics, 106107
webservers, 107. See also
webservers
httperf tool, 112

TANA (Internet Assigned Numbers
Authority), 245
infrared remote control
appliance control, 200-201
building a simple IR
detector, 202
building a simple IR receiver,
204-205
communicating with infrared
light, 198
control command protocols,
198-200
decoding remote control
waveforms, 203-204
detecting/demodulating IR
signals, 201-202
detector, 202, 204-205
/dev/lirc, 210
/dev/lircd, 210
hardware for, 201-207
interference, 200
and Laddie appliance, 198-220
LIRC software package. See Linux
Infrared Remote Control
(LIRC) software package
receiver
parts list, 206
schematics, 205
signal modulation, 200
Sony
command codes, 199
device addresses, 199
TV protocol, 198-200
Internet Assigned Numbers
Authority (IANA), 245
ioctl command, 175-176
IPC (interprocess
communication), 4
irrecord utility, 209, 216, 220
iterator function, 25

348 iNDEX
No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce

www.it-ebooks.info

http://www.it-ebooks.info/

J
JavaScript, 107, 118, 126, 132

front panel emulator, 166
graceful degradation, 130-131
hiding, 131

and HTTP, 107

K

KDE, 186
keypads, 148-149
klogd, 87

L

ladd daemon
alarm handling, 67-68
API, 66
appInit() subroutine, 70
building and testing, 74-75
configuration and status, 65-67
poll timeout() subroutine, 71-73
SQL for, 66-67
status, 65—67
testing, 74-75
user_update() subroutine, 73-74
zones, 65—-67, 70
LAD-MIB
creating, 249-259
structure, 250
Laddie appliance
appInit() subroutine, 70
architecture, b
CD, 326-327
framebuffer interface. See Laddie
framebuffer interface
front panel interface. See Laddie
front panel interface
functional specifications for,
64-67
hardware design, 68-69
infrared remove control. See
infrared remote control
ladd daemon, 65-67. See also
Ladd daemon

LIRC software package. See Linux
Infrared Remote Control
(LIRC) software package

parallel port pins, 68—-69

pg_connect() function, 119-120

poll-timeout() subroutine, 71-73

SNMP MIB. See Laddie SNMP
MIB

SNMP MIB extension. See Laddie
SNMP extension

software design, 69-73

user_update() subroutine, 73-74

web interface. See Laddie web
interface

Laddie command line interface

command summary, 141

dump command, 142-143
grammar, using yacc, 144-145
help, 143

logging, 141-142

syntax, using yacc, 144-145
test command, 143-145
vocabulary, using lex, 144

Laddie framebuffer interface

architecture, 170

device driver. See framebuffer
device driver

final configuration, 193-196

graphical user interface toolKkits.
See GUI (graphical user
interface) toolKkits

mapping video to display, 172

video memory, 170-173. See also
video memory

Laddie front panel interface

architecture, 157, 164-166
emulators, Tcl/Tk-based, 165
emulators, web-based, 165-166
escape sequence codes, 165
faster booting, 155-156
front panel emulators, 165-166
hardware, 159-163
HD44780
command set, 161-162
design notes, 162-163
display controller, 160-163

INDEX 349

No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce

www.it-ebooks.info

http://www.it-ebooks.info/

Laddie front panel interface,

continued
improving, 166
log message problem, 166
menus, 158-159
software architecture, 164-166
user interface, 151-152, 154,
155, 158

Laddie SNMP extension

alarm table
reading, 277-280
writing, 280-283
architecture, 262
base OID, 268
code file, 267-283
debugging, 285
header file for, 267
inclusions, 268
initialization routine, 274-275
Makefile for, 283-285
mib2c, 265-267
MIB objects definitions, 268-271
MIB skeleton (mib2c), 265-267
Net-SNMP agent, 262—-265
reading the alarm table, 277-280
RTA routines, 271-274
scalars for, 275-277
traps, 285
writing the alarm table, 280-283

Laddie SNMP MIB

alarm tables, 255-257

creating the LAD-MIB, 249-259
design goal, 244-245
enterprise numbers, 245-246
TIANA, 245
LADDIE-GROUP-SMI, 246-249
LAD-MIB structure, 250

