Pgﬂ'xon programming j‘or Kids and other beginners

MMANNING
T

Hello Raspberry Pil

Fython programming for kids and other beginners

Ryan Heitz

MANNING
SHELTER ISLAND

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in
quantity. For more information, please contact:

Special Sales Department
Manning Publications Co.

20 Baldwin Road

PO Box 761

Shelter Island, NY 11964
Email: orders@manning.com

©2016 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form or by means electronic, mechanical, photocopying, or otherwise, without
prior written permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial
caps or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to
have the books we publish printed on acid-free paper, and we exert our best efforts to that
end. Recognizing also our responsibility to conserve the resources of our planet, Manning
books are printed on paper that is at least 15 percent recycled and processed without
elemental chlorine.

/l/l Manning Publications Co. Developmenteditor: Dan Maharry
20 Baldwin Road Copyeditor: Tiffany Taylor
PO Box 761 Proofreader: Alyson Brener
Shelter Island, NY 11964 Technical proofreader: Romin Irani

Typesetter: Marija Tudor
Cover designer: Leslie Haimes

ISBN: 9781617292453

Printed in the United States of America
12345678910 - MAL — 18 17 16 15 14 13

http://www.manning.com

To Juliana, Daniel, and John

Brief contents

PART 1

PART 2

GETTING STARTED 1

Meet Raspberry Pi 3
Exploring Python 33

PLAYING WITH PYTHON 65

Silly Sentence Generator 3000: creating interactive
programs 67

Norwegian Blue parrot game: adding logic to
programs 91

Raspi’s Cave Adventure 121

P1 AND PYTHON PROJECTS 149

Blinky Pi 151
Light Up Guessing Game 176
DJ Raspi 204

Freface xii
Acknowledagments — xv
About this book xvii

PART 1

GETTING STARTED 1

Meet Raspberry Pi 3
What is the Raspberry Fi7 4
Exploring your Raspberry Fi's parts: hardware 4

Giving your Pi a cozy home: Ficases © O The brain of your Pi:
systemon a chip 7 O Connecting a keyboard and mouse: USB
ports & O Storing memories: your Fi gets a memory card 10
Connecting a TV or monitor: HDMI port 13 © Other ports and
connections 17 O Powering your Pi: microUSB power port 17
IT's alivel Flugging in the Fi 16

Getting your Fi running: software 19

Installing the Raspbian operating system 19 O Configuring the
operating system: making it yours 21 © Saving your configura-
tion and rebooting 24

Getting around: learning Raspbian 26

Finding and opening applications on your Raspberry Fi 26
Your files and folders 26 O Writing code 28

Fruit Ficker Extra: shopping at the Fi Store 29

vii

viii Contents

PART 2

Challenge 30
Scavenger hunt 31

Summary 31

Exploring Python 33

Flaying with Fython 33

Discovering Fython's mathematical operators 35
Adding and subtracting 35 O Multiplying and dividing 37
Figuring out whole numbers and remainders 3&

Exponents 26 O Square roots 39 O Challenge: stacking
Pisl 29

Storing information using variables 41
Creating variables and assigning values 42 O Displaying
variable values 42 O Storing strings in variables 45
Changing the value of variables 46

Dieplaying text on a screen 50
Using the print function 50 © Troubleshooting 51

Creating programs 52
Writing Python programs with IDLE 53 O Starting a new
program 54 O Savingprograms 56 O Pythoninterpreting
the program 57

Fruit Ficker Extra: creating documents 57
Writing silly things and saving them 57

Challenges 60
The matrix ©1 O Building a brick wall &1
Fielectrons 62

Summary 62

PLAYING WITH PYTHON 65

Silly Sentence Generator 3000: creating interactive
programs 67

Creating a welcome message 68
Starting a new program ©9 O Saving the program 71

Contents

Adding notes in your code 75

Using hashtags for comments 73

Getting and storing information 75
Joining strings 77

Using more than one input 79 O Building the sentence 80

Troubleshooting &1

Completing the program: displaying the silly sentence S35

Fruit Ficker Extra: Minecraft Fi 85
What's Minecraft? &5 O Launching Minecraft Fi 66
Python programming interface to Minecraft Pi 86

Challenges EE
Knight’'s Tale Creator 3000 && © Subliminal
tessages &9

Summary 90

Norwegian Blue parrot game: adding logic to
programs 91

Displaying the game introduction 92
Creating the game welcome message and instructions 94

Collecting input from the player 101

Using If statements to respond to users in different
ways 105
Practicing if statements 106

Using while loops to repeat things 110
A closer look at while loops 112 O Breaking out of a while
loop 112 O Practicing while loops 114
Using Fython code libraries to generate random numbers
Fruit Ficker Extra: Scratch 115
Challenges 119
Summary 120

Raspi’s Cave Adventure 121

Froject introduction: Raspi's Cave Adventure 122
Left cave 124 O Right cave 124

175

Contents

PART 3

Hey wait, you need a plan (flow diagrams) 124

Which way should Raspi go? (checking input) 126
Handling unexpected input 127 O Turning flow diagrams into
code 131

Simplity! Making your own functions 133
Finishing the left cave 138 O Exploring the right cave 139
Troubleshooting 141

Fruit Ficker Extra: playing video 142
Live streaming: exploring from your i 143

Challenges 145
Introducing dramatic pauses 145 O Random demise 146
Play again? 147 O Scream! 147

Summary 147

P1 AND PYTHON PROJECTS 149

Blinky Pi 151

Setting up your Fi for physical computing 153
GFI0 pins 153 O Breaking out the GFIO pins to a
breadboard 155 O Breadboard basice 156

Building the LED circuit 161
Step 1. Connect the jumper from GFIO pin 21 162
Step 2. Add the red LED 164 © Step 3. Connect a
resistor 164

Software: blinkLED program 166
Running the program 1686 O blinkLED: how it works 169

Adding more LEDs 177
Building the circuit 171

Multiple LEDs: program it! 173

Challenges 174
Wave pattern 174 O Simon Says 174 O Random
blinking 174

Summary 175

Contents

7 Light Up Guessing Game 176

Guessing Game design 178

Hardware: building the circuit 179
Numbers, humbers, numbers! 179 O Wiring an RGB
LED 180 o Circuit sketch 180

Software: LEDGuessingGame program 188
Setting up the GFIO pins for the RGB LED 190 O Main game
loop and logic 195 © Guessing Game Loop and logic 197
Adding the Play Again Loop and logic 196 O Flaying the
game 200 O Troubleshooting 200

Challenges 201
Game winner 201 O Easteregg 201 © Warmer and
colder 201 © Darth Vader surpriee 202

Summary 202
DJ Raspi 204

Froject overview 205

Setting up your Fi to play sounds 207
OMXFlayer and MP2s 20& O Troubleshooting 209

Hardware: building the circuit 210
Wiring a button 210 O Circuit sketch 211 © Adding the
second button 217

Software: the DJ Raspi program 215
Setting up the Pi: initializing the buttons 220 O Getting a
list of sounds 221 O Getting a value of an item stored in a
list 225 O Getting the length of alist 226 O Building a
list of sound files with the os library 227 o Flaying a sound
when a button is pressed 228 O Functions! 231
Testing: your first gig as DJ Raspi 234

Troubleshooting 235

Challenges 236

Double button press surprise 256 O Yoda Magic &
Ball 236 o Continuing to explore 237

Summary 237

Xi

xii Contents

Appendix A Raspberry Fi troubleshooting 229
Appendix B Raspberry Fi ports and legacy boards 245
Appendix C Solutions to chapter challenges 261
Appendix D Raspberry Fi projects 279

ndex 285

In 2013, a parent and friend of mine asked if I would teach a Python
course to middle school students at a local school. My friend gently asked

if I could somehow use the Raspberry Pi computer in the course. I love
learning new things and I had been reading a lot about the Raspberry Pi.
So as you can imagine, | was tremendously excited at the opportunity of
using it and emphatically said "Yes!" That event began my journey of
developing a course for kids on programming in Python and using the

Raspberry Pi and later, this book.

Quickly, as I worked with the Raspberry Pi, I became a disciple of the
Raspberry Pi inventors: the best way for kids to learn programming is by
giving them an affordable, ready-to-program computer. It was the perfect
platform to learn how to program.

As a teacher of computer science, I grew to deeply appreciate Python. I
became convinced that it was not only a great programming language,
but its focus on readability and simplicity made it perfect for kids to learn
as their first programming language.

Fast forward in time —after teaching Python using the Raspberry Pi to
many classes of kids, I had developed a set of engaging and funny proj-
ects that the kids enjoyed. Just as important, the students learned! The
feedback from the kids and the parents was fantastic! Imagine kids rush-
ing to take part in a programming class. It was wonderful!

A few months after developing my course, Nicole Butterfield and Robin
de Jongh of Manning Publications contacted me about turning it into a

xiii

xiv

Preface

book. I was thrilled at the prospect of bringing the activities and proj-
ects from the computer lab into the hands of kids everywhere. What 1s
more, this book would fill an important gap. What I had found when I
originally started teaching my course was that there were no books on
the Raspberry Pi and programming in Python that were designed for
kids. Since the main reason for inventing the Raspberry Pi was to get
more kids programming, I was enthusiastic to work on this project.

Nearly two years later, and several versions of the Raspberry P1 later,
I'm proud to present this book to the kids and other beginners who
want to learn to program. I hope you enjoy using this book and it starts
you on your own journey in computer science!

Acknowledgments

Thank you to my wife, Juliana, and our two children, Daniel and John,

for their endless support and patience through the long days, nights, and
weekends I needed to write this book.

I'd also like to thank Manning Publications for having the vision to pur-
sue this project. In particular, thanks to Robin de Jongh and Nicole But-
terfield who kicked off this project by finding and encouraging me; to
publisher Marjan Bace for his commitment to me and to this book; to
Ozren Harlovic for orchestrating the book review process; to Kevin Sulli-
van and Mary Piergies for overseeing production; to Chuck Larson for
the wonderful work on the graphics; to Tiffany Ta_ylor for her outstand-
ing copyediting; to Alyson Brener for her thorough proofreading; to Can-
dace Gillhoolley and Ana Romac for promoting the book; to technical
development editors Donald Bailey, Joel Kotarski, Jeanne Boyarsky,
and John Hyaduck; and to Romin Irani, technical proofreader.

This book was significantly improved by my editor at Manning, Dan
Maharry, who helped to develop and edit the book from concept to fin-
ished product. I'd like to thank Dan for his excellent insights, support,
encouragement, and guidance throughout the process.

A big thank you to all the technical reviewers who read the manuscript at
various stages of its development and contributed invaluable feedback:
Adam Hinden, Antonio Mas Rodriguez, Betsy Hoofnagle, Catherine
Freytag, Dr. Christian Mennerich, Dan Kacenjar, David Kerns, Ema
Battista, Fanick Atchia, Grace Kacenjar, Henry Freytag, Jaqueline Cur-
rie, John Pentakalos, Keenan Hom, Kevin Adjaho Atchia, Matthew

Xv

xvi

Acknowledgments

Giblin, Nathan Sperry, Odysseas Pentakalos, Sam Kerns, Richard
Freytag, Savannah Wilson, and Scott M. King.

Thank you also to all the readers who bought and read the MEAP
(Manning Early Access Program) versions of the chapters and who
took the time to post comments in the Author Online forum. You

helped make this a better book!

The Raspberry Pi Foundation, original inventors, and community
deserve a special mention. Thank you for designing something that 1s
helping children to learn computer science. I'd also like to thank Guido
van Rossum, the inventor of Python; the Python Software Foundation;
and the Python user community, for creating and maintaining a simple
and useful programming language for everyone.

About this book

The Raspberry Piis a small, low-cost computer invented in the U.K. by

the Raspberry Pi Foundation. It provides an easy-to-use tool for learning
to program in Python. The Raspberry Pi, with its companion memory
card, is preloaded with all the software you need to jump into program-
ming in Python. The Raspberry Pi is made for you to learn to code by
playing with it. It includes many input and output ports to give you flexi-
bility in how you connect it. Much like a desktop computer, you need to
connect a keyboard, mouse, monitor, and power cable to get started.

This book will teach you how to set up your Raspberry Pi, to write pro-
grams in Python, and to use your Raspberry Pi and Python to complete
some projects. We'll cover the basics of Python: displaying text, gathering
input, repeating commands, creating logic, as well as using the input and
output pins of your Raspberry Pi for projects.

This book does not cover advanced Python topics, nor act as a compre-
hensive reference for Python. Since it is a book for beginners, these topics
have been left out for clarity and brevity. If you'd like to learn more
Python, there are links to online resources throughout the book.

This book is for kids and other beginners who would like to learn to pro-
gram. It's also for kids who have a Raspberry Pi and want to learn what
they can do with it. We'll introduce you to your Raspberry Pi and teach
you Python in a natural, playful way, introducing topics and giving you
activities to do using your Raspberry Pi. You don't need to have any prior
programming experience. As long as you know how to use a mouse and
open up programs by clicking on icons or menu items, you'll do great.

xvii

xviii

About this book

This book requires a Raspberry Pi, cables, and some other parts to
complete the projects and activities. These items are needed through-
out the book:

@ Raspberry Pi2 Model B
@ 8 GB SD memory card, preloaded with the Raspberry Pi Founda-

tion’s NOOBS (New Out of the Box Software)

@ USB power supply with micro USB cable (must deliver 1.2 A @ 5 V)
@ USB keyboard

@ USB mouse

© TV or monitor

> Cable to connect to TV or monitor (specific cables for your TV or

@ monitor are discussed in chapter 1)
To complete the projects in part 3, you'll also need these parts:

@ Solderless breadboard

@ GPIO ribbon cable for the Raspberry Pi 2 Model B (40 pin)
2 GPIO breakout board

@ 1 dozen jumper wires, male-to-male

2 1 red LED (light-emitting diode)

@ 1 green LED

@ 1 blue LED

@ 1 red, green, blue (RGB) LED

@ 3 push buttons

2 3 resistors, 10K ohm

@ 3 resistors, 180 ohm (or between 100 and 300 ohms)

@ Headphones or powered computer speakers

You can typically find all these items in a Raspberry Pi starter kit or

available individually through online retailers and stores that sell the
Raspberry Pi, such as CanaKit, Sparkfun, or Adafruit.

Roadmap

This book is divided into three parts.

About this book XiX

Part 1 introduces you to the Rasperry Pi, shows you how to set it up,
and provides an introduction to the Python programming language:

@ Chapter 1 provides an overview of the Raspberry Pi and how to set
it up for the first time.

@ Chapter 2 shows you how to write your first Python programs and
introduces you to doing math and displaying text with Python.

Part 2 shows you how to build different text-based games while learn-
ing how to gather input, display information, make decisions, and
repeat instructions in Python:

> Chapter 3 teaches you how to create your first interactive Python
game, the Silly Sentence Generator 3000, by asking users to type in
something and then displaying funny messages to the screen.

@ Chapter 4 explores how to give your programs logic and use repeat-
ing loops as you create a Norwegian Blue Guessing Game.

@ Chapter 5 demonstrates how to build a Cave Adventure Game, give
users multiple choices, check input from users, and create your own
Python functions.

Part 3 involves making your Raspberry Pi interact with the world
around it:

@ Chapter 6 explains setting up your Pi with an electronics bread-
board, building a simple circuit, and controlling an LED (light)
using your Raspberry Pi and Python.

@ Chapter 7 dives into creating an interactive guessing game that uses
lights to respond to a player’s input, letting them know with different
colors whether their answer is right or wrong.

@ Chapter 8 teaches you how to listen to your Pi’s input pins by mak-
ing a project that combines light and sound to make your own DJ
Raspi sound mixer.

Code conventions and downloads

All source code in this book is in a fixed-width font like this, which
sets it apart from the surrounding text. In many listings, the code is
annotated to point out key concepts. I have tried to format the code so

XX About this book

that it fits within the available page space in the book by adding line
breaks and using indentation carefully.

The code accompanying this book is hosted at the GitHub repository:
https://github.com/rheitz/hello-raspberry-pi. It is also available for
download as a zip file from the publisher’s website at www.manning

.com/books/hello-raspberry-pi.

Author Online

Purchase of Hello Raspberry Pi!includes free access to a private web
forum run by Manning Publications where you can make comments
about the book, ask technical questions, and receive help from the
author and other users. To access the forum and subscribe to it, point
your web browser to www.manning.com/books/hello-raspberry-pi.
This Author Online (AO) page provides information on how to get on
the forum once you're registered, what kind of help is available, and
the rules of conduct on the forum.

Manning’s commitment to our readers is to provide a venue where a
meaningful dialog among individual readers and between readers and
the author can take place. It's not a commitment to any specific amount
of participation on the part of the author, whose contribution to the AO
remains voluntary (and unpaid). We suggest you try asking the author
some challenging questions, lest his interest stray!

The AO forum and the archives of previous discussions will be accessi-
ble from the publisher’s website as long as the book is in print.

About the author

Ryan Heitz is a teacher, programmer, maker, father, and big kid. He is
the cofounder of Ideaventions, a Science Center for kids, and Ideaven-
tions Academy for Mathematics and Science, a private school focused
on science and technology. He specializes in teaching kids how to
experience computer science in a fun and engaging way. As a program-
mer, Ryan has developed software for everything from NASA data
collection systems to web mapping applications.

https://github.com/rheitz/hello-raspberry-pi
www.manning.com/books/hello-raspberry-pi
www.manning.com/books/hello-raspberry-pi
www.manning.com/books/hello-raspberry-pi

Part 1

Getting started

et ready to explore Python using your Raspberry Pi! You'll need a
Raspberry Pi and a few other parts and cables for part 1. Here’s your
shopping list:

@ Raspberry Pi2 Model B

@ 8 GB SD memory card, preloaded with the Raspberry Pi Founda-
tion’s NOOBS (New Out Of the Box Software)

@ USB power supply with micro USB cable (must deliver 1.2 A @ 5 V)
@ USB keyboard

@ USB mouse

@ TV or monitor

@ Cable to connect to TV or monitor (specific cables for your TV or
monitor are discussed in chapter 1)

Optional item:
@ Raspberry Pi case

Part 1 will get you on your way to using your Raspberry Pi and launch
you into programming it with Python. In chapter 1, you'll set up your
Raspberry Pi, learn how to start (or boot) it up, and then look around
inside the Pi’s desktop. Chapter 2 is where you'll start exploring the
Python language. You'll create your first programs and learn to give
instructions to your Raspberry Pi using Python.

Getting started

By the end of part 1, you'll know how to get a Raspberry Pi up and
running. You'll be able to write a Python program and interact with
your Pi to make it do things like figure out the cost of a cheeseburger

meal and display silly messages on the screen.

Meet Raspberry Pi

In this chapter, you'll learn how to

¢ Set up your Raspberry Fi
¢ Install an operating system—~KRaspbian—on your Fi
¢ Find and open applications

e Write your first bit of code in Fython

What kinds of things do you think you can do with a Raspberry Pi?

1 Play games.

2 Watch videos.

3 Create a video game.

4 Listen to music.

5 Make a sound mixer for a dance party.

6 Build a robot.

Believe it or not, these are all projects you can do yourself, and if you
learn to program in Python, the sky is the limit. You can achieve quite a
lot on your Pj, as long as you can write a program to do it. But before we

talk about that, let’s take a look at a Raspberry Pi and discover what

makes it tick.

What

CHAPTER 1 Meet Raspberry Fi

is the Raspberry Pi?

The Raspberry Pr, sometimes referred to as the £ is a small, low-cost
computer invented in the U.K. by the Raspberry Pi Foundation. It pro-
vides an easy-to-use tool to help you learn to code in Python (the Pr
part of its name came from the focus on using it to code in Python).

About the size of a deck of cards, it isn’t as powerful as a laptop or
desktop computer; its computing power is more similar to that of a
smart phone. But what it lacks in processing power, it makes up for in
its many features:

@ Its readiness for programming in Python
@ The many ways you can use 1t

@ Its small size and cost

The Pi, with its companion memory card, is preloaded with all the soft-
ware you need to jump into programming in Python. Type in com-
mands, and see what happens. Enter a program you find on the internet
or in a magazine, run it, and see how it works. The Pi is made for you to
learn to code by playing with it, using it, and interacting with it.

Once you learn to program in Python, you can use your Pi as a base for
all sorts of projects—with your imagination, the possibilities are end-
less! The Pi’s small size makes it easy to carry around and include in
projects. Hide it on a shelf or mount it on a wall with a camera to make
a security system; power it with a rechargeable battery pack if you need
it to be portable; or even attach it to a remote-controlled car or helicop-
ter. And if you happen to mess something up, it’s simple to recover. Even
if you manage to break the Pj, it’s pretty cheap to replace.

At its core, the Raspberry Pi is a circuit board that has all the compo-
nents found in many computers. The next section checks out the com-
ponents of the Pi and explores what they do. Let’s go!

Exploring your Raspberry Pi's parts: hardware

Ever look closely at an insect under a magnifying glass, or take apart a
toy? Humans are naturally curious about what makes things work.
What are the different parts, and what do they do? What parts are

Exploring your Raspberry Pi's parts: hardware 5

unique? Let’s treat the Raspberry Pi the same way, explore its parts,
and learn how to set it up.

Luckily, you don’t have to break it open to see its parts. You can see
the Raspberry Pi’s components displayed before you on the green cir-
cuit board in your hand (see figure 1.1). Let’s walk through the parts of
the Raspberry Pi and see what they do. We'll be focusing on the Rasp-
berry Pi 2 Model B; if you have a Raspberry Pi 1 Model B+ or B, see

appendix B for more information.

Where you plug wires to make
Oo cool projects with electronics

[e}

D)

O
m General-purpose System on a chip
[

“The brain of
the operation”

input/output (GPIO) pins
P put (P Where you connect

things (with USB
8 ~ T T O . — connectors)

Where you store
the operating
system, apps,
and files
Memory
card slot

— Ethernet
port
\K a5 Where you connect
_ -5 mm to the internet
MicroUSB HDMI port audio/video out
power port
= ﬂ

T
Where you plug Where you give it Where you can hear
in the power cord a high-def display sounds or plug into
an old-style TV

Figure 1.1 The Raspberry Pi provides an excellent platform for learning to program in
Python. It includes many input and output ports to give you flexibility in how you connect it.
As you would with a desktop computer, you need to connect a keyboard, mouse, monitor,
and power cable before you can start using your Pi.

(2] CHAPTER 1 Meet Raspberry Pi

Defining some tech terms
Input and output are terms used for communication to and from a computer.

USB refers to a common connector found on computers. It's used to plug in a
keyboard, a mouse, flash drives, and many other computer peripherals.

HDMI/ is a standard way to connect devices to high-definition TVs or monitors.
We’'ll talk about this more later, when we discuss connecting a TV or monitor to
your Raspberry Pi.

Ethernet is a technology used to connect computers together into a network.
This port provides a way to plug in and connect to the internet or your home
network if a wireless connection isn’t available.

Giving your Pi a cozy home: Pi cases

We all like to be warm and cozy in our homes. A Raspberry Pi is no
different. Do the right thing and protect your Pi by putting it in a case
(see figure 1.2). If your Pi didn’t come with a case, you have a lot of
options. You can buy one or make your own. My favorite approach is
to make my own case from wood, cardboard, a plastic container, or
even LEGOs. The key is making sure your Pi is protected from acci-
dental drops and, ideally, spills. But before you close up your Piin a
case, let’s take a closer look at some of its features.

Paper Plastic Aluminum

Figure 1.2 A case protects your Raspberry Pi from damage while making it easy to
access the ports. Some people use a case to give their Pi a unique personality. You
can purchase a case or, better yet, make your own. Plastic cases are the most com-
mon, but these pictures show examples of cases made from paper, plastic, and alu-
minum. You could even try using LEGOs to make one.

Exploring your Raspberry Pi's parts: hardware 7

System on a chip

Figure 1.3 The Raspberry Pi’s system on a chip (SoC) contains its computing and
graphics processing power and working memory. The Pi uses the ARM11 micropro-
cessor as its CPU and the VideoCore IV for its GPU. The ARM11 microprocessor is
found in handheld electronics such as smart phones and gaming systems. The SoC
in the Raspberry Pi 2 Model B comes with 1 GB of RAM.

The brain of your Pi: system on a chip

Meet the brain of your Raspberry Pi. The system on a chip (SoC) is
the black square in the middle of the Pi circuit board in figure 1.3. This
incredible chip is a package of many parts: the central processing unit
(CPU), the graphics processing unit (GPU), the digital signal processor,
and the Pi’s working memory. The chip provides the computing power,
graphics power, and memory to run apps and play videos.

The Pi’s CPU handles running applications and executing instructions.
The same processor is also found in smart phones and e-readers. Think
of it as the part of your brain that allows you to follow instructions and
calculate the answer to math problems.

The GPU is like the visual part of your brain that allows you to visual-
ize a 3D object in your mind or track a ball thrown to you. It handles
the Pi’s multimedia tasks, like processing digital images, drawing
graphics, and playing videos. The GPU gives your Pi surprisingly good
high-definition video-playback capabilities. Both the central processor
and the graphics processor share the Pi’s working memory, or RAM,
which is part of the SoC.

) CHAPTER 1 Meet Raspberry Pi

Working memory: RAM

Question: Can you remember the following grocery store list? Bananas, milk,
peanut butter, jam, bread. Read the list once more, and then look away from the
book and try to recite the list from memory.

To remember it, you need to hold the names of the items in your memory. You
only have to store them for a short time. Once you go to the store and buy the
items, you can forget them.

When a computer is working, it does much the same thing. It may have to re-
member and process millions of instructions and bits of information each sec-
ond, but it can often forget them once it’s done processing them. The computer
does this using working memory or random access memory (RAM). It’s packed
in the SoC, and it gives your Raspberry Pi the ability to process instructions
quickly by remembering pieces of information as it’s working and forgetting
them when they’re no longer needed—much like how the neurons in your brain
work together to remember a grocery list. Later, we’ll talk about storing infor-
mation for the long term and where that happens.

Connecting a keyboard and mouse: USB ports

Meet the USB ports on your Raspberry Pi. The two metal, rectangular
boxes each contain two USB ports, shown in figure 1.4. USB stands for
Universal Serial Bus." The Pi provides USB ports to allow you to con-
nect a keyboard, a mouse, flash drives, and other USB peripherals.

Top view Side view

oooooooooo
Sooooooo—d

[=[=[=[=]=]=]
o——

Figure 1.4 The Raspberry Pi 2 Model B has four USB ports. They’re on the board in two sets
of two, side by side. The USB ports are useful for connecting a keyboard and mouse to your Pi.
A USB hub can also be plugged in to allow for even more peripherals.

' The Ufor Universalis because it provides computer makers and computer equipment makers with a stan-
dard way to connect things to computers. Things connected to a computer are often called peripherals.

Exploring your Raspberry Pi's parts: hardware 9

Why are they called ports?

Back in ancient times, when Romans walked around and spoke Latin to each oth-
er, the word for a gate or door was porta. Although computers don’t have doors
or gates, they have places where you plug things in, called ports.

Ports allow electrical signals to go in and out of your computer. Without ports,
you wouldn’t be able to view your computer’s screen, download web pages, or
move a mouse.

Let’s pretend you could shrink and that you had special glasses so you could see
these electrical signals. What would you see when | pressed the E key on the key-
board? You'd see an electrical signal flying from the keyboard through the key-
board’s wire, through the port on the computer, and into the computer. The port
acts like a gate, allowing signals to go into or out of your computer.

Get your keyboard and mouse. Let’s plug them into your Pi.

CONNECTING A KEYBOARD

You'll need a keyboard that plugs into a USB port. Figure 1.5 shows an
example of a keyboard with a USB connector.?

To attach your keyboard to your Pi, plug the wire from your keyboard
into your Raspberry Pi's USB port. There are four USB ports on your
Pi. It doesn’t matter which one you choose.

Figure 1.5 You need a USB keyboard to type and enter com-
mands on your Raspberry Pi. The keyboard plugs into one of
the four available USB ports on the Raspberry Pi 2 Model B.

2 If you don’t have a keyboard with a USB connector, have no fear. You can find one for under $15
online or at your local computer or electronics store.

10

CHAPTER 1 Meet Raspberry Fi

TIP If the keyboard’s USB connector doesn't fit into the Raspberry
Pi’s USB connector, flip over the connector and try again. USB con-
nectors only fit in one way.

Fantastic! Your keyboard is connected to your Pi. It’s time to move on
to adding a mouse.

CONNECTING A MOUSE

For this step, you need a mouse that plugs into a USB port. The key-
board is using one of your Raspberry Pi’s four USB ports. Plug your
mouse into one of the other ports.

ANOTHER OPTION: WIRELESS KEYBOARD AND MOUSE COMBINATION

If you own a wireless keyboard and mouse combination, instead of
using wires, you can plug the USB dongle into one of the USB ports on
the Pi. This frees up one of your USB ports, which can be handy should
you decide to attach multiple USB devices such as a USB Wi-Fi
adapter or USB flash drives, or if you want fewer wires on your desk.

Excellent! Giving your Pi the ability to store and retrieve information
is your next task.

Storing memories: your Pi gets a memory card

We all like to remember things that are important to us. Birthdays,
vacations, and holidays are wonderful times, and we've invented ways
to help us recall them. You might use a scrapbook or a photo album to
store memories. Even after many years, you can open these books and
remember these past events.

In addition to working memory (RAM), computers also need a way to
remember things, even if they're turned off for long periods of time.
The Raspberry Pi, like all computers, has this capability for memory
storage, letting it save and retrieve data, files, and applications. Much
like a photo album lets you recall holidays, the Pi's memory storage
allows you to store important applications and information. You'll use
this capability when you learn how to save sets of Python instructions
or programs.

Exploring your Raspberry Pi's parts: hardware 1"

SD MEMORY CARD

A Raspberry Pi is different from most computers because its memory
storage 1s contained on an SD memory card, whereas most laptops and
desktops use a hard drive. Files, applications, and even the Pi’s operat-
ing system are all stored on the SD memory card, whether it’s a Python
game you're creating or a new music player app for your Pi. If you pur-

chase a Raspberry Pi kit, it will come with an SD card (see figure 1.6).°

Top view of Raspberry Pi
Top view of Raspberry Pi with SD memory card inserted

Memory
card slot

Bottom view of Raspberry Pi

T ¥S950£3
HeGeoaa B eBoEEEo800
fOOL0RELEEEEREEGGLGEE

Figure 1.6 An SD memory card provides the storage memory used by the Raspberry Pi to
hold all the software and files, including the operating system. Raspberry Pi kits come with an
SD memory card preloaded with the software needed to start up your Pi. The two left images
show the location of the SD memory card slot on the underside of the Pi board. The right
image shows an SD memory card inserted into the SD card slot.

5 See http://elinux.org/RPi_SD_cards for more information on compatible cards.

http://elinux.org/RPi_SD_cards

12

CHAPTER 1 Meet Raspberry Fi

SD cards come in various sizes

SD cards come in three sizes: the full-size SD card (largest), the miniSD, and the
microSD (smallest). The Raspberry Pi 2 Model B uses a microSD card.

You can add more storage to your Pi by attaching USB peripherals
such as a USB flash drive or a USB hard drive.

NOOBS

Your Raspberry Pi kit comes with an SD card preloaded with NOOBS.
Developed by the Raspberry Pi Foundation, New Out of the Box Soft-
ware (NOOBS) is a set of files that helps you set up your Pi for the first
time. If you lose yours or need a NOOBS SD memory card, you can
buy new ones online. Alternatively, if you have an SD card and want to
install NOOBS on it, go to the Raspberry Pi Foundation website
(www.raspberrypi.org/downloads) to learn how.

SD MEMORY CARD SLOT

Figure 1.6 shows the location of the SD memory card slot. This thin,
metal slot is on the underside of the Raspberry Pi. For your Pi to work
when you plug it in, it must have some initial knowledge to start up and
display something on the screen. In addition to this startup informa-
tion, it must also have a place to store any new information.

INSERTING THE SD CARD IN THE SLOT

Hold the card so that the end with the metal contacts is facing up and
toward the Pi. Insert the card along the underside of the board into the
slot. You'll hear a small click as the card is pushed into the slot. The
card is held in place by a small spring mechanism. The card will only fit
in one way, so if it doesn’t fit, flip it over. If you need to remove the
card, push it in again (you'll hear a click); then you can pull it out.

REPLACING A LOST OR BROKEN SD CARD

If you lose your SD card, you lose the information, applications, and
operating system that are stored on the card. It’s as if you lost your
hard drive on a home computer. You can easily replace the card, but

www.raspberrypi.org/downloads

Exploring your Raspberry Pi's parts: hardware 13

you'll be starting over fresh. Here are the two options for replacing the
card:

@ Purchase an SD card at the store, and set it up anew. It’s recom-
mended that you get an SD memory card with at least 8 GB of stor-
age space. You can download and install the startup software from
the Raspberry Pi Foundation at www.raspberrypi.org/downloads.
See appendix A for instructions on how to make a new SD card for

your Raspberry Pi.

@ Buy an SD memory card preinstalled with the Raspberry Pi startup
software. You can find cards for sale on the Raspberry Pi Founda-
tion website and at online retailers.

SD CARDS MAKE YOUR PI'S MEMORY PORTABLE

If your Raspberry Pi ever breaks, you can remove the SD memory card
and insert it into a new Pi. All your files and software will be there. It’s
like taking your photo album with you to a new house. The memories
are safe in the photo album, ready for you to enjoy.

TIP You can set up multiple SD cards for your Raspberry Pi and
switch them whenever you want to give your Pi a whole different per-
sonality. Maybe set up an SD card for the Pi as a media center, com-
plete with games, music, and videos. Set up another for your Pi robot
project. Each memory card can be set up uniquely, with different
operating systems, applications, and files. Swap out the SD card and
reboot your Pi, and you instantly have a Pi with different traits to meet
your needs.

Connecting a TV or monitor: HDMI port

The HDMI port, shown in figure 1.7, is for connecting your Raspberry
Pi to a TV or monitor. HDMI stands for Aigh-definition multimedia
interface. The output provides a combined audio and video signal —
meaning both sound and picture come out of this port and go to your
TV or monitor. If you want a crisp, clear display and you already own a
high-definition TV or monitor, then you'll want to connect your Rasp-
berry Pi to it using the HDMI output port. Because the HDMI output
contains audio and video signals, if your TV or monitor has built-in

www.raspberrypi.org/downloads

14 CHAPTER 1 Meet Raspberry Pi

Top view Side view

LA
(@ Bongharey 11

HDMI port

Figure 1.7 The HDMI port on the Raspberry Pi provides a high-definition audio and
video signal that can be connected to a TV or monitor. Use an HDMI cable to connect
your Pi to your TV or monitor. Depending on the connectors available on the TV or
monitor, you may need an adapter.

speakers, the sound from your Raspberry Pi can be set to come out of
the speakers rather than through the 3.5 mm audio output.

Now that you know about the HDMI port, let’s see how you can con-
nect your P1to a TV or monitor.

CONNECTING YOUR PI TO A TY OR MONITOR

Once you decide on the TV or monitor you plan to use, you'll need to
look for the available video input ports on the TV or monitor (look on
the back or sides to find them). What kinds of ports do you see? Unfor-
tunately, manufacturers often provide a variety of different ports.
Think of it like a matching game. Your goal is to match the connectors
on your TV to the connectors on the Pi. If they don’t match, you'll need
to use one of the adapters discussed in a minute. Either way, you're
sure to get it solved.

IDENTIFYING PORTS AND MAKING THE CONNECTION

Take time to study the connections on your TV or monitor. Try to iden-
tify the video ports, comparing them to the pictures of connectors in

figure 1.8.

Exploring your Raspberry Pi's parts: hardware 15

This section provides instruc-
tions on how you can connect
your Pito a TV or monitor with
either an HDMI or a DVI port.
If your TV or monitor has dif-
ferent video input ports, check
appendix B for tips on connect-
ing to them.

HDMI

The HDMI port is a metal,
mostly rectangular port that is
labeled HDMI. Connect an
HDMI cable from the screen’s
HDMI port to your Raspberry

HDMI port DVI port

Figure 1.8 HDMI and DVI are common
types of video input ports found on mod-
ern TVs and monitors. It’s easiest to con-
nect a Raspberry Pi to a TV or monitor
with an HDMI port. HDMI provides a high-
definition picture and doesn’t require any
adapters or converters—only an HDMI
cable, which is included in many Pi kits.
The DVI port requires a special adapter to
connect with a Pi.

Pi's HDMI port (see figure 1.9). If you've connected your HDMI cable,
you can now skip ahead to the discussion of other ports on the Pi.

TV or monitor

i

Raspberry Pi

HDMI port HDMI cable

Figure 1.9 A Raspberry Pi can be connected to a TV or monitor using an HDMI
cable. Connect the cable from the Pi’s HDMI port to the TV’s or monitor’s HDMI input.
In addition to video, the HDMI cable also contains the Pi’s audio output, which can be
played through the TV’s or monitor’s speakers.

16 CHAPTER 1 Meet Raspberry Pi

DvI

DVI ports on TVs and monitors come in several different forms.
They're all rectangular ports with three rows of eight square pinholes
and a horizontal hole or set of holes next to them. If you already have
an HDMI cable, the solution is to purchase an HDMI-to-DVI adapter.
You can find these online or in a computer store. Plug the adapter into
the computer screen’s DVI port, and then plug your HDMI cable into
the back of the adapter and the other end into the HDMI port on your
Raspberry Pi (see figure 1.10).

Another solution, rather than to use an adapter, is to purchase a DVI-
to-HDMI cable. These can be found online or at a computer store. Plug
the DVI connector on the cable into your computer screen, and plug
the HDMI connector into your Pi’'s HDMI port.

Great! You've completed an important step by connecting your Pi to a
TV or monitor.

TV or monitor Raspberry Pi

DVI (female) HDMI (female) + HDMI cable
port to DVI (male)
adapter

Figure 1.10 The Raspberry Pi can be connected to a TV or monitor with a DVI port using
an HDMI-to-DVI adapter and an HDMI cable. One end of the HDMI cable plugs into the Pi’s
HDMI port. The other is connected to the adapter, and the adapter is connected to the TV
or monitor. Adapters are available through online retailers or local computer stores.

Exploring your Raspberry Pi's parts: hardware 17

Other ports and connections

You'll find other ports on your Raspberry Pi. We'll cover those in later
chapters, or you can reference appendix B for more information on
specific ports and connections. Some of these include the following:

GPIO pins— The two long rows of pins on the Raspberry Pi are used
to send and receive electrical signals. Part 3 of this book will cover
how to program those pins and build projects.

» Internet—You can connect your Raspberry Pi to the internet or
your home network by plugging in an Ethernet cable. But you may
find that the easiest way to get online is to use the USB Wi-Fi adapter
that is provided in many Raspberry Pi kits. Appendix B has informa-
tion on the Ethernet port and using USB Wi-Fi adapters.

@ 3.5 mm audio/video out—The small round connector is for plugging
in headphones or powered speakers. Chapter 8 will show you how to
play sounds as you turn your Raspberry Pi into a music player.

Let’s see how you can get power to your Pi.

Powering your Pi: microUSB power port

Power for your Raspberry Pi is
supplied through the microUSB
power port located near a corner of
the board (see figure 1.11). This
port 1s where you connect a power
supply to your Pi; it’s the same as
the port found on many mobile
phones. Raspberry Pi kits come
with a microUSB power supply.

Figure 1.11 The Raspberry Pi requires a
microUSB power supply that provides at
least 1.2 A of electric current. If you plan
to use all the USB ports on your Pi, you
may want one that provides 2 A or more of electric current. The recommended voltage is 5
volts (V), but the Pi can operate at voltages ranging from 4.8 to 5.2 V. If you have a power sup-
ply you want to use with your Pi, check its output voltage and current, which are listed on the
charger in small print. In this example, the charger has an output of 5.1 V and 2.5 A of cur-
rent, making it a suitable power supply for a Pi. Using the incorrect voltage or insufficient cur-
rent can damage or destroy your Pi, so check carefully.

18 CHAPTER 1 Meet Raspberry Fi

NOTE Only certain mobile phone chargers can be used to power

your Raspberry Pi. The charger must produce sufficient electrical

current to power it. If you want to go this route, then you should read

the fine print on the charger. The charger must produce 1.2 amp (A)

or more for the Pi.

It’s alive! Plugging in the Pi

Before plugging your Raspberry Pi into the power supply, go through

this quick checklist:

1 Are you sure your keyboard, mouse, and monitor are connected to the

P1?

2 Have you turned on your TV or monitor and set it to the correct

input source? For example, if you plugged your Raspberry Pi into
the TV's HDMI port, make sure the TV is set to HDMI input.

3 Have you inserted your SD card with NOOBS into your Pi?

An example setup is shown in

figure 1.12.

Figure 1.12 Example setup of a
Raspberry Pi with peripherals con-
nected and SD card inserted. A key-
board and mouse are connected to
the Pi’s two available USB ports. A
microUSB power supply is plugged
into the Pi; the other end is lying on
the desk, ready to be plugged into
the wall. An HDMI cable is connected
from the Pi’s HDMI port to the back
of the monitor. The Ethernet port
has an Ethernet cable plugged into it
from a router (not shown).

TIP TVs and monitors often allow you to connect multiple video
sources. Maybe your TV has a Wii, a DVD player, and a digital video
recorder. These TVs and monitors have the option to select which

input is displayed to the screen. Use your TV’s or monitor’s input

selector to set the correct Input.

Getting your Fi running: software 19

All right, if you have all three steps checked off, it’s time to power up
your Raspberry Pi. Plug your power supply into a wall outlet, and plug
the microUSB connector into your Pi. Your Pi’s lights will begin to
flash. Enjoy the beautiful glow from the lights —this is a sign that your
Raspberry Piis starting up. It’s also referred to as booting; this is when
the computer detects the devices you have connected to it and starts up
the computer’s operating system (OS). Some believe the term boor
originated from kicking a horse to get it to start moving. You can imag-

ine that you're giving your Pi a bit of a boot to get it started.

Getting your Pi running: software

You've got your Pi plugged in and ready to rock. It’s time to get it run-

ning and doing something useful —and for that, you need some software.

An OS is a common set of instructions, or software, that helps manage
the computer. Common OSs you've most likely encountered are Micro-
soft Windows, Apple’s OS X, and Linux. All of these OSs control the
connection of your keyboard, mouse, monitor, and other peripherals.
Most important, the OS serves as a foundation for you to put applica-

tions on your computer and use them.

The SD memory card that comes with your Pi kit already contains the
files for installing several different OSs on your Pi. We'll step through
installing the Raspbian OS —the default for the Pi—and configuring it.

Installing the Raspbian operating system

The first time you boot a Raspberry Pi, you'll need to install an OS on
it and then configure it to work nicely for you. Let’s walk through the
first task: installing an OS. You'll configure it in the next section. Once
you plug in your Pi, you'll see the NOOBS menu for selecting an OS, as

shown in figure 1.13.

The Raspberry Pi has a variety of OSs that can be installed on it. The
Raspberry Pi Foundation recommends the Raspbian OS, and it’s what

we'll use for this book. Let’s go over how to install it on your Pi.

20

CHAPTER 1 Meet Raspberry Fi

NOOBS v1.4 - Built: Feb 18 2015
B 2 @ 4

|
{ Install [Im Edit config (e} Online help (h) Exit (Esc)

Installs the selected operating system image onto this 5D card.

Raspblan [RECOMMENDED]
A Debian wheezy port, optimised for the Raspberry Pi

Raspbian - Boot to Scratch

0 B Data Partition m
' |Z20] Adds an empty 512MB ext4 format partition to the partition layout.
Py A version of Raspbian that boots straight into Scratch m

sk - - e
i—D«s spac

Needed: 2762 MB

| Available: 6675 MB
| |

Figure 1.13 The NOOBS selection menu allows you to choose
the OS you want to install on your SD card and use with your Rasp-
berry Pi. This menu appears the first time you start up your Pi.

What if you don’t see the NOOBS software screen?

If you don’t see the NOOBS software screen after your Pi boots up for the first
time, then there are a few things to check.

If you don’t see lights flashing on your Pi when you plug it in, make sure the
electrical outlet you’re using has power. Many a Pi owner has accidentally
plugged a Pi into a power strip and forgotten to switch on the power strip.
Sounds silly, but even the best programmers make mistakes.

If your Pi’s lights blink when you plug in the power supply but the screen of your
monitor doesn’t show anything, make sure the monitor is plugged into an elec-
trical outlet, the HDMI cable is connected from the monitor to the Pi, and you’ve
turned on the monitor.

Finally, if your Pi starts booting up and you see lots of messages displaying on a
black screen, but you never see the NOOBS selection menu, it’s likely that your
SD card has an error. See appendix A for ways to fix an SD card.

Sometimes you’ll run into issues with your Pi. If you do, use the troubleshooting

steps in appendix A, and search the Raspberry Pi Foundation website? to find
solutions.

2 The Raspberry Pi Foundation website is www.raspberrypi.org.

www.raspberrypi.org

Getting your Fi running: software 21

On the NOOBS selection menu (see figure 1.13), follow these steps:

1 Select Raspbian (make sure there is an X in the box next to Raspbian;
if not, click the box to select it).

2 Click the Install button at the top of the menu.

3 A message appears, warning you that the process will install the OS
and that all existing data on your SD card will be overwritten.

Select Yes to continue with the installation.

4 Wait for the installation to complete. It will take 5 to 10 minutes, so

get a drink or grab a snack while you're waiting.

5 When the installation is done, a box pops up, letting you know the
OS was installed successfully. Click OK, and your Raspberry Pi will
start loading Raspbian.

6 When it’s finished loading Raspbian, your Raspberry Pi reboots
itself. A black screen appears, followed by many, many, many mes-
sages. Don’t worry; the messages are the Pi performing its startup

tasks, such as detecting the keyboard, mouse, and TV or monitor.

Kudos to you! You've installed your Raspberry Pi's OS, Raspbian.

Now you'll want to conﬁgure how it works to suit you.

Configuring the operating system: making it yours

You've finished installing the Raspbian OS on your SD memory card
and gotten it running for the first time. The next thing you'll see is the

Raspberry Pi configuration screen, shown in figure 1.14.

TIP You can’t use your mouse with this menu! Use the arrow keys
(up, down, left, and right) and Tab key to move around the menu
instead. Press Enter to select the highlighted menu item.

Let’s walk through some of the basic configuration settings you may
want to change.

4 When you're warned that all data will be overwritten, this doesn’t include NOOBS, which is retained
on the SD card so that you can reinstall the OS if you ever need to.

22

CHAPTER 1 Meet Raspberry Fi

{ Raspberry Pi Software Configueation Tool Craspi-config) |

e | vord Change password for the default user (pil
e = I’Ir:p/iir ratch Choose uhether to boot into a desktop ewironnent, Scratch, or the connand-|ine
» language and regional settings to natch your location
Enable this Fi to work with the RBaspberry FPi Canera
k fidd this Pi to the online Raspberry Pi Hap (Rastrack)
Configuee overelocking for your Pi
Advanced Options Configure advanced settings
fAbout raspi-config Inforpation about this configuration tool

ion Dptions

“5elects <Fimish

Figure 1.14 When your Pi boots up for the first time, you’ll see the Raspberry Pi
configuration menu. This menu makes it easier to set up your Pi by allowing you to
change settings such as the time zone and keyboard layout. The menu also has the
option to set your Pi to always boot to the Raspbian desktop environment.

CHANGING THE KEYBOARD SETTINGS

The Raspberry Pi is made in the U.K,, so it’s preset to a U.K. key-
board. If you live in other parts of the world, the keyboard may make

unexpected characters appear on the screen. For example, you might

type a # symbol (Shift-3), and your Pi displays the symbol for a British
pound. Weird, right?

You can use the configuration tool to change your Pi’s keyboard layout

by following these steps:

1

On the Raspberry Pi configuration menu, select option 4 — Interna-
tionalisation Options —and press Enter.

Select Change Keyboard Layout, and press Enter.
Select your keyboard model —for example, Dell —and press Enter.

You see options for the keyboard layout’s country of origin. Select
the appropriate country, and press Enter.

A list of keyboard layouts appears. Select the one for your location,
and press Enter.

On the next series of screens, you can set shortcut keys. Set them to
match your personal preferences. If you aren’t sure, accept the
defaults (press Enter until you're back to the configuration menu).

You can always return to the configuration tool if needed. You'll learn

how in a later section when you're introduced to the command-line

mode for Raspbian.

Getting your Fi running: software 23

CHOOSING HOW YOUR RASPBERRY PI STARTS UP

Raspbian, like most OSs, allows you to use it in two different ways (see

figure 1.15):

Command-line mode—You type in commands to the OS. This can
be tough for novices, because you need to know the commands and
type them in exactly. Because this mode is more difficult to use,
you'll only use it in this book when you need to run commands that
require administrative or super-user permissions. For example,
you'll need the command line when you make Python programs that
use the GPIO pins or you want to alter your Pi’s configuration.

Graphical-user-interface (GUI) mode— Everything appears in win-
dows, icons, and menus that are point and click. Just like on Win-
dows and Mac computers, this will be your main way to interact
with your Pi and program in Python. It represents the most natural
way to access applications, files, and folders.

Debian GHU-Linux wheezyssid raspberrypi ttyl

raspberrypi login: pi

Password :

Last login: Tue Aug 21 21:24:50 EDT 2012 on ttyl

Linux raspberrypi 3.1.9+ #168 PREENPT Sat Jul 14 18:56:31 BST 2012 armubl

The programs included with the Debian GNU-Linux system are free software:
the exact distribution terms for each program are described in the

individual files in susr/sharesdoc/ = copyright.

Debian GHU-Linux comes with ABSOLUTELY ND WARRANTY, to the extent
permitted by applicable law.

Type ‘startx’ to launch a graphical s

pi@raspberrypi

Figure 1.15 Example screen images
of a command-line mode (top) and a
GUI mode (bottom) for a Raspberry Pi
running the Raspbian OS. The
command-line mode is text-based:
you enter instructions at the prompt.
The GUI is pretty much the same as a
Windows or Mac interface, with
windows, icons, and menus that you

interact with using a mouse pointer. Raspbian graphical-user-interface (GUI) mode

24 CHAPTER 1 Meet Raspberry Fi

Question: Which option do you prefer?

@ Your Raspberry Pi booting up to a screen with a blinking cursor,
waiting for you to type in commands

@ Your Raspberry Pi booting up and showing you a desktop with
application icons arranged on the screen, waiting for you to point to
and click them with your mouse

If you chose the second option, you can set Raspbian to always boot to
the desktop with the following steps:

1 On the Raspberry Pi configuration menu, select option 3—Enable
Boot to Desktop/Scratch —and press Enter.

2 Select the second option —“Desktop Log in as user ‘pi” at the graphi-
cal desktop” —and press Enter.

Fantastic! Next time your Raspberry Pi boots up, you'll be taken to the
Raspbian desktop.

TIP If you decide you prefer to boot the Raspberry Pi to the com-
mand line, you can always launch the Raspbian desktop by entering
startx at the command line.

TIP Sometimes you may find yourself using the Raspbian GUI, but
you want to use the command line. There is an easy way to change.
You can open the command-line mode in a window by clicking the
Menu Button, then selecting the Accessories category and clicking
the Terminal® icon.

MAKING OTHER CHANGES

The Raspberry Pi configuration menu includes other options such as
setting up a camera and over-clocking. These are available if you ever
want to use them. Check the Raspberry Pi forums for more informa-
tion on these options.

Saving your configuration and rebooting

If you're happy with the changes made to your Raspberry Pj, follow these
steps to exit the Raspberry Pi configuration tool and reboot your Pi:

5 Terminal is short for LXTerminal or Linux terminal. Raspbian is a Linux-based OS, and terminal/
refers to the command-line mode where you can enter commands.

Getting your Fi running: software 25

1 On the Raspberry Pi configuration menu, use the arrow keys to select
Finish, and press Enter.

2 You're prompted with this message: “Do you want to reboot now?”
Select Yes, and press Enter.

Eli=so »= Your Raspberry Pi will dis-
play lots of lines of text as it
boots up. (Yes, it does that
again! Don’t worry, it will
seem normal to you soon.)
This 1s your Pi's startup
sequence when it connects
peripherals and starts up the
OS. Next, a white screen with

a Raspberry Pi will appear,
Figure 1.16 A view of the Raspbian desktop after
your Raspberry Pi boots up. The desktop is similar to ‘ ;
the desktop in Microsoft Windows or Apple Mac OS X. 1s your Raspblan desktop (see
Don’t worry if your desktop is different from this one.
Depending on when you bought your Pi, you may . ..
have received an SD card with an older or newer tions! Your Raspberry Pi is

version of Raspbian. ready to go.

along with a set of icons —this

figure 1.16). Congratula-

A BIT OF PI IN YOUR FACE: TROUBLESHOOTING

If you don'’t see the view shown in figure 1.16, don’t be discouraged.
It’s likely that you didn’t select the option to boot to desktop. If your
screen shows the command-line mode for Raspbian (figure 1.17), you
can log in and launch the Raspbian GUI.

