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Chapter 1. The Three Phases
of Observability: An
Outcomes-Focused Approach

The cloud native ecosystem has changed how people around the
world work. It allows us to build scalable, resilient, and novel
software architectures with idiomatic backend systems by using the
power of the open source ecosystem and open governance.
How does it do that? Distributed architectures. The introduction of
containers made the cloud flexible, and empowered distributed
systems. However, the ever-changing nature of these systems can
cause them to fail in a multitude of ways. Distributed systems are
inherently complex, and, as systems theorist Richard Cook notes,
“Complex systems are intrinsically hazardous systems.”
Think about how many different hazards a container faces: it can be
terminated, it can run out of memory, it can fail the readiness
probes, or its pods can be evicted from a restarting node, to name a
few. These additional complexities are a trade-off for highly flexible,
scalable, and resilient distributed architectures.
Distributed systems have many more moving parts. The constant
struggle for high availability means that, more than ever, we need
observability: the ability to understand changes within a system.
Thanks in large part to Cindy Sridharan’s concept of “three pillars of
observability,” introduced in her groundbreaking work Distributed
Systems Observability,  many people think that if you have logs,
traces, and metrics (Figure 1-1), you have observability. Let’s look
quickly at each of these:
Logs

1
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Logs describe discrete events and transactions within a system.
They consist of messages generated by your application over a
precise period of time that can tell you a story about what’s
happening.

Metrics
Metrics consist of time-series data that describes a
measurement of resource utilization or behavior. They are useful
because they provide insights into the behavior and health of a
system, especially when aggregated.

Traces
Traces use unique IDs to track down individual requests as they
hop from one service to another. They can show you how a
request travels from one end to the other.

Indeed, as Sridharan makes clear, these are powerful tools that, if
understood well, can unlock the ability to build better systems.



Figure 1-1. The three pillars of observability

However, as Rob Skillington pointed out at 2021’s SREcon,  simply
adding more data (and more types of data) won’t necessarily make
observability more effective. After all, adding more data can easily
create more noise and disorganization. Uber, he notes, initially used
Graphite successfully with tens of microservices but found that it did
not scale up to handle hundreds or thousands of microservices.
Martin Mao, along with Skillington, solved Uber’s scaling problem by
building M3, Uber’s large-scale metrics platform. He points out that
increasing your logs, metrics, and traces does not guarantee a
better outcome either. Metrics, like logs and traces, are simply the
inputs to observability, but having all three does not necessarily
lead to better observability or even proper observability at all. Thus,
in our opinion, metrics are the wrong thing to focus on.
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If the three pillars of observability don’t in themselves constitute
observability, then how do we measure observability? In our view,
one of the most impactful ways is to see how well your observability
system helps you remediate an issue within the system efficiently.
Our approach shifts the focus from what kind of data you have to
what kind of outcomes you want to strive for. This is an outcomes-
focused approach.
But let’s take another step back and ask why we even want
observability at all. What do we want to do with all this data we’re
producing? It’s for a single, unchanging purpose: to remediate or
prevent issues in the system.
As builders of that system, we want to measure what we know
best. We tend to ask about what kinds of metrics we should
produce in order to understand if something is wrong with the
system and remediate it. Working backward from customer
outcomes allows us to focus on where the heart of observability
should be: What is the best experience for the customer?
In most cases, the customer (whether they are external or internal)
wants to be able to do what they came to do: for example, buy the
products they are looking for. They cannot do that if the payment
processor isn’t working. We can work backward from there: we don’t
want our customers to be unable to buy products, so if the payment
processor goes down or becomes degraded, we want to know as
soon as possible so we can remediate that issue. To do that, we
need to ensure that we can detect payment processor downtime
quickly, then triage to make sure we know the impact and the root
cause, all while looking for opportunities to rapidly remediate,
stopping the customer’s pain.
Once you find the outcomes you are looking for, then the signals
(metrics, logs, and traces) can play a role. If your customers need
error-free payment processing, you can craft a way to measure and



troubleshoot that. When deciding on signals, then, we endorse
starting from the outcomes you want.
In response to Sridharan, we call our approach the three phases of
observability (Figure 1-2).

Figure 1-2. The three phases of observability

As part of a remediation process, the three phases can be described
in the following terms:

1. Knowing quickly within the team if something is wrong

2. Triaging the issue to understand the impact: identifying the
urgency of the issues and deciding which ones to prioritize

3. Understanding and fixing the underlying problem after
performing a root cause analysis

Some systems are easier to observe than others. The key is
understanding the system in question.
Let’s say you work for an ecommerce platform. It’s the annual Black
Friday sale, and millions of people are logged in simultaneously.

5



Here’s how the three phases of observability might play out for you:
Phase 1: Knowing

Suddenly, multiple alerts fire off to notify you of failures. You
now know that requests are failing.

Phase 2: Triaging
Next, you can triage the alerts to learn which failures are most
urgent. You identify which teams you need to coordinate. Then
learn if there is any customer impact. You scale up the
infrastructure serving those requests and remediate the issue.

Phase 3: Understanding
Later on, you and your team perform a postmortem
investigation of the issue. You learn that one of the components
in the payments processor system is scanning multiple users and
causing CPU cycles to increase tenfold—far more than necessary.
You determine that this increase was the root cause of the
incident. You and the team proceed to fix the component
permanently.

In this example, you resolved an issue using observability, even
though you didn’t use all three signals. Looking only at the metrics
dashboard, you determined which systems were causing the issue
and guided the infrastructure team in fixing it.
Just like in mathematics, there are multiple ways to arrive at the
correct answer; the important thing is to do so quickly and
efficiently. If you can remediate a problem by relying only on your
previous knowledge of the system, without using metrics, logs, and
traces, that is still a good outcome. You remediated the problem,
and that’s the real goal. And, of course, this is made easier with
correct signals that are outcomes-based and can quickly validate
any remediation assumptions!



Remediating at Any Phase
Although we posit three phases, at any phase, your goal is always
to remediate problems. If a single alert is firing off and you can
remediate the issue by using only visibility (phase 1), you should do
so. You don’t have to triage or do a root cause analysis every time if
these are unnecessary.
To illustrate this point, let’s say a scheduled deployment breaks
your production environment. There is no need to triage or do root
cause analysis here, since you already know that the deployment
caused the breakage. Simply rolling back the deployment when
errors become visible remediates the issue.

The Three Phases Illustrated
In real life, if your system is crashing, you don’t focus on the data.
You focus on fixing the problem immediately. No one does root
cause analysis without fixing the current issue and mitigating
customers’ pain.
Take, for example, a burning house (Figure 1-3).

Figure 1-3. Remediating a burning house: you should put out the fire before you
start investigating the cause



If your house is on fire, how do you know? Most likely, your smoke
alarm goes off, emitting a loud, unmistakable noise that notifies you
of the problem. That smoke alarm is the alert, triggered by sensors
detecting smoke in the room. Metrics can tell you what the issue is
and give you enough information to address it. This is surface-level
detection but enough to continue investigating. That’s phase 1.
Metrics should give you a low mean time to detect (MTTD), so a
sensitive fire alarm that goes off at the first sign of smoke or heat
will be better than one that lets the fire spread for several minutes
before notifying you—and better still than no alarm at all.
What now? You might jump out of bed and look around the house to
see where the fire is, then get everyone out immediately and call
emergency services. That’s a temporary remediation (phase 2):
you’re all safe, but the house is still on fire. It’s also triaging: you
are choosing to prioritize safety over other things, like saving your
favorite electronics.
The sooner you can call emergency services, the faster they will
arrive to put the fire out. In observability, we call this interval mean
time to remediate (MTTR). This, too, should be as low as possible:
if the firefighters arrive quickly and start hosing down the house
right away, part of the house could be saved. If anyone is injured,
you’ll want the paramedics to arrive quickly to help them: that is,
you want a low MTTR.
The next morning, with everyone safe and the last embers
extinguished, the fire marshal and insurance investigator examine
the house to see what started the fire (a root cause analysis, phase
3). Perhaps they learn that a faulty cord on an appliance
overheated. The appliance manufacturer might even recall the
product to ensure that the faulty cords don’t start any more fires, a
still more permanent remediation that keeps even more people
safe.



