

Cloud Native Observability
Practical Challenges and Solutions for Modern

Architectures

Kenichi Shibata, Rob Skillington, and Martin
Mao

Cloud Native Observability
by Kenichi Shibata, Rob Skillington, and Martin Mao
Copyright © 2024 O’Reilly Media, Inc. All rights reserved.
Printed in the United States of America.
Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North,
Sebastopol, CA 95472.
O’Reilly books may be purchased for educational, business, or sales
promotional use. Online editions are also available for most titles
(http://oreilly.com). For more information, contact our
corporate/institutional sales department: 800-998-9938 or
corporate@oreilly.com.

Acquisitions Editor: Megan Laddusaw

Development Editor: Gary O’Brien

Production Editor: Gregory Hyman

Copyeditor: nSight, Inc.

Interior Designer: David Futato

Cover Designer: Susan Thompson

Illustrator: Kate Dullea

February 2024: First Edition

Revision History for the First Edition

2024-02-20: First Release

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc.
Cloud Native Observability, the cover image, and related trade

http://oreilly.com/

dress are trademarks of O’Reilly Media, Inc.
The views expressed in this work are those of the authors and do
not represent the publisher’s views. While the publisher and the
authors have used good faith efforts to ensure that the information
and instructions contained in this work are accurate, the publisher
and the authors disclaim all responsibility for errors or omissions,
including without limitation responsibility for damages resulting
from the use of or reliance on this work. Use of the information and
instructions contained in this work is at your own risk. If any code
samples or other technology this work contains or describes is
subject to open source licenses or the intellectual property rights of
others, it is your responsibility to ensure that your use thereof
complies with such licenses and/or rights.
This work is part of a collaboration between O’Reilly and
Chronosphere. See our statement of editorial independence.
978-1-098-15894-1
[LSI]

https://oreil.ly/editorial-independence

Chapter 1. The Cloud Native
Impact on Observability

Cloud native technologies have changed how people around the
world work. They allow us to build scalable, resilient, and novel
software architectures with idiomatic backend systems using an
open source ecosystem and open governance.
The Cloud Native Computing Foundation (CNCF) defines “cloud
native” as technologies that empower organizations to build and run
scalable applications in modern, dynamic environments such as
public, private, and hybrid clouds.1 Containers, service meshes,
microservices, immutable infrastructure, and declarative APIs
exemplify this approach.
Our own in-the-trenches understanding of cloud native leads us to
define cloud native technologies simply as technologies that are
highly interlinked, flexible, and scalable using cloud technologies as
first-class building blocks.
This then leads us to a discussion about cloud native observability.
However, let’s define what observability is first. According to the
CNCF, observability is “a system property that defines the degree to
which the system can generate actionable insights. It allows users
to understand a system’s state from these external outputs and
take (corrective) action.”2

With this in mind, we are defining cloud native observability as the
ability to measure how well you can understand the total state of
your system with all of the complexities of a highly interlinked,
flexible, and scalable system running in containers on a
microservices architecture in the cloud.

With the above definition, it seems obvious that any existing
principles, practices, or tools that apply to traditional observability
would also apply to cloud native observability. However, as you
soon will learn, this is not the case; many principles are similar but
have unique challenges to overcome.

Challenges of Cloud Native Observability
What, then, is the difference between the observability of a
traditional system and a cloud native system? Mostly it comes down
to the three additional cloud native definitions we stated earlier:

Cloud native systems are commonly interlinked (e.g., via inter-
service calls directly or over a service mesh), causing most
failures to be cascading in nature and making it difficult to
observe the exact cause versus a symptom of a failure. For
example, Slack experienced a major incident caused by a
cascading failure on February 22, 2022.

Cloud native systems are highly flexible and dynamic, making
transient failures an expected state of the system, and
therefore there is a greater need for gracefully handling
failures, which create noise in observability systems. From
October 28 to October 31 of 2021, Roblox experienced a
significant systems failure because of unexpected failures in
Consul (a software used for service discovery) that were not
handled gracefully.

Cloud native systems are typically decoupled and deployed in
smaller units of compute for high scalability, causing a large
amount of telemetry to be added to observability systems. A
study by the analyst firm Enterprise Strategy Group (ESG)
concluded that larger volumes of telemetry are one of the top
three concerns when using or supporting observability
solutions.

https://oreil.ly/4vlIY
https://oreil.ly/AtN4_
https://oreil.ly/AtN4_
https://oreil.ly/s_H4r

These three challenges not only require better tooling and principles
but also practices when dealing with highly sophisticated
spiderweb-like cloud native systems.
A more day-to-day analogy is that traditional observability is akin to
a simple magnet and paper clip. You know that the magnet will
always attract the paper clip; each time there is no change. Same
magnetic force and the same metal.
However, cloud native observability is akin to observing air pressure
in a tire, which is fixed in nature until you try to observe it using an
air pressure gauge. Even the very act of observing the pressure (or
in our case, cloud native services) changes it!
To conclude, cloud native observability is hard because cloud native
services are highly scalable and dynamic. It’s the advantages of
these services that make our job harder than ever before.

Deep Dive into Observability Data
Let’s talk about what we mean by “observability data” anyway. Let’s
take a look at an ecommerce system.
One part of the system is a cart service. Let’s say you ordered a box
of tissues from that ecommerce website. What kind of observability
data does it produce? The cart service might produce an event that
would take stock from a database inventory and subtract from it
one box of tissues. This event firing is both observability data and a
service transaction. Notice that we have not yet explicitly talked
about metrics, logs, or traces. Events are the source of observability
data, such as logs, traces, and metrics, which are derived from such
events that occur within a system.

Observability Data Is Growing in Scale
We described that observability data in a cloud native landscape
increases exponentially. But digging deeper, what is the main cause
of this increase?
There are two main factors for this ongoing explosion of
observability data. They are volume and cardinality. Volume is
simple, the amount of data you collect. Cardinality is much more
complicated; there are many different ways you can slice and dice
your data. We will discuss cardinality in more detail shortly.
Since there are more interconnected services in a cloud native
environment, a greater volume of data is captured per business
transaction than non–cloud native environments. Also, containers
are smaller in unit size than their predecessors, and each container
emits unique telemetry separately. Finally, since there are more
variations of these cloud native services, that data needs to be
sliced using dimensions in a myriad of different ways.
Because of the increased volume and cardinalities in real-world use
cases, we posit that cloud native environments emit 10 to 100
times more data than traditional virtual machine–based
environments.
As a consequence of volume and cardinalities, to achieve good
observability in a cloud native system, you will have to deal with
large-scale data.

Understanding Cardinality and Dimensionality
Two important concepts you’ll need to understand are cardinality
and dimensionality. Cardinality is the number of possible groupings
depending on the observability data’s dimensions. Dimensions are
the different properties of your data, as Rob Skillington explains.3
Think of the labels on a shirt on a store shelf. Each label (in this
simplified example) contains three dimensions: color, size, and type.

Each dimension increases the amount of information we have about
that shirt. You could slice that information into many shapes, based
on how many dimensions you use to sort it. For example, you could
look by just color and size, size and type, or all three.
Dimensionality means being able to slice the metrics into multiple
shapes.
Increased dimensionality can greatly increase cardinality.
Cardinality, in this example, would be the total number of possible
labels you could get by combining those dimensions from the shirts
in your inventory. Figure 1-1 visualizes this example by looking at
two dimensions: color and size.

Figure 1-1. Shirt inventory with two cardinalities

There are only two cardinalities in Figure 1-1, even though there
are three possibilities. That’s because the last combination, while
theoretically possible, is not in the inventory and therefore is not
emitted.
Because events have dimensions, any data derived from events has
cardinality. This includes derivatives such as logs, traces, and
metrics.
Now let’s look at what happens if we increase the number of
dimensions, and therefore possible cardinalities, by adding the type
of shirt. Figure 1-2 shows how increasing the number of dimensions
also increases the cardinality of the metrics.

Figure 1-2. Shirt inventory with three cardinalities

What does this look like in practice? For example, assume you
wanted to add a new dimension in an HTTP_REQUEST_COUNT

metric. You want to know which specific HTTP status code created
an HTTP 5xx error. This would allow you to better debug the error
code path server side. To further debug issues introduced by certain
client versions, you need to add something like a
CLIENT_GIT_REVISION dimension in the above HTTP metric.
Let’s calculate how much it will theoretically add to the cardinality:
50 services/applications (including daemon agents/proxies/​
bal⁠ancers/etc.)
× 20 average pods per service
× 20 average HTTP endpoints or gRPC methods per service
× 5 common status codes
× 30 histogram buckets
= 3 million unique time series

However, precisely because it is multiplicative, removing one
dimension will decrease the cardinality multiplicatively as well.
Assume you do not need to determine exactly which pod is causing
HTTP 5xx errors because you can track down the offending error
code path using CLIENT_GIT_REVISION itself:

50 services/applications (including daemon agents/proxies/​
bal⁠ancers/etc.)
× 20 average pods per service
× 20 average HTTP endpoints or gRPC methods per service
× 5 common status codes
× 30 histogram buckets
= 150,000 unique time series

As Bastos and Araújo note, “Cardinality is multiplicative—each
additional dimension will increase the number of produced time
series by repeating the existing dimensions for each value of the

new one.”4 Choosing the right dimensions is key to keeping
cardinality in check.

