

Cloud Native

Using Containers, Functions, and Data to Build Next-Generation
Applications

Boris Scholl, Trent Swanson, and Peter Jausovec

Cloud Native

by Boris Scholl, Trent Swanson, and Peter Jausovec

Copyright © 2019 Boris Scholl, Trent Swanson, and Peter Jausovec.

All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North,

Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales
promotional use. Online editions are also available for most titles
(http://oreilly.com). For more information, contact our corporate/insti-
tutional sales department: 800-998-9938 or corporate@oreilly.com.

Acquisitions Editor: Kathleen Carr

Development Editor: Nicole Tache

Production Editor: Elizabeth Kelly

Copyeditor: Octal Publishing, Inc.

Proofreader: Rachel Monaghan

Indexer: Ellen Troutman-Zaig

http://oreilly.com/

Interior Designer: David Futato

Cover Designer: Karen Montgomery

Illustrator: Rebecca Demarest

September 2019: First Edition

Revision History for the First Edition

2019-08-21: First Release
2019-12-10: Second Release
2020-02-07: Third Release

See http://oreilly.com/catalog/errata.csp?isbn=9781492053828 for re-
lease details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc.

Cloud Native, the cover image, and related trade dress are trade-
marks of O’Reilly Media, Inc.

The views expressed in this work are those of the authors, and do not
represent the publisher’s views. While the publisher and the authors
have used good faith efforts to ensure that the information and in-
structions contained in this work are accurate, the publisher and the
authors disclaim all responsibility for errors or omissions, including

http://oreilly.com/catalog/errata.csp?isbn=9781492053828

without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions con-
tained in this work is at your own risk. If any code samples or other
technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your respon-
sibility to ensure that your use thereof complies with such licenses
and/or rights.

978-1-492-05382-8

[LSI]

Preface

Thought leaders across different companies and industries have
been restating Watts Humphrey’s statement, “Every business will be-
come a software business.” He was spot on. Software is taking over
the world and is challenging the status quo of existing companies.

Netflix has revolutionized how we obtain and consume TV and
movies, Uber has transformed the transportation industry, and Airbnb
is challenging the hotel industry. A couple of years ago that would
have been unthinkable, but software has allowed new companies to
venture into all industries and establish new thinking and business
models.

The previously mentioned companies are often referred to as “born-
in-the-cloud companies,” which means that at the basis of their offer-
ings are services running in the cloud. Those services are built in a
way that companies can quickly react to market and customer de-
mands, release updates and fixes in a short period of time, use the
latest technologies, and take advantage of the improved economics
provided by the cloud. Services built in a cloud native way have also
allowed companies to rethink their business models and move to new
ones, such as subscription-based models. Such services are often
referred to as cloud native applications.

The success and popularity of cloud native applications have led
many enterprises to adopt cloud native architectures, even bringing
many of the concepts to on-premises applications.

At the heart of cloud native applications are containers, functions, and
data. There are many books out there focusing on each of these spe-
cific technologies. Cloud native applications use all of these technolo-
gies and take advantage of and exploit all of the benefits of the cloud.

We, the authors, have seen many customers struggle to piece all of
those technologies together to design and develop cloud native ap-
plications, so we decided to write a book with the goal to provide the
foundational knowledge that enables developers and architects alike
to get started with designing cloud native applications.

This book starts by laying down the foundation for the reader to un-
derstand the basic principles of distributed computing and how they
relate to cloud native applications, as well as providing a closer look
at containers and functions. Further, it covers service communication
patterns, resiliency, and data patterns as well as providing guidance
on when to use what. The book concludes by explaining the DevOps
approach, portability considerations, and a collection of best practices
that we have seen to be useful in successful cloud native
applications.

The book is not a step-by-step implementation guide for building
cloud native applications for a specific set of requirements. After
reading this book, you should have the understanding and knowledge
to help design, build, and operate successful cloud native ap-
plications. Tutorials are great for working through very specific needs,

but a fundamental understanding of building cloud native applications
provides teams with the necessary skills to ship successful cloud na-
tive applications.

Conventions Used in This Book

The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and
file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer
to program elements such as variable or function names, data-
bases, data types, environment variables, statements, and
keywords.

Constant width bold

Shows commands or other text that should be typed literally by
the user.

Constant width italic

Shows text that should be replaced with user-supplied values
or by values determined by context.

TIP

This element signifies a tip or suggestion.

NOTE

This element signifies a general note.

WARNING

This element indicates a warning or caution.

O’Reilly Online Learning

NOTE

For almost 40 years, O’Reilly Media has provided technology and business training,

knowledge, and insight to help companies succeed.

http://oreilly.com/

Our unique network of experts and innovators share their knowledge
and expertise through books, articles, conferences, and our online
learning platform. O’Reilly’s online learning platform gives you on-de-
mand access to live training courses, in-depth learning paths, interac-
tive coding environments, and a vast collection of text and video from
O’Reilly and 200+ other publishers. For more information, please visit
http://oreilly.com.

How to Contact Us

Please address comments and questions concerning this book to the
publisher:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)

707-829-0515 (international or local)

707-829-0104 (fax)

We have a web page for this book, where we list errata, examples,

and any additional information. You can access this page at http://bit.-
ly/cloud-native-1e.

http://www.oreilly.com/
http://bit.ly/cloud-native-1e

To comment or ask technical questions about this book, send email to
bookquestions@oreilly.com.

For more information about our books, courses, conferences, and
news, see our website at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments

We would like to thank Nicole Taché, our editor at O’Reilly, as well as
the tech reviewers and beta reviewers for their valuable contributions
to the book. In addition, we would like to thank Haishi Bai and
Bhushan Nene for their thorough reviews and suggestions to improve
the quality of the book.

Boris would like to thank his wife, Christina, and his kids, Marie and
Anton, for being so patient and supportive during the time he was
working on the book.

Trent would like to thank his wife, Lisa, and his son, Mark, for their
support and patience while he was working on this book.

mailto:bookquestions@oreilly.com
http://www.oreilly.com/
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

Peter would like to thank his wife, Nives, for her support, encourage-
ment, and understanding while he was working nights and weekends
on this book.

Chapter 1. Introduction to Cloud
Native

What are cloud native applications? What makes them so appealing
that the cloud native model is now considered not only for the cloud,

but also for the edge? And, finally, how do you design and develop
cloud native applications? These are all questions that will be an-
swered throughout this book. But before we dive into the details on
the what, why, and how, we want to provide a brief introduction to the
cloud native world and some of the fundamental concepts and as-
sumptions that are building the foundation for modern cloud native
applications and environments.

Distributed Systems

One of the biggest hurdles that developers face when they build
cloud native applications for the first time is that they must deal with
services that are not on the same machine, and they need to deal
with patterns that consider a network between the machines. Without
even knowing it, they have entered the world of distributed systems.

A distributed system is a system in which individual computers are
connected through a network and appear as a single computer. Be-
ing able to distribute computing power across a bunch of machines is

a great way to accomplish scalability, reliability, and better eco-
nomics. For example, most cloud providers are using cheaper com-
modity hardware and solving common problems such as high avail-
ability and reliability through software-based solutions.

Fallacies of Distributed Systems

There are couple of incorrect or unfounded assumptions most devel-
opers and architects make when they enter the world of distributed
systems. Peter Deutsch, a Fellow at Sun Microsystems, was identify-
ing fallacies of distributed computing back in 1994, at a time when no-
body thought about cloud computing. Because cloud native ap-
plications are, at their core, distributed systems, these fallacies still
have validity today. Following is the list of the fallacies that Deutsch
described, with their meanings applied to cloud native applications:

The network is reliable
Even in the cloud you cannot assume that the network is reli-
able. Because services are typically placed on different ma-
chines, you need to develop your software in a way that it ac-
counts for potential network failures, which we discuss later in
this book.

Latency is zero

Latency and bandwidth are often confused, but it is important to
understand the difference. Latency is how much time goes by
until data is received, whereas bandwidth indicates how much
data can be transferred in a given window of time. Because la-
tency has a big impact on user experience and performance,

you should take care to do the following:

Avoid frequent network calls and introducing chattiness to
the network.

Design your cloud native application in a way that the data is
closest to your client by using caching, content delivery net-
works (CDNs), and multiregion deployments.

Use publication/subscription (pub/sub) mechanisms to be
notified that there is new data and store it locally to be imme-
diately available. Chapter 3 covers messaging patterns such
as pub/sub in more detail.

There is infinite bandwidth
Nowadays, network bandwidth does not seem to be a big is-
sue, but new technologies and areas such as edge computing
open up new scenarios that demand far more bandwidth. For
example, it is predicted that a self-driving car will produce
around 50 terabytes (TB) of data per day. This volume of data
requires you to design your cloudnative application with band-
width usage in mind. Domain-Driven Design (DDD) and data

patterns such as Command Query Responsibility Segregation
(CQRS) are very useful under such bandwidth-demanding cir-
cumstances. Chapter 4 and Chapter 6 cover how to work with
data in cloud native applications in more detail.

The network is secure
Two things are often an afterthought for developers: diagnos-
tics and security. The assumption that networks are secure can
be fatal. As a developer or architect, you need to make security
a priority of your design; for example, by embracing a defense-
in-depth approach.

The topology does not change
Pets versus cattle is a meme that gained popularity with the ad-
vent of containers. It means that you do not treat any machine
as a known entity (pet) with its own set of properties, such as
static IPs and so on. Instead, you treat machines as a member
of a herd that has no special attributes. This concept is very im-
portant with cloud native applications. Because cloud environ-
ments are meant to provide elasticity, machines can be added
and removed based on criteria such as resource consumption
or requests per second.

There is one administrator

In traditional software development, it was quite common to
have one person responsible for the environment, installing
and upgrading the application, and so forth. Modern cloud ar-
chitectures and DevOps methods have shifted the way soft-
ware is built. A modern cloud native application is a composite
of many services that need to work together in concert and that
are developed by different teams. This makes it practically im-
possible for a single person to know and understand the appli-
cation in its entirety, not to mention trying to fix a problem.

Thus, you need to ensure that you have governance in place
that makes it easy to troubleshoot issues. Throughout this
book, we introduce you to important concepts such as release
management, decoupling, and logging and monitoring.

Chapter 5 provides a detailed look at common DevOps prac-
tices for cloud native applications.

Transport cost is zero
From a cloud native perspective, there are two ways to look at
this one. First, transport happens over a network and network
costs are not free with most cloud providers. Most cloud
providers, for example, do not charge for data ingress, but do
charge for data egress. The second way to look at this fallacy is
that the cost for translating any payload into objects is not free.

For example, serialization and deserialization are usually fairly

expensive operations that you need to consider in addition to
the latency of network calls.

The network is homogeneous
This is almost not worth listing given that pretty much every de-
veloper and architect understands that there are different proto-
cols that they must consider when building their applications.

As mentioned before, although these fallacies were documented a
long time ago, they are still a good reminder of the incorrect assump-
tions people make when entering the cloud native world. Throughout
this book, we teach you patterns and best practices that take all of the
fallacies of distributed computing into account.

CAP Theorem

The CAP theorem is often mentioned in combination with distributed
systems. The CAP theorem states that any networked shared-data
system can have at most two of the following three desirable
properties:

Consistency (C) equivalent to having a single up-to-date copy of
the data
High availability (A) of that data (for updates)

Tolerance to network partitions (P)

The reality is that you will always have network partitions (remember,
“the network is reliable” is one of the fallacies of distributed comput-
ing). That leaves you with only two choices—you can optimize either
for consistency or high availability. Many NoSQL databases such as
Cassandra optimize for availability, whereas SQL-based systems that
adhere to the principles of ACID (atomicity, consistency, isolation,

and durability) optimize for consistency.

The Twelve-Factor App

In the early days of Infrastructure as a Service (IaaS) and Platform as
a Service (PaaS), it quickly became obvious that the cloud required a
new way of developing applications. For example, on-premises scal-
ing was often done by scaling vertically, meaning adding more re-
sources to a machine. Scaling in the cloud, on the other hand, is usu-
ally done horizontally, meaning adding more machines to distribute
the load. This type of scaling requires stateless applications, and this
is one of the factors described by the Twelve-Factor App manifesto.

The Twelve-Factor App methodology can be considered the founda-
tion for cloud native applications and was first introduced by engi-
neers at Heroku, derived from best practices for application develop-
ment in the cloud. Cloud development has evolved since the intro-
duction of the Twelve-Factor manifesto, but the principles still apply.

Following are the 12 factors and their meaning for cloud native
applications:

1. Codebase
One codebase tracked in revision control; many deploys.

There is only one codebase per application, but it can be deployed
into many environments such as Dev, Test, and Prod. In cloud na-
tive architecture, this translates directly into one codebase per ser-
vice or function, each having its own Continuous Integration/Con-
tinuous Deployment (CI/CD) flow.

2. Dependencies
Explicitly declare and isolate dependencies.

Declaring and isolating dependencies is an important aspect of
cloud native development. Many issues arise due to missing de-
pendencies or version mismatch of dependencies, which stem
from environmental differences between the on-premises and
cloud environments. In general, you should always use dependen-
cy managers for languages such as Maven or npm. Containers
have drastically reduced dependency-based issues because all
dependencies are packaged inside a container, and as such
should be declared in the Dockerfile. Chef, Puppet, Ansible, and
Terraform are great tools to manage and install system
dependencies.

3. Configuration
Store configuration in the environment.

Configuration should be strictly separated from code. This allows
you to easily apply configurations per environment. For example,

you can have a test configuration file that stores all the connection
strings and other information used in a test environment. If you
want to deploy the same application to a production environment,
you need only to replace the configuration. Many modern plat-
forms support external configuration, whether it is configuration
maps with Kubernetes or managed configuration services in cloud
environments.

4. Backing Services
Treat backing services as attached resources.

A backing service is defined as “any service the app consumed
over the network as part of its normal operation.” In the case of
cloud native applications, this might be a managed caching service
or a Database as a Service (DbaaS) implementation. The recom-
mendation here is to access those services through configuration
settings stored in external configuration systems, which allows
loose coupling, one of the principles that is also valid for cloud na-
tive applications.

5. Build, Release, Run
Strictly separate build and run stages.

As you will see in Chapter 5 on DevOps, it is recommended to aim
for fully automated build and release stages using CI/CD practices.

6. Processes

Execute the app in one or more stateless processes.

As mentioned earlier, compute in the cloud should be stateless,

meaning that data should only be saved outside the processes.

This enables elasticity, which is one of the promises of cloud
computing.

7. Data Isolation
Each service manages its own data.

This is one of the key tenets of microservices architectures, which
is a common pattern in cloud native applications. Each service
manages its own data, which can be accessed only through APIs,

meaning that other services that are part of the application are not
allowed to directly access the data of another service.

8. Concurrency
Scale out via the process model.
Improved scale and resource usage are two of the key benefits of
cloud native applications, meaning that you can scale each service
or function independently and horizontally; thus, you’ll achieve bet-
ter resource usage.

9. Disposability
Maximize robustness with fast startup and graceful shutdown.

Containers and functions already satisfy this factor given that both
provide fast startup times. One thing that is often neglected is to
design for a crash or scale in scenario, meaning that the instance

count of a function or a container is decreased, which is also cap-
tured in this factor.

10. Dev/Prod Parity
Keep development, staging, and production as similar as possible.

Containers allow you to package all of the dependencies of your
service, which limits the issues with environment inconsistencies.

There are scenarios that are a bit trickier, especially when you use
managed services that are not available on-premises in your Dev
environment. Chapter 5 looks at methods and techniques to keep
your environments as consistent as possible.

11. Logs
Treat logs as event streams.

Logging is one of the most important tasks in a distributed system.

There are so many moving parts and without a good logging strat-
egy, you would be “flying blind” when the application is not behav-
ing as expected. The Twelve-Factor manifesto states that you
should treat logs as streams, routed to external systems.

12. Admin Processes
Run admin and management tasks as one-off processes.

This basically means that you should execute administrative and
management tasks as short-lived processes. Both functions and
containers are great tools for that.

Throughout the book you will recognize many of these factors be-
cause they are still very relevant for cloud native applications.

Availability and Service-Level
Agreements

Most of the time, cloud native applications are composite applications
that use compute, such as containers and functions, but also man-
aged cloud services such as DbaaS, caching services, and/or identity
services. What is not obvious is that your compound Service-Level
Agreement (SLA) will never be as high as the highest availability of
an individual service. SLAs are typically measured in uptime in a
year, more commonly referred to as “number of nines.” Table 1-1
shows a list of common availability percentages for cloud services
and their corresponding downtimes.

Table 1-1. Uptime percentages and service downtime

Availability
%

Downtime
per year

Downtime
per month

Downtime
per week

99% 3.65 days 7.20 hours 1.68 hours

99.9% 8.76 hours 43.2 minutes 10.1 minutes

99.99% 52.56

minutes
4.32 minutes 1.01 minutes

99.999% 5.26 minutes 25.9 seconds 6.05 seconds

99.9999% 31.5 seconds 2.59 seconds 0.605

seconds

Following is an example of a compound SLA:

Service 1 (99.95%) + Service 2 (99.90%): 0.9995 × 0.9990 =

0.9985005

The compound SLA is 99.85%.

Summary

Many developers struggle when starting to develop for the cloud. In a
nutshell, developers are facing three major challenges: first, they
need to understand distributed systems; second, they need to under-
stand new technologies such as containers and functions; and third,

they need to understand what patterns to use when building cloud
native applications. Having some familiarity with the fundamentals,

such as the fallacies of distributed systems, the Twelve-Factor mani-
festo, and compound SLAs, will make the transition easier. This
chapter introduced some of the fundamental concepts of cloud na-
tive, which enables you to better understand some of the architectural
considerations and patterns discussed throughout the book.

Chapter 2. Fundamentals

As discussed in Chapter 1, cloud native applications are applications
that are distributed in nature and utilize cloud infrastructure. There
are many technologies and tools that are being used to implement
cloud native applications, but from a compute perspective, it is mainly
functions and containers. From an architectural perspective, mi-
croservices architectures have gained a lot of popularity. More often
than not, those terms are mistakenly used, and often believed to be
one and the same. In reality, functions and containers are different
technologies, each serving a particular purpose, whereas microser-
vices describes an architectural style. That said, understanding how
to best use functions and containers, along with eventing or messag-
ing technologies, allows developers to design, develop, and operate a
new generation of cloud native microservices-based applications in
the most efficient and agile way. To make the correct architectural de-
cisions to design those types of applications, it is important to under-
stand the basics of the underlying terms and technologies. This chap-
ter explains important technologies used with cloud native ap-
plications and concludes by providing an overview of the microser-
vices architectural style.

Containers

Initially, containers were brought into the spotlight by startups and
born-in-the-cloud companies, but over the past couple of years, con-
tainers have become synonymous with application modernization.

Today there are very few companies that are not using containers or
at least considering using containers in the future, which means that
architects and developers alike need to understand what containers
offer and what they don’t offer.

When people talk about containers today, they refer to “Docker con-
tainers” most of the time, because it’s Docker that has really made
containers popular. However, in the Linux operating system (OS)

world, containers date back more than 10 years. The initial idea of
containers was to slice up an OS so that you can securely run multi-
ple applications without them interfering with one another. The re-
quired isolation is accomplished through namespaces and control
groups, which are Linux kernel features. Namespaces allow the dif-
ferent components of the OS to be sliced up and thus create isolated
workspaces. Control groups then allow fine-grained control of re-
source utilization, effectively stopping one container from consuming
all system resources.

Because the interaction with kernel features was not exactly what we
would call developer friendly, Linux containers (LXC) were introduced
to abstract away some of the complexity of composing the various
technology underpinnings of what is now commonly call a “container.”

Eventually it was Docker that made containers mainstream by intro-
ducing a developer-friendly packaging of the kernel features. Docker
defines containers as a “standardized unit of software.” The “unit of
software”—or, more accurately, the service or application running
within a container—has full, private access to their own isolated view
of OS constructs. In other words, you can view containers as encap-
sulated, individually deployable components running as isolated in-
stances on the same kernel with virtualization happening on the OS
level.

Figure 2-1. VMs and containers on a single host

In addition, containers use the copy-on-write filesystem strategy,

which allows multiple containers to share the same data, and the OS
provides a copy of the data to the container that needs to modify or
write data. This allows containers to be very lightweight in terms of
memory and disk space usage, resulting in faster startup times, which

is one of the great benefits of using containers. Other benefits are de-
terministic deployments, allowing portability between environments,

isolation, and higher density. For modern cloud native applications,

container images have become the unit of deployment encapsulating
the application or service code, its runtime, dependencies, system li-
braries, and so on. Due to their fast startup times, containers are an
ideal technology for scale-out scenarios, which are very common in
cloud native applications. Figure 2-1 shows the difference between
virtual machines (VMs) and containers on a single host.

Container Isolation Levels

Because containers are based on OS virtualization, they share the
same kernel when running on the same host. Although this is suffi-
cient enough isolation for most scenarios, it falls short of the isolation
level that hardware-based virtualization options such as VMs provide.

Following are some of the downsides of using VMs as the foundation
of cloud native applications:

VMs can take a considerable amount of time to start because they
boot a full OS.

The size of the VM can be an issue. A VM contains an entire OS,

which can easily be several gigabytes in size. Copying this image
across a network—for example, if they are kept in a central image
repository—will take a lot of time.

Scaling of VMs has its challenges. Scaling up (adding more re-
sources) requires a new, larger VM (more CPU, memory, storage,

etc.) to be provisioned and booted. Scaling out might not be fast
enough to respond to demand; it takes time for new instances to
start.
VMs have more overhead and use considerably more resources
such as memory, CPU, and disk. This limits the density, or number
of VMs that can run on a single host machine.

The most common scenarios that demand high isolation on a hard-
ware virtualization level are hostile multitenant scenarios in which you
typically need to protect against malicious escape and breakout at-
tempts into other targets on the same host or on the shared in-
frastructure. Cloud providers have been using technologies internally
that provide VM-level isolation while maintaining the expected speed
and efficiency of containers. These technologies are known as
Hyper-V containers, sandboxed containers, or MicroVMs. Here are
the most popular MicroVM technologies (in nonspecific order):

Nabla containers
These enable better isolation by taking advantage of unikernel
techniques, specifically those from the Solo5 project, to limit
system calls from the container to host kernel. The Nabla con-
tainer runtime (runc) is an Open Container Initiative (OCI)-com-

https://nabla-containers.github.io/
https://github.com/Solo5/solo5

pliant runtime. OCI will be explained in a bit more detail later in
this chapter.

Google’s gVisor
This is a container runtime and user space kernel written in Go.

The new kernel is a “user space” process that addresses the
container’s system call needs, preventing direct interaction with
the host OS. The gVisor runtime (runSC) is an OCI-compliant
runtime, and it supports Kubernetes orchestration as well.

Microsoft’s Hyper-V containers
Microsoft’s Hyper-V containers were introduced a couple of
years ago and are based on VM Worker Process (vmwp.exe).

Those containers provide full VM-level isolation and are OCI
compliant. As for running Hyper-V containers in Kubernetes in
production, you will want to wait for general availability of Ku-
bernetes on Windows.

Kata containers
Kata containers are a combination of Hyper.sh and Intel’s clear
containers and provide classic hardware-assisted virtualization.

Kata containers are compatible with the OCI specification for
Docker containers and CRI for Kubernetes.

Amazon’s Firecracker

https://github.com/google/gvisor
https://oreil.ly/5njcd
http://bit.ly/33vZb7U
https://katacontainers.io/

Firecracker is powering Amazon’s Lambda infrastructure and
has been open sourced under the Apache 2.0 license. Fire-
cracker is a user-mode VM solution that sits on top of the KVM
API and is designed to run modern Linux kernels. The goal of
Firecracker is to provide support for running Linux containers in
a hypervisor-isolated fashion similar to other more isolated
container technologies such as Kata containers. Note that, as
of this writing, you are not able to use Firecracker with Kuber-
netes, Docker, or Kata containers.

Figure 2-2 provides an overview of the isolation levels of the these
technologies.

Figure 2-2. Isolation levels for VMs, containers, and processes

Container Orchestration

To manage the life cycle of containers at scale, you need to use a
container orchestrator. The tasks of a container orchestrator are the

following:

The provisioning and deployment of containers onto the cluster
nodes
Resource management of containers, meaning placing containers
on nodes that provide sufficient resources or moving containers to
other nodes if the resource limits of a node is reached
Health monitoring of the containers and the nodes to initiaing
restarted and rescheduling in case of failures on a container or
node level
Scaling in or out containers within a cluster
Providing mappings for containers to connect to networking
Internal load balancing between containers

There are multiple container orchestrators available, but there is no
doubt that Kubernetes is by far the most popular choice for cluster
management and the scheduling of container-centric workloads in a
cluster.

Kubernetes Overview

Kubernetes (often abbreviated as k8s) is an open source project for
running and managing containers. Google open sourced the project
in 2014, and Kubernetes is often viewed as a container platform, mi-

croservices platform, and/or a cloud portability layer. All of the major
cloud vendors have a managed Kubernetes offering today.

A Kubernetes cluster runs multiple components that can be grouped
in one of three categories: master components, node components, or
addons. Master components provide the cluster control plane. These
components are responsible for making cluster-wide decisions like
scheduling tasks in the cluster or responding to events, such as start-
ing new tasks if one fails or does not meet the desired number of
replicas. The master components can run on any node in the cluster,
but are commonly deployed to dedicated master nodes. Managed
Kubernetes offerings from cloud providers will handle the manage-
ment of the control plane, including on-demand upgrades and
patches.

Kubernetes master components include the following:

kube-apiserver
Exposes the Kubernetes API and is the frontend for the Kuber-
netes control plane

etcd
A key/value store used for all cluster data

kube-scheduler

Monitors newly created pods (a Kubernetes-specific manage-
ment wrapper around containers, which we explain in more de-
tail later in this chapter) that are not assigned to a node and
finds an available node

kube-controller-manager
Manages a number of controllers that are responsible for re-
sponding to nodes that go down or maintaining the correct
number of replicas

cloud-controller-manager
Run controllers that interact with the underlying cloud providers

Node components run on every node in the cluster, which is also re-
ferred to as the data plane, and are responsible for maintaining run-
ning pods and the environment for the node to which they are de-
ployed.

Kubernetes node components include the following:

kubelet
An agent that runs on each node in the cluster and is responsi-
ble for running containers in pods based on their pod specifica-
tion

kube-proxy

Maintains network rules on the nodes and performs connection
forwarding

container runtime
The software responsible for running containers (see “Kuber-
netes and Containers”)

Figure 2-3 shows the Kubernetes master and worker node
components.

Figure 2-3. Kubernetes master and worker node components

Kubernetes is commonly deployed with addons that are managed by
the master and worker node components. These addons will include

services like Domain Name System (DNS) and a management user
interface (UI).

A deep dive into Kubernetes is beyond the scope of this book. There
are, however, some fundamental concepts that are important for you
to understand:

Pods
A pod is basically a management wrapper around one or multi-
ple containers, storage resources, or a unique network IP, that
governs the container life cycle. Although Kubernetes supports
multiple containers per pod, most of the time there is only one
application container per pod. That said, the pattern of sidecar
containers, which extends or enhances the functionality of the
application container, is very popular. Service meshes like Istio
rely heavily on sidecars, as you can see in Chapter 3.

Services
A Kubernetes service provides a steady endpoint to a grouping
of pods that are running on the cluster. Kubernetes uses label
selectors to identify which pods are targeted by a service.

ReplicaSets
The easiest way to think about ReplicaSets is to think about
service instances. You basically define how many replicas of a

pod you need, and Kubernetes makes sure that you have that
number of replicas running at any given time.

Deployments
The Kubernetes Deployment documentation states that you
“describe a desired state in a Deployment object, and the De-
ployment controller changes the actual state to the desired
state at a controlled rate.” In other words, you should use De-
ployments for rolling out and monitoring ReplicaSets, scaling
ReplicaSets, updating pods, rolling back to earlier Deployments
versions, and cleaning up older ReplicaSets.

Figure 2-4 provides a logical view of the fundamental Kubernetes
concepts and how they interact with one another.

Figure 2-4. Fundamental Kubernetes concepts

Kubernetes and Containers

Kubernetes is simply the orchestration platform for containers, so it
needs a container runtime to manage the container life cycle. The
Docker runtime was supported from day one in Kubernetes, but it
isn’t the only container runtime available on the market. As a conse-
quence, the Kubernetes community has pushed for a generic way to
integrate container runtimes into Kubernetes. Interfaces have proven
to be a good software pattern for providing contracts between two
systems, so the community created the Container Runtime Interface
(CRI). The CRI avoids “hardcoding” specific runtime requirements
into the Kubernetes codebase, with the consequence of always need-
ing to update the Kubernetes codebase when there are changes to a
container runtime. Instead, the CRI describes the functions that need
to be implemented by a container runtime to be CRI compliant. The
functions that the CRI describes handle the life cycle of container
pods (start, stop, pause, kill, delete), container image management
(e.g., download images from a registry), and some helper functions
around observability, such as log and metric collections and network-
ing. Figure 2-5 shows high-level CRI example architectures for Dock-
er and Kata containers.

http://bit.ly/31y3pdC

Figure 2-5. Docker versus Kata container on Kubernetes

The following list provides other container-related technologies that
might be useful:

OCI
The OCI is a Linux Foundation project that aims to design open
standards for container images and runtimes. Many container
technologies implement an OCI-compliant runtime and image
specification.

containerd
containerd is an industry-standard container runtime used by
Docker and Kubernetes CRI, just to name the most popular

https://en.wikipedia.org/wiki/Linux_Foundation

ones. It is available as a daemon for Linux and Windows, which
can manage the complete container life cycle of its host sys-
tem, including container image management, container execu-
tion, low-level storage, and network attachments.

Moby
Moby is a set of open source tools created by Docker to enable
and accelerate software containerization. The toolkit includes
container build tools, a container registry, orchestration tools, a
runtime, and more, and you can use these as building blocks in
conjunction with other tools and projects. Moby is using con-
tainerd as the default container runtime.

Serverless Computing

Serverless computing means that scale and the underlying in-
frastructure is managed by the cloud provider; that is, your applica-
tion automatically drives the allocation and deallocation of resources,

and you do not need to worry about managing the underlying in-
frastructure at all. All management and operations are abstracted
away from the user and managed by cloud providers such as Mi-
crosoft Azure, Amazon Web Services (AWS), and Google Cloud Plat-
form (GCP). From a developer perspective, serverless often adds an

event-driven programming model, and from an economic perspec-
tive, you pay only per execution (CPU time consumed).

Many people think Function as a Service (FaaS) is serverless. This is
technically true, but FaaS is only one variation of serverless comput-
ing. Microsoft Azure’s Container Instances (ACI) and Azure SF Mesh,

as well as AWS Fargate and GCP’s Serverless Containers on Cloud
Functions, are good examples. ACI and AWS Fargate are serverless
container offerings also known as Container as a Service (CaaS),

which allow you to deploy containerized applications without needing
to know about the underlying infrastructure. Other examples of
serverless offerings are API management and machine learning ser-
vices—basically, any service that lets you consume functionality with-
out managing the underlying infrastructure and a pay-only-for-what-
you-use model qualifies as serverless offering.

Functions

When talking about functions, people typically talk about FaaS offer-
ings such as AWS Lambda, Azure Functions, and Google Cloud
Functions, which are implemented on serverless infrastructure. The
advantages of serverless computing—fast startup and execution
time, plus the simplification of their applications—makes FaaS offer-

ings very compelling to developers because it allows them to focus
solely on writing code.

From a development perspective, a function is the unit of work, which
means that your code has a start and a finish. Functions are usually
triggered by events that are emitted by either other functions or plat-
form services. For example, a function can be triggered by adding an
entry to a database service or eventing service. There are quite a few
things to consider when you want to build a large, complex applica-
tion just with functions. You will need to manage more independent
code, you will need to ensure state is being taken care of, and you will
need to implement patterns if functions must depend on one another,
just to name a few. Containerized microservices share a lot of the
same patterns, so there have been quite a few discussions around
when to use FaaS or a container. Table 2-1 provides some high-level
guidance between FaaS and containers, and Chapter 3 covers the
trade-offs in more detail.

Table 2-1. Comparison of FaaS and containerized services

FaaS Containerized service

Does one thing Does more than one thing

Can’t deploy
dependencies

Can deploy dependencies

Must respond to one kind
of event

Can respond to more than one
kind of event

There are two scenarios in which using FaaS offerings might not be
ideal, although it offers the best economics. First, you want to avoid
vendor lock-in. Because you need to develop your function specific to
the FaaS offering and consume higher-level cloud services from a
provider, your entire application becomes less portable. Second, you
want to run functions on-premises or your own clusters. There are a
bunch of FaaS runtimes that are available as open source runtimes
and that you can run on any Kubernetes cluster. Kubeless, Open-
FaaS, Serverless, and Apache OpenWhisk are among the most pop-
ular installable FaaS platforms, with Azure Functions gaining more
popularity since it has been open sourced. Installable FaaS platforms
are typically deployed through containers and allow the developer to
simply deploy small bits of code (functions) without needing to worry

about the underlying infrastructure. Many installable FaaS frame-
works use Kubernetes resources for routing, autoscaling, and
monitoring.

A critical aspect of any FaaS implementation, no matter whether it
runs on a cloud provider’s serverless infrastructure or is installed on
your own clusters, is the startup time. In general, you expect functions
to execute very quickly after they have been triggered, which implies
that their underlying technology needs to provide very fast boot-up
times. As previously discussed, containers provide good startup
times, but do not necessarily offer the best isolation.

From VMs to Cloud Native

To understand how we ended up with the next generation of cloud na-
tive applications, it is worth looking at how applications evolve from
running on VMs to functions. Describing the journey should give you
a good idea of how the IT industry is changing to put developer pro-
ductivity into focus and how you can take advantage of all the new
technologies. There are really two different paths to the cloud native
world. The first one is mainly used for brownfield scenarios, which
means that you have an existing application, and typically follows a
lift-and-shift, application modernization, and eventually an application

optimization process. The second one is a greenfield scenario in
which you start your application from scratch.

Lift-and-Shift

Installing software directly on machines in the cloud is still the very
first step for many customers to move to the cloud. The benefits are
mainly in the capital and operational expense areas given that cus-
tomers do not need to operate their own datacenters or can at least
reduce operations and, therefore, the costs. From a technical per-
spective, lift-and-shift into Infrastructure as a Service (IaaS) gives you
the most control over the entire stack. With control comes responsi-
bility, and installing software directly on machines often resulted in
errors caused by missing dependencies, runtime versioning conflicts,

resource contention, and isolation. The next logical step is to move
applications into a Platform as a Service (PaaS) environment. PaaS
existed long before containers became popular; for example, Azure
Cloud Services dates back to 2010. In most past PaaS environments,

access to the underlying VMs is restricted or in some cases prohibit-
ed so that moving to the cloud requires some rewriting of the ap-
plications. The benefit for developers is not to worry about the under-
lying infrastructure anymore. Operational tasks such as patching the
OS were handled by the cloud providers, but some of the problems,

like missing dependencies, remained. Because many PaaS services
were based on VMs, scaling in burst scenarios was still a challenge

due to the downsides of VMs, which we discussed previously, and for
economic reasons.

Application Modernization

Besides offering super-fast startup times, containers drastically re-
moved the issues of missing dependencies, because everything an
application needed is packaged inside a container. It didn’t take long
for developers to begin to love the concept of containers as a packag-
ing format, and now pretty much every new application is using con-
tainers, and more and more monolithic legacy applications are being
containerized. Many customers see the containerization of an exist-
ing application as an opportunity to also move to a more suitable ar-
chitecture for cloud native environments. Microservices is the obvious
choice, but as you will see later in the chapter, moving to such an ar-
chitecture comes with some disadvantages. There are a few very ob-
vious reasons, though, why you want to break up your monolith:

Time to deployment is faster.
Certain components need to update more frequently than others.

Certain components need different scale requirements.

Certain components should be developed in a different
technology.

The codebase has gotten too big and complex.

Although the methodology to break up a monolith goes beyond the
scope of this book, it is worth mentioning the two major patterns to
move from a monolithic application to microservices.

Strangler pattern
With the Strangler pattern, you strangle the monolithic applica-
tion. New services or existing components are implemented as
microservices. A facade or gateway routes user requests to the
correct application. Over time, more and more features are
moved to the new architecture until the monolithic application
has been entirely transformed into a microservices application.

Anticorruption Layer pattern
This is similar to the Strangler pattern but is used when new
services need to access the legacy application. The layer then
translates the concepts from existing app to new, and vice
versa.

We describe both patterns in more detail in Chapter 6.

With applications being packaged in container images, orchestrators
began to play a more important role. Even though there were several
choices in the beginning, Kubernetes has become the most popular
choice today; in fact, it is considered the new cloud OS. Orchestra-
tors, however, added another variable to the equation insomuch as

development and operations teams needed to understand them. The
management part of the environment has become better, as pretty
much every cloud vendor now offers “orchestrators” as a service. As
with any cloud provider, “managed” Kubernetes means that the setup
and runtime part of the Kubernetes service is managed. From an eco-
nomical point of view, users are typically being charged for compute
hours, which means that you pay as long as the nodes of the cluster
are up and running even though the application might be sitting idle
or utilizing low resources.

From a developer perspective, you still need to understand how Ku-
bernetes works if you want to build microservices applications on top
of it given that Kubernetes does not offer any PaaS or CaaS features
out of the box.

For example, a Kubernetes service does not really represent the ser-
vice code within a container, it just provides an endpoint to it, so that
the code within the container can always be accessed through the
same endpoint. In addition to needing to understand Kubernetes, de-
velopers are also being introduced to distributed systems patterns to
handle resiliency, diagnostics, and routing, just to name a few.

Service meshes such as Istio or Linkerd are gaining popularity be-
cause they are moving some of the distributed systems complexity
into the platform layer. Chapter 3 covers service meshes in great de-

tail, but for now you can think of a service mesh as being a dedicated
networking infrastructure layer that handles the service-to-service
communication. Among other things, service meshes enable resilien-
cy features such as retries and circuit breakers, distributed tracing,

and routing.

The next step of application evolution is to use serverless in-
frastructure for containerized workloads, aka CaaS offerings such as
Azure Container Instances or AWS Fargate. Microsoft Azure has
done a great job to meld the world of its managed Kubernetes Ser-
vice (AKS) with its CaaS offering, ACI, by using virtual nodes. Virtual
nodes is based on Microsoft’s open source project called Virtual
Kubelet, which allows any compute resource to act as a Kubernetes
node and use the Kubernetes control plane. In the case of AKS virtu-
al nodes, you are able to schedule your application on AKS and burst
into ACI without needing to set up additional nodes in case your clus-
ter cannot offer any more resources in a scale-out scenario. Figure 2-
6 shows how an existing monolithic application (Legacy App) is bro-
ken down into smaller microservices (Feature 3). The legacy applica-
tion and the new microservice (Feature 3) are on a service mesh on
Kubernetes. In this case Feature 3 has independent scale needs and
can be scaled out into a CaaS offering using Virtual Kubelet.

Figure 2-6. Modernized application with Feature 3 being scaled out into CaaS using Virtual
Kubelet

Application Optimization

The next step is to improve the application in terms not only of further
cost optimization, but also of code optimization. Functions really ex-
cel in short-lived compute scenarios, such as updating records, send-
ing emails, transforming messages, and so on. To take advantage of
functions, you can identify short-lived compute functionality in your
service codebase and implement it using functions. A good example
is an order service in which the containerized microservice does all
the Create, Read, Update, and Delete (CRUD) operations, and a
function sends the notification of a successfully placed order. To trig-
ger the function, eventing or messaging systems are being used.

Eventually, you could decide to build the entire order service using
functions, with each function executing one of the CRUD operations.

Microservices

Microservices is a term commonly used to refer to a microservices
architecture style, or the individual services in a microservices archi-
tecture. A microservices architecture is a service-oriented architec-
ture in which applications are decomposed into small, loosely cou-
pled services by area of functionality. It’s important that services re-
main relatively small, are loosely coupled, and are decomposed
around business capability.

Microservices architectures are often compared and contrasted with
monolithic architectures. Instead of managing a single codebase, a
shared datastore, and data structure, as in a monolith, in a microser-
vices architecture an application is composed of smaller codebases,

created and managed by independent teams. Each service is owned
and operated by a small team, with all elements of the service con-
tributing to a single well-defined task. Services run in separate pro-
cesses and communicate through APIs that are either synchronous
or asynchronous message based.

Each service can be viewed as its very own application with an inde-
pendent team, tests, builds, data, and deployments. Figure 2-7 shows
the concept of a microservices architecture, using the Inventory ser-
vice as an example.

Figure 2-7. Inventory service in a microservices architecture

Benefits of a Microservices Architecture

A properly implemented microservices architecture will increase the
release velocity of large applications, enabling businesses to deliver
value to customers faster and more reliably.

Agility

Fast, reliable deployments can be challenging with large, monolithic
applications. A deployment of a small change to a module in one fea-
ture area can be held up by a change to another feature. As an appli-

cation grows, testing of the application will increase and it can take a
considerable amount of time to deliver new value to stakeholders. A
change to one feature will require the entire application to be rede-
ployed and rolled forward or back if there is an issue with that
change. By decomposing an application into smaller services, the
time needed to verify and release changes can be reduced and de-
ployed more reliably.

Continuous innovation

Companies need to move increasingly faster in order to remain rele-
vant today. This requires organizations to be agile and capable of
quickly adapting to fast-changing market conditions. Companies can
no longer wait years or months to deliver new value to customers:

they must often deliver new value daily. A microservices architecture
can make it easier to deliver value to stakeholders in a reliable way.

Small independent teams are able to release features and perform
A/B testing to improve conversions or user experience during even
the busiest times.

Evolutionary design

With a large monolithic application, it can be very difficult to adopt
new technologies or techniques because this will often require that
the entire application be rewritten or care needs to be taken to ensure

that some new dependency can run side-by-side with a previous one.

Loose coupling and high functional cohesion is important to a system
design that is able to evolve through changing technologies. By de-
composing an application by features into small, loosely coupled ser-
vices, it can be much easier to change individual services without af-
fecting the entire application. Different languages, frameworks, and
libraries can be used across the different services if needed to sup-
port the business.

Small, focused teams

Structuring engineering teams at scale and keeping them focused
and productive can be challenging. Making people responsible for de-
signing, running, and operating what they build can also be challeng-
ing if what you are building is heavily intertwined with what everyone
else is building. It can sometimes take new team members days,

weeks, or even months to get up to speed and begin contributing be-
cause they are burdened with understanding aspects of a system that
are unrelated to their area of focus. By decomposing an application
into smaller services, small agile teams are able to focus on a smaller
concern and move quickly. It can be much easier for a new member
joining because they need to be concerned with only a smaller ser-
vice. Team members can more easily operate and take accountability
for the services they build.

Fault isolation

In a monolithic application, a single library or module can cause prob-
lems for the entire application. A memory leak in one module not only
can affect the stability and performance of the entire application, but
can often be difficult to isolate and identify. By decomposing features
of the application into independent services, teams can isolate a de-
fect in one service to that service.

Improved scale and resource usage

Applications are generally scaled up or out. They are scaled up by in-
creasing the size or type of machine, and scaled out by increasing
the number of instances deployed and routing users across these in-
stances. Different features of an application will sometimes have dif-
ferent resource requirements; for example, memory, CPU, disk, and
so on. Application features will often have different scale require-
ments. Some features might easily scale out with very few resources
required for each instance, whereas other features might require
large amounts of memory with limited ability to scale out. By decou-
pling these features into independent services, teams can configure
the services to run in environments that best meet the services, indi-
vidual resource and scale requirements.

Improved observability

In a monolithic application it can be difficult to measure and observe
the individual components of an application without careful and de-
tailed instrumentation throughout the application. By decomposing
features of an application into separate services, teams can use tools
to gain deeper insights into the behavior of the individual features and
interactions with other features. System metrics such as process uti-
lization and memory usage can now easily be tied back to the feature
team because it’s running in a separate process or container.

Challenges with a Microservices Architecture

Despite all the benefits of a microservices architecture, there are
trade-offs, and a microservices architecture does have its own set of
challenges. Tooling and technologies have begun to address some of
these challenges, but many of them still remain. A microservices ar-
chitecture might not be the best choice for all applications today, but
we can still apply many of the concepts and practices to other archi-
tectures. The best approach often lies somewhere in between.

Complexity

Distributed systems are inherently complex. As we decompose the
application into individual services, network calls are necessary for
the individual services to communicate. Networks calls add latency
and experience transient failures, and the operations can run on dif-

ferent machines with a different clock, each having a slightly different
sense of the current time. We cannot assume that the network is reli-
able, latency is zero, bandwidth is infinite, the network is secure, the
topology will not change, there is one administrator, transport costs
are zero, and that the network is homogenous. Many developers are
not familiar with distributed systems and often make false assump-
tions when entering that world. The Fallacies of Distributed Comput-
ing, as discussed in Chapter 1, is a set of assertions describing those
false assumptions commonly made by developers. They were first
documented by L. Peter Deutsch and other Sun Microsystems engi-
neers and are covered in numerous blog articles. Chapter 6 provides
more information about best practices, tools, and techniques for deal-
ing with the complexities of distributed systems.

Data integrity and consistency

Decentralized data means that data will often exist in multiple places
with relationships spanning different systems. Performing transac-
tions across these systems can be difficult, and we need to employ a
different approach to data management. One service might have a
relationship to data in another service; for example, an order service
might have a reference to a customer in an account service. Data
might have been copied from the account service in order to satisfy
some performance requirements. If the customer is removed or dis-

abled, it can be important that the order service is updated to indicate
this status. Dealing with data will require a different approach.

Chapter 4 covers patterns for dealing with this.

