

Mohammed Ilyas Ahmed

Cloud-Native DevOps
Building Scalable and Reliable Applications

Mohammed Ilyas Ahmed
Boston, MA, USA

ISBN 979-8-8688-0406-9 e-ISBN 979-8-8688-0407-6
https://doi.org/10.1007/979-8-8688-0407-6

© Mohammed Ilyas Ahmed 2024

This work is subject to copyright. All rights are solely and exclusively
licensed by the Publisher, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in
any other physical way, and transmission or information storage and
retrieval, electronic adaptation, computer software, or by similar or
dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks,
service marks, etc. in this publication does not imply, even in the
absence of a specific statement, that such names are exempt from the
relevant protective laws and regulations and therefore free for general
use.

The publisher, the authors, and the editors are safe to assume that the
advice and information in this book are believed to be true and
accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, expressed or implied, with
respect to the material contained herein or for any errors or omissions
that may have been made. The publisher remains neutral with regard
to jurisdictional claims in published maps and institutional affiliations.

This Apress imprint is published by the registered company APress
Media, LLC, part of Springer Nature.

https://doi.org/10.1007/979-8-8688-0407-6

The registered company address is: 1 New York Plaza, New York, NY
10004, U.S.A.

To my beloved parents, Fareeda Tabassum and Mohammed Altaf Ahmed,
Your unwavering love, guidance, and sacrifices have shaped every step of
my journey. Your endless support and belief in my abilities have been a
constant source of strength. I am forever grateful for the values you have
instilled in me and the lessons you have taught me.
Thank you for being my steadfast pillars of strength, for teaching me
resilience, and for shaping the person I am today. This achievement is as
much yours as it is mine.
With heartfelt gratitude and endless love,
—Mohammed Ilyas Ahmed

Any source code or other supplementary material referenced by the
author in this book is available to readers on GitHub
(https://www.apress.com/gp/services/source-code). For more
detailed information, please visit
https://www.apress.com/gp/services/source-code.

Table of Contents
Chapter 1:​ Unveiling the Cloud-Native Paradigm

Pre-cloud Era
Evolution of Cloud Native

Shift from Mainframe Computing to a Cloud-Native
Approach
Advantages of Cloud-Native Computing over Mainframe
Disadvantages of Cloud-Native Computing over Mainframe
The Twelve-Factor App

Introduction and Understanding of Cloud Native
What Is CNCF?​
Core Pillars of Cloud Native
Containerization​
Continuous Integration and Delivery
Serverless Computing
Advantages of Serverless Cloud Computing
Popular Serverless Computing Platforms
Disadvantages of Serverless Cloud Computing
Cloud Concept
Key Features of a Public Cloud
Downside of Public Cloud
Key Features of a Private Cloud
Downside of Private Cloud
Key Features of Hybrid Cloud
Downside of Hybrid Cloud
Differences Between IaaS, PaaS, and SaaS

Cloud Native Maturity Model (CNMM)
Layers of Cloud-Native Landscape
Provisioning Layer
Runtime Layer
Orchestration and Management Layer
Application Definition and Development Layer

Summary
Chapter 2:​ Cloud-Native DevOps Architectural Overview

Introduction to DevOps in Cloud-Native Environment
What Is DevOps?​
Principles of DevOps
7C’s of DevOps Life Cycle
Continuous Development
Continuous Integration
Continuous Testing
Continuous Deployment
Benefits of Infrastructure Automation
Continuous Feedback
Continuous Monitoring
Continuous Operations

Kubernetes Scalability
What Is Kubernetes?​
Fundamental Architecture of Kubernetes Cluster
Master Node
Worker Node

Hardened Installation of Kubernetes

Perform the Following Steps on Master Node
Perform the Following Steps on the Worker Node
Kube-bench for Security of Kubernetes Cluster
Steps to Set Kube-bench on Your Nodes
Scaling of Kubernetes
Recommended Practices for Kubernetes Scaling
Manual Scaling
What Is Autoscaling?​
Kubernetes Autoscaling
Horizontal Pod Autoscaling (HPA)
Description of Each Attribute Described in the Preceding
YAML File
Vertical Pod Autoscaling (VPA)

Comparison of Monolithic and Public Managed Kubernetes
Cluster
Summary

Chapter 3:​ Security in Cloud-Native Applications with a Shift-Left
Approach

Introduction to Shift-Left Security in Cloud Native
Shift-Left Secure Right
Risk from Third-Party Components
Embracing Technologies to Shift Left
Security Testing with Shift-Left Approach
Benefits of Shift-Left Strategy

Infrastructure as Code (IaC) and Security
Role of IaC in Cloud Native
Security Strategy Using IaC for Organizations

Tools for IaC Security
IaC with Terraform
Terraform Working
Terraform Architecture
IaC Tools
Value Proposition of IaC Tools
Best Practices for IaC

Securing API in Early Stages
Common API Risk Factors
What Is API Security Testing?​
Securing API Using Pynt
Working of Pynt
Pynt Setup
Pynt Security Testing

Summary
Chapter 4:​ CI/​CD Pipeline in Cloud-Native DevOps

Overview of CI/​CD
C1/​CD Principles
Principles of Continuous Integration
Principles of Continuous Delivery
CI/​CD Pipeline Stages
Source Stage
Build Stage
Test Stage
Deploy Stage
CI/​CD Best Practices in Cloud Native

Benefits of CI/​CD in Cloud-Native DevOps
Integration of Version Control

Version Control Overview
CI/​CD Build Tool Implementation

Cloud-Agnostic in CI/​CD Pipeline
CI/​CD Pipeline Using Jenkins

Security in CI/​CD
Threats in CI/​CD
Automated Tools for Securing CI/​CD Pipeline
Securing a CI/​CD Pipeline:​ Recommended Approaches

Summary
Chapter 5:​ Open-Source Tools for Cloud-Native DevOps

Overview of Open-Source Tools in Cloud Native
Argo Streamlining Workflows

Getting Started with Argo
Concepts of Argo CD
Implementation of Argo Workflows Using Custom
Kubernetes Resources
Implementation of CI/​CD Through Argo Workflows
Integration of Argo CD and Kubernetes

Kubeflow Pipelines
Kubeflow Overview
Kubeflow Principles
Kubeflow Pipelines
Kubeflow in Cloud Native Applications

Future Trends in Cloud-Native DevOps Tools

DataOps
AIOps (Artificial Intelligence for IT Operations)
Hyperautomation
Adoption of Cloud-Native Technologies
Infrastructure as Code (IaC) Management
Artificial Intelligence (AI) Evolution
Security and Compliance
Collaboration Between DevOps Teams
Fresh Dimension in Quantum Computing
Adapting to Change
Artificial Intelligence for IT Operations (AIOps)
ChatOps
GitOps
No Operations (NoOps)

Summary
Chapter 6:​ Scalability and Autoscaling Strategies

Scaling Principles in Cloud-Native Applications
Utilizing Automation in Cloud-Native Architecture
Several Key Areas Within Cloud-Native Architecture Are
Ripe for Automation

Multi-cloud Strategies
Reactive and Preemptive Scaling
Reactive Scaling
Preemptive Scaling
Cloud Native for Edge Computing

Autoscaling Implementation in AWS

Benefits of Autoscaling
Steps to Create Autoscaling

Future Trends in Scalability and Autoscaling
Machine Learning-Driven Autoscaling
Serverless Architectures and Event-Driven Scaling
Edge Computing and Distributed Scaling
Hybrid and Multi-cloud Scalability
Cost-Efficient Autoscaling Strategies

Summary
Chapter 7:​ Collaborative Development in the Cloud Native

Enabling Collaboration Between Developers and Operations
DevOps Culture

Agile and Scrum Methodology in Cloud Native
Benefits of Agile Methodology
Roles in Scrum
Artifacts in Scrum

Optimizing Cloud-Based Data Flow
Data Pipeline Architecture Factors
Prioritize Compliance in the Initial Stage
Best Practices in Data Pipeline Architecture
Consider Future Growth When Planning for Performance
and Scalability

ETL Processes and Supply Chain Management
Transition from on-prem to ETL
Securing Cloud-Integrated Logistics Operations
Capabilities of Cloud Computing in Supply Chain
Management

Summary
Chapter 8:​ IAM Security in Cloud-Native Environment

IAM Fundamentals in Cloud-Native Environments
Foundational Elements of Cloud-Native IAM Infrastructure
Fundamental Pillars of IAM
IAM Components
Least Privileges Principles
Implementation of Least Privileges

IAM Best Practices for Service Accounts and API Access
Key Components of User Management in Cloud-Native
Applications
Implementation of User Management in Cloud Native
Secure Handling of API Keys
Least Privilege for Service Accounts
Difficulties Associated with Service Accounts
Best Practices for Managing Service Accounts

IAM Governance and Policy Management in Cloud Native
Governance
Risk Management
Compliance
IAM Standards
Building Concrete IAM

Summary
Chapter 9:​ Threat Analysis for Cloud-Native Deployments

Understanding Cloud-Native Security Challenges
Type of Threats in Cloud Native

Challenges in Cloud-Native Security
3R’s of Cloud-Native Security
Security Controls in Cloud Native

Threat Vectors in Microservices Architectures
Threat Modeling with STRIDE

Security Testing and Validation
Red Teaming in Cloud Native
Implementation Steps

Best Practices in Cloud-Native Security
Conduct Due Diligence
Audit and Improve Configurations

Security Controls and Countermeasures
Key Management in Cloud Native

Summary
Chapter 10:​ Future Trends in Cloud Native

Serverless Computing and Function as a Service (FaaS)
Benefits of Serverless Computing
Function as a Service (FaaS)
Benefits of FaaS
Best Practices for FaaS

Key Challenges in Serverless Computing
AI and Machine Learning Integration Intersection in Cloud
Native

Challenges and Considerations Implementing AI in Cloud
Native
Challenges in Security and Compliance
Complexity in Deployment and Model Training

Obstacles in Data Integration
Scalability Management
Best Practices of Integrating AI/​ML in Cloud Native

Evolution of Containerization​ Technologies Beyond Docker and
Kubernetes
The Rise of No-Code/​Low-Code Platforms in DevOps Workflows

Benefits of No Code and Low Code
Use of No Code and Low Code

Summary
Index

About the Author
Mohammed Ilyas Ahmed
is an industry professional with
extensive expertise in security within
the DevSecOps domain, where he
diligently works to help organizations
bolster their security practices. With a
fervent dedication to enhancing security
posture, Mohammed's insights and
guidance are invaluable to those
navigating the complex landscape of
DevSecOps. In addition to his
involvement in industry events,
Mohammed is an active speaker and
judge, lending his expertise to technical
sessions at prestigious conferences. His
commitment to advancing knowledge is evident through his research
contributions at Harvard University, where he contributes to journal
publications, enriching the academic discourse surrounding security
practices, and, as a distinguished member of the Harvard Business
Review Advisory Council, underscores his commitment to advancing
knowledge and fostering collaboration between academia and industry.