[ok 1 Setting up ALSA...done.

Linfol Setting conzole screen modez

[infol Skipping font and keymap :gtup (Mndled hg congo le=zetup) .
[ok] Setting up console font and keymap. .

[ok] Setting up X socket directorles.. f‘i.lp/ Hil—unix staps . ICE-unlx.
IHIT: Entering runlevel: 2

[info) Using makellle-style concurrent boot In runlevel 2.

[ok) Metwork Interface Pluggling Decman...skip ethd, . .donc,

[ok 1 Starting enhanced sysiogd: rmlond

[ok] Starting periodic command scheduler: crom.

[ok] Starting systea message bus: dbus,

Starting dphys-suapfile swapfile setup . Figure 1.17 If you didn’t set up your Pi
want Avar/suapsl0OfBuyte, checking nl-tlnu keeping It .

dore. to boot to the Raspbian desktop, the

[ok] Starting NIF server: nipd. . . .

{ ok 1 Starting OpenBSD Secure Shell server: sshd. command-line mode will be displayed when
Deblan GMLLInux 7 raspberrypl tiyl your Raspberry Pi boots up. It will ask you

raspberrypl login: for your login name and password.

26 CHAPTER 1 Meet Raspberry Fi

At the command line, you'll be prompted to enter your login and pass-

word. The default login is pi, and the password is raspberry. After

entering that information, launch the Raspbian Desktop from the com-

mand line using the following steps:

1 Type startx.

2 Press Enter.

Once you execute the command, the P1 will start up the Raspbian GUI

mode and display your Raspberry Pi’s desktop. If you happen to have a

different problem, head to appendix A for troubleshooting ideas.

Getting around: learning Raspbian

Take a cruise around your Raspberry Pi, and look at some of the appli-

cations that come already installed with the Raspbian OS.

Finding and opening applications on your Raspberry Pi

There are many applications on your Raspberry Pi. You can access

them by clicking the Menu button in the top-left corner of the desktop

(see figure 1.18). Enjoy exploring what comes installed on your Pi.

Your files and folders

Similar to Windows Explorer or Mac Finder, Raspbian has some built-

in tools to make it easier to navigate the folders and files on your

 IECE R X
" Programming >
@) Intemet >
_I Games >
\Lg_It Archiver
4% peo > D Calculator
= File Manager
8% preferences 2= ’
. l Image Viewer
& [o viewe
Shutdown B sk Manager

e Terminal

IJ— Simple text editor

Figure 1.18 The Raspbian appli-
cation menu opens when you click
the Menu button in the top-left
corner of the desktop. You can
open an application by moving
your mouse over the categories
listed on the menu and then
clicking the application.

Getting around: learning Raspbian 27

H'Menu CD@- # @

U]

=
Trash e
| Eile Edit View Bookmarks Go Tools Help
- ¢ 8 |momeipi
- g B 5 fn B Bw BN
) ————— '
b (6 Deskiop Deskiop Documents Downloads python.gam Scratch Timelapse
m " L]
b B Documents
> & oowrios o ®
b [python_games B . e m o B !
b B Scratch yoda 2015-05-18- 2015-06-18- 2015-06-18- 2015-06-18- 2015-06-18-
- = 204213163 204357163 204426163 204452_163 204516163
P B TimeLapse 21018 sc.. 2n1018_sc.. 2x1018sc. 2x1018 ¢ 21018 sc
b Eyoda
ey - B - B |
2015-06-18- 2015-06-19- 2015-06-21- blinkitpy blinkledpy blinkLEDSW |
204539163 010758163 172228163 avepy
2¢1018_sc_ 2x10M8_sc_ Zx1018_sc
Darth.Vade DarthVader DJRaspipy djraspipy DJRaspiDo djraspifhsp
rjpg Surprise py ubleBution ¥
Py
EasterEgo p . guessing htsTale. LEDGuessin LEDGuessin
| v ren A Far ™ nAGame nu_aGameiar =
|52 items (23 hidden) Free space: 3.2 GiB (Total: 6.2 GiB)

Figure 1.19 File Manager in Raspbian allows you to manage files as you do in Win-
dows Explorer or Mac Finder. You access File Manager using the folder icon in the
upper-left corner of the desktop. This is a view of a Pi with a lot of files stored in the
/home/pi folder.

Raspberry Pi. In Raspbian, the application for managing files is
called File Manager, and it’s accessed by clicking the folder icon
located in the top-left corner of the Raspbian desktop. Figure 1.19
shows the icon and the File Manager application. Just as in Windows
Explorer, you can

@ Navigate into folders by double-clicking them.
@ Drag files to move them to another folder.

@ Copy and paste files using the right-click menu on files and folders.

o

> Rename files.

o)

@ Open files by double-clicking them.

The Pi was built for coding. Let’s see how you can write code on
your P1.

28

CHAPTER 1 Meet Raspberry Fi

Writing code

You're going to learn to write code in the Python programming lan-
guage. Meet a new program, IDLE. IDLE is a tool that'll help you write
programs in Python. IDLE stands for Integrated DevelLopment Envi-
ronment. The Python language was named after Monty Python, and
the IDLE acronym is a nod to Eric Idle, one of the founding Monty
Python members.

Follow these steps:
Click the Menu button on your desktop.
Select Programming > Python 3.

After a second or two, IDLE opens the Python Shell, as shown in fig-
ure 1.20.

NOTE Previous Raspberry Pi models have desktop icons for Python:
IDLE and IDLE 3. You 7/ use Python 5 (or IDLE 3) for the exercises in
this book. On older Pi models, the IDLE 3 icon opens the Python Shell
for Python 3. You may have guessed that the IDLE (without the 3)
icon opens IDLE for Python 2.

: Fytnon snel =E =
Edle Edit Shell Debug Options Windows Help

Python 3.2.3 (default, Mar 1 2013, 11:53:50)

[GCC 4.6.3] on linux2

Type "copyright”, "credits®™ or "license ()" for more information.

|
[EcHT|

Figure 1.20 IDLE is a development environment that makes it easier
to write Python programs. This is the IDLE Python Shell that you can
use to enter Python commands or instructions one at a time.

NOTE To start the Python Shell from the Raspbian command line,
type python3 and press Enter. You'll see a >>> prompt and may inter-
actively enter Python commands. When you're finished using the
Python Shell, type exit() and press Enter to end your Python session.

Fruit Picker Extra: shopping at the Pi Store 29

The Python Shell shown in figure 1.20 allows you to enter Python
commands and press Enter to execute them. The command prompt lets
you type in commands after the triple greater-than symbols (>>>).

Do the following:

1 Enter 3 + 4.

2 Press Enter.

The screen displays the answer: 7. Try some subtraction:

1 Enter 17 - o.

2 Press Enter.

The screen displays the answer: 8. Now let’s make Python talk to you
by printing a message to the screen:

1 Enter print("I am alive!™).

2 Press Enter.
Your screen should display “I am alive!”

Outstanding work! You wrote three lines of code. When you pressed
Enter after each one, the Raspberry Pi’s processor executed those com-
mands and did what you asked. That is powerful!

Fruit Picker Extra: shopping at the Pi Store

Your Raspberry Pi can do many things. We've included special sec-
tions throughout the book called Fruit Picker Extras to teach you some
different things your Pi can do. This Fruit Picker Extra is about shop-
ping at the Pi Store.

The Pi Store is an online app store that provides access to games, apps,
and resources for your Pi (see figure 1.21). You can browse the Pi
Store from any device, such as a mobile phone or laptop. To access it
from your Raspberry Pi, double-click the Pi Store icon on your desk-
top. If you want to download content to your Pi, you need to have your
Pi connected to the internet, and you'll also need to create an IndieCity
account with an email address and password.

30 CHAPTER 1 Meet Raspberry Fi

() Pi'Store il
; 20 3@
W The Pi Store
m My Library Upload [5] .
Q]
Status Finished x| Sortby MewestFirst =l
Games (4 Apps (4 Tuterials Dav Tools Media (1
Games | Ve e guree |
Minefinder
Highnoon Minetinder Simple Pong
Awsstern style gur W 3 A simple Pong type game
abomb T
Tk Free! Yrirdriyd Free! Yrirdrird Free!

Figure 1.21 You can access the Pi Store from the icon on your Raspbian desktop.
The store allows you to browse and download apps and content including games,
tutorials, and digital magazines. You’ll find free and fee-based content, organized
into five categories: Games, Apps, Tutorials, Dev Tools, and Media.

Some apps are free; others require you to pay a fee. You'll find great
resources, such as free issues of MagPs, the Raspberry Pi community
magazine, a digital magazine full of tips, projects, and programming
tutorials (look for these in the Pi Store’s Media category). Have fun
downloading free games and tutorials onto your Pi!

Challenge

Each chapter will have challenges at the end for you to try. If you can't
figure them out, check the back of the book (see appendix C) for hints

and answers.

Summary 31

Scavenger hunt

Time to explore your Raspberry Pi with a scavenger hunt. The goal is

to learn more about the Pi by looking around, opening applications,

and playing with them. Try to complete this list of scavenger-hunt

items:

1

4

5

Find a game where squirrels eat other squirrels. Can you achieve the
title of Omega Squirrel? Hint: Double-click the Python Games desk-

top icon to look for it.

Find a calculator application on your Raspberry Pi. Calculate the
answer to a math problem: 87x34. Hint: The calculator is found
under Menu > Accessories.

Without unplugging your Raspberry Pi, can you figure out how to
shut down or restart it?

Turn your desktop’s background black.

Bonus: Open Scratch, and try to make a cat dance.

Consider yourself an official Raspberry Pi explorer. If you want, take

some more time to click some icons and see what they do. You've

accomplished a lot!

The Raspberry Pi is like other computers in a lot of ways, but with sev-

eral important differences. The similarities with other computers

include these:

@ A Pirequires a keyboard, mouse, and monitor, much like other desk-

top computers. The ports for plugging these in are part of the Pi.

@ The Pi can be set up with a desktop OS, Raspbian. It’s similar to

Microsoft Windows or Apple OS X.

@ Although its computing power is limited (similar to a smart phone),

the Pi can still allow you to do many things you do on a desktop or
laptop, such as browsing websites, playing games, and listening to

music.

32

CHAPTER 1 Meet Raspberry Fi

The Raspberry Pi has qualities and capabilities that make it special and
unique. These key differences from other computers include the fol-

lowing:

@ The Pi’s cost and size are much smaller, making it a great candidate
for projects.

@ The Pi was designed for programming in Python and comes pre-
loaded with the Python development environment so you can get
coding right away.

@ The Pi uses an SD memory card to store all files and software,

including the OS.

@ It has GPIO pins that can send and receive electrical signals. In part
3 of this book, you'll learn how you can use these to create projects
that interact with the world around you.

2

Exploring Python

In this chapter, you'll learn how to interact with your Raspberry Pi by
using Python to

¢ Do math calculations quickly and easily
¢ Store information using variables
¢ Get messages to display on the screen

¢ Create and run your first program in Fython

An exciting part of programming is getting the computer to interact with
you. It's the first step toward having the computer feel artificially
intelligent.

Playing with Python
One of the best ways to learn to program is by exploring and playing.
When you play, you try things and see what happens. You learn by exper-
iencing the act of programming and seeing results. In this approach,
you'll try entering different commands and see what happens.

Open IDLE for Python 3 by clicking the Menu button and selecting Pro-
gramming > Python 3 on your Raspberry Pi’s desktop (see figure 2.1).
After you click it, you'll need to wait a few seconds while IDLE opens.

33

34 CHAFPTER 2 Exploring Python

B D5 =m0

Mathematica

— gra :
@ Internet > Python 2

.-‘.-_ Games)lE

2 Accessories > &% Scratch
:; Help > [-:.-J]l‘ Sonic Pi

Wolfram
(¥4 Preferences > @

5‘5} Run
E Shutdown

programming shell for Python 3.x.

Integrated development environment for Python 3

o W

Figure 2.1 The Python 3 icon on your Raspberry Pi opens an interactive

NOTE There are both Python 3 and Python 2 icons under Menu >
Programming on your desktop. Make sure you click Python 3 and not

Python 2.

The Python 3 icon opens IDLE.! You'll see a prompt, ready for your
commands —this is the Python Shell (see figure 2.2). With the Python
Shell open, let’s see how you can start talking to your Raspberry Pi

using Python.

Shows the version
of Python 3.23)
Prompt for entering /

Python commands

=

Eile Edit Shell Debug Options Windows Help

— -

Python 3.2.3 (default,
[GCC 4.6.3] on linuxZ

Type "copyright®™, "credits®™ or "license ()" for more information.

Mar

1 2013,

11:53:50)

J|
[in: 4Cok: 4

Figure 2.2 The Python 3 application under Menu > Programming on the Raspberry
Pi desktop opens IDLE to the Python Shell for Python 3.x.

! The specific version of Python preinstalled on your Raspberry Pi may vary depending on when you

purchased it. As of this writing, most Raspberry Pis come with Python version 3.2.3.

Discovering Python's mathematical operators 35

Discovering Python's mathematical operators

One of the core capabilities of a programming language is its ability to
do math, or, in programmer-speak, to perform mathematical opera-
tions. Let’s try different mathematical operations to see what works
and what doesn't.

Adding and subtracting

Suppose you go to your favor-

. Menu

ite restaurant and order a

b fri d Burger........... $5.49
urger, Iries, an an orange Fries $1.99

soda. You want to know how Soda...oo, $1.49

much you owe. The menu (see
figure 2.3) says the burger is
$5.49, fries are $1.99, and the Figure 2.3 The menu at your favorite
orange soda costs $1.49. burger restaurant

Use Python to figure out the total. In the IDLE Python Shell, enter

>>> 5.49 + 1.99 + 1.49

Press Enter to see Python calculate the result: 8.97, or $8.97 (see
figure 2.4).

Great news: you remember you have a coupon for $3.00 off, so let’s cal-
culate the total again. In the IDLE Python Shell, enter

>>> 8.97 - 3.00

‘- Python Shell
Eile Edit She|l Debug Options Windows Help

Python 3.2.3 (default, Mar 1 2013, 11:53:50)
[GCC 4.6.3] on linux2
Type "copyright®, "credits" or "license()" for more information.

>>> 5.49 + 1.99 + 1.49
8.97

A
|Ln: 6[Cal: 4

Figure 2.4 Use the + symbol to add numbers in Python.

36 CHAFPTER 2 Exploring Python

The result 1s 5.970000000000001. Whoa! Why isn't it exactly 5.977?
Well, it has to do with how computers store numbers as 1s and 0s. We
aren’t going to go over it here, but the footnote? has a web link where
you can learn more. For now, the number is close enough for your cal-
culations.

As you can see, Python is pretty good at doing math and uses familiar
operators for addition and subtraction:

The addition operator (+) calculates the sum of two numbers:

>>> 4 + 5
The result 1s 9.

The subtraction operator (-) calculates the difference between two
numbers:

>>> 8 - 5

The result 1s 3.

Python style: spacing of operators and numbers

Try entering 24 plus 32 without any spaces between the plus sign (+) and the
numbers:

>>> 24+32

Then try it with lots of spaces:

>>> 24 + 32

Both result in the same answer: 56. When you’re doing math, the number of
spaces between the numbers and the operator doesn’t matter. Python ignores
the extra spaces and calculates the sum.

What'’s the best way? Well, Pythonistas (the name given to those who program in
Python) believe that your code should be easy to read. The Python Style Guide?2
recommends using spaces before and after a mathematical operator. You don’t
have to, but it’s easier to read!

a2 The Python Style Guide is referred to as PEP 8 and is found online here: www
.python.org/dev/peps/pep-0008.

2 Read more about decimal math (also called Hoating-point math) here: https://docs.python.org/3.4/
tutorial/floatingpoint.html.

www.python.org/dev/peps/pep-0008
www.python.org/dev/peps/pep-0008
https://docs.python.org/3.4/tutorial/floatingpoint.html
https://docs.python.org/3.4/tutorial/floatingpoint.html

Discovering Python's mathematical operators 37

Let’s see what other math you can do in Python.

TIP When typing in large numbers, don’t enter commas to separate
groups of three digits. So 1,000 should be entered as 1000. Python
can't interpret the comma separators n numbers, e} _you'll get some
odd results if you add them. Python will interpret the commas as if
you're typing in a list of numbers. For example, 12,231 is interpreted
to be a list of two numbers: 12 and 231. You'll learn more about lists in
part 2 of this book.

Multiplying and dividing
After scarfing down your burger, you find yourself hungry for two
scoops of ice cream and a slice of raspberry pie for dessert. Ice cream is
$1.79 per scoop, and pie is $3.50 per slice, so what is your total?

Use Python to figure it out. Try Python’s multiplication operator (¥):

>>> (2 * 1.79) + 3.50

You total bill is $7.08. You also see that you can use parentheses to
group things.

Three of your friends join you at the restaurant, and each orders dessert.
After more ice cream and pie, the total bill ends up being $33.36. They
all agree to split the bill evenly. Use Python’s division operator (/) to cal-
culate the price they each should pay:

>>> 33.36 / 3

The result is $11.12 each. That’s a lot of dessert!

With your belly full, you observe how you've seen Python perform
multiplication and division and how you can use parentheses for

grouping:

o The multiplication operator (*) gives you the product of two numbers:
>>> 7 * 3.14
The result is 21.98.

> The division operator (/) can divide two numbers:

>>> 40 / 8

38

CHAFPTER 2 Exploring Python

The result 1s 5.

- Parentheses can be used to group numbers so they're evaluated first:
>>> (3 +7) * 10
Python answers 100.

What do you think this will result in?

>>> 3 + (7 * 10)

If you guessed 73, you're right. If you change the location of the paren-
theses, you'll get a different answer. We'll talk about this more when
we examine the order of operations.

Figuring out whole humbers and remainders

Your friend mentions to you that there are 19,272 minutes of school
remaining this year. How can you figure out how many hours and min-
utes? First you divide 19,272 by 60, because there are 60 minutes in an
hour. You find that is 321 hours with a remainder of 12 minutes. In
Python, you have two operators to give you the whole number and the
remainder of a division sum:

- // (floor division) gives you the whole number:

>>> 19272 // 60
The result is 321.
= % (modulo) gives you the remainder:
>>> 19272 % 60
The result is 12.

You divided some large numbers, but let’s look at how Python can han-
dle even larger ones.

Exponents

An interesting fact you might've learned in Astronomy is that the
Earth’s distance to the Sun is approximately 1.496 x 108km. Let’s use
Python to express this as a number. In Python you use the exponentia-
tion operator (**) as follows:

>>> 1.496 * 10%*§

Discovering Python's mathematical operators 39

Python answers 149600000.0 km.

Exponentiation lets you take two numbers (a,) and raise one number
to the power of the other(a). Python uses the exponentiation operator
(**) between the two numbers (a**b) to do this. For example, if you
wanted to raise 2 to the third power, you'd enter

>>> 2 *% 3

The resultis 8 (2 * 2 * 2 = 8).
Try another:

>>> 122 ** 5

The result is 27,027,081,632 (122 * 122 * 122 * 122 * 122 =
27027081632).

NOTE On older versions of Python, you may see 122**5 show the
result 27027081632L. This is because previously Python added the

letter L to denote really long integers.
Exponentiation can be useful if you're solving problems like these:

¢ Estimating astronomical distances
- Calculating bank account balances based on a given interest rate

Predicting a population size for animal colonies based on a given
growth rate

Square roots
You can figure out square roots by using an exponent of 1/2, or 0.5.

This is the same as taking a square root:

>>> 14400%%0.5

The result 1s 120.0.

Challenge: stacking Pis!

How many Raspberry Pis would need to be stacked end to end to
reach the Sun? You can measure your Pi, and you'll find that a Rasp-
berry Pi measures 85.6 millimeters or 0.0856 meters. First, you need to
convert the Pi's measurements to kilometers by dividing 0.0856 by

40

CHAFPTER 2 Exploring Python

How many Pis does it take to reach the Sun?

Raspberry Pilength Earth to Sun distance

55.6 millimeters

1.496 x 108 kilometers

&

Figure 2.5 The distance from the Earth to the Sun is approximately
149,600,000 km. The Raspberry Pi is 85.6 mm in length.

Definitely not to scale

1,000; then you divide the distance from the Earth to the Sun by the
Pi’s length in kilometers (see figure 2.5). This should give you the dis-

tance to the Sun, expressed as a number of Pis.
Enter the equation into Python:

>>> 1.496 * 10**8 / (0.0856 / 1000)

Python answers 1747663551401.8694. That is more than 1.7 trillion

Raspberry Pis stacked end to end. It’s kind of fun to think about that
many Pis!

Types of numbers: integers and floats

So far, you’ve used both integers and decimal numbers in your calculations. In
Python, decimal numbers are also called floating-point numbers, or floats for
short. Here are some examples of floats:

1.2

0.00001

3.14159

1000000.01

Checking types
Try entering this:

>>> type(3.14)

Storing information using variables 41

Python will answer you: <class 'float's. You’ve just used Python’s built-in tool
for checking the type of something. These built-in tools are called functions.
You'll see more of these later. Let’s see what this does:

>>> type(10001)

Did you guess it? This returns <class 'int's, where int stands for /nteger.

So far, you've typed in numbers and performed calculations. But if you
want to change one number, you have to type all the information again.
You also have no way of saving information —you have to look up and
type the number each time. Good news! There is a better way.

Storing information using variables

There are times in programming when it’s easier to store information
than to type it in over and over again. Variables provide that special
capability. Variables give you a way to store information and retrieve it

anytime. Let’s look at an example.

Imagine that you own a pizza i

restaurant, and your prices .II Menu
are shown 1in figure 2.6. Cheese pizza $14.00
Orange soda................ $1.50
Chicken wings............. $8.00
Figure 2.6
N The menu at your

\ pizza restaurant

The first customer, Daniel orders a meal of pizza and orange soda:

>>> 14 + 1.5

Daniel’s meal costs $15.50.

A second customer, Erin orders pizza, orange soda, and wings:
>>> 14 + 1.5 + 8

Erin’s meal costs $23.50.

42

CHAFPTER 2 Exploring Python

Each time you want to calculate a meal’s cost, you must remember or
look up the price of each item and type it in. Imagine if you had a menu
of 15 items and 100 customers. It would take forever to look up the
items and add their prices together! You'd also be prone to making
mistakes. Let’s have the computer do this work for you.

Creating variables and assighing values

This is a perfect place to use variables in a program. Variables store
information to make your life easier. (We're programmers, and we like
to be lazy. At least we're alwa_ys trying to find a more efficient way to
do things.) Let’s do this again but create variables for each of the food
items. The first step is to define your first variable and set its value:

>>> cheese_pizza = 14

Let’s take a close look at how this code Value
ks in fieure 2.7 Name of assigned to
WOTKS 1n Hgure z.7. the variable the variable

/—)HA

Figure 2.7 A variable stores information .
>>> cheese_pizza = 14

and can be created and assigned a value.
The equals sign is used as an operator Y Y
(also known as the a55/g/?mem‘ operator) Python Shell Equals sign is used
between the name of_the varla_ble on theT left prompt to assign a value
and the value assigned to it on the right. to a variable

Next, let’s create the other two variables for orange soda and wings:

>>> orange_soda = 1.5
>>> wings = 8.00

Nothing is displayed on the screen after you enter each line, but
Python stores the variables and their values in the memory of your

Raspberry Pi.

Displaying variable values

How can you check what'’s stored in a variable? Like the type function
earlier, you use another built-in function in Python called print, like
this:

>>> print(cheese_pizza)
14

Storing information using variables 43

Print doesn’t mean to print something with paper and ink. In Python,
printing means to display something on the screen.

NOTE When you're working in the Shell, Python displays the result
of expressions. But if you assign a sum to a variable, the Shell doesn’t
show the value unless you use print.

Using print, you've seen that cheese_pizza has the value 14 stored in it.
You should feel confident that your variables are holding the informa-
tion you put in them.

Let’s see if you can use variables to figure out a meal cost (without hav-
ing to look up numbers):

>>> meal_cost = cheese_pizza + orange_soda

Print meal_cost to see its value:

>>> print(meal_cost)
15.5

Python displays 15.5. Now, let’s calculate the cost of the other meal:

>>> meal_cost = cheese_pizza + orange_soda + wings
>>> print(meal_cost)
23.5

Python answers 23.5. The more calculations you need to repeat, the
more you'll appreciate how variables can save you time and effort.
Congratulations —you're using variables to store information!

DEFINITION The process of putting a value into a variable is called
assignment.

Before you start creating a lot of variables, let’s learn the guidelines for

naming them.

NAMING VARIABLES

Everyone has had the problem of not being able to read someone else’s
handwriting. The writer might know what they wrote, but you're
unable to decipher it. You want to avoid this same confusion with vari-
ables. In order to do that, there is a set of guidelines for creating clear

44 CHAFPTER 2 Exploring Python

variable names —names that make sense to you and to someone else
reading your code:

Don't use any spaces. Instead, use an underscore (_).

The Python Style Guide recommends using lowercase and under-
scores between words to make your code easy to read.

Don't start with a number.

Don't use any of Python’s reserved words for your variable name
(see the sidebar “Watch out for reserved words”).

Here are some examples of variable names:

>>> shoe_size = 10

>>> age = 16

>>> favorite_color = 'blue’
>>> first_name = "John"
>>> pizza_slices_eaten = 4

Do your best to use meaningful variable names.

Watch out for reserved words

Certain words in Python are reserved because they’re part of the Python lan-
guage. You can’t use these words as names for variables:

False class finally is return
None continue for Tambda try
True def from nonlocal while
and del global not with
as elif if or yield
assert else import pass

break except in raise

Python 3.x reserved words are used by Python for special purposes and may not
be used for variable names.

ASSIGNING YALUES: THE LEFT SIDE AND RIGHT SIDE

When you're creating a variable and assigning it a value, put the name
of your variable on the left side of an equals sign. Put the value you
want to set it to on the right side of the equals sign. Let’s create a vari-
able name and set it to “King Arthur”:

Storing information using variables 45

>>> name = "King Arthur"

In this 1ine, the left side creates a variable called name, and the set of
characters “King Arthur” is stored in it. Let’s learn more about storing
text in variables.

Storing strings in variables

Life isn’t only about numbers. You may want to create programs that
display absurd messages or tell a story on the screen. These messages
are a type of data called strings. A string is a group of characters.

STRINGS

Python gives you the ability to store a group of characters (or strings)
in variables. You've already used strings in the example with “King

Arthur”.
Here are some things you should know about strings:

They always must start and end with quotation marks.
© You may use either single quotes (‘Hi’) or double quotes (“Hi”), but
you can’t mix them (“H1’):
>>> message = "Greetings Earthlings"
Or, in single quotes:

>>> message = 'Greetings Earthlings'

When a number is placed inside quotation marks, it’s a string.
Strings can be short (zero or only a few characters) or many charac-
ters long.

Strings can even be empty. These are called zero-length strings:

my_string =

EXAMPLES OF STRINGS
Some examples of strings will give you an idea of what'’s possible:

nyn
"No"

"Spam"

"Yeah, remarkable bird the Norwegian Blue"

46

CHAFPTER 2 Exploring Python

"There he is!"

"No, no sir, it's not dead. It's resting."
nygm

"RUNAWAY, RUNAWAY, RUNAWAY!"

"Tuesday"

MEASURING THE LENGTH OF A STRING

You can use the len function to have P_ython tell you the length of a
string. We'll talk more about string functions in chapter 3, but here is
an example of using 1en:

>>> your_nickname = "Pi Master"
>>> len(your_nickname)
9

Or try a longer one:

>>> quote = "To be, or not to be, that is the question.”
>>> len(quote)
42

Even the spaces are counted when determining the length of a string.
This is a great point to talk about spaces.

SPACES COUNT

Although spaces may seem like nothing, they're considered characters.
You can create strings that are a single space or set of spaces, such as

short_set_of_spaces =
long_set_of_spaces =

n "

You now know about variables and about strings, a type of data that
can be stored in them. Let’s see how you can vary your variables.

Changing the value of variables

As you may have guessed already, the value stored in a variable can be
changed or updated. Try it. You're making up a password for your
computer. Create a variable password, and set it to bunny:

>>> password = "bunny"
Now let’s change the password to dragon:

>>> password = "dragon"

Storing information using variables 47

What value do you think is stored in password: “bunny” or “dragon”?
Let’s check the value using the print function:

>>> print(password)
dragon

The value dragon is displayed. Notice how Python replaces the value
stored in the variable when you assign it a new value.

VISUALIZING YARIABLES AS BOXES

A way to visualize this is to imagine that creating a variable is like mak-
ing a box—a box for storing information. When you create the box,
you give it a name and store a value in it. Figure 2.8 is a graphical
depiction of creating a variable and reassigning a value to it.

Changing the value of a variable is easy to do in Python. Let’s look at

another example.

“punny”

>>> password = "bunny"

Creates a new variable (or memory storage box)
and names it password.
The string "bunny" is placed inside it.

>>> password = "dragon"

A memory storage box named password already
exists. Python replaces the value in the box with
"dragon", and "bunny" is no longer stored.

>>> password

>>> print(password) - "bunny"

>>> password = "dragon"
>>> print(password)

: . dragon
When using prlnt, t.he cu.rrent » oo
value stored in a variable is

displayed to the screen.

Figure 2.8 When a variable is created, it’s stored in your Raspberry Pi’s
memory. You can change the value of a variable at any time. Using the
print function, you can display the variable’s value on the screen.

48

CHAFPTER 2 Exploring Python

YARIABLE REASSIGNMENT

Let’s see how P_ython evaluates these statements:

>>> X = 10

This sets x equal to the value 10. Next, you do a calculation with x and
store the result of the calculation in x:

>>> X = X * 10 + 32

When Python evaluates this line, it first tackles the right side of the
equals sign:

1 Python evaluates the right side of the equation: x * 10 + 32.

2 Python retrieves the current value of x, 10, and calculates 10 * 10.

3 Python adds 32 to this amount. The right side of the equals sign is 132.

4 It does the left side of the equals sign last. The result, 132, is stored
into the variable on the left side of the equals sign: x.

You've seen how Python can store and retrieve information using vari-
ables. Variables save you time because they hold the value they're
glven, meaning you don’t have to remember values or look them up.
Variables can take the form of numbers or strings, and you can check
the value stored in a variable using the print function.

Excellent! You've seen how the order for variable assignment is impor-
tant. Check out how the order of math operations matters.

ORDER OF OPERATIONS
What do you think Python will return if you enter the following?

>>> (3 ¥ 2) * 5%*3 / 25 4+ 10

If you guessed 40, you're correct. Python follows the order of opera-
tions that you learned in math class.

TIP You may recall BOMDAS or PEMDAS from school. This pattern
of letters is useful for remembering the order you should evaluate
operations in a math equation. Python follows this same order of oper-
ations: Brackets (or Parentheses), Orders (or Exponents), Multiplica-
tion and Division, and then Addition and Subtraction.

Storing information using variables 49

First it evaluates anything grouped in parentheses or brackets. 3 * 2is
equal to 6. Let’s replace the 3 * 2 with 6 and go to the next step:

>>> 6 * 5%*%3 / 25 + 10

The exponents (or orders) are analyzed next. 5+*3 is 125 (the same as
5% 5 % 5):

>>> 6 * 125 / 25 + 10

Multiplication and division come next, and you work from the left to
the right. 6 * 1251s 750. 750 / 25 1is 30:

>>> 30 + 10

The final step is addition and subtraction. 30 + 10 is 40. Graphically,
figure 2.9 shows the order in which the example equation is solved in

math and how Python does it.

Order of operations
1. Parentheses (or brackets) first (3 % 2) * 5%%¥3 / 25 4+ 10

|
!
6 3

© 5%%3 / 25 + 10

2. Exponents (or orders) second

-~

3. Multiplication and division third 6 * 125 / 25 + 10
(always work from left to right) \
750 / 25 + 10
|
4. Addition and subtraction last 30 + 10
|
40

Figure 2.9 Python follows the order of operations
used in mathematics. You may know it as BOMDAS or
PEMDAS: Brackets (or Parentheses), Orders (or Expo-
nents), Multiplication and Division, and finally Addition
and Subtraction.

50

CHAFPTER 2 Exploring Python

You're pretty good at doing math in Python. You're ready to learn
more about using Python to communicate and display text on the

screen.

Displaying text on a screen

It’s fun to interact with technology and have it respond. This can take
the form of playful responses by a computer, making it feel more
human. Or computer responses can be more practical, displaying per-
sonal data on a website form. In either case, you want your computer
to communicate with you.

Displaying text on the screen, also referred to as printing in Python, 1s
a direct way for a computer to communicate with you. You can use
printing to have your Raspberry Pi do things like this:

Show random, silly messages.

Describe spooky scenes as part of an adventure game.

Spit out the answers to complex math problems.

Printing to the screen is a key way to output all kinds of information.

Using the print function

Earlier in this chapter, you used the print function to display the value
of variables. Let’s go over more about using the print function. Try
printing the message “Hello World!” to the screen like this:

>>> print("Hello World!")
Hello World!

Take a ClOSGI’ 1001{ at l’lOW you can use Strings must be

the print function in figure 2.10. print in single (') or
Python prints “Hello World!” to the function double (*) quotes.

Python Shell.)\ /—/g

>>> print("Hello World!™)

Figure 2.10 The print function in Python Y WJ

displays text on the screen. The string Python Shell Opening
inside the parentheses must be enclosed prompt and closing
in single or double quotation marks. parentheses

Displaying text on a screen 51

REPEATING TEXT
Let’s try something a bit different. Type in

>>> message = "Hello, I am your Raspberry Pi!"
>>> print(message)

This prints the message on the screen once. You can use the multiplica-
tion operator with a string to print it many times:

>>> print(message * 100)

The message cascades across and down the screen 100 times (see

figure 2.11).

File Edit Shell Debug OQOptions Windows Help

Python 3.2.3 (default, Mar 1 2013, 11:53:50) =
[GCC 4.6.3] on linuxZ

Type "copyright®, "credits" or "license ()" for more information.
>>> message = "Hello, I am your Raspberry Pi!"

>>> print (message * 100)
Hello, I am your Raspberry Pi'Hello, I am your Raspberry Pi'Helle, I am your Ra
spberry Pi'Hello, I am your Raspberry Pi'Hello, I am your Raspberry Pi'Hello, I
am your Raspberry Pi'Hello, I am your Raspberry Pi'Hello, I am your Raspberry P
i'Hello, I am your Raspberry Pi!Hello, I am your Raspberry Pi'Hello, I am your
Raspberry Pi'Hello, I am your Raspberry Pi'Hello, I am your Raspberry Pi!Hello,
I am your Raspberry Pi'!Hello, I am your Raspberry Pi'Hello, I am your Raspberry
Pi'Hello, I am your Raspberry Pi'Hello, I am your Raspberry Pi'Hello, I am your
Raspberry Pi'Hello, I am yvour Raspberry Pi'Hello, I am vour Raspberry Pi'Hello, 4
iLn: 7 |Col: 4

Figure 2.11 The Python print function can display text on the screen repeatedly if
you use it with a string and the multiplication operator (*).

Have fun with this. Try some bigger numbers and different messages
to see what you get.

Troubleshooting

We're all human, so things can go wrong when we're pressing keys and
typing in code. A common error you might make when creating a vari-
able that is storing a string is forgetting to close your quotation marks:

>>> message = "Hello, I am your Raspberry Pi!

52 CHAFPTER 2 Exploring Python

- Python Shell ===

File Edit sShell Debug Options Windows Help

Python 3.2.3 (default, Mar 1 2013, 11:53:50)

[GCC 4.6.3] on linux2

Type "copyright”, "credits" or "license ()" for more information.
>> message = "Hello, I am your Raspberry Fi

SyntaxError: EOL while scanning string literal

Figure 2.12 Remember to place quotation marks at the beginning and end of your
strings. If you forget to close your quotation mark, Python will display an error.

Notice that the quotation mark after the exclamation point is missing.
It may sound goofy, but think of quotation marks as hugs. When you
hug someone, you wrap your arms around them. One quotation mark
must go on either side of a string to complete it. If you ran this code in
the Python Shell, you would receive an error, as shown in figure 2.12.

Python displays an error message (SyntaxError: EOL while scanning
string literal). You can fix it by typing the string again with both the
opening and closing quotation marks around it.

Creating programs

Imagine again that you own a pizza shop and you want to use Python
to calculate the cost of a meal, including tax. A customer orders a meal
of two slices of pizza and orange soda. Let’s start by creating two vari-
ables with the menu prices:

>>> pizza_slice 3.5
>>> orange_soda = 1.50

Create two variables to keep track of the number of slices and number

of drinks:

>>> num_slices
>>> num_drinks

]
[E N

Next let’s calculate the cost of the meal without tax:

oo o+
* x

>>> meal_no_tax = (num_slices
orange_soda)

pizza_slice) + (num_drinks

Creating programs 53

Define the tax rate of 5%, and figure out the tax:

>>> tax = 0.05

>>> meal_cost = meal_no_tax + (meal_no_tax * tax)
>>> print(meal_cost)

8.925

Now imagine if one or more of the numbers changed. Let’s say pizza
slices are now $4.75 and orange soda is $1.75. You'd have to enter all
the information again. That takes way too long.

A better way is to put the eight statements into a text file. Then you can
tell Python to read the file and execute the instructions.

DEFINITION A program is a set of instructions. Python programs can
be created in a text file. The programs can be run (or executed) over
and over again.

Now you can run the program again and again, making updates when-
ever needed. If the cost of menu items changes or a customer wants a
different number of slices, you can update the program and run it
again. That is a big time-saver!

A computer program is a set of instructions. So far, you've used the
Python Shell to type in commands one at a time. Programs allow you to
create, save, and run more complex sets of instructions. You can easily
edit your programs and run them again. Your programs might be as
short as a few lines, or thousands of lines long.

Writing Python programs with IDLE

To write a program, you need a way to input the instructions. IDLE
will be your program of choice for this. IDLE is an application that
makes it easier to develop programs.

A SPELL CHECKER FOR PYTHON

If you've ever used Microsoft Word or Gmail, you're familiar with the
spell-checker feature. It’s saved thousands of homework assignments
from receiving low grades and stopped misspelled emails from being
sent. Each program highlights words you misspell, so you can easily
find them and make corrections.

54

CHAFPTER 2 Exploring Python

When you write programs, you want something to help catch your mis-
takes. IDLE does that for you. IDLE automatically color-codes your
Python statements to let you know you're using the correct spelling. By
using color-coding, IDLE can help alert you if you enter a command
incorrectly and highlight errors or bugs. In later chapters, I'll introduce
you to some of the features of IDLE.

INTEGRATED DEVELOPMENT ENVIRONMENTS

Other programming languages have software applications similar to
IDLE that make the process of programming more enjoyable, help pre-
vent errors, and even suggest fixes. As a group, these software applica-
tions are called integrated development environments (IDEs). IDLE is
one of the most popular ones for Python.

USING TEXT EDITORS

In addition to IDLE, you can write and save Python programs in any
text editor you like. For example, you could use Leafpad or Nano,
which are other simple text editors that come with Raspbian. A word
of caution: they allow you to write, but they don’t help you avoid errors
or find mistakes in your code, making IDLE a better choice.

Starting a new program

Let’s create our first program. While using the IDLE Python Shell,
select File > New Window. You'll see a blank new window appear, with
the title Untitled at the top (see figure 2.13). This is the IDLE text
editor.

TIP The keyboard shortcut to open a new IDLE text editor window is
Ctrl-N.

Let’s write a program in the IDLE text editor. Enter the following lines
of text:

message = "And now for something completely different."
print(message)

TIP The text editor automatically highlights keywords in the Python
language. In this example, you'll notice print appears in purple text,
signifying it’s a Python keyword. Strings are color-coded green.

Creating programs 55

- Python Shell (il [l [
Eile Edit Shell Debug Options Windows Help

Python 3.2.3 (default, Mar 1 2013, 11:53:50) —
[GCC 4.6.3] on linux2

Type "copyright™, "ecredits" or "license ()" for more information.
>>> I

[Ln: 4]col: 4
IDLE Python Shell
- Untitled -'s
Eile Edit Format Run Options Windows Help
[tr: 1]cel: o

IDLE text editor

Figure 2.13 The top window is the IDLE Python Shell. The bottom
window is the IDLE text editor that can be used to create and edit
Python programs. You can open the IDLE text editor using Ctrl-N
or by selecting File > New Window from the IDLE Python Shell.

Thisis a classic line from Monty Python's Flying Circus. The show begins
with this quote. Figure 2.14 shows the program in the IDLE text editor.

- *Untitled* Lol bl
File Edit Format Run Options Windows Help
message = "And now for something completely different.” -
print (message)

tn: 2[col: 14

Figure 2.14 IDLE provides a text editor that helps you write Python pro-
grams. The editor highlights words to help you compose your programs
and identify errors. This program prints a message to the screen.

56 CHAFPTER 2 Exploring Python

Now that you've written a
program, you'ﬂ want to save
1t so you can open it, run it,
and edit it later.

Saving programs

To save the program, choose
File > Save. A Save dialog
appears. Name the file First-
Program, and click Save
(see figure 2.15). By default,
the file will be saved to your
/home/pi folder. If you want,
you can create a folder for
your Python programs.

[— Qavm Ao

- =]

Directory: /home/pi .

1 .cache £ .local

£ .config £ .minecraft

1 .dbus 3 .pulse

1 .fontconfig 5 .scratch

5 .gstreamer-0.10 3 .thumbnails

£ .gvfs £ .WolframEngine

£ .idlerc £ archive

.‘.).
File name: FirstProgram Save

Files of type: Python files (*.py.*.pyw) —| cancel

Figure 2.15 Save programs in IDLE using
the File > Save menu selection or by pressing
Ctrl-S. The default save location is /home/pi.
When the file is saved, it has .py appended to
the end of its name, signifying that it’s a
Python program.

TIP The keyboard shortcut to save a program is Ctrl-S.

NOTE

When you click Save, the program is saved to your /home/pi

folder with the extension .py. You can use File Manager to open your

/home/pi folder and see the file you've saved: FirstProgram.py.

While using the Python text editor, you can run the program by click-
ing Run > Run Module, or you can press F5. When you do this, the
IDLE Python Shell becomes the active window, and you'll see the mes-
sage printed to the Shell (see figure 2.16).

: Fyinon shell I:H:H:I
File Edit Shell Debug Options Windows Help
Python 3.2.3 (default, Mar 1 2013, 11:53:50) =
[GCC 4.6.3] on linux2
Type "copyright", "credits" or "license ()" for more information.
>>> = RESTART ====
And now for something completely different.

hm?CWi

Figure 2.16 You can run programs from the IDLE text editor. Running
a program in IDLE displays the results of the program in the Python Shell.
This shows the output of your first program by displaying a message.

Fruit Picker Extra: creating documents 57

Python interpreting the program

When you run your program, Python opens the file and interprets each
line of text. The first line creates a variable message with the stored
value “And now for something completely different.” The second line of
your program calls Python’s print function and passes it the variable
message to output to the screen. Excellent—_you’ﬂ continue to build
more programs in the next part of the book.

Fruit Picker Extra: creating documents

This special section is about teaching you new and different things
your Pi can do. This extra is about creating documents.

Writing silly things and saving them
Let’s start by creating a simple text file and saving it. Using a Rasp-
berry Pi to do homework can be a lot of fun. Maybe you'll write a doc-
ument describing your latest idea for a game or create a collection of
short stories. Rather than use your parent’s computer or a pen and

paper, use your Raspberry Pi.
Luckily, Raspbian comes with an application called Leafpad. It's a
lightweight software program for creating documents with text.

CREATING A TEXT FILE IN LEAFPAD

Here are the simple steps for creating a document in Leafpad:
1 Click the Menu button in the upper-left corner of the desktop.
2 Hover over Accessories.

3 Find Text Editor, and click it. This opens Leafpad.

4 Type in the Leafpad window: I'm a lumberjack and I'm okay! (see fig-
ure 2.17).

g *(Untitied) LU

| oz s

with Raspbian. You can
access Leafpad from the
Accessories menu.

I'm a lumberjack and I'm okay!|

58

CHAFPTER 2 Exploring Python

Enter the filename

lumberjack.

l SEVEAS =i
Name: [Iumberjack\]
Save in folder: ‘ < Hpi‘ ‘Create Folder‘
Places Name v Size Modified E
Q Search Desktop 02/16/2015
@ Recently Used ||| |EJ Documents 06/19/2015
B3 Downloads 04/12/2015
Desktop Dlindiecity 06/21/2015
I File System £ python_games 01/01/1970
B SETTINGS <] | Scratch 06/19/2015

£ TimeLapse 06/21/2015|
Character Coding: | Current Locale (UTF-8)| ¢ H LF C‘
| @ Cancel ‘ #2% Save j
ry
Select the Click Save to save
pi folder. the file to your

Raspberry Pi.

Figure 2.18 Saving a file in Leafpad lets you choose the folder to save to
and enter a filename. The Save window works similarly to how you might save
a file in Microsoft Word.

Now that you've created your file, let’s save it (see figure 2.18):

1 Select File > Save, or use the keyboard shortcut Ctrl-S.

2 A window appears that you can use to save your file. You need to
pick the folder you want to save your file in. Click the folder labeled
pi. This is your personal folder where you can save your files.

3 In the Name box, enter lumberjack for the filename.

4 Click the Save button.

Congratulations! You saved the lumberjack file to your Raspberry Pi’s
memory card in the folder located here: \home\pi (this means the file is
saved in the home folder and in a subfolder called pi). The file contains

Fruit Picker Extra: creating documents 59

Nano: a command-line text editor

Leafpad uses windows and is therefore only available from the Raspbian GUI. But
if you decide you prefer to use the Raspbian command line, there is a handy text
editor called nano that you can use. Type nano in the command line and press
Enter to open nano. Nano uses keyboard controls to open, save, and close files.
Here is an example of the nano text editor:

-
File Edit Tabs Help
|

You must use the keyboard, not the mouse, to make selections and perform
actions in nano. For example, Ctrl-X exits nano. Once you get used to using the
command keys to get around, nano is useful if you decide you prefer using Rasp-
bian in command-line mode.

the sentence you typed: “I'm a lumberjack and I'm okay!”. Go ahead
and close Leafpad.

FINDING A SAVED FILE

You saved the file. Now let’s see if you can use File Manager to find it
and open it again:

1 Open File Manager.
2 Click the folder icon on the left, labeled pi.

60 CHAFPTER 2 Exploring Python
Displays the current
folder location.
- \ i e =
File Edit View Bookmarks Go Tools %Ip
fo W 8 |/home/pi
Directory Tree ~ r - D L —
=Bl = |._. |._.|
b [Desktop Desktop Documents Downloads indiecity python_gam
b B3 Documents s
b B3 Downloads
b Bindiecity S Pl
b B python_games Scratch lumberjack
b BB Scratch
bE3/
7 items {24 hidden) Free space: 3.1 GiB (Total: 6.2 GlB_J

—

Double-click the
file to open it.

Figure 2.19 Viewing the contents of folders using File Manager

3 Look at the folders and files listed in the window. Notice at the top
that the pi folder is located at \home\pi. This means the pi folder is
located in the folder home on your Raspberry Pi’s SD card.

4 Find the lumberjack file in the list of files, and double-click it (see

figure 2.19).

Leafpad will open, and you'll see the message you typed. Now let’s
close Leafpad and learn how to enter some code.

Have fun making documents and exploring other things your Pi can do!

Challenges

Try these challenges, which will test your use of mathematical opera-

tors, printing, and variables.

Challenges o1

- Python Shell = | |
Eile Edit Shell Debug Options Windows Help |

o S T
00000101010100101101001100100110001011001011110000010101010010110100110010011000
10110010111100000101010100101101001100100110001011001011110000010101010010110100
11001001100010110010111100000101010100101101001100100110001011001011110000010101
01001011010011001001100010110010111100000101010100101101001100100110001011001011
11000001010101001011010011001001100010110010111100000101010100101101001100100110
00101100101111000001010101001011010011001001100010110010111100000101010100101101
00110010011000101100101111000001010101001011010011001001100010110010111100000101
01010010110100110010011000101100101111000001010101001011010011001001100010110010
11110000010101010010110100110010011000101100101111000001010101001011010011001001
10001011001011110000010101010010110100110010011000101100101111000001010101001011
01001100100110001011001011110000010101010010110100110010011000101100101111000001
01010100101101001100100110001011001011110000010101010010110100110010011000101100
10111100000101010100101101001100100110001011001011110000010101010010110100110010
01100010110010111100000101010100101101001100100110001011001011110000010101010010
llﬂlhﬂllOOIOOIIOOOLOIIDOIOI1110000010101

EE

Ln: 9|Col: 4564

Figure 2.20 Try using the print function and strings to make a
screen full of 1s and Os.

The matrix

Using the print function, create a cascading screen of 1s and 0s as seen
in popular computer graphics. Hint: remember how you used

*

print(message * 100) to display a message 100 times on the screen. Fig-

ure 2.20 shows an example of what this might look like.

The matrix challenge is about creating a full screen of digits. Experi-
ment with other numbers and characters.

Building a brick wall

For this challenge, create a variable named brick and store a string in it
that, when printed over and over again, will make your screen turn into

a brick wall (see figure 2.21).

bl Python Shell el]
Eile Edit Shell Debug Options Windows Help |

»»>> print (brick * 1000)

Figure 2.21 This challenge uses the print function and a string named
brick to create a brick wall pattern on the screen.

62

CHAFPTER 2 Exploring Python

Your goal is to figure out what string should be stored in the variable
named brick to make this display. Good luck! Bonus: can you make
your bricks look more like raspberries or have them contain the initials

RPi for Raspberry Pi?

Pi electrons

For this advanced challenge, let’s examine the electrical current flow-
ing into your Raspberry Pi from the power supply. Then, let’s see if you
can express that electrical current in terms of the equivalent number of
electrons flowing into your Pi per second.

TIP You may have learned that electrical current is a measure of
charge flowing past a point. One amp (or ampere) of current is equal
to one coulomb of charge flowing each second.

The amount of current your Pi uses depends on how many USB ports
you're using, but let’s assume your Pi is using one amp. One amp is
equivalent to the flow of 1 coulomb of electrical charge flowing per sec-
ond. A single electron has the charge of 1.60 x 10" coulombs (or
0.000000000000000000160 coulombs). How many electrons per sec-
ond does it take to equal 1 amp flowing into your Raspberry Pi? Hint:
You can represent the charge of an electron as 1.60 * 10%*-19.

For hints and solutions to the challenges, see appendix C.

Programming is about being able to interact and communicate with a
computer. Your Raspberry Pi comes with IDLE, a development envi-
ronment for programming in Python. Python provides two different
ways you can program:

- Interactively, by entering commands one at a time using the Python
Shell. The Shell is useful for quick calculations or testing a command.

= By creating programs, or sets of commands, saved in a file. Programs
allow you to write, edit, and run your code over and over again.

One of the first conversations you can have with your Raspberry Pi is
to use Python to talk math. Python provides a full set of mathematical

Summary 63

operators you can use. Mathematical operators are handy when you
need to perform calculations in your programs, such as keeping track
of a player’s position on the screen. Another way to interact is to use
Python’s built-in print function to display text to your Pi’s screen.
This lets you create programs that communicate between the com-
puter and you.

An important idea in programming is using variables to store informa-
tion —they save you time and can be used again and again. In Python,
variables can store different types of data, including integers, floats
(decimals), and strings. Using variables, you can store information and
retrieve it any time. This is a key advantage, because it means you don't
have to remember Values; P_ython does it for you. You can also change
a variable’s value, which is a useful feature when you want to run the
same instructions with different inputs.

Part 2

Playing with Python

inecraft, Pac-Man, and Super Mario Brothers are great games, and
they were all created by programmers like you. You'll have to gain
more skills to make games like those, but you can create some basic
games pretty quickly. All these games have the game player interact
with the computer. The computer is programmed with /ogic: instruc-
tions that control how the game reacts to the player’s choices. The
game is constantly responding to input from the user, whether it is a
button press or a key press.