Performance

Networking requests and data serialization add overhead. In a mi-
croservices-based architecture the number of network requests will
increase. Remember, components are libraries that are no longer
making direct calls; this is happening over a network. A call to one
service can result in a call to another dependent service. It might take
a number of requests to multiple services in order to satisfy the origi-
nal request. We can implement some patterns and best practices to
mitigate potential performance overhead in a microservices architec-
ture, which we look at in Chapter 6.

Development and testing

Development can be a bit more challenging because the tools and
practices used today don’t work with a microservices architecture.

Given the velocity of change and the fact that there are many more
external dependencies, it can be challenging to run a complete test
suite on versions of the dependent services that will be running in
production. We can implement a different approach to testing to ad-
dress these challenges, and a proper Continuous Integration/Contin-

uous Deployment (CI/CD) pipeline will be necessary. Development
tooling and test strategies have evolved over the years to better ac-
commodate a microservices architecture. Chapter 5 covers many of
the tools, techniques, and best practices.

Versioning and integration

Changing an interface in a monolithic application can require some
refactoring, but the changes are often built, tested, and deployed as a
single cohesive unit. In a microservices architecture service, depen-
dencies are changing and evolving independently of the consumers.

Careful attention to forward and backward compatibility is necessary
when dealing with service versioning. In addition to maintaining for-
ward and backward compatibility with service changes, it might be
possible to deploy an entirely new version of the service, running it
side-by-side with the previous version for some period of time.

Chapter 5 explores service versioning and integration strategies.

Monitoring and logging

Many organizations struggle with monitoring and logging of monolith-
ic applications, even when they are using a common shared logging
library. Inconsistencies in naming, data types, and values make it dif-
ficult to correlate relevant log events. In a microservices architecture,

when relevant events span multiple services—all potentially using dif-

ferent logging implementations—correlating these events can be
even more challenging. Planning and early attention to the impor-
tance of logging and monitoring can help address much of this, which
we examine in Chapter 5.

Service dependency management

With a monolithic application, dependencies on libraries are generally
compiled into a single package and tested. In a microservices archi-
tecture, service dependencies are managed differently, requiring en-
vironment-specific routing and discovery. Service discovery and rout-
ing tools and technologies have come a long way in addressing these
challenges. Chapter 3 looks at these in depth.

Availability

Although a microservices architecture can help isolate faults to indi-
vidual services, if other services or the application as a whole is un-
able to function without that service, the application will be unavail-
able. As the number of services increases, the chance that one of
those services experiences a failure also increases. Services will
need to implement resilient design patterns, or some functionality
downgraded in the event of a service outage. Chapter 6 covers pat-
terns and best practices for building highly available applications and
provides more detail on the specific challenges.

Summary

Every application, whether cloud native or traditional, needs in-
frastructure on which to be hosted, technology that addresses pain
points with development and deployment, and an architectural style
that helps with achieving the business objectives, such as time to
market. The goal of this chapter was to provide the basic knowledge
for cloud native applications. By now you should understand that
there are various container technologies with different isolation levels,

how functions relate to containers, and that serverless infrastructure
does not always need to be FaaS. Further, you should have a basic
understanding of microservices architectures and of how you can mi-
grate and modernize an existing application to be a cloud native
application.

The upcoming chapters build on this knowledge and go deep into
how to design, develop, and operate cloud native applications.

Chapter 3. Designing Cloud Native
Applications

Application architectures are a result of unique business require-
ments, which makes it difficult to come up with an architectural blue-
print that is generally applicable. Cloud native applications are no ex-
ception to that. A good way to approach designing cloud native ap-
plications is to consider five key areas when starting with the initial
design: operational excellence, security, reliability, scalability, and
cost. From an actual implementation perspective there are certain
building blocks, patterns, and technologies that are proven to be very
useful in solving specific problems. Besides discussing these five key
areas, this chapter also covers the most common architectural build-
ing blocks.

The goal of this chapter is to equip you with the knowledge necessary
to design and build cloud native architectures effectively.

Fundamentals of Cloud Native
Applications

All the major cloud providers offer guidance on how to build ap-
plications targeting their respective cloud environments. Microsoft

Azure has its cloud application architecture and cloud patterns guide,

Amazon Web Services (AWS) has its well-architected framework,

and Google offers various guides on how to build cloud native ap-
plications. Although those guides are more specific to their services
offered in each environment, you can identify five generally applica-
ble pillars that you should keep in mind regardless of the cloud
provider you are choosing.

Operational Excellence

Operational excellence means that you need to factor in how to run
your application, monitor it, and improve it over time when you are
starting to design. Build, measure, and learn are verbs often used to
describe the process, and DevOps is the way to implement it.
Chapter 5 covers many of the operational excellence principles in de-
tail, but it is still worthwhile to provide a high-level overview of the pil-
lars as part of this chapter because they play a fundamental role in
designing a cloud native application:

Automate everything
Cloud automation goes hand in hand with Infrastructure as
Code (IaC). This enables you to minimize errors during envi-
ronment provisioning and application deployment because the
entire environment management is being defined using code
artifacts. Azure Resource Manager and AWS CloudFormation

are good examples. Chapter 7 also briefly discusses Hashi-
Corp’s Terraform, which enables you to use the same IaC ap-
proach across multiple cloud vendors. Besides minimizing er-
rors, automation also enables you to track changes to your en-
vironment through source code control systems as well as
quickly spinning up new environments in a consistent way. Be-
sides automating how to provision the environments, you also
need to automate the entire deployment process of your
application.

Monitor everything
Monitoring allows you to learn not only about your application
and environment behavior, but also how your application is be-
ing used. Based on the monitoring data you can take action to
improve operational costs, performance, and the functionality
of an application. From an architectural point of view you need
to ensure that you have consistent monitoring across the entire
stack, starting from the infrastructure hosting the services you
use all the way to the features and functionality of your applica-
tion. As mentioned previously, Chapter 5 provides details on
how to accomplish consistent monitoring for the entire stack,

including the application.

Document everything

It is very common that cloud native applications are being built
by many teams. As you have seen in previous chapters, mi-
croservices architectures are promoting the idea of small inde-
pendent teams building individual services. Although documen-
tation is important in any software development project, it is
crucial in cloud native applications. Every team member needs
to be able to understand how they can consume services built
by other teams, or everyone should be able to understand how
the environment is defined and provisioned. Documentation
should be done automatically and not manually. A good exam-
ple is using an OpenAPI specification for your service APIs.

This allows you to automatically generate documentation for
your service API through check-ins given that you can use the
Swagger tools as part of a Continuous Integration (CI) step.

Make incremental changes
When making changes to both the environment as well as the
application, you need to ensure that those changes are incre-
mental and reversible. This leads back to one of the advan-
tages of using IaC. Because your environment description and
definition should reside in a source control repository, you can
easily reverse any change.

Design for failure

Failures in the cloud will happen—period. You need to think not
only about how to design your application to survive failures,

but also about about the processes that need to kick in when
something goes wrong. There are many testing frameworks
available that help you to simulate failures, helping you to learn
what the impact is and to plan to mitigate those failures.

Security

All the major cloud providers employ an army of security experts who
ensure that their environments are super secure. By now it has be-
come an accepted fact that cloud environments are safer than most
on-premises environments. Just because the cloud environments are
relatively safe does not mean that you can and should ignore the se-
curity of your applications. Because cloud native architectures typi-
cally consist of many components, the defense-in-depth concept has
been proven to be best suited for securing your applications. De-
fense-in-depth means that security controls are implemented
throughout your architecture. Although security for cloud native ap-
plications is beyond the scope of this book, it’s important to take a
brief moment to understand what defense-in-depth means for your
cloud native application. Let’s begin by looking at a simple cloud na-
tive application, as shown in Figure 3-1.

The functionality of this application is explained later in this chapter.
For the defense-in-depth discussions, it is enough to understand that
the voting application uses containerized services running on an or-
chestrator, an eventing system, Function as a Service (FaaS), and a
Datastore as a Service (DaaS).

Figure 3-1. A simple application

The following is a defense-in-depth list of containerized services, as-
suming you are using Kubernetes as the orchestrator:

Source code
Ensure that you are using a secure code repository and that
you track and audit access to it. As part of your CI step, you
can check your code for vulnerabilities, especially kernel ex-
ploits if you use Linux containers.

Container image
Ensure that you always add only what is necessary to the base
image and that you expose only the ports that are absolutely
needed.

Container registry
You should use a private registry with which you can track and
audit who has access to the registry using Role-Based Access
Control (RBAC) polices. You should also scan your images for
vulnerabilities using tools like Twistlock.

Pod
Ensure that container images can be pulled only from approved
registries. In Kubernetes, you can use policy controllers to im-
plement such policies. Make sure your pod has an identity so
that the code within it can access other services in a secure
manner. You should also think about whether you need to se-
cure the service-to-service communication within your cluster.

As you will see later, service meshes are great solutions for
that.

Cluster and orchestrator
You need to determine whether your cluster that is hosting the
orchestrator needs to be accessed over the internet or whether
a VPN is sufficient. You also need to secure access to the con-
trol plane of the orchestrator and enable audit logs. You can
use network policies to secure the communication paths be-
tween nodes and namespaces. Finally, make sure Kubernetes
has RBAC enabled.

For the service-to-service communication within the application—for
example, the voting service accessing the messaging service—you
need to ensure that the data in transit is protected and that only au-
thenticated services are granted access. In the example of the voting
service, only the voting app pod’s identity should be allowed to ac-
cess the messaging service. The same principles—protect the data
and secure the communication between services—apply to the other
services in the voting application.

This is by no means a complete list, but it should give you a sense of
how to think about a defense-in-depth approach.

Reliability and Availability

Reliability and availability are discussed throughout this book, but it
might still be useful to understand how they relate to each other.

Reliability means that the application will still work in an acceptable
way even in the presence of failure, whereas availability means that
your application is available for a certain amount of time.

From a reliability perspective, you need to ensure that your applica-
tion is designed in a way that it can recover from failure. As you have
seen, microservices architectures help in a way that each service is
independent and does not take down the entire application in case of
a failure. For the service itself, you should think about scaling hori-
zontally to increase the aggregated system availability. For example,

if you run two instances of any service, you improve its reliability in
case one instance fails for any reason. We have already touched on
the fact that the network is not reliable, so you should also consider
retries and circuit breakers as part of your design. Both are discussed
in detail as part of “Service Mesh”.

In summary, to design for reliability and availability you should have
testing in place that informs you of how your system is behaving and
how your recovery mechanisms work. And, of course, the application
needs to recover automatically by taking advantage of the scaling
capabilities.

Scalability and Cost

Scalability and cost go hand in hand. When designing a cloud native
application, you need to think about not only how to scale the applica-
tion, but also how to do it in a very cost-efficient way. Let’s think about
the voting application again. One way to implement it is to deploy the
voting app and the result app to a managed Kubernetes cluster. Pret-
ty much all managed Kubernetes services require you to define the
number of nodes you need at the outset, so you need to determine
what your maximal load will be and how many nodes you need to
handle the maximal anticipated traffic. This decision has a direct im-
pact on your cost given that you need to size your cluster in a way
that it can host all of the instances of the voting and results applica-
tion under load. This is not very cost effective, because most of the
time the application might not utilize all of the nodes.

One solution could be to go with fewer nodes and rely on horizontal
node autoscalers if the existing number of nodes cannot provide suffi-
cient resources for all instances anymore. The problem with that de-
sign is that spinning up new nodes usually takes longer than just
spinning up new containers, so it is not super useful in unpredictable
burst scenarios. There are a couple of options for how to implement
the solution; for example, burst into Container as a Service (CaaS)

offerings such as Azure Kubernetes Service virtual node or AWS Far-
gate. A good way to design your solution in a scalable and cost-effi-

cient way is to experiment during development and even in produc-
tion. Chapter 5 provides a detailed overview of testing cloud native
applications.

Cloud Native versus Traditional
Architectures

Chapter 2 examined cloud native and microservices architectures
and their pros and cons, but it is also useful to point out some differ-
ences from traditional architectures.

One of the fundamental differences between cloud native ap-
plications and traditional monolithic applications is how state—that is,

session state, application and configuration data, and so on—is han-
dled. Traditional applications are often stateful in nature, which
means that the application state was commonly stored with the com-
pute instance. For that very reason, load balancers were using sticky
sessions to make sure that a user request always ended up on the
same server instance. A good example for statefulness is session
state. With traditional applications, it was quite common to retrieve
user-specific data, such as user profile information, from an external
datastore and store it in session variables. The load balancer en-
sured that all of the traffic from the user ended up on the same in-
stance. Figure 3-2 shows a request (1) coming from a client to the

load balancer. The load balancer establishes a session with the first
virtual machine (VM). Application Instance 0 now loads the state and
serves the request.

In case of a failure, such as VM reboot, network connection loss, or
application instance crash, the load balancer detects that the first VM
is no longer reachable and establishes a new session on the second
VM for the user (2). Application Instance 1 has no state information
because the state was stored on the first VM. This can lead not only
to user dissatisfaction, but also to inconsistencies in state.

Cloud native applications, on the other hand, are stateless by nature.

Stateless does not mean that they do not deal with data, but it means
that they need to be designed in a way that the number of compute
instances is highly dynamic without affecting user experiences that
rely on data. In cloud native architectures, state is usually external-
ized, meaning that the data is stored in state stores such as storage
services. Chapter 4 provides a deep dive into working with data.

Figure 3-2. Traditional application

Figure 3-3 shows a request to an application with externalized state.

Figure 3-3. Cloud native application with externalized state

Here’s what’s happening in this application:

1. The client sends a request to the application.

2. The load balancer randomly routes the request to Application In-
stance 0, which reads and writes the state to an external state
store.

3. In case of a failure of Application Instance 0, the load balancer
sends the requests from the client to Application Instance 2.

4. Application Instance 2 reads the state for the initial request from
the external state store and the client is not affected by the failure
at all.

You also can see how keeping your services stateless helps with dy-
namic scaling in and out. The system can just add and remove in-
stances, scaling out and in, without affecting the user experience
(UX).

WARNING

One word of caution for scaling-in scenarios: most of the time you are responsible
for ensuring that all connections are drained of the instance before scaling in.

In addition, monolithic applications often use service orchestration as
the most common integration technique between different compo-
nents. Service orchestration, not to be confused with container or-
chestration on Kubernetes, is a technique whereby multiple compo-
nents or services are orchestrated to work as one. The services typi-
cally use synchronous communication. (Synchronous communication

and request/response patterns are explained later in this chapter.)
Figure 3-4 shows an application using service orchestration.

Figure 3-4. Service orchestration

Let’s take a closer look at this application:

1. The client sends a request to the application. The request is routed
through the load balancer to Service A (SvcA).

2. SvcA sends a request to both Service B (SvcB) and Service C
(SvcC) and waits for their response.

3. After SvcB and SvcC send their responses back, Svc A will re-
spond to the client.

Cloud native applications often use event-driven patterns for commu-
nication. Organizing requests across loosely coupled services is
called service choreography. With service choreography, each ser-
vice is isolated, autonomous, and responsible for managing its own
state, which are some of the characteristics of microservices-based
applications. Figure 3-5 demonstrates service choreography.

Again, let’s see how this application works:

1. The client sends a request to the application. The request is routed
through the load balancer to SvcA, and SvcA requests data for the
user request from the messaging system.

2. SvcB acts independently and sends its data to an eventing system.

3. SvcC acts independently and sends its data to an eventing
system.

4. SvcA picks up the data from the eventing system and sends it
back to the client.

Figure 3-5. Service choreography

The communication for service orchestration and service choreogra-
phy are described in more detail in the sections “Request/Response”
and “Publisher/Subscriber”.

Finally, there is a big difference in how cloud native architectures deal
with failures as opposed to how traditional applications cope with
them. As mentioned earlier, cloud native architectures expect failures
and implement mechanisms to deal with them, whereas traditional

architectures try to minimize failures; for example, through database
clustering and so on.

Functions versus Services

One of the very first decisions that you must make when building a
new application, or even when moving an existing application to a
cloud native application, is whether you should use a containerized
service (for the remainder of the chapter, we refer to it simply as a
service) or move straight to FaaS. Chapter 2 provided some high-lev-
el guidance on when to use functions versus services. In a nutshell,
you should consider using FaaS for simple, short-lived, and indepen-
dent tasks, but many FaaS offerings have matured in a way that you
can implement entire applications using FaaS. One limiting factor is
that most FaaS offerings still impose a timeout on the execution time
of a function.

Function Scenarios

The following is a list of scenarios for which functions are a good fit:

Simple parallel execution scenarios in which functions do not need
to communicate with one another. Sample scenarios include gen-
eration of artifacts, updating records, map-reduce functions, and
batch processing.

Many Internet of Things (IoT) scenarios use functions for orches-
tration tasks. For example, messages are sent to an IoT hub,

which triggers functions to perform some computing and routing
tasks on a message.

Some applications are entirely built using FaaS offerings, meaning
that the complete application is built using functions. Azure
Durable Functions or AWS Step Functions are function types that
enable you to build an entire application using function primitives.

Those function types also help with orchestrating longer-running
tasks in an application.

Considerations for Using Functions

There are several considerations that you need to keep in mind when
building an entire application using functions:

Challenges when moving from a monolith to microservices
Because functions are typically broken down into even smaller
“services,” you generally need to deal with a multiplier of those
challenges, such as network communication complexity.

Limited lifetime of a function
As mentioned previously, most FaaS offerings limit the execu-
tion time of a function, which means that they are not suited for
long-running tasks.

No usage of specialized hardware
As of this writing, there is no cloud offering for a function to take
advantage of specialized hardware such as graphics process-
ing units (GPUs), which are superior to standard CPUs for
training models for machine learning applications.

Functions are stateless and not directly network addressable
For that reason, FaaS encourages an event-driven distributed
programming model or the use of API management solutions to
front functions. Typically, functions work together by passing
data through eventing or messaging systems. The state is
stored in cloud services, which means event handling requires
moving pieces of the state from storage into and out of state-
less functions. This incurs networking latency with every hop.

Overall, you can see how a large application built solely by
functions can suffer a performance loss as a result of all of the
communication and data being processed over the network.

Local development and debugging
Local development and debugging is not available for all the
FaaS offerings, because some of the FaaS runtimes are not
portable.

Economics

Although you save on compute costs, FaaS offerings typically
charge for execution time; thus, you need to factor in increased
costs for networking and other cloud services such as storage
and eventing. There are scenarios for which applications imple-
mented entirely on FaaS are more expensive; unfortunately,

planning and predicting the costs of FaaS remain very
challenging.

Composite of Functions and Services

Services packaged in containers, on the other hand, do not have a
limit on the execution time. Besides, you can use specialized hard-
ware; for instance, many managed Kubernetes services allow you to
build clusters with specialized hardware such as GPUs. You can also
create services using local persistent storage, which limits the net-
work hops your application needs to make.

Most of the time a combination of functions and services is a great
solution allowing you to take advantage of the simplicity of FaaS
while benefitting from the flexibility of containerized services.

Figure 3-6 shows the previously introduced voting application using
this hybrid approach.

Figure 3-6. Simple voting application using a combination of functions and services

The voting app is a containerized service that allows users to submit
votes. After a vote is submitted, the message is placed into an event-
ing system. The eventing system triggers functions that add the data
to a datastore based on some header information, such as device
type. The results application reads the data from the datastore and
displays the voting results. The pattern implemented here is also
known as an Event Sourcing pattern.

Implementing the logic to add data to the datastore as a function al-
lows the application to easily scale when needed and also to run in
the most economical way.

Serverless cloud native applications are very dynamic, meaning new
pods or functions can spin up and down based on demand or failures.

The scale out and scale in, meaning adding more service instances
(pods) or functions or decreasing the number, is usually provided by
the cloud provider. Your responsibility is to design your application in
a way that it can handle those scenarios. For instance, if your applica-
tion stores its state locally, it will lose the state when the pod is moved
or new functions are spun up due to the statefulness nature, as men-
tioned at the beginning of this chapter.

The recommended best practice for this case is to push that data into
highly available managed services, such as a Relational Database
Management System (RDBMS) or caching services. You also can de-
ploy stateful applications on Kubernetes by using Stateful Sets, which
use persistent volumes. (Chapter 4 covers Kubernetes Stateful Sets
in more detail.)

You also need to understand how your application scales. Cloud
providers make it very easy to scale your cloud native applications,

but you are still responsible for thinking about what happens when
the application scales. For example, if you use large container im-

ages and you expect your application to quickly scale in burst scenar-
ios, you are setting yourself up for failure. Pulling the image onto an-
other node can take some time because a large package needs to be
downloaded over the wire. The download can take a considerable
amount of time, even if this happens within a cloud provider network
from a private container registry to a cluster or CaaS offering.

Even though cold-start behavior, which is the time it takes to launch a
function or a container, is usually not so much a problem for FaaS of-
ferings, you might still need to understand the scale behavior. In a
burst scenario, many functions will run concurrently, and if you have
dependencies on other services such as RDBMS, you might max out
your connections, which will ultimately result in a slowdown of your
application.

The bottom line is that even with the cloud provider’s autoscaling ca-
pabilities, you are not off the hook, and you still need to understand
how your application scales.

API Design and Versioning

Because the API is the interface other services use to communicate
with your service, it is important to properly document and version
your APIs. The reality is that API versioning is difficult, especially giv-

en that there are different approaches that you can take. Based on
the research done by Jean-Jacques Dubray, the cost of developing
your API depends on the strategy you take. He classified three differ-
ent strategies:

The knot
Consumers of your API are tied to a single version of the API.
When the API changes, all consumers need to change as well.
This is the most expensive approach for the consumers be-
cause they are forced to upgrade each time a new API version
is released.

Point-to-point
All API versions are kept running and each consumer uses the
version they need to. Consumers can migrate to the new ver-
sions when they decide to. Compared to the knot, this is a bit
better strategy for the consumers, but it is costly for the API de-
veloper to maintain older API versions.

Compatible versioning
All consumers talk to the same API version. Old versions are
deprecated and no longer exist because the latest version is
backward compatible.

The results from the research have shown that the compatible ver-
sioning strategy offers the best efficiency. It does introduce more
work for the API developer in order to maintain backward
compatibility.

REST doesn’t provide any specific versioning, but there are three ap-
proaches that deal with versioning: global versioning, resource ver-
sioning, and mime-based approach. Each one of these approaches
has its pros and cons, and there is no clear and best approach here.

With global versioning, you version the entire API and the version is
part of the path (e.g., /api/v1/users) or a subdomain (e.g., api-v1.ex-
ample.com/users). If the representation of the user changes, you cre-
ate a new version of the full API, even though other resources might
not have changed at all. Creating a new version of the API with every
breaking change gives you, the developer, a clearer and easier way
to get rid of the old API versions. However, there are downsides to
this approach. The API consumers are constantly pushed to move to
the newer versions as they are released, and there’s a significant
cost in testing and maintaining multiple versions, and this takes a lot
of time.

An approach that gives you a more granular versioning story is to use
resource versioning. Very similar to the global version, but in this
case, you are versioning specific resources. That way, if the user’s

resource changes, you can create a new version of that specific re-
source (e.g., /api/v2/users); however, the other resources would re-
main unchanged (e.g., /api/v1/tasks).

Both of these approaches have the API versions either in the URL
path or the domain. With the mime-based approach, you are still ver-
sioning on the resource level; however, you are not including the ver-
sion number in the URL but in the headers instead. For example, you
use the Accept and Content-Type headers to describe the resource
version and its type (e.g., Accept:
application/vnd.example.users.v2+json), whereas the URL stays ver-
sionless (e.g., /api/users). This means that your API endpoints stay
clean, but it could make using the API more complicated.

Regardless of the aforementioned REST versioning approaches, a
bigger challenge to the API versioning is the way you are managing
your code that can support different multiple resource versions. You
don’t want your versioning to be so strict that it prevents you from
making changes to the API. On the other hand, you also need to
maintain the stable contract. As a part of your strategy, you should
understand how to manage changes to the API while still providing a
stable contract to the clients.

Using the compatible versioning strategy, your APIs are backward
compatible and different clients can all talk to one version of the API.

Because different clients can talk to the same API version, there’s no
need to maintain a separate API version for each client.

In addition to the client and the server (the API implementation) ver-
sion, you also need to version the message formats as well as the
API documentation. Note that you don’t version the resources, rela-
tions between the resources, or the API itself.

When introducing changes to the API you need to consider the back-
ward and potentially forward compatibility of the API. For example, if
you are changing the URI (e.g., query parameters) or modifying the
headers or body of the message and these changes violate or break
the backward compatibility, you need to either create a new resource
or use content negotiation if the message format changed.

Regardless of the approach you take, it is important that you are able
to monitor the API and versions of the API used by the consumers.

Having good monitoring in place helps you decide how and when to
deprecate the APIs.

API Backward and Forward Compatibility

Before going into the service communication options, let’s go over a
quick refresher on API compatibility. Because you will be deploying
services autonomously and independently from one another, you
need to ensure that updates to your service don’t break existing ser-

vices with which you are communicating. If you are applying the com-
patible versioning strategy explained earlier, your services need to be
backward and forward compatible. Figure 3-7 shows Service A v1.0

working together with Service B v1.0.

Figure 3-7. Backward compatibility

Now you deploy Service B v2.0, which adds some new functionality.

Backward compatibility means that the Service B v2.0 can still work
together with Service A v1.0, and it won’t break its functionality. The
following are some best practices for maintaining backward
compatibility:

Provide sensible defaults or optional values for new APIs. If that’s
not possible, create a new resource.

Never rename existing fields or remove them.

Never make optional things required.

Mark old API endpoints as obsolete if not used anymore.

Test the combination of new and existing service versions by pass-
ing old messages between them.

If you intend to support rollback functionality with your services, you
will need to think about forward compatibility as well. Forward com-
patibility means that your service can accept and gracefully handle
requests for a later version of itself. The main guideline for ensuring
forward compatibility is to ignore any additional fields and don’t throw
errors.

Semantic Versioning

Using semantic versioning is almost a standard by this point. The se-
mantic versioning (major.minor.patch) gives guidelines on when to
increase which part of the version number:

Major version is increased when you make API-incompatible
changes.

Minor version is increased when you add backward-compatible
features.

Patch version is increase when you make backward-compatible
bug fixes.

You can apply this type of versioning at the API level to communicate
to your consumers about the types of changes that were made.

Service Communication

Networking and service communication are essential topics in dis-
tributed systems because they can have a significant impact on the
overall performance of an application. Therefore, it is beneficial to un-
derstand the various service communication options when you are
designing and implementing cloud native applications. At a high level,
you can differentiate between external service communication and
internal service communication. Whereas internal refers to communi-
cation within a cluster (i.e., service-to-service communication in the
same Kubernetes cluster), external communication refers to commu-
nication from or to external services such as Database as a Service
(DBaaS) offerings. External service communication from a client into
a cluster is often referred to as North-South traffic, and internal ser-
vice communication is often referred to as East-West traffic. In the
context of Kubernetes, ingress controllers are used for North-South
and egress controllers can be used to access external services. Ku-
bernetes provides load balancing East-West traffic out of the box by

using kube-proxy, but service meshes provide some richer capabili-
ties. Service meshes, ingress, and egress are addressed later in this
chapter in “Gateways” and “Service Mesh”.

Protocols

Most of the time, HTTP is used as the protocol for the communication
between clients and cloud native applications; however, it is not the
most performant of protocols. Large microservices applications can
have hundreds or even thousands of services, and the more services
you have, the more communication and data exchange need to hap-
pen. As a result, the protocol selected becomes an essential factor
that can affect performance, and changing communication protocols
for productions services can be reasonably expensive. Even though
HTTP is a natural choice for communication from a client to your ser-
vice over the internet, you should consider other protocols for com-
munication between internal services to improve performance.

Figure 3-8 shows how you can use a proxy to carry out a protocol
transform. We cover this in more detail later in the chapter when we
discuss ingress controllers and gateways.

Figure 3-8. Proxy for protocol translation

Next we’ll discuss several popular protocols that are proven to pro-
vide better performance in cloud native applications.

WebSockets

WebSockets were standardized in 2013 and represent a standard for
bidirectional real-time communication between servers and clients.

They allow a long-held single TCP socket connection to be estab-
lished between the client and server, which provides for bidirectional,
full-duplex messages to be instantly distributed with little overhead.

The WebSockets handshake process starts with the client sending a
regular HTTP request to the server. An Upgrade header is included in
this request, which informs the server that the client wants to estab-

lish a WebSocket connection. When the handshake is complete, the
initial HTTP connection is replaced by a WebSocket connection that
uses the same underlying TCP/IP connection. WebSockets allow for
transferring large data volumes without incurring the overhead asso-
ciated with traditional HTTP requests. The result is a very low-latency
connection.

HTTP/2

HTTP/2 does not entirely replace HTTP. The present verbs, status
codes, and most of the headers will remain the same as today.

HTTP/2 is primarily designed for low latency, and multiplexing re-
quests over a single TCP connection using streams, improving the
efficiency in the way in which data is transferred on the wire. HTTP/2

is a binary protocol, whereas HTTP 1.x is textual. Binary protocols are
more efficient to parse because there is only one code path, which
makes them very efficient on the wire.

gRPC

gRPC is a fairly new protocol that is quickly gaining in popularity in
the microservices community due to its performance and developer
friendliness. gRPC is a high-performance, lightweight communication
framework using HTTP/2 as the transport protocol, providing features
such as authentication, bidirectional streaming and flow control,

blocking or nonblocking bindings, and cancellation and timeouts.

gRPC uses protocol buffers, aka protobufs, which provide a way of
defining and serializing structured data into an efficient binary format.
Due to their binary format, they are also small payloads that are quick
to send over the wire.

Messaging Protocols

As mentioned earlier, cloud native applications embrace event-driven
and message-based approaches, so it is worth mentioning messag-
ing protocols. There are many messaging protocols out there:

STOMP, WAMP, AMQP, and MQTT, to name a few. Although de-
scribing each protocol is beyond the scope of this book, let’s none-
theless take a quick look at the two most popular messaging
protocols.

Message Queue Telemetry Transport

The Message Queue Telemetry Transport (MQTT) is a binary proto-
col that is mainly associated with IoT and machine-to-machine sce-
narios. It was designed for low-bandwidth environments with unpre-
dictable network connectivity. For instance, MQTT is often used for
communication between sensors and gateways. It is a very light-
weight protocol that focuses on publisher/subscriber messaging with

some additional features such as delivery guarantees. MQTT’s
strengths are simplicity and a compact binary packet payload.

Advanced Message Queuing Protocol

The Advanced Message Queuing Protocol (AMQP) is a binary proto-
col that is mainly designed around messaging with a rich feature set,
including reliable queuing, topic-based publisher/subscriber, routing,

security, and transactions. The rich feature set does not make it a
particularly lightweight or fast protocol. That said, AMQP has been
battle-tested by various vendors and has been proven to be very reli-
able. One of the main reasons to use AMQP is its interoperability be-
tween different vendors.

Both protocols are used with WebSockets over TCP, which makes
them suitable for environments that restrict traffic over port 443

(HTTPS).

A general rule of thumb is to use MQTT if you need simple, reliable
messaging, and AMQP if you need to focus on interoperability and
functionality that goes beyond simple messaging.

Serialization Considerations

Besides protocols, data serialization and deserialization can affect
the overall performance and, in the worst case, become a bottleneck.

JSON is probably the most widely used format right now. JSON is
readable, self-contained, and easily extensible, but it has a reason-
ably large memory footprint, and the serialization and deserialization
can be expensive in high data volumes.

Protobuf uses a binary format, and as a result you need a generator
for every language, as opposed to JSON, which is just a string format
and understood in every modern language. The good news is that
there are generators available for pretty much any modern language.

With protobufs, the schema is declared in a proto file beforehand, in-
stead of passing the schema with every message like in JSON. The
proto file is added to every service that needs to serialize and deseri-
alize the data, and the generator generates an object representing
the data; no serialization code is required.

Even though protobufs are probably the way to go when performance
matters and you need to deal with a high volume of data, you also
can do a couple of things to improve JSON serialization and
deserialization:

Choose a good JSON serializer.

Consider whether you need to reserialize the object if a down-
stream service works with the same object. Instead, you can aug-
ment the deserialized object and pass it on to another service in a
form.

Idempotency

No matter whether you are using synchronous or asynchronous com-
munication, you need to ensure that if the same operation is executed
multiple times, the target system remains unchanged. Being able to
run an operation multiple times without changing the result is called
idempotency. As you will see later in the chapter, messages can be
received and processed more than once based on failed receivers,

retry policies, and so on. Ideally, the receiver should handle the mes-
sage in an idempotent way so that the repeated call produces the
same result.

Let’s assume that a wearable device adds some health data to a
queue, and a service picks it up to add it to a personal health score-
card. The following message could look similar to the one submitted
by the device:

{

 "heartrate" : {

 "time" : "20200203073000",

 "bpm" : "89"

 }

}

Let’s assume further that the operation fails due to some network is-
sues and the receiver cannot pick up the message, so the service
sends the message again due to some retry policies. Now you end up
with the same message twice. If the receiver now picks up the mes-
sages and process them both, the heart rate will be shown as 178

bpm, which probably causes some concern for most people. To avoid
this, you need to make the operation idempotent. A common way of
ensuring that an operation is idempotent is by adding a unique identi-
fier to the message and making sure that the service processes the
message only if the identifiers do not match. The following is an ex-
ample of the same message, but with an identifier added:

{

 "heartrate" : {

 "heartrateID" : "124e456-e89b-12d3-a456-4266554

 "time" : "20200203073000",

 "bpm" : "89"

 }

}

Now, the receiver can check whether the message has already been
processed before processing it. This is also commonly referred to as
de-duping. The same principle applies to data updates. The bottom
line is that you should design operations to be idempotent so that
each step can be repeated without affecting the system.

Request/Response

Request/response, also known as request/reply, is a very straightfor-
ward message exchange pattern that can be implemented synchro-
nously and asynchronously. The concept is straightforward, as shown
in Figure 3-9. Service A requests data from Service B (1), and Service
B processes the request and sends the data back to Service A (2).

Figure 3-9. Simple request/response

If you use an asynchronous communication pattern you will be facing
the issue that both Service A and Service B can engage in multiple
communications, so you need to make sure that Service A receives

the appropriate response for the request. One way to solve this is by
introducing a request and a response queue and using correlation
IDs (CIDs), as shown in Figure 3-10.

Figure 3-10. Request/response with correlation ID

At a high level, request/response with a CID implements the following
steps:

1. Service A creates a request for a record such as a username with
an ID, in this case 12, and waits for a message with CID 12 to be
returned.

2. Service B picks the message from the queue, retrieves the data for
that user, and assigns a CID based on the ID.

3. Service B adds the CID 12 to the response along with the user
data and sends the response back. The response queue can have
many more responses with CIDs 3,5,21.

4. Service A picks the response with the CID that relates to the re-
quest ID.

Publisher/Subscriber

Publisher/subscriber (sub/sub) is one of the most common patterns
to facilitate asynchronous communication within a cloud native appli-
cation. The publisher publishes a message to a topic, which will im-
mediately be picked up by all the subscribers that have subscribed to
the topic. Pub/sub serves two main scenarios:

Enable loose coupling between services and functions because it
decouples publishers from subscribers.

Enable event-driven design, which is a wildly popular design ap-
proach for cloud native applications.

At a high level, pub/sub uses the following steps, which are illustrated
in Figure 3-11:

1. Service A published a message to a topic.

2. A messaging broker notifies all of the subscribers that are sub-
scribed to that topic.

3. The subscribers consume the message.

Figure 3-11. Pub/sub architecture

There are a few things you need to keep in mind when using this pat-
tern for dealing with the state:

By default, the order of messages is not guaranteed, so you need
to design for idempotent operations to avoid issues when a mes-
sage is processed twice.

Stateful applications, on the other hand, do care about message
ordering, so you need to plan for this by taking advantage of the

messaging system’s built-in ordering functionality or by applying a
priority queue pattern.

If message processing results in an error or even crash of the con-
sumer—for example, due to a faulty format—make sure you do not
return the message and instead put it into a poison message
queue.

Queues are an essential part of pub/sub messaging; the question,

then, is what is the difference between pub/sub and message
queues? The key difference is that with message queues each mes-
sage is processed only once, by a single consumer, as opposed to
pub/sub messaging in which multiple receivers subscribed to a topic
can consume a message. That said, message queues can support
high rates of consumption by adding multiple consumers for each
topic, but only one consumer will receive each message on the topic.

Choosing Between Pub/Sub and Request
Response

In a cloud native architecture, choosing between pub/sub and re-
quest/response really depends on the use case. Figure 3-12 shows
the same cloud native application using request/response and
pub/sub to highlight some of the differences in a practical example:

1. In the request/response architecture, S1 receives an asyn-
chronous request from a client. After it has processed the request
and saved the data, S1 sends a request to S2 and S3.

2. After S3 has processed the request and saved the data, it sends a
request to S4 and S5.

3. Now S3 must wait for a response from S4 and S5. If either service
fails for some reason S3 waits for it and after a timeout, it will send
a timeout to S1, and S1 will send a timeout to the client. For the
client, it can be a very long time until it is notified that the request
failed. To make matters worse, if the client makes the same re-
quest again you can end up with inconsistent data, except that you
have made the operation idempotent, as S1 and S3 have already
processed the request.

Overall, request/response is making your services tightly coupled,

which has all the disadvantages mentioned previously. If you use a
pub/sub pattern, on the other hand, you decoupled all of the services,

and the communication between the services is handled by passing
messages into a pub/sub system such as Redis, RabbitMQ, or
Apache Kafka.

1. In the pub/sub architecture, a client sends an asynchronous re-
quest to S1. S1 processes the request, saves the data, and places
a message into the pub/sub system, and S1 can report back to the
client.

2. S2 and S3 have subscribed to the topic in the message broker and
can pick up the message.

3. S3 can then process the message and save it and then report back
to S2 that the operation was successful. S4 and S5 have sub-
scribed and can pick up the message when ready. The pub system
ensures that the message is delivered at some point in time, which
means that your data will be eventually consistent.

Figure 3-12. Request/response versus pub/sub

Synchronous versus Asynchronous

In a microservices application, each service instance is typically a
process. The same is true for using containers with functions. As a
result, services and functions must interact using an interprocess

communication (IPC) mechanism. You can implement IPC synchro-
nously and asynchronously. Synchronous means that the client waits
until a response is available. Synchronous calls are straightforward to
understand and to use, so why not implement the entire interservice
communication in a synchronous way? There are a few things that
you should keep in mind when going down the synchronous path:

Exhaustion of resources
Synchronous means that a thread is blocked while it is waiting
for a response. This behavior easily can lead to depletion of re-
sources in a scale scenario.

Response latency
For example, if a user-facing service calls Service A, Service A
calls Service B, and so on, the total response time is the sum of
the individual service responses. If one service is slow to re-
spond, it holds up the entire response and the application laten-
cy increases, which usually results in miserable users.

Cascading failures
Similar to response latencies, a failure in one of the services
can lead to a cascading failure that could ultimately lead to a
complete breakdown of the application.

Instead of implementing solutions to solve the potential problems that
you run into by using synchronous communication, you should con-
sider using asynchronous communication between services. With
asynchronous communication between services, the client makes a
call but does not block until it gets a response; instead, it can use the
freed-up resources to do other things. In a cloud native world, event
and queue-based asynchronous messaging are the most popular
patterns for IPC.

Gateways

In the world of microservices and functions, the functionality clients
require usually spreads across multiple services and functions. How
do clients know what endpoints to call? Also, what happens if you re-
deploy existing services to different endpoints or introduce new
services?

At a higher level, you can differentiate between two types of gate-
ways: API gateways and application gateways. The latter doesn’t
necessarily have anything to do with the APIs, and they are typically
used for Secure Sockets Layer (SSL) offloading and routing for static
resources (HTML, CSS files, etc.) or routing to object storage.

The API gateways can help to solve the problems we mentioned ear-
lier. One or more API gateways can sit between the clients and ser-
vices. Their responsibility can vary—from routing incoming requests
to underlying services to exposing business APIs through a common
endpoint, and performing tasks such as SSL termination or authenti-
cation. Additionality, gateways can be layered: you can have one
gateway responsible for offloading SSL, the next one will do the au-
thentication and authorization, and then the last one might do the ac-
tual routing to the underlying services.

Routing

Routing is one of the most common functions of a gateway. In this
scenario, a gateway acts as a reverse proxy and routes incoming re-
quests to backend services, as shown in Figure 3-13. A reverse proxy
typically sits inside a private network and manages incoming client
requests to the appropriate backend services.

The pattern is useful when clients need to communicate with one
endpoint. The gateway is then responsible for routing the request to
the various services based on IP, port, headers, or the URL. This sim-
plifies the logic that clients need to implement because only single
endpoints need to be used.

When making decisions on whether to use this pattern, you need to
take into account the operating costs and maintaining the gateway.

Because you are abstracting multiple services behind one endpoint,
the gateway might also become a severe bottleneck; you need to en-
sure that the gateway can handle the load and scale it appropriately.

Alternatively, you can use one of the cloud-provider–managed gate-
way services and have it take care of operating and maintaining the
gateway for you.

Figure 3-13. Gateway used for routing

Aggregation

A gateway can also act as an aggregator: it takes one request from
the client and makes multiple requests to the underlying services. It
then aggregates the service responses and returns the single re-
sponse back to the client, as shown in Figure 3-14.

Figure 3-14. Aggregating multiple requests into a single one

When a client makes a request (1), the gateway makes multiple re-
quests to underlying services or functions (2), the services respond
(3), and the gateway aggregates the results and returns it to the client
(4). The main benefit of this approach is to reduce the traffic between
clients and services; instead of a client making multiple requests to
different endpoints it creates a single request to the gateway. One
thing to note with gateway aggregations is to ensure that you are not
introducing any coupling between the gateway and services. If you
are doing aggregation in the gateway, be cognizant of the additional
load that’s being introduced. Also, be careful with adding to the gate-
way that might cause it to become a monolith. If your aggregation log-
ic is becoming too much for the gateway or if the gateway is breaking
down from the load, it might work better if you introduce a separate
aggregation or batch service, as shown in Figure 3-15.

Figure 3-15. Gateway with dedicated aggregation service

Moving the aggregation logic out of the gateway lessens the load on
the gateway. It also gives you the ability to separately update the ag-
gregation/batching service, without affecting the gateway.

Offloading

One of the most common uses for gateways is to offload different
functionality from individual services and do them at the gateway lev-
el. For example, instead of having each service be responsible for
SSL termination, you can offload this functionality to the gateway in-
stead. Using SSL termination also separates security assets like cer-
tificates.

If you decide to use the offloading, make sure that you are offloading
only functionality that’s used by all services, often referred to as
cross-cutting concerns, and never offload any business logic to the
gateway. Here are some examples of functionality that can be off-
loaded from the individual services and used at the gateway level:

Authentication and authorization
Rate limiting, retry policies, circuit breaking
Caching
Compression
SSL offloading
Logging and monitoring

You need to keep in mind that the performance can decrease as you
offload more functionality into the gateway. Therefore, just as it is es-
sential to monitor your service, it is essential to monitor the gateways
as well.

Implementing Gateways

There are multiple technologies available for implementing gateways.

The most popular proxies that are used for gateways are NGINX,

HAProxy, and Envoy. All of these are reverse proxies that offer load
balancing, SSL, and routing. All these proxies are battle-tested in
many production scenarios

In addition to implementing your gateway, you could decide to go the
managed route and use one of the cloud providers’ offerings, such as
Azure Application Gateway, Azure Frontdoor, or Amazon API Gate-
way.

Egress

The previous section examined ingress gateways that deal with traffic
entering your system and can do various tasks such as routing or of-
floading functionality. Similarly, an egress gateway running inside
your private network can help direct and control all traffic exiting the
private network. This enables your services to access any external
services in a controlled way. For example, you can use an egress
gateway to block all outbound connections from your private network.

This is crucial for security in case your services are compromised.

Blocking all outbound connections prevents potential attackers from
making outbound calls and perform further attacks.

Using an egress gateway as part of a service mesh such as Istio of-
fers even more granular control over outgoing traffic and provides ad-
ditional features such as Transport Layer Security (TLS) origination.

For example, you can configure Istio to perform TLS origination for
traffic to external services where the egress gateway accepts unen-
crypted internal HTTP connections, encrypt the requests, and forward
them to external services. Additionally, you can control the use of
wildcard hosts to direct traffic to a set of hosts within a common do-
main; for example, allowing access to *.example.com, or limit egress
traffic to a set of IP addresses.

You should consider using an egress gateway if you need to monitor
or control access to external services.

Service Mesh

In the cloud native world, each service is built and deployed indepen-
dently, and each service potentially communicates with other mi-
croservices. As your solution grows, you develop more and more mi-
croservices, which also means the communication between services
increases and also becomes more complicated. With communication

being important, your services need to be resilient and almost im-
mune to any network issues. You need to have a way to implement
request retries and define timeouts, circuit breakers, and similar. Hav-
ing a single library with communication-specific functionality that does
all this is one way to go, but it might not help you much if your ser-
vices are implemented using different programming languages. You
could decide to rewrite it for each language separately, but you end
up with services using the same functionality but implemented in a
different language, as shown in Figure 3-16.

Figure 3-16. Service using separate libraries with the same functionality

Managing libraries can quickly become a nightmare because you
need to ensure that each language-specific implementation of the li-
brary is up-to-date with the others. Any changes made to one version
of the library need to be made to all different versions, and so on.

One of the ideas behind the service mesh is to increase developer
productivity by moving common functionality out of each service and
into the service mesh. This also allows for the separation of concerns
between the service features and service mesh common functionali-
ty. If you move the functionality to the mesh, you no longer need to
maintain different libraries, and you end up with the state shown in
Figure 3-17.