Mohammed Ilyas Ahmed's influence extends even further as a
Member of the Global Advisory Board at VigiTrust Limited, based in
Dublin, Ireland. This additional role highlights his international reach
and his involvement in shaping global strategies for cybersecurity and
data protection.

Mohammed's dedication to excellence is further highlighted by his
numerous certifications, which serve as a testament to his proficiency
and depth of knowledge in the security domain. However, beyond his
professional pursuits, Mohammed is a multi-faceted individual with a
diverse range of interests, adding richness to his character and
perspective.

From thought to action: Grow through what you go through.

About the Technical Reviewer
Shivakumar R. Goniwada
is a renowned author, an inventor, and a
technology leader with more than 25
years of experience in architecting
cutting-edge cloud-native, data
analytics, and event-driven systems. He
currently holds a position as Chief
Enterprise Architect at Accenture, where
he leads a team of highly skilled
technology enterprise and cloud
architects. Throughout his career,
Shivakumar has successfully led
numerous complex projects across
various industries and geographical
locations. His expertise has earned him
ten software patents in areas such as
cloud computing, polyglot architecture, software engineering, and IoT.
He is a sought-after speaker at global conferences and has made
significant contributions to the field through his publications.
Shivakumar holds a degree in technology architecture and
certifications in Google Professional, AWS, and data science. He also
completed an Executive MBA at the prestigious MIT Sloan School of
Management. His notable books include Cloud-Native Architecture and
Design, Introduction to Datafication, and Introduction to One Digital
Identity, all published by Apress.

(1)

© The Author(s), under exclusive license to APress Media, LLC, part of Springer
Nature 2024
M. I. Ahmed, Cloud-Native DevOps
https://doi.org/10.1007/979-8-8688-0407-6_1

1. Unveiling the Cloud-Native Paradigm
Mohammed Ilyas Ahmed1

Boston, MA, USA

“Unveiling Cloud-Native: Embracing the future with digital
brilliance!”

Welcome, fearless explorer. As we embark on our journey into the
Cloud-Native DevOps realm, remember our motto: “Go Native, Go
Cloud!” It’s not just a saying; it’s a guiding principle for those who
dream of taking applications to new heights, much like your caffeine
levels during those late-night coding sessions.

Cloud-Native DevOps isn’t just the support crew; it’s the star of the
tech stage, delivering a performance with the precision of a finely
tuned machine. Get ready for an adventure that’s not just about
adaptation but a fast-paced journey into digital excellence, seamlessly
creating, deploying, and scaling applications like a top-tier show on
opening night.

In the ever-evolving digital landscape, businesses are leveraging
cloud-native technologies to develop and deploy applications at
unprecedented speeds. It’s like having a powerful toolkit for creating,
deploying, and scaling applications efficiently.

Containers are our versatile tools, designed to handle every shift
and change in the cloud environment. Microservices are the efficient
building blocks, fine-tuning our applications with perfect precision.
And automation? It’s the backbone of our operations, ensuring our
code performs brilliantly from the start. Whether you’re an

https://doi.org/10.1007/979-8-8688-0407-6_1

experienced tech professional or new to the field, this chapter
promises an insightful and engaging journey through orchestration,
microservices, and the fast-paced process of continuous integration
and continuous delivery (CI/CD). So, prepare your code, because in the
Cloud-Native DevOps arena, the only thing more impressive than our
applications is the pace of innovation. Get ready to code your way to
success in the dynamic world of digital innovation!

In this chapter, we will be encompassing the following foundational
topics:

Pre-cloud Era
Evolution of Cloud Native
Introduction and Understanding of Cloud Native

Pre-cloud Era
Before we dive into the cloud native, ever thought about how
computing functioned before the cloud? Let’s turn the clock back.
Organizations relied on traditional infrastructure, in other words, on-
prem IT infrastructure, where they used to have physical servers
installed on their own building called data centers.

A number of intricate factors must be taken into account when
establishing and managing a conventional data center. It is necessary
to safeguard the physical space, either by acquiring new locations or by
securing existing data centers. The often-overlooked electric power
requirements force large-scale server array planning, make sure power
conduits are adequate, and include backup generators for operational
resilience. Physical security, which includes key/badged access points,
surveillance tools, and security personnel, is crucial in enterprise
deployments. There are obstacles associated with network
connectivity, such as the need for redundant connections and possible
infrastructure expansion by Internet service providers, contingent
upon governmental approvals.

Because of the heat produced by equipment, cooling solutions are
essential; some data centers have passive cooling systems. Last but not
least, from ordering to testing, the procurement, setup, and utilization
of physical hardware including network, computer, and storage
components demand a substantial number of resources. The complete

data center infrastructure must be designed, ordered, installed, and run
simultaneously, requiring a sizable workforce.

Businesses now enjoy greater convenience because they don’t have
to worry about buying and maintaining servers. They can choose to
save money by renting resources from cloud providers instead. With
this approach, they can readily adapt their resources to meet their
demands at any given time, and geographical barriers no longer limit
access to data and applications.

Evolution of Cloud Native
In the swiftly changing realm of technology, the rise of cloud-native
architecture has transformed the approach to developing, deploying,
and managing applications. Leveraging the capabilities of cloud
computing services and principles, cloud-native architecture stands as
a pivotal driver for augmenting the scalability, reliability, and agility of
contemporary applications. Embedded in the fundamental tenets of
resilience and adaptability, this architectural paradigm serves as the
foundation for pioneering technological advancements in the digital
domain. Orchestration tools like Kubernetes further streamlined the
deployment and management of containerized applications, marking a
pivotal moment in the cloud-native landscape. As the landscape
continues to evolve, organizations are poised to harness the full
potential of cloud-native architectures to meet the ever-changing
demands of the digital era.

Shift from Mainframe Computing to a Cloud-Native
Approach
The transition from mainframe computing to a cloud-native approach
is a significant trend in the IT industry, driven by the need for greater
agility, scalability, and cost-efficiency. Mainframes have long been the
backbone of enterprise computing, providing reliable and secure
processing for mission-critical applications. However, their rigid
architecture and high cost of ownership have made them less
appealing in an increasingly dynamic and cost-conscious IT landscape
(Figure 1-1).

Figure 1-1 From mainframe computing to a cloud-native approach
In contrast, cloud-native computing offers a more flexible and

scalable approach to software development and deployment. Cloud-
native applications are designed to be lightweight, resilient, and easily
deployed to cloud platforms. This makes them well-suited for the
modern business environment, where organizations need to quickly
adapt to changing market conditions and customer demands.

As monolithic applications became increasingly challenging to
manage due to their complexity, the need for greater scalability,
flexibility, and rapid deployment became apparent. In response, cloud
computing emerged as a transformative force. The transition to cloud-
based infrastructure opened up a plethora of opportunities for
businesses to leverage scalable and cost-effective computing
resources, thereby fostering innovation and facilitating the creation of
responsive, on-demand applications. Additionally, in this evolving
landscape, even monolithic applications are now being containerized,
further enhancing their manageability and adaptability within cloud-
native environments.

Advantages of Cloud-Native Computing over
Mainframe

Scalability: Cloud-native applications can automatically scale up or
down in response to workload changes, eliminating the need for
organizations to over-provision or under-provision infrastructure
resources.
Cost-Efficiency: Cloud-native applications often boast a lower total
cost of ownership compared to mainframe applications. The pay-as-
you-go model, where organizations pay for the resources they use,
contributes to this cost-efficiency.
Agility: Cloud-native applications can be developed and deployed
much faster than traditional mainframe applications because of the
modular nature of cloud-native applications, with smaller
components that can be independently developed and tested.
Innovation: Cloud-native computing fosters a more agile and
innovative environment for software development. Cloud platforms
offer access to a diverse range of tools and services, enabling the
quick and easy development and deployment of new applications.

Disadvantages of Cloud-Native Computing over
Mainframe
On the other hand, there are some disadvantages in transitioning from
mainframe to cloud native. Migration of data can be a complex and
time-consuming process. Applications on the mainframe need to be
modernized before the migration as this is to restructure the code and
substitute outdated components. Even though there are difficulties,
the advantages of cloud-native computing are attractive, leading
numerous organizations to invest in moving their mainframe
applications to the cloud.
Higher Costs: Although cloud-native setups offer scalability, they can
also be more expensive than mainframe systems, particularly for
certain tasks. Mainframes may demand a hefty initial investment but
can be more economical for consistent, large-scale workloads.
Increased Complexity: Cloud-native setups involve intricate
distributed systems, microservice architectures, and
containerization tools like Docker and Kubernetes. Managing and
coordinating these elements can be more intricate than overseeing a
single mainframe system.

Security Challenges: Cloud-native computing introduces additional
security risks compared to mainframe environments. With data
spread across various servers and services, there are more potential
security vulnerabilities to address. Ensuring data security during
transmission and storage becomes more complex.
Vendor Lock-In: Embracing cloud-native technologies often means
relying on specific cloud provider services and APIs. This can lead to
vendor lock-in, making it challenging to switch providers or migrate
applications to different platforms in the future.
Performance Concerns: Although cloud computing offers
scalability, the performance of cloud-native applications may
sometimes lag behind mainframe systems, especially for tasks
requiring high throughput or low latency processing. While
advancements in cloud technologies may reduce this performance
gap, it remains a consideration.
Data Sovereignty and Compliance Issues: Storing data in the cloud
may raise concerns regarding data sovereignty and compliance with
regulations, particularly in industries with stringent data protection
requirements. Organizations must carefully manage where their
data is stored and ensure compliance with relevant regulations.