Games are a good way to learn programming because they combine
creativity, fun, and logical thinking into one project. Games are also
interactive, requiring the user to make choices and the computer to
respond to those choices. The goal is to make the game entertaining, so
you'll use your creativity and imagination to add magic to your games.
You decide how you want to program your game and how it responds!

In part 2, you'll build your own interactive games using Python and
your Raspberry Pi. You'll start in chapter 3 by making a program that
creates ridiculous sentences. You'll learn to use Python to ask users to
enter information, store the information in variables, and make your Pi
respond. Chapter 4 dives into how you can create a guessing game that
makes your Pi more intelligent: it will make simple decisions based on
the player’s choices. You'll also see how to use Python to make your
Raspberry Pi repeat some instructions over and over again. In chapter

66

Playing with Python

5, you'll don a helmet and headlamp and descend into an underground
cave. You'll create a text-based game where the player can choose
where to go; based on their choices, they may find riches or face an

untimely demise.

S

Silly Sentence Generator
S000: creating interactive
programs

In this chapter, you’'ll see how you can use Python to

¢ Create a welcome message for a2 game

* Add notes to your code

¢ Ask users to input (or type in) information and save it using variables
¢ Join strings

¢ Display information back to the user based on that information

Visit a website, start up a game system, or open a mobile application, and
it will probably ask you to enter a name and email address and create a
password. These are all computer programs, and once you're logged in,
they may display special messages at the top of the screen saying things
like “Welcome, Aaron” (or whatever your name is). Some programs are
very sophisticated, remembering the games you've played, the badges
you've earned, the balance in your account, or the products you've

viewed.

67

68 CHAFTER 2 Silly Sentence Generator 3000: creating interactive programs

iTunes, Netflix, Facebook, and Gmail are all sites that use computer

programs that ask you for information, save information, and interact

with you based on that information. In this chapter, you'll see how to

do this with Python by creating a ridiculously fun word game called

Silly Sentence Generator 3000.

Creating a welcome message

In Silly Sentence Generator 3000, the game player (that’ll be you) is
asked to enter words such as nouns, verbs, adjectives, and so on. You'll
store the words as variables and then use them to create ridiculous,
nonsensical sentences.! Figure 3.1 shows an example of what the fin-

ished program looks like.

Think about the program like a machine that takes a set of inputs and

then creates an output. You're going to put together the machine by

creating the instructions that drive it. Conceptually, this “machine”

- Fytnon shell

e

Eile Edit Shell Debug GOptions Windows Help

Fython 3.2.3 (default, Mar 1 2013, 11:53:50)
[GCC 4.6.3] on linux2

Type "copyright®, "credits" or "license ()" for more information.

T2 i s s I I I I

55> mEssssssssssssssssssssssssssssss RESTART =ssssssssssssssssssssss==
Bk ok kR kA kR ko ko ko kR ko ok kR Rk Rk
* Welcome to the Silly Sentence Generator 3000 *
I e I
Flease enter your name: Daniel

Hello, Daniel! Let's make a silly sentence!
Enter the name of a famous person: Elvis

Enter an adjective: dangerous

Enter another adjective: eager

Enter a verb ending in -ING: hunting

bk ok kR kb ko ko ko kR ok ok ko Rk ko
The dangerous Daniel is hunting the eager Elvis

Figure 3.1 Silly Sentence Generator 3000 asks the user to enter their name and

some words, and then it creates a silly sentence from those words.

1

This is similar to the game Mad Libs, if you've ever played it.

Creating a welcome message 69

Input might look something like figure 3.2.
Change the words you put in, and
you'll get a completely different

c.\diec’c'“’e1
result. That's part of what makes

player_name
games so much fun!

adje verb 1\
Cti (‘50
Vee (‘\O“S/Qe) .
- fo Let’s see how to create this game.
2, , ;
2 Once you create it, you can change it and

add to it however you like.

o

silly_sentence Output
=

O O O O O) . . .
Figure 3.2 Aninteractive game
\J lets you put in information, and
then it creates an output.

Starting a new program
If you open a game, one of the first things you see is a main menu or
title screen. Let’s use what you know about displaying text on the
screen to make your program display a title for your game. You start by
opening IDLE and creating a new program. Open IDLE for Python 3
by clicking the Menu button and selecting Programming > Python 3 on
your Raspberry Pi’s desktop (see figure 3.3).

Prew | @ = -_ ®0

- f_’ Mathematica

f'\!} ntemet > Python 2

. Games > p

of? Accessories b @ Seratch Integrated development environment for Python 3
:.: Help » l } Sonic Pi

¥45 preferences > @ i

$ o

!EI Shutdown

e W

Figure 3.3 Select Menu-->Programming-->Python 3 to open the
Python Shell on your Raspberry Pi.

70

CHAPTER 3 Silly Sentence Generator 3000: creating interactive programs

Ella Edit Shell Debug Options Windows Help

Python 3.2.3 (default, Mar 1 2013, 11:53:50) =
[GCC 4.6.3] on linux2
Type "copyright", "credits" or "license ()" for more information.

7|
Ln: 4 Col: 4

Figure 3.4 The Python Shell

Give your Raspberry Pi a few seconds to open IDLE. After IDLE
opens, you'll see the Python Shell (see figure 3.4).

Press Ctrl-N or choose File > New Window to open the IDLE text edi-
tor. You'll see a blank window, ready for you to start typing in your
program (see figure 3.5).

The Run menu appears

in the IDLE text editor. The new window is
Select Run>Run Program labeled Untitled until
to test your programs. you have saved the file.

N ~

hh“ title -ﬂ

File Edit Format Run Options Windows Help

|tn: 1cel: 0

The corner displays the location of j
the cursor. Ln: | is for line number one.

Col: 0 is for the position of the cursor.

Zero is the first position in the line.

Figure 3.5 The IDLE text editor is where you can type in your Python pro-
gram. You can also edit, save, and run programs using the menu options.

Creating a welcome message 7

Using the print function you learned about in chapter 2, let’s make a

title screen:

print("*" * 48)

print("* Welcome to the Silly Sentence Generator 3000 *")

print("*" * 48)

Excellent. Feel free to elaborate on the welcome message and the art-

work with different characters. Before you go much further, you

should save the program.

Saving the program

Save the program by selecting
File > Save or pressing Ctrl-S.
This will open a window ask-
ing where you want to save
the program and what to
name it. Let’s name it Silly-
Sentence (see figure 3.6). By
default, IDLE saves your file
to your /home/pi folder. Let’s
use that folder.

Click Save, and the file will be
saved as SillySentence.py (the
.py file extension is automati-

— a) an Ao

- SaVeAs ULl

Directory: /home/pi]

£ .cache & .local

£ .config 9 .minecraft

£ .dbus £ .pulse

£ .fontconfig) .scratch

£ .gstreamer-0.10 9 .thumbnails

£ .gvfs) .wolframEngine

£ .idlerc £ archive

1 L]
File name: SillySentence Save

Files of type: Python files (*.py. *.pyw)) Cancel

Figure 3.6 Save your file as SillySentence.
This stores the file on your Raspberry Pi in
your /home/pi folder so you can run the
program and make changes to it.

cally appended by IDLE). After you save the file, the title at the top of
the text editor window will show the filename and file location, as you

can see in figure 3.7.

The window title //—\

updates after you E

siilySentence.py - /nome/pi/sillySentence.py

===

save. The title

File Edit Fgrmat Run Qptions Windows Help

changes from D
Untitled to print (** Welco
SillySentence.py. print (**

T v 48)

Figure 3.7 The first three lines of your program use the print function to create a
welcome message for the Silly Sentence Generator 3000 program.

72

CHAFTER 2 Silly Sentence Generator 3000: creating interactive programs

Guess the output. What do you think you'll get when you run the
program?

Let’s try it. Click Run > Run Module (or press the keyboard shortcut
F5). Python will read each line of your program and execute the com-
mands. The commands print a line of * characters, the welcome mes-
sage, and another line of * characters to the screen (see figure 3.8).

- Python Shell ==

Eile Edit Shell Debug Options Windows Help

Python 3.2.3 (default, Mar 1 2013, 11:53:50) m
[GEC 4.6.3] on linux2

Type "copyright™, "credits™ or "license ()" for more information.
RESTART

Figure 3.8 Running the program SillySentence.py displays a welcome
message on the screen.

Excellent! Now you have a proper welcome message for your game.
The next thing you need to do is gather some input from your game
player. Some games use button presses, but you'll use the keyboard for
this game.

Running programs from the command line

Another way to run a program is from the Raspbian command line. You can
access the command line using the Terminal application found under
Menu-->Accessories. A window will open with this prompt:

pi@raspberrypi ~ $

The terminal shows pI0raspbory

a prompt, ready for
your commands. \/‘

Adding notes in your code 73

To run the Silly Sentence program at the command line, enter
pi@raspberrypi ~ $ python3 SillySentence.py

The next figure shows this command and the result. Notice that you get the
same output at the command line.

Eile Edit Tabs Help

pir@Eraspberrypl vt

pi@raspberrypi

The command line is another option for running Python programs. In part 3 of
this book, you’ll see that some programs require you to run them from the com-
mand line because you must run them as the superuser on your Raspberry Pi.

Adding notes in your code

Imagine a comic book without words. You'd have a hard time under-
standing what was happening from just the pictures. Maybe you could
figure it out if you studied the comic long enough, but words are
important for understanding a story. Lines of code can be like a comic
book without words: you know something is happening, but you might
not be able to tell what without guessing.

That's why programmers invented the idea of adding comments. Com-
ments are notes in the code that explain what's happening. They're as
much for you as for other people who may read your code. You can use
comments to explain why you wrote the program and how parts of the
program work.

Using hashtags for comments

You add a comment by starting the line with a hashtag (#) and a space
and then typing in your comment text. Let’s add comments to the
beginning of Silly Sentence Generator 3000 to explain the program’s
title, its purpose, and who wrote it.

74

Displays
a welcome
message

CHAFTER 2 Silly Sentence Generator 3000: creating interactive programs

Listing 3.1 Adding notes to your program

Title: The Silly Sentence Generator 3000

Author: Ryan Heitz

This is an interactive game that creates funny sentences
based on input from the user

Display a welcome message

print("*" * 48)

print("* Welcome to the Silly Sentence Generator 3000 *")
print("*" * 48)

Lines beginning
with hashtags are
comments and are
ignored by Python.

Comments are helpful to the humans reading the code. But Python
ignores comments when it runs your program. You can check this by
saving your program and running it again; you'll see that you get the

same result as before.

Easter egg: the Zen of Python
Python has a hidden surprise regarding Python style. In computer p

rograms,

these surprises are sometimes called £aster eggs. You can find the egg by typing
import this in the Python Shell and pressing Enter. A beautiful poem called

“The Zen of Python” will appear on your screen.

- Python Shell ==

Eille Edit Shell Debug Qptions Windows Help

Python 3.2.3 (default, Mar 1 2013, 11:53:50)

[Gcc 4.6.3]) on linux2

Type "copyright®™, "credits" or "license ()" for more information.
this

The Zen of Python, by Tim Peters

Beautiful is better than ugly.
Explicit is better than implicit.
Simple i

better than complex.
Complex is better than complicated.
Flat is better than nested.

sparse is

Re

better than dense.
by counts.

E 3 aren't
Although practic
Erro: should never pa lently.
Unle explicitly silenced.
In the face of ambiguity, refuse the temptation to guess.
There should be one-- and preferably only one --obvious
Although that way may not be obvious at first unless
How is better than never.

Although never is often better than *right* now.

If the implementation is hard to explain, it's a bad idea.
If the implementation is

special enough to break the rules.
y beats purity.

vay to do it.
you're Dutch.

sasy to explain, it may be a good idsa.
Hamespaces are one honking great idea -- let's do more of those!

A
JCn: 26Cak: 4

Getting and storing information 75

The poem emphasizes the philosophy of Python. Some of it talks about advanced
topics, but many lines discuss a way of coding that is meant for anyone who uses
Python. The seventh line captures a great idea in Python: “Readability counts.”
It’s better to write programs using simple instructions that are easy to read than
to try to mash together steps in complicated, long lines of code. Try taking some
deep meditational Python breaths before getting back to your project.

Python'’s creator, Guido van Rossum, said that code is read more often
than it’s written.? Readability is an extremely important part of pro-
gramming and is a guiding principle in the style of Python programs.
Comments are an important way to keep your code easy to read and
understand.

Comments are your new friend, and they will make your code easy to
read. You'll keep using them to add notes to your code as you collect
information from your game player (or user) and create a silly sentence.

Getting and storing information

To gather input from users, you can use the input function. Let’s add a
line of code in your program that will ask the user for their information
and store that information in a variable.

Listing 3.2 Gathering input from the player

Title: The Silly Sentence Generator 3000

Author: Ryan Heitz

This is an interactive game that creates funny sentences
based on input from the user

Display a welcome message

print("*" * 48)

print("* Welcome to the Silly Sentence Generator 3000 *")
print("*" * 48)

Gathers input

Get the user'.s name and say hi /fromthe user
player_name = input("Please enter your name: ')

2 Check out the resource PEP 8—the Style Guide for Python, written by Python’s creators: http:/
legacy.python.org/dev/peps/pep-0008. A wonderful section called “A Foolish Consistency Is the Hob-
goblin of Little Minds” talks about the importance of readable code.

http://legacy.python.org/dev/peps/pep-0008
http://legacy.python.org/dev/peps/pep-0008

76

CHAFTER 2 Silly Sentence Generator 3000: creating interactive programs

When you use the input function, it displays a prompt and awaits the
user’s reply. After the user enters something and presses Enter, the
information is stored in the variable on the left side of the equals sign.

In the IDLE editor, input shows up in purple highlighting, indicating
that it’s the name of a function in Python. Let’s look closely at the input

function to see how it works (see figure 3.9).

The variable to Calls
store the input the input

information function Figure 3.9 The input

/_M A function displays a prompt

player_name = input("Please enter your name: ") to the user. The prompt

- J “Please enter your name: ”
e tells the user what you
Equals sign is used A string of text to want them to type in or
to assign the input display as a prompt enter. In this case, you're
to the variable. on the screen asking for their name.

On the right side of the equals sign, the input function is called, and
you open a set of parentheses. You can give the input function a string
that acts as the prompt. This is the message that is displayed on the
screen and that says to the user, “Hey you, please type something in” —

only more nicely! Make sure your string starts and ends with quotation

marks ("").
Run the program by pressing F5 or selecting Run > Run Module. The

program displays the welcome message and then an input prompt with
a blinking cursor. Python is waiting for your input: it needs you to type
something in and press Enter.

On the left side of the equals sign is the name of a variable in which the
information will be stored. When you type something in and press
Enter, the value of what you typed is stored in the variable player_name
as a string.

PYTHON 2X The input function was previously raw_input in
Python 2.X.

Joining strings 77

Joining strings

Joins
strings

As in other apps and websites, you want the user to feel welcome, so
let’s use their name and give them a proper greeting. A nice message to
display on the screen might be

"Hello, Ryan! Let's make a silly sentence!"

To create a personal feel, you'll create just such a message that joins the
user’s name with some words welcoming them. You use the plus (+)
symbol to join strings:

message = "Hello, " + player_name + "! Let's make a silly sentence

If player_name equals “Melissa”, the message is equal to

"Hello, Melissa! Let's make a silly sentence!"

Add this to your program, and display the message to the screen using
print.

Listing 3.3 Using + to join strings

Title: The Silly Sentence Generator 3000

Author: Ryan Heitz

This is an interactive game that creates funny sentences
based on input from the user

Display a welcome message

print("*" * 48)

print("* Welcome to the Silly Sentence Generator 3000 *")
print("*" * 48)

Get the user's name and say hi

player_name = input("Please enter your name: ')
message = "Hello, " + player_name + "! Let's make a silly sentence!"

print(message) 41

The program has the user input their name, which is stored in the vari-

Displays the message

able player_name. On the next line, a message is made by joining strings.
The message is displayed on the screen to create a personalized start
for the game.

76

CHAFTER 2 Silly Sentence Generator 3000: creating interactive programs

More tools for strings: string methods

To make life easier, Python includes some built-in tools for working with strings.
These tools are similar to the functions you saw earlier, but they’re called meth-
ods. Here is an example of a method that capitalizes the first letter of a string:

"jOHn".capitalize()
The capitalize method converts “jOHn” to “John”.

Python has a whole set of built-in methods. One method for strings is the lower
method, which converts a string to all lowercase:

"RABBIT".lower()

This makes “RABBIT” turn into “rabbit”.

Another method, upper, makes all the letters uppercase:
"king Arthur".upper()

The upper method is great for shouting things. It makes “king Arthur” into “KING
ARTHUR”.

These methods can save you time2 and make it easier for you to get things done.

Methods vs. functions

Methods are a type of function, but they use dot notation. This means you put a
period (.) after the item and then the name of the method. If your item was “John
Cleese” and the method you wanted to use was lower, you’d write

"John Cleese".lower()

Parentheses go after the method name. You put in the parentheses any inputs
required by the method. You can check the Python documentation online to see
what is required.

Some methods don’t require any inputs, like the string methods capitalize,
upper, and lower. But some methods, like count, require inputs. Imagine that
you had a set of test answers with T for true and F for false, and you wanted to
count the number of true answers. You could use count:

>>> TestAnswers = "TTTFFFTTTFTFFFFTTTFFTT"
>>> TestAnswers.count("T")
12

There were 12 true answers on the test.

2 You can learn more about the available string methods in the online Python docu-
mentation: http://mng.bz/9z49.

Let’s go further and add more inputs.

http://mng.bz/9z49

Joining strings 79

Using more than one input

You have a wonderful start to your game. Now you need to gather mul-
tiple inputs from the player. Let’s start by asking the player for a
noun —the name of a famous person:

famous_person = input ("Enter the name of a famous person: ™)

Next, you should get a few more words:

adjectivel = input("Enter an adjective: ")
adjective2 = input("Enter another adjective: ")
verb = input("Enter a verb ending in -ING: ")

With these multiple inputs, your code should now look like the follow-
ing listing.

Listing 3.4 Collecting multiple items from the player

Title: The Silly Sentence Generator 3000

Author: Ryan Heitz

This is an interactive game that creates funny sentences
based on input from the user

Display a welcome message

print("*" * 48)

print("* Welcome to the Silly Sentence Generator 3000 *"
print("*" * 48)

Get the user's name and say hi

player_name = input("Please enter your name: ')

message = "Hello, " + player_name + "! Let's make a silly sentence!"
print(message)

Gather words from the player for our sentences
famous_person = input("Enter the name of a famous person: ")

adjectivel = input("Enter an adjective: ") Gather
. . . " . . " words from
adjective2 = input("Enter another adjective: ") the player.

verb = input("Enter a verb ending in -ING: ")

You use the input function multiple times to collect a set of words from
the user. Each word is stored in a variable on the left side of the equals
sign. Try to use names for variables that make sense; it'll be easier to
remember what you stored in them later.

&0 CHAFTER 2 Silly Sentence Generator 3000: creating interactive programs

Building the sentence

Now let’s create the sentence for your Silly Sentence Generator 3000
by joining the words using +:

" non "o 1]

silly_sentence = ("The " + adjectivel + + player_name + " is " +

non

verb + " the " + adjective2 + + famous_person)

Let’s take a closer look at this line of code in figure 3.10 to see what'’s

happening.
Creates a Strings such as "The" and "is"
variable to store are joined with variables that contain
the ioined string strings like adjectivel and player_name.

—7 T,

5111y sentence = _("The " + adjectivel + ""
verb + " the "

+ player_name + " is " +
+ adjectlveZ + "" + famous_person)

/

Opening paranthesis Plus signs join together Closing parenthesis
starts the set of strings strings (must have + ends the set of strings
to be joined between each one) being joined

Figure 3.10 silly-sentence is created by joining a set of strings. The strings are
a combination of strings you enter with quotation marks around them and strings
collected from the game player that are stored in variables. The parentheses are
needed because the code is too long to fit on a single line.

On the right side of the equals sign, the parentheses enclose the strings
that are being joined to create a sentence. They're joined (or concate-
nated) using the + operator. Because the line is so long, you can use a
set of parentheses to break it over two lines. Python recommends limit-
ing all lines to no longer than 79 characters so the code can be easily
read. Looking at the left side of the equals sign, you'll see that the
resulting string is stored in a variable named silly_sentence.

What's especially awesome is that this code will create a different sen-
tence each time a user enters different words. Because you used

Joining strings &1

variables and the variables are storing the input from the user, it’s truly
a Silly Sentence Generator!

Troubleshooting

When typing code, it’s easy to make mistakes, called bugs. Boo to bugs.
To track them down and fix them, you debug your code. Yay for
debugging. You may forget to close a set of quotation marks, you may
leave out a parenthesis, or you may misspell a word. Let’s look at some
common errors you might make and how to fix them.

In the last section, you used the + to join strings and variables that were
storing strings. Look at this code, which has an error:

non "o "

+ player_name + " is +

non

silly_sentence = ("The + adjectivel +

verb + " the " + adjective2 + + famous_person)

Do you see the problem? The first string ("The) is missing the closing
quotation mark ("The "). If you were to run this program, Python
would output an error (see figure 3.11). Add the closing quotation

Slilysentence.py ome/plio >ENence.py =0y %
File Edit Format Run Options Windows Help J
Get the user's name and say hi i
player_name = input ("Flease enter your name: ")
message = "Hello, " + player_name + " Let's make a silly sentence
print (message)

: Syntaxermor [|

2 Gather words from theg
famous_person = input ('
adjectivel = input ("Ent
adj-:-ct:.\l.r-:-Z = Iilnput ("Ent , oK 1
verb = 1npl|l ("Entsr a » e ——

6 EOL while scanning string literal | . .

#Create the sentence by joining together the words

silly_sentence = ("Ths + adjectivel + " " + player_name + " "o+
verb + " the " + adjectiveZ + " " + famous_person)

sDhisplay the silly sentence to the screen

print ("*" * len(silly_sentence))

print (silly_sentence)

print ("*" * len(silly_sentence))

bz
Ln: 23[Col: 67,

Figure 3.11 If you forget to close a set of quotation marks around a string, you’ll
receive an error from Python when you try to run your program. Python will highlight
in red the line with the error. Check each of the strings to find and fix the error.

&2

CHAPTER 3 Silly Sentence Generator 3000: creating interactive programs

mark to the string that is missing it, and then save your program and
run it again.

Another common error you might make is to misspell the name of a
variable or use different capitalization. Here’s the same line of code,
but this time there is a misspelled variable and one variable with incor-
rect capitalization. Can you spot them?

+ player_name + " is " +
+ Famous_person)

silly_sentence = ("The + adjectvel +
verb + " the " + adjective2 +

non

The first one is adjectvel, which should be adjectivel (the i is missing).
The second error is Famous_person, which should be famous_person (the F
should be lowercase). The error you'll see if you run this program is

shown in figure 3.12.

Eile Edit Shell Debug QOptions Windows Help

Python 3.2.3 (default, Mar 1 2013, 11:53:50) —
[GeT 4.6.3] on linux2
Type "copyright", "credits" or "license ()" for more information.

S5 EEeEsEsssssssssssssssssesseeemnn RESTART i o o o o o o o o o o

R i i I I I I

* Welcome to the Silly Sentence Generator 3000 *
R

Flease enter your name: Ryan
Hello, Ryan! Let's make a silly sentence!
Enter the name of a famous person: Albert Einstein

Enter an adjective: fuzzy
Enter another adjective: purple
Enter a verb ending in -ING: whomping
Traceback (most recent call last):
File "/home/pi/sSillySentence.py", line 24, in <module>
verb + " the " + adject + " " + Famous_person)
NameError: name 'adjectvel' not defined

> I

[Cn: 18]Col: 4

Figure 3.12 A common mistake in programming is to misspell the name of a vari-
able or use incorrect capitalization. The error displayed says there is a problem on
line 25 of the program. The type of error is NameError: name 'adjectvel ' is not
defined.

Completing the program: displaying the silly sentence &3

TIP The spelling and capitalization of a variable must always be the
same. Ifyou call a variable my_number and then later type my_nomber or
My_number, Python will give you an error.

Correct the error by fixing the spelling of adjectvel so it’s adjectivel.
After fixing it, you'll still receive an error, but this time because of the
capitalization of Famous_person (NameError: name 'Famous_person' is not
defined). Change the capitalization of Famous_person to famous_person.
Once you've made the corrections, save the program and run it again.

You've debugged your program. Superb job!

Completing the program: displaying the silly sentence

You've made your silly sentence, and you want Python to show it to the
player. Use the print statement to print it out, but like your welcome
message, let’s add some pizzazz to 1t!

print("*" * 48)
print(silly_sentence)
print("*" * 48)

Guess what it does? It prints a row of * characters (asterisks) across
the screen 48 times. Then it displays the sentence and prints another
row of * symbols 48 times. Try other characters or patterns of charac-
ters to see what looks good to you!

It looks pretty good, but you can do a bit better. Test your program by
running it, and you'll notice the number of symbols doesn’t match the
length of the sentence. You've programmed it to display exactly 48
asterisks —no more, no less. Instead, let’s update those lines to repeat
the symbol to match the length of the sill_y sentence. You'll use another
built-in Python function called 1en, which calculates the length of a
string and returns a number telling you the number of characters:
print("*" * len(silly_sentence))

print(silly_sentence)
print("*" * len(silly_sentence))

&4 CHAPTER 3 Silly Sentence Generator 3000: creating interactive programs

SillySentence.py - /home/pi/SillySentence py
Eile Edit Format Run QOptions Windows Help

Title: The Silly Sentence Generator 3000 —
Author: Ryan Heitz
This is an interactive gams that creates funny sentences

based on input from the user

£ Display a welcome message

print ("*" * 48)

print ("* Welcome to the Silly Sentence Generator 3000 *7)
print ("*" * 48)

Get the user's name and say hi

player_name = input ("Please enter your name: ")

message = "Hello, " + player_name + "! Let's make a silly sentence!"

print (message)

Gather words from the playsr for our sentences

famous_person = input ("Enter the nams of a famous person: ")

adjectivel = input ("Enter an adjective: ")

adjective2 = input ("Enter another adjective: ")

verb = input ("Enter a verb ending in -ING: ")

#Create the sentence by Jjoining together the words

gilly_sentence = ("The " + adjectivel + " " + player_nams + " is " +
verkb + " the " + adjectiveZ + " " + famous_person)

#Display the silly sentence to the screen

print ("*" * len(silly_sentence))

print (silly_sentence)
print ("*" * len(silly_sentence))

[Cn: 30]Col: 0

Figure 3.13 Silly Sentence Generator 3000 is a fun program that shows how pro-
grams can collect information from users, interact with them, and provide a more
personal feel.

That's better! Let’s look at the code all together (see figure 3.13).

You've completed your program. Let’s do some final testing to see
what it can do! See figure 3.14 for an example of the game’s output.

Fantastic! Feel free to update the code to add more adjectives, verbs,
or nouns. You've learned how to get input from a computer user and
interact with them by displaying a message to the screen.

Fruit Picker Extra: Minecraft Pi

&5

File Edit shell Debug QOptions Windows Help

= oo

Python 3.2.3 (default, Mar 1 2013, 11:53:50)
[GCC 4.6.3] on linuxz
Type "copyright", "credits" or "license ()" for more information.

IR R

* Welcome to the Silly Sentence Generator 3000

bk ok ko ke ko ok kR ko ke Rk kA Rk ok kA Rk ke Ak Rk ke ko
Please enter your nams: Ryan

Hello, Ryan! Let's make a silly sentence!

Enter the name of a famous person: Albert Einstein
Enter an adjective: fuzzy

Enter another adjective: purple

Enter a verb ending in -ING: whomping

AR R AR AR R EAEA AR PR T A
The fuzzy Ryan is whomping the purple Albert Einstein
T nInnInIIImImmmmIIImmm ™I I ™

>>>

- - - - mmmm RESTART o o o o o o o o o o

Ln: 18|Col: 4

Figure 3.14 The Silly Sentence Generator 3000 makes some absurd sentences

based on words you enter.

Fruit Picker Extra: Minecraft Pi

In this Fruit Picker Extra, you'll explore another unique feature of the

Pi: it has its own version of Minecraft. Thanks to a collaboration
between Mojang, the makers of Minecraft, and the Raspberry Pi
Foundation, a free, slimmed-down version of Minecraft is available on
the Raspberry Pi. Since September 2014, this version, called Minecraft
Pi, is automatically installed with the Raspbian operating system.

What's Minecraft?

Minecraft is a game that takes place in a 3D virtual world made of
blocks. At the most basic level, you run around mining (digging blocks

by hitting them) and crafting things (combining items in the game to

make new items). You can also build things in this virtual world using

different types of blocks.

&6 CHAFTER 2 Silly Sentence Generator 3000: creating interactive programs

v 5 ™ XO Figure 3.15 Minecraft Pi
' Programming > is a slimmed-down, free
) Intemet > version of Minecraft that’s
| o IE barse;d on ,Mil'.lec.raft Pocket

i Accessories >y Python Games | un With Blocks Edition. It's limited

compared to the full version
239 Hep > but still oodles of fun!

Launching Minecraft Pi

Look for a Minecraft Piicon under Menu > Games (see figure 3.15). If
you got your Pi before September 2014, see the chapter 6 sidebar
“Updating your Pi” to learn how to update Raspbian.

Click the Minecraft Piicon to open the game. A Minecraft window will
open (see figure 3.16). It’s a little quirky —you’ll see a black window
behind the Minecraft window —but this is normal.

Click Start Game to begin to play. Next, click Create New to create a
new world. After it's done loading, you'll find yourself in a blocky

HIH EEEHF'!

©HMoJang AB

Figure 3.16 The Minecraft Pi main screen allows you to start a single-
player game or join a multiplayer game. The multiplayer option lets you
connect to someone else’s world, but you'll need to be on the same network.

Fruit Picker Extra: Minecraft Pi &7

Figure 3.17 Each Minecraft world is made of blocks but is different.
You might find yourself in a forest or in a desert. The bottom of the
screen shows you the items in your inventory. Use the mouse scroll wheel
to select different items, or press the numbers 1-9 on your keyboard.

world (see figure 3.17). Each world is different, so you may see trees,
water, dirt, or any number of environments.

In Minecraft, you're a player who can walk around using the following
controls:

@ W—Move forward.

o A—Move left.

2 S— Move backward.

@ D—Move right.

@ Spacebar—Jump.

@ Mouse movement— Look around or turn.
@ [Escape— Exit the game.

In addition to the basics, here are some other moves you may need:

@ Double spacebar—Fly up in the air (double-tap the space bar and
then hold it down to fly up). Press the left Shift key to move down. If
you're flying, double-tap the spacebar to fall back to the ground.

@ FE—Show the game inventory of blocks and items you can use (it’s
limited compared to the full version of the game). Drag items you

&8

CHAFTER 2 Silly Sentence Generator 3000: creating interactive programs

want to the small squares at the bottom of the screen. Press Escape
to hide the inventory screen.

@ Scroll wheel or the number 1-9 keys— Select something from one of
your player inventory spots at the bottom of the screen. The item
selected is in your hand for you to use.

Once you get the hang of moving around, use the mouse left click to
dig or break blocks. Use the mouse right click to place a block or use
the tool in your hand. When you're ready to leave, press Escape to exit
the game.

TIP To exit Minecraft Pi, press Escape > Quit to Title, and then click
the X in the corner to close the window.

Python programming interface to Minecraft Pi

Minecraft Pi has a fun inventory of materials and tools —even a sword!
What's even better is that there is a Python programming interface for
Minecraft Pi. Head over to the Raspberry Pi Foundation website to
learn more about how to use Python to interact with Minecraft Pi.

Explore the world, dig an underground base, or build a tree house.

What will you do?

 EEEEEEREEEEREEEERER:

Try these challenges to see if you can use the input function and strings
to create something fun and interactive.

Knight’s Tale Creator 3000

In this challenge, try to use what you've learned about input (gathering
text) and output (displaying text) to create a Knight's Tale Generator.
Here 1s a story template for you to use:

There was a brave knight, [player_name], who was sent on a quest to
vanquish the [adjective] evildoer, [famous_person]. Riding on his/her
trusty [animal], the brave [player_name] traveled to the faraway land

Challenges &9

of [vacation_place]. [player_name] battled valiantly against
[famous_person]'s army using his [sharp_thing] until he defeated
them. Emerging victorious, [player_name] exclaimed, “[exclama-
tion]!!!” I claim the land of [vacation_place] in the name of Python.

The words in brackets are meant to be variables that you'll create in
your program; you'll need to have the player input those words.
Remember to use + to join the strings to create a unique knight’s tale,
and then print the tale to the screen. Good luck!

Subliminal messages

A subliminal message is a hidden message that tries to get people to
think of something you want them to think about. Often used in TV
commercials, it’s a great technique to try with friends and parents to
get something you want.’ In this challenge, try to create a message that
is hidden in a large display of characters. The message should be

- Pythn Shell mmw

File Edit Shell Debug Options Windows Help

Python 3.2.3 (default, Mar 1 2013, 11:53:50) i
[Gece 4.6.3) on linux2

Type "copyright", "credits" or "license ()" for more information.
==== RESTART

i i R R I I I I I

Subliminal Message
Enter your name: Ryan

Enter the name of something you want: burrito

#ad@32)23ads)@*saddsa® jkg 2&° das32~423'*#ade32*)23ads)@*saddsa® jkg 2&~ das3
2~423'*#ad@32*) 23ads)@*saddsa# jkg 2:” das32°423!*#ad@32*)23ads)@*saddsa# jkg 2z
* das32°423'*2ad@32*)23ads)@*saddsas jkg 2¢” das32°423!'*2ad@32*)23ads)@*saddsas
jkg 2&" das32°423!'*#ad@32*)23ads)@*saddsa# jkg 26" das32~423!*Fad@32*)23ads)@*s
addsa# jkg 26" das32°423!*#ad@32')23ads)@*saddsa# jkg 2e* das32°423!/+#ad@32*)23ad
s)@*saddsa# jkg 2&"° das32°423'You really want to buy Ryan a burrito,*#ad@32+*)23a
ds)@*saddsa# jkg 2" das327423!*#ad@32*)23ads)@*saddsa# jkg 28" das32"423!*#ad@3
2*%)23ads)@*saddsa# jkg 26" das327423'*#ad@32*)23ads)@*saddsag jkg 2&~ das32°423!
#ad@32)23ads)@*saddsa® jkg 2" das32°423'*#ad@32+*)23ads)@*saddsa® jkg 2¢~ das3
2~423'*#ad@32*)23ads)@*saddsa# jkg 2" das32°423!+*#ad@32+%)23ads)@*saddsa# jkg 2c
* das32~423!*£ad@32*)23ads)@*saddsa# jkg 2¢~ das32~423!'*2ad@32*%)23ads)@*saddsas
kg Iza" das32°423!

3> —

|Lm: 12[Col: 4

Figure 3.18 The subliminal-message challenge is about hiding a secret mes-
sage in a bunch of characters on the screen. Can you see the hidden message?

5 Use subliminal messaging at your own risk (send Ryan pizza!). If people know you're trying to
manipulate their minds, they may retaliate with subliminal messaging of their own.

20 CHAFTER 2 Silly Sentence Generator 3000: creating interactive programs

constructed by asking for the person’s name, the name of something
they want, and a pattern of letters, numbers, and symbols. In your pro-
gram, you should create a message that says, “You really want to buy
[player_name] a [thing]”, and hide it within a pattern of characters.
Figure 3.18 shows an example.

In this example, the hidden message is, “You really want to buy Ryan a
burrito.” Be sneaky, and see if you can find a way to create and hide a
subliminal message!

In this chapter, you learned how to write interactive programs that get
information from a person and provide entertaining responses:

@ Use the input function to collect text input from a person. Use it with
a variable and an equals sign to store the information that a person
types in. Here’s an example of asking the user to tell you their favor-
ite color and saving it to a variable called favorite_color:

favorite_color = input("What is your favorite color?™)

> Add notes to your programs by starting a line with a hashtag (#) and
a space:

A comment tells you about the code
They help you read the code,
but they are ignored by Python

> Join strings using +.

@ Use parentheses when you need to join strings that are longer than a
single line:

name = input("What is your name?™)

favorite_color = input("What is your favorite color?")

message = ("Your name is: " + name + " and your "+
"favorite color is: " + favorite_color)

The game you created uses the same ideas to collect information from
users and interact with them in the same way they see every day on
websites, mobile apps, and games.

4

Norwegian Blue parrot game:
adding logic to programs

In this chapter, you'll learn how to create Python programs that

¢ Display an introduction

¢ Collect input from the user

¢ Use if statements to respond to users in different ways
¢ Usewhile loops to repeat things over and over

¢ Use Fython code libraries to generate random numbers

Open a popular game, such as Minecraft, or think about a robot, like the
Mars rover. Both are computer programs. What do they have in com-
mon? They both have the ability to take input and do something with it.
What they do depends on the input they're given. In a game, if you press
Forward and fall off a ledge, your character falls and dies. If it’s your only
life, then you're taken to the Game Over screen. Similarly, the Mars rover
might be instructed to go to a certain location, but if it detects a large rock
in its way, it will stop or attempt to drive around the obstacle.

The logic of how games work or how the rover moves is programmed into
them. But how do you create that logic in your programs? You'll learn

N

92 CHAFPTER 4 Norwegian Blue parrot game: adding logic to programs

how by making a simple guessing game about a special parrot, the Nor-

wegian Blue.

Displaying the game introduction

The Norwegian Blue parrot is a fictitious parrot that is the subject of
one of the most famous comedy sketches from Monty Python.! Your
game is about pretending you're visiting a pet shop that has a Norwe-
gian Blue parrot for sale. The shop owner challenges you to guess the
age of the parrot (see ﬁgure 4.1). If you guess correctly, then you get to
take home the parrot for free.

CAN YOU GUESS MY AGE?
SQUAWK!

Figure 4.1 The Norwegian Blue parrot has beautiful
plumage and makes a great subject for a guessing game.

Each time the game is played, the program selects a different random
number between 1 and 20 as the age of the parrot. The game player gets
five chances to guess the parrot’s age. If the player guesses correctly, the
game displays a funny message congratulating them on winning their
new parrot. If the player makes a wrong guess, then the program

' If you haven'’t seen it, check out this Wikipedia page, which has an audio recording of the comedy
sketch: http://en.wikipedia.org/wiki/Dead_Parrot_sketch.

http://en.wikipedia.org/wiki/Dead_Parrot_sketch

Displaying the game introduction 93

Logic for game

Display the title and
the instructions.

Keep track of the number of
guesses, starting at zero.

While the number of guesses is e
less than 5, repeat the following:

Get a guess from a player.

Keep track of the number of
guesses, and add one.

Check if the guess is correct. 9

If true, then tell them they win!
Then break out of loop.

‘ Else ’

Check if that was the fifth 9
and last guess.

If true, then tell them they lose!
Then break out of loop.

End of loop:
go back to the start of the loop.

Whether they win or lose, after the
loop say, “Thank you for playing!”

Figure 4.2 The game logic can be expressed in
words. The question marks symbolize when the
game needs logic to make a decision. This dia-
gram also shows what code needs to be repeated
because the player gets five guesses. Each deci-
sion has a simple True/False or Yes/No answer.

displays a good-hearted insult, as if it were offended by the player’s
guess. If the player doesn’t guess within five tries, they lose, and the pet
shop owner lets them know the parrot’s true age (see figure 4.2).

94 CHAPTER 4 Norwegian Blue parrot game: adding logic to programs

- Python Shell =i
File Edit shell Debug Options Windows Help

Python 3.2.3 (default, Mar 1 2013, 11:53:50)

[GcCc 4.6.3] on linux2

Typs "copyright", "credits"™ or "license ()" for more information.

2> mmm RESTART -——

-3

[=

il i s L T O T I T T o

THE MORWEGIAN BLUE GUESSING GARME

S22 2222222222222 22222222222 2222 2222222222222 2222 222222222222 222222"

You walk inte an old and smelly pet shop.
Es the door closes behind you, you see

a beautiful blue parrot sitting very
atill in a cage. The pet shop owner
grests you and says,

"Today is your lucky day!

This is the rare MNorwegian Blue parrot.
Guess his age and take him home for fres!

You get five guesses."

Guess the age of the parrot [number from 1 to 20]: 10
Wrong! You obviously don't know your Norwegian Blues!
Guess the age of the parrot [number from 1 to 20]): 4

Wrong! You obviously don’t know your Norwegian Blues!
Guess the age of the parrot [number from 1 to 20]: 18
Wrong! You obviously don’t know your Norwegian Blues!
Guess the age of the parrot [number from 1 to 20]: 7

Wrong! You obviously don't know your Norwegian Blues!
Guess the age of the parrot [number from 1 to 20]: 12

Congratulations! You win! Enjoy vour Norwegian Blue!
Thank you for playing!
>>>

¥
tn: 34 Coli 4

Figure 4.3 The Norwegian Blue Guessing Game is about trying to guess the age of
a bird in a pet shop.

When this game is completed, you'll be able to play it. The output will
look like figure 4.3. In the example, the player guessed four times
incorrectly; but on their fifth try, they guessed correctly. They won,
and the shop owner gave them the parrot.

Creating the game welcome message and instructions

Let’s start by opening IDLE for Python 3 and creating a new program.
Open IDLE by clicking the Python 3 icon under Menu > Programming
on your Raspberry Pi desktop (see figure 4.4).

Displaying the game introduction 95

’Menu '.a} 24 e |)* @

|-‘_f “ Mathematica

@ Internet > Python 2

U Games)_? |

B2 Accessories > |48y scratch Integrated development environment for Python 3
:j: Help > [I'IJ_.| Sonic Pi

8% Preferences > @ Woltrarm

553 Run

Shutdown...
=0,

Figure 4.4 Click the Python 3 icon to open IDLE’s Python 3 Shell on your
Raspberry Pi.

Give your Raspberry Pi a few seconds to open IDLE. You'll see the
Python Shell. Press Ctrl-N or File > New Window to open the IDLE
text editor. You'll see a blank window, ready for you to start typing in
the program.

Let’s type in a few comments at the top of the program in the text edi-
tor. Start each line with a hash tag (#) and a space.

Listing 4.1 Creating comments at the top of your new program

Title: The Norwegian Blue Parrot Guessing Game

Author: Ryan Heitz

The goal of the game is guess the age of a parrot.

The program generates a random age between 1 and 20.
The player gets 5 guesses to guess the age correctly.
If they're correct, they win the parrot!

Change the words to whatever you'd like. Comments are notes for you
and whoever you might share your program with, so make them read
the way you want. Remember to avoid going off the screen with your
comments —keep each line pretty short. No more than 79 characters per
line is good style; this ensures that your beautiful Python programs fit
in the window and don’t require the user to scroll or resize the window.

926

CHAFPTER 4 Norwegian Blue parrot game: adding logic to programs

TIP You can keep track of which line and column your cursor is on
by using the cursor-location information (see figure 4.5). It's dis-
played in the bottom-right corner of the text editor. The letters Co/
stand for column: this shows the number of characters your cursor is
from the left side of the screen. The left side 1s 0, the middle 1s 40, the

right side is 80, and so forth.

The program in the IDLE text editor now contains several lines of com-
ments. Before you go further, save your work: press Ctrl-S to save the
program. A window will pop up in which you can name and choose a
location in which to save the file. In the File Name text box, type in the
name of the file: name it NorwegianBlue. When you click the Save but-
ton, the file will be saved as NorwegianBlue.py (the .py extension is
automatically added by IDLE), and it will be stored on your Pi’s SD
memory card in the /home/pi folder.2 Once the program is saved, the
text editor displays the location of the file and the filename along the

top of the window (see figure 4.5).

- NorwegianBlue.py - /nome/pr/NonwvegianBlue.py =] =
File Edit Format Run Options Windows Help
Title: The Horwegian Blue Parrot Guessing Game m
Author: Ryan Heitz
The goal of the gams is guess the age of a parrot.
The program generates a r om age between 1 and 20.
The player gets 5 gues: o guess the age correctly.
If they're correct, they win the parrot!
I A
| Ln: 6[Col: 42

Cursor location J Cursor location is shown in the J‘

corner. The cursor is on line
6 and 42 spaces from the left.

Figure 4.5 Once you’ve saved the file, the top of the window displays the file-
name and the location where the file is stored on your Raspberry Pi (/home/pi/
NorwegianBlue.py). The cursor location is always shown at the bottom right of

the window.

2 You can create a new folder in which to store your Python program. You create a folder by opening
the Raspbian File Manager application and selecting File > Create New > Folder. Like your shoes,
you'll want to remember where you stored your programs so you don’t have to spend a lot of time

looking for them.

Draws a line
of asterisks
on the screen

N\,

Displaying the game introduction 97

Next you need to let the user know the name of your game and the
instructions for playing it. Use Python’s built-in print function to write
a few lines of code that display a title on the screen.

Listing 4.2 Making the title display on the screen

Display the title and instructions 4\‘
print("*" * 80) Add a comment
pr-_Lnt(::II,-,IE_‘_NORWEGIAN BLUE GUESSING GAME™) 4\ Displays the title
print("*" * 80) of the game

After they see the title, your game players need to know what to do.
You should set the scene for the game and give them instructions. Let’s
create a variable called instructions and store in it the sentences
describing how to play the game. As in Silly Sentence Generator 3000
from chapter 3, this variable will contain a string of characters a few
sentences long.

Rather than enter a super-long string all on one line, you want to use a
neater way to keep the string on the screen and limit it to not more than
79 characters across (remember, good Python style is to keep text on
the screen). In Python, you can use string literals to do this.

DEFINITION String literals are strings that can hold multiple lines of
text and that appear exactly as you typed them in the text editor when
they're displayed on the screen. String literals keep the spaces
between lines and characters. To make one, start and end a string with
triple double quotes (""") or triple single quotes ('").

Let’s add instructions to your program after the program’s comments.
You'll use a string literal for the instructions and then print it to the dis-

P lay

Listing 4.3 String literals that hold multiple lines of text

instructions = """ x s ine literal
You walk into an old and smelly pet shop. v;i;t.:..sz:ln.g itera

As the door closes behind you, you see
a beautiful blue parrot sitting very
still in a cage. The pet shop owner

26

CHAFPTER 4 Norwegian Blue parrot game: adding logic to programs

greets you and says,
"Today is your lucky day!

This is the rare Norwegian Blue parrot. 4\ You can use double
Guess his age and take him home for free! quotes in string literals.

End the string

You get five guesses."” . s win o m
o g g / literal with ™" or ™. Displays the instructions
J in the Python Shell window.

print(instructions)

String literals give you the ability to display a string exactly as you type
it in the text editor. Think of it as a “what you see is what you get" way
of creating strings.

Getting expressive with ASCII art

Before desktop operating systems (OSs) and games had high-end graphics, com-
puters had limited display capabilities. Computer users and programmers in-
vented a new type of art called ASC// art that uses text characters to make
images.

ASCIl is a way of storing characters as binary numbers. For example, the letter A
is represented as 1000001. Later encodings had many more characters to sup-
port more languages, but the name ASC// art stuck. ASCII art uses the set of 95
ASCII characters (letters, numbers, and symbols) in cleverly designed patterns to
represent images.

Here is an example of ASCII art for your game title that is made by creating a
string literal and printing it to the screen. Craft your own ASCII art using a bit of
imagination and trial and error:

bird_art = """

Displaying the game introduction 929

g i

/ 0\ NORWEGIAN
| >
|UU) | BLUE
|uuw) |
//U00) | GUESSING
//U00) /
//u0) / GAME
//U) /
/7 =1—=1/
==// ==W==W====
//

/
g i

print(bird_art)

Sometimes it helps to blur your eyes a bit to see if the image looks like what you
want. Get creative, and think how you can use uppercase and lowercase letters
to create effects, like using a U to represent feathers on the parrot’s wing or W
for the parrot’s claws.

Try these ASCII art sites for fun:

www. chris.comy/ascii—A huge collection of ASCII art, sorted by topics

http.//patorjk.com/software/taag—A text-to-ASCIl art generator (TAAG).
You type in words, and it automatically creates ASCII art for you.

http.//picascii.com—A tool that converts pictures to ASCII art

See if you can make some ASCII art for the title screen of your game that’s even
better than this. Have fun with it!

It’s always a good idea to test your programs often to catch any mis-
takes. Test your program now, and see what you get. The title and
instructions should display nicely on the screen.

A common mistake you might make when typing in this code would be
to forget some of the quotation marks at the beginning or end of the

www.chris.com/ascii
http://patorjk.com/software/taag
http://picascii.com

100 CHAFPTER 4 Norwegian Blue parrot game: adding logic to programs

The closing quotation Highlighting shows
mark is missing. It should where there is an error
be print ("*" * 80) in the program.
: MorwegianBlue.py - /fhome/pi/MorwegianBlue.py = a|[x]
File Edit Format Run Options Windows Help ‘J
L Title: The Norwegian Blue Parrot Guessing Game =
»r: Ryan Heitz
of the game is guess the age of a parrot.

generate:
r gets 5 gus

1 randol e between 1 and 20.

print (HEMORWEGIAN BLUE GUESSING GAME"™)
print ("*" * 30)

An error message pops up when you try
to run the program. EOL stands for end

of line. A string must start and end with

quotation marks and can’t be more than
one line long.

Figure 4.6 Python will display an error if you forget starting or ending quotation
marks. The line with the error will be highlighted in your program. Fix the program
by adding the missing quotation marks, and then save and run the program.

strings. If you do, figure 4.6 shows an example of the error you'll
receive in Python.

A similar mistake you might make is forgetting to start your string liter-
als with a triple quotation mark. In this case, Python will give you a
syntax error message (see figure 4.7).

It’s easy to fix this error by making sure there are triple quotation
marks at the beginning and end of the string literal. Use the highlight-
ing shown in the IDLE text editor to figure out which line is causing

the problem.

Collecting input from the player 101

The Opening triple instructions =
quotation mark is /

. e . You walk into an old smelly pet shop.
missing for our Strlng 2s the door closes behind you, you ses
literal. It should be: Ut — or =1

instructions = """ grests you Q invalid syntax

This the parrot.
Guess his ;. free!

\

Error message pops up when trying to run
the program. Invalid syntax is a generic error
meaning something is not following Python’s rules.

Figure 4.7 A string literal must start and end with a set of triple quotation marks. If
you forget, Python will tell you that you have a syntax error. Add the missing triple
quotes to fix the error.

Collecting input from the player

Your game has a proper introduction; now let’s start interacting with
the player. Games, websites, and apps are all about causing interac-
tions, whether it’s to create some fun or help you buy something online.
Contrast that with the last movie you watched. Movies don’t have any
interaction —they're always the same.

A computer program'’s ability to accept input and respond to that input
is special. In text-based games like the one you're creating, this interac-
tion occurs through the keyboard. Players type In answers or make
choices, and the game responds.

For this game, you want to ask the game player to guess the age of the
parrot. The program knows the parrot’s age and checks whether each
of the player’s guesses matches it. To make this work, you have to give
the program the age of the parrot (it’s stored in a variable). This gives
you something akin to god-like powers as the programmer—as the
game’s maker, you can decide what the value is. Let’s create a variable
and set it to a value that you pick. One great thing about being a com-
puter programmer is that only you know the parrot’s true age.’

5 And anyone else who is reading this book! Later you'll make the game use a random number so even
you don’t know the parrot’s age.

102 CHAFPTER 4 Norwegian Blue parrot game: adding logic to programs

Let’s make the parrot old. Create a variable named parrot_age, and
assign it a value of 19.

Listing 4.4 Creating an age for the parrot

Making up the parrot's age
TODO: Make this automatically pick a random number between 1 and 20

arrot_age = 19
b 9 X Create a variable and
store the number 19 in it.

Notice that in the comments you include a T0DO note: this tells you that
you have an item to do later.

TIP Use TODOs in your comments as reminders of areas of your pro-
gram that are left unfinished or need further improvement. Comments
are your friend, and the_y're there to help you. Use them however you
need them!

Next let’s get the user’s first guess. Use Python’s input function (like
you did in chapter 2) to collect input from the user and store it in a
variable named guess. Give the input function a message that clearly
prompts the game pla_yer to enter an appropriate value. You don’t want
them typing in 50 when you're expecting a number between 1 and 20.
In this case, you want them to guess a number from 1 to 20.

Listing 4.5 Getting a guess and storing it in a variable

Get a guess from the user
~—» # TODO: Need to make this repeat to give them five guesses

Leave a note to guess =input("Guess the age of the parrot Display a prompt to
Z;:_“'se" to make [Pick a number from 1 to 20]: ™) the user and store

is program o whatever they type into
allow the user to guess = int(guess) Change the value a variable calylletgl;uess,
guess five times. stored in guess from

a string to an integer.