Figure 3-17. Common functionality living inside the proxy

The main building block of any service mesh is a proxy that runs next
to each service instance. In the case of Kubernetes, the proxy runs as
a sidecar in the same pod as your service, and they share the same
network. The proxy’s job is to intercept all requests entering or exiting
the service. Each proxy has its configuration that defines how the in-

coming or outgoing traffic is handled. In addition to dealing with the
traffic and requests, the proxy also emits metrics that can be collect-
ed by the service mesh control plane. As an alternative to the sidecar
proxy, you can run one proxy per host instead—in Kubernetes you
can use a DaemonSet to achieve this.

Using the sidecar proxy is simple and doesn’t require a lot of configu-
ration; however, there is an additional resource cost because you are
running an extra container within each pod. This can become prob-
lematic if you run many instances of your services. You could reduce
the costs by running a proxy on each host instead; however, the con-
figuration to set this up might not be straightforward as compared to
the sidecar proxy. When deciding whether you should go with the
sidecar approach or a per-host approach, consider the following:

The number of services and sidecar proxies: resource consump-
tion grows as the number of service replicas grows. If you have
more than one sidecar proxy per service, the resource consump-
tion increases even faster.
A language sidecar in which proxies are implemented can add to
more resource utilization (e.g., if you are using Java).

Not all services require a dedicated proxy: consider moving from
the sidecar pattern to the per-host pattern and reusing proxy func-
tionality (for example, metrics and log aggregation can be done
per-host instead of a per-service with a sidecar proxy).

The number of requests between service and proxy: requests sent
to the sidecar proxy go through fewer steps than requests if you’re
using a per-host proxy.

The Istio service mesh runs the Envoy proxy next to each instance of
the service, whereas the other popular service mesh solution, Link-
erd2, uses its ultralight transparent proxy written in Rust, and it allows
for running the proxy either as a sidecar or one per host. Consul Con-
nect from HashiCorp also supports Envoy. Table 3-1 compares the
different service mesh solutions.

Table 3-1. Comparing service mesh solutions

Istio Linkerd2

Proxy
pattern

Sidecar Sidecar

Supported
protocols

HTTP
1.1/HTTP2/gRPC/TCP

HTTP
1.1/HTTP2/gRPC/TCP

Proxy Envoy Native

Encryption Yes Yes (experimental)

Automatic
proxy
injection

Yes Yes

Istio Linkerd2

Traffic
control

Yes (label based) Not yet (Linkerd v1.0

supports it)

Resiliency
(timeouts,

retries)

Yes Yes

Tracing Jaeger Not yet

Metrics Prometheus Prometheus

To clarify how proxies and different service mesh parts work together,
let’s take an example of a request retry policy that we want to apply to
the services running in the mesh. YAML is usually used to define dif-
ferent rules, such as the request retry policies, of the service mesh.

After a rule is applied, the proxies in the service mesh are reconfig-
ured using this rule. The collection of all proxies in the service mesh
is usually referred to as the data plane. The part of the service mesh
that controls the data plane is called a control plane. A typical service

mesh architecture would look something like the one depicted in
Figure 3-18.

Figure 3-18. Service mesh architecture

As a service mesh user, you don’t want to be responsible for manag-
ing the proxies in the data plane. One of the control plane’s responsi-
bilities is to ensure that the data plane is correctly reconfigured. For
example, you want to set the HTTP timeout across your mesh to be
60 seconds. You send a request to the control plane, and the control
plane ensures each proxy in the data plane receives a new configura-
tion and reconfigures itself.

The control plane usually exposes an API that is used for configuring
the service mesh. In addition to the API, there are generally other ser-

vices running as part of the control plane; for example, services that
handle the policy and telemetry for services running inside the ser-
vice mesh.

We can group the main features of a service mesh as follows:

Traffic management
Failure handling
Security
Tracing and monitoring

Traffic management

As the name suggests, the purpose of the traffic management fea-
tures in the service mesh is to manage traffic between services within
the mesh as well as for external services that are being accessed by
the in-mesh services.

Each service within a mesh can have multiple endpoint instances.

These instances could be VMs, containers, or pods running in Kuber-
netes. If you are not doing any traffic management, all traffic destined
for a service eventually reaches one of the endpoint instances. To
manage traffic to the endpoints, you need to define subsets in the
pool of all service instances. For example, these instances could be
different versions of your service using different Docker images,

same-service versions but deployed in different environments, and so

on. Figure 3-19 shows an example of different subsets of the same
service.

Figure 3-19. Different service subsets

You can use various criteria, such as request headers, URL, or
weights associated with specific subsets, to decide which instances
receive the incoming traffic. These criteria are usually defined in

terms of rules that are sent to the service mesh control plane. The fol-
lowing are some of the most common criteria for traffic routing:

Request headers
You use HTTP headers, URIs scheme, or HTTP methods on
the incoming requests to determine whether you want to apply
the routing rules. For example, you could route a portion of the
traffic to specific subsets only if the request includes a custom
header called x-beta-version with a value of 1 .

URI
This option uses the request URI to do the matching. You could
match parts or full URI to make a decision about where to route
the traffic.

Sources
You could route traffic only if it’s coming from a specific source.

For example, you want to apply rules only if traffic is coming
from Service A. If traffic comes from Service B, a different set of
routing rules is used.

These rules are applied to the control plane, and the control plane en-
sures each sidecar proxy gets them. Finally, proxies get reconfigured
based on these rules and route the traffic accordingly.

Failure handling

In a distributed system you should always assume service communi-
cation will fail due to different faults. These faults are not necessarily
just because of bugs introduced in the service code. For example,

failures can occur due to network or infrastructure issues. There are
two types of failures: transient and nontransient. Transient failures
can happen anytime, and most of the time the operation will succeed
after a couple of retries. Nontransient failures are more permanent;
for example, accessing a file that was deleted. All of this means that
you need to write your code in a way that accounts for these types of
failures and ensures that your service continues to respond and run
correctly.

In addition to the traffic management features, a service mesh should
also support how the request failures are handled by defining request
timeouts, retries, and circuit breakers. The defaults for timeouts and
retries are set per each service and the service version. A service
mesh should also have an option of overwriting these settings on a
per-request basis, ideally by providing special HTTP headers (Istio,

for example, has x-envoy-upstream-rq-timeout-ms and x-

envoy-max-retries headers). Keep this in mind when deciding to
use these features, because some of the libraries you use could have
this functionality included.

Circuit breakers are another feature that you can use to make your
services more resilient. The Circuit Breaker pattern is used to prevent
additional failures and strain on the entire system, by managing ac-
cess to the failing services. If a circuit breaker trips, it will prevent fur-
ther access to the failing service.

As part of the Circuit Breaker pattern, you define the conditions or
threshold that makes the circuit breaker trip, and you “wrap” your ser-
vices within the circuit breaker. If the circuit breaker trips based on
the set conditions (for example, 10 failures within a 5-second period),

the tripped circuit breaker will prevent additional access to the failing
service by excluding it.

Circuit breakers need to be defined per each destination that receives
the traffic. The implementation of the circuit breaker in the Envoy
proxy tracks the status of each host, and if any of the hosts reaches
the predefined threshold, it will eject it from the pool of available
hosts. If you have 10 instances of your pod running, the circuit break-
er will remove any instances that misbehave, so none of the requests
can reach them anymore.

In addition to the threshold, you can also define for how long to eject
misbehaving hosts (baseEjectionTime) as well as the size of the
connection pool and the maximum number of requests for each
connection.

The other part of failure features is the ability to inject failures into
your services. This can significantly help you with testing how the ser-
vices behave if something goes wrong. There are two ways to inject
faults into the services:

HTTP aborts
This option allows you to abort an incoming request with a spe-
cific code. For example, if you ever wondered how your system
would behave if a downstream service starts responding with
an HTTP 404 error code, you can do this now.

HTTP delays
In addition to the aborts, you can also test how your service be-
haves if you inject latency into the request.

Security

At a high level, the security in the service mesh can be broken down
to authentication, or who you are and what’s your identity, and autho-
rization, or what can you do or access within the system. The require-
ments for services security involve traffic encryption for preventing
man-in-the-middle attacks and mutual TLS and configurable access
policy.

In the Istio service mesh, for example, there are multiple components
that work together to deliver the security features for the services run-
ning inside the service mesh:

Citadel provides key and certificate management.
Envoy proxies running as service sidecars and ingress/egress
proxies are responsible for implementing secure communication
between services.

Pilot distributes auth policies and secure naming information to En-
voy proxies.

Mixer manages authorization and auditing.

The relationship between components working together to enable se-
curity features is visualized in Figure 3-20.

Figure 3-20. Components involved in Istio security

Identity is a fundamental part of any security infrastructure. When two
services try to communicate with each other, they need to exchange
credentials for mutual authentication purposes. Istio uses the plat-
forms’ identity to determine the service identity—for example, for Ku-
bernetes, Istio uses the Kubernetes service accounts. As the next
step in the communication between services, the client side checks
the servers’ identity against the secure naming. The secure naming
information is generated automatically and pushed to the sidecar
proxies, and it maps the identity to the service name and tells the
proxies whether the identity is allowed and authorized to run a ser-
vice. On the server side, authorization policies are used to determine
what information the client can access.

Authentication, mutual TLS, and JWT tokens

We can differentiate between two types of authentication: service-to-
service authentication and end-user authentication.

You can implement and enable service-to-service or transport au-
thentication by using mutual TLS for each service without making any
changes to your services source code. Any requests that service re-
ceives will have the authentication policy applied. In Istio, the Citadel
is a component that issues the certificates that the proxies use to
communicate with one another. The end-user or origin authentication
uses JSON web tokens (JWT) to enable request-level authentication.

Any authentication policies defined on the service mesh need to be
able to be applied on multiple scopes. With Istio, the policies can be
stored in namespace-scope or mesh-scope storage. The difference
between the two is that the policies in the namespace-scope storage
affect only services in the same namespaces, and the policies in the
mesh-scope affect all services in the mesh. In addition to the scope,

each policy needs to specify the services to which the policy applies.

Authorization

You need to define authorization in the service mesh on different lev-
els. Istio, for example, provides the following access control levels:

Namespace-level access control
Service-level access control
Method-level access control

Similarly, as with the authentication policies, Istio stores authorization
policies in the config store, and pilot watches for any changes in the
policy and updates the proxies. Envoy proxies then evaluate requests
against the policies and return the result, ALLOW or DENY .

Authorization can be enabled or disabled with a mesh-wide setting.

You can turn the policy on or off for all services, or use inclusion or
exclusion settings to either apply the policy to service or except the
services from the policy.

Using a separate set of resources, you can define the individual au-
thorization policies for users, groups, or services. The combination of
these two resources determines who is allowed to do what under
which conditions. For example, you can create an “admin” service
role that has access to all services, all methods (GET , POST , PUT ,

HEAD , etc.), and all paths in the default namespace. Access to ser-
vices, methods, and paths should also support matching (e.g., apply
the role only to paths starting with /api/v1) because this gives you bet-
ter control and the ability to come up with more fine-grained rules. For
example, you could allow only GET methods on paths that start with
API. Additionally, you should also be able to add constraints, which

you can use to further constrain the rules based on the destination
data (e.g., IP, port, labels, and name) or request headers.

Tracing and monitoring

The fact that all traffic to and from your services in the mesh goes
through the proxy allows the service mesh to automatically collect
metrics such as the number of requests, their duration, size, re-
sponse codes, and so on. Collected metrics then are forwarded to an-
other component (Mixer in the case of Istio) where the aggregation
happens.

The Mixer component is installed with a built-in Prometheus adapter
that exposes an endpoint. Prometheus can then scrape the metrics
endpoint on the Mixer to collect the metrics sent from the proxies. Fi-
nally, you can visualize the collected metrics by using Grafana, which
we explain in more detail in Chapter 5.

Envoy proxies are also configured to send tracing information that
can be viewed with Jaeger automatically. As a service developer, you
need to ensure that you are attaching trace and span headers to any
downstream service requests—this gives Jaeger additional tips on
how to tie the traces together.

Each time a request enters the system, the request ID header value
is set. This value, (sometimes also referred to as the aforementioned

CID) can be used to trace the requests as they make their way
through your system. In case of any errors, you could return this ID to
the client so that it can be used to trace the failed request and deter-
mine what went wrong. Figure 3-21 shows how the request ID is gen-
erated and flows through the system.

Figure 3-21. Requests with x-request-id header

Example Architecture

An example can go a long way in providing an understanding of con-
cepts such as designing for the cloud. The following example archi-
tecture does not cover every scenario, but it does demonstrate how
to apply the various concepts. All good architectures are based on
business requirements, and the architecturally significant require-
ments will often be the driving factors in selecting an architectural ap-
proach. The architecturally significant requirements will include non-
functional requirements, which are those that define the quality attrib-
utes of the system, like security, scale, performance, availability, and
more.

In this example scenario, users are able to manage and view informa-
tion for multiple types of devices in their home. The service must also
be able to support a large and growing number of homes, users, and
devices. The device types will continue to grow and the devices with-
in a home will change as users add and change smart devices. The
user will be able to manage devices using a mobile application and a
single-page application (SPA) from anywhere they can get an internet
connection. The user can also receive alerts generated in the device
itself or identified in the cloud services. They will also opt in to an
agreement allowing the anonymized data from the devices to be ana-
lyzed. The service also needs to be able to cater to a growing devel-
oper community and home automation hobbyists interested in inte-
grating applications with the cloud services.

The high-level architecture overview presented in Figure 3-22 shows
devices connected to a service in the cloud. Devices will be sending
large amounts of telemetry data to a service in the cloud at a defined
interval and they will receive commands from the cloud that can be
generated by users or other events. Users also connect to services in
the cloud through a mobile application or a web browser so that they
can manage and view information about the devices in their home.

Data is analyzed as it’s sent to the cloud and is stored for batch
analysis. You can read more about data in the cloud in Chapter 4.

Figure 3-22. High-level example architecture overview

A closer look at the services for storing and analyzing the device
telemetry data, as shown in Figure 3-23, shows the data moving
through different paths for processing. This split processing of
streaming data through hot, warm, and cold paths is also referred to
as a lambda architecture. You can find more information on storing
and analyzing data in Chapter 4. A cloud provider device manage-
ment service is being used to connect the devices to the cloud. This
service could be Azure IoT Hub, AWS IoT Core, or Google Cloud IoT
Core.

NOTE

Alternatively, devices could connect to a cloud backend through a web API, but this
would result in a less optimal service that would then need to be built and operated.

This would increase the overall cost of the service and potentially delay the time to
market. A cloud native approach uses as much of the cloud.

Devices send their telemetry data through the cloud provider’s device
management service. The telemetry data is written to a data stream
where it can be consumed by multiple different subscribers. Each
subscriber is able to work with its own view of the stream processing
data at different rates, independent of one another.

As illustrated in Figure 3-23, a cloud provider service is configured to
process data from the stream into object storage, which is sometimes
referred to as the cold path. Object storage is inexpensive, and data
for a large number of devices and users can be retained for long peri-
ods with minimal infrastructure and operating costs. This data then
can be analyzed at a later time, and trends over large periods of time
or across a large number of devices can be identified.

Another subscriber processes data into a time-series service, which
could be something like Azure Time Series Insights, Amazon
Timestream, or even Google BigTable. This data is used for more
near-real-time batch analytics and display of device telemetry data
over the last hour or days. The data in this service then is automati-

cally moved to slower and cheaper data storage as it ages, and the
data is down-sampled because the fidelity of the data over time is
less important in this datastore. At some point, the data will expire
and is no longer retained in this datastore. Systems needing historical
information beyond the defined timeframe will need to load it from
cold storage. A process to rehydrate a time-series store from cold
storage can be put in place to simplify applications that consume the
data.

Another subscriber is processing data from the stream, either per-
forming complex event processing or streaming analytics. This hot
path is used to detect conditions in a small period of time from receiv-
ing the data. The time can often vary from milliseconds to minutes.

This can be used to generate an alert that’s sent to the user when
temperatures are close to freezing point.

Figure 3-23. Telemetry data ingestion and analytics

The smart home device management service includes a backend API
that’s used by developers who are interested in integrating with the
service, and is used by the clients—both the mobile and the SPA.

Figure 3-24 illustrates how the API is composed of multiple services,

some of which are containers running in a Kubernetes cluster, and
some of which are functions running on the cloud provider’s FaaS
platform. The team’s preferred compute model is FaaS, but some of
the workloads are long running or have complex environment re-
quirements, and some teams prefer containers. The various teams

are encouraged to use a compute model best suited for their imple-
mentation needs. Some of the services use a CaaS compute model
through Kubernetes virtual kublet for running some Kubernetes jobs.

An API gateway is used to offload some API management require-
ments. The API gateway is responsible for authenticating requests
and throttling users that are sending an excessive number of re-
quests to maintain quality of service for all users consuming the
service.

Figure 3-24. Backend device management API

Figure 3-25 shows an SPA being served to a user through a content
delivery network (CDN) with a block storage service as the origin. An
SPA generally consists of static resources. These static resources
can be stored and served to users from block storage. The CDN en-
ables fast loading of these static resources because they are cached

at an edge closer to the client. The SPA must make use of cache-
busting techniques like putting a hash on resources that have
changed, or invalidating specific items in the CDN cache when up-
dates are pushed to storage. The tasks are implemented in the Con-
tinuous Delivery pipeline.

Figure 3-25. Serverless SPA

Summary

As mentioned at the beginning of this chapter, each architecture is
different, and there is no one-size-fits-all architecture. Nonetheless,

there are specific components and building blocks in a cloud native
application architecture that, if designed the wrong way, can cause
many problems down the road. By understanding the technologies
and patterns described in this chapter, you should be well prepared
for designing a cloud native application from the compute side.

Chapter 4 covers the other important part of cloud native applications:

working with data.

Chapter 4. Working with Data

Cloud computing has made a big impact on how we build and oper-
ate software today, including how we work with the data. The cost of
storing data has significantly decreased, making it cheaper and more
feasible for companies to keep vastly larger amounts of data. The op-
erational overhead of database systems is considerably less with the
advent of managed and serverless data storage services. This has
made it easier to spread data across different data storage types,

placing data into the systems better suited to manage the classifica-
tion of data stored. A trend in microservices architectures encourages
the decentralization of data, spreading the data for an application
across multiple services, each with its own datastores. It’s also com-
mon that data is replicated and partitioned in order to scale a system.

Figure 4-1 shows how a typical architecture will consist of multiple
data storage systems with data spread across them. It’s not uncom-
mon that data in one datastore is a copy derived from data in another
store, or has some other relationship to data in another store.

Cloud native applications take advantage of managed and serverless
data storage and processing services. All of the major public cloud
providers offer a number of different managed services to store,

process, and analyze data. In addition to cloud provider–managed
database offerings, some companies provide managed databases on

the cloud provider of your choice. MongoDB, for example, offers a
cloud-managed database service called MongoDB Atlas that is avail-
able on Amazon Web Services (AWS), Microsoft Azure, and Google
Cloud Platform (GCP). By using a managed database, the team can
focus on building applications that use the database instead of
spending time provisioning and managing the underlying data
systems.

Figure 4-1. Data is often spread across multiple data systems

NOTE

Serverless database is a term that has been used to refer to a type of managed
database with usage-based billing in which customers are charged based on the
amount of data stored and processed. This means that if a database is not being
accessed, the user is billed only for the amount of data stored. When there is an op-

eration on the database, either the user is charged for the specific operation or the
database is scaled from zero and back during the processing of the operation.

Cloud native applications take full advantage of the cloud, including
data systems used. The following is a list of cloud native application
characteristics for data:

Prefer managed data storage and analytics services.

Use polyglot persistence, data partitioning, and caching.

Embrace eventual consistency and use strong consistency when
necessary.

Prefer cloud native databases that scale out, tolerate faults, and
are optimized for cloud storage.

Deal with data distributed across multiple datastores.

Cloud native applications often need to deal with silos of data, which
require a different approach to working with data. There are a number
of benefits to polyglot persistence, decentralized data, and data parti-
tioning, but there are also trade-offs and considerations.

Data Storage Systems

There are a growing number of options for storing and processing
data. It can be difficult to determine which products to use when
building an application. Teams will sometimes engage in a number of
iterations evaluating languages, frameworks, and the data storage
systems that will be used in the application. Many are still not con-
vinced they made the correct decision, and it’s common for those
storage systems to be replaced or new ones added as the application
evolves anyway.

It can be helpful to understand the various types of datastores and
the workloads they are optimized for when deciding which products to
use. Many products are, however, multimodel and are designed to
support multiple data models, falling into multiple data storage classi-
fications. Applications will often take advantage of multiple data stor-
age systems, storing files in an object store, writing data to a relation-
al database, and caching with an in-memory key/value store.

Objects, Files, and Disks

Every public cloud provider offers an inexpensive object storage ser-
vice. Object storage services manage data as objects. Objects are
usually stored with metadata for the object and a key that’s used as a
reference for the object. File storage services generally provide

shared access to files through a traditional file sharing model with a
hierarchical directory structure. Disks or block storage provides stor-
age of disk volumes used by computing instances. Determining
where to store files such as images, documents, content, and ge-
nomics data files will largely depend on the systems that access
them. Each of the following storage types is better suited for different
types of files:

NOTE

You should prefer object storage for storing file data. Object storage is relatively in-
expensive, extremely durable, and highly available. All of the major cloud providers
offer different storage tiers enabling cost saving based on data access
requirements.

Object/blob storage

Use it with files when the applications accessing the data
support the cloud provider API.
It is inexpensive and can store large amounts of data.

Applications need to implement a cloud provider API. If ap-
plication portability is a requirement, see Chapter 7.

File storage

Use it with applications designed to support Network At-
tached Storage (NAS).

Use it when using a library or service that requires shared
access to files.

It is more expensive than object storage.

Disk (block) storage

Use it for applications that assume persistent local storage
disks, like MongoDB or a MySQL database.

In addition to the various cloud provider–managed storage options for
files and objects, you can provision a distributed filesystem. The
Hadoop Distributed File System (HDFS) is popular for big data ana-
lytics. The distributed filesystem can use the cloud provider disk or
block storage services. Many of the cloud providers have managed
services for popular distributed filesystems that include the analytics
tools used. You should consider these filesystems when using the an-
alytics tools that work with them.

Databases

Databases are generally used for storing more structured data with
well-defined formats. A number of databases have been released
over the past few years, and the number of databases available for

us to choose from continues to grow every year. Many of these data-
bases have been designed for specific types of data models and
workloads. Some of them support multiple models and are often la-
beled as multimodel databases. It helps to organize databases into a
group or classification when considering which database to use
where in an application.

Key/value

Often, application data needs to be retrieved using only the primary
key, or maybe even part of the key. A key/value store can be viewed
as simply a very large hash table that stores some value under a
unique key. The value can be retrieved very efficiently using the key
or, in some cases, part of the key. Because the value is opaque to the
database, a consumer would need to scan record-by-record in order
to find an item based on the value. The keys in a key/value database
can comprise multiple elements and even can be ordered for efficient
lookup. Some of the key/value databases allow for the lookup using
the key prefix, making it possible to use compound keys. If the data
can be queried based on some simple nesting of keys, this might be a
suitable option. If we’re storing orders for customer xyz in a key/value
store, we might store them using the customer ID as a key prefix fol-
lowed by the order number, “xyz-1001.” A specific order can be re-
trieved using the entire key, and orders for customer xyz could be re-
trieved using the “xyz” prefix.

NOTE

Key/value databases are generally inexpensive and very scalable datastores.

Key/value data storage services are capable of partitioning and even repartitioning
data based on the key. Selecting a key is important when using these datastores
because it will have a significant impact on the scale and the performance of data

storage reads and writes.

Document

A document database is similar to a key/value database in that it
stores a document (value) by a primary key. Unlike a key/value data-
base, which can store just about any value, the documents in a docu-
ment database need to conform to some defined structure. This en-
ables features like the maintenance of secondary indexes and the
ability to query data based on the document. The values commonly
stored in a document database are a composition of hashmaps
(JSON objects) and lists (JSON arrays). JSON is a popular format
used in document databases, although many database engines use a
more efficient internal storage format like MongoDB’s BSON.

TIP

You will need to think differently about how you organize data in a document-orient-

ed database when coming from relational databases. It takes time for many to
make the transition to this different approach to data modeling.

You can use these databases for much of what was traditionally
stored in a relational database like PostgreSQL. They have been
growing in popularity and unlike wwith relational databases, the docu-
ments map nicely to objects in programming languages and don’t re-
quire object relational mapping (ORM) tools. These databases gener-
ally don’t enforce a schema, which has some advantages with regard
to Continuous Delivery (CD) of software changes requiring data
schema changes.

NOTE

Databases that do not enforce a schema are often referred to “schema on read” be-
cause although the database does not enforce the schema, an inherent schema
exists in the applications consuming the data and will need to know how to work
with the data returned.

Relational

Relational databases organize data into two-dimensional structures
called tables, consisting of columns and rows. Data in one table can
have a relationship to data in another table, which the database sys-
tem can enforce. Relational databases generally enforce a strict
schema, also referred to schema on write, in which a consumer writ-
ing data to a database must conform to a schema defined in the data-
base.

Relational databases have been around for a long time and a lot of
developers have experience working with them. The most popular
and commonly used databases, as of today, are still relational data-
bases. These databases are very mature, they’re good with data that
contains a large number of relationships, and there’s a large ecosys-
tem of tools and applications that know how to work with them. Many-
to-many relationships can be difficult to work with in document data-
bases, but in relational database they are very simple. If the applica-
tion data has a lot of relationships, especially those that require trans-
actions, these databases might be a good fit.

Graph

A graph database stores two types of information: edges and nodes.

Edges define the relationships between nodes, and you can think of a
node as the entity. Both nodes and edges can have properties provid-
ing information about that specific edge or node. An edge will often
define the direction or nature of a relationship. Graph databases work
well at analyzing the relationships between entities. Graph data can
be stored in any of the other databases, but when graph traversal be-
comes increasingly complex, it can be challenging to meet the perfor-
mance and scale requirements of graph data in the other storage
types.

Column family

A column-family database organizes data into rows and columns, and
can initially appear very similar to a relational database. You can think
of a column-family database as holding tabular data with rows and
columns, but the columns are divided into groups known as column
families. Each column family holds a set of columns that are logically
related together and are typically retrieved or manipulated as a unit.
Other data that is accessed separately can be stored in separate col-
umn families. Within a column family, new columns can be added dy-
namically, and rows can be sparse (that is, a row doesn’t need to
have a value for every column).

Time-series

Time-series data is a database that’s optimized for time, storing val-
ues based on time. These databases generally need to support a
very high number of writes. They are commonly used to collect large
amounts of data in real time from a large number of sources. Updates
to the data are rare and deletes are often completed in bulk. The
records written to a time-series database are usually very small, but
there are often a large number of records. Time-series databases are
good for storing telemetry data. Popular uses include Internet of
Things (IoT) sensors or application/system counters. Time-series
databases will often include features for data retention, down-sam-

pling, and storing data in different mediums depending on configura-
tion data usage patterns.

Search

Search engine databases are often used to search for information
held in other datastores and services. A search engine database can
index large volumes of data with near-real-time access to the index-
es. In addition to searching across unstructured data like that in a
web page, many applications use them to provide structured and ad
hoc search features on top of data in another database. Some data-
bases have full-text indexing features, but search databases are also
capable of reducing words to their root forms through stemming and
normalization.

Streams and Queues

Streams and queues are data storage systems that store events and
messages. Although they are sometimes used for the same purpose,

they are very different types of systems. In an event stream, data is
stored as an immutable stream of events. A consumer is able to read
events in the stream at a specific location but is unable to modify the
events or the stream. You cannot remove or delete individual events
from the stream. Messaging queues or topics will store messages
that can be changed (mutated), and it’s possible to remove an individ-

ual message from a queue. Streams are great at recording a series of
events, and streaming systems are generally able to store and
process very large amounts of data. Queues or topics are great for
messaging between different services, and these systems are gener-
ally designed for the short-term storage of messages that can be
changed and randomly deleted. This chapter focuses more on
streams because they are more commonly used with data systems,

and queues more commonly used for service communications. For
more information on queues, see Chapter 3.

NOTE

A topic is a concept used in a publish-subscribe messaging model. The only differ-
ence between a topic and a queue is that a message on a queue goes to one sub-
scriber, whereas a message to a topic will go to multiple subscribers. You can think
of a queue as a topic with one, and only one, subscriber.

Blockchain

Records on a blockchain are stored in a way that they are immutable.

Records are grouped in a block, each of which contains some num-
ber of records in the database. Every time new records are created,

they are grouped into a single block and added to the chain. Blocks
are chained together using hashing to ensure that they are not tam-
pered with. The slightest change to the data in a block will change the

hash. The hash from each block is stored at the beginning of the next
block, ensuring that nobody can change or remove a block from the
chain. Although a blockchain could be used like any other centralized
database, it’s commonly decentralized, removing power from a cen-
tral organization.

Selecting a Datastore

When selecting a datastore, you need to consider a number of re-
quirements. Selecting data storage technologies and services can be
quite challenging, especially given the cool new databases constantly
becoming available and changes in how we build software. Start with
the architecturally significant requirements—also known as nonfunc-
tional requirements—for a system and then move to the functional
requirements.

Selecting the appropriate datastore for your requirements can be an
important design decision. There are literally hundreds of implemen-
tations to choose from among SQL and NoSQL databases. Datas-
tores are often categorized by how they structure data and the types
of operations they support. A good place to begin is by considering
which storage model is best suited for the requirements. Then, con-
sider a particular datastore within that category, based on factors
such as feature set, cost, and ease of management.

Gather as much of the following information as you can about your
data requirements.

Functional requirements

Data format
What type of data do you need to store?

Read and write
How will the data need to be consumed and written?

Data size
How large are the items that will be placed in the datastore?

Scale and structure
How much storage capacity do you need, and do you anticipate
needing to partition your data?

Data relationships
Will your data need to support complex relationships?

Consistency model
Will you require strong consistency or is eventual consistency
acceptable?

Schema flexibility

What kind of schemas will you apply to your data? Is a fixed or
strongly enforced schema important?

Concurrency
Will the application benefit from multiversion concurrency con-
trol? Do you require pessimistic and/or optimistic concurrency
control?

Data movement
Will your application need to move data to other stores or data
warehouses?

Data life cycle
Is the data write-once, read-many? Can it be archived over time
or can the fidelity of the data be reduced through down-
sampling?

Change streams
Do you need to support change data capture (CDC) and fire
events when data changes?

Other supported features
Do you need any other specific features, full-text search, index-
ing, and so on?

Nonfunctional requirements

Team experience
Probably one of the biggest reasons teams select a specific
database solution is because of experience.

Support
Sometimes the database system that’s the best technical fit for
an application is not the best fit for a project because of the
support options available. Consider whether or not available
support options meet the organizations needs.

Performance and scalability
What are your performance requirements? Is the workload
heavy on ingestion? Query and analytics?

Reliability
What are the availability requirements? What backup and
restore features are necessary?

Replication
Will data need to be replicated across multiple regions or
zones?

Limits
Are there any hard limits on size and scale?

Portability

Do you need to deploy on-premises or to multiple cloud
providers?

Management and cost

Managed service
When possible, use a managed data service. There are, how-
ever, situations for which a feature is not available and needed.

Region or cloud provider availability
Is there a managed data storage solution available?

Licensing
Are there any restrictions on licensing types in the organiza-
tion? Do you have a preference of a proprietary versus open
source software (OSS) license?

Overall cost
What is the overall cost of using the service within your solu-
tion? A good reason to prefer managed services is for the re-
duced operational cost.

Selecting a database can be a bit daunting when you’re looking
across the vast number of databases available today and the new
ones constantly introduced in the market. A site that tracks database
popularity, db-engines (https://db-engines.com), lists 329 different

https://db-engines.com/

databases as of this writing. In many cases the skillset of the team is
a major driving factor when selecting a database. Managing data sys-
tems can add significant operational overhead and burden to the
team and managed data systems are often preferred for cloud-native
applications, so the availability of managed data systems will quite
often narrow down the options. Deploying a simple database can be
easy, but consider that the patching, upgrades, performance tuning,

backups, and highly available database configurations increase oper-
ations burden. Yet there are situations in which managing a database
is necessary, and you might prefer some of the new databases built
for the cloud, like CockroachDB or YugaByte. Also consider available
tooling: it might make sense to deploy and manage a certain data-
base if this avoids the need to build software to consume the data,

like a dashboard or reporting systems.

Data in Multiple Datastores

Whether you’re working with data across partitions, databases, or
services, data in multiple datastores can introduce some data man-
agement challenges. Traditional transaction management might not
be possible and distributed transactions will adversely affect the per-
formance and scale of a system. The following are some of the chal-
lenges of distributing data:

Data consistency across the datastores
Analysis of data in multiple datastores
Backup and restore of the datastores

The consistency and integrity of the data can be challenging when
spread across multiple datastores. How do you ensure a related
record in one system is updated to reflect a change in another sys-
tem? How do you manage copies of data, whether they are cached in
memory, a materialized view, or stored in the systems of another ser-
vice team? How do you effectively analyze data that’s stored across
multiple silos? Much of this is addressed through data movement,
and a growing number of technologies and services are showing up
in the market to handle this.

Change Data Capture

Many of the database options available today offer a stream of data
change events (change log) and expose this through an easy-to-con-
sume API. This can make it possible to perform some actions on the
events, like triggering a function when a document changes or updat-
ing a materialized view. For example, successfully adding a docu-
ment that contains an order could trigger an event to update reporting
totals and notify an accounting service that an order for the customer
has been created. Given a move to polyglot persistence and decen-
tralized datastores, these event streams are incredibly helpful in

maintaining consistency across these silos of data. Some common
use cases for CDC include:

Notifications
In a microservices architecture, it’s not uncommon that another
service will want to be notified of changes to data in a service.

For this, you can use a webhook or subscription to publish
events for other services.

Materialized views
Materialized views make for efficient and simplified queries on
a system. The change events can be used to update these
views.

Cache invalidation
Caches are great for improving the scale and performance of a
system, but invalidating the cache when the backing data has
changed is a challenge. Instead of using a time-to-live (TTL),

you can use change events to either remove the cached item
or update it.

Auditing
Many systems need to maintain a record of changes to data.

You can use this log of changes to track what was changed and
when. The user that made the change is often needed, so it

might be necessary to ensure that this information is also
captured.

Search
Many databases are not very good at handling search, and the
search datastores do not provide all of the features needed in
other databases. You can use change streams to maintain a
search index.

Analytics
The data analytics requirements of an organization often re-
quire a view across many different databases. Moving the data
to a central data lake, warehouse, or database can enable rich-
er reporting and analytics requirements.

Change analytics
Near-real-time analysis of data changes can be separated from
the data access concerns and performed on the data changes.

Archive
In some applications, it is necessary to maintain an archive of
state. This archive is rarely accessed, and it’s often better to
store this in a less expensive storage system.

Legacy systems

Replacing a legacy system will sometimes require data to be
maintained in multiple locations. These change streams can be
used to update data in a legacy system.

In Figure 4-2, we see an app writing to a database that logs a change.

That change is then written to a stream of change logs and pro-
cessed by multiple consumers. Many database systems maintain an
internal log of changes that can be subscribed to with checkpoints to
resume at a specific location. MongoDB, for example, allows you to
subscribe to events on a deployment, data, or collection, and provide
a token to resume at a specific location. Many of the cloud provider
databases handle the watch process and will invoke a serverless
function for every change.

Figure 4-2. CDC used to synchronize data changes

The application could have written the change to the stream and the
database, but this presents some problems if one of the two opera-
tions fails and it potentially creates a race condition. For example, if
the application were updating some data in the database, like an ac-
count shipping preference, and then failed to write to an event
stream, the data in the database would have changed, but the other
systems would not have been notified or updated, like a shipping ser-
vice. The other concern is that if two processes made a change to the
same record at close to the same time, the order to events can be a
problem. Depending on the change and how it’s processed, this
might not be an issue, but it’s something to consider. The concern is

that we either record the event that something changed when it didn’t,
or change something and don’t record the event.

By using the databases change stream, we can write the change or
mutation of the document and the log of that change as a transaction.

Even though data systems consuming the event stream are eventual-
ly consistent after some period of time, it’s important that they be-
come consistent. Figure 4-3 shows a document that has been updat-
ed and the change recorded as part of a transaction. This ensures
that the change event and the actual change itself are consistent, so
now we just need to consume and process that event into other
systems.

Figure 4-3. Changes to a record and operation log in a transaction scope

Many of the managed data services make this really easy to imple-
ment and can be quickly configured to invoke a serverless function
when a change happens in the datastore. You can configure Mon-
goDB Atlas to invoke a function in the MongoDB Stitch service. A
change in Amazon DynamoDB or Amazon Simple Storage Service

(Amazon S3) can trigger a lambda function. Microsoft Azure Func-
tions can be invoked when a change happens in Azure Cosmos DB
or Azure Blob Storage. A change in Google Cloud Firestore or object
storage service can trigger a Cloud Function. Implementation with
popular managed data storage services can be fairly straightforward.

This is becoming a popular and necessary feature with most datas-
tores.

Write Changes as an Event to a Change Log

As we just saw an application failure during an operation that affects
multiple datastores can result in data consistency issues. Another ap-
proach that you can use when an operation spans multiple databases
is to write the set of changes to a change log and then apply those
changes. A group of changes can be written to a stream maintaining
order, and if a failure occurs while the changes are being applied, it
can be easy to retry or resume the operation, as shown in Figure 4-4.

Figure 4-4. Saving a set of changes before writing each change

Transaction Supervisor

You can use a supervisor service to ensure that a transaction is suc-
cessfully completed or is compensated. This can be especially useful
when you’re performing transactions involving external services—for
example, writing an order to the system and processing a credit card,

in which credit card processing can fail, or saving the results of the
processing. As Figure 4-5 illustrates, a checkout service receives an
order, processes a credit card payment, and then fails to save the or-

der to the order database. Most customers would be upset to know
that their credit card was processed but there was no record of their
order. This is a fairly common implementation.

Figure 4-5. Failing to save order details after processing an order

Another approach might be to save the order or cart with a status of
processing, then make the call to the payment gateway to process
the credit card payment, and finally, update the status of the order.
Figure 4-6 demonstrates how if we fail to update the order status, at
least we have the record of an order submitted and the intention to
process it. If the payment gateway service offered a notification ser-
vice like a webhook callback, we could configure that to ensure that
the status was accurate.

Figure 4-6. Failing to update order status

In Figure 4-7, a supervisor is added to monitor the order database for
processing transactions that have not completed and reconciles the
state. The supervisor could be a simple function that’s triggered at a
specific interval.

Figure 4-7. A supervisor service monitors transactions for errors

You can use this approach—using a supervisor and setting status—in
many different ways to monitor systems and databases for consisten-
cy and take action to correct them or generate a notification of the
issue.

Compensating Transactions

Traditional distributed transactions are not commonly used in today’s
cloud native applications, and not always available. There are situa-
tions for which transactions are necessary to maintain consistency
across services or datastores. For example, a consumer posts some
data with a file to an API requiring the application to write the file to
object storage and some data to a document database. If we write
the file to object storage and then fail when writing to the database,

for any reason, we have a potentially orphaned file in object storage if

the only way to find it is through a query on the database and refer-
ence. This is a situation in which we want to treat writing the file and
the database record as a transaction; if one fails, both should fail. The
file then should be removed to compensate for the failed database
write. This is essentially what a compensating transaction does. A
logical set of operations need to complete; if one of the operations
fails, we might need to compensate the ones that succeeded.

NOTE

You should avoid service coordination. In many cases, you can avoid complex
transaction coordination by designing for eventual consistency and using tech-
niques like CDC.

Extract, Transform, and Load

The need to move and transform data for business intelligence (BI) is
quite common. Businesses have been using Extract, Transform, and
Load (ETL) platforms for a long time to move data from one system to
another. Data analytics is becoming an important part of every busi-
ness, large and small, so it should be no surprise that ETL platforms
have become increasingly important. Data has become spread out
across more systems and analytics tools have become much more
accessible. Everyone can take advantage of data analytics, and
there’s a growing need to move the data into a location for performing

data analysis, like a data lake or date warehouse. You can use ETL to
get the data from these operational data systems into a system to be
analyzed. ETL is a process that comprises the following three differ-
ent stages:

Extract
Data is extracted or exported from business systems and data
storage systems, legacy systems, operational databases, ex-
ternal services, and event Enterprise Resource Planning (ERP)

or Customer Relationship Management (CRM) systems. When
extracting data from the various sources, it’s important to deter-
mine the velocity, how often the data is extracted from each
source, and the priority across the various sources.

Transform
Next, the extracted data is transformed; this would typically in-
volve a number of data cleansing, transformation, and enrich-
ment tasks. The data can be processed off a stream and is of-
ten stored in an interim staging store for batch processing.

Load
The transformed data then is loaded into the destination and
can be analyzed for BI.

All of the major cloud providers offer managed ETL services, like
AWS Glue, Azure Data Factory, and Google Cloud DataFlow. Moving
and processing data from one source to another is increasingly im-
portant and common in today’s cloud native applications.

Microservices and Data Lakes

One challenge of dealing with decentralized data in a microservices
architecture is the need to perform reporting or analysis across data
in multiple services. Some reporting and analytics requirements will
need the data from the services to be in a common datastore.

NOTE

It might not be necessary to move the data in order to perform the required analysis
and reporting across all of the data. Some or all of the analysis can be performed
on each of the individual datastores in conjunction with some centralized analysis
tasks on the results.

Having each service work from a shared or common database will,
however, violate one of the microservices principles and potentially
introduce coupling between the services. A common way to approach
this is through data movement and aggregating the data into a loca-
tion for a reporting or analytics team. In Figure 4-8, data from multiple

microservices datastores is aggregated into a centralized database in
order to deliver the necessary reporting and analytics requirements.

Figure 4-8. Data from multiple microservices aggregated in a centralized datastore

The data analytics or reporting team will need to determine how to
get the data from the various service teams that it requires for the
purpose of reporting without introducing coupling. There are a num-
ber of ways to approach this, and it will be important to ensure loose
coupling is maintained, allowing the teams to remain agile and deliver
value quickly.

The individual services team could give the data analytics teams read
access to the database and allow them to replicate the data, as de-
picted in Figure 4-9. This would be a very quick and easy approach,

but the service team does not control when or how much load the
data extraction will put on the store, causing potential performance
issues. This also introduces coupling, and it’s likely that the service
teams then will need to coordinate with the data analytics team when
making internal schema changes. The ETL load on the database ad-
versely affecting service performance can be addressed by giving the
data analytics team access to a read replica instead of the primary
data. It might also be possible to give the data analytics team access
to a view on the data instead of the raw documents or tables. This
would help to mitigate some of the coupling concerns.

Figure 4-9. The data analytics team consumes data directly from the service team’s
database

This approach can work in the early phases of the application with a
handful of services, but it will be challenging as the application and
teams grow. Another approach is to use an integration datastore. The
service team provisions and maintains a datastore for internal inte-
grations, as shown in Figure 4-10. This allows the service team to
control what data and the shape of the data in the integration reposi-

tory. This integration repository should be managed like an API, doc-
umented and versioned. The service team could run ETL jobs to
maintain the database or use CDC and treat it like a materialized
view. The service team could make changes to its operational store
without affecting the other teams. The service team would be respon-
sible for the integration store.

Figure 4-10. Database as an API

This could be turned around such that a service consumer, like the
data analytics team, asks a service team to export or write data to the
data lake, as illustrated in Figure 4-11, or to a staging store, as in
Figure 4-12. The service teams support replication or data, logs, or
data exports to a client-provided location as part of the service fea-
tures and API. The data analytics team would provision a store or lo-
cation in a datastore for each service team. The data analytics team
then subscribes to data needed for aggregated analytics.

Figure 4-11. Service team data export service API

Figure 4-12. Service teams write to a staging store

It’s not uncommon for services to support data exports. The service
implementation would define what export format and protocols are
part of its API. This, for example, would be a configuration for an ob-
ject storage location and credentials to which to send nightly exports,

or maybe a webhook to which to send batches of changes. A service
consumer such as the data analytics team would have access to the
service API, allowing it to subscribe to data changes or exports. The
team could send locations and credentials to which to either dump
export files or send events.

Client Access to Data

Clients applications generally do not have direct access to the datas-
tores in most applications built today. Data is commonly accessed
through a service that’s responsible for performing authorizations, au-
diting, validation, and transformation of the data. The service is usual-
ly responsible for carrying out other functions, although in many data-
centric applications, a large part of the service implementation simply
handles data read and write operations.

A simple data-centric application would generally require you to build
and operate a service that performs authentication, authorization, log-
ging, transformations, and validation of data. It does, however, need
to control who can access what within the datastore and validate
what’s being written. Figure 4-13 shows a typical frontend application
calling a backend service that reads and writes to a single database.

This is a common architecture for many applications today.

Figure 4-13. Client application with a backend service and database

Restricted Client Tokens (Valet-Key)

A service can create and return a token to a consumer that has limit-
ed use. This can actually be implemented using OAuth or even a cus-
tom cryptographically signed policy. The valet key is commonly used
as a metaphor to explain how OAuth works and is a commonly used
cloud design pattern. The token returned might be able to access
only a specific data item for a limited period of time or upload a file to
a specific location in a datastore. This can be a convenient way to
offload processing from a service, reducing the cost and scale of the
service and delivering better performance. In Figure 4-14, a file is up-
loaded to a service that writes the file to storage.

Figure 4-14. Client uploading a file that’s passed through the service

Instead of streaming a file through the service, it can be much more
efficient to return a token to the client with a location to access the file
if it were reading or uploading the file to a specific location. In
Figure 4-15, the client requests a token and a location from the ser-
vice, which then generates a token with some policies. The token pol-
icy can restrict the location to which the file can be uploaded, and it’s
a best practice to set an expiration so that the token cannot be used

anytime later on. The token should follow the principle of least privi-
lege, granting the minimum permissions necessary to complete the
task. In Microsoft Azure Blob Storage, the token is also referred to as
a shared-access signature, and in Amazon S3, this would be a pre-
signed URL. After the file is uploaded, an object storage function
could be used to update the application state.