The Twelve-Factor App
In today’s digital landscape, software is commonly provided as a
service, encompassing web apps or software-as-a-service. The Twelve-
Factor App represents a systematic approach to constructing software-
as-a-service applications. By employing declarative formats for
automated setup, it streamlines the onboarding process for new
developers, reducing both the time and costs associated with project
integration. The establishment of a clear agreement with the
underlying operating system ensures optimal adaptability across
diverse execution environments. Minimizing disparities between
development and production enables continuous deployment,
fostering heightened agility in the software development life cycle.
Additionally, the methodology showcases the ability to seamlessly
scale up operations without necessitating significant modifications to
tools, architecture, or development practices.

Figure 1-2 Twelve-Factor

Codebase: A codebase is the entirety of an application’s source code,
typically stored in a centralized or decentralized version control
system. Each application should have a unique codebase; multiple
codebases indicate a distributed system, where each component is
an independent application that adheres to the Twelve-Factor App
methodology. Sharing code between multiple applications violates
the Twelve-Factor principle. Instead, shared code should be

extracted into libraries and included through dependency
management tools.
Dependencies: It comprehensively and explicitly declares all
dependencies using a dependency declaration manifest. Additionally,
it employs a dependency isolation tool during execution to prevent
any implicit dependencies from infiltrating the surrounding system.
This comprehensive dependency specification is consistently
applied to both production and development environments.
Configuration: The Config principle emphasizes that configuration
details should be introduced into the runtime environment through
either environment variables or settings specified in a standalone
configuration file. Although, in specific instances, retaining default
settings directly within the code is acceptable for potential
overrides, it is recommended to separate settings like port numbers,
dependency URLs, and state configurations such as DEBUG. These
should be maintained independently and applied during deployment.
Instances of external configuration files include a Java properties file
or config/database.yml file.
Backing Services: This principal advocates for architects to
consider external elements like databases, email servers, message
brokers, and standalone services that can be provisioned and
managed by system personnel as connected resources. Examples
include messaging systems – RabbitMQ – and database – MySQL.
Build, Release, Run: The Build, Release, and Run principle divides
the deployment process into three distinct and repeatable phases
that can be executed independently at any point in time. The Build
phase involves retrieving code from the source code management
system, compiling it into artifacts, and storing the artifacts in an
artifact repository like Docker Hub or a Maven repository. Following
the Build phase, configuration settings are applied during the
Release phase. Finally, in the Run phase, a runtime environment is
provisioned using scripts and a tool like Ansible, and the application
along with its dependencies is deployed into the newly provisioned
environment.
Processes: The Twelve-Factor App methodology advocates for
stateless processes, meaning each process operates independently
without maintaining state or session information. This facilitates

easier scaling and prevents unintended side effects, enabling
seamless addition or removal of processes to adapt to changing
workloads.
Port Binding: The Twelve-Factor App methodology emphasizes
using port numbers, not domain names, for service identification.
Domain names and IPs can be dynamically assigned, making them
unreliable references. In contrast, port numbers provide a more
consistent and manageable approach for network exposure. To avoid
potential port collisions, port forwarding can be employed. The port
number standardization, with established conventions like port 80
for HTTP, port 443 for HTTPS, port 22 for SSH, port 3306 for MySQL,
and port 27017 for MongoDB.
Concurrency: This methodology recommends organizing processes
by purpose and scaling them independently to handle varying
demands. As depicted earlier, an application is exposed via web
servers behind a load balancer, which in turn utilizes business logic
from Business Service processes behind their own load balancer.
When web server load increases, that group can be scaled up
separately. Similarly, if the Business Service becomes a bottleneck, it
can be scaled independently. Supporting concurrency enables scaling
individual application components to meet specific demands,
avoiding the need to scale the entire application at once.
Disposability: This methodology emphasizes graceful application
startup and shutdown. Graceful startup ensures that all necessary
preparations, such as database connections and network resource
access, are complete before making the application available to
users. Graceful shutdown involves properly closing database
connections, terminating other network resources, and logging all
shutdown activities.
Dev/Prod Parity: Containers effectively package all service
dependencies, reducing environment-related issues. Nevertheless,
certain scenarios, particularly those involving managed services
unavailable on-premises in the development environment, can be
more challenging.
Logs: Streaming log data to enable access by various interested
consumers. The process of routing log data should be independent of
log data processing. For instance, one consumer might focus

exclusively on error data, while another might prioritize
request/response data. Additionally, another consumer might
archive all log data for event tracking. A notable advantage of this
approach is that log data persists even if the application terminates.
Admin Processes: The Admin Processes principle emphasizes that
administrative tasks are integral to the software development life
cycle and should be treated accordingly. As illustrated earlier, an
Orders service is deployed as a Docker container alongside an admin
service named Data Seeder. The data sender service is responsible
for populating the Orders service with initial data.

Introduction and Understanding of Cloud Native

Figure 1-3 Cloud-native fundamentals

Cloud native has seized the spotlight in the industry and is presently
creating ripples in the market. When you search for the term “What is
Cloud Native?” on Google, you’ll encounter numerous definitions that
differ across articles. I prefer to define it as follows:

Cloud-native is a methodology for developing and overseeing
contemporary applications in the cloud. Modern enterprises aspire
to construct applications capable of scaling, adapting, and swiftly
updating to address dynamic customer demands. Achieving this

involves employing tools seamlessly compatible with cloud systems.
These technologies facilitate rapid adjustments to applications
without causing service disruptions, providing businesses with a
distinct competitive advantage.

What Is CNCF?
The Cloud Native Computing Foundation (CNCF), is an open-source
nonprofit software organization that focuses on advancing the
development of cloud-native technologies. The CNCF encourages
cooperation and creativity within the cloud computing community by
offering a vendor-neutral home for various open-source cloud-native
computing initiatives. Prometheus, Kubernetes, Envoy, and other well-
known projects are among those that fall under the CNCF’s purview.
The foundation is essential in pushing best practices and
standardization in the quickly developing field of cloud-native
computing.

Core Pillars of Cloud Native
Microservices are an architectural style that breaks down large
applications into smaller, independent services. This approach
promotes modularity and makes it easier to develop, deploy, and scale
applications. Each microservice is responsible for a specific function
and can be developed and deployed independently, without affecting
the rest of the application. This allows a seamless and flexible way to
handle automation in production without impacting other services.

Resilience in cloud native refers to the ability of an application to
overcome failures without significant downtime as cloud-native
applications are deployed in highly distributed environments. There
are other characteristics as well that contribute to resilience.
Load balancing distributes incoming traffic across multiple copies
of a component, preventing any single copy from becoming
overburdened. This strategy is crucial for ensuring an application’s
ability to handle high traffic volumes.
Redundancy means maintaining multiple copies of essential
components, like databases or microservices, and safeguards
against failures by allowing another copy to seamlessly assume

responsibility if one malfunctions. This strategy effectively
guarantees the program’s continued operation even in the event of
hardware or software malfunctions.
Rate limiting controls the amount of traffic that a component can
receive. This helps prevent the component from becoming
overloaded and crashing, which can protect the application from
denial-of-service attacks.
Circuit breaking is an automated mechanism that temporarily
disables a component encountering frequent failures. This action
prevents the component from triggering further disruptions and
allows it to recover. This technique can effectively safeguard an
application from complete crashes due to transient component
issues.

Containerization
Cloud-native applications are constructed using containers, which are
compact, transportable, and self-contained software units suitable for
easy deployment on any infrastructure. These containers offer an
alternative packaging approach compared to virtual machines (VMs)
or direct deployment on physical servers. Each container encapsulates
all the components required for an application to operate, including
code, system libraries, and settings, in a standalone executable
package. Unlike VMs, containers do not include a complete operating
system, ensuring their lightweight nature. They can operate within a
VM or on a physical server, providing increased flexibility and
simplified deployment. By bundling an application’s libraries and
processes, containers not only enhance security and isolation but also
contribute to cost reduction and scalability. The benefits extend to
quicker deployment, enhanced portability, and improved overall
application scalability and security.

Continuous Integration and Delivery
Cloud-native applications utilize container technology for deployment,
offering a convenient method to package and release these
applications. Containers not only facilitate straightforward packaging
and deployment but also contribute to creating an isolated

environment for cloud-native applications. This isolation enhances
scalability and performance. The development and deployment of
cloud-native applications often involve the implementation of a
continuous integration and continuous delivery (CI/CD) pipeline. This
pipeline is instrumental in enabling swift and frequent releases,
underscoring the agility and efficiency of the development process.

Serverless Computing
Cloud computing execution model is the one in which the cloud
provider dynamically allocates and manages servers on demand to run
the code provided by the developer. This means that developers do not
need to provision or manage servers themselves, which can save a
significant amount of time and effort. Instead, they can focus on writing
code and deploying it to the cloud provider’s platform. The cloud
provider will then take care of running the code and scaling it up or
down as needed. Serverless computing is often used for applications
that are event-driven, such as web applications, mobile backends, and
data processing pipelines. In these cases, code is only executed when
there is an event, such as a user interacting with a web page, or a new
data file being uploaded. This can save a significant amount of money,
as developers only pay for the resources that they are using.

Advantages of Serverless Cloud Computing
Reduced Administrative Overhead: Developers do not need to
provision or manage servers, which can free up their time to focus
on writing code and deploying applications.
Cost Savings: Developers only pay for the resources that they are
actually using, which can save money on infrastructure costs.
Scalability: Serverless applications can scale up or down
automatically to meet demand.
High Availability: Serverless applications are typically highly
available, as the cloud provider is responsible for managing the
infrastructure.