MIB files, 246

module definition, 251-252
RTA table editor, shown in, 244
traps, 257-258

validating your MIB, 259

zone numbers and versions,

253-254

Laddie web interface
Ajax, 117-118, 125-126, 132
alarm
setup page, 122
state, 129
status pages, 121-123
basics, 106
browser behavior, 126-131
and CGI. See CGI (Common
Gateway Interface)
daemons, interfacing with, 119
design, 114-118
design improvements, 131-132
dialog boxes, 115
DNS, 107
error messages, 115-117
GetCurrentStatus() function, 128
HTTP request
first, 126-127
second, 128-129
JavaScript and. SeeJavaScript
menu system, 114-115, 123-124
page layout, 123-124
pg_connect() function, 119-120
pg_exec() function, 120-121
pg_freeresult(), 120-121
pg_NumRows (), 120
pg_result(), 120
PHP, and. See PHP
read_params() function, 125
requirements, 108
TCP, 107
web pages, updating, 129-130
webserver independence, 124
LADDIE-GROUP-SMI, 246-249
LCDs, 151-152
menus, 154
modes, 155
LEDs, 150-151
lex, 144
libraries, client-side, 15
library calls, 14-15
lighttpd, 108, 111
LIMIT clauses, 3637

350 inDExX
No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce

www.it-ebooks.info

http://www.it-ebooks.info/

Linksys WRT54G wireless
router, 109

linkUp and linkDown, 240-242

Linux operating system

lirc_serial driver, 210-214
logger utility, 86-87

logging daemon, defined, 3
logging, setting up on a daemon,

availability of developers, xix

good documentation, xx

existing software packages, xx

low development cost, xx

no licensing fees for
deployment, xx

quality compilers, xx

range of hardware supported, xix

reasons to use, Xix

reliability, xx

security, xxi

source code availability, xix

Linux, booting faster, 155-156
Linux From Scratch

distribution, 342
additional packages, 342

Linux Infrared Remote Control

(LIRC) software package
architecture, 208
components of, 209
controlling Laddie
appliance, 219
demodulator, 201, 204-208, 213
/dev/1b0, 211
/dev/lirc, 210-217
/dev/lircd, 210, 217-219
final Laddie configuration,
219-220
installing, 208-210
irrecord utility, 209, 216, 220
kernel driver, configuring,
210-212
lircd daemon
configuration, 215-216
testing, 216-218

lirc_serial driver, 210
configuring, 210-212
testing, 212

syslog. See syslog

testing driver, 212-214

tools for controlling applications,

218-219

48-49
logging systems
architecture of, 78-79
with daemons, 48-49
Logit RTA table, 87-88
message
destinations, 80-81
routing, 80
sources, 78-79
need for, 77-78
on-demand logging, 87-89
sockets, 79
syslog. See syslog
system() calls, 82
Logit RTA table, 87-88
log message, defined, 77
logmuxd
accepted TCP connections,
98-102
architecture, 92-93
configuring, 94-97
database destinations, 96
destinations, 97-98
destination types, 96
email destinations, 97
example 1: demo, 98
example 2: accepted TCP
connections, 98-102
example 3: SNMP traps, 102-104
features and capabilities, 93-94
filters and rewriting, 95-97
following a file, 94-95
logmuxd sources, 94-95
network socket destinations,
101-102
RTA table destinations, 98
SNMP trap destinations, 97,
102-104
snprintf() parameters, 97
source types, 94-95
Unix socket, 95
zones, 95

INDEX 351
No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce

www.it-ebooks.info

http://www.it-ebooks.info/

352

INDEX

managing daemons, 8-10
all-in-one approach, 10
file-based management, 8-9
web interface, 9-10

menu design for Uls, 114-118
design improvements, 131-132

MIB (Management

Information Base)
defined, 311
MIB files for readable names,
229-230
MIB file structure, 322—-323
MIB-2, 313-314
contents, 234-235
TCP connection table,
232-233
UDP table, 233
skeleton (mib2c), 265-267
validating, 259

MIB skeleton (mib2c), 265-267

mib2c, 265-267

microcontrollers, using with

Laddie front panel
interfaces, 156
mmap system call, 176, 179-180
monochrome graphics, 171-172

named pipes, 80-81

Net-SNMP. See SNMP (Simple
Network Management
Protocol)

networkd, 132-133

0

OFFSET clauses, 36

OID (object identifier), 311-312
tree, 312-313

open system call, 174

P

pg_connect() function, 119-120
pg_exec() function, 120-121
pg_freeresult(), 120-121

pg_NumRows (), 120
pg_result(), 120
PGID (Process Group ID), 46-47
PHP
and dynamic web pages, 109
and Laddie web interface,
124-125
pidfiles, 43
defined, 50
deleting stale, 51
pipes, named, 80-81
pixel data, writing, 180
poll timeout() subroutine, 71-73
PostgreSQL, 16, 32-33
used with RTA, 17
process groups, 46-47
Process Group ID (PGID), 46-47
prototype daemons, 59-60
pseudocolor graphics, 171
pulse-coded data encoding,
198-200, 212, 214
pulses, 198-200, 212, 214

