

Dmitry Kornilov, Daniel Kec and Dmitry Aleksandrov

Beginning Helidon
Building Cloud-Native Microservices and
Applications

Dmitry Kornilov
Praha, Czech Republic

Daniel Kec
Praha, Czech Republic

Dmitry Aleksandrov
Sofia, Bulgaria

ISBN 978-1-4842-9472-7 e-ISBN 978-1-4842-9473-4
https://doi.org/10.1007/978-1-4842-9473-4

© Dmitry Kornilov, Daniel Kec, Dmitry Aleksandrov 2023

This work is subject to copyright. All rights are solely and exclusively
licensed by the Publisher, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in
any other physical way, and transmission or information storage and
retrieval, electronic adaptation, computer software, or by similar or
dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks,
service marks, etc. in this publication does not imply, even in the
absence of a specific statement, that such names are exempt from the
relevant protective laws and regulations and therefore free for general
use.

The publisher, the authors, and the editors are safe to assume that the
advice and information in this book are believed to be true and
accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, expressed or implied, with
respect to the material contained herein or for any errors or omissions

https://doi.org/10.1007/978-1-4842-9473-4

that may have been made. The publisher remains neutral with regard
to jurisdictional claims in published maps and institutional affiliations.

This Apress imprint is published by the registered company APress
Media, LLC, part of Springer Nature.
The registered company address is: 1 New York Plaza, New York, NY
10004, U.S.A.

This is for my mother.
I miss you…
—Dmitry Kornilov
To my extraordinary wife, who somehow managed to put up with my
endless late-night writing sessions. I love you.
—Daniel Kec
To my parents. They are the real heroes.
—Dmitry Aleksandrov

Introduction
Helidon is a Java framework for developing cloud-native microservices.
Its performance, lightweight approach, and convenient APIs quickly
became popular in the Java community. This book is all you need to get
started with Helidon, and it will teach you how to use it effectively. It’s
written by the Helidon developers, who know best how the framework
is designed to be used. A significant part of the book is dedicated to
MicroProfile APIs and specifications which are explained in detail.

After reading this book, you will be able to do the following.
– Create and consume RESTful services
– Package and deploy your applications to Kubernetes
– Develop observable applications and utilize health checks, metrics,

and tracing
– Secure your services using OpenID Connect
– Work with data
– Make your applications resilient
– Understand and use reactive messaging and reactive streams

Who This Book Is For
This book is for developers and architects who want to start
developing cloud-native applications using Helidon, for developers
interested in developing portable applications using MicroProfile and
Jakarta EE, and those who are looking for preparation materials for
Oracle Helidon Microservices Developer Professional certification.

Helidon Certification
Oracle announced the Helidon Microservices Developer Professional
certification and the corresponding course to prove microservices
development skills. The book authors participated in the exam and the
course development. The book is designed as an additional
preparation material for the certification test. Although the book
covers Helidon version 3.x and the exam is created from the previous
version of Helidon (2.x), it covers all certification topics, provides
additional information, and explains technologies from a different
angle.

You can find more information on the official page at
https://mylearn.oracle.com/ou/learning-
path/become-a-helidon-microservices-developer-
professional/114512.

https://mylearn.oracle.com/ou/learning-path/become-a-helidon-microservices-developer-professional/114512
https://mylearn.oracle.com/ou/learning-path/become-a-helidon-microservices-developer-professional/114512
https://mylearn.oracle.com/ou/learning-path/become-a-helidon-microservices-developer-professional/114512

What This Book Covers
Chapter 1 introduces Helidon and explains its key advantages. It also
discusses two Helidon flavors and explains the differences between
them.

Chapter 2 introduces various tools for bootstrapping creating
Helidon applications such as Helidon CLI, Project Starter, and Maven
Archetypes; explains how to create your first application, build it using
different profiles (executable jars, JLink images, and GraalVM native
images), create a docker image and deploy it to Kubernetes.

Chapter 3 explains how to configure Helidon applications,
introduces MicroProfile Config specification; explains concepts of
config sources, defaults, and profiles; demonstrates integration with
Kubernetes config maps.

Chapter 4 explains observability and why it’s important for
microservices, covers concepts of health checks, metrics, tracing, and
logging, as well as the corresponding MicroProfile specifications.

Chapter 5 explains how to call other services in your Helidon
application. It covers MicroProfile Rest Client and cross-origin
resource sharing (CORS).

Chapter 6 explains how to work with databases, query, and update
data using JDBC and Jakarta Persistence.

Chapter 7 discusses how to make your application resilient using
MicroProfile Fault Tolerance APIs and explains timeout, retry, fallback,
bulkhead, and circuit breaker concepts.

Chapter 8 explains how to secure your applications. It covers
OpenID Connect and MicroProfile JWT RBAC specifications.

Chapter 9 explains how to document your APIs using OpenAPI and
how to automatically generate clients based on it.

Chapter 10 explains how to test your applications using JUnit since
Helidon integrates well with this framework.

Chapter 11 explains how you can schedule tasks in your Helidon
applications.

Chapter 12 explains how well Helidon is integrated with other
technologies like Neo4j, Verrazzano, Coherence CE, and the Kotlin
programming language.

Chapter 13 explains how to use some reactive functionality in your
Helidon applications. It covers MicroProfile Reactive Stream Operators,
MicroProfile Reactive Messaging specifications and integration with
Kafka.

Chapter 14 explains how to use distributed transactions in Helidon
applications. It covers the Saga pattern and MicroProfile LRA
specification.

Chapter 15 introduces Helidon SE - the reactive flavor of Helidon. It
guides you through creating the first Helidon SE application, using
different build profiles (executable jars, JLink images, GraalVM native
images), and deploying it to Kubernetes.

Sample Code
You can access sources of all book samples in the book’s official GitHub
repository at https://github.com/Apress/Beginning-
Helidon.

To compile samples, you need the following tools installed:
– Linux or macOS environment. On Windows we recommend using

Windows Subsystem for Linux (WSL).
– JDK 17
– Maven 3.9.0
– Some samples rely on using utilities like cURL

If you found issues with the sample code, please file it in the issues
tracker at https://github.com/Apress/Beginning-
Helidon/issues.

https://github.com/Apress/Beginning-Helidon
https://github.com/Apress/Beginning-Helidon
https://github.com/Apress/Beginning-Helidon/issues
https://github.com/Apress/Beginning-Helidon/issues

Preface
About This Book
The cloud era we are living in dictates some requirements for
applications. This book is about Helidon—a Java framework designed
for developing cloud-native applications. Helidon collects all
functionality you need to create cloud-native applications which start
fast, has low disk image footprint, and low memory consumption.
Helidon supports modern standards such as MicroProfile and partially
Jakarta EE, which adds a portability aspect to your application,
allowing it to be run on supported runtimes of different vendors.

After reading this book, you will know how to build Java cloud-
native applications using Helidon, understand different options for
packaging applications to a docker container, and deploy them to
Kubernetes. You also learn how to use MicroProfile APIs and Helidon
Reactive APIs.

The book contains many useful recipes, best practices, and
methodologies around each covered topic. It comes with samples
demonstrating the different functionality of Helidon and can be used as
a hands-on reference. The information is given in increasing
complexity order starting from creating a simple RESTful service and
ending up in complicated scenarios with OpenID Connect and
distributed transactions.

Prerequisites
You need to know Java language syntax, semantics, and the basics of
Java functional programming, including lambda functions.

Some book chapters require some basic understanding of the
dependency injection design pattern and Jakarta EE CDI specification.

Some book chapters require understanding reactive programming
concepts, including backpressure, observers, and schedulers.

To run samples, you must have JDK 17 and Maven 3.8.4 installed.
Samples should run fine with the newer versions of Maven, but we used
this version to build them and can guarantee that everything works.
The preferred environment is Linux or macOS with a bash shell. We

recommend using Windows Subsystem for LInux (WSL) if you use
Windows.

Any source code or other supplementary material referenced by the
author in this book is available to readers on the GitHub repository:
https://github.com/Apress/Beginning-Helidon. For more detailed
information, please visit http://www.apress.com/source-code.

Table of Contents
Chapter 1:​ Introduction

Introducing Helidon
Helidon Flavors

Helidon MP
Helidon SE
Which Flavor Should You Use?​

Summary
Chapter 2:​ Your First Application

Generating Your First Application
Helidon CLI
Project Starter
Helidon Maven Archetypes

Analyzing Generated Project
Quickstart Application
Maven Project
CDI
RESTful Web Service

Build and Run
Packaging

Executable JAR
jlink Image
Native Image

Deploying to Kubernetes
Summary

Chapter 3:​ Configuration

Expressions
Programmatic API
Config Sources
Converters

Automatic Converter
Aggregated Properties

Custom Converter
Profiles

Property Level
Config Source Level

Meta Configuration
YAML Config Source
Custom Config Source
Dynamic Config Source
Kubernetes ConfigMap

Environment Variables
Mounted Volume

Summary
Chapter 4:​ Observability

What Is Observability?​
Health

Kubernetes Probes
MicroProfile Health
Adding Health Checks to Your Helidon Application
Built-in Checks
Custom Checks

Metrics
Adding MicroProfile Metrics Support to Your Helidon
Application
Sample Application
MicroProfile Metrics REST API
Metrics Model
Using MicroProfile Metrics API

Tracing
Distributed Tracing
Adding Tracing to Your Helidon Application
Helidon Tracing Implementation
MicroProfile OpenTracing API
Configuration

Logging
Logging in Helidon

Summary
Chapter 5:​ Communicating with Other Services

MicroProfile Rest Client
Integration with MicroProfile Config
Exception Handling
Modifying Requests and Responses
Handling Headers
Asynchronous Operations
Programmatic APIs
MicroProfile Rest Client Conclusion

JAX-RS Client API

Providers
Asynchronous Operations
JAX-RS Client API Conclusion

CORS
Summary

Chapter 6:​ Accessing Data
Low-Level Data Access with JDBC
Working with DataSource
Data Access with JPA

Transactions
Summary

Chapter 7:​ Resiliency
Retry
Fallback
Asynchronous
Timeout
Circuit Breaker
Bulkhead
Fault Tolerance and CDI
Summary

Chapter 8:​ Security
Serving HTTPS
Helidon Security
Basic Authentication
JSON Web Token
MicroProfile JWT RBAC

OpenID Connect
Token Propagation
Configuration of Secrets

AES-GCM Encryption
RSA Encryption
Plain Text Password Detection

Summary
Chapter 9:​ Using OpenAPI

About OpenAPI
Basic Usage

Static OpenAPI Files
Automatic Client Generation
Summary

Chapter 10:​ Testing Your Helidon Application
Testing in Helidon
Testing with JUnit 5

Advanced Usage
Testing with TestNG
Work with Testcontainers

The Other Way Around
Summary

Chapter 11:​ Scheduling Tasks
Scheduling in Helidon
Simple Scheduling in Helidon
Scheduling in Kubernetes
Summary

Chapter 12:​ Integration with Other Technologies
Neo4j

Enabling Metrics and Health Checks
Coherence

Integrating with Helidon
Verrazzano

Deploying the Helidon Wizard Application
Summary

Chapter 13:​ Going Reactive
Reactive Streams
Reactive Operators

Marble Diagrams
MicroProfile Reactive Streams Operators

of
empty
failed
generate
iterate
fromCompletionSt​age
fromCompletionSt​ageNullable
fromPublisher
concat
map
peek
filter
limit

takeWhile
dropWhile
skip
flatMap
flatMapCompletio​nStage
flatMapIterable
onComplete
onError
onErrorResume
onErrorResumeWit​h
onTerminate
cancel
reduce
distinct
findFirst
forEach
ignore
toList
to
via

Helidon Reactive Operators
Reactive Messaging

Channel
Emitter
Message
Acknowledgment

No Acknowledgment
Messaging Health

Messaging Connectors
Kafka Connector

Nack Strategies
JMS Connector

Injected ConnectionFactor​y
Lookup ConnectionFactor​y over JNDI
Destination
Message
javax vs.​ jakarta JMS

WebLogic JMS Connector
WebLogic Destination CDI Syntax
JNDI Destination

Oracle AQ Connector
Single Consumer Queue
Multi-Consumer Queue

Mock Connector
Summary

Chapter 14:​ Long Running Actions (LRA)
LRA Transaction
Context Propagation
Participant

Complete
Compensate
Status

Forget
AfterLRA
Leaving LRA

Non-JAX-RS Participant Methods
Asynchronous Compensation
LRA Coordinator

Narayana LRA Coordinator
MicroTx
Experimental Helidon LRA Coordinator

Online Cinema Booking System
Summary

Chapter 15:​ Helidon SE
Helidon SE Basics
Generating Helidon SE Application

Using Project Starter
Using CLI

Analyzing the Generated Project
Main Method
Creating and Starting a Web Server
Configuration
Routing
RESTful Services
Health Checks
Metrics
Building and Packaging

Other Helidon SE Features

Summary
Index

About the Authors
Dmitry Kornilov
is the Director of Software Development
at Oracle. He leads the Helidon project
and actively participates in Jakarta EE
and MicroProfile communities. Dmitry is
an open source enthusiast and speaker
who has earned the Star Spec Lead and
Outstanding Spec Lead awards.

Daniel Kec
is a Java developer at Oracle working on
the Helidon project. Daniel has been a
Java developer for 15 years and is
currently working at Oracle on the
Helidon project, which enabled him to
tinker with the coolest open source
technologies. While working on reactive
operators, reactive messaging, and Long
Running Actions (LRA) for Helidon was
fun, working with Loom features opens
another chapter for an otherwise
passionate reactive devotee.

Dmitry Aleksandrov
is a software developer at Oracle and a
Java Champion and Oracle
Groundbreaker. He is currently working
on the Helidon project. He is a co-lead of
the Bulgarian Java Users Group and co-
organizer of the jPrime conference.

About the Technical Reviewers
Tomas Langer
is the architect of the Helidon project. He
has been with the project since its
inception. In his career, he has always
been involved with service development,
both hands-on and from an architectural
point of view. He has also been in
architecture and enterprise architecture
roles, focusing on integration, security,
and technology.

David Kral
is a Java software developer on the
Helidon project at Oracle, with more
than seven years of experience
designing and developing Enterprise
Java components and APIs. He is an
active open source contributor, mainly
to project Helidon, but also contributing
to the various related Jakarta EE
projects such as JSON-B, Yasson, and
Jersey.

(1)
(2)

© The Author(s), under exclusive license to APress Media, LLC, part of Springer
Nature 2023
D. Kornilov et al., Beginning Helidon
https://doi.org/10.1007/978-1-4842-9473-4_1

1. Introduction
Dmitry Kornilov1 , Daniel Kec1 and Dmitry Aleksandrov2

Praha, Czech Republic
Sofia, Bulgaria

This chapter covers the following topics.
Understanding cloud-native application
Introducing Helidon
Explaining Helidon flavors
Discovering which flavor is suitable for your application

We live in a cloud computing era, and it dictates its application
design requirements. This book is about building cloud-native
applications.

Note Applications designed to operate in a cloud environment
utilizing all cloud benefits are called cloud native.

The main benefit of the cloud is the ability to scale applications quickly
—something we didn’t have when we hosted applications in data
centers. For example, in the cloud, you can scale up your application
during working hours when it’s intensively used and then scale it down
for the rest of the time. Another example is testing. You can deploy an
extensive testing infrastructure quickly and dispose of it quickly when
your testing is finished. In both instances, you are not paying extra for

https://doi.org/10.1007/978-1-4842-9473-4_1

resources you don’t need. This makes the cloud environment very cost-
efficient when a good application design is used.

So, what makes good cloud-native application design? Well, it
depends on what you want to achieve. The most common scenario is
using microservices deployed on Kubernetes. Microservices
architecture allows you to scale some parts of your application
independently. Kubernetes is a de facto standard container
management system. It can be deployed on-premises or in the cloud.
All big clouds provide managed Kubernetes services. This book does
not discuss Kubernetes setup and microservices architecture. Instead,
it concentrates on the design of individual services.

And what’s the right design for your service? Cloud-native
applications have some specific requirements.

Your application should be containerized. It’s a requirement to make
it run in a Kubernetes environment.
Your application should be observable. It should provide some
telemetry data to help identify and quickly fix problems. For
example, you want to only redirect user requests to a node that has
been fully initialized, or you may want to restart a node running out
of memory. Or you may want to know which operations take more
time to execute for optimization. Observability is not a requirement,
but it makes your life much easier.
Your application should start fast. The sooner you start your node,
the sooner it will serve requests. Time is money.
Your application should consume the least amount of memory
possible. In a typical cloud environment, you pay for RAM. The less
RAM used, the less you pay.
Your application disk image footprint should be as small as possible.
You pay for disk space. The less disk space used, the less you pay. You
are also paying for traffic. The smaller your application, the less
traffic is used.

Java EE was an excellent choice for building on-premises, back-end
applications for years. While it can be used to build cloud-native
applications, it could be better.

It’s like using an LTE phone in a 5G network. Will it work? Yes. Will it
work fast? Indeed. Will it use all the benefits of 5G? No. Will it work as

fast as devices with native 5G support? Certainly not.
There was a need for a new Java framework for building cloud-

native applications to compete with Spring Boot. This is why Oracle
started working on the Helidon framework.

Introducing Helidon
A product name should reflect its purpose and trigger proper brain
associations. “Bulldog” or “Elephant” would not be good names. We
wanted a name that could convey something small, lightweight, and
fast, like a bird. “Swallow” would be a perfect fit. Wikipedia says it has
“a slender, streamlined body and long pointed wings, which allows for
great maneuverability and… very efficient flight.” Perfect for darting
through the clouds. We wanted to know how swallow sounded in other
languages. In Greek, for example, it’s Χελιδό νι. We slightly changed it
and proposed Helidon to the team. There were other options, but
Helidon was the clear winner.

Here is a one-sentence description: Helidon is a set of Java libraries
for developing cloud-native services. This definition is very general,
and it is challenging to understand all its nuances. But if someone asks
what Helidon is, it’s a good answer. It’s clear and doesn’t include any
confusing subatomic and supersonic concepts.

Helidon was designed to achieve the following high-level goals.
Performance by design
Cloud-native
Embrace Java SE
Compatibility with modern Enterprise Java standards
Support GraalVM Native Image

The first goal is very clean. The whole Helidon design is done with
performance in mind. The core of Helidon is the reactive web server
built on top of Netty.

Note Netty is an asynchronous event-driven network application
framework for rapidly developing maintainable high-performance
protocol servers and clients. (See more at https://netty.io.)

https://netty.io/

The reactive non-blocking implementation allows Helidon to achieve
impressive performance numbers. Oracle’s performance tuning team
worked closely with us to tune Helidon’s performance, and our users
are happy with the results.

The cloud-native goal is listed second, but it’s a primary goal.
Helidon is created as a tool for developing cloud-native applications. It
provides a fast start-up time, low memory consumption, a small disk
footprint, and all other cloud-native application features listed in the
previous section.

The third goal is embracing Java SE. Embrace in this context means
several things. We are trying to quickly adopt the latest Java versions
and use new Java features. For example, Helidon is fully modularized
and leverages jlink advantages. We heavily use the Flow API and rely on
java.util.logging. Another advantage is minimizing the number
of third-party dependencies. We do not use third-party libraries if the
same functionality is achievable using pure JDK. As a result, we only
depend on half of the Internet, and the Helidon application footprint
becomes reasonably tiny. Also, it saves time for our corporate
customers who need legal approvals for all third-party dependencies
used in their applications.

Note Helidon keeps the number of third-party dependencies low
by design.

And the fourth goal is compatibility with modern Enterprise Java
standards. There are two standards in the Enterprise Java world now:
Jakarta EE and MicroProfile. Helidon fully supports MicroProfile and
partially Jakarta EE. Why? Because the standards are reducing entropy.
Systems built on standards are portable and highly maintainable.
Developers get APIs, and the development experience they are used to,
and architects get confidence that the system will be upgradable and
supportable. Jakarta EE is a successor of Java EE. It makes Helidon a
good choice for migrating old Java EE-based applications to
microservices. All supported specifications are covered later in the
book.

GraalVM Native Image creates a native executable from your Java
application. With GraalVM Native Image, you don’t need JVM anymore.

Your application will be compiled into one executable file. It starts in
milliseconds and consumes less RAM, making it perfect for cloud-
native applications, mainly functions. Supporting GraalVM Native
Image became a standard feature for modern microservices
frameworks like Quarkus and Micronaut. Even Spring, with its runtime
nature, now supports it with Spring Native. Helidon is not an exception.
It supports the native image in all flavors. Jumping ahead a bit, it’s
worth mentioning that Helidon makes it possible to use CDI (including
portable extensions) with the native image. Other frameworks usually
don’t support it because of the runtime nature of CDI extensions.

The work that ultimately became Helidon started in 2017, but there
were several prototypes before the main design concepts were shaped.
The primary focus was made on reactive APIs. It was a popular concept
allowing us to achieve excellent performance. It was inspired by Netflix
—like most other reactive frameworks at the time. We wanted to
create a lightweight set of libraries that didn’t require any application
server runtime, allowing your application to be a standard Java SE
application. These libraries could be used separately from each other,
but when used together, they would provide everything a developer
needs to create a cloud-native service.

Note Helidon is an open source product hosted on GitHub at
https://github.com/helidon-io/helidon and licensed
under the Apache 2.0 license.

The open source model is now the obvious choice for modern
frameworks and libraries. It gives users transparency and the ability to
check our progress and provide contributions.

Note Oracle requires all external contributors to sign the Oracle
Contributor Agreement (OCA) to get their contributions accepted.
It’s an easy process. You can find more details about it at
https://oca.opensource.oracle.com/.

Helidon Flavors

https://github.com/helidon-io/helidon
https://oca.opensource.oracle.com/

Helidon flavors are different APIs providing different development
experiences you can use to develop your application.

For example, imagine that you are playing a computer game. Your
goal is to kill the last boss and save the planet. When you start playing,
you must choose your character, and you have several options, like
warrior or sorcerer. The gaming mechanics of these two are different.
Warrior is a melee character with a sword, and a sorcerer uses magic
and range attacks. Despite that, you can finish the game and kill the
final boss using any of them.

In this example, the game is an application you are developing, and
the characters you choose to play are the different programming
approaches you can choose. Helidon offers two characters, called
flavors.

Note Helidon has two flavors: Helidon MP and Helidon SE.

To better understand the differences, let’s look at two snippets of code.
Both implement a simple RESTful service that returns “Hello World”
when a Get request is sent to the /hello endpoint.

Listing 1-1 shows how it looks in Helidon MP.

@Path("hello")
@ApplicationScoped
public class HelloWorld {
 @GET
 public String hello() {
 return "Hello World";
 }
}

Listing 1-1 Helidon MP Code-Style Sample

Listing 1-2 shows how it can be done in Helidon SE.

Routing routing = Routing.builder()
 .get("/hello", (req, res) ->
res.send("Hello World"))
 .build();

WebServer.create(routing)
 .start();

Listing 1-2 Helidon SE Code-Style Sample
The differences are collected in Table 1-1.

Table 1-1 Helidon Flavors Comparison

Helidon MP Helidon SE

Declarative style APIs Functional style APIs

Blocking, synchronous Reactive, non-blocking

Small memory footprint Tiny memory footprint

Annotations are heavily used No annotations

Jakarta Contexts and Dependency Injection (CDI) No dependency injection

Full support of MicroProfile and partial support of
Jakarta EE

No Enterprise Java standards
support

The flavors are a logical consequence of the Helidon design (see
Figure 1-1).

Figure 1-1 Helidon architecture

Helidon SE forms a high-performance lower level, and Helidon MP
is built on top of it. It explains why both flavors pretty much provide
the same functionality. A Helidon feature is implemented in Helidon SE,
and a thin adapter layer is built in Helidon MP. It helps to achieve high
performance.

Helidon MP
Helidon MP is a flavor that supports modern Enterprise Java standards.
It’s designed for ease of use and provides a Spring Boot-like
development experience with heavy usage of dependency injection,
annotations, and other magic. As a drawback, you have less control
because the framework does many things automatically. This drawback
should not be considered a showstopper. It’s a relatively small
limitation, but it’s still worth mentioning to make this book fair.

Referring to the game sample, Helidon MP is a sorcerer. Magic
makes him a powerful opponent. Magical attacks are solid and magical
shields are effective. It’s easy to play as a sorcerer, even without a
complete understanding of the nature of magic.

Modern Enterprise Java Standards
Jakarta EE is a new name for Java EE since it’s been transferred to
its new home at the Eclipse Foundation. As of this writing, it
contained 40 individual and three platform specifications. There are
specifications Enterprise Java developers use on almost every single
project, such as CDI, JAX-RS, and JSON-P/B, as well as new
specifications, such as Jakarta EE Core Profile and Jakarta Config.
Jakarta EE is supported by major industry players such as Oracle,
IBM, RedHat, Payara, and Tomitribe. Jakarta EE always cared about
backward compatibility and stability, making it a perfect fit for
enterprise applications. (See more at https://jakarta.ee.)

MicroProfile is a collection of open source community-driven
specifications designed to help build cloud-native applications using
Enterprise Java. It makes it an excellent extension to Jakarta EE.
MicroProfile is an Eclipse Foundation project using a specification
process derived from Eclipse Foundation Specification Process
(EFSP). Unlike Jakarta EE, MicroProfile has a faster release cadence
delivering three releases per year: one major and two minor. Fast
innovations and staying at the edge of modern technologies often
mean breaking backward compatibility. Although preserving
backward compatibility is not a goal, MicroProfile tries to minimize
the number of backward incompatible changes and follows the
semantic versioning model to deliver breaking changes only in

https://jakarta.ee/

major releases. More information can be found on MicroProfile’s
official web page at https://microprofile.io.

As shown in Figure 1-2, Helidon MP supports the whole MicroProfile
5.0 platform, which includes ten specifications and eight Jakarta EE
specifications which include Jakarta CDI and Jakarta RESTful Web
Services (former JAX-RS). CORS and gRPC are two components not
covered by any specifications; they are Helidon-specific.

Figure 1-2 Helidon MP components

There are different opinions about what MP in Helidon MP means.
Some people think that MP comes from MicroProfile. But there is also
another opinion that MP means Magic Powered.

Helidon SE
I already said that Helidon is based on the reactive web server built on
Netty. It forms a reactive, non-blocking flavor called Helidon SE.
Reactive Programming is a big topic that deserves a whole book. It is
discussed briefly in Chapter 15.

Helidon SE features APIs based on Java SE Flow API. It intensively
uses the Builder pattern, fluent APIs, and lambdas. Neither annotations

https://microprofile.io/

nor dependency injection is used. We say, “No magic involved.” The
produced code is very clean, and you have complete control over what
the code is doing because the framework doesn’t generate any code at
a build or run time. It naturally makes Helidon SE a perfect fit for
GraalVM Native Image. A drawback is that more coding is required.
Also, reactive programming is not easy to use. Is this drawback big? It
depends on your programming experience. If you are familiar with
reactive programming, it’s small. If not, it’s bigger.

The reactive web server APIs are inspired by Express. It makes
Helidon SE a good choice for JavaScript developers who want to switch
to Java.

Note Express is a fast, unopinionated, minimalist web framework
for Node.js. (See more at https://expressjs.com.)

Referring to our game example, Helidon SE is a warrior with fast dual-
wield short swords and no armor. Light weight allows him to move fast
and quickly dodge enemy attacks. With the dual-wield weapon, he can
hit his enemy twice as fast. But to use it effectively, you as a player need
to know how to play for this character. One wrong move, one slow
reaction, and your warrior is dead.

Which Flavor Should You Use?

Note Your application must be either a Helidon MP application or
a Helidon SE application.

You can use Helidon SE functionality in your Helidon MP applications,
but not vice versa. It’s a consequence of Helidon’s design. Helidon SE
belongs to a lower layer and isn’t aware of Helidon MP’s existence. Also,
most Helidon MP features require an initialized CDI container which
doesn’t exist in Helidon SE by design. Referring to my game example,
you cannot play with two characters simultaneously. But your sorcerer
can use a dagger sometimes when magic is not efficient enough.

A good example of using Helidon SE functionality in Helidon MP is
reactive messaging (covered in Chapter 13).

https://expressjs.com/

So which flavor should you use in your application? When in doubt,
use Helidon MP.

Tip If you don’t know which flavor to use, use Helidon MP.

Table 1-2 is a collection of recommendations.

Table 1-2 Helidon Flavors Recommendations

Use Helidon MP Use Helidon SE

• You don’t know what flavor to
choose.
• You want to use CDI and other
MicroProfile or Jakarta EE APIs.
• You are migrating from the existing
Java EE/Jakarta EE application.
• You are a Spring Boot or Java EE
developer and want a similar
development experience.

• Performance achieved by heavy usage of
concurrency is your primary goal.
• You want to have complete control of
your application.
• You have experience with reactive
programming.
• Your application deals with uploading
files.
• Your application is not CDI based, and
you are not planning to use any
MicroProfile and Jakarta EE APIs.

This book is mainly about Helidon MP, but Helidon SE is briefly
covered in Chapter 15.

Summary
Applications designed to operate in a cloud environment utilizing all
cloud benefits are called cloud native.
Helidon is a set of Java libraries for developing cloud-native services.
Helidon comes in two flavors: Helidon MP (declarative style APIs
implementing MicroProfile and some Jakarta EE specifications) and
Helidon SE (reactive, non-blocking APIs).

If you don’t know which flavor to use, use Helidon MP.

(1)
(2)

© The Author(s), under exclusive license to APress Media, LLC, part of Springer Nature 2023
D. Kornilov et al., Beginning Helidon
https://doi.org/10.1007/978-1-4842-9473-4_2

2. Your First Application
Dmitry Kornilov1 , Daniel Kec1 and Dmitry Aleksandrov2

Praha, Czech Republic
Sofia, Bulgaria

This chapter covers the following topics.
Creating a Helidon application using Project Starter, a command-line interface (CLI), or
Maven archetypes
Building an executable JAR, jlink-optimized JVM, and GraalVM Native Image
Making a Docker image and deploying it to Kubernetes

This is the first practical chapter offering hands-on coding. It’s interesting how book-
writing methods have evolved. In the early 1990s, technical books were quite boring to read.
The authors didn’t care much about making the book entertaining. Studying is work, and work
is challenging. Reading books requires thinking about every sentence and understanding the
author’s words. It was difficult, but it forced your brain to work. Now it’s changed. Technical
books try to be easy and fun to read while delivering the same amount of pure knowledge.
These books are also easier and more fun to write. We want to make our book easy to read;
this short introduction is part of “making it fun.”

Generating Your First Application
What’s the first thing a developer starting with Helidon should do? Create a project and start
coding, of course. Let’s do that now.

Tip There are three ways to create a new Helidon project: a command-line interface
(CLI), Project Starter, or Maven archetypes.

Helidon CLI
Helidon CLI is a command-line utility that simplifies your work with Helidon. Using CLI, you
can create a project based on provided templates. It also has a feature called developer loop.
When a source code change is detected, it automatically recompiles and restarts your
application. We’ll take a deeper look at it later. Now, let’s install CLI and generate our first
project.

First, you must ensure that JDK 17 and the latest version of Maven are installed. To check it,
type java -version and mvn -version in your terminal. You should have an output
similar to the following.

$ java -version

https://doi.org/10.1007/978-1-4842-9473-4_2

java version "17.0.2" 2022-01-18 LTS
Java(TM) SE Runtime Environment (build 17.0.2+8-LTS-86)
Java HotSpot(TM) 64-Bit Server VM (build 17.0.2+8-LTS-86, mixed
mode, sharing)

$ mvn -version
Apache Maven 3.8.6 (84538c9988a25aec085021c365c560670ad80f63)
Maven home: /usr/local/Cellar/maven/3.8.6/libexec
Java version: 18.0.1.1, vendor: Homebrew, runtime:
/usr/local/Cellar/openjdk/18.0.1.1/libexec/openjdk.jdk/Contents/Home
Default locale: en_RU, platform encoding: UTF-8
OS name: "mac os x", version: "12.5", arch: "x86_64", family: "mac"

If not, please install JDK and Maven. Detailed instructions on how to do this can be found on
the Internet.

Now, let’s install CLI. Installation commands depend on the operating system you are using.
Use the following if you are on macOS.

curl -O https://helidon.io/cli/latest/darwin/helidon
chmod +x ./helidon
sudo mv ./helidon /usr/local/bin/

Use the following if you are on Linux.

curl -O https://helidon.io/cli/latest/linux/helidon
chmod +x ./helidon
sudo mv ./helidon /usr/local/bin/

If you are on Windows, you must run PowerShell as administrator and execute the
following command.

PowerShell -Command Invoke-WebRequest -Uri
"https://helidon.io/cli/latest/windows/helidon.exe" -OutFile
"C:\Windows\system32\helidon.exe"

Type helidon in your command prompt to test that CLI has been installed. A screen with
short instructions should confirm the successful CLI setup.

$ helidon

Helidon command line tool

Usage: helidon [OPTIONS] COMMAND

Options

 -D<name>=<value> Define a system property
 --verbose Produce verbose output
 --debug Produce debug output
 --plain Do not use color or styles in output

Commands

 build Build the application
 dev Continuous application development
 info Print project information
 init Generate a new project
 version Print version information

Run helidon COMMAND --help for more information on a command.
When CLI is installed, it’s time to generate your first project and see what’s been generated.

Use the init command to initiate the process.

$ helidon init

You are asked questions about a project you want to generate. The first question is about a
Helidon flavor to use in your project.

| Helidon Flavor

Select a Flavor
 (1) se | Helidon SE
 (2) mp | Helidon MP
Enter selection (default: 1):2

You want to use the MP flavor, so type 2 in the command prompt.
The next question is about the type of project to generate.

| Application Type

Select an Application Type
 (1) quickstart | Quickstart
 (2) database | Database
 (3) custom | Custom
Enter selection (default: 1):1

There are three options.
Quickstart generates a Maven project with all dependencies, Dockerfiles, Kubernetes
application descriptors, and a simple greeting service application containing a sample of a
RESTful service and all needed bootstrap code. If you plan to develop a RESTful service, it’s a
good option.
Database is the best option if your application works with databases. The generated project
contains all needed third-party dependencies, configuration files, and bootstrap code.
Custom offers more choices and allows fine-grained customization of your project. It asks
about the media support you want and whether you want to enable metrics, health checks,
and tracing. Also, it asks about database support and allows you to choose between
Hibernate and EclipseLink.

Let’s use the Quickstart template. Type 2 in the command prompt.
The next question concerns a JSON library you want to use in your project. There are two

options.
Jackson is a popular library for binding Java classes to JSON objects. It’s the default choice.
JSON-B is Jakarta JSON Binding specification implementation. To be more specific, Yasson is
used. Choose this option if you want to be fully standards-compliant.

https://github.com/FasterXML/jackson
https://jakarta.ee/specifications/jsonb/2.0/
https://github.com/eclipse-ee4j/yasson

Let’s use JSON-B for this sample application.

Select a JSON library
(1) jackson | Jackson
(2) jsonb | JSON-B
Enter selection (default: 1): 2

And the last series of questions is about the Maven coordinates and Java package names to
use. Feel free to use defaults for this sample. You should change it to a real application.

Project groupId (default: me.dmitry-helidon):
Project artifactId (default: quickstart-mp):
Project version (default: 1.0-SNAPSHOT):
Java package name (default: me.dmitry.mp.quickstart):

Switch directory to /Users/dmitry/quickstart-mp to use CLI

Start development loop? (default: n):

Tip Development Loop is a CLI mode that keeps your application running and observes
its source code for changes. When changes are detected, your application is automatically
recompiled and restarted.

Use the CLI helidon dev command to start the development loop.

You can use batch mode if you want one command to generate your project. In batch mode,
you answer all questions in the init command parameters.

You can use the following command to generate the same project.

helidon init --batch --flavor MP --archetype quickstart

A complete list of parameters can be found on the help page for the helidon init
command.

helidon init --help

Project Starter
Project Starter is a web application allowing the generation of Helidon projects (see Figure 2-
1). It has the same features as the CLI described in the previous section.

To open the Project Starter, open https://helidon.io/starter in your browser or
press the Starter button at the top of the Helidon home page at https://helidon.io.

https://helidon.io/starter
https://helidon.io/

Figure 2-1 Project Starter
Project Starter guides you through multiple steps where you should select an

option/feature you want to include in your project. The number of steps can vary depending
on your previous choices. Still, you can click Download at any stage to fill all unvisited pages
with defaults and download a zip file containing the generated project.

Helidon Maven Archetypes
Another method of generating a Helidon project is using Maven archetypes. Helidon provides
Maven archetypes for all options offered by CLI.

The following shows how to generate the same Quickstart application using CLI.

mvn -U archetype:generate -DinteractiveMode=false \
 -DarchetypeGroupId=io.helidon.archetypes \
 -DarchetypeArtifactId=helidon-quickstart-mp \
 -DarchetypeVersion=3.0.0 \
 -DgroupId=me.dmitry-helidon \
 -DartifactId=quickstart-mp \
 -Dpackage=me.dmitry.mp.quickstart

A complete list of Maven archetypes and corresponding CLI options are in Table 2-1.

Table 2-1 Helidon Maven Archetypes and Corresponding CLI Options

Maven
Archetype

CLI Option Description

helidon-bare-
mp

--flavor MP --
archetype bare

Helidon MP application with minimum dependencies

helidon-
quickstart-mp

--flavor MP --
archetype quickstart

Sample Helidon MP project that includes multiple REST
operations (greeting service) (It is analyzed later in this chapter.)

helidon-
database-mp

--flavor MP --
archetype database

Helidon MP application that uses JPA with in-memory H2
database

helidon-bare-se --flavor SE --
archetype bare

Minimal Helidon SE project suitable to start from scratch

helidon-
quickstart-se

--flavor SE --
archetype quickstart

Sample Helidon SE project that includes multiple REST
operations (greeting service)

helidon-
database-se

--flavor SE --
archetype database

Helidon SE application that uses Helidon DBClient with in-
memory H2 database

Analyzing Generated Project
Quickstart Application
Congratulations! You just created your first Helidon application. This simple but fully
functional greeting service can greet the world and a given user. It allows you to customize the
greeting, fully supports health checks, metrics, and tracing, uses externalized configuration,
and contains a Docker build file and Kubernetes deployment descriptor. It’s a great candidate
to bootstrap your bigger service.

You can see a full REST API description with invocation samples in Table 2-2.

Table 2-2 Quickstart Application REST API

Endpoint Description and Sample

GET /greet

Greets the world
curl -X GET http://localhost:8080/greet

{"message":"Hello World!"}

GET
/greet/{user}

Greets the specified user
curl -X GET http://localhost:8080/greet/Dmitry

{"message":"Hello Dmitry!"}

PUT
/greet/greeting

Changes the greeting
curl -X PUT -H "Content-Type: application/json" -d '{"greeting" :
"Hola"}' http://localhost:8080/greet/greeting

curl -X GET http://localhost:8080/greet/Dmitry

{"message":"Hola Dmitry!"}

GET /health
Health check
curl -s -X GET http://localhost:8080/health

GET /metrics Metrics in Prometheus format
curl -s -X GET http://localhost:8080/metrics

Metrics in JSON format

Endpoint Description and Sample

curl -H 'Accept: application/json' -X GET
http://localhost:8080/metrics

Listing 2-1 shows what’s been generated.

$ tree quickstart-mp/
quickstart-mp
 app.yaml ①
 Dockerfile ②
 Dockerfile.jlink ③
 Dockerfile.native ④
 pom.xml ⑤
 README.md
 src
 main
 java
 me
 dmitry
 mp
 quickstart
 GreetingProvider.java ⑥
 GreetResource.java ⑦
 Message.java
 SimpleGreetResource.java
 package-info.java
 resources
 META-INF
 beans.xml ⑧
 microprofile-config.properties ⑨
 native-image
 reflect-config.json ⑩
 application.yaml
 logging.properties
 test
 java
 me
 dmitry
 mp
 quickstart
 MainTest.java ⑪
 resources
 application.yaml

Listing 2-1 Generated Quickstart Application Source Code

① Kubernetes deployment descriptor
② Dockerfile to build a Docker image with your application running on standard Java
runtime
③ Dockerfile to build a Docker image with your application running on custom Java
runtime (jlink image)
④ Dockerfile to build a Docker image with your application’s native image

⑤ Maven project
⑥ Application scoped Jakarta Enterprise bean
⑦ JAX-RS resource serving REST requests
⑧ CDI bean archive descriptor
⑨ Configuration properties of the Quickstart project
⑩ Configuration file for fine-tuning GraalVM native image build
⑪ Example JUnit test

This small application includes everything you need to build a fully functional RESTful web
service, test it, package it as a Docker image, and deploy it to Kubernetes. This chapter
explains how to do it, starting with analyzing the GreetingResource class representing a
RESTful web service.

Maven Project
The Maven pom.xml is created automatically as part of Quickstart application generation. It’s
clean and straightforward. It can be opened with all IDEs supporting Maven projects. As heavy
IntelliJ Idea users (this book is written in IntelliJ!), we can confirm that it opens without
problems.

There is only one dependency required to build a MicroProfile application.

<dependency>
 <groupId>io.helidon.microprofile.bundles</groupId>
 <artifactId>helidon-microprofile</artifactId>
</dependency>

It’s a bundle containing all dependencies required by the MicroProfile platform. It makes
sense to use it during your application development phase.

If you don’t use all MicroProfile features, you can minimize the dependencies, decreasing
your application footprint. In this case, you can use the helidon-microprofile-core bundle,
which contains only a minimal set of dependencies, and add all other dependencies manually.

<dependency>
 <groupId>io.helidon.microprofile.bundles</groupId>
 <artifactId>helidon-microprofile-core</artifactId>
</dependency>

CDI
Jakarta Contexts and Dependency Injection (CDI) is a key part of all MicroProfile applications.
It wires all components altogether and enables injection in users' applications. Helidon MP is a
big CDI container that starts automatically when your application starts.

Jakarta Contexts and Dependency Injection (CDI)
CDI is a dependency injection (DI) specification. It’s a part of Jakarta EE and used to be a
part of Java EE earlier. CDI is heavily annotation based. It allows users to define beans,
manage their life cycle using contexts, and inject them to other managed beans using
constructor injection, field injection, or setter injection. In addition to that, CDI offers other
valuable features such as interceptors, decorators, and event notifications. It’s highly
customizable and integration-friendly. CDI provides functionality similar to what Spring
Dependency Injection (Spring DI) does. There are several CDI implementations on the
market. Helidon MP is using Weld (https://weld.cdi-spec.org).

https://weld.cdi-spec.org/

The best way to learn about CDI is to read the specification itself. You can find it here:
https://jakarta.ee/specifications/cdi/3.0/jakarta-cdi-spec-
3.0.html.

The injection works only with CDI-managed beans. If CDI does not manage your class, you
won’t be able to inject it.

The easiest way to make your class a CDI-managed bean is to assign it a scope by
annotating it with @RequestScoped, @ApplicationScoped, or @Dependent.

A @RequestScoped bean’s life cycle is tied to an HTTP request life cycle. It’s a singleton
per request. A new object is created for each HTTP request and shared with other objects
within this request life cycle.

@ApplicationScoped beans are singletons. They are created once and shared with
other objects in your application.

A @Dependent bean’s life cycle is tied to the bean it is injected into. These beans are not
singletons. A new instance is created for every injection point and never shared.

Listing 2-2 shows how the injection is used in our Quickstart application.

@ApplicationScoped ①
public class GreetingProvider {
 ...
 @Inject ②
 public GreetingProvider(
 @ConfigProperty(name = "app.greeting") String message) {
 ...
 }
 ...
}

Listing 2-2 CDI Usage in GreetingProvider.java

① It makes this class a singleton. It’s created only once, and this instance gets injected into
other objects.
② It’s an example of constructor injection. A configuration property gets injected into the
constructor. The configuration is discussed in Chapter 3.

@RequestScoped ①
public class GreetResource {
 ...
 @Inject ②
 public GreetResource(GreetingProvider greetingConfig) {
 ...
 }
 ...
}

Listing 2-3 CDI usage in GreetingResource.java

① This class is instantiated on every HTTP request (different requests == different
instances).

https://jakarta.ee/specifications/cdi/3.0/jakarta-cdi-spec-3.0.html
https://jakarta.ee/specifications/cdi/3.0/jakarta-cdi-spec-3.0.html

② It is another example of constructor injection. An instance of GreetingProvider is
injected as a constructor parameter. Remember that GreetingProvider is an application
scoped, so the same instance is injected when a new instance of GreetResource is
created.

Tip If you need to run some code when your application starts, you can create an
observer in one of your managed beans that observes the initialization of the application
scope. Initialization of the application scope is exactly when your application starts.

void onAppStart(@Observes @Initialized(ApplicationScoped.class)
Object ignoredEvent) {
 ...
}

RESTful Web Service
The greeting service is a RESTful web service. Helidon MP is a MicroProfile implementation,
and MicroProfile relies on the Jakarta RESTful Web Services specification for creating RESTful
services.

Jakarta Restful Web Services (JAX-RS)
JAX-RS is a Jakarta EE specification defining APIs to work with web services using the
Representational State Transfer (REST) architectural pattern. It’s heavily annotation based
and well-integrated with CDI. There are many JAX-RS implementations currently on the
market. The top three of them are Jersey, RESTeasy, and Apache CXF. Helidon MP is using
Jersey.

To learn more about JAX-RS, visit
https://jakarta.ee/specifications/restful-ws. You can find links to the
specification documents there.

JAX-RS uses annotations to configure the request’s path (@Path) and HTTP method (@GET,
@POST, @PUT, etc.). If the incoming request is matched, the annotated method is executed.
There are many possible variations and combinations, so you have a lot of flexibility.

@Path("/greet")
@RequestScoped
public class GreetResource { ①
 ...
 @GET
 @Produces(MediaType.APPLICATION_JSON)
 public Message getDefaultMessage() { ②
 ...
 }

 @Path("/{name}")
 @GET
 @Produces(MediaType.APPLICATION_JSON) ③
 public Message getMessage(@PathParam("name") String name) {
 ...

https://jakarta.ee/specifications/restful-ws

 }

 @Path("/greeting")
 @PUT
 @Consumes(MediaType.APPLICATION_JSON)
 @Produces(MediaType.APPLICATION_JSON)
 @RequestBody(...)
 @APIResponses(...)
 public Response updateGreeting(Message jsonObject) { ④
 ...
 }
 ...
}

Listing 2-4 JAX-RS Usage in GreetingResource.java

① This is the request scoped CDI bean serving requests on the /greet URI.
② This method is invoked on the GET /greet endpoint and returns JSON.
③ This method is invoked on the GET /greet/{name} endpoints and returns JSON. Valid
URIs include /greet/Dmitry, /greet/Daniel.
④ This method is invoked on the PUT /greet/greeting endpoint. It returns and
consumes JSON. It also contains two OpenAPI annotations for REST API documentation:
@RequestBody and @APIResponses. OpenAPI is covered in Chapter 9.

Build and Run
To build the project, you must change the directory to where your pom.xml is located and run
this command.

mvn package

Tip You can also build your project with the CLI helidon build command.

Helidon builds an executable JAR by default. The different packaging options are discussed
later on in this chapter. For now, it’s important to know that the JAR is located at
target/quickstart-mp.jar and it’s executable. Let’s run it.

$ java -jar target/quickstart-mp.jar

When the server starts, you can find interesting information in the output, like which port
it runs on or which features are active.

... Server started on http://localhost:8080 (and all other host
addresses) in 1742 milliseconds (since JVM startup).
... Helidon MP 3.0.0 features: [CDI, Config, Health, JAX-RS,
Metrics, Open API, Server]

Now let’s trigger some greeting application endpoints to see that the application is
appropriately functioning. You need to keep the server running, so you must open another
terminal window or tab.

Let’s test the default greeting first.

$ curl -X GET localhost:8080/greet
{"message":"Hello World!"}

The following is the personalized greeting.

$ curl -X GET localhost:8080/greet/Reader
{"message":"Hello Reader!"}

You also try to change the greeting. The curl command is listed in Table 2-2.

Packaging
A Helidon application has three package options.

An executable JAR is the default packaging for Java applications, optimized for Docker
layers.
A jlink image is a custom Java Runtime Environment (JRE) with just the modules the
application requires.
A native image is a binary natively compiled executable for lightning-quick startup.

Executable JAR
An executable JAR file is the default packaging when building a project using Maven. It’s
activated if no additional profiles are specified.

mvn package

Tip You can also build your project with the CLI helidon build command.

We use the Hollow JAR approach. It means that the JAR file contains only your application code.
All third-party runtime dependencies are collected in the lib subdirectory of the directory
where the application JAR is produced.

In our Quickstart application, the JAR is built in the target directory, and all third-party
dependencies are collected in target/libs.

The Hollow JAR approach works very well with Docker layering. A Dockerfile (automatically
generated as part of the project creation) creates a separate layer for the application JAR, and
all application dependencies are stored in the libs directory. Despite the application,
dependencies are not changing often, allowing the layer to build once and not rebuild every
time a Docker image is created. Also, a layer with the application becomes very small, which
helps reduce network traffic and the application deployment time.

To build the Docker image, run the following command.

docker build -t quickstart-mp .

It creates a quickstart-mp Docker image. To run it, use the following command.

docker run --rm -p 8080:8080 quickstart-mp:latest

jlink Image
JRE distribution is quite big. Your application most probably is not using all Java features.
There is a way to create a custom (smaller) Java runtime image that includes only your

application’s functionality. It can be done using the jlink utility, which is included in JDK.

Warning Not all Java distributions provide JDK modules needed for custom JRE
generation. Before using the Helidon JLink profile, ensure these modules are present by
running ls $JAVA_HOME/jmods. If nothing is listed, you don’t have it installed. RPM-
based distributions provide *.jmod files in separate java-*-openjdk-jmods
packages. Debian-based distributions only provide *.jmod files in the openjdk-*-jdk-
headless packages.

Helidon provides a special build profile to simplify working with it. It uses Java Platform
Module System (JPMS) and some advanced analysis to make it work even with automatic
modules, which is not the case by default. You can invoke it using the following command.

mvn package -Pjlink-image

Tip You can also build a jlink image using CLI: helidon build --mode JLINK.

The result of executing this command is the target/quickstart-mp-jri directory. It
contains a self-contained custom image of your application, including your application itself,
its runtime dependencies, and the JDK modules it depends on. You can start it using the
following command.

./target/quickstart-mp-jri/bin/start

The image also includes a class data sharing (CDS) archive, which improves startup
performance and in-memory footprint but doesn’t improve the disk footprint. It increases it to
get these performance optimizations. The increase can be significant—many megabytes. The
size of the CDS archive is always reported at the end of the build output.

Helidon provides an option to disable CDS archive creation. It makes sense if your goal is to
keep the disk footprint as small as possible.

mvn package -Pjlink-image -
Djlink.image.addClassDataSharingArchive=false

To build a Docker image containing your custom JRE, use the Dockerfile.jlink
included with the Quickstart.

docker build -t quickstart-mp-jri -f Dockerfile.jlink .

This does a full build inside the Docker container. It might take time to download some
Maven dependencies. When finished, you will have a quickstart-mp-jri Docker image in
your local Docker repository.

The following starts the application.

docker run --rm -p 8080:8080 quickstart-mp-jri:latest

Native Image
When you run your Java application, you must install the Java Runtime Environment (JRE).
Your application is compiled to a byte code which is executable by JRE. JRE is a native

application on a platform you are using. There are versions for Linux, Windows, macOS, and
other operating systems.

GraalVM is a Java runtime that comes with many additional features. One of these features
is the ability to compile Java byte code into a native executable. This feature is called Native
Image.

There are several advantages users get when they use native images.
Native applications start almost instantly.
Disk footprint is smaller than JRE plus your compiled application. Also, it’s just one file that
is simple to transfer.
Memory footprint is also lower as much metadata is not needed at runtime for fully native
code.

These advantages don’t come for free. There are also some limitations.
GraalVM native compiler must know about all invocations of functionality allowing you to
read or modify class information at run time. It includes all usages of Reflection API, byte
code manipulations, and usages of sun.misc.Unsafe, and so on. It can complicate your
work, especially if this functionality is used in third-party dependencies needed by your
application.
It takes significant time to build.
Native image is compiled statically and doesn’t use any runtime optimizations. For long-
running services, it may make more sense to use HotSpot VM, which optimizes your
application at run time. With these optimizations, your application will eventually
overperform the same application running as a native image.

Helidon supports two approaches to building a native image.
Local build using locally installed GraalVM
Using Docker

Local Native Image Build
This approach uses locally installed GraalVM. Before building, you need to ensure that GraalVM
and native image components are installed and the GRAALVM_HOME variable points to the
Contents/Home/ directory inside your GraalVM installation. It should be something like the
following.

export GRAALVM_HOME=/opt/graalvm-ce-21.3.0/Contents/Home/

To verify that GraalVM is installed correctly, run the following command.

$GRAALVM_HOME/bin/native-image --version

It should display the GraalVM version. If it doesn’t, you must play more with your GraalVM
installation.

Now let’s build a native image.

mvn package -Pnative-image

Tip You can also build a native image using CLI: helidon build --mode NATIVE.

The build may take several minutes. When finished, you can find your native executable in the
target directory and run it as you usually run native applications.

./target/quickstart-mp

Docker Native Image Build
This method builds a native image inside a Docker container. The result is a Docker image
based on scratch with just the native binary. You don’t need to install GraalVM locally, but you
need to have Docker installed.

To build it, run the following command.

docker build -t quickstart-mp-native -f Dockerfile.native .

The first time you run it, it takes a while because it downloads all the Maven dependencies
and caches them in a Docker layer. Subsequent builds are much faster.

The build result is the quickstart-mp-native Docker image. You can verify it using the
docker images command.