Cloud Native Systems Are Flexible and
Ephemeral
“Containers are inherently ephemeral,” Lydia Parziale et al. write in
Getting Started with z/OS Container Extensions and Docker. “They
are routinely destroyed and rebuilt from a previously pushed
application image. Keep in mind that after a container is removed,
all container data is gone. With containers, you must take specific
actions to deal with the ephemeral behavior.”5

The other effect of using containers and cloud native architecture is
that distributed systems are more flexible and more ephemeral than
monolithic systems. This is because containers are faster to spin up
and close down. Containers make observing an ephemeral system
difficult, since they come and go quickly: a container that spun up a
few seconds ago could be terminated before we get a chance to
observe it.
According to a survey by Sysdig, 95% of containers live less than a
week.6 The largest cohort—27%—are containers that churn roughly
every 5 to 10 minutes. Eleven percent of containers churn in less
than 10 seconds.
The flexibility of cloud native architectures allows for increased
scalability and performance. You can easily take a pod away or
increase it a hundredfold. You can even add labels to increase the
context of the metrics. This has fundamentally increased the
observability of data produced.
Another key change from traditional workloads is that data
retention in cloud native environments is different. Retaining
terabytes and petabytes of data is easier in cloud native workloads,
as there is virtually unlimited storage. However, in cloud native

architectures, especially in containers, workloads are inherently
stateless and flexible. Retaining data is paramount to prevent loss
of information when termination happens and new containers are
spun up.
This is why data in cloud native architectures is constantly growing
in scale and cardinality. The ephemeral nature of cloud native
systems gives it the flexibility to scale up and down faster than ever
before.

The Goldilocks Zone of Cloud Native
Observability
Another factor in cloud native observability is that business
outcomes of providing a reliable and scalable service are sometimes
decreasing while observability data volumes are increasingly
disproportionate to the value of the additional data collected.
Increasingly, we hear that cloud native observability systems cost
more than traditional observability systems to maintain and run
while counterintuitively delivering reduced business outcomes. But
all is not lost! We believe you can intelligently shape your data
using policies without having to micromanage your data to best
utilize costly telemetry storage. This state is a good balance
between cost and still keeping enough data to deliver better
business outcomes. We call this theory the Goldilocks zone of cloud
native observability. “Goldilocks zone” is used in astronomy to refer
to the theoretically habitable area around a star where it is not too
hot or too cold for liquid water to exist on surrounding planets.7

But why is this cost increasing? What are the factors that are driving
this cost? How do we control this cost while increasing business
outcomes? And more importantly, how do we keep our fellow
observability practitioners from burning out?

We postulate a truism (or a paradox) in cloud native systems that
cloud native adoption itself can feel self-defeating:

To help build better business outcomes in your cloud journey, your
cloud native adoption needs to expand. As you adopt cloud native
further, you need to build more microservices. And as you build
more microservices, you accumulate complexity, which conversely
causes lesser business outcomes.

The complexity we are talking about here is the number of systems
you have to support and the additional increase in failure modes
that can lead to the growth of data each system produces. This
could mean business data but also observability data.

Cloud Native Environments Emit
Exponentially More Data Than Traditional
Environments
Cloud native systems growing in scale to tackle complexity means
the observability data they produce also grows. Based on a study by
ESG, this growth is exponential in nature, far outpacing the growth
of the business and its infrastructure (as shown in Figure 1-3). This
rapid rate of growth causes problems: storing all of the data about
everything (logs, metrics, and traces) would be prohibitively
expensive in terms of cost and performance. ESG also found that
69% of the IT, DevOps, and application development professional
respondents saw the growth rate of observability data as
“alarming.”8

Figure 1-3. Cloud native’s impact on observability data growth (adapted from an
image by Chronosphere)

Why so much growth? The reasons include faster deployments, a
shift to microservices architectures, the ephemerality of containers,
and even the cardinality of the observability data itself to model the
moving picture of this complex environment!

Delivering Reduced Business Outcomes
This moves us to the fact that a higher volume of observability data
in cloud native is correlated with reduced business outcomes. Why
is that?

https://chronosphere.io/

In traditional observability, the main challenge for practitioners was
increasing observability data due to higher transaction volume or
system complexity to meet business needs. There was no standard
way of outputting observability data from traditional systems; each
vendor had their way of doing this (discussed in depth in
Chapter 2).
What little observability data we had was directly related to the
systems we wanted to observe. Since there was less
interdependence, each data point was independently valuable and
presented a slice of critical observation tied directly to obvious
business outcomes.
With cloud native, we now have an abundance of observability data.
Yet, when much of this data is too fine-grained and ambiguous
without further context, its significance decreases and creates more
noise. Instead, we need aggregate data that would be contextually
useful and directly support better business outcomes.
In short, we’re seeing reduced business outcomes due to too much
observability data of low quality and irrelevant to the big picture.
Increasingly we are seeing that practitioners find it difficult to
deliver the same level of business outcomes using the same level of
investments. As Michael Hausenblas explains, “With observability,
it’s just like that: you need to invest to gain something.”9

Observability Practitioners Lose Focus
Practitioner teams tend to get bogged down in the weeds of
instrumentation and lose sight of the fact that more telemetry data
does not always equal better observability. As cloud native systems
become more complex, so does the instrumentation needed to get
telemetry data from these systems, shifting the focus from
conducting data analysis to telemetry management. All of this
creates undue stress and tends to cause burnout for practitioners.

This does not change the need for observability data in the cloud
native world. It simply means it is now harder to extract positive
business value and outcomes from this data. To refocus, we need to
ask the right questions, such as:

Do you instrument critical parts of your code sufficiently?

Which data do you collect?

What is your storage and retention strategy?

How many ways can you slice and dice your data?

Are there dashboards to visualize this data?

Worse yet, practitioner teams may even instrument the wrong data
and present it to the dashboard and the alerting system.
The loss of focus is even more apparent if we improve the
questions:

Do you get alerted appropriately when there is an issue?

Does the alert give you a good place to start your
investigation?

Are the alerts too noisy?

How do you visualize the data you collect?

Do you even use it at all during incidents?

Can you use the dimensions of the metrics to help triage and
scope the impact of the issue?

Are the alerts useful and helpful before and after incidents?

We recommend only instrumenting the telemetry that matters to
your organization, which allows you to focus on outcomes. Focusing
on business outcomes helps practitioners be more connected to the
overall goal of the business, reducing burnout. To achieve this focus,

follow the three phases of observability (which we will discuss in
more detail in “The Three Phases of Observability: An Outcome-
Focused Approach”) to refine your processes and tools iteratively,
and be vigilant in measuring your mean time to remediate (MTTR)
and mean time to detect (MTTD). Additionally, implementing
internal service-level objectives (SLOs) and customer service-level
agreements (SLAs) centers observability practices around crucial
business outcomes, fostering a more outcome-oriented approach.

Increasing Cost of Observability Data
With both cloud native and traditional environments, as we increase
the amount of data we increase the cost (Figure 1-4).

Figure 1-4. Value versus cost of observability tool before and after cloud native

The Goldilocks zone is where cloud native observability data is
worth the cost. However, the business value decreases as you
decrease or increase the observability data. Finding the Goldilocks
zone means you gather the correct observability data and store the
useful and effective slices of the synthesized observability data.

The Cloud Native Impact
According to a recent survey conducted by Gartner, cloud native
adoption is growing.10 By 2028, 95% of all global organizations will
be running containers in production, an increase from fewer than
50% in 2023. The survey also indicates that 25% of all enterprise
applications will be running in containers, from fewer than 15% in
2023.
What this shows us is that cloud native adoption has already
crossed the chasm and that there is no going back.

Slower Troubleshooting
A separate survey found that engineers working on cloud native
environments spend an average of 10 hours of their time per week
troubleshooting,11 54% of participants feel stressed out, 45% don’t
have time to innovate, and 29% want to quit due to burnout.
Burnout bites twice because software engineers are not
interchangeable and onboarding new engineers takes a while.
When people who have burned out leave, they take valuable
institutional knowledge with them. The loss of institutional
knowledge further deteriorates business outcomes.
Eighty-seven percent of participants agree that cloud native
architectures make observability more challenging, with the same
percentage agreeing that observability is essential to cloud native
success.

Tools Become Unreliable
Tools become unreliable when they are unable to scale with the
volume and complexity of data generated by cloud native systems
or when they fail to adapt to the ephemeral nature of cloud native
architectures.

Traditional observability systems were generally simpler because
there were fewer ways a system could fail and the volumes of data
were generally smaller. With cloud native, there are more ways for
systems to fail, and there is also a growth in observability data due
to distributed sets of interrelated data.
In a pre–cloud native world, tools were reliable because the
architectures were mostly static and homogenous, allowing you to
understand the failure modes. However, with the shift to cloud
native architectures, these tools are no longer reliable. To increase
the reliability of your observability system, you need to store the
correct observability data.
The question is, how do you identify which observability data is
worth storing?

Use Context to Troubleshoot Faster
To answer this question, you need to understand the major use
cases for observability data in your organization.
For example, look at high-impact observability data like remote
procedure call traffic, request/response rates, and latency, ideally as
they enter your system. If you have, for example, 100
microservices, how many dimensions should you add to your
metrics? Should you capture all data as it comes in for each metric?
Performing this analysis, at least on the present and shared
dimensions across these metrics, can be a difficult but worthwhile
exercise.
What does that exercise give your observability data? In a word,
context. You are no longer getting and keeping all observability
data but only observability data useful in the context of your cloud
native architecture and applications.

The Three Phases of Observability: An
Outcome-Focused Approach
A focus on context also becomes important when we keep its
original and primary purpose in mind: to remediate or prevent
issues in the system.
As builders of that system, we want to measure what we know
best. We tend to ask what metrics we should produce to understand
if something is wrong with the system. To remediate it, working
backward from customer outcomes allows us to focus on where the
heart of observability should be: what is the best experience for the
end user?
In most cases, a customer wants to be able to do what they came
to do: for example, buy your products. You can work backward from
there. You don’t want your customers to be unable to buy products,
so if the payment processor goes down or becomes degraded, you
need to know as soon as possible to remediate the issue.
Once you find the customer outcomes you are looking for, then the
primary signals of observability (metrics, logs, and traces…alongside
other signals like events) can play a role. If your customers need
error-free payment processing, you can craft a way to measure and
troubleshoot that. When deciding on signals, we endorse starting
from the outcomes you want.
We call our approach the three phases of observability (Figure 1-5).