Q
Qt, 186

read system call, 174
read_params() function, 125
respawning daemons, 45—46
root privileges
capabilities listed, 58
dropping, 58
setting capabilities, 58
RTA (Run-Time Access library),
16-18
API subroutines, 296-301
appliance architecture, 19-20
building, 32
builtin tables, 37-38
callback routines, 307-308
column definitions (COLDEF),
21-24, 27-28
constants, 291-292
daemon architecture, 20-21
data structures, 21-26, 292—-296
dbcommand() subroutine, 30, 297

No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce

www.it-ebooks.info

http://www.it-ebooks.info/

debug configuration, 304-305
debug messages, internal,
306-307
defined, 16, 290-291
error messages, 305-307
first program, 26-31
installing, 31-32
language bindings, 16
linking, 32
listening socket, 29
Logit table, 87-88
metatables, 38, 303-304
overview, 290-291
read callbacks, 307-308
reference, 290-308
routines for ladd, 271-274
rta_add_table() subroutine, 38,
297-298
rta_columns table, 38, 304
rta_config dir() subroutine, 299
rta_dbg table, 37
rta_load() subroutine, 300-301
rta_save() subroutine, 299-300
rta_stat table, 37
rta_tables metatable, 38, 303-304
SELECT statement, 301-302
SQL request errors, 305-306
SQL_string() subroutine, 298-299
table editor, 38—40
tables, internal, 37-38, 303-304
TBLDEF, 21, 24-25, 28
testing, 32
UPDATE statement, 302-303
using with PostgreSQL, 17
write callbacks, 30-31, 308
RTA subroutines, 20, 24, 29,
297-298, 299-301
rta_add_table() subroutine, 38,
297-298
rta_columns table, 38, 304
rta_config dir() subroutine, 299
rta_dbg table, 37
rta_load() subroutine, 300-301
rta_save() subroutine, 299-300
rta_stat table, 37
rta_tables metatable, 38, 303-304
Run-Time Access library. See RTA
(Run-Time Access library)

S

sanity checking, 45
savefile string, 25
SAX (Simple API for XML), 14
SDL (Simple DirectMedia Layer),
182
event handling, 185
framebuffer, initializing, 183-184
libraries, initializing, 183
sample program, 182
surfaces with, 184-185
securing daemons, 53-59
buffer overruns, 56
checking return code, 55
chroot, b9
input validation, 55
library and path attacks, 57
limiting damage from breach, 57
root privileges, 57, 58
secure design, 54-55
sudo command, 57
writing secure, 55-59
security
monitor, defined, 3
software, 56
SELECT command, 301-302
SELECT statement, 35
sensors. Seealarm system sensors
Session Group ID. See TPGID
set logs on command, 141-142
signal handlers
configuring, 52-53
defined, 52
signals, 53
Simple API for XML (SAX), 14
Simple DirectMedia Layer. See SDL
(Simple DirectMedia Layer)
Simple Network Management
Protocol. See SNMP (Simple
Network Management
Protocol)
SIRCS (Sony Integrated Remote
Control System), 198
SMI (Structure of Management
Information)
example, 314
grammar, 314-316

INDEX 353

No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

354

INDEX

SNMP (Simple Network Manage-
ment Protocol)
agents and managers, 310
basic commands, 316
checking the installation,
226-227
command-line tools, 316-318
commands, 227-228, 229,
231-232, 238-240
configuring the agent, 227
data types, 319-320
defining new, 321-322
downloading, 226
exploring, 228-229
GETNEXT, walking a MIB with, 316
grammar, 310-311
groups, definition, 234
informs, 316
installing, 225-226
interface, defined, 4
linkUp and linkDown, 240-242
managers, 310
MIB-2, 313-314
contents, 234-235
TCP connection table,
232-233
UDP table, 233
MIB, 311
file structure, 322-323
files for readable names,
229-230
namespace, grammar, and
protocol, 310-311
need for, 310
Net-SNMP, 225
Net-SNMP agent, 262
OID (object identifier), 311-312
tree, 312-313
protocol, 316-318
reference, 309-324
sample snmp query, 231
SMI
example, 314
grammar, 314-316
SNMP commands, 227-228, 229,
231-232, 238-240
snmpd, 227-228

starting the agent, 227-228
sysContact, setting, 235-237
sysName, setting, 237-238
tables, 320-321
terminology, 224-225
traps, 238-242
traps and informs, 81, 316
variants, 318
walking a MIB with
GETNEXT, 316
writing values with, 235-238
SNMP interface, defined, 4
snmpd, 227-228
snmpget command, 229-230
snmptable command, 231
snmpwalk command, 229-230
snprintf() parameters, 97
sockets, network and Unix, 79
Sony
command codes, 199
device addresses, 199
SIRCS, 198
TV protocol, 198-200
and pulse-coded data
encoding, 198-200, 212, 214
spaces with pulse-coded data
encoding, 198-199
SQL (Structured Query Language),
15-16, 34
LIMIT clauses, 3637
SELECT statements, 35
SQL_string() subroutine, 298-299
UPDATE statements, 35—36
WHERE clauses, 36
SQL_string() subroutine, 298-299
STBmenu
building simple user
interfaces, 187
buttons, 192
callbacks, 191
data structures, 191
event handler, 192-193
framework for, 188
“Hello, world!” with, 190
menu objects, 191
sample program, 190
widgets, 188