No one does an investigation during an active fire as there is still a
threat of injury. Similarly, the worst time to do a deep dive on how
exactly a system misbehaves is when there is an ongoing outage.
You do phases 1 and 2 immediately, before you try to figure out
where the fire started or why. You focus on the outcome of keeping
everyone safe. One way to fulfill that is to use metrics as your
starting point. In this case, since smoke in the room is the metric,
then once you smell smoke, you automatically evacuate the house.

1  Richard Cook, “How Complex Systems Fail,” Cognitive Technologies
Laboratory, 2000, https://oreil.ly/zw73j.

2  Cindy Sridharan, Distributed Systems Observability (O’Reilly Media, 2018),
https://oreil.ly/v8PUu.

3  Sridharan, Distributed Systems Observability.

4  Rob Skillington, “SREcon21—Taking Control of Metrics Growth and
Cardinality: Tips for Maximizing Your Observability,” USENIX, October 14,
2021, YouTube video, 27:21, https://oreil.ly/gvAq7.

5  Adapted from an image in Rachel Dines, “Explain It Like I’m 5: The Three
Phases of Observability,” Chronosphere, August 10, 2021,
https://chronosphere.io/learn/explain-it-like-im-5-the-three-phases-of-
observability.
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Chapter 2. Why Do You Need
Metrics?

You might have noticed that we’re focusing specifically on metrics
here rather than logs or traces. Why not logs first? Why metrics?

Metrics as a Starting Point
Sridharan defines a metric as “a numeric representation of data
measured over intervals of time,” adding, “Metrics can harness the
power of mathematical modeling and prediction to derive
knowledge of the behavior of a system over intervals of time in the
present and future.”  Figure 2-1 shows an example of measuring
HTTP requests as a metric.

Figure 2-1. An example metric
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The Case for Metrics
If solving your problem requires a deep dive, you might need all
three signals. Logs will tell you what happened in a specific period
of time. Traces allow you to track a request from beginning to end.
However, when you are starting your investigation, you need a
bird’s-eye view. Starting with metrics is logical because it lets you
move from the broadest view down to the narrowest. Metrics also
can provide that perspective with what we call a low-latency impact
analysis, which provides an efficient view of the system’s current
state. What’s more, metrics are easy to implement and use, and
they let you aggregate data quickly and compare it over time. Let’s
look at each of these factors in turn.

Metrics Provide an Efficient Snapshot of the
System
First, metrics allow you to understand the current state of the
system efficiently. If you have some contextual knowledge, you can
ask questions and prove or disprove assumptions so that you can
start troubleshooting right away: Is there an HTTP:503 Service
Unavailable error? When did it happen? Combined with context,
metrics will get you those answers quickly—you don’t need to do a
JSON filter or a full-text search for all HTTP response codes.
One of the most popular metrics and monitoring platforms is
Prometheus, which collects metrics by scraping metrics HTTP
endpoints on monitored targets. (We’ll look more closely at
Prometheus in Chapter 3.)
Let’s say you have an HTTP server that’s producing an HTTP:503
Service Unavailable error. We’ll show you how you can detect
that quickly by graphing a metric in Prometheus.

https://oreil.ly/2VOEH


In Figure 2-2, you can see that the HTTP:503 Service
Unavailable errors started at 17:38 GMT, without even looking at
the logs. However, it is not very simple to see if there is a new
HTTP:503 Service Unavailable. If you want to alert on it,
usually you will need to aggregate counters rate() or irate().

Figure 2-2. Illustration of a Prometheus 503 error

Here, the metric myapp_request_count_total is a Prometheus
metrics type counter. There are four types of metrics in
Prometheus:
Counter

Counters are cumulative metrics that can only increase. In the
preceding example, the myapp_request_count_total is a
counter, and it either increases or does not move. As the name
implies, counter metrics are best used for counting things like
HTTP requests, RPC calls, or even business metrics like number
of sales.

Gauges
Gauges are singular metrics that can either increase or
decrease. Examples of metrics measured in gauges include



temperature, speed, or memory usage. Gauges can also be used
for metrics that decrease, such as concurrent HTTP requests.

Histogram and summary
Histograms and summaries are sample observation metrics.
Examples of metrics expressed in histograms and summaries
include request duration, request sizes, or ranking. Histograms
and summaries are similar, but it is advisable to use a histogram
for aggregation, since you can use quantiles. For more
information about the difference between histograms and
summaries, visit the Prometheus histogram documentation.

For more information about the types of Prometheus metrics, refer
to the Prometheus documentation.

Metrics Are Easy to Use
Metrics provide the most utility with the least amount of effort to
set up. The open source tools you’re already using likely support
Prometheus exposition formats. In NGINX, PostgreSQL, and
Kubernetes, for example, user communities have built Prometheus
exporters that you can run using just a few lines of configuration.

Metrics Let Us Aggregate Data Quickly
Metrics allow you to observe aggregated data over time, which is
the fastest way to combine data to troubleshoot and fix your
system. For example, you can find out how many bounces have
happened in the last hour or the last day. You can see where the
most bounces occur and even at which endpoints they happen.
Depending on the type of metrics, there are multiple ways to
aggregate.

https://oreil.ly/K2bdp
https://oreil.ly/pCUfo


Here are a few examples of aggregated metric requests using
PromQL (Prometheus Query Language) that can be used in gauges:

sum(metric_name)
max(metric_name)
count(metric_name) 

Here are some examples of aggregation using counters:

sum(rate(myapp_request_count_total[1m]))
max(rate(myapp_request_count_total[1m]))
rate(myapp_request_count_total[1m])
increase(business_sales[1h])
rate(business_question_set_completed[1h])

Here are some examples of aggregation using histograms:

  rate(http_request_duration_seconds_sum[5m])
  rate(http_request_duration_seconds_count[5m])

This example from the Prometheus documentation calculates the
average request duration during the last five minutes from a
histogram http_request_duration_seconds.

In many cases, you still want to retain or remove the cardinality of
these metrics while aggregating. To do so, you will need to use by
to aggregate based on a dimension or without to aggregate all
dimensions except for the one specified. For example:

sum by (status) (metric_name), 
sum without (status) (metric_name), 

Sum adds all the requests and aggregates the metric. Max takes the
highest value of the metric and ignores the other value. Count
gives the metric’s cardinality (we’ll discuss cardinality in the next
section). These aggregations are useful when setting up advanced
detection.

https://oreil.ly/K2bdp


Metrics are a numerical summary or aggregation of data, and
because of that, they are far more efficient to query than detailed
logging or tracing data. For example, storing the number of
requests as a metric is far more efficient than counting the
individual log messages for every request. Even if there is no
metrics instrumentation, it’s often more efficient and recommended
to create metrics from logs and traces for notification and triage
purposes.
Want to see only the requests that produced errors? You can query
your metrics to filter out the successful requests. Here, we count
only the maximum number of requests that are successful:

max(rate(myapp_request_count_total{status="200"}[1m]))

Metrics Allow Us to Create Alerts
In Site Reliability Engineering, Rob Ewaschuk defines alerts as
“notifications intended to be read by a human and...pushed to a
system such as a bug or a ticket queue, an email alias, or a pager.”
As the name suggests, alerts let you know when there’s a problem.
They’re meant to tell you when the system reaches a certain
threshold that you’ve set, such as a number of HTTP requests, a
certain error being generated, or even (in our fire example from the
last chapter) a smoke alarm sensor picking up a certain level of
smoke in the air. Querying metrics is a very efficient way to
generate the alerts you need before you even go to individual logs.
Using the same Prometheus request you just saw, for example,
allows you to alert on any occurrence of HTTP:503 Service
Unavailable simply by using the same query and adding an
evaluation greater than 0:

rate(myapp_request_count_total{status="503"}[1m]) > 0 
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This efficiency makes metrics the most axiomatic of the signals as a
data source.