$ sudo docker images
REPOSITORY TAG IMAGE ID CREATED SIZE
quickstart-mp-native latest 18a7c74dd257 47 seconds
ago 95.6MB

Start your native application in Docker using the following command.

docker run --rm -p 8080:8080 quickstart-mp-native:latest

Deploying to Kubernetes
Now let’s look at deploying your application to Kubernetes. If you don’t have a cloud
Kubernetes cluster, you can install minikube or Docker Desktop on your local computer. It
would be enough for deploying our Quickstart application.

Kubernetes deployment descriptor app.yaml was generated as part of the project
creation. So now, all you have to do is deploy your application.

First, let’s make sure that your cluster is up and running.

kubectl cluster-info
kubectl get nodes

If you see any errors on the screen, your cluster is not functional. You need to spend some
time fixing it.

Now let’s ensure you’ve built a Docker image containing your application.

docker images

Make sure that quickstart-mp exists in the command output. If not, you should build
your Docker image as described in the “Executable JAR” section.

Tip If you want to deploy jlink or native image containers, change the image property in

app.yaml to quickstart-mp-jri or quickstart-mp-native accordingly.

Run the following to deploy your application.

kubectl create -f app.yaml

Deployment may take some time, but it shouldn’t take much. Keep executing kubectl
get pods until you see the quickstart-mp pod status as RUNNING.

You need to find the port it’s running on to test that the application is functional. Look at
the result of the following command; note the PORT(S). The second port number is what you
need to use.

kubectl get service quickstart-mp
NAME TYPE CLUSTER-IP EXTERNAL-
IP PORT(S) AGE
quickstart-
mp NodePort 10.108.202.98 <none> 8080:30324/TCP 3m50s

For example, if the port is 30324, run the following command.

curl -X GET http://localhost:30324/greet

To remove your application from Kubernetes, run the following command.

kubectl delete -f app.yaml

Summary
Helidon provides a convenient way to bootstrap your application using Project Starter, CLI,
and Maven Archetypes.
You can build an executable JAR, custom jlink image, and GraalVM Native Image.
Helidon MP application is CDI-ready.
Building a Docker image containing your application is easy, thanks to the provided
Dockerfiles.
Kubernetes deployment descriptor is generated automatically on project creation.

(1)
(2)

© The Author(s), under exclusive license to APress Media, LLC, part of Springer Nature 2023
D. Kornilov et al., Beginning Helidon
https://doi.org/10.1007/978-1-4842-9473-4_3

3. Configuration
Dmitry Kornilov1 , Daniel Kec1 and Dmitry Aleksandrov2

Praha, Czech Republic
Sofia, Bulgaria

This chapter covers the following topics.
Using MicroProfile Config in Helidon-based microservices
Understanding the concept of config sources
Integrating with Kubernetes config maps
Configuring arrays or collections
Using defaults, profiles, and expressions

Your microservice needs to be configurable. Why? Because any deployment
depending on hard-coded values makes your service non-portable. Imagine a
character from the sorcerer game. When you want to send him for a quest, you
equip him with various potions and weapons most suitable for the quest he is
being sent for. But if you couldn’t? If the sorcerer has hard-coded inventory, he is
probably only good for some quests. It’s the same with a well configurable service;
you can deploy it anywhere without rebuilding and repackaging it just because the
name of the database differs. And what would you do when moving your service
from the test environment to production? You would not want to rebuild the
application just to change connection credentials, right? Java has its own tooling for
configuration. You know about System.getProperties() and
System.getenv(). These properties are a great way for providing configuration
over the command line.

By invoking the Java application with java -DorcSlayingPotions=5 -
jar mySorcerer.jar, you can set the property and retrieve the value inside the
application with the simple call
System.getProperty("orcSlayingPotions"). It works great until you
want it to do more, such as overriding the default values, resolving placeholders, or
switching quickly, based on the environment profile. But what if there is a tool to do
that, which can map your properties to the right type and inject them where you
need them the most? Let’s introduce you to the Helidon MicroProfile configuration

https://doi.org/10.1007/978-1-4842-9473-4_3

implementation. Let’s call it “Config” from now on. It’s used by many other Helidon
features and is mentioned quite often later in this book.

As Helidon MP provides CDI, you can effortlessly inject the config properties
directly into your beans; no special setup is required.

@ApplicationScoped
public class SorcererBean {
 @Inject
 public SorcererBean(
 @ConfigProperty(name="sorcerer.orcSlayingPotions",
 defaultValue = "0") ①
 Integer orcSlayingPotions){ ②

Listing 3-1 Default Value Definition with the @ConfigProperty Annotation

① The default values are always defined as strings. The converter used for
values coming from a config source is also applied to defaults.
② This injects the config property to the bean constructor with CDI.

If you inject the property without providing a default value and if the property is
not found in any of the available config sources, the NoSuchElementException
error is thrown during deployment. But don’t worry, for optional properties, you
can use one of the following nullable data types.
org.eclipse.microprofile.config.ConfigValue
Optional<TheType>

Expressions
Sometimes, the same value needs to be used by several configuration properties or
compiled from several others. In such cases, expressions become helpful for
composing property values from other property values. Expressions help you avoid
duplicities in the configuration and define context related defaults.

sorcerer.level=30
sorcerer.name=Merlin
sorcerer.title=${sorcerer.name}_${sorcerer.level:15} ①

Listing 3-2 Expression with a Default Value in a Properties File

① Notice the default value of 15 for the sorcerer.level expression.

In Listing 3-2, the sorcerer’s title is Merlin_30. However, if the
sorcerer.level property is missing, the default expression value is used, and
the title becomes Merlin_15. Expressions are extremely handy for composing
database connection strings or JAAS configs directly in a config file.

Programmatic API
When CDI injection is not available, programmatic API saves the day. All the
goodness works the same way as with the injected config properties. You can
access org.eclipse.microprofile.config.Config as a singleton.

Integer orcSlayingPotions =
 ConfigProvider.getConfig()
 .getValue("sorcerer.orcSlayingPotions",
Integer.class);

Listing 3-3 Obtaining a Configuration Property over the Programmatic API

Or, simply inject the config to your bean with @Inject Config. This method
allows you to manually access the available properties from all config sources. And
what is that Config source? That is the place where property values come from!

Config Sources
The first thing MicroProfile Config does is it looks for the available config sources.
Config sources provide properties that are retrievable in your application. Each
config source has a special ordinal number that defines the order in which a
property is resolved. If the config sources contain the same property, the one with
the higher ordinal number is used. This feature provides an elegant way to override
the properties when required. The following three default config sources are
defined by the specification.

All META-INF/microprofile-config.properties files on the classpath
with the default priority ordinal number 100.
Environment variables with the default priority ordinal number 300 override
the same properties in the property files. The environment variable key names
are not case-sensitive, non-alphanumeric, and interchangeable with
underscores. For example, the SORCERER_ORCSLAYINGPOTIONS key is
resolved when sorcerer.orcSlayingPotions has no candidate in
environment variables.
System properties (our -Dsorcerer.orcSlayingPotions=5 also works
here and has a default priority ordinal number 400). So, it overrides the same
properties from all the other default config sources.

Figure 3-1 shows that multiple default config sources supply the
sorcerer.orcSlayingPotions property with different values. You already
know that the property from the config source with the highest ordinal is injected.
In our example, SorcererBean gets five orcSlayingPotions, no invisibility
cloak, and as weapons—an axe and a sword. Properties from all the config sources
are merged, and duplicities are resolved according to the source ordinal.

Figure 3-1 Injecting config properties from various config sources with priority expressed by
ordinals. The property with the same key from the config source with the highest ordinal is
injected

Priorities of the default config sources aren’t set in stone. You can change the
priority from within with a special config key config_ordinal. For example, if
you need to add another JAR on the classpath with the properties file overriding the
one in the main JAR, you can make the file’s priority higher with the help of this
special key, like this: config_ordinal=105.

Looking at the weapons configuration in Figure 3-1, you quickly recognize an
array. By default, arrays are delimited with commas. A config array can be injected
as a list, set, or an array of the desired type.

@Inject
public SorcererBean(
 @ConfigProperty(name="sorcerer.weapons")
 String[] weaponsArray, ①
 @ConfigProperty(name="sorcerer.weapons")
 List<String> weaponsList, ②
 @ConfigProperty(name="sorcerer.weapons")
 Set<String> weaponsSet{ ③

Listing 3-4 Configuration Properties Injected into a Bean Constructor

① Weapons injected as an array
② A list of strings

③ A set of strings

Converters
Every config value is treated as plain text and converted to the desired type by a set
of built-in and custom converters, no matter from which config source the value is
loaded. The converter is selected according to the target property type, as shown in
Figure 3-2.

Figure 3-2 The converter for parsing the text value of a given property is selected by the type of
the injection point

The built-in converters cover all the basic types you can think of—numbers,
boolean values, characters, class references, dates, and patterns.

Boolean: true, 1, YES, Y, and ON are converted as true; all other values as
false.
Numbers: Basically, all primitive and boxed Java types that represent numbers
are supported; a dot is parsed as a decimal separator.
Date and Time: LocalDate, Duration, Period, Instant, and many other
types are supported.
Others: Path, File, URL, URI, Charset, Pattern, and many other types are
supported.

Is that enough? Because you have just started!

Automatic Converter
Any custom type can be automatically converted with the automatic converter, if
the custom type provides one of the following:

Has the method public static T of(String val)
Has the method public static T valueOf(String val)
Has the method public static T parse(CharSequence val)
Has a public constructor with a single String parameter

An automatic converter is applied if no custom converter is registered for the
custom type.

Aggregated Properties
You can group properties logically. It is easier to understand and work with such a
configuration. In the case of config files with a flat structure, such as the properties
file, you can achieve grouping based on a common prefix.

sorcerer.orcSlayingPotions=68
sorcerer.invisibilityCloak=false
sorcerer.weapons=axe,sword

Listing 3-5 Properties with a Common Prefix

Grouping is much easier in tree-structured formats such as YAML. Let’s use the
word readable but stay neutral in the never-ending YAML flame war.

sorcerer:
 orcSlayingPotions: 68
 invisibilityCloak: false
 weapons: axe,sword

Listing 3-6 YAML Properties with a Common Prefix

Injecting such grouped properties one by one adds quite a clutter to our Orc
slaying business code.

@Inject
public SorcererBean(
 @ConfigProperty(name="sorcerer.orcSlayingPotions")
 int potions,
 @ConfigProperty(name="sorcerer.invisibilityCloak")
 boolean cloak,
 @ConfigProperty(name="sorcerer.weapons")
 List<String> weapons)

Listing 3-7 Injection of Each Separate Property To a Bean Constructor

In this code, you would group such properties under the same Java object
anyway; something such as SorcererProperties sounds nice. You can leave
the work of filling the properties in the object to the config.

@ConfigProperties(prefix="sorcerer")
public class SorcererProperties {
 @ConfigProperty(name="orcSlayingPotions") int potions;
 boolean cloak;
 List<String> weapons;
}

Listing 3-8 Properties with a Common Prefix Grouped to a Common Bean

Notice the CDI config bean; the property names are derived from the field
names unless overridden with annotations. Our SorcererProperties can be
injected as if it was a standard CDI bean, so you can inject it wherever you want and
access all the grouped properties inside.

@Inject
public SorcererBean(@ConfigProperties SorcererProperties
 sorcererProperties)

Listing 3-9 Properties Bean Injected to a Bean Constructor

Custom Converter
If all the converters mentioned until now don’t solve your use case, you can still
create your own custom Config converter and register it over the service locator.

You can create a converter to convert JSON, which is saved as a property value.
Let’s say that in our example, Orcs are configured in such a way.

app.jsonOrc={"orcName":"Scullcrack", "level":"34"}

Listing 3-10 Property with a Raw JSON Value

But you would like to inject the property value as
jakarta.json.JsonObject directly, so our business code doesn’t get cluttered
with all the JSON parsing. Let’s create a custom converter for this purpose; it’s just
a class implementing
org.eclipse.microprofile.config.spi.Converter.

@Priority(101) ①
public class JsonConverter implements Converter<JsonObject>{

 private static final JsonReaderFactory JSON =
 Json.createReaderFactory(Collections.emptyMap());

 @Override
 public JsonObject convert(String value) {
 return JSON.createReader(new StringReader(value))
 .readObject();
 }
}

Listing 3-11 Custom JSON Converter for Parsing Properties with JSON as the Value

① If multiple converters for the same type are available, the one with the
highest priority is used; 100 is the default priority.

Note A converter gets registered as a service provider. If you are working on a
classpath-based project, create a provider-configuration file with
my.package.JsonConverter as its content.

META-
INF/services/org.eclipse.microprofile.config.spi.Converte
r
Config runtime finds your converter over the service loader facility.

Don’t forget to use module-info.java when registering a service
provider in a JPMS module-based project. Just add the provides
org.eclipse.microprofile.config.spi.Converter with
my.package.JsonConverter; clause to module-info.java.

You can test our brand-new custom converter directly within the JAX-RS resource.
You can see how easy it is to inject our converted value directly where needed.

@Path("/jsonOrc")
public class OrcResource {

 private JsonObject jsonOrc;

 @Inject
 public OrcResource(@ConfigProperty(name =
"app.jsonOrc")
 JsonObject jsonOrc) {
 this.jsonOrc=jsonOrc;
 }

 @GET
 @Produces(MediaType.APPLICATION_JSON)
 public JsonObject getJsonOrc() {
 return jsonOrc;
 }

}

Listing 3-12 JAX-RS Resource with the Directly Injected Converted Property
Configuration converters are powerful tools for keeping the boilerplate

configuration code cleanly separated from the sorcerer business.

Profiles
Production or not that is the question! It’s quite a typical situation when you have
the test environment and production one.

Do you remember the Dieselgate emissions scandal? It’s a good example of a
configuration profile. The car control units have been programmed to operate the
engines with lower emissions when tested in the laboratory. For the control units, a
whole set of parameters had to change depending on whether the car was in the
laboratory or on the highway. Let’s try to achieve that with Helidon Config.

The first thing is setting the profile itself with the mp.config.profile
property. You can set the property over any of the used config sources. For example,
as an environment variable export MP_CONFIG_PROFILE=TEST or use the -
Dmp.config.profile=TEST property.

java -Dmp.config.profile=TEST -jar myCarControlUnit.jar

Listing 3-13 Running Helidon with Profile TEST

Config profiles can be used at the Config source level by switching whole
configuration files or at the property level using prefixed properties.

Property Level
At the property level, the property prefixed with % followed by the profile name
gets precedence over the other properties with the same key.

%PROD.engine.emission.control=false ①
%TEST.engine.emission.control=true ②
engine.emission.control=false ③

Listing 3-14 Properties Specific for a Given Profile

① false wins if the PROD profile is active
② true wins if the TEST profile is active
③ false wins if there is no active profile

Config Source Level
At the Config source level, whole config files are included if the file name matches
the selected profile. If the config file microprofile-config-<PROFILE
NAME>.properties exists on the classpath in the META-INF folder and the

proper profile is active, the properties are merged. When the same properties are
present in both files, values from the file with an active profile in its name take
precedence.

META-INF/
 microprofile-config.properties
 microprofile-config-TEST.properties

Listing 3-15 Property file specific for a given profile

But let’s get back to our example of the Orc hunting adventure. You may decide
to deploy our already built game artifact with a different config source setup. For
that, you need something more powerful: meta configuration.

Meta Configuration
Configuration files packed inside your JAR file are practically immutable. All your
settings in those config sources are written in stone. You can override its values
with system properties or environment variables, but you must rely on the
priorities already defined somewhere deep in your JAR package. Helidon has an
extra feature for redefining configuration outside the artifact, called the meta
configuration. It’s one place to configure the config sources in the way you want,
which overrides any existing implicit or explicit setting except the one created
with the programmatic API.

Note This is a Helidon-specific feature.

After the mp-meta-config.yaml or the mp-meta-config.properties file
is found on the classpath, in the current directory, or discovered in an externally
specified location, configuration sources are organized according to it. You can
specify the location of the meta config file either with the
io.helidon.config.mp.meta-config property or the
HELIDON_MP_META_CONFIG environment variable.

Meta configuration supports YAML and the properties file formats. Let’s take a
look at the YAML example mp-meta-config.yaml.

add-discovered-sources: true ①
add-discovered-converters: true
add-default-sources: true

sources:
 - type: "environment-variables"
 - type: "system-properties"
 - type: "properties" ②

 classpath: "weapons.properties"
 ordinal: 50 ③
 optional: true
 - type: "yaml"
 path: "/config/orc-army.yaml"

Listing 3-16 Meta Configuration

① Include or exclude implicit sources or converters.
② Explicitly define the sources.
③ Define the config source priority.

You can change the priority ordinals and choose to use the default sources or
the custom sources. Even excluding custom converters or adding some optional
config sources is possible.

YAML Config Source
On top of the built-in config sources mandated by the MP specification, Helidon
provides other convenient config sources. For example, loved by many and cursed
by many others: the YAML configuration.

Note This is a Helidon-specific feature.

Unlike with the MP default property file, Helidon looks for files named
application.yaml in the root of the classpath. The default priority 200
overrides the properties in the MP default property file but gets overridden by the
system properties and the environment variables.

sorcerer:
 invisibilityCloak: false
 orcSlayingPotions: 2
 weapons:
 - "axe"
 - "sword"

Listing 3-17 YAML Configuration File

The sequences feature is the most notable in the YAML format when you
compare it with properties. You can express sequences in YAML either in the flow
style or the block style.

amulets: ["Hearth of Zeard", "Spider's eye"] ①
weapons: ②
 - "axe"
 - "sword"

Listing 3-18 Sequence Styles in YAML Files

① Flow style sequence
② Block style sequence

The Helidon YAML config source maps sequences as a config array. Even though
all config sources can also declare arrays with comma-separated values, you can
still declare an array with a simple text value: weapons: "axe,sword".

The YAML null value is converted as a missing property. The
NoSuchElementException is thrown when such a property is injected directly.
This feature aligns nicely with the default properties config source, which can
define a null value only with a missing property or an empty value.

sorcerer.invisibilityCloak= ①
#sorcerer.invisibilityCloak=2

Listing 3-19 Empty Property in YAML File

① There is no null in the properties file. An empty value or a missing property
behaves like a null value.

sorcerer:
 invisibilityCloak: null ①
 orcSlayingPotions:
 #ghoulSlayingPotions: 2

Listing 3-20 Null Property in YAML File

① YAML has a special null value

But remember, you can always specify the default value or inject optional
@ConfigProperty(name = "sorcerer.invisibilityCloak")
Optional<Boolean> cloak, and then decide what to do with the null during
runtime.

To use the YAML config source, you need the following dependency, which is
already part of the Helidon MicroProfile bundle.

<depencency>
 <groupId>io.helidon.config</groupId>
 <artifactId>helidon-config-yaml-mp</artifactId>
</depencency>

Listing 3-21 Maven Dependency for the YAML Configuration Support

Custom Config Source
There is always a use case when YAML or properties are just not enough. Whether
you need to get your configuration from some exotic database, a super secure

binary file, or a very complicated XML document, you can always create your own
config source. This new config source only needs to provide the property values
based on the key, a list of available keys, an ordinal number for priority resolution,
and the config source name. All the logic can fit in one class implementing a single
interface org.eclipse.microprofile.config.spi.ConfigSource.

Let’s try it with a simple config source providing entries of the hard-coded map
as configuration properties. To make it more interesting, set one of the properties
as a JSON value, so let’s try our config source with the custom JsonConverter
created earlier in this chapter.

public class CustomConfigSource implements ConfigSource {
 private static final Map<String, String> props =
Map.of(
 "sorcerer.orcSlayingPotions", "55",
 "app.jsonOrc",
 """
 {"orcName":"Bonecrash", "level":"28"}
 """
);
 @Override
 public int getOrdinal() {return 105;} ①
 @Override
 public Set<String> getPropertyNames() {
 return props.keySet();
 }
 @Override
 public String getValue(String key) {
 return props.get(key);
 }
 @Override
 public String getName() {
 return "custom-sorcerer-map"; ②
 }
}

Listing 3-22 Custom Config Source

① Priority of the new custom config source.
② Source name used by the ordering logic.

The process of registration is very similar to that used for custom converters.
You need to register our implementation as a service provider.

Note If you are working on a classpath-based project, create the provider-
configuration file with my.package.CustomConfigSource as its content.

META-
INF/services/org.eclipse.microprofile.config.spi.ConfigSo
urce
The config runtime finds your converter over the service loader facility.

Don’t forget to use module-info.java when registering a service
provider in a JPMS module-based project. Just add the provides clause to
module-info.java.

provides org.eclipse.microprofile.config.spi.ConfigSource
with my.package.CustomConfigSource;

Dynamic Config Source
So far, you have looked at configuration as it is an immutable data source. The only
way to re-inject your config property with a new value would be to restart the
Helidon application. But config sources can provide mutable properties. Most of
the built-in file-based config sources support mutability. With the file-based config
sources, you can use a built-in change watcher or polling with custom intervals.

You can try out the dynamic config source with the custom JsonConverter
created earlier so you know for sure it all works together nicely. First, let’s create a
configuration file on the file system.

helidon.config.watcher.enabled: true ①
app.jsonOrc: '{"orcName":"Scullcrack", "level":"37"}' ②

Listing 3-23 Dynamically Loaded Configuration

① The dynamic source needs to register a watcher or use polling. When it is first
loaded, use a change watcher.
② The app.jsonOrc property requires a conversion with the custom
converter.

As the dynamic config file is somewhere on the file system, you must register it
with meta config, so Helidon knows where to look for it. Let’s create the mp-meta-
config.yaml file in the working directory.

add-discovered-converters: true ①
sources:
- type: "yaml"
 path: "./dynamic-config.yaml" ②
 optional: false

Listing 3-24 Meta Configuration for the Dynamic Config Source

① Uses the custom JsonConverter

② The path to the dynamically changing config file
Now, you just need to inject the config value. However, injection is done only

once in a singleton bean, right? It’s not very practical for a dynamically changing
configuration. You have to inject java.util.function.Supplier instead of
the actual value.

@ConfigProperty(name = "app.jsonOrc") Supplier<JsonObject>
jsonOrc

Listing 3-25 Injecting a Dynamically Loaded Configuration Property

This way, you can get the actual value each time you call jsonOrc.get(). The
change watcher reloads the config source each time it changes, and new values are
cached. There is no need to worry about supplier invocation reading the file each
time. The second possibility is polling. You can just configure the interval you want
the config source to reload.

helidon.config.polling.enabled: true ①
helidon.config.polling.duration: PT5S ②
app.jsonOrc: '{"orcName":"Scullcrack", "level":"37"}'

Listing 3-26 Dynamically Polled Configuration

① Use polling for dynamic source reloading.
② Poll every five seconds. The duration is expressed in the ISO-8601 format.

The properties used for enabling change watching or polling are not
dynamically interpreted, despite being a part of the dynamically reloaded config.
You can’t change the polling interval dynamically.

Note While the dynamic config sources are part of the MicroProfile
specification, polling and change watching are Helidon features.

Kubernetes ConfigMap
Kubernetes ConfigMap is a convenient tool for distributing configuration in the
Kubernetes cluster. Properties from the ConfigMap can be made accessible from
the pod by mapping them to the container environment variables or mounting
them as configuration files directly to the file system.

Environment Variables
The easiest way to propagate Kubernetes ConfigMap to your application is over
environment variables. As Helidon Config uses these variables as a default config
source, you do practically nothing from the application side. Kubernetes maps to
the pod’s OS level, and Helidon Config takes over from there.

apiVersion: v1
kind: ConfigMap
metadata:
 name: my-sorcerer-config
data:
 SORCERER_ORCSLAYINGPOTIONS: 68 ①
 APP_JSONORC: '{"orcName":"Sharpteeth","level":"22"}' ②

apiVersion: v1
kind: Pod
metadata:
 name: my-sorcerer-pod
spec:
 containers:
 - name: my-sorcerer-container
 image: my-sorcerer-app
 envFrom:
 - configMapRef:
 name: my-sorcerer-config ③

Listing 3-27 K8s ConfigMap Propagated to Helidon As Environment Variables

① The SORCERER_ORCSLAYINGPOTIONS environment variable is propagated
to the my-sorcerer-app config as the sorcerer.orcSlayingPotions config
property.
② The environment variable APP_JSONORC is propagated to the my-sorcerer-
app config as app.jsonOrc.
③ This is a reference to ConfigMap as the environment variables source.

Mounted Volume
Sometimes the flat structure of the environment variables is just not enough.
Kubernetes ConfigMap can specify the configuration that should be mounted to the
container’s file system as a config file. You can mount your favorite configuration
format, whether it’s a properties file, YAML, or JSON, to the folder of your choice.

apiVersion: v1
kind: ConfigMap
metadata:
 name: my-sorcerer-config
data:
 my-sorcerer-app-config.yaml: | ①
 app.jsonOrc: '{"orcName":"Sharpteeth", "level":"22"}'
 sorcerer:
 orcSlayingPotions: 68
 invisibilityCloak: false

 weapons: axe,sword

apiVersion: v1
kind: Pod
metadata:
 name: my-sorcerer-pod
spec:
 containers:
 - name: my-sorcerer-container
 image: my-sorcerer-app
 volumeMounts:
 - mountPath: /config ②
 name: config-volume
 volumes:
 - name: config-volume
 configMap:
 name: my-sorcerer-config

Listing 3-28 K8s ConfigMap Propagated to Helidon over the Configuration File on the Mounted
Volume

① The name of the resulting config file
② The path of the mounted folder containing the resulting my-sorcerer-
app-config.yaml file

In my-sorcerer-app, you need to set up the meta config mp-meta-
config.yaml file to specify the location of the mounted configuration file.

sources:
 - type: "yaml"
 path: "/config/my-sorcerer-app-config.yaml" ①
 ordinal: 250 ②
 optional: true ③

Listing 3-29 Mounted Configuration File Usage with Meta Config

① The path to the mounted config file.
② The priority over the default config file on the classpath.
③ This value is optional, so you can run the application without the mounted file
when required.

From the start, the Helidon config is designed for use in the microservice
environment. You can see how every feature converges to the same goal of
minimizing the needed boilerplate code related to the configuration in your
microservice application.

Summary

Microservices need to be configurable.
Config sources are available for every occasion.
Use ordinals in the config sources to make overriding possible.
No need to stick with YAML; create your own config source.
Converters solve parsing or deserializing.
Work with dynamically changing configuration without restarting your service.
Integration with Kubernetes ConfigMap makes your application truly cloud-
native.

(1)
(2)

© The Author(s), under exclusive license to APress Media, LLC, part of Springer Nature 2023
D. Kornilov et al., Beginning Helidon
https://doi.org/10.1007/978-1-4842-9473-4_4

4. Observability
Dmitry Kornilov1 , Daniel Kec1 and Dmitry Aleksandrov2

Praha, Czech Republic
Sofia, Bulgaria

This chapter covers the following topics.
Understanding observability
Understanding health checks
Adding metrics support to Helidon applications
Using tracing in Helidon applications
Configuring logging in Helidon

You’ve possibly heard this word many times and already know it has some importance for
microservices. You also understand that it’s somehow related to monitoring or telemetry. This chapter
explains what observability means, how it differs from monitoring and telemetry, which observability
features are included in Helidon, and how to use them.

What Is Observability?
The term observability comes from control theory. Control theory deals with algorithms driving a dynamic
system to a desired state optimally using sensor data. A dynamic system is observable if its state at every
moment in time can be determined by analyzing the outputs of external sensors. The system is not
observable if data collection from external sensors doesn’t give a complete picture of the state or if this
data is ambiguous. The anti-lock braking system (ABS) is a good sample. It detects a wheel lock using a
sensor, and a special algorithm unlocks the wheel repeatedly to provide the most efficient brake.

For computer systems, this definition is as follows: “Observability is the ability of a service to expose
data externally that reflects its internal behavior.”

It means that the service provides enough data for admins to understand what’s happening. One may
say that it’s precisely what monitoring does. It’s considered that the difference is that, unlike observability
which provides data for all possible use cases, monitoring operates with only a predefined set of data and
monitors only known use cases. It places observability at a level higher than monitoring.

Telemetry is all remotely collected data from the system for monitoring. The word combines two Greek
roots: tele, meaning “remote,” and metron, meaning “measure.” So, it’s a remote measurement. For example,
Formula 1 teams are collecting telemetry data from the cars in the race to detect some engine failures.
Technically, telemetry assumes only gathering and transferring the data. Monitoring tools do data analysis.
One can say that monitoring tools in the past were also doing some remote data collection, and telemetry
word was never used. Yes, that’s right. Telemetry became a buzzword thanks to the OpenTelemetry project,
which standardizes collecting metrics from cloud-based systems. OpenTelemetry aims to provide the full
cross-platform, cloud-native observability stack. And here comes the confusion. The OpenTelemetry
project is about observability, and telemetry only collects remote data.

There are four main areas of observability.
Health determines that the service is on, ready to serve requests, and reacting as expected using simple
requests returning true or false.
Metrics collects data for monitoring, such as the number of times a method is called, average execution
time, and so forth.
Tracing collects the steps of each request processing with additional details such as call durations.

https://doi.org/10.1007/978-1-4842-9473-4_4

Logging stores important information about internal service machinery.

Health
The primary purpose of health checks is to provide an API allowing external automated management
systems to check if your application is available and ready to serve requests. Based on returned data, the
management system decides whether it should forward requests to this node or decommission and
replace it with another node.

Health checking is essential to guarantee that your whole system operates smoothly. Requests should
not be forwarded to nodes that cannot process them; otherwise, your users could see failing or hanging
requests.

Note Health checks are designed to be used by automated systems. Human operators could use it, but
it’s not the typical use.

Kubernetes Probes
To get the application status, the Kubernetes node agent sends probes to some defined application
endpoints, which return UP (status 2xx) or DOWN (status 5xx). It may also optionally return some
additional information to help identify the issue.

The application may perform multiple checks to define its state. Each check returns UP or DOWN, and
the final response is determined by combining all checks results with a logical AND operator. Meaning that
the response is DOWN if at least one check returns DOWN.

Table 4-1 Kubernetes Probes

Probe Description

Startup Determines whether your application has started. If configured, the node agent only triggers other probes once the
startup probe succeeds.

Readiness Determines whether your application is ready to serve requests. Requests are only forwarded to your application
if the readiness check succeeds.

Liveness Determines whether your application faced some critical issue like out of memory or threads deadlock and must
be restarted or decommissioned.

MicroProfile Health
Helidon implements MicroProfile Health specification, which defines APIs and REST endpoints to work
with health checks in Java applications. The spec version implemented by Helidon may vary depending on
the Helidon version. Helidon 3.x supports MicroProfile Health 3.1.

Microprofile Health
MicroProfile Health is an open-source specification developed by the MicroProfile working group. Its
goal is to standardize how microservices report their health status using REST endpoints. You can get
more information from the spec document or the spec API sources.

The spec defines four REST endpoints (see Table 4-2).

Table 4-2 MicroProfile Health REST API

Probe(s) URI Method Status

Startup /health/started GET
200 - UP
503 - DOWN
500 - ERROR

Readiness /health/ready GET 200 - UP
503 - DOWN

https://download.eclipse.org/microprofile/microprofile-health-3.1/microprofile-health-spec-3.1.html
https://github.com/eclipse/microprofile-health

Probe(s) URI Method Status

500 - ERROR

Liveness /health/live GET
200 - UP
503 - DOWN
500 - ERROR

Startup + Readiness + Liveness /health GET
200 - UP
503 - DOWN
500 - ERROR

The probe URLs must be configured in the container section in your application Kubernetes
deployment descriptor app.yaml (see Listing 4-1).

livenessProbe: ①
 httpGet:
 path: /health/live ②
 port: 8080
 periodSeconds: 3

readinessProbe: ③
 httpGet:
 path: /health/ready ④
 port: 8080
 periodSeconds: 3

startupProbe: ⑤
 httpGet:
 path: /health/started ⑥
 port: 8080
 periodSeconds: 3

Listing 4-1 Configuring Health Probes in app.yaml

① Liveness probe configuration
② Liveness probe URL
③ Readiness probe configuration
④ Readiness probe URL
⑤ Startup probe configuration
⑥ Startup probe URL

Now let’s look at what MicroProfile Health REST API endpoints return. They return your application
health status in JSON format. It has the same schema for all types of probes. For example, Listing 4-2
depicts a JSON entity returned by a liveness check, returning status 200 (UP).

{
 "status": "UP", ①
 "checks": [②
 {
 "name": "firstCheck", ③
 "status": "UP", ④
 "data": { ⑤
 "key": "foo",
 "foo": "bar"
 }
 },
 {
 "name": "secondCheck", ⑥
 "status": "UP" ⑦
 }

]
}

Listing 4-2 A Sample Health Check Status

① Probe status. UP if all checks return UP or no checks defined, DOWN otherwise
② An array with all checks for this probe (It can be empty)
③ Name of the first check
④ Status of the first health check. It can be UP or DOWN
⑤ Optional object containing additional data for this check
⑥ Name of the second health check
⑦ Status of the second health check status

MicroProfile specification also defines an API for adding custom health checks to your application,
which is explained later in this chapter. Now, let’s look at how to enable MicroProfile Health support in your
Helidon application.

Adding Health Checks to Your Helidon Application
If you want to add health checks support to your existing project, manually add dependencies to your
Maven project.

Using Project Starter
The easiest way is to use Project Starter to generate a project with health support.

The following explains what you need to do.
1. Open Project Starter at https://helidon.io/starter.
2. Select Helidon MP on the Helidon Flavor screen and click Next.
3. On the Application Type screen, select Custom and click Next.
4. On the Media Support screen, keep Jackson selected or select JSON-B if you want to comply with the

MicroProfile platform. Click Next.
5. On the Observability screen, select Health Checks. You may also select other offered options like

Metrics and Tracing.
6. Click Download to generate your project, or go through the rest of the steps to continue configuration.
Using CLI
You need to have Helidon CLI installed, as explained in Chapter 2.

Start new project generation using the helidon init command. CLI and Project Starter use the same
configuration wizard. Answer questions as explained earlier. Once you finish the configuration wizard, and
you get a project with health check support generated.

Adding Dependencies Manually
If you want to add health checks support to your existing project, manually add dependencies to your
Maven project.

The easiest option is using the helidon-microprofile bundle, which contains helidon-
microprofile-health as a transitive dependency.

<dependency>
 <groupId>io.helidon.microprofile.bundles</groupId>
 <artifactId>helidon-microprofile</artifactId>
</dependency>

https://helidon.io/starter

If you don’t want to depend on the bigger helidon-microprofile bundle, you can add Health
support manually by adding the following dependencies to your pom.xml.

<dependency>
 <groupId>io.helidon.microprofile.bundles</groupId>
 <artifactId>helidon-microprofile-core</artifactId> ①
</dependency>
<dependency>
 <groupId>io.helidon.microprofile.health</groupId>
 <artifactId>helidon-microprofile-health</artifactId> ②
</dependency>
<dependency>
 <groupId>io.helidon.health</groupId>
 <artifactId>helidon-health-checks</artifactId> ③
</dependency>

① MicroProfile Core dependency
② MicroProfile Health
③ Optional built-in checks

Built-in Checks
Helidon comes with built-in health checks that help determine general issues each application can face.

Table 4-3 Built-in Checks

Built-in
Check

Description

Deadlock Liveness check which looks for thread deadlocks with the help of ThreadMXBean. Returns DOWN if a deadlock is
detected.

Disk
space

Liveness check returning DOWN if used disk space exceeds the threshold. The threshold is configured by the
helidon.health.diskSpace.thresholdPercent configuration property and has a value of 99.99 by default.
Users can also configure a file system path to check available space using the helidon.health.diskSpace.path
configuration property. Returned JSON entity contains additional disk space information, such as total volume
size, and available space.

Heap
memory

Liveness check returning DOWN if used heap memory goes beyond the threshold. The threshold is configured by
the helidon.health.heapMemory.thresholdPercent configuration property and has a value of 98 by default.
Returned JSON entity contains additional information, such as total memory size, and available memory.

Listing 4-3 demonstrates the response of Helidon liveness health check (/health/live) if no custom
checks are configured.

{
 "status" : "UP", ①
 "checks" : [
 {
 "name" : "deadlock", ②
 "status" : "UP"
 },
 {
 "name" : "diskSpace", ③
 "status" : "UP",
 "data" : {
 "free" : "428.01 GB",
 ...
 }
 },
 {
 "name" : "heapMemory", ④

 "status" : "UP"
 }
]
}

Listing 4-3 Built-in Health Checks

① Overall status
② Deadlock check
③ Disk space check
④ Heap memory check

Custom Checks
Although built-in health checks provide a basis suitable for all applications, you may want to extend its
coverage by adding application-specific health checks. For example, add database connectivity checks if
you are dealing with databases or third-party systems checks if you use third-party systems.

To create your custom health check, add a CDI bean implementing the
org.eclipse.microprofile.health.HealthCheck interface and annotate it with one of the
following annotations defining the check type.
@Liveness for a liveness check
@Readiness for a readiness check
@Startup for a startup check

Listing 4-4 is a simple liveness check that returns UP only if invoked during working hours.

@Liveness ①
@ApplicationScoped ②
public class WorkingHoursCheck implements HealthCheck { ③
 @Override
 public HealthCheckResponse call() {
 return HealthCheckResponse.builder()
 .name("working-hours-check")
 .withData("time", LocalDateTime.now()
 .toString())
 .status(getStatus()) ④
 .build();
 }

 private boolean getStatus() {
 int hour = LocalDateTime.now().getHour();
 return hour >= 9 && hour <= 17;
 }
}

Listing 4-4 Working Hours Liveness Custom Check

① Marks this bean as a liveness health check
② Makes this class an application-scoped CDI bean
③ Interface defining call() method invoked every time a health check is probed
④ Status computation

Note You can find sample application sources in the GitHub repository at:
https://github.com/apress/beginning-helidon.

When running between 9:00 and 18:00 your local time, you see an output like the one listed in Listing 4-5.

{
 "status": "UP",

https://github.com/apress/beginning-helidon

 "checks": [
 ...
 {
 "name": "working-hours-check",
 "status": "UP",
 "data": {
 "time": "2022-05-29T14:00:09.119199400"
 }
 }
]
}

Listing 4-5 Working Hours Health Check Output

Metrics
If the health metric provides information about the current state of the service, Metrics gives some
aggregated statistics about how your service is performing over time. It can be the number of requests an
endpoint gets, the average request processing time, and so on. Service administrators can use this
information to improve service performance, tune upscaling strategies, optimize business logic, and collect
some data for reporting. Health and metrics are designed to work with monitoring systems. The
monitoring stack consists of a database collecting and storing data and a UI system displaying the data as
graphics and diagrams.

Prometheus and Grafana are popular systems for collecting and displaying metrics data.

Note Prometheus is an open-source system to collect and store metrics data from different
applications. It’s not used to view the data. You can think about it as a single-purpose database for
storing metrics data. Prometheus provides client libraries for many programming languages, including
Java.

Grafana is a visualization tool for presenting metrics data to users. It shows a dashboard with nice
graphs and updates them in real-time. It also allows defining alerts to notify administrators in case
something goes wrong. It’s integrated with metrics storing systems like Prometheus, where it gets the
data.

Your Helidon application provides a set of metrics the user wants to track. Prometheus polls your
application, collects metrics data, and stores them internally. Grafana is querying Prometheus for a specific
subset of data and displaying them on a web page using graphs and diagrams. A user loads Grafana UI and
views the Helidon application metrics in his browser. Figure 4-1 illustrates these concepts.

Figure 4-1 Metrics stack operation and components

The next question is how Helidon gathers and provides metrics data to Prometheus. And the answer is
that Helidon implements the MicroProfile Metrics specification. To be more specific, Helidon 3.0
implements MicroProfile Metrics 4.0.

Microprofile Metrics
MicroProfile Metrics is an open-source specification developed by the MicroProfile working group. Its
goal is to standardize the way microservices define and expose metrics data. You can get more
information from the specification document at
https://download.eclipse.org/microprofile/microprofile-metrics-
4.0/microprofile-metrics-spec-4.0.pdf.

MicroProfile Metrics specification defines RESTful API allowing systems like Prometheus collecting metrics
data (see the “MicroProfile Metrics REST API” section). The entry point is /metrics.

Let’s look at how the Helidon application processes metrics requests. It’s illustrated in Figure 4-2.
1. Request comes to the /metrics endpoint or any other endpoint defined in MicroProfile Metrics REST

API.
2. Helidon gathers data for base and vendor metrics. Its metrics are defined by the MicroProfile

specification and provided by Helidon out of the box (see the “Metric Scopes” section).
3. Helidon processes all metrics defined in the Helidon application by developers. To define metrics,

developers can use annotations or programmatic APIs.
4. Helidon aggregates metrics data from 2 and 3 and produces a response in Prometheus or JSON format.

Figure 4-2 Metrics requests processing by Helidon application

Now you are familiar with the metrics stack architecture and metrics request workflow inside the Helidon
application. So, it’s a good time to explain what metrics are, how they’re represented, and how to add
custom metrics to your application. But before jumping to a theory, let’s discuss how to add MicroProfile
metrics support to your Helidon application. After you understand that (don’t worry, it’s easy), let’s use a
simple Helidon application for metrics demonstration. It’s easier to learn by example.

Adding MicroProfile Metrics Support to Your Helidon Application
Using Project Starter
The easiest way is to use Project Starter to generate a project with metrics support.

https://download.eclipse.org/microprofile/microprofile-metrics-4.0/microprofile-metrics-spec-4.0.pdf
https://download.eclipse.org/microprofile/microprofile-metrics-4.0/microprofile-metrics-spec-4.0.pdf

The following explains what you need to do.
1. Open Project Starter at https://helidon.io/starter.
2. Select Helidon MP on the Helidon Flavor screen and click Next.
3. On the Application Type screen, select Custom and click Next.
4. On the Media Support screen, keep Jackson selected or select JSON-B if you want to comply with the

MicroProfile platform. Click Next.
5. On the Observability screen, check Metrics and choose MicroProfile as Metrics Provider. You may also

select other offered options, like Health Checks and Tracing.
6. Click Download to generate your project, or go through the rest of the steps to continue configuration.
Using CLI
You need Helidon CLI installed, as explained in Chapter 2.

Start new project generation using the helidon init command. CLI and Project Starter are using the
same configuration wizard. Answer questions as explained earlier. Finish the configuration wizard, and you
get a project with metrics support generated.

Adding Dependencies Manually
The easiest way is using the helidon-microprofile bundle, which contains helidon-
microprofile-metrics as a transitive dependency.

<dependency>
 <groupId>io.helidon.microprofile.bundles</groupId>
 <artifactId>helidon-microprofile</artifactId>
</dependency>

If you don’t want to depend on the bigger helidon-microprofile, you can add Metrics support
manually by adding the following dependencies to your pom.xml file.

<dependency>
 <groupId>io.helidon.microprofile.bundles</groupId>
 <artifactId>helidon-microprofile-core</artifactId> ①
</dependency>
<dependency>
 <groupId>io.helidon.microprofile.metrics</groupId>
 <artifactId>helidon-microprofile-metrics</artifactId>②
</dependency>

① MicroProfile Core dependency
② MicroProfile Metrics

Sample Application
Let’s create a sample application demonstrating the usage of MicroProfile metrics annotations and
programmatic APIs. It uses the generated Project Starter Quickstart application as the base and added JAX-
RS resources for all metric types supported by the specification. Snippets from these resources are used
later when discussing MicroProfile APIs.

The sample application is called ch04-metrics and is available in the book GitHub repository at
https://github.com/apress/beginning-helidon.

The README.md file in the project’s root directory contains instructions for building and running the
project. These commands are provided in the book for the sake of space. Also, we don’t want to drag your

https://helidon.io/starter
https://github.com/apress/beginning-helidon

attention to the sample-related bash commands; we want you to concentrate on the metrics topic.

MicroProfile Metrics REST API
MicroProfile specification defines REST API for accessing metrics data. It’s the first step in Figure 4-2. This
API allows users and systems like Prometheus to get metrics data and metadata from your application.

Table 4-4 MicroProfile Metrics REST API

URL Request
Type

Description

/metrics GET Returns all registered metrics in JSON or OpenMetrics formats.

/metrics/<scope> GET Returns all metrics registered for the given scope (see the “Metric
Scopes” section) in JSON or OpenMetrics formats.

/metrics/<scope>/<metric_name> GET Returns the metric that matches the metric name for the given scope (see
the “Metric Scopes” section) in JSON or OpenMetrics formats.

/metrics OPTIONS Returns all registered metrics' metadata.

/metrics/<scope> OPTIONS Returns metrics’ metadata registered for the given scope (see the “Metric
Scopes” section).

/metrics/<scope>/<metric_name> OPTIONS Returns the metric’s metadata that matches the metric name for the
given scope (see the “Metric Scopes” section).

Openmetrics
OpenMetrics is a specification built upon and carefully extends the Prometheus exposition format in
almost 100% backward-compatible ways. It defines a protocol and a file format containing metrics data
accepted by systems like Prometheus. The file is text by nature.

MicroProfile Metrics supports JSON and OpenMetrics data formats. By default, it uses OpenMetrics simply
because it’s the format Prometheus accepts. Use the following command to get metrics data in
OpenMetrics format.

curl http://localhost:8080/metrics

The result is the full metrics data produced in OpenMetrics format.

TYPE base_classloader_loadedClasses_count gauge
HELP base_classloader_loadedClasses_count Displays the number of classes
that are currently loaded in the Java virtual machine.
base_classloader_loadedClasses_count 8008
TYPE base_gc_total counter
HELP base_gc_total Displays the total number of collections that have
occurred. This attribute lists -1 if the collection count is undefined for
this collector.
base_gc_total{name="G1 Old Generation"} 0
base_gc_total{name="G1 Young Generation"} 7
...

OpenMetrics is a text format containing both metrics data and metadata. You see metadata in lines
starting with #. Metrics data is in lines which are not start with #. These lines contain metric names (e.g.,
base_classloader_loadedClasses_count) and values (e.g., 8008).

To switch to JSON format, specify the Accept: application/json header to your REST request.

curl -H 'Accept: application/json' http://localhost:8080/metrics

The result is full metrics data in JSON format.

{
 "base": {
 "classloader.loadedClasses.count": 8008,
 "classloader.loadedClasses.total": 8008,
 ...
 },
 ...
}

It’s just a fragment. The actual output is much lengthy. JSON format includes only metrics data (no
metadata). To get metadata, you should use the OPTIONS request type.

curl -X OPTIONS http://localhost:8080/metrics

Metrics Model
Each metric has a unique ID, scope, and one of the seven types supported by the MicroProfile Metrics
specification and metadata. Let’s take a closer look at these characteristics.

Metric Identity
The metric’s name should reflect what’s measured (like http_requests_total) and an optional
collection of key-value pairs called tags. Tags are used to build a dimensional data model which allows
querying and aggregating data. These two (name + tags) form the unique metric identity. Think of it as a
primary key in a database table.

<metric name>{<tag name>=<tag value>, ...}

One of the earlier samples showed a response of calling the /metrics endpoint in OpenMetrics
format. It contains metrics with two tags.

TYPE base_gc_total counter
HELP base_gc_total Displays the total number of collections that have
occurred. This attribute lists -1 if the collection count is undefined for
this collector.
base_gc_total{name="G1 Old Generation"} 0
base_gc_total{name="G1 Young Generation"} 7

You see a tag ‘name’ specifying which garbage collector was used in this metric. So, “G1 Young
Generation” was used seven times, and “G1 Old Generation” was never used.

Metric Scopes
Think about scopes as categories logically separating your metrics catalog. MicroProfile Metrics
specification defines three metrics scopes: base, vendor and application (see Table 4-5).

Table 4-5 MicroProfile Metrics Scopes

Scope Description URL

Base A set of metrics each MicroProfile Metrics compliant implementation must provide. /metrics/base

Vendor Helidon-specific metrics that are provided out of the box. /metrics/vendor

Application Your application-specific metrics. /metrics/application

Let’s take a closer look at each of them.

Base Scope
The base set of metrics each MicroProfile Metrics compliant implementation must provide. There are
about 18 base metrics defined by the spec, and five are optional. It includes data about memory
consumption, garbage collection, and class loading. Helidon implements only the required base metrics.

Note You can find a complete list of base metrics in the specification document at
https://download.eclipse.org/microprofile/microprofile-metrics-
4.0/microprofile-metrics-spec-4.0.pdf.

Use this command to retrieve base metrics in OpenMetrics format.

curl http://localhost:8080/metrics/base

Use this command to retrieve base metrics in JSON format.

curl -H 'Accept: application/json' http://localhost:8080/metrics/base

Vendor Scope
Vendor scope is a set of metrics provided by MicroProfile Metrics implementation out of the box. Different
implementations offer different sets of metrics. Helidon provides thread pool executor metrics and the
total count and rate of received requests.

Use this command to retrieve vendor metrics in OpenMetrics format.

curl http://localhost:8080/metrics/vendor

Use this command to retrieve vendor metrics in JSON format.

curl -H 'Accept: application/json' http://localhost:8080/metrics/vendor

Application Scope
Application Scope is a scope that contains metrics specific to your application. It’s empty unless you add
metrics in your application source code (see the “Using MicroProfile Metrics API” section).

You can list all application scope metrics registered using the following command.

curl -H 'Accept: application/json' http://localhost:8080/metrics/application

Metric Metadata
Metric metadata is where all information about the metric is collected. All metadata fields are listed in
Table 4-6. Although description and display name are optional, providing them is a good practice. It helps to
get a context and an explanation of the metric. Multiple metric instances can share the same metadata.

Table 4-6 MicroProfile Metrics Metadata

Metadata Field Required Description

name Yes Metric name

type Yes One of the seven metrics types ((see the “Metric Types” section)

description No Human-readable description of what the metric does

display name No Human-readable name of the metric

units Yes Measurement units (milliseconds, minutes, etc.)

Metrics Types
MicroProfile Metrics specification defines seven metric types (see Table 4-7).

Table 4-7 MicroProfile Metric Types

Metric Type Description

Counter A simple monotonically increasing counter (e.g., number of HTTP requests processed over time; see the
“Counter” section for more information)

Gauge A simple numeric value that can increase or decrease (e.g., number of concurrent processes, available RAM;
see the “Gauge” section for more information)

https://download.eclipse.org/microprofile/microprofile-metrics-4.0/microprofile-metrics-spec-4.0.pdf
https://download.eclipse.org/microprofile/microprofile-metrics-4.0/microprofile-metrics-spec-4.0.pdf

Metric Type Description

ConcurrentGauge The number of concurrent invocations over time plus min/max over the previous completed minute (see
the “Concurrent Gauge” section for more information).

Meter Throughput with rates (see the “Meter” section for more information)

Histogram Distribution of long values (see the “Histogram” section for more information)

SimpleTimer Total elapsed time and a count of samples (see the “Simple Timer” section for more information)

Timer Meter plus histogram of sample times (see the “Timer” section for more information)

Using MicroProfile Metrics API
MicroProfile metrics provides APIs allowing you to quickly add metrics support to your application. It
includes annotations and programmatic APIs. You can use either or both. These are different tools with
different purposes. The programmatic APIs are more powerful. You can do more things with it than with
the annotations. But the annotations are easier to use and provide enough functionality for most cases.

Counter
The counter is a simple, monotonically increasing value. Its name is self-explanatory. Use it to count
something and see how this number grows over time. Important to understand that the counter cannot
decrease.

On a plane preparing to take off, flight attendants go across the plane and count passengers. They are
using counting machines to simplify counting. Pressing a button on this machine increases the counter by
one. Click, click, click, and the total number of passengers is displayed. This counting machine is an
excellent real-life sample of the counter.

Another sample is an electronic steps counter. You move; it counts your steps. This number cannot
decrease.

The most common use case in programming is to count how often your method was called. If this
method is a JAX-RS handler, you count how many requests were made to this endpoint. You can also
calculate how many times your business method was called.

Using Annotations
The MicroProfile Metrics API defines @Counted annotation, which introduces a counter counting how
many times the annotated method has been called. It can be placed on a method, a constructor, or a class.
While seated on a class, it affects all its constructors and non-private methods.

The @Counted annotation can be used without any arguments. The simplest use case looks as follows.

@GET
@Counted
public void counter() {
 // Some logic is here
}

The @GET annotation in the snippet is not required and only indicates that the method is a JAX-RS
resource handler. You can put @Counted and other MicroProfile Metrics annotations on non-private
methods. The only requirement is that your class must be a CDI bean, and you invoke this method via its
CDI proxy.

Optionally, users can specify metric metadata such as name, tags, displayName, description, and unit in
the annotation parameters.

To demonstrate it let’s create a slightly more complicated example: a method that returns the number
of times it’s been called. A complication is that we must access our counter inside a method annotated with
@Counted.

A solution is to inject the same counter into a class field and use it to get the number of calls. There are
many ways to get access to all registered metrics. Many are covered in this chapter. The next example uses
the @Metric annotation. It injects a metric from the MetricRegistry application with a type of annotated
field that matches the @Metric annotation parameters. If such a metric is not found, it gets registered.

Note The @Metric annotation can be used on type Meter, Timer, SimpleTimer, Counter, and
Histogram fields.

To inject the same metric as used in @Counted, Listing 4-6 provides the same parameters to @Metric
annotations.

@Inject
@Metric(name="cntr1", absolute=true)
Counter counter;

@GET
@Counted(name="cntr1", absolute=true,
 description = "Simple annotation-based counter")
public Long count() {
 return counter.getCount();
}

Listing 4-6 Creating a Counter Using Annotations

After running the sample application and triggering its endpoint several times, the metric data in
OpenMetrics format looks as follows.