After gathering input from the user, you need to convert the value from
a string (for example, “5”) into an integer (simply the integer 5). By
default, anything input by the game player is stored as a string (even if
what they type in is a number). Figure 4.8 shows this graphically:

Collecting input from the player 103

guess = input("Guess the age of the parrot [Pick a number from 1 to 20]: ")

The input function gathers text typed in by the user. It always [1
returns a string, even if you type in a number, like 5.

Creates a new variable (or memory storage box) and
names it guess. The string "5" is placed inside it.

guess

guess = int(guess)

(notice there aren’t quotes around it anymore). int function

“5
int converts the string "5" to the integer 5 ‘

The memory storage box named guess
already exists, so Python replaces the value
in the box with 5 (the integer). "5" (the string)

is no longer stored.

Figure 4.8 The input function gathers text typed in by the user; then the text is
stored in a variable as a string data type. You take the value of the variable (“5”),
convert it to an integer (5), and store it as the variable.

you're gathering input from the user and then converting it to an
integer. The int function takes the value in the guess variable, converts
it to an integer, and then stores it back in the guess variable.

One of the perils of working with people is they can type in whatever
they want. If someone typed in “one” instead of “1”, you'd see an error

like this:

Traceback (most recent call last):
File "<pyshell#C>", line 1, in <module>
int(guess)

ValueError: invalid literal for int() with base 10: 'one

104 CHAFPTER 4 Norwegian Blue parrot game: adding logic to programs

This error is saying you haven’t given the int function a valid string
that is a number it can convert to an integer.

If you compare the logic you want to create in your code with the pro-
gram so far, you can see that you've checked off a couple of parts (see

figure 4.9).
Logic for game Creating the logic in code
Display the title and # Display the title and instructions
the instructions. print("*" * 80)
print("THE NORWEGIAN BLUE GUESSING GAME™")
Keep track of the number of print("*" * 80)
guesses, starting at zero.
instructions = """
[While the number of guesses is e I?ﬂ walk into an old a...
less th t the following:
ess than 5, repeat the following print(instructions)
ﬂ Get a guess from a player. > # Get a guess from the user
guess = input("Guess the age of the parrot
[number from 1 to 20]: ™)
Keep track of the number of guess = int(guess)
guesses, and add one.
{ Check if the guess is correct. 9

Then break out of loop.

{ Else ’

‘ Check if that was the fifth] P

‘ If true, then tell them they win! ’

and last guess.

If true, then tell them they lose!
Then break out of loop.

End of loop:
go back to the start of the loop.

Whether they win or lose, after the
loop say, “Thank you for playing!”

Figure 4.9 On the left is the logic you want to create. On the right is your code. So far,
you’ve welcomed the user and given them the game instructions. You’ve also added code to
collect their guess.

Using if statements to respond to users in different ways 105

Fabulous! Test the program again to make sure it’s working. It'll now
ask you to enter a guess. In the next section, you’ﬂ see how to test
whether the guess is correct.

Using if statements to respond to users in different ways

When you wake up for breakfast, you might walk into the kitchen and
look around to see what there is to eat. You use logic to pick your
breakfast. If your favorite food is in the kitchen, you'll eat it. For exam-
ple, if your favorite food is chocolate chip muffins, and there are some
in the kitchen, then you'll eat them. If there aren’t, you might have a
bowl of cereal. In this example, you apply simple logic —you use rea-
soning to make a decision.

Computer programs use similar logic to interact with users and the
world around them. The interactions are based on a set of rules that
you (the programmer) write. One of the ways we as programmers can
create this logic is with something called the if statement.

In your game, you want to test whether the player’s guess matches (is
equal to) the parrot’s age. The logic you want to create in your code is
as follows:

o If the player’s guess 1s equal to the parrot’s age, congratulate them
and give them the Norwegian Blue to take home. End the game.

@ Else (if the player’s guess isn’t equal to the parrot’s age) display a
mildly insulting message that they're wrong. If it’s not their last
guess, let them guess again. If it’s their last guess, end the game.

Let’s use an if statement in the program to create the logic you need.

Listing 4.6 Adding logic to the game with an if statement

Checking to see if the guess 1is correct 4/ sgrfcl:tl_fagg:e::ea::ual.

if guess == parrot_age:
> print("Congratulations! You win! Enjoy your Norwegian Blue!")

If True, this else:

message displays print("Wrong! You obviously don't know your Norwegian Blues!™)

on the screen. |
If False, display a
different message.

106

CHAFPTER 4 Norwegian Blue parrot game: adding logic to programs

The keyword The condition The first line of the
if starts the if tested must be if statment must
statement. either True or False. end with a colon (:).

L

4 N
if guess == parrot_age:
print("Congratulations! You win! Enjoy your Norwegian Blue!")
else:
print("Wrong! You obviously don’t know your Norwegian Blues!™)
- T)
Lines after the if The else statement Lines after the else statement
statement need ends in a colon (:) need to be indented four spaces
to be indented and isn’t indented. and are only executed when the
four spaces and condition tested is False.

are only executed
when the condition
tested is True.

Figure 4.10 The if statement can control the flow of your programs. This example shows
how an if statement can be used to display one message if guess is equal to the parrot’s age
or a different message if they aren’t equal.

Let’s take a close look at how the if statement works and how it gives
you a way to create logic in your programs (see figure 4.10).

The keyword if is followed by guess == parrot_age, and the line ends
with a colon (:). guess == parrot_age i1s the condition that is being
tested. The double equals sign (==) is a special operator that checks the
equality of guess and parrot_age.

TIP Make sure you don’t use a single equals sign when testing equal-
ity. Single equals signs are used to assign (or store) values into
variables.

If they're equals, the if condition is evaluated as True, and Python will
execute the indented commands after it. In this case, you're printing a

message:

Congratulations! You win! Enjoy your Norwegian Blue!

If the guess is wrong (guess == parrot_age is False), then Python will do
the else part. The statements to be executed for the else part are

Using if statements to respond to users in different ways

107

indented four spaces. In this case, if the guess is wrong, the program

displays this on the screen:

Wrong! You obviously don't know your Norwegian Blues!

If you examine the code and think back to the logic you want to create,
you can see how the if statement lets you check whether the guess is

correct (see figure 4.11).

Logic for game

Display the title and
the instructions.

¥

[Keep track of the number of

guesses, starting at zero.

While the number of guesses is
less than 5, repeat the following:

ﬂ Get a guess from a player.

Keep track of the number of
guesses, and add one.

ﬂ Check if the guess is correct. e—»

‘ If true, then tell them they win! ’

Then break out of loop.

|@

Else

Check if that was the fifth
and last guess.

Creating the logic in code

Display the title and instructions
print("*" * 80)

print("THE NORWEGIAN BLUE GUESSING GAME")
print("*" * 80)
instructions = """

You walk into an old a...

nan

print(instructions)

Get a guess from the user

guess = input("Guess the age of the
parrot [number from 1 to 20]: ")
guess = int(guess)

Checking to see if the guess is correct
if guess == parrot_age:
print("Congratulations! You win!
Enjoy your Norwegian Blue!")

else:
print("Wrong! You obviously don’t
know your Norwegian Blues!")

If true, then tell them they lose!
Then break out of loop.

|

go back to the start of the loop.

4

Whether they win or lose, after the
loop say, “Thank you for playing!”

End of loop: J

Figure 4.11
check whether the player’s guess is correct.

The logic you want to create is shown in the code. You use the if statement to

108 CHAFPTER 4 Norwegian Blue parrot game: adding logic to programs

You've seen how the if statement can make a program make a deci-
sion. It’s an easy way to control programs by checking whether some-
thing is True or False.

There is no “Ummm... maybe”

The if statement uses something called Boolean logic. In Boolean logic, the
answer must always be True or False. There is no “Ummmm... maybe.” It’s always
either True or False.

Boolean logic has its own set of operations for comparisons. These comparisons
should be familiar from math class, such as less than (<) and greater than (>).
Here is a table of some of the common comparisons you may need to use with
your if statements:

Comparison operation Definition
== Equal
= Not equal
< Less than
<= Less than or equal
> Greater than
>= Greater than or equal

For this game, you’re using the equality comparison to check whether two values
are equal to each other.

If you need to reverse the logic in a comparison, you can use the not operator.
The not operator changes a True to False or a False to True. If x is True, then not
x is False.

Keep these comparison operators in mind. No matter which one you use, Python
analyzes the comparison and returns either a True or False answer.

Practicing if statements

Trying more examples of if statements will help you get used to the
logic and how to write them. Let’s do an example that checks to see

Using if statements to respond to users in different ways 109

whether a secret password is correct. If it 1s, the code should grant the
person access; otherwise it should deny them access.

Listing 4.7 Using an if statement to check a password

password = "cheese" .
user_password = input("Enter the password: ")4//f~;ﬁ;:1:::&;:3:23::;:;?eCks
if user_password == password:

print("Access granted!™)
else:

The else part executes if the

print("Access denied!"™) passwords don’t match.

Python’s if statements are a powerful tool for creating programs that
respond the way you want them to. You now have the abilit_y to make
logic so your programs react and respond based on interacting with a
user. This is the first step in adding a bit of artificial intelligence to your
programs. Fabulous job!

One of the most common mistakes when working with if statements is
forgetting to put the colon (:) at the end. Figure 4.12 is an example of
an if statement missing the colon.

Errors are common when writing programs. Try to remember to add a
colon at the end of your if statements. If Python throws a syntax error
box and highlights a space at the end of an if statement, you know
what you've done.

A colon (:) is missing at
the end of the if statement.

password = "bunr
my_guess = "rabbit"
my_guess == password)
print ("Access granted!")

print ("Access denied!")

Figure 4.12 A missing
colon at the end of an if
statement will create a syntax
error. Python highlights where
the error is located. Add a
colon at the end of the line to
fix the problem.

10

Using

Start the
while loop.

Exit the while loop

when the answer

CHAFPTER 4 Norwegian Blue parrot game: adding logic to programs

while loops to repeat things

You have input from the user, but you need a way to let the user
repeatedly guess the parrot’s age. You might get bored repeating some-
thing over and over again, but computers will happily repeat something
as many times as you want. The repeating parts of programs are called
loops.

In the case of your guessing game, you're giving the game player five
tries to guess the parrot’s age. Python has several types of loops: _you'll
use the while loop. A while loop repeats over and over until a certain
condition or circumstance is no longer true. What it repeats is for you
to decide. Each time through the loop, before the program repeats the
instructions you gave it, it checks that condition.

Let’s look at how you can use a while loop with your if statement to
give the user only five guesses. To help, you'll create a variable named
number_of_guesses to keep track of the guesses.

Listing 4.8 Using a while loop to repeat instructions

number_of_guesses = 0

While loop will repeat until the number_of_guesses is five

while number_of_guesses < 5:
Get a guess from the user
guess = input("Guess the age of the parrot [number from 1 to 20]: ")
guess = int(guess)

Increase the guess

Add one to our guess counter counter by one.

number_of_guesses = number_of_guesses + 1

Checking to see if the guess 1is correct
if guess == parrot_age:
print("Congratulations! You win! Enjoy your Norwegian Blue!™)

is correct.
&—b break

Check if it’s the
fifth guess and

display the end
message if it is.

else:
print("Wrong! You obviously don't know your Norwegian Blues!")

Check to see if this is the fifth guess

If True, tell them they lost and reveal the parrot's age

if number_of_guesses ==
print("You lose!™)
print("The Norwegian Blue is

+ str(parrot_age))

Using while loops to repeat things m

Stop Indenting (This marks the end of while loop)

print("Thank you for playing!")

Notice how you have to rearrange the code in the program a bit. First
you start the while loop, and then you ask the user to input their guess.
Also notice that the code to repeat in the while loop is indented (shifted
over four spaces). Let’s take a closer look at the key elements of the
while loop (see figure 4.13).

Creating the logic in code

Display the title and instructions
print("*" * 80)
print("THE NORWEGIAN BLUE GUESSING GAME™")

Logic for game print("*" * 80)
instructions = """
ﬂ Display the title and You walk into an old a...
the instructions. o

print(instructions)

Keep track of thg number of number_of_guesses = 0
guesses, starting at zero.

While loop will repeat until
the number_of_guesses is five
while number_of_guesses < 5:

While the number of guesses is
less than 5, repeat the following:

Get a guess from the user

guess = input("Guess the age of the parrot
[number from 1 to 20]: ")

guess = int(guess)

m Keep track of the number of I+ # Add one to our guess counter

Get a guess from a player. >

guesses, and add one. number_of_guesses = number_of_guesses + 1

Checking to see if the guess is correct
Check if the guess is correct. 0—> if guess g= parrot_age: 9

print("Congratulations! You win! Enjoy your

Norwegian Blue!™)
g break

If true, then tell them they win!

ﬂ Then break out of loop.
g else:

Else > print("Wrong! You obviously don’t know your
Norwegian Blues!™)

m Check if that was the fifth]9—» # Check to see if this is the fifth guess
and last guess. # If True, tell them they lost and reveal

the parrot’s age

If true, then tell them they lose! if number_of_guesses ==
Then break out of loop. print("You lose!™)

print("The Norwegian Blue is

+ str

End of loop: (parrot_age))
go back to the start of the loop. #Stop Indenting (This marks the end of while loop)

Whether they win or lose, after the print("Thank you for playing!™)
loop say, “Thank you for playing!”

Figure 4.13 Think of the logic you're trying to create, and then translate it into your
code. When you need to repeat something, you can use a while loop. When you need
to check whether something is True or False, you can use an if statement.

12

CHAFPTER 4 Norwegian Blue parrot game: adding logic to programs

There 1s a special thing about a while loop: you must indent all the code
that you want the loop to repeat (like you did for if statements). Each
line should be indented four spaces from the left (you measure this
from where you type the win while). Similarly, you stop indenting code
when you want the while loop to end. Code that isn’t indented is out-
side the while loop and is only run after the while loop finishes.

TIP The IDLE text editor automatically indents the loop text for you.
Indentation is used in Python to group code together.

Notice that you create a variable named number_of_guesses that helps
keep track of how many guesses have been made. It starts with a value
of 0; after each guess, the value increases by one. When it reaches a
value of 5, if the last guess is incorrect, the game should end. As long as
the number of guesses is less than five, the program will check the
guess entered by the player to see if it’s correct. If a guess is correct, the
game should congratulate the player, break out of the loop, and end.

A closer look at while Ioops

while loops run a set of instructions or code repeatedly, but only while
the condition of the while loop is True. This is useful when you want to
have something repeat but need a switch that signifies when it should
stop. A very common use of while loops is in games. A loop makes it so
the user can play the game again and again until they say they don't
want to play anymore.

The while loop in figure 4.14 counts from 0 to 99. Let’s look more
closely at its parts.

Like an if statement, a while loop has an expression that must be either
True or False. The example in figure 4.14 uses count < 100. The line
ends with a colon (:), and subsequent lines that belong with the loop
should be indented four spaces. In a while loop, you can use any other
commands you would normally use in Python. To signify the end of the
loop, stop indenting statements. Notice that the print("I finished
counting!") isn’t indented, so it’s only printed once, after the counting 1s

Using while loops to repeat things 13

to count, and give be given a condition
it a value of zero. that is True or False.

>\ A colon goes at the end.
Start while loop. count = 0
\ Display the current
while count < 100/ value of count.
Code in the loop % print(count)
is indented four count = count + 1

print("I finished counting
& J

-

Display a message to the
screen: “I finished counting!”

K Add one to the

spaces. value of count.

Figure 4.14 You can use a while loop to repeatedly perform a task. Code that is
part of the loop is indented four spaces. In this case, this while loop displays the
numbers from 0 to 99; when completed, it prints the message, “I finished counting!”
Typically, the condition should be such that code in the loop can make it False and
thus end the loop.

complete. Python reads the indentation to know when you want your

loop to start and end.

TIP You can use if statements in while loops. In your game, you use
an if statement in a while loop. Sounds fancy, but you want to check
whether the player’s guess is correct, and you need to do this repeat-
edly to give them their five guesses.

Using loops can save you from writing a lot of code. They let you order
a computer to repeat a series of commands many times. The commands
only need to be written once in the loop.

Breaking out of a while loop

Sometimes you need to take a break to eat some food or grab a drink.
Python has a break command that lets you break out of a while loop
early. In this example, you want your loop to repeat if the player’s last
guess was Incorrect. If the player guesses the parrot’s age correctly,
then you want to break out of the loop—even though you haven't

14

CHAFPTER 4 Norwegian Blue parrot game: adding logic to programs

reached the fifth guess, you want to stop looping because the player got
the answer right.

Let’s modify the previous example of counting to 99 so it breaks out of
the loop when it reaches the number 77. You'll use an if statement to

do this.
Listing 4.9 Breaking out of a loop

count = 0
while count < 100: .
rint(count) Check if the value of
p / count is equal to 77.
if count == 77:
break
rea If the value is equal to 77, the break

count = count + 1 command breaks out of the loop.

print("I finished counting!™)

Practicing while loops

Let’s try another example of using a while loop to get the hang of how
to write them: a while loop that asks your favorite color. See if you can
figure out what this program does.

Listing 4.10 Favorite colors
favorite_color = input("What is your favorite color? ™)

while favorite_color != "blue":
print("Nope, you got it wrong!")
favorite_color = input("Try again: What is your favorite color? ")

print("Me too! What a coincidence!")

This example asks you for your favorite color; if you type in blue, it
says, “Me too! What a coincidence!” and ends. If you don’t input blue,
the program will keep asking you for your favorite color over and over
again (until you say it’s blue).

Suppose your loop doesn’t produce the output you expect. Maybe the
guessing game gives you six guesses instead of five. This is when you
try to find the problem and fix it—a process also called troubleshoot-
ing. Fixing errors in while loops can be tricky because there may be

Usinhg Python code libraries to generate random numbers 115

many commands in the loop. The commands execute quickly, so it can
be hard to see what is happening. One troubleshooting technique you
can use 1s to add a print function in the loop and use it to print out the
value of a variable such as the counter each time through the loop.

In this example, you might add this line in your loop:
print(number_of_guesses)

This prints out the value stored in the number_of_guesses variable each
time the code goes through the loop. You can see whether the counter
1s incrementing as you expect and whether it’s starting with the right
number.

Using Python code libraries to generate random numbers

You program should be working great. The player gets five guesses,
and if they guess the age of the parrot correctly, they win! One exciting
part about games is their unpredictability —you never know when you
might win or lose. Your next task is to have the program pick a random
number for the Norwegian Blue’s age. This will make it more thrilling

b 'tk h !
ecause even you won t know the answer:

If you've ever tried to fix a broken bike, toaster, or car, you probably
needed some tools. Bare hands are good for many things, but they
probably weren’t enough for the job. Similarly, in Python, the standard
tools (your bare hands) aren’t enough. Sometimes you need to get a
toolbox and take out a big hammer, soldering iron, or screwdriver.

Python has toolboxes as well. These toolboxes are also called modules.
Each toolbox (module) contains different sets of tools (methods) that
are useful for specific jobs. Here are some examples of common Python
modules:

@ datetime provides useful tools for getting the current time and date
and formatting them nicely.
> random gives you the ability to create random numbers.

 math supports a larger set of mathematical functions.

@ fileinput supports reading information from files.

116

CHAFPTER 4 Norwegian Blue parrot game: adding logic to programs

Before you can use these toolboxes, you must first carry them into the
room, like you might grab a toolbox of bike tools to fix a bike. To bring
in a toolbox, you use the import command:

import random

You can add this line anywhere in a program before you need to use it
to create a random number. Add it right after the comments at the
beginning of your game program. This brings in the toolbox at the
beginning of the program and makes it easier for other people who
read your code to see what toolboxes (or modules) you're using. What
the line 1s actually doing is loading the toolbox into Python’s memory
so you can use the tools in your program.

Now that you've added the toolbox, you can use a tool called randint to
generate a random number between 1 and 20. This code replaces the

line parrot_age = 19:
parrot_age = random.randint(1,20)

Notice that you enter the name of the toolbox, put a period or dot (.),
and then put the name of the tool you want to use. This particular tool,
randint, needs you to give 1t two numbers: the lower and upper num-
bers that the random integer should be between. If you wanted a num-
ber between 1 and 100, you'd write

parrot_age = random.randint(1,100)

With these two lines of code added, the complete code listing should
match the code in figure 4.15.

Outstanding! You've made a Norwegian Blue Guessing Game and
learned how to create logic in your programs using both if statements
and while loops.

Using Python code libraries to generate random numbers

Logic for game

Display the title and
the instructions.

Keep track of the number of
guesses, starting at zero.
While the number of guesses is
less than 5, repeat the following: e\
ﬂ Get a guess from a player. ’\
Keep track of the number of [number from 1 to 20]: ")
guesses, and add one. guess = int(guess)
Add one to our guess counter
ﬂ Check if the guess is correct ’k number_of_guesses = number_of_guesses + 1

Checking to see if the guess is correct

If true, then tell them they win!
Then break out of loop.

Check if that was the fifth
and last guess.

If true, then tell them they lose!
Then break out of loop.

End of loop:
go back to the start of the loop.

Creating the logic in code

Title: The Norwegian Blue Parrot Guessing Game

Author: Ryan Heitz

The goal of the game is guess the age of a parrot.
The program generates a random age between 1 and 20.
The player gets 5 guesses to guess the age correctly.

If they’re correct, they win the parrot!
import random

Display the title and instructions
print("*" * 80)

print("THE NORWEGIAN BLUE GUESSING GAME™)
print("*" * 80)

instructions =
You walk into an old and smelly pet shop.
As the door closes behind you, you see

a beautiful blue parrot sitting very
still in a cage. The pet shop owner
greets you and says,

"Today is your lucky day!
This is the rare Norwegian Blue parrot.
Guess his age and take him home for free!

You get five guesses."

print(instructions)

Making up the parrot’s age

Automatically picks a random number between 1 and 20

parrot_age = random.randint(1,20)

number_of_guesses = 0

17

While loop will repeat until the number_of_guesses is five

while number_of_guesses < 5:

Get a guess from the user

guess = input("Guess the age of the parrot

if guess == parrot_age:
print("Congratulations! You win!
Enjoy your Norwegian Blue!™)
break

Else else:
print("Wrong! You obviously don’t

know your Norwegian Blues!™)

e\~# Check to see if this is the fifth guess

If True, tell them they lost and reveal the parrot’s age

if number_of_guesses ==
print("You lose!™)
print("The Norwegian Blue is

print("Thank you for playing!")
Whether they win or lose, after the
loop say, “Thank you for playing!”

Figure 4.15 To randomly select a number, you need to import the random library and

use the randint function to select a random integer between 1 and 20.

+ str(parrot_age))
#Stop Indenting (This marks the end of while loop)

18

CHAPTER 4 Norwegian Blue parrot game: adding logic to programs

Each sprite has three tabs

Click categories to Access help for writing programs, loading
get different blocks. documentation. costumes, and loading sounds. Cat sprite

Edit Share Help

Spritel

turn G) degrees
turn & €D degrees

point in direction 5

point towards

gote @y @
90 ta
glide i) secs to m @ w0

changs x by 3

o x to rewsorts: (97 (X 70
changs v by 3

sat y to @

i on edge, bounce

W » position
|
B drection

N AN
Y

~
Block palette: drag blocks Script area Load a Load The stage is

to the script area, and background or paint where the sprites
snap them together. image. asprite. can move around.

Figure 4.16 The Scratch interface is divided into an area for sprites to move
around and a script area. You can create programs for your sprite by dragging
blocks and connecting them in the script area.

Fruit Picker Extra: Scratch

Have you been wondering why your Pi has an icon that is a picture
of a cat head? That is the icon for Scratch. Developed by the Massa-
chusetts Institute of Technology (MIT) to help teach programming,
Scratch is a simple program you can use to create animations and
games on your Raspberry Pi. Scratch is also its own easy-to-use pro-
gramming language that is based on dragging and dropping pro-
gram blocks.

Open Scratch by clicking Menu > Programming > Scratch on your

Raspbian desktop. When Scratch opens, you'll see a cat in a white
square. Figure 4.16 shows an overview of the Scratch interface.

Challenges 19

Scratch can do many things, and we won't explain them all. You can
learn more about how to create projects with Scratch by clicking Help
> Help Pages. The help tells you how to use each block and provides
some tutorials.

Do you have an idea for a project? As in Python, you can make pro-
grams that ask for input, display messages, generate random numbers,
and use if statements and loops. You might add a dog sprite and make
it sing like a human when you click it. Or try creating a Scratch version

of your favorite classic videogame.

 EEEEEEREEEEEEERER:

Let’s play Rock, Paper, Scissors! For this challenge, try to create the
classic game.

Rock, Paper, Scissors is played with your hands. Each person simulta-
neously makes one of three shapes with their hand: the shape of a rock,
a piece of paper, or a pair of scissors. If two people make the same shape,
it’s a tie. The three game shapes interact with each other like this:

@ Rock beats scissors.

@ Paper beats rock.

@ Scissors beats paper.

Let’s plan how to attack this challenge. Here are some of the key

elements:

@ Use a while loop to repeatedly ask the player to choose rock, paper,
Or SCISSOrs.

@ Create a list of choices:
choices = ["Rock","Paper","Scissors"]

> Use the random librar_y to have the computer randomly choose among
the three choices (“Rock”, “Paper”, and “Scissors”).

120

CHAFPTER 4 Norwegian Blue parrot game: adding logic to programs

© Remember, randint selects a random integer. You can select and

store the random choice in a variable:

computer_choice = choices[random.randint(0,2)]

@ You can select different items in the list by using a number repre-

senting where the item is in the list. This number is called a /st
index. In this case, there are three items in the list. The first item has
an index of 0, the second item has an index of 1, and the third item
has an index of 2. To display the second item in the list, you write
print(choices[1]); the code displays “Paper” on the screen.

» Use an if statement to compare the player’s choice to the computer’s

choice and let the player know who won.

@ Ask the player if they want to play again. If so, the loop should

repeat; if not, the game should end.

See if you can come up with a program! See appendix C for solutions.

In this chapter, you've learned some new techniques for working with
text in Python and a few foundational elements for creating logic in
your programs:

“ You can make Python print things just how you want them. String

literals allow you to create text that spans multiple lines. Use them to
make text appear the same way you t_yped 1t In your programs.

@ You can write intelligent code that can make decisions. if statements

add logic to programs by responding only if a certain condition is
True. You can combine if with else statements to make a program
do something different if the condition is False.

© You don’t have to type things repeatedly —you can make Python

repeat them for you. while loops can be used to repeat things over
and over, as long as a certain condition is True. The break command
lets you exit a while loop if you need to.

2 You can use modules (toolboxes) to access more powerful tools to

use in your programs. The random module has a tool that generates
random integers.

5

Raspi's Cave Adventure

In this chapter, you'll create a game to learn new
programming techniques:

¢ Drawing flow diagrams to map out complex programs
¢ Using Boolean operators to check input from users
¢ Making code for multiple choices using if, elif, and else statements

¢ Creating and using your own functions to organize code and
avoid repeating code

¢ Nesting if/else statements to create games with complex logic

Like a great book, a game can create an entire imaginary world in your
mind. One of the most exciting aspects of games is when you feel like
you're inside the game. This doesn’t require virtual-reality goggles or
high-definition graphics. You can create this immersive feeling even in a
completely text-based game by connecting with the player’s imagination
and creating a world where they can make decisions and determine their
own fate. To create games with imaginary worlds, you often have to gen-
erate a sense of depth by having the user move from room to room or
scene to scene. The game should allow the user to choose their own path

121

122

CHAPTER 5 Raspi's Cave Adventure

and introduce elements of surprise. Finally, you should also have some
great descriptions that make the player feel like they're in the room.

In this chapter, you'll create just such a game, based on exploring an
underground cavern. Along the way, the player will have to make
choices, and if they make a wrong decision, the game is over. If they
make the right decision, they’ll find untold treasures of gold, rubies,
and diamonds!

Project introduction: Raspi's Cave Adventure

The game is set in medieval days: a time of stone castles, knights with
swords, and (some say) mythical beasts that breathe fire. Your main
character is a young boy named Raspi.! One day Raspi is out gathering
firewood and gets lost in the forest. He stumbles upon the entrance to a
cave. He peers in the entrance and finds that the cave splits into a left
tunnel and a right tunnel. He remembers a folk tale his grandmother
used to tell of a mysterious cave in this very forest that holds enormous
treasures. It's said the treasure is guarded by a ferocious fire-breathing
dragon. Raspi can'’t resist the temptation to explore the cave; although
he knows he should turn back, he walks slowly into the dark cavern.
This is the start of your next project: Raspi’s Cave Adventure.

The game can have many different outcomes, depending on the path
the player chooses for Raspi. A short sample of the program'’s output is
shown in figure 5.1.

Python Shell -ou

Eile Edit shell Debug Options Windows Help

It is the Dark Ages,

and sons say mythical beasts

atons castlss,

! Because this is your game, feel free to make Raspi a girl or a boy.

knighta

that breaths fire = dragons.

with swords

Figure 5.1 Raspi’s
Cave Adventure
requires the player to
make decisions about
which way to go.
Based on their
choices, the player will
meet different fates.

Project introduction: Raspi’'s Cave Adventure 123

Right cave

Right
‘ Enter cave with

a hole in the floor

Left cave

Enter cave with an

underground river down rope or

walk toward

Climb torch?
down rope
Torch
Enter a
dragon’s lair
Use the boat, swim, ‘
or keep walking?
Keep walking
Fight the

dragon or go
into the dark
room?

Dark
room

Swim ‘ Boat \
i

You win

= Game over
e 4

Figure 5.2 This map of the cave system shows that Raspi will need to make many
choices. If he makes the wrong ones, it’s game over! But if he makes the correct
choices, he’ll find the legendary treasure!

You win

Let’s look at a map of the cave to see where the treasure is and also
where the dragon lives! Because you're the game designer and devel-
oper, you'll use this as a guide to write the code creating the game logic

(see figure 5.2).

Let’s examine the different paths and choices Raspi has in the cave and
his possible fates. After Raspi enters the entrance to the cave, he can

choose to go left or right.

124

CHAPTER 5 Raspi's Cave Adventure

Left cave

If Raspi goes into the left cave, he'll find himself near an underground
river. He'll need to decide whether to take a boat down the river, swim
down the river, or walk along the side of the river. If Raspi decides to
take the boat, he'll soon learn that it has a hole in it, and he’ll sink
(game over). Should Raspi choose to avoid the river and walk along its
edge, he’'ll quickly become distracted by his thoughts, trip on a rock,
and hit his head (game over). If Raspi is adventurous and decides to
swim in the river, he’ll make it to the other side and find a hidden trea-

sure room filled with riches!

Right cave

If Raspi decides to go into the right cave, he'll need to decide whether
to climb down into a hole using a rope or walk toward what appears to
be a torch. After walking toward the torch, Raspi will enter a cave full
of crystals. The crystal cave sounds promising, but unfortunatel_y a
crystal will fall from the ceiling, ending Raspi’s life (game over). Alter-
natively, if Raspi uses the rope and goes down the hole, he’ll find him-
self in the dragon’s lair with a final choice: whether to fight the dragon
or go into a dark room. If Raspi fights the dragon, the dragon will eat
him; but if Raspi heads toward the dark room, he’ll discover that it’s
filled with thousands of gold coins, rubies, and diamonds. Raspi is rich

and very much alive!

Hey wait, you need a plan (flow diagrams)

Your goal is to create a program that allows the player to make multiple
decisions. You have a map of the cave; now you need to make that map
into a diagram that can guide you as you write the code for the game.
Much as you did in chapter 2, you'll lay out the logic of the game and

then write the code to create that logic.

You can make a map that also functions as a flow diagram. You can
visualize the set of decisions and the outcome of each decision. Figure

5.3 shows the map of the cave as a flow diagram.

Hey wait, you need a plan (flow diagrams) 125

Start
= Game over
Left
or right
cave?
Left Right
Left cave Right cave
Wrong
- input -
Enter cave with an Enter cave with a
underground river hole in the floor
A
o Q

Use Keep Climb
the boat, walking down rope
swim, or keep or walk toward
walking? torch?
Climb
down rope
Enter a
dragon’s lair
You win
Fight Fight
the dragon or dragon
go into the dark
room?
Dark room

Figure 5.3 The flow diagram for Raspi’s
Cave Adventure shows the various decisions
the player can make and their outcomes. It’s
a map of the logic of the game, and it can
guide you as you program that logic. You win

Each decision in the diagram is represented by a diamond shape. Inside
the diamond is the question at hand. Outside the diamond are arrows
representing the possible choices available and the result of each
choice. Sometimes choices lead to other choices (other diamonds).
Other times, a choice leads to winning the game or game over!

126 CHAPTER 5 Raspi's Cave Adventure

Diamonds are /\

used to show
a decision.

Is
the button

? - .
pressed? No Figure 5.4 Flow diagrams

are ways to visually show the
logic of a program. They repre-
Yes sent decisions, choices, and
Labels on the activities using diamonds,
arrows describe

arrows, and boxes. This exam-

Light is off

Arrows from the
diamond show the
possible choices. \»

Boxes show an

activityorwhat | |igntison the choices. ple shows a flow diagram for a
happens after a program that turns on a light if
decision. a button is pressed.

Flow diagrams follow a few simple rules (see figure 5.4). You can con-
struct one for any set of decisions, including those used by games,
robots, and apps.

A flow diagram is a great way to organize your thoughts and break
down complex problems into a series of simple steps. Remember the
Python way: simple is better than complex.

Which way should Raspi go? (checking input)
With your diagram in hand, the first bit of logic is the user choosing
whether to go left or right. Let’s display text to tell the player what they
see in the cave, and then prompt them to enter a choice. You prompt
the user and collect information with the input function.

Listing 5.1 Choosing the left or right cave

The input # 1st Choice: Left or Right Cave?
function asks the 1, .t ("vou see the cave split into a left and right tunnel™) Display
user to enter a . "D h lef i ght?" descriptive
choice and stores Print(o you choose to go left or right?") ‘ text to the
it inavariable/> cave_choice = input("Enter L for left or R for right: ") screen.
cave_choice. if cave_choice == "L": . .
4\ Check if cave_choice
Left cave . -
; . is equal to L.
print("You walk into the left cave.™) 4\ .
If False, display else: If True, display text about
text about : walking into the left cave.

walking into \ # _ngh"t cave . . . "
the right cave. print("You walk into the right cave. The cave starts sloping downward.")

This example uses the input function and then an if/else statement to
create the logic you want. The code asks the user to make a choice by

Which way should Raspi go? (checking input) 127

typing L or R. The if statement checks whether the user’s choice equals
“L”. If True, then the code displays a message that the player entered
the left cave. If their choice isn’t equal to L (if that condition is False),
then the program moves to the else statement and displays a message
that the player entered the right cave.

Handling unexpected input

Users often do unexpected things. As a programmer, one thing you
have to be thinking about is what happens if the user does something
you don't expect. The person playing your game can type in whatever
they want. Let’s examine some different possibilities and see what
would happen:

@ What if the user types in 1 (lowercase L)?

If the user types in 1, the program checks (evaluates) whether “1” is
equal to “L”. Because these two strings are different, this condition is
False. The program will execute the else statement and displa_y a
message that the user entered the right cave.

@ What if the user types in left?

If the user types in left, the program evaluates whether “left” is
equal to “L”. Because these two strings are different, this condition is
False. The program will execute the else statement and display a
message that the user entered the right cave.

> What if the user types in something like 44992 or banana just to be silly?

The program checks whether “44992” or “banana” is equal to “L”.
Because neither of these equals “L”, this condition is False. The
program will execute the else statement and display a message that
the user entered the right cave.

@ What if the user enters anything except L?
You guessed it; they will see a message that they entered the right cave.

This isn’t ideal. Let’s improve the code as follows:

1 PermittheusertoenterLorlaswell asLeftor left toenter the left cave.

2 Permit the user to enter R or r as well as Right or right to enter the
right cave.

128 CHAPTER 5 Raspi's Cave Adventure

3 Take care of anything else by having the game scold the user for enter-
ing the wrong thing and end the game in a humorous way. Maybe a
stalactite could fall from the ceiling or a cave spider could bite them!

To create this behavior, you need to introduce the Boolean or operator.
You also need to convert the input information to all uppercase letters
using Python’s upper) method. Finally, to handle all three possible out-
comes, you'll use a new if/elif/else statement (see listing 5.2).

Methods

Methods are functions that only work on specific types of Python things, which
programmers call objects. In this example, .upper() is only able to work on
strings, so it’s called a string method. Methods are called differently than other
functions. Methods use dot notation, which means you type the name of the
thing (object) and then put a dot (.) and the method.

Here are some examples:

"Left".upper() produces “LEFT".
"riGHt" . lower () makes “right”.

Here’s the updated code to apply these new ways to avoid errors in
user input.

Listing 5.2 Improving the code for the player's choice

Gather input from the

. . 5
1st Choice: Left or Right Cave? user. The upper() method

Theoroperator print("You see the cave split into a left and right tunnel") converts the user’s
zzﬁfili(tsi;fneil:her print("Do you choose to go left or right?") input to all uppercase.
True. cave_choice = input("Enter L for left or R for right: ").upper(Q)
L} if cave_choice == "L" or cave_choice == "LEFT":
Left cave . .
print("You walk into the left cave.™) ce::l;:l?::sislf;z:fher
elif cave_choice == "R" or cave_choice == "RIGHT":
Right cave
print("You walk into the right cave. The cave starts sloping
downward.")
else:
else handles the case # Wrong answer
where all if or elif print("You seem to have trouble making good decisions!™)

statements are False.

Which way should Raspi go? (checking input) 129

print("Suddenly a stalactite falls from the ceiling and bonks you
on the head.")
print("Game Over!!!'")

The upper () method converts the input text to all uppercase. If the user
enters LEFT, LeFt, left, or Left, the string is converted to “LEFT”.

THE BOOLEAN OR OPERATOR: CHECKING WHETHER EITHER ONE IS TRUE

The or operator checks whether one condition or another condition is
True. This gives your code more flexibility —it’s able to accept more
than one input and still proceed. If either one is True, the if statement
is True, and Python does whatever is indented under the if statement.

ELIF IS SHORT FOR ELSE IF

The elif statement is short for else if. It checks whether another con-
dition is True. Think of it like a multiple-choice question. If the user
doesn’t enter L or Left, the program moves on to the next option. If the
user doesn’t enter R or r, the program moves to the else statement and
drops a stalactite on their head. Game over! Take a closer look at the

if/elif/else statement in figure 5.5 to see how to make one.

The keyword if starts The condition tested must The if, elif,
the if statement. be either True or False. and else statements
L all end with a colon (:).
4 N

The elif statement . X
if guess > parrot_age:

is only checked when Fint("Too high!™ Lines after if, elif,
the previous if \ P gn* and else statements
elif guess < parrot_age:

statement is False. . N - need to be indented
print("Too low!")

. four spaces.
elif guess == parrot_age:
4’/////////» print("Correct!")
else:

Y t togeth
ou can put togetner print("That was not a valid guess!'")

multiple elif statements.
elif statements are only
checked if the previous
one is False. The else statement is executed only if all the
previous if and elif statements are False.

Figure 5.5 The if statement can come in many flavors. This is an if statement with two
elifs and an else. It creates logic in the code that can do many different things depending
on the user’s input. In this case, you’re having a player guess the age of a parrot. The pro-
gram will tell them if their guess is too low, too high, correct, or invalid.

130

CHAPTER 5 Raspi's Cave Adventure

Notice that you can have more than one elif statement. In fact, you
can have as many as you want. With the if/elif statement, you can cre-
ate the logic needed for your cave.

Boolean logic operators: and, or, and not

Python has a complete set of Boolean operators that you can use to make expres-
sions:

or is used when you want the expression to be True if either of the operands
is True.

and is used when you want the expression to be True only if both operands
are True.

not is used to change an operand from True to False or False to True.
Let’s look at a few examples using these operators.

and OPERATOR

Pretend you want to create a program giving you access to the system only if
your name and password are both correct. You could write this using the and
operator:

if name == "Ryan" and password == "PiTaster":
print("The name and password are correct!™)
print("Access granted! Welcome!")

else:
print("Access denied!")

Only if both name and password are correct will the program grant you access.
Try creating one yourself!

or OPERATOR

Next let’s imagine you want to create a program giving someone a free pizza if
their age is under 20 or they have a coupon. Let’s assume you have a variable
age that is the age of the person and another variable coupon that already holds
a value of True or False. Using the or operator, you create this logic like so:

if age < 20 or coupon == True:
print("You get 1 FREE PIZZA™)
else:
print("No free pizza for you!")

Which way should Raspi go? (checking input) 131

If eitheris True, the user gets a pizza. If both are True, they get a pizza. If neither
is True, then no free pizza!l

not OPERATOR

Finally, let’s say you have a variable is_absent that is equal to True or False.
is_absent tells you whether a student is present or absent. To print a “Welcome
to school!” message if a student is not absent, you can use the not operator:

if not is_absent:
print("Welcome to school!")
else:
print("Please return to school as soon as possible. School misses

you!™)

The not operator changes a variable or statement that is True to False and a
False one to True. It helps you create conditional statements (if statements) that
make more sense when you read the code. As you can see, the Boolean operators
give you many different options for creating logical expressions.

Time to go spelunking (a fancy word for exploring caves) with your
new knowledge of if/elif/else and Boolean operators!

Turning flow diagrams into code

For now, let’s concentrate on building a program for the left cave. The
player has entered the left cave and needs to make their next choice.
Looking at the map and the flow diagram, the next thing your player
encounters is an underground stream. The player sees a boat and must

choose among three options:

@ Keep walking along the side of the river.
@ Climb into the boat.

¢ Swim in the river.

Each of these will be an if or elif statement in your code. But wait!
There’s a fourth possible outcome —that they don’t enter one of the

132 CHAFTER B Raspi's Cave Adventure

Flow diagram Code

1st Choice: Left or Right Cave?

= Game over print("You see the cave split into a left and right tunnel™)
cave_choice = input("Enter L for left or R for right: ").upper(Q)
Left cave if cave_choice == "L" or cave_choice == "LEFT":
Left cave
Enter cave with an print("You walk into the left cave. It is cold and dark.")

underground river print("The cave opens up to a large room with an
underground river.™)
print("You notice a small boat on the edge of the river."

print("Do you use the boat, swim, or walk along the side

of the river?
Keep river_choice = 1input("Enter B for boat, S for swim, or W

for walk: ").upper(Q

Use
the boat, walking @ L
SW\:/na;lz:lkgep ‘;\-: __ if river_choice == "W" or river_choice == "WALK":

9 # You walk along the edge of the river
print("You walk along the narrow edge of the river.")

Wrong
input —

elif river_choice == "B" or river_choice =="BOAT":
You hop in the boat
print("You step in the boat and start drifting
L down the river.™)

elif river_choice == "S" or river_choice == "SWIM":
You jump in the water and start swimming
print("You dive into the water and start swimming

ioig

You win down the river.")

else:
Wrong input
print("You seem to have trouble making good decisions!"’
print("Suddenly a stalactite falls from the ceiling and
bonks you on the head.")
print("Game Over!!!")

elif cave_choice == "R" or cave_choice == "RIGHT":
Right cave
print("You walk into the right cave. The cave starts
sloping downward.™)

else:
Wrong answer
print("You seem to have trouble making good decisions!")
print("Suddenly a stalactite falls from the ceiling and
bonks you on the head.")
print("Game Over!!!")

Figure 5.6 The left cave has a stream inside it, and the user has three choices of what to do
next. In the code, you create an if statement followed by two elif statements to cover each
of the options. The else statement is used to control what happens if the user inputs some-
thing other than one of the three choices.

three choices. You'll make this the else statement. Figure 5.6 shows the
left cave flow diagram and the code that creates the logic you need.

You display a few words about what Raspi sees inside the left cave.
You ask the user to choose what to do next. Then, once you've

Simplify! Making your own functions 133

gathered this input, you evaluate that information and respond accord-
ingly. Notice that each of the possible choices appears in an if or elif
statement and is indented under the left cave if statement. The user
has to choose whether to keep walking (W), use the boat (B), or swim
(s). For each case, the program should display information as you
designed it in your flow diagram.

This isn’t only for caves

Boolean operators and if/elif/else statements are great for when your pro-
gram needs multiple options or choices. Let’s see if you can create a program
that has four possible options: A, B, C, and none of the above. The following
snippet shows an example of using elif statements to create these four possi-
ble outcomes. In this example, you’re pretending that a person is on a game
show and picking a door with a prize behind it:

print("Welcome to the Pi Game Show!")
print("There are three doors with prizes behind them: A, B, and C.")
door = input("Select a door by typing A, B, or C").upper()

#Logic for door selection

if door == "A":
print("You've won a new car!")
elif door == "B":
print("You've won a new boat!")
elif door == "C":
print("You've won a trip around the world!")
else:
print("Uh oh! You didn't follow directions!")
print("Game Over!!!")

print("Thank you for playing.")

Creating programs with choices based on logic is a powerful programming skill.
By combining simple choices, you can create complex programs.

Excellent work! You've created the left cave logic for Raspi’s Cave
Adventure. Let’s add more decisions.

Simplify! Making your own functions

Yikes! The code for the left cave is starting to look long (and kind of
ugly and hard to read), and you still have the right cave to go. How can
you simplify your program?

134

f—>

The function’s
instructions (what
it does) must be
indented four
spaces under the
def statement.

K—b

Gather input from
the user and store
it in a variable
river_choice.

Display text for
ending the game
if the wrong
input is given.

CHAPTER 5 Raspi's Cave Adventure

The answer 1s functions. This time you aren’t going to call a built-in
Python function —you'll make your own!

Functions are like mini programs that you can create to organize or
simplify your code. When you have long programs, you can take logi-
cal chunks of code (code that all goes together) and put them in a func-
tion. Once you've created (or defined) a function, you can call (or use)
the function in your code.

NOTE Functions should always be defined at the top of a program.
The definition of a function must come before it’s called (or used).

Let’s see how this works by making (or defining) two functions for the
left cave.

Listing 5.3 Creating functions for the left cave

of the function

Displays a description of the left cave and their choices def defines a
def left_cave(): function. After
print("You walk into the left cave. It is cold and dark.™) def is the name
print("The cave opens up to a large room with an underground
river.")
print("You notice a small boat on the edge of the river.™)
print("Do you use the boat, swim, or walk along the side of the
river?")
river_choice = 1input("Enter B for boat, S for swim, or W for walk:
") .upper()

return river_choice . .
Send information to the program

when the function is called.

Displays text describing the player's demise and a game over message
def wrong_answer():
print("You seem to have trouble making good decisions!™)
print("Suddenly a stalactite falls from the ceiling and bonks you
on the head.™)
print("Game Over!!!™)

Before moving on, let’s look more closely at how you can make your
own functions (see figure 5.7). You've created two functions: left_cave
and wrong_answer. Let’s rewrite the cave program to use (or call) those

and a colon.

Simplify! Making your own functions 135

Parentheses are used to hold any parameters
Name of (inputs) that the function might need. In this
the function case, none are needed, so they are empty.

def is a keyword . .
needed to define Line must end in a colon (:)

a function. \
def left_cave():

print("You walk into the left cave. It is cold and dark.™)
Each line of the / print("The cave opens up to a large room with an underground river.™)
function must be print("You notice a small boat on the edge of the river.")
indented four spaces. print("Do you use the boat, swim, or walk along the side of the river?

river_choice = input("Enter B for boat, S for swim, or W for walk: ")
/ return river_choice

Input is gathered
from the user and
stored in a variable
river_choice.

return is a keyword needed river_choice is the

only if your function needs to variable whose value is
return information back to the returned from the function
main program. whenever it is called.

Figure 5.7 Functions simplify your code and can reduce repetition. Use the def keyword to
create a new function, and indent the function code under it. If you need a function to return
a value, include a return statement in the function.

functions. Whenever you call a function, it’s as if the code is all in that
spot, but you've hidden it.

Some functions need to return something; others don’t. You might have
a function that prints something to the screen or plays a sound; those
types of functions don't need to return anything. In the example code,
the wrong_answer) function is a good example. You call the function like
this:

wrong_answer ()

Alternatively, when a function returns something and you want to store
that information, you write it like this:

choice = left_cave()

136 CHAPTER 5 Raspi's Cave Adventure

This takes whatever information is returned by calling the left_cave()
function and stores it in a variable named choice. Listing 5.4 shows how
you can simplify the program by calling the left_cave() and

wrong_answer () functions.

Listing 5.4 Using the new functions to simplify your code

1st Choice: Left or Right Cave?
print("You see the cave split into a left and right tunnel")
cave_choice = input("Enter L for left or R for right: ").upperQ

if cave_choice == "L" or cave_choice == "LEFT":
Left cave
choice = left_cave() left_cave() calls your

function. The information

)] e) . . returned by the function is
if choice == "W" or choice == "WALK": stored in the variable choice.

You walk along the edge of the river
print("You walk along the narrow edge of the river.™)
elif choice == "B" or choice == "BOAT":
You hop in the boat
print("You step in the boat and start drifting down the
river.")
elif river_choice == "S" or river_choice == "SWIM":
You jump in the water and start swimming
print("You dive into the water and start swimming down the

river.")
else: The statements that displayed game-
Wrong answer over information are replaced by
wrong_answer () / calling the wrong_answer() function.

elif cave_choice == "R" or cave_choice == "RIGHT":

Right cave

print("You walk into the right cave. The cave starts sloping
downward.™)

print("You come to a room with a large hole in the floor.")

else:
wrong_answer() can be called

Wrong answer 4/ as many times as needed.
wrong_answer ()

Amazing! The resulting code is easier to read, and you avoid repeating
code. Notice that you call the wrong_answer) function twice. This saves
you from having to write those lines of code twice. Also, if you ever

Simplify! Making your own functions 137

want to change the ending for a wrong answer, you only have to
change it in one place (in the function). In addition to helping you
organize your code, the ability to reuse functions is one of their key fea-
tures. You haven't changed the functionality of your program, but by

using functions, you've made it easier to read and simplified it.

DEFINITION Refactoring is a programming technique that focuses on
reorganizing and simplifying code in a program. Refactoring makes

the code easier to read and less complex.

Passing parameters: functions with inputs

You've looked at two different functions so far: one that doesn’t return anything
and one that does. Functions have another feature in addition to their ability to
return something—they can also receive information. Think of it as input to a
function. In programming speak, you say that the function has a parameter or
parameters. Let’s see how this works with an example. Suppose you have a
guessing game, and you want to create a function that prints a message to the
screen telling the player if their guess is too high, too low, or spot on:

def check_guess(guess, answer):
Compare the guess to the answer
if guess == answer:
print("You're correct!")
is_correct = True
elif guess < answer:
print("Too low!")
is_correct = False
elif guess > answer:
print("Too high!™)
is_correct = False
else:
print("Invalid guess™)
is_correct = False
Return True or False depending upon if the guess is correct
return is_correct

In this case, the def statement has the name of your function (check_guess).
Inside the parentheses are two parameters separated by a comma: these are in-
puts to the function. The first input or parameter is guess. This is a guess the
user has made. The second is answer, which is the number the user is trying to
guess. The function then compares guess and answer and tells the user whether
they were right or guessed too low or too high. The great thing about this func-
tion is that it can work with any numeric guess and answer (1 to 10, 1 to
1,000,000). By using parameters, you make the code more flexible.

138 CHAPTER 5 Raspi's Cave Adventure

The best way to learn about functions is by doing. Here are some func-
tions dos:

@ Use a simple name that describes the function.

@ Put comments about your function inside the function.

@ Return values when you want to use them in a program.

And here are some functions don'ts:

@ Use complex names.
@ Create functions with only one line of code.
» Forget to put a colon at the end of the def statement.

> Forget to call the function in your main program.

Fantastic programming! You're achieving the Zen of Python by sim-
plifying your code with functions.

Finishing the left cave

To complete the left cave, you need to add code for Raspi’s choices:
walking along the river’s edge, taking the boat, or swimming (the win-
ning ending). You'll make each of these choices its own function to help
organize your code and keep it uncluttered. You can call the functions
in the main program, shown in the next listing.

Listing 5.5 Calling functions for each of the left cave choices

Main Program
1st Choice: Left or Right Cave?
choice = left_or_right(Q)

if choice == "L" or choice == "LEFT":
Call a function called walk() # You walk into the Left cave
that displays messages choice = left_cave()
about Raspi’s fate. See the if choice == "W" or choice == "WALK":
source code for examples .
of the functions. # You walk along the edge of the river... game over
L—» walk ()
elif choice == "B" or choice == "BOAT": Call a function named boat()

You get in the boat... game over that tells you what happens
boat() 4/ if Raspi gets in the boat.