Figure 1-5. The three phases of observability (adapted from an image in Rachel
Dines, “Explain It Like I’m 5: The Three Phases of Observability,” Chronosphere,

August 10, 2021, https://oreil.ly/f7dnZ)

As part of a remediation process, the three phases can be described
in the following terms:

https://oreil.ly/f7dnZ

Knowing quickly within the team if something is wrong

Triaging the issue to understand the impact: identifying the
urgency of the issues and deciding which ones to prioritize

Understanding and fixing the underlying problem after
performing a root cause analysis

Some systems are easier to observe than others. The key is being
able to observe the system in question at the granularity that lets
you make a decision quickly and decisively.
Let’s say you work for an ecommerce platform. It’s the annual Black
Friday sale, and millions of people are logged in simultaneously.
Here’s how the three phases of observability might play out for you:
Phase 1: Knowing

Suddenly, multiple alerts fire off to notify you of failures. You
now know that requests are failing.

Phase 2: Triaging
Next, you can triage the alerts to learn which failures are most
urgent. You identify which teams you need to coordinate. Then
you learn if there is any customer impact. You scale up the
infrastructure serving those requests and remediate the issue.

Phase 3: Understanding
Later on, you and your team perform a postmortem
investigation of the issue. You learn that one of the components
in the payments processor system is scanning many unrelated
users and causing CPU cycles to increase tenfold—far more than
necessary.

You determine using the payments processor metrics dashboard
that this increase was the root cause of the incident. The payments
processor requires more CPU than you currently allocate, which

bottlenecks the entire cart system. You and the team fix the
component permanently by allocating more CPU and scaling the
payments processor horizontally.

Remediating at Any Phase, with Any Signal
Although we posit three phases, at any phase your goal in practice
is always to remediate problems quickly. If a single alert is firing off
and you can take steps to remediate the issue as soon as you know
about it (Phase 1), you should do so. You don’t have to stop to
triage or do a root cause analysis every time if these are
unnecessary.
To illustrate this point, let’s say a scheduled deployment
immediately breaks your production environment. There is no need
to triage or do root cause analysis here since you already know that
the deployment caused the breakage. Simply rolling back the
deployment when errors become visible remediates the issue.
You can also resolve an issue using observability, even without
using all of the traditional observability signals (metrics, logs, and
traces). In the payment processing example in the previous section,
we show one situation where just looking at the metrics dashboard
could be used to determine which systems in what environments
and code paths were causing the issue and provide enough
information to allow for a quick and efficient fix.

Conclusion
In conclusion, the shift to cloud native systems created an issue of
ballooning observability data, resulting in a loss of focus on
customer outcomes, practitioner burnout, and an increase in the
cost of observability systems.

Finding the Goldilocks zone in your observability strategy will allow
you to manage the trade-off between cost and better business
outcomes.
The growth of observability data in cloud native systems is caused
by cardinality, the flexibility of cloud native architecture, and greater
interdependence between cloud native services.
Finally, we recommend that you follow the three phases of
observability to remediate issues and to ensure that you keep only
useful observability data you need, using context as your guide.

1 See CNCF Cloud Native Definition v1.0 for more information.

2 See the CNCF’s observability definition for more information.
3 Rob Skillington, “What Is High Cardinality,” Chronosphere, February 24,

2022, https://oreil.ly/-wttH.

4 Joel Bastos and Pedro Araújo, “Cardinality,” in Hands-On Infrastructure
Monitoring with Prometheus (Packt, 2019), https://oreil.ly/vmk4Z.

5 Lydia Parziale et al., Chapter 10, in Getting Started with z/OS Container
Extensions and Docker (Redbooks, 2021), https://oreil.ly/e21Wc.

6 Eric Carter, 2018 Docker Usage Report (Sysdig, 2018),
https://oreil.ly/ftZum.

7 National Aeronautics and Space Administration, “What Is the Habitable
Zone or ‘Goldilocks Zone’?” Exoplanet Exploration: Planets Beyond Our Solar
System, https://oreil.ly/hB0kG.

8 Rachel Dines, “New ESG Study Uncovers Top Observability Concerns in
2022,” Chronosphere, February 22, 2022, https://oreil.ly/gKLm8.

9 Michael Hausenblas, “Return on Investment Driven Observability,” March
24, 2023, https://oreil.ly/n2Aax.

10 Gartner, “Gartner Says Cloud Will Be the Centerpiece of New Digital
Experiences,” November 10, 2021, https://oreil.ly/Ney9y.

https://oreil.ly/Y6Onf
https://oreil.ly/lxnJR
https://oreil.ly/-wttH
https://oreil.ly/vmk4Z
https://oreil.ly/e21Wc
https://oreil.ly/ftZum
https://oreil.ly/hB0kG
https://oreil.ly/gKLm8
https://oreil.ly/n2Aax
https://oreil.ly/Ney9y

11 Chronosphere, “Cloud Native Without Observability Is Like a Flightless
Bird,” https://oreil.ly/UmYrM.

https://oreil.ly/UmYrM

Chapter 2. Cloud Native
Challenges in the Real World

Observability in a cloud native world is difficult; gathering data from
a single output source and correctly inferring a view of the world
about that cloud native service is impossible. We are now in a world
where cloud native observability needs to be correlated and
processed in myriad ways for a single assumption to be proven true
or false.
In a survey titled “Filling the Observability Gap” conducted by
O’Reilly about observability, respondents revealed three main
challenges: lack of observability data, high costs related to tools
and training, and difficulties coordinating the teams that were trying
to solve system and network problems.1

This chapter delves into real-world scenarios highlighting the
performance, cost, and reliability issues associated with
observability data. We will explore case studies from companies
that illustrate practical approaches and possible solutions to these
challenges. Finally, we will try to come up with a reusable solution.
While the overarching challenges of cloud native observability are
clear, one of the most immediate impacts is seen in system
performance. Let’s explore how uncontrolled data growth can
significantly strain our systems.

Impact of Uncontrolled Data Growth on
System Performance
A key factor contributing to this uncontrolled data growth is
automatic instrumentation. Consider the example of NGINX:

installing the NGINX ingress controller in a cluster is straightforward,
and enabling observability data generation is as simple as
activating a configuration setting. However, this ease of use comes
with a downside. The activation of automatic instrumentation often
results in the creation of numerous unnecessary metrics, leading to
additional clutter in the observability system.
The combination of automatic instrumentation and horizontal
scaling exacerbates the problem. We began accumulating so much
data in the observability system that it created an extensive data
set. Querying this extensive data set presented a substantial
challenge in maintaining efficient system performance.
As we have seen, unchecked data growth can severely hinder
system performance. But beyond performance, there lies a critical
concern of cost management.

Controlling Cost
The ideal solution to control cost is to downsample or downright
drop data before any of it is persisted. Anecdotally, we figured out
that this is not enough on its own.
As we soon learned, controlling costs and making cloud native
observability efficient is not a milestone you can reach but a whole
journey you must undertake. Think about it this way: you can
delete unused data today, but tomorrow another set of unused data
will be populated and you will be in an unending game of whack-a-
mole. You need a strategic plan to effectively target priority issues
and maintain repeatable outcomes.
Having discussed the theory behind cost control and performance,
let’s examine how these principles are applied in real-world
scenarios. Our first case study provides a concrete example of
tackling these challenges.

Case Study 1: Improving Performance While
Gaining Huge Cost Savings

The Challenge
Our first example is one of the world’s largest fintech companies,
servicing close to 80% of the US ecommerce market. Mere seconds
of downtime directly impact top-line revenue, affecting not just
them but also their customers. For example, selling BNPL (buy now,
pay later) financial products means that reliability and performance
are paramount. If an end customer can’t secure financing at
checkout, it’s a loss for the company in terms of revenue.
Furthermore, the end customer might forgo purchasing the product
from the partner business, leading to a compounded loss of
revenue. All in all, it’s not a good experience for anybody. Not for
the end customers, the company, or its customers.
They needed a way to detect right away if there are any issues and
if performance was impacted in subseconds. Not only that, but they
also needed to implement solutions that would recover from issues
in record time. The criticality of these services meant that
observability performance is a top concern.

Approach
We had significant cost savings while we were actually able to
send more data over the system. With big load increases during
our Black Friday event—up to 10x—and Chronosphere had no
issues handling that.… It was a win-win overall for us.

—Former senior principal engineer at fintech
company

The solution was a multifaceted approach, focusing on proactive
issue detection and swift resolution. This started with a
sophisticated data analysis system capable of evaluating

observability data granularly before it was even persisted. By
analyzing data at the ingestion stage, they identified potential
issues or performance bottlenecks early on, thereby preventing
them from escalating into customer-impacting problems.
Refining the persisted data was another critical step. This involved
optimizing data to ensure that only relevant and necessary data is
retained, thereby reducing storage costs and improving data
processing efficiency. Employing advanced data aggregation and
downsampling techniques played a significant role in this step,
leading to significant cost savings without compromising on data
quality or accessibility.
Operating a highly performant observability solution required
continuous improvement of use cases as well. Imagine creating a
solution tailored to each use case that allows you to generate
insights into your usage costs. Another aspect was a highly
optimized query that enabled the creation of performant
dashboards for each team, allowing them to be alerted in
subseconds if something goes wrong in a specific customer journey.
Lastly, it was important to follow the three phases of observability
to sort through alerts effectively, distinguishing between real issues
and minor glitches or “noise.” This way, the team can focus on what
truly matters and ensure a smooth experience for their customers.
The company’s approach to tackling performance and cost issues
provided valuable insights into handling data growth, a pervasive
challenge in cloud native observability. This leads us to the next
critical aspect: the impact of this data growth on the reliability of
observability systems.

Impact of Uncontrolled Data Growth on
Observability Reliability
The unrestrained expansion of data within observability systems
poses a threat to their reliability. As the volume of data grows, the
ability of observability systems to effectively monitor and report on
applications is compromised. The main issue is the overload of
information. When observability systems are flooded with more
data than they can efficiently handle, indexing the data becomes
very difficult, and important signals get lost. Worse, it can obscure
key indicators, making it difficult to identify and analyze issues.
The surge in data not only complicates the analysis process but also
puts a significant strain on the infrastructure supporting the
observability systems. As data volumes grow, the infrastructure is
strained, struggling to store, process, and retrieve the vast
quantities of data efficiently. This strain can lead to increased
latency in data processing or, in more severe cases, cause system
outages or slowdowns.
While we have seen how uncontrolled data growth can strain our
system’s reliability, another significant aspect is its impact on the
developers who build and maintain these systems. Let’s delve into
how poor observability data can lead to a poor developer
experience.

