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Preface

Software architecture metrics are used to measure the maintainability
and architectural quality of a software project, and to provide warn-
ings early in the process about any dangerous accumulations of ar-
chitectural or technical debt. In this book, 10 leading hands-on practi-
tioners (Christian Ciceri, David Farley, Neal Ford, Andrew Harmel-
Law, Michael Keeling, Carola Lilienthal, João Rosa, Alexander von
Zitzewitz, Rene Weiss, and Eoin Woods) introduce key software ar-
chitecture metrics that every software architect should know. The ar-
chitects in this group have all published renowned software architec-
ture articles and books, regularly participate in international events,

and give practical workshops.

We all strive to balance theory and practice. This book, however, is
not about theory; it’s about practice and implementation, about what
has already been tried and has worked, with valuable experiences
and case studies. We focus not only on improving the quality of archi-
tecture but on associating objective metrics with business outcomes
in ways that account for your own situation and the trade-offs
involved.

We conducted a survey and found that there is strong demand for
software architecture metrics resources, yet very few are available.



We hope this contribution will make a difference and help you set the
right KPIs and measure the results accurately and insightfully.

We are grateful to the Global Software Architecture Summit, which
reunited us and gave us the idea of writing a software architecture
metrics book together. All of the book’s chapters and case studies are
as different as the authors themselves: we made a point of using ex-
amples from different industries and challenges so that every reader
can find a solution or an inspiration.

What Will You Learn?

By the end of this book you’ll understand how to:

Measure how well your software architecture is meeting goals
Guide your architecture toward testability and deployability
Prioritize software architecture work
Create predictability from observability
Identify key KPIs for your software project
Build and automate a metrics dashboard
Analyze and measure the success of your project or process
Build goal-driven software architecture



Who This Book Is For

This book is written by and for software architects. If you’re eager to
explore successful case studies and learn more about decision and
measurement effectiveness, whether you work in-house for a soft-
ware development company or as an independent consultant, this
book is for you.

The 10 authors, all experienced practitioners, share their advice and
wisdom, presenting diverse viewpoints and ideas. As you work on dif-
ferent projects, you might find some chapters more relevant to your
work than others. You might use this book on a regular basis, or you
might use it once to set the KPIs and then come back to it later to
teach and inspire new team members.

Having the right software architecture metrics and tools can make ar-
chitecture checking much faster and less costly. It can allow you to
run checks throughout the life of a software project, starting right at
the beginning. Metrics also help you evaluate your software architec-
ture at each sprint to make sure it’s not drifting toward becoming im-
possible to maintain. They can also help you compare architectures
to pick the one that best fits your project’s requirements.

Conventions Used in This Book



The following typographical conventions are used in this book:

Italic

Indicates new terms, URLs, email addresses, filenames, and
file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer
to program elements such as variable or function names, data-
bases, data types, environment variables, statements, and
keywords.

O’Reilly Online Learning

NOTE

For more than 40 years, O’Reilly Media has provided technology and business
training, knowledge, and insight to help companies succeed.

Our unique network of experts and innovators share their knowledge
and expertise through books, articles, and our online learning plat-
form. O’Reilly’s online learning platform gives you on-demand access
to live training courses, in-depth learning paths, interactive coding en-
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vironments, and a vast collection of text and video from O’Reilly and
200+ other publishers. For more information, visit https://oreilly.com.

How to Contact Us

Please address comments and questions concerning this book to the
publisher:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)

707-829-0515 (international or local)

707-829-0104 (fax)

We have a web page for this book, where we list errata, examples,

and any additional information. You can access this page at https://or-
eil.ly/software-architecture-metrics.

Email bookquestions@oreilly.com to comment or ask technical ques-
tions about this book.
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For news and information about our books and courses, visit
https://oreilly.com.

Find us on LinkedIn: https://linkedin.com/company/oreilly-media.

Follow us on Twitter: https://twitter.com/oreillymedia.

Watch us on YouTube: https://www.youtube.com/oreillymedia.
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Chapter 1. Four Key Metrics
Unleashed

Andrew Harmel-Law

You’d be forgiven for thinking that Dr. Nicole Forsgren, Jez Humble,

and Gene Kim’s groundbreaking book Accelerate (IT Revolution
Press, 2018) is both the first and last word on how to transform your
software delivery performance, all measured by the simple yet power-
ful four key metrics.

Having based my transformation work around many of their book’s
recommendations, I certainly have no issue with any of its content.
But rather than removing the need for anything in even greater detail,
I think the book should be discussed and analyzed further to enable
the sharing of experiences and the gathering of a community of peo-
ple practicing architecture who want to improve. I hope that this chap-
ter will contribute to such a discussion.

I have seen, when used in the way described later in the chapter, that
the four key metrics—deployment frequency, lead time for changes,

change failure rate, and time to restore service—lead to a flowering of
learning and allow teams to understand the need for a high-quality,

loosely coupled, deliverable, testable, observable, and maintainable



architecture. Deployed effectively, the four key metrics can allow you
as an architect to loosen your grip on the tiller. Instead of dictating
and controlling, you can use the four key metrics to generate conver-
sations with team members and stimulate desire to improve overall
software architecture beyond yourself. You can gradually move to-
ward a more testable, coherent and cohesive, modular, fault-tolerant
and cloud native, runnable, and observable architecture.

In the sections that follow, I’ll show to get your four key metrics up
and running, as well as (more importantly) how you and your software
teams can best use the metrics to focus your continuous improve-
ment efforts and track progress. My focus is on the practical aspects
of visualizing the mental model of the four key metrics, sourcing the
required three raw data points, then calculating and displaying the
four metrics. But don’t worry: I’ll also discuss the benefits of architec-
ture that runs in production.

Definition and Instrumentation



Paradigms are the sources of systems. From them, from shared
social agreements about the nature of reality, come system
goals and information flows, feedbacks, stocks, flows and
everything else about systems.

—Donella Meadows, Thinking in Systems: A
Primer

The mental model that underpins Accelerate gives rise to the four key
metrics. I begin here because this mental model is essential to keep
in mind as you read this chapter. In its simplest form, the model is a
pipeline (or “flow”) of activities that starts whenever a developer push-
es their code changes to version control, and ends when these
changes are absorbed into the running system that the teams are
working on, delivering a running service to its users. You can see this
mental model in Figure 1-1.

Figure 1-1. The fundamental mental model behind the four key metrics
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For clarity, let’s visualize what the four key metrics measure within
this model:

Deployment frequency

The number of individual changes that make their way out of
the end of the pipe over time. These changes might consist of
“deployment units”: code, config, or a combination of both,

including, for example, a new feature or a bug fix.

Lead time for changes

The time a developer’s completed code/config changes take to
make their way through the pipeline and out the other end.

Taken together, this first pair measures development throughput. This
should not be confused with lean cycle time or lead time, which in-
cludes time to write the code, sometimes the clock even starting
when the product manager first comes up with the idea for their new
feature.

Change failure rate

The proportion of changes coming out the pipe that cause a
failure in our running service. (The specifics of what defines a
“failure” will be covered shortly. For now, just think of failure as
something that stops users of your service from getting their
tasks done.)

Time to restore service



How long it takes, after the service experiences a failure, to
become aware of it and deliver the fix that restores the service
to users.

Taken together, this second pair gives an indication of service stabili-
ty.

The power of these four key metrics is in their combination. If you im-
prove an element of development throughput but degrade service
stability in the process, then you’re improving in an unbalanced way
and will fail to realize long-term sustainable benefits. The fundamen-
tal point is that you keep an eye on all of the four key metrics. Trans-
formations that realize predictable, long-term value are ones that de-
liver positive impact across the board.

Now that we are clear on where our metrics come from, we can com-
plicate matters by mapping the generic mental model onto your actu-
al delivery process. I’ll spend the next section showing how to per-
form this “mental refactoring.”

Refactoring Your Mental Model

Defining each metric for your circumstances is essential. As you have
most likely guessed, the first two metrics are underpinned by what

2



happens in your CI pipelines, and the second pair require tracking
service outages and restoration.

Consider scope carefully as you perform this mental refactoring. Are
you looking at all changes for all pieces of software across your orga-
nization? Or are you considering those in your program of work
alone? Are you including infrastructure changes or just observing
those for software and services? All these possibilities are fine, but
remember: the scope you consider must be the same for each of the
four metrics. If you include infrastructure changes in your lead time
and deployment frequency, include outages induced by infrastructure
changes, too.

Pipelines as Your First Port of Call

Which pipelines should you be considering? The ones you need are
those that listen for code and config changes in a source repository
within your target scope, perform various actions as a consequence
(such as compilation, automated testing, and packaging), and deploy
the results into your production environment. You don’t want to in-
clude CI-implemented tasks for things like database backups.

If you only have one code repository served by one end-to-end pipe-
line (e.g., a monolith stored in a monorepo and deployed directly, and



in a single set of activities, to production), then your job here is easy.

The model for this is shown in Figure 1-2.

Figure 1-2. The simplest source-control/pipeline/deployment model you’ll find

Unfortunately, while this is exactly the same as our fundamental men-
tal model, I’ve rarely seen this in reality. We’ll most likely have to per-
form a much broader refactoring of the mental model to reach one
that represents your circumstances.

The next easiest to measure and our first significant mental refactor
is a collection of these end-to-end pipelines, one per artifact or repos-
itory (for example, one per microservice), each of which does all its
own work and, again, ends in production (Figure 1-3). If you’re using
Azure DevOps, for example, it’s simple to create these.3



Figure 1-3. The “multiple end-to-end pipelines model” is ideal for microservices

These first two pipeline shapes are most likely similar to what you
have, but I’m going to guess that your version of this picture will be
slightly more complicated and require one more refactor to be split
into a series of subpipelines (Figure 1-4). Let’s consider an example
that shows three of these subpipelines, which fit end-to-end to deliver
a change to production.

Perhaps the first subpipeline listens for pushes to the repo and un-
dertakes compilation, packaging, and unit and component testing,

then publishes to a binary artifact repository. Maybe this is followed
by a second, independent subpipeline that deploys this newly pub-



lished artifact to one or more environments for testing. Possibly a
third subpipeline, triggered by something like a CAB process,  finally
deploys the change to production.

Figure 1-4. The “pipeline made of multiple subpipelines” model, which I encounter frequently

Hopefully you’ve identified your circumstances. But if not, there is a
fourth major variety of pipeline, which our final mental-refactoring
step will get us to: the multistage fan-in, shown in Figure 1-5. Here we
typically find individual subpipelines for the first stage, one per reposi-
tory, which then “fan in” to a shared subpipeline or set of subpipelines
that take the change the rest of the way to production.

4



Figure 1-5. The multistage “fan-in pipeline” model

Locating Your Instrumentation Points

As well as having four metrics, we have four instrumentation points.

Let’s now move to locating them in our mental model, whatever form
yours takes. We’ve focused on pipelines so far because they typically
provide two of those points: a commit timestamp and a deployment
timestamp. The third and fourth instrumentation points come from the
timestamps created when a service degradation is detected and
when it is marked as “resolved.” We can now discuss each in detail.

Commit timestamp

Subtleties inevitably arise here when you consider teams’ work prac-
tices. Are they branching by feature? Are they doing pull requests? Do
they have a mix of different practices? Ideally (as the authors of
Accelerate suggest), your clock starts ticking whenever any develop-



er change-set is considered complete and is committed, wherever
that might be. If the teams are doing this, beware: this holding of
changes on branches not only extends feedback cycles but also adds
both overhead and infrastructure requirements to your effort. (I’ll
cover those in the next section.)

Because of this complexity, some choose to use the triggering of a
pipeline from a merge to main as a proxy trigger point or commit time-
stamp. I understand that this might sound like admitting defeat in the
face of suboptimal practice,  but if you choose a proxy trigger, I know
you will have a guilty conscience (because you know you’re not fol-
lowing standard best practice). Whether we include the extra wait
time or not, the metrics will lead to many other benefits for you even if
you give yourself a break and start your early sampling when the
code hits main. If and when these proxies do turn out to be the source
of significant delivery suboptimization, Accelerate has recommenda-
tions for you (such as trunk-based development and pair program-
ming),  which play into your commit timestamp by making the time a
change hits main as the time you want to start the timer. By then,

you’ll have begun to see the benefits of the metrics and want to im-
prove your capture of them.

Deployment timestamp

5
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With the commit time out of the way, you’ll be pleased to hear that the
“stop” of the clock is far simpler: it’s when the pipeline doing the final
deployment to production completes. Doesn’t this give those who do
manual smoke testing after the fact a break? Yes, but again I’ll leave
this to your conscience, and if you really want to include this final ac-
tivity, you can always put a manual checkpoint at the end of your
pipelines, which the QA (or whoever checks deployments) presses
once they are satisfied that the deployment was successful.

Complexities arising from multistage and fan-in
pipelines

Given these two data sources, you can calculate the information we
need from our pipelines, and that is total time to run: the elapsed time
between clock start and clock stop. If you have one of the simpler
pipeline scenarios we discussed earlier, the ones that do not fan in,

then this is relatively easy. Those with one or more end-to-end pipe-
lines have it easiest of all.

If you are unlucky and have multiple subpipelines (as we saw in
Figure 1-4), then you’ll need to perform additional data collection to
the change set(s) that were included in a “start” timestamp and in the
“deploy” to production. Given this data, you can do some processing
to calculate the total time to run for each individual change.
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If you run a fan-in design (shown in Figure 1-5), this processing will
likely be more involved. Why? As you’ll see in Figure 1-6, you’ll need
a way of knowing where the change-deployment number 264 originat-
ed (Repo A, Repo B, or Repo C) so you can get the “start” timestamp
for the change. If your deployment aggregates a number of changes,

then you will need to trace each back individually to get its “start”
time.

Figure 1-6. Locating your data collection points in the “fan-in pipeline” model variant

Clearly, in all cases, no matter how complicated your pipelines, you
only want to count builds that deploy service updates to users. Make
sure you only measure these.

There’s one final point to make about data capture from pipelines be-
fore we move on, and that is which pipeline runs to count? Again,

Accelerate isn’t explicit on this point, but you only care about the runs
that succeed. If a build starts but fails at the compilation step, it will

8



skew your lead times in an artificially positive direction because you
will have just added a really quick build in the mix. If you want to
game things (and the biggest benefit of the four key metrics is that
they’re not gameable, at least not to my knowledge), then you just
submit lots of builds you know will break, ideally, really quickly.

Monitoring for service failures

While it is relatively simple to be accurate about measurements
around our pipelines, the third and final source of raw information is
far more open to interpretation.

The difficulties arise in defining “a failure in production.” If there is a
failure but no one spots it, was it even really there? Whenever I have
used the four key metrics, I have answered this in the negative. I de-
fine “failures in production” as anything that makes a consumer of the
service unable, or even disinclined, to stick around to complete the
job they were attempting to perform. Cosmetic defects don’t count as
service failures, but a “working system” so slow as to cause unchar-
acteristic user dropout clearly is experiencing a service failure. There
is an element of judgment in this, and that’s fine: pick a definition that
makes you comfortable and be honest with yourself as you stick to it.

You now need to record service failures, which are our third and final
instrumentation point, typically by means of a “change failure” ticket.



The opening of this ticket gives you a start time data point for another
clock; closing it gives you the corresponding end time. This start and
end time, plus the number of tickets, are all the remaining data points
you will need. A ticket should be closed when service is restored. This
might not correspond to the root cause of the failure being ad-
dressed; that’s fine. We’re talking about service stability. Rolling back
so you’re online and serving customers is acceptable here.

But what if you’re not in production? First, haven’t you tried to start
moving to continuous deployment yet? You really ought to. But sec-
ond, this option isn’t available to everyone. It’s suboptimal, but you
can still use the four key metrics in these circumstances. To do so,

you need to define your “highest environment”: the shared one clos-
est to production into which all teams are delivering. It’s probably
called SIT (for system integration), pre-prod, or staging. The key thing
is that when you accept your changes, you believe there is no more
work required to take your changes on the final step to production.

Given all these considerations, you need to treat this “highest envi-
ronment” just like you would production. Treat testers and collaborat-
ing teams as your “users.” They get to define service failures. Treat
the test failures as seriously as you would real failures. It’s not perfect
to pretend this environment is production, but it’s better than nothing.

9



Capture and Calculation

Systems modelers say that we change paradigms by building a
model of the system, which takes us outside the system and
forces us to see the whole.

—Donella Meadows, Thinking in Systems

Now that you have your definitions, you can start capturing and calcu-
lating. While it’s desirable to automate this capture process, it’s per-
fectly acceptable to do it manually.  In fact, every time I’ve rolled out
the four key metrics, this is where I’ve started, and frequently not only
for our initial baseline. You’ll understand in a few paragraphs why it’s
fine to capture and calculate manually.

Capturing metrics can be a simple or complex task, depending on the
nature of your pipelines. Regardless, the four key metrics will be cal-
culated using four sets of data arising from the four instrumentation
points: successful change deployment counts, total times to run the
pipeline(s) for each change, counts of change failure tickets, and the
length of time change failure tickets are open. These captured data
sets alone are not enough to get your metrics; you still need to calcu-
late, so let’s look at each of these in turn:

Deployment frequency

10
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This is a frequency, not a count, and therefore you need the to-
tal number of successful deployments within a given time peri-
od (I’ve found that a day works well). If you have multiple pipe-
lines, whether you fan-in or not, you’ll want to sum the number
of deployments from them all.

With this data, recorded and summed on a daily basis (remem-
ber to include the “zero” sums for days with no deploys), it’s
simple to get to your first headline metric. Working with the lat-
est daily figure or the figure from the last 24 hours will (in my
experience) suffer from too much fluctuation. It works best to
display the mean over a longer time period, such as the last 31

days.

Lead time for changes

This is the elapsed time for any single change that triggers the
start. This can fluctuate, so don’t just report the most recent
figure from the latest deployment. If you have multiple
(including fan-in) pipelines, this fluctuation will be far greater,
because some builds run a lot faster than others due to
blocking. You want something a bit more stable that reflects the
general state of affairs, as opposed to the latest outlier.
Consequently, I usually take each individual lead time
measurement and calculate the mean of all of them over the



course of a day. The figure to report is the mean of all the lead
time measurements over the last 31 days.

Change failure rate

This is the proportion of change failure tickets resolved, specifi-
cally the number of deployments that gave rise to failures as a
fraction of the total number of deployments over the same peri-
od. For example, if you had 36 deployments in a day, and within
the same day you resolved 2 change failures, that would mean
your change failure rate for that day was 2/36, or 5.55555556%.

To get to your reported metric, look at this rate over the same
time period: the previous 31 days. That means you sum the
number of restored failures over the last 31 days, then divide
that by the total number of deployments over the same period.

You’ll notice that there is a leap of faith here. We’re assuming
that the failures are distinct and that a single failure is caused
by a single deployment. Why? Because in my experience it’s
just too hard to tie failures back to individual builds, and in the
vast majority of incidents, these two assumptions hold, at least
enough to make them worth the loss in fidelity. If you’re in a po-
sition to be smarter about this, congratulations!

The sharp-eyed will also note that we’re only talking about re-
solved failures. Why are we not including failures that are still
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open? Because we want consistency across all four of our met-
rics and because time to restore service can only consider re-
solved failures.  If we can’t count unresolved failures for one
thing, we don’t want to count them for the other. But never fear:
we still have the data on open failures, and we don’t hide this,

as you’ll see in the sections that follow.

Time to restore service

This is the time a change failure ticket takes to go from being
created to being closed. The authors of Accelerate call this
mean time to restore service, though in earlier State of DevOps
reports, it was just time to restore, and in the METRICS.md file
for the Four Keys project from Google, it’s median time to
restore. I’ve used both mean and median; the former is sensi-
tive to outliers, and sometimes that’s exactly what you want to
see as you learn.

Both mean and median are easy to calculate from your change
failure tickets’ time-to-resolution data. Either way, you want to
select your inputs across a data range. I usually end up using
the last 120 days. Take all the failure resolution times that fell
within that period, calculate their mean, and report it for this
metric.

13
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This has the potential for another leap of faith: when you raise
change failures manually, it’s possible to skew these figures by
delaying ticket opening beyond the immediate point of discov-
ery. In all honesty, even if people have the best of intentions,

skewing will happen. Yet you’ll still get good enough data to
keep an eye on things and drive improvements.

However you capture your data that feeds into these calculations,

make sure it all happens out in the open. First, encourage develop-
ment teams to read up on the four key metrics. There should be noth-
ing secret about your effort.

Second, make all your raw data and calculations available, as well as
the calculated headline figures. This becomes important later.

Third, ensure that the definitions you have specifically applied to each
metric, and how you are treating those definitions, are available
alongside the data itself. This transparency will deepen understand-
ing and heighten engagement.

Pay attention to this question of access (access to data, calculations,

and visualizations), because if your four key metrics aren’t shared
with everyone, then you are missing out on their greatest strength.

Display and Understanding
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[So] how do you change paradigms?...You keep pointing at the
anomalies and failures in the old paradigm. You keep speaking
and acting, loudly and with assurance, from the new one.

—Donella Meadows, Thinking in Systems

Whenever I’ve deployed the four key metrics, I’ve typically started
with a minimal viable dashboard (MVD),  which is a grand name for
a wiki page with the following:

The current calculated values of each of the four key metrics
The definitions of each metric, and the time periods across which
we calculate them
The historical values of the data

I also flag the data sources so everyone can engage with them.

Target Audience

Metrics, like all statistics, tell a story, and stories have audiences.

Who is the target audience for the four key metrics? Primarily, the
teams delivering the software, the people who will actually make the
changes if they want to see the metrics improve.

You therefore want to ensure that wherever and however you choose
to display things, it needs to be in a place that is primarily readily ac-
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cessible to these individuals and groups. The “readily” is important. It
needs to be trivially easy to see the metrics and to drill down into
them and find out more, typically, those data points that are specific
to the services they own.

There are other audiences for the four key metrics, but these are sec-
ondary. One secondary audience might be senior management or ex-
ecutive management. It is fine for them to see the metrics, but the
metrics need to be rolled up and read-only. If executive management
wants to know more detail, then they will come down to the teams to
obtain it, and that is exactly what you want to happen.

Ideally, the moment you have your MVD up, you can start work on
automating collection and calculation. As I write this, there are vari-
ous options. Perhaps you will end up using Four Keys from Google,

Metrik from Thoughtworks, or various extensions for platforms, such
as Azure DevOps. I’ve not used any of them, and while I am certain
all are fit for our purpose, I’ll share the benefits of my experience
hand-rolling one in the hope it will help you evaluate whether you
want to use something off the shelf or invest in the time and effort to
make something bespoke.

Visualization

https://oreil.ly/BPRaw
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One home-baked effort resulted in the most fully featured dashboard
I’ve ever worked with. It was constructed with Microsoft PowerBI (be-
cause the client was all in with Azure DevOps). After a bunch of
wrestling with dates and times, we captured our raw data, made our
calculations, and set about creating our graphs and other visual dis-
play elements.

Deployment frequency

For this data, we chose a bar graph (Figure 1-7) with dates on the x-
axis and the number of deploys on the y-axis. Each bar represents
that day’s total, and we pulled key stats into summary figures.



Figure 1-7. Deployment frequency; the bottom right box indicates a “DORA Elite” (DevOps
Research and Assessment) level of software delivery performance

Average deployments per day shows the deployment frequency key
metric, and we highlighted in our key metrics in green to indicate
“Elite” on the Accelerate Elite-Low software delivery performance
scale.  For additional transparency, we showed deploys for the cur-
rent day and the total number of deploys over the period graphed (31

days). Finally, we plotted the mean, 95th, and overall data trends as
dotted lines on the graph.

Lead time for changes
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The bar graph in Figure 1-8 shows our lead time for changes data,

again with dates on the x-axis and now with the mean of lead time for
the given day in the bars along the y-axis.

Figure 1-8. Lead time for changes; the bottom right box indicates a “DORA High” level of soft-
ware delivery performance on the Accelerate rating scale

As before, we highlighted the key metric for the screen, which here
was a mean of the lead time over the period shown, and highlighted
in our key metrics to indicate “Low” on the Elite-Low performance
scale. We also found it useful to highlight our longest individual lead
time (see the box on the bottom left).18



We realized we kept asking, “Did we do a lot of deploys on that day?”
Rather than add more trend lines, we shadow-plotted the number of
deploys (in light gray) alongside the lead times.

Change failure rate

Figure 1-9 shows yet another bar graph for change failure rate, but
this metric presents quite differently. As you can see from the y-axis,

we typically had either zero failures or a single failure within a given
24-hour period.  It was thus very clear when we had problems.

Figure 1-9. Change failure rate; the bottom right box indicates a “DORA Elite” level of soft-
ware delivery performance on the Accelerate rating scale
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Everything on top of this is context. Coplotting the number of deploys
lets us quickly answer the question, “Was this perhaps due to a lot of
deployment activity that day?”

Finally, as usual at the bottom, you can see our key metric: the num-
ber of failures as a percentage of the total deploys in the time period.

Accompanying this yet again are some other important stats: the
number of active failures and the total number of deploys in the time
period shown.

Time to restore service

The presentation of the final metric, time to restore service, is the one
we spent most time getting comfortable with—but once we under-
stood and stabilized our deployment frequency and lead times, this
metric became our primary focus.  Yet again, we have a time-series
bar graph (Figure 1-10), but now with values plotted over a longer
timescale than the others (120 days, for better context) so that we
could compare how we were improving against a metric that ought to
have a great deal fewer data points. Again, we coplotted the lead time
for changes to give some context.
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Figure 1-10. Time to restore service; the bottom left box indicates zero open change failures
—not a DORA metric, but important to know—and the bottom right box indicates a “DORA

High” level of software delivery performance

Finally, as usual at the bottom right, you can see our key metric: the
median of all times to restore for restored failures within the given pe-
riod. Accompanying this are other key stats: the number of active fail-
ures and the total number of restored failures in the time period
shown.

Front Page



We weren’t done. Our PowerBI report also had a “Four Key Metrics”
front page, which comprised the key metric numbers from each indi-
vidual statistics page as well as the graphs of deployment frequency
and lead time. The goal was to give people an idea of the stats in real
time, rapidly and accurately. As our focus changed, we might have
promoted other graphs.

As I’ve suggested, we’re now in a position to unlock the real power of
the four key metrics. Giving the teams access to, and ensuring they
understand, these metrics, as well as the model and system that un-
derpin them, is of utmost importance if you are to reap their real ben-
efits. That’s what allows them to discuss, understand, own, and im-
prove the software you deliver.

Discussions and Understanding

There’s nothing physical or expensive or even slow in the
process of paradigm change. In a single individual it can hap-
pen in a millisecond. All it takes is a click in the mind, a falling of
scales from the eyes, a new way of seeing.

—Donella Meadows, Thinking in Systems

How did we end up with these visualizations, extra details, and spe-
cific time periods? We iterated, making additions and improvements
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as required.

Every week we collectively discussed upcoming spikes and architec-
tural decision records (ADRs)  and looked at the four key metrics.

Early on, the conversations were about what each metric meant. Sub-
sequent weeks’ discussions centered on why the numbers were
where they lay (e.g., if the numbers were too high or too low, if data
was missing, etc.), then on how to improve them. Slowly but surely,

team members got used to the four key metrics mental model. Allow-
ing teams to self-serve their data in real time and to view only the
data from their pipelines (both of which were made easy by the
PowerBI dashboards) helped immensely. So did adding trend lines,

which we shortly followed up with the ability to see timescales longer
than the default 31 days.

I was amazed at the value of these focused, enlightened, and cross-
functional discussions. As an architect, these problems and issues
would previously have fallen to me alone to spot, understand, ana-
lyze, and remedy. Now, the teams were initiating and driving solu-
tions themselves.

Ownership and Improvement
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Whenever teams begin taking ownership, I’ve witnessed, again and
again, the following. First come the easiest requests, the ones to
modernize processes and ways of working: “Can we change the ca-
dence of releases?” Next, teams begin to care more about quality:

“Let’s pull tests left” and “Let’s add more automation.”  Then come
the requests to change the team makeup: “Can we move to cross-
functional (or stream-aligned) teams?”

There are always trade-offs, failures, and lessons to learn, but the
change will drive itself. You’ll find yourself modifying and adapting
your focus and solutions as you increase focus on and better under-
stand the benefits of end-to-end views.

All of these changes rapidly end up in one place: they reveal architec-
tural problems. Perhaps these problems are there in the designs on
the whiteboard. Perhaps the whiteboard was fine, but the implemen-
tation that ended up in production wasn’t. Either way, you have things
you need to solve. Some of these things include coupling that isn’t as
loose as you thought; domain boundaries that aren’t quite as crisp as
they initially appeared; frameworks that get in the way of teams in-
stead of helping them; modules and infrastructure that are perhaps
not as easy to test as you had hoped; or microservices that, when
running with real traffic, are impossible to observe. These are prob-
lems that you, as the responsible architect, would typically have to
deal with.
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Conclusion

Now you face a choice. You could continue to go it alone, keep your
hands on the tiller, and steer the architectural ship to the best of your
ability, alone in command. Or you could take advantage of this flower-
ing within your teams. You could take your hands off the tiller, maybe
gradually at first, and use the conversations and motivation the four
key metrics unlock to slowly move toward your shared goal: more
testable, decoupled, fault-tolerant, cloud native, runnable, and ob-
servable architecture.

That’s what places the four key metrics among the most valuable ar-
chitectural metrics out there. I hope you’ll use them, along with your
partners, to codeliver the best architecture you’ve ever seen.

 Donella Meadows, Thinking in Systems: A Primer, ed. Diana Wright (Chelsea
Green Publishing, 2008), p. 162.

 This need not be a code fix. We’re thinking about service restoration here, so
something like an automatic failover is perfectly fine to stop the clock ticking.

 In fact, it’s the model Microsoft wants you to adopt.

 CAB stands for “change-advisory board.” The most famous example is the group
that meets regularly to approve releases of code and config in the classic book The
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Phoenix Project (IT Revolution Press, 2018), by Gene Kim, Kevin Behr, and George
Spafford.

 Especially if you have long-lived branches or never-ending pull requests, but I bet
you’re aware of those anyway, and they’re not difficult to quantify in isolation either.

 See the documentation for all you’d ever want to know about trunk-based develop-
ment. See Extreme Programming for the original definition of pair programming.

 If this makes you think that having multiple independent pipelines—one per artifact
—is a good idea, congratulations: you’ve reminded yourself of one of the key tenets
of microservices—independent deployability. If this makes you pine for the mono-
lith, then remember the other benefits microservices bring, some of which we’ll get
to at the end of this chapter.

 The question sometimes arises, “What about infra builds?” I’ve seen those includ-
ed in “four key metrics” calculations, but I wouldn’t get upset if they weren’t includ-
ed. As for pipelines triggered by time rather than change? Don’t count them. They
won’t result in a deployment because nothing has changed.

 Again, some will point out that the opening time of a ticket is not the same as the
time when the service failure first strikes. Correct. Perhaps you want to tie your
monitoring to the creation of these tickets to get around this. If you have the means,

congratulations: you are probably in the “fine-tuning” end of four key metrics adop-
tion. Most, at least when they start out, can only dream of this accuracy, and so, giv-
en that, it will suffice if you start with manual tickets.

 Meadows, p. 163.
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 Make sure you’re honest with yourself: collect all the builds you ought to and don’t
cherry-pick. Try to be as accurate as possible in your figures, too, and if you guess,

estimate your degree of accuracy.

 Remember! You can’t average an average without introducing issues, so it’s best

to avoid it. We do daily totals so we can have a nice, pretty graph behind our met-
rics, which we’ll get to later.

 Because unresolved failures, sadly, don’t have “resolved” timestamps.

 It might even get you a few bug reports on your calculations if you have them
wrong—some of my best learnings around the four key metrics have come in this
way.

 Meadows, p. 163.

 Props to Matthew Skelton and Manuel Pais for their “minimal viable platform” idea,

which inspired this.

 See Figures 2-2 and 2-3 in Accelerate, as well as more up-to-date tables in the lat-
est DORA State of DevOps report.

 We had a blocked build. It’s not difficult to spot. We also used the word “average”
rather than “mean” to make it more approachable.

 Sometimes we saw multiple failures, but this was very unusual.

 From experience, I’m willing to wager that this will become your focus too.

 Meadows, p. 163.
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 The term ADR was first conceived by Michael Nygard.

 Much to the delight of QAs and operations. I’ve frequently seen QAs use the four
key metrics to drive change as much as I have as an architect.
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Chapter 2. The Fitness Function
Testing Pyramid: An Analogy for
Architectural Tests and Metrics

Rene Weiss

Fitness functions, a concept borrowed from evolutionary computing,

are a concise method that can also be used to define software sys-
tem metrics. This chapter will show you how fitness functions can
help you define metrics tailored to your system and use them to im-
prove your system’s architecture, whether you’re currently building a
new system or improving an existing one. Combining fitness func-
tions and metrics with the testing pyramid concept can help you de-
fine, prioritize, and balance your metrics and enables you to measure
progress toward your objective.

Fitness Functions and Metrics

In their book Building Evolutionary Architectures, Neal Ford, Rebecca
Parsons, and Patrick Kua define a fitness function as “an objective
function used to summarize how close a prospective design solution
is to achieving the set aims.”  Such a function usually outputs a dis-
crete value, which is the metric you’re trying to achieve or improve. To
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know whether you’ve reached your goal, you need a test or verifica-
tion mechanism that measures the desired metric. Ideally, you’ll want
this to be automated, but that’s not a requirement for fitness
functions!

I like the notion of using fitness functions to create target metrics,

since they are very flexible. You can also use fitness functions to de-
scribe and integrate typical metrics (such as code coverage or code
structure metrics like cyclomatic complexity),  but their openness lets
you tailor architectural metrics to your system and context.

The concept map in Figure 2-1 illustrates the relation between a fit-
ness function and a target metric. The fitness function defines the tar-
get metric and describes the relevant context, which I call the fitness
function context. This may include additional information about the
environment, definitions, and limitations that influence the testing; I’ll
break these up into certain categories and describe them in more de-
tail later.
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Figure 2-1. Fitness function concept map

The architectural test produces the target metric. Often, such tests
also directly verify that the created metric is above (or below) a cer-
tain threshold. Usually, these tests are automated and executed as
part of continuous integration (CI) workflows. Some can be even run
and verified continuously without a specific trigger. I use the terms
architectural tests and architectural verification to explicitly distin-
guish them from functional tests. For example, a functional test might
see whether it can properly create a new customer in the system; an
architectural test might instead see whether it can create 10 cus-
tomers while also achieving an architectural or qualitative goal. For
example, the architectural test in this scenario creates a metric for
how fast these 10 customers were created and verifies if that was
within 10 milliseconds.



The fitness function, its context, and the actual target metric are
strongly interlinked. We define all three at design time. The architec-
tural test is created afterward and is not part of the definition of the
fitness function and its metric.

If the architectural test is automated, which I highly recommend, after
its implementation, the metric will be created automatically. You may
need to change something in the system or architecture, evaluate
new tools and frameworks, and be creative on the “engineering” side
while implementing the test. This is all done after you define the goal
and metric. How and when to define the fitness function and imple-
ment an architectural test is part of “Developing Your Fitness Func-
tions and Metrics”.

In a nutshell, the fitness function acts as your definition of “good.”
Let’s look at some examples.

Fitness Functions: Test Coverage

In this hypothetical system, it is crucial that we keep unit test cover-
age above a threshold of 90%.  The target for automated integration
tests is above 50% line coverage. Let’s see how it looks to describe
these two goals as fitness functions with context (Examples 2-1 and
2-2).