Metric Data Is Growing in Scale
The massive shift of systems around the world from monoliths to
the cloud has resulted in an ongoing explosion of metric data in
terms of both volume and cardinality. This is especially prevalent in
cloud native systems. To achieve good observability in a cloud
native system, you will have to deal with large-scale data.
We describe this explosion of data as a metric scale, or the number
of metrics produced during instrumentation. How many things are
you measuring, and how much data does that measurement
produce?
Say you’re working with MyApp (a fictional app). You start by using
a metric called myapp_request_count_total, which counts the
number of HTTP requests MyApp receives:

myapp_request_count_total{endpoint="/test"} 226

Now you can add more metric data, like all created requests, all
requests, and all bounced requests:

myapp_request_count_total{endpoint="/test"} 226
myapp_request_count_created{endpoint="/test"} 163
myapp_request_bounce_total{endpoint="/test"} 440

You can see how fast the volume of data can increase when you
add more metrics. The volume of logs and traces doesn’t change
very much, as a rule, but metrics are a different story.



Understanding Cardinality and Dimensionality
Each increase in cardinality multiplicatively increases the volume of
metrics, which requires more system resources for Prometheus.
High cardinality therefore degrades Prometheus’s performance. As
you gather more dimensions for each metric, you add observability
context—at the cost of Prometheus performance.
Before we go any further, let’s take a quick detour to discuss these
two important concepts that you’ll need to understand: cardinality
and dimensionality. Cardinality is the number of possible groupings
depending on the dimensions the metrics have. Dimensions are the
different properties of your data, as Rob Skillington explains.  Think
of the labels on a shirt on a store shelf. Each label (in this simplified
example) contains three dimensions: color, size, and type.
Each dimension increases the amount of information we have about
that shirt. You could slice that information into many shapes, based
on how many dimensions you use to sort it. For example, you could
look by just color and size, size and type, or all three.
Dimensionality means being able to slice the metrics into multiple
shapes.
Increased dimensionality can greatly increase cardinality.
Cardinality, in this example, would be the total number of possible
labels you could get by combining those dimensions from the shirts
in your inventory. Figure 2-3 visualizes this example by looking at
two dimensions: color and size.
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Figure 2-3. Shirt inventory with two cardinalities

There are only two cardinalities represented in Figure 2-3, even
though there are three possibilities. That’s because the last
combination, while theoretically possible, is not in the inventory and
therefore is not emitted to the metrics platform.
The term metric cardinality refers to how many unique
combinations of metric data “are produced by a combination of
metric names and their associated label [dimension]
names/values,”  while the total number of combinations with data
that exists are cardinalities.
Now let’s look at what happens if we increase the number of
dimensions, and therefore of possible cardinalities, by adding the
type of shirt. Figure 2-4 shows how increasing the number of
dimensions also increases the cardinality of the metrics.
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Figure 2-4. Shirt inventory with three cardinalities

Let’s take another example, this time from the software world. Say
we want to count the total number of HTTP requests in an API. We
use the metric api_http_requests_total with two dimensions,
method and handler. Working again in Prometheus, we could run:

api_http_requests_total{method="POST", handler="/messages"} 
60

The total number of requests, in this case, is 60.
If we decide to track the HTTP status code as well, this would add a
third dimension:

api_http_requests_total{method="POST", handler="/messages", 
\ 
    status="200"} 30
api_http_requests_total{method="POST", handler="/messages", 
\ 
    status="503"} 30



As Bastos and Araujo note, “Cardinality is multiplicative—each
additional dimension will increase the number of produced time
series [metric data] by repeating the existing dimensions for each
value of the new one.”

Cloud Native Systems Are Flexible and
Ephemeral
“Containers are inherently ephemeral,” ​​Lydia Parziale and Zach
Burns write in Getting Started with z/OS Container Extensions and
Docker. “They are routinely destroyed and rebuilt from a previously
pushed application image. Keep in mind that after a container is
removed, all container data is gone. With containers, it is necessary
that you take specific actions to deal with the ephemeral behavior.”
The other effect of using containers and cloud native architecture is
that distributed systems are more flexible and more ephemeral than
monolithic systems. This is because containers are faster to spin up
and close down. Containers make observing an ephemeral system
difficult, since they come and go quickly: a container that spun up
just a second ago could be terminated before we get a chance to
observe it.
According to a survey by Sysdig, ​95% of containers live less than a
week.  The largest cohort—27%—are containers that churn roughly
every 5 to 10 minutes. Eleven percent of containers churn in less
than ten seconds.
For example, let’s consider a container that processes datafiles. This
container runs Python code in a database called Bronze that deletes
data that’s more than one day old. It also creates a metric called
job_data_processed with two dimensions, pod and database,
to count the amount of data it deletes. The metric emitted by a
single pod looks like this:

job_data_processed{database="bronze", pod="pod1"} 1000

5
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This metric shows that this single pod processed 1,000 datafiles.
If we divide the thousand-file workload across 100 pods and use the
same metrics, the amount of metric data produced will be
multiplied by 100:

job_data_processed{database="bronze", pod="pod1"} 10
job_data_processed{database="bronze", pod="pod2"} 10
...
job_data_processed{database="bronze", pod="pod100"} 10

Now let’s say we add more dimensions to the metric data. Some of
the datafiles are in json format, others in csv. This adds 100
additional metric data points—and you’ll get a further 100 more for
each dimension you add:

job_data_processed{database="bronze", pod="pod1", \ 
  type="json"} 5
job_data_processed{database="bronze", pod="pod2", \ 
  type="json"} 5
...
job_data_processed{database="bronze", pod="pod100", \ 
  type="json"} 
job_data_processed{database="bronze", pod="pod1", \ 
  type="csv"} 5
job_data_processed{database="bronze", pod="pod2", \ 
  type="csv"} 5
...
job_data_processed{database="bronze", pod="pod100", \ 
  type="csv"} 5

This is why data in cloud native architectures is constantly growing
in scale and cardinality.
The flexibility of cloud native architectures allows for increased
scalability and performance. You can easily take a pod away or
increase it a hundredfold. You can even add labels to increase the
context of the metrics. This has fundamentally increased the metric
data produced.



Cloud Native Services and Systems Have
Greater Interdependencies
The DevOps culture in the cloud native world has allowed
developers greater control over the entire lifecycle of their
applications, including interdependencies with other applications.
Before cloud native, developers built entire suites of different
business needs in the same application. This often made it nearly
impossible to scale those applications independently.
Today, however, using microservices architecture, we can build a
new microservice for each business need and orchestrate them all
to work together. This allows for greater flexibility: we can scale
some highly utilized parts of the architecture faster and in greater
quantities than other parts. We can even reuse some of the more
generic services in other architectures. This is a powerful feature of
microservices that offers not only greater flexibility but greater
scalability as well.
However, as we say in the architecture space, everything is a trade-
off. In this case, we increase scalability, but the trade-off is that
monitoring the individual services is more difficult. Even so, metrics
let us track individual data points to be allocated to multiple
services using dimensions.
Take the same container request you saw in the last section, but
this time it’s been smartly cut using dimensions.
Here is the original metric:

api_http_requests_total{method="POST", handler="/messages" 
\ 
  pod="pod2"} 600

And here is the new metric:

https://oreil.ly/2DONu


api_http_requests_total{method="POST", handler="/messages" 
\ 
  pod="pod2" from="frontendservice"} 300
api_http_requests_total{method="POST", handler="/messages" 
\
  pod="pod2" from="backendservice"} 300

We can now determine how many requests came from the
backendservice and how many from the frontendservice.

The Risk of Losing Focus on Outcomes
As you’ve seen, metric data can grow very quickly. Even just
instrumenting metrics creates a high cognitive load for any site
reliability engineering (SRE) team. Because of this, paradoxically,
it’s not uncommon for SRE teams to lose sight of why they’re
instrumenting metrics in the first place. SRE teams’ performance is
often graded on how “well instrumented” systems are, which then
leads to increasing the number of data points they instrument.
Further, this constricts their focus on the data being collected rather
than on the outcomes. They might instrument too much without
knowing what to do with all that data.
This approach tends to involve asking questions like:

Do you instrument your code?

Which data do you collect?

How many ways can you slice and dice your data?

Are there dashboards to visualize this data?