Figure 4-15. The client gets a token and path from a service to upload directly to storage

Database Services with Fine-Grained Access
Control

Some databases provide fine-grained access control to data in the
database. These database services are sometimes called a Backend
as a Service (BaaS) or Mobile Backend as a Service (MBaaS). A full-
featured MBaaS will generally offer more than just data storage, giv-
en that mobile applications often need identity management and
notification services as well. This almost feels like we have circled
back to the days of the old thick-client applications. Thankfully, data
storage services have evolved so that it’s not exactly the same.

Figure 4-16 presents a mobile client connecting to a database service
without having to deploy and manage an additional API. If there’s no
need to ship a customer API, this can be a great way to quickly get an
application out with low operational overhead. Careful attention is
needed with releasing updates and testing the security rules to en-
sure that only the appropriate people are able to access the data.

Figure 4-16. A mobile application connecting to a database

Databases such as Google’s Cloud FireStore allow you to apply se-
curity rules that provide access control and data validation. Instead of
building a service to control access and validate requests, you write

security rules and validation. A user is required to authenticate to
Google Firebase Authentication service, which can federate to other
identity providers, like Microsoft’s Azure Active Directory services. Af-
ter a user is authenticated, the client application can connect directly
to the database service and read or write data, provided the opera-
tions satisfy the defined security rules.

GraphQL Data Service

Instead of building and operating a custom service to manage client
access to data, you can deploy and configure a GraphQL server to
provide clients access to data. In Figure 4-17, a GraphQL service is
deployed and configured to handle authorization, validation, caching,

and pagination of data. Fully managed GraphQL services, like AWS
AppSync, make it extremely easy to deploy a GraphQL-based back-
end for your client services.

NOTE

GraphQL is neither a database query language nor storage model; it’s an API that
returns application data based on a schema that’s completely independent of how
the data is stored.

Figure 4-17. GraphQL data access service

GraphQL is flexible and configurable through a GraphQL specifica-
tion. You can configure it with multiple providers, and even configure
it to execute services either running in a container or deployed as
functions that are invoked on request, as shown in Figure 4-18.

GraphQL is a great fit for data-centric backends with the occasional
service method that needs to be invoked. Services like GitHub are
actually moving their entire API over to GraphQL because this pro-
vides more flexibility to the consumers of the API. GraphQL can be
helpful in addressing the over-fetching and chattiness that’s some-
times common with REST-based APIs.

GraphQL uses a schema-first approach, defining nodes (objects) and
edges (relationships) as part of a schema definition for the graph

structure. Consumers can query the schema for details about the
types and relationships across the objects. One benefit of GraphQL is
that it makes it easy to define the data you want, and only the data
you want, without having to make multiple calls or fetch data that’s
not needed. The specification supports authorizations, pagination,

caching, and more. This can make it quick and easy to create a back-
end that handles most of the features needed in a data-centric appli-
cation. For more information, visit the GraphQL website.

Figure 4-18. GraphQL service with multiple providers and execution

http://www.graphql.org/

Fast Scalable Data

A large majority of application scaling and performance problems can
be attributed to the databases. This is a common point of contention
that can be challenging to scale out while meeting an application’s
data-quality requirements. In the past, it was too easy to put logic into
a database in the form of stored procedures and triggers, increasing
compute requirements on a system that was notoriously expensive to
scale. We learned to do more in the application and rely less on the
database for something other than focusing on storing data.

TIP

There are very few reasons to put logic in a database. Don’t do it. If you go there,

make sure that you understand the trade-offs. It might make sense in a few cases
and it might improve performance, but likely at the cost of scalability.

Scaling anything and everything can be achieved through replication
and partitioning. Replicating the data to a cache, materialized view, or
read-replica can help increase the scalability, availability, and perfor-
mance of data systems. Partitioning data either horizontally through
sharding, vertically based on data model, or functionally based on
features will help improve scalability by distributing the load across
systems.

Sharding Data

Sharding data is about dividing the datastore into horizontal parti-
tions, known as shards. Each shard contains the same schema, but
holds a subset of the data. Sharding often is used to scale a system
by distributing the load across multiple data storage systems.

When sharding data, it’s important to determine how many shards to
use and how to distribute the data across the shards. Deciding how to
distribute the data across shards heavily depends on the application’s
data. It’s important to distribute the data in such a way that one single
shard does not become overloaded and receive all or most of the
load. Because the data for each shard or partition is commonly in a
separate datastore, it’s important that the application can connect to
the appropriate shard (partition or database).

Caching Data

Data caching is important to scaling applications and improving per-
formance. Caching is really just about copying the data to a faster
storage medium like memory, and generally closer to the consumer.
There might even be varying layers of cache; for example, data can
be cached in the memory of the client application and in a shared dis-
tributed cache on the backend.

When working with a cache, one of the biggest challenges is keeping
the cached data synchronized with the source. When the source data
changes, it is often necessary to either invalidate or update the
cached copy of the data. Sometimes, the data rarely changes; in fact,
in some cases the data will not change through the lifetime of the ap-
plication process, making it possible to load this static data into a
cache when the application starts and then not need to worry about
invalidation. Here are some common approaches for cache invalida-
tion and updates:

Rely on TTL configurations by setting a value that removes a
cached item after a configurable expiration time. The application or
a service layer then would be responsible for reloading the data
when it does not find an item in the cache.

Use CDC to update or invalidate a cache. A process subscribes to
a datastore change stream and is responsible for updating the
cache.

Application logic is responsible for invalidating or updating the
cache when it makes changes to the source data.

Use a passthrough caching layer that’s responsible for managing
cached data. This can remove the concern of the data caching im-
plementation from the application.

Run a background service at a configuration interval to update a
cache.

Use the data replication features of the database or another ser-
vice to replicate the data to a cache.

Caching layer renews cached items based on access and avail-
able cache resources.

Content Delivery Networks

A content delivery network (CDN) is a group of geographically dis-
tributed datacenters, also known as points of presence (POP). A
CDN often is used to cache static content closer to consumers. This
reduces the latency between the consumer and the content or data
needed. Following are some common CDN use cases:

Improve website loading times by placing content closer to the
consumer.
Improve application performance of an API by terminating traffic
closer to the consumer.
Speed up software downloads and updates.

Increase content availability and redundancy.

Accelerate file upload through CDN services like Amazon
CloudFront.

The content is cached, so a copy of it is stored at the edge locations
and will be used instead of the source content. In Figure 4-19, a client
is fetching a file from a nearby CDN with a much lower latency of 15

ms as opposed to the 82 ms latency between the client and the
source location of the file, also known as the origin. Caching and
CDN technologies enable faster retrieval of the content, and scale by
removing load from the origin as well.

Figure 4-19. A client accesses content cached in a CDN closer to the client

The content cached in a CDN is usually configured with an expiration
date-time, also known as TTL properties. When the expiration date-
time is exceeded, the CDN reloads the content from the origin, or
source. Many CDN services allow you to explicitly invalidate content
based on a path; for example, /img/*. Another common technique is
to change the name of the content by adding a small hash to it and
updating the reference for consumers. This technique is commonly
used for web application bundles like the JavaScript and CSS files
used in a web application.

Here are some considerations regarding CDN cache management:

Use content expiration to refresh content at specific intervals.

Change the name of the resource by appending a hash or version
to the content.
Explicitly expire the cache either through management console or
API.

CDN vendors continue adding more features, making it possible to
push more and more content, data, and services closer to the con-
sumers, improving performance, scale, security, and availability.

Figure 4-20 demonstrates a client calling a backend API with the re-
quest being routed through the CDN and over the cloud provider’s
backbone connection between datacenters. This is a much faster
route to the API with lower latency, improving the Secure Sockets
Layer (SSL) handshake between the client and the CDN as well as
the API request.

Figure 4-20. Accelerated access to a backend API

Here are a few additional features to consider when using CDN
technologies:

Rules or behaviors
It can be necessary to configure routing, adding response
headers, or enable redirects based on request properties like
SSL.

Application logic
Some CDN vendors like Amazon CloudFront allow you to run
application logic at the edge, making it possible to personalize
content for a consumer.

Custom name

It’s often necessary to use a custom name with SSL, especially
when serving a website through a CDN.

File upload acceleration
Some CDN technologies are able to accelerate file upload by
reducing the latency to the consumer.

API acceleration
As with file upload, it’s possible to accelerate APIs through a
CDN by reducing the latency to the consumer.

NOTE

Use a CDN as much as possible, pushing as much as you can over the CDN.

Analyzing Data

The data created and stored continues to grow at exponential rates.

The tools and technologies used to extract information from data con-
tinues to evolve to support the growing demand to derive insights
from the data, making business insights through complex analytics
available to even the smallest businesses.

Streams

Businesses need to reduce their time to insights in order to gain an
edge in today’s competitive fast-moving markets. Analyzing the data
streams in real time is a great way to reduce this latency. Streaming
data-processing engines are designed for unbounded datasets. Un-
like data in a traditional data storage system in which you have a
holistic view of the data at a specific point in time, streams have an
entity-by-entity view of the data over time. Some data, like stock mar-
ket trades, click streams, or sensor data from devices, comes in as a
stream of events that never end. Stream processing can be used to
detect patterns, identify sequences, and look at results. Some events,

like a sudden transition in a sensor, might be more valuable when
they happen and diminish over time or enable a business to react
more quickly and immediately to these important changes. Detecting
a sudden drop in inventory, for example, allows a company to order
more stock and avoid some missed sales opportunities.

Batch

Unlike stream processing, which is done in real time as the data ar-
rives, batch processing is generally performed on very large bounded
sets of data as part of exploring a data science hypothesis, or at spe-
cific intervals to derive business insights. Batch processing is able to
process all or most of the data and can take minutes or hours to com-
plete, whereas stream processing is completed in a matter of sec-

onds or less. Batch processing works well with very large volumes of
data, which might have been stored over a long period of time. This
could be data from legacy systems or simply data for which you’re
looking for patterns over many months or years.

Data analytics systems typically use a combination of batch and
stream processing. The approaches to processing streams and
batches have been captured as some well-known architecture pat-
terns. The Lambda architecture is an approach in which applications
write data to an immutable stream. Multiple consumers read data
from the stream independent of one another. One consumer is con-
cerned with processing data very quickly, in near real time, whereas
the other consumer is concerned with processing in batch and a low-
er velocity across a larger set of data or archiving the data to object
storage.

Data Lakes on Object Storage

Data lakes are large, scalable, and generally centralized datastores
that allow you to store structured and unstructured data. They are
commonly used to run map-and-reduce jobs for analyzing vast
amounts of data. The analytics jobs are highly parallelizable so the
analysis of the data can easily be distributed across the store.

Hadoop has become the popular tool for data lakes and big data
analysis. Data is commonly stored on a cluster of computers in the

Hadoop Distributed File System (HDFS), and various tools in the
Hadoop ecosystem are used to analyze the data. All of the major
public cloud vendors provide managed Hadoop clusters for storing
and analyzing the data. The clusters can become expensive, requir-
ing a large number of very big machines. These machines might be
running even when there are no jobs to run on the cluster. It is possi-
ble to shut down these clusters and maintain state for cost savings
when they are not in use and resume the clusters during periods of
data loading or analysis.

It’s becoming increasingly common to use fully managed services
that allow you to pay for the data loaded in the service and pay-per-
job execution. These services not only can reduce operational costs
related to managing these services, but also can result in big savings
when running the occasional analytics jobs. Cloud vendors have
started providing services that align with a serverless cost model for
provisioning data lakes. Azure Data Lake and Amazon S3–based
AWS Lake Formation are some examples of this.

Data Lakes and Data Warehouses

Data lakes are often compared and contrasted with data warehouses
because they are similar, although in large organizations it’s not un-
common to see both used. Data lakes are generally used to store raw
and unstructured data, whereas the data in a data warehouse has

been processed and organized into a well-defined schema. It’s com-
mon to write data into a data lake and then process it from the data
lake into a data warehouse. Data scientists are able to explore and
analyze the data to discover trends that can help define what is pro-
cessed into a data warehouse for business professionals.

Distributed Query Engines

Distributed query engines are becoming increasingly popular, sup-
porting the need to quickly analyze data stored across multiple data
systems. Distributed query engines separate the query engine from
the storage engine and use techniques to distribute the query across
a pool of workers. A number of open source query engines have be-
come popular in the market: Presto, Spark SQL, Drill, and Impala, to
name a few. These query engines utilize a provider model to access
various data storage systems and partitions.

Hadoop jobs were designed for processing large amounts of data
through jobs that would run for minutes or even hours crunching
through the vast amounts of data. Although a structured query lan-
guage (SQL)–like interface exists in tools such as HIVE, the queries
are translated to jobs submitted to a job queue and scheduled. A
client would not expect that the results from a job would return in min-
utes or seconds. It is, however, expected that distributed query en-

gines like Facebook’s Presto would return results from a query in the
matter of minutes or even seconds.

At a high level, a client submits a query to the distributed query en-
gine. A coordinator is responsible for parsing the query and sched-
uling work to a pool of workers. The pool of workers then connects to
the datastores needed to satisfy the query, fetches the results, and
merges the results from each to the workers. The query can run
against a combination of datastores: relational, document, object, file,

and so on. Figure 4-21 depicts a query that fetches information from a
MongoDB database and some comma-separated values (CSV) files
stored in an object store like Amazon S3, Azure Blob Storage, or
Google Object Storage.

The cloud makes it possible to quickly and easily scale workers, al-
lowing the distributed query engine to handle query demands.

Figure 4-21. Overview of a distributed query engine

Databases on Kubernetes

Kubernetes dynamic environment can make it challenging to run data
storage systems in a Kubernetes cluster. Kubernetes pods are creat-
ed and destroyed, and cluster nodes can be added or removed, forc-
ing pods to move to new nodes. Running a stateful workload like a
database is much different than stateless services. Kubernetes has
features like stateful sets and support for persistent volumes to help
with deploying and operating databases in a Kubernetes cluster.
Most of the durable data storage systems require a disk volume as
the underlying persistent storage mechanism, so understanding how

to attach storage to pods and how volumes work is important when
deploying databases on Kubernetes.

In addition to providing the underlying storage volumes, data storage
systems have different routing and connectivity needs as well as
hardware, scheduling, and operational requirements. Some of the
newer cloud native databases have been built for these more dynam-
ic environments and can take advantage of the environments to scale
out and tolerate transient errors.

NOTE

There are a growing number of operators available to help simplify the deployment
and management of data systems on Kubernetes. Operator Hub is a directory list-
ing of operators (https://www.operatorhub.io).

Storage Volumes

A database system like MongoDB runs in a container on Kubernetes
and often needs a durable volume with a life cycle different from the
container. Managing storage is much different than managing com-
pute. Kubernetes volumes are mounted into pods using persistent
volumes, persistent volume claims, and underlying storage providers.

Following are some fundamental storage volume terms and
concepts:

https://www.operatorhub.io/

Persistent volume
A persistent volume is the Kubernetes resource that represents
the actual physical storage service, like a cloud provider stor-
age disk.

Persistent volume claim
A persistent volume storage claim is a storage request, and Ku-
bernetes will assign and associate a persistent volume to it.

Storage class
A storage class defines storage properties for the dynamic pro-
visioning of a persistent volume.

A cluster administrator will provision persistent volumes that capture
the underlying implementation of the storage. This could be a persis-
tent volume to a network-attached file share or cloud provider durable
disks. When using cloud provider disks, it’s more likely one or more
storage classes will be defined and dynamic provisioning will be
used. The storage class will be created with a name that can be used
to reference the resource, and the storage class will define a provi-
sioner as well as the parameters to pass to the provisioner. Cloud
providers offer multiple disk options with different price and perfor-
mance characteristics. Different storage classes are often created
with the different options that should be available in the cluster.

A pod is going to be created that requires a persistent storage volume
so that data is still there when the pod is removed and comes back up
on another node. Before creating the pod, a persistent volume claim
is created, specifying the storage requirements for the workload.

When a persistent volume claim is created, and references a specific
storage class, the provisioner and parameters defined in that storage
class will be used to create a persistent volume that satisfies the per-
sistent volume claims request. The pod that references the persistent
volume claim is created and the volume is mounted at the path speci-
fied by the pod. Figure 4-22 shows a pod with a reference to a persis-
tent volume claim that references a persistent volume. The persistent
volume resource and plug-in contains the configuration and imple-
mentation necessary to attach the underlying storage
implementation.

Figure 4-22. A Kubernetes pod persistent volume relationship

NOTE

Some data systems might be deployed in a cluster using ephemeral storage. Do
not configure these systems to store data in the container; instead, use a persistent
volume mapped to a node’s ephemeral disks.

StatefulSets

StatefulSets were designed to address the problem of running state-
ful services like data storage systems on Kubernetes. StatefulSets
manage the deployment and scaling of a set of pods based on a con-
tainer specification. StatefulSets provide a guarantee about the order
and uniqueness of the pods. The pods created from the specification
each have a persistent identifier that is maintained across any
rescheduling. The unique pod identity comprises the StatefulSet
name and an ordinal starting with zero. So, a StatefulSet named
“mongo” and a replica setting of “3” would create three pods named
“mongo-0,” “mongo-1,” and “mongo-2,” each of which could be ad-
dressed using this stable pod name. This is important because clients
often need to be able to address a specific replica in a storage sys-
tem and the replicas often need to communicate between one anoth-
er. StatefulSets also create a persistent volume and persistent vol-
ume claim for each individual pod, and they are configured such that
the disk created for the “mongo-0” pod is bound to the “mongo-0” pod
when it’s rescheduled.

NOTE

StatefulSets currently require a headless service, which is responsible for the net-
work identity of the pods and must be created in addition to the StatefulSet.

Affinity and anti-affinity is a feature of Kubernetes that allows you to
constrain which nodes pods will run on. Pod anti-affinity can be used
to improve the availability of a data storage system running on Kuber-
netes by ensuring replicas are not running on the same node. If a pri-
mary and secondary were running on the same node and that node
happened to go down, the database would be unavailable until the
pods were rescheduled and started on another node.

Cloud providers offer many different types of compute instance types
that are better suited for different types of workloads. Data storage
systems will often run better on compute instances that are optimized
for disk access, although some might require higher memory in-
stances. The stateless services running the cluster, however, do not
require these specialized instances that will often cost more and are
fine running on general commodity instances. You can add a pool of
storage-optimized nodes to a Kubernetes cluster to run the storage
workloads that can benefit from these resources. You can use Kuber-
netes node selection along with taints and tolerations to ensure the
data storage systems are scheduled on the pool of storage optimized
nodes and that other services are not.

Given most data storage systems are not Kubernetes aware, it’s of-
ten necessary to create an adapter service that runs with the data
storage system pod. These services are often responsible for inject-
ing configuration or cluster environment settings into the data storage
system. For example, if we deployed a MongoDB cluster and need to
scale the cluster with another node, the MongoDB sidecar service
would be responsible for adding the new MongoDB pod to the Mon-
goDB cluster.

DaemonSets

A DaemonSet ensures that a group of nodes runs a single copy of a
pod. This can be a useful approach to running data storage systems
when the system needs to be part of the cluster and use nodes dedi-
cated to storage system. A pool of nodes would be created in the
cluster for the purpose of running the data storage system. A node
selector would be used to ensure the data storage system was only
scheduled to these dedicated nodes. Taints and tolerations would be
used to ensure other processes were not scheduled on these nodes.

Here are some trade-offs and considerations when deciding between
daemon and stateful sets:

Kubernetes StatefulSets work like any other Kubernetes pods, al-
lowing them to be scheduled in the cluster as needed with avail-
able cluster resources.

StatefulSets generally rely on remote network attached storage
devices.

DaemonSets offer a more natural abstraction for running on a
database on a pool of dedicated nodes.

Discovery and communications will add some challenges that
need to be addressed.

Summary

Migrating and building applications in the cloud requires a different
approach to the architecture and design of applications’ data-related
requirements. Cloud providers offer a rich set of managed data stor-
age and analytics services, reducing the operating costs for data sys-
tems. This makes it much easier to consider running multiple and dif-
ferent types of data systems, using storage technologies that might
be better suited for the task. This cost and scale of the datastores has
changed, making it easier to store large amounts of data at a price
point that keeps going down as cloud providers continue to innovate
and compete in these areas.

Chapter 5. DevOps

Developing, testing, and deploying cloud native applications differs
significantly from traditional development and operations practices. In
this chapter, you learn the fundamentals of DevOps along with the
proven practices, including all of the benefits and challenges of devel-
oping, testing, and operating cloud native applications. Additionally,

we cover designing cloud native applications with operations and
rapid, reliable development processes in mind. Most concepts and
patterns explained in this chapter are applicable to both containerized
services and functions. When this is not the case, we explicitly call
out the differences.

What Is DevOps?

DevOps is a broad concept that encompasses multiple aspects of
collaboration and communication between software developers and
other IT professionals. The easiest way to define DevOps is to talk
about its goals. DevOps is intended to improve collaboration between
development and operations teams throughout the entire process of
software development, from planning to delivery, to improve deploy-
ment frequency, achieve faster time to market, lower the failure rate
of new releases, shorten lead time between fixes, and improve mean
time to recovery.

One of the models you can use when talking about DevOps is called
CALMS, which stands for Collaboration, Automation, Lean, Measure-
ment, and Sharing. The CALMS model is a method that we can use
to assess, analyze, and compare the maturity of the DevOps team.

Collaboration

The collaboration in the CALMS model tells us to focus on people
over processes. As an organization, you value healthy people instead
of processes that can make people burn out and eventually make
them quit their jobs. As part of the culture, you also embrace failure—
you give people the freedom to fail and, even more important, you
learn from those failures. In this culture, ideas from everyone are ap-
preciated; you don’t prefer those of only certain individuals. Hierarchy
and titles do not matter, and everyone participates in the design of
the system.

Automation

Automating the software cycle is crucial to be able to achieve higher
deployment velocity and deployment consistency. To be able to go
from an implemented feature or code change to a deployed feature in
production in a matter of minutes takes a lot of reliable automation.

Key elements that need to be automated are the infrastructure, Con-
tinuous Integration (CI) process, testing after you’ve built the code,

Continuous Delivery (CD), and testing along deployment paths. Ideal-
ly, and if possible, the platform and tools you’re using have the au-
tomation already built in.

Historically, setting up infrastructure was a manual process. It re-
quired people to set up the servers, configure them, deploy the ap-
plications on them, and so on. There are many drawbacks to doing
things manually: the process of obtaining the hardware, setting it up,

and managing it costs money; it’s slow; and it has a huge impact on
the ability to handle traffic spikes, for example, and launch new ser-
vices or applications quickly.

One of the key benefits of the cloud is that infrastructure can be auto-
mated. Infrastructure as Code (IaC) is a method of provisioning and
managing infrastructure using code rather than through manual pro-
cesses. All infrastructure, such as servers, networks, and databases,

is treated as code. Using code, you can create a process for configur-
ing and deploying infrastructure components in a repeatable, consis-
tent manner. For example, you can create scripts that you can use to
deploy the servers and preconfigure different components, networks,

load balancers, and any other cloud services. Simply by running this
script, you consistently provision your entire infrastructure stack in a
completely different region, for example. Something that would usual-
ly take weeks can be done in a matter of hours.

Lean Principles and Processes

The focus of Lean principles and processes comes from manufactur-
ing (specifically from Toyota Production Systems). The gist with Lean
is to remove any waste from your processes. An example of how to
achieve this is to begin by drawing and documenting the current state
of your processes. Think about what happens when you check in
your code, or, what happens when you’re building your servers or en-
vironments, perhaps creating a new region. How do you get from
having nothing in production to having a production server/environ-
ment with your applications running? After you map all of this out, you
can estimate how long each portion takes and easily spot bottle-
necks, unnecessary processes, or manual processes. With these
identified, you can either remove them or automate them to make the
process faster. After you’ve repeated this a couple of times, you can
come up with your desired, Lean state of processes.

Measurement

Determining whether deployments and releases are successful re-
quires us to have specific metrics in place. The purpose of having
measurements is to quickly discover any potential issues with your
code or the process so that you can go back and fix it if needed. As
an example, Prometheus gives you a common instrumentation point
and allows developers to easily instrument code. You don’t need to

worry about how data is collected because there’s one endpoint that
polls for all data from your service. Your only worry is instrumenting
and emitting metrics from within your services and functions. As you
can imagine, the volume of metrics in a distributed system can be ex-
tremely high, so you also need distributed tracing tools like Jaeger or
OpenTracing that allow you to correlate metrics and events through-
out your services. Using these tools, you can break down calls be-
tween services and get a better view of your system, which allows
you to quickly spot any bottlenecks, sources of failures, or potential
optimization points.

We mentioned only the system and application measurements, but
you can’t forget about people metrics and the cultural aspects. Mea-
surements inform us whether people are healthy or how investments
are influencing and affecting things in the business, the amount of
money it’s making, or how you can innovate faster.

Additional third-party tools that can help in the area of measurements
are New Relic, Splunk, and Sumo Logic. Certain cloud platforms also
provide built-in metrics and tracing capabilities, such as Amazon
CloudWatch and AWS X-Ray, as well as Microsoft Azure Monitor for
activity logs, diagnostic logs, and metrics.

Sharing

Sharing learnings and best practices is also important, both within
your organization, and between organizations in a company, as well
as among your competitors and the rest of the industry with the pur-
pose of improving the industry for everyone.

With all CALMS principles in mind, one thing they have in common is
people. You can’t be successful with DevOps if you’re not focusing on
people and ensuring that they work well together.

WHAT ABOUT SRE?

Site Reliability Engineering (SRE) emerged from Google in the early
2000s. The idea behind an SRE position is to bridge the gap between
the traditional research and development team, which writes code
and deploys to production, and the operations team, which tries to
keep the production environment up and running.

The SRE values and principles are very much in line with that of Dev-
Ops, even though DevOps can be considered a superset of SRE. It
offers more generalized suggestions on a higher and broader level,
whereas SRE is specific and more service oriented.

You can read more about SRE and how it relates to DevOps from the
aptly named book How SRE Relates to DevOps (O’Reilly) by Betsy
Beyer et al.

Testing

It probably goes without saying that any piece of code that is de-
ployed and released into production needs to be thoroughly tested.

With the velocity of deployments and releases that are commonplace
for cloud native solutions, you can’t survive any longer by doing man-
ual testing. You need to automate any tests that you’re planning to
run because only reliable and automated tests allow you to achieve
that release velocity and have confidence in your deployments and
releases.

As mentioned in the previous section, CD is a DevOps practice
whereby you can automatically ensure that a piece of code is produc-
tion ready any time. Testing is part of the CD pipeline in which you au-
tomatically test the code, deploy it into the environment, and then re-
lease it.

To be able to do proper testing of cloud native solutions, you need to
have good test automation in place. Without test automation, you
can’t do DevOps—automation is critical. Just as there are things you
need to keep in mind when developing microservices, there are con-
siderations around writing tests for those microservices.

How about functions? The principles for testing functions and the pro-
cesses involved are similar. However, your test setup is different

when testing functions.

For testing functions that are HTTP triggered and return a value, the
solution is relatively simple: you trigger the function via HTTP by cre-
ating a request, invoking it, and then validating the function’s re-
sponse. However, you could have functions that are triggered by oth-
er events (e.g., storage queue, database operations), which don’t
have return values or can interact with an external system or another
function. Depending on how complex the functions and your system
are, you could use dependency injections or environment variables to
define the endpoints, but most often you would utilize one or more
test doubles.

Test Doubles

In most of your testing, you use either one or all of the test doubles. A
test double is an object that you can use instead of a real object. For
example, you could use a test double for the payment or authoriza-
tion service so that you don’t need to rack up charges on your credit
card while testing. The three most common types of test doubles are
mocks, fakes, and stubs.

With mocks, you can define certain expectations about how functions
are called. Mocks are used for testing interactions between objects;

for example, if your code uses a database, you could use a mock

database instead of a real database. To test that your function writes
or reads to and from the database, you set up the mock, call the func-
tion you are testing, and then verify on the mock that write or read
calls were made to the database.

A fake is a lightweight implementation of your API that behaves like
the real thing, but it isn’t. You can use fakes when you can’t use a real
implementation or if using a real implementation is slow or cumber-
some to set up and maintain. An example of a fake would be a fake
payment or authorization service that you use in your tests.

Finally, a stub contains zero logic, and it returns only what you tell it to
return. Stubs are useful if you need certain objects to return specific
values and be in a particular state.

Test Automation Pyramid

Regardless of the testing context in what context, be it in cloud native
architectures or monolithic architectures, you can’t avoid mentioning
the test automation pyramid that Mike Cohn wrote about in his blog
post back in 2009.

The test automation pyramid, as shown in Figure 5-1, groups tests
based on their granularity. In addition, it gives us rough guidance on
the number of tests in each group.

Figure 5-1. The test automation pyramid

Unit tests

The most substantial part of the pyramid, the bottom, is represented
by the unit tests. Unit tests should be the basis of your testing and,

compared to the other types of tests, you should have the most of
them. If you take an example of an ecommerce website that has a lo-
gin service, shipping-cost service, payment service, shopping-cart
service, product catalog service, and so on, each of these services is
built from multiple different modules or units that need to be covered
by unit tests. With unit tests, more often than not you need to mock
and fake any dependencies to be able to create different conditions
under which the tested functionality runs. If you’re writing unit tests for

your login service, you don’t want to use the actual authorization ser-
vice. You also want to test the scenarios in which the authorization
service is unavailable. Or, you want to test scenarios in which login
didn’t work, or the user doesn’t exist, and so forth.

All of these scenarios become much easier to test if you use a mock
service in place of the real authorization service. For each test, you
can define how the mock should behave and then test your login ser-
vice using that mock. When you run into issues either with writing
mocks or unit tests, go back to the code and think about refactoring it
to make it testable. The testable code makes your life easier in the
long run. It helps you to write better unit tests and mocks that cover
multiple conditions. Having a set of useful unit tests gives you confi-
dence when making changes to that part of the code as well as when
you’re deploying and releasing your code to production.

Service tests

Service-level tests—which you could also call component-level tests
—occupy the middle of the pyramid. With service-level tests, you are
trying to test the service or a component as a whole, separately from
the user interface (UI). For example, you would have tests that cover
shipping-service functionality; the shipping service takes some inputs
(an address, for example) and returns an output (shipping costs, du-
ration, etc.).

UI tests

Finally, at the top of the pyramid are the UI tests. UI tests should rep-
resent the fewest number of tests of all the pyramid tests. These tests
are usually costly to write and maintain; however, they are useful
when testing for usability and accessibility. Let’s take the ecommerce
website as an example again. UI tests for the ecommerce website
would include starting a browser, navigating to the website, clicking
the login link, logging in, browsing through the catalog by clicking
links and typing in text, and perhaps making a purchase. As you be-
gin thinking about these tests more, you can see how complex they
can become—which browsers do you use for testing? How can you
reliably wait for the pages to complete loading or know when a spe-
cific action has completed? How do you make your automated UI
tests resilient enough, so that they don’t break if the website design
or layout changes?

In addition to the aforementioned three groups of tests in the test au-
tomation pyramid, other types of tests can either fall under the ser-
vice-level test group or have their dedicated slice of your test pyra-
mid. These are the tests that you either run as part of the CD stage
and each time you deploy to production, or run continuously; for ex-
ample, you could have a canary test that runs continuously and exer-
cises your application functionality in production. That way you know
when something goes wrong immediately. Other types of tests (load

or performance tests) can be run only on specific schedules or on de-
mand, but not necessarily with every release.

Jepsen tests

A tool that we need to mention whenever we talk about cloud native
and distributed systems is the Jepsen library. The Jepsen library sets
up a distributed system and runs a set of operations against it to veri-
fy that the history of operations makes sense. You can use Jepsen to
analyze databases, coordination services, and queues, and it’s able
to find a plethora of issues, including data loss, stale reads, lock con-
flicts, and more.

Performance tests

These tests are meant to give you an idea of how your application or
services are performing by measuring, for example, how long specific
scenarios took. You can write performance tests on the function or
unit level to measure how long a single function or request takes. In
addition to lower-level performance tests, you should also consider
writing a scenario or feature-level performance test that measures
how long specific actions take; for example, you could measure how
long the login process takes, from the time a user clicks the login but-
ton to the time they are presented with their profile or dashboard
page. Almost every time you do a feature-level performance test, you

https://github.com/jepsen-io/jepsen

need to dig deeper and have metrics and numbers on specific func-
tions as well. This will help you to pinpoint bottlenecks and allow you
to investigate why a function is taking a certain amount of time to exe-
cute. An excellent way to track performance is to establish a baseline
to which you can compare all your numbers. For your baseline, you
can either use the measurements obtained with the first release of
your code to production or define goals that you can try to meet (e.g.,

“User login should not take more than X seconds for mobile users us-
ing LTE connections”). Depending on how critical performance is to
your system, you can use dedicated environments and conditions
within which your tests are executed and you measure your system.

Load tests

Load tests are a type of performance test that that you use to deter-
mine your system’s performance under certain conditions. These
conditions could be, for example, a typical load you are expecting
your system to be under most of the time, or extreme or peak loads
that aren’t typical or expected. With load testing, you can determine
the maximum load on your system and where the breaking point is.

The results from the load testing can help you to plan as well as de-
fine alerting in your monitoring systems.

Security/penetration tests

The purpose of security and penetration tests is to determine whether
your system is potentially vulnerable to different types of attacks and,

if so, in what ways it is vulnerable. This type of testing also involves
doing security reviews of system architecture to determine the possi-
ble entry points and security-critical sections. The review should also
ensure services don’t have unnecessary permissions and access to
resources, as that can increase the fallout in case of a security
breach. For example, if your service reads only from the database but
never writes to it, it should have read-only access to the database
and nothing more.

A/B tests

A/B tests usually are executed against services that are already run-
ning in the production environment. The purpose of an A/B test is to
determine whether one version of the service (A) performs better in
comparison to another service (B). If you plan to do any A/B tests,

make sure that you have a well-defined goal as well as all metrics in
place that allow you to measure the results. For example, you could
create an A/B test to determine whether using green buttons in your
call to action increases your sales (i.e., users clicking it) versus hav-
ing a yellow button. As an example, you can deploy both versions of
your service and equally split traffic between them. Note that equally
splitting traffic is not required, and you could also pick something else

as a basis for a decision to redirect someone to version A versus ver-
sion B.

Acceptance tests

You can use acceptance tests to determine whether your services are
ready to be moved to a different environment, for example. You could
define a different set of acceptance tests before you promote the
code between environments. These tests should become stricter as
you move closer to the production environment.

Usability tests

Usability tests are conducted with real users of your product to dis-
cover how easy it is to use your product. Traditionally, you would
come up with specific scenarios or tasks and ask your users to try to
accomplish these tasks using your product. While the users are work-
ing through the tasks, you would observe them as well as have them
take a survey or ask them questions after they’ve gone through the
tasks.

Configuration tests

As the name suggests, these tests are used to validate that the con-
figuration that is going to be applied to your services and code is cor-

rect and all in place for the service to run. For example, you want to
ensure that all connection strings are defined and correct for the envi-
ronment in which the service runs. You don’t want to use production
database connection strings for services that run in your testing or
staging environment. Also, if you’re doing testing in production, you
need to ensure that services and functions are configured correctly
so that none of the live traffic is sent to your services.

Smoke tests

Smoke tests represent a set of tests that you use to quickly determine
whether a service, component, or application seems reliable enough
to begin doing more thorough testing. For example, testing whether
the service can successfully start and cleanly shut down is a form of a
smoke test. If a service doesn’t even start, there’s not much other
testing you can do.

Integration tests

Integration tests usually involve testing multiple different services and
the interactions between them. In the test pyramid, these would be
placed above service tests but under UI tests. You execute these
tests in their dedicated integration environments (for example, you
can have a testing environment in which all different services come
together and are tested).

Chaos tests

As the name suggests, the purpose of chaos tests is to wreak havoc
and introduce chaos to your system randomly. You would run a set of
so-called chaos monkeys as a separate service within your environ-
ment to test how your system behaves when things become chaotic
and services are randomly disabled, become unavailable, the net-
work slows down, and so on. There is an entire engineering practice
called chaos engineering that deals with identifying failures before
they become outages. The idea behind chaos testing is to proactively
test how your system responds to failure conditions so that you can
identify and fix any issues before they become actual outages and
have an impact on your customers.

Fuzz tests

Fuzz testing involves feeding a random, invalid, or unexpected set of
data to your service or component in an attempt to make it fail. For
example, if your service takes a JSON input, you could use existing
tools to generate fuzzed JSON data or use prefuzzed data, send it to
your service, and observe how it behaves.

This list of different test types is nowhere near complete; there are
many other types of testing that organizations and teams do. With the
sheer number of different test types, it can be tricky to know which

ones to run. You could run all of them, but that wouldn’t make much
sense, and it would be extremely time and resource consuming. So,

how do you decide which tests to run and when? With the assumption
that you eventually automate all of your tests, a general guideline is
to always run all unit tests on any component change and with every
build. Developers should also execute unit tests as part of the pre-
check-in process. After you run the unit tests, the next step would be
to run acceptance, smoke, and integration tests that are affected by
the changed component. These tests should be able to give you
enough confidence to move the code and artifacts along to the next
stage.

When to Run Which Types of Tests

Depending on the CI/CD stage your code is in, you should run differ-
ent types of tests. The first tests that are usually executed are unit
and service/serverless app tests. Unit tests specifically need to be
small and execute in a short amount of time. Because they are run
before the code merges, they serve as a first level of defense. In case
of serverless functions, these are the tests you would run to validate
each function separately.

At the next stage, the tests that can be executed either before or after
code merge, depending on the complexity and how long it takes to
run them, are the service-level tests. The purpose of these tests is to

verify the service or the serverless application as a whole. In these
tests, you will probably be using mocks instead of real service or
serverless app dependencies.

After your code is merged, it is time to run integration tests. These
tests verify the integration points between your services and server-
less apps. To run these tests, you would deploy the services and
serverless applications to their dedicated test environments and run
tests between the integration points. Depending on the complexity
and number of dependencies, you might want to use mocks for these
tests as well. If you don’t have a lot of dependencies, you could provi-
sion them in your test environment and use them only for integration
tests.

Canary testing is another effective way to continuously evaluate your
services and functions. You can run canary tests continuously in each
environment. They should mimic the user scenarios as closely as
possible and can serve as a warning system for potential issues.

The other types of tests are usually run on their own schedules or as
one-offs, and they depend on the type of the services and functions
you are developing. For example, it doesn’t make sense to run in-per-
son usability tests every week. These tests would be run as a one-off,
probably to validate the ideas and features before releasing them or
for getting feedback on features you are planning to work on.

Testing Cadence

You should execute security, fuzz, load, and performance tests at a
regular interval, but it probably does not make sense to run them with
each build or code change, unless the changes affect the security or
performance of your system.

Before each deployment you should be running configuration tests (if
any) to ensure that the service configuration is correct—you could
also selectively run these tests based on whether the configuration
has changed.

Chaos testing is something you do in the production environment,
and you should do this at regular intervals as well. Some teams de-
cide to do surprise chaos testing as a drill to ensure that they can
handle outage situations well. The first time you run a chaos test, it’s
highly likely that everything will go wrong, but any subsequent runs
should become easier, and there should be fewer and fewer issues
discovered during this type of testing.

The usability and A/B tests fall into a category of tests that you exe-
cute when the need arises. The usability tests can be valuable each
time there’s a significant change to the way your product works—you
want to get feedback to ensure the product is usable by your actual

users. Finally, you should run A/B tests only when or if there is a need
for them.

Table 5-1. Run frequency for various test types

Test type Cadence Notes

Unit tests Before every
code
merge/check-
in

Automated and fast and easy
to run.

Service tests Before (or af-
ter) every
code
merge/check-
in

Automated and fast and easy
to run, uses mocks.

Integration
tests

Before de-
ployment to
staging/test
environment

Automated, takes longer to
run, can use mocks or real de-
pendencies.

Canary tests Continuously
in all
environments

Automated, can be costly to
maintain, runs continuously.

Test type Cadence Notes

UI tests On UI
changes

Manual; consider automating
if your solution is UI heavy.

Performance
tests

One-off at
first, weekly
later

Initial performance test might
be manual and stopwatch to
get a baseline. Consider au-
tomating if you can create re-
peatable numbers; run weekly
or on bigger changes. Alert if
different from baseline.

Security
tests

Daily Automated; if possible, have
these tests as part of integra-
tion/canary tests. Penetration
testing is usually manual and
one-off. Enable
vulnerability/exploit testing on
the container registry.

Test type Cadence Notes

A/B tests As needed Make sure you are changing
one variable between A and B
versions of the application to
see which one is performing
better.

Chaos tests As needed Use an automated chaos
monkey tool; rerun as needed.

Testing in Production

Whenever someone mentions testing in production, it always feels
like they are trying to make a joke instead of talking about it for real.
However, thinking about how much investment is needed to keep
multiple environments up and running—we are assuming here that
you have at least a staging or testing environment—the investment
for doing actual testing in production will not seem so big anymore. In
our experience, the biggest problem when using separate environ-
ments for testing is merely keeping them up to date and synchronized
with the actual production environment. Remember that for testing in
separate environments to make sense, you need to mimic your pro-
duction environment as closely as possible. This includes running

pretty much everything you run in production—any databases,

queues, external dependencies, and so on—and keeping all of these
synchronized. For example, if you update your database version or
you change the database schema, you are doing these changes
twice, or rather in two environments. Besides, your testing environ-
ment is probably smaller than your production; you won’t run it in
each region and you won’t be using the same size of compute or
databases because you don’t want to keep all that running, maintain
it, and pay for it either.

To put it differently, your testing environment is a smaller version of
your production environment—a mini-me of your production environ-
ment. This, however, can affect the way you run your services, so
your per-service configuration will differ from the production service.

At this point, are you testing your services in the same environment
as your production services? Probably not.

Because your environment is a scaled-down version of the produc-
tion, how could you even know whether that new feature or bug fix
actually works the way you intended it to work? You need some moni-
toring in place as well, but you are effectively monitoring a completely
different system, and that doesn’t make much sense.

Another benefit of testing in production is that in addition to the syn-
thetic traffic that is generated by your tests, you are also using actual

customer use cases and production traffic.

It’s quite clear that keeping everything running within one environ-
ment is a full-time job, let alone doing the same in two or more envi-
ronments. At this point, the question about testing in production no
longer sounds like a joke, and it is actually a viable solution. To be
clear, we’re not suggesting that testing in production is easy, not at
all. There are risks, and getting to a point in your organization at
which you can do this effectively involves much technical investment
and possibly cultural changes as well. You should always evaluate
whether making this investment is justifiable for your team or
organization.

We’re not saying testing environments are not valuable; they are
valuable, and it is better than not having any testing at all. However, if
you’re noticing you’re spending far too much time maintaining this
special environment, making investments that apply only to a testing
environment, or getting false positives in your tests, it makes sense
for you to consider testing in production.

There are a couple of things that need to be in place before you
should even consider doing testing in production. Looking at the Dev-
Ops maturity model, you should be in a place where the process of
moving your code from the check-in to an environment is fully auto-
mated. That means that you are effectively doing CI and CD.

Let’s break down the entire testing process into multiple stages, as
shown in Figure 5-2.

Figure 5-2. Stages of testing in production process

Let’s look at each stage in more detail.

Predeployment

The services are considered in the predeployment stage after the
code is built, packaged, and tagged and lives in a container image
repository (such as Docker registry).

This applies similarly to your serverless applications. At this stage
your functions that make up the serverless application are compiled
and tests are executed. The output of this stage is an artifact, such as
a ZIP package that contains the built serverless application.

Before the packaged code moves to the deployment stage, you need
to run the tests mentioned earlier—unit tests, integration tests, accep-
tance tests, and so on—to ensure that the code meets the specific
criterion and can move on to the next stage.

Deployment

Deployment is the process of taking the built, packaged, and tested
code and moving it into the production environment. Practically, this
means that you have generated any deployment files and other con-
figurations that allow you to deploy the package to the platform. For
serverless applications, this might involve using a declarative applica-
tion model such as the AWS Serverless Application Model (AWS
SAM). Your AWS SAM template defines your functions, it has a link to
the built code package from the previous stage, and it can also con-
tain any dependent services and permissions that need to be applied.

One crucial difference between deploying serverless applications ver-
sus containerized services is that if you use, for example, AWS SAM
templates that define everything your serverless app needs, you can
quickly create multiple different environments, if needed, to test your
function. Because you can create an exact replica of your production
environment with low cost and you can tear it down right after you’re
done with it, it might be easier and less complex to do that than it
would be to implement traffic routing on the function level.

One important thing to note here for containerized services is that
even though your code is now in the production environment, none of
the traffic is reaching it yet. Before you enable traffic to the service,

you run various configuration, integration, and, possibly, load tests.

After the tests pass your defined bar, you can begin releasing the
service.

Release

Releasing the service involves gradually increasing the amount of
real traffic you want to direct to your deployed service. If you are us-
ing containerized applications, you can quickly carry out this process
by using a service mesh, such as Istio. Along with your service, you
deploy a VirtualService resource and a DestinationRule .

With a DestinationRule you define a new subset that represents
the new version of your service, and in the VirtualService you
assign the percentage of traffic that you want to run to the existing
service version and the new service version. For serverless apps, you
can utilize a combination of an API gateway and load balancers to
achieve similar functionality. Alternatively, due to low cost and quick
deployments, you can decide to create separate environments (stag-
ing, testing) for your serverless applications. If you decide to do that,
make sure to define and understand which services should use which
serverless applications.