Example 2-1. A fitness function
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Unit Test Coverage > 0.9; 


Execute on each CI Build; Fail when below target 

Example 2-2. A fitness function

Integration Test Coverage > 0.5; 


Execute on each nightly integration test build; 


Fail when below target coverage

As you can see from these simple examples, the fitness function de-
fines a target metric to be met (the test coverage), a context (the kind
of tests to execute and when to execute) that is relevant for the met-
ric, and additional contextual information needed to automatically ver-
ify the metric.

The actual implementation (such as measuring the code covered dur-
ing the test execution, as described in Example 2-1; or setting up a
specific test environment, performing the tests, and verifying the out-
come, as for Example 2-2) is part of implementing the architectural
test.

Fitness Functions: Integration Tests with Network
Latency



The system you are testing is integrating with a third-party system us-
ing a REST/JSON API. If that API is slow or unresponsive, the stabili-
ty and performance of your own system will decrease, so you want to
verify that your system handles such events properly and performs as
expected. Here’s what the fitness function might look like (Example 2-
3).

Example 2-3. A fitness function

Integration test errors = 0% (when network latenc

Execute on each nightly integration test build; F

In this example, the parts of the fitness function might not be as obvi-
ous as in the first two examples. The metric to be met is the 0% test
errors (no errors), given the context to simulate a 10-second network
latency for our third-party API calls while executing the integration.

The actual test implementation is responsible for setting up the envi-
ronment, simulating a network latency of 10 seconds for the third-par-
ty API call, executing the integration test build nightly, and then failing
on any error raised by those integration tests.

A variation of Example 2-3 is to combine the same context with an ad-
ditional metric, such as the overall throughput of our system, while



having a network latency of 10 seconds, thereby testing that a certain
fallback mechanism is working properly (Example 2-4).

Example 2-4. A fitness function

Integration test errors = 0% (when network latenc

Execute on each nightly integration test build; F

Fail when test execution duration is > 10 minutes

without network latency is below 5 minutes)

For this variation, I added an additional metric: a certain performance
target should also be met. Provided that the context is again specify-
ing a 10-second network latency, we verify that our system’s fallback
mechanism works and the whole system still performs within a cer-
tain time frame (a maximum of double the execution compared to
standard network latency).

Introduction to Fitness Function
Categories

Fitness functions stretch across many categories (I also like to call
these dimensions and will use both terms in the chapter synony-
mously). For me, these dimensions should guide developers in defin-
ing the most useful fitness functions for their software systems. Fit-



ness functions always exist across a combination of the dimensions
presented here; note, however, that not all random combinations of
these categories are possible or meaningful.

Ford, Parsons, and Kua provide a very good descriptive list of these
categories, most of which I will reuse here. I also extend their list with
additional ones that I consider important.

It is a good idea to use these dimensions as guidance and input to
consider all relevant aspects when you create and define a fitness
function and the target metric, and when you subsequently implement
the final test that creates and verifies the target metric. You can use
the dimensions as a catalog where you pick and choose the right
combination for your system and context (later I’ll give a brief over-
view). As always in software development, only use the categories
that provide concrete information, direction, and meaning to the team
or teams working with them.

Next, we’ll look at six categories I consider mandatory, followed by
four I consider optional.

Mandatory Fitness Function Categories

The following six categories are mandatory to me, as using these cat-
egories always makes sense for software development endeavors.

Hence, if you don’t think about them during the development of the



fitness function, the metric and its test would lead to a nonideal defini-
tion that is missing some important aspect of a fitness function
definition.

Is the feedback atomic or holistic?

How much of the system is involved while being tested to create the
metric? In the real world, this category is more of a continuum than a
binary, but for ease of understanding, we’ll look at the ends of that
continuum as two distinct categories.

Atomic fitness functions verify only partial or limited aspects of the
system. Thus, a positive verification doesn’t necessarily provide feed-
back on the whole system’s performance—just that limited part of the
system. Typical examples include executing static code analysis,

such as measuring cyclomatic complexity as an indication of main-
tainability, or measuring unit test coverage as an indication of main-
tainability and testability.

Holistic fitness functions, on the other hand, provide broader feed-
back. Positive verification from a holistic fitness function means that a
large part of the system is performing as expected and that end users
can use the system as intended. Holistic functions tend to be harder
to build and maintain.



What triggers test execution?

In addition to executing tests manually, you usually develop tests to
execute automatically by a certain trigger, such as a CI workflow that
is executed by a developer’s action or a scheduled test run (e.g.,

nightly). Continual fitness functions, by contrast, are evaluated contin-
uously, independent of development activities (such as constant veri-
fication of metrics and their thresholds). Continual feedback is usually
linked to real-world measurements performed in production environ-
ments and the evaluation of metrics that are gathered while the sys-
tem is running. Fitness functions that are in the continual category are
also often in the technical area of system monitoring (tools); for ex-
ample, monitoring the response time of a certain service could be
such a fitness function.

Where is the test executed?

Is the test in question being executed in a test system or in produc-
tion? Another option is to run the tests within a continuous
integration/continuous delivery (CI/CD) pipeline (for instance, mea-
suring unit test code coverage directly on a host of the CI/CD
system). The function may be evaluated in a test system (such as
performance or load tests). In some cases, tests can even be derived
directly from the production system. These classifications may over-
lap: for example, if a performance test is running in a test environ-



ment and a CI/CD pipeline initiates test execution. This category de-
termines where the test is executed, whether you need additional
hardware, and if the test will affect a running production system.

Metric type

The metric type is a rather obvious one to consider. What kind of val-
ue does the architectural test produce? Is it just a true/false statement
(“all tests are green”), or is a numeric value being produced? Addi-
tionally, you should consider if the metric being produced will be
stored and visualized in a time series, where the time series is provid-
ing the valuable output.

Automated versus manual

It may be useful to execute some tests manually. This is usually the
case when automating them would require too much effort, would
cost too much, or would just not be feasible to do so. For example, a
test for legal requirements could be expressed as a fitness function,

but it would not be meaningful to automate it.  Generally, though,

software architects like to automate things so we can run tests as
easily and often as possible.

Quality attribute requirements
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For me, the most important category is defining the quality attributes
(also known as the quality attribute requirements or quality goals) for
a software system. In general, there are three key drivers when de-
veloping a software architecture: functional requirements, quality at-
tributes, and constraints. Quality goals define how well something
has to work. They outline how well the functional requirements of the
overall product have to work together, and they state additional quali-
tative requirements to the system (such as how easy it is to adapt a
certain part of the system). Quality goals are therefore very important
in the development of software architectures, according to Bass,

Clements, and Kazman.

International Organization for Standardization (ISO) norm 25010 pro-
vides an example catalog of quality attributes. It lists eight main char-
acteristics of product quality and then breaks them down into more
specific subattributes (see Table 2-1).
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Table 2-1. Quality attributes and subattributes

Attribute Subattribute

Functional suitability Functional completeness

Functional correctness

Functional appropriateness

Performance efficiency Time-behavior

Resource utilization

Capacity

Compatibility Coexistence

Interoperability

Usability Appropriateness recognizability

Learnability

Operability

a



Attribute Subattribute

User error protection

User interface aesthetics

Accessibility

Reliability Maturity

Availability

Fault tolerance

Recoverability

Security Confidentiality

Integrity

Nonrepudiation

Accountability



Attribute Subattribute

Authenticity

Maintainability Modularity

Reusability

Analyzability

Modifiability

Testability

Portability Adaptability

Installability

Replaceability

 ISO/IEC 25010, ISO 25000, accessed March 28, 2022, https://oreil.ly/Q3yst.a



The ISO norm is not the only way to categorize software quality char-
acteristics; Hewlett-Packard developed another system called
FURPS (for functionality, usability, reliability, performance, and sup-
portability). Throughout this chapter, however, I will use the ISO at-
tributes.

Whatever template, catalog, or norm you use when discussing quality
goals with stakeholders, remember that quality goals are one of the
main drivers for the development of a system’s architecture, so they
should also be a main driver when we put in an effort to define fitness
functions and metrics.

It only makes sense to spend time and effort on the attributes that
have a big impact on your overall goals. Thus, in “Developing Your
Fitness Functions and Metrics”, aligning quality goals with key stake-
holders and defining them is the first step in the creation of relevant
fitness functions and their metrics.

Optional Fitness Function Categories

The following categories can provide additional guidance and may be
relevant to you and your context. I consider them optional as they are
not relevant all the time. Several are linked to the sorts of additional
communication and documentation requirements generally only seen
in larger endeavors.

https://oreil.ly/hAWgp


Is the fitness function temporary or permanent?

If the use and validity of a fitness function are limited by design, you
can explicitly mark the function as temporary; other fitness functions
are categorized as permanent. “Permanent” here means that the
function is not designed with a specific end date in mind, not that it
will last “forever”: the function can be changed or abandoned like all
other things in software development.

A dedicated and longer-lasting change or refactoring activity is a
good example of a temporary fitness function. While the refactoring is
ongoing, the temporary fitness function and metric are there to pro-
vide additional help. Once that work is finished, they will be retired.

Is the fitness function static or dynamic?

A static fitness function, or more precisely the metric of a static fitness
function, has a static definition of the target metric. The verification is
then performed against this static metric. You have seen such a fit-
ness function, for instance in Examples 2-1 and 2-2, where we
checked if the code coverage is always above a certain static value.

A dynamic fitness function, on the other hand, defines a target metric
to be within a certain range in relation to another value. For instance,

you could define a target range for the response time in relation to the



number of users currently active in the system. In this example, you
could define a target response time range between 50 and 100 mil-
liseconds in relation to online users in the range of 10,000 to 100,000

users.

For such a dynamic definition, it is more complicated to create an (au-
tomated) test. But this definition can also adapt to real-world use cas-
es better than a static definition and therefore may provide a more
valuable output, depending on your use case.

Who is the target audience?

The target audience for your fitness function and metrics may include
software developers, operations, and product managers, as well as
other stakeholders. Defining your audience is useful in large environ-
ments with additional documentation and communication needs.

Knowing the target audience in advance can be important in deciding
how and where to visualize the output and provide access to it.

Where will your function and metric be applied?

If you have a large system or multiple systems, it may be necessary
to constrain the validity and execution of a fitness function and its
metric to only a single system, subsystem, or service. This usually
also comes hand in hand with additional documentation and commu-



nication needs, which exist in larger software-development endeav-
ors. Alternatively, you may want to constrain a given fitness function
to a certain technology within a system or subsystem, such as requir-
ing one type of code coverage for frontends written in JavaScript and
a different type for backends written in Java.

Fitness Function Categories: Catalog Overview

Finally, Tables 2-2 and 2-3 provide a concise overview of the cate-
gories and their possible values, as a reference for when you are cre-
ating your first fitness functions.



Table 2-2. Mandatory fitness function categories

Category Possible values

Breadth of
feedback

Atomic or holistic

Test
execution
trigger

Triggered or continuous

Execution
location

CI/CD, test environment, production system,

etc.

Metric type True/false, discrete value, time series/historical
values

Automation Automated or manual

Quality
attribute

ISO attributes: functional suitability,

performance efficiency, compatibility, usability,

reliability, security, maintainability, portability



Table 2-3. Optional fitness function categories

Category Possible values

Temporary or
permanent

Temporary or permanent

Static or
dynamic

Static or dynamic

Target
audience

Specified by you; for example, developers and
product owners

Applicability Specified by you; for example, certain
technologies (JavaScript only) or certain areas
of your system (service A or service B)

Now that you have a sense of our categories, let’s apply them to the
testing pyramid framework.

The Testing Pyramid

The testing pyramid is a widely known and accepted concept used to
classify different kinds of automated functional tests into three



layers.  Martin Fowler describes it as “a way of thinking about how
different kinds of automated tests should be used to create a bal-
anced portfolio.”  Balanced, in this context, means a portfolio of auto-
mated functional tests that balances execution time and running and
maintenance costs with the confidence that automated tests provide.

Usually, the more tests you have, the more confidence you should
gain that the application is working as expected. But this usually
comes with the downside of higher running and maintenance costs
for those tests.

Figure 2-2 shows a basic testing pyramid with three layers. Each lay-
er provides a different quality of feedback.
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Figure 2-2. Testing pyramid

Base layer

The base layer is made up of the easiest tests we do: unit tests.

If a unit test fails, it is very clear where the problem is located: it
must be within the unit being tested. The real-world use case,

where this unit could cause problems and an end user would
notice an erroneous behavior, is often not easily derived when
a unit test fails.

Middle layer



The middle layer describes service and integration tests.

(Sometimes component and API tests are placed here, too.)

Top layer

At the top are end-to-end (E2E) tests, often directly executed
through the user interface (UI) layer of an application. If these
tests fail, it’s easy to see how real-world use cases would be
negatively impacted; however, it may be harder to track down
the component causing the error, because at this level a lot of
components are working together.

The tests at the bottom of the pyramid are usually fast to execute and
easy and cheap to maintain and run. The further up you go in the
pyramid, the slower the tests are to execute and the more costly they
are to develop and maintain. Therefore, it is crucial to balance the
number of tests across the three layers to achieve the best outcome
of having a maintainable set of tests that create the highest possible
confidence that the system is doing what it is supposed to do.

Of course, this is a model you can use to determine where to put test-
ing and automation efforts, but this idealized model is not always
right. For example, it could be necessary to use a lot of integration
tests in the middle layer; for a different system that does not have a
user interface, there might be no tests in the top layer.



Before I look at how to adapt this pyramid structure to categorize fit-
ness functions, let’s dive quickly into some categories that help in
defining fitness functions.

The Fitness Function Testing Pyramid

The concept of the fitness function testing pyramid is closely related
to the concept of the functional testing pyramid. I have adapted the
main concept for fitness functions and architectural metrics to reuse
in architectural tests for balance (this idea is similarly important in ar-
chitectural verification).

The statistician George Box once wrote that “all models are wrong,”
but added that “still some are useful.”  I hope the model presented
here belongs to the useful category.

As with the functional pyramid, the easiest and cheapest tests are at
the pyramid’s base, more advanced tests are in the middle, and the
most complicated tests that should provide the “best” real-world feed-
back are at the top of the fitness function testing pyramid.

Fitness functions are always created across multiple categories,

which I presented in the previous section. While all of the mandatory
categories are relevant to describe a useful fitness function, only a
few categories are relevant for the classifications in the fitness func-
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tion testing pyramid’s layer. Thus, I encourage you to use the fitness
function test pyramid concept to create a balanced set of architectural
tests that balance execution time and running and maintenance costs
with the confidence that these (mostly automated) architectural tests
provide.

I would consider the execution (fast versus slow) only in some envi-
ronments as a relevant factor for the classification of the layer in the
fitness function testing pyramid. The two most relevant categories to
classify the fitness function and its test implementation into one of the
pyramid’s layers are breadth of feedback (atomic versus holistic) and
execution trigger, as shown in Figure 2-3.

Only holistic fitness functions appear in the top layer of the pyramid.

As for execution, continuously running tests and verifications are
harder to achieve, especially for holistic feedback. Thus, these cate-
gories interact to determine what appears in each layer.

9



Figure 2-3. Categories influencing fitness function testing pyramid layer

The Top Layer

The top-layer tests are holistic and give the most sophisticated feed-
back on the health of the system and its functionality for end users.

Therefore, these metrics and verifications are closest to real-world
use cases.

However, they are usually the hardest and costliest tests to build and
maintain. They are also more likely to have nondeterministic behavior



in some circumstances, since a lot of components are involved and
they test a broad part of the system. We are actively striving for holis-
tic feedback on the whole system but must also account for unantici-
pated errors that are harder to isolate.

To summarize, top-level tests are complex to build and maintain, and
the problems they uncover are sometimes hard to track down to the
root cause. Thus we opt for only a few “good” ones, as we try to bal-
ance effort and output (fewer tests belong at the top of the pyramid).

As an example of a top-level holistic test: for an online shop, one
could constantly measure key indicators like checkout rate per
minute, revenue per minute, or logins per minute, if they fall into an
expected range that is defined as a target corridor. A deviation could
highlight an underlying technical problem that needs to be addressed
(or was potentially introduced by the latest deployment). The top level
also includes chaos engineering,  the practice of introducing errors
in production environments to test the system’s resilience while mea-
suring the overall health and readiness of the system to end users.

The Middle Layer

The middle layer, as Figure 2-3 shows, consists of triggered holistic or
continuous atomic fitness functions. These fitness functions give
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broad feedback on the whole system’s health but do not run constant-
ly; they are triggered by a dedicated development action.

A triggered holistic metric might be one that is tested, executed, and
evaluated as part of an integration test build or by utilizing a test sys-
tem or stage within an automated deployment pipeline. An integration
test run that uses multiple test cases can also provide solid feedback
on the whole system’s performance, transactional behavior, or re-
silience by simulating the failure of other system parts or of third-party
systems. The fitness function Examples 2-3 and 2-4 could be consid-
ered as tests in the middle layer.

A simple, atomic fitness function that is evaluated continuously in the
production system would also belong in this layer: for example, live
monitoring and measurement of atomic values like transaction dura-
tion or end user performance (such as browser load times of web
applications).

The Bottom Layer

The bottom of our fitness function testing pyramid contains “triggered
atomic” fitness functions. They are usually easy and cheap to imple-
ment and run. Because of their simplicity, these are often well estab-
lished and already integrated within a CI/CD pipeline. These form the
base of our efforts to define useful metrics. This layer might include



code coverage metrics, static code analysis like cyclomatic complexi-
ty, or simple performance tests.

I recommend building a broad base for your bottom layer and then
using a balanced approach along the upper layers. It is possible to
use fitness functions without creating any top-layer tests (or even
middle-layer tests!). Similarly, there may even be cases where you
need to turn the pyramid upside down, with a lot of continual holistic
measures and only a few in the triggered atomic category. This is al-
ways heavily dependent on the context and goals, but usually I rec-
ommend following the shape of the pyramid, with the most tests in
the bottom and fewer tests in the layers above.

However, the analogy breaks down when we think about how many
tests one should have in the base. Usually no one thinks about limit-
ing the number of unit tests if they provide value for this granularity.

For the fitness function testing pyramid base, in contrast, I would not
recommend creating as many tests as possible, since they all create
additional overhead.

Examples and Their Full
Categorization



Now that you have seen the breadth of the fitness function possibili-
ties, let’s reuse two of the previous examples and derive their corre-
sponding categories to bring the theoretical introduction to life.

We previously defined a first version of the fitness function to test for
unit test coverage in Example 2-1.

Here is a breakdown of the fitness function into its categories:

Breadth of feedback: atomic
Unit test coverage only gives us limited feedback on the
function of the whole system.

Execution trigger: triggered
Execution location: CI/CD

Execution is triggered on each push to the source control
system, and will execute the unit tests and measure the unit
test coverage.

Metric type: a specific value (> 90%)

Automated
The fitness function will be evaluated automatically.

Quality attribute requirement: maintainability
With this fitness function, we pursue the goal of keeping our
system maintainable at certain levels; we treat good test
coverage as an indicator that the system can be maintained
(adapted, changed, improved) more easily.



Static or dynamic: static

The categorization for Example 2-2 (integration test coverage) is the
same. The fitness function would be in the pyramid’s bottom layer.

We previously defined a first version of the fitness function to test
specific functionality in case of network latency (Example 2-3).

Here is a breakdown of the fitness function into its categories:

Breadth of feedback: atomic/holistic
This is harder to classify if it qualifies for a holistic fitness
function; it mainly depends on the tests being executed and
the importance of the third-party system to our system.

If the third-party system is used in many use cases of our
system, it could be classified as a holistic fitness function;

otherwise, I would rather classify it as atomic.

Execution trigger: triggered
Execution location: CI/CD and test environment

Execution is triggered nightly within the CI workflow, but the
tests are being performed on the test environment.

Metric type: 0/1 (if all tests passed)

We could also argue that we are interested in the positivity
rate of all tests, but as we require all tests to pass, it is a 0 or
1 decision.



Automated
The fitness function will be evaluated automatically and run
nightly.

Quality attribute requirement: reliability
With this fitness function, we pursue the goal to keep the
system’s reliability high, even in case of a slow-responding
third-party interface.

Static or dynamic: static

Here is a breakdown of Example 2-4 into its categories:

Breadth of feedback (atomic or holistic): Could be either

Whether this particular fitness function is better categorized as
atomic or holistic mainly depends on the tests being executed,

the importance of the third-party system to our system, and the
overall performance of the system. If your system uses the
third-party system for several use cases, it affects the
performance of the whole system, so you could classify it as a
holistic fitness function.

Execution trigger and location: Triggered, and CI/CD and test
environment

Execution is triggered nightly within the CI workflow, but the
tests are being performed on the test environment.

Metric type: Two types



The first type, if it passes all tests, is 0/1. You could also argue
that you are interested in the positivity rates of all tests, but
since all tests are required to pass, it is a 0 or 1 decision. The
second is a specific value for the performance measurement: in
this case, faster than 10 minutes.

Automated: Yes

The fitness function will be evaluated automatically and run
nightly.

Quality attribute requirements: Reliability, performance efficiency

With this fitness function, we pursue the goal of keeping the
system’s reliability high and its performance at an adequate
level, even in case of a slow-responding third-party interface.

Static or dynamic: Static

This is a static function, as the two metrics are statically defined
here as the target values are not dependent on another fitness
function outcome

As mentioned before, I would place Examples 2-3 and 2-4 in the mid-
dle layer of the fitness function testing pyramid.

Fully Categorizing Top-Layer
Examples



Here you find the full definition of two top-layer fitness function exam-
ples. The more complex Examples 2-5 and 2-6 display the full catego-
rization of fitness functions, which are at or close to the top in the fit-
ness function testing pyramid.

Example 2-5. A fitness function (online shop)

Measure revenue per minute throughout the day. Fa

based on current time, is out of the corridor pro




Time frame of day     Min revenue (per min)


01:00 AM – 05:00 AM   € 200


05:01 AM – 07:00 AM   € 400


07:01 AM – 09:00 AM   € 600


09:01 AM – 11:30 AM   € 900


11:31 AM – 01:30 PM   € 1100


01:31 PM – 05:30 PM   € 950


05:31 PM – 07:30 PM   € 1500


07:31 PM – 09:00 PM   € 750


09:01 PM – 00:59 AM   € 300

Let’s break the fitness function in Example 2-5 down into its
categories:

Breadth of feedback (atomic or holistic): Holistic
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The measure is a direct measurement of the whole system’s
performance.

Execution trigger and location: Continual, production environment

The evaluation of the fitness function is done continually in the
production environment.

Metric type: Discrete value

The value is revenue. This needs verification if the value is
above the threshold.

Automated: Yes

The fitness function will be evaluated automatically.

Quality attribute requirement: Multiple

Includes reliability, performance efficiency, usability, and more.

As we measure the whole system, the examples show direct
verification of several quality attributes.

Static or dynamic: Dynamic

The fitness function would be in the pyramid’s top layer.

Example 2-6. A fitness function (online shop reliability)

Deploy the new release to our production system (

While the release is rolled out, constantly perfo

containing the 5 main end user use cases (login, 

remove item from cart, view cart, checkout). The 

and responds within 100ms. Fail when test case fa
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p

Fail when system doesn’t perform actions and resp

Let’s break the fitness function in Example 2-6 down into its
categories:

Breadth of feedback (atomic or holistic): Holistic

The measure is a direct measurement of the whole system
during deployment, not of all online nodes.

Execution trigger and location: Triggered, production environment

The evaluation of the fitness function is done using a discrete
trigger (nightly at 01:00 AM) in the production environment.

Metric type: Two types

The first type is a discrete value (performance), with verification
if the value is above the threshold.

The second value is 0/1: the system is available during deploy-
ments, and tests don’t fail.

Automated: Yes

The fitness function will be evaluated automatically.

Quality attribute requirements: Multiple

Includes reliability and performance efficiency.

Static or dynamic: Static



This fitness function would be in the pyramid’s top layer.

As you can see from the examples, the categorization of real-world
examples is not always a black-and-white decision for each category.

But this is also not the goal for the categories. The categories or di-
mensions should be used as a catalog of important aspects of fitness
functions and their metrics first. The second goal is that they assist
software architects in identifying areas currently not covered, helping
them decide where additional efforts may be needed.

Developing Your Fitness Functions
and Metrics

Let’s look at how I develop fitness functions and continue the ongoing
and iterative efforts once an initial set is implemented. For me, the
main starting point for all activities related to software architecture
work are the system’s quality goals. This is also the starting activity I
recommend when you work on fitness functions and metrics for your
system.

If you haven’t aligned on the main quality goals with the system’s
stakeholders, this is a good opportunity to start doing so. Start by col-
lecting the relevant quality goals and create a shared vision of the
quality goals that is agreed upon by all stakeholders of your system.



Ford, Parsons, and Kua argue that “Teams should identify fitness
functions as part of their initial understanding of the overall architec-
ture concerns that their design must support. They should also identi-
fy their system fitness function early to help determine the sort of
change that they want to support.”  While in general I support this
idea, it is hard to identify all fitness functions right from the beginning,

just as it is hard to know all your requirements when you start. I rec-
ommend starting off small and easy and then learning while you im-
plement the system. Use these learnings to improve, change, or add
new fitness functions and metrics as needed. Start with relevant tests
in the bottom layer of the pyramid.

The following process, which I would fully integrate into an iterative
development process like Scrum, could help you define your first fit-
ness functions and implement architectural tests:

1. Work with key stakeholders to identify the most important quality
attributes, set architectural goals, and document them.

Using goals avoids the pitfall of creating fitness functions and au-
tomated tests that don’t add value to your system. I have often
seen people automate tests not aimed at key quality goals that
added little to no value, just because it was easy. Focusing on
the main architectural goals provides a sense of purpose.

2. Formulate first drafts of fitness functions and their target metrics.
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Think about the dimensions that are important to you. Put the
draft versions in a list that is shared with the whole team (you
could also use your backlog). Document the categories you al-
ready anticipate are relevant.
Why a shared list or backlog? Defining the right fitness functions
and creating an automated test that produces the target metric
involves some effort. With the backlog, you can collect your ideas
until you are ready to implement them.

Documenting categories for each fitness function draft can also
be useful later to select fitness functions in new areas, such as
relevant quality goals of your system you haven’t covered so far,
or to balance your testing portfolio by adding tests from a differ-
ent layer.

3. Prioritize and select fitness functions that are important, helpful,
and feasible to test for at the moment.
Consider areas and dimensions not covered by some tests, as
well as the pyramid layers. Do you already have a balanced port-
folio of architectural tests and metrics? If you are doing this
process for the first time, start with something simple from the
bottom of the pyramid.

4. Finalize any unfinished fitness function definitions among your
selections.

Keep the full definition and its classification in the pyramid’s lay-
er. During the next iteration of the process, this provides a valu-



able overview of the areas you’ve already covered.

5. Develop an automated test that can produce the metric.

Ideally, you want to verify these tests often. Depending on the
type of fitness function and its definition, you should usually also
confirm that the test directly verifies that target metric. I highly
recommend automating it by default; only a few very specific
metrics should be created and verified manually.

6. Visualize the results.

Use a dashboard or another form of visualization to share your
results with the whole team and, when needed, with relevant
stakeholders.

7. Iterate regularly as needed.

Perhaps some tests’ output is unreliable, a certain kind of metric
is not useful anymore, or the maintenance efforts are too high.

Decommission tests and fitness functions that don’t provide
enough value or are just not needed anymore.

Change existing fitness functions and metrics as needed, too; for
example, you can make existing metrics stricter to reflect im-
provements in the system, or less strict if they are not as relevant
to your overall system goals.

Conclusion



Testing your system arbitrarily can lead you to lose focus on what’s
most important: overall quality in relevant areas such as perfor-
mance, security, and modifiability. You should begin with a solid foun-
dation of architectural tests that are relatively easy to build and which
you can develop and extend as needed. Using fitness functions as a
method to create metrics tailored to your system allows for cus-
tomization, and following the process I’ve described here helps to re-
duce unneeded overhead. The fitness function test pyramid provides
an additional layer to classify your tests and balance out your efforts.

The metrics are the final objective: they are the unbiased measures
that keep a team focused on the aligned goals of the software
system.

 Ford, Parsons, and Kua, Building Evolutionary Architectures (O’Reilly, 2017),

Chapter 1.

 Cyclomatic complexity is a widely used code metric that is usually derived using
static code analysis tools. It was developed by Thomas J. McCabe in 1976. A high

value indicates that the code is difficult to understand and may be difficult to
change.

 Test coverage is a term in software development to measure the degree of how
much source code is covered by a certain set of tests. For instance, it is very com-
mon to measure the lines of code (“line coverage”) that have been touched (“test-
ed”) while automated tests are executed. There are also other ways to measure
(such as branch coverage), but I am sticking with line coverage for the simple ex-
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planation: if a program with 100 lines of code has test coverage of 80%, 80 lines of
this code have been touched by the test execution.

 Ford, Parsons, and Kua, Building Evolutionary Architectures.

 Len Bass, Paul Clements, and Rick Kazman, Software Architecture in Practice,

3rd ed. (Westford, MA: Addison-Wesley, 2015), p. 64.

 See, for example, Ashley Davis, Bootstrapping Microservices with Docker, Kuber-
netes, and Terraform (Manning, 2021); Lisa Crispin and Janet Gregory, Agile Test-
ing: A Practical Guide for Testers and Agile Team (Addison-Wesley, 2008); and Mar-
tin Fowler, “TestPyramid,” MartinFowler.com, May 1, 2012, https://oreil.ly/9o1DV.

 Fowler, “TestPyramid.”

 George E. P. Box, “Science and Statistics,” Journal of the American Statistical As-

sociation 71, no. 356 (December 1976): 791–799.

 Ford, Parsons, and Kua call these two categories a natural “mash-up,” as these
two are closely related when it comes to the definition of real-world fitness func-
tions, metrics, and tests; of course, other categories might have an influence, but
this is very much dependent on the specific use case. For reference, these two
were also proposed as natural “mash-ups” by Ford, Parsons, and Kua.

 See, for example, “Principles of Chaos Engineering” and Netflix’s Chaos Monkey

for more on chaos engineering.

 This is a very simplified table that is just in the example above; a real-world ver-
sion would have a more fine-grained structure or more complicated connection be-
tween time and expected revenue.
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 This is a reliability test that verifies that the system is operational while a rolling up-
date is performed. The tests verify that the system provides zero downtime during
deployments; additionally, it may show that if a node is down for any reason, the
whole system is responsive and performs as expected.

 Ford, Parsons, and Kua, “Chapter 2: Fitness Functions,” Building Evolutionary Ar-
chitectures.
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Chapter 3. Evolutionary Architecture:

Guiding Architecture with Testability
and Deployability

Dave Farley

Software architecture is both important and ephemeral. It can deter-
mine important characteristics of systems, such as their scalability,

performance, and resilience, for example. It is ephemeral in that it is
often vague and subjective in how we judge these qualities.

Architectural descriptions and documents best function like tourist
maps for the systems we, as architects, build. They allow us to navi-
gate the space without being too precise or specific about the details
—which are likely to change. Learning more about our users’ and
customers’ needs and demands can change our view of where on the
scale the architectural properties of our systems need to sit.

If you work with software architecture, you might be wondering: if I
start out with a simple system, how do I cope when demand grows
rapidly? What if demand doesn’t grow? How do I deal with growing
demands for performance, security, and extensive uptime? How do I
maintain my system as a habitable space that evolves easily to meet
new or unforeseen demands? How can I keep the doors open to



unanticipated change, yet avoid hampering the development process
with overelaborate future-proofing?

This chapter makes the case that the answer is a defensive ap-
proach: software architects need to design and learn techniques to
manage the complexity of the systems they create.

The Importance of Learning and
Discovery

Complex systems never spring fully formed from the minds of their
creators; they are the output of a process of incremental progression
and learning. Software development is always an exercise in learning
and discovery. What this means is that if you want to do a good job,

you need to stop trying to imagine that you should, or even could,

foresee how your system will be used and will evolve over time.

In the real world, the systems we build are part of complex adaptive
systems that encompass developers, users, and customers, as well
as their environments and organizational contexts. This reality calls
for a more dynamic, almost organic approach to architecture and de-
sign, one that allows you to learn as you go and adapt your software
to ever-changing perceptions of what it does and how.



You need to be able to begin work even when you don’t have all of
the answers. You also need to protect and sustain your ability to
make changes as your learning deepens. You need, then, to keep
your options open.

The Tools of Sustainable Change

What sorts of architectural choices allow you to keep your options
open? There are five attributes of software design that help achieve a
sustainable, evolutionary approach. They are:

Modularity

Dividing systems into parts that can change without forcing
change in other parts.

Cohesion

Keeping parts of the code that change together close together
in the code.

Separation of concerns

Ensuring that each part of the code and system is focused on
solving one problem.

Abstraction/information hiding

Creating “seams” in systems allows the consumption of
behaviors without needing to understand how other parts of the



system work.

Coupling

The degree to which separate parts of the system need to
change together.

These attributes are universally true for information in general, not
just software. They say nothing about how systems work or the na-
ture of any given technology.

Whatever a system does and whatever the technology it employs, if it
is modular and cohesive, if it separates concerns effectively, if it uses
good abstraction to delineate one part of the system from another,
and if it manages coupling between different parts of the system ap-
propriately, then it will be easier to work on, easier to change, more
understandable, and more testable than a similar system that doesn’t
score as well in these attributes.

Taking this evolutionary approach to design and architecture and
building in this way means that as you learn more, it will be easier to
adapt your system to the new things that you learn.

For example, what if you find that your system would be more effi-
cient with a graph database than with a relational one? If you chose
early on to separate the core of your domain logic from the issues of
persisting its results, this will be easier to change. Such a system ex-



hibits a good separation of concerns, better modularity, cohesion, and
decent abstraction. You could imagine unplugging your RDBMS-
backed repository and replacing it with a GraphDB repository with rel-
ative ease. If, however, your core domain and persistence are con-
flated, it will be very hard to even think of making such a move.

Testability: Creating High-Quality
Systems

How can you incorporate these five attributes of quality in the sys-
tems you create? The traditional answer is “it depends.” It depends on
the team or individual creating the code, particularly their skill, experi-
ence, and commitment.

If the people involved lack the skill, then however hard they try, they
won’t create a high-quality result. If they lack experience, even if
skilled at some aspects of the problem, they will miss some ideas or
more subtle aspects, like the leakiness of abstractions or the different
kinds of coupling that can compromise the development of a complex
system. If they are not sufficiently motivated to do their best work,

then however skilled or experienced, the result could be poor.

But there is something else, too. You need to know that your software
works, and that means testing it to verify that the system does what it



is supposed to do. Even more important, you need the freedom to
change the system safely and confidently. If you write code or sys-
tems and don’t test them, then you should probably step away from
the keyboard and think again. “Write-only development” never pro-
duces a quality result for anything beyond trivial, throwaway code.

If you need to test, then the only debate is: manual or automated?

Manual testing is slow, inefficient, expensive, and unreliable; auto-
mated testing is by far the more efficient approach and tends to lead
to higher quality. So how can you make testing your code as easy as
possible? What makes code testable?

To test something in a system, you’ll need access to the relevant
parts of that system. Those components should be in a well-defined
state, ready for evaluation. You will invoke some behavior of the sys-
tem, then capture the system’s responses so you can evaluate them
and determine if they match your expectations.

So what characteristics of your system will facilitate this? It would be
great if you could focus on only the behavior of the system. Systems
that are modular will be easier to test than systems that are not.