Worse yet, they may even instrument the wrong data and present it
to the dashboard and the alerting system.
You don’t have to instrument literally everything, just the metrics
that matter in your organization and that allow you to focus on



outcomes.
The loss of focus is even more apparent if we improve the
questions:

Do you get alerted appropriately when there is an issue?

Does the alert give you a good place to start your
investigation?

Are the alerts too noisy?

How do you visualize the data you collect?

Do you even use it at all during incidents?

Can you use the dimensions of the metrics to help triage and
scope the impact of the issue?

Are the alerts useful and helpful before and after incidents?

Again, we recommend always focusing on outcomes. To achieve this
focus, follow the three phases of observability to refine your
processes and tools iteratively, and be vigilant in measuring your
MTTR and MTTD.
Metrics are an efficient and powerful tool for all three phases of
observability. But how do we solve the problem of scale and data
growth?

1  Sridharan, Distributed Systems Observability.
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Chapter 3. The Rise of Open
Source Metrics

Before the industry standardized on Prometheus, many companies
were forced to use proprietary metrics solutions, such as
AppDynamics, Dynatrace, or New Relic. These vendors control the
instrumentation and aggregation of metrics using agents, which are
software processes that run alongside an application to collect data
and then send it to an external server. If you are running an
AppDynamics observability setup, you have no choice but to use the
AppDynamics agent to send metrics to their system, as shown in
Figure 3-1. This is called agent-based application instrumentation.
Applications typically need to install a software library or software
development kit to run these agents and send the data back to the
aggregation server.
Agents are also largely noninteroperable. This means that if you
rely on AppDynamics, the same agents cannot easily aggregate
those same metrics into New Relic’s system.

Figure 3-1. Applications instrumented using agents



Agent-based systems use the same system resources as the
application and in some cases can slow down or even crash
applications. SRE teams can’t observe when agents cause
performance issues since, after all, they are using the same agents
to send the data back to the aggregation servers.

User-Controlled Metric Data Collection
To solve the performance issues, the SRE team at ecommerce site
Etsy wrote a new type of agent, which they called StatsD. StatsD,
writes Etsy engineer Ian Malpass, is a simple open source agent
that “listens for messages on a UDP [User Datagram Protocol]
port.”  It improves the performance of agent-based monitoring by
sending messages over a “fire-and-forget” protocol, which
minimizes system resource use and does not wait for a response
from the aggregation server, ultimately improving performance.
As StatsD grew in popularity, the financial services company Stripe
adopted it. Once they began using it, however, Stripe found two
flaws in StatsD: StatsD uses UDP, which is inherently unreliable and
does not work with metric types that rely on timer.
Stripe’s engineers decided to start an open source project of their
own: a metrics sink called Veneur. Metrics sinks send metric data to
vendors or aggregators in various formats, as shown in Figure 3-2.
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Figure 3-2. A metrics sink sending data to three different vendors

The problem with metrics sinks, however, is that every vendor
needs a unique sink implementation. Vendors want their clients to
use their native agent, so they have little incentive to write a sink
implementation. Sinks make it all too easy for clients to migrate out
of the vendor’s product and toward the competition. Indeed, as of
late 2021, Dynatrace and AppDynamics still do not have a sink
implementation in Veneur.
In 2012, while most organizations were making the switch to
microservices architecture, Soundcloud ran into a set of similar
challenges while scaling their existing monitoring system. To solve
these challenges, SoundCloud created Prometheus: a way to
instrument once and output everywhere.
Prometheus is inspired by Google’s Borgmon monitoring system.
Instead of using a sink that pushes data to an aggregator system,
Prometheus instrumentation exposes a metric endpoint (usually an
HTTP endpoint in /metrics). The Prometheus server scrapes the
metric endpoint. While most other systems are push-based, pushing
data out toward an aggregator, Prometheus is pull-based. This
represents a major innovation: because push-based systems must
wait for servers to respond to requests, they can cause delays and
performance degradation. Pull-based systems expose data by using
a broadcast system, “listening” to and then broadcasting data
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without affecting or even notifying the system producing the data.
This eliminates the need for agents, and for most applications, its
impact on performance is almost negligible. Figure 3-3 shows
agentless metrics in Prometheus.

Figure 3-3. Prometheus’s exposition format, supported by vendors

The shift to pull-based metrics collection has allowed SRE teams to
better control the metrics they collect. The caveat is that for a pull-
based system to be effective, it needs a standard data format to
eliminate the need for conversion. Similar to Borg, Prometheus
created its own exposition format, Prometheus Exposition (followed
by OpenMetrics), then wrote clients that use it to expose metrics
simply.
Additionally, Prometheus scrapes application endpoints
asynchronously with labels included! This makes it much simpler to
detect when an application is down. It also makes the metrics
reliable and as scalable as the application itself. This also allows for
metrics collection with more dimensions, which is a better fit for
microservices-based architectures.
Metrics instrumentation becomes part of the application rather than
a separate process, as shown in Figure 3-4.
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Figure 3-4. Push-based agent instrumentation versus pull-based agentless
instrumentation

Another contributor to Prometheus’s reliability is the nature of the
pull model. The pull model is inherently reliable because if the
collector is down then it simply waits longer to pull the metric, while
the push model will fail.
Prometheus thus solved the two big problems Stripe had identified:
reliability and collection scalability. It has since been adopted so
widely that most open source tools in the cloud native ecosystem
support Prometheus metrics exposition.
Its pervasiveness  became especially evident when cloud native
ecosystems started to build tools and standards on top of
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Prometheus. Of these, the most important is Open Metrics, a format
standard that is 100% compatible with the Prometheus exposition
format. This means that any toolsets or vendors that are compatible
with Prometheus are now forced to be interoperable with each
other.
Both metrics sinks and Prometheus tools and standards, then, give
SRE teams greater control over their metrics instrumentation. What
impact has this had on the cloud native ecosystem?

Prometheus: The Good and the Not-So-Good
For good or bad, the industry is adopting Prometheus. After
Kubernetes, it was the second project to attain “graduated” status
from the Cloud Native Computing Foundation, which requires
meeting stringent criteria.
Prometheus itself has many advantages, the foremost of which are:
Dimensional metric data models

Prometheus uses a dimensional metric data model that allows
flexibility when labeling metric data. You can use these
dimensions to query metrics using the PromQL language.

Service Discovery
Prometheus can use Service Discovery native to the system
Prometheus is monitoring. For example, Prometheus can self-
discover pods endpoints using Kubernetes’s own Service
Discovery APIs.

Deep integration between PromQL and alerting
Prometheus has a built-in Alertmanager subsystem that can
push to paging systems like PagerDuty and Slack. Alertmanager
uses PromQL to build alerts and thresholds.
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However, with all good systems, it has disadvantages as well:
Generic use case

The use case for Prometheus is too generic: it isn’t built for any
one type of application, so you have to configure it for your
specific system, including creating metadata labels for each
metric type. The relabeling configuration becomes complex as
you collect more metrics.

Annotation leads to complexity
The more dimensions your metrics have, the more complicated
it gets to configure Prometheus scraping. You can solve this
problem easily by using tools like PromLens and taking care to
annotate metrics only when absolutely necessary.

Hard to operate reliably
Prometheus is hard to operate reliably. Prometheus runs as a
single binary, which means it’s easy to stand up but harder to
keep running on unexpected errors. Having Prometheus run in
production means tweaking and fine-tuning to keep Prometheus
reliable. You end up spending time on Prometheus that you
could (and should!) be spending on your core business
applications instead. The only exception to this rule is if your
business runs Prometheus full time, as with the fully managed
options we will discuss later in this chapter.

Horizontal scalability
The biggest disadvantage of Prometheus is that its server uses
vertical scaling.

We’ll discuss horizontal scaling in more depth later, but first you
need to understand how scaling works, so let’s take a quick detour.
In general, there are two types of scaling: horizontal and vertical.



Horizontal scaling, also sometimes called fan-out scaling, is based
on multiple servers, while vertical scaling is based on the resources
of one server. Most distributed systems are scaled horizontally
because it is faster and more cost-effective.
Prometheus does not support horizontal scaling out of the box. Most
Prometheus servers instead scale vertically. For big Prometheus
deployments, then, you need a giant server with lots of CPU and
memory. This is bad for many reasons; let’s look at four of them:
Single point of failure

If there is an outage in the Prometheus server’s region or data
center, that server becomes a single point of failure. Compare
that with cloud native systems, which are built on the
assumption that networks are unreliable and compute is
ephemeral.