Poor Developer Experience Caused by Poor
Observability Data
The challenges extend beyond uncontrolled data growth; capturing
inadequate or sometimes outright not useful data also has a
substantial impact. Inadequate observability data can significantly
impede a developer’s understanding and control over the software
they build. This lack of clarity not only diminishes visibility into the
application’s performance but also hinders the developer’s ability to

take full ownership of their work. Often, when faced with unreliable
or nonexistent centralized observability solutions, developers resort
to creating or adopting alternative observability methods
themselves.
In this context, there is a need for a centralized observability team
to exist. The primary goal of that centralized observability team
should be to provide service owners and developers with high-
quality observability tools. These tools are essential for enabling
teams to manage their services effectively and efficiently. An
important aspect of this is the team’s ability to empower developers
to provide good developer experience and allow them autonomy
within the observability system’s framework. This ensures that
developers have the necessary resources to quickly implement new
features and effectively resolve incidents, streamlining the
development process.
Understanding the struggles developers face when observability
systems are unreliable and observability data is inadequate sets the
stage for our next case study. We will be examining how a social
network is facing similar challenges aimed at improving both the
reliability of their observability and their developers’ experience.

Case Study 2: Increased Observability
Reliability and Improved Developer
Experience

The Challenge
One social media company has grown massively, serving hundreds
of millions of daily users worldwide. As they scaled, their in-house
open source observability solution was getting expensive and time-
consuming for engineers to realistically manage as the company
saw massive user growth.

To be competitive in a crowded social media market and delight the
millions of customers they serve, they must deliver best-in-class
availability and performance to customers worldwide. However, the
company’s previous observability setup wasn’t meeting
expectations:
Availability

The previous open source software system faced stability issues
and was constantly failing. Every time the system crashed,
engineers had to manually step in and bring systems back online
—which was time-consuming and costly. Furthermore, the
system had performance issues, which meant that dashboards
and queries would load slowly or not at all, and engineers
couldn’t respond quickly to customer-facing issues.

Scalability
Their observability system was at its limits and couldn’t keep up
with the amount of daily ingested data. This meant that they
were only able to ingest and retain a fraction of the metrics they
needed for troubleshooting purposes. As they moved to a cloud
native architecture, they knew they would need a system that
could provide all the critical metrics at a reasonable cost.

Usability
They found that their self-managed Graphite instances were
difficult to use, time-consuming to manage, and negatively
affected developer experience. It was also costly to run in terms
of infrastructure costs and people hours.

Approach
The approach for them involved creating the ability to analyze their
most useful observability data. The company has millions of
customers, so they needed to ruthlessly prioritize only the

observability data that has the most value. However, as the
observability data changes depending on the context, it was
prudent to have a real-time view of data flowing into their system.
A real-time view of the data allowed them to rank and label
observability data and how it contributed to the overall growth of
observability data, thus improving reliability. Additionally, the ability
to filter signal from noise when dealing with the data of millions of
customers became paramount. Analysis on this level accelerated
issue triage and significantly curtailed cost.
The analysis described allowed them to have a highly available and
scalable solution with a justifiable cost. However, to further improve
the developer experience, providing a highly refined set of
observability data was crucial. By dropping irrelevant data,
aggregating useful data, setting appropriate data retention periods,
and downsampling data effectively, they ensured that developers
are not overwhelmed with unnecessary information.
This refinement step aids in maintaining a balance between data
volume and utility, making the observability system more efficient
and easier to use. Developers can then focus on meaningful data
that directly impacts their work, enhancing their productivity and
improving their ability to swiftly address issues. The result was a
developer-friendly environment where the focus is on actionable
insights.
The strategic approach they adopted, which balanced cost efficiency
and high-quality data for developers, naturally led into the realm of
fostering rapid innovation. As we shift our focus we will explore how
observability practitioners can enable a fast-paced innovation
environment where stability and innovation coexist within well-
defined guardrails.

Making Way for Fast-Paced Innovation
A critical challenge for observability practitioners is the balancing
act of enabling developers to rapidly innovate while providing stable
and resilient platforms for them to quickly experiment without
causing disruption to the entire observability system or causing
noisy neighbor issues. Developers need to have autonomy to
innovate effectively; however, most innovations are disruptive in
nature. The observability practitioners need to be able to set
guardrails to provide stability while keeping developers as
autonomous as possible.
Aside from stability, the observability practitioners should also
empower organizations to adapt and evolve by providing in-depth
insights. The key therefore lies in establishing robust guardrails that
provide a safe environment for experimentation and innovation
without compromising observability system stability.
As we delve into the intricacies of fostering innovation, visibility of
usage becomes crucial. This visibility will not only allow for tracking
usage but also for enabling informed decisions when dealing with
cost allocation. Which team uses which observability data, and for
what reasons? This would allow a centralized observability team to
provide a consistent approach when building guardrails.
Navigating from the need for fast-paced innovation and the
implementation of effective guardrails, we transition into another
pivotal aspect of cloud native observability: adhering to regulatory
requirements.

Regulatory Requirements
In highly regulated industries like finance and healthcare,
observability is crucial not only for organizational efficiency but also
for compliance with legal mandates. These sectors demand a high

level of transparency, especially for sensitive financial transactions,
making observability integral to regulatory adherence.
Service-level agreements (SLAs) are vital in these regulated
environments, setting benchmarks for minimum uptime of essential
services. SLAs are more than operational metrics; they represent a
commitment to reliable customer service and are often scrutinized
by regulatory bodies. However, as businesses grow and become
more complex, maintaining these SLAs can be challenging.
Increased demand can strain observability systems, leading to
potential service disruptions or performance degradation, which in
turn risks noncompliance with regulatory SLAs.
This challenge of scaling observability systems in line with business
growth and maintaining compliance with SLAs is not just
theoretical. It’s a real-world issue that many companies face,
particularly in the fast-evolving fintech sector.

Case Study 3: Navigating Observability
Challenges in Balancing Rapid Fintech Growth
and SLA Compliance

The Challenge
In the competitive and fast-evolving fintech sector, companies are
compelled to accelerate their pace of innovation, embracing cutting-
edge technologies like artificial intelligence/machine learning,
predictive analytics, and modern application development. This
drive for innovation, while crucial for staying ahead, introduces
complex systems that demand vigilant monitoring to ensure
seamless functionality. One leading name in the fintech world
exemplifies this scenario.
For them, the core challenge is twofold: maintaining high reliability
and performance for its rapidly expanding user base and

simultaneously sustaining its swift pace of innovation. This must be
achieved within the framework of strict regulatory compliance,
adding a layer of complexity to their operational strategy.

Approach
When money and regulatory bodies are involved, the reliability
stakes are even higher—we needed to eliminate all barriers for
customers to trade on our platform.

—Senior staff engineer at fintech company
For this rapidly evolving company, the primary approach revolved
around aligning with the business pace and ensuring SLA
compliance. This began with a backward analysis to identify traffic
and usage patterns most critically affecting SLA fulfillment.
A key aspect of this analysis involved understanding developers’
needs regarding observability data to accelerate innovation. Would
additional observability data about product features that customers
use help developers, or would it be a case of understanding the
important observability data and getting it more granularly? These
kinds of questions need to be answered during the analysis.
Refining the existing data becomes crucial as they continue to
innovate. With each new feature or capability added, the impact on
existing features is considered; for example, how a new feature A
can influence existing feature B positively or negatively. Therefore,
the ability to aggregate is a critical consideration in developing
effective observability solutions.
Lastly, there is a commitment to continual improvement, adjusting
for efficiency and expanding coverage and visibility. Possibly even
creating custom instrumentation to handle business-related metrics
that you cannot get out of the box from open source tools. This
ongoing optimization ensures that observability systems remain
aligned with their SLA.

Conclusion
As we synthesize insights for all of these use cases, it is evident
that the ability to centrally drive the agenda for observability is
imperative. Which parts of the observability systems should we
improve? What kinds of data are we missing? Which data can we
drop, aggregate, or downsample? How much budget do we need to
allocate, and for what use cases? These considerations underscore
the necessity of centralized observability governance. Such
governance would not only steer the observability strategy but also
act as an enabler and consultant to developer teams, aiding in
scalability.
In these three cases, we found the need for three common steps to
tackle observability reliability, performance, cost issues, and
developer experience. A notable gap in all cases is the insufficient
analysis of the incoming data at a granular level, leading to
substantial data growth.
A focus on aggregation and retention plays a key part in fully
refining existing data. Also, there’s a distinct lack of refinement in
how observability data is stored, highlighting the importance of
downsampling and dropping redundant data, particularly in
automatic instrumentation.
The operation of observability systems should be geared toward
continuous improvement, focusing on expanding visibility and
integrating custom business-level observability data. In many
implementations, however, observability systems are treated more
as an afterthought, a bolt-on to the developer’s toolkit, rather than
as a strategic capability.
In response to these findings, we’ve developed a new observability
model, the Observability Data Optimization Cycle (O11y DOC). This
model is structured around three cyclical steps: Analyze, Refine, and
Operate. Each step is critical and should be continuously revisited
for each optimization effort. O11y DOC is not just a framework; it’s

a strategic approach that integrates observability into the heart of
organizational operations. In the next chapter, we will delve into the
intricacies of O11y DOC.

1 Andy Oram, Filling the Observability Gap (O’Reilly, 2021),
https://oreil.ly/HWxUl.

https://oreil.ly/HWxUl

Chapter 3. Strategies for
Controlling Observability Data
Growth and Complexity

In this chapter, we tackle the escalating challenges of data growth
and complexity in cloud native observability. We will introduce a
new framework to streamline and manage observability data,
ensuring systems remain efficient and manageable in the dynamic
cloud native landscape.
Transitioning to our new framework, we bridge the gap between the
overwhelming data influx and the need for meaningful insights,
aiming to achieve the ideal balance in cloud native observability.