No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce

www.it-ebooks.info

http://www.it-ebooks.info/

stderr redirecting, 47-48

stdin redirecting, 47-48

stdout redirecting, 47-48

Structured Query Language. See
SQL (Structured Query
Language)

Structure of Management
Information. See SMI
(Structure of Management
Information)

sudo command, 57

syslog, 59

advantages, 86-87
alternatives to, 87
architecture, 82
daemon, 85-87
limitations, 86—87
options, 84
priority levels, 83
protocol, 84-85
using, 83-84, 85-86

sysObjectID, 231

system() calls, 82

T

tables in RTA (TBLDEF), using,
24-25
TBLDEF, 24-25
fields, 24-25
iterator, 25
savefile, 25
tb12field table, 334
tbl2file table, 333
thb12filed
overview, 332
security notes, 336
table definitions, 332-334
tb12field table, 334
tbl2filed example, 335
tbl2file table, 333
tb12script script, 333
Tcl/Tk
front panel emulator, 166
front panel prototyping, 154
TCP (Transmission Control
Protocol), 107
TCP multiplexer, 81

test command, code review, 143

telnet, 106

thttpd, 111

TPGID (Session Group ID), 46-47

Transmission Control Protocol
(TCP), 107

traps, SNMP, 257-258

truecolor graphics, 172

TUX webserver, 110

u

UART (Universal Asynchronous
Transmitter Receiver),
209-211

Ul Seeuser interfaces (Uls)

umask command, 52

Universal Asynchronous Transmitter
Receiver (UART), 209-211

UPDATE command, 302-303

UPDATE statements, 35—-36,
302-303

user IDs and daemons, 49-50

user interfaces (Uls), 2-4

Ajax to improve responsiveness.
See Asynchronous JavaScript
and XML (Ajax)

command line, 4

design issues, 114-115

dialog boxes, 115

error messages, 115-117

framebuffer, 4

front panel, 4

interprocess communications
with daemons, 4

menu design, 114-118

improvements, 131-132

SNMP, 4

web, 4

user_update() subroutine, 73-74

v

validating your MIB, 259

VESA (Video Electronics Standards
Association), 326

VESA BIOS Extensions (VBE), 326

vesafb driver, 326-327

INDEX 355

No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce

www.it-ebooks.info

http://www.it-ebooks.info/

356

INDEX

video card, finding drivers, 326
video memory
interpreting bytes, 170-172
mapping to display, 172-173
virtual terminal, 177-178
vocabulary, using lex, 144

w
web basics, 106-107

web interface for Laddie. See Laddie

web interface

webservers

Apache, 108, 110, 114

Boa, 110

BusyBox httpd, 110

Cherokee, 110

choosing, 108-109

comparisons of, 110-113

executable size, 111

GoAhead, 108

lighttpd, 108

Linksys wireless router, 109

memory requirements, 113

and PHP. See PHP

response time, 112, 113

thttpd, 111

TUX, 110

virtual memory consumed, 111

WHERE clauses, 36

widgets, 186

wireless routers,109

wizards, 139

working directory, setting on a
daemon, 47

write system call, 174

WRT54G wireless router,
Linksys, 109

X

Xlib graphics library, 181-182
XML (Extensible Markup
Language), 14, 118
alarm status, 129
SAX, 14
X Window System, 181-182

Y
yacc, 144-145

z

zalarm, 26
zcount, 26
zname, 26
Zone table, in ladd, 65—67

No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce

www.it-ebooks.info

http://www.it-ebooks.info/

Electronic Frontier Foundation

Free Speech. Privacy. Innovation. Fair Use. Reverse Engineering. If you care about these rights in the
digital world, then you should join the Electronic Frontier Foundation (EFF). EFF was founded in 1990 to
protect the rights of users and developers of technology. EFF is the first to identify threats to basic rights
online and to advocate on hehalf of free expression in the digital age.

The Electronic Frontier Foundation Defends Your Rights!
Become a Member Today!
http://www.eff.org/support/

Current EFF projects include:

Protecting your fundamental right to vote. Widely
publicized security flaws in computerized voting
machines show that, though filled with potential, this
technology is far from perfect. EFF is defending the
open discussion of e-voting problems and is coordinat-
ing a national litigation strategy addressing issues
arising from use of poorly developed and tested
computerized voting machines.