Easily overloaded
The Prometheus server tends to get overloaded with tasks. As
more applications go online, it scrapes metric data more slowly.

Hard to automate
Vertical scalability means that the Prometheus server must be
treated like a pet, not cattle, as the famous analogy goes.
Patches and configurations cannot be automated easily—and
should not be—in case of any version incompatibility.

Limited scalability
In the cloud, there is a high ceiling of compute types available
for machines, but this is by no means infinite. At some point,
vertically scaling Prometheus is no longer an option.

That said, there is a way to scale Prometheus servers horizontally.
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Horizontal Scalability
A Prometheus server is itself an intricate web of tools. Take
Alertmanager for example, a component of the Prometheus server
that generates alerts on the back of PromQL-based queries. Each
component has to be scaled separately. The same is true for most
other Prometheus components, like HTTP Service Discovery,
Prometheus Storage, Prometheus Querying API, and Prometheus
WebUI.

Self-Managed Remote Storage Options
There are two main options for horizontally scaling Prometheus:
self-managed remote storage and fully managed SaaS solutions.
We’ll look at three self-managed options first, then move to four
fully managed options.

Thanos
Thanos adheres to two classic Unix philosophies: “do one thing
well” and “keep it simple.” This is important because its architecture
can get complicated fast.
Thanos does not divide the Prometheus server into multiple
functionality components. Instead, it uses its own APIs to extend
the Prometheus server. You might say Thanos runs as a sidecar
attached to a Prometheus pod.
The biggest advantage of this is that you can pick and choose which
functionalities you need while running your Prometheus server
similarly to how you would run a single server. Persistence is
handled by your cloud provider’s blob storage, and there is no need
for sharding individual Prometheus components.
According to Thanos documentation, “The only explicitly scalable
components are query nodes, which are stateless and can be scaled



out arbitrarily. Scaling of storage capacity is ensured by relying on
an external object storage system.”
In short, the only parts of Thanos you need to run are the sidecar
and the blob storage. Everything else is optional. The only
additional cost is the price of storing and querying data.
However, the disadvantage is that blob storage performance is
worse than reading data in file storage, making queries slower. File
storage is not used to cache data in chunks; only index data is
cached. This means that each time you run queries that would need
blob storage retrieval, the performance suffers.

Cortex
The first project that tried to horizontally scale Prometheus using
remote storage was Cortex, famously dubbed the “Frankenstein
project” because it stitched together a big cobweb of functionalities,
illustrating the difficulty of this task. It has since compacted some of
these disparate functionalities into a smaller set of logical units to
run.
Cortex has a different approach from Thanos’s minimalism: it
designed a set of microservices that individually reuse codes and
shards from Prometheus libraries. Its architecture (Figure 3-5)
essentially reimagines Prometheus, recreating various components
to work as if Prometheus had originally been written with horizontal
scalability in mind.
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Figure 3-5. High-level concept diagram of Cortex’s architecture

Cortex separates reads from writes. The read part of the
architecture uses Cortex Querier to create a horizontally scalable
way to query Prometheus remote storage. Querier heavily relies on
caching query results, queueing large queries, and splitting large
queries into different Queriers to produce quick results.
The write part of Cortex is much more complex. Cortex Distributor
handles incoming data from Prometheus scraping, ensuring it is
valid and not duplicated. It uses a hash ring algorithm with a key
value database (like etcd or consul) to ensure high availability.
Storage is done through the Cortex ingesters, which are also highly
available and semistateful. They achieve high availability by
splitting the storage using a hash ring algorithm, similar to writes.
The Cortex ingester retains the data in memory until a batch job is
run, then puts the data into long-term object storage.
You may have noticed some parallels with Thanos. ​​Cortex is much
more complicated to run than Thanos, but also generally more
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scalable since it shards individual components and runs them as
microservices.
In March 2022, Grafana Labs announced they forked Cortex and
relicensed it as Mimir under the AGPLv3 license. As a result, they
will no longer contribute to Cortex. Since Grafana Labs employees
were the primary maintainers of Cortex, its future remains uncertain
as of this report’s publication. For the time being, it continues to be
a project licensed under Apache 2 as part of the CNCF, and new
maintainers will need to maintain the project independently from
Grafana’s fork, Mimir. As a fork, Mimir reuses similar components
and architectural principles as Cortex.

M3
M3 provides a turnkey, scalable, and configurable multitenant store
by using M3DB, its scalable backend-storage solution, as a
Prometheus remote storage backend. M3 Coordinator acts as a
Prometheus sidecar to horizontally scale writes and reads.
Not only do M3DB instances scale Prometheus’s storage
horizontally, but they can also improve its performance. Because M3
reads and writes to disk rather than blob storage, reads and writes
can be much faster, as they are with Thanos or Cortex. The trade-
off is that M3’s storage is not infinitely scalable. In practice, this is
less of a concern when running in the cloud, where you can request
block storage and nodes on demand. Additionally, M3 and Cortex
are more complicated to run than Thanos because they use sharded
architecture for individual components.
Both Thanos and Cortex have larger communities than M3DB does.
At a production-ready scale, however, M3DB has proven to be a
good fit for big companies like Walmart and Uber. M3 also allows for
more specific granularity in retaining metric data: for example, all
metrics tagged with keep_30days can be kept for 30 days with a
simple configuration. You can also downsample metric data in long-
term storage to minimize its size.



In a review of M3DB for Prometheus-as-a-service, Logz.io notes that
its capabilities are “not as robust as one would expect for a
production-level database.”  Be sure to run your own tests to assess
whether it fits your use case.

Choosing the right self-managed remote storage option
The primary drawback to self-managed remote storage is that it is
complicated to build and run with high levels of availability. The
lifecycles and configurations of these three systems (M3, Thanos,
Cortex) require specialized knowledge of the inner workings of both
that system and Prometheus.
How much do ease of configuration and performance matter to you?
If you need high-performance reads and writes with easy
configuration and proven production scale, running M3 may be
preferable. If cost matters more, Thanos might be the right option,
since it utilizes cheaper blob-storage services. If, however,
community-wide adoption and ease of scaling matter most to you
and you have a dedicated team that is not afraid of complexity,
then Cortex is likely your best choice.

Fully Managed SaaS Options
Having a good understanding of your organizational structure,
goals, objectives, and tech stack is key to making any well-informed
decision. When it comes to choosing between fully managed SaaS
options, however, we think that heuristics—hands-on exploration—
are most useful. We encourage you to look at four specific
heuristics:
Prometheus conformance

Prometheus conformance measures what it takes to lift and shift
metrics from your old agent-based system to Prometheus. The
more your option conforms to Prometheus, the more flexibility
you get to move between vendors and open source. You also get
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backward compatibility to any version of Prometheus in the open
source ecosystem, so you can access all the benefits of both the
open source and proprietary tools.

Operational integration
It is much easier to implement a system that has native
integration with your existing system; otherwise, you have to
build translation APIs. Having a good level of integration means
you can easily get up and running and start to realize a return
on your investment.

Full observability feature sets
Feature sets let you use existing functionalities in your fully
managed option rather than building things on top of that
option. This saves time and allows you to focus on building
observability tailored to your organization’s needs.

Reliability
In our view, the most important heuristic of any observability
system is reliability. After all, if you are outsourcing your
monitoring system to a fully managed system, the last thing you
want is unreliable monitoring in the middle of an incident.
Reliability heuristics means that your monitoring solution should
allow you to monitor your systems consistently without fail, even
during massive internet outages, force majeure events, and
cybersecurity incidents, and with all the scalability you require to
understand your system.

All of the fully managed services here, with the exception of
Chronosphere and Google, use Cortex as their base platform.
Chronosphere uses M3.