Focusing on the behavior, focusing on the module before us, then,

we’d like it to be easy to set up for the test. That is going to be difficult
if the module you’re testing is not cohesive and is tightly coupled to



other modules. Software that is cohesive and loosely coupled is also
easier to test.

To establish the system in some precise state, you need to take con-
trol of the variables, and so limit its complexity in the context of our
evaluation. Good separation of concerns allows you to focus on the
behavior you’re interested in rather than a collection of behaviors that
complicate the picture.

Finally, if your tests are somewhat decoupled from the code you’re
testing, then the code can change without forcing you to change the
tests. That means that the most testable code is also nicely abstract-
ed and hides implementation detail from the test. This, too, makes the
test easier to set up because the lines of abstraction in our design
form boundaries to which we can test and therefore limit the scope
and complexity of our tests.

So the attributes of testable code are the same attributes we value in
code that is easy to work on and change. That’s interesting!

If you want to design your code to be testable, the easiest and best
way is to use the tests to guide the code’s design. If you treat testabil-
ity as a valuable architectural property and organize your work to
build testing into the development and design process so your sys-



tems are always testable, then you will amplify the quality of your
design.

Designing for testability amplifies developers’ talent and results in
systems that embody the five attributes far better than relying on their
skill, experience, and commitment alone.

Building for testability, in sum, gives you the freedom, as time pro-
gresses, to modify your systems as need demands.

Deployability: Scaling Development
of Our Systems

Testability is a tool that we can use to drive a more effective engineer-
ing process that results in better architected systems. It works at a
variety of different scales, but there is another tool that operates at a
more systemic level: deployability.

The approach to software development that I am most closely associ-
ated with is called continuous delivery. In continuous delivery, we
work to ensure that our software is always in a releasable state. This
is determined by mechanisms called deployment pipelines. A deploy-
ment pipeline automates much of our release process and represents
a definitive evaluation of the releasability of our system. If the deploy-



ment pipeline passes all of its evaluations, the software is, by defini-
tion, safe to release, and everything that determines the software’s
releasability is within the scope of the deployment pipeline.

If the deployment pipeline defines releasability, then its scope is “from
commit to releasable outcome.” If a release candidate successfully
transits the pipeline, it is fit for release with no more work to do. If, at
the conclusion of the pipeline, you need to test those components or
subsystems more broadly with other parts, then your pipeline doesn’t
determine “releasability” in any way that makes sense.

To achieve high quality, you need definitive evaluations of the system.

That means looking at precisely the changes that will, if successful,
be deployed into production. Moreover, to increase the reliability of
those evaluations, you need to increase their determinism. So your
aim is to evaluate exactly the code that will make it into production
and to ensure that code is as deterministic in its behavior as possible.

If you can achieve that, any testing you do will produce the same re-
sult every time you run it for that version of the code.

This means that there are some limits to what makes sense as the
scope of a deployment pipeline; the correct scope for a deployment
pipeline is always an independently deployable unit of software. This
could be an individual microservice or a whole enterprise system, but
deployability is the only definitive scope of evaluation.



Conclusion

When developers think about software architecture, we often think
about other important properties of the system, like security, scalabili-
ty, and resilience. Ultimately, though, the degree to which each of
these ideas matters is a function of the business in which the system
and its developers operate and of the level of maturity of the system
as a whole.

If you focus too much on scalability and resilience and only ever get
three users, then all that work was wasted effort. If you focus on secu-
rity for general use, but the software never gets used beyond the
walled garden of your company’s intranet, that, too, is wasted effort. It
amounts to overengineering your system design to meet future needs
that may or may not arise.

If, by contrast, you adopt an engineering-led approach to problem-
solving and an evolutionary approach to architecture and design, you
can begin development sooner, and better adapt the system to meet
the needs in front of you. This is a much better strategy.

Structuring your work around testability and deployability helps you
keep your options open as the system evolves. If your system is mod-
ular, abstracted, and generally well-factored, when you need en-
hanced security, it will be easier to add. When your code needs to be



more resilient, you can implement chaos testing and see how to
make it so.

At a more technical level, the drive for better testability and deploya-
bility (particularly testability) encourages engineers to design systems
that separate essential and accidental complexity more effectively.

This in turn keeps your options more open for changes, even quite
radical changes, in other architectural properties of the system. This
approach enhances your ability to create high-quality, innovative soft-
ware architecture.



Chapter 4. Improve Your Architecture
with the Modularity Maturity Index

Dr. Carola Lilienthal

In the last 20 years, a lot of time and money has gone into software
systems that have been implemented in modern programming lan-
guages such as Java, C#, PHP, etc. The focus in the development
projects was often on the quick implementation of features and not on
the quality of the software architecture. This practice has led to an in-
creasing amount of technical debt—unnecessary complexity that
costs extra money in maintenance—accumulating over time. Today,

these systems have to be called legacy systems because their main-
tenance and expansion is expensive, tedious, and unstable.

This chapter discusses how to measure the amount of technical debt
in a software system with the modularity maturity index (MMI). The
MMI of a codebase or the different applications in an IT landscape
gives management and teams a guideline for deciding which soft-
ware systems need to be refactored, which should be replaced, and
which you don’t need to worry about. The goal is to find out which
technical debt should be resolved so that the architecture becomes
sustainable and maintenance less expensive.



Technical Debt

The term technical debt was coined by Ward Cunningham in 1992:

“Technical debt arises when consciously or unconsciously wrong or
suboptimal technical decisions are made. These wrong or suboptimal
decisions lead to additional work at a later point in time, which makes
maintenance and expansion more expensive.”  At the time of the bad
decision, you start to accumulate technical debt that needs to be paid
off with interest if you don’t want to end up overindebted.

In this section, I’ll list two types of technical debt, focusing on the
technical debt that can be found through an architectural review:

Implementation debt

The source code contains so-called code smells, such as long
methods and empty catch blocks. Implementation debt can
now be found in the source code in a largely automated
manner using a variety of tools. Every development team
should gradually resolve this debt in their daily work without the
extra budget being required.

Design and architecture debt

The design of the classes, packages, subsystems, layers, and
modules, and the dependencies among them are inconsistent
and complex and do not match the planned architecture. This
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debt cannot be determined by simply counting and measuring,

and it requires extensive architecture review, which is
presented in “Architecture Review to Determine the MMI”.

Other problem areas that can also be seen as the debt of software
projects, such as missing documentation, poor test coverage, poor
usability, or inadequate hardware, are left out here because they
don’t belong to the category of technical debt.

Origination of Technical Debt

Let’s look at the origination and effect of technical debt. If a high-qual-
ity architecture was designed at the beginning of a software develop-
ment project, then one can assume that the software system can be
maintained easily at the beginning. In this initial stage, the software
system is in the corridor of low technical debt with the same mainte-
nance effort, as you’ll see in Figure 4-1.

If the system is expanded more and more during maintenance and to
integrate changes, technical debt inevitably arises (indicated by the
upward-pointing arrows in Figure 4-1). Software development is a
constant learning process where the first throw of a solution is rarely
the final one. The revision of the architecture (architecture improve-
ment, shown with downward-pointing arrows) must be carried out at



regular intervals. This creates a constant sequence of
maintenance/change and architecture improvement.

Figure 4-1. Origination and effect of technical debt

If a team can follow a constant sequence of expansion and architec-
ture improvement permanently, the system will remain in the corridor
of low and stable maintenance costs. Unfortunately, this aspect of ar-
chitecture improvement has only really become a reality for many
budget managers in recent years—too late for most systems that
started in the early 2000s.

If the development team is not allowed to continuously reduce the
technical debt, architectural erosion will inevitably set in over time, as
shown by the ascending arrows that leave the corridor of low and sta-



ble maintenance costs in Figure 4-1. This process is called architec-
ture erosion. Once technical debt has been piled up, maintaining and
changing the software becomes more and more expensive, and con-
sequential errors more and more difficult to understand, to the point
where every change becomes a painful effort. Figure 4-1 makes this
slow decay clear by the fact that the upward-pointing
arrows keep
getting shorter. With increasing debt, less and less functionality can
be implemented per unit of time.

There are two ways to get out of this technical debt dilemma:

Refactoring

You can refactor the legacy system from the inside out and
thus increase the speed of development and stability again. On
this usually arduous path, the system must be brought back
step-by-step into the corridor of low and stable maintenance
costs (see descending arrows marked “Refactoring” in
Figure 4-1).

Replacing

Or you can replace the legacy system with another software
that has less technical debt (see the circle in Figure 4-1).

Of course, it could be that there was no capable team on site at the
beginning of the development. In this case, technical debt is taken up
right at the start of development and continuously increased. One can



say this about such software systems: they grew up under poor con-
ditions. Neither the software developers nor the management will en-
joy a system in such a state in the long term.

Such a view of technical debt is understandable and comprehensible
for most budget managers. Nobody wants to pile up technical debt
and slowly get bogged down with developments until every adjust-
ment becomes an incalculable cost screw. The aspect that continu-
ous work is required in order to keep the technical debt low over the
entire service life of the software can also be conveyed well. Most
non-IT people are now well aware of the problem, but how can you
actually assess the debt in a software system?

Assessment with the MMI

My doctoral thesis on architecture and cognitive science, as well as
the results from more than three hundred architectural assessments,

made it possible for me and my team to create a uniform evaluation
scheme, named the MMI, to compare the technical debt accumulated
in the architecture of various systems.

Cognitive science shows us that during evolution, the human brain
has acquired some impressive mechanisms that help us deal with
complex structures, such as organization of regimes, layout of towns



and countries, genealogical relationships, and so forth. Software sys-
tems are unquestionably complex structures as well because of their
size and the number of elements they contain. In my doctoral thesis, I
related findings from cognitive psychology about three mechanisms
our brains use to deal with complexity (chunking, building hierarchies,

and building schemata) in important architecture and design princi-
ples in computer science (modularity, hierarchy, and pattern consis-
tency). In this chapter, I can only provide abbreviated explanations of
these relationships. The full details, especially on cognitive psycholo-
gy, can be found in my book,  which grew out of my doctoral thesis.

These principles have the outstanding property that they favor mech-
anisms in our brain for dealing with complex structures. Architectures
and designs that follow these principles are perceived by people as
uniform and understandable, making them easier to maintain and ex-
pand. Therefore, these principles must be used in software systems
so that maintenance and expansion can be carried out quickly and
without many errors. The goal is that we can continue to develop our
software systems with changing development teams for a long time
while maintaining the same quality and speed in development.

Modularity
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In software development, modularity is a principle introduced by
David Parnas in the 1970s. Parnas argued that a module should con-
tain only one design decision (encapsulation) and that the data struc-
ture for this design decision should be encapsulated in the module
locality.

In modern programming languages, modules are units within a soft-
ware system, such as classes, components, or layers. Our brain
loves to reason about systems on various levels of units to achieve
capacity gain in our memory. The crucial point here is that our brain
benefits from these units only if the details can be represented as a
coherent unit that forms something meaningful. Program units that
combine arbitrary, unrelated elements are therefore not meaningful
and will not be accepted by our brain. Thus, a modular system with
coherent and meaningful program units will have low technical debt
and low unnecessary complexity.

Whether the program units represent coherent and meaningful ele-
ments in a software architecture can only be assessed qualitatively.

This qualitative assessment is supported by various measurements
and examinations:

Cohesion through coupling

Units should contain subunits that belong together, which
means that their cohesion with each other should be high and
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their coupling to the outside should be low. For example, if the
submodules of a module have higher coupling with other
modules than with their “sisters and brothers,” then their
cohesion with one another is low and the modularity is not well
done. Unlike cohesion, coupling is measurable.

Names

If the program units of a system are modular, you should be
able to answer the following question for each unit: what is its
task? The key point here is that the program unit really has one
task and not several. A good clue for unclear responsibilities is
the names of the units, which should describe their tasks. If the
name is vague, it should be looked at. Unfortunately, this is not
measurable.

Well-balanced proportions

Modular program units that are on one level, such as layers,

components, packages, classes, and methods, should have
well-balanced proportions. Here it is worth examining the very
large program units to determine whether they are candidates
for decomposition. An extreme example can be seen in
Figure 4-2. In the left diagram, you can see the sizes of a
system’s nine build units in a pie chart: the team told us that the
build units reflect the planned modules of the system. One build
unit represents the largest part of the pie chart, which is 950.860

lines of code (LOC). The other eight build units add up to only
84.808 LOC, which is extremely unbalanced. On the right side



of Figure 4-2, you can see the architecture of the system with
the nine build units as squares and the relationships between
the build units as arcs. The part of the system called “Monolith”
is the big one from the pie chart. It is using the eight small build
units, which we call “Satellite X” here. The dark shade of the
Monolith’s square compared to the light shade of the satellites
indicates, just like the pie chart, that this is where most of the
source code is located. This system’s modularity is not well-
balanced. This indicator is measurable.

Figure 4-2. Extreme proportions

You can carry out similar evaluations at all levels to check the modu-
larity of a system. The influence of each point on the calculation of the
MMI follows the explanation of hierarchies and pattern consistency.



Hierarchy

Hierarchies play an important role in perceiving and understanding
complex structures and in storing knowledge. People can absorb
knowledge well, reproduce it, and find their way around it if it is in hi-
erarchical structures. The formation of hierarchies is supported in
programming languages in contain-being relationships: classes are in
packages, packages in turn are in packages and, finally, in projects or
build artifacts. These hierarchies fit our cognitive mechanisms.

Unlike the contain-being relationship, use and inherit relationships
can be used in a way that does not create hierarchies: we can link
any classes and interfaces in a source codebase using use and/or
inherit relationships. In this way, we create intertwined structures that
are in no way hierarchical. In our discipline, we then speak of class
cycles, package cycles, cycles between modules, and upward rela-
tionships between the layers of an architecture. In my architecture re-
views, I see the whole range, from very few cyclical structures to
large cyclical monsters.

Figure 4-3 shows a class cycle of 242 classes. Each rectangle repre-
sents a class, and the lines between them represent their relation-
ships. This cycle is distributed over 18 directories, and they all need
each other to carry out their tasks.



Figure 4-3. A cycle with 242 classes

The system from which the cycle in Figure 4-3 originates has a total
of 479 classes. So here, over half of all classes (242) need each other,
directly or indirectly. In addition, this cycle has a strong concentration
in the center and few satellites. There is no natural possibility of
breaking this cycle down but a whole lot of work in redesigning these
classes. It is much better to make sure from the beginning that such
large cycles do not occur. Fortunately, most systems have smaller
and less concentrated cycles that can be broken down with a few
refactorings.

Figure 4-4 shows a nonhierarchical structure on the architectural lev-
el. Four technical layers of a small application system (80,000 LOC)—
App, Services, Entities, and Util—lie on top of each other and use
each other, as intended, mainly from top to bottom (downward-point-
ing arrows on the left). Some back references (upward-pointing ar-



rows on the right) have crept in between the layers, which lead to cy-
cles between the layers and thus architectural violations.

Figure 4-4. Cycles at the architecture level

The violations in this layered architecture are caused by only 16

classes and were easy to resolve. Again, for these types of cycles or
violations of layering, the sooner you find and refactor them, the
better.

The good news is that cycles are easy to measure at all levels, and
thus the hierarchy of a system can be checked precisely. The influ-
ence of each point on the calculation of the MMI follows the explana-
tion of pattern consistency.



Pattern Consistency

The most efficient mechanism that humans use to structure complex
relationships are schemas. A schema summarizes the typical proper-
ties of similar things or connections as an abstraction. For example, if
you are informed that a person is a teacher, then on the abstract level
your schema contains different assumptions and ideas about the as-
sociated activity: teachers are employed at a school, they do not have
an eight-hour working day, and they must correct class tests. Specifi-
cally, you will remember your own teachers, whom you have stored
as prototypes of the teacher schema.

If you have a schema for a context in your life, you can understand
and process questions and problems much more quickly than you
could without a schema. For example, the design patterns that are
widely used in software development use the strength of the human
brain to work with schemas. If developers have already worked with a
design pattern and created a schema from it, they can more quickly
recognize and understand program texts and structures that use this
design pattern.

The use of schemas provides us in our daily lives with decisive speed
advantages for understanding complex structures. This is also why
patterns found their way into software development years ago. For



developers and architects, it is important that patterns exist, that they
can be found in the source code, and that they are used consistently.

Therefore, consistently applied patterns help us deal with the com-
plexity of source code.

Figure 4-5 shows, on the left side, a diagram that a team developed to
record their design patterns in a tool that allows them to collect class-
es of one pattern into a layer. On the right, the source code is divided
into these design patterns, and you can see a lot of arcs on the left
side of the axis, which are going downward so they fit the diagram.

The arcs on the left side of the axis go downward and the arcs on the
right go against the layering upward. A few arcs on the right side of
the axis go against the layering from bottom to top. This is typical; de-
sign patterns form hierarchical structures. The design patterns are
well implemented in this system because there are mainly left-side
arcs (relationships from top to bottom) and very few right-side arcs
(relationships from bottom to top, against the direction given by the
patterns).



Figure 4-5. Pattern at class level = pattern language

Examining the patterns in the source code is usually the most excit-
ing part of an architecture review. Here you have to grasp the level at
which the development team is really working. The classes that im-
plement the individual patterns are often distributed across the pack-
ages or directories. By modeling the pattern shown in Figure 4-5 on
the right, this level of the architecture can be made visible and
analyzable.

Pattern consistency cannot be measured directly like hierarchies can,

but in the next section, we will compile some measurements that are
used to evaluate pattern consistency in the MMI.

Calculating the MMI



The MMI is calculated from various criteria and metrics with which we
try to map the three principles of modularity, hierarchies, and pattern
consistency. In the overall calculation of the MMI, the three principles
are included with a percentage and have different criteria that are cal-
culated for them using the instructions in Table 4-1. Modularity has
the strongest influence on the MMI, with 45%, because modularity is
also the basis for hierarchy and for pattern consistency. That is also
why the MMI carries that name.

The criteria in Table 4-1 can be determined with metrics tools, archi-
tecture analysis tools, or the reviewer’s judgment (see the “Deter-
mined by” column). There are a number of metrics tools to measure
exact values, but for MMI comparability, the implementation of each
metric used in the particular tool must be considered. The reviewer’s
judgment cannot be measured but is at the discretion of the reviewer.
The architecture analysis tools are measurable but depend heavily
on the reviewer’s insights.

To evaluate these nonmeasurable criteria in my workplace, reviewers
depend on discussions with the developers and architects. This takes
place in on-site or remote workshops. We also discuss the system
from various architectural perspectives, with the help of an architec-
ture analysis tool.  To ensure the greatest possible compatibility, we
always carry out reviews in pairs and then discuss the results in a
larger group of architecture reviewers.

4
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Table 4-1. Modularity maturity index

Category Subcategory Criteria
Det
by

1. Modularity
(45%)

1.1. Domain
and technical
modularization
(25%)

1.1.1. Allocation of the
source code to domain
modules in % of the
total source code

Arch
ana



Category Subcategory Criteria
Det
by

1.1.2. Allocation of the
source code to the
technical layers in % of
the total source code

Arch
ana

1.1.3. Size
relationships of the
domain modules [(LoC
max/LoC min)/number]

Met

1.1.4. Size
relationships of the
technical layers [(LoC
max/LoC min)/number]

Met

1.1.5. Domain modules,

technical layers,

packages, classes
have clear
responsibilities

Rev



Category Subcategory Criteria
Det
by

1.1.6. Mapping of the
technical layers and
domain modules
through
packages/namespaces
or projects

Rev

1.2. Internal
Interfaces
(10%)

1.2.1. Domain or
technical modules
have interfaces (%

violations)

Arch
ana



Category Subcategory Criteria
Det
by

1.2.2. Mapping of the
internal interfaces
through
packages/namespaces
or projects

Rev

1.3.

Proportions
(10%)

1.3.1. % of the source
code in large classes

Met

1.3.2. % of the source
code in large methods

Met

1.3.3. % of the classes
in large packages

Met



Category Subcategory Criteria
Det
by

1.3.4. % of the methods
of the system with a
high cyclomatic
complexity

Met

2. Hierarchy
(30%)

2.1. Technical
and domain
layering (15%)

2.1.1. Number of
architecture violations
in the technical
layering (%)

Arch
ana



Category Subcategory Criteria
Det
by

2.1.2. Number of
architecture violations
in the layering of the
domain modules (%)

Arch
ana

2.2. Class and
package
cycles (15%)

2.2.1. Number of
classes in cycles (%)

Met

2.2.2. Number of
packages in cycles (%)

Met

2.2.3. Number of
classes per cycle

Met

2.2.4. Number of
packages per cycle

Met



Category Subcategory Criteria
Det
by

3. Pattern
consistency
(25%)

3.1. Allocation of the
source code to the
pattern in % of the total
source code

Arch
ana

3.2. Relationships of
the patterns are cycle-
free (% violations)

Arch
ana

3.3. Explicit mapping of
the patterns (via class
names, inheritance, or
annotations)

Rev



Category Subcategory Criteria
Det
by

3.4. Separation of
domain and technical
source code (DDD,

Quasar, Hexagonal)

Rev

The MMI is calculated by determining a number between 0 and 10 for
each criterion using Table 4-2. The resulting numbers per section are
added up and divided by the number of criteria in question from
Table 4-1. The result is recorded in the MMI with the percentage of
the respective principle so that a number between 0 and 10 can be
determined.



Table 4-2. Detailed calculation instruction for the MMI

Sect. 0 1 2

1.1.1 <=54% >54% >58%

1.1.2 <=75% >75% >77.5%

1.1.3 >=7.5 <7.5 <5

1.1.4 >=16.5 <16.5 <11

1.1.5 No

1.1.6 No

1.2.1 >=6.5% <6.5% <4%

1.2.2 No

1.3.1 >=23% <23% <18%

1.3.2 >=23% <23% <18%

1.3.3 >=23% <23% <18%



Sect. 0 1 2

1.3.4 >=3.6% <3.6% <2.6%

2.1.1 >=6.5% <6.5% <4%

2.1.2 >=14% <14% <9.6%

2.2.1 >=25% <25% <22.5%

2.2.2 >=50% <50% <45%

2.2.3 >=106 <106 <82

2.2.4 >=37 <37 <30

3.1 <=54.5% >54.5% >59%

3.2 >=7.5% <7.5% <5%

3.3 No

3.4 No



Figure 4-6 shows a selection of 18 software systems that we as-
sessed over a period of 5 years (x-axis). For each system, the size is
shown in lines of code (size of the point) and the MMI on a scale from
0 to 10 (y-axis).

If a system is rated between 8 and 10, the share of technical debt is
low. The system is in the corridor low and stable maintenance and
costs (from Figure 4-1). Systems in Figure 4-6 with a rating between 4

and 8 have already collected quite a bit of technical debt. Corre-
sponding refactorings are necessary here to improve the quality. Sys-
tems below mark 4 can only be maintained and expanded with a
great deal of effort (see the Figure 4-1 corridor with high and unpre-
dictable maintenance costs). With these systems, it must be carefully
weighed whether it is worth upgrading through refactoring or whether
the system should be replaced.



Figure 4-6. The MMI for different systems

Architecture Review to Determine the
MMI

Most development teams can instantly enumerate a list of design and
architectural debts for the system they are developing. This list is a
good starting point for analyzing technical debt. To get to the bottom
of the design and architecture debts, an architecture analysis is rec-
ommended. An architecture analysis can be used to check to what
extent the planned target architecture has been implemented in the
source code (see Figure 4-7) that represents the actual architecture.



The target architecture is the plan for the architecture that exists on
paper or in the mind of the architect and developer. Several good
tools are available today for such target-to-actual comparisons, in-
cluding Lattix, Sotograph/SotoArc, Sonargraph, Structure101, and
TeamScale.

As a rule, the actual architecture in the source code differs from the
planned target architecture. There are many reasons for this. Devia-
tions often occur unnoticed because development environments only
provide a local insight into the source code that is currently being pro-
cessed and do not provide an overview. A lack of knowledge about
the architecture in the development team also leads to this effect. In
other cases, the deviations between the target and the actual archi-
tecture are deliberately entered into because the team is under time
pressure and needs a quick solution. The necessary refactoring will
then be postponed indefinitely.



Figure 4-7. Review of target and actual architecture

Figure 4-8 shows the sequence of an architecture analysis to identify
technical debts. An architecture analysis is carried out by a reviewer
together with the architects and developers of the system in a work-
shop. At the beginning of the workshop, the system’s source code is
parsed with the analysis tool (1), and the actual architecture is record-
ed. The target architecture is now modeled on the actual architecture
so that the target and actual can be compared (2).

Technical debts become visible, and the reviewer, together with the
development team, searches for simple solutions on how the actual
architecture can be adjusted to the target architecture by refactoring
(3). Or the reviewer and development team discover in the discussion
that the solution chosen in the source code is better than the original
plan.



Sometimes, however, neither the target architecture nor the deviating
actual architecture is the best solution, and the reviewer and develop-
ment team have to work together to design a new target image for the
architecture. In the course of such an architecture review, the review-
er and the development team collect technical debt and possible
refactorings (4). Finally, we look at different metrics (5) to find more
technical debt, such as large classes, too-strong coupling, cycles,

and so on.



Figure 4-8. Architecture review for determining the MMI

Conclusion

The MMI determines the extent of technical debt in a legacy system.

Depending on the result in the areas of modularity, hierarchy, and
pattern consistency, the need for refactoring or a possible replace-
ment of the system can be determined. If the result is less than 4, it



must be considered whether it makes sense to replace the system
with a different system that is burdened with less technical debt. If the
system is between 4 and 8, renewing is usually cheaper than replac-
ing. In this case, the team should work with the reviewer to define and
prioritize refactorings that reduce the technical debt. Step by step,

these refactorings must be planned into the maintenance or expan-
sion of the system, and the results must be checked regularly. In this
way, a system can be gradually transferred to the area of “constant
effort for maintenance.”

A system with an MMI of over 8 is a great pleasure for the reviewers.

As a rule, we notice that the team and its architects have done a good
job and are proud of their architecture. In such a case, we are very
happy to be able to rate the work positively with the MMI.

 Ward Cunningham, “The WyCash Portfolio Management System: Experience Re-
port,” OOPSLA ’92, Vancouver, BC, 1992.

 Carola Lilienthal, “Sustainable Software Architecture” (doctoral thesis,

Dpunkt.verlag, 2019).

 David Parnas, “On the Criteria to be Used in Decomposing Systems into
Modules,” Communications of the ACM 15, no. 12 (1972): 1053–1058.
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 In my own analysis I use Sotograph, Sonargraph, Lattix, Structure101, and
TeamScale.

5



Chapter 5. Private Builds and Metrics:

Tools for Surviving DevOps
Transitions

Christian Ciceri

Many people think of software architecture as a craft, but I under-
stand it more as a science. Scientists tend to measure things as a ba-
sis for further reasoning. Even when you can’t get precise numbers,

mathematical approaches to software architecture depend on mea-
surable quantities, like metrics and indicators. Sometimes such ap-
proaches depend on which metrics make sense and which do not in a
given situation. How can you make sure that your KPIs are providing
the information your organization needs to make decisions about how
to invest time and effort?

Getting to great metrics requires a well-assembled system and a
whole lot of work. But the truth is, you might not be working with a
well-assembled system, or perhaps your organization has yet to put
in the effort it takes to get all the way to fantastic metrics based on
DevOps best practices. DevOps is a cultural shift; it’s easy to misun-
derstand the concept, and companies don’t always commit to adopt-
ing best practices fully. Even when that’s the goal, learning and imple-



menting best practices is a process that takes time. Reality is not al-
ways a best-case scenario, and standard metrics do not always re-
flect the real problem.

So what can you do when you’d like to implement best practices but
your organization isn’t there yet? In those less-than-ideal situations, I
think it’s still useful and important to have a set of practices and met-
rics that can help you “survive” the transition and keep on being pro-
ductive. That is what this chapter is about.

I’ll show you some case studies of real projects conducted in real
conditions—and make a case for using private builds and metrics to
get you through. You’ll see how metrics and private builds can help
when you’re dealing with:

A disconnect between the DevOps and QA teams
Unproductive feedback loops
Overreliance on automation without real understanding
Loss of a sense of ownership over validations and automation

As a consultant, I’ve seen these and other “antipatterns” over and
over. They’re not ideal, but they certainly aren’t unusual. This chapter
presents metrics that can help teams in similar situations prioritize
their needs and draw a roadmap for improving the development
process without too much pain.



Key Terms

The rise of the Agile movement, and particularly eXtreme program-
ming (XP), shifted the focus of the development world to automation.

The idea behind it, clearly explained in 2011 by Martin Fowler,  is that
activities that “hurt” (that is, take a lot of time or effort) should be done
as often as possible in order to get more feedback and practice and
to break up the work into smaller chunks. Such activities should be
considered candidates for automation.

CI/CD

Fowler additionally argued, in 2006, in favor of continuous integration
(CI), which he defines as a development practice: “Continuous Inte-
gration is a software development practice where members of a team
integrate their work frequently. [U]sually each person integrates at
least daily—leading to multiple integrations per day. Each integration
is verified by an automated build (including test) to detect integration
errors as quickly as possible.”

Fowler goes on to discuss the CI methodology as a set of practices,

one of which is automation. Automation also supports daily develop-
ment activity. The key point here, as I’ll discuss later in this chapter, is
to avoid breaking this shared build/code line.
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The concept of continuous integration has been extended to include
continuous delivery (CD), often referred to together as CI/CD.  CI is
intended to be only the first part of the process, usually involving just
the development team. Software delivery is a complex process in-
volving stakeholders and other technical teams (such as ops and
QA). CD brings them all together on the rails of automation. Even so,

automation only supports the processes.

It’s important to be clear about how CI/CD works here, so that you
can follow along with the case studies, so allow me to dive into a bit
more detail. Because modern software is usually divided into compo-
nents, the later stages in a delivery pipeline usually involve running
complex interaction tests to validate that nothing is broken. These
validations are run either automatically or manually. In both cases,

the later you detect a defect, the more expensive fixing it is likely to
be. The edge case is when end users report a defect in production.

When this happens, the support team gets involved: the defect has to
be reported and maybe classified, and a fix is planned based on the
urgency of the issue.

When a defect isn’t found until production, it can damage the organi-
zation’s reputation. End users may be disappointed by the flawed
functionality, especially if it brings serious consequences for them or
their businesses. The whole process of dealing with a defect this late
in the process is inefficient compared to the other edge case—finding
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and fixing the defect early on, in the local development environment,
before it is even checked in on the shared mainline.

DevOps

DevOps is a portmanteau of “development and ops cooperation,”
coined in 2009 by Patrick Debois and popularized as a Twitter hash-
tag. The idea is to remove the traditional “siloed” isolation between
the two worlds of developers and operations/system administrators. It
is also an extension of the Agile concept of reducing the time be-
tween the introduction of a problem and its discovery.

Some of the main ideas of DevOps include:

Process

SysAdmins and the operations team should be fully integrated
into the development team. CI/CD holds that code should
always be maintained in a deliverable state.

Tools

The team accountable for the deliverable state of the
application is also responsible for choosing the tools that fit the
job. This means that developers and ops decide on and share
the whole toolchain.

Culture



The ops and development teams’ ways of working must be
consistent. For instance, the ops part also needs to be put in a
version control system, just as code (check out infrastructure
as code and all the surrounding concepts). Automation from
the development team, like automated tests or “private builds,”
have to be put in a broader context by automating
environments, deployments, and runtime introspections.

Culture is the biggest change DevOps has introduced to the software
industry. This way of working means that both devs and ops must
cross the borders of their disciplines: developers have to learn about
the environment in which the software is executed and be able to de-
tect and fix problems in automations and system scripts. Ops and
SysAdmins need to understand how the code is written, the architec-
ture of the solution, and even the critical spots. They should be able
to write a unit test and also to debug code. They should “own” sup-
portability, asking the dev team for applying logging and introspection
policies.

In sum, the principal focus of DevOps is a culture from which tools
and automations should follow.

The “Ownership Shift”



In an ideal situation, teams own all their pipelines and a DevOps cul-
ture is fully in place. There are no silos to impede communication,

and teams build and run their own code.

However, there are often significant gaps between the DevOps ideal
and its actual implementation. In many organizations, DevOps is no
longer about the culture—it’s not uncommon to see people use the
term to mean something more like “modern SysAdmin.” Job listings
for “modern SysAdmin” roles require operations skills, such as au-
tomation tools and system scripting, but rarely demand such solid
knowledge in the development field. Those who work in such roles
spend so much time building and maintaining automations that the
term “DevOps” often becomes the name of a structured automations
team with its own ticketing workflow. Meanwhile, the development
team barely knows where and how deployments are done. They’re
separated from the automations workflow, yet validations are dele-
gated to them. The QA team, too, operates separately. This just
brings silos back, reintroducing the “environment mismatch” between
the local development environment and the production one. I call this
antipattern ownership shift.

Empowering the Local Environment
Again



Martin Fowler’s phrasing of an important CI practice gets quoted
quite a lot: “Fix broken builds immediately.”  Good advice, in an ideal
DevOps world. But one consequence of the ownership shift is that the
development team no longer owns the mechanics of the build pipe-
line. Indeed, Fowler’s principle makes several assumptions, none of
which are automatically given in a less-than-ideal DevOps culture.

For instance, it assumes that:

The only way to break builds is by introducing changes into the
codebase—that is, into the source code of the application as
committed into the trunk (or the development mainline in the ver-
sion control system), as opposed to the scripted infrastructure;

thus, you can fix the build just by changing the codebase.

Team members know how to debug a build problem au-
tonomously and have the necessary access and permissions to
fix a build problem.

These assumptions are rarely respected in the realities I’m dis-
cussing here. When the build is broken and the reason is not appar-
ent in the codebase, the development team has little or no control
over automation. They might give the problem to the “DevOps team,”
which reacts to the ticket based on their own schedule and priorities.

The delivery process is blocked, and the separate QA department
has no way to review the latest version. Thus, the software is left
undeliverable.
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The conceptual mistake here is conceiving the CI/CD pipeline
(Figure 5-1), or the shifted automation in general, as being at the core
of the validation process. Thanks to the ownership shift, if you dele-
gate all validations to automations alone, it’s likely that you will incur
all those inefficiencies and risks I just listed.

Figure 5-1. The CI/CD pipeline

Automation is a necessary step in making validation a cheap and re-
peatable process. It is not meant to be external to the development
process. What I propose is to move the focus of validation to where
problems are introduced: the local development environment. (By lo-
cal, I mean the environment in which changes are normally intro-
duced—not necessarily the developer’s machine, even if that is a
common and convenient choice.)

The Private Build



In their book Continuous Integration, authors Paul M. Duvall, Steve
Matyas, and Andrew Glover introduce the concept of the “private
build.” They argue that “To prevent broken builds, developers should
emulate an integration build on their local workstation IDE after com-
pleting their unit tests.”  Continuing, they note, “This build allows you
to integrate your new working software with the working software
from all the other developers, obtaining the changes from the version
control repository and successfully building locally with the recent
changes. Thus, the code each developer commits has contributed to
the greater good, with code that is less likely to fail on the integration
build server.”

Private builds are intended to be automated, but are less common
now that automations are owned by the “DevOps team,” which has its
own environment and schedule. This is because there are normally
no shared integration test scripts that can be easily run in the local
machine.

Even with the help of technologies like containers and easily stan-
dardized build tools, automation is hard, because every platform still
has its own specific issues. For example:

The dataset on which to execute the integration testing has to be
carefully chosen, possibly in continuous communication with the
QA department.
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The data control mechanism has not yet been effectively
standardized.