Ensuring that you are not traceable through your
things. Libraries, schools, the government and private
sector husinesses are adopting radio frequency
identification tags, or RFIDs - a technology capable of
pinpointing the physical location of whatever item the
tags are embedded in. While this may seem like a
convenient way to track items, it's also a convenient
way to do something less benign: track people and their
activities through their belongings. EFF is working to
ensure that embrace of this technology does not erode
your right fo privacy.

Stopping the FBI from creating surveillance backdoors
on the Internet, EFF is part of a coalition opposing the
FBI's expansion of the Communications Assistance for
Law Enforcement Act (CALEA), which would require that
the wiretap capabilities built into the phone system be
extended to the Internet, forcing ISPs to build backdoors
for law enforcement.

Providing you with a means by which you ¢an contact
key decision-makers on cyber-liberties issues. EFF
maintains an action center that provides alerts on
technology, civil liberties issues and pending legislation
to more than 50,000 subscribers. EFF also generates a
weekly online newsletter, EFFector, and a blog that
provides up-to-the minute information and commentary.

Defending your right to listen to and copy digital music
and movies. The entertainment industry has been
overzealous in trying to protect its copyrights, often
decimating fair use rights in the process. EFF is
standing up to the movie and music industries on
several frons.

Check out all of the things we're working on at hitp://www.eff.org and join today
or make a donation to support the fight to defend freedom online.

ELECTRONIC FRONTIER FOUNDATION - 454 SHOTWELL STREET - SAN FRANCISCO, CA 94110 - 415.436.9333

No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

—
More No-Nonsense Books from "E J NO STARCH PRESS

HOW LINUX WORKS

What Every Superuser Should Know
by BRIAN WARD

How Linux Works describes the inside of the Linux system for systems adminis-
trators, whether they maintain an extensive network in the office or one Linux
box at home. After a guided tour of filesystems, the boot sequence, system
management basics, and networking, author Brian Ward delves into topics
such as development tools, custom kernels, and buying hardware. With a
mixture of background theory and real-world examples, this book shows
both how to administer Linux, and why each particular technique works,
so that you will know how to make Linux work for you.

MAY 2004, 368 pp., $37.95 ($55.95 CDN)
ISBN 978-1-59327-035-3

THE LINUX ENTERPRISE CLUSTER

L1 I?UX Build a Highly Available Cluster with Commodity Hardware and Free Software
ENTERPRISE by KARL KOPPER
CLUSTER
DAl S MionLraRhicasLe alnib s The Linux Enterprise Cluster shows how to turn a number of inexpensive net-

worked computers into one powerful server. Learn how to: build a high-
availability server pair using Heartbeat, use the Linux Virtual Server load
‘ balancing software, configure a reliable printing system in a Linux cluster
‘ environment, and build a job scheduling system in Linux with no single
= point of failure. The CD includes the Linux kernel, ldirectord, Mon, Ganglia,
OpenSSH, rsync, SystemImager, Heartbeat, and all figures and illustrations
used in the book.

MAY 2005, 464 pp., $49.95 ($67.95 CDN)
ISBN 978-1-59327-036-0

“ THE LINUX COOKBOOK, 2ND EDITION

LINUX Tips and Techniques for Everyday Use
COOKBOOK by MICHAEL STUTZ

2ND EDITION . .) i
B CCARIN b CE AT YRR o Linux is cool, but it’s not always well documented. There are tons of incon-

sistent HOWTO files, out-of-date FAQs, and programs scattered everywhere.
Whenever you want to do anything with Linux, you usually have to read every
piece of documentation out there and basically reverse engineer a solution.
‘ . Many Linux books for non-geeks are organized by major system, with a
=| chapter on installation, one for video, one for sound, one for networking,

and so on. But what if you want to write a book? Or record an album? If you
can’t dig around on the Web to find someone else doing the same thing,
you are out of luck. Unless, that is, you have The Linux Cookbook.

AUGUST 2004, 824 pp., $39.95 ($55.95 CDN)
ISBN 978-1-59327-031-5

No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce V413HAV
www.it-ebooks.info

V413HAV
Typewritten Text
V413HAV

http://www.it-ebooks.info/

INSIDE THE MACHINE

An Illustrated Introduction to Microprocessors and Computer Architecture
by JON STOKES

Inside the Machine explains how microprocessors operate—what they do, and
how they do it. Written by the co-founder of the highly respected Ars Technica
site, the book begins with the fundamentals of computing, defining what a
computer is and using analogies, numerous 4-color diagrams, and clear
explanations to communicate the concepts that form the basis of modern
computing. After discussing computers in the abstract, the book goes on to
cover specific microprocessors, discussing in detail how they work and how
they differ.