TYPE application_cntr1_total counter
HELP application_cntr1_total Simple annotation-based counter
application_cntr1_total 5

Using Programmatic API
MicroProfile Metrics has a rich programmatic API that can be used stand-alone or in combination with
annotations. The Counter class was used in the previous example. Listing 4-7 demonstrates how to
reproduce the same functionality using pure programmatic API.

The key class in the programmatic API is MetricRegistry. It belongs to a metric scope and holds all
metrics of this scope. There are three MetricRegistry objects: for base, vendor, and application scopes.
You’ll use the application scope MetricRegistry the most. MetricRegistry is used to register and
retrieve metrics. It has a variety of double-purpose methods for it. For example, overloaded
counter(...) methods retrieve or register a counter if it doesn’t exist in the registry.

The only way to obtain MetricRegistry is by injecting it. By default, the application registry is
injected. If you want to inject a registry of another scope, use the @RegistryType annotation specifying a
desired scope.

@Inject
@RegistryType(type = Type.VENDOR)
MetricRegistry metricRegistry;

Let’s come back to our sample. The logic is as follows.
1. Use constructor injection to inject MetricRegistry.
2. Pass injected registry to the createCounter method, which creates a counter and registers it in the

metric registry.
3. The GET handler increases the counter using counter.inc() and returns its current value using

counter.getCount().
private Counter counter; ①

@Inject ②
public CounterProgrammaticResource(MetricRegistry

 metricRegistry) {
 createCounter(metricRegistry);
}

private void createCounter(MetricRegistry
 metricRegistry) {
 Tag tag = new Tag("method", "programmatic"); ③

 Metadata metadata = Metadata.builder() ④
 .withName("cntr2")
 .build();

 counter = metricRegistry.counter(metadata, tag); ⑤
}

@GET
public Long counterProgrammatic() {
 counter.inc(); ⑥
 return counter.getCount(); ⑦
}

Listing 4-7 Creating a Counter Using Programmatic API

① Class field holding the counter
② Using constructor injection to inject MetricRegistry
③ Creating a tag
④ Creating metadata
⑤ Registering the counter and assigning it to a class field
⑥ Increasing the counter
⑦ Returning the current counter value

Gauge
Gauge is a simple numeric value that can increase or decrease. It’s different from the counter, which can
only increase. A good sample of the gauge is the temperature in the room. It changes up and down during
the day. A more technical example is available RAM or the number of concurrent processes.

Gauge is the only metric type that doesn’t store, aggregate, or process the measurement. It only takes a
value available in your application and passes it to Prometheus or any other external metrics processing
system.

Using Annotations
MicroProfile Metrics API defines @Gauge annotation. It can be placed only on methods. It defines a gauge
based on the value this method returns. The value can be any type, but Prometheus accepts only numeric
values for gauges, so you must use numeric types if you plan to use Prometheus for data collection.

@Gauge annotation doesn’t provide the default value for unit. Users are required to specify it explicitly.
Technically, the @Gauge annotation only tells the system that the gauge value is obtained as a return

value of the annotated method.
Listing 4-8 is a method returning some measurements. In this case, it’s just a random number between

0 and 100, but it can be something more meaningful. This method is annotated with @Gauge with the
name gauge1. When you obtain metrics, the gauge returns a new random number.

@Gauge(name = "gauge1",
 absolute = true,
 description = "Simple annotation-based gauge",
 unit = MetricUnits.NONE)
public Integer measurement() {
 return random.nextInt(100);
}

Listing 4-8 Creating a Gauge Using Annotations

Using Programmatic APIs
There are similar steps for working with gauge metric programmatically, as described earlier on how it
works with counters. There is one difference, though. When registering a gauge in your metric registry, you
must specify a lambda reference, Supplier, or Function responsible for providing the gauge value.

Here is an implementation of a random gauge using programmatic API.

private Random random = new Random();

@Inject ①
public GaugeProgrammaticResource(
 MetricRegistry metricRegistry) {
 metricRegistry.gauge("gauge2", this::measurement); ②
}

public Integer measurement() { ③
 return random.nextInt(100);
}

Listing 4-9 Creating a Gauge Using Programmatic API

① Injecting MetricRegistry using constructor injection
② Creating a gauge
③ Method returning the measurement

Concurrent Gauge
The concurrent gauge metric is used to count parallel invocations of methods. It means how many
concurrent threads are executing this method at a single moment. It’s the first multi-value metric from
what we’ve studied so far. Besides the current number of concurrent invocations, it also contains its
highest and lowest values from the previous full completed minute.

Note The previous full completed minute is different from the last 60 seconds. It’s better to explain it
by example. If the sample time is 8:32:36 (8 a.m., 32 minutes, 36 seconds), the last full completed minute
is an interval from 8:31:00 until (but not including) 8:32:00.

Table 4-8 Concurrent Gauge Metric Data

Description OpenMetrics
Suffix

JSON Format
Field

ConcurrentGauge Class
Method

Number of concurrent invocations current current getCount( )

Highest concurrent invocations number for the last
complete full minute max max getMax( )

Lowest concurrent invocations number for the last
complete full minute min min getMin( )

Using Annotations
MicroProfile Metrics API defines the @ConcurrentGauge annotation. It can be placed on a method,
constructor, and class. While placed on a class, it affects all its constructors and non-private methods.

@ConcurrentGauge annotations don’t have any required parameters. Listing 4-10 adds some
metadata to make it more readable in the output file.

It creates a method that does nothing but sleeps for 20 seconds. To get some results, you must call its
REST endpoint within 20 seconds using different instances of curl. You can do it by opening new tabs in
your terminal application.

@GET

@ConcurrentGauge(name="cgauge1",
 absolute=true,
 description = "Simple annotation-based concurrent gauge")
public void concurrentGauge() throws InterruptedException {
 Thread.sleep(20 * 1000);
}

Listing 4-10 Creating a Concurrent Gauge Using Annotations
In OpenMetrics format, the output for cgauge1 looks as follows.

TYPE application_cgauge1_current gauge
HELP application_cgauge1_current Simple annotation-based concurrent gauge
application_cgauge1_current 1
TYPE application_cgauge1_min gauge
application_cgauge1_min 0
TYPE application_cgauge1_max gauge
application_cgauge1_max 2

Using Programmatic API
Now let’s learn how to use the concurrent gauge using programmatic APIs. MicroProfile Metrics has a class
ConcurrentGauge, which is used to work with concurrent gauges. It holds a count of concurrent
invocation internally and has methods inc() and dec() to increase and decrease it. It also has methods
to retrieve all concurrent gauge metrics data.

@ApplicationScoped
@Path("/concurrentgauge/programmatic")
public class CGaugeProgrammaticResource {
 ConcurrentGauge concurrentGauge;

 @Inject
 public CGaugeProgrammaticResource(MetricRegistry registry)
{ ①
 concurrentGauge = registry
 .concurrentGauge("cgauge", new Tag("method",
"programmatic")); ②
 }

 @GET
 public void concurrentGauge() {
 concurrentGauge.inc(); ③
 try {
 Thread.sleep(20 * 1000); ④
 } catch (InterruptedException e) {
 throw new RuntimeException(e);
 } finally {
 concurrentGauge.dec(); ⑤
 }
 }
}

Listing 4-11 Creating a Concurrent Gauge Using Programmatic API

① Constructor injection of MetricRegistry
② Creating concurrent gauge
③ Increasing the gauge before starting the operation to measure
④ Measured business logic (sleeping in our case)
⑤ Decreasing the gauge value when the measured operation is completed (It is done in the final block,
so the gauge is decreased regardless of the operation’s success.)

Histogram
Histogram is a complex metric showing how measurements are distributed across specific ranges, often
called buckets. The key word here is distribution. The use case for the histogram is when you only care a
little about the absolute values but want to see how these values are distributed.

Graphically histogram looks like a bar chart. Each bar represents a bucket. The higher the bar, the more
measurements fall into this range.

Figure 4-3 is a sample of a histogram demonstrating the age distribution of people participating in a
conference.

Figure 4-3 Histogram sample

Another sample is photography. Histograms are used directly in cameras to show the brightness of your
picture. Each tone is presented as a bar. The higher the bar, the more frequently this tone is in your image.
It’s a perfect tool to see how your picture is exposed.

In our area, the use cases for the histogram are, for example, request duration or response size
distributions.

Histogram metric contains 12 fields, including the lowest, highest, and median values in the
distribution, the standard deviation of the values, and the sum of all values and values of the 50th, 75th,
95th, 98th, 99th, and 99.9th percentile (see Table 4-9).

Table 4-9 Histogram Metric Data

Description OpenMetrics Suffix JSON Format
Field

Histogram Class Method

The lowest value in the distribution min_<units> min getSnapshot( ).getMin( )

The highest value in the distribution max_<units> max getSnapshot( ).getMax( )

The median value in the distribution mean_<units> mean getSnapshot( ).getMean( )

The standard deviation of the values stddev_<units> stddev getSnapshot( ).getStdDev( )

The number of values in the distribution <units>_count count getCount( )

The sum of all values <units>_sum sum getSum( )

The value at the 50th percentile in the
distribution <units>{quantile="0.5"} p50 getSnapshot( ).getMedian( )

The value at the 75th percentile in the
distribution

<units>
{quantile="0.75"} p75 getSnapshot( ).get75thPercentile( )

The value at the 95th percentile in the
distribution

<units>
{quantile="0.95"} p95 getSnapshot( ).get95thPercentile( )

The value at the 98th percentile in the
distribution

<units>
{quantile="0.98"} p98 getSnapshot( ).get98thPercentile( )

Description OpenMetrics Suffix JSON Format
Field

Histogram Class Method

The value at the 99th percentile in the
distribution

<units>
{quantile="0.99"} p99 getSnapshot( ).get99thPercentile( )

The value at the 99,9th percentile in the
distribution

<units>
{quantile="0.999"} p999 getSnapshot( ).get999thPercentile( )

Note A percentile is a value below which a given percentage of observations in a group of
observations falls. For example, the 70th percentile is the value below which 70% of the observations
may be found.

MicroProfile Metrics provides only programmatic APIs to work with the histogram.

Using Programmatic API
MicroProfile Metrics API has a Histogram class, which is used to work with histograms. It can be obtained
the same way as other metric classes using one of the overloaded histogram methods of the
MetricRegistry class.

To demonstrate a histogram, Listing 4-12 is a simple service that registers a passed value in the
histogram.

@ApplicationScoped
@Path("/histogram")
public class HistogramProgrammaticResource {
 private Histogram histogram;

 @Inject
 public HistogramProgrammaticResource(MetricRegistry metricRegistry) {
 createHistogram(metricRegistry);
 }

 @GET
 @Path("/{value}")
 public void histogram(@PathParam("value") Long value) {
 histogram.update(value);
 }

 private void createHistogram(MetricRegistry metricRegistry) {
 Metadata metadata = Metadata.builder()
 .withName("histogram")
 .withDescription("Histogram programmatic")
 .withType(MetricType.HISTOGRAM)
 .build();

 histogram = metricRegistry.histogram(metadata);
 }
}

Listing 4-12 Creating a Histogram Using Programmatic API

The sample output in OpenMetrics format looks like Listing 4-13.

TYPE application_histogram_mean gauge
application_histogram_programmatic_mean 3.0688587149767783
TYPE application_histogram_max gauge
application_histogram_programmatic_max 5
TYPE application_histogram_min gauge
application_histogram_programmatic_min 1
TYPE application_histogram_stddev gauge

application_histogram_programmatic_stddev 1.4120173733941095
TYPE application_histogram summary
HELP application_histogram Histogram programmatic
application_histogram_programmatic_count 5
application_histogram_programmatic_sum 15
application_histogram_programmatic{quantile="0.5"} 3
application_histogram_programmatic{quantile="0.75"} 4
application_histogram_programmatic{quantile="0.95"} 5
application_histogram_programmatic{quantile="0.98"} 5
application_histogram_programmatic{quantile="0.99"} 5
application_histogram_programmatic{quantile="0.999"} 5

Listing 4-13 Histogram Metric Output in OpenMetrics Format

Meter
The specification defines meter as a metric that tracks mean throughput and one-, five-, and fifteen-minute
exponentially-weighted moving average throughput measured in hits per second. All data provided by the
meter is listed in Table 4-10.

The exponentially-weighted moving average is a statistical measure widely used in finance for stock
technical analysis and volatility modeling. It calculates a weighted average on a subset of the full data set
and is designed the way that older observations are given lower weights. The weight for older observations
is decreasing exponentially.

The primary purpose of the meter is to monitor the traffic on a RESTful service endpoint or a data
access component. Helidon provides a vendor metric for monitoring the total throughput of your service,
which is a meter.

Table 4-10 Meter Metric Data

Description OpenMetrics Suffix JSON Format
Field

Meter Class Method

The total number of observations total count getCount( )

The average rate per second rate_per_second meanRate getMeanRate( )

The exponentially-weighted moving average for the
last minute one_min_rate_per_second oneMinRate getOneMinuteRate( )

The exponentially-weighted moving average for the
last five minutes five_min_rate_per_second fiveMinRate getFiveMinuteRate( )

The exponentially-weighted moving average for the
last fifteen minutes fifteen_min_rate_per_second fifteenMinRate getFifteenMinuteRate( )

MicroProfile Metrics specification allows users to work with meters using annotations and
programmatic APIs.

Using Annotations
MicroProfile Metrics API defines @Metered annotation to work with meters. It can be placed on a method,
constructor, and class. While placed on a class, it affects all its constructors and non-private methods.

For each method/constructor annotated with @Metered, a metric is created and registered in the
application metric registry. Each time the method is invoked, the meter is marked.

Listing 4-14 is a simple sample that returns a random number. It’s annotated with @Metered, so the
mtr1 metric collects this method throughput.

@GET
@Metered(name = "mtr1",
 absolute = true,
 description = "Simple annotation-based meter")
public String meteredMethod() {
 ...
}

Listing 4-14 Creating a Meter Using Annotations

After triggering the metered method several times, the mtr1 metric produces an output similar to the
following.

TYPE application_mtr1_total counter
HELP application_mtr1_total Simple annotation-based meter
application_mtr1_total 15
TYPE application_mtr1_rate_per_second gauge
application_mtr1_rate_per_second 0.13889050670608735
TYPE application_mtr1_one_min_rate_per_second gauge
application_mtr1_one_min_rate_per_second 0.22974035264337553
TYPE application_mtr1_five_min_rate_per_second gauge
application_mtr1_five_min_rate_per_second 0.049149433089204296
TYPE application_mtr1_fifteen_min_rate_per_second gauge
application_mtr1_fifteen_min_rate_per_second 0.016571380739795517

Using Programmatic APIs
MicroProfile Metrics API contains the Meter class, which is used to work with meters. It has methods
mark() and mark(long), which increase the number of hits by one and by a specified value accordingly.
It also contains methods to retrieve all calculated rates.

The MetricRegistry class contains methods meter(String) and meter(Metadata), which are
used to register and retrieve meters.

Listing 4-15 demonstrates creating a meter named mtr2 and a method that marks a hit and returns the
meter’s mean rate.

@ApplicationScoped
@Path("/meter/programmatic")
public class MeterProgrammaticResource {
 private Meter meter;

 @Inject
 public MeterProgrammaticResource(MetricRegistry metricRegistry) {
 meter = metricRegistry.meter("mtr2");
 }

 @GET
 public double meterProgrammatic() {
 meter.mark();
 return meter.getMeanRate();
 }
}

Listing 4-15 Creating a Meter Using Programmatic API

Simple Timer
The simple timer is a metric recording method execution times. It’s a complex metric that includes the
total number of executions, elapsed time, and highest and lowest time for the last complete full minute.

Table 4-11 Simple Timer Metric Data

Description OpenMetrics Suffix JSON Format Field SimpleTimer Class Method

Number of executions total count getCount( )

Elapsed time elapsedTime_seconds elapsedTime getElapsedTime( )

Highest time for the last complete full minute maxTimeDuration_seconds maxTimeDuration getMaxTimeDuration( )

Lowest time for the last complete full minute minTimeDuration_seconds minTimeDuration getMinTimeDuration( )

Note In OpenMetrics format, elapsedTime, maxTimeDuration, and minTimeDuration metrics are
produced in seconds and JSON format in nanoseconds.

MicroProfile Metric provides annotations and programmatic APIs to work with simple timer metrics.

Using Annotations
MicroProfile Metrics API defines the @SimplyTimed annotation. It can be placed on a method, constructor,
and class. While placed on a class, it affects all its constructors and non-private methods. The
@SimplyTimed annotation doesn’t have any required parameters.

Listing 4-16 is a method that sleeps a random time between 0 and 5 seconds and uses the
@SimplyTimed annotation.

@GET
@SimplyTimed(name="stmr1",
 absolute=true,
 description = "Simple timer using annotations")
public void simpleTimer() throws InterruptedException {
 Thread.sleep(random.nextInt(5000));
}

Listing 4-16 Creating a Simple Timer Using Annotations

The output in OpenMetrics format looks similar to the following.

TYPE application_stmr1_total counter
HELP application_stmr1_total Simple timer using annotations
application_stmr1_total 4
TYPE application_stmr1_elapsedTime_seconds gauge
application_stmr1_elapsedTime_seconds 5.011884846
TYPE application_stmr1_maxTimeDuration_seconds gauge
application_stmr1_maxTimeDuration_seconds 2
TYPE application_stmr1_minTimeDuration_seconds gauge
application_stmr1_minTimeDuration_seconds 0

Using Programmatic API
MicroProfile Metrics API has a class SimpleTimer, which is used to work with simple timers. It can be
obtained the same way as other metric classes using one of the overloaded simpleTimer methods of the
MetricRegistry class.

There are several ways how to use simple timer metric programmatically.
Make the method you want to time Callable and use SimpleTimer.time(Callable) to run and
time it.
Make the method you want to time Runnable and use SimpleTimer.time(Runnable) to run and
time it.
Time your method manually and update your simple timer using SimpleTimer.update(Duration).
Use Context context = SimpleTimer.time() to start timing your method, execute all logic that
needs to be timed and call context.close() when it’s finished to update your metric.

Listing 4-17 demonstrates using a Runnable object with a simple timer.

@ApplicationScoped
@Path("/simpletimer/programmatic")
public class SimpleTimerProgrammaticResource {
 private Random random = new Random();
 private SimpleTimer simpleTimer;

 @Inject
 public SimpleTimerProgrammaticResource(MetricRegistry metricRegistry) {

 createSimpleTimer(metricRegistry);
 }

 @GET
 public void simpleTimer() {
 Runnable runnable = () -> {
 try {
 Thread.sleep(random.nextInt(5000));
 } catch (InterruptedException e) {
 throw new RuntimeException(e);
 }
 };

 simpleTimer.time(runnable);
 }

 private void createSimpleTimer(MetricRegistry metricRegistry) {
 Metadata metadata = Metadata.builder()
 .withName("stmr2")
 .withDescription("Simple timer programmatic")
 .withType(MetricType.SIMPLE_TIMER)
 .build();

 simpleTimer = metricRegistry.simpleTimer(metadata);
 }
}

Listing 4-17 Using Programmatic API to Create a Simple Timer

Timer
The timer metric is a big brother of the simple timer, covered in the previous section. In addition to
tracking a method execution time, it contains a meter tracking throughput rate and a histogram with the
statistical distribution of recorded times. Table 4-12 contains all timer metric data, access methods, and
the corresponding field in OpenMetrics and JSON formats.

It makes sense to use a timer if you need this additional data. If you need to track only elapsed time, use
a simple timer.

Table 4-12 Timer Metric Data

Description OpenMetrics Suffix JSON Format
Field

Timer Class Method

The average rate per second rate_per_second meanRate getMeanRate( )

The exponentially-weighted moving
average for the last minute one_min_rate_per_second oneMinRate getOneMinuteRate( )

The exponentially-weighted moving
average for the last five minutes five_min_rate_per_second fiveMinRate getFiveMinuteRate( )

The exponentially-weighted moving
average for the last fifteen minutes fifteen_min_rate_per_second fifteenMinRate getFifteenMinuteRate( )

The minimum duration min_seconds min getSnapshot( ).getMin( )

The maximum duration max_seconds max getSnapshot( ).getMax( )

The mean duration mean_seconds mean getSnapshot( ).getMean( )

The standard deviation of duration stddev_seconds stddev getSnapshot( ).getStdDev( )

Number of hits seconds_count count getCount( )

Elapsed time seconds_sum elapsedTime getElapsedTime( )

The value at the 50th percentile seconds{quantile="0.5"} p50 getSnapshot( ).getMedian( )

Description OpenMetrics Suffix JSON Format
Field

Timer Class Method

The value at the 75th percentile seconds{quantile="0.75"} p75 getSnapshot( ).get75thPercentile( )

The value at the 95th percentile seconds{quantile="0.95"} p95 getSnapshot( ).get95thPercentile( )

The value at the 98th percentile seconds{quantile="0.98"} p98 getSnapshot( ).get98thPercentile( )

The value at the 99th percentile seconds{quantile="0.99"} p99 getSnapshot( ).get99thPercentile( )

The value at the 99,9th percentile seconds{quantile="0.999"} p999 getSnapshot( ).get999thPercentile( )

To work with timers, MicroProfile Metrics provides annotations and programmatic APIs.

Using Annotations
MicroProfile Metrics API defines the @Timed annotation. It can be placed on a method, constructor, and
class. While placed on a class, it affects all its constructors and non-private methods.

Although the @Timed annotation doesn’t have any required parameters, it makes sense to add some
metadata for clarity. Listing 4-18 demonstrates a timed method, which blocks for some random time not
longer than five seconds.

@GET
@Timed(name="tmr1",
 absolute=true,
 description = "Timer using annotations")
public void timer() throws InterruptedException {
 Thread.sleep(random.nextInt(5000));
}

Listing 4-18 Creating a Timer Using Annotations

Listing 4-19 shows a sample output in OpenMetrics format produced after triggering the timed method
several times.

TYPE application_tmr1_rate_per_second gauge
application_tmr1_rate_per_second 0.14116614752306147
TYPE application_tmr1_one_min_rate_per_second gauge
application_tmr1_one_min_rate_per_second 0.07122550418795522
TYPE application_tmr1_five_min_rate_per_second gauge
application_tmr1_five_min_rate_per_second 0.018664201095054796
TYPE application_tmr1_fifteen_min_rate_per_second gauge
application_tmr1_fifteen_min_rate_per_second 0.00651434969860056
TYPE application_tmr1_mean_seconds gauge
application_tmr1_mean_seconds 3.2017328639808618
TYPE application_tmr1_max_seconds gauge
application_tmr1_max_seconds 4.0069105
TYPE application_tmr1_min_seconds gauge
application_tmr1_min_seconds 2.0115542
TYPE application_tmr1_stddev_seconds gauge
application_tmr1_stddev_seconds 0.6872868729178253
TYPE application_tmr1_seconds summary
HELP application_tmr1_seconds Timer using annotations
application_tmr1_seconds_count 6
application_tmr1_seconds_sum 19
application_tmr1_seconds{quantile="0.5"} 3.0055081
application_tmr1_seconds{quantile="0.75"} 4.0027326
application_tmr1_seconds{quantile="0.95"} 4.0069105
application_tmr1_seconds{quantile="0.98"} 4.0069105
application_tmr1_seconds{quantile="0.99"} 4.0069105
application_tmr1_seconds{quantile="0.999"} 4.0069105

Listing 4-19 Timer Metric Data in OpenMetrics Format

Using Programmatic API
MicroProfile Metrics API has a Timer class that works with timers. It can be obtained the same way as
other metric classes using one of the overloaded timer methods of the MetricRegistry class. Timer
contains getters for all timer metric fields (see Table 4-12).

It operates similarly to the SimpleTimer, as demonstrated using Runnable with a simple timer.
Listing 4-20 demonstrates this using Callable as a contrast.

@ApplicationScoped
@Path("/timer/programmatic")
public class TimerProgrammaticResource {
 private Random random = new Random();

 private Timer timer;

 @Inject
 public TimerProgrammaticResource(MetricRegistry metricRegistry) {
 timer = metricRegistry.timer("tmr2");
 }

 @GET
 public Integer timer() throws Exception {
 Callable<Integer> callable = () -> {
 int sleepSec = random.nextInt(5000);
 Thread.sleep(sleepSec);
 return sleepSec;
 };

 return timer.time(callable);
 }
}

Listing 4-20 Creating a Timer Using Programmatic API

Tracing
Troubleshooting microservices is a complicated task. Each request may travel through different instances
of microservices working on different hosts in different locations and environments.

What if your service is handling requests too slowly? It shouldn’t be, but it is. You need to find out what’s
going on. You know that it goes through multiple services depending on some business conditions. You
don’t have access to these services and don’t know where they are hosted, so you cannot simply run your
debugger and see what’s happening. It’s a use case where distributed tracing helps you.

Distributed Tracing

Note Distributed tracing is a method to track a request journey as it travels across components of a
distributed system.

This chapter uses the word tracing instead of distributed tracking because it’s shorter.
Trace is a full route of a request as it goes through components in a distributed system. Trace includes a

tree of spans.
Span is a unit of work representing a piece of the workflow like a method call. The first span in the tree

is called the root span. It may include child spans representing sub-operations. Each span has a name and
records the starting time of the operation, its duration, and, optionally, some more data.

Figure 4-4 Distributed tracing
Helidon implements MicroProfile OpenTracing APIs.

Microprofile Opentracing
MicroProfile OpenTracing is an open specification based on the OpenTracing standard. It provides a
neutral tracing API that smoothly integrates with tracing systems like Zipkin and Jaeger.

MicroProfile OpenTracing enables completely automatic tracing without any actions needed from the
developer. Developer chooses the integration he wants to use and adds the corresponding library to the
project dependencies.

On each step of the request processing, Helidon invokes the tracing API to mark key points of Helidon’s
processing in the span. The developer can (but does not have to) invoke the same neutral API at key points
in the application’s processing. The tracing implementation library collects and transmits tracing
information to the corresponding distributed tracing system, which accepts it and saves it to its storage.
Distributed tracing systems usually provide a web UI to view application traces. Traces are usually
visualized using waterfall diagrams (see Figure 4-5).

Figure 4-5 Trace diagram

Adding Tracing to Your Helidon Application
Using Project Starter
The easiest way is to use Project Starter to generate a project with tracing support.

The following explains what you need to do.
1. Open Project Starter at https://helidon.io/starter.
2. Select Helidon MP on the Helidon Flavor screen and click Next.

https://download.eclipse.org/microprofile/microprofile-opentracing-3.0/microprofile-opentracing-spec-3.0.html
https://opentracing.io/
https://helidon.io/starter

3. On the Application Type screen, select Custom and click Next.
4. On the Media Support screen, keep Jackson selected or select JSON-B if you want to be compliant with

the MicroProfile platform. Click Next.
5. On the Observability screen, check Tracing and choose Tracing Providers you want to use. You may also

select Health Checks and Metrics if you want to use them in your application.
6. Click Download to generate your project, or go through the rest of the steps to continue configuration.
Using CLI
You need to have Helidon CLI installed, as explained in Chapter 2.

Start new project generation using the helidon init command. CLI and Project Starter are using the
same configuration wizard. Answer questions as explained in the preceding section. Finish the
configuration wizard, and you get a project with tracing support generated.

Adding Dependencies Manually
You need to add a dependency to vendor-neutral MicroProfile OpenTracing API as well as a dependency on
a distributed tracing system you would like to use.

The first option uses the helidon-microprofile bundle, which contains helidon-
microprofile-tracing as a transitive dependency.

<dependency>
 <groupId>io.helidon.microprofile.bundles</groupId>
 <artifactId>helidon-microprofile</artifactId>
</dependency>

If you don’t want to use all the MicroProfile dependencies that the helidon-microprofile bundle
brings, you can use a more fine-grained configuration using the helidon-microprofile-core, which
brings only required dependencies plus the helidon-microprofile-tracing artifact to enable
MicroProfile OpenTracing.

<dependency>
 <groupId>io.helidon.microprofile.bundles</groupId>
 <artifactId>helidon-microprofile-core</artifactId>
</dependency>
<dependency>
 <groupId>io.helidon.microprofile.tracing</groupId>
 <artifactId>helidon-microprofile-tracing</artifactId>
</dependency>

In addition to that, you must add a dependency to a tracing provider you want to use. Helidon supports
Jaeger and Zipkin out of the box.

For Jaeger, add this dependency.

<dependency>
 <groupId>io.helidon.tracing</groupId>
 <artifactId>helidon-tracing-jaeger</artifactId>
 <scope>runtime</scope>
</dependency>

For Zipkin, add the following.

<dependency>
 <groupId>io.helidon.tracing</groupId>
 <artifactId>helidon-tracing-zipkin</artifactId>

 <scope>runtime</scope>
</dependency>

Helidon Tracing Implementation
Helidon, as a compliant implementation of MicroProfile OpenTracing, provides automatic (“code-free”)
tracing. It works the following way.

For each incoming JAX-RS request to a service endpoint
Extracts parent span information from the request
Starts a span or a child span (see the full list of spans in Table 4-13)
Ends the span when the request completes

For each outgoing JAX-RS request to another service
Injects current span information into the request
Starts a span or a child span when the request is sent (see the full list of spans in Table 4-13)
Ends the span when the request completes

When some internal Helidon component is called, such as security
Adds a span or a child span (see the full list of spans in Table 4-13)
Optionally logs some useful information to the span

Implements a vendor-neutral tracing API which developers can invoke to work with spans explicitly

Helidon Built-in Spans
When Helidon adds a span, it’s one of the spans listed in Table 4-13. Each span belongs to a web server,
security, or JAX-RS component. The component name is in the description column to save space. The spans
are highly customizable. You can change their names and enable/disable them. Read more about it in the
tracing configuration section.

Each span optionally contains logs and tags. Logs are key-value pairs that contain some additional span-
specific information. Tags are key-value pairs used for labeling, querying, and filtering data. Table 4-13 only
lists some of the logs and tags. Refer to Helidon’s documentation for the detailed descriptions.

Table 4-13 Helidon Built-In Spans

Span Name Description Span Logging Tags

HTTP Request Overall span covering from request arrival to
response transmission. Component: web-server handler.class component, http.method,

http.status_code, http.url, error

content-read Reading the request entity. Component: web-
server N/A requested.type

content-write Writing the response entity. Component: web-
server N/A response.type

security Overall span covering security processing.
Component: security status security.id

security:atn Authenticating the client. Component: security security.user,
security.service, status N/A

security:atz Authorizing the client. Component: security status N/A

security:response Security processing of the response.
Component: security N/A N/A

security:outbound Security processing of an outbound request.
Component: security status N/A

generated name
Endpoint method invocation: name = HTTP
method + class name + method name.
Component: jax-rs

N/A N/A

jersey-client-call Outbound request. Component: jax-rs N/A http.method, http.status_code,
http.url

https://helidon.io/docs/v3/%2523/mp/tracing

MicroProfile OpenTracing API
MicroProfile OpenTracing works “code free.” But it also contains APIs if developers want to work with
spans explicitly. This API is very simple. It consists of the @Traced annotation and Tracer class.

@Traced annotation can be placed on a method or a class. While placed in a class, it affects all its public
methods. The annotation creates a new child span covering each invocation of the method.

@Traced annotation uses interceptors, so the class must be a CDI bean, and the method must be
invoked via CDI. Simple Java method invocations on instances created with new do not trigger tracing!
Also, method calls within a type do not work. Any annotations on the target method are ignored if you call a
method on a JAX-RS resource from another resource method.

The @Traced annotation has two optional arguments.

value=[true|false]
The default value is true. Enables or disables tracing of the corresponding methods (all public methods if
placed on a class).
operationName=
The default value is “”. If an empty string is specified, the name is automatically generated based on the
class name and method name.

@Traced ①
public String getMessage() {
 return message.get();
}

@Traced(false) ②
public String getMessageWithNoTraces() {
 return message.get();
}

Listing 4-21 Using the @Traced Annotation

① Traced method
② Not traced method

The OpenTracing Tracer object provides more precise control over spans. It allows you to build spans,
set tags, log events, and so on. Helidon automatically creates and initializes an OpenTracing Tracer object.
The developer only needs to inject it into a bean class and invoke its methods.

@Inject
io.opentracing.Tracer tracer;

public void importantWork() {
 Span span = tracer.buildSpan("important-work").start();
 span.setTag(...);
 span.log(...);

 // Do some important work
 ...

 span.finish();
}

Listing 4-22 Using the Tracer Object

Configuration
Helidon allows users to configure its internal tracing components, enable and disable tracing completely
for specified components or endpoints, and rename built-in spans.

Enabling/Disabling Tracing

MicroProfile OpenTracing specification allows disabling tracing for JAX-RS resources using configuration.
You should specify a regular expression matching resources URIs in the
mp.opentracing.server.skip-pattern configuration property, which usually sits in /META-
INF/microprofile-config.properties file (see how to use configuration properties in Chapter 3).

Note The endpoints defined in MicroProfile Health, MicroProfile Metrics, and OpenAPI specifications
are always excluded from tracing.

The following disables all tracing.

mp.opentracing.server.skip-pattern=.*

Disabling tracing for the /foo endpoint and any endpoint starting with /bar.

mp.opentracing.server.skip-pattern=/foo|/bar.*

Helidon provides its own way of configuring tracing. Configuration can be defined in application.yaml.
In addition to enabling/disabling tracing for some endpoints, you can enable/disable Helidon built-in
spans.

tracing:
 paths:
 - path: "/favicon.ico" ①
 enabled: false ②
 - path: "/somepath"
 enabled: false
 components:
 web-server: ③
 spans:
 - name: "HTTP Request" ④
 enabled: true ⑤
 logs:
 - name: "content-write" ⑥
 enabled: false ⑦

Listing 4-23 Example of Tracing Configuration in application.yaml

① Path to configure (It uses a special format for pattern matching. You can read more about it in the
Helidon documentation.)
② true to enable tracing and false to disable
③ Name of the configured component (one of web-server, security, jax-rs)
④ Name of a span (see Table 4-13 for all available span names)
⑤ Enables or disables the span
⑥ Log name (see options for the specified span in Table 4-13)
⑦ Enables or disables the log

If you don’t like YAML, its content can be flattened into properties format and placed into META-
INF/microprofile-config.properties.

tracing.paths.0.path="/favicon.ico"
tracing.paths.0.enabled=false
tracing.paths.1.path="/somepath"
tracing.paths.1.enabled=false
components.web-server.spans.0.name="HTTP Request"
components.web-server.spans.0.enabled=true
components.web-server.spans.0.logs.0.name="content-write"
components.web-server.spans.0.logs.0.enabled=false

Listing 4-24 Example of Tracing Configuration in microprofile-config.properties

Renaming a Top-Level Span
In some situations, renaming the top-level HTTP request span makes sense to better suit users’ needs.
Helidon provides this ability.

Note This is supported only for the HTTP request span of the web server component. It’s not
supported for other spans.

Provide a new name in the new-name configuration property, as shown in the following sample.

tracing.components.web-server.spans.0.name="HTTP Request"
tracing.components.web-server.spans.0.new-name: "HTTP %1$s %2$s"

You can use the following parameters.
A method is an HTTP method.
A path is a path of the request (such as /greet).
A query is the request (may be null).

Logging
Logging is the final (and shortest) section of this chapter. Logging is what developers use the most
compared to health checks, metrics, and tracing. Most of you are familiar with logging and know what it is
and why it should be used, but if you are not, we’ll try to explain it.

Logging tells you what is happening inside individual software components within a service.
The information answering this question gets written in a log.

Note A log is a sequence of timestamped records (messages) describing what the components of a
service are doing and, in some cases, why.

Most often, logs are written to log files. Log files are normal text files with the .log extension. But
sometimes logs are written to databases or even special logs collecting systems.

Logs are very useful for debugging and detecting problems in your application. Developers are manually
adding logging code to their sources to log records which would help track code execution and warn about
situations that are not supposed to happen.

Each record in the log has a logging level.

Note A logging level measures the logging record importance (higher = more important).

Standard Java logging (java.util.logging) has seven logging levels.

SEVERE (highest value)
WARNING
INFO
CONFIG
FINE
FINER
FINEST (lowest value)

It’s a developer’s responsibility to choose the appropriate logging level for his logging record. A
minimum logging level is configured for the application, so records with a lower logging level are not
written to the log. Enabling all logging levels (FINEST level) makes logs too big and verbose. It makes it
difficult to find needed information. On the other hand, enabling lower logging levels may help find
problems.

Listing 4-25 demonstrates creating a logger and using different logging levels.

private static final Logger LOGGER =

 Logger.getLogger(Main.class.getName()); ①

public void loggingDemo() {
 LOGGER.severe("Severe message"); ②
 LOGGER.log(Level.SEVERE,
 "Another severe message"); ③

 LOGGER.warning("Warning message"); ④
 LOGGER.log(Level.WARNING,
 "Another warning message"); ⑤

 LOGGER.info("Info message"); ⑥
 LOGGER.log(Level.INFO,
 "Another info message"); ⑦
}

Listing 4-25 Using Different Logging Levels

① Logger initialization
② Logging a severe message
③ Another way of logging a severe message
④ Logging a warning message
⑤ Another way of logging a warning message
⑥ Logging an info message
⑦ Another way of logging an info message

Logging in Helidon
Helidon components contain extensive logging using the java.util.logging (JUL) API. To use it in
your applications, you don’t need any extra third-party dependencies.

Developers are not limited to JUL. Helidon also supports other popular logging frameworks such as
Log4j and SLF4J (Simple Logging Facade for Java). In this case, extra third-party dependencies are needed.

The following is for Log4j.

<dependency>
 <groupId>io.helidon.logging</groupId>
 <artifactId>helidon-logging-log4j</artifactId>
</dependency>
<dependency>
 <groupId>org.apache.logging.log4j</groupId>
 <artifactId>log4j-api</artifactId>
</dependency>
<dependency>
 <groupId>org.apache.logging.log4j</groupId>
 <artifactId>log4j-core</artifactId>
</dependency>
<dependency>
 <groupId>org.apache.logging.log4j</groupId>
 <artifactId>log4j-jul</artifactId>
</dependency>

For SLF4J.

<dependency>
 <groupId>org.slf4j</groupId>
 <artifactId>slf4j-api</artifactId>
</dependency>
<dependency>
 <groupId>io.helidon.logging</groupId>

 <artifactId>helidon-logging-slf4j</artifactId>
</dependency>
<dependency>
 <groupId>org.slf4j</groupId>
 <artifactId>jul-to-slf4j</artifactId>
</dependency>
<dependency>
 <groupId>ch.qos.logback</groupId>
 <artifactId>logback-classic</artifactId>
</dependency>

Mapped Diagnostic Context (MDC)
Mapped Diagnostic Context (MDC) is a feature of modern logging framework allowing registering and using
in your logging messages information that is not available in the current logging scope. Good samples are
an ID of the currently logged-in user, tracing id, transaction id, or any other context-related information.

If you want to use this feature, some additional configuration is required in addition to adding third-
party dependencies.

MDC with JUL
For JUL, you need to add a dependency to a Helidon module that enables MDC for JUL.

<dependency>
 <groupId>io.helidon.logging</groupId>
 <artifactId>helidon-logging-jul</artifactId>
</dependency>

And configure handlers in your logging.properties file this way or similar.

Send messages to the console
handlers=io.helidon.logging.jul.HelidonConsoleHandler

!thread! is replaced by Helidon with the thread name
any %X{...} is replaced by a value from MDC
java.util.logging.SimpleFormatter.format=%1$tY.%1$tm.%1$td %1$tH:%1$tM:%1$tS
%4$s %3$s !thread!: %5$s%6$s "%X{name}"%n

Global logging level. Can be overridden by specific loggers
.level=INFO

It’s important to use HelidonConsoleHandler. %X{name} prints the name property from MDC.
Now let’s take a look at how MDC can be used in your application. In one part of your application, you

need to set an MDC property you want to be printed out in all your log messages as follows.

import io.helidon.logging.common.HelidonMdc;

public class Foo {
 ...
 public SetupMdcLogging() {
 HelidonMdc.set("name", "Falco");
 }
}

In another class, you initialize your logger and log some messages.

import java.util.logging.Logger;

private static final Logger LOGGER = Logger.getLogger(Main.class.getName());

public class Bar {
 ...
 public TestLogging() {
 LOGGER.info("It comes from MDC:");
 }
}

Here is what’s going to be logged.

2022.11.01 2:00:00 INFO Main Thread[main,5,main]: It comes from MDC: "Falco"

MDC with Log4j
Log4j allows you to use file-based configuration or programmatic configuration. File-based configuration
is not friendly with GraalVM native-image. Samples are provided for both, but you choose which to use
based on your setup.

Listing 4-26 shows how to configure MDC log4j2.xml standard Log4j 2.x configuration file.

<Configuration status="INFO">
 <Appenders>
 <Console name="stdout" target="SYSTEM_OUT">
 <PatternLayout
 pattern="%d{HH:mm:ss.SSS} %-5level [%t] %logger{36} - %msg
%X{name}%n" />
 </Console>
 </Appenders>
 <Loggers>
 <Root level="INFO">
 <AppenderRef ref="stdout" />
 </Root>
 </Loggers>
</Configuration>

Listing 4-26 Example of MDC Configuration in log4j2.xml

Listing 4-27 provides the same configuration but in a programmatic way.

import org.apache.logging.log4j.core.appender.ConsoleAppender;
import org.apache.logging.log4j.core.config.Configurator;
import
org.apache.logging.log4j.core.config.builder.api.ConfigurationBuilderFactory;
...
private static void configureLog4J() {
 var builder = ConfigurationBuilderFactory.newConfigurationBuilder();
 builder.setStatusLevel(Level.INFO);

 var appenderComponentBuilder = builder.newAppender("stdout", "CONSOLE")
 .addAttribute("target", ConsoleAppender.Target.SYSTEM_OUT);

 appenderComponentBuilder.add(builder.newLayout("PatternLayout")
 .addAttribute("pattern", "%d{HH:mm:ss.SSS} %-5level [%t]
%logger{36} - %msg %X{name}%n"));

 builder.add(appenderComponentBuilder);
 builder.add(builder.newRootLogger(Level.INFO)
 .add(builder.newAppenderRef("stdout")));

 Configurator.initialize(builder.build());
}

Listing 4-27 Example of Programmatic MDC Configuration in Log4j

Again, the important MDC-related configuration part is %X{name}, which prints the name property
from your MDC context, which can be set as follows.

import org.apache.logging.log4j.ThreadContext;
...
ThreadContext.put("name", "Cassidy");

You can find the full sample as part of this chapter sample code.

MDC with SLF4J
To configure MDC with SLF4J, add the following or a similar configuration to your logback.xml file.

<configuration>
 <appender name="STDOUT" class="ch.qos.logback.core.ConsoleAppender">
 <encoder>
 <pattern>
 %d{HH:mm:ss.SSS} %-5level [%thread] %logger{36} - %msg
%X{name}%n
 </pattern>
 </encoder>
 </appender>
 <root level="INFO">
 <appender-ref ref="STDOUT" />
 </root>
</configuration>

Listing 4-28 Example of MDC Configuration in SLF4J

As with JUL and Log4j, the %X{name} prints the name property from your MDC context.
Now you can set your MDC property as follows.

import org.slf4j.MDC;
...
MDC.put("name", "Jaspis");

Its value is printed in each log message.

Summary
Observability is the ability of a service to expose data externally that reflects its internal behavior.
There are four main areas of observability: health, metrics, tracing, and logging.
Helidon implements MicroProfile Health, MicroProfile Metrics, and MicroProfile OpenTracing
specifications.
Health checking is essential for guaranteeing your whole system’s smooth operation. Health checks
allow external automated management systems to check if your application is available and ready to
serve requests.
Helidon comes with built-in health checks, which help in determining general issues each application can
face, as well as an ability to create custom health checks.
MicroProfile Metrics gives aggregated statistics about how your service is performing over time. It can
be used to improve service performance, tune upscaling strategies, optimize business logic, and collect
data for reporting.
Distributed systems like microservices are difficult to debug because of their distributed nature.
Distributed tracing is a method to track a request journey as it travels across components of a
distributed system. It helps in debugging and performance tuning your distributed system.
Helidon provides automatic “code-free” distributed tracing support and an ability to explicitly work with
tracing spans.
Logging tells you what is happening inside individual software components within a service.

Helidon supports MDC (Mapped Diagnostic Context), allowing registering and using in your logging
messages information that is not available in the current logging scope.

(1)
(2)

© The Author(s), under exclusive license to APress Media, LLC, part of Springer Nature 2023
D. Kornilov et al., Beginning Helidon
https://doi.org/10.1007/978-1-4842-9473-4_5

5. Communicating with Other Services
Dmitry Kornilov1 , Daniel Kec1 and Dmitry Aleksandrov2

Praha, Czech Republic
Sofia, Bulgaria

This chapter covers the following topics.
Understanding MicroProfile Rest Client APIs
Exception handling and filters in MicroProfile Rest Client
Calling RESTful services using the JAX-RS Client API
Providers and asynchronous calls using the JAX-RS Client API
Adding CORS support to Helidon applications

Microservices not only provide data but also consume it. Sometimes one business action can
contain multiple REST calls, which can even form a distributed transaction.

Note Services call other services!

And these service call hierarchies can be widely spread across many services.
There are multiple ways to call a RESTful service in Helidon. Imagine a “sorcery ministry” that

manages all wizards and their licenses to do magic. This ministry retrieves this information from two
services: a wizard service for wizards and a licensing service for the licenses. Both these services
provide data using their REST endpoints. Thus, the sorcery ministry is a client for those services.

Figure 5-1 Services calling other services Different microservice client options

MicroProfile Rest Client is a standard REST client in MicroProfile Ecosystem.
JAX-RS Client API is a popular REST client following the builder pattern model.

Let’s get acquainted with each of them.

https://doi.org/10.1007/978-1-4842-9473-4_5

Note In Helidon SE, there is a specially designed reactive Helidon WebClient. It is described in
Chapter 15.

MicroProfile Rest Client
The MicroProfile Rest Client provides a type-safe approach to invoke RESTful services over HTTP. It is
designed to extend the Jakarta REST (JAX-RS) specification. MicroProfile Rest Client is a specification
under the MicroProfile umbrella, and Helidon MP implements it.

Let’s directly jump into the real code and create a small REST client, which consumes data from our
wizard service—a repository of all wizards.

The wizard service is straightforward. Just three endpoints for providing a wizard by name and
getting the mightiest wizard.

@Path("/wizard")
@RequestScoped
public class WizardResource {
 private final WizardProvider wizardProvider;

 @Inject
 public WizardResource(WizardProvider wizardProvider) { ①
 this.wizardProvider = wizardProvider;
 }

 @GET
 @Produces(MediaType.APPLICATION_JSON)
 public Wizard getMostMightyWizard() { ②
 return wizardProvider.getWizard();
 }

 @Path("/{name}")
 @GET
 @Produces(MediaType.APPLICATION_JSON)
 public Wizard getWizard(@PathParam("name") String name) { ③
 return wizardProvider.getWizardByName(name);
 }

 @Path("/add")
 @POST
 @Produces(MediaType.APPLICATION_JSON)
 @Consumes(MediaType.APPLICATION_JSON)
 public Response addWizard(JsonObject jsonObject) { ④
 if (!jsonObject.containsKey("name")) {
 JsonObject entity = JSON.createObjectBuilder()
 .add("error", "No name provided")
 .build();
 return Response.status(Response
 .Status.BAD_REQUEST).entity(entity).build();
 }

 String name = jsonObject.getString("name");
 Wizard wizard = new Wizard();
 wizard.setName(name);
 wizardProvider.addWizard(wizard);
 return Response.noContent().build();
 }

https://download.eclipse.org/microprofile/microprofile-rest-client-3.0/microprofile-rest-client-spec-3.0.pdf

}

Listing 5-1 Wizard Resource

① A class that holds and provides wizards
② An endpoint that provides the mightiest wizard in JSON format
③ An endpoint that provides a wizard by name in JSON format
④ A POST endpoint to add a new wizard, which consumes in JSON format

Note The wizard service MicroProfile Rest example can be found in the Book Samples repository.

This resource is a reference for what is happening on the server side. It runs on localhost port 8080.
Now let’s look at the client side.
MicroProfile Rest Client is already included in the full helidon-microprofile bundle. To use a

REST client with all other MicroProfile options, include Listing 5-2 in the pom.xml file.

<dependency>
 <groupId>io.helidon.microprofile</groupId>
 <artifactId>helidon-microprofile</artifactId>
</dependency>

Listing 5-2 MicroProfile Full Bundle

If more fine-grained control is required, and helidon-microprofile-core is used, add the
dependency in Listing 5-3 to our project’s pom.xml file.

<dependency>
 <groupId>io.helidon.microprofile.bundles</groupId>
 <artifactId>helidon-microprofile-core</artifactId> ①
</dependency>
<dependency>
 <groupId>io.helidon.microprofile.rest-client</groupId>
 <artifactId>helidon-microprofile-rest-client</artifactId> ②
</dependency>

Listing 5-3 MicroProfile Core Bundle

① MicroProfile Core dependency
② MicroProfile Rest Client dependency

Let’s now create the client interface for the wizard service used by the sorcery ministry.
Since it is in a managed environment, let CDI take care of the REST client creation. A REST client

interface must be annotated with @RegisterRestClient to automatically register it with CDI.
You must create an interface with the desired methods and properly annotate them. Let’s use

@RegisterRestClient with baseUrl to declare that our client should connect to a specific
endpoint. Then add the getMostMightyWizard() method and annotate it with @GET, which means
the client performs a GET request to the base URI and map the result to the wizard. To get a wizard by
name, add another method and annotate it with @GET and @Path("/{name}). The method has a
parameter annotated with @PathParam("name") which means the name is provided from the
parameter and the endpoint is invoked with the resulting path.

@RegisterRestClient(baseUri="http://localhost:8080/wizard") ①
interface WizardRestClient {

 @GET ②
 Wizard getMostMightyWizard();

 @Path("/{name}") ③
 @GET
 Wizard getWizardByName(@PathParam("name") String name);
}

Listing 5-4 REST Client Interface

① This registers the REST client with a http://localhost:8080/wizard base URI.
② This method declares a client to perform a GET request to the base URI and map the result to the
wizard.
③ This method performs a GET request to the base URI with a path parameter name.

You can see that familiar annotations like @GET and @Path are used. This unification makes it easy
to get used to it.

Let’s use the WizardRestClient in our class, as shown in Listing 5-5.

@ApplicationScoped ①
@Path("/wizardClient")
public class SorceryMinistryResource {

 @Inject
 @RestClient ②
 private WizardRestClient restClient;

 @GET
 @Produces(MediaType.APPLICATION_JSON)
 public Wizard getMostMightyWizard() {
 return restClient.getMostMightyWizard(); ③
 }

 @GET
 @Path("/{name}")
 @Produces(MediaType.APPLICATION_JSON)
 public Wizard getWizardByName
 (@PathParam("name")String name) {
 return restClient.getWizardByName(name); ④
 }
}

Listing 5-5 Resource with REST Endpoints

① It must be a CDI bean.
② The @RestClient annotation injects an automatic proxy implementing a REST client.
③ This is a simple use of the MicroProfile Rest Client without any parameters.
④ This shows using the MicroProfile Rest Client with the name parameter.

Calling client.getWizardByName(name) reaches the endpoint of the Helidon wizard service.
You may notice there is no implementation of the WizardRestClient interface. A proxy is created
and injected automatically.

Note A REST client implementation allows us to configure its parameters using a programmatic
API based on the builder pattern, annotations, and configuration. All the configuration parameters
are standard and portable in MicroProfile and can be found in the official documentation.

Integration with MicroProfile Config
It is also possible to use MicroProfile Config properties to override values specified in the
@RegisterRestClient annotation of the REST interface.

https://download.eclipse.org/microprofile/microprofile-rest-client-3.0/microprofile-rest-client-spec-3.0.pdf

Listing 5-6 overrides baseUri in microprofile-config.properties.

io.helidon.book.ch05.WizardRestClient/mp-
rest/uri=http://someotheruri:8080/wizard

Listing 5-6 URI Properties

baseUri annotation property (or specified as */mp-rest/uri in external configuration) is
required by the REST client. However, implementations may have other ways to define these
URLs/URIs. If specified in microprofile-config.properties, it overrides any baseUri value for the interface
annotated with @RegisterRestClient.

Other properties such as scope, providers, connectTimeout, readTimeout,
followRedirects, and proxyAddress can also be specified following the <class>/mp-
rest/<property> pattern.

If the client works behind a proxy and has to follow redirects, Listing 5-7 shows how to specify it
this way.

io.helidon.book.ch05.WizardRestClient/mp-
rest/proxyAddress="http://someobscureproxy.com:9999" ①
io.helidon.book.ch05.WizardRestClient/mp-
rest/followRedirects=true ②

Listing 5-7 Proxy and Redirect Properties

① Sets MicroProfile Rest Client to use a proxy
② Sets MicroProfile Rest Client to follow redirects

As MicroProfile Rest Client supports SSL, the trust store setup in the CDI environment is easily done
using properties.
io.helidon.book.ch05.WizardRestClient/mp-rest/trustStore sets the trust store
location. Can point to a classpath resource or a file.
io.helidon.book.ch05.WizardRestClient/mp-rest/trustStorePassword specifies
the keystore password.
io.helidon.book.ch05.WizardRestClient/mp-rest/trustStoreType is the trust
store type. The default is "JKS".

The same is achieved for the key store.
io.helidon.book.ch05.WizardRestClient/mp-rest/keyStore is the key store location.
It can point to a classpath resource or a file.
io.helidon.book.ch05.WizardRestClient/mp-rest/keyStorePassword specifies the
keystore password.
io.helidon.book.ch05.WizardRestClient/mp-rest/keyStoreType is the key store
type. The default is "JKS".