Database migrations, when present, have to be run automatically
inside the build process, often in different ways than their corre-
sponding production mechanisms.

Applications are often componentized, like in modern microser-
vices architecture. Components require complex communication
channels, like message brokers.

Some tests, like E2E tests, are hard to write and execute on a lo-
cal machine (and can result in a clear “ownership shift” toward
QA teams).

These are just a few reasons why completely automated private
builds are often challenging, but the concept is still valuable. It’s im-
portant to remember the goal of private builds: to prevent problems
from entering the common codebase, the trunk, or further validation
steps (automatic or manual). (See Figure 5-2 for a visualization of
starting the CI/CD pipeline with a private build.)



Figure 5-2. The CI/CD pipeline, starting with a private build

If some steps of a private build can’t be automated, you’ll have to ex-
ecute those steps manually, at least temporarily. (I’m not saying that’s
the best way, but manual is better than nothing!) Automated or not,
private builds are still a necessary step in the software development
lifecycle.

Private builds can be executed locally in the development machine or
some dedicated infrastructure, such as a dedicated cloud environ-
ment. The development environment might not be a physical ma-
chine or even a full operating system. A convenient local environment
is one under the full control of the developer—often the developer’s
machine—so that they can validate changes quickly and easily.

The important thing to remember about private builds, though, is that
they are private.  That is, they are executed in a dedicated environ-8



ment before changes enter the shared mainline. The point is to avoid
publishing changes that could break the shared build or the trunk in
general.

Case Study: The Unstable Trunk

Company A has what it calls a multidisciplinary team, but the compa-
ny’s Agile practice hasn’t matured yet, so the team isn’t multidiscipli-
nary in the Agile sense. This team works in iterations of variable
length, and its members represent separate frontend, backend, data-
base administration (DBA), DevOps, and QA teams.

A member of the QA team reports that every time they get to test the
latest version, the software is broken. What’s more, they say, it takes
a long time to introduce fixes into new software versions. The team
decides to do a root-cause analysis, reviewing all processes of every
subteam. They create a table to capture the most important aspects
of the QA member’s complaint, shown in Table 5-1.



Table 5-1. Bug analysis

Bug Component Avoidable?
Easily
automatable?

A1 Frontend No No

A2 Backend Yes (missing
test)

Yes

A3 Integration
with real data

No Yes

A4 Integration No No



The team decides to focus on what they call inevitable bugs: those
that could not have been avoided.

Bug A1

The team discovers that bug A1 was checked in (published to the
trunk) without being caught because the frontend developer tested
their code against a “stable” backend API on their local machine. This
is a reasonable way to avoid running into changes in the API, and,

anyway, the frontend developer doesn’t know exactly how to manage
the backend API and test data. However, if they had been running the
latest version of the backend API before checking in, they would have
detected the problem easily.

The team decides to teach its frontend, DBA, and DevOps members
how to manage the whole backend environment on their local ma-
chines, including managing and validating updates (receiving and in-
tegrating other team members’ code changes from the current trunk,

similar to a Git pull). The learners complain that the local environment
is complex to manage—not having reference data and a local data-
base running is a hassle, they say. While the frontend team finds
some creative ways to reduce the frustration, there are still com-
plaints about backend bugs and API stability.

Bug A2



It turns out that the backend team has no automated tests to check
API contracts. Their development cycle is normally oriented toward
test-driven development (TDD): they write unit and integration tests,

compile them, run them, and check that everything is good. They then
confidently check in their code. The backend team members point out
there’s no time or room in this stage of the project to introduce API
contract tests. They argue that testing the frontend and backend
components locally would facilitate bug detection, since the manual
use cases involved would be limited and easy to run.

They ask the frontend team to show them how to set up the frontend
environment on a local machine. They promise to run private builds
using shared manual test cases in order to ensure API stability, at
least until there is room for further automation.

Bug A3

By now, the frontend and backend people have settled on a way to
test the application at every update manually in the local environ-
ment, with the new version of the test data. Soon, however, they start
complaining about the test data’s stability, and report frequent con-
fusing and apparently erratic bugs. They have to spend time in diffi-
cult debugging to finally understand that new, buggy data has been
introduced.



They ask the DBA to set up a local environment and run the manual
test suite locally before checking it in, as a manual private build. The
DBAs run the test at every data change, before and after pulling
changes from the repository. When they find data incompatibilities,

the DBA and backend developers communicate separately. The
backend members write an integration test exposing the incompatibil-
ity, then fix it. When they check in the data and the fixes, the trunk re-
mains stable.

Bug A4

With manual private builds in place, all team members begin catching
integration bugs. The QA member instead dedicates their efforts to
functional checking and managing application versions. The deploy-
ments are much more stable now and the required fixes sensibly few-
er. It still takes a long time to test fixes, though, because automations
are still uncontrolled. The QA member decides to ask DevOps to im-
prove the deployment time. Meanwhile, they ask the rest of the team
for a local development environment, so they can continue doing
functional validation even when no final deployed version is in place.

The local environment also helps them understand possible problems
more deeply and report issues more precisely. With control of a local
environment, the QA member has more room for proactive activities
and can start to write automations for E2E tests.



The team updates their bug analysis table (Table 5-2) to show the
results.



Table 5-2. Transformed bug analysis

Bug Component
Avoidable
by private
build?

Easily
automatable?

A1 Frontend Yes In progress

A2 Backend Yes Yes

A3 Integration
with real data

Yes Yes

A4 Integration Yes No



As shown, a variety of issues are introduced into the system periodi-
cally. You can reduce their number by running private builds locally
before merging to the main branch, making sure the uploaded code
does not destabilize the trunk. No matter the team you are in, based
on my experience, it is more efficient to run your own build to ensure
that at least your part of the feature works and doesn’t break the
whole.

Case Study: The Blocked Consultant

A consultancy company is working with Company B, a big estab-
lished software company that is embracing new methodologies and
making a push toward automation. Company B’s internal DevOps
team is automating the delivery pipeline, which is complex and still
under construction.

Developers from the consultancy company start delivering features,

but the automations they rely on to deploy the testing environment
are unstable. Often, when they check in, the resulting test deploy-
ment does not work. Plus, they have no means to debug possible in-
tegration problems.

In discussion with Company B’s team, the consultants discover sev-
eral issues, including the following:



The test data has changed.

The mechanism for executing database migrations is temporarily
off.
The container in which the backend is running is continuously
restarting, probably because of a system problem.

Some component that other components depend upon is tem-
porarily powered off because of a migration to another cloud
system.

In the first development iteration, the team can deliver barely any
functional increment, because discovering and managing these is-
sues has slowed them down so much. In the second iteration, they
formally ask for a dedicated testing environment.

As usual, the request is accepted, but fulfilling it is interfering with the
separated DevOps team’s schedule. They estimate two weeks to
build the new environment, blaming internal bureaucracy. The devel-
opment team, meanwhile, doesn’t know how to unblock themselves.

They start to deliver features based only on unit/integration testing.

After the consultancy company delivers the first iteration, internal
stakeholders at Company B complain about its features, specifically
about missing edge cases. There are also some critical bugs affect-
ing integration with other services. The development team (a mix of
consultants and Company B employees) is using component/contract



API testing to prevent those issues, but the internal DevOps team is
too busy to integrate them into the pipeline.

During the second iteration, API tests are written but have not yet
been executed into the pipeline. The process is still inefficient in
terms of delivery speed and quality, but nothing changes; even the
fixes come with little guarantee. The development team decides to do
an overall analysis to discover the real problems and study possible
solutions.

Since the reality of Company B is unlikely to change quickly, they
need a stopgap solution. They agree that API tests are not being run
and are thus left unmaintained. They decide to start manually execut-
ing all API tests before and after every update on their local machine.

This decision is about not relying on uncontrolled automation, and it
brings them back to their local environment: the private build. Again,

they promise themselves that they’ll automate the tests’ execution
soon, but for now they rely on the process instead. Still, integration
bugs and functional edge cases are out of scope.

Now convinced that a private build is the best road, the team decides
to apply the same principle to the rest of their validations. The prob-
lem is that the application relies on consuming external services.



They decide to build fake replicas of the external services they can’t
rely upon so they can test the application reliably.

In the third iteration, the development team checks all their interven-
tions locally, independent of Company B’s internal automations. They
get faster, their fixes are more effective, and they can spend their
time automating validations instead of managing blockers.

In conclusion, this team achieved velocity and reliability by restoring
their focus on validations on the local development environment.

Metrics

In these two case studies, the teams reacted to problems by empow-
ering their local environments. They accepted many compromises,

like spending time on manual testing, which they could have argued
was “not their responsibility.” They evaluated the situation implicitly—
based on metrics.

You know that metrics can be used qualitatively or quantitatively. Met-
rics can also be direct or indirect in approaching their targets. In this
section, I propose some metrics to consider when evaluating your de-
velopment flow.

Time to Feedback



Units: Qualitative

Type: Indirect

Measures: Cost and time to market

Time to Feedback  is a metric that measures the amount of time
and effort required to receive feedback on a new feature implementa-
tion. It is considered qualitative mainly because quantifying it would
depend on the specific situation. In fact, there are situations in which
the feedback simply takes too long (slow automations), while in other
cases the problem is finding the right person to receive formal
feedback.

There are different kinds of functional feedback. Feedback might be
focused on integration issues or on purely functional validations. It
can come from stakeholders, API consumers, and end users. As a
rule of thumb, the development team should prioritize the feedback,

such as on integration and QA, that blocks their own activity.

Time to Feedback  is an indirect metric. It can warn about a prob-
lem but can’t provide deeper insight on its root cause. A long func-
tional feedback cycle means that there’s something wrong in the
process but does not indicate what exactly the problem is.



At Company A in our first case study, the QA member who looked for
integration feedback became overwhelmed by receiving avoidable
issues. The team was at the time unable to receive quicker feedback
on its work, which led to the trunk instability. In the case study on
Company B, the feedback cycle was totally delegated, which inter-
fered with everyday work.

Evitable Integration Issues in the Deployed
Application per Iteration

Units: Quantitative

Type: Indirect

Measures: Internal quality control process

This metric counts the evitable, or avoidable, issues found in each it-
eration of the deployed software—those that could easily be detected
during a private build with automatic or manual validation. A low or
decreasing number indicates a more mature process, with more suc-
cess in catching integration bugs before the application gets
deployed.

The more classical metric is number of bugs found in QA , but
the difference here is the threshold for classifying the issue: the fact
that they could easily have been avoided by previous validation. In



general, a private build should not be thought of as a perfect and per-
fectly complete validation.

A good rule is to accept checks on API contract tests, as well as on
happy-path tests on functional areas that are globally important (such
as login) or have been affected by changes. This metric is indirect be-
cause it requires an analysis of whether it affects a specific part of the
team or the team as a whole.

Time Spent Restoring Trunk Stability per Iteration

Unit: Quantitative

Type: Direct

Measures: The stability of the codebase and the team’s capaci-
ty to maintain it

Trunk stability here means the stable (or reasonably working) state of
the codebase mainline. When the trunk is unstable, often an update
(Git pull) is breaking some functionality of the application in the local
environment.

This metric measures the debugging time spent fixing issues that
have been checked into the trunk and are found when running a pri-
vate build after an update in the local machine. It also includes time



spent fixing issues that break existing features. You can ensure trunk
stability by preventing defects from entering the trunk, or restore trunk
stability by continuously fixing them. This metric aims to measure the
effort it takes to restore stability.

This is a direct metric because it measures time (and thus cost) spent
on activities that do not introduce features. In contrast to other met-
rics, like total debugging time  or number of bugs , it
specifically measures the effectiveness of regression in the local pri-
vate build. Unlike metrics about regression bugs in general, it takes
into account the time spent stabilizing the trunk during development.

The results of this metric may indicate a lack of discipline in executing
local private builds, which can happen if the local development envi-
ronment is not standardized or if the developers do not fully under-
stand it. They could also indicate a lack of automation in testing,

which is, under the circumstances we describe, very much expected.

Finally, trunk stability has a huge, direct impact on the amount of ef-
fort it takes to achieve stable versions and releases. At the end of the
day, trunk stability is one of the things that enable continuously de-
ployable software.

The Cost of Private Builds



Developers’ very first objection to re-empowering the local environ-
ment in validation is its toll on their productivity and check-in frequen-
cy, since it requires them to spend more time taking care of the local
environment.

That’s a reasonable argument. However, my point here is that the ef-
fort involved in executing private builds is still far less than the cost of
continuous trunk stabilization, QA round-trips, and ticket manage-
ment. That is because, as extensively documented, the longer it
takes from the time a defect is introduced to the time it is detected,

the more exponentially the cost of fixing it rises. Furthermore, manual
integration validations should be temporary. The whole team should
quickly commit to automating activities that they find themselves do-
ing repeatedly during the private build. The (temporary) manual test-
ing phase should be close to simple and targeted “smoke testing,”
and should be optimized to be kept as cheap and easy as possible.

Metrics in Practice

The final section of this chapter offers a few examples of how to inter-
pret the metrics proposed in the previous section.

High Time to Feedback, High Evitable Integration
Issues, Low Time to Trunk Stability



This is the most common of the combinations in this section. Using
the Time to Feedback  metric in coordination with Evitable

Integration Issues  often suggests a possible root cause. In-
deed, high measures for Evitable Integration Issues  would
support the hypothesis that the feedback lifecycle is high because
most validations are shifted to automations and QA. The low value for
Time for Trunk Stability  correlates with the high value for
Evitable Integration Issues , probably indicating that bugs
are being checked into the trunk without being detected in the local
environment.

To confirm or rule out this hypothesis, you might:

Analyze the “evitability” of the reported integration issue, for in-
stance during retrospective meetings.

Make sure that everyone in the team can run full tests on the lo-
cal environment.
Have the team share a series of minimal functional tests to be
run (manually or automatically) before check-in.

Ask the team to be disciplined in running private builds.

Iterate.

Low Time to Feedback, High Evitable Integration
Issues, Low Time to Trunk Stability



Time to Feedback  is a qualitative metric, so sometimes it is bi-
ased. A high measure for Evitable Integration Issues
would support this hypothesis. If that is the case, the situation is the
same as the previous one.

This situation can also occur if the QA team members are highly effi-
cient at handling a large workload, covering the inefficiency of the rest
of the team’s local validations. In this case, ask for more discipline
from the rest of the team.

High Time to Feedback, Low Evitable Integration
Issues, Low Time to Trunk Stability

Because Time to Feedback  is an indirect metric, a further analy-
sis is required. The low values of the other two metrics may suggest
two quite opposite situations.

The first would be an unsatisfactory general QA process, where bugs
are found very late in the delivery process. That could be due to an
inefficient overall detection process, slow or nonexistent automations,

or both. To rule out this hypothesis, you’ll need to look at other met-
rics, like customer satisfaction and the number of bugs introduced per
iteration.



The second possible situation is that you have high trunk stability and
proper processes in place, but bureaucracy, the DevOps team’s
schedule, and an overwhelmed QA team are all contributing to delays
in automation and QA feedback. Approach this case by quickly elimi-
nating barriers among the development, DevOps, and QA teams,

since the development team is already highly efficient in preserving
trunk stability.

Low Evitable Integration Issues and High Time to
Trunk Stability

This situation often occurs when lots of bugs are checked into the
trunk but don’t show up in the integration/QA environment. It could be
that some team members are spending a lot of time fixing bugs, while
others are less disciplined and proactive in running private builds. If
you find such a significant imbalance in the team’s efforts to keep the
trunk stable, use the team’s internal retrospective process to address
it.

You may be wondering why this combination doesn’t mention Time

to Feedback . If the value for Time to Feedback  is high, ana-
lyze the situation as you analyzed inefficiencies in the delivery
process in the previous paragraph.



Conclusion

In the imperfect world we live in, software organizations do not al-
ways have all the best practices in place. There are many reasons:

perhaps there are misunderstandings about how to implement them.

The process of adopting them may be incomplete. Or perhaps it’s just
not a high priority in the organization.

This chapter has focused specifically on circumstances in which the
DevOps culture, taken as a best practice, is not well integrated into
the development team. That has a negative impact on team produc-
tivity and, ultimately, on quality assurance. In such cases, it’s impor-
tant to compensate for the inefficiencies and risks caused by separat-
ing the automation and development teams.

Many teams fail in adapting new methodologies or best practices be-
cause they try to change something they don’t know isn’t working.

Only when you understand the situation can you apply improvements
and get results.

The point of studying the metrics in this chapter is to detect if there’s
a problem with ownership shift and to selectively act on the weak
spots in the process. While software architecture normally measures
a system’s “static” or “runtime” properties, this chapter’s metrics focus
on the process of building software (as opposed to design or mea-



surement processes). Trying to assess the architectural properties of
a system that is regularly broken may lead you to the wrong conclu-
sions. This is why trunk stability control should be a priority in soft-
ware development.

Private builds are a crucial tool for “surviving” the process of adopting
a better way of organizing the team’s integration while maintaining
decent efficiency and quality. Private builds minimize the chances of
committing bugs and defects into the version control system, only to
find them later, with greater inefficiency, costs, and risks. This is es-
pecially true for bugs related to integrating different software
components.

Running private builds is itself a well-known best practice, but it be-
comes critical when automations and validations are disconnected
from the development team. Empowering the local environment
again shifts the responsibility of delivering working software back to
the development team. Running private builds locally and paying
close attention to the metrics allows for a faster delivery cycle, a
cheaper development process, and better software quality—even un-
der suboptimal circumstances.

 Martin Fowler, “FrequencyReducesDifficulty,” MartinFowler.com, July 28, 2011.1

https://oreil.ly/ANGbE
http://martinfowler.com/


 Automation is not just about those activities, of course, but they are a good indica-
tor from which to start.

 Martin Fowler, “Continuous Integration,” MartinFowler.com, May 1, 2006.

 In CI/CD, CD can mean either continuous delivery or continuous deployment.

Here, CD is intended to mean continuous delivery. You can learn more about the
differences between the two concepts on Fowler’s blog.

 Fowler, “Continuous Integration,” https://oreil.ly/WXFrv.

 Paul M. Duvall, Steve Matyas, and Andrew Glover, Continuous Integration: Im-
proving Software Quality and Reducing Risk (Addison-Wesley, 2007), p. 42.

 Duvall, Matyas, and Glover, Continuous Integration, p. 42.

 I don’t use the word personal instead of private, even though it could be clarifying,

just because personal by definition refers to just one person, while you may be ap-
plying pair or mob programming. Anyway, it could be argued that private builds
could be called personal builds whenever we think of the personal environment as
the one from which the code is being published to the shared mainline.
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Chapter 6. Scaling an Organization:

The Central Role of Software
Architecture

João Rosa

I’m a student of sociotechnical systems and complexity theory. Al-
though I’m a software engineer at heart, I love the challenges that
arise from the intersection of people, technology, and underlying pro-
cesses: sociotechnical systems. Being able to contribute and have a
positive impact on the systems of which I’m a part is what makes me
get out of bed every day. I believe that chief technology officers
(CTOs) and chief product and technology officers (CPTOs) should
understand and contribute to their sociotechnical systems, enabling
the people and teams around them to excel in their areas of
expertise.

I’ve distilled my software architecture practices by serving in different
roles, including software engineer, manager, software architect, con-
sultant, and CTO. I specialize in digital companies that make a differ-
ence in people’s lives. More specifically, I mainly work with scale-ups,

organizations that have proven their products are accepted in a mar-
ket and are looking to scale to multiple markets or start new products.



I’m writing this chapter with my “CTO goggles” on, speaking from a
strategy implementation viewpoint so that I can connect the concepts
of software architecture and metrics—that is, how to measure your
progress toward your goals—to the rest of the organizations they af-
fect. This holistic approach is intended to offer a coherent experience
across the organization, where employees understand the decisions
and are supported by an always changing software architecture
(spoiler alert: no, architecture is not static). I hope my chapter serves
as inspiration, since it details a fictional journey in which “Anna,” a
composite character, connects software architecture with metrics. It is
not my intention to provide a blueprint, since every context is unique,

but rather an approach that you can use to distill metrics and connect
them to your own software architecture decisions.

Imagine a senior software engineer, Anna, who recently joined the
Product Engineering department of a fintech scale-up we’ll call Your-
FinFreedom. The Product Engineering department wants to move
faster and deliver better quality to customers. Anna feels that she fits
in at the company and her skills are appreciated.

YourFinFreedom’s goal is to leverage the European Union’s recent
open-banking legislation (known as Second Payment Services Direc-
tive, or PSD2) to create a service that allows people to benefit from
the best rates for their financial services. The company is located in
Belgium and has a customer base there and in the Netherlands and

https://oreil.ly/0FJKr


Luxembourg. They want to expand to the rest of the European Union,

so their strategy is to offer their service in the biggest European coun-
tries, including France, Germany, and Italy. At the moment, the Your-
FinFreedom service is experiencing issues with availability, causing
complaints from end users. These issues are an effect of the success
of the company.

This means the service needs to be more resilient than it is now, in-
teract with more financial providers, and scale up to meet the fore-
casted demand—while also improving the product features and in-
creasing the speed at which it delivers value.

Several business forces are at play here, and all of them influence
YourFinFreedom’s software architecture. Of course, this is a simpli-
fied story; each context is unique, and different forces are always at
play (see Figure 6-1).



Figure 6-1. Examples of business forces that affect software architecture

Throughout my career, I have observed that software architecture
usually reflects two dimensions: the company’s organizational struc-
ture and how people communicate within that structure. The former is
explicit and can (usually) be found in the company’s organizational
chart. The latter is implicit, and people are often unaware of its effects
on their work, particularly on software architecture. When the soft-
ware architecture is not intentional and not guided toward the chal-
lenges that it’s supposed to solve, it will mimic how people (that is,

teams and departments) are organized and communicate. This phe-
nomenon is called Conway’s Law, after Mel Conway, who researched
the phenomenon. In a 1968 paper titled “How Do Committees Invent?”
Conway writes that “organizations which design systems (in the



broad sense used here) are constrained to produce designs which
are copies of the communication structures of these organizations.”

YourFinFreedom Breaks the Monolith

Keisha, the head of the Product Engineering department, decides
that the best way to move faster and deliver better quality is to have a
microservices architecture. The existing architecture is a monolith
that has grown over the years with different features and financial
providers’ integrations. As the department transitions to this new ar-
chitectural style, it will scale up from 3 to 10 teams, with each team
working on its own area. Keisha is confident that this approach will
enable the scaling they’ll need to enter large new European markets.

After a few months working on the architectural transition, Anna feels
that the new microservices architecture does not fit the company’s
business needs and that the project might be costing the company
some market opportunities. She raises this question with her boss
Keisha, but Keisha is keen on continuing with this plan and convinces
Anna to go along with it.

Let’s focus on two common scenarios that I have observed in many
scale-ups (Figure 6-2): first, we’ll look at breaking up a monolith, then
we’ll look at making sense of a web of microservices.
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Monolith and microservices architectures are different architectural
styles, where teams make trade-offs between having a central archi-
tecture (monolith) versus a distributed one (microservices). This
choice has implications for software architecture, since it affects how
teams aggregate the business logic that is vital for the product or
service.

Figure 6-2. Common challenges of monoliths and microservices

Any of these architectures can be sound, if implemented correctly.

However, based on different factors ranging from business forces to
technology hype, it is common for a monolith to drift into becoming



what architects call a big ball of mud, and for microservices to drift
into becoming a distributed big ball of mud (Figure 6-3).

Figure 6-3. This two-dimensional chart visualizes the two architectural styles and their chaot-
ic counterparts

The term big ball of mud was coined in 1999 by Brian Foote and
Joseph Yoder; they introduce it as a “haphazardly structured, sprawl-
ing, sloppy, duct-tape and bailing wire, spaghetti code jungle.”  On2



the other end of the spectrum, the distributed big ball of mud has the
same characteristics plus a new one: it is distributed over the net-
work, adding more complexity to the equation. Let me illustrate with
two examples and their consequences.

When an organization has a monolith architecture and wants to bring
new features to market faster, it hires more people to staff the product
engineering teams. These people and teams begin to try different so-
lutions on top of the existing centralized architecture, introducing ac-
cidental complexity into the system and creating a big ball of mud.

Accidental complexity can be understood as complexity introduced
into the system in the form of a dependency, some poorly document-
ed or untested code, or an unstructured software design. These usu-
ally occur when a product engineering team has trouble coping with
different business forces. Accidental complexity has ripple effects that
affect the software’s maintainability, operationalibility, and change-
ability, and in the end makes it harder for an organization to bring new
features to the market quickly, as Frederick Brooks has noted.

On the distributed big ball of mud side of the spectrum, you have peo-
ple and teams trying to make sense of a web of microservices. These
systems are usually overengineered for the business problems
they’re intended to solve, to the point where the cognitive load neces-
sary to understand a business transaction exceeds the capacity of
the human brain. Matthew Skelton and Manuel Pais define a person’s
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cognitive load as the “limit on how much information they can hold in
their brains at any given moment. The same happens for any one
team by simply adding up all the team members’ cognitive
capacities.”

Implementing a Distributed Big Ball of
Mud

One year later, YourFinFreedom has a plethora of different microser-
vices, including the remains of the monolith, all managed by 10 prod-
uct engineering teams. However, the new architecture hasn’t deliv-
ered on the promise of moving faster and delivering better quality to
customers. The teams are not achieving their expected potential, and
there are constant issues with the flagship product.

Anna decides to have a discussion with Keisha and the rest of the
product engineering management team, explaining the day-to-day
hurdles the teams are facing. These include the following:

The teams must do release orchestration between the microser-
vices to bring a feature in a specific area to production.

There are overlaps in functionality between the different mi-
croservices, making it hard for teams to take ownership.
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The teams are not as productive as they could be; Anna notes
that the department’s priorities are constantly shifting, resulting in
a lot of abandoned work.

Constant issues with the product have damaged morale and de-
motivated employees.

The team members don’t understand the direction of the product
and how they can contribute to it.

Anna presents a potential solution: implementing metrics and clear
boundaries in the architecture could give the product engineering
teams the direction they need and at the same time allow the soft-
ware architecture to evolve, matching the company’s ambitions of
expansion.

The managers are pleased with Anna’s candid presentation and pro-
posed solution. They’ve all suspected that the move to microservices
isn’t delivering upon its promises, and now they realize they didn’t
weigh the trade-offs properly before beginning. Keisha decides to
challenge Anna: given her skills in engineering and leadership, she
says, she is considering promoting Anna to a new Solutions Architect
position within the department. In this new role, Anna would enable
the product engineering teams’ architectural efforts and act as a
steward to promote coherence across the company’s technical land-
scape. Keisha invites Anna to consider the promotion.



After a few days, Anna accepts Keisha’s offer, with one condition: she
wants full permission to interact with all parts of the company in order
to understand their challenges. Keisha agrees, and Anna feels sup-
ported. A new chapter in her career begins!

Anna’s department is feeling the pain of a distributed big ball of mud.

The hurdles depicted in her store reflect the accidental complexity of
the architecture.

YourFinFreedom intended to move between architectural styles, from
a monolith to microservices, depicted as line 1 in Figure 6-4. Howev-
er, without a clear direction guided by metrics, they’ve ended up fol-
lowing line 2, which has led them to a distributed big ball of mud. How
can Anna start leading things back onto the right path?



Figure 6-4. Accidental complexity when moving from a monolith to microservices

Seeking Direction

Anna’s promotion to Solutions Architect is announced, and she sets
to work. To better understand the company’s direction, she begins
holding conversations with people outside her department in all sorts



of business functions. She wants to see her colleagues’ day-to-day
challenges and how they relate to the big picture of the software that
her department creates and maintains.

In one such conversation, she learns that YourFinFreedom has re-
cently tuned its company KPIs to be better aligned with its mission:

“Making financial services accessible to everyone, anywhere.” From
the company’s general updates, Anna also knows that the C-suite
steers activities based on earnings before interest, taxes, deprecia-
tion, and amortization (EBITDA) and customer lifecycle value. She’s
intrigued by the organization’s new KPI, monthly active users (MAU),

which measures how many users interact with the company’s ser-
vices and/or products in a month. This KPI creates a feedback cycle
from all initiatives (marketing, sales, product features) to engage cus-
tomers. Anna starts to wonder: how is this connected to software
architecture?

Software exists to solve complex problems within a specific context.
As you just read, Anna discovers that YourFinFreedom has an impor-
tant KPI next to the financial KPIs at the organizational level
(Figure 6-5). In real life, some version of an MAU KPI is widely used
by social media companies, as well as companies that have a mobile-
first approach to the market. With the context of a scale-up, MAU al-
lows a company to steer growth using capabilities such as marketing,



sales, customer contact center, or the features in the product or
service.

Figure 6-5. YourFinFreedom’s organizational mission and KPIs

An organization’s software architecture needs to be connected to its
mission and KPIs. If the KPIs are not well-defined or people don’t un-
derstand them, the software architecture is at odds with the KPIs.

This is a prime example of Conway’s Law, illustrating how communi-
cation affects the software architecture. Software architecture exists
to create boundaries between the responsibilities of different software
components and define their interactions. It should respect the cur-
rent constraints of the organization and the surrounding environment
(technology, people, regulations, the market, and so forth) and at the
same time enable the business to be agile.

From Best Effort to Intentional Effort



In reflecting on stakeholders’ requests and the product’s current ar-
chitecture state, Anna notices a pattern. Everyone is working on a
“best-effort” basis, trying to fulfill all requests for software to the best
of their abilities. She realizes that an important quality of software ar-
chitecture is missing in the teams: their decisions should be
intentional.

Anna reaches out to different software communities to learn how oth-
ers are tackling similar issues. She learns about EventStorming, a
“flexible workshop format for collaborative exploration of complex
business domains”  used widely in the Domain-Driven Design com-
munity to visualize processes and reason about boundaries and met-
rics. EventStorming, she learns, starts by giving a big picture of the
context across different areas of responsibility, then asking experts
from different domains to share how they operate. She decides to
give it a try and learns how to facilitate a workshop.

Anna gathers people from different areas across the organization for
a Big Picture EventStorming workshop session.  The group maps the
business process as it currently stands. They focus on the flow and
order of business events and create boundaries to show where the
type of work changes or a process ends. Their output visualizes that
flow, along with emergent domains and their boundaries.
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Anna’s workshop produces an output similar to that in Figure 6-6. The
group visualizes pivotal domain events (the small squares) between
the emergent domains. Understanding the purpose for which you are
creating software (and software architecture) is paramount, so Anna’s
first step is to have the group identify the business logic of each area.

Figure 6-6. A Big Picture EventStorming output with emergent domains

With the help of the software engineers in the workshop, the group
maps the current software components onto their Big Picture Event-
Storming output (Figure 6-7). As they work, it becomes evident that
there is a mismatch between the process and the implementation—
which explains why the software architecture has drifted into a dis-
tributed big ball of mud. They also map the ownership of those com-
ponents, and at that point Anna confirms her suspicions about where
the teams’ high cognitive load is coming from.

Mapping the current software components (microservices, monoliths,

or anything in between) on top of emerging domains lets the group
assess the current state of affairs—and understand why it’s so diffi-
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cult for YourFinFreedom to evolve its architecture. They can see the
software components on top of the emergent domains, together with
the ownership of those components (for simplicity, only Team A’s
ownership is shown in Figure 6-7). With this in place, they can reason
about the teams’ cognitive load. Anna understands that owning differ-
ent software components spread across the landscape is a challenge
for any team: they’ll need knowledge from different domains to under-
stand the purpose of building and architecting the software.

Figure 6-7. Mapping the current software components and their (simplified) ownership onto
emerging bounded contexts in a Big Picture EventStorming workshop

The workshop generates many insights and allows the group to dis-
cuss how YourFinFreedom is organized to create value for cus-
tomers. People involved in business operations now understand the
current architecture and the constraints around it; the people involved
in creating and maintaining software now understand the details of
business operations and how the software enables them.



Anna wants to take one last step before closing the workshop: map-
ping the KPIs of the domains, tapping into the collected knowledge in
the room (Figure 6-8). The group happily does so, with domain ex-
perts articulating why certain KPIs are relevant for their domains.

They share more knowledge that previously existed only implicitly in
the organization. Everyone is happy with the outcome of the work-
shop and amazed by the amount of information it provided in a short
time.

Figure 6-8. Mapping domain KPIs in a Big Picture EventStorming workshop

Big Picture EventStorming allows organizations to enhance their orig-
inal notation and capture information that is needed for a specific
context or case. It can unlock significant knowledge and reflection
about the current state of the system and the relevance of a KPI or a
metric. Mapping the KPIs and metrics and discussing their purpose
can unlock powerful conversations at all levels of the organization.

For example, I can share an experience with a customer whose soft-
ware interfaces between tax authorities and harbors. This company’s



Big Picture EventStorming session included people from different
business functions, from customer support staff to tax lawyers. To-
gether they visualized the flow of work within the context of the com-
pany, including their own interactions. When the customer-support
domain expert explained how customer support agents sometimes
correct tax documents with the context of a vessel transaction, the tax
lawyer warned that this conflicted with local law. Catching this al-
lowed the company to correct the software, avoiding what could have
been serious financial and legal consequences. The group also used
the opportunity to reflect on how to improve the customer support
workflow and what KPIs would be needed to validate the proposed
improvements. The team that created and maintained the software
for that domain was thrilled with these insights, which allowed them to
prioritize the backlog. They were busy updating the software to han-
dle new Brexit rules covering how the EU and UK interface, so it was
an especially crucial moment for these insights to arise.

I believe that software architecture should be intentional. In order to
be intentional, we need to visualize the flow of work and how we use
software to achieve goals. Coordinating the organizational mission
with its KPIs allows the company to shape its software architecture by
balancing the trade-offs involved.



Increasing Software Architecture
Intentionality, Guided by Metrics

After the workshop, Anna feels that she is on the right track—but she
can’t move forward with only a “helicopter” view of each process. The
workshop highlighted some hotspots, as well as some mismatches
between the processes and the software architecture. Anna decides
to take her map one level deeper. She wants to map one operational
value stream within one of the domains, with a detailed view of the
KPIs, the hotspots, and every step in the operational value stream.

With this information, she can work with the product engineering
teams to craft a plan to improve the software architecture and align it
with the organizational KPIs.

Anna organizes a new workshop, this time using Process Modeling
EventStorming. In this workshop, participants will dive into the details
of an operational value stream in the Travel Insurance domain, which
they decide to call “request travel insurance quote.”

Increasing the intentionality of software architecture using these two
processes helps people understand not only the whole but also the
parts. This is what I call enticing knowledge, where we visualize the
current processes and map the constraints. Most organizations don’t
have detailed diagrams of their processes (or if they do, they’re usu-
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ally out-of-date). Using visual collaboration techniques such as
EventStorming, it is possible to visualize the collective knowledge in
everyone’s heads.

Before making decisions about the current software architecture,

Anna asks the group to add the key KPIs for the operational value
stream. Different people turn out to have different definitions of the
KPIs! Anna uses the opportunity to create convergence within the
group and sharpen the KPI definitions. When they realize that this will
help align business operations and product engineering, there’s a
feeling of accomplishment among the group.