DECEMBER 2006, 320 pp., $49.95 ($61.95 CDN)
ISBN 978-159327-104-6

BUILDING A SERVER WITH FREEBSD

by BRYAN J. HONG

The most difficult aspect of building a server (to act as a file server, web
server, or mail server) is the initial software installation and configuration.
Getting your hands on the software is one thing; getting it all to function

is another thing entirely. For many people, the only option is to hire an
expensive consultant. Building a Server with FreeBSD tackles the problem
systematically, so readers can accomplish the task themselves efficiently and
affordably using the freely licensed FreeBSD operating system. Instructions
are very clear and straightforward, so the reader need only read and follow
the directions. In addition to explaining how to install FreeBSD for the first
time, this guide covers configuration of popular third-party software using
the ports collection. It takes the pain out of assembling the pieces and put-
ting them all together so the reader can build a server that just works.

AUGUST 2007, 256 pp., $29.95 ($37.95 CDN)
ISBN 978-1-59327-145-9

PHONE: EMAIL:

800.420.7240 OR SALES@NOSTARCH.COM
415.863.9900

MONDAY THROUGH FRIDAY, WEB:

9 A.M. TO 5 P.M. (PST) WWW.NOSTARCH.COM

FAX: MAIL:

415.863.9950 NO STARCH PRESS

24 HOURS A DAY, 555 DE HARO ST, SUITE 250
7 DAYS A WEEK AN FRANCISCO, CA 941

BUILDING A SERVER
WITH FREEBSD

No Starch Press, Copyright © 2007[l?g/ABob Smith, John Hardm Graham Phillif®, and Bill Pierce

www.it-ebooks.info

http://www.it-ebooks.info/

No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

COLOPHON

Linux Appliance Design was laid out in Adobe FrameMaker. The font families
used are New Baskerville for body text, Futura for headings and tables, and
Dogma for titles.

The book was printed and bound at Malloy Incorporated in Ann Arbor,
Michigan. The paper is Glatfelter Thor 60# Antique, which is made from
50 percent recycled materials, including 30 percent postconsumer content.
The book uses a RepKover binding, which allows it to lay flat when open.

No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

UPDATES

Visit www.nostarch.com/appliance.htm for updates, errata, and other
information.

No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
www.it-ebooks.info

http://www.it-ebooks.info/

Companion CD
@ includes a prototype
appliance—a home

alarm system—that supports

the book’s lessons.

Modern appliances are complex machines with
processors, operating systems, and application software.
While there are books that will tell you how to run Linux
on embedded hardware, and books on how to build

a Linux application, Linux Appliance Design is the first
book to demonstrate how to merge the two and create
a Linux appliance. You'll see for yourself why Linux is

the embedded operating system of choice for low-cost
development and a fast time to market.

Linux Appliance Design shows how to build better
appliances—appliances with more types of interfaces,
more dynamic interfaces, and better debugged inter-
faces. You'll learn how to build backend daemons,
handle asynchronous events, and connect various user
interfaces (including web, framebuffers, infrared control,
SNMP, and front panels) to these processes for remote
configuration and control. Linux Appliance Design
also infroduces the Run-Time Access library, which
provides a uniform mechanism for user interfaces to
communicate with daemons.

THE FINEST IN GEEK ENTERTAINMENT™
www.nostarch.com

NO STARCH
PRESS
Repover

= 1 LAY FLAT.”

This book uses RepKover—a durable binding that won't snap shut.

9

ISBN: 978-1-59327-140-4

7815937271

A REAL-WORLD
GUIDE TO

BUILDING LINUX

APPLIANCES

Learn to:
e Separate your user interfaces from your daemons

¢ Give user interfaces run time access to configuration,
status, and statistics

e Add professional network management capabilities to
your application

Use SNMP and build a MIB

°

Build a web-based appliance interface

Build a command line interface (CLI)

Build a framebuffer interface with an infrared control
as input

Manage logs and alarms on an appliance
ABOUT THE AUTHORS

Bob Smith, John Hardin, Graham Phillips, and Bill Pierce
have experience in embedded systems, commercial Linux
and BSD appliances, network management systems, and

designing software solutions for business problems.