Exception Handling
In a perfect world, all the servers are always up and running, and the line is always free with zero
latency, but it is typical that a server is down or disconnected. The data may be somehow jammed or
incorrectly marshaled/unmarshaled. You must be prepared for that, and our Helidon app should handle
these situations gracefully. MicroProfile Rest Client provides a solution for that:
ResponseExceptionMapper. This mapper takes a Response object retrieved via an invocation of
a client, checks its status, and converts it to an exception according to our needs.

Let’s create a simple exception mapper for our wizard client. First, create a class that implements
ResponseExceptionMapper<T> with the corresponding exception as a template parameter. Then
override public T toThrowable(Response response) {} function where you can define

different behavior on different responses. In this case, return RuntimeException with another
description depending on the Response status code.

public class WizardExceptionMapper
 implements ResponseExceptionMapper<RuntimeException>
{ ①

 @Override
 public RuntimeException toThrowable(Response response) {
 if (response.getStatus() ==
 Response.Status.NOT_FOUND.getStatusCode())
{ ②
 return new RuntimeException("Resource not found");
 } else if (response.getStatus() ==
 Response.Status.INTERNAL_SERVER_ERROR.getStatusCode())
{ ③
 return new RuntimeException("Server bad response");
 } else {
 return new RuntimeException("Something went terribly wrong: "
+ response); ④
 }
 }
}

Listing 5-8 Exception Mapping

① This class implements ResponseExceptionMapper<RuntimeException>.
② If the Response has 404 status, a RuntimeException with a “Resource not found” message is
returned.
③ If the Response has 500 status, a RuntimeException with a “Server bad response” message is
returned.
④ Otherwise, a RuntimeException with a “Something went terribly wrong” message is returned.

Since this exception mapper is ready, all you need to do is to register it to the REST client interface.
Otherwise, it is registered using the @RegisterProvider annotation, as shown in Listing 5-9.

@RegisterRestClient(baseUri="http://localhost:8080/wizard")
@RegisterProvider(WizardExceptionMapper.class) ①
interface WizardRestClient {
...
}

Listing 5-9 Register Exception Mapper

① Register WizardExceptionMapper for WizardRestClient.

Every exception that may occur during the service execution is handled gracefully.

Modifying Requests and Responses
You may probably notice that @RegisterProvider is used to register the exception mapper. It is
also used to register different filters and modifiers.

You can use filters around requests and responses.
ClientResponseFilter is invoked in order when a response is received from a remote service.
ClientRequestFilter is invoked in order when a request is made to a remote service.

For example, if you want to log what request has been made, you should create a class
implementing ClientRequestFilter. By overriding filter(ClientRequestContext

requestContext) function, you can use any information about the current request, like headers,
URLs, and so forth. You can get it from the ClientRequestContext object, which is passed as a
parameter.

public class WizardRequestFilter implements ClientRequestFilter
{ ①

 private static final Logger log =
 Logger.getLogger(String.valueOf(WizardRequestFilter.class));

 @Override
 public void filter(ClientRequestContext requestContext)
{ ②
 log.info("Request intercepted: " + requestContext.getHeaders());
 }
}

Listing 5-10 Request Filter

① Implement ClientRequestFilter.
② Override filter(...) and get information from ClientRequestContext.

The same can be done for Response Filters. You should create a class implementing
ClientResponceFilter. In this case, log the response status.

public class WizardResponseFilter implements ClientResponseFilter
{ ①

 private static final Logger log =
 Logger.getLogger(String.valueOf(WizardResponseFilter.class));

 @Override
 public void filter(ClientRequestContext requestContext,
 ClientResponseContext responseContext)
{ ②
 log.info("Intercepted response status"
 + responseContext.getHeaders());
 }
}

Listing 5-11 Response Filter

① Implement ClientResponseFilter.
② Override filter(⋯) and get information from ClientResponseContext.

Finally, you must register these filters with the WizardRestClient, as easy as the exception
mapper, using the @RegisterProvider annotation, as shown in Listing 5-12.

@RegisterRestClient(baseUri="http://localhost:8080/wizard")
@RegisterProvider(WizardExceptionMapper.class)
@RegisterProvider(WizardRequestFilter.class) ①
@RegisterProvider(WizardResponseFilter.class) ②
interface WizardRestClient {
 ...
}

Listing 5-12 Register Filters

① Register WizardRequestFilter.

② Register WizardResponseFilter.
Now if you run the sorcery ministry app and call the /wizardClient endpoint in the log output,

you see Listing 5-13.

{Accept=[application/json], Magic-Header=[Custom header magic value]}
{content-length=[13], connection=[keep-alive], Date=[Wed, 28 Jan 2023
16:14:24 +0300], Content-Type=[application/json]}

Listing 5-13 Sample Output

The filters are working and returning header information as intended.
Other interceptions and modifiers can be applied in the same way.
MessageBodyReader is used when the entity should be read from the API response after
invocation.
MessageBodyWriter is used for a request body to be written in the request for @POST and @PUT
operations and other HTTP methods that support bodies.
ParamConverter is used for a parameter in a resource method to be converted to a format for a
request or a response.
ReaderInterceptor is a listener triggered when a read occurs against the response received from a
remote service call.
WriterInterceptor is a listener triggered when a write occurs to the stream to be sent on the remote
service invocation.

Provider invocation priority can be controlled. @Priority is used when you want to set an
explicit priority value, like @Priority(1000). This means that the annotated provider is used as one
of the last. Both programmatically and via annotations, the builder pattern can be used to register
providers. The providers that include the @RegisterProvider annotation are subordinate to those
registered using a builder. The class’s @Priority annotation is subordinate to the
@RegisterProvider annotation.

Provider priorities can be overridden by various Configurable methods, which can take a
Provider class, a Provider instance, and a priority and mappings of those priorities.

Handling Headers
HTTP headers are designed to enable the transfer of supplementary details between the client and
server when sending an HTTP request or Response. A header comprises a name that is not case-
sensitive, followed by a colon (:)and its corresponding value. Headers are crucial for implementing
various security, authentication, tracing, and other mechanisms.

To specify headers for service calls, annotate a method parameter with the @HeaderParam
annotation.

@Path("/wizard")
public interface WizardRestClient {

 //.. other methods omitted

 @POST
 Response createWizard(@HeaderParam("Custom-Header")
 String customHeader, ①
 Wizard wizard);

 @PUT
 @Path("/{name}")
 Response updateWizard(@BeanParam PutWizard putWizard,
 Wizard wizard);②

 @DELETE
 @Path("/{name}")
 Response deleteWizard(@CookieParam("AuthToken")
 String token, ③
 @PathParam("name") String name);
}

public class PutWizard { ④
 @HeaderParam("Custom-Header")
 private String custom;
 @PathParam("name")
 private String name;
 // ...
}

Listing 5-14 Header Parameters

① Injects Custom-Header header.
② Injects an aggregate bean with fields annotated using the …​Param annotation.
③ Injects AuthToken from a cookie.
④ This is a class with @HeaderParam and @PathParam annotated fields used in <2>.

But if you need to specify an HTTP Header without altering the client interface method signature,
you should use @ClientHeaderParam annotation. It has three parameters.

name is the header name.
value is the header value, which must be String or string[], or a reference to a method that
computes the value.
required is a boolean value that determines whether a request should fail if the compute method
throws an exception.

@Path("/wizard")
public interface WizardRestClient {

 //.. other methods omitted

 @POST
 @ClientHeaderParam(name="Magic-Header",
 value="Custom header magic value", required=false) ①
 Response postWizardCustomHeader(Wizard wizard) {...}
}

Listing 5-15 Client Header Parameters

① Set a Custom header to the client method.
To add or distribute headers in bulk, ClientHeadersFactory is utilized. This factory contains

only one method that accepts two read-only MultivaluedMap parameters. If the client is operating
in a JAX-RS environment, the first map represents headers from the incoming JAX-RS request, whereas
the second map includes headers specified using @ClientHeaderParam, @HeaderParam,
@BeanParam, and so on that are sent. The returned result is MultivaluedMap, representing the
“final” set of headers to be transmitted in the outbound processing flow.

Note The final map of headers could still be changed by providers, such as filters, interceptors,
and message body writers before the HTTP request is sent.

To add custom headers, you should implement ClientHeadersFactory and override the update
method. There you have all the incoming and outgoing headers. As a result, you should return a map

with the headers you want.

public class WizardHeaderHandler implements ClientHeadersFactory
{ ①

 @Override
 public MultivaluedMap<String, String>
 update(MultivaluedMap<String, String> incomingHeaders,
 MultivaluedMap<String, String> clientOutgoingHeaders) {
 return new MultivaluedHashMap<>() {{
 put("Magic-Header",
 List.of("Custom header magic value")); ②
 }};
 }
}

Listing 5-16 Client Headers Factory

① Implements ClientHeadersFactory.
② Overrides update method returning a MultivaluedHashMap with the header desired.

Following the same paradigm as Provider, WizardHeaderHandler must be registered with
the REST client interface. It is achieved with the @RegisterClientHeaders annotation.

...
@RegisterClientHeaders(WizardHeaderHandler.class) ①
interface WizardRestClient {
 ...
}

Listing 5-17 Register Header Handler

① Registers the WizardHeaderHandler

Now there is a “magic header” in the headers.

Asynchronous Operations
MicroProfile Rest Client is a very powerful tool. If you must consume heavy or long-running requests,
you can make them asynchronous so that these calls won’t block your service. It is achieved very easily:
a method should return CompletionStage<>. In our particular wizard client, replace the return type,
as shown in Listing 5-18.

interface WizardAsyncRestClient {

 @GET
 CompletionStage<Response> getMostMightyWizard(); ①

 @Path("/{name}")
 @GET
 CompletionStage<Response>
 getWizardByName(@PathParam("name") String name); ②
}

Listing 5-18 Asynchronous Operations

① Asynchronous version of the getMostMightyWizard method
② Asynchronous version of the getWizardByName method

Now you can asynchronously process client requests using standard Java language features.

If you need to intercept and manipulate asynchronous calls, please consult the MicroProfile Rest
Client documentation.

Programmatic APIs
MicroProfile Rest Client can also be created using a programmatic API via a builder obtained from
RestClientBuilder.newBuilder(). This is the way to use MicroProfile RestClients outside the
managed CDI environment. RestClientBuilder provides methods to configure client details and
define the desired REST client interface.

WizardRestClient client =
 RestClientBuilder.newBuilder() ①
 .baseUri(URI.create("http://localhost:8080/wizard")) ②
 .followRedirects(true) ③
 .proxyAddress("http://someobscureproxy.com:9000") ④
 .build(WizardRestClient.class);

Wizard wizard = client.getMostMightyWizard();

Listing 5-19 Programmatic Operations

① Uses a builder pattern to create the client.
② Sets baseUrl.
③ Sets followRedirects to true.
④ Configures the proxy.

You can set all the properties programmatically. For SSL setup, there are corresponding
trustStore and keyStore objects.

Note MicroProfile Rest Client instances created using builder are not injectable, as this usage is
designed for operating outside the CDI container. So, if you create a client instance this way, it is not
visible to the CDI container.

MicroProfile Rest Client Conclusion
As mentioned, MicroProfile Rest Client is a very powerful tool. This chapter covers the main usage
cases of it. But it can do much more, like server-side events handling, its integrations with MicroProfile
Config and fault tolerance, and other cool features.

Please refer to the official documentation for all details.

JAX-RS Client API
Another way to call other RESTful services in Helidon is to use the JAX-RS Client API. JAX-RS is an old
but commonly used name for Jakarta EE specification called Jakarta RESTful Web Services
Specification. It also has excellent inbuilt client capabilities.

The JAX-RS Client API is intended to facilitate a fluent programming model, and in Helidon, it is
implemented using Jersey. This programming model differs from the one employed in the MicroProfile
Rest Client. The JAX-RS Client API heavily employs the builder pattern to simplify configuration and
execution. Additionally, unlike the MicroProfile Rest Client, the JAX-RS client lacks an annotations API.

If you use the full helidon-microprofile bundle, all the dependencies are available out of the
box. If you chose to use the helidon-microprofile-core, to ensure correct JSON to Object
mapping, you should include JSON-B support in our project pom.xml file, as shown in Listing 5-20.

<dependency>
 <groupId>io.helidon.microprofile.bundles</groupId>
 <artifactId>helidon-microprofile-core</artifactId> ①

https://download.eclipse.org/microprofile/microprofile-rest-client-3.0/microprofile-rest-client-spec-3.0.html%2523_asyncinvocationinterceptors
https://github.com/eclipse/microprofile-rest-client/releases/tag/3.0
https://jakarta.ee/specifications/restful-ws/
https://jakarta.ee/specifications/restful-ws/

</dependency>
<dependency>
 <groupId>jakarta.json.bind</groupId>
 <artifactId>jakarta.json.bind-api</artifactId> ②
</dependency>
<dependency>
 <groupId>org.glassfish.jersey.media</groupId>
 <artifactId>jersey-media-json-binding</artifactId> ③
</dependency>

Listing 5-20 MicroProfile Dependencies

① MicroProfile Core dependency
② JSON-B support in Jersey
③ Jersey binding support dependency

Note The JAX-RS Client API is a very powerful and versatile tool. It can be used with many services
delivering XML, plain text, and binary streams. This book focuses only on RESTful services
delivering JSON data, which is automatically marshaled/unmarshaled to Java objects.

To create and use the JAX-RS Client API, the following steps should be done: call
ClientBuilder.newClient() static method to create a new Client. Then use target()
method on the obtained client instance. A WebTarget is returned. Next, get Invocation.Builder
using target.request() method on WebTarget instance obtained in the second step. Finally,
execute invocationBuilder.get(), put(), post() or delete() methods to invoke
corresponding REST calls.

Let’s create and use the client by following the earlier four steps. First, create a WebTarget
pointing to http://localhost:8080. Let’s use ClientBuilder.newClient() for that as
described. Next, use the created client to set the path to the /wizard endpoint, set MediaType to
APPLICATION_JSON since we are working with JSON data, and call the get method with the
Wizard.class parameter. This way, the JAX-RS Client API performs a GET call to the specified base
URI and endpoint and automatically maps the result to the Wizard class.

@ApplicationScoped
@Path("/wizardClient")
public class SorceryMinistryResource {

 private final WebTarget target =
 ClientBuilder.newClient()
 .target("http://localhost:8080"); ①

 @GET
 @Path("/jaxrs")
 @Produces(MediaType.APPLICATION_JSON)
 public Wizard getWizardFromJaxrsClient() {
 return target
 .path("/wizard") ②
 .request(MediaType.APPLICATION_JSON) ③
 .get(Wizard.class); ④
 }
}

Listing 5-21 Resource with Endpoints

① Creates a WebTarget by using a ClientBuilder for creating a Client and setting a target.
This is a resource-heavy operation. (This is why we do it once and cache it in a class field.)

② Sets the path to /wizard.
③ Builds an invocation with MediaType.APPLICATION_JSON.
④ Maps the JSON result to the Wizard class.

As simple as that. Just create a client using a static builder. After this, you can call the service using
get(), put(), post(), or delete() methods on Invocation.Builder. This code achieves the
same result as using the MicroProfile Rest Client. Bear in mind that the requests above are blocking.
This means during the client call, the thread is blocked, and nothing useful can be done. Asynchronous
and reactive execution is discussed later in this chapter.

Also, remember that WebTarget instances are immutable in terms of their URI. However, they
are mutable in terms of configuration. Thus, configuring a WebTarget instance does not create new
instances. Creating a WebTarget instance is considered a heavy operation.

An Invocation is a request that has been prepared and is ready for execution. You do not need to
know how the invocation was prepared, but only how it should be executed—synchronously or
asynchronously.

Client, ClientBuilder, and WebTarget are configurable, as they all implement a
Configurable interface that supports the configuration of the following.

Properties are name-value pairs for additional configuration.
Features are special types of providers that implement the Feature interface and can be used to
configure a JAX-RS implementation. Features are not covered in this book.
Providers are classes or instances of classes that implement one or more interfaces of entity
providers, context providers, and exception mapping providers. A provider can be a message filter, a
context resolver, an exception mapper, and so forth. The usage of a provider is demonstrated later in
this chapter.

Let’s make a more complex demonstration by posting a new wizard instance to the endpoint. To
demonstrate this, let’s use the wizard service that was created in MicroProfile Rest Client. It has a
/wizard/add POST endpoint, accepting JSON data.

To send our new wizard to the POST endpoint, let’s use the post() request execution method. This
method expects to receive Entity class instances to work properly. The Entity object holds
metadata for sending the wizard entity over the network. The payload can be of any kind: XML data,
text data, or a custom binary stream. In this case, create an Entity instance, which marks the wizard
instance to be processed as a JSON document. It can be done using the Entity.json(wizard)
method.

// other methods omitted

@GET
@Path("/jaxrs/add")
@Produces(MediaType.APPLICATION_JSON)
public Wizard addWizardAndCheck() {
 Wizard wizard = new Wizard();
 wizard.setName("NewWizard"); ①

 client.path("/wizard/add")
 .request(MediaType.APPLICATION_JSON)
 .post(Entity.json(wizard);

 return client ③
 .path("/wizard/NewWizard")
 .request(MediaType.APPLICATION_JSON)
 .get(Wizard.class);
}

Listing 5-22 JAX-RS Client Usage

① Creates a sample wizard.
② Marshals the new wizard to JSON using Entity.json() method and send data in a post
request.
③ Synchronously queries the service for a new wizard and returns it.

When you call this method, it returns the new wizard object, which is saved in the wizard service.

curl -X GET http://localhost:8081/wizardClient/jaxrs/add
{"name":"NewWizard"} ①

Listing 5-23 Call the Client

① Create a new Wizard object and query it back.

Providers
Providers in JAX-RS and its Client are responsible for various cross-cutting concerns such as filtering
requests, converting representations into Java objects, and mapping exceptions to responses. A
provider can be pre-packaged in the JAX-RS runtime or supplied by an application.

Let’s implement the same logging filter used in the “MicroProfile Rest Client” section. For that, the
JAX-RS Client API provides a conceptually close approach.

Creates a class implementing ClientRequestFilter and/or ClientResponseFilter
Registers this/these class(s) within Client or WebTarget, using .register(...​) method

If you register a filter in Client, it is inherited by all WebTarget instances. Registering it within
the current instance means no other WebTarget instance is affected.

To simplify the logging filter creation, let’s create a single class implementing both interfaces.
Override filter(ClientRequestContext requestContext) for ClientRequestFilter,
and filter(ClientRequestContext requestContext, ClientResponseContext
responseContext) for ClientResponseFilter. The class should look like Listing 5-24.

public class LoggerFilter implements
 ClientRequestFilter, ClientResponseFilter { ①

 private final Logger logger =
 Logger.getLogger(LoggerFilter.class.getName());

 @Override
 public void filter(ClientRequestContext requestContext) { ②
 logger.info(requestContext.getHeaders().toString());
 }

 @Override
 public void filter(ClientRequestContext requestContext,
 ClientResponseContext responseContext) { ③
 logger.info(responseContext.getHeaders().toString());
 }
}

Listing 5-24 Request and Response Filters

① Class implementing ClientRequestFilter and ClientResponseFilter.
② Override filter(ClientRequestContext requestContext) to log request headers.
③ Override filter(ClientRequestContext requestContext,
ClientResponseContext responseContext) to log response headers.

Only register this class in Client, since we want all WebTargets created by this Client to have
a logging filter registered.

WebTarget target = ClientBuilder.newClient()
 .register(new LoggerFilter()) ①
 .target("http://localhost:8080");

Listing 5-25 Register Filter

① Register LoggerFilter in the WebTarget.
Now all the headers from the requests and responses will be logged.
Let’s run the sorcery ministry app and call the /wizardClient/jaxrs endpoint in the log

output, as shown in Listing 5-26.

{Accept=[application/json]}
{content-length=[13], connection=[keep-alive], Date=[Wed, 28 Sep 2022
16:26:55 +0300],
Content-Type=[application/json]}

Listing 5-26 Sample Output

Excellent, as expected!
There are many other providers of entity manipulation for media type, working with contexts and

exceptions. Please refer to the official documentation for more details.

Asynchronous Operations
JAX-RS provides an asynchronous way of calling other services. It is achieved just by calling .async()
method. Thus, the function immediately returns a Future instance, which contains a response once it
is received.

public Future<Wizard> getAsyncWizardFromJaxrsClient() {
 return target
 .path("/wizard")
 .request(MediaType.APPLICATION_JSON)
 .async() ①
 .get(Wizard.class);
}

Listing 5-27 Asynchronous Operations

① Invokes an asynchronous client call.
And even more than this. The requests can be processed reactively. And this is also achieved quite

easily by calling the client’s .rx() method. The function returns CompletableStage as a result.

public CompletableStage<Wizard>
 getAsyncWizardFromJaxrsClient() {
 return client
 .path("/wizard")
 .request(MediaType.APPLICATION_JSON)
 .rx() ①
 .get(Wizard.class);
}

Listing 5-28 Reactive Operations

① Invokes a reactive client call
The request execution immediately returns CompletionStage, which contains a Wizard

instance once it processes the response. It can later be processed in a reactive means using standard
Java language features.

These methods are suitable for heavy or long-running calls to avoid blocking the service thread.

https://jakarta.ee/specifications/restful-ws/3.0/jakarta-restful-ws-spec-3.0.html%2523providers

JAX-RS Client API Conclusion
This chapter only scratched the surface of all the possibilities the JAX-RS Client API provides. The usage
itself is worthy of its own thick book since it is a very powerful tool.

Please refer to the official documentation for more information.

CORS
Due to security reasons, browsers allow loading resources only from the same origin as the page was
loaded. Previously, browsers allowed loading resources from any location, and this was a reason for
much data to be stolen.

Still, sometimes, you need to allow requests from specific locations other than the origin. And CORS
is made for this.

The cross-origin resource sharing (CORS) protocol allows the server to identify origins other than its
own from which a browser should permit loading resources. It works based on HTTP headers.

Helidon can programmatically define the CORS behavior of your services using the Helidon CORS
API. You can also configure it externally. Three built-in endpoints—health, metrics (see Chapter 4), and
OpenAPI (see Chapter 9)—are integrated with CORS. Several annotations and configuration options
allow you to easily control how our resources are exposed across origins. Please explore the Helidon
official documentation for more information on all its features.

Add the Listing 5-29 dependency to the Helidon MP project’s pom.xml file to enable CORS.

<dependency>
 <groupId>io.helidon.microprofile</groupId>
 <artifactId>helidon-microprofile-cors</artifactId>
</dependency>

Listing 5-29 CORS Dependency

In this example, let’s refer to our wizard service.
The “sorcery ministry” at sorceryministry.com hosts an app that regulates wizards. A wizard service

—a repo of all wizards—runs at helidonserver.com/wizard.

Figure 5-2 Call hierarchy of the wizard service and the sorcery ministry application

1. The browser loads the sorcery ministry app from sorceryministry.com, which is the origin of CORS.
2. The app requests GET http://helidonserver.com/wizard. helidonserver.com is the host.

The browser’s CORS implementation adds Host and Origin headers to the request.
3. Helidon CORS checks that the Helidon application permits sharing of /wizard via GET with

sorceryministry.com. If so, it permits the request to reach the destination; if not, it rejects the
request with “403 – Forbidden” status.

4. Helidon CORS updates the response with Access-Control-Allow-Origin: * (depending on how you
have configured CORS for the Helidon application).

https://jakarta.ee/specifications/restful-ws/3.0/jakarta-restful-ws-spec-3.0.html
https://helidon.io/docs/v3/%2523/mp/cors/cors
https://helidon.io/docs/v3/%2523/mp/cors/cors
http://helidonserver.com/wizard

Now, let’s add CORS to our wizard application. The goal is to permit unrestricted sharing of the
resource that returns wizards and restrict sharing of the resource that gets the wizard so that only the
origins http://sorceryministry.com can get the information.

@GET
@Produces(MediaType.APPLICATION_JSON)
@CrossOrigin(allowMethods = {"GET"},
 allowOrigins = {"http://sorceryministry.com"}) ①
public JsonObject getWizard() { }

Listing 5-30 CORS Annotations Usage

① Declare CORS properties.
Use the @CrossOrigin annotation with the allowMethods and allowOrigins parameters

specified.
You can do the same using an external configuration. Add Listing 5-31 to the microprofile-

config.properties file.

cors.paths.0.path-pattern=/wizard
cors.paths.0.allow-methods=GET
cors.paths.0.allow-origins=http://sorceryministry.com

Listing 5-31 CORS Configuration

This configuration enables the required CORS settings for the /wizard resource.
Helidon also lets us easily include health, metrics (see Chapter 4), and OpenAPI (see Chapter 9)

services in our Helidon application. These services add endpoints to our application so clients can
retrieve various telemetry and documentation information. As with the application endpoints you
create, these endpoints represent resources that can be shared across origins.

By default, the integrated CORS support in all three services permits any origin to share their
resources using GET, HEAD, and OPTIONS HTTP requests. You can override the default CORS behavior
to those endpoints using the configuration. They are independent of the services created. For example,
restrict the /health endpoint and the /metrics endpoint, provided by built-in components, to only
the origin http://sorceryministry.com.

...
health:
 cors:
 allow-origins: [http://sorceryministry.com] ①
metrics:
 cors:
 allow-origins: [http://sorceryministry.com] ②
...

Listing 5-32 Health and Metrics Configuration

① Allows /health to be accessible to the only origin http://sorceryministry.com
② Allows /metrics to be accessible to the only origin, http://sorceryministry.com

Now, if you try to access the /health endpoint, it rejects requests from origins that are not
approved, as shown in Listing 5-33.

curl -i -H "Origin: http://sorceryministry.com"
http://helidonserver.com/health

HTTP/1.1 403 Forbidden
Date: Mon, 11 Jan 2023 12:06:55 +3:00

http://sorceryministry.com/
http://sorceryministry.com/
http://sorceryministry.com/
http://sorceryministry.com/

transfer-encoding: chunked
connection: keep-alive

Listing 5-33 Sample Output
And responds successfully only to cross-origin requests from http://sorceryministry.com.

curl -i -H "Origin: http://sorceryministry.com"
http://helidonserver.com/health

HTTP/1.1 200 OK
Access-Control-Allow-Origin: http://sorceryministry.com
Content-Type: application/json
Date: Mon, 11 Jan 2023 12:09:05 +3:00
Vary: Origin
connection: keep-alive
content-length: 461

{"outcome":"UP",...}

Listing 5-34 Sample Output

Summary
Services call other services. Some services provide data, while others consume it.
Helidon has multiple ways to communicate with other Microservices with REST.
MicroProfile Rest Client and the JAX-RS Client API provide different programming models.
Declarative for MicroProfile Rest Client and the builder pattern based on the JAX-RS Client API.
Advanced header manipulations, filtering, and asynchronous operations can be done in MicroProfile
Rest Client and the JAX-RS Client API.
To ensure correct Cross-origin work, consider setting up CORS for your microservices. This is easily
done using a few annotations in Helidon MP or external configuration.
You can control the accessibility of built-in endpoints like /health, /metrics, and /openapi
using external configuration.

http://sorceryministry.com/

(1)
(2)

© The Author(s), under exclusive license to APress Media, LLC, part of Springer Nature 2023
D. Kornilov et al., Beginning Helidon
https://doi.org/10.1007/978-1-4842-9473-4_6

6. Accessing Data
Dmitry Kornilov1 , Daniel Kec1 and Dmitry Aleksandrov2

Praha, Czech Republic
Sofia, Bulgaria

This chapter covers the following topics.
Microservices interacting with databases are nicely supported in Helidon in various ways
Working with SQL and NoSQL using JDBC, JTA, and JPA in Helidon
Accessing data using Micronaut Data in Helidon

We have heard at many conferences and read in many articles that the best microservices are stateless,
and we should keep them stateless. Nevertheless, real-world practices have shown that most microservices
must keep state and thus must talk to databases. That’s why Helidon provides a convenient way to work
with databases. Helidon offers multiple ways to work with a database, from low-level data access using
JDBC to the complex Jakarta Persistence API and its implementations: Hibernate and EclipseLink. If you
have ever worked with Enterprise Java, it takes no effort to learn it. Just work with it as you used to before.
Just bear in mind that Helidon is not a full Jakarta EE container.

From low-level to complex, these are the main options for working with a database in Helidon.
At the lowest level of database interaction is JDBC, where physical connections are handled.
DataSource provides an abstraction layer over JDBC, facilitating connection management and pooling.
The Jakarta Persistence API is an object-relational mapping specification implemented with Hibernate
and EclipseLink.

This chapter walks through all of them, explaining their pros and cons.

Low-Level Data Access with JDBC
Relational database management systems (RDBMS) and NoSQL databases are external software programs
accessed through a database driver via some form of connection, usually TCP connections. Typically, the
database engine functions as a server, with our code serving as the client. It is also acceptable to refer to it as
a database server.

Java Database Connectivity (JDBC) is an API for the Java programming language that specifies how a
client can access a database. It has been used since 1997, making it one of the oldest Java technologies.

The API is employed to load the appropriate drivers dynamically and register them in the JDBC
DriverManager. The DriverManager functions as a connection factory for creating JDBC connections.

JDBC connections are used to create and execute statements, of which there are several kinds.
Statement is a regular statement to read or alter data sent to a database.
PreparedStatement is a cached statement; subsequently, the execution path is predetermined on the
database server, enabling it to be executed repeatedly in a highly efficient manner.
CallableStatement is for executing stored procedures on the database.
Query statements (e.g., SELECT) return a JDBC row result set. They represent the tabular data. The row

result set has metadata describing the columns' names and their types.
Update statements (e.g., INSERT, UPDATE, and DELETE) alter data in the database and return the count

of updates to indicate the number of affected rows.
Helidon MP does not include any database drivers; hence it is up to us to select the appropriate driver

for our database and vendor and manually add its dependency to the pom.xml file of our application.

https://doi.org/10.1007/978-1-4842-9473-4_6

Let’s dive into some code. To keep it simple, let’s use H2—a small, in-memory database primarily used
for unit testing. Listing 6-1 is its dependency.

<dependency>
 <groupId>com.h2database</groupId>
 <artifactId>h2</artifactId>
 <scope>runtime</scope> ①
</dependency>

Listing 6-1 H2 Driver Dependency

① The scope is runtime because JDBC drivers are runtime components not needed at compile time.

Now that you have the database driver, let’s use it in the code.

try {
 String url = "jdbc:h2:mem:sample"; ①
 Connection connetion =
DriverManager.getConnection(url,"sa",""); ②
 Statement stmt = conn.createStatement(); ③
 ResultSet rs = stmt.executeQuery("SELECT * FROM Wizards); ④
 while (rs.next()) {
 String name = rs.getString("Name");
 System.out.println(name);
 }
 connections.close(); ⑤
 } catch (Exception e) {
 e.printStacktrace(); ⑥
 }

Listing 6-2 JDBC Example

① Sets a database connection URL
② Creates a connection using DriverManager
③ Creates a statement
④ Executes a SELECT query, gets the ResultSet, and processes it
⑤ Closes the connection
⑥ Handles exceptions

This is a very straightforward and low-level way of accessing the data from a database. It is very
inefficient. Creating a connection is a resource-heavy operation, and manually parsing data is not the best
choice.

That is why the DataSource interface was created for managing connections.

Working with DataSource
DataSource is an interface with only two methods: getConnection() and getConnection(String
username, String password), which is in the javax.sql package. Database vendors offer various
implementations of this interface to provide distinct database functionality. Generally, these
implementation classes contain methods that enable us to supply the database server particulars and user
credentials.

The following are other common features provided by DataSource implementations.

Connection pooling
Caching PreparedStatement
Connection timeouts
Logging features

Helidon provides integration mechanisms to set up and inject DataSource into our code. The flow is
easy: describe connection details in the microprofile-config.properties file and inject the

DataSource using @Inject and @Named annotations. Helidon MP’s named data source integration
requires a connection pool implementation.

Two primary ones are currently supported: HikariCP and Oracle Universal Connection Pool (OCP). You
can choose to use either, but not both. Just add the corresponding dependency for the selected option.

Listing 6-3 is for HikariCP.

<dependency>
 <groupId>io.helidon.integrations.cdi</groupId>
 <artifactId>helidon-integrations-cdi-datasource-hikaricp</artifactId>
 <scope>runtime</scope>
</dependency>

Listing 6-3 HikariCP Dependency

Listing 6-4 is for OCP.

<dependency>
 <groupId>io.helidon.integrations.cdi</groupId>
 <artifactId>helidon-integrations-cdi-datasource-ucp</artifactId>
 <scope>runtime</scope>
</dependency>

Listing 6-4 OCP Dependency

Note Do not forget to add the database driver dependency to the pom.xml file. Connection pools can
work with different database vendors, and drivers for them are not included in the dependencies.

Now that you have the required dependencies, let’s configure DataSource in microprofile-
config.properties.

javax.sql.DataSource.wizardSource.dataSourceClassName=org.h2.jdbcx.JdbcDataSou
javax.sql.DataSource.wizardSource.dataSource.url=jdbc:h2:mem:test;DB_CLOSE_DEL
javax.sql.DataSource.wizardSource.dataSource.user=db_user
javax.sql.DataSource.wizardSource.dataSource.password=user_password

Listing 6-5 Typical Configuration

Property names have a common pattern.

<objecttype>.<datasourcename>.<propertyname>

<objecttype> is the fully qualified Java class name of the configured object. In our case, it is
is.javax.sql.DataSource. It is followed by a period (.) as a separator.
<datasourcename> is the name of the data source. It cannot contain a period “ . ” In this case, it is
wizardSource. A period (.) is a separator for the next part.
<propertyname> supplies the connection pool or vendor-supplied DataSource-specific
configuration property name. It may contain periods (.), such as .url (.user in our case).

Helidon reads this configuration and creates and configures the desired DataSource. To use it in our
Java code, inject it with the @Named annotation.

@Inject
@Named("wizardSource") ①
private DataSource wizardSource;

Listing 6-6 Inject DataSource

① Inject named DataSource “wizardSource”
Listing 6-7 uses a constructor.

private final DataSource wizardSource; ①

@Inject
public SomeObject(@Named("wizardSource")
 DataSource wizardSource) { ②
 this.dswizardSource = wizardSource;
}

Listing 6-7 Inject DataSource via Constructor

① Defines the DataSource variable
② Injects the named DataSource to a constructor parameter

Now you can get a connection from the managed DataSource and use it in our code. This is a much
more resource-friendly way to get a JDBC connection.

Data Access with JPA
The preceding sections discussed how the laborious task of managing database connections could be
alleviated using DataSource. However, the challenge of dealing with low-level result sets remains. The
data in a database exists in a completely different realm and is stored in tables with interrelations for
relational databases. It does not consist of objects. As a result, manually converting this tabular data to Java
objects and back is a time-consuming process. Various object-relational mapping (ORM) frameworks were
developed to simplify this process. Essentially, they serve as an intermediary layer between the
DataSource and user code, transforming the relational data stored in a database into Java objects and
vice versa, thus reducing the required time.

But each of these frameworks provided its own API and usage model. A common specification was
created since this is a typical problem in most enterprise applications. It is called the Jakarta Persistence
API. This is not a ready-to-use solution; it is a document and a set of APIs that different vendors should
implement. These implementations are usually called JPA providers.

JPA describes, among other things, how its implemented.
Map Java objects to relational database tables.
Manage such persistent Java objects.
Interact with transactions (in this case, Jakarta Transactions).
Interact with named data sources.

You must put a few annotations to our POJOs, and the JPA provider does all the magic for you. Those
annotated objects are managed using special EntityManager and EntityManagerFactory classes,
which are automatically configured and instantiated by Helidon. The code written with JPA is portable. This
means it works the same way when you switch the provider, discussed later in the chapter.

JPA has two operation modes.
In a container-managed entity manager, JPA management is handled entirely by the container; Helidon,
in our case.
In an application-managed entity manager, JPA management is handled by the application (better say,
the developer).

This book talks only about the container-managed JPA, which means you learn how to tell Helidon to
properly configure and run a JPA provider for you. Helidon takes of error handling, thread safety, and
transaction management on behalf of the user, making the developer experience much better.

JPA providers are supported in Hibernate ORM and EclipseLink. You should choose one of them, but not
both.

Note This chapter only acquaints you with JPA in the context of Helidon. JPA is a vast topic. Please
check other books about JPA for more details about this specification and its usage.

All of this may sound a little scary, but let’s jump into the code, and you will see that it is quite easy.
Microservices working with a database is a common use case; there is a special Helidon QuickStart. It

can be used as a template for our next Helidon service. Let’s now generate a Quickstart database example at

https://jakarta.ee/specifications/persistence/
https://jakarta.ee/specifications/persistence/

https://helidon.io/starter.

1. Select the Helidon MP flavor.
2. Select Database.
3. Choose Jackson or JSON-B for Media Support.
4. Select the following.

Hibernate as the JPA Implementation
HipariCP for Connection Pool
H2 for the Database Server
Auto DDL for Automatic schema initialization

5. Click the Download button.
Alternatively, you can go to https://helidon.io/starter/3.2.0?flavor=mp&step=5&app-

type=database, unzip the myproject.zip download, and open the folder in your favorite IDE.

Note When this book was written, Helidon’s latest version was 3.2.0. You may replace the version
number with the latest version available to you.

Let’s explore the generated project. It is a Pokemon repository service.
First, let’s look at the dependencies in the pom.xml file. The most significant are those for

persistence.

<dependency>
 <groupId>jakarta.persistence</groupId>
 <artifactId>jakarta.persistence-api</artifactId> ①
</dependency>
<dependency>
 <groupId>io.helidon.integrations.cdi</groupId>
 <artifactId>helidon-integrations-cdi-jpa</artifactId>②
 <scope>runtime</scope>
</dependency>
<dependency>
 <groupId>io.helidon.integrations.cdi</groupId>
 <artifactId>helidon-integrations-cdi-hibernate</artifactId> ③
 <scope>runtime</scope>
</dependency>
<dependency>
 <groupId>io.helidon.integrations.cdi</groupId>
 <artifactId>helidon-integrations-cdi-datasource-
hikaricp</artifactId> ④
 <scope>runtime</scope>
</dependency>

Listing 6-8 Persistence Dependencies

① Jakarta Persistence API main dependency
② JPA CDI extensions
③ Since Hibernate was chosen as the JPA provider, Helidon integrates with it
④ Uses HikariCP for database connections management

In Helidon, you can set up and combine different technologies like Lego blocks. In this case, let’s
combine the HikariCP connection pool with JPA (Helidon uses CDI as an extension mechanism) and
Hibernate as a JPA provider.

https://helidon.io/starter
https://helidon.io/starter/3.2.0%253Fflavor%253Dmp%2526step%253D5%2526app-type%253Ddatabase
https://helidon.io/starter/3.2.0%253Fflavor%253Dmp%2526step%253D5%2526app-type%253Ddatabase

Let’s look at the code, especially the Pokemon and PokemonType entities. These two entities depend
on each other: Pokemon has a PokemonType as a property.

@Entity(name = "Pokemon") ①
@Table(name = "POKEMON") ②
@Access(AccessType.PROPERTY)
@NamedQueries({ ③
 @NamedQuery(name = "getPokemons",
 query = "SELECT p FROM Pokemon p"),
 @NamedQuery(name = "getPokemonByName",
 query = "SELECT p FROM Pokemon p WHERE p.name = :name")
})
public class Pokemon {

 private int id;
 private String name;
 private PokemonType pokemonType;

 @Id
 @Column(name = "ID", nullable = false, updatable = false) ④
 public int getId() {
 return id;
 }

 @Basic(optional = false)
 @Column(name = "NAME", nullable = false) ⑤
 public String getName() {
 return name;
 }

 @JsonIgnore
 @ManyToOne
 public PokemonType getPokemonType() { ⑥
 return pokemonType;
 }

 //.. constructor, other getters and setters omitted
}

Listing 6-9 Pokemon Entity

① Declares an entity named "Pokemon"
② Entity is stored in a table called "POKEMON"
③ Several named queries for querying all Pokemons or to find a Pokemon by name
④ Id column, which should not be nullable and updatable
⑤ Name column described on a getter method should be titled "NAME" and not be empty
⑥ PokemonType field, described as a many-to-one dependency

@Entity(name = "PokemonType") ①
@Table(name = "POKEMONTYPE") ②
@NamedQueries({ ③
 @NamedQuery(name = "getPokemonTypes",
 query = "SELECT t FROM PokemonType t"),
 @NamedQuery(name = "getPokemonTypeById",
 query = "SELECT t FROM PokemonType t WHERE t.id = :id")
})
public class PokemonType {

 @Id

 @Column(name = "ID", nullable = false, updatable =
false) ④
 private int id;

 @Basic(optional = false) ⑤
 @Column(name = "NAME")
 private String name;

 //.. constructor, getters, and setters omitted
}

Listing 6-10 PokemonType Entity

① Entity named "PokemonType"
② Entity should be stored in a table called "POKEMONTYPE"
③ Several named queries used for querying all PokemonTypes or to find a PokemonType by ID
④ Id column, which should not be nullable and updatable
⑤ Name column described on a getter method should be titled "NAME" and not be empty

The following tables are generated in the database.

Figure 6-1 Pokemon and PokemonTables represented in a database

Figure 6-1 shows that the POKEMON table has a PokemonType_id column. It is there to represent the
relation between Pokemon and PokemonType entities. JPA takes care of object mapping to those tables.

Now let’s jump into configuration. In the microprofile-properties.config file, you should
describe the database connection properties following the pattern described in the “Working with a
DataSource” section.

javax.sql.DataSource.ds1.dataSourceClassName=org.h2.jdbcx.JdbcDataSource
javax.sql.DataSource.ds1.dataSource.url=jdbc:h2:mem:test;DB_CLOSE_DELAY=-1
javax.sql.DataSource.ds1.dataSource.user=db_user ③
javax.sql.DataSource.ds1.dataSource.password=user_password ④

Listing 6-11 DataSource Configuration

① Driver class used
② Database connection URL
③ User name
④ Password

Helidon reads this config, prepares the DataSource object, sets up JPA, and provides
EntityManager so you can inject it. Let’s use it in or PokemonResource endpoint, where Pokemon
CRUD operations are performed.

@Path("pokemon") ①
public class PokemonResource {

 @PersistenceContext(unitName = "pu1")

 private EntityManager entityManager;

 @GET
 @Produces(MediaType.APPLICATION_JSON)
 public List<Pokemon> getPokemons() {
 return entityManager
 .createNamedQuery("getPokemons",
Pokemon.class).getResultList(); ②
 }

 @GET
 @Path("{id}")
 @Produces(MediaType.APPLICATION_JSON)
 public Pokemon getPokemonById(@PathParam("id") String id) {
 Pokemon pokemon = entityManager
 .find(Pokemon.class, Integer.valueOf(id));
 if (pokemon == null) {
 throw new NotFoundException("Unable to find pokemon with ID " +
id); ③
 }
 return pokemon;
 }

 @GET
 @Path("name/{name}")
 @Produces(MediaType.APPLICATION_JSON)
 public Pokemon getPokemonByName(@PathParam("name") String name) {
 TypedQuery<Pokemon> query =
 entityManager.createNamedQuery("getPokemonByName",
Pokemon.class); ④
 List<Pokemon> list = query.setParameter("name",
name).getResultList();
 if (list.isEmpty()) {
 throw new NotFoundException("Unable to find pokemon with name "
+ name);
 }
 return list.get(0);
 }

 // .. more methods to be described later.
}

Listing 6-12 Pokemon Resource

① Sets Path endpoint to /pokemon
② Injects EntityManager using standard @PersistenceContext annotation with the unitName
parameter set as “pu1” as set in the generator
③ Uses entityManager to execute the getPokemons query, maps each item to Pokemon, and
returns a list of them
④ Uses entityManager to execute the getPokemons named query to find one by name, maps the
result to the Pokemon class, and returns it

As you can see from the code, JPA takes care of all the calls to the database, querying the data, and
automatically mapping the relational data to Java objects, which you can regularly use in our code.

Transactions
On occasion, a single significant action necessitates numerous interactions with a database. These
interactions are grouped as a transaction. This implies that either all of the interactions are executed or
none of them are. The database must not be left in a corrupted state, with some of the data modified and

others left untouched. This is one of the key characteristics of database engines—to ensure ACID (atomicity,
consistency, isolation, durability). These transaction properties are essential to guarantee data accuracy in
the event of errors or failures.

For this, JPA requires a transactional engine to be used, and Jakarta Transactions API (or JTA) is used. It
allows us to start, commit, and roll back transactions in a resource-agnostic way. Like JPA, JTA is not a tool or
framework but an open standard specification that other vendors should implement. Helidon MP uses the
Narayana transaction engine as an implementation for JTA. It lets us use
@jakarta.transaction.Transactional to declare JTA transactions in our Java code. You just
annotate a method with the preceding annotation, and all the calls to the database in this method are
executed in a transaction. If something goes wrong, the data will not be corrupted or saved in an
intermediate state. JTA is not bound to work with the database only. It can manage multiple resources of
different types (like messaging, for example) in a consistent and coordinated manner.

Let’s add some transactional methods to our Pokemon management service. First, you need some
Maven dependencies, as shown in Listing 6-13.

<dependency>
 <groupId>jakarta.transaction</groupId>
 <artifactId>jakarta.transaction-api</artifactId> ①
</dependency>
<dependency>
 <groupId>io.helidon.integrations.cdi</groupId>
 <artifactId>helidon-integrations-cdi-jta-
weld</artifactId> ②
 <scope>runtime</scope>
</dependency>

Listing 6-13 Transaction Dependencies

① Jakarta Transactions API core dependency
② Helidon Narayana CDI extension

The best candidates for transactional methods are the DELETE and CREATE methods.
To use the DELETE method, the initial step involves verifying the existence of the Pokemon. This entails

retrieving it from the database. The subsequent action involves deleting the Pokemon and saving the state,
with the entire process being an atomic action. If, for instance, Pokemon was retrieved the in the first step,
there is a possibility that it may have already been altered or deleted before remove(pokemon) is
executed in the same method but in another thread.

For the CREATE method, you first must retrieve the PokemonType from the database, then assign it to
the newly created Pokemon instance. As in the previous situation, you must ensure this PokemonType
exists. Thus, this sequence has to be performed as a single activity. You don’t want a PokemonType to be
deleted or altered before it is assigned to the new Pokemon.

@Path("pokemon")
public class PokemonResource {

 //.. previous methods omitted

 @DELETE
 @Path("{id}")
 @Produces(MediaType.APPLICATION_JSON)
 @Transactional(Transactional.TxType.REQUIRED) ①
 public void deletePokemon(@PathParam("id") String id) {
 Pokemon pokemon = getPokemonById(id);
 entityManager.remove(pokemon); ②
 }

 @POST
 @Consumes(MediaType.APPLICATION_JSON)
 @Transactional(Transactional.TxType.REQUIRED) ③

 public void createPokemon(Pokemon pokemon) {
 try {
 PokemonType pokemonType = entityManager
 .createNamedQuery("getPokemonTypeById",
PokemonType.class) ④
 .setParameter("id",
pokemon.getType()).getSingleResult();
 pokemon.setPokemonType(pokemonType);
 entityManager.persist(pokemon);
 } catch (Exception e) {
 throw new BadRequestException("Unable to " +
 "create pokemon with ID " +
pokemon.getId());
 }
 }
}

Listing 6-14 Pokemon Resource

① Method should be part of a new transaction
② Uses entityManager remove method to delete a Pokemon from the database
③ All interaction with the database should be in a transaction
④ Assigns PokemonType to a given Pokemon, calls entityManager to execute the
getPokemonTypeById named query to find a type, sets the type to a given pokemon, and uses
entityManager to persist the data into a database

The topic of transactions is quite complex. It has a big part in computer science. This book does not go
deep into how and where to use transactions, as this is nicely described in books about transactions. The
same is about JPA and its providers—Hibernate and EclipseLink.

This chapter only scratched the surface of what JPA can do and much time it can save you by handling all
the ORM jobs. But if you need complex object structures to be mapped to complex relational models, please
consult specific books on the topic.

The main message of this part is to get us acquainted with JPA and JTA and that Helidon provides full
support for JPA and JTA in container-managed mode.

Summary
Microservices work with the database to persist data, and Helidon provides multiple ways of accessing
and persisting the data.
Helidon supports JDBC and DataSource for low-level work with JDBC-supported databases.
Helidon supports standard ways of accessing data using JPA, with Hibernate or EclipseLink as providers.
It can be used with almost no limitations as in regular Jakarta/Java EE applications.

(1)
(2)

© The Author(s), under exclusive license to APress Media, LLC, part of Springer
Nature 2023
D. Kornilov et al., Beginning Helidon
https://doi.org/10.1007/978-1-4842-9473-4_7

7. Resiliency
Dmitry Kornilov1 , Daniel Kec1 and Dmitry Aleksandrov2

Praha, Czech Republic
Sofia, Bulgaria

This chapter covers the following topics.
Using the retry mechanism
Defining the fallback method
Invoking a method asynchronously
Limiting the method execution time
Controlling the number of parallel executions
Combining Fault Tolerance features

Failure in your service is inevitable! Sounds grim, but it should be
no surprise for any developer that something won't work as expected
at some point in the program’s life cycle. The more complex the system
becomes, the bigger the chance is for failure. In the same way a car
manufacturer needs to install airbags, you must prepare your code for
failures with appropriate countermeasures. Network issue? Retry the
call. Too many concurrent calls? Limit contention. The business
method takes too long? Use timeout. Sending message fails? Store it in
the error queue. It sounds easy, right? Use a try/catch block for a few
cycles, start a monitor thread, and manage an extra thread pool.

Okay, it’s not that easy, and you just don’t need to reinvent the wheel
each time. There can be a lot of mission-critical code that needs to be
done right.

https://doi.org/10.1007/978-1-4842-9473-4_7

All this magic becomes a boilerplate when you realize the use cases
are repeating and functionality can be done for you behind the scenes.
There is a Helidon implementation of MicroProfile Fault Tolerance,
with which you just annotate your bean method by appropriate
annotation, to help you exactly in such situations when you expect
your code could fail.

Fault Tolerance provides the following annotations to help you with
various use cases.
Retry retries an annotated bean method with a configured number
of times when an exception is thrown.
Fallback calls a configured handler or method if the annotated
method throws an exception.
Asynchronous executes an annotated method on a new thread.
Timeout monitors annotated method execution time and interrupts
it if it runs too long.
Circuit Breaker keeps track of the ratio of annotated method
execution failures and rejects new calls in case it reaches the limit.
Bulkhead monitors contention on annotated method and blocks or
rejects other threads when it gets too high.

Retry
Some operations can be unreliable by nature, and you must
accommodate for it. A typical use case would be using the JAX-RS client.
You never know what can happen on the network. Using old-school
try/catch blocks in the cycle, as shown in Listing 7-1.

public String callWizardService() {
 RuntimeException retryError = null;
 for (int i = 0; i <= 2; i++) {
 try {
 System.out.println("Calling wizard service
...");
 return ClientBuilder.newClient()
 .target("http://wizard-service")
 .request()
 .get()

 .readEntity(String.class);
 } catch (RuntimeException e) {
 retryError = e;
 }
 }
 throw retryError;
}

Listing 7-1 try/catch Block in the Cycle
Let’s do one original invocation plus two retries if an exception is

thrown.

Calling wizard service ...
Calling wizard service ...
Calling wizard service ...
2022.03.25 10:29:10 WARNING ...
java.net.ConnectException: Connection refused

Too much boilerplate just makes our business code needlessly
complicated. Annotating the bean method with @Retry automatically
does the same functionality done in Listing 7-1.

@Retry(maxRetries = 2)
public String callWizardService() {
 System.out.println("Calling wizard service
...");
 return ClientBuilder.newClient()
 .target("http://wizard-service")
 .request()
 .get()
 .readEntity(String.class);
}

Listing 7-2 Retry

Calling wizard service ...
Calling wizard service ...
Calling wizard service ...
2022.03.25 10:35:55 WARNING ...
java.net.ConnectException: Connection refused

Fallback
You have already learned how to do a retry. In case retrying doesn’t
help, a default response might be needed. @Fallback simply provides
a value for returning in case our bean method fails. It's simple enough,
so let's combine it. You can return the default value if the wizard
service is unreachable.

@Retry(maxRetries = 2)
@Fallback(fallbackMethod =
"defaultWizardServiceResponse")
public String callWizardService() {
 System.out.println("Calling wizard service
...");
 return ClientBuilder.newClient()
 ...
}
String defaultWizardServiceResponse(){
 return "Wizard service is offline :-(";
}

Listing 7-3 Fallback Method

This time method is invoked three times (remember: one original
invocation plus two retries). When the last retry fails, the fallback
method is invoked, and its result is returned by the
callWizardService() method instead of the original wizard
response.

Asynchronous
Spinning up a new thread in a DI application can be tricky. You never
know what magic is happening in the thread context under the hood of
your container. But the use case is quite common when you need to do
something lengthy but can’t afford to wait for the result.

@Asynchronous can be used on the business method, but
annotation is not enough this time. Since the asynchronous method
would return the value sometime in the future, you must change the

return type to a callback. Java has a convenient API for callbacks right in
the java.util.concurrent package. With
CompletableFuture, you can create a callback and complete it
either successfully future.complete(value) or exceptionally
.completeExceptionally(ex). CompletionStage, on the
other side, is a superclass of CompletableFuture. It has fewer
methods for a reason. Whereas CompletionStage is meant for the
consumer of the future action, CompletableFuture is for the side
controlling the completion.