Taking a step deeper, Anna asks the group to map the current
hotspots in the Process Modeling EventStorming. Her goal is to un-
derstand the struggles in the day-to-day work of the different col-
leagues and how the current solutions enable or constrain the people
who use it. She becomes aware of the challenges, and a detailed
view on the mismatch between the software architecture and the op-
erational value stream under analysis. Last but not least, it is visible
how YourFinFreedom delivers value to its customers and how it
makes revenue. In the “request travel insurance quote,” YourFinFree-
dom receives a fee for every travel insurance policy that it is activated
on and tries to maximize the number of activated policies. From a
customer point of view, the process should be as seamless as possi-



ble, offering the best price and insurance coverage for the travel in-
surance policy.

Mapping the KPIs in a Process Modeling EventStorming workshop
gives details about what is most important in the operational value
stream and how the organization has decided to measure the value.

The value can be to the customer and/or to the organization. With this
level of detail, I recommend asking: “Where does the company make
money?” It is critical to understand the business model when you are
creating software, and the software architecture should facilitate val-
ue creation.

Taking the time to understand the KPIs and sharpen their definitions
is crucial. Those conversations can take time, so you might need
more than one session. Anna’s story might not be your story, and ear-
ly in my career I learned the hard way not to take information for
granted and not to avoid asking challenging questions. One heuristic
I use is slower is faster. In this context, it means that the time we in-
vested in deeply understanding the KPIs—and thus the environment
in which the software needs to work—will pay off when we create the
software architecture.

The same thinking applies to hotspots. What are the current chal-
lenges for people using the system? Analyzing hotspots can also lead
to understanding where the waste is. The Lean method, in particular
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as used in the Toyota Production System, defines waste as “the ideal
conditions for making things are created when machines, facilities,

and people work together to add value without generating any
waste.”  Waste is related to the efficiency of a process and will mani-
fest in the value that is delivered to the customer. Nawras Shkmot
writes that the Toyota production system identifies eight types of
waste, as shown in Figure 6-9.

Figure 6-9. Eight types of waste
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The details of Lean are beyond the scope of this chapter. However, I
strongly recommend using the Lean principles as one of your lenses
to generate intentionality when weighing the trade-offs of an architec-
tural decision. It can guide where you place the architectural bound-
aries, enabling the company’s mission and supporting its goals.

Next, Anna leads a domain decomposition exercise. The group dis-
cusses the outcome and goals of the Travel Insurance domain, then
breaks down the goals to see how KPIs can translate into metrics
(Figure 6-10). Everyone gets a clear picture of how their work is inter-
related, and the product engineering team understands what’s impor-
tant for this domain. This gives Anna the final piece of the puzzle.

Now she can start guiding the improvement of the software
architecture.



Figure 6-10. Travel Insurance domain decomposition, from outcome to metrics

Decomposing information about a domain, from outcomes to goals
and metrics, provides more details about its purpose and intentions.

The goals and metrics change, at different ranges, along with the
software architecture over time. As the architecture changes, the
metrics are likely to change more often; the goals will change more
slowly. Business forces play an important role here, too. Metrics are
closer to the software architecture than goals, but the goals provide
guidance.



You can also implement metrics as fitness functions, a term intro-
duced in Building Evolutionary Architectures. According to the au-
thors, an architecture fitness function “provides an objective integrity
assessment of some architectural characteristic(s).”

With all the information at hand, Anna and the product engineering
team responsible for the Travel Insurance domain start to craft a plan.

They reason about the central customer information microservice,

which they realize is not actually “micro” at all. The central customer
information service holds all customer information, including financial
services used. The architectures of the central customer information
and the travel insurance policy services are entangled. Although a
separate product engineering team is responsible for the central cus-
tomer information service, release orchestration depends on the cen-
tral customer information service.

The group plans a series of experiments. They want to answer three
questions:

Can a self-contained service manage travel insurance policies?

What is the effort required to move the dependencies on the cen-
tral customer information service to the travel insurance policy
service within the scope of the Travel Insurance domain?

What is the effort required to move travel insurance policy infor-
mation from the central customer information service to the travel
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insurance policy service?

The team details the first experiment as a series of steps to validate
the outcome. They plan to create a self-contained service that holds
customers’ travel insurance policies. This service will be a proxy for
the current central customer information service. New travel insur-
ance quote requests will be stored in both the travel insurance policy
and central customer information services. The goal is to prove that
the travel insurance policy service can reliably store the information.

If all the experiments are successful, the team intends to make the
travel insurance policy service the single source of truth of the Travel
Insurance domain, removing the dependency on the central customer
information service. Together with the information distilled during the
workshops, the team decides to add extra metrics. They selected the
deployment frequency and the change fail rate as metrics to guide
the changes in the architecture and prove the direction of the archi-
tecture. The hypothesis is that creating the travel insurance policy
service and moving the travel insurance logic of the central customer
information service will: (1) increase the deployment frequency and
(2) decrease the change fail rate, both on the central customer infor-
mation service. Also, the hypothesis contains a redefinition of the
boundaries in the software architecture, which should favor the au-
tonomy of the product engineering team managing it.



To connect all of the information, Anna uses a KPI Value Tree to visu-
alize the link among organizational KPIs, domain KPIs, and support-
ing metrics. For the first time in her career at YourFinFreedom, she
has a complete overview of the company, from mission to product en-
gineering initiatives.

The KPI Value Tree in Figure 6-11 has three levels. The first level
consists of organizational KPIs, the second is domain KPIs, and the
third is metrics. As you can see, the organizational KPIs are broad
and measure the health of the company. Most of the time they are
connected to financial results, such as EBITDA and customer lifetime
value, but sometimes they also include end-user-focused metrics,

such as monthly active users. At this level, the KPIs are lagging indi-
cators: we can use them to look to the past and see whether our ac-
tions resulted in the intended outcome.



Figure 6-11. The YourFinFreedom KPI Value Tree, after the first batch of workshops

The second level has a narrower focus on the Travel Insurance do-
main. Its KPIs are about increasing the percentage of activated poli-



cies and decreasing the time from request for quote to policy activat-
ed or policy canceled. These KPIs are also lagging indicators.

The third level contains metrics. The metrics can be lagging indica-
tors, but they are also leading indicators: strong predictors that the
intended action will result in the expected outcome. In this example,

the lagging indicators are decreasing the time to find a match for the
insurance quote request, decreasing the number of manual data cor-
rections, and ​​increasing the data quality introduced by the customer.
The leading indicators are deployment frequency and change fail
rate.

A KPI Value Tree is a snapshot in time. Since in business, as in life,

change is the only constant, the KPI Value Tree needs to evolve
along with ongoing discussion of how useful the KPIs and metrics
are. It’s important, especially on a product engineering team, to dis-
cuss them continually and adjust them as needed.

When a company scales up, the business forces around it shift—and
so does the technology involved. All of these changes inevitably af-
fect its software architecture. At every step of the journey, it is neces-
sary to create solutions based on data (such as from KPIs and met-
rics) to match the current constraints (technology, people, regula-
tions, the market, and so forth).



As Goodhart’s Law states, “When a measure becomes a target, it
ceases to be a good measure.”  Remember, KPIs and metrics
should be guides and enablers, not targets; they’re not meant to dic-
tate behavior! In my experience, if people start to say things like “We
are not achieving KPI X or metric Z,” it’s a good indication that the KPI
is being used as a target. If you need a target, that’s fine: call it what it
is, but don’t use terms like KPI or metric.

In this respect, software architects can learn from the site reliability
engineering community, which works with service-level agreements
(SLAs). SLAs are the expected level of service from a particular ser-
vice or vendor, stated in a legal contract. When that level is not met,
there are consequences, usually financial, for the supplier. If your
team supports software that has an SLA, then it makes perfect sense
for your team to have targets. In those situations, it is useful to visual-
ize the KPIs, metrics, and targets and think about how they are
connected.

Accelerate (IT Revolution Press, 2018), by Dr. Nicole Forsgren, Jez
Humble, and Gene Kim, has greatly influenced the whole realm of
software architecture and software engineering. In particular, the four
software delivery and operational performance metrics it puts forward
(Figure 6-12) are widely used: lead time, deployment frequency,

change fail rate, and mean time to restore. These metrics are leading
indicators of velocity and stability. The authors’ research shows that
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these four technical metrics are common in high-performing teams.

However, each team operates in its own context, and there are other
relevant metrics that product engineering teams can and should use.

Figure 6-12. DORA metrics, copyright DORA/Google

I also recommend using the mean time to discover metric, when
proper observability practices and tools are in place. Mean time to
discover is the average time between when an IT incident occurs and
when someone discovers it.

Given that product engineering teams operate in a sociotechnical
system, I have other go-to metrics. The first is throughput, which can
serve as a baseline of a product engineering team’s capability to de-



liver batches of work. It has its roots in the Lean community and was
adopted by the DevOps community as a way to aid continuous im-
provement. My second go-to metric is employee Net Promoter
Score®, which measures employee happiness and can drive higher
employee retention rates.

While I often use the metrics mentioned above, no metric is appropri-
ate for all use cases. I’m not suggesting that you thoughtlessly use all
of these metrics! This book shares a variety of experiences with and
approaches to software architecture and metrics to help you think
about what can or should apply to your own organization. Last but not
least, comparing teams’ performance using these metrics is counter-
productive, since each team will have knowledge domains, skill set
level, technology, and other contextual factors.

A couple of years ago, I was part of a DevOps transformation in an
enterprise that wanted to increase the transparency of its software
development lifecycle. I was coaching a department that developed
mobile applications for retail banking. The company was using the
four software delivery and operational performance metrics from
DORA—so far, so good. However, some people argued that we
should use thresholds and classify teams across the whole organiza-
tion in terms of their “performance.” I use the word “performance” in
quotes because the teams operated in radically different contexts. As
you might imagine, this organization had all types of technology, from



mainframes to serverless in the cloud and everything in between. I
explained that metrics are context dependent, and there is more to it
than just observing the DORA metrics.

In the software industry, it’s generally accepted that you should in-
crease your deployment frequency. The benefits to doing so include
decreasing costs, fear, and uncertainty, and increasing standardiza-
tion, predictability, and automation. However, with mobile apps, multi-
ple deployments will trigger update notifications for the application,

annoying customers and decreasing the company’s Net Promoter
Score®. This department invested in the capability to deploy anytime.

They decided to use a deployment ring approach, with three rings (al-
pha, beta, and production), and to automatically deploy every change
to the alpha channel—a capability that fit their context. That’s the
power of holistically connecting KPIs and metrics.

Connecting KPIs and metrics can be an expensive exercise in terms
of time and people’s commitment. In Anna’s story, the KPI Value Tree
started with her, since she works in a scale-up where the lines of
communication among senior management, architecture, and engi-
neering are short. Using an artifact like a KPI Value Tree is a long-
lasting and shared approach that requires alignment between the dif-
ferent functions in the organization, as well as buy-in from senior
management (since the KPI Value Tree is connected to the organiza-
tional KPIs). Having clear ownership and a process that fits the orga-



nization’s context and culture will increase the chances that the KPI
Value Tree will have a lasting positive effect.

Managing Expectations with
Communication

Anna knows that the product engineering team’s capacity to deliver
features to the Travel Insurance domain will decrease during the ex-
periment. Anna meets with Keisha, sharing the outcomes of the work-
shops, the KPI Value Tree, and the product engineering team’s plan.

She details the consequences and what she wants to learn: how to
use the leverage points in the architecture to decrease the current
complexity. Keisha supports the plan and commits to backing Anna in
sharing the message with stakeholders. Managing expectations is
important, she explains to Anna, so their communication should be
clear about the foreseeable consequences, the intended outcome,

and how it will contribute to YourFinFreedom’s goal of being a major
player across the European Union.

The stakeholders appreciate the honesty and clarity of Anna’s mes-
sage, and agree that the product engineering team should run the ex-
periments and share the results to provide insights to other domains
and solve common pain points. Anna agrees to keep everyone in the
loop.



The product engineering team runs the experiments, taking the travel
insurance policy service live and replacing the central customer infor-
mation service for the Travel Insurance domain. The experiments are
successful—the metrics prove it. The boundaries of the old software
architecture are misplaced, and redefining them in the Travel Insur-
ance domain means that its services don’t need to use release or-
chestration. The stakeholders are pleased with the results and with
the cadence of communication, and they support Anna when she pro-
poses using the same approach for other domains in the organiza-
tion. She begins using the same methods to help product engineering
teams set similar experiments in other domains, with the goal of cre-
ating a software architecture with clear boundaries.

Meanwhile, as YourFinFreedom grows and the Travel Insurance do-
main’s KPIs improve, the domain’s leaders realize that the current
metrics, while stable and handling current needs, might not be ade-
quate anymore. The insurance analysts, pointing to the metric “De-
crease the time to find a match for the insurance quote request,” fore-
cast a need to hire more people for travel insurance quote positions,

scaling the number linearly as YourFinFreedom’s market share in-
creases. However, this will affect the EBITDA. The domain’s leaders
meet with Anna to discuss the possibility of reducing the manual work
needed to create a travel insurance quote. Anna proposes updating
the software architecture to do so, and they discuss which metrics
would best support those changes. They decide to replace the metric



“Decrease the time to find a match for the insurance quote request”
with “Increase the first accepted travel insurance quote from the op-
tions provided by the insurance analyst” (Figure 6-13).

Anna works with the product engineering team to design the architec-
tural changes. They introduce a service that ingests and processes
the information customers provided, queries the insurance partners,

and generates a few options for quotes. It is a decision-support sys-
tem for the insurance analysts, which will save the time they now
spend browsing the insurance partners’ systems.

For a KPI Value Tree to be useful, it must be well maintained. As busi-
ness forces change, the software architecture must change to ac-
commodate it. It is a fractal pattern. And when changes arrive, it is
crucial to question the usefulness of the KPIs and metrics. In Anna’s
story, the product engineering team successfully clarifies and stabi-
lizes the boundaries of their domain, which enables the domain to
evolve. Anna acts as a bridge between the different functions in the
Travel Insurance domain. However, you might have a different oper-
ating model, and that is totally fine—again, your context matters.



Figure 6-13. YourFinFreedom’s KPI Value Tree after the change in Travel Insurance domain
metrics

The learning here is that the natural evolution of software architecture
should be guided by metrics. When that’s the case, the people in-
volved in creating and maintaining software can make their changes



more intentional, even when those changes are highly experimental.
It is healthy to innovate, and clear boundaries make that possible by
respecting that some parts of the architecture benefit from stability,

while others benefit from experimentation.

One more personal story about the evolution of metrics: I worked as a
technical team lead in an ecommerce organization that was moving
its systems to the cloud. The team was part of the restocking domain
and responsible for generating product restocking proposals for buy-
ers. The restocking domain’s overall goal was to maximize product
availability while decreasing the time products spent in the ware-
house. A product restocking proposal is a decision support system for
the buyers about buying the required stock based on the selling fore-
cast; it includes information about suppliers and pricing.

As part of the cloud transition, all systems needed proper observabili-
ty. We instrumented the API of a service that calculated the best sup-
plier (including quantity) for a product restocking proposal. The ser-
vice encapsulated all the logic of selecting a supplier (there were very
specific rules, some of them with legal consequences). The API-level
instrumentation had metrics measuring the success rate of calls, and
we noticed that there were a relatively high number of failed calls.

Digging further, we composed a metric that related the failed calls to
the product under restocking. Our business analyst dug further and
found out that those products were at their end of life, no longer sup-



plied but not yet retired from the system. When the metrics were ad-
justed to incorporate this information, API errors decreased to virtual-
ly zero and end-to-end process time improved drastically. It took few-
er products to run the restocking process, and there were fewer API
errors. Reasoning about how metrics were connected to the domain’s
goals and constraints helped my team create metrics that improved
the system. While this required time and domain knowledge, it had
long-term positive effects on the system.

Learning and Evolving the
Architecture

As Anna works with other domains, three different patterns become
clear. First, the software architecture is not aligned with the domain
boundaries, similar to what she discovered with the Travel Insurance
domain. Second, the domain boundaries are incorrect, leading to ac-
cidental complexity in the architecture. Third, the cognitive load on
some of the product engineering teams is high, since they own soft-
ware components that either cross domain boundaries or are part of
different operational value streams.

One example of the second pattern is the central customer informa-
tion service: holding all information for all financial domains requires
managing different behaviors for all of the different financial domain



models, which creates complexity. Anna observes the third pattern
with the team that owns services for the Customer Onboarding and
Billing domain. Because those processes are very distinctive and un-
related, the team couldn’t focus on a single problem space.

In her meeting with Keisha, Anna presents her ideas to tackle these
challenges. First, she proposes they do something similar to what
they did with the Travel Insurance domain: break the central cus-
tomer information service down to the proper financial domains and
create new services for Identity Management and Account Manage-
ment domain information. She also proposes they rethink the owner-
ship of software components to limit the product engineering teams’
cognitive load while they stabilize the domain boundaries, carefully
explaining the consequences for the product engineers to make sure
that Keisha is aware of the implications. Keisha is impressed with
Anna’s impact in the department: her thinking has helped YourFin-
Freedom get sharper and more focused.

So what’s the moral of the story? Use the metrics that fit your context.
Remember, too, that the trends of a metric are sometimes more im-
portant than the metric itself.

For example, trends in mean time to discover are an interesting proxy
for whether people are learning from the past. Imagine that, over
time, the mean time to discover increases. There are two potential



challenges here. First, the software architecture is increasing in com-
plexity due to business forces; second, as complexity increases, cog-
nitive load also increases, with a negative effect on employee en-
gagement. Combining the mean time to discover metric with the
change fail rate metric can help you discover the weak points in the
software architecture. What’s more, combining the change fail rate
metric with an employee Net Promoter Score® can help managers’
support staff. This naive example illustrates how software architec-
ture decisions can affect people, teams, and the social fabric of a
company.

Software architecture is a continuous process; as we produce new
artifacts and use them in production, the landscape changes and the
organization evolves. What was valid in the past is not necessarily
still valid today. In our fictional example, Anna’s company embraces a
journey of redefining the domain boundaries and consequently the
boundaries of the software architecture.

When a change like this happens, it is crucial to manage everyone’s
expectations. As described in the story, the insights generated led to
changes in the ownership of the software components. That has an
impact on teams, with trade-offs and consequences on both the tech-
nical and social levels. It’s important to be explicit about that with
everyone involved, or else people lose focus, get frustrated, and even
leave the company.



Software architecture, metrics, and KPIs should support the evolution
of the organization. Organizational leaders need to realize that soft-
ware architecture doesn’t exist in isolation as a technical implementa-
tion for their strategy. Quite the opposite, in fact: software architecture
enables the company to realize its strategy.

I believe that we need a new generation of software architects trained
to do much more than group patterns between technical components.

They’ll need to know how to facilitate workshops, understand group
dynamics, and contribute to the overall business strategy. Under-
standing the implications of technical decisions on the social fabric
will help them create sound architectures to which people will be hap-
py to contribute. Everyone benefits.

And What About Anna?

Two and a half years after her long journey began, Anna sits in the
company cafeteria, drinking fruit tea and reading her email. She
comes across an invitation: she’s being asked to share her story in a
keynote speech to a software architecture conference. She reflects
on her success: the organization is beating its targets, with business
growing more than expected. The company’s leaders are talking
about putting their new sociotechnical architecture skills to use by ex-
ploring other business lines. Anna decides to title her speech “So-



ciotechnical Architecture: Beyond Software Architecture.” Can you
imagine what she will share?

Conclusion

Software architecture and metrics are exciting topics. I have tried to
share my experiences via Anna’s story in this chapter. As technology
people, we tend to focus on the ins and outs of technology and over-
architect and over-engineer our solutions. This is one way that acci-
dental complexity manifests in software architecture. There are con-
sequences in the organization’s social fabric, since a mismatch in ex-
pectations can lead to frustrations (at minimum). In recent years, I ob-
served more awareness at the C-level of sociotechnical architecture
and tried to be more intentional when making technological decisions.

It is vital to have a software architecture that fits the business and
size of the organization. It’s a journey, and the software architecture
will evolve as the organization evolves. As such, it is paramount to
work across the different functions of the organization to understand
the flow and value creation; by doing so, you can create metrics that
are relevant to the software architecture and, at the same time, sup-
port the business. Anna resorted to visual collaboration techniques to
align different functions, generating the insights that product engi-
neering teams transformed into a strategic plan for YourFinFreedom.



Their software architecture evolved and created a feedback cycle,

which allowed them to reason about the validity of metrics. These col-
laboration techniques are not one-time activities; you should make a
constant effort to keep everyone aligned.

Context matters, and finding the right metrics is a step in the journey.

Copying what other organizations use doesn’t work because the con-
texts are different. Discovering the metrics that fit your organization is
an investment of intentionality that pays off as the organization
evolves.

Metrics trends are crucial and can reveal signals beyond the techni-
cal landscape. They are closely linked to sociotechnical architecture
because, in the end, it’s humans who design, build, and maintain soft-
ware. I sincerely believe that a new generation of software architects
is on the rise with the skills to meet these sociotechnical challenges.
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Chapter 7. The Role of Measurement
in Software Architecture

Eoin Woods

There are many definitions of software architecture, but in practice,

most architecturally significant decisions are related to achieving
qualities in the system that satisfy stakeholders, including perfor-
mance, resilience, and security. Architects often refer to these as
quality attributes or nonfunctional qualities.

These important, complex decisions are often difficult to make be-
cause they involve significant trade-offs between different qualities.

For example, prioritizing resilience may mean reducing performance.

Stakeholders often struggle to know what quality attributes they need.

The way architects used to address these complications was to do a
lot of “up-front” design and thinking to try to tease out their require-
ments, consider different trade-offs, make key architectural decisions,

and validate them. Today, however, we need to move a lot faster and
adapt to change more effectively than this style allows.

A number of approaches, such as continuous delivery,  RCDA,  and
continuous architecture,  attempt to make architecture activities hap-
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pen less up front and more right through the delivery lifecycle. This
allows teams to make important decisions later, when more informa-
tion is available, and support changes that emerge as the system is
created.

The difficulty with continuous architecture and related approaches is
knowing if you have done enough architecture work and whether you
are spending your time on the most important things to maximize the
benefit of the work. There is always more to do than you have time
for, so you need to be able to choose your tasks wisely—and know
when to stop and move on to the next problem.

Measurement is the solution. By measuring a system’s qualities at a
specific point in time rather than using your instincts or following a
rigid architecture “method,” you can see where you are. And by mea-
suring them over time, you can see trends and work out where you
are headed by how those qualities are evolving. Using measurement
in this way can guide your architecture activities and maximize their
value.

In the rest of this chapter, I will discuss how to integrate measure-
ment into software architecture, and introduce general approaches
for measuring and estimating quality properties, as well as some spe-
cific approaches for key qualities. I’ll then show you how to get start-
ed, and discuss some common pitfalls.



Adding Measurement to Software
Architecture

Software architecture has historically gone something like this: define
what needs to be built, design it, build it, and then start measuring it.
This sounds like “waterfall” delivery, but even teams that deliver very
iteratively (using Agile or other approaches) often defer measurement
until late in the delivery lifecycle, well after software has reached the
operational environment.

Today, we know we need a continuous process of define-design-
build-deploy, and we know we need to start measuring early and do it
continuously. The relationship between measurement and software
architecture is illustrated by the simple diagram in Figure 7-1.



Figure 7-1. Measurement in the architecture cycle

Extracting measurements from the delivery pipeline and any environ-
ments where your software is deployed should be a continuous and
frequent process. These measurements inform your work, allow you
to prioritize your attention, and result in architectural decisions. You’ll
change the system based on those decisions, then use more mea-
surements to reveal whether those decisions were effective or not.
And so the cycle continues.

You will notice that Figure 7-1 refers to artifact measurements, mea-
surements we can make from the artifacts generated by the delivery
process, such as documents and code. It also mentions operational
measurements, which are measurements of the system running in its
operational environment, such as response time and disk usage. It is



useful to consider when each can be performed and what insights
they can provide. Figure 7-2 shows some examples of measurements
classified along two axes: artifact/operational and external/internal
measurements.

Figure 7-2. Types of measurement

External measurements are visible to, or have a direct effect on, peo-
ple outside the system’s delivery and operational teams. Internal
measurements are visible to, or have a direct effect on, the delivery
and operational teams. Measuring these at different points in the de-
livery cycle provides different types of insight. Let’s look at each
quadrant in turn:



External artifact measurements

Measuring compliance with a standard or set of guidelines
through design documentation is probably the weakest type of
measurement, as it is judgment based, but it has the great
advantage that it can be done very early in the delivery cycle,

as design ideas are emerging. External artifact measurements
are useful for building stakeholders’ confidence that the system
will exhibit a certain characteristic, such as GDPR compliance,

or align with some specific best-practice standard.

Internal artifact measurements

Measurements such as code complexity, module coupling, and
number of database schema elements are very tangible and
accurate, as well as generally fairly quick and inexpensive.

They are useful indicators of quality attributes like
maintainability and extensibility, and are primarily of interest to
the development and operations teams. The disadvantage of
these measurements is that you need to have completed the
artifacts concerned (typically the code) before you can
measure them.

External operational measurements

These measurements are operational characteristics of the
system that affect people outside the development and
operations team. Many of the classical quality-attribute
measurements, such as response time, throughput, time to



recover from failure, and number of failures per month, fall into
this category. Like internal operational measurements, these
cannot be measured before the system is operational, but they
have the advantage of capturing the experience that some of
the most important stakeholders—users—are likely to see.

Internal operational measurements

These measure operational characteristics of the system
visible to the development and operations teams, such as
memory usage or rate of database index growth compared to
data growth. These measurements also require a fully
operational system but provide a valuable reality check of how
it is performing internally and from the users’ perspective. The
measurements are often useful for predicting future problems
in the system.

At different points in the delivery lifecycle, different types of measure-
ment will be relevant, but over time you’ll use them all.

Measurement Approaches

It’s important to have reliable and cost-effective ways to make mea-
surements. This section reviews some of the options.

Runtime Measurement of Applications and
Infrastructure



As Cindy Sridharan observes in Distributed Systems Observability
(O’Reilly, 2018), the three general types of measurement mecha-
nisms available today are logs, traces, and metrics. Logs provide us
with sequences of timestamped event records to show what hap-
pened within a technology component over time. Traces extend this
idea with collections of directly related events that record an end-to-
end cross-component scenario within the software, such as request
handling. Metrics are direct numerical measurements of system char-
acteristics over a time period, such as the CPU usage of a virtual ma-
chine or the storage size of an image store. We can collect logs,

traces, and metrics from both the system infrastructure and the appli-
cation itself.

It is normally simpler to access logs, traces, and metrics from the in-
frastructure because most infrastructure environments, such as pub-
lic cloud platforms, have sophisticated and fully featured information-
collection systems that can provide all three without much work. Ap-
plication logs, traces, and metrics often require more work because
you have to implement them yourself, either directly or by reusing a
measurement mechanism, such as an application performance man-
agement (APM) tool. However, application measurements are con-
text specific, which can provide a lot of insight into the characteristics
stakeholders really care about (such as business metrics, like rev-
enue generated, rather than purely technical measures).



Software Analysis

As the old saying goes, “The code doesn’t lie.” Once written, code
can be a rich source of measurement. Static code analysis is a highly
developed field with a wide range of powerful tools; however, it is lim-
ited to measuring the presence of common programming mistakes
and structural code characteristics (such as complexity or coupling).

This doesn’t help you assess many architectural qualities other than
maintainability and extensibility. That said, for estimating qualities like
security, code analysis measurements, such as the number of securi-
ty vulnerabilities found, can be a useful proxy measurement.

Design Analysis

As I mentioned earlier, the obvious problem with code analysis is that
you can’t use it until the code is written, so it is a source of retrospec-
tive rather than predictive measurements. Capturing some aspects of
your design before implementation makes it possible to use design
analysis to create predictive measurements, such as compliance with
standards, or likely architectural qualities, such as scalability. I don’t
recommend producing old-fashioned, detailed design documents,

which are out-of-date as soon as they are completed, but capturing
some minimal but accurate representation of your design before im-
plementation can allow insightful estimations of likely system charac-
teristics to guide your work.



Estimates and Models

Using models and estimates to create predictive measurements can
guide architecture work early in the delivery cycle, before much code
has been written.

You can use the results of your own previous experience, measure-
ments of other similar systems, and published benchmarks or test re-
sults to create mathematical models, usually in a spreadsheet. These
models try to capture the essential relationships between operational
parameters (such as database size, request volume, request types,

number of servers, and memory size) and the quality attribute values
that result from those parameters.

There are a few problems with this sort of predictive measurement.
First, it works best for architectural qualities that can be easily repre-
sented numerically, such as scalability and performance. It is more
difficult to use for qualities like security. For anything apart from the
simplest systems, it can also be difficult (and expensive) to create a
model simple enough to understand that produces reliable results.

Validating the predictive power of such models is also difficult until the
system is built, at which point you can simply measure it. Make sure
you are creating something that is truly useful.

Fitness Functions



Neil Ford, Rebecca Parsons, and Patrick Kua have proposed the “fit-
ness function” for quality attribute measurement in their book Building
Evolutionary Architectures (O’Reilly, 2017). Rather than being a new
mechanism for making measurements, a fitness function is a mecha-
nism for using measurements to monitor a system’s quality attributes
and ensure that they stay within an acceptable range. See Chapter 2
and Chapter 8 of this book for more about fitness functions.

A fitness function defines an acceptable value or set of values for one
or more quality attributes, as well as how to check that the system is
exhibiting at least that value of the quality attributes of interest. Ideally
the fitness function should be implemented as an automated process,

but many useful ones can’t be automated, so manual fitness func-
tions, such as a spreadsheet calculation, can still be valuable. To take
a simple example, if you know that all requests of a particular type
should be handled within 100 ms, then you can create an automated
fitness function in the operational environment that monitors the re-
quest times and alerts us if they start taking too long.

Fitness functions don’t make it any easier to make quality attribute
measurements. You’ll still need to use the techniques outlined in this
section. But they can help you use your measurements to guide and
focus your architectural work.



Measuring System Qualities

The general techniques outlined in the previous section can be ap-
plied to a range of system qualities, but each of the important quali-
ties has its own characteristics when it comes to measurement. In
this section, we will delve a little deeper into the specifics of measur-
ing some important system qualities.

Performance

By performance I mean how quickly our system can process a speci-
fied piece of workload (such as responding to a web request, pro-
cessing an API call, processing an event message, or completing a
batch job). Performance is generally measured using external and
operational measurements and is one of the easier quality attributes
to measure, as it can be directly measured numerically, both in test
and operation, and can also be estimated to some extent via a model.

The two typical ways to measure performance are latency, which is
the time it takes to complete the piece of work, and throughput, which
is how many instances of a particular type of workload the system
can complete in a set time. For example, if processing inbound event
messages, the latency is how long it takes to process a single mes-
sage, while the throughput is how many messages a single processor



can process in a minute. The two measures should be inversely
proportional.

It is important not to confuse performance with scalability (see the
next section), which is how well the system can respond to an in-
crease in workload, but the two are closely related, and performance
degradation is often a symptom of a scalability problem.

The two main determinants of performance are how much work has
to be done (such as to process an inbound event message) and how
efficiently that work can be done (such as whether database access
uses an index).

Considerations when measuring performance

The key measure of performance is response time, which you can
measure directly from a test environment or an operational environ-
ment, using test software (such as Gatling for APIs and web inter-
faces) to create a synthetic test workload, or by building logging into
your system to allow retrospective log analysis. A single measure-
ment is rarely useful, as performance will vary between requests, so
measure the distribution of response times for a set of requests, char-
acterizing it using its mean, median, and standard distribution.

Once you have a characterization of the performance for a particular
type of workload, you can compare this to the corresponding require-

https://gatling.io/


ment and, based on the magnitude of the difference, decide whether
it needs architectural attention or not.

Performance also has a cost trade-off: it is often possible to “buy” bet-
ter runtime resources to improve performance (more memory, faster
CPU, faster storage), but this will be more expensive.

Finally, as mentioned earlier, consider estimating, rather than directly
measuring, performance using a quantitative model (typically in a
spreadsheet). These can be tricky to calibrate to ensure good predic-
tive power, but before an aspect of a system can be directly mea-
sured, such estimates can provide some insight into its expected
performance.

Common problems when measuring performance

Some common problems to be aware of when measuring perfor-
mance include:

Testing versus reality

In many situations, it can be difficult to create a test
environment for a performance measurement that behaves the
same way as the operational environment. The challenges
include creating realistic stored data, predicting likely workload
patterns, having exactly the same environment resource and



configuration, and so on. If you are unsure how representative
the test environment is, you can’t be sure how useful its
measurements are.

Models versus reality

Even more complex is knowing the predictive power, and thus
usefulness, of a performance model compared to the real
system. This means that you should always test as early as
possible to calibrate and validate your models. Be cautious
about relying on them too much.

Generating workload

Even if you know what sort of workload you want to generate,

generating a high-fidelity, repeatable, and useful workload is a
complex task in itself. This is especially true for complex
business domains where the workload requires particular
request or batch patterns to interact with particular data
patterns.

Intermittent phenomena

Distributed systems behave in complex and sometimes
unexpected ways, resulting in intermittent performance
phenomena that can be difficult to reproduce. While it’s
tempting to ignore them, seize these intermittent occurrences
as opportunities to investigate and learn more. You may well
find something that needs architectural attention.

Missing logging



Many applications are built without much consideration of
logging for performance measurement. Consider this early in
development to avoid needing to do a large amount of
retrospective work later.

Overwhelming logging

The opposite problem is too much logging. Performing a
massive amount of logging (much of it often superfluous) can
produce so much data that it is difficult to process to create
reliable measurements. A clear strategy for logging and a
configurable logging mechanism can help to avoid this
situation.

Scalability

Scalability is closely related to performance but is concerned with
how the system responds to increasing workload. The two qualities
are closely linked because the first indicator of a scalability problem is
usually performance degradation, and both are affected by the effi-
ciency of the system implementation.

The key concern of scalability is how the system’s workload capacity
varies in response to the resources available to it (such as CPU,

memory, storage, and network capacity). Ideally, a system should
scale linearly, so that adding 50% more resources allows it to process
50% more workload. In practice, though, this is rarely achieved.



Scalability is a multifaceted concern and can be considered from a
range of perspectives, including request processing capacity, batch
throughput, data storage capacity, and organizational (people and
process) capacity, all of which can affect the system’s ability to
process increasing workloads.

Considerations when measuring scalability

Scalability is also quite amenable to numerical measurement, practi-
cal testing, and numerical modeling; it is not very difficult to character-
ize through measurement, although there are always some
complications.

The key measurement of scalability is how much workload the sys-
tem can process at an acceptable level of performance, given a spe-
cific level of resources. For example, for a given configuration, you
could measure the number of requests that the system can process
in 5 seconds, with an average response time of 0.5 seconds and 95%

of the requests having a response time better than 2 seconds. Then
you could increase the system resources in steps (by, say, 20% at a
time), measure the throughput again, and use the ratios between the
values to characterize the system’s scalability with respect to the re-
sources increased for that workload.



As with performance, cost is a factor. You can also estimate the re-
source cost (for hardware or cloud usage, for example) of achieving a
given workload capacity and as workload increases.

Measuring storage and its cost is also an opportunity to measure how
effective your architecture is. The measurement here is fairly simple:

the amount of storage required to meet specific requirements (such
as indexing to support performance or data retention to support regu-
lation) and the cost of that storage.

The operational aspects of the system also provide opportunities to
evaluate scalability. One important measurement, for example, might
be the number of people required to support the system for particular
levels of workload (such as business operations staff needed to han-
dle exceptions, or system operations staff needed to perform routine
operational tasks).