$59.95 (574.95 DN)

89145771409

NI IATIHS

XNNIT/SWILSAS ONILV¥IdO

“‘ “ “ il

.it-ebooks.info

http://www.it-ebooks.info/

	Acknowledgments
	Introduction
	What This Book Is About
	What This Book Is Not About
	Who Should Read This Book
	Why Use Linux?
	Availability of Source Code
	Range of Hardware Supported
	Availability of Linux Developers
	Reliability
	Quality Compilers
	Good Documentation
	Existing Software Packages
	Low Development Cost
	No Licensing Fees for Deployment
	Security

	Linux Appliance Design

	1 Appliance Architecture
	UIs and Daemons
	Daemons
	User Interfaces
	Interprocess Communication

	The Architecture of the Laddie Appliance
	Summary

	2 Managing Daemons
	Common Approaches to Managing Daemons
	File-Based Management
	A Daemon-Based Web Interface
	An All-in-One Approach

	Control and Status Protocols
	Requirements for a Control and Status Protocol
	Common Control and Status Protocols

	Summary

	3 Using Run-Time Access
	RTA Appliance Architecture
	RTA Daemon Architecture
	Telling RTA About Your Columns and Tables
	Columns
	Tables

	Building Your First RTA Program
	Defining the Problem
	Reviewing the Code
	Installing RTA
	Building and Linking
	Testing

	A Little SQL
	SELECT
	UPDATE
	WHERE
	LIMIT

	Introduction to RTA’s Built-in Tables
	rta_dbg
	rta_stat
	rta_tables
	rta_columns

	The RTA Table Editor
	Summary

	4 Building and Securing Daemons
	How to Build a Daemon
	Load the Daemon’s Configuration
	Go into the Background
	Become the Process and Session Leader
	Set the Working Directory
	Redirect stdin, stdout, and stderr
	Set Up Logging
	Set Group and User IDs
	Check for a pidfile
	Set the umask
	Set Up Signal Handlers

	How to Secure a Daemon
	Designing a Secure Daemon
	Write a Secure Daemon
	Limit Damage in Case of a Breach

	A Prototype Daemon
	Summary
	Further Reading

	5 The Laddie Alarm System: A Sample Appliance
	Introduction to Alarm Systems
	Sensors
	Enabling a Zone

	A Functional Specification for Laddie
	ladd’s Configuration and Status
	ladd’s Alarm Handling

	Laddie’s Hardware Design
	Laddie’s Software Design
	The appInit() Callback Subroutine
	The poll_timeout() Callback Subroutine
	The user_update() Callback Subroutine

	Building and Testing ladd
	Summary

	6 Logging
	Do You Need Logging?
	Architecture of a Logging System
	Message Sources
	Message Routing
	Message Destinations

	syslog
	syslog Architecture
	Using syslog
	The syslog Protocol
	Using the syslogd Daemon
	Limitations, Advantages, and Alternatives to syslogd

	On-Demand Logging
	Summary

	7 Laddie Event Handling
	Rationale for a New Event-Handling System
	Features and Capabilities of logmuxd
	Configuring logmuxd
	logmuxd Sources
	logmuxd Filters and Rewriting
	logmuxd Destinations

	Examples Using logmuxd
	Example 1: A logmuxd Demonstration
	Example 2: logmuxd and Accepted TCP Connections
	Example 3: logmuxd and SNMP Traps

	Summary

	8 Designing a Web Interface
	Web Basics
	DNS and TCP
	The Webserver
	CGI
	JavaScript
	Evolving Technologies

	Establishing Requirements
	Choosing a Webserver
	Choices
	Use PHP
	Case Study: Linksys WRT54G Wireless Router
	Case Study: The TUX Webserver
	Comparison of Webservers

	UI Design
	Menu System
	Dialog Boxes
	Error Messages
	Improving Responsiveness with Ajax

	Implementation
	Interfacing with the Daemons
	Alarm Status Page
	Alarm Setup Page
	Page Layout and Menu System
	Webserver Independence
	Asynchronous Updates Using Ajax

	Improving Our Design
	Resources
	Summary

	9 Designing a Command Line Interface
	Why You Need a CLI
	Security
	Availability
	Bandwidth
	Scriptability
	Configuration Backup and Restore

	Types of CLIs
	Sentences
	Wizards
	Menus
	Stateful
	Character vs. Line Interfaces

	Giving Users Access to a CLI
	The Laddie CLI
	Laddie Command Summary
	set logs on
	dump
	help

	Code Review for the test Command
	CLI Vocabulary: token.l
	CLI Grammar: syntax.y
	C Code
	Code Review Notes

	Summary

	10 Building a Front Panel Interface
	Buttons, LEDs, and LCDs
	Buttons
	LEDs
	LCDs

	Designing a Front Panel UI
	Be Simple
	Try, Fail, Try Again
	Use LCD Menus and Modes
	Be Quick!