Popular Serverless Computing Platforms

AWS Lambda: AWS Lambda is a serverless computing platform
offered by Amazon Web Services (AWS). It allows developers to run
code in response to events, such as changes to Amazon S3 or
DynamoDB.
Azure Functions: Azure Functions is a serverless computing
platform offered by Microsoft Azure. It allows developers to run code
in response to a variety of events, such as HTTP requests, timers,
and messages in Azure Queue Storage.
Google Cloud Functions: Google Cloud Functions is a serverless
computing platform offered by Google Cloud Platform (GCP). It
allows developers to run code in response to a variety of events, such
as HTTP requests, Pub/Sub messages, and Cloud Storage changes.
Serverless computing is a powerful tool that can help developers to
build and deploy applications quickly and efficiently. By abstracting
away infrastructure management, serverless computing can free up
developers’ time to focus on writing code and delivering value to
their users.

Disadvantages of Serverless Cloud Computing
Possible Delays: Sometimes there can be delays when your function
first starts up, slowing down your app.
Cost Uncertainty: Serverless can be cheap, but it’s hard to predict
costs. Your bill depends on how much your code runs, which can be
unpredictable.
Dependence on Provider: If the cloud provider has problems, your
functions might not work. You’re at their mercy for reliability.
Trouble Monitoring and Fixing: It’s harder to keep an eye on and fix
problems with your code when it’s in a serverless setup.
Limits on What You Can Use: Some features or tools you might
want to use with serverless might not work because of the way it’s
set up.
New Security Risks: Using serverless means dealing with new
security issues, like controlling who can access your code and data.
State Management Complexity: It’s trickier to keep track of
information between different times your code runs, which can
make things more complicated.

Vendor Lock-In: You might get stuck using features that only work
with one provider, making it hard to switch later.

Cloud Concept
There are multiple ways that cloud computing services can be
delivered. The three most common cloud models are
Public cloud
Private cloud
Hybrid cloud

A public cloud refers to a cloud computing service offered by third-
party providers over the Internet. In a public cloud, computing
resources such as virtual machines, storage, and applications are
hosted and managed by a cloud service provider in their data centers.
These resources are made available to the public or a large industry
group and are accessible to users over the Internet on a pay-as-you-go
or subscription basis.

Figure 1-4 Cloud-native essentials

Key Features of a Public Cloud
Accessibility: Public cloud services are accessible to users from any
location with an Internet connection. Users can access and manage

their resources through web browsers or client applications.
Shared Resources: Resources in a public cloud are shared among
multiple customers, allowing for economies of scale. This shared
infrastructure enables cost savings and efficient resource utilization.
Scalability: Public clouds provide the flexibility to scale computing
resources up or down based on demand. This scalability is
particularly beneficial for businesses with variable workloads.
Managed Services: Public cloud providers handle the maintenance,
security, and updates of the underlying infrastructure. This allows
users to focus on developing and deploying applications rather than
managing hardware and software.
Cost Model: Public clouds typically operate on a pay-as-you-go or
subscription model. Users pay for the resources they consume,
making it a cost-effective option, especially for organizations with
fluctuating computing needs.

Well-known public cloud providers include Amazon Web Services
(AWS), Microsoft Azure, Google Cloud Platform (GCP), and IBM Cloud.
Organizations leverage public clouds for various purposes, including
hosting websites, running applications, storing data, and accessing a
wide range of cloud services without the need to invest in and maintain
their own physical infrastructure.

Downside of Public Cloud
Outages and Service Disruptions: Public cloud services are
vulnerable to outages and service interruptions, potentially
impacting business operations and customer satisfaction.
Businesses should have contingency plans in place to address such
disruptions.
Limited Control over Infrastructure: Businesses have limited
control over the underlying hardware and software infrastructure in
a public cloud environment. This can make it challenging to
troubleshoot performance issues or implement specific security
measures.
Pay-as-you-go Model: This pricing model can lead to unanticipated
expenses if usage patterns are not closely monitored and managed.

Businesses should implement clear cost allocation policies and
employ cost optimization strategies.
Network Egress Charges: Data transfer between the cloud and on-
premises infrastructure can incur substantial charges, particularly
for large data volumes or bandwidth-intensive applications.
Businesses should consider using cloud providers with data centers
located closer to their operations.
Private Cloud: This infrastructure is designed to serve just one
company. The cloud infrastructure can be hosted by a third-party
supplier or on-site by the company. Compared to public clouds,
private clouds provide greater control and security, but they can also
be more expensive to run.

Key Features of a Private Cloud
Improved Performance and Reliability: Private cloud provides
dedicated resources for your applications, ensuring consistent
performance and reliability. You are not sharing resources with other
organizations, eliminating the potential for performance bottlenecks
or disruptions caused by third-party activities.
Reduced Risk of Vendor Lock-in: Private cloud computing
minimizes the risk of vendor lock-in, as businesses are not tied to a
specific cloud provider’s platform or services. This independence
grants greater control over the infrastructure, allowing
organizations to switch providers if necessary.
Enhanced Disaster Recovery and Business Continuity: A private
cloud offers a secure and regulated setting for disaster recovery and
business continuity strategies. It allows the duplication of data and
applications within an organization’s infrastructure, ensuring swift
recovery in the face of disruptions.
Seamless Integration: Private cloud can be integrated with your
existing IT infrastructure, allowing for seamless management and
data exchange. You can maintain a hybrid cloud environment,
leveraging the benefits of both private and public cloud solutions.

Downside of Private Cloud

Dependency: Maintaining and managing a private cloud
necessitates a skilled IT team. Organizations lacking such expertise
may encounter difficulties in day-to-day operations.
Bottlenecks for New Technologies: Private clouds may adopt new
technologies at a slower pace compared to public clouds, potentially
hindering organizations from leveraging the latest innovations.
Potential Obsolescence: Rapid technological progress can swiftly
make private cloud infrastructure obsolete, necessitating regular
hardware upgrades and software updates. This may result in
supplementary costs and resource allocation.
Security Challenges: Ensuring the security of a private cloud
environment demands a resilient security stance and ongoing
surveillance. It is essential to deploy strong security measures and
stay informed about the most recent vulnerabilities and threats.

A hybrid cloud integrates both public and private cloud
components, offering businesses the flexibility to harness the
advantages of each. This approach allows organizations to leverage a
public cloud for less critical workloads and a private cloud for mission-
critical tasks, optimizing their cloud infrastructure based on specific
needs.

Figure 1-5 Types of cloud

Key Features of Hybrid Cloud
Scalability: Expanding infrastructure in exclusive reliance on private
data centers requires the addition of new hardware and integration
with existing systems, which can be a complex and disruptive process.
In contrast, a hybrid cloud architecture allows for seamless scalability
by acquiring more cloud storage space as needed.

Cost-Efficiency: Establishing and maintaining one’s data center is a
costly endeavor, as is managing connectivity across multiple data
centers. Transitioning to a hybrid cloud model offloads this challenging
task to providers like Amazon AWS, reducing costs for the organization.

Flexibility: Complete migration from legacy infrastructure to a
fully cloud-based setup is both demanding and disruptive for a

company. Opting for a hybrid cloud infrastructure provides a more
flexible approach, enabling companies to retain legacy software while
benefiting from the flexibility of cloud computing. This flexibility is
particularly advantageous for organizations transitioning to a remote
workforce.

Downside of Hybrid Cloud
Challenges in Implementation: The implementation and
maintenance of this system require a considerable amount of time. It
involves intricate server specifications, robust local infrastructure,
and heightened network capabilities.
Security Concerns: While the integration of both public and private
cloud components mitigates some security risks found in public
clouds, there remains a potential for security threats when engaging
with third-party vendors.
Financial Implication: This cloud model stands out as the most
expensive option, primarily due to the substantial investment,
ongoing maintenance, and specialized expertise required for both
on-premises hardware and private cloud components.

Differences Between IaaS, PaaS, and SaaS
Each solution involves specific resource types and is characterized by
unique methods.

Figure 1-6 Cloud service models

Infrastructure-as-a-Service (IaaS)
This is an array of unprocessed IT resources that the cloud service
provider provides to the customer. They can be applied to resource-
intensive tasks or for virtualizing an infrastructure.

Advantages of IaaS
1. Reduced Cost: IaaS eliminates the need to invest in and maintain

physical hardware, reducing upfront capital expenditures.
Organizations can rent the resources they need on a pay-as-you-go
basis, avoiding the large upfront costs of purchasing and
maintaining hardware.

2. Scalability: IaaS resources can be easily scaled up or down on
demand, allowing organizations to adapt to changing workloads
and business needs. This flexibility enables organizations to
respond quickly to surges in traffic or spikes in demand without
having to worry about overprovisioning or underprovisioning
resources.

3. Pay-as-you-go Model: IaaS providers typically charge based on
usage, enabling organizations to pay for only the resources they
consume. This pay-as-you-go model can lead to significant cost
savings, especially for organizations with unpredictable or
fluctuating workloads.

4. Increased Agility: IaaS facilitates faster deployment and
provisioning of infrastructure, allowing organizations to respond
quickly to market demands and opportunities. With IaaS,
organizations can spin up new virtual machines or storage
volumes in a matter of minutes, enabling them to bring new
products or services to market more quickly.

Disadvantages of IaaS
1. Vendor Lock-In: Relying on a specific IaaS provider can lead to

vendor lock-in, making it difficult or costly to switch to another
provider. Organizations may become dependent on the provider’s
proprietary technologies or services, making it challenging to
migrate to a different platform.

2. Security Risks: IaaS environments introduce new security
challenges, and organizations need to implement robust security
measures to protect their data and applications. Organizations
must carefully manage access permissions, encrypt sensitive data,
and stay up-to-date on the latest security vulnerabilities and
threats.

3. Limited Infrastructure Control: With IaaS, organizations have
less direct control over the underlying infrastructure compared to
on-premises solutions. Organizations may have limited control
over hardware configurations, network routing, and other
infrastructure aspects, which may impact their ability to customize
their IT environment.