Simplify! Making your own functions 139

elif choice == "S" or choice == "SWIM":
You jump in the water and start swimming... Raspi wins
swim(Q) \

else: You guessed it: call the swim()

function that contains the

Wrong answer code for Raspi swimming.

wrong_answer ()
elif choice == "R" or choice == "RIGHT":
You walk in the right cave
else:
Wrong answer
wrong_answer ()

See the source code for chapter 5 for examples of each of these func-
tions (walk(), boat(), and swim()). They follow a structure similar to the
left_cave() and wrong_answer() functions. Feel free to make up your
own descriptions of what happens to Raspi or change the outcomes to
how you would like them.

Exploring the right cave

In this game, Raspi has two initial cave choices: left or right. Program-
ming the right cave is similar to the left cave. Once again, you'll use the
map and flow diagram as your guides. Let’s add the logic for the right
cave, which starts with the user finding a hole in the ground (see

figure 5.8).

The right cave uses logic similar to that of the left cave. You'll use if,
elif, and else statements to handle all the possible choices. As with the
left cave, notice that you indent the if/elif/else statements under the
other if statements to create the logic you desire. Nesting is the name
given to indenting one set of if statements inside another. The tech-
nique of nesting if statements is useful when you have logic that you
want executed only if a prior condition is True. In this case, you only
want to give the user the choice of fighting the dragon if they have
already decided to climb down into the hole using the rope. The logic
now matches the flow diagram for the game.

Let’s take another look at nesting using a different example. Imagine that
you want to write a program that displays a secret message after you

140 CHAFTER B Raspi's Cave Adventure

Flow diagram Code

1st Choice: Left or Right Cave?

choice = left_or_right(Q)

if choice == "L" or choice == "LEFT":
You walk into the Left cave

= Game over

nght cave choice = left_cave()

if choice == "W" or choice == "WALK":
Enter cave with # You walk along the edge of the river
hole in the floor walk ()

elif choice == "B" or choice == "BOAT":

You get in the boat
boat()
elif choice == "S" or choice == "SWIM":

You jump in the water and start swimming
swim()

else:
Wrong answer

Climb
down rope
or walk toward

torch?

Wrong) .game_over()
input elif choice == "R" or choice == "RIGHT":
Climb # You walk in the right cave
down rope choice = right_cave()

T [if choice == "T" or choice == "TORCH":
.ﬁ@; # You walk towards the torch light
= Enttyer) L torch()

dragon’s lair [~ elif choice == "R" or choice == "ROPE":
You climb down the rope
L choice = hole()
B if choice == "S" or choice == "SLAY":
You try to slay the dragon
. : L slayQ
the (:_Isg;n or d’:;%r;tn ; B elif choice == "R" or choice == "ROOM":
go into the dark - - k@" # You enter the dark room
room? =~ L room()
: else:
Wrong answer
L wrong_answer ()
Dark room else:

Wrong answer
wrong_answer ()
else:
Wrong answer
wrong_answer ()

You win

Figure 5.8 The right cave consists of a series
of decisions. One wrong move, and certain death
awaits Raspi. If the user makes the right choices,
Raspi will find the treasure. The code uses if/elif/else statements and functions.
See the code files for chapter 5 for examples of the functions.

enter the correct secret name (“Tim”) and correct secret password
(“raspberrypi”). If the secret name is guessed correctly, then the user has
to guess the secret password (see figure 5.9) to see the secret message.

If the password is correct, the user has to enter their favorite color. If the
color is red, the program will display the secret message (see figure 5.9).

Simplify! Making your own functions 141

The if statement tests whether Gathers input Asks the user to enter the password.
the user’s input matches from user The message only appears if
secret_name. the name was guessed correctly.
secret_name = "Tim"
secret_password = "raspberrypi"
The second if name = input("Who are you who can summon code? ")
statement is indented if name =="secret_nﬂme:
within the first. It only print("Welcome!™)
happens if the first password = input(secret_name + ", enter the secret password: ")
if statement is True. \» if password == secret_password:

print("I bestow upon you a Raspberry Pi!™)

else:
Indented to match the / print("You are not worthy!")

password if statement, else:

this else is evaluated print("Next time, try entering 'Tim'™)

only if the password

is incorrect.
Indented to match the secret name The secret message is displayed only if
if statement, this else is evaluated the name was guessed correctly and
only if the name is incorrect. then the password was guessed correctly.

Figure 5.9 1if statements can be nested within other if statements. In this case, the user is
only prompted to guess the password if they first guess the secret name correctly. Python
uses indentation to figure out what statements belong together and which if statements are
nested within other ones.

Troubleshooting

A common error when creating if/elif/else statements is forgetting to
include the colon at the end of the if statement. In this case, when you
run the program, you'll see a message pop up in IDLE saying “invalid
syntax”, and the Python text editor will highlight the end of the line in
red (see figure 5.10). You can fix this error by adding a colon at the end
of the if statement.

Another error is forgetting to put a colon at the end of the def state-
ment when creating your own function. In this case, you'll see the same

£ 1st choice: Left or Right Cave
choice = left_or_right ()

choice == "L"

£ You walk 1

choice = left cavel()

Figure 5.10 Highlighting by IDLE when there is invalid syntax
due to a missing colon (:) at the end of an if statement

142

Fruit

CHAPTER 5 Raspi's Cave Adventure

1st choice: Left or Right cave?
choice = left_or_right()

choice { "1 choice = "LEFT":
$# You walk intec the Left cave
rhaine = 1aft ~avell

Figure 5.11 Highlighting by IDLE when there is only one equals sign

message (“invalid syntax”) and red highlighting at the end of the line

missing the colon.

Finally, a third common error is using a single equals sign (=) when
comparing two values in an if statement. Python will highlight the
offending equals sign as shown in figure 5.11. Remember, you need to
use a double equals sign (==) to test the equality of two values. This
returns True (if the values are equal) or False (if they're not). The sin-
gle equals sign (=) is used to assign a value to a variable, like x = 7.

Fix this error by replacing the single equals sign (=) with double equals
signs (==). As you can see, small problems can cause programs to have
errors. If you get really stuck, ask a friend to look at your code, or post
your code to a forum and ask for help. You'd be surprised by how help-

ful other programmers are!

Picker Extra: playing video

In addition to displaying text, as in the cave adventure game, the Rasp-
berry Pi can output sound, show images, and play videos. Let’s see how
you can play a video on your Raspberry Pi. See appendix A to learn
how to set up your Raspberry Pi's Wi-Fi adapter. There are many dif-
ferent video player apps you can use on your Pi, but a great one is
OMXPlayer. It was created specifically for the Raspberry Pi and comes
preinstalled with Raspbian. We'll explore the audio (or sound) play-
back capabilities of OMXPlayer in chapter 8.

To show off your Pi’s capability, let’s play a high-definition demo video
from a movie called Big Buck Bunny.? It's about 10 seconds long and
has no sound. Open LXTerminal, and at the prompt enter

omxplayer /opt/vc/src/hello_pi/hello_video/test.h264

2 This is a video developed to test video playback and display.

Fruit Picker Extra: playing video 143

You should see a silent video play for about 10 seconds. Enjoy it! If
you know of a video file on the web ((mp4 or H.264 format), OMX-
Player can play it as long as you have a good internet connection. For
example, to watch the trailer for another video called Sinte/ make sure
you're connected to the internet and type in

omxplayer https://download.blender.org/durian/trailer/sintel_trailer-
720p.mp4

Why not open movies in a web browser? Because OMXPlayer can play
them much more easily —it was designed to use the Pi’s graphics pro-
cessing unit (GPU) for playing videos. This means most of your Pi’s
resources are available to do other things.

Live streaming: exploring from your Pi

You've been pretending to explore a cave. Now let’s see if you can use
your Pi to explore the ocean or space by live-streaming videos from
web cameras. You can turn your Piinto a way to see the sharks and sea
turtles by connecting to a live stream coming from the Monterey Bay
Aquarium in California. Or maybe you want to see what the Earth
looks like from the International Space Station right now.

With a few steps, you can configure your Pi to play live-streaming vid-
eos. First you need a small utility called Livestreamer that can take live
video streams and output them for OMXPlayer to play, just like your
test video. Let’s make sure you have the Python package installer.
Make sure you have a working internet connection, and then open the
Raspbian command line using the Linux Terminal (select Menu--
>Accessories-->Terminal), and install the software:

sudo apt-get install python-pip
After it finishes, install Livestreamer:
sudo pip install livestreamer

Now you need a link to a live stream of video. Livestreamer will work
with many of the most popular live-streaming sites. For this example,
you'll use Ustream, but you could also use YouTube Live and many

144 CHAFTER B Raspi's Cave Adventure

others. If you go to the Ustream website,® you can find links to live-
stream videos. Here are few different ones found on the site:

© Watch sharks and turtles at the Monterey Bay Aquarium:
www.ustream.tv/channel/9600798.

@ Check out the sea life living in the kelp beds at the Monterey Bay
Aquarium: www.ustream.tv/channel/9948292.

@ See the view from the International Space Station (it may appear
dark if the Space Station is in the shadow of the Earth):
www.ustream.tv/channel/9408562.

NOTE These links may change over time. You can get the latest links
by searching the Ustream website.

You'll need an internet connection for the next couple steps. You need
to figure out the video resolutions available. For the Monterey Bay
Aquarium live stream, enter

livestreamer http://www.ustream.tv/channel/9600798

A few messages appear, and at the bottom are the supported stream
resolution(s). For this live stream, you should see a response that says

Available streams: mobile_240p (worst, best)

This means mobile_240p is the only available resolution for the video
stream. This 1s a low-resolution stream, but it’s still fun to watch. Tell
Livestreamer to send the video to OMXPlayer with this command:

livestreamer http://www.ustream.tv/channel/9600798 mobile_240p —-
player omxplayer ——fifo

Great! You should see a video open after a few seconds. It will be low
resolution, but sit back and watch the amazing live view of fish, includ-

ing sharks (see figure 5.12)!

NOTE Notice that you have to type in mobile_240p. You'll type in one
of the supported resolutions from the previous step.

3 Explore the UStream live-streaming videos at www.ustream.tv/explore/all.

www.ustream.tv/channel/9408562
www.ustream.tv/channel/9600798
www.ustream.tv/channel/9948292

Challenges 145

LY = -

Figure 5.12 The Pi’'s monitor is a live stream from an aquarium. Check out
that shark! By using Livestreamer and OMXPlayer, you can stream live video
from exotic places, like water holes in Africa and the International Space Station.

Press Ctrl-C to stop Livestreamer and OMXPlayer. Enjoy exploring
the world from your Pi!

 EEEEEEEREEREEEEEERER:

These challenges focus on making improvements to the Raspi’s Cave
Adventure game. If you get stuck, check appendix C for hints and
solutions.

Introducing dramatic pauses

This first challenge is to include some drama in the game by adding
two-second pauses between the print and input statements throughout
Raspi’s Cave Adventure. This will create anticipation about what will

146

CHAPTER 5 Raspi's Cave Adventure

happen next and give the player more time to read the messages before
responding.

Here are some clues for how to accomplish this. First, Python has a
built-in time module that provides some useful functions for working
with time. At the top of the program, you need to add an import state-
ment to use this built-in Python toolbox:

import time

Once you've imported the time module, you can call the sleep function
in the program:

time.sleep(1)

This example code makes the program pause for 1 second. It takes the
form time.sleep(seconds), where seconds is the number of seconds you
want the program to pause. For example, if you wanted to display a mes-
sage, wait 3 seconds, and then display another message, you'd write

print("It was a dark, dark cave...™)
time.sleep(3)
print("Suddenly, a dragon appears out of the shadows.")

Go ahead and try to create some drama. If you get stuck, check appen-
dix C or review the code files.

Random demise

Games are always more interesting when they have an element of
unpredictability. Try to add some surprises to your game by improving
the wrong_answer function to randomly display a message from a set of
possible ways your player could meet their demise. Here are a couple
of examples to get you started:

@ Raspi sees a rock on the ground and picks it up. He feels a sharp
pinch and drops the rock. He realizes it wasn't a rock but a poison-
ous spider as he collapses to the ground.

> Standing in the cave, Raspi sees a small rabbit approach. Raspi gets
a bad feeling about this rabbit. Suddenly the rabbit attacks him, bit-
ing his neck.

Summary 147

Hint: Create if/elif/else statements with different endings, and then
use the random module to select from the possible endings.

Play again?
Modify the game so that no matter how it ends, the user is always given
the option to play again. Hint: Create a variable play_again that is ini-
tially set to “Y”. You'll also need to add a while loop to your game that
will make the game repeat as long as play_again is equal to “Y”.

Scream!

If you have a set of headphones or your Pi is connected to a TV with
built-in speakers via an HDMI cable, you should be able to play sounds
and hear them. Let’s look ata simple program to play asound on your Pr:

import os
scream_file_path =
"/usr/share/scratch/Media/Sounds/Human/Scream-male2.mp3"

n

os.system("omxplayer " + scream_file_path)

Test the program, and you should hear a scream. Now see how you can
integrate the scream or other sounds into Raspi’s Cave Adventure. You
can find more sounds on your Pi in the Scratch folder: /usr/share/

scratch/Media/Sounds/.

NOTE OMXPlayer works best with sound files ending in .mp3. Only
some files ending in .wav will work. We'll talk more about sound files
and the OMXPlayer in chapter 8.

See appendix C if you need help solving these! Good luck!

You can create engaging programs by putting logic and instructions
together into more complex programs:

@ Use flow diagrams to map out complex programs before you begin.

@ Create flexible programs that can handle unexpected input through
the use of Boolean operators.

148 CHAPTER 5 Raspi's Cave Adventure

@ Build programs with multiple choices and outcomes using if, elif,
and else statements. Chain together multiple elif statements to cre-
ate as many choices as you need.

2 When you have logic embedded within logic, nest if statements to
create decisions that depend on prior choices or conditions.

» Organize your code and cut down on repetition by defining your
own functions and then calling them in your program.

Part 3

Pi and Python projects

et’s face it. Pressing buttons, playing sounds, and lighting up cool col-
ored lights is fun! Now you get to use your Pi to make those things
happen. You're going to create interactive projects that use your Pi’s
input and output pins. This makes your Pi a special type of computer
that doesn’t just show images on the screen, but that can control and
sense the world around it. This realm is called physical computing.
Robotics is physical computing, but think about all the creative possi-
bilities such as making interactive art, creating smart rooms that sense
your presence and turn on a light or play music, or producing some-
thing that can alert you if it’s about to start raining or your pet is drink-
Ing water.

In part 3, you'll build projects that can interact with the world using
Python and your Raspberry Pi. The projects will require some addi-
tional parts that you can purchase individually or as part of a kit, such

as the CanaKit Ultimate Kit, Adafruit Starter Kit, or MCM Electronics
Starter Kit:

@ Raspberry Pi 2 Model B including SD card, power supply, cables,
keyboard, and monitor

2 Breadboard
@ GPIO ribbon cable for the Model B+ (40 pin)
¢ GPIO breakout board

@ 1 dozen jumper wires, male to male

150

Pi and Python projects

@ 1 red LED (light-emitting diode)

@ 1 green LED

> 1 blue LED

@ 3 push buttons

@ 3 resistors, 10K ohm

@ 3 resistors, 180 ohm (or between 100 and 300 ohms)

@ Headphones or powered computer speakers

You start in chapter 6 by setting up your Pi with an electronics bread-
board, building a simple circuit, and controlling an LED (light) using
Python. You'll learn how to communicate through your Pi’s output
pins to make something happen. In this case, you'll make an LED light
up. Chapter 7 dives into creating an interactive guessing game that
uses lights to respond to a player’s input, letting them know with differ-
ent colors whether their answer is right or wrong. In chapter 8, you'll
learn how to listen to your Pi’s input pins by wiring up a push button
on your breadboard and then responding when it’s pushed; and you'll
complete a project that combines buttons and sounds to make your
own DJ Raspi sound mixer. By the end, the goal is for you to have the
knowledge, skills, and confidence to think up and create your own Pi
and Python projects.

2

Blinky Pi

In this chapter, you'll be learning about

¢ Glving your Fi the ability to talk to the outside world through connectors to
anything

¢ Frogramming the world outside your Fi with simple electric/electronic circuits

¢ Frogramming the connectors using your previous Fiython knowledge to make
light patterns

Setting robots in motion, creating smart homes with sensors, and design-
ing an interactive electronic art exhibit sound like vastly different topics,
but they're all things you can do with your Raspberry Pi. In each case,
the Pi can act as the brain and interact with the world by doing things like
@ Checking a robot’s sensors and controlling its motors

@ Sensing a room’s occupants and adjusting the thermostat or lights

@ Controlling sound, motion, and light as part of an art display

In this chapter, you'll set up your Pi to control small light bulbs called
light-emitting diodes (LEDs). You'll make the LEDs blink using Python.
To do this, you'll need to learn a bit about how to build electrical circuits
on breadboards. If you've never heard of a breadboard, don’t worry! It’s

151

152

CHAPTER & Blinky Pi

a small board with lots of holes in it to make it easier to build electrical
circuits. You'll also be using short wires (called jumper wires) to con-
nect certain holes. You'll even learn how to add resistors that keep your

LEDs from burning out. See figure 6.1 for a list of parts and what they
look like; gather the parts, and let’s get started!

Blinky Pi parts
Shopping List
Parts for this chapter:
« Raspberry Pi
+ Ribbon cable
« Breakout board
+ Golderless breadboard
« 1 blue LED
« 1 green LED
1 red LED
« 3 jumper wires (male-to-male)
*
+ 3 resistors, 180 ohn 0 ohms
o cietors with values befween 100 and 80
will work.
Raspberry Pi
(not shown) 3 jumper wires 3 light-emitting
Breakout (male-to-male): any diodes (LEDs): red,
Ribbon cable board length will do. green, and blue

1}

3 resistors: 180 ohm
Color bands: brown,
grey, and brown

Solderless
breadboard

Figure 6.1 The Blinky Pi project requires parts that are commonly found in
Raspberry Pi starter kits or that can be purchased online.

Setting up your Fi for physical computing 153

Setting up your Pi for physical computing

Your Piis unique compared to most computers because of its input and
output pins, called GPIO pins. Let’s learn how to work with those pins.

DEFINITION GPIO stands for general purpose input and output.
These are the pins on your Raspberry Pi that allow it to sense and con-
trol things around it.

GPIO pins
The Raspberry Pi 2 Model B and Raspberry Pi 1 Model B+ have 40
pins located on the edge of the board, arranged in 2 rows of 20 pins
each (see figure 6.2). Most of the pins on a Pi are used for input and
output, so they're often referred to as the Pi’s GPIO pins.

WARNING This project is written for Raspberry Pi 2 Model B. Ear-
lier models of the Raspberry Pi have only 26 pins. See appendix B for
information about the differences from the more modern Pi boards.
To complete this project with a Raspberry Pi 1 Model B, you may
select different pins to light up your LEDs.

Side view

40 pins in 2 rows of 20 pins
each. 26 of the pins are called
GPIO pins because they're used
for general purpose input

and output.

Figure 6.2 The Raspberry Pi
2 Model B has a set of pins
arranged along the edge and
Top view corner of the Pi board.

154

CHAPTER © Blinky Pi

You’ll find 26 GPIO pins
in no particular order.

ID SCL
GROUND /|

5-volt and =
3.3-volt pins: &
two of each o Qg A
fa) ~~ r~ o @ T [=k:s (]
— o -0 =
Spefeel -t RS- 3
oo o
R EREES © %
(U] Q0 (o]
L - L

8 ground pins
(0 volts)

Figure 6.3 The Raspberry Pi B+ has 40 pins. They do different things: some
provide 5 volts or 3.3 volts, some are ground pins (0 volts), and many of them
are input and output pins that you can program.

Because all the pins look identical, you need a key or diagram to tell
you what each one does. Figure 6.3 shows the pins labeled.

Physical pins vs. GPIO pin numbers

In this book, we’ll always refer to the GPIO pin numbers, not the physical pin
locations. The physical pins are numbered from 1 to 40 (shown in the circles in
figure 6.3). The GPIO pin numbers go from 1 to 26, and those numbers don’t
match the physical pin numbers. For example, GPIO 24 corresponds to physical
pin 18. By always using the GPIO numbering, it will be easier to wire your circuits

and create programs.

Wow, that’s a lot of pins! Some pins are for power and are labeled
either 3V3 or 5V. These produce 3.3 volts or 5 volts, respectively.

Setting up your Fi for physical computing 155

There are also 8 ground pins and 26 GPIO pins' —26 pins, just like
there are 26 letters in the alphabet.

The GPIO pins support sending out electrical signals (output) or listen-
ing for electrical signals from sensors (input). In your body, your brain
can send signals to your hand to smack yourself on the forehead (try
it!) —this is just like the output from a Pi. Signals are sent out of your
Pi to make something happen in the world.

The opposite of output is input. When someone pokes you, your body
can detect that poke using nerves in your body. An electrical signal
(input) is sent to your brain so you know you've been poked. This is
like the way your Pi can be used to detect input or actions in the world.

You'll learn how to output signals in this chapter and chapter 7. Chap-
ter 8 will cover detecting input from the world, such as detecting when
a button has been pressed.

Let’s get ready to connect some wires! But wait: connecting an LED
directly to the GPIO pins on the board of your Raspberry Piisn’t feasi-
ble, because the pins are so close together. What can you do? You need

more space to build circuits.

Breaking out the GPIO pins to a breadboard

To give you room, you'll move the GPIO pins over to a breadboard.
This is called breaking them out. To do this, you need a ribbon cable,
breakout board, and solderless breadboard (see figure 6.4).

Breadboards make it simple to prototype circuits. Like a park might
provide large, open fields that make it easy to play sports, think of a
breadboard as a nice, open electrical playing field where you can play
with electrical parts. The breadboard allows you to plug wires and
components into small holes. You can build and rebuild circuits on a

breadboard with little effort.

' Oddly, you'll notice that the GPIO pins are numbered from 2 to 27. Pins 0 and 1 are used for commu-
nicating with other computer chips using a super-special protocol called 12C. These are labeled ID
SDA and ID SCL in figure 6.3.

156

CHAPTER © Blinky Pi

40-pin ribbon cable: super-
useful for connecting your
Pi to a breadboard

GPI0 breakout board: A handy board
that lets you break out or move the
Pi's pins to a breadboard to make it
easier to build circuits

Al
Usually the first ;|"|'||I||I|||||||||||||||I‘||“|‘
|

wire is marked in ' '||||| | |“
red, to let you know "u!_|'|"i|' I ||| ||‘
il |‘

it's the wire for pin I. '||J |||
Solderless breadboard: Plug
the breakout board into the

breadboard and connect it to
the Pi with the ribbon cable.

Figure 6.4 To easily create projects using your Pi’s GPIO pins, you can connect the
Pi to a breadboard using a ribbon cable and breakout board. The parts shown are
examples of the ones commonly found in many Raspberry Pi kits.

Find your breakout board, and insert it into the top of the breadboard.
Line up the pins before you push it down hAard (see figure 6.5). Your
particular breakout board may look a little different, but they all act the
same. With the breakout board in place, it'll be easier to build circuits
with your GPIO pins.

Connect one end of the ribbon cable to the Pi's GPIO pins; line it up
carefully before you push it down. Then connect the other end of the
cable to the breakout board on your breadboard (see figure 6.6). A
breakout board has a notch in it so the ribbon cable will only fit one way.

WARNING Ribbon cables usually have a stripe that marks the first
wire. White or grey ribbon cables often use a red stripe. Black ribbon
cables often have a white stripe. These mark the first wire on the
cable. Make sure this first wire is connected toward the edge of your
Pi’s board and away from the USB ports.

Setting up your Fi for physical computing 157

Breadboards usually have numbers Insert the breakout board
along the side to label each row. Columns into the breadboard. Make
are labeled with letters (a—j). / sure to line it up carefully.

The holes allow you to
connect components
so you can build
circuits easily.

Insert it along the top edge
of your breadboard. Not sure
which way is up? Look at the

There are two groups numbering on the board.

of letters. On the left are
letters a—e, and on the
right are letters f—j.

Figure 6.5 Carefully line up the breakout board, and then press it firmly into the
breadboard. The two rows of pins on the breakout board should straddle the center gap.

Caution: Be careful not to bend any pins. Line up
the connector and pins before pressing them together.

Connect the
ribbon cable to

the breakout board. \

Connect the & Warning! Make sure the

ribbon cable to wire for pin | (marked red

the Raspberry Pi. or white) is toward the
corner of the Pi and away
from the USB ports.

Figure 6.6 Connect one end of the ribbon cable to the breakout board.
Connect the other end to your Raspberry Pi.

158 CHAPTER © Blinky Pi

Breadboard basics

A breadboard? has a set of internal connections that you can’t see. But
if you had X-ray vision, you'd see that certain holes are connected.
Let’s look at the connections in your breadboard (see figure 6.7).

X-ray goggles (not for sale) Holes on the left and right sides
are NOT connected across the gap.

In each row, holes
a—e are connected
horizontally.

Holes f—j in the
same row are
connected as well.

g

-

(T

G OEEE

Y

Each side has positive (+) and Note the letters labeling Numbers are
negative (—) power buses. the holes along the used to label
These are connected vertically. bottom and top. each row of holes.

Figure 6.7 Breadboards have internal connections. You need to know about them in
order to build circuits. Rows of pins are connected horizontally, but not across the gap in
the middle. Long rails called power buses run vertically along the sides of the board.

2 Prior to the development of the kind of breadboards we're using, people built circuits on pieces of

wood that were used to cut bread on (hence the name). They needed a quick way to connect circuits,
and by drilling holes and using nails and wires, they could use bread boards to try different circuits.

Setting up your Fi for physical computing 159

On this breadboard, rows are labeled with numbers (1-30), and the
columns have letters (a—e on the left side and f—j on the right side). You
can refer to a specific hole in the breadboard by saying its row number
and letter. For example, if you wanted to refer to the hole located in
row 25, column ¢, you could say 25¢ (see figure 6.8). Just as you might
find your seat at a stadium by walking along the aisle to find the correct
row, and then moving along the row to find the right seat, you'll use the
letters and numbers to guide you in building your circuits.

BREADBOARD (BB) HOLES

We'll refer to the row and column, but we'll prepend the letters BB so
you know it’s the breadboard location we're talking about. Figure 6.8
shows the location of BB25¢. If we're talking about a GPIO pin or con-
nection, we'll add GPbefore the number (GPIO pin 21 is GP21).

Try to keep in mind what is connected in a breadboard and what isn't.
If you forget, you can always look back at figure 6.7. For example,
notice that BB25 a, b, ¢, d, and e are all connected. Similarly, BB30 f, g,

=== "= ===
i i | .
| Ae = & = = = =85 8 3)
.. | ‘.
2im ™ omom o= = % = = =
= ..
?I?WZSH| i B ;leI--- | ssams2 |
ote: Holes are N-8_N_§ - m == =]
[
connected in the 2 W w m - swsssy |“°
row from a to e.) -
@!5 " me= =) i
CEE RO LR B W
[
- - - CHE N B i g
N = s = - W « m =) B
- -eme. LR T -
i - . wm = - . w = w0 =8
e e (i (7] 7] L +
Hole BB25c Column ¢
(BB stands for
breadboard.)

Figure 6.8 To find a specific hole on a breadboard, use the row and column
labels. This is a close-up of a breadboard, showing how you can find the location of
hole 25c (we’ll refer to the hole as BB25c, where BB stands for breadboard).

160 CHAPTER © Blinky Pi

h, 1, and j are connected. But the left side of the board isn’t connected
to the right. For example, BB25e isn’t connected to BB25f. To connect
them, you'd put a jumper from BB25e to BB25f.

You can see vertical columns of holes along the sides of the bread-
board. These are the power buses and provide easy ways to connect
electrical components to power (positive) and ground (negative).

Circuits 101

Let’s learn about electricity and circuits. At the simplest level, a circuitis a loop
or path where the electrical power starts at a source (the positive side of a power
source), goes through one or more electrical components (such as a light or mo-
tor), and then completes the loop (or path) by connecting back to the negative
side of the source.

WHAT IS ELECTRICITY?

Electricity is the flow of charge. Typically, it is the flow of electrons, which have
a negative charge. To get electrons to flow, you need to have a difference in
charges. Just as the north pole of a magnet is attracted to its opposite—the south
pole of another magnet—positive and negative electric charges are attracted to
one another. If the charge is free to move, it will move. We generally think of
circuits as having electricity flowing from the positive (+) side of the source to
the negative (-) side of the source. For your Pi, the power is coming from the
power supply (Micro USB plug). The Pi as a power source can provide either +3.3
volts or +5 V (volts). It provides this power through the physical pins 1, 2, and
4, but can also send +3.3 V out any of the 26 GPIO pins (you’ll program it to do
that soon).

VOLTAGE (VOLTS)

Voltage is a measure of the difference in electrical charge between the positive
and negative source. When you have two different charges, they’re attracted to
one another (positive and negative attract). The greater the difference in charge,
the greater the force (or electrical pressure) wanting to move charges through
the circuit from the positive side to the negative side.

Voltage is measured in volts (V), named after Alessandro Volta, who is credited
with inventing the first battery. A 9 volt (or 9 V) battery has a greater electric
force for moving charge than a AA battery, which only has a voltage of 1.5 V.

CURRENT (AMPERES)

The currentin a circuit is the amount of charge flowing. So whereas voltage is a
measure of how badly charges wanft to flow, the current is a measure of how
much charge is actually flowing.

Imagine that you could be inside a wire and see the charge flowing through it. A
large current would mean a lot of charge (usually electrons) bumping along and

Building the LED circuit 161

through the wire over some period of time. A small current in that same wire
would mean a lot less charge flowing over that same time period. Current is mea-
sured in amperes (A), named after André-Marie Ampére. A current of 1 ampere
(or 1 A) is equivalent to the amount of charge of 6.241 x 10'8 electrons flowing
through a wire per second! That is a lot of charge flowing. You can decrease the
current in a circuit by increasing the resistance of the circuit to the flow of elec-
tric charge.

RESISTANCE (OHMS)

The resistance in a circuit is a measure of how much it opposes the flow of
charge (current). A light bulb, a motor, and your body all have resistance. The
opposite of resistance is conductance. Substances such as metal (copper, silver,
and gold) are all good conductors, and this is why we build circuits with metal
wires for the electricity to flow through.

Sometimes you need to control the current (the flow of charge). Resistors are
used to do this; they’re made of materials that slow down the flow of charge. The
most common ones are made out of carbon (you’ll be using these in your proj-
ects). The resistance of a circuit is measured in ohms, named after Georg Ohm,
and is represented using the Greek symbol omega (Q).

P1 CIRCUITS

You can think of your Pi as providing 3.3 V from the positive side of the Pi or,
later, coming out of one of the GPIO pins. This +3.3 V is a force that is trying to
push electric charge to the negative (-) side of your source. The negative side is
sometimes called the ground—think of it as a big sink or reservoir to which elec-
tricity wants to flow if there is a path to get there. During the next few chapters,
you’ll build circuits with LEDs and resistors. You use a resistor with an LED to
decrease the flow of electric charge (the current) so it won’t be too large and
burn out your LED. Burning an LED smells bad!

On your breadboard, think of all the GPIO pins as potential sources of
voltage (positive). Circuits from the GPIO pins should end back at any
one of the many ground (negative) connections.

Building the LED circuit
Your first project is to light up a red LED. You'll control the LED using
GPIO pin 21 (GP1O21). You need these parts:

» Raspberry Pi, ribbon cable, and breakout board connected to your
breadboard
1 red LED (5 mm)
1 180 ohm resistor

1 jumper wire (male-to-male)

162

CHAPTER © Blinky Pi

3.3V (volts) Ground
+ -

< %A% >

R

Symbol for LED Symbol for resistor
(light-emitting
diode) —ens—

Figure 6.9 Circuit diagram for the blinking LED project

You'll build the LED circuit on your breadboard and then program it to
light up. Figure 6.9 shows the circuit diagram. To light the LED, you'll
have electricity (+3.3 V) flow from your Pi’s GPIO pin 21 through the
LED, through the resistor, and then to ground (0 V).

Figure 6.10 shows the LED circuit built on the breadboard. Note that
there are many different ways to create this circuit—this is just one
way. Let’s walk through the steps to build the circuit.

I. Connect a /

jumper from
BB20i to BB25a.

3. Connect a resistor
as| " from BB25j to the
"l negative (or ground).

2. Connect an LED from BB25e (longer leg)
to BB25f (shorter leg).

Figure 6.10 LED circuit built on the breadboard. You’re using GPIO pin 21
as the power source. The light won’t turn on until you program the voltage
to come out of the pin.

Building the LED circuit 163

NOTE You may have a different breadboard than the one used in this
book. If so, the numbering on your breadboard may be different than
what is shown here. In that case, you'll need to create the circuit fol-
lowing the same principles, but with different numbered holes.

Step 1. Connect the jumper from GPIO pin 21

Raspberry Pi GPIO pins can output 3.3 V. You could pick any pin, but
this project uses GPIO pin 21.

Connect a short piece of wire from GPIO21 on your breadboard to an
empty row on the breadboard. Use row 25. Firmly push the wire into
the hole. The metal tip of the wire should go down into the hole, not sit
on top.

The breakout board pins are connected to rows on the breadboard.
We'll refer to the holes on the breadboard (see figure 6.11). Insert one
end of the jumper into BB20i and the other end into BB25a.

Where is GP16? Where is GP2I?
Answer: It’s connected to Answer: Row 20f-j of

row 18f-j of the breadboard. w f the breadboard.

: The breakout board has the GPIO,

5 TXD 18 23 GND CEQ 2 16 power, and ground pins labeled.
INANADARDAND (Don’t worry about the other labels—
SU GND RXD GND 24 25 s .

they’re for more advanced projects.)
3U3 SCL GND 27 3U3 MISO
 EEELEEERLELELL]

SDA 4 17 22 HOSI SCLK SD

Note: GP is short for GPIO.
So GPI6 means GPIO I6.

Where is GP22?
Answer: Row 8a—e
of the breadboard.

Figure 6.11 The breakout board has labels that correspond to the pins on your
Pi. To connect a wire to GP16, you plug it into the breadboard in the hole labelled
BB18f or BB18;.

164

CHAPTER © Blinky Pi

Step 2. Add the red LED

It’s time to connect the red LED.
LEDs only let electricity flow
through them one way, so it’s
important to put them in the right
way. LEDs have two wires or
legs. The longer leg is called the
anode and connects to the posi-
tive side of the circuit (see figure
6.12). The shorter leg, called the
cat]zode, connects to the negative
or ground side of the circuit.

With the red LED, connect the
longer leg to BB25e and the
shorter leg to BB25f. You may
need to bend the legs and push
them a bit to get them into the
holes.

Step 3. Connect a resistor

Very small flat spot on
the edge of the LED’s
negative side

Shorter leg connects
toward the negative (-)
LN

.,

Longer leg connects
toward the positive (+)

Figure 6.12 LEDs have two legs (wires)
coming out of them. The longer leg is
called the anode and connects to the
positive side of the circuit. The shorter
one is called the cathode and connects
to the negative side of a circuit.

Grab your 180 ohm resistor.> You can identify a resistor by its color-
coded bands. A 180 ohm resistor has colored bands of brown, grey, and
brown (see figure 6.13). They are followed by a fourth band that

180 ohm resistor

\ Gold
(the tolerance
of the resistor:

Brown Grey Brown gold = +£5%)

Figure 6.13 The value of a resistor
is determined by its colored bands.
See the sidebar “Resistor color codes”
for a chart; there are also many online
color-code charts.

3 If you don’t have a 180 ohm resistor, you can use a resistor with a value between 100 and 330 ohms. If

you use a resistor with a value that is too large, the LED may not light up or will be dim. Try experi-

menting with different resistors to adjust the brightness.

Building the LED circuit 165

indicates the tolerance or quality of the resistor. Common colors for the
fourth band are gold (5% tolerance) and silver (x10% tolerance).

The resistor prevents too much electric current? from passing through
your LED and burning it out. Insert one end of the 180 ohm resistor into
BB25j and the other end into the negative (-) power bus (or ground).

Electricity will flow either way through a resistor, so which way you
connect it doesnt matter. Remember that the negative power bus or
ground rail is running vertically along the right side of the breadboard.
Most boards have a blue stripe next to it.

Resistor color codes

Resistors have color codes that tell their value and tolerance. This chart shows
you how to read the resistor color bands.

Red Purple Red Silver

N
..// l\l.\.

1st digit 2nd digit Multiplier Tolerance
oo GIEDGEED GEED
oo GEEDGEND DI G
o GEEDGEED DD GO
ourge QISH)GSED GEKD
Voo (&) (&)
oo GEENDGESHD GOONO SO
o QISEDGISE) @AMD O25%
P QD QD (GHOND QD
crey (HEND NEND silver
White EoiD %D cou

_ K = 1,000
(__Resistor color codes) M = 1,000,000

Red Purple Red Silver

i

“27” x 100 = 2700 ohm or 2.7k ohm *10%

4 Current is a measure of the flow of electric charges per second. If the current through an LED is too
high, the LED will burn out.

166 CHAPTER © Blinky Pi

(continued)

For example, consider a resistor with red, purple, red, and silver bands. Follow
these steps to use the chart:

» Look up the digit for the first band and the digit for the second band, and
put them together. In this case, the digits are 2 and 7: put them together,
and you get 27. Note that you don’t add the numbers; you treat them as the
first and second digits of the resistor value.

@ Find the multiplier by looking up the color for the third band. In this case,
it’s 100 ohms (red).

2 Put it all together: 27 x 100 ohms is 2,700 ohms or 2.7K ohms (K = 1,000).

2 The fourth band (silver) tells you the resistor has a tolerance of +10%.

A red, purple, red, and silver resistor is a 2.7K ohm resistor with a +10% toler-
ance. Use this handy chart any time you need to look up the value of a resistor.

That’s it! You have a completed LED circuit built on your breadboard.

Now it’s time to program it!

Software: blinkLED program

Open IDLE by choosing Python 3 under Menu > Programming. This
opens IDLE to the Python 3.x Shell. In the Python Shell, let’s check to
see if your Pi has the GPIO libraries you need already installed:

>>> import RPi.GPIO as GPIO

If you don't see an error, you're ready to go. If you see an error saying
there is no module named RPi.GPIO, please refer to the sidebar “Updat-
ing your P1.”

Updating your Pi

Before programming, you need to check that your Pi is up to date. Make sure
your Pi is connected to the internet. Open the Terminal program by going to
Menu --> Accessories --> Terminal, and run the following commands to update
your Raspberry Pi and be certain you have the Raspberry Pi GPIO packages you
need.

First, let’s update the apt-get database. The apt-get program handles install-
ing and removing software from your Pi. In Terminal, enter this command:

pi@raspberrypi ~ $ sudo apt-get update

Software: blinkLED program 167

You’'ll need to wait while a bunch of files are downloaded and installed. You'll
see lots of messages displayed in Terminal. When the command completes,
you’ll see the Terminal $ prompt again. Next, to get the latest Pi software, enter

pi@raspberrypi ~ $ sudo apt-get upgrade

Once again, files will be downloaded and installed. After a series of messages,
you’ll see a warning about the upgrade using additional disk space, and this
prompt: “Do you want to continue [Y/n]?” Enter Y and press Enter to continue the
upgrade.

This is a great time to grab a sandwich and soda. It can take 15 minutes or more
for the update to complete. When it’s finished, you’ll have the latest Raspberry
Pi software and Python libraries, including the ones you need to communicate
with and control the GPIO pins.

You're going to write a program that blinks an LED. It'll send a voltage
(+3.3 V) out of a GPIO pin to light the LED, then turn it off, and repeat
that over and over. Begin by creating the following new program in
IDLE. In the Python Shell, start a new program by pressing Ctrl-N or
selecting File > New Window.

Listing 6.1 Blinking LED program

tmport RP1.GPIO as GPIO Load the libraries you need to

import time control the GPIO pins.
Create a variable for the

Variable for the GPIO pin number ~ GPIO pin number you’re
LED_pin_red = 21 4/ using to control the LED.

Tell the Pi we are using the breakout board pin numbering
GPIO.setmode(GPIO.BCM)

Set up GPIO pin 2I
Set up the GPIO pin for output J a:a:I\Poutput.Pm
GPIO.setup(LED_pin_red, GPIO.OUT)
Loop to blink our led Turn on GPIO pin 2|
while True: 4/ (GPI0.HIGH means turn on).
GPIO.output(LED_pin_red, GPIO.HIGH)
pr‘lnt(on™) Turn off GPIO pin 21
time.sleep(1) 4/ (GP10.LOW means turn off).
GPIO.output(LED_pin_red, GPIO.LOW)

print("0ff")
time.sleep(1)

166 CHAPTER © Blinky Pi

Save the program as blinkLED.py in your home folder. The program
can’t be run the same ways you've run programs before using IDLE.

Running the program

Select Run > Run Module (or press F5) from the IDLE text editor to
run your program.With older versions of Raspbian, programs using
GPIO pins must be run from the Raspbian command prompt as the
superuser (or root)°. If you run the program at the Python Shell in
IDLE, you'll get an error:

RuntimeError: No access to /dev/mem. Try running as root!

In this case, you use the sudo command to do this. To run the blink-
LED.py program, open LXTerminal and enter the following command:

pi@raspberrypi ~ $ sudo python3 blinkLED.py

Behold the blinking LED! Try making the light blink faster by adjust-
ing the value in the sleep function. Use a smaller number of seconds,
such as 0.5 or 0.1.° To stop the program, press Ctrl-C.

NOTE Stopping the program with Ctrl-C may result in the light being
left on (depending on when you press it). Also, the next time you run
the program, you may see a runtime error, but the program still works.
We don’t cover it here, but look online for the Python commands try/
except/finally and the GPIO.cleanup() command. It's a fancy way to
make sure all the GPIO pins are reset when you exit the program.

TROUBLESHOOTING
If the light isn’t blinking, here are some things you can check:

@ Are the on and off messages displaying on the screen? If so, it’s prob-
ably not your code that has a problem. Check the circuit on the
breadboard. Make sure the ribbon cable is connected properly, with

5 In October 2015, the Raspberry Pi Foundation released Raspbian version "Jessie," which allows you
to run programs using the GPIO pins directly from IDLE. With "Jessie" you don't need to open the
command prompt. Simply press F5 or select Run > Run Module from the IDLE text editor menu to
run your programs.

Too small a number may cause the light to appear to stay on, but more dimly. This is because your
eyes can only perceive blinking that is greater than about 1/25th of a second, or 0.04 of a second.

Software: blinkLED program 169

the first wire connected toward the edge of your Pi, away from the
USB ports. Double-check that the jumper, LED, and resistor are
connected to the correct holes.

@ Could your LED be inserted the wrong way? Make sure the shorter
leg is toward the negative or ground side. Try turning it around.

@ Double-check the size of the resistor you used in the circuit. If the
resistor is too large, the LED won't light up. A resistor that is
between 100 and 300 ohms should work.

» Look through your Python program for errors. Check that you have
set LED_pin_red equal to 21 and that you're setting it HIGH and then Low.

blinkLED: how it works
Let’s take a closer look at how the blink LED.py code works.

LOADING LIBRARIES

The import commands load the libraries or toolboxes you want to use in
your program:

import RPi.GPIO as GPIO
import time

These commands load the Python libraries for controlling the Pi’s
GPIO pins. They also load the time library so you can use the sleep
function to control the rate of blinking.

Importing libraries with the as keyword

Notice the as keyword in import RPi.GPIO as GPIO. Why can’t you just type
import RPi.GPIO?

The as keyword tells Python to load the library to a certain name you specify. It’s
kind of like giving the whole library a nickname. In this case, it’s so you can refer
to RPi.GPIO as simply GPIO.

An example will make it clearer. Once you’ve imported the RPi.GPIO library as
GPIO, you can type GPIO.setmode(GPIO.BCM). Without it, you would have to
type RPi.GPIO.setmode (RPi.GPIO.BCM). You can see how using as GPIO saves
you some typing!

Once the libraries are loaded, you can set up your GPIO pins.

170

CHAPTER © Blinky Pi

SETTING UP A GPIO PIN FOR OUTPUT

To set up a GPIO pin, you first need to tell Python on your Pi that
you'll be referring to pins by the standard breakout numbering scheme.
These are the numbers printed on the breakout board. You use the set-
mode function:

GPIO.setmode(GPIO.BCM)

BCM stands for Broadcom —the maker of the computer chip that the
Pi uses. Next you tell your Raspberry Pi that you'll be using
LED_pin_red (GP21) for output, meaning you're planning to send some
electricity out of it:

LED_pin_red = 21

GPIO.setup(LED_pin_red, GPIO.OUT)
GPI0.0UT prepares GP21 to send out +3.3 V of electricity.

LOOPING AND BLINKING

Finally, you create an infinite while loop and turn the LED on (set
GPIO0.HIGH) and off (set GPIO.LOW). You also add a delay using the sleep
method found in Python’s time library. Notice how the sleep function
takes a parameter that is the number of seconds to sleep or pause. In
this case, you use 1 second:

while True:
GPIO.output(LED_pin_red, GPIO.HIGH)
print("On")
time.sleep(1)
GPIO.output(LED_pin_red, GPIO.LOW)
print("Off")
time.sleep(1)

The print commands display messages to the screen. Although they
aren’t necessary to blink the LED, they can help debug your program.
If you do use them, the screen could quickly fill with messages. Set a
longer delay time to prevent this. If you see the messages on the screen
but your LED isn't lighting up, then you probably have an error in
your circuit and not in your program. Check your wiring, try turning
around the LED, or try a different LED in case that one is defective.

Adding more LEDs 17

Adding more LEDs
One LED is fun, so three LEDs must be lots of fun. Let’s try adding
green and blue LEDs and modify the program to control them. Here
are the parts you need:
@ Raspberry Pi and circuit from before
@] green LED
@ 1 blue LED
@ 2 180 ohm resistors

@ 2 jumper wires (male-to-male)

Building the circuit
You'll follow the same process as before to add the green and blue
LEDs. Figure 6.14 shows what the circuit diagram looks like now, and
figure 6.15 shows the circuit on a breadboard.

3.3 V (volts) Ground
+ Red LED Resistor

GPIOpin21 @ ’I W\/ {>
AN

Green LED

GPIOpin22 @ »I AVAVAY: {>
NN

+

+ Blue LED

GPIOpin23 @ »I AN {>
NN

Note: Technically, the LEDs will be connected to a
common ground on the Pi, so we could show these
wires all connected together to one ground.

Figure 6.14 Circuit diagram for three LEDs: red, green, and blue. You’ll use 180
ohm resistors like before. They will all be controlled by different GPIO pins. Red
will use 21, green will use 22, and blue will be connected to pin 23. You could use
any of the 26 different GPIO pins.

172

CHAPTER © Blinky Pi

Connect resistors:
/ BB25j to ground (-)
.« BB27j to ground (-)
I T BB29j to ground (-)

Connect jumpers:
BB20b (GP2I) to BB25a —~
BB8c (GP22) to BB27a ——_,

BBSi (GP23) to BB29a ——

| E

Connect LEDs:

Red LED: BB25e to BB25f
Green LED: BB27e to BB27f
Blue LED: BB29e to BB29f

Figure 6.15 The three-LED circuit is built on the breadboard. Each LED and its
corresponding resistor are placed in a row together. This example uses rows 25,
27, and 29.

To add the green LED, follow these steps:

1 GP22 is located on the /eft side of the breakout board in row 8 on the
breadboard. Connect it to row 2/ insert one end of the jumper into
BB8c and the other end into BB27a.

2 Connect the long leg of the green LED to BB27e and the shorter leg
to BB27f. Bend the legs if needed.

3 Connect a 180 ohm resistor (brown, grey, and brown) from BB27j to
the closest hole in the negative power bus.

Here are the steps to add the blue LED:

1 GPIO23 is located on the right side of the breakout board in row 8 on
the breadboard. Connect it to row 2% insert one end of the jumper into
BB8i and the other end into BB29a.

Multiple LEDs: program itl 173

2 Connect the long leg of the blue LED to BB29e and the shorter leg to
BB29f. Bend the legs if needed.

3 Grab a 180 ohm resistor. You guessed it! It's color-coded brown,
grey, and brown. Connect it from BB29j to the closest hole in the
negative power bus.

Multiple LEDs: program it!

You need to make a few changes to the program to add more LEDs and
get them all blinking at the same time. The following listing shows the
updated code.

Listing 6.2 Three blinking LEDs

import RPi.GPIO as GPIO
import time

Variable for the GPIO pin number Create variables for the
LED_pin_red = 21 GPIO pins you’re using for
LED_pin_green = 22 the green and blue LEDs.

LED_pin_blue = 23

Tell the Pi we are using the breakout board pin numbering
GPIO.setmode(GPIO.BCM)

h PI i f
Set up the GPIO pins for output Set up GPIO pins 22

GPIO.setup(LED_pin_red, GPIO.OUT) and 23 as outputs.
GPIO.setup(LED_pin_green, GPIO.OUT) 4/

GPIO.setup(LED_pin_blue, GPIO.OUT)

Loop to blink our LEDs

while True:
GPIO.output(LED_pin_red, GPIO.HIGH) Turn on the GPIO pins.
GPIO.output(LED_pin_green, GPIO.HIGH) /

GPIO.output(LED_pin_blue, GPIO.HIGH)

print("On™)

time.sleep(1)

GPIO.output(LED_pin_red, GPIO.LOW) Turn off the GPIO pins.
GPIO.output(LED_pin_green, GPIO.LOW) 4//h

GPIO.output(LED_pin_blue, GPIO.LOW)
print("0ff")
time.sleep(1)

174 CHAPTER © Blinky Pi

Save the code as blinkLED3.py, and try running it. Open LXTerminal,
and enter the following command:

pi@raspberrypi ~ $ sudo python3 blinkLED3.py

Fantastic! You have your own light show going on!

 EEEEEEEREEEREEERERER:

Try these challenges to practice controlling your Raspberry Pi's GPIO
pins. Each one provides a unique problem to solve.

Wave pattern

Change the program to make each LED turn on, one at a time, until
they're all on. Then, turn each LED off, one at a time. Hint: play with
where you put the time.sleep(1) command. Can you make the LEDs
light up and turn off in a wave pattern?

Simon Says

Write a function that blinks the LEDs and that can take five parame-
ters representing a pattern of colorful blinks. Each parameter is a
string representing a color: red, blue, or green. The function should
blink the lights in the appropriate pattern. Here is a series of Simon
Says patterns you should try to make your function produce:

Red, green, red, red, blue
Blue, green, blue, green, red
Green, blue, blue, red, green

Random blinking

Create a program that generates random durations for how long the
lights stay on and off. The durations should be random floating-point
numbers between 0 and 3 seconds. Hint: you can use the random method

Summary 175

to generate a random floating-point number between 0 and 1.0. Here is
an example:

off_random_time = random.random() * 3

To scale this number so that it's between 0 and 3, you can multiply
off_random_time by 3. If you get stuck on the challenge, check appendix
C and the chapter source code for hints and solutions.

In this chapter, you learned the following things:

@ A Piis capable of interacting with the world around it. With a few
extra parts, you can set it up for physical computing projects.

@ A Pi can send out electrical signals! You can send output through
the GPIO pins, and this can be used to light up LEDs or control
many other electronic components (motors, buzzers, relays, and so
on).

@ Breadboards are like playgrounds for electronics. They make it easy
to create circuits for your Pi because you can easily build and take
apart circuits for use with the Pi.

@ The RPi.GPIO library has built-in functions to set up and control out-
put (voltage) to GPIO pins with Python.

Just imagine the possibilities of controlling pretty much any electrical
device using your Raspberry Pi. Even better, imagine making the
device work based on sensors (inputs) so you can create smart devices
programmed by you!

7

Light Up Guessing Game

In this chapter, you'll be learning about

¢ Simplifying and improving your code with more thoughtful design and use of
functions

¢ Building a circuit to control a special LED (light bulb) that can make and com-
bine red, green, and blue light

¢ Adding together colors of light to create new colors

¢ Making your Fi come alive by having it respond using different colored light

Your Raspberry Pi has a unique ability to interact with the world around
it. In the last chapter, you made lights blink based on a programmed pat-
tern. Nice, but that isn’t truly interactive, because the Pi always blinks a
pattern that you program it to do. In this chapter, let’s see if you can cre-
ate an interactive project that responds to you through its GPIO pins.
You'll draw on what you've learned about conditional logic (if/elif/else)
to have your Pi make decisions and respond. As you did in earlier chap-
ters, you'll need to gather input, use loops, and apply a few other pro-
gramming techniques to get it done.