Amazon Managed Service for Prometheus and Google Cloud



Managed Service for Prometheus
Amazon Managed Service for Prometheus and Google Cloud
Managed Service Prometheus are both good choices if you want full
to high conformance with Prometheus. Both have good native
integration with existing Prometheus setups on their respective
cloud environments. Both are also very reliable, since they are
running highly scalable cloud environments.
The downside is that neither offering is a full observability platform
built on top of Prometheus; rather, they function as a managed
remote storage solution for Prometheus. This means that platform
features like Prometheus Alertmanager (for alerting based on
Prometheus queries) and Grafana (for dashboarding) still have to be
built separately. It will take time for your SRE team to add the
functionality needed to extend into a full platform.
Another downside to using either of these fully managed services is
that if it is hosted in the same region as your production cluster, you
will not get alerts at all if your production applications are down.

Grafana Cloud
Grafana Cloud is a full observability platform offering some of the
features SRE teams use most, like dashboarding, synthetic
monitoring, support alerting with integrations, and OnCall
functionalities. Grafana Cloud uses Mimir (a fork of Cortex) behind
the scenes, allowing low-cost storage and infinite scalability, and is
fully compliant with Prometheus.
Integration from Prometheus Open Source to Grafana Cloud should
be a seamless switch; switching from Prometheus to Grafana Cloud
will be a straightforward and familiar experience for most SRE
teams.
As for reliability, Grafana Cloud has experienced multihour outages
on its shared infrastructure in 2021 and 2022.  They attribute these
outages to the complexity of running Cortex/Mimir.
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Chronosphere
Chronosphere is a full observability platform built on top of M3 and
is fully conformant with Prometheus. It integrates natively with both
Prometheus-based systems and StatsD systems like Graphite.
It includes feature sets that make SRE teams’ lives easier, like a
Query Builder to facilitate writing PromQL. Dashboarding is
available via a Grafana-compatible user interface and supports both
StatsD and Prometheus metrics. The tight linking between traces
and metrics also allows for more contextual visibility.
Operationally, Chronosphere allows for control mechanisms like rate
limiting, or limiting the number of metrics each team is allowed per
second. Profiling metrics describe how much volume is coming from
individual Prometheus labels. In addition, Chronosphere’s
performance reacts to changes in the metric data being queried or
stored. However, it does not yet support logs out of the box.
Chronosphere is three years old, but there have been no
documented outages as of this writing.

Choosing Between Self-Managed and Fully
Managed
As discussed previously, horizontally scaling self-managed
Prometheus is difficult. There are only two scenarios where we
recommend running self-managed. The first is if your main business
is running observability systems—that is, if you are a company like
Chronosphere, Grafana Labs, or New Relic. The second scenario is if
your requirements for scaling are sufficiently big that any of the fully
managed options would be too small for your organization. This
would only apply to large enterprises on the scale of Amazon,
Google, Facebook, or Apple.
Otherwise, our recommendation is to go with fully managed
options. In our view, any cost savings you could achieve by running



self-managed Prometheus would be offset by the high total cost of
ownership when horizontally scaling.
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Chapter 4. Strategies for
Controlling Metric Data
Growth

Metrics are growing in scale, and that means the data they produce
also grows exponentially, far outpacing the growth of the business
and its infrastructure (as shown in Figure 4-1). Growth this fast
causes problems: storing all of the data your metrics produce about
everything (logs, metrics, and traces) would be prohibitively
expensive in terms of both cost and performance. In a survey of 357
IT, DevOps, and application development professionals by ESG,
71% saw the growth rate of observability data as “alarming.”

Figure 4-1. Cloud native’s impact on observability data growth

Why so much growth? The reasons include faster deployments, a
shift to microservices architectures, the ephemerality of containers,
and even the cardinality of metric data itself. This causes a
dilemma: how should you identify which metric data is worth
storing?

1

2



To answer this question, you need to understand the major use
cases for metrics in your organization. Look at RPC traffic,
request/response rates, and latency, ideally as they enter your
system. If you have, for example, 100 microservices, how many
dimensions should you add to your metrics? Should you capture all
data as it comes in for each metric?
Metrics cardinalities can generally be classified into three types, as
Chronosphere’s John Potocny notes:
High-value cardinality

These are the dimensions we need to measure to understand
our systems, and they are always (or at least often) preserved
when consuming metrics in alerts and dashboards.

Low-value or incidental cardinality
The value of these dimensions is more questionable. They may
be an unintentional by-product of how you collect metrics
instead of dimensions that you purposefully collected.

Useless or harmful cardinality
Collecting useless or harmful dimensions is essentially an
antipattern, to be avoided at all costs. Including such dimensions
can explode the amount of data you collect, resulting in serious
consequences for your metric system’s health and significant
problems querying metrics.

To determine which type of cardinality you’re dealing with, look
back to the principle we laid out in the beginning of this report: take
an outcomes-based approach. Is the data you’re getting useful for
remediation? How does it affect your customers’ outcomes? Is it
really necessary to capture this data through a metric, or could you
capture it through traces or logs instead? If you’re not getting what
you need to solve your problems, what’s missing? If you’re getting
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metric data that you don’t or can’t use, can you identify what isn’t
helpful?
Next, we’ll look at the three key strategies of an outcomes-based
approach: retention, resolution, and aggregation. They are useful
whether your approach is fully managed or self-managed. Note that
Thanos and Cortex do not have special resolution and aggregation
functionalities like M3 does; they use Prometheus’s default
capabilities instead.

Retention
How long are you keeping your data? Prometheus’s default
retention period is 15 days. However, most organizations we’ve
worked with retain all metric data for 13 months, whether it relates
to production, staging, or even development environments! Do you
actually need or use 13 months’ worth of metric data?
Let’s say you’re collecting metrics for development environments
and retaining them for 13 months. Is that useful if the development
environment gets recycled every week? What if you retained those
development metrics for a few weeks instead?
Don’t just stick with the default: base your retention periods for
different kinds of data on the outcomes that you can gain by
retaining it. If you reduce the retention period for data that you do
not need, the overall volume will grow at a much more reasonable
rate.
In Prometheus, you can configure retention globally by using --
storage.tsdb.retention.size and --
storage.tsdb.reten⁠tion​.time flags at startup. The self-
managed remote storage systems Thanos and Cortex use blob
storage as an ultimate backend store, suggesting the possibility of
infinite retention. However, M3 has a different approach, which we’ll
examine in a moment.



Resolution
How often do you collect metric data? Can you improve your
outcomes by collecting data more frequently? The frequency of data
collection is called resolution—more data points, just like more
pixels in a photograph, would mean a higher resolution.
Let’s say your development environments are deploying multiple
times a day. Do you need per-minute metrics for all of them?
Perhaps for some applications that would be helpful. But other
environments or applications might need only metrics every 10
seconds or every minute. Some might not need metrics at all!
Collecting at a lower resolution for certain environments can
drastically reduce your metric data’s growth.
Using Prometheus, you can resolve individual scrape jobs using
scrape_interval. This example below resolves metrics every
minute:

- job_name: nginx_ingress
  scrape_interval: 1m
  scrape_timeout: 10s
  metrics_path: /metrics
  scheme: https

Feel free to make the scrape_interval as granular as possible,
since it is tied to individual scrape jobs.

Applying Resolution and Retention in M3
If you are using M3, you can apply both resolution and retention
strategies with the mapping rules feature. A helpful doc by M3
examines the following rule:

downsample:
  rules:
    mappingRules:
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      - name: "mysql metrics"
        filter: "app:mysql*"
        aggregations: ["Last"]
        storagePolicies:
          - resolution: 1m
            retention: 48h
      - name: "nginx metrics"
        filter: "app:nginx*"
        aggregations: ["Last"]
        storagePolicies:
          - resolution: 30s
            retention: 24h
          - resolution: 1m
            retention: 48h

In this rule, the authors note, “We have two mapping rules
configured—one for mysql metrics and one for nginx metrics. The
filter determines what metrics each rule applies to. The mysql
metrics rule will apply to any metrics where the app tag contains
mysql* as the value (* being a wildcard). Similarly, the nginx
metrics rule will apply to all metrics where the app tag contains
nginx* as the value.”

M3’s metric data storage policies can define dynamic settings that
allow for a mix of retention and resolution, unlike those of Thanos
and Cortex, which only has a single resolution and retention setting
for all the metrics when scraping metrics, supported by default in
Prometheus.