4. Potential Costs: IaaS pricing models can be complex, and
organizations may face unexpected charges if they exceed usage
quotas or incur additional costs for specific services. Organizations

should carefully review pricing tiers and service agreements to
avoid unexpected charges.

Platform-as-a-Service (PaaS)
This is a platform that a supplier makes available to clients online.
Teams, particularly developers, can use it to create software and apps
on a platform without having to worry about maintaining it. Certain
apps offer greater freedom than those hosted on a local infrastructure
because they support a large range of programming languages.

Advantages of PaaS
1. Reduced Time: PaaS platforms provide a pre-built development

environment, including databases, middleware, and other tools,
eliminating the need for organizations to set up and maintain their
own infrastructure. This can significantly reduce the time it takes
to develop and deploy applications.

2. Scalability: PaaS platforms allow applications to scale up or down
automatically based on demand. This eliminates the need for
organizations to manually provision and manage infrastructure
resources, ensuring that applications can handle fluctuating
workloads without performance issues.

3. Reduced Maintenance: PaaS providers handle the maintenance
and updates of the underlying infrastructure, including patching
operating systems, updating middleware, and applying security
patches. This frees up developers to focus on writing code and
innovating rather than managing infrastructure.

4. Cost-Effectiveness: PaaS can be a cost-effective solution for
organizations, as they only pay for the resources they use. This
eliminates the upfront costs of purchasing and maintaining
hardware and software, and it also reduces ongoing maintenance
expenses.

Disadvantages of PaaS

1. Vendor Lock-In: Relying on a specific PaaS provider can lead to
vendor lock-in, making it difficult or costly to switch to another
platform. This is because applications may be built on proprietary
technologies or APIs that are not compatible with other PaaS
environments.

2. Low Customization: PaaS platforms often have limited
customization options, as they provide a standardized
environment for developing and deploying applications. This may
restrict organizations that need to tailor their infrastructure to
specific requirements or integrate with legacy systems.

3. Security Concerns: While PaaS providers handle some aspects of
security, organizations still need to implement additional security
measures to protect their data and applications. This may involve
configuring access controls, encrypting sensitive data, and staying
up-to-date on security vulnerabilities.

4. Potential for Performance Issues: In some cases, PaaS platforms
may experience performance bottlenecks, especially if applications
are not properly optimized or scaled. Organizations need to
carefully monitor their applications and adjust resource allocation
as needed to ensure optimal performance.

Software-as-a-Service (SaaS)
This is an array of unprocessed IT resources that the cloud service
provider provides to the customer. They can be applied to resource-
intensive tasks or for virtualizing an infrastructure.

Advantages of SaaS
1. Reduced Costs: SaaS eliminates the need to invest in and maintain

physical hardware and software licenses, reducing upfront capital
expenditures. Organizations can rent the software they need on a
subscription basis, avoiding the large upfront costs of purchasing
and maintaining software licenses.

2. Scalability: SaaS applications can be easily scaled up or down on
demand, allowing organizations to adapt to changing workloads
and business needs. This flexibility enables organizations to
respond quickly to surges in demand or decreases in usage without
having to worry about overprovisioning or underprovisioning
software licenses.

3. Easy Maintenance: SaaS providers handle the maintenance and
updates of the software, including applying security patches and
releasing new features. This frees up IT teams to focus on other
tasks and ensures that organizations are always using the latest
version of the software.

4. Accessibility: SaaS applications can be accessed from anywhere
with an Internet connection, providing users with flexibility and
mobility. This allows employees to work from home, travel
seamlessly, or collaborate with colleagues across different
locations.

Disadvantages of SaaS
1. Vendor Lock-In: Relying on a specific SaaS provider can lead to

vendor lock-in, making it difficult or costly to switch to another
provider. Organizations may become dependent on the provider’s
proprietary features or integrations, making it challenging to
migrate to a different platform.

2. Limited Customization: SaaS applications often have limited
customization options, as they are designed to provide a
standardized user experience. This may restrict organizations that
need to tailor their software to specific requirements or integrate
with legacy systems.

3. Data Privacy Concerns: Storing data in a cloud-based SaaS
application raises data privacy concerns, and organizations need to
ensure compliance with relevant regulations. Organizations must
implement appropriate data governance practices, data encryption

mechanisms, and access controls to protect sensitive data and
comply with privacy laws.

4. Internet Connectivity: SaaS applications require reliable Internet
connectivity for access and use. Disruptions in network access can
impact application availability and productivity, especially for
organizations that rely heavily on SaaS tools for critical business
operations.

Cloud Native Maturity Model (CNMM)
The Cloud Native Maturity Model (CNMM) is a framework that helps
organizations assess their level of maturity in adopting and utilizing
cloud-native technologies. It is designed to guide organizations
through continuous improvement, enabling them to leverage the full
benefits of cloud-native computing.
Business Outcomes: Concentrating on aligning cloud-native
initiatives with business goals and gauging their influence on key
performance indicators (KPIs).
People: Prioritizing the cultivation of a cloud-native culture,
fostering the necessary skills, and empowering teams to embrace
cloud-native practices.
Policy: Underscoring the establishment of transparent cloud-native
policies, governance frameworks, and risk management practices for
ensuring security, compliance, and control.
Processes: Highlighting the adoption of cloud-native development,
deployment, and operational practices, encompassing infrastructure
as code (IaC), continuous integration and continuous delivery
(CI/CD), and automated testing.
Technology: Concentrating on the selection and deployment of
suitable cloud-native technologies, including containers, Kubernetes,
serverless computing, and cloud-based infrastructure.

The CNMM outlines five maturity levels that provide a valuable tool
for organizations to assess their current cloud-native maturity, identify
areas for improvement, and develop a roadmap for continuous
advancement. By adopting cloud-native practices, organizations can
achieve greater agility, scalability, cost-efficiency, and innovation.

Figure 1-7 Cloud-native maturity model

Level 1: Build: At this stage, organizations possess a foundational
understanding of cloud-native concepts and are in the initial phases
of experimenting with cloud-based infrastructure.
Level 2: Operate: Organizations operating at this level have
established a solid cloud-native foundation. They are capable of
operating cloud-based applications in a production environment.
Level 3: Scale: Organizations reaching this level have developed the
capability to scale their cloud-native applications efficiently and
effectively, accommodating increased demands.
Level 4: Improve: At this stage, organizations are actively engaged
in continuous improvement of their cloud-native practices. This
involves optimizing resource utilization and enhancing security and
compliance measures.
Level 5: Optimize: Organizations at this pinnacle level of maturity
have achieved a high degree of proficiency in cloud-native practices.
They fully leverage the benefits of cloud-native computing to
optimize efficiency, innovation, and overall business outcomes.

Layers of Cloud-Native Landscape
The provisioning layer forms the bedrock of cloud-native architecture,
encompassing the tools that establish and secure the foundation upon
which cloud-native applications reside. This layer governs the
automated creation, management, and configuration of infrastructure,
alongside the scanning, signing, and storage of container images. It
additionally extends to security, providing tools for policy
enforcement, integrating authentication and authorization into
applications and platforms, and managing the distribution of secrets.

Figure 1-8 Cloud-native runtime layer

Provisioning Layer
The foundational element of cloud-native architecture is the
provisioning layer, serving as the basis for constructing cloud-native
applications. This layer involves the utilization of tools and procedures
for the creation, administration, and configuration of the infrastructure
supporting these applications.
– Infrastructure Provisioning: The establishment and oversight of

fundamental hardware and software resources like servers, storage,
and networking equipment.

– Container Image Management: The processes of constructing,
scanning, signing, and storing container images – compact, self-
contained packages that encapsulate an application’s code,
dependencies, and runtime environment.

– Configuration Management: The setup and administration of
configuration for cloud-native applications, encompassing aspects
such as environment variables, network settings, and service
discovery.

– Security: The implementation of security measures to safeguard
cloud-native applications. This involves defining and enforcing

security policies, managing user authentication and authorization,
and handling secrets management.

Runtime Layer
The runtime layer within cloud-native architecture is tasked with the
execution and administration of cloud-native applications. It involves
the utilization of tools and processes for deploying, expanding,
overseeing, and safeguarding applications.
– Container Runtime: This component oversees the execution of

container images and their life cycles. It furnishes the necessary
environment for containers to operate, encompassing the kernel,
libraries, and system services. Notable examples of container
runtimes include Docker and Containers.

– Service Mesh: Serving as an infrastructure layer for managing
microservices communication, the service mesh undertakes
functions such as traffic routing, implementing retries and timeouts,
and enforcing security policies. Noteworthy service mesh examples
include Istio, Linkerd, and Consul Connect.

– Container Orchestrator: Responsible for handling container
deployment, scaling, and networking, the container orchestrator
automates tasks such as deploying containers across multiple hosts,
managing container health and replication, and balancing container
workloads. Examples of container orchestrators include Kubernetes,
Docker Swarm, and Apache Mesos.

– Logging and Monitoring: Tools for logging and monitoring collect
and analyze logs and metrics from cloud-native applications. This
data is pivotal for monitoring application health and performance,
troubleshooting issues, and identifying areas for enhancement.
Logging and monitoring tools encompass Prometheus, Grafana, and
the ELK Stack.

– Configuration Management: Configuration management tools are
employed to oversee application and infrastructure configurations.
They automate the deployment and update of configuration files,
ensuring that applications operate with the correct settings. Notable
configuration management tools include Ansible, Chef, and Puppet.

The runtime layer assumes a critical role in the triumph of cloud-
native applications by furnishing a stable, scalable, and secure
environment for their execution. Through the automation and
streamlining of tasks related to deploying, overseeing, and monitoring
applications, the runtime layer aids organizations in reducing
operational expenses, enhancing application performance, and
delivering a more consistent user experience.

Orchestration and Management Layer
The layer responsible for orchestrating and managing cloud-native
architecture involves the utilization of tools and processes to automate
the deployment, oversight, and monitoring of cloud-native
applications. This layer is integral in guaranteeing the scalability,
dependability, and security of cloud-native applications within a
distributed environment.
– Application Configuration Management: Configuration

management tools like Ansible and Chef handle the provisioning and
management of application configurations across multiple
instances. They automate the process of applying consistent
configurations, ensuring that applications operate with the correct
settings and parameters.