You're making a Light Up Guessing Game, but not just any one: this
game will illuminate a small light called an RGB (stands for red, green,
blue) LED, which can make any color. You'll use your Pi, breadboard,

176

Guessing Game design 177

and electrical parts, along with a program you're going to write. Your
Pi will let the player know if they're correct by flashing the RGB in dif-
ferent colors if their guess is too high or too low.

Figure 7.1 shows the parts you need. You'll notice that some of them

are the same as in chapter 6, but you'll also need an RGB LED. Let’s
get started!

Light Up Guessing Game parts

Shopping List

Parts for this chapter:
« Ragpberry Pi
« Ribbon cable
+ Breakout mbwd
. ess
et ron. e (RGE)LED
« 4 jumper wires (male-to-male)
« 3 resigtors, 180 ohw*

300
*Registors with values betweeh 100 and
ohme will work.
Raspberry Pi w
(not shown)
Breakout 4 jumper wires (male-to-male): 1 red, green, blue light-emitting
Ribbon cable board

any length will do. diode (RGB LED)

3 resistors: 180 ohm

1 Color bands: brown,
; grey, and brown
—
i — W —

—_— "
Solderless

breadboard
Figure 7.1 The Light Up Guessing Game uses a red, green, blue (RGB) LED. An RGB

LED can produce many different colors because it has three LEDs (colored red, green,
and blue) packed inside it.

178 CHAFPTER 7 Light Up Guessing Game

Guessing Game design
The object of the game is to guess a magic number. This time, the Pi
will give feedback to the user by lighting up the RGB LED in different
colors. Here are some game details:
@ The magic numberis arandomly generated number between 1 and 20.
@ The player is given five tries to guess the number correctly.
@ If they guess correctly, the RGB LED flashes green.
@ If the guess is too high, the RGB LED flashes red.
@ If the guess is too low, the RGB LED flashes blue.

@ The player is given the choice to play again.

Figure 7.2 shows a sample of the game’s output.

pi@raspberrypl -~ % sudo python3 LEDGuessingGame.py

oo e s s s sk sk e e o ot s s e e oo o s s st s e s s sk o e e ot ot sk s e ek sk sk s skt stk o e e o sk

Light Up Guessing Game
o A o o o o o o

Game Play:
I'm thinking of a number between 1 and 20. You have five guesses to guess it.
after each guess, my light will blink.

Red ---» Your guess 15 too high!
Green ---> Your guess 1s correct!
Blue --= Your guess 1s too low
Guess 1 - What is your guess?: 9
Guess 2 - What is your guess?: 14
Guess 3 - What 1s your guess?: 12
Guess 4 - What 1s your guess?: 11
Guess 5 - wWhat 1s your guess?: 10
You lost!
Better luck next time!
would you like to play again [¥/N]? I

Light flashes different colors to respond to the player’s guesses

\ I/
\ - Too low
/ \— Blue
Correct!
Green Figure 7.2 The Light Up Guessing Game
responds to the user after each guess. Lights
Too high on the breadboard light up to let the player

Red know if their guess is too high or too low.

Hardware: building the circuit 179

You'll approach this project in two parts. The first part is to build the
circuit (the hardware), and the second part is writing the program (the
software).

Hardware: building the circuit

Let’s get building! You're building a circuit on your breadboard to con-
trol a new type of LED that can make any color you want. You'll start
by connecting your Pi’s GPIO pins to the breadboard using the ribbon
cable and GPIO breakout board. Refer back to chapter 6 (section 6.1)

if you need a reminder about how to set this up. Your Pi and bread-

board should look like figure 7.3.

Numbers, humbers, numbers!

As first explained in chapter 6, you need a way to find a particular hole
on your breadboard, and to do that you'll use the numbers and letters.
Remember, this is much like the way you might find your seat at a sta-
dium for a concert or sporting event.

Get ready to start
breadboarding
your circuit!

Connect your Pi
to your breadboard
using the ribbon cable.

Remember, the wire for pin | goes toward the corner
of your board (usually marked red or white).

Figure 7.3 The Pi, breakout board, and breadboard setup. And you thought
your desk was messy before!

180

CHAFPTER 7 Light Up Guessing Game

To refer to a specific hole on the breadboard, we'll refer to the row and
column, but we’'ll add the letters BB to stand for breadboard. Not too
hard, right? Finding breadboard holes involves searching for the row
and then the column. When referring to a GPIO pin, we'll add the let-
ters GPin front. For example, GPIO pin 12 is referred to as GP12.

Wiring an RGB LED

You're wiring up a new type of LED, called an RGB LED.

DEFINITION ~ An RGB LED is a light bulb that consists of three LEDs:
one red (R), one green (G), and one blue (B), all in a single plastic
LED bulb casing.

The RGB LED can produce pretty much any color you want, using the
three tiny LEDs inside it. By powering these in varying amounts, you
can mix light to make colors.

The RGB LED has four /egs (or wires) coming out of it, so you'll need
to figure out how to wire it up. It’s a bit different than the single-color
LEDs you wired up in chapter 6, but it’s pretty easy to use.

Circuit sketch

The circuit diagram for the Light Up Guessing Game is shown in Fig-
ure 7.4. To light the RGB LED, you'll have electricity (+3.3 V) flow
from your Pi's GPIO pins 12, 16, and 21; through each resistor;
through the LED; and then to ground (0 V).

You'll build the RGB LED circuit on the breadboard and then program
it to light up. Wire it up in this order:
1 Put the RGB LED into the breadboard.

2 Connect the three jumper wires, which will connect the GPIO pins
to the LED (one for each color).

3 Add the three resistors to connect the jumpers to the LED’s red,
green, and blue legs.

4 Add the final jumper wire to connect the ground leg of the LED to
the negative (ground) power bus.

Hardware: building the circuit 181

RGB LEDs have 3 tiny LEDs |
packed inside: one red,

one green, and one blue. \
3.3 V (volts) Red LED

+ Resistor / P

GPIOpin12 @ ’\/\/\, ’I

RGB LED

Green LED Ground
+ Vi -
GPIOpin 16 @ AVAVAY, P >
Blue LED

+
GPIOpin21 @

s
P

Figure 7.4 Circuit diagram for the Light Up Guessing Game project

E

When it’s done, the circuit will look like what you see in figure 7.5.
Let’s walk through the steps to build this circuit.

Figure 7.5 The RGB LED circuit you’re building on the breadboard
uses GPIO pins 12, 16, and 21 to power the LEDs. The light won’t
turn on until you program the voltage to come out of the pins.

182

CHAFPTER 7 Light Up Guessing Game

RGB LED
W{:"i: [Each of the legs for the colors will
are all these connect toward the GPIO pins (+).
legs for?
Red leg Blue leg
(shortest)
Ground leg . Green leg
Ground leg (longest) Don't forget to make your LEDs
connects toward the happy by making sure each one has
negative (-). a resistor. Without resistors, you

could burn out your RGB LED.

Figure 7.6 The RGB LED has lots of legs! The longest leg is the ground. The other
ones are for red, green, and blue. This applies to what is called a common cathode
RGB LED, which is what comes in Pi kits and what you’ll find most commonly at
electronics suppliers.

STEP 1. ADD THE RGB LED

Before you can add it to the breadboard, let’s look a bit closer at the
RGB LED. Remember that there are three tiny LEDs (red, green, and
blue) inside it. You need to be able to figure out which leg is which
color and which one is ground. Figure 7.6 is a handy reference.

NOTE You'll need to bend the RGB LED'’s legs quite a bit to get them
into the holes on the breadboard. Try to bend them to line up with the
holes, and slowly push the 1egs in all at once.

Grab your RGB LED, and let’s insert it into the breadboard. You're
going to put it in rows 22, 24, 26, and 28 along column h on the bread-
board. Here’s where to connect the legs:

@ Red leg into hole BB22h

@ Ground leg (longest leg) into hole BB24h

@ Green leg into hole BB26h

@ Blue leg (shortest) into hole BB28h

Hardware: building the circuit 183

Insert the RGB LED

into the breadboard. \

Column h —,

Rows 22, 24, 26, and 28

Figure 7.7 Bend the legs of the RGB LED, and insert it into the
breadboard at BB22h, BB24h, BB26h, and BB28h. The longest leg
goes into hole BB24h.

When it’s inserted, it will look like Figure 7.7. Double-check that it’s
pushed down into the breadboard so all the legs will make a good con-
nection.

Good job! You just completed the trickiest part.

STEP 2. CONNECT THE GPIO JUMPER WIRES

The breakout board has numbers on it that refer to the Raspberry Pi’s
GPIO numbering system. Remember that we refer to GPIO pins by
adding GPIO before the number of the pin. So if we're talking about
GPIO pin 12, it’s GPIO12.

Question: What hole on your breadboard is next to GPIO12 (GP1O
pin 12)?

Answer: Look closely, and you'll see that the holes next to it are BBI61
and BBI¢j.

184

CHAFPTER 7 Light Up Guessing Game

NOTE The color of the jumper wires doesn’t matter, but it's some-
times helpful to pick ones that match the colors of the LED legs.
When you're troubleshooting problems, that can help you easily
remember which GPIO pin is controlling each color of light coming

out of the RGB LED.

Now that you've located the holes near the GPIO pins, you can start
connecting jumper wires as follows:

@ Jumper wire from BB16j to BB22a (connects GP12 to the red leg of
the RGB LED)

@ Jumper wire from BB18j to BB26a (connects GP16 to the green leg
of the RGB LED)

@ Jumper wire from BB20j to BB28a (connects GP21 to the blue leg of
the RGB LED)

When you've added the wires, the circuit will look like figure 7.8.

N : Jumpers from GPIO pins:
BBI6j to BB22a, BBI8j to BB26a, BB20j to BB28a

Figure 7.8 The jumpers connect the GPIO pins from your Pi to the RGB LED.
If you have an earlier model Pi, you can use other GPIO pins. Just remember
which ones you’re using, and use these numbers when you program the Pi to
turn the GPIO pins on and off.

Hardware: building the circuit 185

STEP 3. ADD THE THREE RESISTORS

It's time to connect your 180 ohm resistors!! They should have bands
of brown, grey, and brown, followed by a fourth gold or silver band.
Remember that electricity will flow either way through a resistor, so
the way you connect it doesn’t matter. Figure 7.9 is a handy diagram
that reminds you how you can ﬁgure out the value of a resistor by
using the colored bands.

Red Purple Red Silver
Sl A

1stdigit 2nd digit Multiplier Tolerance

sack (D GHND

[1
sown (NENND [10}
red D GEEED (100)(2%)
orange (ISED) (I81D (1K)
velow (4)(C4)
Green (HEHD GHSHD (100K) (0.5%)
sue (HEHD CNEND (1M)(0.25%)
Puple (D GHEID (10M)(0.1%)
crey (HEHD GNEID Silver
white (9)(9) 0D E5%D ol
(_Resistor color codes) :; _ 112(())%’000

Example

!

Red Purple Red Silver

B

“27” x 100 = 2700 ohm or 2.7k ohm %£10%

Figure 7.9 The colored bands on a resistor tell you how much resis-
tance the resistor has. For this project, you want a brown (1), grey (8),
brown (x10) resistor, or 18 x 10 = 180 ohm resistor. Don’t have one?

Any resistor between about 100 and 300 ohms should work well.

! This is a safe value that won't risk damage to your Pi and will keep things simple. For those of you
who are into precision, technically you might want to use slightly different resistors for each color
LED (red, green, and blue), because each one requires a different amount of electrical current (amps)
to make it shine. Check out some of the online resistor calculators and Pi forums on RGB LEDs if
you're interested.

186

CHAFPTER 7 Light Up Guessing Game

Add resistors:
BB22c to BB22f, BB26¢ to BB26f, BB28¢ to BB28f

Remember: Resistors can be placed
either way. It doesn’t matter.

Figure 7.10 Add your resistors! Make sure you push them
down into the breadboard holes. If you don’t like them sticking
up so high, you can trim the ends using wire cutters.

Connect the resistors as follows:

¢ Insert one end of the first resistor into BB22¢ and the other end into
BB22f.

¢ Insert one end of the second resistor into BB26¢ and the other end
into BB26f.

¢ Insert one end of the third resistor into BB28c and the other end into
BB28f.

Once they're added, you'll have something that looks like figure 7.10.
Now you're ready for the final step!
STEP 4. ADD THE JUMPER TO GROUND

Remember that a ground rail runs vertically along the right side of the
breadboard, with a blue stripe next to it. Add a jumper from BB24j to

Hardware: building the circuit 187

The jumper completes the circuit, but don’t Add a jumper from
expect the RGB LED to light up just yet! You BB24j to ground(-).
need to tell your Pi to send it some electricity

from the GPIO pins (12, 16, and 2I).

Figure 7.11 The jumper is added to connect the ground of the RGB LED to the
ground of the Raspberry Pi. The jumper can connect anywhere along the ground
rail (it usually has a blue stripe running next to it).

the negative (-) power bus or ground rail (any hole next to the blue
stripe will do). Figure 7.11 shows how it looks.

Wahoo! You've completed the RGB circuit on the breadboard. With
the circuit complete, it’s time to write your program so you can test it.

Color mixing with an RGB LED

You can program your RGB LED to light up red, green, or blue by turning on or
off GPIO pins 12, 16, and 21. But RGB LEDs can make more colors by mixing
different amounts of red, green, and blue light. For example, you can combine
equal amounts of red and blue light to make a nice magenta color. Or to make
your LED yellow, you can combine equal amounts of green and red. Televisions
work on the same principle. This concept, called additive color, means mixing
varying amounts of different colors of light to make new colors.

188 CHAFPTER 7 Light Up Guessing Game

(continued)

Additive color

Red light Magenta Blue light

-

You can get many different
shades of color by varying
the amounts of each color.

Note: TVs and projectors work Yellow

by mixing colors like this!

Green light

Wait! Your Pi can only turn LEDs on or off (you set them to HIGH or LOW)! How can
you make something like a raspberry red color that might be 80% red and 20%
blue? It’s possible, but you’ll need to learn how to very quickly pulse your Pi’s
GPIO output. This is called pu/se width modulation (PWM). Check online for in-
formation on how you can use the RPi.GPIO module to do PWM and create al-
most any shade of color you want.

Software: LEDGuessingGame program

You're creating a game to guess a magic number. As mentioned at the

start of the chapter, you'll design the game play based on these simple
rules (feel free to change them to your liking):

o)
&
Lo
o)
&
Lo

The magic number is arandomly generated number between 1 and 20.
The player is given five tries to guess the number correctly.
If they guess correctly, the RGB LED flashes green.

If they guess too high, the RGB LED flashes red.

If they guess too low, the RGB LED flashes blue.

Software: LEDGuessingGame program 189

@ After five guesses, the game is over.

@ The player is given the choice to play again.

As you've seen in earlier chapters, programming is often about break-
ing down complex problems into smaller ones and then solving them.

Let’s start by laying out a quick diagram outlining what the program
should do (see figure 7.12).

Set up your Pi to
control RGB LED

l After
Loop for up to 5 guesses Game over
5 guesses
Get a guess
Repeat
5 times Is
guess
correct?
Too low Correct
Too
high
-
Blue Red Green
blinking blinking | blinking
L] gl
You win!
Yes Play
. B
again?
No
End

Figure 7.12 Flow diagram showing how the guessing game
should work. Notice how you’re blinking LEDs if the guess is too
low, too high, or correct. You also give the player the choice of
whether they’d like to play again.

190

CHAFPTER 7 Light Up Guessing Game

As you approach this program, let’s see if you can simplify the code by
organizing it into functions, especially when you have chunks of code
that can be easily separated. Remember that you can use functions to
organize your code and simplify it. You'll create three functions to han-
dle each of the flashing lights, to simplify the main part of your program:
© flash_red—Flashes the RGB LED red

@ flash_blue—Flashes the RGB LED blue

% flash_green— Flashes the RGB LED green

You'll also create a function to display a message when the game is over.

Now that you have a plan, let’s code it in this order:

1 Import libraries, create the flashing and game-over functions, and set
up the GPIO pins for RGB LED output.

2 Display the title and introduction, create a loop, and get and check
up to five guesses.

3 Add logic to allow the user to decide if they want to play again.

Let’s begin! Open IDLE by choosing Python 3 under Menu > Pro-
gramming. This opens IDLE to the Python 3.x Shell. In the Python

Shell, start a new program by pressing Ctrl-N or selecting File > New
Window.

Setting up the GPIO pins for the RGB LED

In the IDLE 3 text editor, you'll first load the Python libraries you
need, create functions, and prepare your Pi to send electricity to the

RGB LED (see figure 7.13).

SETTING UP YOUR PI'S GPIO PINS

You need to get your Pi ready for output to the GPIO pins and tell the
Pi which pins you plan to use (see listing 7.1). If you recall from the
earlier wiring, you're using these pins to control the three LEDs that
are inside the RGB LED:

@ GP12 for the red LED

@ GPI16 for the green LED

@ GP21 for the blue LED

Software: LEDGuessingGame program 191

Set up the GPIO .
iisufzr oit ut r Set up your Pi to
P put. | control RGB LED
I
Create functions for l After
the flashing LEDs: 5 guesses
Loop for up to

flash_red (O 5 SUBSS; Game over

flash_green()

flash_blueO) |
Create a function
for game over: Get a guess

game_over()

Repeat l
5 times Is
guess
correct?
Too low Correct
Blue Red Green
blinking blinking blinking
You win!
Yes Play
again?
No
End

Figure 7.13 The program starts by importing the Python libraries you’ll need to
use, setting up your Pi’s GPIO pins for lighting up the LEDs, and defining the functions
you’ll need.

Later, you'll write the code to control those pins. Let’s start by import-
ing the GPIO library for the Raspberry Pi and setting up the GP1O
pins so they can output a voltage to control the RGB LED.

Listing 7.1 Setting up the Pi's GPIO pins

Light Up Guessing Game
Ryan Heitz

192 CHAFPTER 7 Light Up Guessing Game

importing the libraries we need
import RPi.GPIO as GPIO

import time

import random

Import several libraries
you’ll need later.

#Tell the Pi we want to use a breakout board
GPIO.setmode(GPIO.BCM)

Create variables for the pins used for LEDs Pick which GPIO pins you'll

LED_pin_red = 12 use to light the LEDs.
LED_pin_green = 16

LED_pin_blue = 21

Blink speed in seconds

blink_time = 0.25 .
Create a variable to store how long

the light should blink on and off.
Tell the Pi which Pins we will use

Set them up as OUT pins (send electricity out)
GPIO.setup(LED_pin_red,GPIO.0UT) Tel p N

. ell your Pi to set up three
GPIO. setup(LED_p}n_g reen,GPIO.OUT) GPIO pins for output.
GPIO.setup(LED_pin_blue,GPIO.0UT)

Great! You've started by importing the time and random libraries,
because you'll need them to flash the LED and help you generate a ran-
dom number when the game starts. You define variables for the pins
you're using and even add a variable, BlinkTime, that says how much
time you'll blink the light on and off. Finally, you tell your Pi that you
want to use three pins as output. Now let’s write the functions.

CREATING FUNCTIONS TO SIMPLIFY THE CODE

You need three functions to flash the three LEDs inside the RGB LED
and one for game over. Name the flashing functions flash_red,
flash_blue, and flash_green, as shown in the following listing.

Listing 7.2 Functions that flash LEDs different colors

Blinks an LED.
def flash_red(Q):
Use a for loop T O .) . x Define the name of
to flash the LED for i in range(1,6): #Blink on and off 5 times the flashing function.
five times. # Turning on LEDs

Software: LEDGuessingGame program 193

Pause the program to

f_> GPIO.output(LED_pin_red, GPIO.HIGH) blink the light

Tell the Pi to start

time.sleep(blink_time)

(GP10.HIGH) outputting GPIO.output(LED_pin_red, GPIO.LOW) ﬁ

voltage to the GPIO pin.

time.sleep(blink_time)
Tell the Pi to stop

(GP10.LOW) outputting
def flash_green(): voltage to the GPIO pin.

for 1 in range(1,6): #Blink on and off 5 times
Turning on LEDs
GPIO.output(LED_pin_green, GPIO.HIGH)
time.sleep(blink_time)
GPIO.output(LED_pin_green, GPIO.LOW)
time.sleep(blink_time)

def flash_blue():
for i in range(1,6): #Blink on and off 5 times
Turning on LEDs
GPIO.output(LED_pin_blue, GPIO.HIGH)
time.sleep(blink_time)
GPIO.output(LED_pin_blue, GPIO.LOW)
time.sleep(blink_time)

. . . . Display messages, and
An ending to the game if they don't guess it J pause for 2 seconds.

def game_over():
print("You lost!™)
print("Better luck next time!"™)
time.sleep(2)

In the code, you create four functions:

2 flash_red()

> flash_green()
% flash_blue()
< game_over()

The three flashing functions blink a different color LED in the RGB
LED. The blinking is created by using a for loop and the sleep function
while you switch the output from the GPIO pin from HIGH (on) to LOW
(off). Think of this as being like standing at a light switch and flipping

it on and then off, five times.

Before you go any farther, save the program as LEDGuessingGame.py
in your home folder.

194

CHAFPTER 7 Light Up Guessing Game

When to use functions

Believe it or not, we don’t always know when to create a function. The ability to
figure that out is a skill that comes with experience in writing programs and see-
ing patterns. Here are some tips for deciding what to make a function:

> Is there a group of instructions that you’ll need to use over and over again,
with little variation?

2 Do you have large blocks of code that make your programs hard to read?

Functions can simplify your code and make it easier to update.

REFACTORING YOUR FUNCTIONS

Did you notice that the functions for flashing the LEDs are very simi-
lar? Most of the code in each function is the same except for the GPIO
pin, so let’s see if you can improve this code to make it simpler. This
process of simplifying code is called refactoring.

What if you rewrote the three functions as a single function, as shown
in listing 7.3? This new function takes one parameter, LED_pin, that rep-
resents the number of the GPIO pin you want to control. It can be any
one of the GPIO pins you're using for the colors of the RGB LED. For
example, if LED_pin is 16, this corresponds to GPIO pin 16, which
should blink the green light.

Listing 7.3 Refactoring the three flashing functions to a single function

Blinks an LED.

def flash(LED_pin): The function takes one

for i in range(1,6): #Blink on and off 5 times parameter as input (the
Turning on LEDs GPIO pin number).

GPIO.output(LED_pin, GPIO.HIGH) :>

Turn the signal to

time.sleep(blink_time) the LED on and off

GPIO.output(LED_pin, GPIO.LOW)
time.sleep(blink_time)

In this case, you're refactoring a set of functions that are very similar to
a single function that takes a parameter (LED_pin). This parameter
makes the function more flexible or dynamic so it can take the place of
the three separate functions.

Software: LEDGuessingGame program 195

Set up your Pi to

Display title and
control RGB LED

instructions.

[l After
Define variables. 5 guesses

Loop for up to

Get a random Game over
number. 5 guesses
Get a guess.
Repeat 1
5 times Is
guess
correct?
Too low Correct
Start a loop.
Get a guess.
Check the guess, I_ — —
and call a function Blue Red Green
to flash the RGB L blinking blinking | biinking
] i
LEDs different L sosl
colors. l You win!
Yes Play
again?
No
End

Figure 7.14 After displaying the game title and instructions, you need to define vari-
ables to store important game information, including a random number the player is
trying to guess. The main loop in the game is repeated to allow the user to make five
guesses; it also blinks the lights.

Main game loop and logic
The next part of the program creates the main game loop (see ﬁgure
7.14). You'll do the following:
@ Set up the game.
@ Display the title and instructions for the person playing.
@ Create some variables, and get a random number.

@ Create the loop and guessing logic.

196

CHAFPTER 7 Light Up Guessing Game

GAME SETUP

Let’s look at some of the variables you'll need for the game:

@ number_in_my_head holds a random number (an integer between 1 and
20) that the player is trying to guess.

> count_guesses helps you count and keep track of how many guesses
the player has made.

@ play_again tracks the status of whether the player wants to play
again. You'll use a Boolean type for this, because it should always be
True (yes, let’s play again) or False (no, let’s not play again).

The next listing adds these three variables and sets them up. You also
create and display the title and game instructions.

Listing 7.4 Creating variables and displaying the game title and instructions

A random number for our game
number_in_my_head = random.randint(1,20)
count_guesses = 1 # Counter for the number of guesses

Used to keep track of whether they want to play again
play_again = True

nnn

print(title)

intro = """

Game Play:

I'm thinking of a number between 1 and 20. You have five guesses to
guess it.

After each guess, my light will blink.

Red ———> Your guess is too high!
Green ——--> Your guess is correct!
Blue ——> Your guess is too low

nnn

Software: LEDGuessingGame program 197

Fantastic! The variables set the stage for the guessing-game logic. It’s a
lot like the foundation of a house —you need it in order to build the rest.

Guessing Game Loop and logic

The code features two loops, one inside the other. The outer loop gives
the user the option of playing again—we’ll call this the Play Again
Loop. Within that loop is another that gives the player five guesses —
we'll call this the Guessing Game Loop.

The main game loop involves getting a guess, checking the guess,
blinking the RGB LED the appropriate color, and then repeating until
the player guesses right or has used all five guesses. The next listing
shows the program for the Guessing Game Loop and the logic for
checking guesses.

Listing 7.6 Guessing Game Loop

Display a prompt
f_’ while count_guesses < 6: for a user to enter
Start the game guess = input("Guess " + str(count_guesses) + ": ") their guess.
loop that gives the guess = int(guess) # Convert the input string to an integer

player 5 chances to
guess correctly.

f_’
Call the flash
function and tell it
to flash the RGB
LED a certain color.

count_guesses += 1 # Add one to the number of guesses
to keep track

if guess == number_in_my_head: # Guessed it correctly
flash(LED_pin_green) Exit (break out of)
print("You won!") the game loop if the
break # Breaks out of loop player guesses correctly.

elif guess > number_in_my_head: # Guess too high
flash(LED_pin_red)

elif guess < number_in_my_head: # Guess too low
flash(LED_pin_blue)

else: # For the while loop, it happens when the while condition

End of game

isn't True

ame_over
game_over() Call after the player

has guessed 5 times.

The Guessing Game Loop contains the logic to

Keep track of the number of guesses.
Get a guess.

Check to see if a guess is correct, too high, or too low.

198

CHAFPTER 7 Light Up Guessing Game

Where is the logic for responding to the player? It’s in the loop. Each
time you get a guess, a series of if/elif statements checks whether the
guess Is correct, too high, or too low. Based on which of those cases is
True, the flash() function is called to flash the appropriately colored
LED on and off. If the user guesses the number correctly, the RGB LED
will flash green, and then the break command will exit the while loop.

Notice that you add an else statement to the while loop. When the
number of guesses has been exceeded (count_guesses is greater than 5),
the else statement is triggered and the game_over function is called. The
else block only happens when the while condition is checked and is
False (in this case, when the number of guesses has exceeded 5).

In the next section, you'll see how to give the player the option of play-
Ing again.

Adding the Play Again Loop and logic

You want to add a feature to the game that lets the user choose whether
they want to play again. To do this, you need another loop that goes
around the Guessing Game Loop (see figure 7.15). The Play Again
Loop needs to repeat the Guessing Game Loop as long as the user
answers that they want to play again.

Listing 7.6 Play Again Loop

hile play_ in:
white pray-agat Start the Play Again Loop that repeats

[’ print(intro) as long as play_again is True.
Print instructions.

Guessing Game Loop
while count_guesses < 6:

Loop code hidden
else

Ask the user if they game_over()

want to play again.

End of Guessing Game Loop

&—b answer = input("Would you like to play again [Y/N]? ")

Get a new
random number.

if answer.upper() == "Y":
Starting over. Get a new random number and reset the counter

Lb number_in_my_head = random.randint(1,20)

count_guesses = 1
9 Reset the number

of guesses to |.

else:
play_again = False
print("Good bye!")
GPIO.cleanup()

Software: LEDGuessingGame program

/ causes the Play Again Loop to end.

Set play_again to False, which

Reset the GPIO pins used in this
program (set them back to input).

Add a game_over
function, reset the
guess count, and
get a new random
number.

-

Game over

Check if they want
to play again.

Set up your Pi to
control RGB LED
. - l After
Add the Pla.y Again Loop Loop for up to 5 guesses
(the Guessing Game Loop .-
is nested inside it). L 9 l
Get a guess
Repeat l
5 times Is
guess
correct?
Too low Correct
Blue Red Green
blinking blinking blinking
J You win!
Yes Play
again?
l No
End

Figure 7.15 The Play Again Loop is wrapped around the Guessing Game Loop. After the
player has exhausted their guesses or guessed the number correctly, they’re asked if they
want to play again. Depending on their answer, the game will either start over or end.

199

200

CHAFPTER 7 Light Up Guessing Game

Awesome job! You have put together a circuit to control an RGB LED
and written the Python code to make a game interact with it. Now, let’s

test 1it.

Playing the game

Save the code as LEDGuessingGame.py, and try running it. Select
Run > Run Module (or press F5) from the IDLE text editor to run
your program. If you have an older version of Raspbian (prior to Octo-

ber 2015), open Terminal and enter the following command:

pi@raspberrypi ~ $ sudo python3 LEDGuessingGame.py

Excellent! You should see your guessing game start up. Let’s test it to
see if it works. Try seeing if you can guess the number. Try getting it

wrong, just to make sure the game_over function works.

NOTE Remember that any programs that use GPIO pins must be run
from the Raspbian command prompt as the superuser (or root). The
sudo command lets you do this. If you try running the program at the
Python Shell in IDLE, then you'll get the error that ends “RuntimeError:
No access to /dev/mem. Try running as root!”

Troubleshooting

If the lights aren’t blinking after each guess is made, here are some
things you can check:

¢ Check the circuit on the breadboard. Is the ribbon cable connected

properly, with the first wire connected toward the edge of the Pj,
away from the USB ports?

@ Double-check that the jumper, RGB LED, and resistors are con-
nected to the correct holes on the breadboard. Could your RGB LED

be inserted the wrong way (the shorter legs go toward the negative
or ground side)? Try turning it around if you aren’t sure.

@ Look through your Python program for errors. If necessary, edit the

program to add some print statements so you can see which parts are
working. For example, in the inner loop that handles the five
guesses, you can use the print function to display the value of

count_guesses:

print(count_guesses)

Challenges 201

@ Try adding a print message in the flash function so you're sure it’s
being called. For example, you could add

print("Blinking the LED")

If you've enjoyed playing your game, try some additional challenges to
increase the fun factor!

 EEEEEEEEREEEEERE R

These challenges use the RGB LED that you've already wired up. If
you can'’t figure them out, check appendix C for hints and solutions.

Game winner

Write a function in the game that creates a flashing animation when-
ever the user correctly guesses the number. For example, you could try
quickly flashing the RGB LED different colors.

Easter egg

Was the last one too easy? Well, try this: create an Easter egg in your
game. Create logic so that if someone types in a certain word (maybe
Spam), the program displays a secret message and flashes the light in a
crazy way.

Warmer and colder
Expand the logic of your program to make the speed of the blinking

indicate whether the player’s guess is close to or far away from the cor-
rect answer. As a hint, think about the blinking speed you've set. Let’s
say a guess is off by 10 (the player guesses 15, and the magic number is
5). You want the light to blink slowly. You can take the difference
(ignore any negative signs) and divide it by 10. This will make the
blinking speed one-tenth of the difference, or once every second if

you're off by 10 (pretty slow). If the player’s guess is off by 2, the light

202 CHAFPTER 7 Light Up Guessing Game

will blink every two-tenths of a second (pretty fast). This way, the
blinking speed tells the player if their guess is close or far away.

Darth Vader surprise

Let’s see if you can get an image of Darth Vader to pop up if the player
doesn’t correctly guess the number. Here’s a hint to get you started.
Install the Linux image-viewing software called fim,2 a program that
allows you to open images from the Raspbian command line. To install
fim, make sure your Piis connected to the internet, and then open Ter-
minal and use the following command:

pi@raspberrypi ~ $ sudo apt-get -y install fim

Next, download an image of Darth Vader and have the game display it
on the screen. Lets say you've downloaded an image called
Darth_Vader.jpg. You can display it with these commands in Python:

import os
os.system("fim Darth_Vader.jpg™)

Good luck! May the Force be with you!

In this chapter, you learned that

@ Pis can respond in rich and exciting ways by interacting through the
GPIO pins in your programs.

@ Functions, loops, and conditional statements can be combined with
your Pi’s output capabilities to create programs that react to people
and the environment.

@ RGB LEDs are very cool because they can make different colors and
are actually three LEDs packed into one small package.

@ A while loop can have an else statement that allows you to control
what happens when the loop condition is no longer true.

2 fim is the improved version of fbi, image-viewing software for Linux that can be run from the com-
mand line.

Summary 203

@ A play again loop can be wrapped around a main game loop to allow
users to play the game over and over again.

@ Refactoring is a fancy word that just means simplifying or shorten-
ing your code by looking for ways to make it more efficient. Be care-
ful, though —you don’t want to simplify something so much that it
becomes too hard to understand (remember the Zen of Python)!

&

DJ Raspi

In this chapter, you'll be

¢ Giving your Fi the ability to respond to input signals by making it interact with
You in response to button presses

¢ Learning about electronic buttons and how to build circuits on a breadboard
with them

¢ Running Raspbian operating system commands so your programs can play
musilc, show videos, and more

¢ Using Fython to store sets of information called lists

¢ Exploring how you can play sounds on your Fi and make your Fi into a music
machine

We don'’t think about our five senses (taste, smell, touch, hearing, and
sight), but without them we wouldn’t be able to feel, know, and interact
with the world around us. Think of your Pi as a person who, until now,
has had a limited set of senses. So far, your Pi has only been able to
respond to keyboard keys being pressed and mouse clicks.

Like a mad scientist bringing something to life, in this chapter you're
going to embark on a project to wire up a new sense of touch for your Pi.

204

Project overview 205

Okay, maybe it won't be as crazy as creating a bionic creature, but a
button gives your Pi a sense of touch. You'll wire a couple buttons to
the Pi’s GPIO pins (recall that GPIO stands for general-purpose input/
output, so this is how your Pi can sense and affect the environment).
Then you'll program your Pi to react to button presses. Exciting times

are ahead!

This project is a small glimpse of all the different senses you could pos-
sibly give your Pi. Electronic components that can detect the environ-
ment around them are called sensors. A button is one of the simplest
sensors, because it can detect touch. What other sensors could you

add? How about some of these ideas:

@ A camera that can track a ball or face using special software called

computer vision that can recognize objects (this is similar to how a
Microsoft Kinect works)

@ Super-human capabilities like a proximity sensor to detect when
someone is walking nearby (like the ones used to trigger the doors to

open at the grocery store)

@ A microphone so it can hear

All this is possible with a Pi, some determination to figure it out, and a

bit of fearlessness about trying new things.

Project overview

In this chapter, you'll turn your Pi into DJ Raspi—a musical computer
that plays different sounds when you press buttons. You'll wire up two
mini pushbuttons on your breadboard and figure out how to write the
code to make the buttons play sounds. Later, if you want, you can add
other sensors to your Pi and program them. This project will give you
an example of how to work with input from sensors. Figure 8.1 shows

the parts you'll need.

206 CHAPTER & DJ Raspi

DJ Raspi parts

Shopping List

Parts for this chapter:
« Raspberry Pi
« Ribbon cable
« Breakout board :

lderless breadboar
.-szamini pushbuttons (also called momentary buttons)
* 4 jumper wires {male-'lolmflls} ¥
« 210K (or 10,000) ohm resistors :
(color bands: brown, black, and orangsm
« Headphones, powered computer speakers,
or TV with built-in speakers

* Registors with values petween 10K and 100K ohms
Raspberry Pi
(not shown)

will work. ——

Ribbon cable
Breakout board 2 mini 2 resistors: 10K ohm
Solderless breadboard pushbuttons Color bands: brown, black, and orange

R

L
R

4 jumper wires (male-to-male):

any length will do.

Headphones, powered computer speakers,
or TV with built-in speakers

Figure 8.1

The DJ Raspi project requires several different parts to turn your Pi into a music
player. The length and color of the jumper wires don’t matter.

Setting up your Fi to play sounds 207

Gather the parts and get ready for some fun. You'll notice that some of
them are the same as in chapters 6 and 7, but you’ll also need a few new
items. Most of these are included in Raspberry Pi starter kits, but you
can find them at online electronics retailers as well. You'll approach
this project in two parts: building the circuit (the hardware) and writ-
ing the program (the software). Let’s go!

Setting up your Pi to play sounds

To start, let’s get your Pi ready to play sounds. A Pi can output sounds
through the headphone jack (also called the 5.6 mm audio port) or
through HDMI. Before you start, plug in your headphones, powered
computer speakers, or, alternatively, a TV with built-in speakers con-
nected via an HDMI cable.

All sounds aren’t the same: audio formats

If you wanted to leave a secret message for someone, you could choose several
different ways to make the message into a secret code. You could use different
symbols to represent words, or you might substitute letters or shift letters
around. There are many different ways to encode something.

Similarly, people have come up with many different ways to store sounds (or
audio files). These ways (called formats) are different ways of compressing
or encoding the information in a sound to make it easy to store on a computer
or music player. Sometimes sounds are encoded so they will only work on certain
music players.

Here are some common formats:

@ MP3—The most common audio file format used in most audio players. The
files end in .mp3.
WAV or WAVE—Stands for Waveform Audio File Format. It’s used on many
Windows computers. These files end in .wav.

Ogg—An open format that was developed for streaming applications. The
files end in .0gg.

Each format uses a different method to compress or shrink a sound and make it
smaller to store. The Pi has many different software applications for playing au-
dio. Each one can play different formats. Check the Raspberry Pi forums if you
want to learn more about the different players and what they’re best for.

You'll be focusing on playing MP3s from your Pi, because that is a
common audio file format. What can you use to play them?

208

CHAPTER & DJ Raspi

OMXPlayer and MP3s

When you watch movies or listen to music on a computer, you may use
iTunes or Windows Media Player. Raspbian has its own equivalent
called OMXPlayer that can play sounds or videos. Lucky for you, it’s
capable of playing MP3 files (or MP3s) —one of the most common

audio formats.

DEFINITION OMXPlayer is a video and audio player that was created

for Raspberry Pi.

If you don’t have an MP3, you can test OMXPlayer using one of the
sounds already on your Pi. There are quite a few MP3s in the folders
included with the Scratch software. Open File Manager, and go to this
folder to see some of them: /usr/share/scratch/Media/Sounds/Vocals/.
In the folder, you'll see both MP3 and WAV format files (see figure 8.2).

You’ll try playing this Type the path in
file: 0ooo-badada.mp3. the address bar.
Tocls Help
Dooo- Singerl. wav BeatBoxl wav o wav
badada.mp3
_ SETIINGS BeatBox2.wav Cm;::- Hey-yay-heymp3 Doy-doy-doymp3
Singer2 wav Gok- Join-us.mp3 Sng-rre-a-
mspiration. mp3 20N Mp
12 temns Free space: 3.1 GB (Total 6.7 GB)

Notice there are both .wav
and .mp3 format sound files.

Figure 8.2 When you install Raspbian on your Pi, it comes with
Scratch, which has a number of sound files including vocals, sound
effects, animal sounds, and drum beats.

Setting up your Fi to play sounds 209

To play an MP3 using OMXPlayer, open Terminal, and enter

pi@raspberrypi ~ $ omxplayer /usr/share/scratch/Media/Sounds/Vocals/
Oooo-badada.mp3

You should hear a short music clip of a woman singing. Enjoy the
song!

NOTE In Terminal, pressing the up and down arrows cycles through
previous commands. Press the up arrow once and then press Enter to
run the last command again.

Fantastic! Your Pi can speak to you now.

Troubleshooting

What if you have speakers or headphones plugged in but don’t hear
anything? OMXPlayer should automatically detect whether to output
the sound to the 3.5 mm audio output or HDMI. If it doesn't, try this
command for the headphone jack (3.5 mm audio output):

pi@raspberrypi ~ $ omxplayer -o local /usr/share/scratch/Media/Sounds/
Vocals/Oooo-badada.mp3

-0 1s a special switch or fag that lets OMXPlayer know that you want
to tell it something. In this case,-o stands for output, and it tells OMX-
Player where you want to output the sound. In this case, you set it to
-0 local, which outputs sound to the 3.5 mm (headphone jack) output.

Switches (flags)

Switches, such as-o for output, act like options or special controls for a program.
They’re common when using the command-line interface. You can usually get a
list of what switches a program has by making the command print out its help
information. Most programs that you can run at the command line will give you
a list of all switches or flags when you type the name of the program and then
-h. The -h switch- stands for Aelp. Try it with OMXPlayer:

pi@raspberrypi ~ $ omxplayer -h

You'll see a long list of options you can use to control how video and audio files
are played. Try —h with other command-line programs to see what results you
get.

210 CHAPTER & DJ Raspi

If you need to specify sending the sound to speakers in your monitor,

then use the -o switch and specify hdni for output to the HDMI port:

pi@raspberrypi ~ $ omxplayer -o hdmi /usr/share/scratch/Media/Sounds/

Vocals /0Oooo-badada.mp3

Now that you know you can play music, let’s build the circuit and write

some code to create your DJ Raspi!

Hardware: building the circuit

Building time! You're building a circuit on your breadboard to detect

or listen to buttons. When a button is pressed, your circuit will send

electricity flowing to a GPIO pin on your Pi. You'll start by connecting
the Pi’'s GPIO pins to the breadboard using the ribbon cable and GP1O
breakout board. Refer back to chapter 6 (section 6.1) if you need to

recall how to set this up.

A reminder about numbers

Like finding a seat in a stadium, we’ll refer to the holes on a breadboard using
the prefix BB. So the hole located in row 25, column a, is B825a. Similarly, we’ll
refer to the Pi’s GPIO pins using the prefix GPand then the pin number. So GPIO

pin 24 is called GP24 for short.

Wiring a button

Let’s get busy wiring the buttons. There
are many different types of buttons, but
you'll be using a mini pushbutton (see
figure 8.3). These buttons commonly
come in Raspberry Pi kits along with
jumper wires, resistors, and LEDs. If
you need to purchase them, you can find
them at many online electronics retailers
in packs of 10 or 20 for less than the cost
of a cheeseburger. With the parts gath-

ered, let’s assemble the circuit.

\'r'
Y

Figure 8.3 The mini push-
button makes a nice clicking
sound when you press the
black button in the middle.
Pressing it acts like closing a
switch to complete a circuit.

Hardware: building the circuit 21

The button acts as a switch
that is normally open so no
electricity flows through it Mini

and nothing happens. \pushbutton
@ GPIO pin 6
3.3 V (volts) Ground
. m "

f

J — 1]

10K ohm resistor

When the button is pressed,
the switch is closed, and electricity
will flow through the button to
GPIO pin 6 and ground (-).

Figure 8.4 The circuit diagram for the first button in the DJ Raspi project
shows how electricity will flow through the circuit. The button is a switch that
allows electricity to flow to GP06 and ground (-) when it’s pressed or closed.

Circuit sketch

The circuit diagram for the DJ Raspi is shown in figure 8.4. To listen to
whether a button is being pressed, you'll have electricity (+3.3 V) flow
from your Pi to the button. When the button is pressed, the electricity
will flow through the button and then split. A small amount of electric-
ity will flow to GPIO pin 6 (GP06) and the rest will flow through the
10K ohm resistor and then to ground (0 V). Let’s put it together on the
breadboard.

Let’s build the button circuit on the breadboard and program your Pi
to know when the button is being pressed. You'll give your Pi the abil-
ity to feel the button being pressed, by wiring up the button in this
order:

1 Add the mini pushbutton to the breadboard.

2 Connect a jumper wire from 3.3 volts to the button. You'll use the
positive power bus (+) that runs along the side of the breadboard.

212

CHAPTER & DJ Raspi

Jumper connects

the button to GP06. \

Jumper connects
the power (3.3 V)
to the button.

Insert the mini
pushbutton into
rows 23 and 25.

10K ohm resistor connects the button
to the negative (-). Color bands:
brown, black, orange.

Figure 8.5 The mini pushbutton will have 3.3 volts connected to it
from the positive power rail. When the button is pressed, power flows
through the button and splits. Some electrical current goes to GP06
(GPIO pin 6), and the rest goes through the resistor and then to the
negative power bus (-).

3 Add the resistor from the button to the negative power bus (-), also
called ground.

4 Connectthe second jumper wire from the button to GP06 (GPIO pin 6).

The completed circuit for one button will look like what you see in fig-

ure 8.5.

Don't forget, nothing will happen when you press the button. You
have to program your Pi to react to this new-found sense of touch.
Let’s go through the steps to build the circuit:

STEP 1. ADD THE MINI PUSHBUTTON.

Let’s look at how pushbuttons work before we go on. If you had X-ray
goggles, you would see that the left and right legs at the top of the

Hardware: building the circuit 213

button are connected. Similarly, the left and right legs along the bottom
of the button are connected. The top and the bottom of the button
aren’t connected.

But when you press the button, figure 8.6 shows what happens. Press-
ing the button pushes down a small metal bar so that the top and bot-
tom are connected. We say the switch is closed. When you let go of the
button, the spring in the button pushes the metal bar back up, and the

How pushbuttons work
< Top legs > '
L |_‘ <v v> L |‘ ll

Not pressed (open) Pressed (closed)

Bottom legs

Top legs

Connected
/ when pressed

Bottom legs

3

3

Electricity can flow along the top and Pressing the button connects
bottom, but they are NOT connected. the top and bottom.

Figure 8.6 In a button, the legs are connected along the top and are separately
connected along the bottom. When the button is pressed, the top and bottom are
connected by a small metal bar.

214

CHAPTER & DJ Raspi

switch is open again. Grab your mini pushbutton, and let’s insert it into

the breadboard.

NOTE You'll need to push the button into the breadboard very ﬁrmly.
If the button legs aren’t lined up with the breadboard holes, you may
accidentally bend some of the button legs. Don’t worry —you can
bend them back and try again. Ifa 1eg breaks off, use a new button.

You're going to put the button in rows 23 and 25 along columns d and
g on the breadboard. Connect the legs:

@ Top legs: BB25d and BB25g
@ Bottom legs: BB25d and BB25g

When the button is inserted, it will look like figure 8.7. Double-check
that it’s pushed down into the breadboard so that all the legs will make
a good connection. Good job —you just completed the trickiest part!

Firmly push the
button into the
breadboard.

Insert top legs into BB23d
and BB23g. Insert bottom
legs into BB25d and BB25g.

Figure 8.7 Align the pushbutton with the breadboard holes, and then
press it down into the breadboard. Make sure you press it so the button legs
are down into the breadboard holes and make a good connection. If you
accidentally bend the legs, don’t worry! Just bend them back and try again.

Hardware: building the circuit 215

The jumper connects a source
of electricity (3.3 volts) to the

bottom legs of the button. \

Jumper from

positive power bus (+) \

Connect the other end
of the jumper to BB25a.

Figure 8.8 The jumper connects power (3.3 volts) to the bottom of the
button.

STEP 2. CONNECT A JUMPER WIRE FROM 3.3 YOLTS TO THE BUTTON.

You need to connect the button to a source of electrical current. You'll
use the positive power rail along the edge of the breadboard as the
source of power (you could also directly connect the jumper to the 3V3
pin on the breakout board).

Connect the jumper wire from the positive power bus (+) to BB25a.
Remember, you can connect the jumper to any hole along the power
rail (it has a red line next to it). When you've added the wire, it will
look like figure 8.8.

Fantastic! Now you have electricity reaching the bottom legs of the
button.
STEP 3. ADD THE 10K OHM RESISTOR

Time to connect your 10K ohm resistor. It has bands of brown, black,
and orange followed by a fourth gold or silver band. Remember that

216 CHAPTER & DJ Raspi

10K ohm resistor. Color bands
are brown, black, and orange.
The resistor connects the
button to ground.

Connect the other end
of the resistor to the
negative power bus (-).

Connect one end of -
the resistor to BB23i. "

Figure 8.9 Add the resistor. Make sure its ends are pushed down into the bread-
board holes.

electricity will flow either way through a resistor, so 1t doesn 't matter
which way you place it.

You're connecting the resistor from the top of the button to the nega-
tive power bus (-). This is the set of holes with a blue stripe next to it
running along the edge of the breadboard.

Insert one end of the resistor into BB257 and the other end into the neg-
ative power bus (-). You can choose any hole along the blue line. Once
the resistor is added, you'll have something that looks like figure 8.9.
Now you're ready for the final step.

STEP 4. ADD THE JUMPER TO A GFPIO PIN.

A small amount of electricity needs to reach a GPIO pin (you'll use
GP06), so you need a jumper wire from the top of the button to a hole
next to the GPIO pin. To make this connection, add a jumper from
BB25ato BBlé6a. Figure 8.10 shows how it looks.

When the button is pressed, a small amount of electricity will flow to
GP06 and through the resistor to ground. Nothing happens yet, but
next you'll write a Python program to detect that electricity and play
some sounds.

Hardware: building the circuit 217

Connect jumper wire from
the top of the button to GP06

Connect the other end of
jumper to hole BBl6a (GP06)

Connect one end of
jumper to hole BB23a

& The color of your jumper wires .
doesn’t matter (it’s simply the color

of the plastic on the outside of the wire).
Pick any color you like!

Figure 8.10 The jumper connects the top of the button to GP06. Later,
you’ll set your Pi to listen for electrical input on this GPIO pin.

Adding the second button
Let’s add a second button to the board. Figure 8.11 shows what it will

look like when it’s done.

Connect a jumper from

the button to GPI9 —\

(BB28a BBISa).

~

Add a jumper from
3.3V to BB30a.

) Add a 10K ohm resistor
- from BB28i to the

Add the button in L
negative power bus (-).

rows 28 and 30.

Figure 8.11 Add the second pushbutton just below the first one. The wiring is
the same, but you’ll connect it to GP19 (GPIO pin 19). Any available GPIO pin will
work, but remember that your code will have to reflect the GPIO pins you select.

216

CHAPTER & DJ Raspi

To add another button, you'll create the same circuit but place the button
in rows 28 and 30 on your breadboards. You'll wire the button to GP19.

STEP 1. ADD THE MINI PUSHBUTTON.

Insert the button so that the top legs are in BB28d and BB28g and the
bottom legs are in BB50d and BB3(g.

STEP 2. CONNECT A JUMPER WIRE FROM 3.3 YOLTS TO THE BUTTON.

You need to connect power from the positive power bus to the bottom
of the button. The power rail is the line of holes with a red line running
next to it. Insert a jumper from anywhere along the posrtive power bus
(+) to BB30a.

STEP 3. ADD THE 10K OHM RESISTOR.

To prevent too much electricity from flowing when the button is
pressed, you need to add a resistor. As before, you'll add a 10K ohm
resistor (color bands are brown, black, and orange) to connect the top
of the button to the negative power bus (-).

Insert one end of the resistor into BB28i and the other end into the neg-
ative power bus (-). Any hole along the blue line will work.

STEP 4. ADD THE JUMPER TO A GPIO PIN.

Finally, when the button is pressed, you need electricity to flow to a
GPIO pin. For the second button, you're using GP19. Connect a
jumper wire from BB28ato BBI18a (GP19).

Terrific! The second button is connected, and you've completed the
button circuit. Let’s call the first button Button 1. It’s wired to GP06.
The second button, Button 2, is wired to GP19. Now that everything is
wired up, let’s write code for it!

Software: the DJ Raspi program

Your project is to turn your Pi into an awesome music player that is
controlled by buttons. Here’s how it will work:

@ Pressing Button 1 makes the Pi play random music clips.

@ Pressing Button 2 makes the Pi play random vocal (singing) sounds.

Software: the DJ Raspi program 219

Set up your Pi to
listen to two buttons.

1

Get two lists of sound files:
music and vocals.

1

Check buttons.

|

Button
pressed?

No

Repeat until
user quits
(presses Ctrl-C).

Button 1 Button 2

Button 1 Button 2

Play random Play random
I ‘)) music I ‘)) vocal
sound. sound.
| |

Figure 8.12 A flow diagram showing how the DJ Raspi pro-
gram should work. The program must gather a list of sounds
at the beginning and then check whether the buttons are
pressed. The buttons will be checked over and over again.

You'll need one of the following to hear the sounds:

@ Headphones

@ Powered computer speakers

@ Your Pi connected via HDMI to a TV with built-in speakers

Let’s think through how this program will work. Figure 8.12 shows a
quick diagram of the logic.