By making the annotated method return
CompletionStage<String>, you get a callback that you can listen
to for the completion of the asynchronous method without blocking
the calling thread. Without @Asynchronous, we would have to spin
up our own thread or drive a special thread pool; either way, it is
completely unmanaged by the container with a thread context
unknown to the server.

public CompletionStage<String> timeConsumingTask()
{
 CompletableFuture<String> futureCallback =
 new
CompletableFuture<>();
 new Thread(() -> {
 try {
 Thread.sleep(2000);
 } catch (InterruptedException e) {
 futureCallback.complete("Long work
interrupted!");
 }
 futureCallback.complete("Long work is done!");
 }).start();
 return futureCallback;
}

Listing 7-4 Manual Asynchronous Execution

When the method is invoked, you get the CompletionStage
instead of the actual result. You can use the thenAccept method and

register a consumer lambda, which is invoked when the asynchronous
work is done.

System.out.println("Calling long task!");
CompletionStage<String> callback =
bean.timeConsumingTask();
callback.thenAccept(s ->
 System.out.println("Task finished with result:
" + s)
);
System.out.println("We didn't have to wait " +
"for task to finish to get here!");

Listing 7-5 Long Task Call
The output of Listing 7-5 demonstrates that the parent thread will

continue without waiting for asynchronous work to finish.

Calling long task!
We didn't have to wait for task to finish to get
here!
Task finished with result: Long work is done!

Listing 7-6 Long Task Call Output

Fault Tolerance’s @Asynchronous helps you with thread
management behind the scenes. Although it looks as if you are
returning a completed Future, the returned CompletionStage is
actually completed when the asynchronous work is done.

@Asynchronous
public CompletionStage<String> timeConsumingTask()
{
 try {
 Thread.sleep(2000);
 } catch (InterruptedException e) {
 return CompletableFuture
 .completedStage("Long work
interrupted!");
 }
 return CompletableFuture

 .completedStage("Long work
is done!");
}

Listing 7-7 The Same Functionality as Listing 7-4
The result is going to be the same.

Calling long task!
We didn't have to wait for task to finish to get
here!
Task finished with result: Long work is done!

This time, the asynchronous thread has the correct server context
and will work with other Fault Tolerance features, like timeout and
retry.

Note @Asynchronous can be conveniently combined with
reactive messaging methods.

Timeout
Some tasks can take longer than expected or even get stuck forever. To
effectively defend our application against such a situation, Fault
Tolerance provides the @Timeout annotation. The run-time of the
method with the annotation is being monitored, and if timeout is
reached, the thread is interrupted, and the method throws
TimeoutException.

There is a catch, however. When timeout is monitored on the same
originating thread, the only way to stop it after the timeout is by
interrupting it. An interruption doesn’t have to be enough to stop the
thread. The thread may be looping somewhere without checking for an
interruption. In such cases, an exception is thrown long after the
timeout is reached. No guarantees are given on the same thread.
Combining @Timeout with @Asynchronous, on the other hand,
offers much more control. While the new thread is monitored for
timeout, our original thread doesn’t have to wait for the asynchronous
method to finish.

Figure 7-1 Asynchronous timeout with exception propagated over
CompletionStage

TimeoutException wrapped in the ExecutionException is
immediately provided through the returned Future or
CompletionStage when the timeout occurs, whether the
interruption succeeded or not.

@Asynchronous ①
@Timeout(500) ②
@Fallback(
 fallbackMethod = "longTaskFallback", ③
 applyOn = TimeoutException.class) ④
public CompletionStage<String>
timeConsumingTask(Long mls)
throws InterruptedException {
 Thread.sleep(mls); ⑤
 return CompletableFuture

 .completedFuture(mls + " in
time!");
}

private CompletionStage<String>
longTaskFallback(Long p) {
 return CompletableFuture
 .completedFuture(p + "
timeout!");
}

Listing 7-8 Asynchronous Timeout with Fallback

① Run the method on a different thread to get the timeout
immediately.
② Set the timeout for 500 milliseconds.
③ Define a fallback method to compensate in case of a timeout.
④ Use a fallback only in case of a timeout.
⑤ Delay for a certain number of milliseconds to check if the timeout
kicked in.

timeConsumingTask(490).get(); ① ②
timeConsumingTask(520).get(); ③

> 490 in time!
> 520 timeout!

Listing 7-9 Call Timeout

① Uses CompletionStage.get() to block the current thread
until the result is ready
② Sets lower delay to avoid timeout
③ Sets a higher delay to reach timeout

Circuit Breaker
You already learned how to do a retry and fallback in case of a failure
and how to monitor a timeout. You do have basic tools now for coping
with a certain degree of intermittent failure. Another tool for guarding
the actual ratio of intermittent failures is Circuit Breaker.

Unlike the circuit breaker in your house that has only two states—
on/off, this one is way smarter. Fault Tolerance’s Circuit Breaker
feature has three states.
Closed means the failure ratio is low, and all executions are allowed.
Open means the failure ratio is too high, and Circuit Breaker denies
executions with CircuitBreakerOpenException.
Half-open means the configured number of test executions is
allowed to test if Circuit Breaker can switch back to a Closed state.

While the one in your basement opens the electric circuit with the
first evidence of trouble and keeps it that way until you come with the
flashlight to switch it back on again, Circuit Breaker analyzes the failure
ratio in a rolling window to keep the quality of service at a configured
level. A rolling window sounds fancy, but it’s only the number of past
execution attempts from which the success ratio is calculated. A
“rolling window of 20” is the last 20 execution results the Circuit
Breaker logic remembers for comparing the number of them that
failed. If too many failures are registered, Circuit Breaker switches
from Closed state to Open, and further executions are denied by
throwing CircuitBreakerOpenException. You don’t have to go
there with the flashlight and turn it on again after a configured delay.
Circuit Breaker switches to the third state: Half-open. In the Half-
open state, configurable number executions are allowed to test if the
situation improved and it's safe to switch back to the Closed state. If
any of the executions in the Half-open state fail, Circuit Breaker
returns to the Open state.

Figure 7-2 Circuit breaker states

Circuit Breaker can be combined with other Fault Tolerance
annotations. For example, @Retry retries are counted as execution
attempts, and @Fallback can compensate for denied execution with
CircuitBreakerOpenException.

Bulkhead
Bulkhead functionality is best explained in a famous movie about the
sinking of the RMS Titanic cruise ship. The Titanic had a known flood
protection system: bulkheads. Waterproof bulkheads partitioned the
ship’s interior under the sea level so that possible hull breach would
flood only the damaged compartments. The bulkheads would protect
all the other compartments, as in Figure 7-3.

Figure 7-3 Bulkheads isolating the flooded compartments

Fault tolerance bulkheads work similarly, with a small difference
that instead of stopping the flood of water, it stops the flood of
concurrent requests.

Too many concurrent requests can be a problem, not only for our
application but also for other services being invoked subsequently.
Resources or services can be shared only by a limited number of
contesting concurrent consumers. It’s great when our service can
survive a huge request peak, but what if it needs to call subsequent
service multiple times per request? Such a situation could lead to
cascading failure, and that’s what bulkhead is for. It can effectively limit
concurrent invocations of the annotated method.

In the same way that a ship’s bulkhead needs to let sailors pass
between the compartments, a fault tolerance bulkhead lets a
configured number of threads through. It’s like a valve in Figure 7-4,
letting through only configured number of threads at a time. When the
bulkhead limit of threads currently executing our method is reached,

any new thread trying to execute the method ends up with
BulkheadException.

Figure 7-4 Bulkheads regulating concurrent requests
Bulkhead can be combined with @Asynchronous, which enables

the waitingTaskQueue parameter. Since the bulkhead no longer
works with simple semaphores but operates a thread pool, it is
possible to keep threads in the queue until previous executions finish.
When the queue is full, BulkheadException is thrown for any
additional thread.

@Asynchronous
@Bulkhead(value = 2, waitingTaskQueue = 3) ① ②
@Fallback(fallbackMethod = "bulkheadTaskFallback",
 applyOn = BulkheadException.class) ③
public CompletionStage<Void> bulkheadTask(int
task) {
 System.out.println("Executing - " + task);
 Thread.sleep(200); ④
 System.out.println("Finishing - " + task);
 return
CompletableFuture.completedFuture(null);
}
private CompletionStage<Void>
bulkheadTaskFallback(int t) {
 System.out.println("BulkheadException fallback
- " + t);

 return
CompletableFuture.completedFuture(null);
}

Listing 7-10 Bulkhead with Asynchronous

① Only two concurrent executions at a time are allowed.
② Three threads can wait in a queue until previous executions
finish.
③ Invoke the fallback method instead in case execution is rejected
by @Bulkhead.
④ Spend some time on the method. Bulkhead ensures there are
always at most two threads sleeping here at once.

for(int i = 1; i <= 7; i++){
 self.bulkheadTask(i);
}

>Executing - 1
>Executing - 2 ①
>BulkheadException fallback - 6 ② ③
>BulkheadException fallback - 7
>Finishing - 1
>Executing - 3 ④
>Finishing - 2
>Executing - 4
...

Listing 7-11 Call Method with Bulkhead

① Only two tasks are allowed concurrently.
② Notice how tasks 3 to 5 are waiting in the queue.
③ Tasks 6 and 7 are rejected because the queue is full already.
④ Let in task 3 as one of the previous tasks finished.

Note All Fault Tolerance annotation parameter values can be
overridden with configuration for each method, class, or whole
service.

my.package.WizardBean/callWizardService/Retry/m
axRetries=10
my.package.WizardBean/Retry/maxRetries=10
Retry/maxRetries=10
Retry/enabled=false

Fault Tolerance and CDI
MicroProfile Fault Tolerance uses CDI interceptors to intercept CDI
bean method calls. CDI injects a proxy class instance instead of the
actual instance of your bean class. This makes it possible to intercept
method calls and enables other cool CDI features.

Figure 7-5 Intercepting Fault Tolerance methods

You need to remember to call the Fault Tolerance enabled method on
the bean proxy, not the class itself. Calling a method from the same
bean with this won’t work. The method is executed, but Fault
Tolerance has no chance to kick in.

public String otherBeanMethod() {
 return this.callWizardService();
}

Listing 7-12 Direct Method Call

You can, however, inject the bean inside itself, like in Listing 7-13,
and use the reference for calling the method. This time the Fault
Tolerance interceptor works.

@Inject
private WizardBean self; ①

public String otherBeanMethod() {
 return self.callWizardService(); ②
}

Listing 7-13 Self Bean Method Call

CDI injects proxy to the self field instead of the actual bean
instance, making it possible to intercept method executions. The bean
method called over the proxy instance has all the Fault Tolerance
goodies.

Note Don’t call bean methods from the same class over this
reference. It breaks CDI features as it misses the CDI proxy.

Summary
Always invoke Fault Tolerance enabled methods over CDI proxy.
The fallback method must have the same parameters and return
type.
Asynchronous methods must return CompletionStage or
Future.
All Fault Tolerance annotation arguments can be overridden with
configuration.

(1)
(2)

© The Author(s), under exclusive license to APress Media, LLC, part of Springer Nature 2023
D. Kornilov et al., Beginning Helidon
https://doi.org/10.1007/978-1-4842-9473-4_8

8. Security
Dmitry Kornilov1 , Daniel Kec1 and Dmitry Aleksandrov2

Praha, Czech Republic
Sofia, Bulgaria

This chapter covers the following topics.
Using HTTPS encrypted with TLS 1.3
Jakarta Security
Using MicroProfile JWT tokens
Authentication and authorization with OpenID Connect
Encrypting secrets in configuration

Securing your application is a step that is often perceived as a very complicated task that requires
security specialists with deep knowledge of all sorts of encryption mechanisms and black magic. Modern
frameworks like Helidon provide tooling to simplify this task, even for developers with a basic
understanding of this very important field. Since Helidon is a web server, let’s start with setting up HTTPS
so that you learn how to set up and use a server certificate. Then let’s look at authentication and
authorization by managing role-based access (RBAC) with the help of security annotations. Use OpenID
Connect as a security provider. And finally, let’s discuss how to use JSON Web Token (JWT) as a bearer token
for easier communication between the applications and how to leverage the MicroProfile JWT extension to
distribute roles within the JWT bearer token.

Serving HTTPS
When you serve a plain HTTP protocol, capturing the packets on their way through the network and reading
all the data is possible. You can try that yourself. Let’s prepare a simple JAX-RS endpoint returning very
sensitive information about whether our castle’s gate is opened.

@Path("/castle")
@ApplicationScoped
public class CastleResource {
 @GET
 @Produces(MediaType.APPLICATION_JSON)
 public JsonObject getCastle() {
 return JSON.createObjectBuilder()
 .add("gate", gateOpened.get())
 .build();
 }

Listing 8-1 JAX-RS Method for Retrieving Gate State

Wireshark allows you to capture the packets when an endpoint is called.

https://doi.org/10.1007/978-1-4842-9473-4_8
https://www.wireshark.org/

Figure 8-1 Eavesdropping on HTTP communication with Wireshark

As you can see, the payload {"gate":"false"} from our endpoint can be extracted easily.
And that’s not even the worst attack you can suffer with HTTP. What if someone changes the DNS

records, and you connect to a different server that mimics our castle service? You would call your service
and get a falsified response without any way of knowing, leading your knights to the trap instead of the
castle with an open gate.

Would you risk the security of your castle by using plain HTTP?
HTTPS comes to save the day. Not only can you sign server responses with our server certificate so

nobody else can imitate our server, but you can also encrypt both requests and responses.

Figure 8-2 HTTPS exchange

1. After the initial TCP handshake, the client sends an initial “Hello” with the ALPN extension for selecting
the proper protocol and the latest TLS version the client supports.

2. The server responds with its own “Hello” containing the selected protocol, TLS version, and server
certificate with a public key within.

3. The client verifies the server certificate with the list of trusted certification authorities, ensuring the
server is who it claims to be. Then the client generates a one-time session key, encrypts it with the
server public key he just got, and verifies it is genuine.

4. The client sends the encrypted session key to the server, and only the server can decrypt the session key
with its original private key(the server key). The server now has the session key, generated by the
client, transferred to the server securely, so it can be used for symmetric data encryption from both
sides.

5. The client can use its session key for data encryption. The server knows how to decrypt it and vice
versa.
Enabling HTTPS with TLS 1.3 is not complicated with Helidon. All you need is a trusted server

certificate. To obtain one, you need a private key that nobody else has. You can generate one with OpenSSL.

openssl genrsa -des3 -passout pass:'password' -out server-private.key 4096

Listing 8-2 Create Private Key for Server Certificate

Next, you need to create a certificate signing request (CSR), which is the file you can send to the
certification authority (CA) containing the public key from the previously generated server private key and
subject data identifying our organization and domain name for signing our server certificate. Certification
authorities are usually commercial companies providing the services of physically validating CSR data
before actual signing by their root CA certificates. For example, around 150 root certificates are trusted by
the Mozilla Firefox web browser.

Note You can easily become a CA and sign your certificates yourself (self-signed certificate). The only
problem is that no one trusts your CA. With cURL, for example, you need to use the -k option or add your
CA to the cert store.

openssl req -key server-private.key -passin pass:'password' \
-subj
"/C=CZ/ST=Prague/L=Prague/O=Apress/OU=BeginningHelidon/CN=castle.beginning-
helidon.apress.com" \
-new -out server.csr

Listing 8-3 Create CSR

CA creates a new server certificate for the castle.beginning-helidon.apress.com domain
based on our CSR. To use a newly issued server certificate in a Java environment, a conversion to PKCS12
may be needed.

openssl pkcs12 -inkey server-private.key \
-in server.crt -export \
-passin pass:'password' \
-passout pass:'password' \
-out server.p12

Listing 8-4 Convert CA Issued Server Certificate to PKCS12 Format

Finally, the server.p12 certificate file is used in Helidon with just a simple configuration.

server.tls.private-key.keystore.resource.resource-path=server.p12
server.tls.private-key.keystore.passphrase=password

Listing 8-5 Configure Helidon to Use TLS 1.3

https://www.openssl.org/
https://en.wikipedia.org/wiki/Certificate_authority
https://wiki.mozilla.org/CA/Included_Certificates
https://wiki.mozilla.org/CA/Included_Certificates
https://curl.se/docs/manpage.html%2523-k

This time it is practically impossible to decode the data exchange between the Helidon server and the
client without a securely exchanged session key.

Figure 8-3 Eavesdropping on HTTPS communication with Wireshark

Helidon Security
Every HTTP server needs a way to limit access to its resources to specific users with specific rights. We
developers build our own fortresses and castles with walls and gates to keep uninvited users away from the
precious data and functionalities that are hidden inside. Let’s imagine this castle of ours. Not everyone in a
medieval castle can open the main gate; otherwise, anyone can access it. And what point would those high
walls have if the gate is unrestricted? It’s necessary to know who is who (authentication) and who has what
rights (authorization). In our medieval castle, guards surely can recognize (authenticate) its residents. For
example, if they recognize Gyles, the gatekeeper, they already know he can operate the gate because of his
role as the gatekeeper. The warden, also well known to the guards, who can do almost anything, can control
the gate. Among many others, he has the gatekeeper role too.

Helidon, instead of guards with swords and armor, provides a system of security providers for
authentication, authorization, and role-mapping. Each can be added as a stand-alone dependency and
configured to work together.

Figure 8-4 Helidon security providers

Security providers are designed to work together, configured by a common configuration structure.

security:
 providers:
 - <provider-name>: ①
 <provider-settings> ②
 - <another-provider-name>:
 <provider-settings>
 web-server:
 defaults: ③
 <default-settings>
 paths:
 - path: "/greeting[/{*}]" ④
 <path-specific-sec-settings>
 - path: "/helloworld[/{*}]"
 <path-specific-sec-settings>

Listing 8-6 Security Configuration Structure

① Enabled providers (e.g., abac, http-basic-auth, or oidc)
② Provider-specific configuration
③ Default configuration for all web resources
④ Custom security configuration per resource path

For securing JAX-RS resources in Helidon, a combination of security-related Jakarta Annotations (JSR-
250) and Helidon security annotations can be used.
io.helidon.security.annotations.Authenticated enables or disables authentication on
JAX-RS classes or methods.
io.helidon.security.annotations.Authorized enables or disables authorization on JAX-RS
classes or methods.
jakarta.annotation.security.RolesAllowed defines the list of roles to be authorized for this
resource.
jakarta.annotation.security.PermitAll signifies that all roles are authorized for this
resource.
jakarta.annotation.security.DenyAll signifies that no roles are authorized for this resource.
io.helidon.security.abac.policy.PolicyValidator.PolicyStatement validates
security attributes with the ABAC provider’s Java EE policy expression language (EL).
io.helidon.security.abac.role.RoleValidator.Roles validates roles with the ABAC
provider.
io.helidon.security.abac.scope.ScopeValidator.Scope validates scopes with the ABAC
provider.

Most typical use cases can be solved with only @RolesAllowed and @Authenticated. Let’s look at
how to secure the gate of our castle so only users with gatekeeper and warden roles can open it.

@PUT
@Path("/gate/open")
@Authenticated ①
@RolesAllowed({"gate-keeper", "warden"}) ②
public Response openGate() {
 if (gateOpened.compareAndSet(false, true)) {
 return Response.ok().build();
 } else {
 return Response.notModified().build();
 }
}

Listing 8-7 JAX-RS Method with Authentication and Authorization

https://jakarta.ee/specifications/annotations/2.0/annotations-spec-2.0.html
https://jcp.org/en/jsr/detail%253Fid%253D250
https://jcp.org/en/jsr/detail%253Fid%253D250

① Enables authentication for this endpoint; can also be enabled at class level
② Defines roles with access to this method

Listing 8-7 defines needed roles and authentication for specific JAX-RS methods. JAX-RS endpoint
security can be disabled with security.jersey.enabled security key.

Security annotations don’t set your security in stone. Security settings can be overridden by Helidon
configuration mapped to the actual path in the following manner.

security:
 web-server:
 defaults: ①
 authenticate: false
 paths:
 - path: "/castle/gate[/{*}]" ②
 authenticate: true
 roles-allowed: ["gate-keeper", "warden"]
 - path: "/castle[/{*}]"
 methods: ["get"]
 authenticate: true
 roles-allowed: "warden"

Listing 8-8 JAX-RS Methods Secured by Configuration

① Properties applied to all paths
② Path with wildcards to apply security configuration to

One more thing that is needed is an actual security provider to make it work.

Basic Authentication
Basic authentication is the simplest but not very practical or secure approach to enable authentication and
authorization in production. A weak part of the basic access authentication is providing an unencrypted
password over the authorization HTTP header in the form of a base64 encoded username and password
delimited by a colon. For example, a Basic am9lbDpqb2Vs authorization header can be easily decoded
as joel:joel.

When used without TLS, anyone can easily intercept our password. When accessed without this header,
the endpoint returns 401 Unauthorized with WWW-Authenticate header populated by Basic
realm="beginning-helidon". The client knows then that basic authentication is required. The
browser typically shows a simple login dialog and retries the request with an authorization header
populated by provided username and password.

Figure 8-5 Basic authentication dialog in the browser

security:
 providers:
 - abac: ①
 - http-basic-auth: ②
 realm: "beginning-helidon"
 users: ③

 - login: "gyles"
 password: "gyles"
 roles: ["gate-keeper"]
 - login: "alad"
 password: "alad"
 roles: ["flag-keeper"]
 - login: "joel"
 password: "joel"
 roles: ["warden"]

Listing 8-9 Basic Authentication Configuration

① Enable ABAC provider
② Enable basic auth provider
③ User store from configuration

Users with roles and passwords are provided by user stores. The configuration shown in Listing 8-9
provides the simplest user store. Another way to supply a custom user store is to implement
io.helidon.security.providers.httpauth.spi.UserStoreService over service locator.

Note A user store is registered as a service provider. If you are working on a classpath-based project,
create a provider-configuration file with my.package.MyCustomUserStoreService as its content.

META-
INF/services/io.helidon.security.providers.httpauth.spi.UserStoreService
Config runtime finds your converter over the service loader facility.

Don’t forget to use module-info.java when registering a service provider in a JPMS module-
based project. Just add the provides
io.helidon.security.providers.httpauth.spi.UserStoreService with
my.package.MyCustomUserStoreService; clause to module-info.java.

Only one simple dependency is needed for basic auth support in Helidon MP with no other third-party
transitive dependency.

<dependency>
 <groupId>io.helidon.security.providers</groupId>
 <artifactId>helidon-security-providers-http-auth</artifactId>
</dependency>

Listing 8-10 Dependency Needed for Basic Authentication Provider

JSON Web Token
One of the easiest yet very secure approaches to authentication is token-based authentication.
Authentication tokens, often called bearer tokens, are unique short-lived text strings, verifiable to be issued
by a genuine identity manager. Services can pass along such a token without needing to authenticate
repeatedly. Just imagine a knight in our example kingdom with a decree from the castle warden allowing
him passage through any part of the kingdom during his travels. The decree has a seal, so anyone can verify
the warden has issued it. It is valid only for a short time necessary for the particular quest and only for the
knight it has been issued for. All those knightly qualities mentioned and more provides JWT.

There are several enigmatic acronyms. Let’s break it down so you don’t get lost.
JWT is the acronym for JSON Web Token.
JWS is the acronym for JSON Web Signature. It is a JWT base64 format signed for verification; the content
is not encrypted.
JWE is the acronym for JSON Web Encryption, another JWT format in which payload is safely encrypted.
JWK is the acronym for JSON Web Key, a cryptographic key representation.
JWKS is the acronym for JSON Web Key Set. It is a simple JSON format for handling multiple JWK keys.
Keycloak provides those at /realms/my-realm/protocol/openid-connect/certs.

https://jwt.io/
https://www.rfc-editor.org/rfc/rfc7515
https://www.rfc-editor.org/rfc/rfc7516
https://www.rfc-editor.org/rfc/rfc7517

OIDC is the acronym for OpenID Connect.
OpenID Connect Discovery is a mechanism for fetching metadata about OIDC identity providers like REST
resources for obtaining JWT tokens or JWKS public key sets. Keycloak provides those at /realms/my-
realm/.well-known/openid-configuration

JWT is a simple, standardized JSON structure encoded as a base64 token carrying an identity claims
map, usually signed by a private certificate of the issuer (JWS) or fully encrypted (JWE). In the JWS format,
you need only the issuer’s public key (JWK) to check the validity of the JWT token. Keys can be provided to
Helidon services locally or downloaded at Helidon service startup as JWKS from an identity provider with
OpenID Connect Discovery protocol unless the custom public key is configured, depending on the used
security provider. When the JWT token is signed, Helidon security can easily check if the correct identity
authority created it. No additional communication with the identity manager is needed once Helidon has
access to the issuer’s public key. Checking JWT token validity can be fast and localized.

JWT token issuer can be a specialized identity provider like the Keycloak server in this chapter’s
examples or the Helidon service. The data carried inside the token payload are structured in JSON format in
the claims. While there are many IANA authority registered claims with a given structure, JWT tokens can
also carry custom claims, making JWT tokens highly customizable.

{
 "exp": 1671647530, ①
 "iat": 1671647230, ②
 "jti": "2bfdb114-2dfd-4696-a8ac-0ffcf9dc4257", ③
 "iss": "http://localhost:8979/realms/beginning-helidon", ④
 "aud": ["kingdom-audience", ...], ⑤
 "sub": "14515518-1856-4564-855f-3d44814c5ba4", ⑥
 "typ": "Bearer",
 "azp": "beginning-helidon-client",
 "nonce": "9a358080-a589-4b47-a870-7e8e5e8ae145",
 "session_state": "4b7307f6-5e69-47e3-9af1-00921adb6181",
 "acr": "1",
 "allowed-origins": ["http://localhost:8080"],
 "realm_access": {"roles": ["warden", ...]},
 "scope": "openid microprofile-jwt profile email kingdom-jwt-scope",
 "sid": "4b7307f6-5e69-47e3-9af1-00921adb6181",
 "upn": "joel", ⑦
 "name": "Joel Driffin",
 "groups": ["warden", ...],⑧
 "preferred_username": "joel",
 "given_name": "Joel",
 "family_name": "Driffin"
}

Listing 8-11 JWT Token Payload Claims Issued by Keycloak

① Token expiration time
② Token issue time
③ Unique identifier of the token
④ Issuer identification
⑤ Audience to validate if a token was issued for this particular resource group
⑥ Unique identifier of the subject
⑦ Preferred username
⑧ Groups claim to carry roles added in Keycloak by the microprofile-jwt scope mapper

JWT is especially practical for service-to-service communication as each service doesn’t have to be able
to reach JWT token issuer and can validate (JWS) or decrypt (JWE) a JWT token locally.

Warning Although the JWT payload is verifiably genuine in JWS format, it is not encrypted like in the
JWE format!

https://openid.net/connect/
https://openid.net/specs/openid-connect-discovery-1_0.html
https://www.iana.org/assignments/jwt/jwt.xhtml%2523claims

JWT tokens are usually carried along over the SESSIONID cookie, parameters, or the Authorization
header. Helidon JWT-aware security providers take care not only of incoming tokens but Helidon also
provides outbound security features for calling other services with JWT tokens.

MicroProfile JWT RBAC
MicroProfile JWT specification brings CDI-friendly official API for your JAX-RS resources. Let’s manually call
the JAX-RS watchtower service with cURL.

curl -d "http://localhost:8080" \
-H "Authorization: Bearer $JWT_TOKEN" \
localhost:8082/watchtower/signal

Listing 8-12 Calling MicroProfile JWT Enabled JAX-RS Resource with cURL

Figure 8-6 Service-to-service communication with JWT

Watchtower service doesn’t have to contact any other service to validate the JWS token. All it needs is a
public key of the JWT token issuer. Public key content can be provided directly with
mp.jwt.verify.publickey or via link to its location with mp.jwt.verify.publickey.location.
Location can be a file path, classpath, or URL. MicroProfile JWT supports the following formats.

JWK
JWKS
PKCS#8 base64 encoded PEM format

Keycloak exposes JWKS keys at /realms/my-realm/protocol/openid-connect/certs, for
example. When configured, Helidon MP JWT implementation lazily and automatically downloads the key set
when needed; no other calls are needed since.

mp.jwt.verify:
 issuer: "http://${keycloak.host}:${keycloak.port}/realms/beginning-
helidon" ①
 audiences: "kingdom-audience" ②
 publickey:
 location: ${mp.jwt.verify.issuer}/protocol/openid-connect/certs ③

Listing 8-13 Configuration of MP JWT

① Value to verify issuer claim
② Value to verify audiences claim

https://download.eclipse.org/microprofile/microprofile-jwt-auth-2.1/microprofile-jwt-auth-spec-2.1.html

③ Load public key for verifying JWS directly from Keycloak as JWKS
MicroProfile JWT decodes the bearer JWT token and injects its claims into your JAX-RS resource. When

you inspect JWT more carefully, you find it implements java.security.Principal. That is because
JsonWebToken is principal accessible with JAX-RS SecurityContext.getUserPrincipal(). Among
others, MP JWT supports groups claims, as defined in RFC-7643, to propagate authorization data with the
JWT token’s principal identity. Yes, you can access roles. That is why the specification has RBAC in its name!
SecurityContext.isUserInRole is checked against actual groups from the JWT token, and
@RolesAllowed works too.

Most identity providers must be configured to add MP JWT claims to the JWT token. Keycloak, for
example, provides prepared microprofile-jwt built-in scope, which, when enabled, adds MicroProfile
JWT–required upn and groups scopes.

Note You can stick to the same annotations in the business code and easily switch between security
providers.

@Inject
@Claim(standard = Claims.iss)
private ClaimValue<String> issuer;①

@Inject
private JsonWebToken jwt; ②

@POST @Path("/signal")
@RolesAllowed({"warden"}) ③
public void signal(@Context SecurityContext securityContext, String msg) {
 String user = securityContext.getUserPrincipal().getName();
 jwt.getGroups().forEach(s -> {
 if (securityContext.isUserInRole(s))
 System.out.println(user + " is in role " + s); ④
 });

Listing 8-14 JAX-RS Resource with MP JWT RBAC Support

① Injecting JWT token claim
② Injecting whole JWT token used for actual request
③ RolesAllowed is mapped to the groups claim by default
④ JWT claims are mapped to Jakarta WS security context; the user is in all the JWT groups

Warning Keep in mind that each request has its own bearer JWT token. Always inject Instance or
ClaimValue when working with the @ApplicationScoped JAX-RS bean.

To enable MicroProfile JWT support in a JAX-RS application, @LoginConfig annotation is needed with the
authMethod value, MP-JWT.

@LoginConfig(authMethod = "MP-JWT")
@ApplicationScoped
public class ProtectedApplication extends Application {

Listing 8-15 JAX-RS Enabled to Use MicroProfile JWT RBAC

Once again, only one simple dependency is needed for MP JWT support in Helidon MP with no other
third-party transitive dependency except the actual MicroProfile API.

<dependency>
 <groupId>io.helidon.microprofile.jwt</groupId>
 <artifactId>helidon-microprofile-jwt-auth</artifactId>
</dependency>

https://www.rfc-editor.org/rfc/rfc7643

Listing 8-16 Dependency Needed for MicroProfile JWT Authentication Provider

OpenID Connect
Let’s look at a more serious approach to solve authentication and authorization to make our castle security
more professional and production ready. Our example uses the Keycloak identity manager with single sign-
on (SSO). Identity managers are stand-alone services for managing users and their attributes, like roles.
Identity managers usually provide authentication and authorization services over protocols like old-timer
XML-based SAML (Security Assertion Markup Language) or modern and popular OIDC.

JSON-based OIDC is an extension of OAuth 2.0, adding the means of authentication. OIDC is a protocol
over which authentication and authorization are realized with JSON-based REST API. When a client doesn’t
have a proper identity JWT token, the Helidon application with OIDC support redirects the call to the
Keycloak SSO page. Users can sign in with their credentials to obtain the authorization code needed by the
Helidon application and the client ID and client secret to obtain a JWT identity token.

Figure 8-7 Helidon with Keycloak as identity manager

① Accesses protected resources without JWT ID
② Helidon redirects the unauthenticated request to the Keycloak SSO login page with 307
③ After a successful SSO login, the client obtains an authorization code
④ Client is redirected back to Helidon special resource /oidc/redirect with authorization code
⑤ Helidon uses the authorization code, client ID, and client secret to obtain JWT identity token
⑥ Client uses JWT identity token as JSESSIONID for subsequent calls

While the authorization code is obtained by SSO login, the client ID and secret are configured with the
application’s OIDC configuration and used for basic authorization during token requests.

Let’s use Keycloak as an identity manager for our castle example. All you need to do is configure the
OIDC security provider with the client secret, the Keycloak URL, and the client ID. Notice that we have added
RBAC capability by adding a microprofile-jwt scope mapper for the groups claim in the Keycloak. You
don’t need any special support for MicroProfile JWT RBAC on the Helidon side because the groups claim is
used for fetching subject groups by default if available (can be disabled with oidc.use-jwt-groups:
false).

keycloak:
 host: localhost
 port: 8979
security:
 providers:

 - abac: ①
 - oidc:
 audience: "kingdom-audience" ②
 client-id: "beginning-helidon-client" ③
 redirect: true
 # Client secret is updated by startKeycloak.sh
 client-secret: pYSJjHAymzLqw61x7bsePp4AR6GVdC1s ④
 identity-uri: "${keycloak.url}/realms/beginning-helidon"
 frontend-uri: "http://localhost:${server.port}" ⑤
 logout-enabled: true
 post-logout-uri: /

Listing 8-17 Keycloak OIDC Configuration

① Adds abac provider
② Audience to compare with the one inside the JWT token so the issuer’s certificate can be reused
③ Identifies the client for identity manager
④ Uses as password for basic authorization when requesting JWT token from OIDC identity manager
⑤ Where should the identity manager redirect back from the SSO page

You can switch security providers by changing configuration and dependency, while the annotated
example resource stays the same. Business code doesn’t need to change between the test and production
environment.

<dependency>
 <groupId>io.helidon.microprofile</groupId>
 <artifactId>helidon-microprofile-oidc</artifactId>
</dependency>

Listing 8-18 Dependency Needed for OIDC Support

Token Propagation
After learning about the JWT bearer token and how to authenticate and even authorize against it with our
web server, the next logical step is sending it with a client call. Most of the security providers in Helidon
support outbound security. Unlike inbound, which secures web resources, outbound helps with client calls
to other services. When discussing clients in Helidon MP, JAX-RS client or MicroProfile Rest client should be
the first and best choice. But how do you propagate the JWT token you have received in our JAX-RS
resource? You can most certainly access the bearer token. It can come within the Authorize header or
JSSESSIONID cookie.

@POST
@Path("/send-signal")
public Response signalToWatchTower(@CookieParam("JSESSIONID") Cookie cookie)
{
 Response res = ClientBuilder.newBuilder()
 .register(OAuth2ClientSupport.feature(cookie.getValue()))
 ...

Listing 8-19 Raw JWT Token from Cookies Propagated Manually to Jersey JAX-RS Client

Another more elegant approach is to use the MicroProfile JWT support in Helidon and access raw JWT
tokens over injected API. Remember that the JWT token is request-specific, but CDI injected
JsonWebToken proxy is updated according to your request context on the fly.

@Inject
JsonWebToken jwt;

@POST
@Path("/send-signal")
public Response signalToWatchTower() {

 Response res = ClientBuilder.newBuilder()
 .register(OAuth2ClientSupport.feature(jwt.getRawToken()))
 ...

Listing 8-20 Injected JWT Token Propagated Manually to Jersey JAX-RS Client
Such approaches are very explicit, but must you repeat this every time you use a JAX-RS client? You don’t

because Helidon provides an implicit configurable solution in the shape of outbound security of relevant
security providers.

security:
 providers:
 - abac:
 - oidc:
 audience: "kingdom-audience"
 client-id: "beginning-helidon-client"
 redirect: true
 client-secret: 9rnQEI3gV6FuBMk41UeYqYfNlCutgaN1
 identity-uri: "${keycloak.url}/realms/beginning-helidon"
 frontend-uri: "${app.castle-url}"
 logout-enabled: true
 post-logout-uri: /
 propagate: true ①
 outbound:
 - name: "propagate-token" ②
 hosts: ["watchtower.local"] ③

Listing 8-21 Enabled JWT Token Propagation with OIDC Security Provider

① Enables JWT token propagation to the clients
② Arbitrary name for the outbound configuration; choose any application-wide unique name
③ Filters target hosts to propagate to; supports wildcards

The bearer token is used automatically for specified hosts whenever you use a JAX-RS client from a
secured context with propagation. Outbound propagates a token to all hosts when the hosts config is
missing. Host filtering supports wildcards to match subdomains easily hosts: ["*.local"] allow JWT
token propagation to both watchtower.local and castle.local hosts.

@POST
@Path("/send-signal")
public Response signalToWatchTower() {
 Response res = ClientBuilder.newBuilder() ①
 .target("http://watchtower.local:8082/watchtower") ②
 .path("/signal")
 ...

Listing 8-22 Automatic JWT Propagation with JAX-RS Client and OIDC Provider Outbound

① No need to provide JWT token manually with OIDC provider outbound propagation
② Hosts watchtower.local matches to allow hosts for propagation

OIDC token flow gets easy with Helidon because you can control service-to-service token propagation
simply by configuration. There is much more than a security provider’s outbound feature can do. It is not
only good for JWT token propagation. You can define your headers or create and sign a brand-new JWT
token!

Configuration of Secrets
Did you ever wonder how secure it is to leave your database passwords, usernames, and other sensitive
data in the configuration file? It is secure as long as you can protect your configuration files. Configuration
tends to be shared, copied, transformed, and distributed a lot, and not all passwords can be or need to be
externalized to specialized vaults or as K8s secrets. Helidon provides encryption capability for

configuration values to keep your secret values safely encrypted. It doesn’t matter if you store your
passwords in the config file, vault, or database. Only a Helidon application with the right master password
or decryption key can use your configured secrets.

Two encryption options are available.
AES-GCM encryption is symmetric; both the encrypting and decrypting sides need the same master
password.
RSA encryption is asymmetric; the value is encrypted with a public key and decrypted with a private key.

AES-GCM Encryption
AES encryption uses a single master password for encryption and decryption; no keys are required.
Encryption can be done with the helidon-config-encryption artifact, which is conveniently copied
to the target/lib directory when you build your Helidon application. Encrypt any text value from CLI by
providing an AES cipher, the password needed for eventual decryption, and the actual value to be encrypted
as arguments.

java -jar ./target/libs/helidon-config-encryption-3.0.2.jar aes
masterPassword superSecretPassword

Output in the format ${GCM=⋯} can be used as a value in Helidon Config. Helidon Config encryption
knows it should use AES-GCM for decryption when the actual value is needed.

app.pass:
${GCM=AL0sq65u5NkJ3VlQTPeBrD4piMMD+zTaYxt0tAHFGnvnnFStcIuOnILUj0fNVANr+tH7+VPI

Listing 8-23 AES Encrypted Config Value in YAML Configuration File

To allow Helidon to decrypt encrypted configuration values, the master password used for encryption
needs to be provided via the environment variable SECURE_CONFIG_AES_MASTER_PWD.

apiVersion: v1
kind: ConfigMap
metadata:
 name: castle-config
data:
 SECURE_CONFIG_AES_MASTER_PWD: masterPassword

Listing 8-24 Master Password Env Variable Provided via K8s Config Map

In your Helidon application, you get the decrypted value since it would be a plain text config value.

RSA Encryption
RSA encryption makes it possible to encrypt value by a public key and later let Helidon decrypt it via a
private key from the same pair. Helidon configuration encryption tool can load keys directly from a key
store.

java -jar ./libs/helidon-config-encryption-3.0.2.jar rsa ./server.p12
password 1 superSecretPassword

The generated encrypted form of our secret value can be placed directly in the Helidon configuration.

app.pass: ${RSA-P=cU2cL/j......YmwwLudo=}

Listing 8-25 RSA Encrypted Config Value in YAML Configuration File

Once again Helidon config encryption feature knows it should use RSA for decryption when the actual
value is needed, thanks to the RSA-P prefix. Helidon application needs to know where to find the private
key for decryption. You can provide the location, alias, and password for the keystore containing the private
key.

apiVersion: v1
kind: ConfigMap
metadata:
 name: castle-config
data:
 SECURE_CONFIG_RSA_PRIVATE_KEY: /helidon/server.p12
 SECURE_CONFIG_PRIVATE_KEY_ALIAS: 1
 SECURE_CONFIG_PRIVATE_KEYSTORE_PASSPHRASE: password

Listing 8-26 Keystore Location env Variable Provided via K8s Config Map

Plain Text Password Detection
Encryption of secret configuration values is practical for production use but may be too demanding and
unnecessary in a test environment. Simply replacing the encrypted value with plain text value in a test
environment is an obvious solution, but it brings the danger of accidentally leaking such value to actual
production.

To avoid this danger, you can define a special unencrypted value detectable by the Helidon Config
encryption feature.

app.pass: ${CLEAR=superSecretPassword}

Listing 8-27 Detectable Unencrypted Config Value in YAML Configuration File

By default, when the Helidon application requests such a config value, an exception is thrown.

ConfigEncryptionException: Key "app.pass" is a clear text password, yet
encryption is required

In a test environment, the check can be disabled.

security.config.require-encryption: false

Listing 8-28 Encryption Check Turned Off in Testing Environment

This ensures that no sensitive test configuration is used in production by accident.
Configuration encryption adds another security layer. You can provide secret values to your application

over various, less secure channels. You can even send configuration examples to a friend without the need
for tedious checks if you are not sharing any secrets by doing so.

<dependency>
 <groupId>io.helidon.config</groupId>
 <artifactId>helidon-config-encryption</artifactId>
</dependency>

Listing 8-29 Dependency Needed for Config Encryption

In this chapter, you learned how to secure the Helidon web server with TLS 1.3 and what annotations,
regardless of the security provider, can be used for authentication and authorization. You also learned to set
up basic authorization for test cases and OpenID Connect for production. This chapter covered a very
popular part of OIDC, JWT tokens, and took a tour of MicroProfile JWT tooling to use JWT tokens in modern
DI applications built on top of Helidon MP.

Don’t forget to check out the security examples accompanying this book, where you can start Keycloak
identity provider with an already configured realm and experiment with our OIDC and MicroProfile JWT–
secured castle application.

Summary
Use TLS to avoid man-in-the-middle attacks.
Use different security providers without changing the business code.
JWT is easy to use with MicroProfile API.

Service doesn’t have to call the JWT issuer to verify JWS or decode JWE.
OIDC security provider supports JWT token propagation.
Configuration secrets can be encrypted right in the configuration source.

(1)
(2)

© The Author(s), under exclusive license to APress Media, LLC, part of Springer
Nature 2023
D. Kornilov et al., Beginning Helidon
https://doi.org/10.1007/978-1-4842-9473-4_9

9. Using OpenAPI
Dmitry Kornilov1 , Daniel Kec1 and Dmitry Aleksandrov2

Praha, Czech Republic
Sofia, Bulgaria

This chapter covers the following topics.
Documenting your code using OpenAPI
Reading generated API information using out-of-the-box endpoints
Generating clients using OpenAPI Generator

About OpenAPI
In today’s technological landscape, it is of utmost importance for modern
applications to have APIs, and RESTful APIs are at the forefront of the API
economy. With the ability to transform any application into a language-
independent service that can be accessed from any location and with any
language, RESTful APIs have become an integral part of software
development.

MicroProfile provides the OpenAPI 3.x specification to facilitate the
development of RESTful APIs. This specification offers Java developers
diverse programming models and interfaces that enable them to natively
generate OpenAPI documents from their REST services. By simplifying the
process of creating OpenAPI documents, MicroProfile empowers developers
to streamline their API development workflows and rapidly create high-
quality, interoperable APIs that clients can easily consume.

Helidon implements OpenAPI 3.​0 out of the box. It is already included in
the full helidon-microprofile bundle. To use OpenAPI with all other
MicroProfile options, our pom.xml file should include the code in Listing 9-
1.

https://doi.org/10.1007/978-1-4842-9473-4_9
https://download.eclipse.org/microprofile/microprofile-open-api-3.0/microprofile-openapi-spec-3.0.pdf

<dependency>
 <groupId>io.helidon.microprofile</groupId>
 <artifactId>helidon-microprofile</artifactId>
</dependency>

Listing 9-1 MicroProfile Bundle Dependency
If more fine-grained control is preferred and helidon-

microprofile-core is used, add the dependency shown in Listing 9-2 to
the project’s pom.xml file.

<dependency> ①
 <groupId>org.eclipse.microprofile.openapi</groupId>
 <artifactId>microprofile-openapi-api</artifactId>
</dependency>

<dependency> ②
 <groupId>io.helidon.microprofile.openapi</groupId>
 <artifactId>helidon-microprofile-
openapi</artifactId>
 <scope>runtime</scope>
</dependency>

Listing 9-2 OpenAPI Dependencies

① MicroProfile OpenAPI annotations dependency
② Helidon MP OpenAPI runtime support dependency

Basic Usage
To generate a precise OpenAPI document that effectively describes an
application’s API, the primary approach is to use OpenAPI standard
annotations to annotate the relevant functions. These annotations provide
crucial metadata that helps create an accurate and complete OpenAPI
document.

Once the application is started, the Helidon MP runtime automatically
identifies the annotated endpoints and utilizes the provided metadata to
create the OpenAPI document. This streamlined process eliminates the need
for manual documentation and ensures that the API documentation remains
up-to-date and in sync with the application’s implementation. Additionally,
by adhering to the OpenAPI standard, the resulting API documentation is
easily shareable. It can be consumed by many tools and platforms, enabling
easy integration with other systems.

Listing 9-3 is an example.

@GET
@Operation(summary = "Returns a Wizard", ①
 description = "General Wizard Name and Licence
information ")
@APIResponse(description = "Simple JSON containing
Wizard name and license information", ②
 content = @Content(mediaType =
"application/json",
 schema =
@Schema(implementation = Wizard.class)))
@Produces(MediaType.APPLICATION_JSON)
public JsonObject getWizard() {...}

Listing 9-3 OpenAPI Annotations in Use

① @Operation gives information about this endpoint.
② @APIResponse describes the HTTP response and declares its media
type and contents.

The Helidon application creates an additional /openapi endpoint, and
it returns the OpenAPI document describing the endpoints in our
application. According to the MicroProfile OpenAPI spec, the OpenAPI
document’s default format is YAML. application/vnd.oai.openapi is
a suggested media type for OpenAPI documents that has some support but
has not yet been adopted by the IANA YAML standard.

Listing 9-4 calls an /openapi endpoint.

curl -X GET http://localhost:8080/openapi

Listing 9-4 Retrieve OpenAPI Information with cURL

Listing 9-5 shows the output.

components:
 schemas:
 Wizard:
 properties:
 message:
 type: object
 type: object
info:

 title: Generated API
 version: '1.0'
openapi: 3.0.3
paths:
 /wizard:
 get:
 description: 'General Wizard Name and Licence
information'
 responses:
 default:
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/Wizard'
 description: Simple JSON containing Wizard
name and license information
 summary: Returns Wizard Information

Listing 9-5 Result Output with OpenAPI Data

Note A client can specify Accept as either
application/vnd.oai.openapi+json or application/json to
request JSON.

Here are some of the main annotations used to describe your code.
@Schema allows you to define inputs and outputs.
@Operation describes an operation or usually an HTTP method for a
particular path.
@Content provides schema and examples for a specific media type.
@Link represents a possible design-time link for the answer.
@Parameter represents a single parameter in an OpenAPI operation.
@Callback describes a set of requests.
@RequestBody represents the request body in an operation.
@APIResponse represents the response in an activity.
@Tag represents tags for an operation or an OpenAPI definition.
@Server represents the servers for an operation or an OpenAPI
definition.

Please consult the official specification for more information.

Static OpenAPI Files

https://download.eclipse.org/microprofile/microprofile-open-api-3.0/microprofile-openapi-spec-3.0.pdf

In addition to using OpenAPI annotations to generate an API’s
documentation, Helidon MP also offers the option of utilizing a static file to
provide the API’s description. This static file—named openapi.yml,
openapi.yaml, or openapi.json—can be added to the application’s
/META-INF folder. Helidon’s OpenAPI implementation automatically picks
up this file and incorporates its contents into the resulting document.

To make creating this static file easier, tools such as Swagger can
generate the OpenAPI document. Once the document is created, it can be
added to the application’s /META-INF folder, and Helidon’s OpenAPI
implementation handles the rest.

It’s worth noting that Helidon MP OpenAPI can incorporate data from all
the sources mentioned, including annotations, static files, and
programmatic configuration. This allows for flexibility in documenting the
API and enables developers to choose the best approach for their needs.
Ultimately, the goal is to generate an accurate and comprehensive OpenAPI
document that effectively describes the API’s functionality and can be easily
consumed by other systems.

Automatic Client Generation
OpenAPI can also be used for automatic client generation. Once an OpenAPI
document is available for an API, a client can be generated for that API in a
variety of programming languages. It can significantly reduce the time and
effort required to create a client for the API and ensure that the client is
generated accurately and consistently.

Additionally, using an OpenAPI-generated client can provide a
standardized way of interacting with the API, making it easier for
developers to consume the API from other applications. It can help to
improve interoperability and reduce the likelihood of errors caused by
inconsistencies in how different clients interact with the API.

Full information about the tool can be found on the official website at
https://openapi-generator.tech/.

Using OpenAPI Generator, clients in many languages and frameworks can
be generated, like Helidon, Jersey, MicroProfile, and many more.

OpenAPI Generator is distributed as a single JAR file. But there are also
many “native” distributions for different operating systems, which can be
installed using appropriate packet managers or simply by downloading the
executables.

The most generic version is just the executable JAR. You download it and
then run the following command with the wizard application running.

https://openapi-generator.tech/

> java - jar openapi-generator.jar generate -g java --
library microprofile -i http://localhost:8080/openapi
①

① Checks that http://localhost:8080/openapi has started and
is running

Since the microprofile option is specified as a parameter, the
generated code is based on the MicroProfile Rest Client spec and looks close
to one written by hand in Listing 9-6.

@RegisterRestClient
@RegisterProvider(ApiExceptionMapper.class)
@Path("/wizard")
public interface DefaultApi{
 @GET
 @Produces({ "application/json" })
 public Object wizardGet() throws ApiException,
ProcessingException; ①
}

Listing 9-6 Generated Code Based on OpenAPI Document

① Generated code based on working microservice
The generated code can provide a ready-to-use API client

communicating with the target API. This can significantly reduce the
amount of manual coding required to consume the API. Additionally, since
the client code is generated directly from the OpenAPI document, it ensures
that the client code is always in sync with the API documentation.

Using this plugin, developers can automate the code generation process
during the build phase of their projects. This can save significant time and
effort in the development process and help ensure the client code is
consistent with the API.

Note Some generated code is fully ready for execution, like this one
generated with target jaxrs. Some others are not, like the one in Listing
9-6.

A Maven plugin named openapi-maven-plugin can generate client code
based on the OpenAPI document. The plugin generates a client interface and
a set of data models that represent the data structures used in the API. The

generated code can be easily customized using templates provided by the
plugin or by creating custom templates.

Summary
With only a few annotations, you can easily document our API.
Another way is to create a separate YAML/JSON file and keep it separate
from the code.
You can generate clients out of the openapi information provided
automatically by Helidon.
Generated clients may have different flavors, libraries, and even
programming languages.

(1)
(2)

© The Author(s), under exclusive license to APress Media, LLC, part of Springer Nature 2023
D. Kornilov et al., Beginning Helidon
https://doi.org/10.1007/978-1-4842-9473-4_10

10. Testing Your Helidon Application
Dmitry Kornilov1 , Daniel Kec1 and Dmitry Aleksandrov2

Praha, Czech Republic
Sofia, Bulgaria

This chapter covers the following topics.
Testing your application with Helidon infrastructure based on JUnit and TestNG
Creating highly customizable test fixtures using a rich set of annotations
Testcontainers for integration testing

Testing in Helidon
Software testing is undeniably crucial, yet motivating ourselves to create those tests can be
challenging. However, as soon as you begin incorporating tests, you’ll quickly discover that the
quality of your application improves as well. By running automated tests, you can identify
potential issues and bugs before they cause major problems, which saves time and resources in
the long run.

Thankfully, Helidon offers excellent support for testing with both JUnit 5 and TestNG. These
testing frameworks provide many features that make it easy to test different code aspects and
identify potential issues. With Helidon’s support, you can create and run tests with minimal
effort, ensuring that your application is of the highest quality and is free of bugs or errors.
Testing with Helidon can help you build more robust, reliable, and maintainable applications.

Testing with JUnit 5
Helidon provides extended functionality to test your applications with JUnit 5. Just add Listing
10-1.

<dependency>
 <groupId>io.helidon.microprofile.tests</groupId> ①
 <artifactId>helidon-microprofile-tests-junit5</artifactId>
 <scope>test</scope>
</dependency>

Listing 10-1 Helidon JUint5 Dependency

① Helidon JUnit 5 integration dependency
And you get an extended set of annotations to easily test your applications. Let’s dive

directly into the code.
The first step is to include the @HelidonTest annotation in the test class. This custom

annotation automates various tasks, such as launching the Helidon server on a random port and

https://doi.org/10.1007/978-1-4842-9473-4_10
https://junit.org/junit5/

configuring the environment to mimic actual Helidon usage. Thanks to this annotation, the
Helidon testing framework initializes the container before creating the test class and shuts it
down after the final test.

Usually, the primary goal of testing is to call the server and verify the output. Helidon offers
additional convenience by injecting a WebTarget configured to the currently running server.
You can leverage this preconfigured target to call the endpoint and confirm the result.

Listing 10-2 tests the wizard app discussed in Chapter 5.