	The Laddie Front Panel
	Laddie LCD Menu System
	Laddie Front Panel Hardware
	Laddie Front Panel UI

	Improving Our Design
	Summary

	11 Designing a Framebuffer Interface
	How Video Memory Works
	How Bytes in Video Memory are Interpreted
	How Video Memory Is Mapped to the Display

	The Linux Framebuffer Device Driver
	Manipulating the Framebuffer with open, read, write, and close
	Configuring the Framebuffer with the ioctl Command
	A Simple Graphics Program for the Framebuffer

	Graphics Libraries
	“Hello, world!” with SDL
	Initialize the Libraries
	Initialize the Framebuffer
	Create a Surface
	Display the Surface
	Handle Events

	Graphical UI Toolkits
	Building Simple UIs with STBmenu
	“Hello, world!” with STBmenu

	The Laddie Framebuffer UI
	Summary

	12 Infrared Remote Control
	Communicating with Infrared Light
	Protocols for Encoding Remote Control Commands
	Reducing Interference by Modulating the Infrared Signal
	Controlling an Appliance with Infrared Light

	Hardware for Remote Control Receivers
	Detecting and Demodulating the IR Signal
	Decoding Remote Control Waveforms
	Infrared Remote Control Hardware for the Laddie Appliance

	Installing and Configuring LIRC for the Laddie Appliance
	Installing the LIRC Software
	Configuring the lirc_serial Kernel Device Driver
	Testing the lirc_serial Driver
	Configuring the lircd Daemon
	Testing the lircd Daemon
	LIRC Tools for Controlling Applications
	Controlling the Laddie Appliance

	Summary

	13 Hands-on Introduction to SNMP
	A Quick Note on Terminology
	The Software
	Installing SNMP
	Download and Install
	Check the Installation
	Configure the Agent
	Start the Agent

	Exploring with SNMP
	MIB Files for Readable Names
	A Networked Printer
	The snmptable Command
	MIB-2: The TCP Connection Table
	MIB-2: The UDP Table
	MIB-2 Contents

	Writing Values with SNMP
	Setting sysContact
	Setting sysName

	SNMP Traps
	Receiving Traps with snmptrapd
	Traps That Carry Data: linkUp and linkDown

	Summary

	14 Designing an SNMP MIB
	Our Goal
	Your Enterprise Number
	The MIB Files
	LADDIE-GROUP-SMI
	Creating the LAD-MIB
	Module Definition
	Version and Number of Zones
	The Alarm Table
	The Traps

	Validating Your MIB
	Summary

	15 Implementing Your SNMP MIB
	The Net-SNMP Agent
	The MIB Skeleton: mib2c
	The Header File: ladProject.h
	The Code File: ladProject.c
	Includes
	The Base OID
	MIB Objects Definitions
	RTA Access Routines
	The Initialization Routine
	The Scalars
	Reading the Alarm Table
	Writing the Alarm Table

	Makefile Revisited
	Debugging
	Traps
	Summary

	A RTA Reference
	Overview of RTA
	RTA Constants
	Data Structures
	API Subroutines
	The dbcommand() Subroutine
	The rta_add_table() Subroutine
	The SQL_string() Subroutine
	The rta_config_dir() Subroutine
	The rta_save() Subroutine
	The rta_load() Subroutine

	SELECT and UPDATE Syntax
	The SELECT Command
	The UPDATE Command

	Internal RTA Tables
	The rta_tables Table
	The rta_columns Table

	Debug Configuration
	Error Messages
	SQL Request Errors
	Internal Debug Messages

	Callback Routines
	Read Callbacks
	Write Callbacks

	B Review of SNMP
	Why SNMP?
	Agents and Managers
	Namespace, Grammar, and Protocol
	The MIB
	The OID
	MIB-2
	The SMI
	The SNMP Protocol
	The Basic Commands: GET, SET, GETNEXT
	Walking a MIB with GETNEXT
	Traps and Informs
	Command-Line Tools: Examples

	SNMPv1, SNMPv2, and SNMPv3
	SNMP Data Types
	SNMP Tables
	Defining New Types
	Structure of a MIB File
	Summary

	C Installing a Framebuffer Device Driver
	Finding Framebuffer Device Drivers for Your Video Card
	The vesafb Driver
	Hardware-Specific Drivers
	Drivers Not Included on the Laddie CD

	Configuring the Framebuffer Device Driver
	The vesafb Driver
	Hardware-Specific Drivers

	D A DB-to-File Utility
	Overview
	Table Definitions
	The tbl2file Table
	The tbl2field Table

	A tbl2filed Example
	Security Notes

	E The Laddie Appliance Bootable CD
	Running the Laddie Appliance
	Booting the CD
	Navigating the Framebuffer User Interface
	Accessing the Web Interface
	Experimenting with the Linux Shell and Other User Interfaces
	Shutting Down the Laddie Appliance

	Exploring the CD Contents
	Laddie Appliance Source Code
	Laddie Appliance Libraries
	Startup Scripts
	The Linux From-Scratch Distribution and Additional Packages

	Rebuilding the Laddie Appliance

	Index
	Updates