For example, after deployment, you’d begin by redirecting 10% of the
incoming traffic to the new version of your service. At the same time,

you need to continually monitor the new service to ensure that there
are no issues. In addition to monitoring, you can run additional tests

that target this new service. When the test results give you enough
confidence, you can increase the traffic to 20%, 50%, and, finally, to
100%. The process after increasing the traffic is the same: monitor
and observe the new service and if all looks good, increase the per-
centage. If you discover any issues, you can decide to roll back the
new release (i.e., switch traffic back to 0%), fix the issue, and then re-
peat the entire process. Alternatively, you can also decide to continue
despite the discovered issues (provided the issues are a low priority
and don’t affect your service too much).

Post-release

After your service is fully released and 100% of the traffic is routed to
it, you can continue doing additional tests, such as chaos tests, vari-
ous A/B tests, and monitoring logs for exceptions. The post-release
stage could also be called the stage at which you are operating your
services. In addition to testing, this also involves responding to any
exceptions and outages by having your team be on-call.

Development Environments and
Tools

Development environments have traditionally been set up and config-
ured on local development machines or virtual machines (VMs) run-

ning locally. Local development environments have enabled quick
development workflows, allowing developers to quickly iterate, test,
and debug code changes. Many of the tools available today have
supported this approach for a long time.

The move to microservices architectures and serverless compute can
make it difficult, if not impossible, to run the entire application on a lo-
cal development machine. Pushing changes from local to a remote
environment increases the development cycle, reducing developer
productivity. It’s generally been easier to quickly iterate and validate
code changes locally, but new tooling is now making it increasingly
easy to begin doing more of this in the cloud, or at least integrating
with the cloud. There are other benefits to cloud-based development
environments; they support collaboration as well as improved parity
across test and production environments.

Often what’s best for a team and project is some combination of local
and cloud development environments and tooling. For example,

some teams edit code locally, run some unit tests, and then push the
changes into a cloud-based development environment. When devel-
oping a service, there are sometimes dependencies that need to run
in the cloud.

Following are some development environment considerations:

Does the code being developed need to run in the cluster?
Where do you want to run your cluster? Locally or in the cloud?

Where do you edit and commit changes from? Locally or in the
cloud?

Are there dependencies that need to run in the cloud?

Is the team heavily distributed and would it benefit from collabora-
tive development environments?

For example, a feature using serverless compute is implemented and
debugged locally using unit and integration tests. Test doubles can be
used to avoid having to bring up other service dependencies in the
local environment. After the unit integration tests and linting are suc-
cessful, the code is deployed into a dev/test environment and tested
in an actual cloud environment. The changes can now be submitted
in a pull request, reviewed, and moved through the CI pipeline. As
Figure 5-3 demonstrates, much of the feature development is com-
pleted locally; it’s the final set of verification tests in an actual cloud
environment before a pull request and code review starts.

Figure 5-3. Connection between local development environment and cloud environment

Development Tools

Many useful development tools and services are now available that
make it much easier to build applications with remote clusters or
stand up local environments that are more similar to test and produc-
tion environments. There are so many tools out there, and more
showing up, that it would be difficult to cover them all.

If you are considering a local development environment, there are a
couple of tools available that allow you to run Kubernetes in your lo-
cal development environment:

Minikube runs a single-node Kubernetes cluster in a VM and is
commonly used for local development environments. Minikube can
be useful for experimenting with Kubernetes in a local environment

or setting up local development environments that are closer to
test and production environments.

Similar to Minikube, Docker for Mac and Windows is another ex-
tremely popular and easy-to-run tool that allows you to run Kuber-
netes locally. If you are using Docker, you probably already have
this installed, and enabling Kubernetes support is as simple as se-
lecting a checkbox in the Docker for Mac or Windows settings.

Both of these tools are useful; however, there might be features that
are either not fully supported or missing in the local development sce-
nario—for example, using the LoadBalancer type in Kubernetes
services. These tools are also rapidly evolving and new features and
bug fixes are added frequently, so the way Kubernetes is run locally
is becoming very similar to how it is run in the production environ-
ment. Note that the local development environment is never a re-
placement for a real, cloud-based environment. Even though these
tools will let you run the minimal Kubernetes environment on one
node, you need to ensure that you have enough resources available
for it to run smoothly.

In addition to the aforementioned local Kubernetes development
tools, there are other useful tools available today to make local and
remote development easier:

Docker Compose is a tool for defining and running multiple con-
tainers. A YAML file is used to define the containers that you can
manage, start, stop, and delete as a group. The grouping makes it
easy to bring up more complex local development environments.

Local container-based development environments can help isolate
and avoid dependency version conflicts. The environment handles
building and running the software, and the tools needed to build
and run the software can be part of the image. There’s no longer a
need to get the right version of a runtime installed or switch be-
tween them. Dependencies on products like Redis or MongoDB
can be easy to quickly bring up and down.

KSync updates containers running on a cluster by replicating local
files to the containers running in a remote cluster. A developer can
use their favorite local editors and source control management
tools while building, running, and testing the application in a re-
mote cluster. Changes are replicated to a container in the cluster
where they are built and run. This can sometimes make it quick to
iterate on changes without the overhead of building an image,

pushing it, and updating the running container.
Skaffold is a command-line tool that you can use to continually de-
ploy code changes to a local or remote Kubernetes cluster. It auto-
mates the development workflow by building an image and push-
ing it to a cluster when code changes. Skaffold can push file
changes into a container if there are files that can be synchro-

nized, or it optionally creates an image and deploys a new contain-
er instance.

Draft is an open source tool that automates the deployment of ap-
plication changes to either a remote or local Kubernetes cluster.
You can use Draft to generate simple Dockerfiles and Helm charts.

The tool detects the application language used when generating
the files. You can customize it to streamline the development of
any application or service that can run on Kubernetes. Draft makes
it easy to edit locally and develop remotely.

Telepresence is an open source tool that you can use to wire con-
tainers running locally into a remote Kubernetes cluster. This can
be useful when developing multiservice applications like those
used in a microservices-based architecture. You can develop a
service locally, enabling fast iterations and rich debugging while
transparently interacting with other services in the cluster. This
works almost as if your local machine were part of the cluster.
For Azure-specific Kubernetes development, Azure Dev Spaces is
a great development tool. It allows you to develop and run con-
tainerized services in isolation directly on Azure Kubernetes Ser-
vice. This isolation enables a team of developers to develop an en-
tire application on the same development cluster collaboratively
and, as a result, drastically reduces the need for mocks and stubs.

Many of the cloud vendors offering Function as a Service (FaaS) also
provide local development tools, making it possible to run and debug

functions locally. Amazon Web Services (AWS), for example, ships
AWS Serverless Application Model (AWS SAM) Local. Microsoft’s
Azure Functions Core Tools includes a version of the same runtime
that powers Azure Functions, which can run on a local development
environment. All of these options typically use container images, so
you can use Minikube or Docker for Mac/Windows to run them local-
ly.

Development Environments

Using the tools discussed in the previous section, you can use a few
different approaches to configure productive development environ-
ments that meet the needs of different teams.

Local Development Environments

Local development and debugging are still currently faster than re-
mote, and developers are accustomed to the tools and flows of local
development environments. When using one of the cloud providers’
serverless compute FaaS services, you can use the cloud vendors’
tools to run a local environment and/or complete the final tests in the
cloud.

Docker Compose is a useful tool for setting up container-based de-
velopment environments. Docker Compose can spin up the contain-

ers necessary to build and run the application as well as any depen-
dencies such as databases. Files can be mapped to the host environ-
ment, enabling developers to use editors and source control manage-
ment tools on the host system.

The following example shows a Docker Compose file that brings up a
node development environment with MongoDB. The container /app
directory is mapped to the current project direction and the container
has access to the project source code through a volume mount. De-
velopers will use build tools and run the application within the con-
tainer but edit code files from the host system as usual:

version: '3'

services:

 app:

 hostname: vegeta-dev

 image: node:10.15.0

 working_dir: /app

 volumes:

 - ./:/app

 ports:

 - "3001:80"

 tty: true

 stdin_open: true

 working_dir: /app

 command: bash

 environment:

 - IP=localhost

 - PORT=8080

 - CONFIG=/app/server/config.json

 networks:

 threadsoft:

 aliases:

 - vegeta

 db:

 hostname: db

 image: mongo:4.1.6

 volumes:

 - "/data"

 networks:

 threadsoft:

 aliases:

 - db

networks:

 threadsoft:

 external:

 name: threadsoft

Local Development with a Remote Cluster

When using a development workflow that runs compute on a remote
cluster, one of the challenges is to minimize the time it takes to push
changes to the remote environment. Tools such as Skaffold, Draft,
and KSync save time automating this workflow with remote Kuber-

netes clusters. Scripts or cloud provider frameworks might be neces-
sary when you are developing against serverless compute FaaS.

With the cloud provider FaaS, given the service deployment and code
start times, it’s likely faster to develop locally and run some final tests
in the cloud environment.

Here are some things that you need to consider with this approach:

Does the tool work well with an interpreted language like Java-
Script or compiled languages like Go?

Does the tool push code changes to the cloud and/or rebuild, push,

and deploy?

How long does it take to deploy and run a change? Consider ex-
perimentation before mass adoption.

Skaffold Development Workflow

You can start a Skaffold development workflow by running
skaffold dev , which starts a deployment, and Skaffold begins
watching for file changes, as seen in Figure 5-4. You can configure
Skaffold to synchronize files into the running development container,
like static files or the code files used in an interpreted language. If a
change triggers a new build, you can configure Skaffold to build the
image locally, in the cluster, or in a build service. After you execute
container tests, the image is tagged, pushed to an image repository,

and then deployed into the cluster. A developer can iterate on code
and quickly see changes pushed to the cluster. The synchronize fea-
ture in Scaffold can save a considerable amount of time by avoiding
the entire image build-push-deploy process and quickly pushing
changes into the running container.

Figure 5-4. The Skaffold development workflow

By convention, Skaffold looks for a configuration file named skaf-
fold.yaml in the current directory, which you can explicitly pass in by
using the --filenam flag. A sample Skaffold file is presented in the
following example, which configures Skaffold to synchronize .js files
into the running container and deploy using kubectl with the k8s-
pod.yaml Kubernetes pod specification:

apiVersion: skaffold/v1beta4

kind: Config

build:

 artifacts:

 - image: gcr.io/my-project/node-example

 context: .

 sync:

 '*.js': .

deploy:

 kubectl:

 manifests:

 - "k8s-pod.yaml"

TIP

When deploying into Kubernetes, this flow also works against local development
clusters, like a Minikube cluster.

Remote Cluster Routed to Local Development

In this development flow, a service is developed locally just like the
local development flow. The Telepresence tool runs a proxy in the re-
mote cluster and is an ambassador for the local service, proxying re-
quests through to the local service and back out to other services in
the cloud.

Figure 5-5 depicts a request from one service routed to the Telepres-
ence proxy as though it were the actual service. The Telepresence

proxy sends the request to the service running in the local develop-
ment environment. A request is made from the service being devel-
oped in the local development environment to another in the cluster,
and Telepresence handles proxying this request to the actual service
in the cluster. Telepresence also replicates cluster environment set-
tings like configurations to the service running in the local develop-
ment environment. This replication can be useful when you need to
develop and debug a service locally while other service dependen-
cies run in the remote cloud environment.

Figure 5-5. Developing locally against a remote cloud cluster

Cloud Development Environments

With the cloud development environments, developers connect to de-
velopment machines running in the cloud. Integrated development
environments (IDEs) are either browser based or accessed through a
remote virtual desktop–type environment. Tools like Eclipse Che are
able to provision developer workspaces in a cluster. This helps en-

sure consistency across developer workspace environments and
makes it easy to bring up new developer environments.

CI/CD

CI is a practice of automated building, testing, and integrating newly
developed code with the existing code for the purpose of releasing it.
In practical terms, this means building the code in your feature
branch, running unit tests, merging the code if it passes, and, finally,

creating an artifact, such as a binary, a container image, or a com-
pressed file, depending on your type of service. CI ensures that any
code that you are trying to merge to the master or release branch has
passed a series of tests—it gives you a certain degree of confidence
and allows you to catch any issues early on. As part of the CI
process, your code is packaged, tagged, and pushed to a container
registry (like Docker Registry), and instead of moving the code be-
tween different stages, you are moving only the container image in-
formation (e.g., container image registry and container image name
with corresponding tags), which significantly speeds up the entire
process.

You can think of the next phase, CD, as an addition to the CI. In this
phase, you are running additional tests with the goal of having your
code always ready to be deployed to production. In practical terms,

after your code passes through this stage, there shouldn’t be any
questions about its stability or quality, and any engineer could easily
deploy code to production.

By the time your code reaches the final phase, called Continuous De-
ployment, it is thoroughly tested and it can be automatically deployed
to your production environment. Compared to CD, this phase is all
about automated deployment without any manual intervention. Some
teams stop at the CD phase and decide to do manual deployments to
production.

As an engineer, having all three phases in place gives you peace of
mind that if your code is merged and it passes the tests and the deliv-
ery phase, it is automatically deployed to production. Assuming that
you have this in place for your entire system and its components, it
enables you to independently deploy any parts of the system multiple
times with high confidence.

Regardless of whether you’re working with services or serverless ap-
plications and functions, you would be using the same CI/CD
process. The fact that a function is usually smaller than a service
doesn’t change the way they are treated when they are built or
deployed.

Figure 5-6 shows a couple of different stages that are part of your
CI/CD process.

Figure 5-6. Stages of the CI/CD process

Source Code Control

Source control is where everything begins in the CI/CD flow. It is the
repository in which your code resides. There are multiple ways in
which your source code control could be set up, but you should have
at least a main branch called “master” and probably multiple other
branches where you do your feature work and bug fixes. Your source
code control is the source of truth for your code and, if you desire,

configuration as well.

HOW ABOUT MONO-REPO AND MULTI-REPO?

The idea behind the mono-repo is to store all of your code (all ser-
vices, tools, application, etc.) in a single source code repository. The
alternative to the mono-repo is a multi or poly-repo in which your
code is in multiple repositories; for example, each service or function
resides in its repository, tools in a separate repository, and so on. It is
difficult to give a final suggestion on which option is better, because
regardless of which way you go, you need to solve similar problems.

On top of that, the choice depends on multiple other factors, such as
the number of services you have.

One of the benefits of having all your code in one repository is that it
enables better and easier collaboration and sharing of code. As a de-
veloper, you won’t need to chase different repositories and try to cor-
relate changes across multiple repositories because everything is in
one place. On the other hand, why would you need to clone one,

huge mono-repo if you are working on or interested in only a small
piece of it or a single service? As you can see, it can be difficult to
make a recommendation on which way to go. If the number of ser-
vices and code is relatively small, it makes more sense to keep it in a
single repository, in which case, it does make collaboration easier,
and you have everything in one place. However, as soon as the size
of the repository and number of services exceed a certain number, it
makes more sense to split the mono-repo into multi-repos.

Another thing to consider is how your services are built and how you
are going to manage service dependencies. Having everything in one
repository can push you toward more code reuse and, potentially,

tight coupling as well as dependency sharing. It can quickly get out of
hand, so if you’re considering a mono-repo, carefully consider how
dependency management works and make sure you are correctly
isolating services and avoiding tight coupling. Also, think about what
happens if there’s a build break that’s not necessarily in the portion of
the mono-repo you own. Is the entire build broken or just that one
part? You can solve all of this with tools; however, you get this guar-
antee for free when using multi-repos.

With regard to building the mono-repo and producing build
artifacts/container images, you can get a single version/tag that is
used for all of your services, and this can make your testing easier
because you are using a single name to refer to the collection of ser-
vices and state of the world. Using multi-repos, you end up with differ-
ent tags for each artifact, and your “state of the world” becomes a col-
lection of different services, tags, and versions. Having a mono-repo
can also help if you’re deploying all services at the same time. How-
ever, this is probably not the result you want. With cloud native, you
should be striving to get to a place where you can independently de-
ploy each service. Keeping this goal in mind, having all of your ser-
vices in a mono-repo doesn’t give you any apparent benefits.

In terms of code ownership, a mono-repo makes it difficult to define
where the boundaries are. With multi-repos, it is much clearer which
teams own what and who’s responsible for which part of the code.

Build Stage (CI)

Regardless of how your repositories are structured and how many of
them you have, the purpose of the build stage is to take all of the
changes you committed to your repository and build the code to en-
sure that there are no errors in it. If the build succeeds, you move to
the next stage where your code is tested. If a build fails, the entire
process stops, code changes are rejected, and the developer is
notified.

Test Stage (CI)

In this stage of the pipeline, you know the code was successfully built,
but now it’s time to run the range of tests, including unit tests, func-
tional tests, acceptance tests, static analysis, linting, acceptance
tests, and so forth. This part of the CI process falls under the prede-
ployment stage of testing in the production process.

After you execute the tests and they pass, the code is packaged and
tagged with a version number or commit ID and pushed to a contain-

er image repository or, in the case of a serverless application, pack-
aged and uploaded to storage. If tests failed, the code check-in is re-
jected, and the developer is notified. This stage concludes the CI
process.

Because you are testing and building your code often, it makes sense
to ensure that both build and test stages are fast and the generated
artifact is as small as possible to make it easier to move around. In
addition, the artifact should also be reusable so that you don’t need to
rebuild the same container image multiple times. If you’re using
Docker, you should take advantage of the multistage build process in
which you build your code using a container image that has every-
thing that’s needed for the build to happen. In the second stage of
your build, you copy only the built artifact to the release container im-
age. Ideally, the release container image includes your built service
and nothing else, which makes the resulting container image smaller.

Here’s is a basic example of how a Dockerfile with multistage build
would look if you were using Golang:

FROM golang:1.11.5

WORKDIR /go/src/github.com/peterj/simplego

COPY main.go .

RUN CGO_ENABLED=0 GOOS=linux go build -a -install

FROM alpine:latest

RUN apk --no-cache add ca-certificates

WORKDIR /root/

COPY --from=0 /go/src/github.com/peterj/simplego/

The previous Dockerfile uses the golang:1.11.5 container image
and copies the source file to the container first, then uses go

build to build a binary called app. In the bottom part of the code,

you define a second container image based on the Alpine container
image, install the ca-certificates , and copy the built binary
from the first stage of the build (--from=0). Finally, you run the bi-
nary using the CMD command.

If you build this, you end up with a final container image with a size
around 8 MB, whereas the container image in the first stage of the
build is more than 800 MB. The 100-fold size difference is significant,
and you can imagine the difference in speed when this container im-
age is moved around between registries or is pulled to different hosts.

The majority of popular Docker images on the Docker Hub image
registry have a full-sized image available in addition to the smaller or
trimmed-down versions, usually tagged with the word slim.

From the security standpoint, smaller images also mean a smaller at-
tack surface given that the only thing your image contains is your bi-
nary and nothing else. If you’re using a full-sized operating system

image (e.g., Ubuntu) to install your binaries on top of it, the potential
attackers gain access to your binary as well as the whole assortment
of tools that come with the Ubuntu operating system.

One of the best practices for tagging the container image is to use an
abbreviation of the Git commit checksum hash and a build number.
Following this naming practice, a sample container image name looks
like this: myimage: ed3ee93-1.0.0. Using this naming format, you can
quickly discover which changes the image contains. After you decide
to make the container images public and available for others, you can
remove the hash and use only the version number, like this: myim-
age:1.0.0. Whenever you push a new version of the image to a public
container image registry, make sure that you also create the latest
tag, which references the latest version of the image.

Testing serverless applications involves running a similar set of tests
as for containerized applications—unit tests, integration tests, accep-
tance tests, and so on. For unit tests, you should mock any depen-
dencies your functions have; however, to run integration tests, you
can create a test environment in which you trigger test events that will
in turn execute and exercise your functions. The important thing to
have set up for your serverless applications is a template that de-
scribes the environment and any dependencies your functions have.

Using this template, you can quickly create and tear down an environ-
ment. Because this is a short-lived environment meant for testing

only, the cost will be significantly lower than constantly maintaining a
test or staging environment. For serverless applications, the output of
this stage would be a tested and packaged artifact that contains your
serverless application.

Deploy Stage (CD)

The deploy stage of the process can be automatically triggered by
the successful completion of the CI stage or, in the case of a con-
tainerized application, an event that is triggered when a new contain-
er image is pushed to the container image repository. An important
thing to note is that after you reach the deploy stage, you are no
longer dealing with source code, but container images, packaged arti-
facts, and configuration and deployment templates.

The purpose of the deploy stage is to take the built and tested artifact
and deploy it to the desired environment (production, for example, or
the staging environment). If you take Kubernetes as your deployment
platform, this stage would involve creating all deployment and config-
uration files that are needed to deploy the artifact into Kubernetes. At
this stage, you can use Helm and templatized deployment files with a
custom set of configuration and values to deploy the artifact. If you’re
deploying to production, your configuration also includes a service
mesh or other configuration needed to ensure that no traffic or re-
quests are sent to the deployed container image. The configuration

depends on what type of tests are you going to run: if you’re planning
to run load tests or additional integration tests, you need a set of con-
figuration files that allow only testing traffic to pass to the deployed
container image.

For serverless applications, assuming that you are using AWS Lamb-
da, you can use AWS SAM to define your application, point to the
packaged artifact, and include any additional infrastructure (API gate-
ways) and permissions. Creating a test or staging environment for
serverless applications is trivial if you’re using one of the templating
solutions that are available from cloud providers.

Another pattern and type of testing that’s popular is called traffic mir-
roring, shadowing, or dark traffic. What this allows you to do is to mir-
ror or shadow all real and production-level traffic and send it to the
deployed service. Note that you are not routing the production traffic
through the newly deployed service; the real traffic still goes through
your released service, and in addition to that, it also is mirrored to the
deployed service.

If you’re using Istio as your service mesh, you can enable traffic mir-
roring by adding the mirror key to your Istio virtual service resource.

Here’s an example of a virtual service that sends all traffic to the re-
leased (v1) service but also mirrors all requests to the deployed (v2)

service:

apiVersion: networking.istio.io/v1alpha3

kind: VirtualService

metadata:

 name: recommendation-service

spec:

 hosts:

 - recommendation-service

 http:

 - route:

 - destination:

 host: recommendation-service

 subset: v1

 weight: 100

 mirror:

 host: recommendation-service

 subset: v2

With the mirroring in place, you can run additional tests, or instead
use the production traffic and monitor the deployed service. You can
achieve similar functionality for your serverless applications with
AWS CodeDeploy, for example, or Azure Traffic Manager. These so-
lutions can help you to gradually shift traffic from one version to an-
other and do blue/green deployments.

If you are not doing testing in production, your deployment at this
stage would have been into a dedicated staging or testing environ-

ment. Because of that, you could automatically begin redirecting
100% of the traffic to the new service and release it as soon as it is
deployed, effectively combining the deploy and release stages. As
your final step in the process, you would be carefully monitoring the
service as well as the entire environment as you’re running the tests.

Upon successful completion of the test, you would start a separate
CD process that would take the container image from the staging or
test environment and deploy and release it into the production
environment.

Release Stage (CD)

To get started with this stage, you should have gathered enough data
from testing the deployed service to feel comfortable with beginning
to release the service to production.

As mentioned previously, the process of releasing involves slowly
redirecting a portion of the production traffic to the service or swap-
ping a staging deployment slot with a production deployment slot.
Redirecting production traffic could be easily achieved using a ser-
vice mesh such as Istio for containerized services or using AWS Cod-
eDeploy or Azure Traffic Manager for doing the same with serverless
applications. In both cases, you can gradually increase traffic to the
new service or serverless application until you are directing 100% of
the traffic to the new version. You have multiple options of picking and

choosing the production traffic that you redirect. Usually, you would
take a percentage of all production traffic and redirect it. However, in
some cases, you could be more selective and smartly pick the traffic,

based on the features in your new service. For example, if your ser-
vice contains a fix for an issue that occurs only in a certain web
browser, you could decide to redirect only traffic coming from the af-
fected web browsers to your service. That way you can verify that the
issue is fixed with the real users. Note that you probably want to test
with other traffic as well, because you don’t want to introduce issues
for other browsers.

Similarly, you could get even fancier and more advanced and route
traffic based on specific HTTP headers. For example, you could intro-
duce a unique header name and value that gives users access to
beta features of your product. Then, with the beta releases, you can
route only the users who have opted into the newly released service.

This could also be done for serverless applications at the API gate-
way level.

Regardless of how you decide to pick the production traffic, you need
to carefully monitor and observe released services and functions
each time you increase the percentage of the production traffic to the
new version. If you discover any issues, you can change the produc-
tion traffic split and restore the previous state for which all traffic was
going to the previously released version. Alternatively, you can also

decide to remove the new version from production by doing the re-
verse process of deployment. If you observe that the new version is
behaving well and there are no new issues introduced, you can keep
increasing the traffic, and when you reach 100%, you have success-
fully released a new version.

In the perfect, ideal world, the decision to increase the traffic to the
new version is made automatically for you. There would be systems
in place that could intelligently decide to move forward with the re-
lease, based on the data received from the service. A fully automated
workflow like this is a part of the mature DevOps stage in which
you’re doing CI, CD, and Continuous Deployment. However, the reali-
ty is that this is a manual process, and user intervention is required to
make a decision as to whether to move to the new version.

When you reach 100% of traffic to the new service, you can remove
the previously released (now deployed) service from the environment
and enter the final stage of the process, called post-release.

Post-Release Stage

In some sense, this stage doesn’t fall under CD; however, it is a part
of testing in production or operating any application in production.

The post-release stage is a stage in which all of your released ap-
plications are in, and it involves continuous service monitoring, inves-

tigating incident and error reports received from the users directly or
through your alerting and monitoring system, as well as doing addi-
tional testing such as chaos tests.

Here are some of the key items to keep in mind when building out
your own CI/CD pipeline:

Builds should be fast (mono-repo or poly-repo)

Tests should be reliable
Container images should be as small as possible
Decide on the production traffic selection strategy (all traffic, por-
tion of the traffic, based on specific criteria, etc.)

Observable services are essential to a successful CI/CD pipeline

Monitoring

We have mentioned the importance of having proper monitoring and
observable services throughout this chapter. Without monitoring you
are effectively flying blind, not knowing what your service is doing or
how is it behaving. Monitoring is essential during all stages of the
CI/CD process; however, it’s especially important during the release
stage.

Monitoring is traditionally used to assess and report on the overall
health of a system or services. Let’s take a look at some of the prima-

ry metrics in monitoring:

Error rate
This metric should tell you the rate of requests that are failing
(e.g., number of HTTP 500).

Incoming request rate
Usually measured in HTTP requests per second (or
reads/writes/transactions per time unit if this is a database), it
indicates how much traffic is coming into your system.

Latency
Latency is the time it took for your service to process a request.
The latency is usually broken down to successful and unsuc-
cessful requests.

Utilization
Utilization gives you information about the usage of different
pieces of your system. For example, you would monitor utiliza-
tion of the nodes in the Kubernetes cluster—making sure mem-
ory, disk, and CPU usage are in normal ranges.

During a release, if you observe any negative impact on the listed
metrics, for example, error rate increases, it should be a clear sign
that something is not right, and you would need to stop and roll back
the release. Your monitoring should give you information and data

that allows you to understand what or which part of your system is
broken and why is it broken.

It is best to come up with a set of metrics (basic listed metrics and
any additional metrics that you deem necessary for your service) be-
fore you do your first release. With this set in place, you can monitor
your releases and don’t need to guess or scramble if anything goes
wrong. You should also probably define what changes in the metrics
would warrant a rollback and, similarly, how long to monitor these
metrics and how to decide when to continue with the release process.

For example, you could decide that if there’s more than a 1% change
in a negative direction (or even a slight change in negative direction)

in any of the listed metrics, you’ll stop and roll back the release. Simi-
larly, you can define that if there are no adverse changes in the listed
metrics in the next 24 hours, you will continue with the release
process and route even more production traffic to it.

In most of the cases, only a couple of metrics are enough to decide to
continue or roll back the release. If you’re doing A/B testing, for exam-
ple, the basic set of health metrics is usually not enough, and you
need to rely on more data from the services or the whole system.

One of the favorite tools for monitoring is Grafana, described as “the
open platform for beautiful analytics and monitoring.” It can use differ-
ent data sources and visualize them with appealing graphs, tables,

https://grafana.com/

heat maps, and other visual elements. It also features a powerful
query language that you can use to create advanced and customized
graphs, as demonstrated in Figure 5-7.

Figure 5-7. A sample dashboard in Grafana

Grafana can connect to different data sources and databases and al-
lows you to create dashboards and graphs based on that data. One
of the quite popular and built-in data source plug-ins in Grafana is for
Prometheus.

https://prometheus.io/

Collecting Metrics

A Cloud Native Computing Foundation (CNCF)–graduated project,
Prometheus is a popular option used for scraping and collecting met-
rics from your services. Prometheus is containerized, so you can
quickly run it as a container in your Kubernetes platform. Note that for
Prometheus to work, you need to define a data volume where
scraped metrics are stored as well as create a configuration file that
defines things like scraping intervals, timeouts, and different rules and
alerts. Of course, you also need to add instrumentation code to your
services; otherwise, there’s nothing for Prometheus to do.

There are client libraries available for most of the popular languages,

and these libraries allow you to define and expose metrics via an
HTTP endpoint. Prometheus then calls this HTTP endpoint, and your
service sends the tracked metrics to Prometheus for storage. There’s
also support for a so-called push gateway—if your components can-
not be scraped, you can use the push gateway to push the data to a
component that Prometheus can scrape. Alternatively, you could look
for an exporter—this is a component that helps with exporting metrics
from third-party systems as Prometheus metrics. For example, there
are exporters available for databases (MongoDB, MySQL, Redis),

messaging systems (Kafka, RabbitMQ), APIs (GitHub, Docker Hub),

logging components (Fluentd), as well as software, such as Kuber-
netes, etcd, Grafana, and more.

Let’s look at an example of how easy it is to create and emit a simple
metric using Golang. In this example, you define a /hello HTTP
endpoint that displays a message and a metric that tracks how often
the endpoint is called. Here are the contents of the main.go file:

package main

import (

 "fmt"

 "github.com/prometheus/client_golang/promethe

 "github.com/prometheus/client_golang/promethe

 "github.com/prometheus/client_golang/promethe

 "log"

 "net/http"

)

var helloCounter = promauto.NewCounter(prometheus

 Name: "hello_endpoint_total_calls",

 Help: "The total number of calls to the /hell

})

func main() {

 http.Handle("/metrics", promhttp.Handler())

 http.HandleFunc("/hello", func(w http.Respons

 fmt.Fprintf(w, "Hello")

 helloCounter.Inc()

 })

 log.Fatal(http.ListenAndServe(":8080", nil))

}

Let’s walk through the source and explain what’s happening. At the
beginning of the file, the Prometheus Golang client library is imported.

Next, you create a variable called helloCounter—this is one of
the Prometheus metric types—which has a name and a help text that
explains what this metric represents. Prometheus also supports other
types of metrics:

Counter
This metric type represents an increasing counter that starts at
zero. You should use it only for values that increase. You can
use this metric to count the number of requests, errors, restarts,

and more.

Gauge
Similar to counter, but the value in this metric can be increased
or decreased. You can use this metric to represent memory,

CPU usage, process count, and more.

Histogram
You use the histogram metric type for sampling observations
(request/response sizes, durations, etc.) that are then counted
and placed in multiple configurable buckets. When scraped, a

histogram provides cumulative counters for each bucket, infor-
mation about the total sum of all observed values, and a count
of events.

Summary
The summary is similar to the histogram. In addition to what the
histogram provides, the summary also calculates configurable
quantiles over a sliding time window.

Let’s continue by looking at the main function where two endpoints
are defined: the /metrics endpoint and /hello endpoint. The
/metrics endpoint is what the Prometheus scraper calls to get the
state of the metrics from the application, and the /hello endpoint is
where the hello_endpoint_total_calls counter is increased.

After you build and run the application, you can call the /metrics

endpoint. Apart from numerous other metrics and values, the one
metric you added is also in the response:

...

HELP go_threads Number of OS threads created.

TYPE go_threads gauge

go_threads 7

HELP hello_endpoint_total_calls The total numbe

TYPE hello_endpoint_total_calls counter

hello_endpoint_total_calls 0

...

Notice the hello_endpoint_total_calls metric shows up in
the list when the /metrics endpoint is called, and the value set in
the counter is 0 because there were no calls made to the /hello

endpoint yet. After you make a couple of calls to the /hello end-
point and access the /metric endpoint again, the value changes,

for example:

hello_endpoint_total_calls 5

Now that the service is emitting metrics, how can you configure a
Prometheus scraper that automatically scrapes the data from the
endpoint? As with almost everything in cloud native, there is a
Prometheus Docker image available that you can use for this.

Prometheus is configured using a prometheus.yml configuration file.

Here’s a minimal configuration file that defines the scrape
configuration:

global:

scrape_interval: 5s

scrape_configs:

- job_name: 'prometheus'

static_configs:

- targets: ['hello-svc:8080']

The most crucial part in the previous configuration is the
scrape_configs section—this is what tells Prometheus where to
look for the /metrics endpoint. Under the scrape_config , a
single static config is defined, and it contains the service DNS name
(the assumption being that this is deployed to Kubernetes). The con-
figuration file can be stored within the ConfigMap Kubernetes re-
source and then deployed:

apiVersion: v1

kind: ConfigMap

metadata:

 name: prom-config

 labels:

 name: prom-config

data:

 prometheus.yml: |-

 global:

 scrape_interval: 5s

 scrape_configs:

 - job_name: 'prometheus'

 static_configs:

 - targets: ['hello-svc:8080']

Similarly, you create a Kubernetes service and deployment for both
the application and Prometheus. Here’s an example of a deployment
resource that pulls in the Prometheus ConfigMap created earlier:

apiVersion: extensions/v1beta1

kind: Deployment

metadata:

 name: prometheus

spec:

 replicas: 1

 template:

 metadata:

 labels:

 app: prometheus

 spec:

 containers:

 - image: prom/prometheus

 args:

 - "--config.file=/etc/prometh

 - "--storage.tsdb.path=/prome

 imagePullPolicy: Always

 name: prometheus

 ports:

 - containerPort: 9090

 volumeMounts:

 - name: prom-config-volume

 mountPath: /etc/prometheus

 - name: prom-storage-volume

 mountPath: /prometheus/

 volumes:

 - name: prom-config-volume

 configMap:

 defaultMode: 420

 name: prom-config

 - name: prom-storage-volume

 emptyDir: {}

In addition to the deployment, you could also create a Kubernetes
service to access the Prometheus instance or use the port-

forward command in the Kubernetes CLI to get access to one of
the Prometheus pods. To get the pod name, run the following com-
mand, which saves the name of the Prometheus pod in the
PROMPOD variable:

export PROMPOD=$(kubectl get po --selector=app=pr

custom-columns=:metadata.name --no-headers=true)

With the pod name in PROMPOD , run the following command to for-
ward the local port 9090 to the port 9090 on the container:

kubectl port-forward pod/$PROMPOD 9090

To validate that Prometheus is scraping the defined target, open your
browser and navigate to http://localhost:9090. You should see a page
similar to the one depicted in Figure 5-8.

If all is set up correctly, the state of the http://hello-svc:8080/metrics
endpoint should read UP.

Finally, let’s check whether the metrics are being scraped. To do that,
navigate to http://localhost:9090 and then, from the drop-down menu
next to the Execute button, select the metric name,

hello_endpoint_total_calls , and click the Execute button.

This runs the query and shows the value of the selected metric.

Figure 5-8. Status page for Prometheus scraping targets

Alerting

Prometheus also supports defining alerts using a separate compo-
nent called Alertmanager. Any alerts defined in Prometheus are sent
to the Alertmanager, and they are managed by it. Alertmanager then

http://localhost:9090/
http://hello-svc:8080/metrics
http://localhost:9090/

takes care of silencing, aggregating, and sending notifications
through email or other services (e.g., Slack, PagerDuty).

In the Alertmanager configuration, you can define different routes
with receivers and matches. You can get granular with alerting rules
and define them based on specific services. For example, you could
configure alerts in such a way that anytime an alert occurs for your
frontend services, a PagerDuty account is notified and a person is
paged with high urgency. Similarly, you could decide to send only a
Slack message if an alert occurs for services running in your develop-
ment environment.

As a basic guideline, all of your alerts should be simple: you want
them to be easily understandable so that when an alert fires at 3 AM,

the engineer that needs to handle it can quickly determine what the
alert is about. Similarly, don’t set up page alerts for everything—no
one wants to be woken up in the middle of the night for an issue that
easily could wait until the morning when most of the team is awake.

When defining your alert, don’t forget to include a link to the web
page or a document that explains and details what triggered the alert
and how to resolve it.

Observable Services

Observability captures everything that monitoring doesn’t—if metrics
were the gist of the talk in the monitoring context, traces are what are
talked about in the observability context. Monitoring is used to report
the overall system’s health and is, in general, more high level. On the
other hand, observability gives you more granular details and insights
into your services and systems along with any details and additional
data (logs, exceptions, error messages) that can help you debug the
service more effectively. Practically speaking, monitoring informs you
that something is wrong with your service (e.g., success rate
dropped, error rate increased), and observability helps you dig deep-
er, provide traces, and investigate why monitoring giving you those
results. One of the reasons why you want to make your services ob-
servable is to be able to get data that helps you understand them
better.

Logging

Logging is a crucial part that can help make your service and func-
tions more observable. Here are some general considerations to
keep in mind when developing services and functions:

Use structured logging so that tools and automation can parse it.
Log entries should be easy to read, and clear, concise, and pro-
vide value.

Use the same time zone and time format for all timestamps.

Categorize log entries: debug, info, and error are good ones to
start with.

Never log any private or sensitive information (passwords, connec-
tion strings). If you can’t avoid logging it, ensure that you scrub it.

When thinking and talking about logging in the cloud native world, the
first thing that should come to your mind is the sheer volume of the
log messages that are generated. With cloud storage, you can store
all of this data in a cost-effective way and even use automatic data
archiving and long-term backups for your logs, such as Amazon Sim-
ple Storage Service (Amazon S3) Glacier. Even though storage can
be cheap, having clean, parsable, and easily understandable logs
should still be your priority. Getting to that place requires you to un-
derstand your services well. In any case, all logs that are generated
need to be collected and stored in a central place where you can use
different monitoring tools (Grafana, Kibana) or log analysis and man-
agement tools such as Loggly, Sumo Logic or Splunk to make use of
that vast amount of data. If you don’t do this, you quickly realize that
you’re not getting much value from your logs at all, especially if you
need to collect them separately from each service and then try to cor-
relate them.

After all your logs flow into a central system, you need to ensure that
every log entry contains a unique identifier (request ID, correlation ID
[CID]) that you can use to trace the requests and calls across ser-

vices. Ideally, this unique ID is something you would also report to the
users in case they run into issues. That way, you can go to your log
aggregator, type in that unique ID, and be presented with all of the
relevant log entries from across your entire system. Similarly, dis-
tributed tracing tools can use the identifiers to stitch together different
requests that happen between services in the system.

Distributed tracing

Distributed tracing is a way to profile and monitor services, and it can
help you uncover failures and poor performance as well as help you
debug your services.

OpenTracing strives to create standardized APIs and instrumentation
for distributed tracing. It is a collection of frameworks and libraries
that implement the specification, and it allows you to add instrumen-
tation to your code using APIs that don’t lock you into a specific prod-
uct or vendor. The OpenTracing specification is open sourced, and
anyone can contribute or implement it within their tools.

Any distributed trace contains one or more spans that represent a
single unit of work happening within a distributed system. Each span
contains a name, a start and finish timestamp, tags, logs, and a con-
text, as well as references to other spans. These values are used to

stitch the spans together into a complete trace that shows how a re-
quest travels through the distributed system.

One of the popular distributed tracing tools that can visualize collec-
tion traces and spans is Jaeger. In addition to stitching traces togeth-
er, Jaeger also shows you all services involved in the call as well as
how long each portion of the request took, as shown in Figure 5-9.

Figure 5-9. A sample trace in the Jaeger distributed tracing tool

If you’re using the Istio service mesh, you can get Jaeger and install
and configure it as part of Istio. With Jaeger installed, you can very
quickly get started with distributed tracing. Istio Envoy proxies send
all traces automatically, but you still need to provide some hints in
your service calls so that Jaeger can correlate all calls correctly. If
you decide to use Jaeger and distributed tracing in your services,

make sure that you add and forward these headers on to any down-
stream service you’re calling from your service:

x-request-id

https://www.jaegertracing.io/

x-b3-traceid
x-b3-spanid
x-b3-parentspanid
x-b3-sampled
x-b3-flags
x-ot-span-context

You should also come up with a standard format for each log entry so
that you can always get the necessary information from any entry.

For example, in addition to the unique ID, you could also include
things like timestamp and the name of the component, service, or
function that created the log entry. A simple example of a single log
entry with some standard information would look like this:

{

"id": "45b2659d-e039-49c6-9052-d6d0f79bb03a",

"timestamp": "2019-02-07T18:51:12.013594455Z",

"logLevel": "info",

"serviceId": "hello-svc",

"msg": "sample log message here"

}

You could also decide to create a common structure of log entries
based on different types of log messages. For example, if your sys-
tem is handling events, you could create an entry type called Event ,

and that log entry includes any event-specific information, such as
eventName and eventType , as well as the standard fields men-
tioned earlier. Similarly, your log entries for errors should have com-
mon fields like errorCode , errorName , and stacktrace .

There are unique challenges for serverless apps regarding tracing.

The resources typically exist only during execution, and compared to
microservices, there are no hosts in serverless where you can install
agents for monitoring or tracing. Another challenge associated with
collecting metrics in real time is the latency overhead as well as cor-
relating everything across all services and functions.

For tracing of serverless apps, you can use one of the cloud
providers’ managed solutions such as AWS X-Ray or Azure Applica-
tion Insights. These solutions collect traces from each service the re-
quest passes through. The tracers are recorded and correlated to
give you a map of calls including the trace data such as latency,

HTTP status, and other request metadata. With all of this information
in one place, you can drill into the specific requests to analyze and
identify root causes for any issues. For example, if you are using
Lambda, the X-Ray agent is natively built in to it, meaning that you
don’t need to do anything other than enable tracing in configuration.

This will allow you to identify function initialization and cold starts as
well as pinpoint any issues in downstream services your function is
calling. Even if you’re not using Lambda, there are X-Ray SDKs avail-

able and you can use them to instrument your own services and
functions.

Service health, liveness, and readiness

Your service should also include so-called health or liveness end-
points. This endpoint, when called, should respond with a value (usu-
ally HTTP 200) that indicates whether the service considers itself
healthy. The endpoint name should be unique across all of your ser-
vices (/health or /healthz) and when invoked should return
the same structured response that quickly can be used to determine
whether the service is healthy.

This health check can then be utilized by the platform to assert
whether the service is healthy; if it isn’t, the platform can decide to
mark the service as unhealthy. Here’s a snippet of how you can de-
fine the liveness probe on your service when running in Kubernetes:

livenessProbe:

 httpGet:

 path: /healthz

 port: 8080

 initialDelaySeconds: 5

 periodSeconds: 3

With the snippet, you are instructing the Kubernetes platform to wait
for 5 seconds before doing the first check, and then to repeat that
check every 3 seconds. If the ++$$/$$healthz++ endpoint returns a
success code (HTTP 200), the service is considered alive and
healthy. If the endpoint returns a non-200 code, the service is killed
and restarted.

In addition to the health check endpoint, you can also include a readi-
ness endpoint. The purpose of this endpoint is to determine whether
the service is ready to start receiving requests from other services.

When this endpoint is invoked, you could do certain checks to ensure
that all service dependencies are up and accessible and ascertain
whether the service can start receiving requests. Similar to the health
check, some platforms support a readiness check and only start rout-
ing requests to your service after it’s ready. If the readiness check
fails, your service is marked as not ready. Note that your service can
be healthy, but not necessarily ready to receive requests. A readiness
check looks similar to the liveness probe:

readinessProbe:

 httpGet:

 path: /alive

 port: 8080

 initialDelaySeconds: 5

 timeoutSeconds: 1

 periodSeconds: 15

Just like with the liveness probe, you define the endpoint and the port
to which the platform can make requests. With the previous snippet,
the platform waits for 5 seconds before calling the endpoint and then
repeats the call every 15 seconds. In addition, you also defined a
timeout, so if the service doesn’t respond in 1 second, it’s deemed as
not ready. If the service is not ready, Kubernetes marks it as such,

and none of the requests through the Kubernetes service will be rout-
ed to the unready pod.

Configuration Management

Most services and functions don’t live in isolation, and they always
need to be able to communicate with other services and systems.

One of the factors from the Twelve-Factor manifesto talks about con-
figuration and specifies storing configuration in the environment.

Service or function configuration contains everything your service or
function needs to be able to start up and run. Some of the common
configuration settings the app needs are:

Database/queue/messaging connection strings
Credentials (usernames, passwords, API keys, certificates)

https://12factor.net/

Timeouts, ports, dependent service names

The Twelve-Factor manifesto mentions that code and configuration
should be strictly separated, which makes your service easily config-
urable for different environments. If you are unsure what should be
part of the configuration, a good guideline is to make something con-
figurable only if it can change between deployments. With this guide-
line in mind, settings like timeouts are considered service settings
and are not part of the service configuration. When developing your
services, design them in such a way that you can easily add new con-
figuration settings or remove them without breaking things.

Sometimes, handling environment variables and knowing which vari-
ables are required for each service can become difficult. You can de-
cide to group your environment variables per environment (staging,

testing, production) or even per deployment (if they change) and
store them in separate configuration files. For example, you can cre-
ate a configuration file called production.yaml and staging.yaml—
both files would contain the same setting and environment variables
names, but the values would be specific to that environment only. If
you decide to go this way, design your service so that it can read con-
figuration from an external file. It’s also recommended that you come
up with a strict configuration schema that all configuration files need
to follow. With a strict schema in place, the configuration testing be-
comes much easier.