Emerging Solution Using a Repeatable
Framework
In Chapter 1, we delved into the complexities of cloud native
observability, highlighting a paradoxical increase in costs alongside
diminishing business outcomes. We introduced the concept of the
Goldilocks zone in cloud native observability, an optimal state where
costs are controlled while maximizing business value. This zone
represents the sweet spot between excessive data that overwhelms
systems and insufficient data that hinders insightful decision
making.
Chapter 2 further explored the practical challenges in achieving this
balance, emphasizing the need for a strategic approach to manage
the deluge of observability data without compromising on system
performance and reliability.

We have developed a repeatable, standardized, and vendor-
agnostic framework based on these insights. This framework is
inspired by the principles of the FinOps framework, renowned for its
effectiveness in the financial management of cloud services. Our
framework is designed to systematically address the key challenges
of cloud native observability discussed in Chapter 1.

Using FinOps as an Inspiration
FinOps is a cultural practice. It’s a way for teams to manage their
cloud costs, where everyone takes ownership of their cloud usage,
supported by a central best practices group. Cross-functional teams
in engineering, finance, product, etc., work together to enable faster
product delivery, while at the same time gaining more financial
control and predictability.1

In this new world of cloud native, FinOps was developed to rein in
costs. However, we do not have such a model for the observability
space. The idea is simple: we want the cost of observability data
not to exceed the value it is providing to the organization. Most
practitioners think the observability data they are gathering will be
useful later on. However, more often than not this is not the case,
and the observability data is forgotten.
Moreover, it’s hard to identify which teams or observability data is
causing the spikes in cost and decreased signal-to-noise ratio. Our
strategic approach will help you avoid the endless game of whack-a-
mole to decrease cost and improve performance.
It is analogous to cleaning out your garage after you have already
accumulated all the tools (observability data). The difficulty comes
with teams not thinking about the allocation in observability
capacity, mostly because they are not acutely aware of the cost
associated with storing and querying such observability data.

The problem starts at scale. When people are just starting with
cloud native observability, the data is not that complex, and they
have less of it. However, most mature organizations do not
understand what observability data they have, and they lack control
over how much data they have or where it is being used.
As shown in Figure 3-1, using the FinOps framework as an
inspiration, we devised a new approach that we call the
Observability Data Optimization Cycle (O11y DOC).

Figure 3-1. The Observability Data Optimization Cycle

Observability Data Optimization Cycle
A key consideration before beginning your O11y DOC is buy-in. You
need a centralized governance structure that drives accountability
within individual development teams and allocates priorities across
workloads.
Observability data costs are becoming a significant budget item and
increasingly unpredictable. Everyone needs to understand their
usage and take ownership of their allocation of observability
capacity. We propose that a centralized governance structure works
best to address these issues.

Step 0: Centralized Governance
A centralized governance removes confusion on ownership and
aligns incentives. As you go through the process of O11y DOC, more
and more decisions need to be made. A clear centralized
governance structure allows you to make informed decisions
balancing trade-offs such as cost, telemetry capacity, and use cases.
We encourage the team consuming these services to communicate
what kind of capacity it needs to improve its outcomes. After all, the
team building the services, henceforth known as the independent
team, knows how best to observe the services it is building.

Autonomy and Allocations to Increase
Responsibility and Improve Responsiveness
Historically, developers have not had insight into the costs of
observability systems. However, until the data explosion mentioned
in Chapter 1, this lack of knowledge was not a dire problem.
Independent teams can deploy asynchronously and create high
volumes of observability data. The two big implications are cost and
performance for the observability system as a whole. Since the

compute, storage, and cost of the system is a common resource, if
one team uses too much of it, there is a risk that other teams then
get crowded out and can no longer use the observability system.
Making teams aware of the impact of their decisions allows them to
be empowered to make localized optimizations. The teams will get
allocations that they can manage and use.
The carrot is that the better the teams use their allocation, the
more allocation we can give them. The stick is the actual allocation:
if a team perpetually breaks the quota, then the team might be
using more than they should.
In short, there should be autonomy for the independent team to
make decisions while informing the centralized governance of their
requirements, thus empowering each team to carry out their
responsibilities and get the support they need.

Usable Capacity by Allocation to Optimize Use
Cases
Fundamentally, the question is how much can you have and how
much can you do with it. As we previously defined via analogy, use
cases are the activities the independent team uses for its allocation.
For example, let’s say you have a team—we’ll call them team 1—
that supports cart platform services (Figure 3-2). Team 1 currently
supports three use cases: order db monitoring, cart frontend
monitoring, and inventory backend monitoring. However, to fully
support the end customers, team 1 requires two additional use
cases: recommendation backend monitoring and shopping analytics
event monitoring.

Figure 3-2. Example of a centralized governance structure

You want to empower the teams to self-service because they know
best how to optimize usable capacity for their individual use cases.
To further use the above example, team 1 can squish the
recommendation backend monitoring and share the capacity with
the inventory backend monitoring. Meanwhile, team 1 can raise a
request to create the shopping event analytics monitoring to get an
additional capacity.
In effect, you created an optimization by empowering the
independent team to make localized decisions. An equation about
cost would look like this:
total cost = total capacity

However, because team 1 has optimized for the cost by grouping
use cases, the equation would be as follows:

optimized cost = total capacity − (total capacity

grouped use cases
)

Centralizing governance while providing use case autonomy will
allow for an optimized cost by empowering the individual
independent team to make decisions.

Using Observability Team as Consultants
Instead of as Bottlenecks
While the teams are empowered, they still have the support of the
observability team. The observability team acts as the consultants
or centers of excellence that can guide best practices and make
recommendations to increase allocation based on data. Whereas
before the observability team was seen as a bottleneck before
going live, giving teams autonomy will change the perception from
a bottleneck to an enabler.

Autonomy changes the observability problem from a centralized
problem to a decentralized problem distributed across the teams.
Teams can optimize locally for their use cases, rather than
continually push the observability team to make changes. This
culture of autonomy is a huge shift in the approach that most teams
work with, but one that the O11y DOC concept needs to succeed.
In conclusion, step 0 is to find the correct balance between three
axes—cost, use cases, and capacity—by a centralized governance
structure. If you buy more capacity, you increase the cost, which
you can allocate to use cases. On the other hand, if you buy less
capacity, you minimize cost. Finally, you need your teams to be
more empowered to allocate use cases economically by grouping
useful data.

Framework Components
The O11y DOC is a framework to deliver the best possible
observability outcomes at scale while controlling costs. The
following are the defined stages of the O11y DOC:
1. Analyze

Identify key cost drivers, data sources, and areas of inefficiency
in cloud native observability to optimize data handling, aligning
cost to value and understanding the utility of the data.

2. Refine
Give teams tools like shaping tools and transforming tools to
reduce the amount of data; this increases the signal-to-noise
ratio and decreases cost.

3. Operate
Develop real-time mechanisms to detect anomalies,
inefficiencies, and data quality issues in observability data

streams.

Step 1: Analyze
The first step of the O11Y DOC cycle is Analyze. Two key areas you
need insights on are the flow of observability data traffic into your
system and usage.
Understanding your observability data traffic volume and usage will
allow you to make intelligent, data-driven decisions about how to
Refine (step 2) your data.

Traffic Analysis
For effective traffic analysis, you need to be able to analyze your
observability data and all its dimensions in real time. Having a real-
time view of the data flowing into your system helps you
understand how often applications emit data, troubleshoot sudden
spikes in ingest rates, and ensure all the data you want to collect is
being collected.
Using metrics as an example, you should be able to view all the
labels (or tags) along with:

The number of unique values for each label

The percentage of metrics you’re viewing that have the
matching label

The metrics that contain the label

The volume of data that these metrics contribute to storage

This information allows you to rank and group labels and metrics to
understand how they contribute to cost and where they are coming
from. For example, ranking labels based on the number of unique

values from highest to lowest allows you to quickly identify your
high-cardinality labels and their associated metrics.

Usage Analysis
Usage analysis is about understanding your observability data’s cost
and utility. It should give you insights into how the data is being
used, including which dashboards and alerts it shows up in, which
specific users are querying that data, when, and how often.

Combining Traffic and Usage Analysis to Make
Decisions
When you combine traffic analysis with usage analysis, you can now
start to understand the value your observability data delivers. There
are few hard and fast rules when it comes to determining value.
Outside of identifying unused data, which provides zero value, it’s a
function of your budget and the insights the data delivers, and
every organization will be different.
You will need to think of this on a spectrum, as depicted in Figure 3-
3. You may be able to assign values depending on what is important
to your organization and the tools you are using. Still, as we said, it
will vary depending on the organization.

Figure 3-3. Usefulness versus cardinality spectrum analysis (source: courtesy of
Chronosphere)

At the extreme end, it’s pretty easy to decide what to do. You will
want to drop data that has not been used. Business critical data or
frequently used data you will want to optimize using aggregations.
But there will always be a middle ground where you will want to
spend most of your time analyzing the cost versus value that your
observability data delivers.

Output of Analyze Step
Once you have identified the data you want to drop and the data
you want to optimize, it’s time to look at the tools available to
refine the data to align the cost-to-value ratio.
In Chapter 2, we talked about how one organization analyzed their
observability system to proactively detect issues that align with the
O11y DOC’s principles.

Step 2: Refine
Refining observability is all about shaping and transforming the
observability data. While Analyze will allow you to understand your
data’s quantified cost and value, the Refine step is all about aligning
those costs to value.
There are multiple ways to refine the observability data, the easiest
being simply dropping the data you do not need; other options
include aggregating data, setting a retention period, and
downsampling data.