When you identify a set of measurements to gauge these factors of
scalability, you characterize the system’s capacity with respect to
these requirements for particular levels of resources. Comparing ca-
pacity at different resource levels helps you understand its scalability
characteristics in a way that is meaningful for stakeholders. This al-
lows you to assess whether scalability is acceptable or needs archi-
tectural attention. Over time, it can also help you understand if scala-
bility is getting better or worse.



Common problems when measuring scalability

Many of the common problems mentioned in the performance section
also apply to scalability. A few additional complexities are:

Unpredictable bottlenecks

It is very common, when investigating scalability in complex
distributed systems, to find totally unexpected bottlenecks. Until
you discover and address them, these bottlenecks can greatly
reduce the validity and usefulness of your scalability
measurements. Do as much exploratory testing as possible of
the system’s scalability characteristics to learn how best to
create useful scalability measurements.

Unpredictable nonlinear behavior

A related problem is unexpected nonlinear scalability behavior,
such as when the system cannot handle nearly as much
additional workload as expected, even as runtime resources
are increased. Such behaviors make measurements less
valuable unless we know where they are occurring. It’s nearly
always a good idea to invest the time to avoid this when
designing the system and to perform exploratory testing to
learn more about it.

Combining resources

For some sorts of workloads, adding more capacity simply
involves adding a single kind of computational resource (such



as adding more CPU capacity to gain more computationally
intensive throughput). However, most workloads need a mix of
resources (for example, scaling a database normally needs
memory as well as CPU and probably disk I/O). Take this into
account in your scalability measurements. For example, you
might want a measurement that relates the CPU and memory
required for web request processing.

Availability

Availability is the measure of how much of a specified time period a
system’s services were available for use. It can be affected by both
planned unavailability (such as system maintenance) and unplanned
availability (failures).

Considerations when measuring availability

The classic availability metric that has been used for characterizing is
mean time between failures (MTBF), which measures how often the
system suffers a failure (reliability). The other aspect of availability is
how long it takes to recover from a failure, usually termed mean time
to recover (MTTR). John Allspaw famously observed in 2010 that the
time taken to recover from an incident is often more important than
how often incidents occur,  bringing this metric a lot more attention.4



An advantage of considering MTTR is that you can design for it, esti-
mate it, and test it while building the system, whereas MTBF can only
be estimated after a significant number of failures have occurred. It is
often difficult to find reasonable parameters for estimating MTBF. A
practical approach is to model and test likely or actual MTTR as you
develop the system, use these values and a rough estimate of MTBF
to estimate availability, and then refine with real measurements once
you have them.

Another aspect of availability is accounting for potential data loss.

This involves trading off against other goals, including MTTR. For
this, you’ll use the metrics recovery point objective (RPO) and recov-
ery time objective (RTO). RPO defines the amount of data you are
prepared to lose (normally measured in time or transactions, like “10

minutes of updates” or “100 transactions”). RTO defines the length of
time you are prepared to wait for the data to be available after a fail-
ure. Of course, RTO affects MTTR, but it is different. For example, a
system may be able to recover services with only part of its data
available, creating a longer RTO than MTTR. RPO and RTO are usu-
ally inversely related. If you can accept an RPO of infinity (that is, you
can lose all the data), you can usually achieve an RTO of close to
zero—whereas, if every single byte is valuable, RTO may be consid-
erably longer.



You can model and test both RPO and RTO during development and
then measure the real values after any operational incidents.

Common problems when measuring availability

Let’s look at some issues that often arise when measuring
availability:

Measuring MTBF

While we can design a system to meet MTTR, RPO, and RTO
goals, estimate them via quantitative models, and measure
them via tests, MTBF is harder to deal with. You can only really
estimate it via reliability models (which are not very useful for
estimating software failures), or in operation, when real failures
occur (the very situations we are all trying to avoid). The only
way to really address this is to collect failure information from
other systems that you have access to—probably in the same
organization—and use them as a proxy for MTBF values until
you have some of your own hard-won data.

Varying failure modes

As mentioned, measures like MTTR and RPO are quite
conceptually simple for measuring a single, atomic software
component. The problem is that real systems have many
components that can fail in creative ways. This means that for
any real system, you’ll need to consider a set of MTTR, MTBF,



RPO, and RTO measurements and then combine them in
some way to get the macro view. This is specific to your
environment, and my advice is to think carefully about how the
metrics for different parts of your system combine to form a set
for the entire system.

The tyranny of “the nines”

Traditionally, the software industry has focused on a single
availability metric for systems: availability percentage. This is
typically measured as a number of “nines”: for example,

99.99%, or “4 nines,” would equal 1 minute per week of
unavailability. The problem is that this view of availability is too
simplistic. Factors such as the mode and timing of a failure
have a big effect on its impact, which this measurement does
not consider. In addition, the high availability percentages often
demanded (such as “5 nines”—99.999%, or 1 second per day of
unavailability) are so close to 100% as to be fairly meaningless.

Be wary of requirements stated in terms of “nines.” Instead, use
failure scenarios to understand the business need, and work
out how to estimate and measure the critical availability metrics
of each part of your system.

Security

Security is a complex and multifaceted quality that surfaces in many
places, including infrastructure, application software, and the human



processes around our systems. It is both critically important and very
difficult to measure. One subtle mistake can lie dormant until some-
one finds the vulnerability that it creates and decides to exploit it; sud-
denly you have a high-impact security problem.

However, you can measure some aspects of security to better under-
stand your current situation and where to focus your architectural
attention.

Considerations when measuring security

The obvious measure of security is how many security incidents the
system suffers. But don’t wait for an incident to assess security! You
can perform proxy measurements continually throughout develop-
ment and operation of the system. These include:

Static code analysis

This identifies the number of potential security vulnerabilities in
the code.

Dynamic analysis

Automated penetration testing (also called dynamic analysis)

as well as manual penetration testing will find and count
vulnerabilities in a system deployed in test or operational
environments.

Infrastructure scanning



Infrastructure scanning tests reveal potential vulnerabilities in
the infrastructure platform (again, in test or operational
environments).

We can weight these measurements by risk, including their likelihood
and the potential impact if they occur, and use them in aggregated
values as a proxy measure of security. Of course, this means mea-
suring the results of testing processes rather than the actual security
of the system. But proxy measures like this are the best way we know
to measure security and judge whether it’s getting better or worse.

Common problems when measuring security

Some things to be aware of when measuring security are:

Environment consistency

If you’re testing security in test environments as well as
operational ones, make sure to configure them identically (or,
at least, as close to identically as possible) to avoid
inconsistent results.

Security identities

It’s generally a bad idea to use the same security identities (for
users, certificates, and so on) in test and operational
environments. You might not be able to achieve this specific



type of cross-environment consistency, so be aware of that
when analyzing security test results.

False positives

Many security tools, particularly those for static scanning, can
produce a high rate of false positive findings. It’s best not to
include these in security measurements because they can
distort the results and make the situation look worse than it
really is.

Adjusting for risk

Not all potential security problems are of the same severity, but
it can be difficult to know how to weight them for their risk level
(which, again, includes both likelihood and impact). There isn’t
an easy answer to this; consult experts, and your judgment will
improve with experience.

Knowing when to stop

It is difficult to know when enough testing is enough, since you
can’t prove the absence of something (like security). This
problem is particularly difficult given the potentially severe
impact of a security failure and the difficulty of knowing where
potential security problems are. The solution is to apply expert
judgment, based on good data and derived from a systematic
and consistent approach.

Getting Started



I hope I have convinced you of the importance of incorporating mea-
surement into your delivery cycle and using the results to assess and
guide your software architecture work. The next step is to apply it on
your own projects, so where should you start?

Unfortunately, I don’t have a single definitive answer for you, because
it really does depend on your environment, your priorities, and the
characteristics of your system. The advice I would give someone
working on a mature enterprise Java system with many years of op-
eration already behind it would be different from the suggestions I
would make to a fintech cloud-native start-up racing to get its first op-
erational services to critical mass.

However, I can offer some generally useful guidance as you start to
work out how to apply measurements to your project:

Start small

It’s always tempting to start by collecting lots of data and
measuring everything that can be easily measured. This looks
like a lot of progress, but it takes a lot of time and effort, and
few useful measurements are likely to emerge. It is better to
identify some specific things that will enable action, and start
with these to demonstrate real progress early.

Measure something that matters



It is only important to measure things that can help you gain
insight and guide your work. The easy place to start is with
something easy to measure. The right place to start is to
identify measurements that will have a real impact on your
work and find a way to make them. This will help to
demonstrate the value of measurement early in the process.

Act on what you measure

Having gained some insight through measurement, make sure
you visibly use that insight to drive action, such as prioritizing
which quality attributes to work on next. This, too, will help to
demonstrate the value of measurement.

Start early

As I noted earlier, it’s long been common to leave
measurement until quite late in the process, when systems
have been running in production for a while. I hope I have
convinced you that by using a range of measurement types,

you can start much earlier than this and gain value throughout
the delivery lifecycle. Make time to incorporate measurement
from the start of the process.

Make measurement visible

For measurement to be valued and prioritized, people in
positions of influence need to understand what measurements
are being performed and what effect it is having. So don’t keep
it to yourself! Report your measurement activities regularly and



make the outputs visible in your project environment. This
helps everyone benefit from your measurement work and
understand its value, and it may inspire others to join in and
start measuring what matters to them.

Make measurement continuous

I encourage you to integrate measurement into the regular
cadence of your delivery cycle so that, when people build each
part of your system, they are thinking about what
measurements would be useful and how to build in the right
mechanisms.

If you can follow these guidelines, they will allow you to incorporate
measurement into your architecture work in a practical and incremen-
tal way and to get value from it as early as possible.

Hypothetical Case Study

Let’s examine a fictional example based on real-life experiences to
see how introducing measurement to a project goes in practice.

Our example system is a new “citizen engagement platform” called
Civis, for a local government body in a community of 120,000 people.

This organization wants to create a single, unified digital interface for
citizens to access information, make requests of local government
departments, and apply for services.



As the developers of this platform, we’re not sure which services will
be popular. We plan to start small, offering a few key services at first,
but will need to move quickly to add new services (and perhaps re-
move existing ones), depending on what citizens find useful. We also
don’t really know how many users will engage with it. So we have a
lot of unknowns. We will need to use an exploratory and incremental
approach to building the platform.

The platform will use proven technology: a set of Java services run-
ning in containers on a public cloud platform, using a managed rela-
tional database service from the cloud provider (and possibly other
cloud services in the future). We’ll put the services behind an API
gateway and create a web interface, an Android mobile app, and an
iOS mobile app.

As we start to design the platform, we realize that the size of the data-
base will be important for a number of reasons, including cost, perfor-
mance, and flexibility. We create a simple spreadsheet model to esti-
mate the number of tables, the number of rows we expect in each sig-
nificant database table, and the amount of database storage we ex-
pect to need under different usage scenarios. (We’ll keep this spread-
sheet to use again later.) These internal artifact measurements and
estimates are our first set of measurements. Their purpose is to help
us understand whether we need to optimize the database design at
this stage.



As we start to build the platform, we know that we need to keep an
eye on code quality and maintainability. After all, this platform may
need to change a lot in the future. So we implement a static analysis
tool and use it to create a code complexity measurement in our deliv-
ery pipeline. We wrap this in a fitness function (which at this stage is
just a simple Python script to break the build if the complexity gets too
high), which we call from an action in our pipeline. This internal arti-
fact measurement indicates when we need to spend some time refac-
toring or rethinking our architectural structure.

As this is a public-facing system with some sensitive information in it,
we decide to start measuring security. We’re not ready for penetration
testing yet, but we can do some static security analysis, so we add
this to the pipeline. We derive an aggregated “vulnerabilities” metric,

which we store each time the pipeline runs, to see the trend of vulner-
abilities being introduced as the code changes. This internal artifact
measurement acts as a proxy for security awareness and will alert us
to areas of the code where we need to spend more time on security.

We don’t add an automated fitness function for this measurement just
yet, because we think this metric will be unstable for a while.

Availability and performance are key operational concerns, so we
want to start measuring them in key usage scenarios as early as we
can.



We create a set of response time measurements and wrap them into
a performance metric with an automated set of tests that we can run
in our continuous integration environment. We will monitor trends for
this metric. We also wrap it in an automated fitness function to alert
us if it falls outside acceptable bounds. This external operational
measure alerts us when we need to review performance at a system
level to make sure that the architecture is still capable of meeting our
performance requirements. We’ll also use these tests in the opera-
tional environment soon.

We write some recovery time tests so that we can start estimating
how long recovery from different failures would take and thus our sys-
tem’s expected availability. This combination of internal and external
operational measurements will alert us when we need to review our
recovery approach and redesign it if needed. We create a spread-
sheet model as a kind of manual fitness function to help us with this.

Once we start running code in production, we immediately want to
start measuring it. Finally, our initial code is being used for real! We
do normal usage measurements via our mobile apps and web re-
quests, but also start monitoring the size of our database and the
number of items in each major table, plotting these trends and com-
paring them to the estimation spreadsheet we created at the start.
We use this internal operational measurement to estimate how our



database may grow and where we may need to focus attention on
optimizing its storage size.

Over time, the production environment does have occasional failures,

so we manually record statistics for the times between failures and
recovery times. We calculate the system’s real availability and report
it back in near-real time to our stakeholders (including area
residents). This external operational measurement alerts us if we
need to focus on availability proactively, before it becomes a crisis.

As the development of the platform continues, we continue adding,

and in some cases removing, measurements as part of our delivery
cycle. This is how we know whether our system is meeting its key
quality attribute requirements, whether our architecture is effective,

and where to focus our attention for the greatest impact.

Thus we have used measurement from the beginning to improve the
effectiveness of our software architecture work. We started in a sim-
ple way, early in the project, and then added more measurements
along the way to guide us in focusing our time and attention.

While this is a totally fictional example, it reflects my general experi-
ence of applying measurement in software architecture work. Per-
haps it will spark some ideas of how you might apply measurement to
your own projects.



Pitfalls

In this section, I briefly summarize common mistakes and problems in
applying measurement. Being aware of these pitfalls will help you to
avoid them in your work:

Focusing on mechanisms rather than measurements

Designing and implementing measurement mechanisms can
be a complex and absorbing task, and there is a danger of
getting lost in the details of implementation rather than focusing
on the measurements themselves. This results in impressive
measurement infrastructure but relatively few useful
measurements. Start small, with the simplest mechanisms that
you can, and add complexity later, once the measurement work
is providing value.

Choosing measurements based on what is easy to measure

Some things are difficult to measure, and there is an
understandable tendency to start measuring things that are
easy to measure, like code size and response times. It is
certainly worth doing some straightforward measurements
early in the process to get some results quickly, but to have
much impact, you’ll need to measure what is most important for
the system—even if it is difficult.

Focusing on technical over business measurements



It is nearly always easier to measure something technical (like
recovery time of a database) than something business-related
(like total revenue per hour). If you concentrate only on
technical measurement, though, business stakeholders are
unlikely to ever understand or value the measurement work. To
make sure you are prioritizing the right things, consider all
stakeholders’ viewpoints. Think about business domain
measurements as well as purely technical ones.

Not taking action

It is easy to make good measurements, identify how to
prioritize the work, and then do nothing. There are always
crises to attend to. However, if measurement is going to be
valuable, you need a way to use its results. Prioritize the
actions that result from your findings. One way of achieving this
is to include a percentage of time in each sprint for optimization
work or acting on the findings of your measurement work.

Prioritizing accuracy over usefulness

As trained engineers and scientists, we tend to have a strong
desire to refine our measurements for accuracy. This is a good
instinct, but there is usually a point at which further accuracy is
not going to improve your decisions. Remember to watch out
for that point to avoid wasting time and effort.

Measuring too much



A related point is knowing how much measurement to do.

Today’s sophisticated platforms enable a huge amount of
measurement at an acceptable cost. Part of starting small, over
time, is preventing your measurement work from becoming a
monster that generates huge amounts of data—and dozens of
measurements of limited value. As time goes on, review your
measurements and continually ask whether they are all still
useful or if some can be switched off.

Avoiding these common pitfalls will increase the chances of making
your measurement work valuable and sustainable.

Conclusion

This chapter has explored why measurement is a crucial component
of software architecture work. You’ve learned that:

Measuring our system’s quality attributes is one of the few ways
to tell if our architecture work is effective.

Measurement allows us to understand where we need to focus
more architectural attention and so helps us to prioritize our work
and make hard but rational choices between different kinds of ar-
chitecture work.

Measurement also forces us to find ways of making our quality
attributes measurable and to be specific about our requirements.



(Sometimes it clearly reveals where this isn’t possible.) That
specificity helps produce quality attribute requirements and im-
prove communication with stakeholders.

Once you understand the quality attributes your system needs to
achieve, you can identify mechanisms that can provide measures of
those characteristics and design specific implementations
accordingly.

As you learned earlier, there are different types of measurement.
Some focus on the system itself, some focus on the artifacts involved
in building the system, some measure externally visible aspects of
quality attributes, and some measure internal aspects of the system.

As you identify the measurements you want to make, classify them to
understand the value (and limitations) of each.

Once your measurement mechanisms are in place, you can then
start feeding the measurements into your continuous architecture cy-
cle and comparing with the requirements (via fitness functions where
possible). This feedback loop highlights areas of the system that fall
short of the requirements and need architectural attention. Using
measurement in this way will empower you to clearly explain the val-
ue of different types of architecture work and give you confidence that
you are working on the most important and beneficial things.
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Chapter 8. Progressing from Metrics
to Engineering

Neal Ford

I took a circuitous route through university, sampling many different
majors along the way. For several years, I diligently pursued an edu-
cational path toward mechanical engineering. I achieved my two-year
degree in physics and started in the coursework at a major engineer-
ing university nearby. After a year, I decided to switch over to comput-
er science (the classes I enjoyed rather than endured) and leave the
physical engineering world forever.

However, I spent enough time studying the subject to admire the dif-
ference between the basic mathematics of physics and how it mor-
phed to become the real-world discipline of mechanical engineering.

Math forms the measurement, but until engineers figured out exactly
how that math reflects the real world, they couldn’t use that knowl-
edge to build things.

Architects and developers have the same relationship with metrics
that engineers have with physics: the metric forms the measure, but
evaluating that measure within a useful context transforms metrics
into engineering practices. Architects and developers have been us-



ing metrics to validate parts of architecture for decades, but often in
an ad hoc way. What we need is a consistent approach to utilizing
metrics that supports engineering. While software engineering is
nowhere nearly as far along as physical engineering, we are learning
how to convert measurements into engineering practices.

The Path to Fitness Functions

In Building Evolutionary Architectures, which I coauthored with
Patrick Kua and Rebecca Parsons, we defined the concept of an ar-
chitecture fitness function. Rebecca Parsons had experience in de-
signing genetic algorithms, which are algorithms that produce a re-
sult, then mutate themselves, produce another result, and so on until
some termination occurs. For example, one mutation technique is
known as roulette mutation: if an algorithm uses one or more con-
stant values, this mutation chooses a new value randomly, as if from
a roulette wheel.

When designing such an algorithm, the creator may want to influence
the mutation. For example, perhaps they noticed that lower or nega-
tive values produce more desirable outcomes. Designers therefore
use a mechanism called a fitness function, an objective function that
helps determine a design’s suitability.



In Building Evolutionary Architectures, we mashed up the concept of
software architecture governance and fitness functions to define ar-
chitecture fitness functions: “An architecture fitness function is any
mechanism that provides objective evaluation criteria for architecture
characteristics(s).”

There are several notable terms in this definition. Let’s look at them in
reverse order of appearance:

Architecture characteristic(s)

Architects can split the structural part of design into domain
and architecture characteristics. The domain is the motivation
for writing the software, the problem domain. Architecture
characteristics (also known as nonfunctional requirements,

cross-cutting requirements, systems quality attributes, and
others) are the nondomain design considerations:

performance, scalability, elasticity, availability, and many
others. Fitness functions primarily concern architecture
characteristics because we already have mature tools for
testing the domain: unit, functional, user acceptance testing,

etc. However, up until now, the validation of architecture
characteristics was ad hoc, split among build-time checks,

production monitors, forensic logging, and a host of other tools.

Fitness functions unify those validations under a single

1



umbrella—things that were always related (validating
architecture characteristics) but not treated uniformly.

Objective evaluation criteria

Many different definitions exist for architecture characteristics,

and the industry has never been successful in defining a stan-
dard list because of the pace of change in the software devel-
opment ecosystem. For example, performance measures for
web applications aren’t suitable for mobile applications—as the
ecosystem changes, the types of things we measure change.

However, regardless of what the architectural characteristic is,

architects must be able to objectively measure it to validate it.

Some architecture characteristics are too encompassing, such
as reliability, which could include availability, data integrity, and
many others. These are known as composite architecture char-
acteristics, composed of other objectively measurable values.

Thus, if an architect cannot determine how to measure some-
thing, perhaps it is a composite and subject to further
decomposition.

Any mechanism

Developers are accustomed to having single testing tools for
their given platform. For example, for the Java platform, a
number of testing frameworks exist, tied to the platform.



However, architecture spans beyond a single platform, and
encompasses many different kinds of behaviors. Thus,

architects and developers must use a variety of tools to
implement fitness functions for a project: testing libraries,

performance monitors, chaos engineering, and so on.

Architects must broaden their view of what constitutes validation,

moving beyond the testing tools used by the domain, as illustrated in
Figure 8-1.

Figure 8-1. Fitness functions encompass a variety of tools and mechanisms

As Figure 8-1 shows, fitness functions overlap with unit testing. Both
use code-level metrics within unit tests and dedicated libraries, met-
rics evaluation tools such as SonarQube, monitors for operational ar-
chitecture characteristics, holistic stress-testing frameworks such as
Netflix’s Simian Army, and many others.

https://www.sonarqube.org/
https://oreil.ly/08qk4


Fitness functions is a consistent term for the variety of ways archi-
tects validate the parts of the architecture, but only with automation
does this practice become engineering.

From Metrics to Engineering

How do metrics become fitness functions? This happens via regular
application, preferring automated execution upon every code change,

modeled after unit and other types of domain testing.

Many teams use tools, like the aforementioned SonarQube, wired
into their build to create dashboards and other measurements of
code quality. In fact, this book is full of outstanding candidates for ar-
chitecture validation. However, if the team doesn’t take the additional
step of running the metrics regularly, with objective thresholds estab-
lished, then the gathered metrics become evidence after the fact
rather than a proactive force.

Here is an example: a component cycle check. This is a common
code-level metric, which is applicable across pretty much all plat-
forms. Consider the three components in Figure 8-2.



Figure 8-2. Three components involved in a cyclic relationship

The cyclic dependency shown in Figure 8-2 is considered an antipat-
tern because it presents difficulties when a developer tries to reuse
one of the components—each of the entangled components must
also come along. Thus, in general, architects want to keep the num-
ber of cycles low. However, the universe is actively fighting the archi-
tect’s desire to prevent this problem via convenience tools. What hap-
pens when a developer references a class whose namespace/pack-
age they haven’t referenced yet in a modern IDE? It pops up an au-
toimport dialog to automatically import the necessary package.

Developers are so accustomed to this affordance that they swat it
away as a reflex action, never actually paying attention. Most of the
time, autoimporting is a great convenience, which doesn’t cause any
problems. However, once in a while, it creates a component cycle—
how do architects prevent this?

Consider the set of packages illustrated in Figure 8-3.



Figure 8-3. Cycles manifested as Java packages

ArchUnit is a testing tool inspired by (and using some of the facilities
of) JUnit, but used to test various architecture features, including vali-
dations to check for cycles within a particular scope, as illustrated in
Example 8-1.

Example 8-1. ArchUnit includes the ability to detect component
cycles

public class CycleTest {


    @Test


    public void test_for_cycles() {


        slices().


          matching("com.myapp.(*)..").


          should().beFreeOfCycles()


}

https://www.archunit.org/


The test in Example 8-1 is a common metric used in a wide variety of
tools—how does it transform into engineering? By continual applica-
tion via automation, as shown in Figure 8-4.

Figure 8-4. Adding fitness functions to continuous integration/deployment pipelines



As illustrated in Figure 8-4, fitness functions go alongside already ex-
isting validation mechanisms on projects such as unit, functional, and
user acceptance testing. The constant execution of fitness functions
ensures that architects catch governance violations as quickly as
possible.

Automation Operationalizes Metrics

In the early 1990s, Kent Beck led a group of developers who uncov-
ered one of the driving forces of software engineering advances in
the ensuing three decades. He and a group of forward-looking ​devel-
opers worked on the C3 project. The team members were well versed
in the current trends in software development processes, but were
unimpressed: it seemed that none of the processes that were popular
at the time yielded any kind of consistent success. Thus, Kent started
the ideas of eXtreme programming (XP): based on past experience,

the team took things they knew worked well and did them in the most
extreme way. For example, their collective experience was that
projects that have higher test coverage tended to have higher-quality
code. They created test-driven development, which guarantees that
all code is tested because the tests precede the code.

One of their key observations revolved around integration. At that
time, common practice was that most software projects featured an



integration phase. Developers were expected to code in isolation for
weeks or months at a time, then merge their changes in an integra-
tion phase of the project. In fact, many version-control tools popular
at that time (such as ClearCase) forced this isolation at the developer
level. This practice was based on the many manufacturing metaphors
often applied to software. The XP developers noted a correlation from
past projects that more frequent integration led to fewer issues, which
led them to create continuous integration: every developer commits
to the main line of development at least once a day.

What continuous integration, and many of the other XP practices, il-
lustrates is the power of automation and incremental change. Teams
that use continuous integration not only spend less time performing
merge tasks regularly, but they spend less time overall. When teams
use continuous integration, merge conflicts arise and are resolved as
quickly as they appear, at least once a day. When projects use a final
integration phase instead, they allow the combinatorial mass of
merge conflicts to grow into a ball of mud, which they must untangle
at the end of the project.

Automation isn’t important only for integration but is an optimizing
force for engineering. Before continuous integration, teams required
developers to spend time performing a manual task (integration and
merging) over and over; continuous integration (and its associated
cadence) automated most of that pain away.



We relearned the benefits of automation in the early 2000s, during the
DevOps revolution. Teams ran around the operations center installing
operating systems and applying patches and other manual tasks, al-
lowing important problems to fall through the cracks. With the advent
of automated machine provisioning via tools such as Puppet and
Chef, teams can automate infrastructure and enforce consistency.

In Building Evolutionary Architectures, we observed the same phe-
nomenon: architects were attempting to perform governance checks
via code reviews, architecture review boards, and other manual, bu-
reaucratic processes. By tying fitness functions to continuous integra-
tion, architects can convert metrics and other governance checks into
a regularly applied integrity validation.

The cycle fitness function in Example 8-1 exemplifies the advantage
of automating governance. How would an architect prevent compo-
nent cycles otherwise? Code reviews and other manual validations
require intervention and delay the governance check. Putting an au-
tomated fitness function test in place prevents damaging code from
ever entering the code repository, without requiring superhuman dili-
gence on the part of architects.

Case Study: Coupling



Developers should search for platform-specific fitness function frame-
works, but shouldn’t despair if a specific tool doesn’t exist. Here is an
example around a structural metrics test, first using an existing tool,
then building one when necessary.

Internal component structure is one common aspect of architecture
that benefits from governance that teams can check via metrics. Con-
sider the common architecture style of the layered architecture, illus-
trated in Figure 8-5.

Figure 8-5. Traditional layered-architecture-style topology

An architect designs the layered style shown in Figure 8-5 to ensure
separation of concerns. However, once an architect designs this ar-
chitecture, how can they ensure that development teams will imple-



ment it correctly? Teams might be ignorant of the importance of isola-
tion, or perhaps an architect works in an organization where asking
for forgiveness is preferable to asking for permission.

In either case, architects can ensure that their designs are imple-
mented correctly by defining structure tests for this topology using
ArchUnit. Consider the package structure illustrated in Figure 8-6.

An architect can define governance rules to preserve the architectur-
al structure shown in Figure 8-6 via a unit test, including the following
from the ArchUnit framework.



Figure 8-6. Package structure illustrating a layered architecture

Using the code in Example 8-2, an architect can craft an English-like
unit test using the Hamcrest matchers included in ArchUnit to define
the layer relationships, precluding undesirable coupling.

Example 8-2. ArchUnit unit test to validate a layered architecture




l d hi



  layeredArchitecture()


    .layer("Controller").definedBy("..controller.

    .layer("Service").definedBy("..service..")


    .layer("Persistence").definedBy("..persistenc

  


    .whereLayer("Controller").mayNotBeAccessedByA

    .whereLayer("Service").mayNotBeAccessedByAnyL

    .whereLayer("Persistence").mayNotBeAccessedBy

  

Using a tool such as ArchUnit is extremely convenient—but only
available to teams on the Java platform, and only for compile-time
validation. A similar tool, NetArchTest, is available for the .NET plat-
form. But what about different platforms? More importantly, what
about the same kind of validation for distributed architectures such as
microservices?

Often, architecture solutions require hand rolling. Most architectures
aren’t generic but rather a hodgepodge combination of good/bad,

old/new, and chosen/imposed tools, as well as frameworks, pack-
ages, and so on. However, by using standard tools, architects can
build simple fitness functions that serve the same purpose.

For example, consider the microservices topology illustrated in
Figure 8-7.

https://oreil.ly/CUako


Figure 8-7. Orchestrated workflow in a microservices architecture

In Figure 8-7, the leftmost service acts as an orchestrator, coordinat-
ing workflows across the three domain services on the right. As an



architect, I want to ensure that the domain services don’t interact with
each other—only the orchestrator.

While this problem is similar to the layer topology problem shown in
Figure 8-6, no single tool exists to govern it because building such a
tool would be nearly impossible, given the possible variations among
distributed architectures. This is a great example of a necessary tool
that architects must cobble together themselves, using the capabili-
ties available for their mix of technologies.

An architect can implement a fitness function to validate orchestrator
communication, as shown in Example 8-3 in pseudocode.

Example 8-3. Fitness function in pseudocode to validate
allowable orchestrator communication

def ensure_domain_services_communicate_only_with_

  list_of_services = List.new()


                        .add("orchestrator")


                        .add("order placement")


                        .add("payment")


                        .add("inventory")


  list_of_services.each { |service|


    service.import_logsFor(24.hours)


    calls_from(service).each { |call|


      unless call.destination.equals("orchestrato

          raise FitnessFunctionFailure.new()




()

    }


   }


end

In Example 8-3, the architect defines the list of services and the de-
sired communication rules. However, unlike in the case of ArchUnit,
no framework exists to validate those rules for your specific architec-
ture. Thus, the architect must write code to discover the necessary
information to construct a validation. In this example, we assume that
each service offers logging for each of the service calls it makes with-
in a particular time snapshot. The body of the fitness function loads
the last 24 hours of logs for each service, then parses each to deter-
mine call destination. If the destination differs from the rules, the code
raises an exception to indicate failure.

Architects can implement the fitness function shown in Example 8-3
in a variety of ways. For example, if the team used monitors rather
than forensic logging, the fitness function would be wired into the
real-time information about service calls, and the fitness function
would utilize event handlers to investigate and trigger alerts upon in-
correct calls.

It is important for architects to not despair if they cannot immediately
find a ready-made tool to download to implement a fitness function.



Many of the tools present in the modern development ecosystem al-
low small ad hoc fitness functions to glue together their output.

Case Study: Zero-Day Security
Check

Architects generally think of metrics as low-level evaluations of code,

based on the numerous extant examples. However, when combined
with fitness functions, the scope can be as broad as an organization
needs.

On September 7, 2017, Equifax, a major credit scoring agency in the
US, announced that a data breach had occurred. The problem was
traced to a hacking exploit of the popular Struts web framework in the
Java ecosystem (Apache Struts vCVE-2017-5638). The Apache Foun-
dation had issued a statement announcing the vulnerability and re-
leased a patch back on March 7, 2017. The Department of Homeland
Security had then contacted Equifax and similar companies the next
day warning them of this problem, and they ran scans on March 15,

2017, that found most of the affected systems…most of them. As a
result, the critical patch wasn’t applied to many older systems until
July 29, 2017, when Equifax’s security experts identified the hacking
behavior that led to the data breach that eventually happened in Sep-
tember 2017.



Imagine an alternative world where every project (even if it’s idle) has
a deployment pipeline, and the security team has a “slot” in each
team’s deployment pipeline where they can deploy fitness functions,

as illustrated in Figure 8-8.

Most of the time, the security stage shown in Figure 8-8 will perform
mundane checks for safeguards like preventing developers from stor-
ing passwords in databases and similar regular governance chores.

However, when a zero-day exploit appears, having the same mecha-
nism in place allows the security team to insert a test in every project
that checks for a certain framework and version number, and kick off
a build for the project. If it finds the dangerous version, it fails the build
and notifies the security team. If the architects at Equifax had all
projects still utilizing a ​​deployment pipeline, even those not under ac-
tive development, it would enable automated governance. Teams
configure deployment pipelines to awaken for any change to the
ecosystem: code, database schema, deployment configuration, and
fitness functions. This allows enterprises to universally automate im-
portant governance tasks with a scope much broader than people
normally think about for metrics.

Fitness functions provide many benefits for architects, not the least of
which is the chance to do some coding again! One of architects’ uni-
versal complaints is that they don’t get to code much anymore—but
fitness functions are often code. By building an executable specifica-



tion of the architecture, which anyone can validate anytime by run-
ning the project’s build, architects must understand the system and its
ongoing evolution well, which overlaps with the core goal of keeping
up with the code of the project as it grows.



Figure 8-8. A deployment pipeline that includes a stage for security governance



Case Study: Fidelity Fitness
Functions

A fidelity fitness function, which allows teams to compare old and
new, illustrates the power of combining metrics with engineering
practices. A common conundrum facing many real-world architects is,

“How can I replace this old system with a new one, yet make sure the
new system produces the same results as the old?” In other words,

how can an architect guarantee fidelity between two implementa-
tions? The answer is a fidelity fitness function.

One last case study, “Move Fast and Fix Things,”  which comes from
the GitHub engineering blog, ties together many aspects of the defini-
tion of evolutionary architecture. This case study also pokes a hole in
the common argument that aggressive Agile engineering practices
such as continuous deployment increase risk to an unacceptable de-
gree. Actually, reality shows that teams that use these engineering
practices find ways to mitigate that risk.

GitHub is quite an aggressive engineering organization. It uses con-
tinuous deployment—as developers make changes in their code-
base, those changes proceed through a deployment pipeline and, if
there are no errors, go into production. GitHub averages 60 deploy-

2



ments per day but also operates at such a scale that edge cases ap-
pear almost instantly.

As the blog post describes, the problem GitHub attacked concerned
merging, which in the past had been performed via executing a shell
script that utilized command-line Git to merge files. While this works
flawlessly, it doesn’t scale particularly well. Its replacement to im-
prove performance is the subject of the blog post.

The team built new in-memory merge functionality and performed
testing on the behavior to ensure that it performed correctly. Howev-
er, at some point, they had to deploy it to production, which is the
scary part: what happens if it breaks something? Bad enough if the
merge code fails, but what happens if some previously unknown cou-
pling point exists in the old merge code that will cause more cat-
astrophic failure? This is the fear that keeps many teams from em-
bracing modern techniques.

What the GitHub team did (and they made it open source for every-
one’s benefit) was create the tool Scientist, which allows teams to
safely perform experiments within their architecture without exposing
users to bugs.

The Scientist tool allows developers to create experiments, each with
two clauses: use  and try . The use  clause contains the old code

https://oreil.ly/0AF3j


they are replacing, and the try  clause includes the new behavior.
For the merge experiment, the experiment is encapsulated within the
create_merge_commit  method, shown in Example 8-4.