Aggregation
Aggregation is perhaps the most effective of these three strategies.
Most applications that generate metrics generate high cardinality
and volume by default.
Imagine you have a web application that is running behind NGINX
Proxy. NGINX produces very granular HTTP metrics: when you start



scraping metrics, by default, it’s all or nothing. Do you really need
data for every dimension? If you’re trying to measure the latency of
your HTTP responses, will it be useful to know the NGINX version or
which data center it’s running on?
Combining the right dimensions and dropping any that aren’t useful
is important in controlling the growth of your metric data.
Using the aggregation strategy is about paying attention to what
you’re capturing, choosing the metrics and dimensions you really
need and combining them, and dropping the rest to keep metrics
growth under control. Additionally, the aggregation strategy can be
used in conjunction with resolution and retention strategies.
In Prometheus, you can aggregate metrics via recording rules,
which periodically compute expensive queries in the background,
such as aggregating and dropping a high-cardinality dimension.
While recording rules can help improve performance by computing
aggregates, they do not make it possible to drop the original data;
doing so requires a federated setup and is quite cumbersome to
manage.
To successfully reduce metric data through aggregation in
Prometheus, you have to federate Prometheus instances and then
combine and drop metrics via recording rules, as in Figure 4-2.



Figure 4-2. Showing a combination of federation and recording rules to aggregate
metrics

The reason we aggregate then federate is to work around the
limitation of having to store data in Prometheus before we can use
recording rules to aggregate it. In this setup, we store, then
aggregate, then forward only the aggregated data to another
Prometheus instance. This allows us to realize a net reduction in
metric data at our final storage location.
Here is an example of a recording rule for aggregation:

groups:
 - name: node
   rules:
    - record: job:process_cpu_seconds:rate5m
      expr: >
        sum without(instance)(
          rate(process_cpu_seconds_total{job="node"}[5m])
        )

This runs the
rate(process_cpu_sec⁠onds_total{job="node"}​[5m])
query, dropping the dimension instance, then creates a new metric,
job:process_cpu_seconds:rate5m. This new metric has a
lower cardinality than the original process_cpu_seconds metric.



Applying Aggregation in M3
Applying aggregation in M3 has a similar effect as in Prometheus.
The main difference is that M3 has functionalities called mapping
rules and rollup rules, which, when combined, drop unnecessary
metrics efficiently by performing aggregation before anything is
written and choosing what to keep. This makes aggregating cost-
effective. These functionalities also allow M3 to do the same
aggregation as Prometheus—without needing to create a federated
setup. Consider an example from M3:

downsample:
  rules:
    mappingRules:
      - name: "http_request latency by route \ 
          and git_sha drop raw"
        filter: "__name__:http_request_bucket k8s_pod:* \ 
          le:* git_sha:* route:*"
        filter: "__name__:http_request_bucket k8s_pod:* \ 
          le:* git_sha:* route:*"
      - name: "http_request latency by route \ 
          and git_sha without pod"
        filter: "__name__:http_request_bucket k8s_pod:* \ 
          le:* git_sha:* route:*"
      - name: "http_request latency by route \ 
          and git_sha without pod"
        filter: "__name__:http_request_bucket k8s_pod:* \ 
          le:* git_sha:* route:*"
            metricName: "http_request_bucket" \ 
              # metric name doesn't change
            groupBy: ["le", "git_sha", "route", \ 
              "status_code", "region"]
        filter: "__name__:http_request_bucket k8s_pod:* \ 
          le:* git_sha:* route:*"
            metricName: "http_request_bucket" \ 
              # metric name doesn't change
            groupBy: ["le", "git_sha", "route", \ 
              "status_code", "region"]
        filter: "__name__:http_request_bucket k8s_pod:* \ 
          le:* git_sha:* route:*"
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            metricName: "http_request_bucket" \ 
              # metric name doesn't change
            groupBy: ["le", "git_sha", "route", \ 
              "status_code", "region"]
            type: "Increase"
        - rollup:
            metricName: "http_request_bucket" \ 
              # metric name doesn't change
            groupBy: ["le", "git_sha", "route", \ 
              "status_code", "region"]
            aggregations: ["Sum"]
        - transform:
            type: "Add"
        storagePolicies:
        - resolution: 30s
          retention: 720h

The rollup rule above eliminates the k8s_pod label for the
http_request_bucket metric that we’re matching against. To do
this, we add up the http_request_bucket metric grouped by the
other dimensions it has that we want to keep. In addition, we pair it
with a mapping rule that drops the original data, which allows us to
retain the original http_request_bucket metric name rather
than creating a new metric name for the aggregate.

Conclusion
Explosive data growth does not equate to better observability—
there is so much more to it. Finding the right balance between too
much information and not enough is key. The metrics you capture
and retain should be useful to your business goals and outcomes
and should measure crucial business and application benchmarks.
These three key strategies—resolution, retention, and aggregation
—can help you control the growth of your metric data, so you’re
only getting and keeping what counts. Remember, it’s all about
outcomes.
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Chapter 5. Building Great
Metrics Functions

To give you more ideas on how to build a great metrics function,
we’ve compiled some tips and tricks in this final chapter.

Out-of-the-Box Standard Instrumentation and
Dashboarding
Life is increasingly complex in the DevOps world. Software
engineers are expected to do much more than write code: we
productionize applications, architect and build systems, make
everything compatible across the organization, and ensure that
everything we make follows standards.
Thanks to open source tools like Envoy and NGINX, though, SRE
teams and software engineers can enable standardized metrics and
dashboards right out of the box. For example, if you’re collecting
Prometheus metrics with Envoy or NGINX, you can give any HTTP-
based application a Grafana dashboard. If you need organization-
specific metrics, such as for sales on a specific API, you can build a
sales dashboard for use by any team that implements the API. You
can even create a RED (Request Rate, Request Error, Request
Duration) metrics dashboard out of the box, so that your software
engineers can observe and monitor these customized, prebuilt
applications without needing to learn PromQL or add intrusive
instrumentation to their code.
Rely on your software engineers or SRE/observability teams to help
you build and create standardized dashboards. They know the
organizational context better than any vendor. For example, if your
organization relies heavily on Remote Procedure Calls (RPCs), you’ll



want to create RPC dashboards and alerts. You can collect these
metrics using appropriate middleware (such as the Java or Go
Prometheus gRPC middleware libraries) or metrics exposed by an
RPC proxy. (Envoy, for instance, supports proxying gRPC traffic and
exposes the corresponding metrics). If your main event bus
management system is Kafka, you could start collecting metrics
with the Kafka metrics exporter for Prometheus, then create
dashboards and alerts that monitor all Kafka topics for each
application. What do your colleagues need to know to achieve their
desired outcomes?

Adding Business Context to Standardized
Metrics
Once you have a respectable toolset of standardized metrics and
dashboards, it’s time to tie them into your business context.
Perhaps you decide to enrich your metrics by adding a new label,
client_name, to the standard out-of-the-box instrumentation. You
can use client_name to understand how traffic is being served
between different clients. For example, if client_name ACMECorp
is creating more requests to your services, then you can scale the
servers hosting ACMECorp and possibly send an email to ACMECorp
about the increased usage.
Another example of adding business context is customizing how you
route alerts. You might add the names of the app and the team that
owns it to the alert, so it’s always routed to the right people. You
can even go one step further by adding dependent applications.
This way, the alerts go not only to the team that owns the app but
also to the teams downstream from that app. This allows the
organization to detect a cascading failure and pinpoint where it
starts.



Tiering applications is another common use case for adding
business context to metrics. Some businesses have systems that
should never stop running, under any circumstances—if they did, it
would cost the business more than any other applications. You can
add labels with tiers to differentiate the most crucial applications,
then route alerts differently based on tier. This means that if a
system labeled tier=1 goes down, you can alert not only to your
technical staff but also sales, PR, and the executive team, allowing
everyone to act quickly and get ahead of potential problems.