Dropping
Dropping can mean dropping entire metrics, but it can also mean
keeping only dimensions of your observability data that are useful

to you and aggregating the rest in place. More often than not, even
if a metric itself is very useful it will still contain dimensions that are
not useful.
Let’s assume that we have a metric that has dimensions
regulatory_body_name, status_code, and pod_name, such
that the metric looks like:

api_request_to_regulatory_body{status_code=200, \
 pod_name=pod-xxx-1, regulatory_body_name="sec"} 100
api_request_to_regulatory_body{status_code=200, \
 pod_name=pod-xxx-2, regulatory_body_name="sec"} 100
api_request_to_regulatory_body{status_code=200, \
 pod_name=pod-xxx-3, regulatory_body_name="sec"} 100

If you create a policy that keeps status_code and regula⁠tory​
_body_name while dropping all pod_names in metrics such as this,
you will divide the cardinality by three. The metric will look like this:

api_request_to_regulatory_body{status_code=200, \
 regulatory_body_name="sec"} 300

The result will be a single cardinality metric instead of three
cardinalities, thereby improving the overall shape of the metric.

Retention
Retention refers to the duration of storage of your observability
data. Simply put, it answers the question: how long are you keeping
your data?
Let’s say you’re collecting metrics for development environments
and retaining them for 13 months. Is that useful if the development
environment gets recycled every week? What if you retained those
development metrics for a few weeks instead?

Base your retention periods for different kinds of data on the
outcomes you can gain by retaining it. If you reduce the retention
period for data you do not need, the overall volume will grow much
more reasonably.

Resolution
Resolution in observability refers to the frequency at which data
points are collected and recorded within a system. High-resolution
observability implies that data points are gathered more frequently,
providing a detailed, granular view of the system’s behavior over
time. This is analogous to having a high pixel density in a
photograph, where more data points translate to a clearer, more
detailed image. High resolution allows for a deeper analysis of
system trends and anomalies but comes with increased storage and
processing requirements.
As systems grow and the volume of data skyrockets, storing and
processing high-resolution data can become both cost-prohibitive
and technically challenging. To navigate this, one can use
techniques like downsampling or aggregation.

Downsampling
Downsampling is a method employed to manage the challenges
posed by high-resolution data, particularly in large-scale systems. It
involves selectively reducing the frequency at which data points are
recorded, thus effectively decreasing the resolution. This process
involves choosing representative data points or averaging out the
data over longer intervals. For instance, if data resolution is every
15 seconds, downsampling to a 30-second interval would reduce the
data volume by half. This technique helps in managing storage and
processing loads but must be balanced carefully to keep the
essential context and accuracy of the observability data.
Downsampling is particularly useful when the high frequency of data

collection does not significantly contribute to a better understanding
of the system’s behavior.
In essence, while resolution is about the initial frequency of data
collection, providing a detailed view of the system, downsampling is
a subsequent step to optimize this data for efficient storage and
processing, with a focus on retaining critical information while
reducing the overall data load.

Aggregation
Aggregation refers to the process of summarizing and transforming
observability data into useful observability insights. This practice
optimizes storage, accelerates query performance, and provides
clarity to the information presented to teams.
Retention and resolution mostly allow you to optimize cost;
however, aggregation does the most when it comes to increasing
the signal-to-noise ratio of your observability system. Instead of
querying two or more observability cardinalities, you only need to
query one aggregated observability data that would immediately
give you insights.
Aggregation reduces observability set sizes by stripping high-
cardinality dimensions and merging them to make more useful
observability data. This is especially true for dimensions that are
not valuable.
For example, suppose you are monitoring an HTTP web service. The
web service generates observability data with a variety of
attributes: timestamp, user agent, Internet Protocol (IP) address,
request path, response code, response time, and more.
If you only care about generating insights about the divide of users
between mobile and desktop, many of these attributes, such as IP
address, request path, and response time, might not be

immediately relevant. Therefore, you can perform aggregation
based on the user agent.

Output of Refine Step
Using a combination of dropping, retention, resolution, and
aggregation to curate the observability data allows for the creation
of shaping rules. Implementing these shaping rules is expected to
reduce costs and enhance the performance of the observability
system. These rules can be one-off rules or integrated to a wider
strategy to shape data. However, as the data set grows, the
performance of the observability system can decline. It’s crucial not
to lose the context of the data being captured. A well-defined
shaping rule strategy should automatically drop unnecessary
metrics or dimensions, set retention periods, and aggregate and
downsample observability data.
The art lies in retaining the context. While it’s tempting to strip
away as much data as possible for the sake of efficiency, it’s crucial
that the resultant data set still tells a coherent story of the system’s
behavior.
Shaping rules, therefore, should be dynamic and adaptive. They
should set automated retention timelines, define resolutions based
on the criticality of data, aggregate where meaningful, and
downsample without losing the bigger picture. This holistic
approach ensures that while the raw volume of data might be
reduced, its informative value remains potent.
In essence, shaping rules transform raw observability data into a
well-structured narrative, shedding the redundant while highlighting
the essential, decreasing cost, and increasing context. As Martin
Mao says: “It’s not about having less data; it’s about having more
meaningful data.”
In Chapter 2 we talked about how a social network effectively used
the Refine principles to demonstrate effective use of aggregation

and downsampling.

Step 3: Operate
Operating observability revolves around regular optimization—
continuously validating and understanding the insights generated
from your established shaping rules. Over time, circumstances and
requirements change. It then becomes crucial to ensure that the
shaping rules remain relevant and continue delivering the
anticipated value.
During this step, look for opportunities to innovate and experiment.
A fundamental question to continually address is: can the existing
shaping rules be further optimized? Refining your observability
system and freeing up capacity should allow you to do more
experiments and innovation.
In the Operate step, you also need to check whether a new shaping
rule is needed. Find out if the new shaping rule will inadvertently
affect observability system performance. Forecasting and testing
these outcomes can avert unintended consequences, ensuring that
your observability remains robust and reliable.

Expanding Visibility and Coverage
After you’ve adjusted your data to be more efficient, you can look at
more areas. At first, you might cut down on data, but later you can
use the saved space to see more. If you wanted detailed data
before but it was too expensive, now you might be able to afford it.
Remember, it’s all about balance. If you manage your data well, you
can do more with it.

Freeing Up More of the Observability Team’s

Time to Tackle Strategic Projects
The observability team will be more of a consultant rather than
having an adversarial role with other teams. Freeing them up and
helping them allows them to put on guardrails, making the
observability team a strategic team rather than a tactical whack-a-
mole team.

Conclusion
In a cloud native world, mastering observability data is crucial for
maintaining a competitive edge. Optimal observability outcomes go
beyond quick issue resolution; they involve leveraging observability
data for business innovation and enhancing customer experiences.
This chapter’s Observability Data Optimization Cycle (O11y DOC)
advocates for a systematic approach, encompassing Analyze,
Refine, and Operate, to efficiently manage costs and enhance
system performance. It emphasizes the need for cultural change,
centralized governance, and team autonomy in managing
observability. Finally, the O11y DOC framework outlines what is
necessary to control costs while improving the performance of your
observability systems.

1 “What Is FinOps?” The FinOps Foundation, https://www.finops.org.

https://www.finops.org/

Chapter 4. Open Source
Telemetry Standards:
Prometheus, OpenTelemetry,
and Beyond

In the previous chapters we discussed how observability data has
been growing in scale while delivering diminishing business
outcomes. We delved into real-life use cases on how well-known
companies have solved observability data issues. Finally, we
introduced a new framework for reliably solving the same issue,
distilling the core principles that we have gathered from our
experience solving those real-world use cases.
In this chapter, we will explore implementations using open source
software and how open source instrumentation has increasingly
become the de facto standard for monitoring and observability in
cloud native environments. We’ll trace the evolution of this trend,
highlighting the pivotal roles of Prometheus and OpenTelemetry
(OTel) in shaping the landscape. These tools have simplified the
collection and analysis of vast amounts of telemetry data and
established new benchmarks for flexibility, scalability, and
community-driven development in observability.

Instrumentation Before Prometheus and OTel
Before the industry standardized on Prometheus and OTel, many
companies were forced to use proprietary collection solutions, such
as AppDynamics, Dynatrace, or New Relic. These vendors control
the instrumentation and aggregation of telemetry using agents,

which are software processes that run alongside an application to
collect data and then send it to an external server.
If you are running an AppDynamics observability setup, you have no
choice but to use the AppDynamics agent to send telemetry to their
system, as shown in Figure 4-1. This is called agent-based
application instrumentation. Applications typically need to install a
software library or software development kit (SDK) to run these
agents and send the data back to the aggregation server.

Figure 4-1. Applications instrumented using agents

In addition to proprietary agents, the data formats used by the
agents are also proprietary. These proprietary data formats mean
that, for all intents and purposes, your data is locked into the
vendor. For example, you cannot easily migrate from one vendor to
another without losing all dashboards and alerts that were built by
the original vendor, making migrations labor-intensive and wasteful.

Agents are also largely noninteroperable. This means that if you
rely on AppDynamics, the same agents cannot easily aggregate
those same metrics into New Relic’s system.
Agent-based systems use the same system resources as the
application and in some cases can slow down or even crash
applications. Site reliability engineering (SRE) teams can’t observe
when agents cause performance issues since they are using the
same agents to send the data back to the aggregation servers.

Data Collection Is Controlled by Users
In 2012, while most organizations were making the switch to
microservices architecture, SoundCloud ran into a set of challenges
while scaling their existing monitoring system. To solve these
challenges, SoundCloud created Prometheus: a way to instrument
once and output everywhere.

By August 2018, Prometheus graduated as a CNCF official project.1
An open source ecosystem was built around Prometheus largely
because of Kubernetes and its increasing ubiquity in the cloud
native space.
Because of Prometheus, most organizations running in cloud native
architectures today no longer have to deal with a myriad of tools
and agents to instrument their applications. Effectively, this moved
the data collection from being controlled by vendors to being
controlled by cloud native observability practitioners.

Prometheus
Prometheus is inspired by Google’s Borgmon monitoring system
(Borg). Instead of using a sink that pushes data to an aggregator
system, Prometheus instrumentation exposes a metric endpoint
(usually an HTTP endpoint in /metrics). The Prometheus server
scrapes the metric endpoint. While most other systems are push-

https://oreil.ly/3oaNd
https://oreil.ly/Dl8Rl
https://oreil.ly/Dl8Rl

based, pushing data out toward an aggregator, Prometheus is pull-
based. This represents a major innovation: because push-based
systems must wait for servers to respond to requests, they can
cause delays and performance degradation.