@HelidonTest ①
public class WizardResourceTest {

 @Inject
 private WebTarget webTarget; ②

 @Test
 void testWizard() {
 JsonObject jsonObject = webTarget.path("/wizard") ③
 .request()
 .get(JsonObject.class);

 validateWizard(jsonObject, "Oz"); ④
 }

 @Test
 void testWizardByName() {
 JsonObject jsonObject =
webTarget.path("/wizard/Skylar") ⑤
 .request()
 .get(JsonObject.class);

 validateWizard(jsonObject, "Skylar");
 }

 private void validateWizard(JsonObject jsonObject,
 String nameExpected){
 String actual = jsonObject.getString("name");
 assertEquals(nameExpected, actual,
 nameExpected + " is expected");
 }
}

Listing 10-2 @HelidonTest Annotation Usage

① Annotate a Test class with @HelidonTest to start the container.
② Inject a WebTarget automatically configured by JUnit Extension.
③ Use WebTarget to call an endpoint.
④ Validate the result.
⑤ Reuse the same webTarget to call another endpoint.

In addition to the benefits mentioned, this approach of launching the Helidon container at
the beginning and keeping it active until the completion of the final test also offers several other
advantages.

First, it reduces the overall testing time as the container is not repeatedly started and
stopped for each test case. This can save time, especially when testing large and complex
applications.

Second, it enables the reuse of resources and dependencies across different test cases,
improving the overall efficiency of the testing process. By keeping the container active, the
resources and dependencies required by the application can be loaded and shared among
multiple tests, eliminating the need for redundant loading and initialization.

This approach is commonly used among users and applies to most testing situations,
covering more than 90% of all tests.

But what if you need to test some features, which are initialized at the startup time, and
there is a different setup for these features? Should you write a separate test class for them? The
answer is no. If you set resetPerTest = true parameter in @HelidonTest, the
framework restarts the Helidon container on each test. And there are even more features. You
can apply different annotations directly on the test method level and inject WebTarget directly
into the method as a parameter. Let’s create another test:

@HelidonTest(resetPerTest = true) ①
class WizardTitleTest {

 @Test
 void testDefaultTitle(WebTarget webTarget) { ②
 String result = webTarget.path("wizard/title")
 .request()
 .get(String.class);

 assertEquals("The Greatest!", result);
 }

 @Test
 @AddConfig(key = "app.title", value = "The Mighty!") ③
 void testModifiedTitle(WebTarget webTarget) {

 String result = webTarget.path("wizard/title")
 .request()
 .get(String.class);

 assertEquals("The Mighty!", result);
 }
}

Listing 10-3 Wizard Test

① Enable resetPerTest.
② Inject WebTarget as a method parameter.
③ Use @AddConfig annotation to override the app.title property for the specific test.

Here the Helidon container reset on each test method execution. Since it runs on a random
port, a new WebTarget is configured with the new container parameters and injected as a
method parameter.

For the second test, override the app.title config value, which is present in the
microprofile-config.properties file. This is easily achievable using @AddConfig(key =

"app.title", value = "The Mighty!") annotation applied to the method. Thus, when
the Helidon container starts for the new test, it reads the configuration from this annotation.

@AddConfig annotation can also be applied on the class level, thus affecting all test
methods.

Advanced Usage
The Helidon testing framework supports a few additional annotations that allow more fine
control of the test configuration and execution.
@DisableDiscovery annotation: This is used when a required test class is isolated from the
rest of the CDI environment.
@AddBean(SomeBean.class) annotation: If the Bean Discovery is disabled or a specific
bean is not available in the current CDI environment, it can be manually added to the current
test with this annotation. It is added as an ApplicationScoped bean by default, but the scope
can be specified as a parameter. For example, scope = Dependent.class. Usually used
together with @DisableDiscovery annotation to create a very specific set of CDI beans to
be tested.
@AddExtension(SomeCdiExtension.class) annotation: If there is a need to extend the
current test with a specific CDI Extension, it can easily be done using this annotation.
@Configuration(configSources = “some-test-config.properties”) annotation: If a whole
specific configuration, either on a classpath or on an absolute path, is required for the current
test, it can be set using this annotation.

Listing 10-4 creates a more sophisticated test using some of the features mentioned.

@HelidonTest
@DisableDiscovery ①
@AddExtension(ServerCdiExtension.class) ②
@AddExtension(JaxRsCdiExtension.class)
@AddExtension(CdiComponentProvider.class)
@AddBean(WizardNoDiscoveryTest.MiniWizard.class) ③
class WizardNoDiscoveryTest {

 @Inject
 private WebTarget injected; ④

 @Test
 void testSpell() {
 String response = injected.path("/spell") ⑤
 .request().get(String.class);
 Assertions.assertEquals(response,"I put a spell on you!");
 }

 @Path("/spell")
 public static class MiniWizard { ⑥
 @GET
 public String saySpell() {
 return "I put a spell on you!";
 }
 }
}

Listing 10-4 Advanced Test

① Disable Bean Discovery for this particular test.
② Add CDI Extensions.
③ Add an internal class as a managed bean.
④ WebTarget should point to the MiniWizard resource.
⑤ Check if the endpoint responds correctly.

Here CDI Bean discovery is disabled for the particular test. The internal class MiniWizard
is a subresource with only one function: “Say a spell.” Using @AddBean annotation, add this
class as a bean to the current test. Also, use @AddExtension annotation to make the endpoint
work correctly and be correctly injected to WebTarget, to be tested correctly.

The Helidon testing framework provides a wide range of features to test the most typical
use cases and some very sophisticated scenarios. This allows developers to tailor their tests to
suit their specific needs, ensuring their applications are thoroughly tested under all conditions.

Testing with TestNG
This part is concise. It has the same functionality described earlier but with TestNG. The
annotation set is absolutely the same! Just add the Listing 10-5 Maven dependency.

<dependency>
 <groupId>io.helidon.microprofile.tests</groupId>
 <artifactId>helidon-microprofile-tests-
testng</artifactId> ①
 <scope>test</scope>
</dependency>

Listing 10-5 Helidon TestNG Dependency

① Helidon TestNG support dependency.

Work with Testcontainers
Testcontainers is a Java library that supports JUnit tests, automating the management and life
cycle of different applications, databases, and testing environments provided as containers.

The Testcontainers for Java website says it is perfect for the following tests.
Data access layer integration tests running MySQL, PostgreSQL, or Oracle database in a
container to test your data access layer code for complete compatibility. No complex local
installation and configuration are required. Everything is in an isolated container.
Application integration tests run your application in a container as a black box.
UI/Acceptance tests use containerized web browsers compatible with Selenium for
conducting automated UI tests.

And it’s hard to argue with that. Testcontainers are widely used beyond the Java world.

Note To use the Testcontainers library, you need Docker installed on your machine. For
more information, go to https://www.docker.com.

Testcontainers bring integration testing to another level. You can test Helidon running inside a
container running as a black box.

https://testng.org/doc/
https://www.testcontainers.org/
https://www.docker.com/

Figure 10-1 Unit tests work with Helidon applications as a black box

First, you need to build an image of the application. As you generate your project using CLI with
helidon init or download the generated project from https://helidon.io/starter,
a Dockerfile is generated (if the corresponding checkboxes are selected).

To prepare an image of the application, run the Listing 10-6 command in the project’s root.

docker build -t wizard-app .

Listing 10-6 Build Docker Image

Then try to run the app locally.

docker run --rm -p 8080:8080 wizard-app:latest

Listing 10-7 Run the Created Container

Now, you can use our Helidon application with Testcontainers. In our tests, you can create a
generic testcontainer that uses the image with the application.

static final GenericContainer<?> APPLICATION
 = new GenericContainer<>("wizard-
app:latest") ①
 .withExposedPorts(8080)
 .withNetwork(Network.newNetwork())
 .withNetworkAliases("HelidonWizardApplication")
 .waitingFor(Wait.forHealthcheck()); ②

static {
 APPLICATION.start(); ③
}

Listing 10-8 Testcontainers Setup

① Create a Generic Container with the Wizard Helidon application.
② Configure the container to expose port 8080.
③ Start the container and wait for it to be ready.

Using the @HelidonTest annotation on your test class is no longer necessary to perform
tests on this container. Because the application is now operating inside a docker container, you

https://helidon.io/starter

can regard it as a “black box” and test it. To accomplish this, you must establish a WebTarget
that directs to “localhost” utilizing the indicated open port.

public class WizardTest { ①

 WebTarget webTarget = ClientBuilder
 .newClient()
 .baseURL("http://localhost:8080") ②

 @Test
 void testWizard() {
 JsonObject jsonObject = webTarget.path("/wizard") ③
 .request()
 .get(JsonObject.class);

 String actual = jsonObject.getString("name");
 assertEquals("Oz", actual, "Should be Oz"); ④
 }
}

Listing 10-9 Wizard Test

① No need to run the Helidon container; it is already in a container
② Creates WebTarget with BaseURL configured as with Docker container
③ Calls the desired endpoint.
④ Verifies the result

This way, you can do a “black box” interrogation testing the application. For the test, it is just
a service running on localhost on some port. Testcontainers automates bringing this service up
and shutting it down after test execution. Every time the service starts brand new with no
trailing artifacts, which can pollute the environment.

The Other Way Around
Helidon can be configured to use resources from external services running inside
Testcontainers to perform integration testing.

For instance, you would want to check if Kafka is being properly used for communications
and if MySQL is working correctly as the database for your application. For testing purposes,
they run within Testcontainers. To make your application use the database and messaging in
Testcontainers, you merely need to change the configuration. Use standard @HelidonTest
annotation to set up and run the application on your local machine. But since the database and
message broker are now running in containers, the configuration has to be overridden. This is
easily done using the annotation @Configuration(useExisting = true).

Prepare containers and run Listing 10-10.

private static MySQLContainer db = new MySQLContainer() ①
 .withDatabaseName("mydb")
 .withUsername("test")
 .withPassword("test");
static KafkaContainer kafka = new KafkaContainer(); ②

@BeforeAll
public static void setup() { ③
 kafka.start();

 Map<String, String> configValues = new HashMap<>();
 configValues.put("mp.initializer.allow", "true");
 configValues.put("mp.messaging.incoming.from-kafka.connector",
"helidon-kafka");
 ...
 configValues.put("javax.sql.DataSource.test.dataSourceClassName",
"com.mysql.cj.jdbc.MysqlDataSource");
 configValues.put("javax.sql.DataSource.test.dataSource.url",
db.getJdbcUrl());
 ...

 org.eclipse.microprofile.config.Config mpConfig =
ConfigProviderResolver.instance()
 .getBuilder()
 .withSources(MpConfigSources.create(configValues))
 .build();

 ConfigProviderResolver.instance().registerConfig(mpConfig,
Thread.currentThread().getContextClassLoader());
}

Listing 10-10 Setup Testcontainers and Run

① Defines and sets up MySQL testcontainer
② Defines Kafka container
③ Starts Kafka container and provides configuration as properties to Helidon

Figure 10-2 Helidon testing external services as a disposable black box

Upon executing this test, Testcontainers launch the images, establish the properties, and
eventually run the Helidon application. Following preparation, all testing is conducted on those
containers. Consequently, all database inquiries are routed through MySQL, while all messaging
passes through Kafka. Once testing is complete, Testcontainers is terminated, and the
associated resources are freed.

Summary
Testing your application is essential, and Helidon provides a well-developed infrastructure.
Helidon provides integration with JUnit 5 and TestNG.

You can test your Helidon as a black box inside a test container.
You can run a Helidon application against Testcontainers images.

(1)
(2)

© The Author(s), under exclusive license to APress Media, LLC, part of Springer Nature 2023
D. Kornilov et al., Beginning Helidon
https://doi.org/10.1007/978-1-4842-9473-4_11

11. Scheduling Tasks
Dmitry Kornilov1 , Daniel Kec1 and Dmitry Aleksandrov2

Praha, Czech Republic
Sofia, Bulgaria

This chapter covers the following topics.
Scheduling is essential for enterprise microservices, and it is easily done in
Helidon
Scheduling using annotations in code and external configuration
Scheduling with Kubernetes

In the enterprise environment, scheduling plays a critical role in ensuring
that various tasks and processes are executed promptly and efficiently. With
Helidon, scheduling is easy thanks to its built-in implementation of scheduling
functionality, based on the open source cron-utils library.

cron-utils is a powerful Java library that allows us to define, parse, validate,
and migrate cron expressions. It provides a simple and intuitive way to work
with crons, commonly used in scheduling tasks. Additionally, cron-utils can
generate human-readable descriptions of cron expressions, making it easier
for developers to understand and modify them as needed.

With Helidon’s scheduling functionality, you can leverage the power of
cron-utils to create scheduled tasks and processes in our enterprise
applications. This allows us to automate various tasks and ensure that they are
executed on time, leading to increased efficiency and productivity.

Scheduling can also be configured in the Kubernetes environment because
it has full CronJob support. This is discussed later in the chapter.

Scheduling in Helidon
Add the Maven dependency shown in Listing 11-1 to enable scheduling.

<dependency>

https://doi.org/10.1007/978-1-4842-9473-4_11
https://github.com/jmrozanec/cron-utils

 <groupId>io.helidon.microprofile.scheduling</groupId>
 <artifactId>helidon-microprofile-
scheduling</artifactId> ①
</dependency>

Listing 11-1 Helidon Scheduling Dependency

① Helidon scheduling support dependency
In Helidon, a function can be configured to run with a certain schedule

using @Scheduled annotation. This annotation receives a value of a string
with a cron expression. The word cron originates from the Greek word chronos,
meaning “time.” cron is a preeminent command-line tool for scheduling jobs on
Unix-like operating systems.

In Unix-based systems, it is customary to write a CronJob in files such as
crontab. Each line in these files comprises a schedule definition and the
corresponding command to be executed. The first five characters, each
separated by a space, is the schedule definition.

Figure 11-1 Cron expression definition

In Helidon, you don’t have a command after the expression; you just use the
scheduling expression in the annotation @Scheduled, which is put on a
method that should run with a certain schedule.

@Scheduled("0 5 1 * *", concurrentExecution = false)
public void magicJob() { ... }

Listing 11-2 Scheduled Task Example

This method is executed “At 05:00 on day-of-month 1.” No concurrent
execution is allowed. The string follows the cron model to describe the
scheduled calls.

Note Ensure that the annotated with @Scheduled method is in an
ApplicationScoped bean.

Cron expressions are really powerful. Just with a few symbols, you can describe
quite a complex schedule. In Helidon, you can do even more complex
scheduling scenarios, as the cron-utils library enables them. For example,

instead of, writing 0 0 1 * * ? *, 0 0 10 * * ? *, 0 15 3 * * ? *
and 0 0 7 * * ? * you can wrap it into 0 0|0|15|0 1|10|3|7 * * ?
*

If you need more metadata about each cron invocation, it is available
through the CronInvocation object, injected as a method parameter.

@Scheduled("0 11 4 * *")
public void magicJob(CronInvocation inv)
{ ①
 String description =
invocation.description(); ②
}

Listing 11-3 Scheduled Task Invocation Details Injection

① Injects CronInvocation as a parameter
② Uses invocation data

This data can be used for logging or debugging purposes.
@Scheduled annotation properties can be overridden using

application.yaml properties.

fully.qualified.ClassName.methodName: ①
 schedule:
 cron: "* * * * *" ②
 concurrent: false ③

Listing 11-4 Scheduled Task Configuration

① Fully qualified class name on which to define scheduled execution
② cron expression
③ Concurrent execution (set it to false)

The following configuration properties are available.
property (description)
cron (string containing cron setup)
concurrent (boolean, equivalent concurrentExecution property of
@Scheduled, default true)

Now you know how to create and configure scheduled tasks with Helidon!

Simple Scheduling in Helidon

While Cron expressions can be useful for handling more complex scheduling
scenarios, there are situations when a simpler solution is needed. For instance,
when a fixed rate invocation interval is sufficient, using the @FixedRate
annotation is often the easiest way to schedule a recurring task invocation. Just
annotate a method with what is shown in Listing 11-5.

@FixedRate(initialDelay = 2, value = 15, timeUnit =
TimeUnit.SECONDS)

Listing 11-5 Fixed Rate Task

A method annotated this way is executed every 15 seconds with an initial
delay of 2 seconds.

Note Ensure that the annotated with @FixedRate function is in an
ApplicationScoped bean.

The same functionality can be achieved with external configuration. As with
@Scheduled, all values defined with the annotation can be overridden from
the config.

fully.qualified.ClassName.methodName: ①
 schedule:
 initial-delay: 0 ②
 delay: 30 ③
 time-unit: MINUTES ④

Listing 11-6 Configuration Example

① Fully qualified class name on which to define scheduled execution
② Initial delay
③ Delay between calls
④ Time unit

The FixedRateInvocation injected method parameter provides access
to metadata such as interval descriptions that are easy for humans to read and
configured values.

@FixedRate(initialDelay = 5, value = 10, timeUnit =
TimeUnit.MINUTES)
public void magicJob(FixedRateInvocation invocation)
{ ①
 String description =
invocation.description(); ②

}

Listing 11-7 Invocation Details Injection

① Injects FixedRateInvocation as a parameter
② Uses invocation data

This data can be used for debugging or logging purposes.

Scheduling in Kubernetes
Scheduling in Helidon is fine if you use a single microservice with a single
instance running on a bare metal machine. This is a rare case nowadays. Most
microservices are executed in a Kubernetes environment somewhere in the
clouds, with multiple replicas and a load balancer set.

Whenever you schedule a CronJob in our code or configuration, this
scheduled code runs, and all replicas of the application. This is often not the
behavior you want. Usually, you want only application to make a scheduled job.

But this can be easily solved on a Kubernetes level itself. Kubernetes
provides CronJob support. And as with everything in Kubernetes, you just need
to create a yaml file.

Note Here we assume that you are familiar with Kubernetes and the
kubectl CLI utility; otherwise, please consult the official Kubernetes
documentation.

Imagine you want to run a “magic cleanup” job every morning at 2 a.m. As with
everything in Kubernetes, you should create the yaml spec shown in Listing
11-8.

apiVersion: batch/v1
kind: CronJob ①
metadata:
 name: CleanSomeMagic ②
spec:
 schedule: "* 10 5 * *" ③
 jobTemplate:
 spec:
 template:
 spec:
 containers:
 - name: CleanSomeMagic
 image: wizardCleaningApp:latest ④

https://kubernetes.io/docs/home/
https://kubernetes.io/docs/home/

Listing 11-8 CronJob Configuration

① Document kind is CronJob
② Name of the job
③ Job execution schedule: every day at 2 a.m.
④ An image with Helidon application

The Magic Cleanup Job is a hypothetical Helidon application packaged as a
Docker image and published in a Docker image registry.

As the descriptor is applied, you can watch the status of the job executions.

> kubectl get jobs --watch

NAME COMPLETIONS DURATION AGE
CleanSomeMagic 0/1 0s
CleanSomeMagic 1/1 12s 12s

Listing 11-9 Monitor the Job

Alternatively, you can simply call describe to see all the information
about the job. The output also includes the run history.

When you no longer need a CronJob, you simply delete it.
A full description of how to construct CronJob specifications is available in

the official documentation.​
Indeed, while the topic of scheduling may seem simple, it is critical to the

success of many enterprise applications. Fortunately, Helidon makes it easy to
manage complex tasks and process scheduling.

In addition, if you are deploying your Helidon application to Kubernetes,
you can use Kubernetes’ built-in scheduling capabilities. Kubernetes allows us
to define and manage complex schedules for your applications, including
support for cron expressions and other advanced scheduling features.

Whether you’re using Helidon’s built-in scheduling framework or
leveraging Kubernetes’ scheduling capabilities, you can be sure that your
application can handle even the most complex scheduling scenarios with ease.

Summary
With only two annotations—@Scheduled or @FixedRate—you can
schedule a task with an easy or complex schedule.
You can schedule tasks both with annotations or with configuration.
To schedule a job on one Pod in Kubernetes, use its built-in cron capabilities.

https://kubernetes.io/docs/tasks/job/automated-tasks-with-cron-jobs/

(1)
(2)

© The Author(s), under exclusive license to APress Media, LLC, part of Springer Nature 2023
D. Kornilov et al., Beginning Helidon
https://doi.org/10.1007/978-1-4842-9473-4_12

12. Integration with Other Technologies
Dmitry Kornilov1 , Daniel Kec1 and Dmitry Aleksandrov2

Praha, Czech Republic
Sofia, Bulgaria

This chapter covers the following topics.
Integrating Helidon with other famous technologies
Creating graph database-backed microservices with Neo4j
Integrating with Coherence CE whenever fast, scalable, and persistent caching is required
Deploying microservices to the clouds with Verrazzano

Neo4j
Neo4j is a graph database management system developed by Neo4j, Inc. Neo4j’s native graph storage and
processing capabilities make it an ideal choice for applications that manage complex relationships between
data points.

One of the key benefits of using Neo4j with Helidon is the ability to take advantage of both technologies’
strengths. Helidon’s lightweight and modular architecture makes building and deploying microservices
easy, while Neo4j’s graph database capabilities allow you to manage complex data relationships. This
combination of strengths makes it easy to build powerful, scalable, and highly performant applications that
can handle even the most complex data challenges.

The integration with Neo4j is ensured by configuring and initializing Neo4j driver from the standard
Helidon configuration.

Add the following dependency to the project’s pom.xml file to start using it.

<dependency>
 <groupId>io.helidon.integrations.neo4j</groupId> ①
 <artifactId>helidon-integrations-neo4j</artifactId>
</dependency>

Listing 12-1 Neo4j Helidon Integration Dependency

① Neo4j Helidon dependency
After that, you should specify all the connection details in the microprofile-config.properties

file.

neo4j.uri=bolt://localhost:7687 ①
neo4j.authentication.username=neo4j ②
neo4j.authentication.password=secret ③

Listing 12-2 Neo4j Configuration

① Neo4j server URI using Bolt protocol
② Server username
③ Server password

Now you can simply inject the driver into the code.

https://doi.org/10.1007/978-1-4842-9473-4_12
https://neo4j.com/

@Inject
public WizardsRepository(Driver driver) { ①
 this.driver = driver;
}

Listing 12-3 Inject Neo4j Driver

① Injects Neo4j driver
Here it is done using the constructor. So, when Helidon starts, the driver is automatically injected into

our class.
As the driver is set up and injected, you can do Cypher queries to the Neo4j database, as shown in Listing

12-4.

public List<Wizard> findAllWizards() { ①
 var session = driver.session() ②
 var result = session.run("MATCH (Wizard) RETURN
wizard").list() ③

 return result;
 }

Listing 12-4 Example of a Cypher Request

① Sample Neo4j Cypher query
② Initializes a session using driver
③ Executes a Cypher query and gets the result

This data can then be processed and returned using a typical Helidon endpoint.
To play more with Helidon and Neo4j, please check out a full-scaled Helidon Neo4j example based on a

Movie database in Helidon Official GitHub Repository.

Enabling Metrics and Health Checks
The extent of Neo4j’s support goes beyond the driver configuration and initialization. You can include two
additional dependencies if you require greater insight into the database’s performance.

Listing 12-5 is the code for health checks.

<dependency>
 <groupId>io.helidon.integrations.neo4j</groupId> ①
 <artifactId>helidon-integrations-neo4j-health</artifactId>
</dependency>

Listing 12-5 Neo4j Health Checks

① Neo4j health checks dependency
Listing 12-6 is the code for metrics.

<dependency>
 <groupId>io.helidon.integrations.neo4j</groupId> ①
 <artifactId>helidon-integrations-neo4j-metrics</artifactId>
</dependency>

Listing 12-6 Neo4j Metrics Dependency

① Neo4j metrics dependency
By adding them, the observability data from Neo4j is injected into Helidon standard /health and

/metrics endpoints output.

Note Metrics on the server side should be enabled by setting the neo4j.pool.metricsEnabled to
true in the Helidon config.

https://neo4j.com/developer/cypher/
https://github.com/helidon-io/helidon/tree/helidon-3.x/examples/integrations/neo4j

Now, run the following in the command line.

> curl -X GET http://localhost:8080/metrics

Neo4j metrics information is printed.
And the following shows available Neo4j health check information.

> curl -X GET http://localhost:8080/health

Coherence
Oracle Coherence CE is an implementation of java.util.Map that offers a concurrent, fault-tolerant
key/value store. It can scale and distribute across multiple JVMs, servers, and data centers while providing
automatic data sharding, highly redundant data storage, and integrated messaging. Moreover, it offers
events that notify of any changes to the data or the cluster and user-friendly APIs.

This system is stateful and capable of vertical and horizontal scaling. It can be reconfigured to utilize
more or fewer CPUs, RAM, and storage, allowing for vertical scaling. In typical scenarios, data access
operations in Coherence CE only require a few milliseconds and, in some cases, even less than a millisecond
for simple key-based operations.

Integrating with Helidon
To start using Coherence with Helidon MP, include the following Maven dependencies.

<dependency>
 <groupId>com.oracle.coherence.ce</groupId> ①
 <artifactId>coherence-cdi-server</artifactId>
</dependency>
<dependency>
 <groupId>com.oracle.coherence.ce</groupId> ②
 <artifactId>coherence-mp-config</artifactId>
</dependency>
<dependency>
 <groupId>com.oracle.coherence.ce</groupId> ③
 <artifactId>coherence-mp-metrics</artifactId>
</dependency>

Listing 12-7 Coherence Dependencies

① Coherence CDI integration dependency
② Coherence Helidon MP config integration
③ Coherence Helidon MP metrics integration

The main magic is concentrated in the NamedMap object. Coherence CE’s NamedMap extends the
java.util.Map interface and functions as a distributed data structure with data partitioned across
multiple JVMs, machines, or data centers. The mentioned dependencies provide full integration of Helidon
with Coherence CE. They care for setting up and configuring all necessary for this NamedMap to be simply
injected in our code.

public class SpellRepository extends AbstractRepository<String, Spell>
{ ①

 @Inject
 private NamedMap<String, Spell> spells; ②

 //omitted for simplicity
}

Listing 12-8 Spell Resource

https://coherence.community/

① AbstractRepository is provided by Coherence CE
② NamedMap injected in Helidon application by Coherence CDI Support.

For this example, Spell is a simple POJO containing two fields: the wizard’s name (used as a key) and
their spell.

public class Spell implements Serializable { ①

 private String wizardName;

 private String spell;
 // getters and setters omitted
}

Listing 12-9 Spell POJO

① Simple spell POJO must be serializable
The spell POJO can be serialized in two distinct formats: Java serialization, which Coherence CE utilizes

for storage purposes, and JSON-B, which is used by the REST APIs. Alternatively, the application could have
used JSON as a transport format and Coherence Portable Object Format (POF) for storage instead.

Since there is a repository and domain objects, they can be used in Helidon’s typical REST endpoint,
where you can do CRUD operations.

@Path("/api/spell")
@ApplicationScoped
public class SpellsEndpoint {
 @Inject
 private SpellRepository spellRepository; ①

 @POST
 @Consumes(APPLICATION_JSON)
 public Spell createSpell(JsonObject spell) {
 Spell result = new Spell(spell.getString("wizardName"),
 spell.getString("spell"));
 return spellRepository.save(result); ②
 }

 @GET
 @Produces(APPLICATION_JSON)
 @Path("{wizardName}")
 public Spell findSpell(@PathParam("wizardName") String wizardName)
{ ③
 return spellRepository.get(wizardName);
 }

 @GET
 @Produces(APPLICATION_JSON)
 public Collection<Spell> getSpells() { ④
 return spellRepository.getAll();
 }

 @DELETE
 @Path("{wizardName}")
 public Spell deleteSpell(@PathParam("wizardName") String wizardName)
{ ⑤
 return spellRepository.removeById(wizardName, true);
 }

 @PUT
 @Path("{wizardName}")

 @Consumes(APPLICATION_JSON)
 public Spell updateSpell(@PathParam("wizardName")
 String wizardName, Spell spell)
{ ⑥
 spellRepository.update(wizardName,
 Spell::setSpell, spell.getSpell());
 return findSpell(wizardName);
 }
}

Listing 12-10 Spell Resource

① Inject the repository.
② Create a new spell using spellRepository.save method.
③ Find a spell by wizard name using the spellRepository.get method.
④ Get all spells using the spellRepository.getAll method.
⑤ Delete a spell using spellRepository.removeById.
⑥ Update a spell using spellRepository.get.

Coherence CE provides an abstraction AbstractRepository for a repository, simplifying the work
with NamedMap for typical CRUD operations.

Now run the application. Helidon starts, configures, and runs a Coherence CE cluster. Since Coherence CE
is just a library, it runs inside the application. No external server connections are required.

Using cURL to call the endpoint, it can get, create, update, and delete the spells by simply using the
following.

curl -X GET "http://localhost:8080/api/spell"

The preceding code fetches all the spells.

curl -X POST -H "Content-Type: application/json" -d '{"wizardName" : "Oz",
"spell":"Bless you!"}' http://localhost:7001/api/spell

This creates a new Spell item.
Coherence CE is extremely scalable.

Figure 12-1 Helidon with Coherence CE in a Cloud

To demonstrate how easy it is to scale our application, imagine it is deployed in the Kubernetes-managed
clouds. You can easily do the following.

kubectl scale --replicas=1000 -f spells.yaml
This scales the spells app to 1000 nodes and shards and replicates all data across these nodes—and all

are stateful! Another good part is that Coherence CE can be configured directly in Helidon’s
microprofile-config.properties because there is full integration.

Verrazzano
Verrazzano is a comprehensive end-to-end corporate container platform that can deploy cloud-native and
legacy applications in hybrid and multi-cloud environments. It comprises a thoughtfully curated selection of
open-source components, some familiar and essential, while others are purpose-built to integrate all the
parts seamlessly into a user-friendly platform.

Figure 12-2 Verrazzano Enterprise cloud platform

Verrazzano offers a lot of capabilities like facilitation of DevOps and GitOps practices, out-of-the-box
application monitoring; management of hybrid and multi-cluster workloads; custom handling of WebLogic,
Coherence, and Helidon applications; administration of multi-cluster infrastructure; and security handling.

Helidon is a “first-class citizen” in the Verrazzano world. There is special support for Helidon out of the
box.

It is very easy to run a Helidon application in the cloud using Verrazzano. Let’s deploy the wizard app in
it!

Deploying the Helidon Wizard Application

Note First, please install Verrazzano by following the installation instructions.

We assume that you are familiar with Kubernetes since the operations in Verrazzano are done within a
terminal using the kubectl command. If not, please learn more about Kubernetes on its official website.

Note The following instructions are applicable for the Kubernetes environment like OKE.

Let’s do it!
It is usually a good idea to create a namespace for the application and add a label identifying the

namespace as managed by Verrazzano.

https://verrazzano.io/docs/setup/install/installation/
https://kubernetes.io/docs/home/
https://www.oracle.com/cloud/cloud-native/container-engine-kubernetes/

$ kubectl create namespace wizard-helidon ①
$ kubectl label namespace wizard-helidon verrazzano-managed=true istio-
injection=enabled ②

① Creates Helidon namespace
② Labels Helidon namespace

You must create two descriptor files to make the Helidon Wizard app run properly in Verrazzano.
First, you create the component wizard-helidon-comp.yaml file, describing the Helidon

workload, as shown in Listing 12-11.

apiVersion: core.oam.dev/v1alpha2
kind: Component ①
metadata:
 name: wizard-helidon-component ②
 namespace: wizard-helidon
spec:
 workload:
 apiVersion: oam.verrazzano.io/v1alpha1
 kind: VerrazzanoHelidonWorkload ③
 metadata:
 name: wizard-helidon-workload
 labels:
 app: wizard-helidon
 spec:
 deploymentTemplate:
 metadata:
 name: wizard-helidon-deployment
 podSpec:
 containers:
 - name: wizard-helidon-container
 image: "ghcr.io/verrazzano/wizard-helidon-
app" ④
 ports:
 - containerPort: 8080
 name: http

Listing 12-11 Helidon Verrazzano Component

① Describes a component
② Name and namespace of the component
③ Uses special Helidon workload to autoconfigure all service endpoints
④ Docker image with the app

Helidon is a “first-class citizen” in Verrazzano and has its own workload:
VerrazzanoHelidonWorkload. This means that Verrazzano not only configures, deploys, and runs your
Helidon application but also configures and deploys other services, such as Prometheus and Grafana, to
gather metrics and monitor the service activity, for example.

Note The image property points to the location of the Docker image with the wizard app.

Then you need to create the app wizard-helidon-comp.yaml file, describing the deployment of the
workload, as shown in Listing 12-12.

apiVersion: core.oam.dev/v1alpha2
kind: ApplicationConfiguration ①
metadata:
 name: wizard-helidon-appconf ②
 namespace: wizard-helidon
 annotations:

 version: v1.0.0
 description: "Wizard Helidon application"
spec:
 components:
 - componentName: wizard-helidon-component ③
 traits:
 - trait:
 apiVersion: oam.verrazzano.io/v1alpha1
 kind: MetricsTrait
 spec:
 scraper: verrazzano-system/vmi-system-prometheus-0
 - trait:
 apiVersion: oam.verrazzano.io/v1alpha1
 kind: IngressTrait
 metadata:
 name: wizard-helidon-ingress
 spec:
 rules:
 - paths:
 - path: "/wizard"
 pathType: Prefix

Listing 12-12 Helidon Application Verrazzano Descriptor

① Application configuration config
② Name and metadata of the config
③ Components description

Note For more information about each config field, please refer to the official Verrazzano
documentation.

And you just need to apply them with kubectl.

$ kubectl apply -f wizard-helidon-comp.yaml ①
$ kubectl apply -f wizard-helidon-app.yaml ②

Listing 12-13 Apply Configuration with kubectl

① Apply component configuration
② Apply application configuration

Figure 12-3 Verrazzano deployment

The wizard Helidon application implements a REST API endpoint /wizard, which returns a message
{"name":"Oz"} when invoked.

To access the application using the command line, type Listing 12-14 in the terminal.

$ curl -X GET https://wizard-helidon-appconf.wizard-
helidon.11.22.33.44.nip.io/wizard ①

{"name":"Oz"}

Listing 12-14 Use cURL to Access the Application

① Uses curl to get a response from the application in the cloud

This means that our wizard application is successfully deployed in the cloud and managed by
Verrazzano.

Note Check the Verrazzano documentation on how to obtain the correct URL.

There is a variety of endpoints that get automatically created, deployed, and associated with our
application. They are available to further explore the logs, metrics, and such. They include famous tools like
Grafana, Kibana, Prometheus, and ElasticSearch. And they all were automatically deployed and set up by
Verrazanno, thus saving a lot of DevOps work.

You can get the list of available services with the command shown in Listing 12-15.

$ kubectl get ing -n verrazzano-system ①
NAME CLASS HOSTS
verrazzano-ingress <none> verrazzano.default.11.22.33.44.nip.io 1
vmi-system-es-ingest <none> elasticsearch.vmi.system.default.11.22.3
443 7d2h
vmi-system-grafana <none> grafana.vmi.system.default.11.22.33.44.n
443 7d2h
vmi-system-kibana <none> kibana.vmi.system.default.11.22.33.44.ni
443 7d2h
vmi-system-prometheus <none> prometheus.vmi.system.default.11.22.33.4
443 7d2h

Listing 12-15 Get Ingress Data

① Gets various Verrazzano components’ host and address information
Deployment of Helidon applications to Verrazzano is really easy. When you create a new Helidon project

using CLI or http://​helidon.​io/​starter, you can specify that you need a docker file and a Verrazzano
descriptor. Two files are generated: component.yaml and application.yaml. Apply them with the
kubectl command, and Verrazzano does all the rest!

http://helidon.io/starter

Figure 12-4 What Verrazzano does

To get all the details of the configuration and deployment of a Helidon application, please follow the official
Verrazzano guide.

This chapter only scratched the surface of all functionalities provided by Verrazzano. Please consult the
official website for a full description of the functionalities.

Summary
Helidon is not a closed ecosystem and provides easy integrations with the most famous technologies on
the market.
Neo4J integration is not just an injection of the driver but also integration with health and metrics.
Coherence CE provides an easy way to have highly scalable cashing and persistence in Helidon.
Helidon is a “first-class citizen” in Verrazzano. You can easily deploy the services in multi-cloud
environments with only two YAML files.

https://verrazzano.io/latest/docs/samples/hello-helidon/
https://verrazzano.io/
https://verrazzano.io/

(1)
(2)

© The Author(s), under exclusive license to APress Media, LLC, part of Springer Nature 2023
D. Kornilov et al., Beginning Helidon
https://doi.org/10.1007/978-1-4842-9473-4_13

13. Going Reactive
Dmitry Kornilov1 , Daniel Kec1 and Dmitry Aleksandrov2

Praha, Czech Republic
Sofia, Bulgaria

This chapter covers the following topics.
Using Reactive Streams instead of simple callbacks on asynchronous APIs
Understanding the inner structure of Reactive Streams
Connecting streams together
Using Helidon’s reactive stream operators, producing and consuming data

The last few years have seen emerging technological trends in the never-ending chase after
better performance. APIs started to change from a here is my thread—block it until things are ready
blocking manner to less intuitive asynchronous promises, futures, or callbacks, providing means for
my thread time is precious–call me back through this callback on your own thread when things are
ready.

It has had huge performance advantages as switching the thread contexts during all the blocking
and yielding is expensive. But it is more difficult to orient yourself in all the callbacks and futures not
mentioning loss of natural backpressure of the blocking APIs. The need for setting a standard was
obvious.

Reactive Streams
Reactive Streams is a standard for asynchronous communication with built-in flow control, known
as backpressure. We can describe it as two parallel pipes through which messages flow under very
strict conditions. Let’s call the sending side of the pipes upstream and the receiving side
downstream. While one pipe is used for requesting the exact amount of the data or canceling by the
downstream, the other one is used for sending the actual data by the upstream.

https://doi.org/10.1007/978-1-4842-9473-4_13

Figure 13-1 Simplified reactive stream

Upstream or the publishing side usually implements Publisher while downstream, the
consuming side implements Subscriber. Every publisher has a method void
subscribe(Subscriber<? super T> subscriber) which registers the subscriber, it’s
downstream. Publisher signals the subscriber with onSubscribe and gives him the subscription
to request more data or cancel the stream. Publishers can never send more data than what was
requested; that way, downstream regulates the volume and not get overwhelmed, this mechanism is
known as a backpressure.

Figure 13-2 Reactive Streams API

Reactive Streams API is available in two packages for Java nowadays, older but still widely used
org.reactivestreams available as stand-alone library and newer
java.util.concurrent.Flow added to JDK in version 9. Despite that both are semantically
identical, package names differ. Until all reactive libraries are migrated to JDK’s Flow variant, simple
conversion between the two is possible with org.reactivestreams.FlowAdapters.

The API itself isn’t very practical except for connecting reactive streams together. It gets much
more practical with tooling built around those APIs, providing specialized publishers, subscribers
and operators provided by specialized reactive libraries. Operators are intermediate operations you
can define to augment the stream of the data coming through the pipe.

Caution Implementation of the Reactive Streams interfaces can be tricky, while interfaces look
simple, rules they need to comply with are complex and require advanced knowledge of Java
concurrent programming.

Reactive Operators
Reactive streams can operate with an infinite amount of data. When you want to work with
potentially huge amounts of items flowing down the stream without blocking, you need to create
some kind of intermediate operation which is applied on every item coming down the stream.

Helidon has its own implementation of the various operators you can chain together with a builder
like API, that is part of Helidon’s reactive engine with API built on top of the new
java.util.concurrent.Flow interfaces.

Multi.just("1", "2", "3", "4") ①
 .limit(3) ②
 .map(Integer::parseInt) ③
 .forEach(i -> System.out.println("Received: " + i)); ④

Listing 13-1 Reactive Operators in Helidon

① Defines finite reactive stream of four string values
② Limits operator canceling when three items are passed
③ Maps operator parsing every string item to integer
④ Terminal operator, subscriber of the stream

Helidon operators are used on all the Helidon SE APIs, even so Helidon MP leverages mainly
imperative coding approach, there is reactive streams abstraction defined by the MicroProfile
Reactive Streams Operators specification. That is clever abstraction over an actual implementation
of the operators, so you can switch implementation without changing your business code.

ReactiveStreams.of("1", "2", "3", "4")
 .limit(3)
 .map(Integer::parseInt)
 .forEach(i -> System.out.println("Received: " + i))
 .run();

Listing 13-2 MicroProfile Reactive Streams Operators

MicroProfile Reactive Streams are used mainly with another MicroProfile Reactive Messaging
specification, as discussed later. Let’s look at the operators first. Describing which operator does
what can be complicated, so there is a special kind of diagram used for such a description.

Marble Diagrams
As little marbles on an arrow are depicted items in the stream on a marble diagram.

Figure 13-3 Marble diagram: stream

While marbles are representing subscriber onNext calls, error is represented by X mark and stream
completion by |.

Figure 13-4 Marble diagram legend

The stream above the operator depicted in Figure 13-4 is upstream, the source of the data. The
stream under the operator is downstream, the result of operation.

Figure 13-5 Marble diagram: map

On the map operator marble diagram, you can see immediately what happens to each item coming
through the operator. You can see that the number of the items is not affected, only the value is. Also,
the complete signal | is not affected by the operator and passes downstream as is.

MicroProfile Reactive Streams Operators
MicroProfile Reactive Streams Operators is an abstraction bound by specification in the way in
which you can port your business code without any changes. Using reactive streams, you can switch
from RxJava to Mutiny or Helidon operators without changing your code.

Portability is not the only feature by far, MP Reactive Streams API is structured around builders
for units representing operators called stages.

Figure 13-6 Reactive stream stages in a closed graph

Stage builder creates reactive streams publisher, processor, or subscriber. You can structure your
streams with stages into larger reusable parts called graphs. Graphs can be composed together into
larger graphs like a toy building kit.

ReactiveStreams
 .of(1, 2, 3, 4) ①
 .map(i -> i * 10) ②
 .filter(i -> i < 35)
 .forEach(i -> log("Got " + i)) ③
 .run(); ④

Listing 13-3 RS Stages in a Closed Graph

① Publisher stage of
② Processor stage map
③ Subscriber/terminal stage
④ Invoke subscription between the stages

Graph is a combination of stages, depending on stage types, graphs can be distinguished to four
types.

The publisher graph starts in the publisher stage and optionally ends in the processor stage.
The processor graph is only in the processor stages.
The subscriber graph optionally starts with processor stage and always ends in the subscriber
stage.

The closed graph starts in the publisher stage, ends in the subscriber stage, and optionally has
processor stages in between.

Figure 13-7 Publisher and processor graphs

Separate publisher and processor stages can be grouped into larger graphs with
.via(processor).

var publisherStage =
 ReactiveStreams.of(1, 2, 3, 4);

var processorStage =
 ReactiveStreams.<Integer>builder()
 .map(i -> i * 10);

var publisherGraph =
 publisherStage.via(processorStage);

Listing 13-4 Combining RS Stages in Graphs

For creating subscriber or closed graphs, .to(subscriber) method is used. While the
publisher graph connected with the subscriber graph over the .to() method creates a closed
graph, the processor connected with the subscriber graph creates the subscriber graph. Only the
closed graph is runnable, with the run() method actual subscription is done and the whole stream
starts.

Figure 13-8 Subscriber and closed graph

This extensive granularity of MP Reactive Streams allows reusing whole chains of operators.
Following stream example repeats the whole sequence of operators.

ReactiveStreams
 .of(1, 2, 3, 4, 5)
 .filter(i -> i < 5)
 .filter(i -> i > 2)
 .map(i -> i * 10).map(i -> i - 5)
 .map(i -> i * 10).map(i -> i - 5) ①
 .map(String::valueOf)
 .forEach(i -> log("Got " + i))
 .run();

Listing 13-5 Closed Graph with Repeated Stages

① Repeated operators
You can decompose the same reactive stream into multiple graphs, combine them, and reuse the

repeated graph.

var publisherGraph =
 ReactiveStreams.of(1, 2, 3, 4, 5)
 .filter(i -> i < 5)
 .filter(i -> i > 2);

var processor1Graph =
 ReactiveStreams.<Integer>builder()
 .map(i -> i * 10)
 .map(i -> i - 5);

var processor2Graph =
 ReactiveStreams.<Integer>builder()
 .map(String::valueOf);

var subscriberGraph =
 ReactiveStreams.<String>builder()
 .forEach(i -> log("Got " + i));

publisherGraph
 .via(processor1Graph)
 .via(processor1Graph) ①
 .via(processor2Graph)
 .to(subscriberGraph) ②
 .run(); ③

Listing 13-6 Combining Graphs

① Connecting the same graph with repeated operators twice
② Closing the graph with subscriber
③ Invoking actual subscription

Running the stream doesn’t immediately yield the result nor blocks the current thread as the
completion of the stream may (or may not) be asynchronous. Instead of the actual value Java’s
CompletionStage is returned as a promise callback to be completed in the future successfully

with the result value from the terminal operator or exceptionally with the Throwable in case the
onError signal terminated the reactive stream.

CompletionStage has its own operators you can use to react on asynchronous completion
like whenComplete, thenApply and many more. It is also possible to block the current thread
until asynchronous operation completes, but it is a very dangerous thing to do in any reactive
environment. When you are sure that the current thread can be blocked, either because it is a virtual
thread or a physical thread you have under control; either .join() on converted
CompletableFuture or .await() on Helidon-proprietary Single can be used.

CompletionStage<List<String>> cf =
 ReactiveStreams.of("1", "2", "3", "4")
 .toList()
 .run();

List<String> resultJoin = cf.toCompletableFuture()
 .join(); ①
List<String> resultAwait = Single.create(cf, true)
 .await(); ②

Listing 13-7 Blocking Current Thread Until Stream Completes

① Way of blocking with CompletableFuture.join()
② Way of blocking with Single.await()

Warning Keep in mind that blocking in reactive context is always harmful and quickly leads to
deadlock or event pool exhaustion.

of
The of operator is a publisher emitting downstream given items supplied over the vararg
parameter.

ReactiveStreams.of(1, 2, 3, 4)
 .toList() ①
 .run()

Listing 13-8 of Operator Publishing Given Items

① Result list contains [1, 2, 3, 4]

empty
The empty operator sends an onComplete signal downstream after the subscription happens.

ReactiveStreams.empty()
 .peek(i -> log("This is never executed")) ①
 .onComplete(() -> log("Completed immediately")) ②
 .toList()
 .run()

Listing 13-9 empty Operator Immediately Completing the Stream

① peek is never executed, as no onNext signals come.
② OnComplete is executed right away.

failed
The failed operator sends an onError signal downstream with the supplied Throwable as the
cause after subscription happens.

ReactiveStreams.failed(new Exception("BOOM!"))
 .peek(i -> log("This is never executed")) ①
 .onComplete(() -> log("This is never executed")) ②
 .onError(t -> log("Stream failed because of " +
t.getMessage())) ③
 .toList()
 .run()

Listing 13-10 failed Operator Immediately Failing the Stream

① No onNext signals are sent
② No onComplete happens
③ Stream finishes with onError signal

generate
The generate operator executes given supplier once for each requested item, returned item is
emitted downstream as an onNext signal.

AtomicLong seq = new AtomicLong();
ReactiveStreams.generate(() -> {
 log("Generating " + seq.incrementAndGet()); ①
 return seq.get();
 })
 .limit(3)
 .toList() ②
 .run();

Listing 13-11 generate Operator Invoking Supplier for Each Requested Item

① Logged exactly three times
② Result list contains [1, 2, 3] as requested items are limited to three

iterate
The iterate operator first emits provided seed item and executes a provided function to generate
an item for each subsequent emit with the previously emitted item as a parameter.

ReactiveStreams.iterate(10, i -> i + 2)
 .limit(3)
 .toList() ①
 .run()

Listing 13-12 iterate Operator Generates Subsequent Items from Previous One

① Result list contains [10, 12, 14]

fromCompletionStage
The fromCompletionStage operator creates a reactive stream from the CompletionStage
promise. When the supplied completion stage is completed with a value, it is emitted downstream
as an onNext item immediately followed by an onComplete signal.

ReactiveStreams.fromCompletionStage(CompletableFuture.completedStage(1))
 .onComplete(() -> log("Completed!")) ①
 .peek(i -> log("Got " + i)) ②
 .onError(t -> log("Not executed!")) ③
 .ignore()
 .run()

Listing 13-13 fromCompletionStage Operator Creates Reactive Stream from Completion Stage

① An onComplete signal is sent right after the item
② Item is intercepted when CompletionStage is completed
③ No onError signal intercepted

When CompletionStage is completed exceptionally, an onError signal is emitted
downstream with the original Throwable as a cause.

CompletionStage<Object> cs = CompletableFuture.failedStage(new
Exception("BOOM!"));
ReactiveStreams.fromCompletionStage(cs)
 .onComplete(() -> log("Not executed!")) ①
 .peek(i -> log("Not executed!")) ②
 .onError(t -> log("Failed with " + t.getMessage())) ③
 .ignore()
 .run()

Listing 13-14 fromCompletionStage Operator Creates Reactive Stream from Failed Completion Stage

① Not executed as there is no onComplete signal
② Not executed as there is no onNext signal
③ Error from failed CompletionStage intercepted

fromCompletionStageNullable
While CompletionStage allows null values, reactive streams do not. Null cannot be carried as the
onNext item within the reactive stream. When the fromCompletionStage operator is supplied
with CompletionStage completed by null, the stream gets failed by the onError signal with
NullPointerException as the cause.

The fromCompletionStageNullable operator drops null items and emits onComplete
immediately.

fromPublisher
The fromPublisher operator can construct a stream from a raw reactive publisher. This is very
practical when connecting reactive streams to other reactive APIs.

SubmissionPublisher<Integer> sp = new SubmissionPublisher<>(); ①
Publisher<Integer> rawPublisher = FlowAdapters.toPublisher(sp); ②
CompletionStage<List<Integer>> resultCs =
 ReactiveStreams.fromPublisher(rawPublisher)
 .toList()
 .run();
sp.submit(1); ③
sp.submit(2);
sp.submit(3);
sp.close(); ④
List<Integer> list = resultCs.toCompletableFuture().join(); ⑤

Listing 13-15 fromCompletionStage Operator Creates Reactive Stream from Publisher

① Java Flow.Publisher
② Adapted Reactive Stream Publisher
③ Emitting items with Flow.Publisher
④ Completing stream with Flow.Publisher
⑤ Result list contains all emitted items [1, 2, 3]

concat
The concat operator connects two publisher graphs together the way that when first stream
completes, the second one continues to publish instead.

ReactiveStreams.concat(
 ReactiveStreams.of(1, 2),
 ReactiveStreams.of(3, 4)
)
 .toList() ①
 .run();

Listing 13-16 concat Connecting Two Streams to One

① Result list contains items from both streams in the correct order [1, 2, 3, 4]

map
The map operator is a notoriously known wrench in your reactive toolbox. Its parameter is a
function executed for each onNext signal coming through the stream. Incoming value is provided
to the function, and the returned value is sent downstream to the next operator.

Figure 13-9 Map operator

The type of the returned value decides the inbound type of the next downstream operator.

List<String> upstreamData = List.of("1", "2", "3", "4");
CompletionStage<List<Integer>> resultFuture =
 ReactiveStreams.fromIterable(upstreamData) ①
 .map(Integer::parseInt) ②
 .toList() ③
 .run();

Listing 13-17 map Operator Changing Type of Outbound Value

① Upstream sends string items

② Mapping function changes the type from string to integer
③ Terminal operator toList already collects strings

peek
The peek operator never augments the stream data. It executes the provided consumer for each
onNext signal coming through the stream.

Figure 13-10 Limit operator

Each item is consumed by the consumer which is never executed in parallel. The onNext signal
sends the item to the next operator only after the peek consumer function is executed. The only way
peek can affect the stream is when an exception is thrown in its consumer function, then upstream
is canceled, and the onError signal is sent downstream with exception cause as a Throwable
parameter.

Unlike Java’s Stream.peek which may get ignored because of downstream optimization,
Reactive Streams peek is guaranteed to be executed for each onNext signal. It can be used for
creating intentional side effects.

filter
The filter operator allows throwing away selected items coming down the stream. Its predicate
function gets executed for each onNext signal with item as its parameter. The onNext signal is
sent downstream only when the filter’s predicate function returns true.

Figure 13-11 The filter operator

The filter function is always executed serially, as all the operator functions are.

ReactiveStreams.of(1, 2, 3, 4)

 .filter(i -> i > 2) ①
 .toList() ②
 .run()

Listing 13-18 filter Operator Letting Through Only Selected Items

① Only numbers greater than 2 can pass downstream
② Result list contains [3, 4] because 1 and 2 were filtered out

limit
The limit operator limits the number of items sent downstream; its only parameter is a long
number of items that can pass the limit operator. Limit operator counts onNext signals passing
through. When limit number is reached, limit completes the stream by canceling upstream and
sending the onComplete signal downstream.

Figure 13-12 The limit operator

The limit parameter can be only a positive number or 0. When a negative number is supplied,
IllegalArgumentException is raised.

takeWhile
The takeWhile operator lets through items until supplied predicate returns true, takeWhile
functions similarly to the filter operator, but completes the stream when predicate returns false.

Figure 13-13 takeWhile operator

ReactiveStreams.of(1, 2, 3, 4)
 .takeWhile(i -> i != 3) ①
 .toList() ②

 .run()

Listing 13-19 takeWhile Operator Letting Items Through While Predicate Is True

① Items can pass downstream only until the predicate returns false
② Result list contains [1, 2] because 3 caused stream completion

dropWhile
The dropWhile operator drops all items coming with onNext signal, not sending them to the next
operator downstream until its predicate returns false.

Figure 13-14 DropWhile operator

Predicate function is executed for each onNext signal with item as its parameter until first time
predicate returns false, after first false result is not executed anymore.

ReactiveStreams.of(1, 2, 3, 4)
 .dropWhile(i -> i != 3) ①
 .toList() ②
 .run()

Listing 13-20 dropWhile Operator Dropping Items While Predicate Is True

① Items can pass downstream only after the predicate returns false for the first time
② Result list contains [3, 4] because 1 and 2 were dropped

skip
The skip operator drops given number of items, after that all subsequent onNext signals are
allowed to pass downstream.