– Container Orchestration: Tools for container orchestration, such as
Kubernetes, manage the life cycle of containerized applications.
They automate tasks such as deploying, scaling, conducting health
checks, and allocating resources for containers, ensuring efficient
resource utilization and seamless application functionality.

– Monitoring and Observability: Monitoring tools such as
Prometheus and Grafana collect and analyze metrics from both
cloud-native applications and infrastructure. They furnish real-time
insights into application performance, resource utilization, and
potential issues, enabling proactive troubleshooting and
optimization.

– Service Discovery and Routing: Tools for service discovery, such as
Consul and etcd, enable applications to dynamically locate and
communicate with each other. These tools maintain a registry of

services and offer mechanisms for service discovery and routing,
facilitating communication in microservices-based applications.

– Logging and Tracing: Logging tools like Fluentd and Elasticsearch
gather and store logs from cloud-native applications, while tracing
tools like Jaeger and Zipkin provide distributed tracing. This enables
developers to track requests across multiple services and
troubleshoot complex interactions.

– API Gateways: API gateways like Kong and Zuul serve as a
centralized entry point for managing and controlling access to
microservices-based applications. They provide features like
authentication, authorization, rate limiting, and load balancing,
thereby enhancing the security and performance of APIs.

Application Definition and Development Layer
The Layer for Application Definition and Development in cloud-native
architecture involves employing tools and methodologies that
empower developers to construct, deploy, and oversee cloud-native
applications. This layer is dedicated to crafting applications designed
for scalability, resilience, and easy management within a cloud
environment.
– Microservices Architecture: Cloud-native applications typically

adopt a microservices architecture, characterized by small,
independent, and deployable units of code. This approach
encourages modularity, loose coupling, and independent
development and deployment, enhancing the scalability and
manageability of applications.

– Continuous Integration and Continuous Delivery (CI/CD): CI/CD
pipelines automate the processes of building, testing, and deploying
applications. This automation facilitates rapid development cycles,
quick feedback loops, and the swift deployment of new features.

– Containerization: Containers offer a lightweight, self-contained
environment for running applications. They encapsulate the
application’s code, dependencies, and runtime environment,
ensuring portability and ease of deployment across diverse
environments.

– Security and Compliance: Security is an integral aspect of cloud-
native development. Developers should integrate security controls,
implement vulnerability management practices, and employ access
control mechanisms to safeguard applications and data.

– Declarative Infrastructure: Tools for declarative infrastructure,
such as Terraform and CloudFormation, articulate the desired state
of infrastructure, with the tool automatically provisioning and
managing the underlying resources. This approach promotes
consistency, and repeatability and reduces manual configuration
errors.

– API-Driven Development: Cloud-native applications frequently
expose functionality through APIs, enabling communication with
other services and applications. This API-driven approach
encourages interoperability and facilitates composable
architectures.

Summary
As we finish exploring Cloud-Native DevOps, we see it’s not just about
adjusting to change; it’s about embracing new ideas and moving
quickly in the digital world. Throughout this chapter, we’ve been on an
exciting journey, comparing it to a fast race where Cloud-Native
DevOps acts as our speedy vehicle navigating through technology.

We’ve learned about the evolution of cloud native and its main
ideas, understanding how it’s changed software development. We’ve
compared businesses to wizards using their cloud tools to create
applications super-fast.

Containers are like sleek racing cars, ready to handle the challenges
of the digital world, while microservices are like skilled mechanics
making sure everything runs smoothly. Automation speeds up our
work like a checkered flag in a race.

Whether you’re experienced or just starting out, this chapter has
given useful insights into Cloud-Native DevOps basics. With this
knowledge, you’re better prepared to use cloud tools and handle the
changes in software development.

So, remember our motto: “Go Native, Go Cloud!” Embrace the
speed, new ideas, and agility of Cloud-Native DevOps as you move

forward in your digital journey toward success.

(1)

© The Author(s), under exclusive license to APress Media, LLC, part of Springer Nature 2024
M. I. Ahmed, Cloud-Native DevOps
https://doi.org/10.1007/979-8-8688-0407-6_2

2. Cloud-Native DevOps Architectural Overview
Mohammed Ilyas Ahmed1

Boston, MA, USA

“Kubernetes, our digital maestro, conducts the orchestra of containers in our cloud symphony.
It’s like the Hans Zimmer of code, orchestrating a soundtrack of reliability and scale.”

In this chapter, we will be going beyond technical specifics it acts as a strategic guide as we compare the
features of monolithic architectures with the managed cloud services, providing a complete understanding
to aid your decision-making process. Look forward to key insights, covering fundamental scalability
principles, and top security practices.

By the end of the chapter, you’ll be equipped to craft cloud-native solutions that are not just robust and
expandable but also tailored to the specific demands of your project. Buckle up for an immersive journey
into the dynamic world of Cloud-Native DevOps architecture tailored for Google Cloud. You’ll dive into the
intricacies of Kubernetes, learning to scale it effectively and give your applications the flexibility to adapt to
workload changes. The setup process will take center stage, with a focus on building security into your
foundation and sharing insights on strengthening your Kubernetes setup against security threats. As we
delve into the Google Cloud environment, we’ll cover the specifics of deploying Kubernetes within Google
Cloud’s framework, ensuring that container management works hand in hand with Google Cloud’s robust
and flexible infrastructure.

In this chapter, we will be encompassing the following topics:
Introduction to DevOps in Cloud-Native Environment
Kubernetes Scalability
Hardened Installation of Kubernetes
Comparison of Monolithic and Public Managed Kubernetes Cluster

Introduction to DevOps in Cloud-Native Environment
DevOps, which involves the automation of workflows between development and operations, stands out as a
crucial element in effectively adopting a cloud-native strategy. As the aim of cloud native is to minimize
time-to-market and enhance operational efficiency for businesses, DevOps plays a pivotal role in aligning
people, tools, and systems, thereby significantly contributing to the overall success of the organization. This
integration of cloud native and DevOps represents a logical progression toward productivity improving
efficiently.

Moreover, within the realm of DevOps, there are two notable approaches: cloud-native DevOps and
cloud-agnostic DevOps.

Cloud-native DevOps emphasizes leveraging cloud-native principles and technologies, such as
microservices, containers, and serverless computing, to build, deploy, and manage applications. This
approach promotes agility and scalability by utilizing cloud-native services and infrastructure, enabling
rapid development, deployment, and scaling of applications.

On the other hand, cloud-agnostic DevOps focuses on maintaining flexibility and portability by
abstracting away dependencies on specific cloud providers. In this approach, DevOps practices and tools
are designed to work across multiple cloud environments, allowing organizations to avoid vendor lock-in
and seamlessly migrate between different cloud platforms as needed.

The realm of software development undergoes continuous transformation, and the ascendancy of cloud
computing has given prominence to DevOps and cloud-native frameworks as indispensable methodologies

https://doi.org/10.1007/979-8-8688-0407-6_2

for constructing, releasing, and overseeing contemporary applications. The utilization of a cloud-native
DevOps methodology enhances agility through ongoing deployment by scaling the application without any
substantial changes.

Before we immerse ourselves in the intricacies of cloud native and DevOps, let’s take a closer look at the
fundamental concept of DevOps.

What Is DevOps?
The term DevOps has evolved into a comprehensive buzzword encompassing various trends in both
software development and IT operations. This evolution is reasonable, considering that DevOps is still in a
state of ongoing development, covering diverse domains

DevOps comprises a fusion of methodologies that bridges the gap between software development (Dev)
and IT operations (Ops), aiming to reduce the software development life-cycle duration and ensure
continuous delivery of high-quality outcomes. It represents a cultural transformation necessitating a shift
in collaboration between development and operations teams.

Principles of DevOps
The DevOps life cycle is like a set of automated steps in making software, happening over and over again.
It’s shown as an infinity loop to highlight that it’s continuous. This loop represents how people work
together and make improvements at each stage of creating a software application. On the left side, it’s about
creating and testing the software, while on the right side, it’s about putting the software into action and
managing it. Different tools and technologies are used at each step to make things smoother.

Figure 2-1 DevOps SDLC process

7C’s of DevOps Life Cycle
As previously discussed, DevOps operates with a continuous flow, encompassing everything from planning
to monitoring. Now, let’s divide the complete life cycle into seven phases, emphasizing the central theme of
continuity. Any stage within this life cycle can undergo multiple iterations across various projects until its
completion.

Continuous Development
This crucial phase focuses on setting the vision for the software development cycle, emphasizing project
planning and coding. It involves gathering project requirements, discussing them with stakeholders, and
maintaining a product backlog based on customer feedback. Once the development team agrees on
business needs, they begin coding for the specified requirements. This process is ongoing, requiring
developers to code whenever project requirements change, or performance issues arise.

Walmart is the king of big box retailers in the American heartland adopted to streamline development,
testing, and release processes. In a recent development, Walmart Labs implemented over 100,000

OpenStack cores to establish its private cloud, showcasing an ongoing commitment to advancing its Agile
methodology. The tools used in this phase are GIT and JIRA.

Continuous Integration
The continuous integration phase stands out as a pivotal stage within the complete DevOps life cycle. The
process involves detecting and identifying bugs through unit testing at each step, followed by modifying the
source code accordingly. This establishes a continuous integration approach, with code being tested at
every commit, and the necessary tests are planned during this phase. The tools used in this phase are
Jenkin, CircleCI, and Bamboo, which are a few DevOps tools.

Continuous Testing
Teams have different ways of doing continuous testing. Some do it before they put everything together,
while others do it afterward. In this phase, quality analysts use Docker containers to test the software and
find any problems. If they find a bug or issue, they send the code back to the integration phase to fix it.
Automation testing is important because it speeds up the process and saves time and effort. Tools like
Selenium help with this. Continuous testing makes the test report better and saves money by reducing the
costs of setting up and maintaining test environments. Some tools used in this phase include Selenium,
TestSigma, and TestNG.