Interoperability Between Different
Observability Tools
Pull-based systems expose data by using a broadcast system,
“listening” to and then broadcasting data without affecting or even
notifying the system producing the data. This eliminates the need
for agents, and for most applications, its impact on performance is
almost negligible. Figure 4-2 shows agentless metrics in
Prometheus.
The shift to pull-based metrics collection has allowed SRE teams to
better control the metrics they collect. Further, pull-based collection
allowed interoperability between different observability tools.

Figure 4-2. Prometheus’s exposition format, supported by vendors

Standardization to Prometheus
The caveat is that for a pull-based system to be effective, it needs a
standard data format to eliminate the need for conversion. Similar
to Borg, Prometheus created its exposition format, Prometheus
exposition, then wrote clients that use it to expose metrics simply.
Since Prometheus shifted the responsibility to clients outputting a
standard data format, it created a system where whoever supports
that format can use the data. This created a cottage industry of
every software that outputs data supporting Prometheus’s

https://oreil.ly/TSjnz
https://oreil.ly/TSjnz

exposition format, resulting in massive adoption and
standardization around Prometheus.
In essence, you write once, and you can output anywhere that
supports the Prometheus exposition format!

Prometheus Reliability
With Prometheus, metrics instrumentation is part of the application
rather than a separate process, as shown in Figure 4-3. This
contributes to greater reliability.

Figure 4-3. Push-based agent instrumentation versus pull-based agentless
instrumentation

Another contributor to Prometheus’s reliability is the nature of the
pull model. The pull model is inherently reliable because if the
collector is down, Prometheus simply waits longer to pull the metric,
while the push model will fail.
Prometheus thus solved the two big problems: reliability and
collection scalability. It has since been so widely adopted that most
open source tools in the cloud native ecosystem support
Prometheus metrics exposition.
Its pervasiveness became especially evident when cloud native
ecosystems started to build tools and standards on top of
Prometheus.2 This means that any tool sets or vendors that are
compatible with Prometheus are now forced to be interoperable
with each other.
Prometheus tools and standards give SRE teams greater control
over their metrics instrumentation. What impact has this had on the
cloud native ecosystem?

Prometheus: The Good
For good or ill, the industry is adopting Prometheus and it has
become the de facto standard for cloud native observability for
metrics. After Kubernetes, it was the second project to attain
“graduated” status from the CNCF, which requires meeting stringent
criteria.
Prometheus itself has many advantages, the foremost of which are:
Dimensional metric data model

Prometheus uses a dimensional metric data model that allows
flexibility when labeling metric data. You can use these
dimensions to query metrics using the PromQL language,
contrasting with StatsD, which primarily employs a simplistic
model focusing on counters and timers without inherent support
for dimensional data or a specialized query language.

https://oreil.ly/zNdVU

Service discovery
Prometheus can use service discovery native to the system
Prometheus is monitoring. For example, Prometheus can self-
discover pod endpoints using Kubernetes’s own service discovery
APIs.

Deep integration between PromQL and alerting
Prometheus has a built-in Alertmanager subsystem that can
push to paging systems like PagerDuty and Slack. Alertmanager
uses PromQL to build alerts and thresholds.

Mature specification
Prometheus has reached a level of maturity that makes it a
stable and reliable solution for many organizations.

Prometheus: The Not-So-Good
However, as with all good systems, Prometheus has disadvantages
as well:
Generic use case

The use case for Prometheus is too generic: it isn’t built for any
one type of application, so you have to configure it for your
specific system, including creating metadata labels for each
metric type. The relabeling configuration becomes complex as
you collect more metrics.

Annotation leads to complexity
The more dimensions your metrics have, the more complicated
it gets to configure Prometheus scraping because you have to
coordinate collection between multiple instances. You can solve
this problem easily by using tools like PromLens and annotating
metrics only when necessary.

Hard to operate
Prometheus is hard to operate. Prometheus runs as a single
binary, which means it’s easy to stand up but harder to keep
running on unexpected errors. Having Prometheus run in
production means tweaking and fine-tuning to keep it running.
You end up spending time on Prometheus that you could (and
should!) be spending on your core business applications instead.

Horizontal scalability
The biggest disadvantage of Prometheus is that its server uses
vertical scaling.
In general, there are two types of scaling: horizontal and
vertical. Horizontal scaling, also sometimes called fan-out
scaling, is based on multiple servers, while vertical scaling is
based on the resources of one server. Most distributed systems
are scaled horizontally because it is faster and more cost-
effective.
Prometheus, by default, lacks horizontal scaling capabilities,
leading to reliance on vertical scaling for large deployments.
This approach necessitates the use of powerful servers with
extensive CPU and memory resources. The approach poses
another significant challenge as well: it creates a single point of
failure, as an outage in the server’s region can disrupt the entire
system. This is particularly problematic in cloud native
environments where reliability is paramount. Additionally,
managing such a setup is complex and resists automation,
making it more akin to treating the server as a “pet” rather than
“cattle,” as per the popular cloud analogy. Finally, the scalability
of Prometheus is inherently limited; even in the cloud with its
vast array of compute resources, there’s a ceiling to how much a
single server can be scaled vertically.

That said, there are ways to scale Prometheus servers
horizontally. Projects such as Thanos, Cortex, and Mimir aim to
add horizontal scalability to Prometheus. However, once you
reach the point where you need to scale Prometheus
horizontally, we suggest you look into fully managed options.
The complexity of running horizontally scaling Prometheus
usually outweighs the benefits of maintaining these systems,
with very few exceptions.

OpenTelemetry
As more organizations and practitioners standardized to Prometheus
for their metrics, another question arose. What about logs and
traces? This leads to the challenge of how to deal with the
fragmentation of tools to generate telemetry for logs, metrics, and
traces.
Many tools and solutions were crafted to solve this challenge; the
most well-known ones were OpenCensus and OpenTracing.
OpenTracing focused on telemetry for tracing, while OpenCensus
focused on telemetry for both metrics and tracing.
By 2019, a committee was formed that aimed to combine the
efforts of OpenCensus and OpenTracing into building a standardized
and unified set of tools, which was dubbed OpenTelemetry.

What Is OTel?
OTel is an observability framework and toolkit designed to create
and manage telemetry data such as traces, metrics, and logs.
Crucially, OTel is vendor- and tool-agnostic, meaning that it can be
used with a wide variety of observability backends.
OTel generates, collects, processes, and exports telemetry.
However, OTel is not a backend system for logs, metrics, or traces;

https://oreil.ly/vLckv
https://oreil.ly/lRpOL
https://oreil.ly/-XJJn

you still need a system to send the telemetry generated by OTel for
further analysis or safekeeping.
OTel is not one system like Prometheus; it’s an umbrella project
that combines the effort of building multiple subsystems to
generate high-quality, ubiquitous, and portable telemetry to enable
effective observability.

The OTel Specification
Unlike Prometheus, which inadvertently built a standard, OTel is
deliberately building a standard, the OTel specification, that can be
used for any implementation.

OTel SDK
OTel SDK, also known by engineers as client libraries, allows us to
create telemetry that we can install depending on which
programming languages we are writing our application in. The client
libraries can either generate telemetry automatically or manually.
Libraries have built-in automatic instrumentation. For example,
HTTP metrics, gRPC tracing, and even Express.js metrics are
automatically generated when you install these libraries and set
them up in your JavaScript application. However, there are edge
cases; not every library would automatically generate metrics, and
you would need to configure them.
Manual instrumentation uses primitives that the client libraries will
allow you to use to generate specific signals about your application
or to add contextual metadata to the metrics, spans, or logs
emitted.

OpenTelemetry Collector
The OpenTelemetry Collector functions as an intermediary for
telemetry data, equipped with three core components: an ingestion
endpoint that receives data and also translates incoming telemetry

https://oreil.ly/ppeXH

into OTel formats (OpenTelemetry Protocol [OTLP] over HTTP, OTLP
over gRPC); a processor that handles filtering, batching, and
transforming the data; and an exporter that transmits the processed
telemetry data to various backends.
There are also multiple vendor exporters that you can use
depending on where you want your telemetry data to end up.
Additionally, there is a growing list of exporter, collector, receiver,
and client instrumentation libraries in the OpenTelemetry Registry.

OTel: The Promise
OTel can be used for instrumenting logs, metrics, and traces to emit
telemetry via a standard format. It promises a single unified
standard for observability, simplifying the telemetry process, and
supports multiple vendors and open source software (OSS) with no
vendor lock-in. Further, it allows extensibility. Developers can build
upon the specifications to extend OTel to fit their specific needs.
The willingness of popular vendors, libraries, and languages to
support OTel means it’s easier for developers to emit telemetry in
OTel format.
Another promise of OTel is the ability to correlate signals from
multiple sources, like logs to metrics correlation, metrics to traces,
and even logs and metrics to traces, using a standard specification.
Imagine jumping into one correlation ID for a failed HTTP request
and finding all the downstream logs, metrics, and even traces!

OTel: The Reality
The learning curve to fully understand all the components of OTel
and effectively use it in production can be steep, especially for
practitioners who are used to working with proprietary observability
systems.

https://oreil.ly/A4KXT
https://oreil.ly/_VeAB

Another important difference to note is that, unlike Prometheus,
which uses a pull system, OTel uses a push system with a collector.

Limitations of maturity
Being an umbrella project, OTel has multiple levels of maturity
depending on which programming language you are using and what
types of signal you want to emit.
For example, as of this writing in November 2023, the Python trace
and metric client libraries are stable, but logs are experimental.
Golang traces are stable, but metrics are mixed, and logs have not
yet been implemented. To get the full level of maturity, visit the
OpenTeleme⁠try status page.
The current limitations of maturity mean that fully adopting OTel
across telemetry types will be an ongoing project until all the
languages and frameworks your organization supports are stable.