Figure 13-15 Skip operator

Skip parameter can be only a positive number or 0. When a negative number is supplied
IllegalArgumentException is raised.

flatMap
The flatMap operator executes a given function for each item, where another reactive stream is
expected as a result. flatMap inlines all items from the resulting stream, sending each of its items
separately downstream.

Figure 13-16 flatMap operator

This ability allows multiplying items based on the provided logic.

ReactiveStreams.of(1, 2, 3)
 .flatMap(i -> ReactiveStreams.of(i, i * 10)) ①
 .toList() ②
 .run()

Listing 13-21 flatMap Operator Multiplying Items

① Items are converted to streams containing themselves and their multiple
② Result list contains [1, 10, 2, 20, 3, 30] because for each item, its multiple was added

Whereas a basic MP Reactive Streams flatMap expects a publisher builder, its alternative,
flatMapRsPublisher, behaves the same but expects a Publisher type.

flatMapCompletionStage
The flatMapCompletionStage operator safely aligns CompletionStage callbacks in the
reactive stream so that execution of the next operator happens when a given completion stage is
completed.

While normally it is very dangerous to block or obstruct reactive operators,
flatMapCompletionStage provides a way of offloading the blocking or obstructing operation to
another thread. This approach is necessary in case upstream uses a limited number of threads, for
example event loop model, otherwise other workers would be deprived of their thread time.

ReactiveStreams.of(1, 2, 3)
 .flatMapCompletionStage(i ->
 CompletableFuture.consumeAsync(() -> {
 workForFewMinutes(); ①
 return i;
 }, executorService))

 .toList() ②
 .run() ③

Listing 13-22 flatMapCompletionStage Operator Aligning Asynchronous Execution

① Asynchronous work is done serially; each execution starts only after the previous is done
② Result list contains [1, 2, 3]
③ Streams CompletionStage is completed when all async works are finished and results
collected

flatMapIterable
The flatMapIterable serializes supplied iterable’s items downstream as separate stream items.

ReactiveStreams.of(1, 2, 3)
 .flatMapIterable(i -> List.of(i, i * 10)) ①
 .toList() ②
 .run()

Listing 13-23 flatMapIterable Operator Multiplying Items

① Items are converted to streams containing themselves and their multiple
② Result list contains [1, 10, 2, 20, 3, 30] because for each item, its multiple was added

onComplete
The onComplete operator never augments the stream. It executes provided runnable for
onComplete signal coming through the stream.

Figure 13-17 OnComplete operator

The onComplete runnable is executed before the onComplete signal continues downstream.

onError
The onError operator never augments the stream. It executes a provided consumer for the
onError signal coming through the stream. The consumer gets a Throwable, with the cause of
the error as a parameter.

Figure 13-18 onError operator

The onError consumer is executed before the onError signal continues downstream.

onErrorResume
The onErrorResume operator can convert the onError signal to a single new item and send it
downstream as the onNext signal.

Figure 13-19 OnErrorResume operator

The operator function receives a Throwable cause if the onError signal is a parameter. A new
item of the same type as the previous is expected to be returned.

ReactiveStreams.concat(
 ReactiveStreams.of(1, 2),
 ReactiveStreams.failed(new Exception("BOOM!"))
)
 .onErrorResume(t -> 99) ①
 .toList() ②
 .run()

Listing 13-24 onErrorResume Operators Reviving Failed Stream

① Error is converted to a single item sent downstream as onNext instead of the onError signal
② Result list contains [1, 2, 99] because onError was converted to a single additional item

onErrorResumeWith
The onErrorResumeWith operator converts the onError signal to a new stream and flatmap it
downstream.

Figure 13-20 onErrorResumeWith Operator

The operator function receives a Throwable cause if the onError signal as a parameter, new
stream is expected to be returned.

ReactiveStreams.concat(
 ReactiveStreams.of(1, 2),
 ReactiveStreams.failed(new Exception("BOOM!"))
)
 .onErrorResumeWith(t -> ReactiveStreams.of(99, 100)) ①
 .toList() ②
 .run()

Listing 13-25 onErrorResumeWith Operators Reviving Failed Stream

① Error is converted to flat-mapped stream downstream instead of the onError signal
② Result list contains [1, 2, 99, 100] because onError was converted to a stream of additional
items

onTerminate
The onTerminate operator never augments the stream. It executes provided runnable for the
onComplete or onError signal coming through the stream. The onTerminate runnable is
executed before the onComplete or onError signal continues downstream.

cancel
cancel is a terminal operator, meaning it subscribes upstream, and no other operators follow. The
cancel operator sends the cancel signal upstream after the onSubscribe signal is received. It is
not possible to do it earlier because the onSubscribe signal carries the subscription needed to
send the cancel signal upstream.

ReactiveStreams.of(1, 2, 3)
 .peek(i -> log("This is never executed")) ①
 .cancel() ②
 .run()

Listing 13-26 cancel Operator Canceling the Whole Stream

① peek is not executed as the cancel signal is sent to the publisher and no request signal
② cancel sends cancel signal as soon as onSubscribe is signaled upstream

reduce

reduce is a terminal operator, and its parameter is an accumulator bi-function that takes two
parameters. The first parameter is the first item if executed for the first time or a result of the
previous execution of the accumulator. The second parameter is always the next item.

Figure 13-21 Reduce operator

Reduce operator aggregates the stream items with the provided accumulator function.

Optional<Integer> result = ②
 ReactiveStreams.of(1, 2, 3, 4)
 .reduce((sum, next) -> sum + next) ①
 .run()
 .toCompletableFuture()
 .join();

Listing 13-27 reduce Operator Applying Accumulator

① Accumulator is executed three times with parameters (1,2), (3,3), and (6,4)
② Result is Optional[10], the sum of all the stream items

distinct
The distinct operator removes duplicities from the stream by comparing the items with
Object.equals.

Figure 13-22 Distinct operator

Distinct is keeping the references to all the already passed unique values until onError,
onComplete or cancel signal passes the operator. Need for keeping the references for future
comparison should be considered when using the distinct operator on a larger stream.

ReactiveStreams.of(1, 2, 2, 4) ①

 .distinct()
 .toList() ②
 .run()

Listing 13-28 distinct Operator Removing Duplicities

① Notice the second and third items are the same
② Result contains only distinct values [1, 2, 4]

findFirst
The findFirst operator is a terminal operator, it returns the first item coming with onNext
signal from upstream if any. When onComplete is received before any onNext signal, findFirst
returns an empty optional.

Figure 13-23 findFirst operator

findFirst sends a cancel signal immediately after the first onNext signal is received, ignoring
any subsequent onNext signals.

ReactiveStreams.of(1, 2, 3, 4) ①
 .findFirst() ②
 .run()

ReactiveStreams.empty() ③
 .findFirst() ④
 .run()

Listing 13-29 findFirst Operator Returning First Item or Empty Optional

① Stream with first item 1
② Result is Optional[1]
③ Empty stream has no first item
④ Result is Optional.empty

forEach
The forEach operator is a terminal operator, it executes provided supplier function for each
onNext signal with the item as its parameter. forEach sends a request(Long.MAX_VALUE)
signal upstream right after the onSubscribe signal is received, requesting the unbounded data,
with no backpressure applied.

Figure 13-24 ForEach operator

When an exception is thrown in the supplier function, forEach sends a cancel signal upstream, and
the resulting CompletionStage is completed exceptionally.

ReactiveStreams.of(1, 2, 3, 4)
 .forEach(i -> log("Got " + i)) ①
 .run()

ReactiveStreams.of(1, 2, 3, 4)
 .forEach(i -> {
 throw new RuntimeException("BOOM!");
 })
 .run() ②

Listing 13-30 forEach Operator Executing Consumer for Each Item

① Each item is logged
② Resulting CompletionStage is [Completed exceptionally:
java.lang.RuntimeException: BOOM!]

ignore
The ignore operator is a terminal operator; it works like the forEach operator with a loop
function. The ignore operator ignores each onNext signal separately and completes the resulting
CompletionStage when the onComplete signal is received.

Figure 13-25 The ignore operator

toList
The toList operator is a terminal operator, it collects all the items from stream to
java.util.List and returns CompletionStage<List<T>> completed when onComplete
signal is received.

Figure 13-26 toList operator

List<Integer> result =
 ReactiveStreams.of(1, 2, 3, 4)
 .toList()
 .run()
 .toCompletableFuture()
 .join();

Listing 13-31 The toList Operator Collects All Items to List

to
to is a composition and terminal operator that allows connection of prepared subscriber graphs to
a publisher or processor graph builder.

SubscriberBuilder<Integer, Void> subscriberGraph = ①
 ReactiveStreams.<Integer>builder()
 .forEach(i -> log("Got " + i));

ReactiveStreams.of(1, 2, 3)
 .to(subscriberGraph) ②
 .run()

Listing 13-32 to Operator Connect Subscriber Graph to a Builder

① Prepared subscriber graph
② Connecting prepared subscriber to a builder

via
via is a composition operator that allows connecting processor graphs in a builder. Unlike the to
operator, via is not terminal; other operators can follow it.

ProcessorBuilder<Integer, Integer> processorGraph = ①
 ReactiveStreams.<Integer>builder()
 .map(i -> i * 10)
 .map(i -> i - 5);

ReactiveStreams.of(1, 2, 3)
 .via(processorGraph) ②
 .forEach(i -> log("Got " + i))
 .run()

Listing 13-33 via Operator Connect Processor Graph to a Builder

① Prepared processor graph

② Connecting prepared processor graph to a builder

Helidon Reactive Operators
Helidon has its own set of reactive operators on top of which are all the reactive features in Helidon
built. Each reactive API in Helidon SE is exposing Helidon operators. And because Helidon MP is
built on top of Helidon SE, you almost always have Helidon reactive operators on the classpath.

Even under the MicroProfile Reactive Stream Operators implementation in Helidon are hidden
Helidon operators.

Helidon operators are constructed by two main classes, Multi for streams with 0–n items and
Single for streams with only 0–1 items.

Single<String> single =
 Multi.range(1, 10) ①
 .limit(3)
 .map(String::valueOf)
 .first(); ②

Integer result = single
 .map(Integer::parseInt)
 .await(); ③

Listing 13-34 Multi and Single Streams

① Create a new multistream
② Get only the first item → Single
③ Block till single is completed, don’t do this in a reactive context

Single is a promise with all the features of reactive stream publisher, but it implements publisher
and CompletionStage.

Single.just(1)
 .whenComplete((i, t) -> log("Complete!"))
 .toCompletableFuture()
 .join();

Listing 13-35 Single Is CompletionStage

This makes Single versatile for usage with other asynchronous but not reactive streams
compatible APIs.

ReactiveStreams.of(1, 2)
 .flatMapCompletionStage(Single::just) ①
 .toList()
 .run();

Listing 13-36 Single As CompletionStage

① Single flat-mapped by unsuspecting MP reactive stream
This dual personality of Single has a catch: reactive streams are forbidden to have null as an

item, and CompletionStages are okay with nulls. Single overcomes this similarly to MP Reactive
Streams fromCompletionStageNullable by converting null to an empty stream when
instructed.

CompletionStage<Void> csWithNull =
 CompletableFuture.completedStage(null);

Single.create(csWithNull, true) ①
 .peek(unused -> log("Not invoked"))
 .onComplete(() -> log("Completed!")) ②
 .ignoreElement();

Listing 13-37 Single from Nullable CompletionStage

① Null means empty parameter set to true
② Only onComplete signal

Unlike the MicroProfile Reactive Stream Operators implementing the org.reactivestreams
API, Helidon operators implement Java’s java.util.concurrent.Flow reactive stream API.
These are identical APIs, first in a stand-alone library for pre–Java 9 environments, later a part of
Java API since version 9.

Same APIs but in different packages, but don’t worry conversion is quite easy. Reactive Streams
API library brings with it handy adapter utility org.reactivestreams.FlowAdapters.

Flow.Publisher<String> flowPublisher =
 Multi.just(1, 2, 3, 4)
 .map(String::valueOf); ①
Publisher<String> rsPublisher =
FlowAdapters.toPublisher(flowPublisher); ②
ReactiveStreams.fromPublisher(rsPublisher) ③
 .map(Integer::parseInt)
 .toList()
 .run();

Listing 13-38 Converting Helidon Publisher to RS

① Helidon map operator
② Adapter between RS Publisher and Flow.Publisher
③ MP Reactive Streams connected to adapted Helidon operator

Reactive Messaging
Messaging is an important feature of any runtime, bringing the means for asynchronous
communication, and a way to loosen strong coupling between the components. On the first look
MicroProfile messaging strongly resembles well-known messaging beans.

@Incoming("channel-1")
public void receive(String payload) {
 System.out.println("Received payload:" + payload);
}

Listing 13-39 Simple Incoming Message Handler Method

The Reactive Messaging API is much richer, and it’s no coincidence the “Reactive” has much to do
with it.

Reactive systems are defined in the famous reactive manifesto as responsive, resilient, elastic
and message-driven. Yes, message-driven messaging makes it easy for the system to be easily
scalable and fail proof if, and that is important, if it can provide feedback to the producing side.
Feedback for acknowledging message reception and regulating the flow. You already know the
concept of acknowledgment from JMS or offset committing from Kafka without acknowledgment
messages present. When one server crashes, another can take over its unacknowledged messages.

Great approach to regulation of incoming messages flow is known from reactive streams, it’s
called backpressure. Instead of re-creating reactive APIs, Reactive Messaging uses Reactive Streams

for constructing channels.

Channel
A channel is a reactive stream with a publisher and single subscriber constructed from reactive
streams stages. Channels are identified by names, either in annotations (see Listing 13-40) or in the
configuration (see Listing 13-41).

@Incoming("channel-1")
...
@Channel("channel-1")

Listing 13-40 Messaging Annotations Channel Names

mp.messaging:
 incoming:
 channel-1: ①
 connector: helidon-jms
 destination: ./TestJMSModule!TestQueue

Listing 13-41 Messaging Channel Configuration

① Named channel with channel-specific configuration
Every channel, since it’s in fact a reactive stream, needs to have both publisher and subscriber.

When it doesn’t, the container won’t start successfully.
The simplest possible channel is a combination of @Incoming and @Outgoing annotated

methods.

@Outgoing("channel-1")
public PublisherBuilder<String> registerPublisher() {
 return ReactiveStreams.of("first", "second", "third");
}

@Incoming("channel-1")
public void consume(String payload) {
 System.out.println(">" + payload);
}

>first
>second
>third

Listing 13-42 Simple Reactive Messaging Channel

Listing 13-42 shows the publisher is supplied with MicroProfile Reactive Streams operator’s
PublisherBuilder, which is a prepared chain of reactive operators called a stage.

The consuming method still looks like it was taken from a message-driven bean; but behind the
scenes, it is a hidden terminal forEach operator. You can tweak the example to supply a
SubscriberStage doing the same.

@Outgoing("channel-1")
public PublisherBuilder<String> registerPublisher() {
 return ReactiveStreams.of("first", "second", "third");
}

@Incoming("channel-1")

public SubscriberBuilder<String, Void> consume() {
 return ReactiveStreams.<String>builder()
 .forEach(payload -> {
 System.out.println(">" + payload);
 });
}

>first
>second
>third

Listing 13-43 Incoming Method with Explicit forEach
When the reactive stream is no longer hidden, you can construct more advanced reactive

pipelines and employ more operators, such as .map() to transform payloads to uppercase.

@Incoming("channel-1")
public SubscriberBuilder<String, Void> consume() {
 return ReactiveStreams.<String>builder()
 .map(payload -> payload.toUpperCase())
 .forEach(payload -> {
 System.out.println(">" + payload);
 });
}

>FIRST
>SECOND
>THIRD

Listing 13-44 Incoming Method with Reactive Operators

For consuming, instead of providing a subscriber with the incoming method, you can also access
the channel’s publisher directly by letting messaging inject it into your bean’s field or constructor
parameter.

Note Since MicroProfile Reactive Messaging 2.0

@Inject
@Channel("channel-1")
Publisher<String> channelOnePublisher;

Listing 13-45 Injected Publisher

Channels can be connected with processor methods; processor method can combine both
@Incoming and @Outgoing annotations. It can work like a map operator when a method with one
parameter is invoked for each stream item; or it can provide a reactive streams graph with
operators to be aligned as a processor between the two channels.

@Incoming("channel-1")
@Outgoing("channel-2")
public ProcessorBuilder<String, String> processor() {
 return ReactiveStreams.<String>builder()
 .map(payload -> payload.toUpperCase());
}

@Incoming("channel-2")
public void consume(String payload) {

 System.out.println(">" + payload);
}

>FIRST
>SECOND
>THIRD

Listing 13-46 Processor Method

Emitter

Note Since MicroProfile Reactive Messaging 2.0

Publishing messages from imperative code to reactive stream can be technically quite challenging.
There is a convenient SubmissionPublisher shipped with JDK since version 9 and newer, you
can just register it as a publisher with the @Outgoing messaging method, and you are good to go.

While it is a working solution, SubmissionPublisher is a big gun covering much more
ground than you need by spinning up unnecessary threads, ready to serve multiple subscribers.

To ease this frequent use case, an injectable emitter is available in messaging. With lightweight
single-thread implementation, configurable buffering strategies, and the ability to automatically
connect to messaging channels, the emitter bridges the gaps from the first version of the Reactive
Messaging specification.

@Inject
@Channel("channel-1")
Emitter<String> emitter;

@POST
@Consumes("text/plain")
public void push(String payload) {
 emitter.send(payload);
}

Listing 13-47 Sending Messages from JAX-RS Endpoint

Emitter sends messages asynchronously, backpressure from reactive stream is not propagated
by blocking. Instead, overflow strategy can be configured with annotation @OnOverflow to
indicate what should happen when downstream demand is lower than the number of sent
messages.

Message
Reactive messaging is able to inject to your messaging methods either directly the payload, or a
wrapper with metadata extending the
org.eclipse.microprofile.reactive.messaging.Message. Every message has
getPayload() and ack() methods for accessing payload and acknowledgment of successful
reception in case of manual acknowledgment.

@Incoming("channel-1")
public CompletionStage<Void> consume(Message<String> msg) {
 System.out.println(">" + msg.getPayload());
 return msg.ack();
}

Listing 13-48 Consuming Message

A message wrapper can be extended and customized to carry more specific metadata. For
example, when connecting to Kafka connector you can let messaging directly inject KafkaMessage
to gain access to headers, partition, topic, offset and more.

Acknowledgment
Acknowledgment is an important feature for achieving resiliency in case of some catastrophic
failure. Without the acknowledgment, if a consuming module crashes during processing of a
consumed message, the producing side has no way to know if the crashed module was successful
with message processing or not.

With the consuming side acknowledging successful consumption, the producing side can decide
if the message needs to be resent to another consumer or not.

MicroProfile Reactive Messaging supports multiple acknowledge strategies for various
messaging methods. Acknowledge strategy can be configured with @Acknowledgment annotation.
There are multiple options to choose from.

POST_PROCESSING is an automatic acknowledgment after the messaging method or supplied
operator is invoked.
PRE_PROCESSING is an automatic acknowledgment right before the method or operator is
invoked.
MANUAL means no automatic acknowledgment is performed.
NONE means no automatic acknowledgment, and no manual acknowledgment is expected.

Caution There are different default acknowledgment strategies for different messaging
method signatures. Consult MicroProfile Reactive Messaging Specification for more information.

Manual acknowledgment makes the developer responsible for calling the Message.ack(),
because the developer knows the best when business code processed the message successfully.

Listing 13-49 demonstrates monitoring an acknowledged callback.

@Outgoing("channel-1")
public PublisherBuilder<Message<String>> registerPublisher() {
 return ReactiveStreams.of("first", "second", "third")
 .map(payload -> Message.of(payload, () -> {
 return CompletableFuture.completedStage("Message " +
payload + " acked!")
 .thenAccept(System.out::println);
 }));
}

@Incoming("channel-1")
@Acknowledgment(Acknowledgment.Strategy.MANUAL)
public CompletionStage<Void> consume(Message<String> msg) {
 System.out.println(">" + msg.getPayload());
 return msg.ack();
}

>first
Message first acked!
>second
Message second acked!
>third
Message third acked!

Listing 13-49 Acknowledge Callbacks

Ack callback is observed manually in the example. If there would be Kafka connector configured
as a publisher for channel-1, Kafka connector would commit offset. With the JMS connector the
original JMS message would be acknowledged.

No Acknowledgment
For situations when it is already obvious the message can’t be consumed or processed successfully,
Message.nack(Throwable t) is available. The nack method triggers a callback for an explicit
not-acknowledge, which can be supplied during message construction.

Message<String> msg =
 Message.of("payload",
 () -> CompletableFuture
 .completedFuture("Acked!")
 .thenAccept(System.out::println),
 t -> CompletableFuture
 .completedFuture("Not acked! Error " +
t.getMessage())
 .thenAccept(System.out::println));
msg.nack(new Exception("BOOM!"));

> Not acked! Error BOOM!

Listing 13-50 Ack and Nack Callbacks

Each connector has its own nacking strategies; usually, the channel is killed by default.

Messaging Health
When a messaging channel fails, and it can fail for many reasons, it can’t be revived. A channel can
fail for example because the connector lost connection to the messaging broker or because an
exception was thrown in the messaging method. Since Helidon is a microservice framework, the
obvious solution for reestablishing the connection is to restart the pod. To let K8s know that
restarting of the pod is needed, you need a health probe. Reactive messaging has its own special
health probe.

<dependency>
 <groupId>io.helidon.microprofile.messaging</groupId>
 <artifactId>helidon-microprofile-messaging-health</artifactId>
</dependency>

Listing 13-51 Messaging Health Dependency

Messaging health liveness check simply reports your channel DOWN if either of onError,
onComplete or cancel signal has been detected in it.

{
 "name": "messaging",
 "state": "UP",
 "status": "UP",
 "data": {
 "channel-1": "UP",
 "channel-2": "UP"
 }
}

Listing 13-52 Messaging Health Liveness Check

Similarly, readiness check reports channel UP when onSubscribe signal has been detected.

Messaging Connectors
Helidon provides a variety of connectors for reactive messaging with the most used remote brokers.
The connector is just an application scoped bean acting as a factory for creating publishers or
subscribers from provided configuration.

Configuration is straightforward. The connector expects a global config under the property
mp.messaging.connector.CONNECTOR_NAME. The global config can be overridden or
extended with configuration of every specific channel. While incoming channels can reference
connector as its publisher with property connector, outgoing channels use the same property for
referencing connector as its subscriber.

mp.messaging:
 incoming.from-jms: ①
 connector: helidon-jms ②
 destination: queue-1 ③
 type: queue

 outgoing.to-jms: ④
 connector: helidon-jms
 destination: messaging-test-queue-1
 type: queue

 connector:
 helidon-jms: ⑤
 user: frank
 password: secret1234
 jndi:
 jms-factory: ConnectionFactory
 env-properties:
 java.naming:
 factory.initial:
org.apache.activemq.jndi.ActiveMQInitialContextFactory
 provider.url: tcp://localhost:61616

Listing 13-53 Configure Helidon Messaging Connector

① Incoming channel configuration
② Connector is responsible for providing publisher to this channel
③ Channel-specific config for connector
④ Outgoing channel configuration
⑤ Connector’s global config can be overridden or extended with channel-specific config

Figure 13-27 shows how the connector applies configuration to construct the channel’s
publisher or subscriber. Notice how the channel’s config is enriched with global config; this way, you
don’t need to repeat common properties for every channel. Global connector’s config can be
overridden by channel property of the same name.

Figure 13-27 Connector configuration structure

When you know how to configure a connector as a publisher for an incoming channel or subscriber
for an outgoing channel using connectors, it is only a matter of configuring connector-specific
properties.

Kafka Connector
Kafka is a popular, distributed messaging system developed by the Apache Software Foundation.
Designed to be highly scalable, fault-tolerant, and durable, Kafka can handle high volumes of data
and is optimized for low-latency message delivery. In Kafka messaging, messages are organized into
topics, which are partitioned across a cluster of servers called brokers. Each partition can be
replicated across multiple brokers for redundancy and fault tolerance. Kafka is widely used in big
data and streaming data applications for processing and analyzing large amounts of data in real-
time.

For consuming and publishing messages from and to Kafka brokers, Helidon provides a
connector for reactive messaging.

<dependency>
 <groupId>io.helidon.messaging.kafka</groupId>
 <artifactId>helidon-messaging-kafka</artifactId>
</dependency>

Listing 13-54 Kafka Connector Dependency

Kafka supports both point-to-point(queue) and publish-subscribe (topic) paradigms, by the
same Kafka topic. Kafka topic is basically a partitioned queue, for which consumers share offset of
the messages already read among groups. Each consumer can either subscribe as a part of an
existing group (behaves like a queue) or a new group exclusive to a single consumer (works like a
topic).

serializer.pkg: org.apache.kafka.common.serialization

mp.messaging:
connector:
 helidon-kafka:
 bootstrap.servers: localhost:9092 ①
 key.serializer: ${serializer.pkg}.StringSerializer ②
 value.serializer: ${serializer.pkg}.StringSerializer
 key.deserializer: ${serializer.pkg}.StringDeserializer ③
 value.deserializer: ${serializer.pkg}.StringDeserializer
incoming.from-kafka:
 connector: helidon-kafka
 topic: messaging-test-topic-1 ④
 auto.offset.reset: latest ⑤
 enable.auto.commit: false ⑥
 group.id: example-group-1 ⑦
outgoing.to-kafka:
 connector: helidon-kafka
 topic: messaging-test-topic-1

Listing 13-55 Kafka Connector Configuration

① Zookeeper or Kafka broker location
② Message serializers
③ Message deserializers
④ Topic name
⑤ When starting for the first time with current group ID, read only the new messages
⑥ Turn off auto commit, offset is committed by acknowledge mechanism
⑦ Group for which the topic behaves like a queue, index is shared

With disabled auto commit, reactive messaging acknowledgment effectively commits the
partition offset for the current consumer group. This means that when a message is not
acknowledged, an offset is not committed. When the messaging channel dies without acking a
message and the microservice gets restarted, the message gets redelivered. This may not be always
desirable so Kafka connection also supports reactive messaging nacking
Message.nack(Throwable t).

Nack Strategies
Kafka connector supports multiple nack strategies.
Kill channel is the default strategy; when a message is nacked, the whole channel is killed.
DLQ resends the message to pre-configured dead-letter queue, then ack.
Log only means log error and ack the message.

By default, the channel is killed by a nack message. This is desirable when redelivery is required.
A messaging health probe can detect a killed channel and K8s restarts the pod. The restarted pod
resumes with the same message if it has no consumer group ID defined (topic) and
auto.offset.reset is set to latest or is a single pod using the group ID. When multiple pods are
using the same consumer group ID, the message is redelivered to one of the pods with the same
group ID right after rebalance.

When sending the unprocessed message to the dead-letter queue is required, DLQ nack strategy
is available.

mp.messaging:
 incoming:
 from-kafka:
 nack-dlq: my-dlq-topic ①

Listing 13-56 DLQ Nack Strategy Configuration

① DLQ topic to send errored messages to on the same broker
When only the name of DLQ topic is configured, the same broker configuration including

serializers is used as the one used for receiving the message. Serializers are derived from the
incoming connection deserializers with following pattern, in the deserializer simple class name is
replaced Deserializer by Serializer, when such class exists there is no need to configure
serializer for DLQ.

serializer.pkg: org.apache.kafka.common.serialization

mp.messaging:
 incoming:
 from-kafka:
 nack-dlq:
 topic: my-dlq-topic-on-other-broker
 bootstrap.servers: localhost:9092 ①
 key.serializer: ${serializer.pkg}.StringSerializer ②
 value.serializer: ${serializer.pkg}.StringSerializer

Listing 13-57 DLQ Nack Strategy Advanced Configuration

① Configuration for custom DLQ Kafka broker
② Custom serializer for DLQ

Log only nack strategy simply logs the exception and acks the nacked message. The nacked
message is discarded, offset committed and the channel can continue consuming the subsequent
messages.

mp.messaging:
 incoming:
 from-kafka:
 nack-log-only: true

Listing 13-58 Log Only Nack Strategy Configuration

JMS Connector
JMS stands for Java Message Service, a Java-based messaging API for creating, sending, and receiving
messages. JMS provides a high-level abstraction of messaging allowing multiple vendors to provide
messaging over the same API. JMS has become a widely adopted messaging standard in the
enterprise world, and many messaging products, including Oracle WebLogic, Oracle AQ, IBM MQ,
Apache ActiveMQ, and JBoss Messaging, implement the JMS API. Over this versatility of JMS, the
connector for reactive messaging opens the door to many messaging brokers at once.

<dependency>
 <groupId>io.helidon.messaging.jms</groupId>
 <artifactId>helidon-messaging-jms</artifactId>
</dependency>

Listing 13-59 JMS Connector Dependency

Injected ConnectionFactory
While JMS specification heavily relies on the JNDI, Helidon connector supports JNDI-less approach
for supplying ConnectionFactory directly as a CDI bean. Helidon MP is a CDI 3.​0 compliant

https://jakarta.ee/specifications/cdi/3.0/jakarta-cdi-spec-3.0.html

injection framework. Creating a bean from an instantiated connection factory is simple with a CDI
producer method or field.

@Inject
@ConfigProperty(name = "jms.broker-url")
private String brokerUrl; ①

@Produces ②
@ApplicationScoped ③
@Named("activemq-cf") ④
public ConnectionFactory connectionFactory() {
 return new ActiveMQConnectionFactory(brokerUrl);
}

Listing 13-60 Supplying JMS ConnectionFactory As a Bean

① Injecting custom configured broker URL
② Marking method as a bean producer
③ ConnectionFactory bean must be named to allow referencing from messaging configuration

When you have created a ConnectionFactory bean named activemq-cf, you can simply
reference it from messaging configuration.

jms.broker-url: tcp://localhost:61616 ①

mp.messaging:
 connector:
 helidon-jms:
 named-factory: activemq-cf ②
 user: frank ③
 password: secret1234

Listing 13-61 Use ConnectionFactory Bean in JMS Connector

① ConnectionFactory initialization needs to configured manually
② Use named bean activemq-cf as JMS ConnectionFactory
③ User name and password used for JMS connection creation

Lookup ConnectionFactory over JNDI
Supplying ConnectionFactory over JNDI lookup is possible, initial JNDI environment properties can
be configured with jndi.env-properties. The JNDI name of the actual connection factory
needs to be configured with jndi.jms-factory.

mp.messaging:
 connector:
 helidon-jms:
 user: frank ①
 password: secret123
 jndi:
 jms-factory: ConnectionFactory ②
 env-properties: ③
 java.naming:
 factory.initial:
org.apache.activemq.jndi.ActiveMQInitialContextFactory
 provider.url: tcp://localhost:61616

Listing 13-62 Configure Helidon Messaging Connector

① User name and password used for JMS connection creation
② JNDI name of ConnectionFactory
③ Environment properties used for JNDI initial context creation

Destination
To select a queue or topic to publish or consume from, you must configure the vendor-specific
destination name with destination configuration property or the JNDI destination identifier
with jndi.destination. While vendor-specific destination works for both injected connection
factory and JNDI looked up connection factory, JNDI destination configuration works only for JNDI
looked up connection factory.

Vendor-specific destination name is a way of identifying destination over JMS API without JNDI
usage. All JMS vendors provide their own syntax for selecting proper queue or topic, for example
ArtemisMQ has its own address model with FQQN (Fully Qualified Queue Names), WebLogic JMS has
CDI (Create Destination Identifier) and IBM MQ is using URI (Uniform Resource Identifier).

activemq-cf: org.apache.activemq.jndi.ActiveMQInitialContextFactory

mp.messaging:
 connector.helidon-jms:
 jndi:
 jms-factory: ConnectionFactory
 env-properties:
 java.naming.factory.initial: ${activemq-cf}
 java.naming.provider.url: tcp://127.0.0.1:61616
 queue.TestQueue1: TestQueue1 ①

 outgoing:
 toJms:
 connector: helidon-jms
 destination: TestQueue1 ②
 type: queue

 incoming:
 fromJms:
 connector: helidon-jms
 jndi.destination: queue.TestQueue1 ③
 type: queue

Listing 13-63 Configure Destination with or Without JNDI

① ActiveMQ specific JNDI queue registration
② Vendor-specific destination identifier
③ JNDI destination identifier

Message
Reactive messages provided by JMSConnector are extended with special JMS-specific methods. For
creation of the outgoing message, a handy JMS message builder is available.

@Incoming("from-jms")
@Outgoing("to-jms")
public Message<String> process(JmsMessage<String> incomingMsg) { ①
 jakarta.jms.Message original = incomingMsg.getJmsMessage(); ②
 jakarta.jms.Session session = incomingMsg.getJmsSession();

https://activemq.apache.org/components/artemis/documentation/2.1.0/address-model.html
https://www.ibm.com/docs/en/ibm-mq/9.3%253Ftopic%253Dapplications-creating-destinations-in-jms-application

 String propertyValue = incomingMsg.getProperty("my-jms-
property"); ③
 return JmsMessage.builder(incomingMsg.getPayload())
 .property("my-jms-property", propertyValue.toUpperCase())
 .onAck(incomingMsg::ack) ④
 .build();
}

Listing 13-64 Create New JMS Message from Incoming JMS Message

① JMS connection produces an extension of standard reactive messaging Message
② JmsMessage provides JMS-specific features; you can access original JMSMessage object
③ JMS properties are generically typed
④ Chaining acknowledgment to ack incoming when outgoing message is acked

javax vs. jakarta JMS
In 2017, Oracle decided to transfer Java EE to Eclipse Foundation. A long transition process
eventually progressed to the name change to Jakarta EE as it is known today. With the name change
came a package name update in Jakarta EE 9 from javax to jakarta. This process, known as
“jakartification,” breaks the backward compatibility with older, javax-based implementations.
Helidon 3 is fully “jakartified;” no javax namespaces are exposed anywhere.

For the JMS API, this means that instead of using javax.jms.Message, Helidon 3 works with
jakarta.jms.Message.

But, no worries: older JMS clients implementing the javax API work with jakartified Helidon
just fine. Helidon 3.0 has a special shim layer for legacy javax-based JMS implementations, which is
implicitly used behind the scenes. You can even use it manually as an adapter between the two APIs.

jakarta.jms.ConnectionFactory cf =
 JakartaJms.create(new
ActiveMQConnectionFactory("tcp://127.0.0.1:61616"));

Listing 13-65 Manual Usage of JMS Shim As an Adapter Between Javax and Jakarta APIs

WebLogic JMS Connector
WebLogic Server has its own enterprise-class messaging system simply called WebLogic JMS.
WebLogic cluster members can act as JMS brokers, implementing JMS specifications and providing
various extension features like distributed destinations, load balancing, SAF (store and forward)
service, and more.

JMS is needed in one of the specialized client libraries to connect to WebLogic. The most popular
of those client libraries is wlthint3client.jar, distributed with WebLogic Server installation,
usually in the /u01/oracle/wlserver/server/lib folder.

While it was possible to use any thin client JARs with Helidon 2, with the jakartification of
Helidon 3, such a process became quite complicated with legacy javax-based thin clients from older
WebLogic Server installations clashing with Helidon’s already jakartified service loaders.

Helidon 3 has a special WebLogic JMS connector for simplified usage of any legacy thin client
library operating within a custom classloader adapted by the jakarta shim layer.

<dependency>
 <groupId>io.helidon.messaging.wls-jms</groupId>
 <artifactId>helidon-messaging-wls-jms</artifactId>
</dependency>

Listing 13-66 WebLogic JMS Connector Dependency

WebLogic JMS connector can load wlthint3client.jar in specialized classloader. Instead of
adding the thin client JAR as a dependency, the connector is configured with the location of the thin
client JAR.

Warning Don’t add legacy javax-based wlthint3client.jar to the application classpath!

mp:
 messaging:
 connector:
 helidon-weblogic-jms:
 jms-factory: jms/TestConnectionFactory ①
 thin-jar: /path/to/wlthint3client.jar ②
 url: t3://localhost:7001 ③
 principal: weblogic
 credentials: Welcome1
 incoming:
 from-wls:
 connector: helidon-weblogic-jms
 destination: ./TestJMSModule!TestQueue ④
 outgoing:
 to-wls:
 connector: helidon-weblogic-jms
 jndi.destination: jms/TestQueue ⑤

Listing 13-67 Configure Helidon WebLogic Messaging Connector

① JMS factory configured in WebLogic
② Path to the WLS Thin T3 client JAR
③ Path to the WLS Thin T3 client JAR
④ WebLogic CDI syntax
⑤ JNDI destination identifier

Destination lookup is possible with the destination configuration key, which expects
WebLogic-specific destination CDI syntax or with jndi.destination with a JNDI identifier.

WebLogic Destination CDI Syntax
When connecting to a WebLogic cluster with a Helidon JMS or WebLogic messaging connector, the
destination can be configured with WebLogic CDI syntax supplied by the destination
configuration property.

WebLogic CDI (Create Destination Identifier; don’t confuse with context dependency injection),
is WebLogic vendor-specific syntax for locating queues and topics over JMS API methods
Session.createTopic(String name) and Session.createQueue(String name) with
the actual MBean names (usually a name property in the WLS console).

Non-Distributed Destinations
When accessing a non-distributed queue/topic, you need to specify the JMS server name, the JMS
module name, and the queue or topic name: jms-server-name/jms-module-
name!destination-name. The syntax is as follows: the server name, a slash, the module name,
an exclamation mark, and the destination name, which is the MBean name in WebLogic Server.

When you know that the queue or topic you want to access is located on the same server as the
JMS Connection Factory you are using, an alias for the current server is possible with ./ instead of
the full server name.

./jms-module-name!destination-name

Listing 13-68 Non-Distributed Queue CDI Identifier

Uniform Distributed Destinations (UDDs)
Distributed queues/topics are logical destinations acting as load balancers between physical
queues/topics, usually residing on separated JMS servers/cluster nodes (UDD members). When
accessing UDD, you can use jms-module-name!udd-name syntax on any server from the same
cluster.

Warning UDD destinations must not contain ./ or /, which can lead to intermittent issues.

To directly access a UDD member queue or topic, the syntax for a non-distributed destination is
needed: jms-server-name/jms-module-name!member-name.

Figure 13-28 UDD member queues

To access the member queue TestJmsServer-1@udd_queue from Figure 13-28, the CDI syntax shown
in Listing 13-69 is needed.

TestJmsServer-1/TestJMSModule!TestJmsServer-1@udd_queue

Listing 13-69 UDD Member Queue CDI Identifier

Warning Directly accessing member queues is usually a bad practice.

JNDI Destination
Use jndi.destination instead of the destination configuration key for supplying JNDI (Java
Naming and Directory Interface) identifiers. It is possible to look up JMS destinations over JNDI,
which may be easier for destinations with more complicated subdeployment targets.

Oracle AQ Connector
Oracle Advance Queueing (AQ) allows you to use your Oracle database as a message broker with
standard JMS API. This makes event sourcing over your relational data possible, leaving out a lot of
indirect steps otherwise required.

<dependency>
 <groupId>io.helidon.messaging.aq</groupId>
 <artifactId>helidon-messaging-aq</artifactId>
</dependency>
<!-- When using Oracle UCP for database connection -->
<dependency>
 <groupId>io.helidon.integrations.cdi</groupId>
 <artifactId>helidon-integrations-cdi-datasource-ucp</artifactId>
 <scope>runtime</scope>
</dependency>

Listing 13-70 Oracle AQ Connector Dependency
Helidon AQ messaging connector uses Oracle AQ JMS API where JMS queue maps to an AQ single-

consumer queue, and JMS topic maps to a multi-consumer queue.

Single Consumer Queue
A single consumer queue works exactly like a usual queue. It is a point-to-point model where one
consumer can consume each message only once.

DECLARE
 queue_name VARCHAR2(32);
 queue_tab VARCHAR2(32);
BEGIN
 queue_name := 'FRANK.SINGLE_CONSUMER_QUEUE';
 queue_tab := queue_name || '_TAB';
 DBMS_AQADM.CREATE_QUEUE_TABLE(queue_tab,
'SYS.AQ$_JMS_TEXT_MESSAGE');
 DBMS_AQADM.CREATE_QUEUE(queue_name, queue_tab);
 DBMS_AQADM.START_QUEUE(queue_name);
END;

Listing 13-71 Create Oracle AQ Single Consumer Queue

javax.sql.DataSource:
 aq-test-ds:
 connectionFactoryClassName: oracle.jdbc.pool.OracleDataSource
 URL: jdbc:oracle:thin:@localhost:1521:XE
 user: frank
 password: frank
mp.messaging:
 connector:
 helidon-aq:
 acknowledge-mode: CLIENT_ACKNOWLEDGE
 data-source: aq-test-ds ①
 incoming:
 from-aq:
 connector: helidon-aq
 destination: SINGLE_CONSUMER_QUEUE
 type: queue ②

Listing 13-72 Configure Helidon AQ Messaging Connector for Single Consumer Queue

① Reference to configured datasource
② AQ single consumer queue is mapped to JMS queue

https://docs.oracle.com/en/database/oracle/oracle-database/19/adque/jms-introduction.html

The AqMessage extension allows accessing the database connection used for the actual
dequeue. Messaging acknowledgment commits this connection in CLIENT_ACKNOWLEDGE mode.

@Incoming("from-aq")
@Acknowledgment(Acknowledgment.Strategy.MANUAL)
public CompletionStage<?> consumeAq(AqMessage<String> msg) {
 Connection dbConnection = msg.getDbConnection(); ①
 System.out.println("Oracle AQ says: " + msg.getPayload());
 return msg.ack(); ②

Listing 13-73 Consume AQ Message

① Obtaining database connection used for message dequeue
② Ack commits only in a non-transacted mode

Multi-Consumer Queue
Messages enqueued to an AQ multi-consumer queue behave as a JMS topic when dequeued with JMS
non-durable consumer, which means a message is sent to all active subscribers. Any non-durable
consumer who subscribes in the future won’t receive previously published messages.

This behavior changes when a message is enqueued with the recipient list. Then each message
remains in the queue until all consumers consume it.

Messages are treated as topics when enqueued to multi-consumer queue without recipient list,
but with recipient list it behaves like multiple small queues for each recipient.

DECLARE
 queue_name VARCHAR2(32);
 queue_tab VARCHAR2(32);
BEGIN
 queue_name := 'FRANK.MULTI_CONSUMER_QUEUE';
 queue_tab := queue_name || '_TAB';
 DBMS_AQADM.CREATE_QUEUE_TABLE(
 queue_table => queue_tab,
 multiple_consumers => TRUE, ①
 queue_payload_type => 'SYS.AQ$_JMS_TEXT_MESSAGE');
 DBMS_AQADM.CREATE_QUEUE(queue_name, queue_tab);
 DBMS_AQADM.START_QUEUE(queue_name);
 DBMS_AQADM.ADD_SUBSCRIBER(queue_name, sys.aq$_agent('RED', NULL,
NULL)); ②
 DBMS_AQADM.ADD_SUBSCRIBER(queue_name, sys.aq$_agent('BLUE', NULL,
NULL));
END;

Listing 13-74 Create Oracle AQ Multi-Consumer Queue

① Make this multi-consumer queue
② Register named subscribers in advance

mp.messaging:
 connector:
 helidon-aq:
 acknowledge-mode: CLIENT_ACKNOWLEDGE
 data-source: aq-test-ds
 incoming:
 from-multi-consumer-queue-red:
 connector: helidon-aq

 destination: MULTI_CONSUMER_QUEUE
 type: topic ①
 subscriber-name: RED ②
 durable: true ③
 from-multi-consumer-queue-anonymous:
 connector: helidon-aq
 destination: MULTI_CONSUMER_QUEUE
 type: topic

Listing 13-75 Configure Helidon AQ Messaging Connector

① AQ multi-consumer queue is mapped to JMS topic
② AQ multi-consumer queue recipient name
③ Named consumer needs to be durable

When a message is enqueued without a recipient list, it acts as a topic to all non-durable
subscribers but is queued for the existing RED and BLUE subscribers.

DECLARE
 enqueue_options DBMS_AQ.ENQUEUE_OPTIONS_T;
 message_properties DBMS_AQ.MESSAGE_PROPERTIES_T;
 recipients DBMS_AQ.AQ$_RECIPIENT_LIST_T;
 message_handle RAW(16);
 msg SYS.AQ$_JMS_TEXT_MESSAGE;
BEGIN
 msg := SYS.AQ$_JMS_TEXT_MESSAGE.construct;
 msg.set_text('for all ' || CURRENT_TIMESTAMP);
 DBMS_AQ.ENQUEUE(
 queue_name => 'FRANK.MULTI_CONSUMER_QUEUE',
 enqueue_options => enqueue_options,
 message_properties => message_properties,
 payload => msg,
 msgid => message_handle);
 COMMIT;
END;

Listing 13-76 Enqueue to Oracle AQ Multi-Consumer Queue

Mock Connector
A mock connector is a testing tool designed to test reactive messaging methods without integration.
By switching the configuration, reactive messaging methods can be connected to a mock connector
that emits test data to the @Incoming method and asserts data reception when connected to the
@Outgoing method.

<dependency>
 <groupId>io.helidon.messaging.mock</groupId>
 <artifactId>helidon-messaging-mock</artifactId>
</dependency>

Listing 13-77 Mock Connector Dependency

Warning A mock connector is intended only for test usage and shouldn’t be used in production.

A mock connector can be configured to automatically emit mock data right after subscription with
mock-data configuration property.

mp.messaging:
 incoming:
 from-kafka:
 connector: helidon-mock
 mock-data: 9,10,11,12 ①
 mock-data-type: java.lang.Long ②

Listing 13-78 Configure Mock Connector

① Mock data values for from-kafka @Incoming method
② Data type of mock data: java.lang.String is the default type

A mock connector is a standard reactive messaging connector bean that can be injected in
@HelidonTest. For injecting, a mock connector is needed @TestConnector qualifier.

@HelidonTest
@DisableDiscovery
@AddBean(MockConnector.class) ①
@AddExtension(MessagingCdiExtension.class) ②
@AddConfig(
 key = "mp.messaging.incoming.test-channel-in.connector", ③
 value = MockConnector.CONNECTOR_NAME
)
@AddConfig(
 key = "mp.messaging.outgoing.test-channel-out.connector",
 value = MockConnector.CONNECTOR_NAME
)
public class MessagingTest {

 @Inject
 @TestConnector
 private MockConnector mockConnector; ④

 @Incoming("test-channel-in")
 @Outgoing("test-channel-out")
 int multiply(int payload) {
 return payload * 2;
 }

 @Test
 void testMultiplyChannel() {
 mockConnector.incoming("test-channel-in", Integer.TYPE)
 .emit(1, 2, 3); ⑤
 mockConnector.outgoing("test-channel-out", Integer.TYPE)
 .awaitPayloads(Duration.ofSeconds(5), 2, 4, 6); ⑥
 }
}

Listing 13-79 Mock Connector with @HelidonTest

① Manually adds a mockConnector bean when bean discovery is disabled
② Adds messaging CDI extension when bean discovery is disabled
③ Connects mock connector to messaging channels
④ Injects mockConnector bean
⑤ Emits mock data to test-channel-in via mock connector
⑥ Asserts data coming from test-channel-out

Summary
Reactive streams are a great combo with messaging.
There are multiple reactive stream operator implementations to choose from in Helidon.
Messaging channels can be tested with a mock connector.

(1)
(2)

© The Author(s), under exclusive license to APress Media, LLC, part of Springer Nature 2023
D. Kornilov et al., Beginning Helidon
https://doi.org/10.1007/978-1-4842-9473-4_14

14. Long Running Actions (LRA)
Dmitry Kornilov1 , Daniel Kec1 and Dmitry Aleksandrov2

Praha, Czech Republic
Sofia, Bulgaria

This chapter covers the following topics.
Introduction to SAGA based distributed transactions with MicroProfile
Setting up JAX-RS resource as LRA transaction participant
Understanding of participant state workflow
Using MicroProfile LRA in an example cinema booking project

Distributed transactions are a very important tool for keeping consistency in all the complex
systems molded together by various business requirements thrown at the developers. For years there
was the two-phase commit (2PC) solving the problem. But with microservice architecture, a granular
composition of many self-contained services which communicate with each other usually
asynchronously, 2PC becomes a bottleneck. Due to the isolation requirement, resources got locked for
too long, breaking all the achieved reactiveness as a result. It is a problem known for decades and has
already been solved by the SAGA pattern. Saga is a series of local transactions with defined
compensation actions. Instead of commits and rollbacks, you define general actions that need to be done
to keep the system in a consistent state.

Inspired by SAGA came MicroProfile Long Running Actions (LRA), which is a long-awaited
specification that provides a lock-free, and consequently loosely-coupled, approach to achieve
consistency in a microservice environment. Asynchronous compensations are used to maintain
eventual data integrity without staging expensive isolation. And as LRA is an alternative to Java
Transactions API (JTA), you can think about it similarly with few subtle differences. Instead of JTA
transactional bean methods, you get transactional JAX-RS resources.

LRA Transaction
Multiple participants can join every LRA transaction. A participant is invoked by the JAX-RS method
annotated with LRA-specific annotation. The @LRA annotation marks the JAX-RS method, which should
join LRA when called. Whether a new LRA transaction is started or an existing transaction context is
joined, it can be configured with a specific LRA type. It gets quite familiar for anyone who used JTA
annotations before.

The following are LRA types.
REQUIRES_NEW: Always create a new LRA transaction context, ignore any existing context
REQUIRED: Create a new LRA transaction context or use existing
MANDATORY: Return 412 Precondition Failed if called without LRA context
SUPPORTS: When called without LRA context, execution continues as normal JAX-RS method
NOT_SUPPORTED: Always executed without joining LRA
NEVER: If called with LRA context, return 412 Precondition Failed HTTP; otherwise, execute
as normal JAX-RS method
NESTED: Create new LRA transaction and use existing LRA context as parent

https://doi.org/10.1007/978-1-4842-9473-4_14
https://en.wikipedia.org/wiki/Long-running_transaction

LRA participation isn’t only the business method. Additional JAX-RS methods need to be defined for
the compensation actions: @Compensate for failed transactions and @Complete for successful ones.

@Path("/example")
@ApplicationScoped
public class LRAExampleResource {

 @PUT
 @LRA(value = LRA.Type.REQUIRES_NEW, timeLimit = 500, timeUnit =
ChronoUnit.MILLIS)
 @Path("start-example")
 public Response buyTicket(@HeaderParam(LRA_HTTP_CONTEXT_HEADER) URI
lraId,
 String data) {
 ... ①
 return Response.ok().build();
 }

 @PUT
 @Complete
 @Path("complete-example") ②
 public Response success(@ HeaderParam(LRA_HTTP_CONTEXT_HEADER) URI
lraId) {
 return LRAResponse.completed();
 }

 @PUT
 @Compensate
 @Path("compensate-example") ③
 public Response failure(@HeaderParam(LRA_HTTP_CONTEXT_HEADER) URI lraId)
{
 return LRAResponse.compensated();
 }
}

Listing 14-1 JAX-RS Resource with LRA

① Executed in the scope of new LRA transaction
② Called by LRA coordinator when buyTicket method successfully finishes
③ Called by LRA coordinator when buyTicket method throws exception or don’t finish before time
limit

Every participant joining the LRA transaction needs to provide its compensation links, those URLs
leading to resources annotated with @Compensate, @Complete, @AfterLRA, and so on. The LRA
coordinator tracks which resources to call when the LRA transaction state changes. When the JAX-RS
resource method is annotated with @LRA(REQUIRES_NEW), every intercepted call starts a new LRA
transaction within the coordinator and joins it as a new participant before the resource method body is
executed. The ID of the created LRA transaction is accessible in the resource method through the Long-
Running-Action header as a new LRA context. When the resource method invocation successfully
finishes, the LRA transaction is reported to the coordinator as closed. If a participant has the
@Complete method, the coordinator eventually invokes it again with the appropriate LRA ID header
and the @Complete method of all the other participants joined within the same LRA transaction.

Figure 14-1 Participants behind load balancer

Warning Compensation methods are JAX-RS methods that get load balanced as any other JAX-RS
resource. Remember that the complete method doesn’t have to be invoked on the same pod as LRA
was started.

When a resource method finishes exceptionally, LRA is reported to the coordinator as canceled, and the
coordinator calls the @Compensate method on all the participants registered under that transaction.

Figure 14-2 Participant cancels

When a transaction isn’t closed before its timeout is reached, the coordinator cancels the transaction
and calls the compensate endpoints for all participants of the timed-out transaction.

Figure 14-3 Participant timeout

Context Propagation
What better way to use for the context propagation between JAX-RS resources than the HTTP header?
Every LRA is identified by the ID assigned by the coordinator when the new LRA is started. ID is
distributed between resources over the HTTP header Long-Running-Action. When the header is
present in the request, LRA enabled JAX-RS resource considers it part of the existing LRA context. This
enables relaying the context even through the not LRA aware parties. MicroProfile LRA specification
doesn’t leverage only the server side JAX-RS but also the client side. JAX-RS client relays LRA ID
automatically when a call is done within the LRA context.

@PUT
@Path("/payment")
@LRA(value = LRA.Type.MANDATORY, end = false)
public Response makePayment(@HeaderParam(LRA.LRA_HTTP_CONTEXT_HEADER) URI
lraId,
 JsonObject jsonObject) {
 ClientBuilder.newClient() ①
 .target("http://payment-service:7002")
 .path("/payment/confirm")
 .request()
 ...

Listing 14-2 JAX-RS Client, Context Propagation

① You don’t need to propagate the LRA header using the JAX-RS client. The LRA header is propagated
automatically.

Participant
When the JAX-RS method supporting LRA is called, it joins new or existing LRA transactions as a
participant. A participant has a life cycle closely coupled with its transaction.