Backend testing is when we test the parts of a software application that users don’t see. This includes
things like the database, APIs, and code that run on the server. We do this to make sure the application can
handle a lot of users and works correctly and safely.

Database testing is about checking if the database can handle a lot of work and if it does things right and
fast. We also test to make sure it’s safe from bad people trying to get in and change things.

Non-functional testing looks at how well a software system works in different situations, not just what it
does. These tests check things like how fast it is, how reliable it is, and how easy it is to use. Doing non-
functional testing helps us make sure the software meets what users need and what the business wants. It
makes the software better and more trustworthy for users.

Continuous Deployment
In the DevOps life cycle, this phase is crucial as it involves deploying the final code onto production servers.
Continuous deployment ensures that the code is smoothly and accurately deployed, incorporating
configuration management to maintain consistency. Development teams release code to servers and
schedule updates to ensure that configurations remain consistent across production environments.
Containerization tools play a key role in maintaining consistency across different environments, facilitating
the continuous delivery of new features to production. Some tools used in this phase include Chef, Puppet,
and Ansible. Infrastructure automation refers to a set of processes and tools aimed at reducing the need for
manual support in managing workloads across various environments, including public clouds, on-premises
IT infrastructure, and hybrid setups. It involves using automation solutions to manage software, hardware,
networks, operating systems, and storage, thereby delivering IT services with minimal human intervention.

Benefits of Infrastructure Automation
Improving Workflows: Automation makes IT tasks more repeatable and accurate. Operations teams can
set up conditions for when infrastructure needs to be provisioned, and automation tools take care of the
rest.
Provisioning: It helps organizations set up new networking and virtual machines (VMs) much faster,
reducing the time from weeks to minutes. This is especially useful in today’s complex IT environments
with multiple cloud services. Automation tools make sure everything runs smoothly and products get
deployed quickly.
Capacity Planning: Infrastructure automation helps organizations avoid wasting resources by making
sure they have just the right amount of performance. Sometimes, organizations waste resources because
they don’t have proper standards in place for their projects. Automation helps reduce these
inconsistencies by making processes more standardized and less complex. It also helps identify areas
where resources are being wasted and fixes them.

Cost Management: Managing an IT budget can be tough, especially with cloud resources where costs can
quickly get out of control. Automation tools like Torque help keep track of costs and prevent
overspending.
Reducing Mistakes: Automating infrastructure tasks reduces the chances of mistakes that can happen
when people do things manually. This means teams can focus more on important tasks instead of wasting
time fixing errors.
Managing Business Risk: Security is a big concern for businesses. It’s hard to keep everything secure
and follow all the rules at the same time. Infrastructure automation tools help by providing a blueprint for
setting up secure cloud environments quickly and easily.
Scalability: Many companies struggle to scale up their operations. Bottlenecks in setting up new
environments can cause problems, as can using too many different tools. Infrastructure automation helps
by simplifying workflows and reducing the time spent on troubleshooting.

Continuous Feedback
The application’s source code underwent continuous assessment and improvement through regular
feedback. In this stage, client behavior is consistently analyzed with each release, aiming to improve
subsequent releases and deployments. Companies can acquire feedback through either a structured
approach involving questionnaires and surveys or an unstructured method via social media platforms. This
phase holds significance in enabling continuous delivery for the release of an enhanced program version.
Tools used in this phase are Qentelli’s TED and Pendo.

Continuous Monitoring
In this stage, we keep a close eye on how the application works, checking for any problems like running out
of memory or not connecting to the server. This helps the IT team quickly find and understand issues with
how the app is working. If they discover a big problem, they go through the whole process of building,
testing, and releasing the app again to fix it. Also, any security problems can be found and fixed
automatically in this stage. The tools used in this phase are Kibana, Nagios, Splunk, Sensu, and PagerDuty.

Continuous Operations
The last step in the DevOps cycle is crucial for reducing planned maintenance and scheduled downtime.
Usually, developers must take the server offline to make updates, leading to increased downtime and
potential financial losses for the organization. Continuous operation solves this by automating the app’s
startup and upgrades, avoiding downtime with container management platforms like Kubernetes and
Docker. Tools used in this phase are Docker and Kubernetes

Kubernetes Scalability
Before we delve into the intricacies of scaling in Kubernetes, it’s essential to grasp a comprehensive
understanding of what Kubernetes entails and how it operates.

What Is Kubernetes?
Kubernetes is popularly known as K8s; since 2014, Kubernetes has experienced a significant surge in
popularity. Many IT professionals are starting to use this tool more because it’s safe and easy to learn. But
like with any tool, it’s important to understand how it works.

Let’s talk about the basics of Kubernetes: what it is, why it’s important, and take a closer look at its parts.
Kubernetes is a helpful system created by Google to manage applications that are put into containers. It

was made to work in different places. At first, Google started this project (after another one called Google
Borg), and in 2014, they shared it with everyone to use for managing applications in the cloud. Now, the
Cloud Native Computing Foundation oversees the Kubernetes.

Fundamental Architecture of Kubernetes Cluster
Typically, the architecture of a Kubernetes cluster consists of two major nodes - The Master node and the
Worker node.

Figure 2-2 Kubenetes cluster

Master Node
The master node serves as the control plane overseeing and coordinating the operations of the entire
Kubernetes cluster. It comprises several essential components:
a. API Server: Acting as the forefront interface for the Kubernetes control plane, the API server exposes

the Kubernetes API. It functions as the central communication hub for all cluster components, with
clients such as the Kubernetes CLI (kubectl) interacting with it to manage the cluster.

b. etcd: Functioning as a distributed and consistent key-value store, etcd stores the configuration data
and system state for the entire cluster. It acts as the authoritative source for cluster information,
playing a pivotal role in ensuring high availability and consistency.

c. Controller Manager: The Controller Manager is tasked with executing controller processes that govern
the cluster’s state. These controllers operate as control loops, handling responsibilities such as node
discovery, pod replication, and endpoint monitoring.

d. Scheduler: In charge of placing pods onto suitable nodes within the cluster, the Scheduler considers
factors such as resource requirements, node health, and affinity rules to make informed decisions for
optimal pod placement.

Worker Node
Worker nodes serve as the operational environment where containers are deployed and executed. Each
worker node hosts various components.
a. Kubelet: Functioning as an agent on each node, the Kubelet communicates with the master node,

ensuring the proper execution of containers within a Pod. It also provides status updates about the
node to the master.

b. Container Runtime: The container runtime is the software responsible for the actual execution of
containers. Common runtimes, such as Docker and containerd, are specified in the kubelet
configuration. This component handles tasks such as pulling container images and running the
containers.

c. Kube Proxy: Responsible for managing network communication within the cluster, Kube Proxy
maintains network rules on nodes. These rules facilitate communication to pods from network sessions
both inside and outside the cluster.

d. Pod: A Pod represents the smallest deployable unit in Kubernetes. It signifies a collection of one or
more containers running together on a node. Containers within a Pod share the same network
namespace, enabling them to communicate with one another using the local host.

Hardened Installation of Kubernetes
Configuring Kubernetes requires different elements to establish a fully operational cluster. The installation
can differ based on your environment, operating system, and the selected Kubernetes distribution. The
following are general guidelines for configuring Kubernetes components with hardening with the following
requirements:

CentOS VM with root access
2 or more CPUs
2GB RAM (recommended 4GB+)
Full network connectivity between all nodes in the cluster
Product_uuid for every node
Unique hostname and MAC address
Kube-Proxy Service: This service is responsible for allowing services within the cluster to

communicate with each other.
Each worker node runs docker containers for different applications. The number of containers on each

node can vary based on how the workload is distributed. Worker nodes are usually more powerful than
master nodes because they have to handle running many containers. However, master nodes are essential
for managing the workload distribution and overall state of the cluster.

Perform the Following Steps on Master Node
1. Make sure to update with latest security patches rolled out

$ sudo yum update

2. Add repository to install docker package

$ sudo dnf config-manager –add
repo=https://download.docker.com/linux/centos/docker-ce.repo

3. Install container.io

$ sudo dnf install
https://download.docker.com/linux/centos/7/x86_64/stable/Packages/container
1.2.6-3.3.el7.x86_64.rpm

4. Install docker from the repository

$ sudo dnf install docker-ce --nobest -y

5. Start the docker service

$ sudo systemctl start docker

6. Enable automatic execution upon server reboot

$ sudo systemctl enable docker

7. To check the docker version

$ docker version or docker –version

8. To list the docker images

$ docker images

9. Installing Kubernetes components by configuring the Kubernetes repository
As Kubernetes repository packages are not available in RHEL repositories

cat <<EOF > /etc/yum.repos.d/kubernetes.repo
[kubernetes]
name=Kubernetes
baseurl=https://packages.cloud.google.com/yum/repos/kubernetes-el7-x86_64
enabled=1
gpgcheck=1
repo_gpgcheck=1
gpgkey=https://packages.cloud.google.com/yum/doc/yum-key.gpg
https://packages.cloud.google.com/yum/doc/rpm-package-key.gpg
EOF

10. Install the components of Kubernetes

$ sudo yum install -y kubelet kubeadm kubectl

11. Start anf enable kubelet service

$ sudo systemctl enable kubelet

$ sudo systemctl start kubelet

12. Disable SELinux – This temporarily deactivates SELinux and set it to permissive mode. Kubernetes may
encounter difficulties when SELinux is in enforcing mode, hence it is commonly advised to switch it to
permissive or disable it.

sudo setenforce 0

sudo sed -i 's/^SELINUX=enforcing$/SELINUX=permissive/' /etc/selinux/config

13. Initialize Kubernetes Master with ‘kubeadm init’ Replace <Your_Pod_CIDR> with suitable CIDR range

$ sudo kubeadm init --pod-network-cidr=<Your_Pod_CIDR>

Note The output gives you a command called “kubeadm join.” Run this command on your worker nodes
to connect them to the Kubernetes cluster. The “--token” part of the command is like a secret code that
lets the worker nodes join the cluster.