Example 8-4. The commit  method, including the science

block

def create_merge_commit(author, base, head, optio

  commit_message = options[:commit_message] || "M

  now = Time.current





  science "create_merge_commit" do |e|


    e.context :base => base.to_s, :head => head.t

    e.use { create_merge_commit_git(author, now, 

    e.try { create_merge_commit_rugged(author, no

        commit_message) }


  end


end

In Example 8-4, the science  block acts as the dispatcher for the
two clauses use  and try . For each call, the use  clause always
executes, and that output is always returned to the user. Thus, the
user never realizes they are part of an experiment. The architect also
configures the framework to determine how often to also execute the
try  block—in the merge experiment, it ran for 1% of requests.

When both use  and try  execute, the framework:



Randomizes the order of use  and try  to prevent timing
anomalies
Compares the results for both calls for fidelity
Swallows but records any exceptions raised by the try  block
Publishes the results to a dashboard, shown in Figure 8-9

Figure 8-9. Dashboard showing the results for the merge experiment for a few hours

The dashboard in Figure 8-9 shows that GitHub performed just over
two thousand merges at 02:20. However, because GitHub operates at
such a scale, the errors don’t readily appear in this view. Figure 8-10

shows just the errors during the same time period.



Figure 8-10. The errors during the same time period as the graph in Figure 8-9

As Figure 8-10 shows, bugs existed in their new code. However, be-
cause of the scientist framework, users don’t see these errors. In-
stead, developers fix the problem and redeploy—remember, continu-
ous deployment continued for both this experiment and other code
during this time period.

One of the goals of the experiment was improved performance, and
we can see success in the graph in Figure 8-11.

GitHub architects ran this experiment for four days until they had 24

hours with no mismatches or slow cases, at which time they removed
the old merge code and left the new code in place. Over the course of
those four days, they conducted more than 10 million experiments,

giving them high confidence that the new code operated correctly.

Scientist is a fidelity fitness function, implemented using feature tog-
gles and performance metrics. This approach shows how the synergy



between engineering and metrics can yield project superpowers.

Figure 8-11. Performance metrics during the scientist-supervised experiment

Conclusion

However powerful fitness functions are, architects should avoid
overusing them. Architects should not form a cabal and retreat to an
ivory tower to build an impossibly complex, interlocking set of fitness
functions that merely frustrate developers and teams. Instead, fitness
functions are a way for architects to build an executable checklist of



important, but not urgent, principles on software projects. Many
projects drown in urgency, allowing some important principles to slip
by the side. This is the frequent cause of technical debt: “We know
this is bad, but we’ll come back to fix it later”…and later never comes.

By codifying rules about code quality, structure, and other safeguards
against decay into fitness functions that run continually, architects
build a quality checklist that developers can’t skip.

Atul Gawande’s excellent book A Checklist Manifesto (Metropolitan
Books, 2009) highlights how professionals like surgeons, airline pilots,

and others commonly use checklists as part of their jobs (sometimes
by force of law). It isn’t because they don’t know their jobs or are par-
ticularly forgetful—it’s that when professionals perform the same task
over and over, it becomes easy to fool themselves when it’s acciden-
tally skipped, and checklists prevent that. Fitness functions represent
a checklist of important principles defined by architects and run as
part of the build to make sure developers don’t accidentally (or pur-
posefully, because of external forces like schedule pressure) skip
them.

The marriage of metrics (along with a number of other validation
techniques) and engineering allows new levels and capabilities in ar-
chitecture governance, furthering software development’s journey
from being an arcane craft toward being a proper engineering
discipline.



 Ford, Parsons, and Kua, “Chapter 2: Fitness Functions,” in Building Evolutionary
Architectures.

 Vicent Martí, “Move Fast and Fix Things,” GitHub blog, December 15, 2015,

https://oreil.ly/JXuEu.
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Chapter 9. Using Software Metrics to
Ensure Maintainability

Alexander von Zitzewitz

In this chapter I will introduce a couple of interesting software metrics
that can be used for project governance. They measure aspects like
code coupling, architectural erosion, code complexity, and design
quality. Used in the right way, they can play an important role in keep-
ing maintainability high, lowering overall development and mainte-
nance costs, and mitigating project risks. Tracking metrics on a regu-
lar basis will allow you to detect harmful trends early and fix issues
while they are still easy to fix.

The Case for Using Metrics

Every industry that creates complex products should use metrics to
ensure quality and usability. Modern manufacturing would be unthink-
able without stringent quality measurements. In this regard, the soft-
ware industry is clearly lagging behind other industries, although it
would particularly benefit from using such an approach.

The best way to use metrics is setting up a metrics-based feedback
loop (see Figure 9-1). Using metrics-based feedback loops guaran-



tees that products meet a measurable standard of quality. Not only
does this improve overall quality, but it also improves the software’s
maintainability and therefore boosts the productivity of every develop-
er working on the project. Better maintainability makes code easier to
read and understand, which also means that developers spend less
time reading code and more time improving or adding code.

Figure 9-1. Metrics-based feedback loop

Figure 9-1 shows a metrics-based feedback loop. In such a loop, you
first define quantifiable goals that can be measured using a set of
metrics. Then you work on the implementation of your product while
continuously verifying that you are actually meeting your goal. If you
miss your goal, you improve your implementation until it meets your
goal again and then continue with your work.



When working on legacy software systems, it may be very hard to ap-
ply your standard set of metric goals, simply because those goals
were not there when the system was first implemented. That usually
translates into finding a lot of metric violations. In such cases, it makes
sense to start with a more lenient set of goals that can be achieved
with reasonable effort. Otherwise, developers will be overwhelmed by
a flood of issues, which might have a negative effect on morale. Once
those goals are achieved, you can tighten the screws, making your
goals a bit stricter to ensure continuous improvement of your legacy
codebase. Of course, that’s only useful if your legacy system is still
valuable to your operation and in development. Improving metrics for
a static codebase is pretty useless.

Entropy Kills Software

Your biggest enemy when developing nontrivial software systems is
entropy, also known as structural erosion. The end state of structural
erosion is well-known to most software developers as the dreaded
“big ball of mud”: a synonym for a badly tangled codebase that has
lost all architectural cohesion. This term describes a system that is
highly coupled and has a lot of undesirable dependencies between
parts of the system that should otherwise be unrelated. A typical
symptom is that a change in one part of the system can break some-
thing in a completely unrelated part.



Another symptom is lots of cyclic dependencies, resulting in large cy-
cle groups (Figure 9-2). Software metrics are really good at measuring
entropy, which makes them the ideal tool to mitigate this problem.

Figure 9-2. Cycle groups visualization

Figure 9-2 illustrates the concept of a cycle group. The nodes in the
graph can be source files, namespaces, packages, or any other part
of a software system. The arrows represent dependencies between
those elements. In the example, we have two cycle groups, highlight-
ed in different shades of gray. The white nodes are not participating in
any cyclic dependency.

What we can observe by analyzing open source systems is that those
cycle groups start growing continuously once they reach a certain



size. The Apache Cassandra project is a good example of this phe-
nomenon. In version 2, it already had a cycle group consisting of
about 450 Java files. With version 3, that cycle group grew to more
than 900 elements, and with version 4, it reached more than 1,300 ele-
ments. I like to refer to those large cycle groups as “code cancer”:
they grow and eat up larger and larger chunks of your codebase. In
Cassandra version 4, the tumor even metastasized by adding two
new groups of 143 and 31 elements. Now, about 75% of all elements
are involved in large cycle groups.

On the package level, things are even worse. Out of 113 Java pack-
ages, 102 are involved in a single big cycle group (Figure 9-3). Since
packages or namespaces are ideal for expressing architectural
grouping and intent, it is even more important to keep the dependen-
cies between them cycle free.



Figure 9-3. A package cycle group with 102 elements in Apache Cassandra (rendered by
Sonargraph)

The Toxicity of Cyclic Dependencies

Why are cyclic dependencies a bad thing? After all, Cassandra seems
to be doing just fine. Well, first of all, cyclic dependencies make it im-
possible to test sections of code in isolation. It also makes it harder for
new developers to understand the code, because a randomly picked
source file could literally depend on almost everything else, directly or
indirectly.

Another problem with tight coupling is the inability to isolate and re-
place certain functionalities without requiring risky global changes that
would take a lot of time. Modularization becomes impossible. You



could say that the developers minimized the architecture diagram of
Cassandra to a single box labeled “Cassandra.” While that diagram is
easy to read, it does not reveal anything about the inner structure of
the software.

The good news is that it is possible to break all cyclic dependencies.

For example, you can apply the “dependency inversion principle” first
described by Robert C. Martin and explained in his book Agile Soft-
ware Development, Principles, Patterns, and Practices (Pearson,

2002), among other places. Using this principle, you can invert a de-
pendency in a cycle group by introducing an interface, which will usu-
ally break the cycle. There are several other techniques for breaking
cycles, such as lifting the cyclic dependency into a higher-level class
that depends on the elements involved in the cycle and frees them of
the need to depend directly on each other. You could also demote the
cycle to a lower-level class that handles the communication between
the cyclic elements. Or you could just move certain functionality be-
tween classes to break a cycle.

In other words, there is no good excuse for letting code cancer grow
out of control. Avoiding large cycle groups will make your code better.
It will be easier to test, understand, and maintain, not to mention
reuse.

How Metrics Can Help



To avoid structural erosion, you could use metrics to analyze the de-
pendency structure of your code. For example, one metric you could
use is the number of elements in your biggest source file cycle group.

By defining a threshold of, say, five, you will get a warning as soon as
a cycle group has six or more elements. You might even decide that
exceeding this threshold would break your build. Then you can
change your code to break the cycle group, or at least make sure that
it has fewer than six elements, fix the warning, and make your build
green again. Since the number of cyclic elements is still very small,
such a fix would be easy and quick to implement.

Of course, it would be even better to completely avoid cyclic depen-
dencies, but I am trying to be pragmatic here. Small cycle groups
within a single namespace or package don’t do a lot of harm, as long
as you stop them from growing into monster cycle groups. It’s also
worth noting that every cycle can be broken, for example by applying
Robert C. Martin’s dependency inversion principle, which adds inter-
faces to invert the direction of dependencies (shown in Figure 9-4).

This inversion is very useful for breaking cycles. There are a few more
techniques to break cycles, but they are outside the scope of this
chapter.

https://oreil.ly/erUlO


Figure 9-4. Using the dependency inversion principle to break a cycle

Just limiting the size of cycle groups can ensure that your software
never ends up as a big ball of mud. In my longtime experience, more
than 80% of nontrivial software systems with more than 100,000 lines
of code end up as big balls of mud. You can easily confirm this by just
analyzing a bunch of randomly picked open source systems. If your
system can avoid this fate, it is already doing better than 80% of all
systems with similar size and complexity. I would call that low-hanging
fruit—easy to pick when you start on a new development project.

There are successful projects out there that have avoided the trap of
structural erosion by living by similar rules. A popular and famous ex-
ample is the Spring framework, which is well structured and architect-
ed and has a very limited number of small cycle groups.



Now, if you agree that limiting cyclic dependencies is a good idea, you
might ask how to do that. The short answer is that you absolutely
need tools. Sonargraph-Explorer, for example, will give you the option
to break up your build based on cycle group sizes and is absolutely
free for any use.

Why Are Metrics Not More Widely
Used?

Having just made the case for the usefulness of metrics, it is hard to
understand why metric-based feedback loops are so rarely used in
the software industry. When I give talks on the subject and ask who is
using metrics, at most one or two people in an audience of one hun-
dred will raise their hands. I believe there are several important rea-
sons for that:

Many developers and architects don’t know a lot about metrics or
how to use them. Even if you studied computer science, software
metrics are rarely part of the curriculum or at best are treated as a
side topic. If you don’t have an academic background, it’s even
less likely that you’ve formally learned about metrics.

To make use of metrics, you need tools to gather them for you.

This is still a niche area for software tools. While there are great
tools available for that purpose (like Sonargraph-Explorer), they
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are not widely known and only cover mainstream languages like
Java or C#.

Most metrics require context and a certain level of expertise to be
used effectively. If you just focus on one or two metric-based
rules and pick the wrong metrics for them, you will not really im-
prove your codebase; in fact, you might be harming it. In such
cases, simply training your developers to satisfy the metric can
result in superficial improvements.

Using too many metric rules may just annoy your developers and
slow your progress without adding benefits. I believe the sweet
spot is around five or six metrics-based rules. Any additional rules
will result in diminishing returns.

Since so many organizations are already struggling with incapac-
itating levels of technical debt, there is often little capacity left for
process improvements.

Metrics-based rules are only useful if a rule violation triggers an
action. So, to succeed, you need automation here, which again
requires time to implement.

At the end of the chapter, I will propose a consistent set of rules that
will greatly improve the technical quality of any project that follows
them.

Tools to Gather Metrics



Before we dive into the details of different metrics, let’s get the tool
question out of the way. After all, those metrics need to be collected
somehow, and in most cases you don’t want to do that manually. Of
course, you could try to write your own tools to collect metrics, but that
is almost always a bad idea if a tool is already available. Furthermore,

writing your own tool will always cost more than buying a commercial
solution, especially when you think about long-term maintenance.

What happens if new features are added to a language? Your tool will
need to keep up. Also, gathering the more advanced metrics de-
scribed in this chapter would require you to build a complete depen-
dency model of the whole application. To do that, you basically have
to implement the parsing and dependency-resolution stages of a com-
piler, which is hard, time-consuming, and risky. You’re better off in-
vesting that time in improving your code and your development
process. Table 9-1 shows a sample list of popular tools for gathering
metrics



Table 9-1. A sampling of popular tools for gathering metrics and some of their key capabilities

Tool Capabilities

Understand Commercial, supports many languages; mostly
size and complexity metrics

NDepend Commercial, supports .Net; mostly size and
complexity metrics

Source
monitor

Free, supports C++, C, C#, VB.NET, Java,

Delphi, Visual Basic (VB6), and HTML; only size
and complexity metrics

SonarQube Free for some languages, commercial version
has more features; mostly size and complexity
metrics

Sonargraph-
Explorer

Free for Java, C#, and Python; complete set of
metrics including coupling, cycles, size, and
complexity metrics; the commercial version,

Sonargraph-Architect, also supports change
history metrics (Git) and C/C++

http://scitools.com/
http://ndepend.com/
https://oreil.ly/GmGE3
http://sonarqube.org/
https://oreil.ly/ILjMe


Some tools are free, and all of the commercial tools provide free eval-
uations, so I recommend that you try them out and go with the one
you like the most. One important evaluation criterion to look for is the
ability to check metric thresholds in your automated build. Automation
is really a critical success factor here.

Useful Metrics

Now let’s look at some useful categories of metrics. I’ll start with met-
rics to measure coupling and structural erosion, since this aspect is
the most critical one to keep software maintainable in the long run.

Then I’ll have a look at size and complexity metrics. Next are change
history metrics. Last, I discuss a few metrics that fit in neither
category.

Metrics to Measure Coupling and Structural
Erosion

The following metrics measure coupling and structural erosion.

Average component dependency, propagation
cost, and related metrics

Average component dependency  ( ACD ) was first described by
John Lakos in Large Scale C++ Design (Addison-Wesley, 1996). This



metric tells you how many elements a randomly selected element out
of a dependency graph would depend on, directly or indirectly on av-
erage (including itself). To understand this metric, let’s look at the de-
pendency graph in Figure 9-5.

Figure 9-5. A dependency graph with Depends Upon  metric values

Lakos calls these boxes components. In C/C++, a component con-
sists of a source file and its associated header file; in other languages,

like Java, components are usually single-source files.



The arrows depict directed dependencies, while the numbers repre-
sent the Depends Upon  metric value for the given box. For exam-
ple, the boxes at the bottom only depend on themselves, so their
Depends Upon  value is 1. The right middle component only de-
pends on the component beneath it, so it gets a value of 2. The left
middle component gets a value of 4 because it depends on the right
middle element, both elements on the bottom, and itself. The top-level
components depend on everything on level one and two and also on
themselves, therefore they show a value of 5. Another way to explain
the numbers is to count the number of nodes reachable and add one
to this number. In graph theory, the set of nodes that can be reached
from a given node is called its closure.

If you add up all the values in the boxes you come up with a sum
called Cumulative Component Dependency  ( CCD ), which in
this case is 18. Now divide it by the number of boxes, and you get the
ACD—in this case, 18 divided by 6 (the number of nodes) results in 3.

The minimum value for ACD  is always 1, which would describe a sys-
tem without any dependencies. The maximum value is equal to the
number of nodes; in our example, that would be 6.

The Depends Upon  metric has a counterpart called Used From .

Figure 9-6 shows the same graph with Used From  metric values.



Figure 9-6. The same graph with Used From  metric values

Used From  tells you the number of nodes that have a direct or indi-
rect connection to the selected node. If you add up the Used From

and Depends Upon  values, you will always come up with the same
number. This must be true, because each metric just looks at one of
the two ends of a directed dependency.

If you divide the Depends Upon  metric by the total number of nodes
for each node, you get a new node metric called Fan Out . For ex-
ample, the Fan Out  value of the top left node would be 1/6. If you do



the same for Used From , you get Fan In . The average Fan In

equals the average Fan Out , which also equals the propagation
cost metric, as you will learn later in this chapter.

Interestingly, adding up all Fan Out  values will give you the same
value as ACD . Dividing this value by the number of nodes again will
give you average Fan Out , aka propagation cost. For the graph in
Figure 9-6, the propagation cost is 0.5, or 50%.

These are base-level metrics used to compute higher-level metrics.

They can also be useful for detecting components with a lot of incom-
ing or outgoing dependencies.

When would you use ACD  and what do you need to consider when
using it? It’s one of the first numbers I look at when doing an assess-
ment. It gives me a pretty good idea how tightly coupled a system is.

Of course, it needs to be put into relation with the total number of
components in a system. A value of 100 for a system with 1,000 com-
ponents is acceptable, while the same value would be devastating for
a system with only 100 components.

The metric Propagation Cost  ( PC )  tells you how tightly coupled
a system is. High percentages mean high coupling.

You can also calculate PC  by dividing the ACD  once more by the
number of nodes (mathematically, this is identical to calculating the
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average Fan In  or average Fan Out ). That basically normalizes
ACD  to a value that can be more easily compared. In the example,

that value would be 3/6, or 50%. In other words, every time you touch
something in this example, an average 50% of all components could
be affected by the change. For a larger system, that would be a very
bad value; for small examples like this one, this value is not useful.

What is important to understand about PC  is that you can also define
it as the CCD  divided by the number of components (n) squared.

ACD  = CCD /n, therefore PC  = CCD  /n . So, if the number of your
components doubles, the system’s CCD  would have to grow by a fac-
tor of 4 to keep PC  at the same value. You always want to minimize
this metric, but if it goes down because your system adds more com-
ponents, this is not necessarily good news. In a larger system (with
500 or more components), we usually see PC  decline if the number of
components grows, even if coupling is very high. This happens be-
cause you need to really introduce a lot of extra coupling to let CCD
grow with the square number of components.

With these caveats out of the way, here is how you should use PC :

If your system is small (n < 500), higher PC  values are less
concerning.

For midsized systems (500 <= n < 5,000), PC  values over 20%

are concerning, while values over 50% point to serious issues
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with large cycle groups.

If your system is huge (n >= 5,000), even a value of 10% is already
quite concerning.

It becomes easier to judge the impact of a PC  reading if you look at
ACD  at the same time. If PC  is 10% in a system with 5,000 compo-
nents, that system’s ACD  would be 500. This is definitely concerning,

because every change might affect an average of 500 components.

Cyclicity and relative cyclicity

Usually, high values of ACD  and PC  indicate the presence of large
cycle groups in the dependency graph of the analyzed system. To be
certain, you can make use of metrics specifically designed to look at
cyclic dependencies. Earlier in this chapter, I mentioned a simple but
useful metric: the number of elements in the biggest cycle group of
your system. This value can be computed for any kind of element, but
usually is most useful on the level of components and
namespaces/packages.

The size of the biggest cycle group is also one of the numbers I look
at first when analyzing a system. For components in a well-designed
system, this value should be 5 or fewer. Sometimes bigger cycle
groups can be tolerated if there is a good technical reason for their ex-



istence, or if they come from a part of the codebase that is hardly ever
changed.

In any case, component cycles should never span over more than
one namespace or package. For namespace/package cycle groups, I
always recommend a zero-tolerance policy. That is, your system
should never have cyclic dependencies between namespaces or
packages.

Another useful metric is Relative Cyclicity , which is usually
computed per module and for the whole system. It is based on a met-
ric called Cyclicity , which is defined as the square of the number
of elements in a cycle group. A cycle group of 5 elements would have
a Cyclicity  of 25. Now you can add up the Cyclicity  of all cy-
cle groups for a module or the whole system, take the square root of
that value, and divide it by the number of elements in your system or
module:

relativeCyclicity = 100*
√sumOfCyclicity

n

This metric can be quite useful. To demonstrate this, let’s do a little
thought experiment. Assume we have a system with 100 components
and that all of them are involved in a single large cycle group of 100

elements. The Cyclicity  of the cycle group would be 100 , or
10,000. The formula would evaluate to 1, which means 100%
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Relative Cyclicity . That is the worst possible value; our sys-
tem has the worst possible cyclic dependency.

Now let’s assume that instead of one large cycle group, we have 50

small cycle groups of 2 elements each. In that case, the Cyclicity

of a single cycle would be 2  = 4, and the sum of Cyclicity  for the
system would be 50 * 4 = 200. The formula would evaluate to:

100 * √200
100

= 14.14

or 14.14%. That is a much better value, although still every single com-
ponent is involved in a cyclic dependency. When it comes to cycle
groups, smaller is always better, because smaller cycle groups are
much easier to break.

Structural debt index

While relative cyclicity is pretty good for judging how badly your sys-
tem is affected by cyclic dependencies, it has one flaw: it does not tell
you in any way how hard it would be to break up the cycles it detects.

To better understand that problem, let’s embark on another thought
experiment.

Visualize a simple system with 10 source files. The first file depends
on the second, the second on the third, and so on, until we reach the
tenth file, which depends on the first. This creates a simple cycle
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group of 10 elements, so all files are involved in a cycle. This system’s
relative cyclicity would be 100%. But this particular cycle group can be
easily broken by cutting or inverting just a single dependency. There-
fore, it would be easy to bring the system’s relative cyclicity down to
zero.

Of course, things could be a lot worse. Let’s look at the other extreme.

Again, you have a system with 10 source files, but now every single
file has a bidirectional cyclic dependency with every other file, result-
ing in 90 dependencies (9 + 8 + 7 + ... + 1) * 2. Here, too, relative cyclic-
ity would be 100%, but this time you would have to break or invert at
least 45 dependencies to break all cyclic dependencies: quite a bit
more effort than in the first example.

This is why I developed the metric Structural Debt Index

( SDI ). This metric lets a graph algorithm run over a cycle group to
detect a minimal breakup set, resulting in a list of dependencies that
need to be broken. Now, if you look at dependencies between source
files, they can actually consist of many usage relationships. For exam-
ple, if class A calls three different methods of class B, the dependency
would consist of three usages (or parser dependencies). You are us-
ing the number of usages as a weight for the links to help the algo-
rithm give preference to cutting links with lower weights. Then you’ll
calculate SDI  like this:



SDI = 10 * number of Links To Cut + Σ weight Of Links To Cut

For the first example (10 components in a simple cycle), you would
only have to cut one link. Assuming that link has a weight of 1, the
SDI  value of that system would be 11 (10 * 1 + 1).

You now multiply the number of links to cut with a constant, because
for each link, somebody has to figure out how to break this dependen-
cy (for example, by inverting it using the dependency inversion princi-
ple). Then, of course, each usage might also create some additional
effort. The idea of this metric is to be at least roughly proportional to
the work required to break a cycle group. It is calculated for each cy-
cle group and then accumulated up to the module and system level.
Tools like Sonargraph-Architect use components of this metric to rank
cycle groups by how easy it would be to fix them.

The best way to use the SDI  metric is together with relative cyclicity.

Your goal should be to keep it as close to zero as possible. If it grows
continuously, that is a symptom of code cancer developing in your
system.

Maintainability level

In this section I will discuss my journey to create a new metric to mea-
sure code maintainability and proper design: the holy grail of software
metrics. I did this work together with a customer, who provided me



with a variety of larger projects to test it on. The values for this metric
would more or less conform with the developer’s own judgment of the
maintainability of their software system. We decided to track that met-
ric in our nightly builds and use it like a canary in a coal mine: if the
values deteriorate, it is time for a refactoring. We also planned to use
it to compare the health of all the software systems within an organi-
zation and to make decisions about whether it would be cheaper to
rewrite a piece of software from scratch or refactor it.

When we set out on this journey, we had already looked at several
metrics to measure coupling and cyclic dependencies. The idea of
this new experimental metric was to condense those into a single
metric that could be used as a fitness function to measure good de-
sign in projects.

By “good design,” I mean a design that uses horizontal layering as
well as a vertical separation (or siloing) of functional components.

Cutting a software system into its functional aspects is what I call ver-
ticalization. Figure 9-7 shows this.



Figure 9-7. A good vertical design

The functional components sit within their own silos and their depen-
dencies are not cyclic; there is a clear hierarchy between the silos.

You could also describe this as vertical layering, or as microservices
within a monolith. To be clear: dependency management is crucial for
any architecture style. If you aim for microservices, just make sure to
consider dependencies between microservices as a more heavy-
weight form of dependency, because they all rely on some form of in-
terprocess communication. Communication between microservices
always has much higher latency compared to function calls within a
process and requires a much bigger focus on error handling. What



happens if the target service is not available or if there are network
problems?

Unfortunately, many software systems fail at verticalization. The main
reason is that there is nobody to force you to organize your code into
silos. Since it is hard to do this the right way, the boundaries between
the silos blur, and functionality that should reside in a single silo is
spread out over several. That promotes the creation of cyclic depen-
dencies between the silos, and from there, maintainability goes down
the drain at an ever-increasing rate.

Now, how can you measure verticalization? First, you must create a
levelized dependency graph of the system’s components. But your
dependency graph can only be properly levelized if you do not have
cyclic dependencies between components. So as a first step, you will
combine all cyclic groups into single nodes.

In the system shown in Figure 9-8, nodes F, G, and H form a cycle
group, so you’ll combine them into a single logical node called FGH.

That gives you three levels. The bottom level only has incoming de-
pendencies, and the top layer only has outgoing dependencies. For
the sake of maintainability, you want as many components as possi-
ble to have no incoming dependencies, because they can be changed
without affecting other parts of the system. You also want the remain-



ing components to influence as few components as possible in the
layers above them.

Figure 9-8. A levelized dependency graph with a cycle group condensed into a single node
(FGH)

Node A in our example influences only nodes E, I, and J (directly and
indirectly). Node B, on the other hand, influences everything in level 2
and level 3, except E and I. The cycle group FGH obviously has a
negative impact on that. So you could say that A contributes more to
maintainability than B, because it has a lower probability of breaking
something in the layers above it. For each logical node, you can com-
pute a contributing value, c , to a new metric estimating
maintainability:

ci =
size(i)*(1−

inf(i)

numberOfComponentsInHigherLevels(i)
)

n

i



Here, n is the total number of components, size(i) is the number of
components in the logical node (its value is only greater than 1 for log-
ical nodes created out of cycle groups), and inf(i) is the number of
components influenced by c .

As an example, let’s compute this formula for node A:

cA =
1*(1− 3

8 )
12

This results in ~0.052. Adding up c  for all nodes gives the first version
of the new metric, which we’ll call Maintainability Level
( ML ):

ML1 = 100*∑k
i=1 ci

Here, k is the number of logical nodes, which is smaller than n if there
are cyclic dependencies between components in your system. In this
example, k would be 10, while n would be 12. You multiply by 100 to
get a percentage value. The higher the ML  value, the better the
maintainability.

For the example in Figure 9-8, the ML  value would be 53 divided by
96 = 55%. Since we are talking about a very small system with only 12

compilation units, that value is not a big problem. Further down, I will
improve the metric to consider the fact that small systems tend to pro-
duce relatively bad values. We saw the same problem with
Propagation Cost . Due to the small number of elements in a

i

i



small system, average coupling is always higher. The importance of
decoupling increases with system size.

Since every system will have dependencies, it is impossible to reach
100% unless none of the components in your system have incoming
dependencies. But all the nodes on the topmost level will contribute
their maximum c  value to the metric. The contributions of nodes on
lower levels will shrink the more nodes they influence on higher lev-
els. Cycle groups increase the number of nodes influenced on higher
levels for all members and therefore tend to influence the metric
negatively.

We know that cyclic dependencies have a negative influence on
maintainability, especially if the cycle group contains a larger number
of nodes. In our first version of ML , we realized that we would not see
that negative influence if the node created by the cycle group was on
the topmost level. Therefore, we added a penalty for cycle groups with
more than five nodes:

penalty (i) = {

In this case, a penalty value of 1 means no penalty. Values less than 1

lower the contributing value of a logical node. For example, if you
have a cycle group with 100 nodes, it will only contribute 5% of its orig-

i

5
size(i)

, if size(i) > 5

1, otherwise



inal contribution value. The second version of ML  ( ML ) considers
the penalty:

ML2 = 100*∑k
i=1 ci*penalty (i)

This metric works quite well. When we run it on well-designed sys-
tems, we get values over 90. For systems with no recognizable archi-
tecture, like Apache Cassandra, we get a value in the 20s.

When I tested this metric on my customer’s projects, I made two more
observations that required adjustments. First, it did not work very well
for small modules with less than 100 components. Those often pro-
duced relatively low ML  values, because a small number of compo-
nents increases relative coupling naturally without negatively affecting
maintainability.

Second was a client Java project whose developers considered it to
have bad maintainability. Yet the metric showed a value in the high
90s. On closer inspection, we saw that the project did indeed have a
good and almost cycle-free component structure, but the package
structure was a total mess. Almost all the packages in the most critical
module were in a single cycle group. This usually happens when
there is no clear strategy for assigning classes to packages. That
makes it difficult for developers to find classes.
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The first issue could be solved by adding a sliding minimum value for
ML , if the module or system to be analyzed has less than 100

components:

ML3 = {

Here, n is again the number of components. The variant can be justi-
fied by arguing that small systems are easier to maintain in the first
place. So, with the sliding minimum value, a system with 40 compo-
nents can never have a value below 60. If you enter the value for ML
for the example from Figure 9-8 (55%) into this formula, you get a val-
ue of 94.6%. This value seems much more appropriate than the 55% if
you consider the fact that small systems like this one do not create a
high maintainability burden.

The second issue is harder to solve. Here, we decided to calculate an
alternative value based on Relative Cyclicity  computed for
package/namespace dependencies, or RCp :

MLalt = 100*(1 −
√sumOfPackageCyclicity

np
)

ML  is calculated for each module of the system. Then we compute
the weighted average (by number of components in the module) for
all the larger modules in the system. To decide which modules are
weighted, we sort them by decreasing size and add each module to
the weighted average, until either 75% of all components have been

(100 − n) + n
100 *ML2, if n < 100

ML2, otherwise
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added to the weighted average or the module contains at least 100

components. The reasoning for this is that the action usually happens
in the larger, more complex modules. Small modules are not difficult
to maintain and have little influence on the overall maintainability of a
system.

For good maintainability, both the component structure and the pack-
age/namespace structure must be well designed. If one or both suffer
from bad design or structural erosion, maintainability will decrease
too.

Sonargraph (including the free version, Sonargraph-Explorer) is cur-
rently the only tool computing this experimental metric. If you are curi-
ous how your code would fare, I recommend obtaining the free Ex-
plorer license and running it for your system.

Our work on ML  was inspired by a paper about another promising
metric called Decoupling Level  ( DL ).  DL  is based on the re-
search work of Ran Mo, Yuangfang Cai, Rick Kazman, Lu Xiao, and
Qiong Feng, from Drexel University and the University of Hawaii. Un-
fortunately, part of the algorithm computing DL  is protected by a
patent, so we cannot replicate this metric in our tools at the time of
this writing. It would be interesting to compare the two metrics on a
range of different projects.
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Metrics to Measure Size and Complexity

The next category of useful metrics measures code size and com-
plexity. Limiting complexity is important when you want to keep your
code maintainable. Developers spend most of their time reading code,

and complex code makes that a lot harder. It is therefore a good idea
to use complexity thresholds to avoid overly complex code.

Size metrics

Let’s begin with some simple size metrics. The most well-known size
metric is probably Lines of Code  ( LoC ) per file. LoC  counts
every line that contains actual code and skips empty lines and com-
ment lines. Total Lines  counts every single line, including empty
lines and comment lines. You can also count comment lines, but here
it already gets a bit tricky. Often source files have a header comment
at the beginning of the file that just contains copyright information.

These header comments are not commenting on the code and should
be excluded from comment lines.

In a sense you can already use LoC  as a complexity metric. Chances
are that if your source file has 5,000 LoC , it is complex. I highly rec-
ommend limiting the size of source files to around 800 LoC . If a file
gets bigger than that, consider breaking it up into smaller files. The
thresholds on size and complexity metrics will mostly be soft thresh-



olds, though there always will be some justified exceptions (just make
sure that exceptions don’t get out of hand).

A good metric to measure the size of functions and methods is
Number of Statements . The name should already give away
how the metric works, as it just counts the statements in a method. It
is always a good idea to keep functions and methods reasonably
short, so by limiting the Number of Statements  in functions or
methods, you can keep your code readable and maintainable. I rec-
ommend a threshold of 100 statements per function/method.

Cyclomatic complexity

The Cyclomatic Complexity  metric was originally developed by
Thomas McCabe in 1976. It computes the number of different possible
execution paths through a method or function, which is also a floor for
the number of test cases needed to achieve 100% test coverage. The
original definition was based on a flow graph and the number of
nodes and edges in that graph. But its computation can be simplified
by starting with a minimum value of 1 and then adding one for each
loop statement or conditional statement. For switches, we add the
number of cases. High Cyclomatic  Complexity  values tend to
correlate with highly complex and hard-to-read functions or methods.



This metric is well researched, and we know that error rates increase
quickly for all values above 24. I recommend a threshold of 15, to stay
on the safe side.

There are several variants of this metric. Modified Cyclomatic

Complexity  adds just 1 to the value per switch statement, since
switch statements tend to raise the metric quite a bit without adding
extra complexity. Extended Cyclomatic Complexity  also adds
one per logical &&  and ||  expressions, since the compiler short-
circuiting those expressions acts like an extra conditional statement.

It also makes sense to aggregate values up to the level of classes,

packages/namespaces, and modules. That metric is called Average

Cyclomatic Complexity  and should be based on the weighted
average of the Cyclomatic Complexity  metric.

The Number of Statements  metric is usually used as the weight
for the average. Using a weighted average will make sure that many
small methods, like setters and getters, do not dilute the complexity of
long methods too much.

Indentation debt

Another good way to measure complexity is to look at maximum code
indentation levels in functions and methods. The deeper the indenta-
tion, the more complex the method. This metric works surprisingly well



for spotting complex code. You can also easily aggregate this metric
up to the class or source file level by using a weighted average of all
the functions/methods in a class or source file. Like with Average

Cyclomatic Complexity , the average should be weighted by
Number of Statements . I recommend a threshold of 4 for the
maximum indentation level.