Let’s write the code in this order:

1 Set up your Pi to listen to input coming from the buttons.
2 Gather a list of music and vocal sounds.

3 Program a loop to check the buttons. If they're pressed, then play
random sounds.

220 CHAPTER & DJ Raspi

You'll try to use functions along the way to simplify your code.

Let’s begin! Open IDLE by choosing Python 3 under Menu > Pro-
gramming. In the Python Shell, start a new program by pressing
Ctrl-N or selecting File > New Window.

Setting up the Pi: initializing the buttons
In the IDLE text editor, you'll start by loading the Python libraries
you'll need to use. You'll also set up a couple of the Pi’s GPIO ports to
listen for electrical signals coming in from the buttons being pressed. In

the flow diagram, this is the first step of initializing the buttons (see fig-
ure 8.13).

When you set up the GPIO ports, you use GPI0.IN to tell the Pi that you
plan to use that port as an input. To prepare your Pi for input to the

Set up your Pi to Set up the GPIO
listen to two buttons. pins for input.

Figure 8.13 The first step is to set up the buttons as inputs.
This will mean your Pi is ready to check whether it’s detecting any
voltage coming in, which will happen when a button is pressed.

Software: the DJ Raspi program 221

GPIO pins, you need to tell it which pins you plan to use. Based on the
circuit, you're using these pins as inputs:

¢ GPO06 for Button 1
¢ GP19 for Button 2

The following listing shows how you can use the GP10.setup command
to set a GPIO pin to input.

Listing 8.1 Setting up GPIO pins for input

D] Raspi
Ryan Heitz

importing the libraries you need
import RPi.GPIO as GPIO

import time
Import the os library that lets you

Tmport random 4/ execute a Raspbian command.
import os

Variables for the button GPIO input pins
button_pinl = 6

button_pin2 = 19 Store the value of the GPIO pins.

#Tell the Pi we want to use a breakout board
GPIO.setmode(GPIO.BCM)

Set up GPIO pins as input pins (detect electrical signals coming in)
GPIO.setup(button_pinl,GPIO.IN)
GPIO.setup(button_pin2,GPIO0.IN)

Set up the pins for input
(notice you use GPIO.IN).

You may notice that you Import a new os module. We'll talk about why
you need that in the next section when you gather your lists of sound

files.

Getting a list of sounds

Lists are everywhere around you. You make lists of things you need to
do, gifts to buy, places you want to visit, and favorite things, such as
your top-10 movies or books.

222 CHAPTER & DJ Raspi

. Build a list of files in a folder.
music and vocals.

Learn the basics of lists.
Get two lists of sound files: }
Filter the list for only MP3 files.

Figure 8.14 The next step of the DJ Raspi program gets a list
of sound files. Later, you’ll add the part that uses the button to
trigger playing random sounds from the lists.

Your DJ Raspi needs a /ist of sound files: one for music clips (or loops)
and one for vocals. Based on the design, you need to get a list of files
from a folder on your Pi, and then you need to select a random sound

file from the list and play it (see figure 8.14).

In Python, you can create lists or groups of things easily. Let’s look at

some examples.

Let’s create a list of basketball player names. Open IDLE to the Python
3.x Shell by choosing Python 3 under Menu > Programming. In the
Python Shell, make a list:

>>> basketball_players = ["Kevin Durant", "LeBron James", "Chris Paul",
"John Wall"]

Software: the DJ Raspi program 223

Square brackets must go around the list. Use
the left square bracket ([) to start the list and

. the right square bracket (]) to end the list.
Lists can be

stored in variables.

P
basketball_players = ["Kevin Durant", "LeBron James", "Chris Paul", "John Wall"]

The equals sign If you have a list of Use commas to
stores the list strings, then each separate each
in the variable item must be in item in the list.
on the left. quotation marks.

Figure 8.15 You make lists by using square brackets to enclose a set of things. Each thing
in the list should be separated with a comma. Python will even let you make lists that com-
bine different types of data, like strings and integers.

Print out the list like this, and you'll see what's inside:

>>> print(basketball_players)
['Kevin Durant', 'LeBron James', 'Chris Paul', 'John Wall']

To make a list of the items, put them in a set of square brackets ([])
and separate each item with a comma (see figure 8.15). For lists of
strings, each item in the list has to have quotation marks around it.

Pretty simple! That’s the Python way.
Try creating a list called favorite_numbers, like so:
>>> favorite_numbers = [22, 27, 49, 121, 2, 25]

Display the contents of the list using print:

>>> print(favorite_numbers)
[22, 27, 49, 121, 2, 25]

NOTE When making a list of numbers, you don’t use any quotation
marks.

Enjoy making lists of some of your favorite things!

224

CHAPTER & DJ Raspi

More things you can do with lists
There are lots of things you can do with lists! Let’s try a few.

You make a list longer by adding more items to it. To do this, use the append
method. Let’s add the name Stephen Curry to the list of basketball_players.
Here is how you can use append to do that:

>>> basketball_players.append("Stephen Curry")
Use print to see the result:

>>> print(basketball_players)
['Kevin Durant', 'LeBron James', 'Chris Paul', 'John Wall', 'Stephen Curry']

Excellent! To remove an item from a list you can use the remove method. If you
wanted to take John Wall out of the list, write

>>> basketball_players.remove("John Wall")
Print the list again to see if it worked:

>>> print(basketball_players)
['Kevin Durant', 'LeBron James', 'Chris Paul', 'Stephen Curry']

Wonderful! If you need to put a list in order alphabetically or from lowest to high-
est, you can use the sort method like so:

>>> favorite_numbers.sort()
Check that it worked by printing the list to the screen:

>>> print(favorite_numbers)
[2, 22, 25, 27, 49, 121]

The numbers are all sorted! This works on lists made of strings as well. If you
sort the list of basketball_players, it puts them in alphabetical order based
on the first letter of each string. Python has many built-in methods for lists.

Check the online Python documentation? for more things you can do with lists.
Then sit back and enjoy thinking about all you can do with them in your future
programs.

2 Go to the Python website for more information on things you can do with lists:
https://docs.python.org/3.4/tutorial/datastructures.html.

https://docs.python.org/3.4/tutorial/datastructures.html

Software: the DJ Raspi program 225

For your DJ Raspi, let’s see how to

@ Get the value of an item stored in a list.

@ Get the length of a list.

Getting a value of an item stored in a list
Let’s start with a fresh list of basketball players:

basketball_players = ["Kevin Durant", "LeBron James", "Chris Paul",
"Stephen Curry"]

As you've seen, lists store information. What you might not know is
that each spot in a list is given a number called the /ndex. The index of
the first item in the list is zero (0). The second item has an index of 1.
The third item’s index is 2, and so on. To get the third item in the
basketball_players list, you'd type

>>> print(basketball_players[2])
Chris Paul

If you want to search a list and have Python tell you the index of where
an item first appears in the list, you use the index method:

>>> basketball_players.index("Kevin Durant")
0
>>> basketball_players.index("Stephen Curry™)
3

If the item 1sn’t in the list, Python will give you an error saying so:

>>> basketball_players.index("Me")
Traceback (most recent call last):
File "<pyshell#40>", 1line 1, in <module>
basketball_players.index("Me")
ValueError: 'Me' is not in list

NOTE Remember that the index for lists starts counting at 0, not 1!
For example, basketball_players[1] gives you "Lebron James", the sec-
ond item in the list.

220 CHAPTER & DJ Raspi

Each item in the list is given a number, called an
index. The index represents its position in the list.

BasketballPlayers = ["Kevin Durant", "LeBron James", "Chris Paul", "Stephen Curry"]

fool

Index of 0 Index of | Index of 2 Index of 3

& The index numbers start at zero (0).

To find the index of a certain value in a list:
basketball_players.index("Stephen Curry") — Returns 3

To find the value of an item at a certain index:
basketball_players[0] Returns “Kevin Durant”

Use len() to find how many items are in the list:
len(basketball players) Returns 4

Figure 8.16 Sets of things can be stored in lists. You can retrieve items from the list using
the index, which represents the position of an item in the list. The index of a list starts at 0.

Figure 8.16 shows examples of the indexes for a list and how you can

get a specific item in a list.

Getting the length of a list

Finally, there are times when you've loaded information into a list and
you need a way to check how long the list is. Use the len() function to
do that:

>>> yummy_snacks = ["chips", "popcorn", "donuts", "cheese",
"pretzels", "spam"]

>>> print(len(yummy_snacks))

6

Great job—you know the basics of lists. Now let’s see how you can cre-
ate lists of MP3s.

Software: the DJ Raspi program 227

Building a list of sound files with the os library
To make the DJ Raspi project work, you need to

1 Grab two lists of sound files from folders on your Pi.

2 Make OMXPlayer play sound files from Python as part of the DJ
Rasp1 program.

Let’s learn how.

The Pi has both these abilities through a Python module called the os
module (OS stands for operating system). With it, you can run operat-
ing system commands (things you can type in the Terminal window)
from your Python programs. This is fantastic, because it means you can
get lists of files and also call OMXPlayer to play a certain file —exactly
what you need!

GETTING A LIST OF FILES FROM A FOLDER: USING LISTDIR()

Your Pi has some sound files on it already, as you saw in section 8.1.
You'll use the files in these two folders:

@ /usr/share/scratch/Media/Sounds/Music Loops/
@ /usr/share/scratch/Media/Sounds/Vocals/

The os library provides a built-in function, os.1listdir(some_path), to get
a list of files at some_path. To get a list of Scratch music loops and vocals,
use these commands:

Folders with sound files
path_music = "/usr/share/scratch/Media/Sounds/Music Loops/"
path_vocals = "/usr/share/scratch/Media/Sounds/Vocals/"

Creating two lists with the files in the folders
sounds_music = os.listdir(path_music)
sounds_vocals = os.listdir(path_vocals)

If you print the lists, you'll have something that looks like this:

print(sounds_music)
['Cave.mp3', 'Techno.mp3', 'HipHop.mp3', 'Triumph.mp3', 'Medieval2.mp3',
'HumanBeatbox2.mp3', 'DripDrop.mp3', 'Xylo3.mp3', 'GuitarChordsl.mp3"',

225

CHAPTER & DJ Raspi

'DrumSet2.mp3', 'Xylo2.mp3', 'DrumSetl.mp3', 'Garden.mp3',
'GuitarChords2.mp3', 'Jungle.mp3', 'Xylol.mp3', 'Eggs.mp3',
HumanBeatbox1.mp3', 'Drum.mp3', 'DrumMachine.mp3', 'Techno2.mp3',
'Medievall.mp3', 'xylo4.mp3']

print(sounds_vocals)

['Oooo-badada.mp3', 'Singerl.wav', 'BeatBoxl.wav', 'Ya.wav',
'BeatBox2.wav', 'Come-and-play.mp3', 'Hey-yay-hey.mp3',
'Doy-doy-doy.mp3', 'Singer2.wav', 'Got-inspiration.mp3',
'Join-you.mp3', 'Sing-me-a-song.mp3']

Wow —you have nice-looking lists! But wait: it looks like sounds_vocals
has WAV (.wav) files and MP3s. Let’s filter out the WAVs so you only
have MP3s.

FILTERING FOR ONLY MP3S

To filter a list, you can use Python’s /ist-comprehension feature. List
comprehension is a quick way of creating lists. When you use it, you
can include certain conditions or operations that are applied to the
items in the list, such as making sure all the files in the list end with
.mp3. Let’s look at how you can use list comprehension to create a new
list from your old list, but only keep the files in the list that end with
.mp3:

sounds_music = [sound for sound in sounds_music if

sound.endswith('.mp3')]

sounds_vocals = [sound for sound in sounds_vocals if sound.endswith
(".mp3')]

The list comprehension has a for loop inside it. In this case, Python is
looping through the list of sound files in your original list of sounds.
For each item in the list, Python only adds it to the new sounds list if it
matches the condition of being a file ending with .mp3.

Playing a sound when a button is pressed

Next in your plan is to write the code that will play a random sound
from your lists when a button is pressed. You'll need this to be in a loop

Software: the DJ Raspi program 229

Set up your Pi to

listen to two buttons.
Display a title screen
and instructions. l

Get two lists of sound files:
music and vocals.

l

Check buttons.

Loop and check both buttons
using an if statement.

Button
pressed?

No

Repeat until

Button 1 user quits

Button 2

If True, get a random (presses Citrl-C).

sound from the list. Button 1 Button 2

Tell Raspbian to play Play random Play random
the random sounds I ‘))) music I ‘))) vocal
with OMXPlayer from sound. sound.
Python. | |

Figure 8.17 The main part of the DJ Raspi program is the loop to check the but-
tons. You'll use a while loop to check the buttons over and over again. If one of
them is pressed, you’ll tell Raspbian to play a random sound using OMXPlayer.

so the buttons are repeatedly checked to see whether they're being
pressed (see figure 8.17). Let’s start by creating the game’s title and
creating the main game loop.

LOOP TO CHECK THE BUTTONS

First let’s add some code to display a title screen and the DJ Raspi
instructions. Feel free to make the title screen fancier!

Listing 8.2 DJ Raspi title screen

Clear the screen

os.system("clear"
y () The clear command makes the

Terminal a blank, black window.

230 CHAPTER & DJ Raspi

#Display a title screen

title = """ Use triple quotation marks (") to
DJ RASPI!!! create a string literal for the title.
Press Button 1 for Music Sounds

Press Button 2 for Vocal Sounds
Press Ctrl + C to exit

[IRTR1]

print(title)

Now let’s write the code to loop over and over again to check whether
either button is being pressed. When a button is pressed, the GPIO pin
will give you a response of True, and you can then call a function to
play a random MP3.

Listing 8.3 DJ Raspi game loop

Start an infinite loop (must use Ctrl-C to stop it)
while True:
if GPIO.input(button_pinl):

print("You pressed #1!") If the GPIO detects

play_random_sound(path_music, sounds_music) input, this is True, and
Play a random time.sleep(.1) the sound is played.
sound using the if GPIO.input(button_pin2):
function you wrote. print("You pressed #2!™)

play_random_sound(path_vocals, sounds_vocals) .

. Wait a small
time.sleep(.1) J amount of time.
time.sleep(.1)

The code repeatedly checks whether Button 1 or Button 2 is pressed. If
Button 1 is pressed, the code plays a random music sound. If Button 2
is pressed, the code plays a random vocals (singing) sound. If neither is
pressed, the code loops around and checks them again. The loop never
ends, so you'll need to press Ctrl-C to exit the program.

PLAYING SOUNDS: USING OPERATING SYSTEM COMMANDS FROM PYTHON

You're ready to play your sounds! The os module will let you run oper-
ating system commands (ones you normally run using Terminal). To
play the first sound in the sounds_music list, you could write

Software: the DJ Raspi program 231

os.system("omxplayer —o local '" + path_music + sounds_music[0] + " &")

Later in this chapter, we'll explain why the end of that command has
an ampersand (&). The result of this command would be the same as
typing this at the Raspbian command line:

omxplayer -o local "/usr/share/scratch/Media/Sounds/Music Loops/
Cave.mp3"

NOTE Remember, if you're outputting the sound to HDMI (if your
TV has speakers), you need to change -o 1local to -o hdmi.

Excellent! Let’s review what you've learned so far:

@ Your Pi can play sounds that are in MP3 format using OMXPlayer.
@ Python can store sets of things as lists.

@ The Python os library has a function called 1istdir(path) that can
give you a list of sounds in a folder.

@ Python’s os library has an os.system(command) function that can run
operating system commands from Python, such as playing sounds
with OMXPlayer.

Functions!

Let’s think about how you can write the functions for DJ Raspi. You'll
want to create two functions:

@ get_MP3_sounds — This function will get a list of sounds ending in .mp3
from a specified folder. You'll tell the function (pass it a parameter)
the name of the folder where you want to get the MP3 sound files.
The function will return a list of sounds.

@ play_random_sound— This function will take a list of sounds, pick a
random number, and then use os.system to tell Raspbian to play the
sound with OMXPlayer.

232

CHAPTER & DJ Raspi

Set up your Pi to
listen to two buttons.

l

Get two lists of sound files: } CELHSEITR

. get_MP3_sounds (sound_path),
music and vocals. ;
l that returns a list of sounds.

Check buttons. -—

l

Button No

pressed?

Repeat until
Button 2 user quits

(presses Ctrl-C).

Button 1

Button 1 Button 2

Play random Play random
I)) music I)) vocal
sound. sound.

Create a function:
play_random_sound(sound_path, sound_files).

Figure 8.18 There are two places where you can create functions
so you can reuse code. One function creates a list of sound files, and
the other function plays a random sound when a button is pressed.

Figure 8.18 shows where these functions fit into the flow diagram.

Why not make this a single function? One reason is that you only need
to load a list of sound files once, near the beginning of the program.
You play the sound files every time a button is pressed. Listing 8.4
shows the code for the get_MP3_sounds and play_random_sound functions.

NOTE Remember to put these functions near the beginning of the
program. They must be added before they're used for the first time.

At the end of this listing, you use (or call) get_MP3_sounds twice to get
your lists of music and vocal sound files.

(_4»
Use the listdir
function to get a
list of files in a
folder on your Pi.

r—?

Use the randint
and len functions
to get a random
sound number.

Software: the DJ Raspi program 233

Listing 8.4 Functions for loading and playing sound files

Returns a list of mp3 sound files for the path given
def get_MP3_sounds(sound_path):
sound_filesound_files = os.listdir(sound_path) Comprehension filters
sound_filesound_files = [sound_file for sound_file in the list to only keep
sound_filesound_files files ending in .mp3.
if sound_file.endswith('.mp3')]
return sound_filesound_files

Plays a random sound from a list of mp3s for the path given
def play_random_sound(sound_path, sound_filesound_files):
random_sound_index = random.randint(0,len(sound_filesound_files)-1)

os.system("omxplayer —o local '" + sound_path +
"/" + sound_filesound_files[random_sound_index] + "' &") \

Get the 1list of music loops and vocals (mp3s only) Play the sound
sounds_music = get_MP3_sounds(path_music) with os.system.
sounds_vocals = get_MP3_sounds(path_vocals)

You may have noticed that a few extra things are added to this line:

os.system("omxplayer —-o local '" + sound_path +
"/" + sound_filesound_files[random_sound_index] + "' &")

This line joins the command to run OMXPlayer with the path to your
sound files (sound_path) and the random sound file you want to play
(sound_filesound_files[random_sound_index]). At the end, you add an
ampersand (&). The ampersand tells Raspbian to run the command in
the background. This is so you can quickly press one button and then
the other.

Doing multiple things at once: meet the ampersand (&)

When you play sounds, you want to be able to press the buttons quickly, like a
DJ, and have the sounds overlap to create interesting music. Normally, your Pi
would play one sound, and, when it was finished playing, let you play another.
Not what you want. Here is an example of playing two sounds. You can’t run the
second command until the first one is finished:

omxplayer /usr/share/scratch/Media/Sounds/Vocals/0Oooo-badada.mp3
omxplayer /usr/share/scratch/Media/Sounds/Vocals/Hey-yay—hey.mp3

234

CHAPTER & DJ Raspi

(continued)

Luckily, your Pi can do a few things at once. You might have several different
windows open at the same time. Each window is connected to some underlying
code or set of instructions running on your Pi. These underlying sets of code are
called processes or threads. Raspbian, like other modern operating systems,
manages these processes and assigns each one its own unique ID number. An
ampersand (&) placed at the end of a command tells your Pi to run the command
as another process in the background alongside any other processes.

Try these two commands again, but this time with ampersands:

omxplayer /usr/share/scratch/Media/Sounds/Vocals/Oooo-badada.mp3 &
omxplayer /usr/share/scratch/Media/Sounds/Vocals/Hey-yay-hey.mp3 &

Notice the ampersand (&) at the end of each command. In this way, the Pi will
play your sound, but the code won’t make your Pi wait for the sound to finish
before doing something else. Adding an ampersand at the end of the OMXPlayer
command makes the button play each sound in the background. Remove the
ampersand to play one sound at a time. Because this is a feature of the OS, the
concept of using ampersands to execute commands as their own unique pro-
cesses applies to other Linux commands that you know already or will learn.

Great! You're ready to test your project!

Testing: your first gig as DJ Raspi

Save the code as DJRaspi.py, and try running it. Select Run > Run
Module (or press F5) from the IDLE text editor to run your program.
If you have an older version of Raspbian (prior to October 2015),
programs that use the GPIO pins must be run from the Raspbian com-
mand prompt as the superuser (or root). Open Terminal, and enter the
following command:

pi@raspberrypi ~ $ sudo python3 DJRaspi.py

You should see the title screen display. Test it by pressing the buttons
to see if they work.

NOTE Remember that any program that uses GP1O pins must be run
from the Raspbian command prompt as the superuser (or root).

Believe it or not, it’s rare for a program to work perfectly the first
time. If it doesn’t, read through the following “Troubleshooting”

Troubleshooting 235

section and review your circuit and program to try to figure out how

to get it working.

Troubleshooting

If sounds aren’t playing when you press the buttons, here are some

things you can check:

© Check the circuit on the breadboard. Is the ribbon cable connected
properly, with the first wire connected toward the edge of your Pj,
away from the USB ports?

@ Double-check that the jumpers, buttons, and resistors are in the
right holes and pressed all the way into the breadboard.

@ Does your program print “You pressed #1!” and “You pressed #21"?
If it does, you know your circuit is working, and either it’s an issue
with the code to load the sound files or your speakers or headphones
aren’t working. Try running one of the following commands from
Terminal to check whether the speakers are working.

For headphones or speakers plugged into the 3.5 mm audio output:

omxplayer -o local /usr/share/scratch/Media/Sounds/Vocals/
Oooo-badada.mp3

For TV speakers connected by HDMI:

omxplayer -o hdmi /usr/share/scratch/Media/Sounds/Vocals/
0Oooo-badada.mp3

2 Look through your Python program for errors. Try adding some
print statements to your functions to make sure they're getting the
list of MP3 files properly.

If you've enjoyed creating DJ Raspi, check out the button challenges.

236 CHAPTER & DJ Raspi

Challenges

Try some of these button activities for extra fun!

Double button press surprise
Give your program a surprise button combination. See if you can make

pressing both buttons at once play a new set of sound effects.

Hint: When you want something to happen only if both conditions are
True, you can use the ampersand (&). The if statement will only be
True if both the first and second conditions are True. It looks like this:

if GPIO.input(button_pinl) & GPIO.input(button_pin2):
print("Both buttons are pressed!")

Here is the path to some Scratch sound effects on your Pi:

path_effects = "/usr/share/scratch/Media/Sounds/Effects/"

Yoda Magic & Ball
There is a great classic toy called the Magic 8 Ball. It’s a ball that dis-

plays an answer to a question when you shake it. Ask it a question, and
you'll get some truly magical advice. The Magic 8 Ball has 20 different

. “ M . » “ ”»
answers, ranging from “It is certain” to “My sources say no.

NOTE I don’t recommend using the Magic 8 Ball to advise you on
major life matters!

Your challenge is to make a Magic 8 Ball program:

@ Ask a question aloud, and then press a button.

@ Pressing the button makes your Pi select a random Yoda clip from a

folder and play it.

To get started, find some short sound files of Yoda sayings. One place
to find them is on soundboard.com. Search for “yoda” to see if you can
locate some good clips (you'll need to create an account to download
them for your personal use).

Summary 237

Bonus: Try to give your Pi a handy button that plays Monty Python
sound clips whenever you press it.

Continuing to explore

Now that you've given you Pi a new sense of touch, you'll only need to
change a few lines of code to make many other projects, such as these:

@ An interactive display that shows different digital photographs each
time a button is pressed

@ Your own Raspberry Pi movie player that plays clips or movies at
the press of a button

@ An MP3 music player that shuffles through your favorite songs

You can also expand past buttons to sensors, such as passive infrared
(PIR) sensors or cameras. For example, PIR sensors detect motion near
the sensor. These are great for creating a Pi security system or some-
thing that scares people when they come to your door. Maybe you
want to trigger a movie to make a frightening zombie head appear or
generate a blood-curdling scream. Your only limit is your imagination
and mischievous thoughts.

In this chapter, you learned that

@ A Pi can sense the environment around it using the input capability
of the GPIO pins. This creates incredible possibilities to make the Pi

have human or even superhuman senses.

> Python lists make it easy to store and retrieve sets of things like
numbers, sound files, images, and videos.

@ Buttons act as simple switches that send a small amount of electricity
to your Pi’s GPIO pins, which it can detect. You have nothing to fear
in wiring up buttons or other sensors!

@ Python programs can run Raspbian commands using the os library.
This opens lots of possibilities for your programs, from playing

238

CHAPTER & DJ Raspi

music to showing or taking videos, displaying or taking pictures, and
accessing information from websites.

You've completed a great adventure in learning Python programming
and how to use your Raspberry Pi. But there is much more excitement
ahead of you. Check out appendix D for even more ideas of projects
you can do with your Pi. With your Raspberry Pi, knowledge of
Python, and a bit of fearlessness, the possibilities are endless!

Appendix A

Raspberry Pi troubleshooting

In this appendix, you'll learn how to solve common issues when setting
up a Raspberry Pi. We'll cover common Pi startup (or boot) issues,
including how to fix an issue with an SD card for your Pi or set up a new
SD card.

Making sure your Pi has power

Sometimes a Pi won't start up. Before you try something drastic like cre-
ating a new SD card for your Pi, check the Pi’s power:

@ When you plug in your Pi, does the Pi’s red power light come on?

Look for a small, red light (LED) on your Pi board. All Pis have them,
but you may need to take off your case if you can't see the Pi board.
The red power light tells you that your Pi is receiving power. It should
come on when you plug in your Pi and stay on the whole time you're
using it. If it doesn’t come on, that means your Piisn’t receiving power.
Check that the power supply is plugged in. If you're using a power
strip, check that it’s turned on. Sadly, some power supplies are poorly

made. Get a new power supply if it’s a power issue.

@ Next to the red light, does the green activity light (LED) flash a lot
when you plug in your Pi?

239

240

Appendix A Raspberry Pi troubleshooting

The flashing 1s a sign that your Pi is doing some work. The green
activity light should turn on and off, flashing quickly at times, as your
Pi boots up. When it’s done starting up, the green light will turn off
and only come on when your Piis actively doing something like open-
ing a game or Python. If the green light comes on and stays on, but
nothing is displayed to the screen, it’s likely an issue with your SD
card. J ump ahead to section A.4 to learn how to create a new SD card.

If you suspect a power issue, purchase a new power supply and try it
out. Providing sufficient electrical power (2 amps) at the correct volt-
age (5 volts) is important for a Pi to work correctly.

Checking the connection to your TV or monitor

If the red light is staying on and the green light turns on and off after
you plug in your Pi, but you don'’t see any image on your TV or monitor,
it’s time to check the connection to your screen. Here are a few things
to investigate, depending on the type of TV or monitor you're using.

If you're connecting an HDMI cable from your Pi to your TV or moni-
tor, try these things:

@ Check that the TV or monitor is turned on.
@ Check that the TV or monitor is set to the correct input. They typi-

cally have multiple inputs, and you must press an input button to
select the proper one. Otherwise, the screen will display nothing or a
message saying no input is detected.

@ If you have an extra HDMI cable, try using it to see if it’s an issue

with the cable.

If your setup requires that you use an adapter to connect your Pi to
your TV or monitor, then you may need to make sure your adapter
works or is the correct type. There are two common types of adapters:

@ HDMI-to-DVI adapter— This adapter is used to connect the Rasp-

berry Pi's HDMI cable to a monitor with a digital visual interface
(DVI) port. Sometimes you might purchase a bad adapter that
doesn’t work. If you can, try connecting your Pi to another TV or

Making your Fi a hew SD card 24

monitor that uses HDMI to check whether it’s an issue with the
adapter. Again, if the red light comes on and the green light flashes,
but you don'’t see anything on your screen, it’s likely an issue with
the monitor connection.

© HDMI-to-VGA adapter—Older monitors don’t have HDMI or DVI
ports and may only have a video graphics array (VGA) port. Your
only option may be to buy an HDMI-to-VGA adapter to connect
your Pi to the monitor. Not all HDMI-to-VGA adapters work. Your
best bet is to buy one that is advertised to work with the Pi from a
store that sells Raspberry Pis. If you aren’t sure, try hooking up your
Pi to another TV or monitor using only the HDMI cable to test
whether that is your issue.

If, after all those steps, you don'’t see a picture, it’s likely an issue with
your SD card.

Pi starts booting up but then stops

Another issue you may see is that your Raspberry Pi starts booting up,
you see a series of messages displayed on the screen, and then the mes-
sages stop but the Pi doesn't reach the Raspbian desktop or command
line. If this is the case, it’s likely that the SD card has been damaged.
But another reason is that there could be something wrong with one of
your GPIO pins.

If you're building circuits on a breadboard connected to your Pi (see
the examples in chapters 6-8), the Pi may fail to boot all the way up if a
wire is improperly connected. To see whether this is the issue, discon-
nect the ribbon cable and breadboard from your Pi and try powering it
up again. If the problem persists, it’s likely an issue with the SD card.

Making your Pi a new SD card

Still not starting up? An issue with an SD card is a common reason.
The SD card may stop working if the Piis turned off when information
is being stored (or written) on the card, or it may fail with age.

242

Appendix A Raspberry Pi troubleshooting

NOTE When an SD card fails, _you’ll need to start over, and you'll lose
any data or new applications installed on the card. In the future, you
can create a backup of your SD card. Check out online forums to learn
how to do this.

You have a couple options if you think this is the problem:

1 Clean and reset your SD card with the Raspberry Pi New Out of the
Box Software (NOOBS).

2 Purchase a new card from one of the many online stores that sell

Raspberry Pis. They cost around $10.

Let’s go over how to clean and set up your SD card with NOOBS. To
perform these steps, you need another computer, such as a Windows
PC or a Mac.

Reformatting your SD card

Formatting is the process of setting up the memory storage so that
information can be put on it. To reformat your SD card and set it up
with a fresh version of NOOBS, do the following:

1 Using your other computer, download and install the SDFormatter
software from the SD Association website: https://www.sdcard.org.
On the website, look under Downloads, and download the appropri-
ate version of SDFormatter for either Windows or Mac. Follow the
install instructions to load the software on your computer.

2 Insert your SD card into the computer. Take note of which drive let-
ter is assigned to the SD card after it’s inserted: it may be E:, F:, or

similar.

NOTE For the Raspberry Pi Model 2 and B+, the SD card is a
microSD card, so you'll need a microSD-to-SD card adapter in order
for it to insert into the SD card slot on your computer. You can pur-
chase such an adapter online.

3 Open SDFormatter, select the correct drive letter for your SD card,
and then click Format (see figure A.1). It'll ask if you want to con-
tinue. Accept the warnings to reformat the SD card.

https://www.sdcard.org

Problems not covered here 243

-

Format vour drive. ll of the data
on the drive will be lost when you S"’

format it.
S» ==
SD, SDHC and SDXC Logos are trademarks of
SD-3C, LLC.
Drive: F: v Refresh
Size : 117 GB Volume Label : RECOVERY
Fornat Optn:

QUICK FORMAT, FORMAT SIZE ADJUSTMENT OFF

Format Exit

Figure A.1 Clean up (or reformat) your SD card using the
SDFormatter software available from the SD Association web-
site. In SDFormatter, select the drive letter for your SD card,
and click Format to have your card wiped clean. This process
means you’re starting over—you lose anything saved or
installed on your Pi—but sometimes that is the only option.

4 Go to the Raspberry Pi website at https://www.raspberrypi.org/
downloads, and click the link to download the NOOBS zip file. It's a
large file, so grab a snack while you're waiting for the download.

5 Extract the NOOBS zip file, and drag all the extracted files onto
your SD card.

6 Once the files have been copied, take the SD card out of the com-
puter and put it into your Raspberry Pi. With your keyboard,
mouse, and monitor connected, plug in the Pi to see if it boots up. If
it doesn'’t, it’s probably time to purchase a new NOOBS SD card for
your Pi from a local or online store that sells Raspberry Pis.

Problems not covered here

Not everything can be covered here, so get online! A large amount of
troubleshooting information is posted on the Raspberry Pi forums. If

https://www.raspberrypi.org/downloads
https://www.raspberrypi.org/downloads

244

Appendix A Raspberry Pi troubleshooting

you're stuck, search the internet for “Raspberry Pi troubleshooting,”
and you'll find numerous resources. Although we're all special, it’s rare
to have an issue with the Pi that no one else has discovered. Chances
are, many other people have had the same issue, so read the forums to
benefit from all the knowledge that comes from the diverse community
of Raspberry Pi users!

Appendix B

Raspberry Pi ports and
legacy boards

In this appendix, you'll find information about some of the Raspberry Pi
ports and connections that we didn’t discuss in chapter 1. Our focus is on
the Raspberry Pi 2 Model B. The connections and ports that we'll cover
in more detail include the following:

> Wireless internet connections using a USB Wi-Fi adapter

@ 3.5 mm audio/video port

@ Camera Serial Interface (CSI) port

@ Ethernet port

@ TV or monitor connection options

In section B.2 of this appendix, we'll review key differences between the

legacy Raspberry Pi 1 models as compared to the Raspberry Pi 2 Model
B. We'll look more at these popular, but older models:

@ Raspberry Pi 1 Model B rev 2 (released September 2012)
@ Raspberry Pi 1 Model B+ (released July 2014)

Let’s take a closer look at ports and connections.

245

246 Appendix B Raspberry Pi ports and legacy boards

Raspberry Pi ports

The Raspberry Pi has many different ports, and you can connect many
different things to it. In chapter 1, we covered most of the common
ones _you’ll use, but we'll talk about a few of the other ports here. For

reference, figure B.1 shows the ports and their typical uses for the
Raspberry Pi 2 Model B.

Now let’s look in a little more detail at some of the ports and connec-
tions we didn’t cover in chapter 1 or in later chapters.

Tox,

°0

“The brain of
the operation”

Where you plug wires to make
cool projects with electronics

Where you store
the operating
system, apps,
and files

Memory
card slot

MicroUSB
power port

A=

Where you plug

in the power cord

Figure B.1

I

General-purpose

input/output (GPIO) pins

5
il

Where you give it
a high-def display

System on a chip

Where you connect
things (with USB
— connectors)

oooooooooo

| USB Soonooos
ports ===

— Ethernet
port

Where you connect
to the internet

3.5mm
audio/video out

BEC)

Where you can hear
sounds or plug into
an old-style TV

The Raspberry Pi 2 Model B has many different input and output ports that

allow you to connect a keyboard or mouse, monitor, and even high-definition cameras.

Raspberry Pi ports 247

Connecting to a wireless network

A preferred way to connect to the internet is using a USB Wi-Fi
adapter. Once connected, you can surf the web, download applications
from the Pi Store, or remotely log in to your Pi from another computer.
Most of us don’t have our Pi set up near an Ethernet cable, so connect-
ing wirelessly is the best and only option. Let’s look at how you do it.

PLUGGING IN YOUR USB WI-FI ADAPTER

With your Raspberry Pi turned off, plug your USB Wi-Fi adapter into
one of the USB ports. There are many different USB Wi-Fi adapters that
will work for the Pi. Most kits come with one, but if you need to buy
one, refer to the Raspberry Pi forums (see https://www.raspberrypi.org/
forums/) to research those that are known to work. Stores that sell Rasp-
berry Pis also tend to sell compatible USB Wi-Fi adapters.

CONFIGURING YOUR WI-FI CONNECTION
To connect to a Wi-Fi network for the first time, follow these steps:

In the top-right corner, click the network icon (looks like two small
computers connected). You'll see a list of available Wi-Fi networks (see

figure B-2).

In the top-right corner of your Pi’s
desktop, click on the network icon to
view a list of available wireless networks.

/

gé q@ 2%|23:24

1975 @ =

/

Click on the wireless network
you want to connect to.

Figure B.2 The network connection icon is located near the top-right
corner of the Raspbian desktop. Clicking on it allows you to view
nearby wireless networks.

https://www.raspberrypi.org/forums/
https://www.raspberrypi.org/forums/

248

Appendix B Raspberry Pi ports and legacy boards

_% \Lﬁ | 0 %‘23:24

175 Enter the pre-shared
e ooo - key for the wireless
Pre Shared Key. | network and click

— oK OK to connect.

Figure B.3 Enter the pre-shared key for the network and click OK to connect to it.

Click on the Wi-Fi network name that you want to connect to.

Clicking on a Wi-Fi network name will make a small box appear.
Enter the pre-shared key (also called the Wi-Fi password) and click
OK to connect (see figure B.3). The network icon will change into a
Wi-F1 icon showing the strength of the Wi-Fi signal.

Fantastic! Open a web browser, such as your Raspberry Pi’s Epiphany
web browser, and go to one of your favorite websites to enjoy your new
Wi-Fi connection.

TROUBLESHOOTING

If you weren’t able to connect, check that your pre-shared key was
entered correctly. If it's correct and your web browser shows an error
message saying "cannot resolve hostname," then your Pi may need to
renew its IP address. The IP address is a unique series of numbers that
a wireless router assigns to your Pi and other devices on the network.
To renew your Pi’s IP address, open the Terminal and enter these two
commands:

pi@raspberrypi ~ $ sudo dhclient -v —-r eth@
pi@raspberrypi ~ $ sudo dhclient -v eth0

If you still are unable to connect to the internet, check with the person
who set up or manages the network to get help.

3.5 mm audiolvideo port

Whether it’s Beethoven, Lady Gaga, or the creeper explosions in Mine-
craft, you'll want to listen to sounds on your Pi. Meet the 3.5 mm

Raspberry Pi ports 249

Top view

Basphares #1 2 Medel B VL
(&) Bawpharry #i 2014

Side view

v

e

Figure B.4 The Raspberry Pi’s 3.5 mm audio/video port is used to connect headphones
or speakers for playing sounds. It can also function as a low-quality video output, if you
purchase a 3.5 mm-to-RCA composite video adapter.

audio/video port (see figure B.4). This port is a black connector! with a
round hole. It gets its name from the fact that the hole is 3.5 mm in
diameter. Connect either headphones or a set of powered-computer
speakers to listen to sounds from your Raspberry Pi.

TIP If you connect computer speakers, use powered speakers, such
as the type used with a desktop computer or iPod. The sounds that
come out of the Raspberry Pi 3.5 mm audio/video port are only loud
enough for a set of earphones or headphones. If you would like a
roomful of people to hear your music, connect a set of powered speak-

ers, which contain a built-in amplifier to boost the sound.

Starting with the Raspberry Pi 1 Model B+ and the Raspberry Pi 2
Model B, this port can also be used to output a video signal. The video

' In older versions of the Raspberry Pj, the port may be blue rather than black.

250

Appendix B Raspberry Pi ports and legacy boards

signal isn’t high resolution like the HDMI port, but in a pinch, it’s an
option. The output video signal is composite or single-channel video,
meaning all the video signal comes out in a single wire. It’s what many
of the older DVD players and video game consoles used at one time.
You can purchase a cable that plugs into the port and at the other end
has RCA connectors for plugging your Pi into an older TV.

Camera Serial Interface: connecting a camera

If _you’d like to try time-lapse photography or set up a camera to take
pictures of wild animals or your pet, you'll want to add a camera to
your Pi. The best way to add a high-def digital camera to your Rasp-
berry Piis with the Raspberry Pi camera module. Created by the Rasp-
berry Pi Foundation, it doesn’t usually come with Pi kits, so you'll have
to buy it separately. The module contains a 5 megapixel camera

mounted on a circuit board and comes with a short ribbon cable (see

figure B.5).

Metal contacts
Lens are on one side.

hy,

/ Ribbon cable

g1 T4 0-dM

<= e
ENER

Figure B.5 The Raspberry Pi camera module was created by the Raspberry Pi
Foundation to take high-def digital photographs and video. The camera attaches
to the Pi using a ribbon cable that connects to the Camera Serial Interface port.
The camera module can be programmed using Python and used for nature pho-
tography or creating your own home-surveillance system.

Raspberry Pi ports 251

Raspberry Pi
camera

Ribbon cable \» \

When plugging in the
camera, make sure the
metal contacts on the
ribbon cable are facing
the HDMI port.

Camera Serial
Interface (CSI)

Figure B.6 The Raspberry Pi camera can connect to the CSI port, which is located
between the HDMI port and the 3.5 mm audio/video port. To connect a camera, you
need to lift up the black connector, insert the ribbon cable (metal contact toward the
HDMI port), and push down on the black connector again.

The camera connects to your Pi’s Camera Serial Interface (CSI) port
(see figure B.6) and can take still photographs or high-def video. The
module is able to connect easily to the Pi and record high-def video
while consuming less processing power than using a USB camera with
your P1.

To connect the camera module, follow these steps:
1 Open the CSI connector on your Pi by lifting up on the top portion
of the black plastic connector.

2 Insert the end of the ribbon cable into the CSI connector. The shiny
metal contacts on the ribbon cable should face away from the Ether-
net port and toward the HDMI port (see figure B.6).

252

Appendix B Raspberry Pi ports and legacy boards

3 Push the black plastic connector back down to close it, clamping the

ribbon cable into the connector.

TIP The Pi camera board comes with a short ribbon cable. If you

need a longer one, you can find extension cables at online stores such

as Adafruit.

Once the camera module is connected, you need to enable it. Open
Terminal to enter Raspbian command-line mode. Enter the command

to open the Raspberry Pi configuration menu:
pi@raspberrypi ~ $ sudo raspi-config

When the blue screen and Raspberry Pi configuration menu appear,
select option 5: Enable Camera. Select Enable, and then select Finish
on the main configuration menu. Your Pi will ask if you would like to
reboot now; select Yes. When your P1 has rebooted, test out your cam-

era by opening Terminal and typing
pi@raspberrypi ~ $ raspistill -t 3000 -o PiPhoto.jpg

This will turn on the camera and take a picture after 3 seconds. The -t
3000 part tells the raspistill program the time to wait—in this case, it’s
set it to 3,000 milliseconds or 3 seconds. The image is saved to a file
called PiPhoto.jpg. You can view the file by opening File Manager and
looking in your pi\home folder. Check out online resources for more
that you can do with your camera, including using PiCamera, a Python

library for controlling the camera.

If you're thinking about taking videos or photos at night, there is an
alternate version of the Pi camera module called the Pi NoIR (for near
infrared) camera module. It uses the same CSI port and connects the
same way. One difference is that you'll need to shine an infrared light
source at the target you're filming. With the Pi NolR, you're armed for

some great new possibilities for nighttime mischief with your Pi.

Raspberry Pi ports 253

Top view

Side view

Figure B.7 The Ethernet port on the Raspberry Pi supports connecting a Pi to a home net-
work. Connect an Ethernet cable from your Pi to your router or modem to access the inter-
net. With your Pi connected to a network, you can remotely connect to the Pi from another
computer using special programs such as SSH and VNC Server.

Ethernet port

Having a connection to the internet lets you use your Pi to surf the web
and download software; you can even control your Pi from another
computer. Your Raspberry Pi's Ethernet port is located next to the
USB ports (see figure B.7). Using the Ethernet port is an easy way to
connect a Raspberry Pi to the internet. The only trouble is that you'll
need to have your Pi where an Ethernet cable connection can reach it.

TV or monitor connection options

It’s easiest to connect your Pi to a TV or monitor if it has an HDMI port
or DVI port; this is covered in chapter 1. But what if you don’t have
one of those ports? There are other ways to connect your Pi. Let’s first
identify a couple different types of ports you might see on the back of

your TV or monitor and then learn how to connect your Pi to them.

254

Appendix B Raspberry Pi ports and legacy boards

HDMI port DVI port VGA port

Figure B.8 Common types of video input ports found on TVs and mon-
itors. A Raspberry Pi can connect to any one of these ports. Some ports
(DVI, VGA, RCA [or composite], and component) require using

special adapters or converters with a Pi.

IDENTIFYING PORTS AND MAKING THE CONNECTION

Take time to study the connections on your TV or monitor. Try to iden-
tify the video ports, comparing them to the pictures of connectors in

figure B.8.

For certain ports, you may need to buy an adapter that converts one
type of port to another. We'll cover VGA, RCA, and component ports.
See chapter 1 for the HDMI and DVI port connections.

RCA PORT

This type of port is a yeﬂow, round connector. It’s usuall_y found next to
red-and-white RCA audio connectors.

You'll need to purchase a special cable that is a 3.5 mm four-pole plug
at one end and an RCA composite video and audio cable at the other

Raspberry Pi ports 255

Raspberry Pi
(top view)

3.5 mm-to-RCA RCA composite video
3.5 mm audio/ composite video and audio port
video port and audio cable

=

TV or monitor

Figure B.9 The Raspberry Pi can be connected to a TV or monitor using an RCA video
cable. The cable connects from the Pi’s 3.5 mm audio/video port to the RCA video input
port on the TV or monitor. Using the RCA connection produces a low-quality picture but
can be a good option if you don’t have a TV or monitor that supports HDMI.

end. Plug the cable into the 3.5 mm audio/video port, and plug the
other end into your screen’s composite video input. Typically, the
screen will have red-and-white audio-input connectors next to the
video input. Connect the red-and-white RCA audio connectors if you
want to have sound as well (see figure B.9).

YGA PORT

A VGA port has a flat top and bottom with sides that slant inward. The
port has three rows of five round pin holes. Connecting a Pito a TV or
monitor with a VGA port isn’t recommended because you'll need to
purchase an adapter and may run into potential issues with configuring
your Pi to detect your monitor. If you decide to try this option, you'll
need an HDMI-to-VGA adapter. You'll also need to update the
configuration settings on your Raspberry Pi. This isn’t covered in this

256

Appendix B Raspberry Pi ports and legacy boards

book, but the Raspberry Pi forums can provide you with more infor-
mation on altering the configuration settings to use an HDMI-to-VGA
adapter.

COMPONENT VIDEO INPUT

A component video port on a TV has a set of three round connectors
that are green, blue, and red. Using this port isn’t recommended
because of the additional cost of a converter and because you may have
to do additional configuration of your Pi to successfully connect to
your monitor. If you decide to use this option, you'll need a component-
to-HDMI converter. Such a converter should come with its own power
supply. Avoid ones that don’t, because they won’t work with your Pi.
The converter will cost you around $50, so if you have other options,
save your money—try using a different TV or monitor, or put that
money toward a new or used LCD or LED monitor for your Pi.

With the ports covered, let’s examine the differences between the
Raspberry Pi 2 Model B and older model boards.

Legacy boards

The Raspberry Pi is made by the Raspberry Pi Foundation, and sev-
eral versions and models have been released over the last several years.
We'll show and discuss the major differences between the boards.

Raspberry Pi 1 Model B

The Raspberry Pi 1 Model B was the version of the Pi that many came
to love. The Pi was originally conceived to help develop a new genera-
tion of programmers and hackers, but it was unexpectedly popular
with many hobbyists and entrepreneurs because of all the great things
they could do and make with it. The board looks a bit different from
the Raspberry Pi 2 Model B (see figure B.10)

Legacy boards 257

Where you can plug the Pi into an
old-style TV (see HDMI port for high-def)

N/

Where you plug wires

to make cool projects e [Wh
i i ere you can
Oo with electronics RCA video out hear soznds
O General-purpose e
input/output 3.5 mm
Uﬂ (GPIO) pins audio/video out

Where you connec
things (with USB
connectors)

Where you store
the operating
system, apps,
and files
Memory
card slot

=

MicroUSB _|: '-
power port -
A=

Where you plug
in the power cord

Ethernet 3
port 'S

Where you connect
to the internet

System on a chip HDMI port Camera Serial
Interface port

=— &

“The brain of Where you give it Where you plug a Pi
the operation” a high-def display camera board to take
photos and videos

Figure B.10 The Raspberry Pi 1 Model B has been wildly popular. It has been used for a
spectrum of applications from scientific research to art and education.

258 Appendix B Raspberry Pi ports and legacy boards

Here are a few key differences between the Raspberry Pi 1 Model B
and the Raspberry Pi 2 Model B:

o USB ports—The Pi 1 Model B has only two USB ports. This makes
it challenging to connect a keyboard, a mouse, and a USB Wi-Fi
adapter. A great workaround is to use a powered USB hub to con-
nect more USB devices.

@ RCA (or composite) video out—The Pi 1 Model B has a dedicated
RCA connector to connect it to old-style TVs. The Pi 2 Model B has

integrated this into the 3.5 mm audio/video port.

@ System on a chip—The earlier P1 Model B uses a single-core 700
MHz processor, whereas the Pi 2 Model B uses a quad-core 900

MHz processor. Thus the newer model is about four times faster.

@ Memory card slot—The Pi 1 Model B used a standard size SD card.
The P12 Model B uses a mini-SD card slot that has a spring mecha-

nism to hold the card in securely.

@ GPIO pins—The number of pins and how they’re numbered is dif-
ferent on the earlier Model B. There are only 20 pins on the older
model; the newer model has 40 pins. If you're working with a Pi 1
Model B, refer to online references for the pin numbering.

Raspberry Pi 1 Model B+

After the Raspberry Pi 1 Model B came the Raspberry Pi 1 Model B+.
The boards look very different. In contrast, if you compare the Rasp-
berry Pi 1 Model B+ to the later Raspberry Pi 2 Model B, they're
nearly identical —in terms of available ports and the location of those

ports, they're exactly the same. Figure B.11 shows the Raspberry Pi 1
Model B+.

The key differences from the Raspberry Pi 2 Model B are as follows:

@ System on a chip—The B+ has a single-core, 700 MHz processor,
whereas the Pi 2 Model B has a quad-core, 900 MHz processor.

o Working memory (RAM)—The Model B+ has 512 MB compared to
the P12 Model B’s 1 GB.

Legacy boards 259

Where you plug wires
to make cool projects
with electronics “The brain of

% @) the operation”
W@ General-purpose

input/output S
(GPIO) pins System on a chip

Where you connect
things (with USB
connectors)

Where you store ﬁ
the operating ooooooooog
system, apps, | Shotnones
and files | ports ——
Memory |
card slot |

Ethernet)\
_ port
Where you connect
to the internet

HDMI port Camera Serial 3.5 mm
MicroUSB Interface port audio/video out
power port S GRS
@
Q}Dm - Ol

Where you plug Where you give it Where you plug a Pi Where you can
in the power cord a high-def display camera board to take hear sounds
photos and videos

Figure B.11 The Raspberry Pi 1 Model B+ was a major revision of the Raspberry Pi 1 Model
B. It increased the number of USB ports from two to four, added more pins for GPIO, and
changed to a microSD memory card slot. The ports on the Raspberry Pi 1 Model B+ are the
same as those on the Raspberry Pi 2 Model B.

260 Appendix B Raspberry Pi ports and legacy boards

Other boards

We aren'’t covering the Raspberry Pi Model A or A+, but many of the
ports are the same. The main difference is that the Model A and A+
have only one USB port, no Ethernet port, and less working memory
(RAM) —256 MB. The Model A and A+ are useful when you have a

project that needs a smaller computer that requires less power than the

Model B or B+.

Appendix C

Solutions to chapter
challenges

In this appendix, you'll find answers to the challenges presented at the
end of each chapter. For challenges that require more lines of code than
will fit on a page, I provide hints and snippets of code. The complete pro-
grams for the solutions are found in the code download that goes with this
book. Comments are included in the code to help you understand the
design and function of the programs. The solutions to the challenges are
organized by chapter. Let’s begin!

Chapter 1

At the end of the first chapter, you go on a scavenger hunt:

@ Squirrel—To find the squirrel game, choose Menu > Games > Python
Games. After you select how you would like sound (audio) to be out-
put, you'll see a list of Python games. The squirrel game is near the
middle of the list. Win the game, and achieve Omega Squirrel.

¢ Calculator— Select Menu > Accessories > Calculator. 89 x 34 is 3,026.

@ Shutdown—Shut down or restart your Raspberry Pi by choosing
Menu > Shutdown. The shutdown menu lets you choose to shut down,
reboot, or log out.

261

262 Appendix C Solutions to chapter challenges

To keep the cat from flipping upside down when
it points in a new direction, click this button
so that the cat will only face left and right.

Operators

Variables

glide BY secstox @ v @

change x by 1)

set x to [

Figure C.1 Make the cat dance in Scratch by dragging program
blocks into the script area.

@ Black desktop—To change the desktop background to black, right-
click anywhere on the desktop and select Desktop Preferences. In
the Desktop Preferences window, look in the middle of the screen
for a Background Color label. Click the white box to select a new
background color. Click OK to select the color, and then click Close
to close the Desktop Preferences window.