A common way to store configuration settings in Kuberentes is using
a resource called ConfigMap. The ConfigMap allows for great sepa-
ration of configuration from the services, which makes your service
more portable.

Each ConfigMap has a unique name and a data source. The data
source can be one of these three things:

Directory
File
Literal value

To create a ConfigMap from a directory, you can use the Kuberetes
CLI:

kubectl create configmap my-svc-config --from-fil

This command takes all files in the /my-service/config-files/ folder and
combines them into a single ConfigMap resource. You can use the
same Kubernetes CLI command to create a ConfigMap from a single
file, but instead of pointing to a folder, you would point the --from-

file argument to a single file.

Another common way of describing and storing environment vari-
ables is by using an environment file. In the environment file, you de-

fine the environment variable names in the format `"NAME=VALUE"`
and store it in a file:

username=user

password=mypassword

With the --from-env-file option in the Kuberentes CLI, you can
use your existing environment files and generate Kuberentes Config-
Maps like this:

kubectl create configmap my-env-file --from-env-f

This command takes the production.env environment file and creates
a ConfigMap named my-env-file that looks like this:

apiVersion: v1

data:

 password: pwd

 username: user

kind: ConfigMap

metadata:

 creationTimestamp: 2019-02-08T18:57:29Z

 name: my-env-file

 namespace: default

 resourceVersion: "284220"

 selfLink: /api/v1/namespaces/default/configmaps

 uid: 623618bd-2bd3-11e9-b554-025000000001

However, if you want to create a ConfigMap from a single value only,

you can use the --from-literal setting. The created ConfigMap
would look very similar to the one shown.

Now that you have the ConfigMaps defined, you can use them within
your pods in multiple different ways.

Single-Environment Variable

You can mount the values stored in a ConfigMap as environment
variables in your pods using a snippet where you define an environ-
ment variable name (MY_USERNAME), the ConfigMap name (my-

env-file), and the key within the ConfigMap (username) that
contains the value you want to assign to the environment variable.

This option is useful if you are using one-off environment variables:

env:

 - name: MY_USERNAME

 valueFrom:

 configMapKeyRef:

 name: my-env-file

 key: username

Multiple-Environment Variables

When you have a ConfigMap with multiple values defined, you can
use a key named envFrom to declare all values from the ConfigMap
as environment variables within your pod:

envFrom:

 -configMapKeyRef:

 name: my-env-file

Using the ConfigMap with username and password we deployed ear-
lier, this snippet would create two environment variables called
username and password within your pod.

Adding ConfigMap Data to a Volume

If you created a ConfigMap from a file or directory, you use a volume
that will add all data in the ConfigMap to the directory of your choos-
ing within the pod:

volumeMounts:

 - name: config-volume

 mountPath: /etc/config

...

volumes:

 - name: config-volume

 configMap:

 name: my-config-files

In your pod definition, you are declaring a volume called config-

volume that contains all files from the my-config-files Config-
Map. In the container definition, you are mounting that volume by re-
ferring to it by name and specifying the mount path /etc/config. With
this definition, you can access the /etc/config folder within your ser-
vice to read any of the configuration files defined in the ConfigMap.

A nice thing about using ConfigMaps and mounting them within pods
is that they also are refreshed and updated automatically. If you need
to update only your configuration, you can, and Kubernetes ensures
that the values are updated within your pods as well.

Storing Secrets

Not all configuration settings are equal. The values such as port num-
bers and service names usually don’t require any special treatment in
terms of securing them or making sure that they don’t leak or are
logged anywhere. However, passwords, API keys, and certificates
can be a bit more delicate.

The Kubernetes platform has a dedicated resource called Secret that
you can use to deal with these types of configuration values. Instead

of taking a password and putting it directly into the pod definition, you
store it in a separate secret resource and then you mount that re-
source to your pod. These secret resources then can be managed
entirely separately from other resources. By default, secrets in Kuber-
netes are stored in the etcd instance. When running your services in
production, consider using one of the secret management solutions,

such as Vault by HashiCorp.

Within each secret, you could store multiple secret values that are
base64-encoded and create a YAML file that contains the secret:

apiVersion: v1

kind: Secret

metadata:

 name: mongodb

 type: Opaque

 data:

 username: dXNlcm5hbWUK

 password: SUxvdmVQaXp6YQo=

Alternatively, you could use Kubernetes CLI to create the secret re-
source like this:

kubectl create secret generic mongodb \

 --from-literal=username=user \

 --from-literal=password=pwd

Instead of declaring each value separately, you can also use a file
and then store the entire file in a secret. With secrets in place, you
can mount them as environment variables within your pods this way:

 env:

 - name: USERNAME

 valueFrom:

 secretKeyRef:

 name: mongodb-secrets

 key: username

 - name: PASSWORD

 valueFrom:

 secretKeyRef:

 name: mongodb-secrets

 key: password

When the pod starts, Kubernetes ensures that the secret is read and
environment variable values are created based on the values stored
in the secret resource. One thing to keep in mind when consuming
secrets as environment variables is to ensure that you are not logging
the environment variables as part of the service startup: in the event
that the service fails, you might expose secrets. If possible, try to con-
sume secrets from files instead.

A simplest way for storing secrets and configuration settings for func-
tions is to add them to the function configuration/environment. How-
ever, this is not necessarily the best practice. A better approach is to
use one of the managed solutions from the cloud provider where your
functions are running. Both AWS Lambda and Azure Functions are
integrated with their respective configuration management solutions.

In AWS, you can use the systems manager parameter store, and in
Azure you can use Key Vault. Both managed services provide a se-
cure storage for configuration data management and secret manage-
ment. You can store passwords, connection strings, certificates, and
other configuration settings in a central place. Instead of storing se-
crets as settings for each function, you have the ability to program-
matically retrieve the values from the managed services.

Deployment Configuration

Until now, we’ve talked about service and application configuration
management. Let’s try to see how you can manage the configuration
of your deployments.

One of the popular tools with the Kubernetes platform, Helm, is used
to define so-called charts (a collection of templatized Kubernetes re-
source files) that you can install and upgrade. Charts allow you to
package multiple Kubernetes resource files together and then man-
age, install, and upgrade them as a single unit. The resource files can

https://helm.sh/

be templatized and include template values that are defined in a sep-
arate file (usually called values.yaml).

Take, for example, this snippet from a Kubernetes deployment
resource:

containers:

- image: serviceregistry/hellosvc:1.0.0

 imagePullPolicy: Always

 name: web

 ports:

 - containerPort: 8080

 env:

 - name: PORT

 value: "8080"

 - name: METRICS_PORT

 value: "9090"

 - name: DB_CONN_STRING

 value: "mongodb://user:pwd@mongo.com:27017/ad

Here, we are declaring three environment variables in the previous
snippet: two ports and the database connection string. Ports will likely
not change if you are doing deployments to different environments;

however, the possibility of database connection string being different
is much higher. There’s also the image name that changes with every

deployment. With the help of Helm, you could templatize those val-
ues, and the snippet would like something like this:

containers:

- image: "{{ .Values.hellosvc.imageName }}"

 imagePullPolicy: Always

 name: web

 ports:

 - containerPort: "{{ .Values.hellosvc.port}}"

 env:

 - name: PORT

 value: "{{ .Values.hellosvc.port}}"

 - name: METRICS_PORT

 value: "{{ .Values.hellosvc.metricsPort }}"

 - name: DB_CONN_STRING

 value: "{{ .Values.hellosvc.dbConnString }}"

We are using curly braces to define a template that is replaced with
an actual value after you use Helm to install or upgrade the chart.
This is how the values.yaml file would look with the templatized vari-
ables defined:

hellosvc:

 imageName: serviceregistry/hellosvc:1.0.0

 port: 8080

 metricsPort: 9090

 dbConnString: "mongodb://user:pwd@mongo.com:270

Similarly, you could create a separate file that holds different values
and then use the Helm CLI to install the chart like this:

helm install –f my-values.yaml ./myChart

By default, Helm uses the values.yaml file, and you can overwrite cer-
tain variables with the following syntax:

helm install –set PORT=1234 ./myChart

You can probably already see the flexibility of using templatized de-
ployment files. Tools like Helm can also help you to automate deploy-
ment file creation within your Continuous Deployment process easily.

Another useful command in the Helm CLI is the one that allows you
to apply values to the template files and generate the output files
without actually deploying them. In addition to the built-in Helm com-
mand for validating the charts, the outputted template files then can
be fed as an input to configuration testing if needed.

For packaging a composite cloud native application using multiple
config-as-code tools and configuration scripts for the app itself, you
can use the cloud native application bundle (CNAB). You can com-

https://cnab.io/

pose the bundle to use any infrastructure or services your application
needs, without locking you into any specific cloud vendor. Additional-
ly, the bundles are signed and verified. This is a way that you can get
a cloud native application into an air-gapped environment.

Sample CI/CD Flows

Considering all of the approaches and techniques described in this
chapter, you could come up with a more detailed code flow for con-
tainerized applications that would be similar to the one in Figure 5-10.

Note that Figure 5-10 is just a guideline, representing one way you
could do your deployments and releases. There is an infinite number
of different requirements that could significantly change how your ac-
tual process looks and works. Here are all the steps in the flow with
corresponding descriptions:

1. Code complete: the code was written.

2. Push to Git: code is committed and pushed to the code repository.

3. Pull code: the build system pulls the latest pushed code.

4. Source code analysis: static code analysis is run on the source
code.

5. Build container: source code is built, copied, and packaged into a
container.

6. Unit/service tests: unit and service tests are run. If the tests fail, the
CI fails and flow is stopped.

7. Push to private registry: built and tested image is tagged and
pushed to the private registry.

8. Image security scanning: any image that’s pushed to the registry is
scanned for potential vulnerabilities and exploits.

9. Test configuration: before deploying containers to an environment,
the configuration tests are run. On failure, the flow stops.

Figure 5-10. Sample CI/CD flow

If deploying to staging:

1. Deploy to k8s: published container is deployed to Kubernetes.

2. Integration tests: integration tests are executed.

3. Rollback: if integration tests fail, deployment is rolled back and the
flow stops.

4. Release: if integration tests pass, deployment gets released and is
available in the staging environment.

5. Promotion to Prod: when ready, the changes are promoted to the
production environment using gradual rollout.

If deploying to production:

1. Deploy to k8s: published container is deployed to Kubernetes.

2. Continuous canary tests: a set of tests continuously run to catch
potential issues as soon as possible.

3. Gradual rollout: amount of traffic is being gradually increased (i.e.,

more and more traffic is sent to the deployed version).

4. Telemetry: continuously monitor telemetry to ensure gradual rollout
is working correctly and no issues are introduced with the deploy-
ment. If we see failures through telemetry, the changes are rolled
back; otherwise, more traffic is routed to the deployed version.

5. Release: as soon as 100% of the traffic is flowing to the deployed
version, the release is completed.

Similarly, Figure 5-11 shows how a sample CI/CD flow for serverless
applications would look.

Figure 5-11. Sample CI/CD flow for serverless applications

1. Code complete: the code was written.

2. Push to Git: code is committed and pushed to the code repository.

3. Pull code: the build system pulls the latest pushed code.

4. Source code analysis: static code analysis is run on the source
code.

5. Build: functions source code gets built.
6. Unit (functions) tests: unit and functions tests are run. If the tests
fail, the CI fails and flow is stopped.

7. Package: code gets packaged (as a ZIP file, for example).

8. Create test environment: test environment is created using a tem-
plate such as AWS SAM.

9. Deploy to test: packaged serverless application and any depen-
dencies are deployed to the test environment.

10. Integration tests: integration tests are executed.

11. Clean-up environment: test environment is torn down and deleted
if integration tests fail.

12. Deploy to Production: if integration tests pass, serverless applica-
tion is deployed to production. Any test environments and other
dependencies created by the flow are removed. This concludes
the flow.

Summary

In this chapter, we looked at the fundamentals of DevOps, its values,

and practical examples on how to measure the organization’s maturi-
ty. We gave a broad overview of what it means to do testing in the
cloud native world. We explained various types of tests that you
should consider and when you should execute those tests. The test-
ing in the production section took you through the process of getting
to a point in your organization at which you could begin doing your
testing in production.

To help you get to that point, we described multiple different tools that
you could use, how to set up your development environment (be it a
local development environment or cloud environment), and how to

get started with monitoring, tracing, and dealing with service and de-
ployment configuration. Finally, we described example CI/CD flows
for containerized services and serverless applications.

Chapter 6. Best Practices

Throughout this book, you have learned about the fundamentals of
cloud native applications—how to design, develop, and operate them
as well as how to deal with data. To conclude, this chapter aims to
provide a laundry list covering tips, proven techniques, and proven
best practices to build and manage reactive cloud native applications.

Moving to Cloud Native

In Chapter 2, you learned about the process that many customers fol-
low when moving traditional applications to the cloud. There are
many best practices and lessons learned that you should consider
when moving an existing application into the cloud.

Breaking Up the Monolith for the Right Reasons

“Never change a running system” is a widely used statement in soft-
ware development, and it is also applicable when you consider mov-
ing your application to the cloud. If your sole requirement is to move
your application to the cloud, you can always consider moving it on
Infrastructure as a Service (IaaS)—in fact, that should be your very
first step. That said, there are benefits of redesigning your application

to be cloud native, but you need to weigh the pros and cons. Follow-
ing are some guidelines indicating that a redesign makes sense:

Your codebase has grown to a point that it takes very long to re-
lease an updated version and thus you cannot react to new market
or customer requirements quickly.

Components of your applications have different scale require-
ments. A good example is a traditional three-tier application con-
sisting of a frontend, business, and data tier. Only the frontend tier
might experience heavy load in user requests, whereas the busi-
ness and data tier are still comfortably handling the load. As men-
tioned in Chapter 2 and Chapter 3, cloud native applications allow
you to scale services independently.

Better technology choices have emerged. There is constant inno-
vation in the technology sector, and some new technologies might
be better suited for parts of your application.

After you have decided that you want to redesign your application,

you need to consider many things. In the following sections, we pro-
vide a comprehensive look at these considerations.

Decouple Simple Services First

Start by breaking off components that provide simpler functionality
because they usually do not have a lot of dependencies and, thus,

are not deeply integrated within the monolith.

Learn to Operate on a Small Scale

Use the first service as a learning path for how to operate in a cloud
native world. Starting with a simple service, you can focus on setting
up automation to provision the infrastructure and the CI/CD pipeline
so that you become familiar with the process of developing, deploy-
ing, and operating a cloud native service. Having a simple service
and minimal infrastructure will allow you to learn, exercise, and im-
prove your new process ahead of time, without substantial impact on
the monolith and your end users.

Use an Anticorruption Layer Pattern

Nothing is perfect, especially in the software development world, so
you will eventually end up with a new service that makes calls back to
the monolith. In this case, you might want to use the Anticorruption
Layer pattern. This pattern is used to implement a facade or adapter
between components that don’t share the same semantics. The pur-
pose of the anticorruption layer is to translate the request from one
component to another; for example, implementing protocol or
schema translations.

To implement this, you design and create a new API in the monolith
that makes calls through the anticorruption layer in the new service,

as shown in Figure 6-1.

Figure 6-1. Anticorruption Layer pattern

There are a couple of considerations when you are using this ap-
proach. As Figure 6-1 illustrates, the anticorruption layer is a service
on its own, so you need to think about how to scale and operate the
layer. Also, you need to think about whether you want to retire the an-
ticorruption layer after the monolithic application has been fully
moved into a cloud native application.

Use a Strangler Pattern

When you are decomposing your monolith to move to microservices
and functions, you can use a gateway and a pattern such as a
Strangler pattern. The idea behind the Strangler pattern is to use the
gateway as a facade while you gradually move the backend monolith
to a new architecture—either services, functions, or a combination of
both. As you’re making progress breaking up the monolith and imple-
menting those pieces of functionality as services or functions, you up-
date the gateway to redirect requests to the new functionality, instead
as shown in Figure 6-2.

Figure 6-2. Migrating from monolith using the Strangler pattern

Note that the Strangler pattern might not be suitable for the instance
in which you can’t intercept the requests going to the backing mono-
lith. The pattern also might not make sense if you have a smaller sys-
tem, for which it’s easier and faster to replace the entire system, in-
stead of gradually moving it.

The Anticorruption Layer and Strangler patterns have been proven
many times as good approaches to move a monolithic legacy appli-
cation to a cloud native application because both promote a gradual
approach.

Come Up with a Data Migration Strategy

In a monolith, you are usually working with a centrally shared datas-
tore where data is read from and written to by multiple places and
services. To truly move to the cloud native architecture, you need to
decouple data as well. Your data migration strategy might consist of
multiple phases, especially if you can’t migrate everything at the
same time. However, in most cases, you will need to do an incremen-
tal migration while keeping the entire system running. A gradual mi-
gration will probably involve writing data twice (to the new and old
datastore) for a while. After you have data in both places and syn-
chronized, you will need to modify where the data is being read from
and then read everything from the new store. Finally, you should be
able to stop writing data to the old store completely.

Rewrite Any Boilerplate Code

Monoliths will usually have large amounts of code that deals with the
configuration, data caching, datastore access, and so on and is prob-
ably using older libraries and frameworks. When moving capabilities

to a new service, you should rewrite this code. The best option is to
throw away the old code and rewrite it from scratch instead of modify-
ing the existing code and molding it so it fits the new service.

Reconsider Frameworks, Languages, Data
Structures, and Datastores

Moving to microservices gives you an option to rethink the existing
implementation. Are there new frameworks or languages that you
could use to rewrite the current code that provide better features and
functionalities for your scenarios? If it makes sense to rewrite the
code, do it! Also, reconsider any data structures in the current code.

Would they still make sense when moved to a service? You should
also evaluate whether you want to use different datastores. Chapter 4
outlines what datastores are best suited for certain data structures
and query patterns.

Retire Code

After you’ve created a new service and all the traffic is redirected to
that service, you need to retire and remove the old code that resides
in the monolith. Using this approach, you are shrinking the monolith
and expanding your services.

Ensuring Resiliency

Resiliency is the ability of a system to recover from failures and con-
tinue to function and serve requests. Resiliency is not about avoiding
failures; instead, it is all about responding to failures in such a man-
ner that avoids significant downtime or data loss.

Handle Transient Failures with Retries

Requests can fail due to multiple reasons such as network latency,

dropped connections, or timeouts if downstream services are busy.

You can avoid most of these failures if you retry the request. Retrying
can also improve the stability of your application. However, before
blindly retrying all requests, you need to implement a bit of logic that
determines whether the request should be retried. If the failure is not
transient or there is a likelihood that a retry won’t be successful, it is
better for the component to cancel the request and respond with an
appropriate error message. For example, retrying a failed login be-
cause of an incorrect password is futile and retries won’t help. If fail-
ure is due to a rare network issue, you can retry the request right
away given that the same issue probably won’t persist. Finally, if the
failure happens because the downstream service is busy or you are
being rate limited, for example, you should retry after a delay. Here
are some common strategies for delaying between retry operations:

Constant
Wait for the same time between each attempt.

Linear
Incrementally increase the time between each retry. For exam-
ple, you can start with one second, then three seconds, five
seconds, and so on.

Exponential back-off
Exponentially increase time between each retry. For example,

start with 3 seconds, 12 seconds, 30 seconds, and so on.

Depending on what type of failure you are dealing with, you can also
immediately retry the operation once and then use one of the delay
strategies mentioned in the preceding list. You can handle retries in
the component’s source code by using the retry and transient failure
logic provided by many of the service SDKs, or at the infrastructure
layer if you are using a service mesh, such as Istio.

Use a Finite Number of Retries

Regardless of which retry strategy you’re using, always make sure to
use a finite number of retries. Having an infinite number of retries will
cause an unnecessary strain on the system.

Use Circuit Breakers for Nontransient Failures

The purpose of a circuit breaker is to prevent components from doing
operations that will likely fail and are not transient. Circuit breakers
monitor the number of faults, and based on that information decide
whether the request should continue or an error should be returned
without even invoking the downstream service. If a circuit breaker
trips, the number of failures has exceeded a predefined value, and
the circuit breaker will automatically return errors for a preset time.

After the preset time elapses, it will reset the failure count and allow
requests to go through to the downstream service again. A well-
known library that implements the circuit breaker pattern is Hystrix
from Netflix. If you are using a service mesh like Istio or Envoy prox-
ies, you can take advantage of the circuit breaker implementation in
those solutions.

Graceful Degradation

Services should degrade gracefully, so even if they fail, they still pro-
vide an acceptable user experience if it makes sense. For example, if
you can’t retrieve the data, you could display a cached version of the
data, and as soon as the data source recovers, you show the latest
data.

Use a Bulkhead Pattern

The Bulkhead pattern refers to isolating different parts of your system
into groups in such a way that if one fails, the others will continue run-
ning unaffected. Grouping your services this way allows you isolate
failures and continue serving requests even when there’s a failure.

Implement Health Checks and Readiness Checks

Implement a health check and a readiness check for every service
you deploy. The platform can use these to determine whether the ser-
vice is healthy and performing correctly as well as when the service is
ready to start accepting requests. In Kubernetes, health checks are
called probes. The liveness probe is used to determine when a con-
tainer should be restarted, whereas the readiness probe determines
whether a pod should start receiving traffic.

The initial delay defines the number of seconds after the container
has started before liveness or readiness probes are active, whereas
the period defines how often the probe is performed. There are also
additional settings such as success/failure threshold and timeouts
that you can use to fine-tune the probes.

Define CPU and Memory Limits for Your
Containers

You should define CPU and memory limits to isolate resources and
prevent certain services instances from consuming too many re-
sources. In Kubernetes, you can achieve this by defining the memory
and CPU limits within the pod definition.

Implement Rate Limiting and Throttling

You use rate limiting and throttling to limit the number of incoming or
outgoing requests for a service. Implementing those can help you to
keep your service responsive even in the case of a sudden spike in
requests. Throttling, on the other hand, is often used for outgoing re-
quests. Think about using it when you want to control the number of
requests sent to an external service to minimize the costs or to make
sure that your service does not look like the origin of a Denial-of-
Service attack.

Ensuring Security

Security in the cloud native world is based on the shared responsibili-
ty model. The cloud providers are not solely responsible for the secu-
rity of their customers’ solutions; instead, they share that responsibili-
ty with the customers. From an application perspective you should
consider adopting the defense-in-depth concept, which is discussed

in Chapter 3. The best practices listed in this section will help you to
ensure security.

Treat Security Requirements the Same as Any
Other Requirements

Having fully automated processes is in spirit of the cloud native de-
velopment. To achieve this, all security requirements must be treated
as any other requirement and be pushed through your development
pipeline.

Incorporate Security in Your Designs

As you’re planning and designing your cloud native solutions, you
need to think about security and incorporate the security features in
your design. As part of your design, you also should call out any addi-
tional security concerns that need to be addressed during component
development.

Grant Least-Privileged Access

If your services or functions need access to any resources, they
should be granted specific permissions that have the least amount of
access set to them. For example, if your service is reading only from

the database, it does not need to use an account that has write
permissions.

Use Separate Accounts/Subscriptions/Tenants

Depending on the terminology of your cloud provider, your cloud na-
tive system should use separate accounts, subscriptions, and/or ten-
ants. At the very least, you will need a separate account for every en-
vironment you will be using; that way, you can ensure proper isolation
between environments.

Securely Store All Secrets

Any secrets within your system, used either by your components or
Continuous Integration/Continuous Development (CI/CD) pipeline,

need to be encrypted and securely stored. It might sound like a no-
brainer, but never store any secrets in plain text: always encrypt
them. It’s always best to use existing and proven secret management
systems that take care of these things for you. The simplest option is
to use Kubernetes Secrets to store the secrets used by services with-
in the cluster. Secrets are stored in etcd, a distributed key/value store.

However, managed and centralized solutions have multiple advan-
tages over Kubernetes secrets: everything is stored in a centralized
location, you can define access control policies, secrets are encrypt-
ed, auditing support is provided, and more. Some examples of man-

aged solutions are Microsoft Azure Key Vault, Amazon Secrets Man-
ager, and HashiCorp Vault.

Obfuscate Data

Any data your component uses needs to be properly obfuscated. For
example, you never want to log any data classified as Personally
Identifiable Information (PII) in plain text; if you need to log or store it,
ensure that it’s either obfuscated (if logging it) or encrypted (if storing
it).

Encrypt Data in Transit

Encrypting data in transit protects your data if communications are
intercepted while the data moves between components. To achieve
this protection, you need to encrypt the data before transmitting it, au-
thenticate the endpoints, and finally decrypt and verify the data after it
reaches the endpoint. Transport Layer Security (TLS) is used to en-
crypt data in transit for transport security. If you are using a service
mesh, TLS might already be implemented between the proxies in the
mesh.

Use Federated Identity Management

Using an existing federated identity management service (Auth0, for
example) to handle how users sign up, sign in, and sign out allows
you to redirect users to a third-party page for authentication. Your
component should delegate authentication and authorization when-
ever possible.

Use Role-Based Access Control

Role-Based Access Control (RBAC) has been around for a long time.

RBAC is a control access mechanism around roles and privileges,

and as you have learned, it can be a great asset to your defense-in-
depth strategy because it allows you to provide fine-grained access
to users to only the resources they need. Kubernetes RBAC, for ex-
ample, controls permissions to the Kubernetes API. Using RBAC, you
can allow or deny specific users from creating deployments or listing
pods, and more. It’s a good practice to scope Kubernetes RBAC per-
missions by namespaces rather than cluster roles.

Isolate Kubernetes Pods

Any pods running in a Kubernetes cluster are not isolated and can
accept requests from any source. Defining a network policy on pods
allows you to isolate pods and make them reject any connections that
are not allowed by the policy. For example, if a component in your
system is compromised, a network policy will prevent the malicious

actor from communicating with services with which you don’t want
them to communicate. Using a NetworkPolicy resource in Kuber-
netes, you can define a pod selector and detailed ingress and egress
policies.

Working with Data

Most modern applications have some need to store and work with
data. A growing number of data storage and analytics services are
available as cloud provider–managed services. Cloud native ap-
plications are designed to take full advantage of cloud provider–man-
aged data systems and are designed to evolve to take advantage of a
growing number of features. When working with data in the cloud,

many of the standard data best practices still apply: have a disaster
recovery plan, keep business logic out of the database, avoid over-
fetching or excessively chatty I/O, use data access implementations
that prevent SQL injections attacks, and so on.

Use Managed Databases and Analytics Services

Whenever possible use a managed database. Provisioning a data-
base on virtual machines (VMs) or in a Kubernetes cluster can often
be a quick and easy task. Production databases that require backups
and replicas can quickly increase the time and burden of operating

data storage systems. By offloading the operational burden of deploy-
ing and managing a database, teams are able to focus more on
development.

In some cases, a data storage technology might not be available as a
managed service or it might be necessary to have access to some
configurations that are not available in a managed version of the
system.

Use a Datastore That Best Fits Data
Requirements

When designing on-premises applications, architects would often try
to avoid using multiple databases. Each database technology used
would require database administrators with the skillset to deploy and
manage the database, significantly increasing the operational costs
of the application. The reduced operational costs of cloud-managed
databases make it possible to use multiple different types of datas-
tores to put data in a system best suited for the data type, read, and
write requirements. Cloud native applications take full advantage of
this, using multiple data storage technologies.

Keep Data in Multiple Regions or Zones

Store production data for applications across multiple regions or
zones. How the data is stored across the zones or regions will de-
pend on the application’s availability requirements; for example, the
data might be backups or a replicated database. If a cloud provider
experiences a failure of a zone or region, the data can be available to
be used for recovery or failover.

Use Data Partitioning and Replication for Scale

Cloud native applications are designed to scale out as opposed to
scale up. Scaling a database up is achieved by increasing the re-
sources available to a database instance; for example, adding more
cores or memory. This ultimately encounters a hard limit and can be
costly. Scaling databases out is achieved through distributing the
data across multiple instances of a database. The database is parti-
tioned, or broken up, and stored in multiple databases.

Avoid Overfetching and Chatty I/O

Overfetching is when an application requests data from a database
but needs only a fraction of the data for the operation. For example,

an application might display a list of orders with a simple summary
but request the entire order and order details without needing it. A
chatty application, on the other hand, makes a lot of small calls to

complete an operation when a single request can be made to the
database.

Don’t Put Business Logic in the Database

Too many application scaling issues are the result of putting too much
logic in the database. Databases made it easy to put business logic
inside the database by supporting standard development languages,

and it became convenient to perform these tasks in the database.

This often introduces scaling issues because a database is common-
ly an expensive shared resource.

Test with Production-like Data

Create automation to anonymize production data that can be updated
with new rules as the data changes. Applications should be tested
with production-like data. Data is sometimes pulled from production
systems, scrubbed, and loaded into test systems to provide produc-
tion-like data. You should automate this process so that it is easy to
update as the data changes.

Handle Transient Failures

As mentioned in the resiliency section of this chapter, failures will
happen. Expect failures when making calls to a database and be pre-

pared to handle them. Many of the database client libraries support
transient fault handling already. It’s important to understand whether
they do and how it’s supported.

Performance and Scalability

Performance indicates how well a system can execute an operation
within a certain time frame, whereas scalability refers to how a sys-
tem can handle load increase without impact on the performance.

Predicting periods of increased activity to a system can be tough, so
the components need to be able to scale out as needed to meet the
increased demand and then scale down, after the demand decreas-
es. The subsections that follow present some best practices to help
you achieve optimal performance and scalability.

Design Stateless Services That Scale Out

Services should be designed to scale out. Scaling out is an approach
to increasing the scale of a service by adding more instances of a
service. Scaling up is an approach to scaling a service by adding
more resources like memory or cores, but this method generally has
a hard limit. By designing a service to scale out and back in, you can
scale the service to handle variations in the load without impacting
the availability of the service.

Stateful applications are inherently difficult to scale and should be
avoided. If stateful services are necessary, it’s generally best to sepa-
rate the functionality from the application and use a partitioning strat-
egy and managed services if they are available.

Use Platform Autoscaling Features

When possible, use any autoscaling features that are built into the
platform before implementing your own. Kubernetes offers Horizontal
Pod Autoscaler (HPA). HPA scales the pods based on the CPU,

memory, or custom metrics. You specify the metric (e.g., 85% of CPU
or 16 GB of memory) and the minimum and maximum number of pod
replicas. After the target metric is reached, Kubernetes automatically
scales the pods. Similarly, cluster autoscaling scales the number of
cluster nodes if pods can’t be scheduled. Cluster autoscaling uses
the requested resources in the pod specification to determine
whether nodes should be added.

Use Caching

Caching is a technique that can help improve the performance of
your component by temporarily storing frequently used data in stor-
age that’s close to the component. This improves the response time
because the component does not need to go to the original source.

The most basic type of cache is an in-memory store that is being

used by a single process. If you have multiple instances of your com-
ponent, each instance will have its own independent copy of the in-
memory cache. This can cause consistency problems if data is not
static because the different instances will have different versions of
cached data. To solve this problem, you can use shared caching,

which ensures that different component instances use the same
cached data. In this case, cache is stored separately, usually in front
of the database.

Use Partitioning to Scale Beyond Service Limits

Cloud services will often have some defined scale limits. It’s impor-
tant to understand the scalability limits of each of the services used
and how much they can be scaled up. If a single service is unable to
scale to meet the application’s requirements, create multiple service
instances and partition work across the instances. For example, if a
managed gateway was capable of handling 80% of the application’s
intended load, create another gateway and split the services across
the gateway.

Functions

Much of the software development life cycle (SDLC) and general
server architecture best practices are the same for serverless archi-

tectures. Given serverless is a different operating model, there are,

however, some best practices specific to functions.

Write Single-Purpose Functions

Follow the single-responsibility principle and only write functions that
have a single responsibility. This will make your functions easier to
reason about, test, and, when the time comes, debug.

Don’t Chain Functions

In general, functions should push messages/data to a queue or a
datastore to trigger any other functions if needed. Having one or more
functions call other functions is often considered an antipattern that
additionally increases your cost and makes the debugging more diffi-
cult. If your application requires the daisy-chaining of functions, you
should consider using function offerings such as Azure Durable Func-
tions or AWS Step Functions.

Keep Functions Light and Simple

Each function should do just one thing and rely on only a minimal
number of external libraries. Any extra and unnecessary code in the
function makes the function bigger in size, and that affects the start
time.

Make Functions Stateless

Don’t save any data in your functions because new function in-
stances usually run in their own isolated environment and don’t share
anything with other functions or invocations of the same function.

Separate Function Entry Point from the Function
Logic

Functions will have an entry point invoked by the function framework.

Framework-specific context is generally passed to the function entry
point, along with invocation context. For example, if the function is in-
voked through an HTTP request like an API gateway, the context will
contain HTTP-specific details. The entry-point method should sepa-
rate these entry-point details from the rest of the code. This will im-
prove manageability, testability, and portability of the functions.

Avoid Long-Running Functions

Most Function as a Service (FaaS) offerings have an upper limit for
execution time per function. As a result, long-running functions can
cause issues such as increased load times and timeouts. Whenever
possible, refactor large functions into smaller ones that work together.

Use Queues for Cross-Function Communication

Instead of passing information among one another, functions should
use a queue to which to post the messages. Other functions can be
triggered and executed based off the events that happen on that
queue (item added, removed, updated, etc.).

Operations

A DevOps practice provides the foundation necessary for organiza-
tions to make the best use of cloud technologies. Cloud native ap-
plications utilize DevOps principles and best practices that are de-
tailed in Chapter 5.

Deployments and Releases Are Separate
Activities

It is important to make a distinction between deployment and release.

Deployment is the act of taking the built component and placing it
within an environment—the component is fully configured and ready
to go; however, there is no traffic being sent to it. As part of the com-
ponent release, we begin to allow traffic to the deployed component.
This separation allows you to do gradual releases, A/B testing, and
canary deployments in a controlled manner.

Keep Deployments Small

Each component deployment should be a small event that can be
performed by a single team in a short time. There is no general rule
about how small a deployment should be and how much time it
should take to deploy a component, because this is highly dependent
on the component, your process, and the change to the component.
A good approach is to be able to roll out a critical fix within a day.

CI/CD Definition Lives with the Component

You need to store and version any CI/CD configuration and depen-
dencies alongside the component. Each push to the component’s
branch triggers the pipeline and executes jobs defined in the CI/CD
configuration. To control component deployments to different environ-
ments (development, staging, production), you can use the Git
branch names and configure your pipeline to deploy the master
branch only to a production environment, for example.

Consistent Application Deployment

With a consistently reliable and repeatable deployment process, you
can minimize errors. Automate as many processes as possible and
ensure that you have a rollback plan defined in case deployment fails.

Use Zero-Downtime Releases

To maximize the availability of your system during releases, consider
using zero-downtime releases such as blue/green or canary. Using
one of these approaches also allows you to quickly roll back the up-
date in case of failures.

Don’t Modify Deployed Infrastructure

Infrastructure should be immutable. Modifying deployed infrastructure
can quickly get out of hand, and keeping track of what changed can
be complicated. If you need to update the infrastructure, redeploy it
instead.

Use Containerized Build

To avoid configuring build environments, package your build process
into Docker containers. Consider using multiple images and contain-
ers for builds instead of creating a single, monolithic build image.

Describe Infrastructure Using Code

Infrastructure should be described using either cloud provider’s de-
clarative templates or a programming language or scripts that provi-
sion the infrastructure.

Use Namespaces to Organize Services in
Kubernetes

Every resource in a Kubernetes cluster belongs to a namespace. By
default, newly created resources go into a namespace called default.
For better organization of services, it is a good practice to use de-
scriptive names and group services into bounded contexts.

Isolate the Environments

Use a dedicated production cluster and physically separate the pro-
duction cluster for your development, staging, or testing environ-
ments.

Separate Function Source Code

Each function must be independently versioned and have its own de-
pendencies. If that’s not the case, you will end up with a monolith and
a tightly coupled codebase.

Correlate Deployments with Commits

Pick a branching strategy that allows you to correlate the deploy-
ments to specific commits in your branch and that also allows you to
identify which version of the source code is deployed.

Logging, Monitoring, and Alerting

Application and infrastructure logging can provide much more value
than just root-cause analysis. A proper logging solution will provide
valuable insights into applications and systems, and it’s often neces-
sary for monitoring the health of an application and alerting opera-
tions of important events. As cloud applications become more dis-
tributed, logging and instrumentation become increasingly challeng-
ing and important.

Use a Unified Logging System

Use a unified logging system capable of capturing log messages
across all services and levels of a system and store them in a central-
ized store. Whether you move all logs to a centralized store for analy-
sis and search, or you leave them on the machine with the necessary
tools in place to run a distributed query, it’s important that an engineer
can find and analyze logs without having to go from one system to
the next.

Use Correlation IDs

Include a unique correlation ID (CID) that is passed through all ser-
vices. If one of the services fails, the correlation ID is used to trace

the request through the system and pinpoint where the failure
occurred.

Include Context with Log Entries

Each log entry should contain additional context that can help when
you are investigating issues. For example, include all exception han-
dling, retry attempts, service name or ID, image version, binary ver-
sion, and so on.

Common and Structured Logging Format

Decide on a common and structured logging format that all compo-
nents will use. This will allow you to quickly search and parse the logs
later on. Also, make sure you are using the same time zone informa-
tion in all your components. In general, it is best to adhere to a com-
mon time format such as Coordinated Universal Time (UTC).

Tag Your Metrics Appropriately

In addition to using clear and unique metric names, make sure that
you are storing any additional information, such as component name,

environment, function name, region, and so forth, in the metric tags.

With tags in place, you can create queries, dashboards, and reports

using multiple dimensions (e.g., average latency across a specific re-
gion or across regions for a specific function).

Avoid Alert Fatigue

The sheer number of metrics makes it difficult to determine how to set
up the alerting and what to alert on. If you are firing off too many
alerts, eventually people will stop paying attention to them and no
longer take them seriously. Also, investigating a bunch of alerts can
become overwhelming and it could be the only thing your team is do-
ing. It is important to classify alerts by severity: low, moderate, and
high. The purpose of low-severity alerts is to potentially use them lat-
er, when doing root-cause analysis of a high-severity alert. You can
use them to uncover certain patterns, but they do not require any im-
mediate action when fired. A moderate-severity alert should either
create a notification or open a ticket. These are the alerts you want to
look at, but are not high priority and don’t need immediate action.

They could represent a temporary condition (increase demand, for
example) that eventually goes away. They also give you an early
warning of a possible high-severity alert. Finally, high-severity alerts
are the ones that will wake people up in the middle of the night and
require immediate action. Recently, machine learning–based ap-
proaches to automatically triage issues and raise alerts are gaining in
popularity, and the term AIOps has even been introduced.

Define and Alert on Key Performance Indicators

Cloud native systems will have a plethora of signals that are being
emitted and monitored. You need to filter down those signals and de-
termine which ones are the most important and valuable. These Key
Performance Indicators (KPIs) give you insight into the health of your
system. For example, one KPI is latency, which measures the time it
takes to service a request. If you begin seeing latency increase or de-
viate from an acceptable range, it is probably time to issue an alert
and have someone take a look at it. In addition to KPIs, you can use
other signals and metrics to determine why something is failing.

Continuous Testing in Production

Using continuous testing you can generate requests that are sent
throughout the system and simulate real users. You can utilize this
traffic to get test coverage for the components, discover potential is-
sues, and test your monitoring and alerting. Following are some com-
mon continuous testing practices:

Blue/green deployments
Canary testing
A/B testing

These practices are discussed in Chapter 5.

Start with Basic Metrics

Ensure that you are always collecting traffic (how much demand is
placed on the component), latency (the time it takes to service a re-
quest), and errors (rate of requests that fail) for each component in
your system.

Service Communication

Service communication is an important part of cloud native ap-
plications. Whether it’s a client communicating with a backend, a ser-
vice communicating with a database, or the individual services in a
distributed architecture communicating with one another, these inter-
actions are an important part of cloud native applications. Many differ-
ent forms of communication are used depending on the require-
ments. The following subsections offer some best practices for ser-
vice communication.

Design for Backward and Forward Compatibility

With backward compatibility, you ensure that new functionality added
to a service or component does not break any existing service. For
example, in Figure 6-3, Service A v1.0 works with Service B v1.0.

Backward compatibility means that the release of Service B v1.1 will
not break the functionality of Service A.

Figure 6-3. Backward compatibility

To ensure backward compatibility, any new fields added to the API
should be optional or have sensible defaults. Any existing fields
should never be renamed, because that will break the backward
compatibility.

NOTE

Parallel change, also known as the Expand and Contract pattern, can be used to
safely introduce backward-incompatible changes. As an example, say a service
owner would like to change a property or resource on an interface. The service
owner will expand the interface with a new property or resource, and then after all
consumers have had a chance to move the service interface, the previous property
is removed.

If your system or components need to ensure rollback functionality,

you will need to think about the forward compatibility as you’re mak-
ing changes to your service. Forward compatibility means that your
components are compatible with future versions. Your service should
be able to accept “future” data and messaging formats and handle
them appropriately. A good example of forward compatibility is
HTML: when it encounters an unknown tag or attribute, it’s not going
to fail; it will just skip it.

Define Service Contracts That Do Not Leak
Internal Details

A service that exposes an API should define contracts and test
against the contracts when releasing updates. For example, a REST-
based service would generally define a contract in the OpenAPI for-
mat or as documentation, and consumers of the service would build
to this contract. Updates to the service can be pushed, and as long as
it doesn’t introduce any breaking changes to the API contract, these
releases would not affect the consumer. Leaking internal implementa-
tions of a service can make it difficult to make changes and intro-
duces coupling. Don’t assume a consumer is not using some piece of
data exposed through the API.

NOTE

Services that publish messages to a queue or a stream should also define a con-
tract in the same way. The service publishing the events will generally own the
contract.

Prefer Asynchronous Communication

Use asynchronous communication whenever possible. It works well
with distributed systems and decouples the execution of two or more
services. A message bus or a stream is often used when implement-
ing this approach, but you could use direct calls through something
like gRPC as well. Both use a message bus as a channel.

Use Efficient Serialization Techniques

Distributed applications like those built using a microservices archi-
tecture rely more heavily on communications and messaging be-
tween services. The data serialization and deserialization can add a
lot of overhead in service communication.

NOTE

In one case, serialization and deserialization were found to account for nearly 40%

of the CPU utilization across all the services. Replacing the standard JSON serial-
ization library with a custom one reduced this overhead to roughly 15% of overall
CPU utilization.

Use efficient serialization formats like protocol buffers, commonly
used in gRPC. Understand the trade-offs with the different serializa-
tion formats, because tooling and consumer requirements might not
make this a feasible option. You can also use other techniques to re-
duce the need for serialization in some services by placing some of
the data into headers. For example, if a service receives a request
and operates on only a handful of fields in a large message payload
before passing it to a downstream service, by putting these fields into
headers the service does not need to deserialize or reserialize the
payload. The service reads and writes headers and then simply pass-
es the entire payload through to the downstream services.

Use Queues or Streams to Handle Heavy Loads
and Traffic Spikes

A queue or a stream between components acts as a buffer and
stores the message until it is retrieved. Using a queue allows the
components to process the messages at their own pace, regardless

of the incoming volume or load. Consequently, this helps maximize
the availability and scalability of your services.

Batch Requests for Efficiency

Queues can be used for batching multiple requests and performing
an action only once. For example, it is more efficient to write 1,000

batched entries into the database instead of one entry at a time 1,000

times.

Split Up Large Messages

Sending, receiving, and manipulating large messages requires more
resources and can slow down your entire system. The Claim-Check
pattern talks about splitting a large message into two parts. You store
the entire message in an external service (database, for example)

and send only the reference to the message. Any interested message
receivers can use the reference to obtain the full message from the
database.

Containers

It’s possible to run most applications in a Docker container without
very much effort. However, there are some potential pitfalls when run-

ning containers in production and streamlining the build, deployment,
and monitoring. A number of best practices have been identified to
help avoid the pitfalls and improve the results.

Store Images in a Trusted Registry

Any images running on the platform should come from the trusted
container image registry. Kubernetes exposes a webhook (validating
admission) that can be used to ensure pods can use images only
from a trusted registry. If you’re using Google Cloud, you can take ad-
vantage of the binary authorization security measure that ensures
only trusted images are deployed on your cluster.

Utilize the Docker Build Cache

Using the build cache when building Docker images can speed up
the build process. All images are built up from layers, and each line in
the Dockerfile contributes a layer to the final image. During the build,

Docker will try to reuse a layer from a previous build instead of build-
ing it again. However, it can reuse only the cached layers if all previ-
ous build steps used it as well. To get the most out of the Docker build
cache, put the commands that change more often (e.g., adding the
source code to the image, building the source code) at the end of the
Dockerfile. That way, any preceding steps will be reused.

Don’t Run Containers in Privileged Mode

Running containers in privileged mode allows access to everything
on the host. Use the security policy on the pod to prevent containers
from running in privileged mode. If a container does for some reason
require privileged mode to make changes to the host environment,
consider separating that functionality from the container and into the
infrastructure provisioning.

Use Explicit Container Image Tags

Always tag your container images with specific tags that tightly link
the container image to the code that is packaged in the image. To tag
the images properly, you can either use a Git commit hash that
uniquely identifies the version of the code (e.g., 1f7a7a472) or use
a semantic version (e.g., 1.0.1). The tag latest is used as a de-
fault value if no tag is provided; however, because it’s not tightly
linked to the specific version of the code, you should avoid using it.
The latest tag should never be used in a production environment be-
cause it can cause inconsistent behavior that can be difficult to
troubleshoot.