Change History Metrics

As Adam Tornhill points out in his excellent book Your Code as a
Crime Scene (Pragmatic Bookshelf, 2015), your version-control sys-
tem is a treasure trove of valuable data that you can mine to figure out
which of your files change frequently, how many people have knowl-
edge about certain sections of your code, how much code was
changed in a given time frame, and much more. This is valuable be-
cause it helps you to find hotspots in your code that might be excellent
candidates for refactoring.

Change frequency

It is interesting to know how often a given source file changes in a giv-
en time frame, since frequent changes can pinpoint instabilities in
software design. This is answered by the metric Number of

Changes  ( d ), where d  is the time frame in number of days. For ex-



ample, Number  of Changes  ( 30 ) answers how often a file was
changed in the last 30 days.

Code churn

Code Churn  ( d ) answers the question of how many lines were
added to or removed from a given file in a given time frame, where
again d  is the time frame in number of days. You could also derive
the metric Code Churn  ( d ) from this metric by dividing the Code

Churn  ( d ) metric by the number of lines in a file. Let’s assume that
Code Churn Rate  ( 90 ) gives you a value of 2 that can be inter-
preted as “this file has been rewritten twice in the last 90 days.” This
metric gives more context than just counting the number of changes
because it counts the actual number of lines that have been changed.

This can also be used to pinpoint instabilities in software design.

Number of authors

The metric Number of Authors  ( d ) tells you how many different
people have committed changes to a given file in a given time frame.

That is quite interesting because it helps you to uncover knowledge
monopolies. For example, all files that have a value of 1 for Number
of Authors  ( 365 ) are the files where only one person committed
changes within the last year. Chances are that this person is the only



one with knowledge about this file. That could pose a risk for your
company if that person decides to leave.

Using version-control metrics to find good
candidates for refactoring

As I noted in the beginning of this chapter, most projects suffer from
structural erosion in one form or another. One symptom of structural
erosion is that changes often break things in seemingly unrelated
places. Chances are that such problems are introduced in complex
files that change frequently. You have a good chance to improve the
situation by looking for those hotspots and think about how to reduce
the complexity by refactoring the code. Often, it turns out that those
hotspots are also “bottleneck classes,” or classes with a lot of incom-
ing and outgoing dependencies.

Innovative visualizations can simplify this task considerably. The “soft-
ware city” visualization of Apache Cassandra in Figure 9-9 uses a 3D
visualization to show several metrics at the same time.

Figure 9-9. A software city rendered by Sonargraph-Architect



Each building in the software city represents a source file. The source
files are grouped together by module and package or namespace.

The footprint area of a building is proportional to the file size in
Lines of Code . The height of each building is derived from the
file’s average complexity; the shade is determined by its change fre-
quency in the last 90 days. For example, tall dark buildings would be
good candidates for refactoring. Look at the darker building on the left
side of Figure 9-9. It is not very high, but it is the third largest file by
Lines of Code—which is relatively easy to see from the visualiza-
tion. The darker color indicates frequent changes. It turns out that the
file in question contains the class StorageManager , obviously an
important class for a non-SQL database.

The cool thing with this kind of visualization is that you can combine
arbitrary pairs of metrics here: for example, the heights of buildings
could correspond to the number of incoming dependencies, while the
color is determined by complexity. This allows you to perform sophisti-
cated analytics with very little effort.

Other Useful Metrics

There are two more metrics that I have found useful but fall outside
the categories of coupling and complexity metrics.

Component rank



The Component Rank  metric is based on Google’s Page Rank

metric. Page Rank  is designed to find popular pages on the inter-
net, while Component Rank  uses the same algorithm to find “popu-
lar” classes in your system. The Page Rank  algorithm first picks a
random page. Then, with a configurable probability (the default is
80%), it follows a random outgoing link to another page. For the final
page, the algorithm stops and increases a counter. Its goal is to calcu-
late for each page the probability that it will be the final page. This is
done by running the algorithm repeatedly until the probability numbers
for each page stabilize.

The same algorithm can be applied to classes or source files. Instead
of links, you use outgoing dependencies. Now, you might ask your-
self: why would that be useful information? Well, assume you are new
to a project and have to take over a complex module to add new func-
tionality to it. You have never seen the code before. Where do you
start reading it? A good idea would be to start with the classes with the
highest Component Rank . Since many other classes reference
them, you will likely have to understand them first.

Figure 9-10 calculates the probability that each node in the graph will
be the final node in a visiting session where you start at a random
node and then (with 80% probability) follow a random link and (with a
probability of 20%) end the session.



Figure 9-10. A visualization of Google’s Page Rank  algorithm

LCOM4

LCOM  stands for Lack of Cohesion of Methods , while the
number indicates the fourth version of this metric. The purpose of this
metric is to figure out if a class violates the single-responsibility princi-
ple. It does this by creating a dependency graph between all the
methods in the class (except constructors, overridden, or static meth-
ods) and all fields in the class (except static fields). The value of the
metric is the number of subgraphs (called connected components)
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without any connection between them. In an ideal world, this value
would be 1 for all classes. If the value is bigger than 1, you could easi-
ly split the class into several smaller classes.

In Figure 9-11, there are two connected components in the class, one
consisting of x, f, and g, and one consisting of h and y. This means we
can easily split this class into two different classes, one consisting of f,
g, and x, the other consisting of h and y.



Figure 9-11. Example class with an LCOM4 value of 2

As a caveat, you should know that this metric often fails when a class
calls or accesses methods or fields from a superclass. It does not
work well in class hierarchies. On the other hand, if a class is not part
of a complex hierarchy, this metric works quite well in finding classes
that do too many things at the same time and therefore violate the sin-
gle-responsibility principle.



Architectural Fitness Functions

Architectural fitness functions were first introduced in the book
Building Evolutionary Architectures by Neal Ford, Rebecca Parsons,

and Patrick Kua. They define an architectural fitness function as one
that “provides an objective integrity assessment of some architectural
characteristic(s).”  (See Chapters 2 and 8 of this book.)

Architectural characteristics, also known as “-ilities,” are the goals you
would like to achieve with your architecture, such as stability, scalabil-
ity, maintainability, and agility. Fitness functions measure how well
your architecture achieves one or more of those characteristics. For
example, you could use production data like the number of simultane-
ous users and average response time to measure scalability, or you
could use Relative Cyclicity  and Maintainability

Level  to measure maintainability of your code.

One of the most important tasks of a software architect is to make
trade-offs. You cannot have all the desirable characteristics in the
same software system without increasing complexity to an unman-
ageable level. Therefore, you must prioritize your desired characteris-
tics so that they best reflect your business goals without adding un-
necessary complexity. To make things worse, some of those charac-
teristics cannot be met at the same time. For example, maximum per-
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formance and maximum security are opposing goals, since security
requires encryption and encryption uses a lot of CPU power. You
must find the right balance between the two.

In the end, I recommend prioritizing at most three characteristics plus
maintainability. There are very few use cases where maintainability is
not important. Measure each of those characteristics using an appro-
priate fitness function.

You can use some of the metrics discussed in this chapter as fitness
functions to measure maintainability, which includes comprehensibili-
ty, such as:

Maintainability Level  with a threshold of 75% or more
Relative Cyclicity  on the package/namespace and com-
ponent level, with a threshold of 4% or less for components, 0%

for packages/namespaces
Structural Debt Index  for components with a threshold in
the low 100s

You can use complexity metrics to figure out what percentage of your
source files are considered to be complex. For example, you could
define as complex every file with average indentation over 3, or aver-
age complexity over 10, or size over 800 Lines of Code . Then you
could add up the complex files’ Lines of Code  and compare them



to the total number of Lines of Code  in the system. You might de-
cide that you don’t want more than 10% of your code to be complex.

As you can see, metrics can be a powerful tool when used in the right
way. You can use your knowledge about metrics and combine several
of them into a useful fitness function. Checking your fitness functions
in your CI build, and breaking the build if your fitness function goals
are violated, is a powerful way to ensure that your system will never
end up as the dreaded big ball of mud.

How to Track Metrics over Time

To implement a metric-based feedback loop, you need to be able to
track metrics over time. The best way to do that is to gather metrics
once a day in an automated build and feed them into a tool that keeps
track of them.

Once you have that trend data, you can render it as a chart. Figure 9-
12, for example, shows how much the metric Lines of Code  grew
in the last 90 days. I recommend tracking all your fitness functions,

mixed in with some coupling and size metrics. Having charts of key
metrics allows you to detect harmful trends early so that you can react
before things get too bad. Of course, you can do the same thing by
imposing some hard thresholds on your fitness functions, but it is of-
ten useful to be able to see how metrics change over time. (A hard



threshold will break the build if violated. A soft threshold, on the other
hand, only issues a warning when violated.)

Figure 9-12. A metric trend chart rendered by Sonargraph-Enterprise

You have a few tooling options, some of which are free. SonarQube is
free for some languages but has a limited choice of metrics.

Additional metrics are available with the Sonargraph SonarQube
plug-in. You can use Jenkins with Sonargraph-Explorer (free); it offers
a good choice of metrics but limited charts. Sonargraph-Enterprise
comes with the commercial team-license for Sonargraph. It has a
good choice of metrics and flexible, customizable charts. Finally, of
course, it is not too hard to build your own solution, as long as you
have a good data source.

A Few Golden Rules for Better
Software

http://sonarqube.org/
http://jenkins.io/


I will now share with you my golden rules for stopping structural ero-
sion in its tracks and ensuring a modular, maintainable design for your
software. If you start a new project, adopt these rules from the begin-
ning and your software will be better than 90% of all other projects of
similar size and complexity. If you start on an existing codebase, the
first goal is to stop the bleeding—that is, make sure things are not get-
ting worse. Then you can set monthly or quarterly goals to reduce the
number of violations by a few percentage points. Over time, this will
add up and significantly improve the maintainability and comprehensi-
bility of the codebase.

Now here are my recommended rules:

Have a formal and enforceable architectural model that defines
the different parts of your software and the allowed dependencies
between them. This rule is basically a logical conclusion of the
need to control and minimize coupling, as I’ve discussed in depth.

Having such a model gives more context to the developer and
clarifies the architectural design of a system in an enforceable
way.

Avoid circular dependencies on the namespace/package level.
Limit circular dependency on the level of source files/classes.

Any cycle group with more than five elements has a good chance
to turn into code cancer and grow further until it becomes very dif-



ficult to untangle the mess. If you can, avoid even small cycle
groups.

Avoid code duplications (programming by copy and paste). I have
not mentioned this before because this chapter is focused on
metrics, but copy-and-paste programming is a classical code
smell. Sometimes, duplicating code can be used to break cycles
that are otherwise hard to break, but I would consider that a rare
edge case.

Limit the size of source files to 800 LoC  (as a soft threshold).

Limit maximum indentation to 4 and Modified Cyclomatic

Complexity  to 15 (as soft thresholds).

All of these rules can be implemented using what you’ve learned
here. The best way to implement them is a tool-based approach
where you automatically verify the rules in your CI build. It is also a
good idea to implement those rules across the organization, so that all
developers become familiar with them. Doing that would practically
guarantee better maintainability, better code quality, and therefore
much improved developer productivity. I have worked with several
clients implementing such a rule-based approach and can confirm
that it produces pretty impressive improvements over time.

Conclusion

https://oreil.ly/xUtfn


You’ve learned some useful metrics in this chapter, as well as the con-
cept of a metrics-based feedback loop. And you now know that struc-
tural technical debt (or architectural debt) can really harm the produc-
tivity of development teams.

By now, it should be clear that metrics are a powerful tool that can
help you discover harmful trends early enough to guarantee that your
software project never ends up as a big ball of mud. Of course, you
will need to use tools for that, some of which are even available for
free. If you are not ready to use metrics on a wider scale yet, I highly
recommend focusing on avoiding or at least limiting cyclic dependen-
cies in your codebase. That by itself will stop the worst side effects of
structural erosion and make it easier to adopt stricter rules further
down the road.

 Unfortunately, as of early 2022, Sonargraph-Explorer only supported Java, C#, and
Python. For other languages, you might be forced to write a tool yourself or rely on a
commercial solution.

 First described by Carliss Baldwin, John Rusnak, and Alan MacCormack in “Ex-

ploring the Structure of Complex Software Designs: An Empirical Study of Open
Source and Proprietary Code,” Management Science 52, no. 7 (2006): 1015–1030.

 Ran Mo et al., “Decoupling Level: A New Metric for Architectural Maintenance
Complexity,” ICSE ’16, May 14–22, 2016, Austin, TX.
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 “PageRank,” Wikipedia, last updated April 9, 2022, https://oreil.ly/vrdFb.

 Neal Ford, Rebecca Parsons, and Patrick Kua, “Chapter 2: Fitness Functions,” in
Building Evolutionary Architectures.
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Chapter 10. Measure the Unknown
with the Goal-Question-Metric
Approach

Michael Keeling

In software, as in life, the most important things are often the most
challenging to measure. How much technical debt is in the system,

and where should you invest? How well does the architecture, as im-
plemented, satisfy the most important quality attributes? How is the
team’s design maturity progressing? For big questions like these, it’s
easy to venture a guess based on gut feelings, which can be biased
and unreliable. It’s far better to use data. When I need to define met-
rics for gnarly, difficult-to-answer problems like these, I turn to the
goal-question-metric (GQM) approach.

The GQM approach is an analysis technique proposed by Victor
Basili and David Weiss to help teams figure out how to measure and
evaluate tough problems in software development.  The technique is
easy to learn and straightforward to apply. It can be used alone or as
part of a collaborative workshop. Discovering the right metrics to
evaluate a difficult problem still requires creativity and analytical
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thinking, but GQM provides just enough structure to nudge teams to-
ward better outcomes.

In this chapter, you will learn how to use the GQM approach and facil-
itate a collaborative workshop with GQM at its heart. You’ll also see a
case study about how a software development team used GQM to
evaluate and improve gaps in their architecture. By the end of this
chapter, you will know everything you need to apply GQM with your
team.

The Goal-Question-Metric Approach

The core assumption behind GQM is simple: to measure something
well, you must understand why you’re measuring it. Understanding
the why—the goals you want to accomplish and the questions you’ll
need to answer to evaluate progress—gives you the power to identify
and select the best metrics for the job. Teams that understand the
why behind the metrics are more likely to use and trust those metrics
to guide future decisions. GQM helps us transform goals from mushy
statements about our desires into quantifiable and verifiable models.

The GQM model is hierarchical. If you imagine it as a tree, the goal is
at the root. From the goal, the tree branches out to questions, then
branches again to the metrics used to answer those questions. The
leaves are the data used to compute the metrics. In this way, GQM



creates traceability: you can trace a path from any individual leaf (the
data being collected) back to the root (the purpose for collecting the
data in the first place).

Create a GQM Tree

In GQM, the goal is a simple statement that describes something you
want to understand and measure. An ideal goal statement describes
the purpose, the object to be measured, the issue or topic of interest,
and the point of view from which you are considering the goal.

Here are a few examples of goals that focus on software architecture
concerns:

Improve system availability from the users’ point of view.

Decrease the development time for new microservices from the
product managers’ viewpoint.
Reduce technical debt in the architecture from the perspective of
software developers.

Reduce the number of bugs being released into production.

Detect more problems in production before our users do.

Improve the machine learning model’s accuracy from the users’
viewpoint.
Make better design decisions in the architecture from the devel-
opment team’s perspective.



Providing the goal up front is essential to the process. The goal es-
tablishes the conceptual direction by focusing attention on a particu-
lar set of measures. The goal can focus on any object of interest, in-
cluding elements of the architecture, software development process-
es, technical experiments, design artifacts, or even teams and organi-
zations. Defining the object to be assessed aligns what is to be mea-
sured with why you need to measure it.

The goal is often revised throughout the analysis, as your under-
standing of what you’re measuring improves. Even an imperfect goal
statement that captures only the essence of what needs to be mea-
sured is useful.

Once you define your goal, you can ask questions to explore and
characterize it. Questions should be operationally focused and help
you evaluate your progress against the goal: are you getting closer or
farther away?

Great questions can illuminate problems and potential next steps for
fixing those problems. Asking good questions requires a curious
mind. You must be willing to temporarily let go of what is practical and
ask the questions that need to be asked, even if you are unsure how
to answer them now.



Here are some example questions that might help evaluate the goal
of improving system availability from the users’ point of view:

What is our current availability?

Which components or services have the best availability? The
worst?
Which components or services go down the most?
Why do components or services become unavailable?

How long is a typical outage?

When do outages happen?

To answer each question, you’ll define one or more metrics. Metrics
can take many forms, including simple rubrics, Boolean values
(yes/no, true/false), statistical inferences, and equations of varying
complexity. Any metric you plan to use will eventually need a clear
and precise definition. Each metric is linked with at least one ques-
tion. The same metric can sometimes be used to answer multiple
questions. You might need multiple metrics to answer a single
question.

Putting it all together, you can create a GQM tree like the one shown
in Figure 10-1.

One of the things I like about this method is how the name says it all:
it’s just three steps. Identify a goal. Enumerate questions to evaluate



the goal. Define metrics that help you answer the questions.

Well, the name almost says it all. After defining metrics, you must de-
cide how to collect the data necessary to compute them.

Figure 10-1. Example GQM tree



Prioritize Metrics and Devise a Data Collection
Strategy

It’s not enough to simply know how you could measure the goal. You
must also plan for how you will measure it. If you did a good job brain-
storming questions and metrics, your GQM tree should have a few
branches. In practice, not all metrics provide a strong signal; some
metrics will be impractical or costly to compute. Before deciding how
to collect data, it’s a good idea to prune your GQM tree a bit.

It’s best to focus on metrics that provide a strong signal and are inex-
pensive to compute. Identify key metrics that provide the strongest
signals first. Next, look for any metrics that can be used to answer
multiple questions. If some questions are answered by multiple met-
rics, think carefully about whether all the metrics are necessary. Keep
in mind that it is useful to include both positive and negative metrics—
metrics that indicate success and metrics that indicate failing—to
keep you honest.

Next, consider the data required to compute the metrics. If you
haven’t already defined a metric precisely, do so now. Extend the
GQM tree (as shown in Figure 10-2) to visualize where the data will
be used. The more metrics a piece of data helps compute, the more
valuable that data is. Figure 10-3 shows an extended GQM tree that



connects data with metrics. Data that feeds high-value metrics and is
inexpensive to collect should be your top priority.

Figure 10-2. Key metrics provide strong signals and can be used to answer multiple
questions



Figure 10-3. Prioritizing metrics and data in a GQM tree.

Data can come from many sources, depending on what you’re mea-
suring. You might need to instrument your code to record necessary
data. Data about development processes or methods might come
from surveys or be harvested from task databases. Data about code



can be gleaned from source code repositories or extracted using stat-
ic-analysis tools. For short, quick experiments, it is sometimes easiest
and cheapest to collect data manually for a few days. What’s impor-
tant is that you know where you will get the data necessary to com-
pute your metrics.

At this point, you have enough information to create a concrete plan
for collecting data and computing your metrics. Depending on the
goal, it may not be necessary to compute all metrics or answer all
questions. Decide what work you need to do, such as recording and
collecting data, computing metrics, and building dashboards. Share
the plan with the team and any other stakeholders, and then put your
plan into action.

Case Study: The Team That Learned
to See the Future

Now that you understand the fundamental ideas behind the GQM ap-
proach, let’s explore a concrete case study to show how you can use
it in practice.

In this case study, you will read the story of a pair of service disrup-
tions one development team faced. During their postmortem analysis
of the first incident, the team used GQM to identify metrics that would



have allowed them to learn about the incident sooner. They respond-
ed by improving operational visibility and making important changes
to the architecture. Nine months later, those metrics were put to the
test when a similar problem occurred. This time, thanks to the
changes they’d made, the team learned about the problem before
users did and easily transformed what would have been a major out-
age into a brief inconvenience.

System Context

The system in this case study relies on third-party services for certain
data operations. Some of those third-party services impose API rate
limits. The architecture uses queues to ensure data is eventually pro-
cessed by the third-party services and to manage request volume to
those services. The technologies are less important to this story than
the architectural patterns are. Figure 10-4 shows a context diagram of
the relevant parts of the architecture.

In this system, an important third-party service I’ll call the Foo Service
(not its real name) imposes an API request limit defined in a licensing
agreement. When the number of requests made to the Foo Service
exceeds the threshold defined in the licensing agreement, the Foo
Service rejects requests and returns a “rate limit exceeded” re-
sponse. Subsequent requests will continue to be rejected until the
calculated rate falls below the agreed threshold. Both hourly and daily



rate limits are imposed. There are also limits on the size of requests
and the total compute load used by the Foo Service.

Figure 10-4. System context diagram

Asynchronous work queues are an important part of the architecture.

In addition to managing interactions with third-party services, such as
the Foo Service, they drive workflows and manage other data analy-



sis. When a queue becomes too large, internal users can be nega-
tively impacted. The queues are designed to be resilient, for example,

by retrying requests to third-party services for certain kinds of request
failures. When there is a temporary disruption, then the system even-
tually reaches a correct and consistent state, as long as the queues
and workers remain operational. Self-correction is an important sys-
tem property, especially in the case of the Foo Service, since it is
easy to exceed rate limits, but the limits reset quickly.

Incident #1: Too Many Requests to the Foo
Service

In the wee hours one Monday morning, the Foo Service began reject-
ing requests due to the API rate limit being exceeded. Since the Foo
Service’s rate limit is a shared budget for the whole software system,

this affected multiple components simultaneously. Within a few hours,

the time each job remained in the work queue for processing had in-
creased dramatically, and users were feeling the impact.

The team soon identified the problem. Every weekend, a large batch
of data is uploaded to the Foo Service so that it is available for inter-
nal users on Monday morning. A failure in a storage solution, com-
bined with a bug in that batch operation, created a situation in which
the batch operation aggressively retried API requests to the Foo Ser-
vice, eventually exceeding the rate limit. Stopping the runaway batch



operation allowed the system to slowly recover. Once the team re-
paired the storage solution, the batch operation finished successfully.

During the postmortem for this incident, the development team decid-
ed that fixing the bug in the batch operation was an obvious and im-
portant action item. They questioned: could they have found out
about the problem communicating with the Foo Service sooner?
Would it be possible to see a potential incident approaching and fix it
before users are affected? To answer these questions, the team
turned to GQM.

What does failure look like?

Had the team been alerted to the problem sooner, they might have
been able to respond sooner and avoid affecting users. The team
needed to figure out how to identify potential failure scenarios better
so they could respond to potential outages sooner.

Their goal was simple: discover problems involving the Foo Service
earlier and mitigate or resolve them before those problems negatively
affect users. Ideally, users should think the engineering team is made
up of omnipotent magicians who can see the future.

With this goal in mind, the team brainstormed questions and metrics
that would help them achieve the goal—always a messy process.

Questions and metrics churned and evolved as they gained a deeper



understanding of what it really meant to anticipate failures with the
Foo Service. They used a shared document to collect questions, iter-
ating and riffing on ideas for about half an hour.

Table 10-1 summarizes what the team discovered.



Table 10-1. Metric brainstorming summary document

Goal: Discover problems using the Foo Service so the
engineering team can mitigate or resolve them before they
affect users.

Questions Metrics

What is the current Foo
Service API usage?

API usage as reported by the
Foo Service

How close are we to
exceeding the Foo Service
rate limit?

Remaining API calls (total
quota available—reported
usage)

% API quota remaining for all
components (reported
usage/total quota)

% API quota remaining for
each component (component
tracked usage/component-
assigned quota)



Goal: Discover problems using the Foo Service so the
engineering team can mitigate or resolve them before they
affect users.

Questions Metrics

Is the Foo Service having a
problem, or are we having a
problem connecting to the
Foo Service?

Heartbeat is successful
(Boolean metric, with an error
tolerance to deal with blips)

Synthetic traffic is synced to
the Foo service as expected
(Boolean metric)

% timeout request over a 15-
minute window

% authentication error request
over a 15-minute window

Are jobs working as
expected?

Count of total requests



Goal: Discover problems using the Foo Service so the
engineering team can mitigate or resolve them before they
affect users.

Questions Metrics

Count of normal, error, and
timeout response

% error response over a 15-
minute window

Are we keeping up with the
request load?

Job queue depth (count of
pending and in-progress jobs)

Average queue depth over
time

Average, p99, p95 job
processing time

Average job throughput (count
of jobs/time)



Now that the team understood what metrics they needed to discover
problems in the Foo Service, they turned their attention to collecting
data. At this point, they discovered a few flaws in the architecture.

First, data was only recorded when the system was under load. Sec-
ond, responsibility for handling failures and retries was not clearly as-
signed in the architecture. Third, teammates were unsure how to re-
spond to problems.

Operational visibility and architectural
improvements

The first problem was directly related to how the system was instru-
mented to collect data. Without traffic, no requests would go to the
Foo Service. With no requests, it would be impossible to know
whether the Foo Service was working as expected or not. While no
harm would be caused if the Foo Service went down when nobody
needed it, the team wanted to have the option to inform users about
potential issues ahead of time. Obviously, the team wouldn’t be able
to fix the Foo Service, but they could use this information to anticipate
other potential system failures that were under their control.

To plug this data collection hole, the team introduced a new heartbeat
component into the architecture to check the Foo Service’s availabili-
ty. Luckily, the Foo Service offers a metering API so customers can
check their current API usage and confirm that the Foo Service is ac-



cessible. Extra information provided by the metering API made it eas-
ier to manage the overall API budget.

Next, the team clarified the architecture design by assigning respon-
sibility for handling failures to the work queue instead of the jobs. The
previous design had left this decision open. As a result, some jobs
had attempted to retry failed requests to the Foo Service, which fur-
ther exacerbated the incident’s impact.

During the downtime incident, jobs that attempted their own recovery
actions ran longer. These jobs inevitably would fail and enter the
queue again to be retried later, which only increased queue conges-
tion. As a result, the number of requests sent to the Foo Service in-
creased tremendously over time. In the worst cases, some jobs had
made 5 failed attempts against the Foo Service and were retried 10

times before permanently failing, resulting in 50 total API requests!

The team decided that jobs should fail fast, then captured an archi-
tecture decision record (ADR) to describe this decision.

With metrics in hand, the team had the building blocks necessary to
form a clear action plan. They added alerts so they could monitor the
identified metrics in production automatically. For each metric, they
built runbooks so everyone would know what to do in response to a
potential issue. Each runbook referenced the metrics to make it easi-



er to diagnose problems and eliminate false positives. They also cre-
ated tools and added diagnostic APIs to assist in recovery efforts.

Incident #2: Seeing the Future

Some members of the team questioned whether all this work was
necessary: after all, they’d addressed the root cause. About nine
months later, they found out just how invaluable their metrics and ar-
chitectural changes were.

In the wee hours one Friday morning, a Foo Service developer de-
ployed a configuration change that caused a complete system out-
age. For the next 14 hours, the Foo Service was wholly unavailable.

This time, the team was ready. They received an alert based on one
of the identified metrics within 10 minutes of the Foo Service becom-
ing globally unavailable. Thanks to their new diagnostic APIs, they
quickly confirmed that the problem was in the Foo Service and not
something they could control. They disabled a few alarms and moni-
tored metrics to double-check that job failures were being retried us-
ing exponential backoff, as described in the ADR. Everything worked
according to plan.

Shortly after the start of the workday, before a single user noticed a
problem, the team sent out an email informing internal users about



the issue. What would have been a critical, priority-zero issue nine
months before was now a barely noteworthy event (at least for this
team!). When the Foo Service came back online, the system self-cor-
rected as designed, and the team monitored the system metrics as
everything went back to normal over the next few hours.

Reflection

In this case study, you saw how one team used the GQM approach to
inform system design changes that helped them more effectively re-
spond to a major system outage. The metrics the team identified dur-
ing that process became a key part of their operational visibility and
incident response strategy. Additionally, thinking specifically about
metrics and the data required to compute those metrics exposed
gaps in the architecture. They added a new component to collect nec-
essary data and clarified the architectural responsibility for retries.

Many incident postmortems expose weaknesses in operational visi-
bility and response strategies. As you’ve seen, GQM can be used not
only to highlight these weaknesses but to show the path toward a bet-
ter software system.

Run a GQM Workshop



GQM is a fantastic tool for analyzing tough problems alone or in small
groups. It can also be used as a structured, collaborative workshop
that allows stakeholders of varying backgrounds to contribute.  In this
section, you’ll learn the basics of running a GQM workshop.

Workshop Summary

The goal of the workshop is to build consensus and shared owner-
ship over metrics and data to be computed and collected for a partic-
ular purpose. By the end of the workshop, all participants should un-
derstand why particular metrics are necessary and how those metrics
will be calculated.

Benefits

This workshop builds confidence in metrics and data collection plans
by emphasizing stakeholder goals as the basis for measurement.
Inviting stakeholder participation creates stronger buy-in for the even-
tual metrics and data collection plan and can lead to more thorough
analysis.

The workshop itself is a chance to demonstrate the use of structured
analysis to the group. Participants who have a positive experience
often find opportunities to apply GQM in other situations.

Participants
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Both technical and nontechnical stakeholders may participate in the
workshop. Depending on the goal, nontechnical stakeholders may be
required. For example, if the workshop will explore a goal focused on
a particular business process, a subject-matter expert should partici-
pate. Likewise, if the goal will pertain to a product launch, then prod-
uct management, marketing, design, and sales stakeholders should
participate. At least one software developer should always
participate.

This workshop works best in small groups of two to five people, but
you can facilitate it with larger groups using breakout sessions. Don’t
forget, GQM is also a great analysis technique to use by yourself!

Preparation and materials

Before the workshop, create a draft goal statement to be used to start
the workshop. Knowing the goal to be explored also helps decide
whether the right participants are invited.

If you and the workshop participants are on-site, all you need is a
large whiteboard and whiteboard markers. Sticky notes are optional
but can be used for brainstorming questions and metrics.

For a distributed, remote workshop, a virtual whiteboard (such as
Miro) is preferable, but any shared document that all participants can



edit (such as Google Docs or Dropbox Paper) can also work. In a
pinch, simple screensharing can also work, but this makes it more dif-
ficult for stakeholders to participate.

Outcomes

By the end of the workshop, you should have:

A goal phrase accepted by all stakeholders
A list of questions that characterize the goal
A prioritized list of metrics, with references to the questions they
help answer
Metrics definitions (formal or informal)
A list of data necessary to compute the metrics

Workshop Steps

The following are general steps you can use to run the workshop:

1. Start by introducing the workshop and sharing ground rules. For
example, “Today we’re going to work together to define metrics
needed to assess the upcoming product launch. Remember to
please treat each other with kindness, consideration, and respect
throughout the workshop.”



2. Write down the goal statement so everyone can see it. If using a
physical whiteboard, leave plenty of space to add questions and
metrics.

3. Invite participants to provide questions: “What questions would
you need to answer to know whether we’ve met this goal?” Gath-
er questions until you run out of time or the group stalls.

4. Pick a question and invite the group to brainstorm metrics that
would answer it. Capture metrics so everyone can see them.

Draw a line from the metric to all questions that metric can an-
swer. Remember, this is brainstorming. Encourage participants
to get creative and not worry yet about how to compute the met-
ric or collect the data. Continue to gather metrics until you run out
of time or the group stalls.

5. Once every question has at least one metric, go back to the goal
and perform a sanity check. Do these metrics help evaluate this
goal? Does the goal need to be rephrased? Are there new goals
that should also be considered? Refine the goal statement if
necessary.

6. Identify the data needed to compute each metric. It may also be
necessary to define metrics more precisely.

7. Prioritize the metrics. There are several ways to do this. Com-
mon approaches include identifying “must-have” metrics, looking
for “big bang for the buck” metrics that answer more than one



question, dot voting, and sorting by value/effort. (You only need
one prioritization technique.)

8. Open the floor for final reflection and observations. Were there
any surprises? Is there consensus about the most important met-
rics? Are there metrics that look problematic or costly?

9. After the workshop, record the outcomes and share them with all
participants. As homework, if necessary, prepare a report that
describes the group’s findings.

Facilitation Guidelines and Hints

Here are some guidelines and hints for facilitating the workshop:

When generating questions and metrics, participants can use
sticky notes for brainstorming, one question per note. Once the
brainstorming has concluded, ask a participant to read the sticky
notes out loud. Cluster them and remove duplicates before mov-
ing on.

Identifying metrics can be tricky! If the group seems stuck, en-
courage “out-of-the-box” thinking by saying something like, “Let’s
not worry yet about how we’ll get the data. Once we know what
metrics we need, we can figure out how to compute them.”
Look for opportunities to reuse metrics or data. Metrics can be
used to answer multiple questions, and the same data might
compute multiple metrics.



For system-focused questions, the architecture will likely influ-
ence your ability to collect data. Someone knowledgeable about
the architecture should participate in the workshop to help as-
sess the cost of data collection.

Don’t forget to take a picture of the GQM tree! This is a quick and
easy way to share the essence of the GQM analysis.

Example

You’ve already seen a few examples of GQM trees, goals, questions,

and metrics throughout this chapter. Figure 10-5 shows the GQM tree
created during a colocated GQM workshop. The goal of this work-
shop was to identify analytics that could be used to flag records for
fraud investigation. Notice that that GQM tree at this stage was fairly
messy!

After the workshop, the facilitator prepared a written summary that
precisely defined the metrics discussed. Stakeholders prioritized the
metrics in a follow-up meeting. In this case, data collection and met-
rics computation were key system requirements that fed directly into
the architecture design and project scope.



Figure 10-5. Example of a GQM tree captured on a whiteboard during a GQM workshop

Conclusion

In my first job after university, I joined a talented team responsible for
assessing a complex, distributed, real-time, safety-critical system. We
collected and used a ton of metrics during that assessment. Our team
leader had a saying: “A metric by itself can only tell you something is
wrong. It can’t tell you what to do about it.” GQM provides the neces-
sary context for deciphering metrics in practice.

As a software architect, I am often in the best position to help teams
measure what matters most to them, especially in situations when



they know the least about what needs to be measured. From one
week to the next, I might find myself contributing to strategic planning,

crafting objectives and key results (OKRs), preparing for a product
launch, assessing a software component’s quality, deciding what to
do about technical debt, or helping teams design and measure a sys-
tem architecture that achieves particular quality attributes.

GQM is a go-to method in my toolbox. It’s useful as an analysis tool
by itself, a coaching tool for teams, and a workshop tool to create
alignment among stakeholders. Whether the intent is to document
metrics or simply to facilitate a discussion about measurement and
data collection, GQM can help. Start with the goal. Ask questions that
allow you to assess the goal. Brainstorm metrics that allow you to an-
swer those questions.

It’s easy to discover good metrics for things you understand deeply,

but the most useful metrics help you measure things you don’t yet ful-
ly understand. Of course, the things we don’t understand are also the
most difficult to measure. GQM can help you navigate these murky
waters.
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Colophon

The animals on the cover of Software Architecture Metrics are moun-
tain treeshrews (Tupaia montana), also known as tupaia. These
treeshrews are plentiful in their native mountainous forests of the is-
land Borneo and not found elsewhere.

Mountain treeshrews live in social groups, possibly dominated by two
males. They forage for arthropods, such as spiders and crustaceans,

and fruits. The IUCN found the mountain treeshrew population to be
stable in 2016 and have rated the species as Least Concern. Many of
the animals on O’Reilly’s covers are endangered; all of them are im-
portant to the world.

The cover illustration is by Karen Montgomery, based on an antique
line engraving from Le Jardin Des Plantes. The cover fonts are Gilroy
Semibold and Guardian Sans. The text font is Adobe Minion Pro; the
heading font is Adobe Myriad Condensed; and the code font is Dalton
Maag’s Ubuntu Mono.
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