@ Scratch bonus—To open Scratch, select Menu > Programming >
Scratch. When Scratch opens, construct a program by dragging
blocks into the script area for your cat sprite. Figure C.1 shows an
example of a dancing cat program that makes the cat dance back and
forth 10 times when the space bar is pressed.

Chapter 2

The challenges in this chapter are about displaying characters to the
screen and doing some mathematics.

Chapter 3 263

The Matrix

Create a screen full of 1Is and Os by using the print function and the
multiplication operator like this:

matrix = "0100101101001100100110001011001011116000010101"
print(matrix * 100)
Building a brick wall

To solve this one, create a variable named brick and give 1t a string of
characters like this:

brick = "|__
print(brick * 1000)

To make the bricks look like raspberries, you could try
brick = "|_o88{_"

print(brick*300)

Use your imagination to visualize that this is a sideways raspberry
brick. The bracket is the leaf on top of the raspberry.
Pi electrons

You're trying to figure out how many electrons per second it takes to
equal 1 amp flowing into your Raspberry Pi. The calculation using
Python looks like this:

>>> electron_charge = 1.60 * 10**-19

>>> electrons_flowing = 1 / electron_charge
>>> print(electrons_flowing)
6.249999999999999%e+18

The answer is 6,250,000,000,000,000,000. That’s a lot of electrons!
Chapter 3

These challenges are about gathering input, joining together strings,
and displaying text to the screen.
Knight’s Tale Creator 3000

To make this program, you want to first print a title and then gather a
series of words from the player:

title = "Knight's Tale Creator 3000"
print("*" * 80)

264

Appendix C Solutions to chapter challenges

print(title)

print("*" * 80) .
Gather input from the player
. and store it in variables.
player_name = input("Enter your name: ")

adjective = input("Enter an adjective: ")

famous_person = input("Enter the name of a famous person: ™)
animal = input("Enter the name of an animal: ")

vacation_place = input("Enter a place you would go on vacation: ")
sharp_thing = input("Enter the name of something sharp: ")
exclamation = input("Enter something you might exclaim aloud: ")

Next, you join the input words with the story. You can do this sentence
by sentence to make the code a bit easier to follow:

sentencel = "There was a brave knight, " + player_name + ", who was
sent on a quest to vanquish the " + adjective + " evildoer,
" + famous_person + ". "

sentence2 = "Riding on his/her trusty " + animal + ", the brave " +
player_name + " traveled to the faraway land of " + vacation_place

+
sentence3 = player_name + " battled valiantly against " + famous_person +
"'s army using his " + sharp_thing + " until he defeated them. "
sentence4 = "Emerging victorious, " + player_name + exclaimed, '" +
exclamation + "!!!" I claim the land of " + vacation_place + " in the

name of Python."

Finally, let’s join the sentences and display the tale to the screen:

tale = sentencel + sentence2 + sentence3 + sentence4
print(tale)

Subliminal messages

You're trying to create a message that’'s hidden in a large display of
characters. You start by asking for the person’s name and something

they would like:

title = "Subliminal Messages"
print("*" * 80)

print(title)

print("*" * 80)

player_name = input("Enter your name: ") Gather input from
thing = input("Enter the name of something you want: ™) the player.

Chapter 4 265

Next, create a pattern of letters, numbers, and symbols in which you'll
hide the message:

weird_characters = "*#ad@32%*)23)@*sad# 2&A 32A423!"

Finally, you create the full message by making it read “You really want
to buy [player_name] a [thing]”, but hide it by printing out on the
screen the pattern of characters before and after the message:

" "

f_’ message = "You really want to buy " + player_name + " a " + thing +
Create the print(weird_characters * 10 + message + weird_characters * 10) ﬁ
message.

non

Hide it between the
weird characters.

Chapter 4

This chapter’s challenge is about using some of your new skills, like i/
then (or conditional) statements, as well as toolboxes like the random
module.

Rock, Paper, Scissors!
For this challenge, you start by importing the random module, creating a
title, and defining any variables you're going to need:

import random

play_again = "Yes"
choices = ["Rock","Paper","Scissors"]

Next, you want to display the title and then start a while loop that will
Y play p
gather the player’s choice and get a random computer choice:

title = "Rock, Paper, Scissors!"
print("*" * 80)

print(title)

print("*" * 80)

while play_again == "Yes": Get the plaver’s
Get a random print("Choose Rock, Paper, or Scissors:") choice. Py
computer choice. player_choice = input("Enter your choice: ") 4/

computer_choice = choices[random.randint(0,2)]

You then want to display the two choices and use an if statement to
test whether the player and computer choices are the same. If not, you

266 Appendix C Solutions to chapter challenges

want to check whether you have one of the following Player versus
Computer combinations:

@ Rock (Player) beats scissors (Computer)

@ Scissors (Player) beats paper (Computer)

@ Paper (Player) beats rock (Computer)

You program all this inside the while loop because you want it to be

repeated as long as the player wants to pla_y. At the end of the loop, the
player is asked if they want to play again:

Display the print("You choice is " + player_choice + ".")
two choices. print("The computer's choice is " + computer_choice + ".™)
if player_choice == computer_choice:
print("It's a tie")
else:
if ((player_choice == "Rock" and computer_choice == "Scissors") or
(player_choice == "Scissors" and computer_choice == "Paper") or
(player_choice == "Paper" and computer_choice == "Rock™)):

print("!" * 80)

print("You win!"™)

print("!" * 80)

else:

print(": (" * 40)

print("You lose!™)
print(": (" * 40)

play_again = input("Do you want to play again [Yes/No]? ")

You create a large if statement that tests whether player_choice and
computer_choice form one of the winning combinations. Each of the
combinations is wrapped in parentheses, and you use or between them.
This ensures that if any one of the combinations is correct, the winning

message will be displayed.

Chapter 5

Introducing dramatic pauses

You were given some good hints about how to do this in chapter 5.
Rather than displa_y too much code here, I suggest that you head over
to the code download to see what this looks like.

Chapter 5 267

Random demise

In this challenge, you're creating a more random and exciting end for
your adventurer, Raspi. For this, you need to import the random module
at the top of your program, define some new variables for the different
endings, and create a list of the endings. This will allow you to have the
computer pick a number:

import time
import random

demisel = """Raspi sees a rock on the ground and picks it up. He feels a
sharp pinch and drops the rock. Just then he realizes it wasn't a rock
but a poisonous spider as he collapses to the ground."""

demise2 = """Standing in the cave, Raspi sees a small rabbit approach
him. Raspi gets a bad feeling about this rabbit. Suddenly, the
rabbit attacks him, biting his neck."""

demise3 = """Whoa, is that a piece of gold? As Raspi walks over to it,
he doesn't see a hole in the floor. Suddenly, he falls down the hole,
never to be heard from again."""

endings = [demisel, demise2, demise3]

You use triple quotation marks, called string literals, to make strings
that span multiple lines. You also store the three different endings in a
list called endings.

Finally, to solve this challenge, change the wrong_answer function to get
a random number, select an ending, and then display it to the screen:

def wrong_answer():
print("You seem to have trouble making good decisions!™)
time.sleep(2)
random_ending = endings[random.randint(0,2)]
print(random_ending)
time.sleep(2)
print("Game Over!!!'")

Select a random ending
from the list of endings.

Check the code download to see how it all works together.

Play again?
To add a play-again option, add a new variable at the top of your pro-
gram and set it equal to "Y" to start:

play_again = "Y"

268 Appendix C Solutions to chapter challenges

Next, put all of your cave-selection logic in a while loop. The while loop
will depend on the value of play_again, but you'll use the string function
upper() to make the play_again value all uppercase. This helps if the
user accidentally enters y instead of Y:

while play_again.upper() == "Y":

At the end of the while loop, you also need to ask the user if they want
to play again. Store their response in the play_again variable:

print("Do you want to play again?")
play_again = input("Enter Y for yes or N for no: ")

Another part of this challenge is adding a scream sound (or any other
sound you want). First, make sure you import the os module and set up
a variable with a sound file:

import os
scream_file_path =
"/usr/share/scratch/Media/Sounds/Human/Scream-male2.mp3"

Add a new line to the wrong_answer function that calls OMXPlayer and
tells it to play the scream sound:

n

os.system("omxplayer " + scream_file_path)

Run the program to test it out! Add it to all the other game-over end-
ings in the game to make it even more fun!

NOTE Make sure you have speakers or headphones connected, or
you won't hear anything.

Chapter' 6

Wave pattern

Let’s turn on each LED one by one. Then, when they're all on, you'll
turn them off one by one. Each light is turned on or off by setting its
state to HIGH (on) or LOW (off). You create the sequence by adding a time
delay between each command:

while True:

~> GPIO.output(LED_pin_red, GPIO.HIGH) '\ Loop to blink the LEDs

i in a wave pattern.
Turn on the LEDs time.sleep(1)
one by one.

Chapter 6 269

GPIO.output(LED_pin_green, GPIO.HIGH)

time.sleep(1)

GPIO.output(LED_pin_blue, GPIO.HIGH)

time.sleep(1)

G?IO.output(LED_pln_red, GPIO.LOW) Turn off the LEDs
time.sleep(1) one by one.
GPIO.output(LED_pin_green, GPIO.LOW)

time.sleep(1)

GPIO.output(LED_pin_blue, GPIO.LOW)

time.sleep(1)

You can adjust the sleep time to get a faster or slower animation.

Simon says
In this challenge, you're creating a program that blinks lights in a pat-
tern like the classic game Simon. As before, the program requires that
the GPIO and time modules be imported and the GPIO pins be set up
properly. See the code download for the full code listing. Start by
defining the simon_says function:

def simon_says(colorl, color2, color3, color4, color5):

Loop through
—> c010|_"s.= [colorl, color2, color3, color4, color5] /theﬁvecolors.
Createalistwith for i in range(0,5):
the five colors. color = colors[i] .
. " " Grab the name of a single color
if color == "red":

and turn the color on and off.
GPIO.output(LED_pin_red, GPIO.HIGH)

time.sleep(1)
GPIO.output(LED_pin_red, GPIO.LOW)
elif color == "green":
GPIO.output(LED_pin_green, GPIO.HIGH)
time.sleep(1)
GPIO.output(LED_pin_green, GPIO.LOW)
elif color == "blue":
GPIO.output(LED_pin_blue, GPIO.HIGH)
time.sleep(1)
GPIO.output(LED_pin_blue, GPIO.LOW)
time.sleep(1)

This creates a list with all the colors and loops through them one by
one. For each one, the function checks its value and turns on and off
the LED of that color. To use the function, you call it and give it the
pattern you want to create, along with some helpful messages:

270 Appendix C Solutions to chapter challenges

print("Ready for #1!™)

time.sleep(1)

print("Simon Says: red, green, red, red, blue")
time.sleep(1)

print("Watch my lights!™)

time.sleep(1)

simon_says("red", "green", "red", "red", "blue")

print("Ready for #2!™)

time.sleep(1)

print("Simon Says: blue, green, blue, green, red")
time.sleep(1)

print("Watch my lights!™)

time.sleep(1) Call the simon_says
simon_says("blue", "green", "blue", "green", "red") function to play
the pattern.

print("Ready for #3!™")

time.sleep(1)

print("Simon Says: green, blue, blue, red, green")
time.sleep(1)

print("Watch my lights!™)

time.sleep(1)

simon_says("green", "blue", "blue", "red", "green")
time.sleep(1)

print("Thank you for playing!!!™)

Go, Simon, go!

Random blinking
This challenge is about blinking LEDs on and off for random amounts
of time between 0 and 3 seconds. Let’s see how to do it. I won't show
the top part of the program with the typical setup of the GPIO pins;
refer to the code download for the full code listing. At the top of your
program, don'’t forget to import the random module so you can use it to
generate random numbers:

import random

To accomplish this challenge, you need to create two variables and
store in them a random number between 0 and 3. These variables are
the amount of time the lights should stay on and off:

on_random_time = random.random() * 3
off_random_time = random.random() * 3

Chapter 7 271

Next, you can use the random time with the sleep function to make the

light blink. Put this inside a loop, making sure that each time through

the loop, new random on and off times are created:
f—> while True:
Loop to blink on_random_time = random.random() * 3 Get a random
the LED. off_random_time = random.random() * 3 number.
GPIO.output(LED_pin_red, GPIO.HIGH)

Turn the lights on
for a random
amount of time.

GPIO.

GPIO

time.

GPIO.

GPIO

GPIO.
time.

The off

output(LED_pin_green, GPIO.HIGH)
.output(LED_pin_blue, GPIO.HIGH)
sleep(on_random_time)

output(LED_pin_red, GPIO.LOW)

.output(LED_pin_green, GPIO.LOW) fT“"‘ the :Iights off
. or a random

output(LED_pln_blue‘:, GPIO.LOW) amount of time.

sleep(off_random_time)

and on times change each time through the loop. Enjoy some

fun blinking!

Chapter 7

The chapter challenges involve using your Guessing Game and con-
trolling the RGB LED.

Game winner

f_'

Flash three
different colors
20 times.

Let’s wr

ite a function to quickly flash the RGB LED three different col-

ors. Define a new function called winning_flash:

def winn
for

ing_flash(Q): .

. 20) : Function to create a

i in range(o, : winning flash sequence.
GPIO.output(LED_pin_red, GPIO.HIGH) 4\
time.sleep(0.05) Flash the red LED.
GPIO.output(LED_pin_red, GPIO.LOW)

time.sleep(0.05)

GPIO.output(LED_pin_green, GPIO.HIGH) 4\
time.sleep(0.05) Flash the green LED.
GPIO.output(LED_pin_green, GPIO.LOW)

time.sleep(0.05)

272 Appendix C Solutions to chapter challenges

GPIO.output(LED_pin_blue, GPIO.HIGH) 4\\v
time.sleep(0.05) Flash the blue LED.
GPIO.output(LED_pin_blue, GPIO.LOW)

time.sleep(0.05)

If you need help figuring out where to add this function and call it in
your code, check the code download for more answers. You add it to
the if statement when guess is equal to number_in_my_head so you get a
wonderful flashing celebration when you win.

Easter egg

To make an Easter egg in your program, you need to have the code
check to see whether the pla_yer entered a certain value instead of the
usual number guess. Edit the main portion of the logic for the LED
Guessing Game program to first check whether the secret word was
entered. If it wasn’t, the program continues to convert the input text
into an integer and check whether the guess was correct, too high, or
too low. If the player enters the word Spam, you call an easter_egg
function:

while count_guesses < 6:
guess = input("guess

" "

+ str(count_guesses) + - What is your

guess?: ")
f_’ if guess == "Spam":
o6 i t
Check to see if “Spam easter_egg() Call the easter_egg
was entered. else: B

function.
guess = int(guess)

count_guesses += 1

if guess == number_in_my_head:
flash(LED_pin_green)
print("You won! No doom for you!")
break

elif guess > number_in_my_head:
flash(LED_pin_red)

elif guess < number_in_my_head:
flash(LED_pin_blue)

else:
game_over()

As a special bonus, you can create an easter_egg function that displays
a Spam song or whatever message you'd like.

def easter_e
crazy_f1l
print("E
time.sle
print(""

gg9Q):
ash(Q
aster Egg!!!™)
ep(1)

Chapter 7

4\ Define a special

Spam Easter egg.

Spam spam spam spam.

Lovely spam!
Wonderful spam!

Spam spa-a-a-a-a-am spam spa-a-a-da—a—-am spam.

Lovely spam!
Lovely spam!
Lovely spam!
Lovely spam!
Lovely spam!

Spam spam spam spam!

"

273

In the easter_egg ﬁuncﬁonquou,caﬂ a crazy_flash function. The one

shown here makes the RGB LED quickly flash purple and green. It’s

similar to how you created the winning_flash function:

(r—b def crazy_f1l
Function to for i in
create a crazy GPIO

flash sequence.

GPIO.
time.
GPIO.
time.

Create your

GPIO.
time.
GPIO.
GPIO.
time.

ash(Q:
range(0,20):

.output(LED_pin_
output (LED_pin_

sleep(0.05)

sleep(0.05)

sleep(0.05)

sleep(0.05)

output(LED_pin_
output(LED_pin_

output (LED_pin_

output (LED_pin_

Flash different

4/ colors 20 times.

red, GPIO.HIGH) Flash the red and
blue, GPIO.HIGH) blue LED together.

red, GPIO.LOW)
blue, GPIO.LOW)

green, GPIO.HIGH)

green, GPIO.LOW) Flash the green LED.

own easter_egg and crazy_flash functions, or see the code

download for example ones that you can modify.

Warmer and colder

Let’s alter the guessing game to flash slower if you’re colder or further

from the correct answer, and flash faster if you're warmer or closer to

274

Calculate the

Appendix C Solutions to chapter challenges

the correct answer. Add some calculations so that blink_time is deter-
mined by the difference between the guess and the correct answer:

elif guess > number_in_my_head:
blink_time = abs(guess - number_in_my_head) /10

difference between flash(LED_pin_red)

the guess and the

elif guess < number_in_my_head:

actual number and

divide by 10.

blink_time = abs(guess - number_in_my_head) /10
flash(LED_pin_blue)

The abs function gets the absolute value —the distance a number is
from zero. You need to do this because you can'’t tell your P1 to sleep
for a negative amount of time. That would be silly! You make this addi-
tion for both cases: when the player’s guess is higher and lower than
the actual number. You divide the numbers by 10 to speed up
blink_time and make sure your light isn’t blinking too slowly.

Finally, a nice touch is to add extra information to the game instruc-
tions so the player knows the blinking speed gives them a hint about
how close or far they are. See the code download for an example.

Darth Vader surprise

Using what you learned in chapter 7 and a couple of new things, let’s
see 1f you can make a Darth Vader image pop up on the screen when
you lose the game. You'll need an internet connection for the next few
steps. Download a good Darth Vader image from the web, and make
sure to save it to the home\pi folder where your Python programs are
located. Take special note of the filename.

After downloading the image, install the fim image-viewing software on

your Raspberry Pi:

pi@raspberrypi ~ $ sudo apt-get -y install fim

NOTE Make sure you include a line at the top of the program to
import the os module.

When it’s done, test that fim works from Terminal:

pi@raspberrypi ~ $ fim Darth_Vader.jpg

Chapter 7 275

NOTE When fimis running, you need to press Esc (escape) to exit.

When you exit fim, the screen will display remnants of the image. It's a
funny issue, which you can fix by grabbing one of your windows by the
title bar and swiping it around the screen to erase the image remnants
and return it to the normal Raspbian desktop appearance.

In the Guessing Game, because you need to call fim from your Python
program, add a line to import the os module at the top of the program:

import os

Next, edit the game_over function to display the image. The game_over
function is called only when the player guesses incorrectly five times:
def game_over():

print("You lost!")

print("Better luck next time!")

time.sleep(2)
os.system("fim -a Darth_Vader.jpg")

Notice that you use fim with the -a option to display Darth Vader. This
option automatically scales the image to fill the full screen. Here are
some commands you can use to rotate or resize the image when it’s dis-
played on the screen:

Option Result
+/- Zoom in/out
A Automatically scale
F Flip
M Mirror
R/r Rotate 10 degrees clockwise / counterclockwise
Esc/q Quit

Test it to see if it works!

276

Appendix C Solutions to chapter challenges

Chapter &

Let’s see what fun things you can do with buttons.

Double button press surprise

Start an infinite
loop (must use
Ctrl-C to stop it).

This challenge involves taking the project from the chapter and making
something new and different happen when both buttons are pressed at
the same time. In this case, you'll make your Pi play a percussion sound
to go with your vocals and music. You don'’t need to change any of the
wiring because you already have the two buttons.

First let’s add some code at the top of the program to create a path to
where the sound effects are stored:

path_effects = "/usr/share/scratch/Media/Sounds/Effects/"

Next get a list of effects from the folder and store the list in a variable,
sounds_effects. Put this next to where you load the other lists:

sounds_effects = get_MP3_sounds(path_effects)

Finally, you need to tell your program to check whether button 1 and
button 2 are pressed. You're going to modify the main game loop to
first check if both are being pressed. You use the if/elif statement for
this. Use the Boolean “and” operator —the ampersand (&) —to make
this if statement true only if both button 1 and button 2 are pressed. If
they aren’t, the statement will next check button 1, and finally it will
check button 2:

while True:

if GPIO.input(button_pinl) & GPIO.input(button_pin2):
#print("You pressed both #1 and #2!")
play_random_sound(path_effects, sounds_effects)
time.sleep(.1)

elif GPIO.input(button_pinl):
#print("You pressed #1!™)
play_random_sound(path_music, sounds_music)
time.sleep(.1)

elif GPIO.input(button_pin2):
#print("You pressed #2!")
play_random_sound(path_vocals, sounds_music) Pause slightly before
time.sleep(.1) checking the button

time.sleep(.1) for input again.

Chapter & 277

Let’s test to see if it works! Check out the code download if you need
further details on the program.

Yoda Magic & Ball

Before you dive into the programming for this challenge, you need to
work on the hardware. Because this challenge needs only one button,
remove button 2 from the breadboard, along with its jumper wires and
resistor. Your breadboard should have one button now, connected to

GPIO 6.

Next, gather a set of Yoda sounds. You can download sounds from
Soundboard once you create a free account. For this example solution,
you'll use five sound files, but feel free to use any ones you want. Make
sure they’re MP3 sound files so they’ll work with OMXPlayer. The
Yoda sound files in this example solution are as follows:

@ Fear in You.mp3
@ | am strong.mp3
2 No.mp3

> Patience.mp3

» Use the Force.mp3

Much like the classic Magic 8 Ball game, the answers are sometimes
clear and other times strange or unclear.

As in the DJ Raspi project, you need to import several modules for this
project, set up your Pi’s GPIO pin for input (detecting electrical sig-
nals), and create some variables. Most notably, you need to create a
variable for the folder with your Yoda sound files:

import RPi.GPIO as GPIO

import time Import the libraries
import random you need.
import os
button_pin = 6

111 p} o Variable for the GPIO pin
play_again = "Y used by the button.
GPIO.setmode (GPIO.BCM)
GPIO.setup(button_pin,GPIO.IN) Set the path to the

. J Yoda sound files.
path_yoda = "/home/pi/yoda/"

278

Appendix C Solutions to chapter challenges

Use the same get_MP3_sounds and play_random_sound functions from your
DJ Raspi project. One slight improvement you can make to the
play_random_sound function is to hide the messages that OMXPlayer dis-
plays on the screen (they make it harder to read what the game is tell-
ing you to do). Change this one line to divert all the output messages to
an empty or null location:

def play_random_sound(sound_path, sound_files):
random_sound_index = random.randint(0,len(sound_files)-1)
print("Playing: " + sound_files[random_sound_index])
os.system("omxplayer -o local '" + sound_path +
"/" + sound_files[random_sound_index] + "' >/dev/null™)

This is a great example of being able to reuse code! Next, you'll gather
the list of MP3 Yoda sounds from the folder.

sounds_yoda = get_MP3_sounds(path_yoda)

After printing out a nice title, you then show instructions to the player
and enter the main loop that checks whether the button was pressed. In
this loop, you call the play_random_sound function so the Raspberry Pi
responds with an answer to the player’s question:

print("*" * 80)

print("Ask aloud a Yes or No question, then press the button: ")
print("*" * 80)

Check if the button

while play_again.upper() == "Y": 4/ has been pressed.
if GPIO.input(button_pin):
print("Yoda is considering your question...")

time.sleep(1)
print("Listen to Yoda's answer:")
time.sleep(.5)
play_random_sound(path_yoda, sounds_yoda)
print("*" * 80)
print("Ask aloud a Yes or No question, then press the button: ")
print("*" * 80)
else:
print("Thank you for consulting Yoda!")

Enjoy making your future decisions with the help of Yoda!

Appendix D

Raspberry Pi projects

In this appendix, you'll find short discussions and descriptions of projects
you can do with your Raspberry Pi. The goal is to launch you on your
way. This isn’t a detailed set of instructions, but rather hints and basic

steps for how you can make some of these projects.

Halloween heads

Halloween can be an inspiring time to use your Raspberry Pi to create a
fun or scary display for your home. Let’s face it—it’s fun to scare people
on Halloween. This project is about building a system for surprising
trick-or-treaters who come to your door. When they approach, their
movement will trigger a motion sensor that will display a video of a face
talking or singing. The video is projected onto a Styrofoam head that is
placed next to the door.

Here 1s what you'll need for this project:

@ Raspberry Pi with a breadboard, a breakout board, and a ribbon cable
» Passive infrared (PIR) motion sensor

@ Projector

@ Powered computer speakers

@ Styrofoam heads (one or more)

279

280

Appendix D Raspberry Pi projects

> Small tables: one for the Pi and projector, and another for the Styro-

foam head

@ Extension cord and power strip

@ Video of a singing or talking head

To construct this project, here are the steps:

1

Connect your Raspberry Pi to the breadboard, and add the PIR
sensor. This is similar to how you added the mini pushbutton in
chapter 8.

Download a video with a talking or singing head, or record your
own. Write a Python program to play the video when the PIR sensor
is triggered. This is similar to the DJ Raspi program, which plays a
sound when the button is pressed.

Test your program with the sensor and video working together.

Set up a small table about 10 feet from your front door. On the table,
set up your Raspberry Pi, breadboard with PIR sensor, speakers,
and projector. Place the PIR sensor so that it will detect motion as
someone approaches the door. Use an extension cord to provide the
electrical power needed. (Only set this up if no rain is predicted!)

Set up another small table or box next to your door. Place the Styro-
foam head on it. Position the head so that the projector’s video dis-
plays the face on the head. Test and adjust the projector and the
positioning of the head so that everything is aligned. When the video
plays, the head will appear to come alive!

Here are a couple of key resources that may help you with this project:

> Visit the SparkFun website at www.sparkfun.com and search for

PIR sensors. This company has lots of great components that can
help you make almost any electronics project you can imagine.

@ You can make the whole screen blank (all black) by using OMX-

Player with the blank option like so:

pi@raspberrypi ~ $ omxplayer -b singheads.mp4

Time-lapse photography 281

Time-lapse photography
You can easily connect a high-definition camera to your Raspberry Pi
that is capable of taking digital photographs or videos (see appendix B
for more information). In this project, you explore how you can set up

your Pi to take time-lapse photographs.

Time-lapse photography typically involves taking a series of photo-
graphs and then stitching them together into a video. The individual
photographs may be taken seconds, minutes, hours, or days apart. This
technique is commonly used to show an accelerated view of something
happening. Here are some examples of time-lapse scenes:

@ A glacier slowly retreating over the course of a year
@ The sun rising and setting, and the moon rising and setting

@ A plant growing

Here are some simple steps to get started with a time-lapse photogra-

phy project:

1 Set up your Raspberry Pi with the Pi camera kit, and test that it’s

working.

2 The subject of your time lapse determines how you need to mount
the Pi camera. The camera doesn’t come with a case or any way to
hold it up, so you'll need to engineer a mount of some kind. Card-
board, hot glue, craft sticks, and duct tape are all great materials for
fabricating something to hold up the camera. LEGO blocks can also
be a useful material.

If you're going to leave the camera outside for a long time, consider
whether you'll need to waterproof your Raspberry Pi. Plastic con-
tainers left over from takeout food can make a great case; _you’ll just
need to make holes in the container for wires and seal any gaps with

hot glue.

3 Plan how to get electrical power to your Pi. That may determine

where you set up the Pi and camera.

282 Appendix D Raspberry Pi projects

4 Program your Raspberry Pi to take the photographs and store them
in a folder. Open LXTerminal, and install the picamera module for

Python 3.X:

pi@raspberrypi ~ $ sudo apt-get install python3-picamera
To get you started, you can use a program like this to capture a series
of photographs. This example takes a photograph every 3 minutes:
import time

import picamera

with picamera.PiCamera() as camera: .
Give the camera a couple

camera.start_preview() J seconds to start up.
time.sleep(2)
f—) for filename in camera.capture_continuous
Start a loop to ('image{counter:04d}.jpg"'):
take pictures print('Captured %s' % filename) Wait 3 minutes.
repeatedly. time.sleep(180) <f

When the camera has finished taking images, you can press Ctrl-C to
end the program.

NOTE This program saves the images in the folder where the pro-
gram is being run. You should make a folder for your time-lapse proj-
ect and run the program from that folder.

Next you'll need to combine the images into a video. You can use an
application called mencoder to turn images into a movie. Install it like this:

pi@raspberrypi ~ $ sudo apt-get install mencoder

Then you'll create a simple text file that contains all the names of the
images you want to combine. You can use the list command (1s), select
all the files ending in .jpg, and output the list to a text file:

pi@raspberrypi ~ $ ls image*.jpg > list.txt

Next use mencoder to combine all the individual images into a time-lapse
movie. This example makes a movie called TimeLapseMovie.avi:

pi@raspberrypi ~ $ mencoder -nosound -ovc lavc -lavcopts
vcodec=mpeg4:aspect=16/9:vbitrate=8000000 -vf scale=1920:1080 -o
TimeLapseMovie.avi -mf type=jpeg:fps=24 mf://@list.txt

Raspberry Pi robot 283

When it’s done, you can watch the movie using OMXPlayer:

pi@raspberrypi ~ $ omxplayer TimeLapseMovie.avi

You can read more online about the mencoder options available.

Raspberry Pi robot

The Raspberry Pi can readily be turned into a robot by adding servo-
motors and sensors using the Pi’s GPIO capabilities. The Pi can be pro-
grammed in Python to make decisions, gather input from sensors, and
control servomotors to interact with the world.

Although you could assemble you own robot from scratch, there are
some Raspberry Pi robot kits that can make it a lot easier. For this
project, we'll discuss using the GoPiGo kit from Dexter Industries. It's
an affordable, well-engineered kit that within a few hours will let you
have your Pi moving around under your control. You can add an ultra-
sonic sensor (detects objects in front of it) and write a Python program
to make your Pi GoPiGo robot navigate the room autonomously (on its
own) using the same if/else statements you learned earlier.

We'll cover the basic steps for building the GoPiGo (you can read the

full set of instructions online at www.dexterindustries.com/GoPiGo):

1 Build your GoPiGo robot following the online instructions. Connect
your Raspberry Pi to the robot: it fits upside down on top of the
GoPiGo board. The Pi communicates to the GoPiGo board through
the GP1O pins.

2 Insert the GoPiGo SD card into your Pi. The SD card contains a
custom distribution of Raspbian. Connect your Pi to a keyboard,
mouse, USB Wi-Fi adapter, and TV or monitor. Later you'll be able
to connect to your GoPiGo remotely from another computer. Power
it up using the provided battery pack. Boot up your Pi, and connect
the GoPiGo to your wireless network.

3 Set up your computer to remotely access your Pi from another com-
puter. This means you'll be able to see your Raspbian desktop from
another Windows or Mac computer in your home. To do so, you use
software called VNC. You need to install VNC Server on your

www.dexterindustries.com/GoPiGo

284

Appendix D Raspberry Pi projects

Raspberry Pi and then install VNC Client on your computer. There
are some great tutorials on how to do this, such as the one on the
Adafruit website. Go to https:/learn.adafruit.com, and search for
“Installing VNC.”

Using VNC, connect to your Raspberry Pi from your home Win-
dows or Mac computer. Once you're sure VNC Server and Client are
working properly, you can disconnect your Pi from the monitor, key-
board, and mouse, leaving only the USB Wi-Fi adapter plugged in.
Your GoPiGo is ready to move!

From the VNC Client on your Windows or Mac, open LXTerminal
on your Pi. Change directories to the GoPiGo Python folder on the

desktop using the cd command:

cd Desktop/GoPiGo/Software/Python/

Run the GoPiGo test controller Python program:

sudo python basic_test_all.py

After the program starts, you can use these keys to move your GoPiGo
around the room:

w Move forward

a Turn left

s Move back

d Turn right

X Stop

t Increase speed
g Decrease speed

Excellent! You've made your Raspberry Pi into a robot. Add sensors
and make programs to navigate around a room, or attach a Pi camera
and stream video to another computer so you can see what your Rasp-
berry Pi sees.

Symbols

_ (underscore) 44

: (colon) 109, 112, 141

. (dot notation) 128

& (ampersand) 233

== (equality operator) 106, 142

Numerics
3.6 mm audio/video port 248-250

A

-a option 275

addition (math) 35-37
additive color 187
ampersand (&) 233
and operator 130
anode, defined 164
append method 224
as keyword 169
ASCII art 98
assignment operator 42

audio formats 207-208

B
Blinky Pi project
breadboards
electrical circuitry and 160-161
holes in 159-160
overview 158-159

circuit for

adding LED 164

adding more LEDs 171-173

connecting jumper from GPIO pin 163

connecting resistor 164-166
overview 161-166
GPIO pins
breaking out to breadboard 155-156
overview 153-155
overview 151-153
program for
adding more LEDs 173-174
loading libraries 169
main program loop 170
overview 166—-168
running 168
setting up GPIO pin for output 170
troubleshooting 168-169
Boolean logic 108
booting
defined 19
issues 241
breadboards
breaking out GPIO pins to 155-156
circuit for Light Up Guessing Game
adding jumper to ground 186-188
adding resistors 185-186
connecting GPIO jumper wires
183-184
connecting RGB LED 182-183
sketch 180-182
connecting Pito 179
electrical circuitry and 160-161

285

2866 INDEX

breadboards (continued)
finding holes on 179-180
holes in 159-160
overview 158-159
bugs, defined 81
buttons
connecting in DJ Raspi project 210,
212-214, 218

connecting jumper wires to 215, 218

C

Camera Serial Interface. See CSI
capitalize method 78

cases 6

cathode, defined 164

central processing unit. See CPU
colon (:) 109, 112, 141
command-line mode 23
commenting code 73-75

common cathode RGB LEDs 182
comparison operators 108
component video input 256
computer vision 205
concatenation 80

conductance, defined 161

CPU (central processing unit) 7
CSI (Camera Serial Interface) 250-252
current, defined 160

D
datetime module 115
debugging 81-83
desktop, booting to 24-26
digital visual interface. See DVI
division (math) 37-38
DJ Raspi project

audio formats 207-208

circuit for

adding jumper to GPIO pin 216, 218

adding mini pushbutton 212-214, 218

adding resistor 215-216, 218
connecting jumper wire to
button 215, 218
sketch 211-212
MP3 format 208—209
overview 204-207

program for
building list of sound files with os
library 227-228
creating functions 231-234
getting length of list 226
getting list of sounds 221-225
getting value of item stored in
list 225-226
initializing buttons 220-221
overview 218-220
playing sound when button is
pressed 228-231
testing 234-235
troubleshooting 209-210, 235
wiring button 210
dot notation 78, 128
DVI (digital visual interface) 240
DVI port devices 16

E

electricity, defined 160

elif statements 129-130

else statements 127

equality operator (==) 106, 142
ethernet 6

Ethernet port 253

exponents 38-39

F
File Manager 27
fileinput module 115
fim program 274
flags, command-line 209
floating-point numbers 40
flow diagrams
overview 124-126
translating into code 131-133
for loop 228
functions
creating 133-138
creating for DJ Raspi project 231-234
defined 41
left cave exploration in Raspi’s Cave
Adventure 138-139
methods vs. 78, 128

right cave exploration in Raspi’s Cave
Adventure 139-141

troubleshooting 141-142

when to use 194

G
GoPiGo kit 283
GPIO pins 17
adding jumpers to 216, 218
breaking out to breadboard 155-156
connecting jumper wires for Light Up
Guessing Game 183-184
defined 153
overview 1563-155
purpose of 176
setting up pins for RGB LEDs 190-194
GPIO.cleanup() command 168
GPU (graphics processing unit) 143
GUI (graphical user interface) mode 23

H
Halloween heads project 279-280
hardware
cases 6
HDMI port
connecting TV or monitor 14-15
DVI port devices 16
overview 13-14
overview 4—6
ports 17
power supply 17
SD cards
inserting card in slot 12
NOOBS on 12
overview 11-12
portability of 13
replacing cards 12-13
system on a chip 7-8
USB ports
connecting keyboard 9-10
connecting mouse 10
overview 8-9
wireless keyboard and mouse
combination 10
hashtag comments 73-75

INDEX 287

HDMI port
connecting TV or monitor 13-15
defined 6
DVI port devices 16

overview 13-14

I
IDLE (Integrated DeveL.opment Envi-
ronment)
creating programs 54-56
overview 28-29, 33-34, 53-54
saving programs 56
if statements
in Norwegian Blue Guessing
Game 105-109
using in loops 113
import statements 116
index, list 225
input
defined 6
getting from player 101-105
handling unexpected
and operator 130
elif statements 129-130
not operator ?7?-131131
or operator 129-131
overview 127-129
input function 75-76, 102, 126
Integrated DeveLopment Environment.

See IDLE

J

jumper wires 152

K
keyboard
connecting to USB port 9-10

wireless 10

L
Leafpad 57-60
LEDs (light-emitting diodes) 151
legacy boards
Raspberry Pi 1 Model B 256-258
Raspberry Pi 1 Model B+ 258
legs, defined 164, 180

288 INDEX

len() function 46, 226
libraries
loading 169
using in programs 115-116
Light Up Guessing Game
breadboards
connecting Pito 179
finding holes on 179-180
circuit for
adding jumper to ground 186-188
adding resistors 185-186
connecting GPIO jumper wires
183-184
connecting RGB LED 182-183
sketch 180-182
overview 176-179
program
guessing game logic 197-198
main game loop 195-197
overview 188-190
play again logic 198-200
playing game 200
setting up GPIO pins for RGB
LED 190-194
troubleshooting 200-201
RGB LEDs 180
light-emitting diodes. See LEDs
list-comprehension feature 228
live streaming video 143-145
Livestreamer 143
loops
using if statements in 113
while loops
breaking out of 113-114
overview 110-113
troubleshooting 114-115
lower method 78

M

math module 115

mathematical operators
adding and subtracting 35-37
exponents 38-39
multiplying and dividing 37-38
order of operations 48-50

remainders 38
square roots 39
memory 8
See also SD cards
mencoder program 282
methods, functions vs. 78, 128
microSD cards 12
Minecraft Pi 85-88
miniSD cards 12
MIT (Massachusetts Institute of
Technology) 118
monitors
component video input 256
connecting to HDMI port 14-15
identifying ports 254
RCA port 254-255
VGA port 255-256

monitors, checking connection to 240-241

mouse
connecting to USB port 10
wireless 10

MP3 format 207-209

multiplication 37-38

N

nano text editor 59
negative power bus 218
NOOBS (New Out of the Box
Software) 12, 242
Norwegian Blue Guessing Game
getting player input 101-105
if statements 105-109
overview 91-94
using libraries to generate random
numbers 115-116
welcome message and instructions
94-100
while loops
breaking out of 113-114
overview 110-113
troubleshooting 114-115
not operator 130-131

o
-o switch 209-210
Ogg format 207

OMXPlayer 208, 280
operators
adding and subtracting 35-37
comparison 108
exponents 38-39
multiplying and dividing 37-38
order of operations 48-50
remainders 38
square roots 39
or operator 129-131
OS (operating system) 19, 227
os module 227, 230
output, defined 6

P
Pi NoIR module 252
Pi1 Store 29-30
picamera module 282
PIR (passive infrared) 279
ports 17
3.5 mm audio/video port 248-250
Camera Serial Interface 250-252
defined 9
Ethernet port 253
overview 246
TV/monitor
component video input 256
identifying ports 254
RCA port 254-255
VGA port 2556-256
positive power bus 215, 218
power supply 17
print function 50
Python 50-51
troubleshooting using 200
PWM (pulse width modulation) 188
Python
creating programs 54-56
IDLE 28, 33-34, 563-54
mathematical operators
adding and subtracting 35-37
exponents 38-39
multiplying and dividing 37-38
order of operations 48-50
remainders 38

INDEX 289

square roots 39
print function 50-51
saving programs 56
troubleshooting 51-52
type checking 40-41
using text editors 54
variables
box analogy 47
changing value of 46-50
creating and assigning values 42
defined 41-42
displaying values 42-45
naming 43-44
reassignment of 48

strings in 45-46

Q

quotation marks 45

R
RAM (random access memory) 8
randint tool 116
random module 115
random number generation 115-116
Raspberry Pi
cases 6
hardware overview 4-6
HDMI port
connecting TV or monitor 14-15
DVI port devices 16
overview 13-14
overview 4
P1 Store 29-30
ports 17
power supply 17
powering on checklist 18-19
Raspberry Pi 1 Model B 256-258
Raspberry Pi 1 Model B+ 258
Raspbian operating system
applications on 26
booting to desktop 24-26
configuring 21-24
files and folders 26-27
IDLE 28-29
installing 19-21

290 INDEX

Raspberry Pi (continued)
SD cards
inserting card in slot 12
NOOBS on 12
overview 11-12
portability of 13
replacing cards 12-13
system on a chip (SoC) 7-8
updating 166
USB ports
connecting keyboard 9-10
connecting mouse 10
overview 8-9
wireless keyboard and mouse
combination 10
Raspi’s Cave Adventure
flow diagrams
overview 124-126
translating into code 131-133
functions
creating 133-138
left cave exploration 138-139
right cave exploration 139-141
troubleshooting 141-142
handling unexpected input
and operator 130
elif statements 129-130
or operator 129-131
overview 127-129
left cave 124
overview 121-124
right cave 124
raspistill program 252
RCA port 2564-255
refactoring, defined 137
remainders 38
remove method 224
resistance, defined 161
resistors
adding for DJ Raspi project 215-216,
218
connecting for Light Up Guessing
Game 185-186
purpose of 161

RGB LEDs
connecting to breadboard 182-183
overview 180

robot project 283-284

S
Scratch, overview 118-119
SD cards
inserting card in slot 12
NOOBS on 12
overview 11-12
portability of 13
reformatting 241-243
replacing cards 12-13
SDFormatter software 242
setmode function 170
Silly Sentence Generator 3000 69-71,
73-77, 79-88
commenting code 73-75
creating program 69-71
debugging 81-83
input function 75-76
joining strings
building sentence 80-81
overview 77-79
using multiple inputs 79
Minecraft P1 85-88
overview 67-69
printing to screen 83-84
saving program 71-73
SoC (system on a chip) 7-8
SparkFun website 280
square brackets 223
square roots 39
streaming video 143-145
string literals 97, 267
string methods 128
strings
joining
building sentence 80-81
overview 77-79
using multiple inputs 79
storing in variables 45-46
subliminal messages 89

subtraction (math) 35-37

sudo command 168, 200
switches, command-line 209
system on a chip. See SoC

T
TAAG (text-to-ASCII art generator) 99
time-lapse photography project 281-283
triple double quotes 97
troubleshooting
checking monitor connection 240-241
checking power 239-240
DJ Raspi project 209-210, 235
functions 141-142
incomplete booting 241
Light Up Guessing Game
program 200-201
Python 51-52
reformatting SD card 241-243
searching online for help 243
while loops 114-115
TV connections
component video input 256
connecting to HDMI port 14-15
identifying ports 254
RCA port 254-255
VGA port 255-256
type checking 40-41

U

underscore (_) 44
upper() method 78, 129
USB ports

INDEX 291

connecting keyboard 9-10
connecting mouse 10

defined 6

overview 8-9

v
variables
box analogy 47
changing value of 46-50
creating and assigning values 42
defined 41-42
displaying values 42-45
naming 43-44
reassignment of 48
strings in 45-46
VGA (video graphics array) 241
VGA port 255-256
video
live streaming 143-145
playing videos 142-143
voltage, defined 160

w

WAV format 207

while loops
breaking out of 113-114
overview 110-113
troubleshooting 114-115
using if statements in 113

whitespace 36

wireless keyboard/mouse 10

MORE TITLES FROM MANNING

(] - > SR Sy, . o
C® mputer Programming

for Kids and Other Beginners

M MANNING

=) &

HelloAPP Inventor[

Android programming
for Kids and the rest of us

Paula Beer and Car] Simmons

M MANNING

Hello World!
Second Edition

by Warren Sande and Carter Sande
ISBN: 9781617290923
464 pages
$39.99
December 2013

Hello App Inventor!

by Paula Beer and Carl Simmons
ISBN: 9781617291432
360 pages
$39.99
October 2014

Hello! iOS Development

by Lou Franco and Eitan Mendelowitz

ISBN: 9781935182986
344 pages

$29.99

July 2013

For ordering information go to www.manning.com

https://www.manning.com/books/hello-world-second-edition
https://www.manning.com/books/hello-app-inventor
https://www.manning.com/books/hello-ios-development

PYTHON / HARDWARE

HeﬂoRasterrg pil"
Ryan Heitz

he Raspberry Pi is a small, low-cost computer invent-

ed to encourage experimentation. The Pi is a snap

to set up, and using the free Python programming
language, you can learn to create video games, control
robots, and maybe even write programs to do your math
homework!

Hello Raspberry Pi! is a fun way for kids to take their first
steps programming on a Raspberry Pi. First, you discov-

er how to set up and navigate the Pi. Next, begin Python
programming by learning basic concepts with engaging
challenges and games. This book gives you an introduction
to computer programming as you gain the confidence to
explore, learn, and create on your own. The last part of
the book introduces you to the world of computer control
of physical objects, where you create interactive projects
with lights, buttons, and sounds.

What's inside
Learn Python with fun examples
Write games and control electronics
Use Raspberry Pi to control lights and sounds
Loaded with programming exercises

To use this book, you’ll need a Raspberry Pi starter Kkit,
keyboard, mouse, and monitor. No programming
experience needed.

Ryan Heitz is a teacher, programmer, maker, father, and
big kid. He specializes in teaching kids to code in a fun and
engaging way.

To download their free eBook in PDE ePub, and Kindle formats, owners
of this book should visit manning.com/hooks/hello-raspberry-pi

/“ MANNING US $24.99 | Can $28.99

“Very well written and inspiring,
for both kids and teachers!”

—Dr. Christian Mennerich
Devoxx4Kids Team, Germany

“A fantastic resource for young
programmers. Ryan Heitz does
a great job walking readers
through examples ... I wish this
book had been available when
I first started to program!”

—Nathan Sperry, student
Thomas Jefferson High School
for Science and Technology

“This book makes coding easy
and fun to learn.”

—Matthew Giblin, age 13
Bradenton Preparatory Academy
Dubai

“A fantastic overview of the
truly remarkable Raspberry Pi.
My daughter Grace and I were
thoroughly engrossed while
working through the examples.”

—Dan Kacenjar, Wolters Kluwer

ISBN-13: 978-1-bl729-245-3
ISBN-1.0: 1-E1729-245-1

“ “““ i
97781617"292453

	Raspberry Pi!
	Brief contents
	Contents
	Preface
	Acknowledgments
	About this book
	Part 1 Getting started
	1 Meet Raspberry Pi
	What is the Raspberry Pi?
	Exploring your Raspberry Pi’s parts: hardware
	Giving your Pi a cozy home: Pi cases
	The brain of your Pi: system on a chip
	Connecting a keyboard and mouse: USB ports
	Storing memories: your Pi gets a memory card
	Connecting a TV or monitor: HDMI port
	Other ports and connections
	Powering your Pi: microUSB power port
	It’s alive! Plugging in the Pi

	Getting your Pi running: software
	Installing the Raspbian operating system
	Configuring the operating system: making it yours
	Saving your configuration and rebooting

	Getting around: learning Raspbian
	Finding and opening applications on your Raspberry Pi
	Your files and folders
	Writing code

	Fruit Picker Extra: shopping at the Pi Store
	Challenge
	Scavenger hunt

	Summary

	2 Exploring Python
	Playing with Python
	Discovering Python’s mathematical operators
	Adding and subtracting
	Multiplying and dividing
	Figuring out whole numbers and remainders
	Exponents
	Square roots
	Challenge: stacking Pis!

	Storing information using variables
	Creating variables and assigning values
	Displaying variable values
	Storing strings in variables
	Changing the value of variables

	Displaying text on a screen
	Using the print function
	Troubleshooting

	Creating programs
	Writing Python programs with IDLE
	Starting a new program
	Saving programs
	Python interpreting the program

	Fruit Picker Extra: creating documents
	Writing silly things and saving them

	Challenges
	The matrix
	Building a brick wall
	Pi electrons

	Summary

	Part 2 Playing with Python
	3 Silly Sentence Generator 3000: creating interactive programs
	Creating a welcome message
	Starting a new program
	Saving the program

	Adding notes in your code
	Using hashtags for comments

	Getting and storing information
	Joining strings
	Using more than one input
	Building the sentence
	Troubleshooting

	Completing the program: displaying the silly sentence
	Fruit Picker Extra: Minecraft Pi
	What's Minecraft?
	Launching Minecraft Pi
	Python programming interface to Minecraft Pi

	Challenges
	Knight’s Tale Creator 3000
	Subliminal messages

	Summary

	4 Norwegian Blue parrot game: adding logic to programs
	Displaying the game introduction
	Creating the game welcome message and instructions

	Collecting input from the player
	Using if statements to respond to users in different ways
	Practicing if statements

	Using while loops to repeat things
	A closer look at while loops
	Breaking out of a while loop
	Practicing while loops

	Using Python code libraries to generate random numbers
	Fruit Picker Extra: Scratch
	Challenges
	Summary

	5 Raspi’s Cave Adventure
	Project introduction: Raspi’s Cave Adventure
	Left cave
	Right cave

	Hey wait, you need a plan (flow diagrams)
	Which way should Raspi go? (checking input)
	Handling unexpected input
	Turning flow diagrams into code

	Simplify! Making your own functions
	Finishing the left cave
	Exploring the right cave
	Troubleshooting

	Fruit Picker Extra: playing video
	Live streaming: exploring from your Pi

	Challenges
	Introducing dramatic pauses
	Random demise
	Play again?
	Scream!

	Summary

	Part 3 Pi and Python projects
	6 Blinky Pi
	Setting up your Pi for physical computing
	GPIO pins
	Breaking out the GPIO pins to a breadboard
	Breadboard basics

	Building the LED circuit
	Step 1. Connect the jumper from GPIO pin 21
	Step 2. Add the red LED
	Step 3. Connect a resistor

	Software: blinkLED program
	Running the program
	blinkLED: how it works

	Adding more LEDs
	Building the circuit

	Multiple LEDs: program it!
	Challenges
	Wave pattern
	Simon Says
	Random blinking

	Summary

	7 Light Up Guessing Game
	Guessing Game design
	Hardware: building the circuit
	Numbers, numbers, numbers!
	Wiring an RGB LED
	Circuit sketch

	Software: LEDGuessingGame program
	Setting up the GPIO pins for the RGB LED
	Main game loop and logic
	Guessing Game Loop and logic
	Adding the Play Again Loop and logic
	Playing the game
	Troubleshooting

	Challenges
	Game winner
	Easter egg
	Warmer and colder
	Darth Vader surprise

	Summary

	8 DJ Raspi
	Project overview
	Setting up your Pi to play sounds
	OMXPlayer and MP3s
	Troubleshooting

	Hardware: building the circuit
	Wiring a button
	Circuit sketch
	Adding the second button

	Software: the DJ Raspi program
	Setting up the Pi: initializing the buttons
	Getting a list of sounds
	Getting a value of an item stored in a list
	Getting the length of a list
	Building a list of sound files with the os library
	Playing a sound when a button is pressed
	Functions!
	Testing: your first gig as DJ Raspi

	Troubleshooting
	Challenges
	Double button press surprise
	Yoda Magic 8 Ball
	Continuing to explore

	Summary

	Appendix A Raspberry Pi troubleshooting
	Making sure your Pi has power
	Checking the connection to your TV or monitor
	Pi starts booting up but then stops
	Making your Pi a new SD card
	Reformatting your SD card

	Problems not covered here

	Appendix B Raspberry Pi ports and legacy boards
	Raspberry Pi ports
	Connecting to a wireless network
	3.5 mm audio/video port
	Camera Serial Interface: connecting a camera
	Ethernet port
	TV or monitor connection options

	Legacy boards
	Raspberry Pi 1 Model B
	Raspberry Pi 1 Model B+
	Other boards

	Appendix C Solutions to chapter challenges
	Chapter 1
	Chapter 2
	The Matrix
	Building a brick wall
	Pi electrons

	Chapter 3
	Knight’s Tale Creator 3000
	Subliminal messages

	Chapter 4
	Rock, Paper, Scissors!

	Chapter 5
	Introducing dramatic pauses
	Random demise
	Play again?

	Chapter 6
	Wave pattern
	Simon says
	Random blinking

	Chapter 7
	Game winner
	Easter egg
	Warmer and colder
	Darth Vader surprise

	Chapter 8
	Double button press surprise
	Yoda Magic 8 Ball

	Appendix D Raspberry Pi projects
	Halloween heads
	Time-lapse photography
	Raspberry Pi robot

	Index
	Symbols
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

	Raspberry Pi-back