Backend support
OTel is vendor neutral; however, different backends offer varying
levels of support for OTel. Backends may not fully use OTel’s
capabilities.

Where to Start with OTel
Because of the increased complexity, we suggest those interested in
adopting OTel begin by just running the collector. Simply running
the collector will give you a good feel for how the rest of the OTel
ecosystem works.
Having the collector will allow you to start utilizing telemetry
prewritten by tools you are already familiar with. For example, if
you are running NGINX Ingress Controller, you can follow the
Kubernetes NGINX Ingress OpenTelemetry guide to start sending
telemetry to your collector.

https://oreil.ly/nhJa4
https://oreil.ly/qX2T2
https://oreil.ly/xQOO_
https://oreil.ly/xQOO_
https://oreil.ly/xQOO_
https://oreil.ly/B5_q4

Once you run a collector, you will want to try your hand at
configuring auto-instrumentation in the collector to see what
telemetry you can get from your system out of the box. Additionally,
we suggest you try to do Chronosphere’s walkthrough of OTel using
JavaScript and automatic instrumentation or view a practical
demonstration of OTel in action.

Implications of OTel’s Approach
For bigger organizations with a greater need for flexibility in their
telemetry systems, OTel is a better way than proprietary or vendor-
specific collectors to handle telemetry. OTel provides a standard,
flexible, and interoperable way to generate telemetry.
Being a standard across the industry, OTel allows practitioners to
better their portability of skills when moving across different
organizations or divisions of a bigger organization. OTel lock-in
becomes less of a concern for practitioners.
The ability to correlate data using OTel is perhaps its greatest
advantage. There is no other system in the cloud native
observability space that has that potential out of the box.
But as with any new standard, there is an adoption curve. The trick
is to understand when OTel is stable enough for your organization
and when the complexity of adoption is minimal enough for
adopting OTel.
As more and more systems adopt OTel, it will become an
indispensable project that allows all practitioners to better organize
and standardize telemetry systems.
A key weakness in the adoption of OTel is perhaps the erratic
support for logs, where Fluent Bit can come in to fill the gap.

https://oreil.ly/9pxa8
https://oreil.ly/9pxa8
https://oreil.ly/qGVQa
https://oreil.ly/qGVQa

Fluent Bit
Fluent Bit is a vendor-neutral, open source solution that enables
organizations to connect any data source to any destination.
Organizations leverage Fluent Bit to create observability pipelines
that can collect, process, and route data. It has a fully pluggable
architecture that allows users to connect telemetry sources with
various other destinations and perform many different types of
processing (such as filtering, parsing, etc.) on the data while in
flight.
Fluent Bit began as an outgrowth of the Fluentd project, which was
created by Sadayuki Furuhashi in 2011 as an open source data
collector that lets users unify log data collection and consumption.
Fluent Bit was created in 2014 as a more lightweight, performant
version for resource-constrained environments.
With over 12 billion downloads, the Fluent Bit project is one of the
most widely adopted solutions to address logging challenges in
cloud native environments. It includes support for OTel and
Prometheus as both an input and an output, supports connectors
that allow it to integrate with hundreds of other systems, and
allows extensibility via plugins written in WebAssembly and Golang.
The synergy between the broad telemetry capabilities of projects
like OTel and Fluent Bit’s specialized log-processing abilities allows
for a solution that works for any scale of organization—from a
lightweight system for transforming log entries to structured metric
data to large-scale processing of logs via backends like Kafka or
OpenSearch. Fluent Bit is available as a default logging option in
the environments of most cloud service providers.

1 “Prometheus Graduates Within CNCF,” Cloud Native Computing Foundation,
August 9, 2018, https://oreil.ly/qt-vt.

https://oreil.ly/qt-vt

2 Anne McCrory, “Ubiquitous? Pervasive? Sorry, They Don’t Compute,”
Computerworld, March 20, 2000, https://oreil.ly/juHHV.

https://oreil.ly/juHHV

Conclusion
Open source projects have transformed the way we standardize the
emission and storage of observability signals.
With their introduction, the landscape of cloud native observability
has evolved. The challenge is no longer solely about data capture;
emitting telemetry has become more straightforward than ever.
These projects aren’t silver bullets that magically address every
observability concern. Instead, they serve as standards, enabling us
to harness these observability signals efficiently. The overarching
goal is to utilize these tools to foster improved business results,
though the path to mastery may come with a pronounced learning
curve.
The monitoring and observability landscape has changed greatly
over the past three to five years. System architectures today are
sufficiently different from their pre–cloud native counterparts to
demand a new paradigm. This is born from radically rethinking, as
an industry, how we build and implement monitoring systems.
To refine our focus and make a discernible impact, our thinking
about cloud native observability must pivot away from the “three
pillars” we discussed in our previous report, Cloud Native
Monitoring, and toward the three phases of observability we’ve
outlined in this report. These three phases allow for a goal-driven,
pragmatic approach to cloud native observability that emphasizes
remediating problems and improving business outcomes.
The three phases of observability help us focus on what matters
most. However, it is indeed difficult to discuss observability data
without noting that such data in the cloud has grown exponentially.
This growth has led to higher costs while potentially decreasing
business outcomes.
In response, we’ve defined the Goldilocks zone of observability,
where we retain the essential observability data—not too much and

https://oreil.ly/-OOkA
https://oreil.ly/-OOkA

not too little—to fully understand our systems. However, achieving
the Goldilocks zone of observability is challenging without a proper
framework. That’s why we introduced the O11y DOC. This
framework helps us delve into the nuances of implementation,
covering technical details, aspects of governance, and process.
Using O11y DOC, we can maximize the value of our data while
keeping costs low. We’ve discussed examples and case studies
where large organizations have implemented O11y DOC with the
support of fully managed platforms such as Chronosphere.
We recommend fully managed monitoring solutions over self-
managed ones because the latter can be complex and costly. With
platforms that natively support and promote the principles in O11y
DOC, we can accelerate optimization using O11y.
Building an effective observability function is all about strategy.
Keep your eyes on the desired outcomes, and your cloud native
observability journey will have a promising start.

About the Authors
Kenichi Shibata is a cloud native architect at esure, specializing in
cloud observability, security, cloud migration, and cloud native
microservices implementation and architecture. He has worked in
multiple global industries ranging from banking and insurance to
media and retailing across Europe and Asia. He and his family are
based in the United Kingdom.
Rob Skillington is the cofounder and CTO of Chronosphere. He
was previously at Uber, where he was the technical lead of the
observability team and creator of M3DB, the time-series database
at the core of M3. He has worked in both large engineering
organizations such as Microsoft and Groupon and a handful of
startups. He and his family are based in New York City, where he
mainly spends weekends exploring all of New York’s playgrounds
and also following his wife’s jazz adventures.
Martin Mao is the cofounder and CEO of Chronosphere. He was
previously at Uber, where he led the development and site reliability
engineering (SRE) teams that created and operated M3. Prior to
that, he was a technical lead on the EC2 team at Amazon Web
Services and has also worked for Microsoft and Google. He and his
family are based in Seattle, and he enjoys playing soccer and eating
meat pies in his spare time.

	1. The Cloud Native Impact on Observability
	Challenges of Cloud Native Observability
	Deep Dive into Observability Data
	Observability Data Is Growing in Scale
	Understanding Cardinality and Dimensionality
	Cloud Native Systems Are Flexible and Ephemeral

	The Goldilocks Zone of Cloud Native Observability
	Cloud Native Environments Emit Exponentially More Data Than Traditional Environments
	Delivering Reduced Business Outcomes
	Observability Practitioners Lose Focus
	Increasing Cost of Observability Data

	The Cloud Native Impact
	Slower Troubleshooting
	Tools Become Unreliable
	Use Context to Troubleshoot Faster

	The Three Phases of Observability: An Outcome-Focused Approach
	Remediating at Any Phase, with Any Signal
	Conclusion

	2. Cloud Native Challenges in the Real World
	Impact of Uncontrolled Data Growth on System Performance
	Controlling Cost
	Case Study 1: Improving Performance While Gaining Huge Cost Savings
	The Challenge
	Approach

	Impact of Uncontrolled Data Growth on Observability Reliability
	Poor Developer Experience Caused by Poor Observability Data
	Case Study 2: Increased Observability Reliability and Improved Developer Experience
	The Challenge
	Approach

	Making Way for Fast-Paced Innovation
	Regulatory Requirements
	Case Study 3: Navigating Observability Challenges in Balancing Rapid Fintech Growth and SLA Compliance
	The Challenge
	Approach

	Conclusion

	3. Strategies for Controlling Observability Data Growth and Complexity
	Emerging Solution Using a Repeatable Framework
	Using FinOps as an Inspiration
	Observability Data Optimization Cycle
	Step 0: Centralized Governance
	Autonomy and Allocations to Increase Responsibility and Improve Responsiveness
	Usable Capacity by Allocation to Optimize Use Cases
	Using Observability Team as Consultants Instead of as Bottlenecks

	Framework Components
	Step 1: Analyze
	Traffic Analysis
	Usage Analysis
	Combining Traffic and Usage Analysis to Make Decisions
	Output of Analyze Step

	Step 2: Refine
	Dropping
	Retention
	Resolution
	Downsampling
	Aggregation
	Output of Refine Step

	Step 3: Operate
	Expanding Visibility and Coverage
	Freeing Up More of the Observability Team’s Time to Tackle Strategic Projects

	Conclusion

	4. Open Source Telemetry Standards: Prometheus, OpenTelemetry, and Beyond
	Instrumentation Before Prometheus and OTel
	Data Collection Is Controlled by Users

	Prometheus
	Interoperability Between Different Observability Tools
	Standardization to Prometheus
	Prometheus Reliability
	Prometheus: The Good
	Prometheus: The Not-So-Good

	OpenTelemetry
	What Is OTel?
	The OTel Specification
	OTel: The Promise
	OTel: The Reality
	Where to Start with OTel
	Implications of OTel’s Approach

	Fluent Bit

	Conclusion
	About the Authors