Keep Container Images Small

In addition to taking up less space in a container registry or the host
system using the image to run a container, smaller images improve
image push and pull performance. This in turn improves the perfor-
mance when you start containers as part of deploying or scaling a
service. The application and its dependencies will have some impact
on the size of the image, but you can reduce most of the image size
by using lean base images and ensuring that unnecessary files are
not included in the image. For example, the alpine 3.9.4 image is only
3 MB, with the Debian stretch image at 45 MB, and the CentOS
7.6.1810 at 75 MB. The distributions generally offer a slim version that
removes more from the base image that might not be needed by the
application. Generally, there are two things to keep in mind for keep-
ing images lean:

Start with a lean base image
Include only the files needed for the operation of the application

You can use the Container Builder pattern to create lean images by
separating the images used to build the artifacts from the base image
used to run the application. Docker’s multistage build is often used to
implement this. You can create Docker build files that can start from
different images used for executing the commands to build and test
artifacts, and then define another base image as part of creating the
image to run the application.

TIP

Using a .dockerignore file can improve build speed by excluding files that are not
needed in the Docker build.

Run One Application per Container

Always run a single application within a container. Containers were
designed to run a single application, with the container having the
same life cycle as the application running in the container. Running
multiple applications within the same container makes it difficult to
manage, and you might end up with a container in which one of the
processes has crashed or is unresponsive.

Use Verified Images from Trusted Repositories

There’s a large and growing number of publicly available images that
are helpful when working with containers. Docker repository tags are
mutable, so it’s important to understand that the images can change.

When using images in an external repository it’s best to copy or re-
create them from the external repository into one managed by the or-
ganization. The organization’s repository is usually closer to the CI
services, and this approach removes another service dependency
that could impact build.

Use Vulnerability Scanning Tools on Images

You need to be aware of any vulnerabilities that affect your images
because this can compromise the security of your system. If a vulner-
ability is discovered, you need to rebuild the image with the patches
and fixes included and then redeploy it. Some cloud providers offer
vulnerability scanning with their image registry solutions, so make
sure you are taking advantage of those features.

TIP

Scan an image as often as possible because new cybersecurity vulnerabilities and
exposures (CVE) are released daily.

Don’t Store Data in Containers

Containers are ephemeral—they can be stopped, destroyed, or re-
placed without any loss of data. If the service running in a container
needs to store data, use a volume mount to save the data. The con-
tents in a volume exist outside the life cycle of a container and a vol-
ume does not increase the size of a container. If the container re-
quires temporary nonpersistent writes, use a tmpfs mount, which will
improve performance by avoiding writes to a container’s writable
layer.

Never Store Secrets or Configuration Inside an
Image

Hardcoding any type of secrets within an image is something you
want to avoid. If your container requires any secrets, define them
within environment variables or as files, mounted to the container
through a volume.

Summary

We could easily fill an entire book covering best practices for cloud
native applications given the number of technologies involved. How-
ever, there are certain areas that have been coming up repeatedly in
customer conversations, and this chapter has covered a collection of
best practices, tips, and proven patterns for cloud native applications
for those areas. You should have a better understanding of the fac-
tors you may want to consider.

Chapter 7. Portability

Portability is sometimes a concern when building cloud native ap-
plications. The application might have a requirement to be deployed
across multiple cloud providers or even on-premises. These require-
ments are generally driven by stakeholders, whether they are cus-
tomers using the application or the business building the application.

It might be the case that the application is deployed by the customer,
either on their own hardware or in their own account on the cloud
provider of their choice. Regardless of the reasons, the requirement
for portability should be treated like any other architecturally signifi-
cant requirement. It should be driven by the business with careful
consideration to the costs and trade-offs.

Why Make Applications Portable?

There are many good reasons to make applications portable. Porta-
bility should be a requirement, and the trade-offs and costs associat-
ed with the feature should be considered. Following are some of the
reasons why software vendors make applications portable:

Building an application that’s deployed into a customer’s environ-
ment and there’s a requirement to offer deployment into the cus-
tomer’s choice of cloud provider or on-premises.

Building a hybrid application that runs in the cloud and on-premis-
es, where some of the services in the application run in both
environments.

Services need to be near a customer’s application in order to mini-
mize latency. These could be services that store or analyze data,

for example.

Some aspect of an application will benefit from a service offered by
another cloud provider. A feature of the application would be de-
ployed into another cloud vendor, different from the primary appli-
cation features.

Disaster recovery and backup for services requiring extremely
high levels of availability.

Leverage with the cloud provider account management team to
negotiate better pricing.

Agility to move workloads for cost savings or to take advantage of
some new functionality in another cloud provider.

Some applications are made to be portable only out of fear of vendor
lock-in. Vendor lock-in happens when an application has dependen-
cies on services or APIs that are only available from a specific cloud
provider. This can make it difficult to move the application without
refactoring and potentially rewriting parts of the application and/or
tooling used to manage the application. Some teams will invest a lot
of resources making an application portable without considering
these costs. It’s important to understand the trade-offs when portabili-

ty is a requirement. Stakeholders will sometimes request that an ap-
plication is portable without understanding that there are in fact trade-
offs potentially affecting time to market, features, engineering costs,

and, quite often, increased operational costs.

Sometimes, engineering teams will needlessly make an application
portable, even though there is no requirement for it. This often hap-
pens out of a fear of making a decision to commit to a cloud provider.
What happens if the other cloud providers services become less ex-
pensive, a feature is added, or one becomes more popular? This fear
of being locked in can even delay a project start date because the
team spends time evaluating platforms and techniques.

The Costs of Portability

Application portability generally comes with a price tag, and with larg-
er applications this cost can be significant. Making an application por-
table—one that can be deployed on multiple cloud providers or on-
premises—might be a requirement. If so, it’s important to understand
the associated costs and potential trade-offs. The business needs to
consider these trade-offs so it can prioritize portability against other
features, and determine whether it’s even worth the additional cost. If,
for example, the business is considering portability as a requirement,
it would be important to know how this might affect operational costs

or time to market. It might be the case that portability is not worth the
increased costs.

Here are some potential costs to consider when evaluating portability
requirements:

Increased operational costs as a result of not using vendor-specific
managed services
Increased infrastructure costs as a result of not using cloud
provider products and services not available on all cloud providers
Increased engineering costs as a result of implementing features
that might only be available from one of the target cloud providers
Increased engineering costs as a result of using technologies out-
side the team’s skillset
Reduced performance as a result of placing layers between
services
Increased testing costs necessary to verify the application’s func-
tion on supported providers
Lost revenue as a result of delayed value delivery to customers

WARNING

The operational costs need to be carefully considered, as they can increase signifi-
cantly. Most will only consider portability of compute, but managing dependent ser-
vices, like queues, streams, data storage, and analytics services, can add a lot of
operational burden.

Data Gravity and Portability

Data gravity is a term coined by Dave McCrory. The concept is fairly
simple: data wants to be near the applications using it. As the data
grows, its gravitational force increases, pulling applications and addi-
tional data to it. The larger the data, the more gravitational pull. Every
major cloud provider understands the importance of data gravity as
well as the challenges inherent in moving the data to another cloud
vendor.

Indeed, moving data from one cloud provider to another is often the
most challenging aspect of moving an application. Some businesses
invest a lot of resources making the application portable without un-
derstanding the inherent challenges. The cost of moving the data
along with the potential for incurring downtime are often not worth it;
thus, the investments in making an application portable are wasted.

Most of the major cloud vendors provide data migration services that
can make it easier to move data around, but with large amounts of
data, this can still be a large effort. Moving data without taking an ap-
plication offline can be challenging and expensive. You can use tech-
niques like moving data that is no longer changing before a migration
to minimize this downtime. You also can use live replication of the
data during the transition.

When and How to Implement
Portability

Some or all of an application’s portability requirements can be ad-
dressed at the start of an application or later in its lifetime. If portabili-
ty is going to be a future requirement, some things can be done at the
start to make it easier to add this requirement. You can use good cod-
ing practices that organize the code into separate concerns and lay-
ers. You can take advantage of technologies available across cloud
providers and that don’t involve a significant trade-off. Something as
simple as using MongoDB or PostgreSQL can go a long way toward
enabling application portability. These data storage technologies are
available as managed services and can be deployed on-premises.

Also, consider the trade-offs when choosing not to use a vendor’s
product that might be well integrated with other products. For exam-
ple, data storage services offered by cloud providers will integrate se-
curity or event handling with other services in the platform.

Standardized Interfaces

Standardization can make it easier to build portable applications, but
the standardization process can move slowly, often requiring teams
across different organizations to agree on the standards. Given the
pace at which technology and the cloud moves, this can be a chal-

lenge. This is not the case with all standards, and using popular stan-
dards should be something to consider when you’re building portable
applications.

OpenAPI, for example, is a standard that API management products
use when defining REST-based gateway services. Developers are
able to create an API definition with OpenAPI and use much of it
across the various cloud vendor gateways. There can be some ven-
dor-specific settings that will need to be added to the definition, but
these can be minimized. The open service broker API is another ex-
ample of a standard interface that platforms can use to provision and
manage cloud vendor resources through a platform like Kubernetes.

Service Mesh Interface (SMI) defines an interface that you can use to
provide interoperability across different service mesh technologies
like Istio, Consul, and Linkerd. There are a growing number of service
mesh technologies available today, without a standard interface, and
developers adopting these technologies need to commit to one and
implement features directly against the API. Standardized interfaces
like SMI enable portability and flexibility, allowing applications to easi-
ly and quickly adapt to fast-changing requirements, environments,

and a growing ecosystem of technologies.

Many of the “standards” that can be used in an application to address
portability are interfaces created and used in popular products that

others have adopted. MongoDB is the most popular NoSQL docu-
ment-oriented database today. Cloud vendors like Microsoft and
Amazon have, for example, created databases that look like a Mon-
goDB database by implementing the MongoDB API. Applications that
target MongoDB might be able to be moved to one of these databas-
es that look like MongoDB. The entire set of features, however, might
not be implemented in these services. This can mean implementing
additional functionality in the application because it might not be pos-
sible to take full advantage of the features available in MongoDB.

Containers

No section on portability would be complete without covering contain-
ers. Containers , a standard packaging format that encapsulates
code and dependencies, can make it very easy to move application
code. By packaging the application and dependencies into contain-
ers, you can use one of the many cloud provider services to run the
application in the container. The widespread adoption of the Docker
container format has helped to make containers very portable.

Placing an application into a container might not necessarily make it
portable. If the application connects to a cloud vendor–specific ser-
vice, like some logging service, that will need to be changed to run
the application on-premises or in another cloud vendor. Consider ex-
ternal dependencies when building applications and use Twelve-

Factor application methodologies. For example, one of the Twelve-
Factor methodologies is to treat logs as event streams. The applica-
tion should be not concerned with the routing or storage of this
stream. By logging to standard out, the execution environment can be
configured to send logs to a location best suited for the environment
in which it’s running.

Common Services and Features

Using the lowest common set of technologies and features available
from the cloud providers can help meet portability requirements.

However, doing so can also increase costs or potentially reduce ap-
plication functionality. For example, an application that requires a re-
lational database might use PostgreSQL instead of Oracle. All of the
major cloud vendors offer PostgreSQL and MySQL as fully managed
services. Although the engineering team might be more comfortable
with a Microsoft SQL Server database, it might be worth training de-
velopers and/or bringing in a consultant with the experience to ensure
portability without increased operational costs. Many of the more pop-
ular open source technologies are available as managed services.

For example, Redis, PostgreSQL, MySQL, and Kubernetes are avail-
able as managed services on Amazon Web Services (AWS), Google
Cloud Platform, and Microsoft Azure.

Abstractions and Layers

A common approach to portability is to use abstractions and layers.

These abstractions can be configurable libraries in the application,

generic representations that are transformed, or service facades that
sit between the application and the cloud provider’s services. The
cloud provider–specific layers can be replaced using either compo-
nent substitution techniques in the application code or connecting to
services through platform-specific facades. An additional benefit pro-
vided by these service abstractions is testing. The providers can be
tested independent of the application and can be substituted with
mocks to improve local development.

Component substitution

Applications can be built so that their components can be substituted
through environment configurations. The providers could be created
as libraries and shared across multiple teams. Figure 7-1 depicts how
a provider was created for each of the supported data storage ser-
vices and can be configured based on the environment in which the
application is deployed. This approach will increase engineering
costs because the components need to be developed and tested.

Other challenges often arise when dealing with some feature that’s
not available in all of the services. This means that the application
would then need to use the lowest common denominator and would

be unable to take advantage of some feature of the service. Missing
features for cloud vendors can be implemented in this layer, or the
application can be developed to enable or disable application fea-
tures when running on different cloud providers.

Figure 7-1. Application built with multiple storage providers

Service facade

A service can be placed between the application and the cloud
provider services. The application is built against a facade that can be
used to interact with the cloud provider services. This basically
moves the abstraction out of the process, making it so the application
developer does not need to be concerned with these details.

Figure 7-2 illustrates how you can deploy the facade as a service with
a load balancer to ensure availability, or you can deploy it with the ap-
plication as a sidecar helper.

Figure 7-2. Application putting a message on a topic through a facade

There will be increased engineering costs for creating and managing
this service. You must also consider that the application developer
might not be able to use some potentially useful cloud provider client
libraries. This approach will also need to consider how to deal with
features that are only available in a single cloud provider. MinIO, dis-

cussed later in this chapter, is a good example of a service that not
only provides object storage on-premises, but can also be used as a
storage adapter.

Transforms

Transforming resources managed in a common format to cloud
provider–specific formats is another technique that you can use to
target multiple cloud vendors. You can define resources in a generic
format and then transform them into cloud provider–specific repre-
sentations. The serverless framework allows for the definition of
serverless configurations in a standard format, which are used to
generate cloud vendor–specific configurations.

Managed Services from Other Vendors

Cloud native applications that require portability can also consider us-
ing managed services provided by companies independent of the tar-
get cloud providers. These services are likewise independent of the
cloud provider, and some can even be provisioned in your cloud
provider of choice and offer on-premises versions of the services. For
example, by using MongoDB as the database in the application, you
can use a managed service like MongoDB Atlas when deploying in
the cloud. The MongoDB-provided managed service can help elimi-
nate the need to manage the database and reduce operational costs.

Following are some example services:

Auth0

MongoDB Atlas
Elasticsearch Cloud
Sendgrid
Cloudflare LB

The billing of these services might not be integrated with the cloud
provider’s billing, so you’ll need to have multiple billing accounts for
an application. The other consideration is that these services might
not be fully integrated with other services offered by the cloud
provider. For example, identity and access services for managing se-
curity or triggering a cloud provider function when an event happens
might not be possible. These are some things that you will need to
consider when you’re selecting these types of services.

Portability Tooling

A growing number of portability tools are available, enabling develop-
ers to work with cloud services in a provider-agnostic way. These
tools create their own layers of abstraction and will use those ab-
stractions to either apply transforms or process the configurations us-
ing cloud provider–specific plug-ins. This can make it easy for devel-
opers who need to work across multiple cloud providers and possibly

https://auth0.com/
https://cloud.mongodb.com/
https://www.elastic.co/cloud/
https://sendgrid.com/
https://cloudflare.com/

make it simplify managing resources that are common across the tar-
get cloud providers. There is, however, generally some work for you
to do up front understanding the transforms and the provider-specific
settings.

Serverless framework

The portability of applications that use Function as a Service (FaaS)

is a concern for many software developers with portability require-
ments because it can be difficult to deal with. Where portability is a
requirement, many teams will avoid serverless altogether. This unfor-
tunately means the team cannot take advantage of an extremely
powerful set of services. Every cloud provider’s serverless products
offer a very different set of capabilities that use different configura-
tions and code. For example, the Serverless Framework provides an
abstraction over popular FaaS technologies. A developer can build to
this framework and target any of the platforms supported by the
framework. You can extend the framework to support new platforms
as well.

http://serverless.com/

TIP

When building functions using the Serverless Framework, or even the cloud
provider’s SDK, it’s good practice to separate the event handler from the logic in the
function. This makes the code in the function cleaner, easier to test, and much easi-
er to move to another cloud provider if that becomes necessary.

Infrastructure

Each cloud provider exposes a different API for managing the in-
frastructure. Software developers who need to support multiple cloud
provider platforms will generally create abstractions and work against
those abstractions for managing cloud infrastructure. Terraform, for
example, is a product available from HashiCorp for managing in-
frastructure across multiple cloud vendors. The tool is useful for sup-
porting an Infrastructure as Code (IaC) approach for managing cloud
infrastructure. You can use Terraform to define, change, and version
infrastructure in a safe and consistent way. With Terraform, an in-
frastructure engineer can create a single configuration that can be
used to manage multiple cloud providers. In practice, a small percent-
age of the configuration will be cloud provider specific, although a
majority of the configuration can be the same and in a format that’s
consistent across cloud providers. Figure 7-3 presents an in-
frastructure engineer creating and maintaining Terraform files and
scripts in a source control repository that is capable of targeting multi-

ple cloud vendors. Terraform comes with provisioners for many of the
popular cloud providers; the provisioners use the Terraform configu-
rations to provision resources against the cloud provider’s specific
APIs. The cloud provider–specific provisioner is built to work with the
vendor’s API and can translate the cloud-agnostic configurations to
create and manage resources.

Figure 7-3. Terraform deployment configuration to Azure or AWS

In practice, the Terraform files will likely end up containing some
cloud vendor–specific configuration, but you can keep this to a mini-
mum to simplify the management.

Storage abstractions

Applications often need to support different data stores, and patterns
like the Repository pattern were often used to accomplish this. You
can use a similar approach with cloud applications, but another ap-

proach would be to externalize the abstraction from the application
through a gateway that can function as the store when on-premises.

MinIO is a great example of this. MinIO is an open source object store
like the Amazon Simple Storage Service (Amazon S3). The MinIO
storage implements the Amazon S3 API, and in addition to storing
data on a filesystem volume, you can configure it to work as a gate-
way. Figure 7-4 depicts an application built to work with data in the
MinIO service, which can be configured to act as a gateway to other
storage providers. You can even configure the MinIO service to write
to the local filesystem when running in a development environment,
for example.

Figure 7-4. MinIO object storage service can be deployed as a gateway

You can deploy the MinIO service as a sidecar container, simplifying
the deployment and management of the service. You can deploy mul-
tiple instances of the service behind a load balancer in order to make
it highly available.

Although the application is more portable, there will be some over-
head in the gateway. You will need to evaluate and consider potential
performance trade-offs when placing an additional gateway service
between the application and storage. The more important thing to
consider is that some of the storage features might not be available
through the MinIO API, making it necessary to add some vendor-spe-
cific implementation that bypasses the MinIO gateway.

Kubernetes as a Portability Layer

You can use Kubernetes to provide an abstraction over the cloud
provider infrastructure. You can deploy and manage applications on
Kubernetes in a similar manner, regardless of the underlying cloud
provider. Kubernetes continues to evolve, providing access to more
and more features of the cloud provider’s infrastructure through the
Kubernetes API.

Every major cloud vendor has a managed Kubernetes service today.

The cloud provider–managed Kubernetes service makes it extremely
simple to spin up a new Kubernetes cluster. The cloud provider is re-

sponsible for the Kubernetes management plane and the cluster is
provisioned with the cloud provider–specific plug-ins that are integrat-
ed with the underlying infrastructure.

Cloud Controller Manager

Kubernetes has created a pluggable platform enabling cloud provider
infrastructure integrations with the platform. This makes it possible to
provision cloud provider–specific resources that are used by ap-
plications running on Kubernetes, like load balancers and storage
volumes, through the Kubernetes interfaces. Figure 7-5 shows the
Kubernetes Cloud Controller Manager (CCM) configured with
adapters, called cloud connectors, that are used to interact with the
cloud infrastructure. As a user of a cloud vendor–managed Kuber-
netes service, it’s not likely that you will need to be concerned with
these details.

Figure 7-5. Kubernetes Cloud Controller Manager

Service catalog

The Kubernetes service catalog is an extension API that you can use
for provisioning managed services from Kubernetes. The service cat-
alog uses the Open Service Broker API to list, provision, and bind to
cloud provider–managed services. Figure 7-6 demonstrates how a
Kubernetes cluster user can browse through a list of managed ser-
vices offered through the service broker, provision an instance, and
make it available to an application in the cluster. Application develop-
ers and operators could, for example, use the Kubernetes API to cre-
ate a cloud provider–managed PostgreSQL database. Scripts and
infrastructure definitions for provisioning application resources would

not need to be created for each cloud provider and could simply use
Kubernetes regardless of the cloud provider to which the cluster was
deployed. This assumes that all of the cloud providers offer a man-
aged PostgreSQL database that is available in the service catalog.

Figure 7-6. Kubernetes service catalog overview

Virtual Kubelet

Virtual Kubelet is an open source project that you can use to make an
API look like a kubelet, a node in a Kubernetes cluster. This makes it
possible to use a cloud vendor’s Container as a Service (CaaS) prod-
ucts through Kubernetes. Developers and administrators can contin-
ue using the Kubernetes interface to run their workloads and still ben-

efit from the compute services available from the cloud providers. In
Figure 7-7 one node in the Kubernetes cluster is virtual, and work
scheduled on that node will instead run in another compute service
like Azure Container Instances or AWS Fargate. This provides a best-
of-breed approach, enabling portability while still providing cloud ven-
dor services without having to build any layers.

Figure 7-7. Virtual kubelet

Summary

Portability is a feature that a cloud native application must consider.
Make sure that you treat it as a requirement and understand the po-
tential trade-offs and costs. In addition to engineering costs, for ex-
ample, you’ll need to consider operational and infrastructure costs.

Some planning and good development practices can make it much
easier to make an application portable.

Index

A

A/B tests, A/B tests, Testing Cadence, Continuous Testing in
Production
abstractions, Abstractions and Layers

storage, Storage abstractions
acceptance tests, Acceptance tests
access control

client access to data in datastores, Client Access to Data-Fast
Scalable Data
granting least-privileged access, Grant Least-Privileged Access
in service meshes, Authorization
role-based, Use Role-Based Access Control

accounts, separate, Use Separate
Accounts/Subscriptions/Tenants
addons (Kubernetes), Kubernetes Overview
administration

admin processes, short-lived, The Twelve-Factor App
of distributed systems, Fallacies of Distributed Systems

Advanced Message Queuing Protocol (AMQP), Advanced Mes-
sage Queuing Protocol
affinity and anti-affinity in Kubernetes, StatefulSets

aggregation in gateways, Aggregation
agility with microservices, Agility
alerting

avoiding alert fatigue, Avoid Alert Fatigue
defining alerts on key performance indicators, Define and Alert
on Key Performance Indicators
defining alerts with Prometheus AlertManager, Alerting
testing in production, Continuous Testing in Production

Amazon API Gateway, Implementing Gateways
Amazon Firecracker, Container Isolation Levels
Amazon Web Services (AWS)

Amazon Simple Storage Service (Amazon S3), Storage
abstractions
Fargate, Serverless Computing
Lambda, Functions
Serverless Application Model (SAM), Deployment
Step Functions, Function Scenarios

AMQP (Advanced Message Queuing Protocol), Advanced Mes-
sage Queuing Protocol
analyzing data, Analyzing Data-Distributed Query Engines

data lakes, Data Lakes on Object Storage
data lakes and data warehouses, Data Lakes and Data
Warehouses
distributed query engines, Distributed Query Engines

streams, Streams
anticorruption layer pattern, Application Modernization, Use an An-
ticorruption Layer Pattern
API gateways, Gateways

in example device management service, Example Architecture
APIs

database as an API, Microservices and Data Lakes
design and versioning, API Design and Versioning-Semantic
Versioning

backward and forward compatibility, API Backward and For-
ward Compatibility
semantic versioning, Semantic Versioning

OpenAPI, Standardized Interfaces
application gateways, Gateways
applications

consistent deployment of, Consistent Application Deployment
one per container, Run One Application per Container

asynchronous communication, Prefer Asynchronous
Communication

publish/subscribe, Publisher/Subscriber
request/response, Request/Response
synchronous versus, Synchronous versus Asynchronous

authentication, Use Federated Identity Management
in service meshes, Authentication, mutual TLS, and JWT tokens

authorization, Use Federated Identity Management
defining in service meshes, Authorization

automation
automating everything in cloud native applications, Operational
Excellence
in DevOps, Automation

automating testing, Testing
test automation pyramid, Test Automation Pyramid-Fuzz
tests

autoscaling, Use Platform Autoscaling Features
availability, CAP Theorem

(see also CAP theorem)

and service-level agreements, Availability and Service-Level
Agreements
challenges in microservice architectures, Availability
designing for, in cloud native applications, Reliability and
Availability

B

Backend as a Service (BaaS), Database Services with Fine-
Grained Access Control
backing services, The Twelve-Factor App
backward and forward compatibility

APIs, API Design and Versioning

forward compatibility, API Backward and Forward
Compatibility

designing services for, Design for Backward and Forward
Compatibility

bandwidth
infinite, fallacy of in distributed systems, Fallacies of Distributed
Systems
latency versus, Fallacies of Distributed Systems

batch processing, Batch
batching requests for efficiency, Batch Requests for Efficiency

best practices, Best Practices-Summary
containers, Containers-Never Store Secrets or Configuration
Inside an Image

keeping container images small, Keep Container Images
Small
not running containers in privileged mode, Don’t Run Con-
tainers in Privileged Mode
not storing data in containers, Don’t Store Data in Containers
not storing secrets or configuration in images, Never Store
Secrets or Configuration Inside an Image
one application per container, Run One Application per
Container
storing images in trusted registry, Store Images in a Trusted
Registry

using Docker build cache, Utilize the Docker Build Cache
using explicit container image tags, Use Explicit Container
Image Tags
using verified images from trusted repositories, Use Verified
Images from Trusted Repositories
using vulnerability scanning tools on images, Use Vulnerabili-
ty Scanning Tools on Images

ensuring resiliency, Ensuring Resiliency-Implement Rate Limit-
ing and Throttling

defining CPU and memory limits for containers, Define CPU
and Memory Limits for Your Containers
graceful degradation, Graceful Degradation
handling transient failures with retries, Handle Transient Fail-
ures with Retries
implementing health checks and readiness checks,

Implement Health Checks and Readiness Checks
implementing rate limiting and throttling, Implement Rate
Limiting and Throttling
using bulkhead pattern, Use a Bulkhead Pattern
using circuit breakers for nontransient failures, Use Circuit
Breakers for Nontransient Failures
using finite number of retries, Use a Finite Number of Retries

ensuring security, Ensuring Security-Isolate Kubernetes Pods
encrypting data in transit, Encrypt Data in Transit

granting least-privileged access, Grant Least-Privileged
Access
incorporating security into designs, Incorporate Security in
Your Designs
isolating Kubernetes pods, Isolate Kubernetes Pods
obfuscating data, Obfuscate Data
securely storing secrets, Securely Store All Secrets
treating security requirements like any other requirement,
Treat Security Requirements the Same as Any Other
Requirements
using federated identity management, Use Federated Identity
Management
using role-based access control, Use Role-Based Access
Control
using separate accounts, subscriptions, and tenants, Use
Separate Accounts/Subscriptions/Tenants

for functions, Functions-Use Queues for Cross-Function
Communication

avoiding long-running functions, Avoid Long-Running
Functions
keeping them light and simple, Keep Functions Light and
Simple
making functions stateless, Make Functions Stateless
not chaining functions, Don’t Chain Functions

separating entry-point from function logic, Separate Function
Entry Point from the Function Logic
using queues for cross-function communication, Use Queues
for Cross-Function Communication
writing single-purpose functions, Write Single-Purpose
Functions

logging, monitoring, and alerting, Logging, Monitoring, and Alert-
ing-Start with Basic Metrics

avoiding alert fatigue, Avoid Alert Fatigue
common and structured logging format, Common and Struc-
tured Logging Format
continuous testing in production, Continuous Testing in
Production
defining alerts on key performance indicators, Define and
Alert on Key Performance Indicators
including context with log entries, Include Context with Log
Entries
starting with basic metrics, Start with Basic Metrics
tagging metrics appropriately, Tag Your Metrics Appropriately
using a unified logging system, Use a Unified Logging
System
using correlation IDs, Use Correlation IDs

moving to cloud native, Moving to Cloud Native-Reconsider
Frameworks, Languages, Data Structures, and Datastores

breaking up monolithic applications for right reasons,

Breaking Up the Monolith for the Right Reasons
decoupling simple services first, Decouple Simple Services
First
developing data migration strategy, Come Up with a Data Mi-
gration Strategy
learning to operate on small scale, Learn to Operate on a
Small Scale
reconsidering frameworks, languages, data structures, and
datastores, Reconsider Frameworks, Languages, Data
Structures, and Datastores
retiring old code, Retire Code
rewriting boilerplate code, Rewrite Any Boilerplate Code
using anticorruption layer pattern, Use an Anticorruption Lay-
er Pattern
using strangler pattern, Use a Strangler Pattern

operations, Operations-Correlate Deployments with Commits
CI/CD definition, storing with the component, CI/CD Defini-
tion Lives with the Component
consistent application deployment, Consistent Application
Deployment
correlating deployments with commits, Correlate Deploy-
ments with Commits

deployments and releases are separate, Deployments and
Releases Are Separate Activities
describing infrastructure with code, Describe Infrastructure
Using Code
isolating enironments, Isolate the Environments
keeping deployments small, Keep Deployments Small
not modifying deployed infrastructure, Don’t Modify Deployed
Infrastructure
organizing services in Kubernetes with namespaces, Use
Namespaces to Organize Services in Kubernetes
separate function source code, Separate Function Source
Code
using containerized build, Use Containerized Build
zero-downtime releases, Use Zero-Downtime Releases

performance and scalability, Performance and Scalability
designing stateless services that scale out, Design Stateless
Services That Scale Out
using caching, Use Caching
using partitioning to scale beyond service limits, Use Parti-
tioning to Scale Beyond Service Limits

service communications, Service Communication-Split Up
Large Messages

batching requests for effiiciency, Batch Requests for
Efficiency

defining service contracts that don't leak internal details,

Define Service Contracts That Do Not Leak Internal Details
designing for backward and forward compatibility, Design for
Backward and Forward Compatibility
preferring asynchronous communication, Prefer Asyn-
chronous Communication
splitting up large messages, Split Up Large Messages
using efficient serialization techniques, Use Efficient Serial-
ization Techniques
using queues or streams to handle heavy loads or traffic
spikes, Use Queues or Streams to Handle Heavy Loads and
Traffic Spikes

working with data, Working with Data-Handle Transient Failures
avoiding overfetching and chatty I/O, Avoid Overfetching and
Chatty I/O
handling transient failures, Handle Transient Failures
keeping data in multiple regions or zones, Keep Data in Multi-
ple Regions or Zones
leaving business logic out of databases, Don’t Put Business
Logic in the Database
testing with production-like data, Test with Production-like
Data
using data partitioning and replication for scale, Use Data
Partitioning and Replication for Scale

using datastore best fitting requirements, Use a Datastore
That Best Fits Data Requirements
using managed databases and analytics services, Use Man-
aged Databases and Analytics Services

blob storage, Objects, Files, and Disks
(see also object storage)

blockchains, Blockchain
blocks (of records), Blockchain
blue/green deployments, Continuous Testing in Production
boilerplate code, rewriting for cloud native, Rewrite Any Boilerplate
Code
brownfield scenarios, From VMs to Cloud Native
build stage, Build Stage (CI)
build, release, run, The Twelve-Factor App
builds

Docker build cache for container images, Utilize the Docker
Build Cache
Docker multistage build, Keep Container Images Small
using containerized build, Use Containerized Build

bulkhead pattern, Use a Bulkhead Pattern
business logic, not putting in databases, Don’t Put Business Logic
in the Database

C

caching, Fallacies of Distributed Systems
in content delivery networks, Content Delivery Networks

cache management, Content Delivery Networks
data caching, Caching Data
Docker build cache, Utilize the Docker Build Cache
using to improve performance, Use Caching

CALMS model, What Is DevOps?

automation, Automation
collaboration, Collaboration
lean, Lean Principles and Processes
measurement, Measurement
sharing, Sharing

canary testing, When to Run Which Types of Tests, Testing Ca-
dence, Continuous Testing in Production
CAP theorem, CAP Theorem
CDC (see change data capture)

CDNs (see content delivery networks)

chaining functions, avoiding, Don’t Chain Functions
change data capture (CDC), Functional requirements, Change
Data Capture-Change Data Capture

use cases for, Change Data Capture
chaos engineering, Chaos tests
chaos monkeys, Chaos tests
chaos tests, Chaos tests, Testing Cadence

charts, Deployment Configuration
chatty I/O, avoiding, Avoid Overfetching and Chatty I/O
CI/CD (continuous integration/continuous delivery), Testing in Pro-
duction, CI/CD-Post-Release Stage, Learn to Operate on a Small
Scale

build stage (CI), Build Stage (CI)
definition, storing with components, CI/CD Definition Lives with
the Component
deploy stage (CD), Deploy Stage (CD)

post-release stage, Post-Release Stage
release stage (CD), Release Stage (CD)

sample flows, Sample CI/CD Flows-Sample CI/CD Flows
source code control, Source Code Control
test stage (CI), Test Stage (CI)

circuit breakers
in service meshes, Failure handling
using for nontransient failures, Use Circuit Breakers for Non-
transient Failures

claim-check pattern, Split Up Large Messages
clients

access to data in datastores, Client Access to Data-Fast Scal-
able Data

database services with fine-grained access control,
Database Services with Fine-Grained Access Control

GraphQL data service, GraphQL Data Service
restricted client tokens (valet key), Restricted Client Tokens
(Valet-Key)

cloud
cloud provider-managed database services, Working with Data,

Common Services and Features
configuration management solutions for functions, Storing
Secrets
development environments, Development Environments and
Tools, Cloud Development Environments
device management services, Example Architecture
moving applications from one provider to another, Data Gravity
and Portability
moving applications into, Breaking Up the Monolith for the Right
Reasons
tracing of serverless apps, Distributed tracing

Cloud Controller Manager (Kubernetes), Kubernetes Overview,

Cloud Controller Manager
cloud native application bundle (CNAB), Deployment Configuration
cloud native applications

API design and versioning, API Design and Versioning-
Semantic Versioning
cloud native vs. traditional architectures, Cloud Native versus
Traditional Architectures

designing, example architecture, Example Architecture-
Summary
from VMs to, From VMs to Cloud Native-Application
Optimization

application modernization, Application Modernization
application optimization, Application Optimization
lift and shift, Lift-and-Shift

fundamentals of, Fundamentals of Cloud Native Applications-
Scalability and Cost

operational excellence, Operational Excellence
reliability and availability, Reliability and Availability
scalability and cost, Scalability and Cost
security, Security

moving to, Moving to Cloud Native-Reconsider Frameworks,

Languages, Data Structures, and Datastores
breaking up monolithic applications, Breaking Up the Mono-
lith for the Right Reasons
decoupling simple services first, Decouple Simple Services
First
developing data migration strategy, Come Up with a Data Mi-
gration Strategy
learning to operate on small scale, Learn to Operate on a
Small Scale

reconsidering frameworks, languages, data structures, and
datastores, Reconsider Frameworks, Languages, Data
Structures, and Datastores
retiring old code, Retire Code
rewriting boilerplate code, Rewrite Any Boilerplate Code
using anticorruption layer pattern, Use an Anticorruption Lay-
er Pattern
using strangler pattern, Use a Strangler Pattern

Twelve-Factor App methodology, The Twelve-Factor App
clusters (Kubernetes)

cluster and orchestrator security for containerized services,

Security
internal and external service communications, Service
Communication
local development with remote cluster, Local Development with
a Remote Cluster

code
codebase in Twelve-Factor apps, The Twelve-Factor App
describing infrastructure with, Describe Infrastructure Using
Code
extra and unnecessary, in functions, Keep Functions Light and
Simple
retiring for monolithic applications, Retire Code

cold path, Example Architecture

collaboration, automation, lean, measurement, and sharing (see
CALMS model)
column-family databases, Column family
Command Query Responsibility Segregation (CQRS), Fallacies of
Distributed Systems
communication (services), Service Communication-Synchronous
versus Asynchronous, Streams and Queues

best practices, Service Communication-Split Up Large
Messages

batching requests for efficiency, Batch Requests for
Efficiency
designing for backward and forward compatibility, Design for
Backward and Forward Compatibility
preferring asynchronous communication, Prefer Asyn-
chronous Communication
service contracts that don't leak internal details, Define Ser-
vice Contracts That Do Not Leak Internal Details
splitting up large messages, Split Up Large Messages
using efficient serialization techniques, Use Efficient Serial-
ization Techniques
using queues or streams to handle heavy loads or traffic
spikes, Use Queues or Streams to Handle Heavy Loads and
Traffic Spikes

choosing between pub/sub and request/response, Choosing
Between Pub/Sub and Request Response
idempotency, Idempotency
protocols, Protocols

gRPC, gRPC
HTTP/2, HTTP/2

messaging protocols, Messaging Protocols
WebSockets, WebSockets

publish/subscribe (pub/sub), Publisher/Subscriber
request/response, Request/Response
serialization considerations, Serialization Considerations
synchronous vs. asynchronous, Synchronous versus
Asynchronous

compatible versioning, API Design and Versioning
API backward and forward compatibility, API Backward and
Forward Compatibility

compensating transactions, Compensating Transactions
complexity of distributed systems, Complexity
components

categories of, in Kubernetes, Kubernetes Overview
CI/CD configuration and dependencies storing with, CI/CD Defi-
nition Lives with the Component
substitution of, Component substitution

concurrency, The Twelve-Factor App

configuration
not storing in container images, Never Store Secrets or Configu-
ration Inside an Image
testing, Configuration tests, Testing Cadence
in Twelve-Factor apps, The Twelve-Factor App

configuration management, Configuration Management-
Deployment Configuration

adding ConfigMap data to a volume, Adding ConfigMap Data to
a Volume
deployment configuration, Deployment Configuration
multiple environment variables, Multiple-Environment Variables
single environment variable, Single-Environment Variable
storing secrets, Storing Secrets
storing settings in Kubernetes ConfigMap, Configuration
Management

connection strings (database/queue/messaging), Configuration
Management, Deployment Configuration
consistency

challenges of in microservice architecture, Data integrity and
consistency
eventual, Choosing Between Pub/Sub and Request Response
problems with in-memory caches, Use Caching

consistency, availability, partitions (see CAP theorem)

Consul Connect, Envoy proxy support, Service Mesh

Container as a Service (CaaS), Serverless Computing
using via Kubernetes Virtual Kubelet, Virtual Kubelet
Virtual Kubelet project, Application Modernization

container builder pattern, Keep Container Images Small
container images

defense-in-depth example for containerized services, Security
Golang, in Dockerfile, Test Stage (CI)

container registries (see registries)

container runtime (Kubernetes), Kubernetes Overview,

Kubernetes and Containers
container runtime interface (CRI), Kubernetes and Containers
containerd, Kubernetes and Containers
containers

about, Containers
application modernization to, Application Modernization
application portability and, Containers
best practices, Containers-Never Store Secrets or Configuration
Inside an Image

keeping container images small, Keep Container Images
Small
never storing secrets or configuration in an image, Never
Store Secrets or Configuration Inside an Image
not running containers in privileged mode, Don’t Run Con-
tainers in Privileged Mode

not storing data in containers, Don’t Store Data in Containers
one application per container, Run One Application per
Container
storing images in trusted registry, Store Images in a Trusted
Registry
using Docker build cache, Utilize the Docker Build Cache
using explicit container image tags, Use Explicit Container
Image Tags
using verified images from trusted repositories, Use Verified
Images from Trusted Repositories
using vulnerability scanning tools on images, Use Vulnerabili-
ty Scanning Tools on Images

container-based development environments, Local Develop-
ment Environments
containerized microservices vs. Function as a Service,

Functions
defining CPU and memory limits for, Define CPU and Memory
Limits for Your Containers
isolation levels, Container Isolation Levels
Kubernetes and, Kubernetes and Containers-Kubernetes and
Containers
orchestration, Container Orchestration
using containerized build, Use Containerized Build
versus VMs on a signle host, Containers

content delivery networks (CDNs), Fallacies of Distributed
Systems

cache management, considerations in, Content Delivery
Networks
SPA served to user through, Example Architecture
using for fast, scalable data, Content Delivery Networks

continuous delivery (CD), Automation, CI/CD
(see also CI/CD)

testing in, Testing
continuous innovation (with microservices), Continuous innovation
continuous integration (CI), Automation, CI/CD

(see also CI/CD)

continuous integration/continuous deployment (CI/CD) pipeline,

Development and testing
control groups (Linux), Containers
control plane

in Kubernetes, Kubernetes Overview
in service meshes, Service Mesh

correlation IDs (CIDs), Request/Response, Use Correlation IDs
costs

and scalability in cloud native design, Scalability and Cost
economics of FaaS offerings, Considerations for Using
Functions
of portability, The Costs of Portability

data gravity and portability, Data Gravity and Portability
credentials, Configuration Management

D

DaemonSets (Kubernetes), DaemonSets
data

encrypting in transit, Encrypt Data in Transit
not storing in containers, Don’t Store Data in Containers
obfuscating, Obfuscate Data

data analytics, Analyzing Data
(see also analyzing data)

ETL platforms and, Extract, Transform, and Load
using analytics services, Use Managed Databases and Analyt-
ics Services

data gravity, Data Gravity and Portability
data integrity and consistency, challenges of, in microservices,

Data integrity and consistency
data isolation, The Twelve-Factor App
data lakes

and data warehouses, Data Lakes and Data Warehouses
microservices and, Microservices and Data Lakes-
Microservices and Data Lakes
use in data analytics, Data Lakes on Object Storage

data partitioning, Working with Data

data plane
in Kubernetes clusters, Kubernetes Overview
in service meshes, Service Mesh

data, working with, Working with Data-Summary
analyzing data, Analyzing Data-Distributed Query Engines

batch processing, Batch
data lakes, Data Lakes on Object Storage
data lakes and data warehouses, Data Lakes and Data
Warehouses
distributed query engines, Distributed Query Engines
streams, Streams

best practices, Working with Data-Handle Transient Failures
avoiding overfetching and chatty I/O, Avoid Overfetching and
Chatty I/O
handling transient failures, Handle Transient Failures
keeping data in multiple regions or zones, Keep Data in Multi-
ple Regions or Zones
leaving business logic out of databases, Don’t Put Business
Logic in the Database
testing with production-like data, Test with Production-like
Data
using data partitioning and replication for scale, Use Data
Partitioning and Replication for Scale

using datastore best fitting requirements, Use a Datastore
That Best Fits Data Requirements
using managed databases and analytics services, Use Man-
aged Databases and Analytics Services

characteristics of cloud native applications for data, Working
with Data
client access to data, Client Access to Data-Fast Scalable Data

database services with fine-grained access control,
Database Services with Fine-Grained Access Control
GraphQL data service, GraphQL Data Service
restricted client tokens (valet key), Restricted Client Tokens
(Valet-Key)

data in multiple datastores, Data in Multiple Datastores-
Microservices and Data Lakes

change data capture, Change Data Capture-Change Data
Capture
compensating transactions, Compensating Transactions
extract, transform, and load, Extract, Transform, and Load
microservices and data lakes, Microservices and Data
Lakes-Microservices and Data Lakes
transaction supervisor, Transaction Supervisor
writing changes as events to change log, Write Changes as
an Event to a Change Log

data storage systems, Data Storage Systems-Management and
cost

blockchains, Blockchain
databases, Databases-Search
objects, files, and disks, Objects, Files, and Disks
selecting a datastore, Selecting a Datastore-Management
and cost
streams and queues, Streams and Queues

databases on Kubernetes, Databases on Kubernetes-
DaemonSets

DaemonSets, DaemonSets
StatefulSets, StatefulSets
storage volumes, Storage Volumes

fast, scalable data, Fast Scalable Data-Analyzing Data
caching data, Caching Data
sharding data, Sharding Data
using CDNs, Content Delivery Networks

migration of data to cloud native, Come Up with a Data Migra-
tion Strategy

databases, Databases-Search
as APIs, Microservices and Data Lakes
cloud provider-managed database services, Working with Data
column family, Column family
connection strings for, Deployment Configuration

database services with fine-grained access control, Database
Services with Fine-Grained Access Control
document, Document
exporters for Prometheus metrics, Collecting Metrics
graph, Graph
key/value, Key/value
leaving business logic out of, Don’t Put Business Logic in the
Database
relational, Relational
running on Kubernetes, Databases on Kubernetes-
DaemonSets
running queries against with distributed query engines,

Distributed Query Engines
search, Search
selecting, Management and cost
serverless, Working with Data
time series, Time-series
using datastore best fitting requirements, Use a Datastore That
Best Fits Data Requirements
using managed databases, Use Managed Databases and Ana-
lytics Services

de-duping, Idempotency
debugging

for FaaS offerings, Considerations for Using Functions

local development and, Local Development Environments
defense-in-depth, Security

example in containerized services, Security
degradation, graceful, Graceful Degradation
dependencies

containers and, Application Modernization
dependent service names, Configuration Management
in microservice architectures, Versioning and integration
service dependency management for microservices, Service
dependency management
storing with components, CI/CD Definition Lives with the
Component
in Twelve-Factor apps, The Twelve-Factor App

deployments
consistent application deployments, Consistent Application
Deployment
continuous, CI/CD
correlating with commits, Correlate Deployments with Commits
deploy stage in CD, Deploy Stage (CD)

Deployment objects in Kubernetes, Kubernetes Overview
grouping environment variables per deployment, Configuration
Management
keeping small, Keep Deployments Small
managing configuration of, Deployment Configuration

separation from releases, Deployments and Releases Are Sep-
arate Activities
testing, Deployment

DestinationRule, Release
deterministic deployments with containers, Containers
dev/prod parity, The Twelve-Factor App
development

challenges in microservice architectures, Development and
testing
local development and FaaS offerings, Considerations for Using
Functions

development environments, Development Environments and
Tools, Development Environments-Cloud Development
Environments

cloud, Cloud Development Environments
considerations, Development Environments and Tools
local, Local Development Environments
local development with remote cluster, Local Development with
a Remote Cluster
remote cluster routed to local development, Remote Cluster
Routed to Local Development
Skaffold development workflow, Skaffold Development
Workflow

development tools, Development Tools-Development Tools

DevOps, Fallacies of Distributed Systems, DevOps-Summary
about, What Is DevOps?