Figure 14-4 Participant states

Participant’s state is very important for the LRA coordinator to know which compensation actions have
been already called and which need to be yet called. Every LRA method needs to be accompanied by
compensation methods and JAX-RS resources which can be called by the LRA coordinator when the LRA
transaction is completed or canceled. Since compensation can be complicated, other methods for state
keeping and additional resilience are available, as listed in Table 14-1.

Table 14-1 Compensation Methods

Annotation Method

@Complete PUT

@Compensate PUT

@Status GET

@Forget DELETE

@AfterLRA PUT

Caution Compensation methods are meant to be called only by the LRA coordinator.

@Leave is a special participant method to remove the participant from the LRA transaction. This is
discussed later.

Complete
When the LRA transaction ends successfully, all the participants will be informed by the coordinator
calling the participant’s method annotated with @Complete. The complete method can answer either
by success or by informing the coordinator that completion is being realized asynchronously, so the
coordinator can attempt LRA state retrieval later.

@PUT
@Complete
@Path("complete-example")
public Response success(@HeaderParam(LRA_HTTP_CONTEXT_HEADER) URI lraId) {
 bookingRepository.confirmBooking(lraId);
 return LRAResponse.completed();
}

Listing 14-3 JAX-RS Complete Resource, Called When LRA Successfully Completes

The following are expected responses.
200: Success
202: Still completing asynchronously
409: Failed to complete, payload must be actual participant status
410: Unknown LRA ID

Compensate
When the LRA transaction is canceled, all the participants are informed by the coordinator calling the
participant’s method annotated with @Complete.

@PUT
@Compensate
@Path("compensate-example")
public Response failure(@HeaderParam(LRA_HTTP_CONTEXT_HEADER) URI lraId) {
 return LRAResponse.compensated();
}

Listing 14-4 JAX-RS Compensate Resource, Called When LRA Fails to Finish

The following are expected responses.
200: Success
202: Still compensating asynchronously
409: Failed to compensate, payload must be actual participant status
410: Unknown LRA ID

Status
The @Compensate and @Complete methods have been discussed, but you are probably wondering
what happens in case of a network issue. What happens when a call to JAX-RS complete or compensate
method fails? That could cause inconsistency, which we are carefully trying to avoid! Coordinators are
well-prepared for that with numerous retry strategies. But is that enough? That depends on the fact if
the method is reentrant or not. The coordinator doesn’t know how the action changed the state of your
participant. Did the compensation method manage to clear the seat booking from the database before it
crashed or not?

You can use the @Status method, which is called by the coordinator to retrieve the status before the
actual retry.

@GET
@Path("lra-status")
@Status
public Response status(@HeaderParam(LRA_HTTP_CONTEXT_HEADER) URI lraId) {
 if(bookingRepository.isBookingCleared(lraId)){
 return
Response.ok(ParticipantStatus.Compensated.name()).build(); ①
 } else {
 return Response.ok(ParticipantStatus.Active.name()).build(); ②
 }
}

Listing 14-5 JAX-RS Status Resource, Called by Coordinator Whenever the State of the Participant Is Not Known

① Compensation was successful. No need to call the compensate method again.
② There was a call to compensate? Try again, please.

The following are expected responses.
200: Payload must be actual participant status.
202: Call me later. Getting status is in process.
410: Unknown LRA ID

The same logic can be applied to the complete action; only participant status names would differ.
The following are participant statuses.
Active: Participant was not asked to complete or compensate yet
Compensating: Async compensation in progress
Compensated: Compensation is done
FailedToCompensate: Compensation failed, and it shouldn’t be reattempted; participant needs to
report this status until @Forget is called
Completing: Async completion in progress
Completed: Completion is done
FailedToComplete: Completion failed, and it shouldn’t be reattempted; participant needs to report
this status until @Forget is called

Forget
Compensation can also be a long-running asynchronous process. In such cases, compensation methods
return ParticipantStatus.Compensating and status method needs to report the actual state
when asked. The coordinator checks the status regularly. The actual strategy is implementation specific.
Participant needs to be able to report the state until the @Forget method is called.

@DELETE
@Path("/lra-forget")
@Forget
public Response forget(@HeaderParam(LRA_HTTP_CONTEXT_HEADER) URI lraId) {

 bookingRepository.clearLraMetadata(lraId) ①
 return Response.ok().build();
}

Listing 14-6 JAX-RS Forget Resource, Called When the Participant State Is No Longer Needed

① Let’s clear up any metadata related to the state of this particular LRA transaction.
The following are expected responses.

200: Success
410: Unknown LRA ID

Coordinator lets you know through the @Forget method that a particular LRA transaction is
considered finished, and no other compensation actions will be attempted.

AfterLRA
Complicated compensation logic can require action upon the final LRA outcome. After the compensation
actions of all the LRA’s participants are finished, AfterLRA methods are notified about the outcome of
the LRA. Only the final LRA statuses can be reported to the AfterLRA method.

@AfterLRA
@Path("/after")
@PUT
public Response after(@HeaderParam(LRA_HTTP_ENDED_CONTEXT_HEADER) URI
lraId,
 LRAStatus status) {
 switch (status) {
 case Closed -> ①
 case Cancelled -> ②
 case FailedToClose -> ③
 case FailedToCancel -> ④
 default -> ⑤
 }
 return Response.ok(ParticipantStatus.Completed.name()).build();
}

Listing 14-7 JAX-RS After LRA Resource, Called When All Participants Are Completed or Compensated

① LRA finished, and all participants reported successful completion
② LRA is canceled, and all participants reported successful compensation
③ LRA finished, but one or more participants reported unsuccessful completion
④ LRA finished, but one or more participants reported unsuccessful compensation
⑤ Unexpected status

The following are expected responses.
200: Success

Leaving LRA
Finally, let’s get to the special method @Leave. You can use this method for removing the participant
from the LRA it’s enrolled in. It is the only participant JAX-RS method aside from @LRA you are meant to
call directly. When called with the LRA context header, the participant, if enrolled in the transaction, is
removed from the transaction. Other compensation methods like @Complete won’t be called in this
transaction context as the participant is no longer tracked by the coordinator for this transaction.

@Leave
@PUT
@Path("/leave")

public Response leave(@HeaderParam(LRA_HTTP_CONTEXT_HEADER) URI lraId)
{ ①
 return Response.ok(); ②
}

Listing 14-8 JAX-RS Leave Resource, Used for Removing Participant from LRA Transaction

① ID of the LRA transaction participant needs to leave
② Method is executed after the coordinator has been asked to remove the participant from the LRA
transaction

Note The leave method is contrary to the other participant’s methods, meant to be called directly.

Non-JAX-RS Participant Methods
You have already learned all the participant methods LRA JAX-RS resources can have. The spec strictly
defines each method, so there is no need to define it as a JAX-RS method. When the method has LRA
participant annotation and conforms to a specified signature, LRA Helidon implementation creates a
surrogate JAX-RS endpoint and wires it together behind the scenes.

Let’s look at the JAX-RS @Compensate method again.

@PUT
@Compensate
@Path("compensate-example")
public Response failure(@HeaderParam(LRA_HTTP_CONTEXT_HEADER) URI lraId) {
 return LRAResponse.compensated();
}

Listing 14-9 JAX-RS Compensate Resource

Same participant method can be expressed with non-JAX-RS notation.

@Compensate
public ParticipantStatus failure(URI lraId) {
 return ParticipantStatus.Compensated;
}

Listing 14-10 Non-JAX-RS Compensate Resource

The only difference between the participant methods is that the compensation link sent to the
coordinator will have a slightly different pattern because it targets the surrogate JAX-RS resource
instead of our direct resource.

Asynchronous Compensation
Compensations can take a long time, and complicated clean-up jobs running for 5 minutes can be a
reality. Blocking the @Compensate method for that long is not right, so you need to respond to the
coordinator and continue asynchronously. What if an asynchronous compensation batch job fails? LRA
has just the right API for such a situation. There are two options. The first option is to return
ParticipantStatus.Compensating to inform the coordinator about the need to check the current
compensation status via the @Status method later. Each coordinator has a retry strategy to retrieve
the status eventually.

private Map<URI, ParticipantStatus> myStatusMap = new ConcurrentHashMap<>
();

@Compensate

public ParticipantStatus failure(URI lraId) {
 ourWizardService.compensateAsync(lraId)
 .whenComplete((u, t) -> {
 if (t != null) {
 myStatusMap.put(lraId,
ParticipantStatus.FailedToCompensate);
 } else {
 myStatusMap.put(lraId, ParticipantStatus.Compensated);
 }
 });
 return ParticipantStatus.Compensating;
}

@Status
public ParticipantStatus status(URI lraId) {
 return myStatusMap.get(lraId);
}

@Forget
public void forget(URI lraId) {
 myStatusMap.remove(lraId);
}

Listing 14-11 Asynchronous Compensation with Status Reporting
You can leverage the @Forget method to clean up status references when the coordinator calls it to

inform you it is not needed anymore.
The second option is even easier, as non-JAX-RS compensation methods support returning

CompletionStage promises. The only setback is that the connection is kept open, but no thread is
blocked.

@Compensate
public CompletionStage<ParticipantStatus> failure(URI lraId) {
 return ourWizardService.compensateAsync(lraId)
 .thenApply(s -> ParticipantStatus.Compensated)
 .exceptionally(t -> ParticipantStatus.FailedToCompensate);
}

Listing 14-12 Asynchronous Compensation with CompletionStage

LRA Coordinator
The Long Running Actions implementation in Helidon requires the LRA coordinator to orchestrate LRA
across the cluster. This is an extra service you need to enable the LRA functionality in your cluster. The
LRA coordinator tracks which participant joined which LRA transaction and calls the participant’s LRA
compensation resources when the LRA transaction is completed or canceled.

Compensation links always accompany requests from participants for joining existing LRA
transactions. Compensation links are URLs pointing to the participant’s compensation JAX-RS methods,
annotated with @Complete, @Compensate, and so on, which is how the coordinator knows how to call
participants. Compensation links are constructed from your JAX-RS resource context path and address
configured with mp.lra,participant.url configuration key.

mp.lra:
 coordinator.url: http://coordinator.service/lra-coordinator ①
 participant.url: http://participant.service ②

Listing 14-13 Configure Helidon to Use a Coordinator

① Used for the very first call to coordinator, use k8s service name or DNS name accessible from
participant
② Used for construction of compensation links, use k8s service name or DNS name accessible from
coordinator

Helidon supports the following.
Narayana LRA coordinator
MicroTx LRA coordinator
Experimental Helidon LRA coordinator

Narayana LRA Coordinator
Narayana is a well-known transaction manager with a long history of reliability in distributed
transactions built around the Arjuna core. The Narayana LRA coordinator supports Long Running
Actions and was the first LRA coordinator on the market.

VER=5.13.0.Final && \
FILENAME=lra-coordinator-quarkus-$VER-runner.jar && \
FILEPATH=org/jboss/narayana/rts/lra-coordinator-quarkus/$VER/$FILENAME &&
\
wget https://search.maven.org/remotecontent?filepath=$FILEPATH \
-O narayana-coordinator.jar \
&& java -Dquarkus.http.port=8070 -jar narayana-coordinator.jar

Listing 14-14 Narayana Local Installation

Narayana LRA coordinator resources are accessible under the context /lra-coordinator.
Helidon needs to be configured to know where to reach it when starting a new LRA.

mp.lra:
 coordinator.url: http://127.0.0.1:8070/lra-coordinator ①
 participant.url: http://127.0.0.1:7002 ②
 propagation.active: true

Listing 14-15 Configure Helidon to Use Narayana

① Used for the very first call to coordinator, use k8s service name or DNS name accessible from
participant
② Used for construction of compensation links, use k8s service name or DNS name accessible from
coordinator

MicroTx
From the very same kitchen as the notoriously famous Tuxedo (Transactions for Unix, Extended for
Distributed Operations) came the brand-new transaction manager MicroTx (Oracle Transaction
Manager for Microservices). MicroTx LRA coordinator offers additional features, such as bearer token-
protected communication with the coordinator. You can obtain MicroTx from Oracle’s image registry at
container-registry.oracle.com.

docker pull container-registry.oracle.com/database/otmm:latest

Listing 14-16 MicroTx Coordinator Local Installation

MicroTx needs to be configured. Listing 14-17 is the minimal configuration needed for local
development.

tmmConfiguration:
 listenAddr: 0.0.0.0:8070
 internalAddr: http://127.0.0.1:8070
 externalUrl: http://127.0.0.1:8070 ①

https://en.wikipedia.org/wiki/Tuxedo_%2528software%2529
https://www.oracle.com/database/transaction-manager-for-microservices

 serveTLS:
 enabled: false
 storage:
 type: memory ②
 narayanaLraCompatibilityMode:
 enabled: true ③

Listing 14-17 MicroTx Minimal Configuration File

① Used for LRA ID construction, use k8s service name or DNS name accessible from participant
② Where to store transaction log
③ Narayana compatibility mode is recommended for usage with Helidon

Don’t forget to mount the configuration file to the /app/config folder when running the docker
image. Remember that the coordinator needs to be able to reach participants’ JAX-RS resources on
compensation links provided during the LRA start request.

docker run --network="host" -it \
-v `pwd`:/app/config -w /app/config \
--env CONFIG_FILE=tcs.yaml \
container-registry.oracle.com/database/otmm:latest

Listing 14-18 Run MicroTx in Docker

MicroTx LRA coordinator resources are accessible under the context /api/v1/lra-
coordinator. Helidon needs to be configured to know where to reach it when starting a new LRA.

mp.lra:
 coordinator.url: http://127.0.0.1:8070/api/v1/lra-coordinator ①
 participant.url: http://127.0.0.1:7002 ②
 propagation.active: true

Listing 14-19 Configure Helidon to Use MicroTx

① Used for the very first call to coordinator, use k8s service name or DNS name accessible from
participant
② Used for construction of compensation links, use k8s service name or DNS name accessible from
coordinator

Experimental Helidon LRA Coordinator
Helidon now has its own experimental coordinator that is easy to set up for development and testing
purposes. While it is not recommended in production environments, it is a great lightweight solution for
testing your LRA resources.

docker build -t helidon/lra-coordinator
https://github.com/oracle/helidon.git#:lra/coordinator/server
docker run -dp 8070:8070 --name lra-coordinator --network="host"
helidon/lra-coordinator

Listing 14-20 Helidon Coordinator Local installation

Online Cinema Booking System
Our hypothetical cinema needs an online reservation system. Let’s split it into two scalable services: one
for booking the seat and another for paying. Services are completely separated and integrated only
through the REST API calls.

The booking service is going to reserve the seat first. The reservation service starts a new LRA
transaction and joins it as a first transaction participant. All communication with the LRA coordinator is
done behind the scenes and can be accessed through the LRA ID assigned to the new transaction in our

JAX-RS method as a request header Long-Running-Action. Note that LRA stays active after the JAX-
RS method finishes because Lra#end is set to false.

 @PUT
 @Path("/create/{id}")
 @LRA(value = LRA.Type.REQUIRES_NEW, end = false, timeLimit = 30) ① ②
 public Response createBooking(@HeaderParam(LRA.LRA_HTTP_CONTEXT_HEADER)
URI lraId,
 @PathParam("id") long id,
 Booking booking) {

 booking.setLraId(lraId.toASCIIString()); ③

 if (repository.createBooking(booking, id)) {
 LOG.info("Creating booking for " + id);
 return Response.ok().build();
 } else {
 LOG.info("Seat " + id + " already booked!");
 return Response
 .status(Response.Status.CONFLICT)
 .entity(JSON.createObjectBuilder()
 .add("error", "Seat " + id + " is already
reserved!")
 .add("seat", id)
 .build())
 .build();
 }
 }

Listing 14-21 Create Booking with JAX-RS Resource Within LRA Transaction

① Create new LRA transaction which won’t end after this JAX-RS method end
② Time limit for new LRA is 30 sec
③ LRA ID assigned by the coordinator is provided as an artificial request header

Figure 14-5 Create new seat booking

Once a seat is successfully reserved, payment service will be called under the same LRA transaction.
An artificial header, Long-Running-Action, is present in the response so the client can access it.

reserveButton.click(function () {
 selectionView.hide();
 createBooking(selectedSeat.html())
 .then(res => {
 if (res.ok) {
 let lraId = res.headers.get("Long-Running-Action"); ①
 paymentView.attr("data-lraId", lraId); ②
 paymentView.show();
 } else {
 res.json().then(json => {
 showError(json.error);
 });
 }
 });
});

Listing 14-22 Call Create Booking JAX-RS Resource

① Notice how you can access LRA ID even on the client side
② And save the LRA context for later

You can call other backend resources with the same LRA transaction by setting the Long-Running-
Action header again.

function makePayment(cardNumber, amount, lraId) {
 return fetch('/booking/payment', {
 method: 'PUT',
 headers: {
 'Content-Type': 'application/json',
 'Long-Running-Action': lraId ①
 },
 body: JSON.stringify({"cardNumber": cardNumber, "amount": amount})
 })
}

Listing 14-23 Call Payment JAX-RS Resource from Client

① Using previously saved LRA ID to invoke JAX-RS resource under the right LRA context

Figure 14-6 Payment form
The backend calls a different service over the JAX-RS client, so you don’t need to set the Long-

Running-Action header to propagate the LRA transaction. As with all JAX-RS clients, LRA
implementation does that for you automatically.

@PUT
@Path("/payment")
@LRA(value = LRA.Type.MANDATORY, end = false) ① ②
public Response makePayment(@HeaderParam(LRA.LRA_HTTP_CONTEXT_HEADER) URI
lraId,
 JsonObject jsonObject) {
 LOG.info("Payment " + jsonObject.toString());
 ClientBuilder.newClient() ③
 .target("http://payment-service:7002")
 .path("/payment/confirm")
 .request()
 .rx()
 .put(Entity.entity(jsonObject, MediaType.APPLICATION_JSON))
 .whenComplete((res, t) -> {
 if (res != null) {
 LOG.info(res.getStatus() + " " +
res.getStatusInfo().getReasonPhrase());
 res.close();
 }
 });
 return Response.accepted().build();
}

Listing 14-24 Call Payment Service with Implicit LRA Context

① Needs to be called within LRA transaction context
② Doesn’t end LRA transaction
③ No need to propagate LRA header when using JAX-RS client—LRA header is propagated
automatically

The payment service joins this transaction as another participant. Any card number other than
0000-0000-0000 will cancel the LRA transaction. Finishing the resource method will complete the
LRA transaction because Lra#end is set to true.

@PUT
@Path("/confirm")
@LRA(value = LRA.Type.MANDATORY, end = true) ①
public Response confirmPayment(@HeaderParam(LRA.LRA_HTTP_CONTEXT_HEADER)
URI lraId,
 Payment p) {
 if (!p.cardNumber.equals("0000-0000-0000")) {
 LOG.warning("Payment " + p.cardNumber);
 throw new IllegalStateException("Card " + p.cardNumber + " is not
valid! "+lraId);
 }
 LOG.info("Payment " + p.cardNumber+ " " +lraId);
 return Response.ok(JSON.createObjectBuilder().add("result",
"success").build()).build();
}

Listing 14-25 Payment Service Within LRA Context

① This resource method ends/commits LRA transaction as successfully completed

If the payment operation fails or times out, the LRA transaction is going to be canceled, and all
participants are going to be notified through the compensation links provided when they join. The LRA
coordinator will call the method annotated with @Compensate with the LRA ID as a parameter. That is
all that is needed in our booking service to clear the seat reservation and make it available for another
customer.

@Compensate
public Response paymentFailed(URI lraId) {
 LOG.info("Payment failed! " + lraId);
 repository.clearBooking(lraId) ①
 .ifPresent(booking -> {
 LOG.info("Booking for seat " + booking.getSeat().getId() +
"cleared!");
 Optional.ofNullable(sseBroadcaster) ②
 .ifPresent(b -> b.broadcast(new
OutboundEvent.Builder()
 .data(booking.getSeat())
 .mediaType(MediaType.APPLICATION_JSON_TYPE)
 .build())
);
 });
 return Response.ok(ParticipantStatus.Completed.name()).build();
}

Listing 14-26 Compensation if Payment Fails

① Compensate by clearing booked seat
② Notify clients over SSE that there is new seat available for booking

Figure 14-7 Payment failed notification

Maintaining integrity in distributed systems with compensation logic isn’t a new idea, but it can be
quite complicated to achieve without special tooling. LRA is tooling that hides the complexities, so you
can focus on business logic.

Summary
Distributed transactions need to sacrifice isolation to keep the microservice environment reactive.
Compensation-based logic delegates responsibility for data consistency to the developer.
LRA transactional context can be propagated through non-LRA-aware resources.

(1)
(2)

© The Author(s), under exclusive license to APress Media, LLC, part of Springer Nature 2023
D. Kornilov et al., Beginning Helidon
https://doi.org/10.1007/978-1-4842-9473-4_15

15. Helidon SE
Dmitry Kornilov1 , Daniel Kec1 and Dmitry Aleksandrov2

Praha, Czech Republic
Sofia, Bulgaria

This chapter covers the following topics.
Understanding Helidon SE and Helidon MP differences and similarities
Creating a simple Helidon SE application
Using routing, configuration, health checks, and metrics
Other Helidon SE features not covered in this book

As you learned in Chapter 1, Helidon has two flavors: Helidon MP and
Helidon SE. The entire book has been about Helidon MP, but we decided to
dedicate the last chapter to Helidon SE. With it, the book is complete. Helidon
SE is a big topic. It’s challenging to fit it into one chapter. So, the information is
less detailed and compressed but covers most Helidon SE features and provides
recipes and best practices. Let’s get started.

Helidon SE Basics
Helidon SE was compared with Helidon MP in Chapter 1. Let’s quickly go over it
to set up the context.

Helidon SE is a reactive, non-blocking flavor of Helidon.
It’s built on top of Netty.
Helidon SE APIs are based on Java Flow APIs.
Reflection API, annotations, and dependency injection are not used.
Helidon SE is a natural fit for GraalVM Native Image.
Helidon SE tries to fully leverage JDK functionality and minimize the usage of
third-party dependencies.

Explaining the basics of reactive programming is out of this book’s scope.
We assume that you know the concepts of backpressure, publisher/consumer,

https://doi.org/10.1007/978-1-4842-9473-4_15

schedulers, and so forth. It’s required if you want to develop using Helidon SE.

Generating Helidon SE Application
Generating a Helidon SE application follows the same concepts as generating a
Helidon MP application, explained in Chapter 2. This section guides you through
this process, and you create the Helidon SE Quickstart application. The
Quickstart application is a simple RESTful service ideal for demonstrating
Helidon SE concepts. To generate it, you can use Project Starter or Helidon CLI.

Using Project Starter
Type https://helidon.io/starter in your browser address bar to open
Helidon Project Starter (see Figure 15-1).

Figure 15-1 Project Starter

https://helidon.io/starter

Helidon SE is the default choice for creating new applications. Quickstart
application is also a default choice, so you can click Download to download a zip
file with your Helidon SE project.

Note Project Starter has many options and allows you to select features to
add to your project. You can explore it by going through the application
creating wizard. The Custom application type is a path containing all possible
customizations.

Using CLI
Helidon CLI is another convenient way of generating Helidon SE applications.
Installing CLI and its basic functionality was explained in Chapter 2.

To generate the Helidon SE Quickstart application, use the CLI init
command.

$ helidon init

On the first Helidon Flavor screen, type 1 to select Helidon SE, or press Enter
because it’s a default choice.

| Helidon Flavor

Select a Flavor
 (1) se | Helidon SE
 (2) mp | Helidon MP
Enter selection (default: 1):

CLI and Project Starter designed how the Helidon SE Quickstart application
is generated if you follow defaults. There is no way to skip CLI steps as you can
in Project Starter. So, press Enter at all the steps to generate your application.

Analyzing the Generated Project
The generated Helidon SE Quickstart application is very similar to the Helidon
MP Quickstart application described in Chapter 2. It contains a Maven project,
Dockerfiles to build a jar, a jlink image, a GraalVM native image, and Kubernetes
app.yaml. It implements the same greeting service, but the source code and
concepts significantly differ from Helidon MP. This chapter discusses the
differences while explaining how the Helidon SE application works.

Now, let’s see what’s been generated.

$ tree quickstart-se/

quickstart-se
 app.yaml ①
 Dockerfile ②
 Dockerfile.jlink ③
 Dockerfile.native ④
 pom.xml ⑤
 README.md
 src
 main
 java
 com
 example
 myproject
 GreetService.java ⑥
 Main.java ⑦
 package-info.java
 SimpleGreetService.java
 resources
 application.yaml ⑧
 logging.properties
 test
 java
 com
 example
 myproject
 MainTest.java ⑨
 resources
 application.yaml ⑩

Listing 15-1 Helidon SE Generated Quickstart Application Source Code Tree

① Kubernetes deployment descriptor
② Dockerfile to build a docker image with your application running on
standard Java runtime
③ Dockerfile to build a Docker image with your application running on
custom Java runtime (jlink image)
④ Dockerfile to build a Docker image with your application’s native image
⑤ Maven project
⑥ Greet RESTful service
⑦ Main class with main method and web server initialization code
⑧ Application configuration
⑨ Example JUnit test
⑩ Configuration for testing

Main Method
Helidon SE application is a standard Java application. It must have a public
static void main(String[] args), an application entry point. Note
that there is no requirement to write the main method in Helidon MP. The
framework provides it.

In the Quickstart application, the main method is implemented in
Main.java.

public static void main(String[] args) {
 startServer();
}

The main method creates and starts the web server. It differs from Helidon
MP, where the same web server automatically starts under the hood. It’s
convenient but gives users less control over how the web server starts and gets
configured.

To properly run your application, specify your class containing the main
method in Maven pom.xml.

<properties>
 <mainClass>com.example.myproject.Main</mainClass>
</properties>

Creating and Starting a Web Server
Before creating a server, you need to create and initialize the resources it uses.
It includes creating a configuration, initializing logging, creating routing,
instantiating internal services you plan to use, such as health checks or metrics,
and creating and initializing user services, such as GreetService. And here
comes another difference from Helidon MP, where all of these are done
automatically by the framework.

Now let’s see how the web server is created and started in the Quickstart
application (see Listing 15-2).

static Single<WebServer> startServer() {
 LogConfig.configureRuntime(); ①
 Config config = Config.create(); ②

 WebServer server = WebServer.builder(③
 createRouting(config)) ④
 .config(config.get("server")) ⑤
 .addMediaSupport(JsonpSupport.create()) ⑥
 .build();

 Single<WebServer> webserver = server.start(); ⑦
 ...
 return webserver;
}

Listing 15-2 Initializing and Starting the Web Server

① Initializing logging
② Loading configuration (By default, it loads application.yaml from the
classpath.)
③ Creating a web server using WebServer.builder
④ Creating routing and passing it to the web server
⑤ Passing server configuration section to the web server
⑥ Adding Json Processing (JSON-P) support
⑦ Starting the server

Configuration
Helidon SE configuration is a core Helidon SE component. The following briefly
describes its features and the differences between it and Helidon MP
configuration.

No annotations are used, only programmatic APIs (By comparison, Helidon
MP uses MicroProfile Config, which contains annotations and programmatic
APIs)
Uses a tree structure (By comparison, Helidon MP uses a flat structure)
Immutable by design but supports change listeners
Supports configuration sources such as environment variables, system
properties, directory, property files, YAML, JSON, and HOCON (extensible with
custom configuration sources)
Filters, references, and substitutions
Configuration profiles (e.g., dev/test/prod)
Conversion to simple and complex types, custom converters

Quickstart application configuration sits in the application.yaml file
and contains server host, port, and default greeting properties.

server:
 port: 8080
 host: 0.0.0.0

app:
 greeting: "Hello"

Routing
The next step of the application initialization is creating routing. It’s done in the
createRouting method. It uses a builder to register pairs of the path and the
corresponding service instance, which handles requests coming to this path.
Note that in Helidon MP, routes are managed by JAX-RS @Path annotation.

Helidon SE routing is configured programmatically in the Routing class
instance.
For convenience, the Routing class provides a builder
(Routing.builder()), which supports several ways of creating mappings.
Mappings can be defined using HTTP methods, routing, path matching, and
request predicates.
Users can organize code into services to logically separate routes related to
specific parts of your application functionality.
Routing is immutable. It’s not possible to change routes after the web server
has started.

There are two user services in the Quickstart application:
SimpleGreetService and GreetService. Requests coming to /simple-
greet are handled by SimpleGreetService, and requests coming to
/greet are handled by GreedService.

private static Routing createRouting(Config config) {
 ...

 Routing.Builder builder = Routing.builder()
 .register("/simple-greet", new
SimpleGreetService(config))
 .register("/greet", new GreetService(config));

 return builder.build();
}

RESTful Services
User services implement the Service interface to manage route mappings and
encapsulate handlers in one class. It’s done by implementing
update(Routing.Rules).

public class SimpleGreetService implements Service
{ ①
 ...
 @Override

 public void update(Routing.Rules rules)
{ ②
 rules.get("/",
this::getDefaultMessageHandler); ③
 ...
 }

 private void getDefaultMessageHandler(ServerRequest
request, ④
 ServerResponse response) {
 String msg = String.format("%s %s!", greeting,
"World");
 JsonObject returnObject =
JSON.createObjectBuilder()
 .add("message",
msg)
 .build();
 response.send(returnObject);
 }
}

① SimpleGreetService must implement the Service interface
② update(⋯) method updates global routing rules
③ Register the getDefaultMessageHandler() method to be called
when a GET request comes to the / path
④ getDefaultMessageHandler() returns the default greeting message

Health Checks
Due to different design concepts, Helidon SE cannot implement MicroProfile
Metrics specifications (see Chapter 4). However, it contains health check
support, which provides the same functionality as Helidon MP but uses the
Helidon SE programming model.

You need to add the helidon-health dependency to your Maven project
to use health checks.

<dependency>
 <groupId>io.helidon.health</groupId>
 <artifactId>helidon-health</artifactId>
</dependency>

You may also add a dependency to the helidon-health-checks module,
which contains optional built-in checks such as deadlock detection, available

disk space, and available heap memory.

<dependency>
 <groupId>io.helidon.health</groupId>
 <artifactId>helidon-health-checks</artifactId>
</dependency>

To use health checks, you need to create the HealthSupport class
instance and register the built-in checks and your custom health checks. The
following shows how it’s done in the Quickstart application (the snippet is taken
from the createRouting method).

HealthSupport health = HealthSupport.builder()
 .addLiveness(HealthChecks.healthChecks())
 .build();

To expose your service health on the /health endpoint, register your
HealthSupport in the web server routings.

Routing.Builder builder = Routing.builder()
 .register(health)
 ...

Now you can request your service health status using this command.

curl http://localhost:8080/health

Metrics
Helidon SE provides a way to collect and expose metrics. As with health checks,
functionality is very similar to Helidon MP. The difference is that Helidon SE has
only programmatic API, which differs from what Helidon MP provides.

You must add the helidon-metrics dependency to your project’s
pom.xml file to use metrics.

<dependency>
 <groupId>io.helidon.metrics</groupId>
 <artifactId>helidon-metrics</artifactId>
</dependency>

When added, you can use the MetricRegistry class instance to register
the metrics you want to track. Helidon SE supports the same metric types as
Helidon MP: counter, concurrent gauge, gauge, histogram, meter, timer, and
simple timer.

The Quickstart application contains a sample of using a counter in the
SimpleGreetService class.

private final MetricRegistry registry =
RegistryFactory.getInstance()
 .getRegistry(MetricRegistry.Type.APPLICATION);

private final Counter accessCtr =
registry.counter("accessctr");

After registering a counter, you can use its inc() method to increase its
value. The Quickstart application counts how many requests were received by
the /greet-count endpoint. To do it, a chain of request handlers is registered
to process this path.

public void update(Routing.Rules rules) {
 ...
 rules.get("/greet-count", this::countAccess,
this::getDefaultMessageHandler);
}

The handler increases the counter, and calls request.next() to continue
processing on the next registered handler.

private void countAccess(ServerRequest request,
ServerResponse response) {
 accessCtr.inc();
 request.next();
}

To expose your metrics on the /metrics endpoint, create the
MetricsSupport class instance and add it to your routes. In the Quickstart
application, it’s done in the Main.createRouting method.

Routing.Builder builder = Routing.builder()
 .register(MetricsSupport.create())
 ...

Now users can access metrics data at the following endpoints.
/metrics/base means base metrics.
/metrics/vendor means vendor-specific metrics.
/metrics/application means application metrics. It’s where
accessctr is located.

Like Helidon MP, users can get metrics data in OpenMetrics and JSON
formats. For example, use the following command to get the accessctr metric
in OpenMetrics format.

curl http://localhost:8080/metrics/application/accessctr

You get a response similar to the following.

TYPE application_accessctr_total counter
HELP application_accessctr_total
application_accessctr_total 42
EOF

To get it in JSON format, add the Accept: application/json header, as
follows.

curl -H 'Accept: application/json' -X GET
http://localhost:8080/metrics/application/accessctr

RESTful API is the same as in Helidon MP. Please refer to Chapter 4 for more
details.

Building and Packaging
Build and packaging commands are identical for Helidon SE and Helidon MP
applications.

To build your project, use the following Maven command.

mvn package

To run your application, use the following.

java -jar target/myproject.jar

You see an output similar to Listing 15-3 if your application has been started
successfully and is ready to serve requests. You also see enabled features
(Config, Fault Tolerance, Health, Metrics, Tracing, and WebServer).

$ java -jar .\target\myproject.jar
2022.12.28 08:42:51 INFO io.helidon.common.LogConfig
Thread[#1,main,5,main]: Logging at initialization
configured using classpath: /logging.properties
2022.12.28 08:42:52 INFO
io.helidon.common.HelidonFeatures Thread[#38,features-

thread,5,main]: Helidon SE 3.1.0 features: [Config, Fault
Tolerance, Health, Metrics, Tracing, WebServer]
2022.12.28 08:42:52 INFO
io.helidon.webserver.NettyWebServer
Thread[#39,nioEventLoopGroup-2-1,10,main]: Channel
'@default' started: [id: 0x02e402f0,
L:/[0:0:0:0:0:0:0:0]:8080]
WEB server is up! http://localhost:8080/greet

Listing 15-3 Running Your Project
You can also build a jlink image and a GraalVM native image. The commands

are the same as in Helidon MP. See Chapter 2 for a detailed description.

Other Helidon SE Features
The Quickstart application is only a small application demonstrating basic
Helidon SE functionality. Helidon SE provides a much more comprehensive set
of features not covered in this book. The following lists the complete set of
Helidon SE features.

Reactive Web Server
RESTful web services
Configuration
Security
Observability: health checks, metrics, tracing, logging
Fault Tolerance
gRPC
WebClient
DBClient
Reactive Stream Operators
Reactive Messaging
CORS
GraphQL
OpenAPI
WebSockets
Integrations with OCI, Neo4j, HashiCorp Vault

For more information, please refer to Helidon documentation on the official
website at https://helidon.io.

Summary
Helidon SE is a reactive, non-blocking flavor of Helidon.

https://helidon.io/

Helidon SE programming model differs from the Helidon MP programming
model.
Helidon SE doesn’t support dependency injection.
You must implement the main method in your Helidon SE application.

Index
A
Access-Control-Allow-Origin
@Acknowledgment annotation
@AddBean(SomeBean.class)
@AddConfig annotation
@AddExtension(SomeCdiExtension.class)
Advanced header manipulations
AES-GCM encryption
AfterLRA methods
Annotated method
Anti-lock braking system (ABS)
APP_JSONORC environment variable
Application-managed entity manager
Application Scope
@ApplicationScoped beans
application.yaml
@Asynchronous
Asynchronous
Asynchronous compensation
Automatic client generation
Automatic converter
Average execution time

B
Backpressure
Base scope
baseUri annotation
Basic authentication
Bean Constructor
Bean method
@BeanParam
Bearer token
Blocking APIs
Booking service
Brokers

Buckets
Bulkhead

C
CallableStatement
callWizardService() method
Cancel Operator
CDI container
CDI-managed bean
Certificate signing request (CSR)
Certification authority (CA)
Channel
Check type
Circuit Breaker
Class data sharing (CDS)
Classpath-based project
ClientBuilder.newClient()
client.getWizardByName(name)
@ClientHeaderParam annotation
Client Header Parameters
ClientHeadersFactory
ClientRequestContext object
ClientRequestFilter
ClientResponceFilter
CLI helidon dev command
CLI options
Cloud computing
Cloud-native

advantages
definition
Java EE
specific requirements
testing infrastructure

Coherence CE
AbstractRepository
Cloud
dependencies

Helidon MP
Helidon’s microprofile-config.properties
NamedMap object
scalable
spell POJO
spell resource
cURL

Coherence Portable Object Format (POF)
Command-line interface (CLI)
Common prefix
@Compensate method
Compensation links
Compensation methods
Compensations
CompletableStage
@Complete method
Concat operator
@ConcurrentGauge annotation
@ConfigProperty annotation
Configuration converters
Configuration profile
Configuration secrets

AES-GCM encryption
Helidon
K8s secrets
plain text password detection
RSA encryption

Config sources
Constructor
Constructor injection
Container-managed entity manager
Container-managed mode
Context propagation
Contexts and Dependency Injection (CDI)
Control theory
Converters
@Counted annotation

CREATE method
createRouting method
Cron expression
CronJob
cron-utils
Cross-origin resource sharing (CORS)

built-in components
configuration
@CrossOrigin annotation
cross-origin requests
defiition
external configuration
app requests GET
Helidon application
integrated support
pom.xml
sorcery ministry
/wizard resource
wizard application

Cross-origin work
cURL
Custom
Custom Config converter
Custom config source
Custom converters
Custom JSON Converter

D
Database
Database engine functions
Database interaction, lower level
DataSource interface

annotations
configuration
dependencies
features
Helidon integration mechanisms

HikariCP and OCP
JDBC connection
methods
@Named annotation

<datasourcename>
delete() method
Dependency injection (DI)
@Dependent bean’s life cycle
Dimensional data model
@DisableDiscovery
Distinct operator
Distributed tracing
Distributed transactions
Docker container
Dockerfile
Docker image
DriverManager functions
dropWhile operator
Dynamic config source
Dynamic system

E
Eclipse Foundation Specification Process (EFSP)
EclipseLink
Emitter
empty operator
Enabling/disabling tracing
Enterprise Java
Entity.json(wizard) method
entityManager
Environment variables
Even Spring
Exception mapper
Exception mapping
Executable JAR
ExecutionException
Experimental Helidon LRA Coordinator

Expressions

F
Failed operator
@Fallback
Fallback method
Fault Tolerance

asynchronous
Bulkhead
and CDI
Circuit Breaker
fallback
retry
timeout

feature interface
filter(ClientRequestContext requestContext)
filter operator
findFirst operator
5G network
@FixedRate function
FixedRateInvocation injected method
Fixed Rate Task
flatMapCompletionStage operator
flatMapIterable operator
flatMap operator
forEach operator
@Forget method
fromCompletionStageNullable operator
fromCompletionStage operator
fromPublisher operator

G
Gatekeeper
@Gauge annotation
Generate operator
@GET annotation
getConnection() method

getConnection(String username, String password) method
getMostMightyWizard() method
getPokemonTypeById
GitHub repository
GRAALVM_HOME variable
GraalVM Native Image

advantages
approaches
definition
disadvantages
Docker Native Image Build
Local Native Image Build

GraalVM version
Grafana
GreetingProvider application
Grouped properties

H
H2 Driver Dependency
@HeaderParam annotation
Health

API
built-in checks
custom check
Helidon application
Kubernetes probes
management system
MicroProfile Health

Health and Metrics Configuration
Health checks
/health endpoint
Helidon

architecture
compatibility
definition
design concepts
“first-class citizen”, Verrazzano

high-level goals
Java libraries
Java SE
jlink advantages
OpenAPI
open source product
reactive cloud-native applications development tool
reactive non-blocking implementation
reactive web server
Scheduling
simple scheduling

Helidon application
health

CLI
manually add dependencies
Project Starter

metrics
MicroProfile Metrics

CLI
manually add dependencies
Project Starter

tracing
CLI
manually add dependencies
Project Starter

Helidon CLI
command-line utility
command parameters
command prompt
development loop
installation commands
JDK 17
JSON library
Maven coordinates
MP flavor
options
PowerShell

Helidon flavors
comparison
definition
different APIs
gaming mechanics
Helidon MP
See Helidon MP
logical consequence
recommendations

Helidon-health-checks module
helidon init command
Helidon JMS
helidon-microprofile-core
Helidon MP

Code-Style Sample
components
configuration
declarative style APIs
definition
Jakarta EE
MicroProfile
MicroProfile 5.0 platform
sorcerer

Helidon QuickStart
Helidon reactive operators
Helidon SE

basics
definition
dual-wield weapon
vs. Helidon MP
Java SE Flow API
non-blocking APIs
reactive web server APIs

Helidon SE APIs
Helidon SE application

build and packaging commands
CLI

configuration
create Web Server
Dockerfiles
features
health checks
main method
metrics
Project Starter
Quickstart application
Quickstart application source code tree
RESTful Services
routing
start Web Server

Helidon security
JAX-RS
providers
security configuration structure

@HelidonTest
Helidon testing framework

@AddBean(SomeBean.class)
@AddExtension(SomeCdiExtension.class)
advanced test
CDI Bean discovery
@Configuration(configSources = “some-test-config.properties”)
@DisableDiscovery

Helidon Verrazzano Component
Hibernate
HikariCP
Histogram

age distribution
buckets
distribution
graphically
metric data
programmatic API

Hollow JAR approach
HotSpot VM

HTTP
CA
configure Helidon to Use TLS 1.3
Create CSR
exchange
headers
method
with TLS 1.3
Wireshark

I
Identity managers
Ignore operator
inc() method
@Inject Config
Intercepting Fault Tolerance methods
Intercept method
Invocation priority
io.helidon.config.mp.meta-config property
iterate operator

J
Jackson
Jakarta EE
jakarta.json.JsonObject
Jakarta Persistence API (JPA)

definition
entityManager
HikariCP connection pool
implementation
operation modes
POJOs
Pokemon repository service
Quickstart database
relational data mapping
tables

Jakarta RESTful Web Services (former JAX-RS)

Jakarta REST (JAX-RS) specification
Jakarta Transactions API (JTA)

CREATE method
DELETE method
features
multiple resources management
Narayana transaction engine
transactional methods

@jakarta.transaction.Transactional
Java Database Connectivity (JDBC)
Java EE-based applications
Java Platform Module System (JPMS)
Java Runtime Environment (JRE)
Java Transactions API (JTA)
java.util.function.Supplier
javax vs. jakarta JMS
JAX-RS
JAX-RS Client API

asynchronous operations
builder pattern
concerns
Configurable interface
Entity object
helidon-microprofile bundle
invocation
Invocation.Builder
Jakarta EE specification
programming model
providers
target() method
WebTarget
wizard object
wizard class
wizard instance

JAX-RS Compensate Resource
JAX-RS component
JAX-RS environment

JAX-RS handler
JAX-RS method
JAX-RS resource
JDBC connections
JDBC DriverManager
JDBC-supported databases
jlink image
JMS connector

ConnectionFactory
dependency
destination
javax vs. jakarta JMS
messages
WebLogic

JNDI destination
JPA providers
JPMS module-based project
JSON
JSON-B
JSON-based OIDC
JsonConverter
jsonOrc.get()
JSON Web Encryption (JWE)
JSON Web Key (JWK)
JSON Web Key Set (JWKS)
JSON Web Signature (JWS)
JSON Web Token (JWT)

acronyms
Authentication Provider
extension
JAX-RS Resource
MicroProfile
OIDC Security Provider
specialized identity provider
service-to-service communication

JUnit 5

K
Kafka connector

Apache Software Foundation
brokers
configuration
dependency
nack strategies

Keycloak
Keycloak OIDC Configuration
K8s ConfigMap
kubectl command
Kubernetes
Kubernetes ConfigMap

definition
environment variables
mounted volume

Kubernetes deployment
Kubernetes probes

L
Leave method
Limit operator
Load balancer
Log4j
Logging

extension
in Helidon
logging level
MDC
timestamped records

Long Running Actions (LRA)
asynchronous compensation
context propagation
Helidon
JTA
microservice environment
Non-JAX-RS participant methods

Online cinema booking system
See Online cinema booking system
participant
See Participant, LRA

Low-level data access
LRA coordinator

compensation links
Configure Helidon
experimental Helidon
Helidon
LRA transaction
MicroTx
Narayana

LRA JAX-RS resources
LRA transaction

@Complete method
coordinator
create Booking with JAX-RS resource
JAX-RS resource
JAX-RS resource method
multiple participants
participant
participant cancels
participant timeout
participation
reservation service
types

M
Magic Cleanup Job
Managed environment
Map operator
Mapped Diagnostic Context (MDC)

configuration
ID
with JUL
with Log4j

with SLF4J
Maven archetypes
Maven pom.xml
MessageBodyReader
MessageBodyWriter
Messaging beans
Messaging connector
Messaging health
Meta configuration
META-INF folder
META-INF/microprofile-config.properties files
Meter

annotation
defines
exponentially-weighted moving average
metric data
Programmatic API
RESTful service endpoint/data access component

@Metered annotation
Metric identity
Metric metadata
MetricRegistry
Metrics

Grafana
metrics model
MicroProfile
Prometheus
service administrators
stack operation and components
statistics

Metrics model
metric identity
metric metadata
metrics scopes
metric types

Metrics Scopes
Application Scope

base
Vendor scope

MicroProfile
MicroProfile Config

aggregated properties
Config sources
converters
custom config source
default value
dynamic config source
expressions
implementation
Kubernetes ConfigMap
meta configuration
profiles
programmatic API
YAML config sources

microprofile-config-<PROFILE NAME>.properties
microprofile-config.properties file
MicroProfile-core bundle
MicroProfile dependencies
MicroProfile Fault Tolerance
MicroProfile Full Bundle
MicroProfile Health

configuring
Helidon 3.x supports
JSON format
REST API
specification

MicroProfile JWT
MicroProfile JWT RBAC
MicroProfile Metrics

Helidon application
JSON
metrics stack architecture
OpenMetrics
REST API

RESTful API
sample application
specification

MicroProfile Metrics API
concurrent gauge

annotation
annotation
count parallel invocations of methods
Metric Data
programmatic APIs

counter
annotation
JAX-RS handler
programmatic API
self-explanatory

gauge
numeric value
programmatic API

histogram
meter
simple timer
timer

MicroProfile OpenTracing
MicroProfile OpenTracing API
MicroProfile platform
microprofile-properties.config file
MicroProfile Reactive Streams Operators

API
blocking current thread
cancel Operator
closed graph
combining graphs
CompletionStage
concat operator
Distinct operator
dropWhile operator
empty operator

failed operator
filter operator
findFirst operator
flatMapCompletionStage operator
flatMapIterable
flatMap operator
forEach operator
fromCompletionStageNullable operator
fromCompletionStage operator
fromPublisher operator
generate operator
graphs
Iignore operator
Iiterate operator
limit operator
map operator
of operator
onComplete operator
onError operator
onErrorResume operator
onErrorResumeWith operator
onTerminate operator
peek operator
reduce operator
RxJava to Mutiny
skip operator
specification
stages
subscriber graph
takeWhile operator
to Operator
toList operator
via Operator

MicroProfile Rest Client
annotations
asynchronous operations
exception handling

handling headers
helidon-microprofile bundle
integration
MicroProfile Ecosystem
MicroProfile umbrella
modifying requests and responses
programmatic API
REST client interface
server-side events handling
SSL
type-safe approach
wizard service

Microservices
Microservices architecture
MicroTx LRA coordinator
Mission-critical code
Mock connector
mp.config.profile property
mp-meta-config.properties file
Meta config mp-meta-config.yaml file
Multi and Single Streams
MultivaluedMap parameters
my.package.JsonConverter
my-sorcerer-app config

N
Narayana LRA Coordinator
Neo4j

configuration
Cypher Request
graph database management system
health checks
Helidon
Helidon Integration Dependency
inject Neo4j driver
integration
metrics dependency

Netty
Non-JAX-RS participant methods
NoSQL databases
NoSuchElementException
Nullable CompletionStage

O
<objecttype>
Observability

ABS
control theory
definition
dynamic system
health
logging
metrics
monitoring
telemetry
tracing

of operator
onComplete operator
onError operator
onErrorResume operator
onErrorResumeWith operator
Online cinema booking system

compensation, payment fails
Create Booking JAX-RS Resource
create new seat booking
LRA coordinator
payment failed notification
payment form
payment JAX-RS resource, client
payment service

with implicit LRA context
within LRA context

reservation service
onNext calls

onTerminate operator
OpenAPI

annotations
API documentation
automatic client generation
dependencies
Helidon application
microprofile bundle dependency
Static OpenAPI Files

OpenAPI annotations
OpenAPI-generated client
OpenAPI Generator
OpenID Connect
OpenID Connect Discovery
OpenMetrics
OpenTelemetry
Oracle AQ connector

dependency
JMS API
JMS queue maps
multi-consumer queue
single consumer queue

Oracle Coherence CE
Orc hunting adventure
orcSlayingPotions
org.eclipse.microprofile.config.Config

P
ParamConverter
Participant, LRA

@AfterLRA methods
compensate
compensation methods
Complete method
@Forget method
JAX-RS resources
@Leave

LRA transactions
participant states
@Status method

peek operator
Plain text password detection
Pokemon
Pokemon CRUD operations
Pokemon management service
Pokemon Resource
POKEMON table
PokemonType
pom.xml file
PreparedStatement
@Priority
Profile TEST
Programmatic API
Programming models
Project Starter
Prometheus
Property level
<propertyname>
Proxy and Redirect Properties
public T toThrowable(Response response) {} function
Publisher graph

Q
Query statements
Quickstart application

CLI
configuration
Helidon SE
main method
Main.createRouting method
REST API
RESTful service

quickstart-mp Docker image
Quickstart template

R
Reactive messaging

acknowledgment
API
channel
consuming Message
Emitter
getPayload() and ack() methods
message handler method
messaging beans
messaging health
No Acknowledgment

Reactive operators
Helidon
marble diagram

Reactive programming
Reactive streams

API
backpressure
implementation
simplified
upstream/publishing

ReaderInterceptor
README.md file
Reduce operator
@RegisterClientHeaders annotation
Register Header Handler
@RegisterProvider annotation
@RegisterRestClient annotation
Relational database management systems (RDBMS)
Representational State Transfer (REST)
@RequestScoped bean’s life cycle
ResponseExceptionMapper
REST API documentation
@RestClient annotation
RestClientBuilder.newBuilder()
REST client implementation

REST client interface
RESTful APIs
RESTful service
RESTful web service
Retry
Role-based access (RBAC)
Root span
Routing
RSA encryption
RuntimeException
.rx() method

S
SAGA
@Scheduled method
Scheduling task

configuration
enterprise environment
Helidon
Invocation Details Injection
Kubernetes

Security
Self-explanatory
Service call hierarchies
Simple Logging Facade for Java (SLF4J)
Simple timer

annotation
metric data
Programmatic API

@SimplyTimed annotation
Single sign-on (SSO)
skip operator
Software testing
Sorcerer
sorcerer.level property
sorcerer.orcSlayingPotions property
SORCERER_ORCSLAYINGPOTIONS environment variable

SORCERER_ORCSLAYINGPOTIONS key
SorcererProperties
Sorcery ministry
Spring Boot-like development
Spring Dependency Injection (Spring DI)
Stage
Standard Java SE application
Static OpenAPI Files
@Status method
Subscriber graph
Swagger
System.getenv()
System.getProperties()

T
Tags
takeWhile operator
target.request() method
Telemetry
Testcontainers

application integration tests
“black box” interrogation testing
Data access layer integration tests
Helidon application
@HelidonTest annotation
images
integration testing
JUnit tests
Kafka
run
setup
UI/Acceptance tests
Wizard Test

Testing
Helidon
JUnit 5
TestNG

TestNG
@Timed annotation
@Timeout annotation
Timeout
Timer

JSON formats
Metric Data
OpenMetrics
programmatic API
@Timed annotation

Timestamped records
Token propagation
toList operator
to Operator
Tracing

configuration
Enabling/Disabling Tracing
top-level HTTP request span

distributed tracing
Helidon application
Helidon built-in spans
implementation
MicroProfile OpenTracing

Transaction
Transactional engine
Transaction Dependencies
Transaction properties
Troubleshooting microservices
Two-phase commit (2PC)

U
Uniform Distributed Destinations (UDDs)
Unit tests
Universal Connection Pool (OCP)
Unix-based systems
Update statements

V
Various object-relational mapping (ORM)
Vendor scope
Verrazzano

deployment
deploy the Helidon Wizard application
DevOps
enterprise cloud platform
GitOps
Helidon

via Operator

W, X
Warrior
WebLogic Destination CDI Syntax

non-distributed destinations
or Helidon JMS
UDDs

WebLogic JMS
WebLogic JMS connector

configure Helidon
dependency
Helidon 3
JARs with Helidon 2
JNDI Destination
SAF
WebLogic CDI

WebTarget instance
Wireshark
Wizard instance
/wizard/add POST endpoint
/wizardClient/jaxrs endpoint
WizardHeaderHandler
Wizard resource
WizardRestClient interface
Wizard service
wizardSource

Wizard Test
WriterInterceptor

Y, Z
YAML config sources
YAML Configuration File
YAML properties

	Front Matter
	1. Introduction
	2. Your First Application
	3. Configuration
	4. Observability
	5. Communicating with Other Services
	6. Accessing Data
	7. Resiliency
	8. Security
	9. Using OpenAPI
	10. Testing Your Helidon Application
	11. Scheduling Tasks
	12. Integration with Other Technologies
	13. Going Reactive
	14. Long Running Actions (LRA)
	15. Helidon SE
	Back Matter