Creating SLOs from Standardized
Instrumentation
Service levels, which you can derive from your metrics, are a great
way to align site reliability with your business goals. Stavros
Foteinopoulos of Mattermost lays out three concepts that are key to
understanding service levels: service level indicators (SLIs), service
level objectives (SLOs), and service level agreements (SLAs).
Foteinopoulos defines the SLI as a “carefully defined quantitative
measure of some aspect of the level of service provided”—in short,
a metric. An SLO is “a target value or range of values for a service
level that is measured by an SLI,” or what you want your metric’s
value(s) to be. An SLA is a contract that promises users specific
values for their SLOs (such as a certain availability percentage) and
lays out the consequences if you don’t meet those targets (SLOs).
Let’s say your company builds an API that provides memes about
cats for app developers to use. Your SLI is the percentage of time
your API is available to all downstream external customers. If your
SLO is 99% availability, that means you’ve promised your customers
no more than 3.65 days of downtime per year. This is measured by
an error rate formula, since down time is at its core a kind of error.
The formula, as Foteinopoulos notes, is:
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Error Rate = Error Requests / Total Requests

If downtime errors exceed the limit specified in the SLO, your SLA
states that you agree to donate $1 to an animal shelter per
additional minute of downtime.
The beauty of SLAs is that they are not restricted to external
customers. Some companies use internal SLAs to assign employees
an “error budget,” then rotate staff between software engineering
and SRE based on whether their error counts stay within the
specified values. Steven Thurgood of Google writes in The Site
Reliability Workbook that error budgets “are the tool SRE uses to
balance service reliability with the pace of innovation.”
If you use availability as an SLI, you’ve likely already instrumented
a set of standardized metrics, like the Prometheus RED metrics. You
can use those metrics to build a dashboard, which will make it fairly
straightforward to create realistic SLOs based on your performance.
Sloth by Slok (Xavier Gallego) is a tool for onboarding service levels.
It lets you create Prometheus rules and Grafana dashboards quickly
and easily, in a way that stays up-to-date as you add new
applications to your system over time.
In addition to using standardized metrics like the RED metrics, it’s
also important to standardize across the organization what each SLI
means. For example, what does 99% availability mean? Does that
mean if any error occurs in a time window, it’s not available? Does
it mean the error rate has to be above 99%? What is the time
window we’re checking? Every minute, every hour? The answer to
this varies, but the rule of thumb is that it needs to be consistent
across an organization.

Monitor the Monitor
Who monitors the monitoring system? Do you even know? What
happens when it goes down?
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For the sake of reliability, your monitoring should not live in the
same region where you run the infrastructure. If it does and the
region is misconfigured or runs out of resources, then you can no
longer monitor the infrastructure within that region.
If possible, use multiple regions or a region separate from where
your application lives. This way you can monitor the cluster and
applications even when there is a regional data center outage. This
matters whether you run your self-managed monitoring system in
the cloud or data center or even if you are utilizing a fully managed
option.
Ideally, you’ll want to use a different cloud provider from the one
you use for production workloads. This ensures you will still have a
monitoring system even if an entire cloud service goes down. SaaS
fully managed service providers usually use cloud providers as well.
Ensure that their system does not utilize the same provider or the
same region where your production workloads are running.
Finally, use an external probe on the internet (if it is a publicly
facing application) or an internal probe in a different region but
within your network. This gives your engineers real-time user
monitoring: they can see what your end users see. End users’
experiences, whether they are external or corporate, should always
be your top priority when monitoring applications.

Write and Read Limits
Because metric cardinalities are multiplicative, one engineer can
write one query, but that query can read metrics with a cardinality
in the order of millions or, in the absolute worst case, billions.
Imagine, for example, that a software engineer accidentally lists all
of the cardinalities within Prometheus by using a wildcard star (*).
No matter how powerful your backend system is, whether you are
writing metrics or reading them, you cannot safely guarantee that



your system will not be overloaded. Build a detection system that
allows you to understand if one of your queries or writes will cause
an outage.
For write use cases, show your developers the cost of each metric
write they add by allowing them to monitor their publishing rate.
Once they can view this, they can see their usage relative to other
applications and teams in their organization, and it is easy to show
them when they are using more than their fair share of resources.
This will help them assess and think twice about whether they
really need a metric before adding it to the observability system.
Furthermore, once they can view writes, you can start blocking
these writes.
For read use cases, remember that every query uses the same set
of resources. Users should only query for the data they actually
need and make sure the cardinality matches their appropriate use.
For instance, if you never query the P99 latency on a per container
or pod basis, then there is no need to query the high cardinality
metrics from your dashboards or alerts. Instead, query aggregated
metrics that don’t have the pod or container granularity (either
using recording rules or an intermediate aggregator).

Safe Ways to Experiment and Iterate
Let’s say you have a basic monitoring system. You want to keep it
modern and highly upgradeable, but the observability tool’s
landscape changes too fast for you to keep up. What’s more, SREs
are in high demand and tend to have high turnover. This can create
a sense of fear that anything you touch will break the observability
system and lead SREs to conclude that it is much more prudent to
leave things as they are.
The problem with that is that you lose the ability to experiment and
iterate and to learn new technologies and tools without breaking
the system observability tech stack that your team is used to



running. This causes a downward spiral of being stuck but also
responsible for innovating. This can feel like trying to run a
marathon with your shoelaces tied together.
How do we get away from this dilemma? A lot of it is about making
it safe to create a whole new set of monitoring data (or a subset of
it) in another observability system. Simply spin up another
observability system like Prometheus that can scrape data from the
/metric endpoint every 10 seconds instead of every second (see
Figure 5-1). Try to get 10% of all production observability data onto
the new system without your developers doing anything additional.

Figure 5-1. Production Prometheus and experimental production Prometheus with
10% of production data

You can use this different set of observability systems to experiment
with things like new relabel rules, upgrading your Prometheus
version, creating a new aggregation across different types of
metrics, ingesting a new set of data from a completely different
type of tech stack, and measuring the daily metric size.
You can also use it to iterate safely on existing tasks, like adding
new cardinality to existing metrics. You can even destroy and
recreate your observability stack to teach new SRE engineers how
its system works. The idea is to make it safe for your SRE team to
iterate and experiment without your developer needing to change
or redeploy code. This removes the element of fear and empowers



your teams to learn more about your observability system and your
entire application suite.
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Conclusion
The monitoring and observability landscape has changed greatly
over the past three to five years. System architectures are
sufficiently different from their pre–cloud native counterparts to
demand a new paradigm, born from radically rethinking, as an
industry, how we build and implement monitoring systems.
This kind of radical rethinking allows new ideas to emerge. One
such idea, as you’ve learned, is Sridharan’s “three pillars of
observability.” Although it’s a flawed paradigm that focuses on the
data rather than the outcome, it’s also an inspiring glimpse into
what’s possible.
To refine our focus and make a discernible impact, our thinking
about cloud native monitoring must pivot away from the “three
pillars” and toward the “three phases of observability” we’ve
outlined in this report. These three phases allow for a goal-driven,
pragmatic approach to cloud native monitoring that emphasizes
remediating problems and improving business outcomes.
Open source solutions continue to drive innovation, even as more
enterprises adopt cloud native monitoring. The companies
encouraging them to do so, like Chronosphere, Grafana Labs,
Weaveworks, Amazon, and Google, are adopting more and more
open source technologies, as well as creating and using frameworks
that allow cross-compatibility between various technologies and
organizations.
We’ve emphasized metrics in this report because they can provide a
high-level overview of everything happening in your system, at a
fraction of the cost of logs and traces. Mathematical modeling,
together with metrics aggregation, can provide sufficient alerting to
allow you to remediate issues quickly and efficiently. It’s not an
exaggeration to call metrics the keystone of your cloud native
observability solution. However, as your systems grow more



complex, the metric data you collect will also grow exponentially—
and this can present problems when it comes to cost and storage.
We recommend fully managed monitoring solutions over self-
managed, because implementing and maintaining the latter can be
complex and costly. Ultimately, though, either type of solution can
make it easier to collect, aggregate, and analyze metrics and can
help you manage metric data growth while optimizing for different
strategies based on your needs.
Building a great metrics function is all about finding the right
strategy. Keep your eyes on the prize by focusing on outcomes, and
your cloud native monitoring journey will be off to an exceptional
start.
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