CALMS model, What Is DevOps?

automation, Automation
collaboration, Collaboration
lean principles and processes, Lean Principles and
Processes
measurement, Measurement
sharing, Sharing

CI/CD, CI/CD-Post-Release Stage
build stage (CI), Build Stage (CI)
deploy stage (CD), Deploy Stage (CD)

post-release stage, Post-Release Stage
release stage (CD), Release Stage (CD)

sample flows, Sample CI/CD Flows-Sample CI/CD Flows
configuration management, Configuration Management-
Deployment Configuration

adding ConfigMap data to a volume, Adding ConfigMap Data
to a Volume
deployment configuration, Deployment Configuration
multiple environment variables, Multiple-Environment
Variables
single environment variable, Single-Environment Variable
storing secrets, Storing Secrets

development environments and tools, Development Environ-
ments and Tools-Cloud Development Environments

development environments, Development Environments-
Cloud Development Environments
development tools, Development Tools-Development Tools

monitoring, Monitoring-Service health, liveness, and readiness
collecting metrics, Collecting Metrics-Alerting

operations best practices, Operations-Correlate Deployments
with Commits
SRE and, Sharing
testing, Testing-Post-release

A/B tests, A/B tests
acceptance tests, Acceptance tests
chaos tests, Chaos tests
configuration tests, Configuration tests
fuzz tests, Fuzz tests
in production, Testing in Production-Post-release
integration tests, Integration tests
Jepsen tests, Jepsen tests
load tests, Load tests
performance tests, Performance tests
security/penetration tests, Security/penetration tests
service-level tests, Service tests
smoke tests, Smoke tests

test automation pyramid, Test Automation Pyramid
test doubles, Test Doubles
testing cadence, Testing Cadence
UI tests, UI tests
unit tests, Unit tests
usability tests, Usability tests
when to run different types of tests, When to Run Which
Types of Tests

disk (block) storage, Objects, Files, and Disks
use cases, Objects, Files, and Disks

disposability, The Twelve-Factor App
distributed query engines, Distributed Query Engines
distributed systems, Distributed Systems

fallacies of, Fallacies of Distributed Systems, Complexity
distributed tracing, Distributed tracing
Docker

build cache, Utilize the Docker Build Cache
container runtime interface, Kubernetes and Containers
containers, Containers
multistage builds, Keep Container Images Small

Docker Compose, Development Tools
setting up container-based development environments, Local
Development Environments

Docker for Mac and Windows, Development Tools

Dockerfiles
generating with Draft, Development Tools
with multistage build using Golang, Test Stage (CI)

document databases, Document
documentation, importance of, in cloud native applications,

Operational Excellence
domain driven design (DDD), Fallacies of Distributed Systems
Draft tool, Development Tools

E

East-West traffic, Service Communication
edges (in graph databases), Graph, GraphQL Data Service
egress gateways, Egress
ejection time for misbehaving hosts, Failure handling
encrypting data in transit, Encrypt Data in Transit
end-user authentication, Authentication, mutual TLS, and JWT
tokens
entry-point for functions, Separate Function Entry Point from the
Function Logic
environment variables

handling and managing for each service, Configuration
Management
mounting values stored in ConfigMaps, Single-Environment
Variable

multiple, in ConfigMap, Multiple-Environment Variables
storing in environment file, Configuration Management

environments
controlling component deployments to, CI/CD Definition Lives
with the Component
development, staging, and testing, isolating, Isolate the
Environments
keeping similar as possible, The Twelve-Factor App
testing, Testing in Production

Envoy proxy, Service Mesh
error rate, Monitoring, Start with Basic Metrics
etcd, Kubernetes Overview
event streams, Streams and Queues
events

event sourcing pattern, Composite of Functions and Services
event-driven distributed programming for FaaS offerings,

Considerations for Using Functions
functions triggered by, Functions
logs as event streams, The Twelve-Factor App
writing datastore changes as events to change log, Write
Changes as an Event to a Change Log

eventual consistency, Choosing Between Pub/Sub and Request
Response
evolutionary design (microservices), Evolutionary design

expand and contract pattern, Design for Backward and Forward
Compatibility
extract, transform, and load (ETL), Extract, Transform, and Load

F

FaaS (see Function as a Service)

failures
cascading failures in synchronous communication,

Synchronous versus Asynchronous
dealing with, in cloud native vs. traditional architectures, Cloud
Native versus Traditional Architectures
designing for, in cloud native applications, Operational
Excellence
handling in service meshes, Failure handling
handling transient failures, Handle Transient Failures
nontransient, handling with circuit breakers, Use Circuit Break-
ers for Nontransient Failures
transient, handling with retries, Handle Transient Failures with
Retries

fakes, Test Doubles
fault isolation (in microservices), Fault isolation
federated identity management, Use Federated Identity
Management
file storage, Objects, Files, and Disks

benefits and use cases, Objects, Files, and Disks
filesystems, distributed, Objects, Files, and Disks
Firecracker (Amazon), Container Isolation Levels
forward compatibility (see backward and forward compatibility)

Function as a Service (FaaS), Serverless Computing
containerized microservices vs., Functions
local development and testing in cloud environment, Local De-
velopment with a Remote Cluster
local development tools for, Development Tools
open source FaaS runtimes, Functions
portability of applications using, Serverless framework

functions, Fundamentals, Functions
application optimization with, Application Optimization
best practices, Functions-Use Queues for Cross-Function
Communication

avoiding long-running functions, Avoid Long-Running
Functions
keeping them light and simple, Keep Functions Light and
Simple
making functions stateless, Make Functions Stateless
not chaining functions, Don’t Chain Functions
separating entry-point from function logic, Separate Function
Entry Point from the Function Logic

using queues for cross-function communication, Use Queues
for Cross-Function Communication
writing single-purpose functions, Write Single-Purpose
Functions

building applications with, considerations, Functions
building using serverless framework, Serverless framework
separate function source code, Separate Function Source Code
serverless

invoked on changes to datastores, Change Data Capture
testing, When to Run Which Types of Tests

versus services, Functions versus Services-Composite of Func-
tions and Services

composite of functions and services, Composite of Functions
and Services
considerations in using functions, Considerations for Using
Functions
scenarios for using functions, Function Scenarios

storing secrets and configuration settings for, Storing Secrets
testing, Testing

fuzz tests, Fuzz tests

G

gateways, Gateways-Implementing Gateways, Use Partitioning to
Scale Beyond Service Limits

aggregation in, Aggregation
API versus application, Gateways
implementing, Implementing Gateways
ingress and egress, Egress
MinIO object storage service deployed as, Storage abstractions
offloading service functionality into, Offloading
routing, Routing

Git commit checksum hash, Test Stage (CI)
global versioning, API Design and Versioning
Google Cloud Platform

Google Cloud Functions, Functions
graceful degradation, Graceful Degradation
Grafana, Monitoring
graph databases, Graph
GraphQL data service, GraphQL Data Service
greenfield scenarios, From VMs to Cloud Native
gRPC protocol, gRPC
gVisor, Container Isolation Levels

H

Hadoop, Data Lakes on Object Storage
Hadoop Distributed File System (HDFS), Objects, Files, and Disks
health checks

for services, Service health, liveness, and readiness

implementing, Implement Health Checks and Readiness
Checks

Helm tool, Deployment Configuration
homogeneous networks in distributed systems, fallacy of, Fallacies
of Distributed Systems
HTTP

aborts, Failure handling
delays, Failure handling
in service communications, Protocols

HTTP/2, HTTP/2

Hyper-V containers, Container Isolation Levels, Container Isolation
Levels

I

I/O, chatty, avoiding, Avoid Overfetching and Chatty I/O
idempotency, Idempotency
identity

service identity, Security
using correlation IDs, Use Correlation IDs
using federated identity management, Use Federated Identity
Management

IDEs (integrated development environments), Cloud Development
Environments
incoming request rate, Monitoring

incremental changes in cloud native applications, Operational
Excellence
indexes, search engine databases, Search
infrastructure

application portability and, Infrastructure
deployed, not modifying, Don’t Modify Deployed Infrastructure
describing using code, Describe Infrastructure Using Code

Infrastructure as a Service (IaaS), The Twelve-Factor App
lift-and-shift into, Lift-and-Shift
moving applications on, Breaking Up the Monolith for the Right
Reasons

Infrastructure as Code (IaC), Automation
ingress gateways, Egress
integrated development environments (IDEs), Cloud Development
Environments
integration

continuous, Automation, CI/CD
(see also CI/CD; continuous integration)

in microservice architectures, Versioning and integration
testing, Integration tests, Testing Cadence

integration datastores, Microservices and Data Lakes
interfaces, standardized, Standardized Interfaces
Internet of Things (IoT)

smart home device management service example, Example Ar-
chitecture-Summary
use of functions for orchestration tasks, Function Scenarios

isolation
container isolation levels, Container Isolation Levels
of data, The Twelve-Factor App
of dependencies, The Twelve-Factor App

Istio, Application Modernization
egress gateway in, Egress
Envoy proxy, Service Mesh
security features, components involved in, Security
traffic mirroring, Deploy Stage (CD)

J

Jaeger distributed tracing tool, Distributed tracing
Jepsen tests, Jepsen tests
JSON, Serialization Considerations

in document databases, Document
improving serialization/deserialization, Serialization
Considerations
serialization library, Use Efficient Serialization Techniques

K

k8s (see Kubernetes)

Kata containers, Container Isolation Levels
container runtime interface, Kubernetes and Containers

key performance indicators (KPIs), Define and Alert on Key Perfor-
mance Indicators
key/value stores, Key/value
knot, API Design and Versioning
Ksync, Development Tools
kube-apiserver, Kubernetes Overview
kube-controller-manager, Kubernetes Overview
kube-proxy, Kubernetes Overview
kube-scheduler, Kubernetes Overview
kubelet, Kubernetes Overview
Kubernetes

and containers, Kubernetes and Containers-Kubernetes and
Containers
as portability layer, Kubernetes as a Portability Layer

Cloud Controller Manager, Cloud Controller Manager
service catalog, Service catalog
Virtual Kubelet, Virtual Kubelet

building microservices on top of, Application Modernization
ConfigMaps, Configuration Management-Adding ConfigMap
Data to a Volume

creating service and deployment for application and
Prometheus, Collecting Metrics
databases on, Databases on Kubernetes-DaemonSets

DaemonSets, DaemonSets
StatefulSets, StatefulSets
storage volumes, Storage Volumes

deploying into, using Skaffold development workflow, Skaffold
Development Workflow
development tools for local environment, Development Tools
development tools for remote environments, Development Tools
Helm tool, using for deployment configuration, Deployment
Configuration
Horizontal Pod Autoscaler (HPA), Use Platform Autoscaling
Features
internal and external service communications, Service
Communication
isolating pods, Isolate Kubernetes Pods
local development with remote cluster, Local Development with
a Remote Cluster
overview, Kubernetes Overview
probes, Implement Health Checks and Readiness Checks
role-based access control, Use Role-Based Access Control
Secrets, Storing Secrets, Securely Store All Secrets
sidecar proxies, Service Mesh

using as deployment platform, deploy stage in CD, Deploy
Stage (CD)

using namespaces to organize services, Use Namespaces to
Organize Services in Kubernetes
virtual nodes and, Application Modernization

L

latency, Monitoring, Start with Basic Metrics
in distributed systems, Fallacies of Distributed Systems
reducing for data retrieval, Fast Scalable Data-Analyzing Data
response latency in synchronous communication, Synchronous
versus Asynchronous

layers, Abstractions and Layers
lean principles and processes, Lean Principles and Processes
Linkerd, Application Modernization

proxy, Service Mesh
Linux

containers, Containers
containers, running with Amazon Firecracker, Container Isola-
tion Levels

liveness, monitoring for services, Service health, liveness, and
readiness
load balancers

in cloud native applications, Cloud Native versus Traditional
Architectures
in stateful, traditional applications, Cloud Native versus Tradi-
tional Architectures

load tests, Load tests
loading data, Extract, Transform, and Load

(see also extract, transform, and load)

local development environments, Development Environments and
Tools, Local Development Environments

connection with cloud environment, Development Environments
and Tools
container-based, Development Tools
remote cluster routed to, Remote Cluster Routed to Local
Development
tools for running Kubernetes in, Development Tools
with remote cluster, Local Development with a Remote Cluster

logging
in microservice architectures, Monitoring and logging
including context with log entries, Include Context with Log
Entries
logs, treating as event streams, The Twelve-Factor App
making services and functions more observable, Logging
using a unified logging system, Use a Unified Logging System

using common and structured logging format, Common and
Structured Logging Format
writing datastore changes as events to change log, Write
Changes as an Event to a Change Log

M

many-to-many relationships, Relational
master components (Kubernetes), Kubernetes Overview
measurements, Measurement

metrics collection in monitoring, Collecting Metrics-Alerting
primary monitoring metrics, Monitoring
starting with basic metrics, Start with Basic Metrics
tagging metrics appropriately, Tag Your Metrics Appropriately

mesh-scope, storage of authentication policies, Authentication,

mutual TLS, and JWT tokens
Message Queue Telemetry Transport (MQTT), Message Queue
Telemetry Transport
messaging

exporters for Prometheus metrics, Collecting Metrics
message bus, Prefer Asynchronous Communication
protocols, Messaging Protocols

Advanced Message Queuing Protocol (AMQP), Advanced
Message Queuing Protocol

Message Queue Telemetry Transport (MQTT), Message
Queue Telemetry Transport

queues, Streams and Queues
splitting up large messages, Split Up Large Messages

method-level access control, Authorization
metrics (see measurements)

microservices, Microservices-Availability
benefits of breaking monolithic applications into, Application
Modernization
benefits of microservice architecture, Benefits of a Microser-
vices Architecture

agility, Agility
continuous innovation, Continuous innovation
evolutionary design, Evolutionary design
fault isolation, Fault isolation
improved observability, Improved observability
improved scale and resource usage, Improved scale and re-
source usage
small, focused teams, Small, focused teams

challenges of microservice architecture, Challenges with a Mi-
croservices Architecture

availability, Availability
complexity, Complexity
data integrity and consistency, Data integrity and consistency

development and testing, Development and testing
monitoring and logging, Monitoring and logging
performance, Performance
service dependency management, Service dependency
management
versioning and integraton, Versioning and integration

containerized, Functions
data isolation in, The Twelve-Factor App
and data lakes, Microservices and Data Lakes-Microservices
and Data Lakes
service choreography, Cloud Native versus Traditional
Architectures

Microsoft Azure
Azure Application Gateway and Azure Frontdoor, Implementing
Gateways
Azure Durable Functions, Function Scenarios
Azure Functions, Functions
container instances (ACI) and Azure SF Mesh, Serverless
Computing
development tools for Kubernetes, Development Tools
melding of managed Kubernetes service with CaaS offering,

ACI, Application Modernization
Microsoft, Hyper-V containers, Container Isolation Levels
MicroVMs, Container Isolation Levels

mime-based approach (API versioning), API Design and
Versioning
Minikube, Development Tools
MinIO, Storage abstractions
Mobile Backend as a Service (MBaaS), Database Services with
Fine-Grained Access Control
Moby, Kubernetes and Containers
mocks, fakes, and stubs, Test Doubles
MongoDB

API implementations, Standardized Interfaces
node development environment with, Local Development
Environments

MongoDB Atlas, Working with Data, Managed Services from Other
Vendors
monitoring, Monitoring-Service health, liveness, and readiness

collecting metrics, Collecting Metrics-Alerting
in microservice architectures, Monitoring and logging
monitoring everything in cloud native applications, Operational
Excellence
observable services, Observable Services-Service health, live-
ness, and readiness

distributed tracing, Distributed tracing
logging, Logging

service health, liveness, and readiness, Service health, live-
ness, and readiness

primary metrics in, Monitoring
requests in service meshes, Tracing and monitoring
tagging metrics appropriately, Tag Your Metrics Appropriately
testing in production, Continuous Testing in Production

mono-repo, Source Code Control
monolithic applications

breaking up for right reasons, Breaking Up the Monolith for the
Right Reasons
cloud native architectures vs., Cloud Native versus Traditional
Architectures

MQTT (Message Queue Telemetry Transport), Message Queue
Telemetry Transport
multimodel databases, Databases
mutiregion deployments, Fallacies of Distributed Systems

N

Nabla containers, Container Isolation Levels
namespace-level access control, Authorization
namespace-scope, storage of authentication policies,

Authentication, mutual TLS, and JWT tokens
namespaces

in Linux, Containers

using to organize services in Kubernetes, Use Namespaces to
Organize Services in Kubernetes

Network Attached Storage (NAS), Objects, Files, and Disks
networks

fallacies of, in distributed systems, Fallacies of Distributed
Systems
in distributed systems, fallacies of, Complexity
networking requests for microservices, Performance
reliability in distributed systems, Fallacies of Distributed
Systems

nodes
in graph databases, Graph, GraphQL Data Service
node components (Kubernetes), Kubernetes Overview
placing containers on, Container Orchestration

nontransient and transient failures, Failure handling
North-South traffic, Service Communication

O

object storage, Example Architecture
benefits of, Objects, Files, and Disks
cloud provider services, Objects, Files, and Disks
MinIO, Storage abstractions

observability
improved, with microservices, Improved observability

observable services, Monitoring, Observable Services-Service
health, liveness, and readiness

offloading into gateways, Offloading
open container initiative (OCI), Kubernetes and Containers

container runtimes, Container Isolation Levels
Open Service Broker API, Service catalog
OpenAPI, Define Service Contracts That Do Not Leak Internal De-
tails, Standardized Interfaces
OpenTracing, Distributed tracing
operational excellence, Operational Excellence
operations

best practices, Operations-Correlate Deployments with
Commits

CI/CD definition, storing with the component, CI/CD Defini-
tion Lives with the Component
consistent application deployment, Consistent Application
Deployment
correlating deployments with commits, Correlate Deploy-
ments with Commits
deployments and releases are separate, Deployments and
Releases Are Separate Activities
describing infrastructure with code, Describe Infrastructure
Using Code
isolating enironments, Isolate the Environments

keeping deployments small, Keep Deployments Small
not modifying deployed infrastructure, Don’t Modify Deployed
Infrastructure
separate function source code, Separate Function Source
Code
using containerized build, Use Containerized Build
using namespaces to organize services in Kubernetes, Use
Namespaces to Organize Services in Kubernetes
zero-downtime releases, Use Zero-Downtime Releases

increased operational costs for portable applications, The Costs
of Portability

operators (Kubernetes), Databases on Kubernetes
orchestrators (container), Kubernetes Overview

(see also Kubernetes)

defense-in-depth example for containerized services, Security
tasks of, Container Orchestration

overfetching, avoiding, Avoid Overfetching and Chatty I/O

P

parallel change, Design for Backward and Forward Compatibility
partitioning

data, Working with Data
key/value data storage services, Key/value

using data partitioning and replication for scale, Use Data Parti-
tioning and Replication for Scale
using to scale beyond service limits, Use Partitioning to Scale
Beyond Service Limits

partitions (network), tolerance for, in CAP theorem, CAP Theorem
penetration tests, Security/penetration tests, Testing Cadence
performance

defining alerts on key performance indicators, Define and Alert
on Key Performance Indicators
in microservice architectures, Performance
and scalability

best practices for, Performance and Scalability
using caching to improve performance, Use Caching

performance tests, Performance tests, Testing Cadence
persistent volume claims (Kubernetes), Storage Volumes
persistent volumes (Kubernetes), Storage Volumes
pets versus cattle, Fallacies of Distributed Systems
Platform as a Service (PaaS), The Twelve-Factor App

moving applications into, Lift-and-Shift
platforms, autoscaling features, Use Platform Autoscaling
Features
pods (Kubernetes), Kubernetes Overview

defense-in-depth example for containerized services, Security
isolating, Isolate Kubernetes Pods

persistent volumes and, Storage Volumes
point-to-point versioning, API Design and Versioning
poison messages, Publisher/Subscriber
poly-repo, Source Code Control
polyglot persistence, Working with Data
port-forward command (kubectl), Collecting Metrics
portability, Portability-Summary

costs of, The Costs of Portability
data gravity and portability, Data Gravity and Portability

between environments, Containers
reasons for making applications portable, Why Make Ap-
plications Portable?

when and how to implement, When and How to Implement
Portability

abstractions and layers, Abstractions and Layers
common services and features, Common Services and
Features
component substitution, Component substitution
containers, Containers
infrastructure, Infrastructure
Kubernetes as a portability layer, Kubernetes as a Portability
Layer-Virtual Kubelet
managed services from other vendors, Managed Services
from Other Vendors

portability tooling, Portability Tooling
serverless framework, Serverless framework
service facade, Service facade
standardized interfaces, Standardized Interfaces
storage abstractions, Storage abstractions
transforms, Transforms

ports, Configuration Management, Deployment Configuration
post-release stage, Post-Release Stage
post-release testing, Post-release
predeployment testing, Predeployment
privileged mode (containers), Don’t Run Containers in Privileged
Mode
processes (in Twelve-Factor apps), The Twelve-Factor App
production

continuous testing in, Continuous Testing in Production
deploying to, Sample CI/CD Flows
dev/prod parity, The Twelve-Factor App
testing in, Testing in Production-Post-release
testing with production-like data, Test with Production-like Data

Prometheus
collecting metrics with, Collecting Metrics-Alerting

defining alerts with AlertManager, Alerting
using Golang client library, Collecting Metrics

creating Kubernetes service and deployment for, Collecting
Metrics
Grafana plug-in for, Monitoring

protocol buffers (protobufs), gRPC, Serialization Considerations,

Use Efficient Serialization Techniques
protocols in client/cloud native service communications, Protocols

gRPC, gRPC
HTTP/2, HTTP/2

messaging protocols, Messaging Protocols
Advanced Message Queuing Protocol (AMQP), Advanced
Message Queuing Protocol
Message Queue Telemetry Transport (MQTT), Message
Queue Telemetry Transport

proxy for protocol translation, Protocols
WebSockets, WebSockets

protocols, translations of, Use an Anticorruption Layer Pattern
proxies

in service meshes, Service Mesh
comparing service mesh solutions, Service Mesh
how they work with other parts, Service Mesh

used for gateways, Implementing Gateways
publish/subscribe (pub/sub), Fallacies of Distributed Systems,

Publisher/Subscriber

choosing between request/response and, Choosing Between
Pub/Sub and Request Response
using separate subscriptions, Use Separate
Accounts/Subscriptions/Tenants

Q

query engines, distributed, Distributed Query Engines
queues, Streams and Queues

services publishing messages to, Define Service Contracts That
Do Not Leak Internal Details
topics vs., Streams and Queues
using for cross-function communication, Use Queues for Cross-
Function Communication
using to batch requests, Batch Requests for Efficiency
using to handle heavy loads and traffic spikes, Use Queues or
Streams to Handle Heavy Loads and Traffic Spikes

R

rate limiting, Implement Rate Limiting and Throttling
readiness checks, Service health, liveness, and readiness

implementing, Implement Health Checks and Readiness
Checks

registries (container), Store Images in a Trusted Registry

defense-in-depth example for containerized services, Security
relational databases, Relational

cloud provider-managed database services, Common Services
and Features

releases
difficulties posed by large codebase, Breaking Up the Monolith
for the Right Reasons
post-release stage, Post-Release Stage
release stage in CD, Release Stage (CD)

separation from deployments, Deployments and Releases Are
Separate Activities
testing during, Release
using zero-downtime releases, Use Zero-Downtime Releases

reliability
designing for, in cloud native applications, Reliability and
Availability
network, fallacy of in distributed systems, Fallacies of Dis-
tributed Systems

ReplicaSets, Kubernetes Overview
repositories

mono-repo vs. poly-repo for source code, Source Code Control
repository patterns, Storage abstractions
verified images from trusted repositories, Use Verified Images
from Trusted Repositories

request headers in service mesh traffic management, Traffic
management
request ID headers, Tracing and monitoring
request/response, Request/Response

choosing between pub/sub and, Choosing Between Pub/Sub
and Request Response
incoming request rate, Monitoring
rate limiting and throttling for requests, Implement Rate Limiting
and Throttling

resiliency
ensuring, Ensuring Resiliency-Implement Rate Limiting and
Throttling

defining CPU and memory limits for containers, Define CPU
and Memory Limits for Your Containers
graceful degradation, Graceful Degradation
handling transient failures with retries, Handle Transient Fail-
ures with Retries
implementing health checks and readiness checks,

Implement Health Checks and Readiness Checks
implementing rate limiting and throttling, Implement Rate
Limiting and Throttling
using bulkhead pattern, Use a Bulkhead Pattern
using circuit breakers for nontransient failures, Use Circuit
Breakers for Nontransient Failures

using finite number of retries, Use a Finite Number of Retries
resource versioning, API Design and Versioning
resources

exhaustion of, in synchronous communications, Synchronous
versus Asynchronous
improved usage with microservices, Improved scale and re-
source usage
limiting consumption of CPU and memory, Define CPU and
Memory Limits for Your Containers
transforming into cloud provider-specific formats, Transforms

REST APIs
service contracts, defining, Define Service Contracts That Do
Not Leak Internal Details
versioning, API Design and Versioning

retries
handling transient failures with, Handle Transient Failures with
Retries
in service meshes, Failure handling
using finite number of, Use a Finite Number of Retries

role-based access control (RBAC), Security, Use Role-Based Ac-
cess Control
rollback functionality, APIs, API Backward and Forward
Compatibility
rollbacks, Design for Backward and Forward Compatibility

routing
AMQP protocol, Advanced Message Queuing Protocol
by gateways, Routing

S

sandboxed containers, Container Isolation Levels
scalability, Distributed Systems

and cost in cloud native design, Scalability and Cost
dynamic scaling in and out in cloud native architectures, Cloud
Native versus Traditional Architectures
fast, scalable data, Fast Scalable Data-Analyzing Data
in combined functions and services, Composite of Functions
and Services
performance and, Performance and Scalability

designing stateless services that scale out, Design Stateless
Services That Scale Out
using caching, Use Caching
using partitioning to scale beyond service limits, Use Parti-
tioning to Scale Beyond Service Limits
using platform autoscaling, Use Platform Autoscaling
Features

scaling
application components having different scale requirements,

Breaking Up the Monolith for the Right Reasons

functions as a service, Composite of Functions and Services
improved scale with microservices, Improved scale and re-
source usage
using data partitioning and replication for scale, Use Data Parti-
tioning and Replication for Scale

schema on read databases, Document
schema on write databases, Relational
schema-first approach (GraphQL), GraphQL Data Service
schemas, implementing translations of, Use an Anticorruption Lay-
er Pattern
search databases, Search
secrets

never storing in container images, Never Store Secrets or Con-
figuration Inside an Image
storing, Storing Secrets
storing securely, Securely Store All Secrets

security
considerations in cloud native applications, Security
database services, Database Services with Fine-Grained Ac-
cess Control
ensuring, Ensuring Security-Isolate Kubernetes Pods

encrypting data in transit, Encrypt Data in Transit
granting least-privileged access, Grant Least-Privileged
Access

incorporating security into designs, Incorporate Security in
Your Designs
isolating Kubernetes pods, Isolate Kubernetes Pods
obfuscating data, Obfuscate Data
securely storing secrets, Securely Store All Secrets
treating security requirements like any other requirement,
Treat Security Requirements the Same as Any Other
Requirements
using federated identity management, Use Federated Identity
Management
using role-based access control, Use Role-Based Access
Control
using separate accounts, subscriptions, and tenants, Use
Separate Accounts/Subscriptions/Tenants

security/penetration tests, Security/penetration tests, Testing
Cadence
in service meshes, Security-Example Architecture
smaller container images, Test Stage (CI)
trusted container images, Store Images in a Trusted Registry
using vulnerability scanning tools on container images, Use Vul-
nerability Scanning Tools on Images

semantic versioning, Semantic Versioning
serialization

considerations in cloud native service communications,

Serialization Considerations
efficient techniques, using in service communications, Use Effi-
cient Serialization Techniques

serverless applications
deployment testing, Deployment
testing, Test Stage (CI)
tracing, unique challenges with, Distributed tracing

serverless computing, Serverless Computing
serverless databases, Working with Data
serverless framework, Serverless framework
serverless functions, testing, When to Run Which Types of Tests
service catalog (Kubernetes), Service catalog
service choreography, Cloud Native versus Traditional
Architectures
service meshes, Application Modernization, Service Mesh-
Example Architecture

architecture, Service Mesh
egress gateway in, Egress
failure handling, Failure handling
main features in, Service Mesh
proxies, Service Mesh

comparing service mesh solutions, Service Mesh
security, Security-Example Architecture

Service Mesh Interface (SMI), Standardized Interfaces
traffic management, Traffic management
traffic mirroring in Istio, Deploy Stage (CD)

service orchestration, Cloud Native versus Traditional
Architectures
service-level access control, Authorization
service-level agreements (SLAs), availability and, Availability and
Service-Level Agreements
service-level tests, Service tests, Testing Cadence
service-to-service authentication, Authentication, mutual TLS, and
JWT tokens
services

common services and features for portability, Common Services
and Features
communication (see communication)

containerized
testing, Deployment

decoupling simple services from monolithic code base,

Decouple Simple Services First
facades, Service facade
functions versus, Functions versus Services-Composite of
Functions and Services

composite of functions and services, Composite of Functions
and Services

considerations in using functions, Considerations for Using
Functions
scenarios for using functions, Function Scenarios

Kubernetes, Kubernetes Overview
managed services from vendors other than target cloud
provider, Managed Services from Other Vendors
observable, Monitoring, Observable Services-Service health,

liveness, and readiness
sharding data, Sharding Data
sharing (in DevOps), Sharing
sidecar containers, Kubernetes Overview
single-page applications (SPAs), Example Architecture

in smart home device management service, Example
Architecture

single-responsibility principle, Write Single-Purpose Functions
site reliability engineering (SRE), Sharing
Skaffold, Development Tools

development workflow, Skaffold Development Workflow
SLAs (service-level agreements), availability and, Availability and
Service-Level Agreements
smoke tests, Smoke tests
source code

commits, correlating with deployments, Correlate Deployments
with Commits

defense-in-depth example for containerized services, Security
separate, for functions, Separate Function Source Code

source code control, Source Code Control
sources of traffic, routing traffic by, Traffic management
SRE (site reliability engineering), Sharing
SSL termination, offloading to gateways, Offloading
staging, deploying to, Sample CI/CD Flows
standardized interfaces, Standardized Interfaces
state

cloud native applications with externalized state, Cloud Native
versus Traditional Architectures
designing stateless services that scale out, Design Stateless
Services That Scale Out
making functions stateless, Make Functions Stateless
publish/subscribe communications and, Publisher/Subscriber
stateful traditional applications, Cloud Native versus Traditional
Architectures
stateless processes in Twelve-Factor apps, The Twelve-Factor
App

StatefulSets (Kubernetes), StatefulSets
DaemonSets versus, DaemonSets

storage, Working with Data
(see also data, working with)

data storage in combined functions and services, Composite of
Functions and Services

storage class (Kubernetes), Storage Volumes
storage volumes (Kubernetes), Storage Volumes
strangler pattern, Application Modernization, Use a Strangler
Pattern
streams, Streams and Queues, Prefer Asynchronous
Communication

analyzing data streams, Streams
services publishing messages to, Define Service Contracts That
Do Not Leak Internal Details
using to handle heavy loads and traffic spikes, Use Queues or
Streams to Handle Heavy Loads and Traffic Spikes

stubs, Test Doubles
synchronous communication, Cloud Native versus Traditional
Architectures

asynchronous versus, Synchronous versus Asynchronous

T

tagging
container images, Test Stage (CI)
Docker repository tags, Use Verified Images from Trusted
Repositories
of monitoring metrics, Tag Your Metrics Appropriately

using explicit container image tags, Use Explicit Container Im-
age Tags

teams, small and focused, with microservices, Small, focused
teams
Telepresence, Development Tools
tenants, separate, Use Separate Accounts/Subscriptions/Tenants
Terraform, Infrastructure
testing, Testing-Post-release

cadence of, Testing Cadence
challenges in microservice architectures, Development and
testing
continuous, in production, Continuous Testing in Production
deploy stage in CD, Deploy Stage (CD)

in production, Testing in Production-Post-release
deployment, Deployment
post-release, Post-release
predeployment, Predeployment
release, Release

injecting failures into services, Failure handling
post-release stage, Post-Release Stage
test automation pyramid, Test Automation Pyramid-Fuzz tests

A/B tests, A/B tests
acceptance tests, Acceptance tests
chaos tests, Chaos tests

configuration tests, Configuration tests
fuzz tests, Fuzz tests
integration tests, Integration tests
Jepsen tests, Jepsen tests
load tests, Load tests
performance tests, Performance tests
security/penetration tests, Security/penetration tests
service tests, Service tests
smoke tests, Smoke tests
UI tests, UI tests
unit tests, Unit tests
usability tests, Usability tests

test doubles, Test Doubles, Development Environments and
Tools
test stage (CI), Test Stage (CI)
using production-like data, Test with Production-like Data
when to run different types of tests, When to Run Which Types
of Tests

throttling, Implement Rate Limiting and Throttling
time series data, Time-series
timeouts, Configuration Management
timeouts (request) in service meshes, Failure handling
tools for portability, Portability Tooling
topics, Streams and Queues

topology (network) in distributed systems, Fallacies of Distributed
Systems
tracing

distributed, Distributed tracing
requests in service meshes, Tracing and monitoring
using correlation IDs for, Use Correlation IDs

traditional applications vs. cloud native architectures, Cloud Native
versus Traditional Architectures
traffic

internal and external service communications, Service
Communication
redirecting production traffic to new service in release stage,

Release Stage (CD)

traffic management in service meshes, Traffic management
traffic mirroring, shadowing, or dark traffic, Deploy Stage (CD)

transactions
changes to record and operation log written as, Change Data
Capture
compensating, Compensating Transactions
and data in multiple datastores, Data in Multiple Datastores
supervisor for, Transaction Supervisor

transformations, Extract, Transform, and Load
(see also extract, transform, and load)

transforming resources to cloud provider-specific formats,

Transforms
transient and nontransient failures, Failure handling
transport costs in distributed systems, Fallacies of Distributed
Systems
Twelve-Factor App methodology, The Twelve-Factor App,

Configuration Management

U

UI tests, UI tests
unit tests, Unit tests, Testing Cadence
URIs in service mesh traffic management, Traffic management
usability tests, Usability tests, When to Run Which Types of Tests,

Testing Cadence
utilization, Monitoring

V

valet key, Restricted Client Tokens (Valet-Key)

versioning
cloud native APIs, API Design and Versioning-Semantic
Versioning

compatible versioning, API Backward and Forward
Compatibility

semantic versioning, Semantic Versioning
in microservice architectures, Versioning and integration

Virtual Kubelet, Application Modernization, Virtual Kubelet
virtual machines (VMs)

Amazon Firecracker, Container Isolation Levels
containers vs., on a single host, Containers
downsides of using as basis of cloud native applications,

Container Isolation Levels
from VMs to cloud native, From VMs to Cloud Native-
Application Optimization

application modernization, Application Modernization
application optimization, Application Optimization
lift and shift, Lift-and-Shift

virtual nodes, Application Modernization
VirtualService, Release
VM Worker Process, Container Isolation Levels
vulnerability scanning tools, using on container images, Use Vul-
nerability Scanning Tools on Images

W

WebSockets, WebSockets
use of MQTT and AMQP messaging protocols, Advanced Mes-
sage Queuing Protocol

working with data (see data, working with)

About the Authors

Boris Scholl is a lead product architect with the Azure Compute en-
gineering team focusing on the next generation of distributed sys-
tems platforms and application models. He has been working on
Azure Developer tools and platforms in various product engineering
roles since late 2011. Boris re-joined the Azure Compute team in
2018, after having spent the 18 months outside Microsoft leading an
engineering team to work on a microservices platform based on Ku-
bernetes and service meshes. His work on distributed systems plat-
forms has resulted in several patents about cloud computing and dis-
tributed systems. Boris is a frequent speaker at industry events, a
contributor to many blogs, instructor for distributed computing topics,

and the lead author of one of the first books about microservices and
Docker on Azure, Microservices with Docker on Azure (O’Reilly
2016).

Trent Swanson is a software architect focused on cloud and edge
technologies. As a Distinguished Fellow of Cloud Technologies at
Johnson Controls, he works with a wide range of cloud technologies
and a lot of very smart and passionate people to create intelligent
buildings. He has helped teams build and operate large and small ap-
plications across multiple cloud providers using modern practices and
technologies. As a cofounder and consultant with Full Scale 180, he

worked with some of Microsoft’s largest customers, helping them mi-
grate and build applications in the cloud. He has been involved in ar-
chitecting, building, and operating very large-scale applications, utiliz-
ing Docker, serverless technologies, and a microservices architec-
ture. He enjoys building and working in high-performing teams who
have a learning culture and are capable of quickly applying emerging
technologies and processes to support the business.

Peter Jausovec is a software engineer with more than ten years of
experience in the field of software development and tech. During his
career, he spent time in various roles, starting with QA before moving
to software engineering and leading tech teams. His early career was
mostly focused on developer and cloud tooling. In recent years, how-
ever, he has been focused on developing distributed systems cloud
native solutions.

Colophon

The animal on the cover of Cloud Native is a purple sandpiper
(Calidris maritima), a plump shorebird with a large range across arctic
and subarctic tundra habitats in North America and Europe. They
winter along the rocky coasts of the Atlantic and have the northern-
most winter range of any shorebird.

Adults are mostly gray with a slight purplish gloss. They have short,
yellow legs and a medium-sized, slightly downcurved bill. On aver-
age, they are 9 inches long and weigh 2.5 ounces. Males and females
are similar in appearance.

The male purple sandpiper shares responsibility for incubation and
then assumes parental care of the hatchlings, which is unusual
among monogamous shorebirds. The precocious hatchlings are ca-
pable of walking and pecking at the ground for food within a few
hours of hatching. Purple sandpipers eat mostly insects, mollusks,

spiders, and seeds.

A common behavior of the purple sandpiper and other wading birds is
the rodent run, which is a distraction display used to protect the nest
from predators. The bird ruffles its feathers, crouches, and runs away
from the predator while making a squealing noise that sounds like a

mouse. The action resembles the flight response of a small rodent
and lures the predator away from the nest.

Many of the animals on O’Reilly covers are endangered; all of them
are important to the world.

The cover illustration is by Karen Montgomery, based on a black and
white engraving from British Birds. The cover fonts are Gilroy Semi-
bold and Guardian Sans. The text font is Adobe Minion Pro; the
heading font is Adobe Myriad Condensed; and the code font is Dalton
Maag’s Ubuntu Mono.

	Preface
	Conventions Used in This Book
	O’Reilly Online Learning
	How to Contact Us
	Acknowledgments

	1. Introduction to Cloud Native
	Distributed Systems
	Fallacies of Distributed Systems
	CAP Theorem

	The Twelve-Factor App
	Availability and Service-Level Agreements
	Summary

	2. Fundamentals
	Containers
	Container Isolation Levels
	Container Orchestration
	Kubernetes Overview
	Kubernetes and Containers

	Serverless Computing
	Functions
	From VMs to Cloud Native
	Lift-and-Shift
	Application Modernization
	Application Optimization

	Microservices
	Benefits of a Microservices Architecture
	Challenges with a Microservices Architecture

	Summary

	3. Designing Cloud Native Applications
	Fundamentals of Cloud Native Applications
	Operational Excellence
	Security
	Reliability and Availability
	Scalability and Cost

	Cloud Native versus Traditional Architectures
	Functions versus Services
	Function Scenarios
	Considerations for Using Functions
	Composite of Functions and Services

	API Design and Versioning
	API Backward and Forward Compatibility
	Semantic Versioning

	Service Communication
	Protocols
	Messaging Protocols
	Serialization Considerations
	Idempotency
	Request/Response
	Publisher/Subscriber
	Choosing Between Pub/Sub and Request Response
	Synchronous versus Asynchronous

	Gateways
	Routing
	Aggregation
	Offloading
	Implementing Gateways

	Egress
	Service Mesh
	Example Architecture
	Summary

	4. Working with Data
	Data Storage Systems
	Objects, Files, and Disks
	Databases
	Streams and Queues
	Blockchain
	Selecting a Datastore

	Data in Multiple Datastores
	Change Data Capture
	Write Changes as an Event to a Change Log
	Transaction Supervisor
	Compensating Transactions
	Extract, Transform, and Load
	Microservices and Data Lakes

	Client Access to Data
	Restricted Client Tokens (Valet-Key)
	Database Services with Fine-Grained Access Control
	GraphQL Data Service

	Fast Scalable Data
	Sharding Data
	Caching Data
	Content Delivery Networks

	Analyzing Data
	Streams
	Batch
	Data Lakes on Object Storage
	Data Lakes and Data Warehouses
	Distributed Query Engines

	Databases on Kubernetes
	Storage Volumes
	StatefulSets
	DaemonSets

	Summary

	5. DevOps
	What Is DevOps?
	Collaboration
	Automation
	Lean Principles and Processes
	Measurement
	Sharing

	Testing
	Test Doubles
	Test Automation Pyramid
	When to Run Which Types of Tests
	Testing Cadence
	Testing in Production

	Development Environments and Tools
	Development Tools
	Development Environments
	Local Development Environments
	Local Development with a Remote Cluster
	Skaffold Development Workflow
	Remote Cluster Routed to Local Development
	Cloud Development Environments

	CI/CD
	Source Code Control
	Build Stage (CI)
	Test Stage (CI)
	Deploy Stage (CD)
	Release Stage (CD)
	Post-Release Stage

	Monitoring
	Collecting Metrics
	Observable Services

	Configuration Management
	Single-Environment Variable
	Multiple-Environment Variables
	Adding ConfigMap Data to a Volume
	Storing Secrets
	Deployment Configuration

	Sample CI/CD Flows
	Summary

	6. Best Practices
	Moving to Cloud Native
	Breaking Up the Monolith for the Right Reasons
	Decouple Simple Services First
	Learn to Operate on a Small Scale
	Use an Anticorruption Layer Pattern
	Use a Strangler Pattern
	Come Up with a Data Migration Strategy
	Rewrite Any Boilerplate Code
	Reconsider Frameworks, Languages, Data Structures, and Datastores
	Retire Code

	Ensuring Resiliency
	Handle Transient Failures with Retries
	Use a Finite Number of Retries
	Use Circuit Breakers for Nontransient Failures
	Graceful Degradation
	Use a Bulkhead Pattern
	Implement Health Checks and Readiness Checks
	Define CPU and Memory Limits for Your Containers
	Implement Rate Limiting and Throttling

	Ensuring Security
	Treat Security Requirements the Same as Any Other Requirements
	Incorporate Security in Your Designs
	Grant Least-Privileged Access
	Use Separate Accounts/Subscriptions/Tenants
	Securely Store All Secrets
	Obfuscate Data
	Encrypt Data in Transit
	Use Federated Identity Management
	Use Role-Based Access Control
	Isolate Kubernetes Pods

	Working with Data
	Use Managed Databases and Analytics Services
	Use a Datastore That Best Fits Data Requirements
	Keep Data in Multiple Regions or Zones
	Use Data Partitioning and Replication for Scale
	Avoid Overfetching and Chatty I/O
	Don’t Put Business Logic in the Database
	Test with Production-like Data
	Handle Transient Failures

	Performance and Scalability
	Design Stateless Services That Scale Out
	Use Platform Autoscaling Features
	Use Caching
	Use Partitioning to Scale Beyond Service Limits

	Functions
	Write Single-Purpose Functions
	Don’t Chain Functions
	Keep Functions Light and Simple
	Make Functions Stateless
	Separate Function Entry Point from the Function Logic
	Avoid Long-Running Functions
	Use Queues for Cross-Function Communication

	Operations
	Deployments and Releases Are Separate Activities
	Keep Deployments Small
	CI/CD Definition Lives with the Component
	Consistent Application Deployment
	Use Zero-Downtime Releases
	Don’t Modify Deployed Infrastructure
	Use Containerized Build
	Describe Infrastructure Using Code
	Use Namespaces to Organize Services in Kubernetes
	Isolate the Environments
	Separate Function Source Code
	Correlate Deployments with Commits

	Logging, Monitoring, and Alerting
	Use a Unified Logging System
	Use Correlation IDs
	Include Context with Log Entries
	Common and Structured Logging Format
	Tag Your Metrics Appropriately
	Avoid Alert Fatigue
	Define and Alert on Key Performance Indicators
	Continuous Testing in Production
	Start with Basic Metrics

	Service Communication
	Design for Backward and Forward Compatibility
	Define Service Contracts That Do Not Leak Internal Details
	Prefer Asynchronous Communication
	Use Efficient Serialization Techniques
	Use Queues or Streams to Handle Heavy Loads and Traffic Spikes
	Batch Requests for Efficiency
	Split Up Large Messages

	Containers
	Store Images in a Trusted Registry
	Utilize the Docker Build Cache
	Don’t Run Containers in Privileged Mode
	Use Explicit Container Image Tags
	Keep Container Images Small
	Run One Application per Container
	Use Verified Images from Trusted Repositories
	Use Vulnerability Scanning Tools on Images
	Don’t Store Data in Containers
	Never Store Secrets or Configuration Inside an Image

	Summary

	7. Portability
	Why Make Applications Portable?
	The Costs of Portability
	Data Gravity and Portability

	When and How to Implement Portability
	Standardized Interfaces
	Common Services and Features
	Abstractions and Layers
	Managed Services from Other Vendors
	Portability Tooling
	Kubernetes as a Portability Layer

	Summary

	Index