14. kubectl configuration for the user by adjusting permissions

mkdir -p $HOME/.kube
sudo cp -i /etc/kubernetes/admin.conf $HOME/.kube/config

sudo chown $(id -u):$(id -g) $HOME/.kube/config

15. Install calcio - Calico acts as a plug-in for the Kubernetes Container Network Interface (CNI) and
supplies agents to Kubernetes for container and pod networking. It establishes a flat layer-3 network
and assigns each pod a fully routable IP address.

$ kubectl apply -f https://docs.projectcalico.org/manifests/calico.yaml

16. Secure kubeconfig file

$ chmod 600 $HOME/.kube/config

17. Check if Master node is enabled and running

$kubectl get nodes

In addition to the foundational steps for installing Kubernetes on master node, a comprehensive
approach to security involves additional measures tailored for each node type. Secure configurations
include isolating ETCD on a separate machine with TLS for communication and restricted access. The API
server is fortified with certificate-based communication, disabled insecure ports, and limited client access.
Kubelet, the node agent, is configured with TLS and restricted API access. Role-Based Access Control (RBAC)
and network policies ensure resource and access control. Audit logging, container image security, and
monitoring tools contribute to a robust security posture. Backup strategies and disaster recovery plans are
emphasized. Security scanning and regular documentation, along with training programs, enhance the
overall resilience of the master node.

Perform the Following Steps on the Worker Node
To configure Kubernetes on the worker node, replicate the steps outlined for the master node, spanning
from 1 to 12. To connect worker nodes to the master node, you need a token. After initializing the
Kubernetes master, the output provides a command along with a token. Copy and execute this command on
worker node(s).

$ sudo kubeadm join <master-node-ip>:<master-node-port> --token <token>

Look for a message confirming that the node is now part of the cluster. Additionally, there might be
instructions in the output on how to set up kubectl on the worker node. On the master node, run the
“kubectl get nodes” to verify that the worker node has joined the cluster.

Additionally, the focus extends to securing Kubelet communication, implementing firewall rules, and
authorizing node access. Container runtime security, regular vulnerability scanning, and adherence to OS-
specific hardening guidelines are emphasized. Node integrity monitoring and network policies are
employed, and continuous updates and training efforts are recommended. Recognizing security as an
ongoing process, staying informed about evolving practices, and promptly addressing emerging threats is
pivotal for maintaining a robust Kubernetes cluster.

Kube-bench for Security of Kubernetes Cluster
When deploying Kubernetes-based applications in a production environment, it is crucial to pay careful
attention to cluster security, as it is a significant aspect that requires careful management.

No need to lose sleep over creating a custom vulnerability-checking contraption; it’s like trying to
reinvent the wheel when there’s a perfectly good set of wheels available! Picture this: worrying about
vulnerabilities without using these tools is like trying to catch a fish with your bare hands when there’s a
fully stocked fishing rod nearby. Let’s make life easier and let those tools do the heavy lifting; they’re like the
superheroes of the cybersecurity world, ready to swoop in and save the day.

To safeguard our cluster from potential threats, it is essential to identify vulnerabilities within the
cluster and address them appropriately. Adhering to a benchmark is a recommended practice for handling

vulnerabilities, and for Kubernetes, the CSI benchmark serves as a valuable resource.
Kube-bench, the unsung hero in our Kubernetes security saga! Think of it as your trusty sidekick,

tirelessly scanning your Kubernetes cluster for vulnerabilities and ensuring it’s as secure as a vault.
It’s like having a personal security guard for your cluster, but without the awkward small talk. Kube-

bench goes through your cluster settings, checks for compliance with security benchmarks (like the CIS
Kubernetes Benchmark), and gives you a report card that says, “Hey, your cluster is as secure as a corgi in a
fortress.”

Steps to Set Kube-bench on Your Nodes
1. On the master node download and extract the files

$ wget https://github.com/aquasecurity/kube-
bench/releases/download/v0.6.19/kube-bench_0.6.19_linux_amd64.tar.gz
$ tar -xvf kube-bench_0.6.19_linux_amd64.tar.gz

2. To perform the test, run the following command on the master node

$./kube-bench --config-dir `pwd`/cfg --config `pwd`/cfg/config.yaml
master

3. To perform the test, run the following command on the worker node(s)

$./kube-bench --config-dir `pwd`/cfg --config `pwd`/cfg/config.yaml node

Scaling of Kubernetes
Consider a scenario where an application becomes unresponsive because it lacks the necessary resources
to handle the current workload. While one solution could involve manually adding resources whenever this
issue arises, this approach is often impractical due to time constraints. This is where auto-scaling becomes
invaluable. Scaling is broadly divided into two categories – horizontal and vertical scaling. Horizontal
scaling involves the addition of extra replicas or machines to share the workload among them. In contrast,
vertical scaling works by adjusting the size of the existing infrastructure, such as increasing the server’s
CPU or memory.

Recommended Practices for Kubernetes Scaling
1. Define Resource Requirements: Define the resource requests and limits for your containers.

Kubernetes relies on resource requests to schedule pods on nodes, and resource limits are essential to
prevent pods from using too many resources. It is important to consistently check resource utilization
to guarantee that the configuration of requests and limits is optimized for efficient scaling.

2. Cluster Design and Capacity Planning: Automate scaling using the Horizontal Pod Autoscaler (HPA)
and Vertical Pod Autoscaler (VPA) based on CPU, memory, or custom metrics. Establish suitable target
utilization levels and thresholds to initiate scaling actions. Adjust the autoscaling configurations
regularly by application requirements and performance patterns. Keep a close eye on monitoring to
ensure optimal scaling.

3. Scalability: Design your applications with scalability as a priority from the outset. Ensure they are
stateless and loosely coupled, enabling horizontal scaling through the addition or removal of instances.
Microservices can be created by breaking down monolithic applications, allowing for independent
scaling of various components. Effectively manage and scale your application components using
Kubernetes features such as Deployments, ReplicaSets, and StatefulSets.

4. Autoscaling: Automate scaling using the Horizontal Pod Autoscaler (HPA) and Vertical Pod Autoscaler
(VPA), which respond to CPU, memory, or custom metrics. Establish suitable target utilization levels

and thresholds to initiate scaling actions. Consistently monitor and adjust autoscaling configurations
based on application requirements and performance patterns.

5. Observability and Monitoring: Establish strong monitoring and observability procedures to gather
metrics, logs, and events from both your Kubernetes cluster and applications. Employ monitoring tools
such as Prometheus, Grafana, or proprietary solutions to gain a comprehensive understanding of
resource utilization, application performance, and scaling patterns. Configure alerts and notifications to
promptly detect and address issues related to scaling.

6. Cost and Efficiency Management: Consistently track resource usage and modify resource allocations
to enhance efficiency and reduce expenses. Utilize functionalities such as Kubernetes cluster
autoscaling to adaptively alter the number of nodes according to workload requirements.

7. Scaling Challenges: Comprehend the limitations and restrictions of your applications during the
scaling process. Use relevant controllers such as StatefulSets to meet the needs of stateful applications.
Integrate mechanisms to manage data consistency, session persistence, and distributed caching for
applications undergoing scaling.

Manual Scaling
In the context of Kubernetes, manual scaling involves the manual adjustment of the replica count (pods) for
a designated deployment or replica set. This stands in contrast to automatic scaling, where Kubernetes
dynamically alters the replica count based on predefined metrics and policies.

To manually adjust the scale of deployment in Kubernetes on a CentOS system, the “kubectl” command-
line tool can be utilized. The following steps outline the process:
1. Install kubectl

$ sudo yum install -y kubectl

Following the installation, it is necessary to set up kubectl to establish a connection with your
Kubernetes cluster. If you haven’t completed this step, you can refer to the instructions tailored to your
specific cluster environment.

2. Listing the current deployments in the cluster

$ kubectl get deployments

3. Deployment scaling

$ kubectl scale --replica=COUNT deployment/name-of -your-deploymnet

The Kubectl scale serves as a command-line utility within Kubernetes, enabling you to adjust the
number of replicas (instances) associated with a particular resource, be it pods, deployments, replication
controllers, or stateful sets.

This tool is integral for dynamically modifying your application or workload’s capacity, responding to
fluctuating demands seamlessly, and eliminating the need for manual creation or deletion of resources.

--replicas=COUNT Indicates the intended number of replicas for scaling, where you replace COUNT
with the desired quantity.

-f FILENAME or TYPE NAME You can designate the resource for scaling either by utilizing a YAML or
JSON file (-f FILENAME) defining the resource or by directly specifying the resource type (TYPE) and its
name (NAME).

Note Remember that while manual scaling offers a direct means of altering replica numbers, for
automated scaling driven by metrics, Kubernetes offers the Horizontal Pod Autoscaler (HPA) that

autonomously modifies the replica count by assessing observed metrics such as CPU utilization or other
customized metrics.

What Is Autoscaling?
Autoscaling represents a type of scaling in which software autonomously determines whether to augment
or diminish the load. In essence, it introduces resources when your application experiences heightened
activity and withdraws them when they are no longer required. Given the dynamic nature of fluctuating
loads throughout the day, manual scaling can prove cumbersome and inefficient.

Kubernetes Autoscaling
Autoscaling capabilities, such as the Horizontal Pod Autoscaling (HPA) and Vertical Pod Autoscaling (VPA),
enhance scalability by dynamically adjusting resources based on defined metrics.

Horizontal Pod Autoscaling (HPA)
Horizontal scaling in Kubernetes means adjusting the number of identical pods running together. This helps
spread out the workload, using resources better and making the application more available. With horizontal
scaling, you can add or remove pods based on certain measures, like how busy the system is. It’s handy
when tasks can be split among many instances, like in simple apps or services. This kind of scaling improves
the availability of your application and lets it handle more users or tasks by adding more pods.

Figure 2-3 Working of horizontal pod autoscaler

Let’s say, for example, that you set a maximum memory usage of 85% in the Horizontal Pod Autoscaler
(HPA), the HPA controller will introduce a new pod when the average usage across all pods in the replicaSet
reaches 85% or exceeds it. It’s crucial to note that accurate configuration of resource requests and limits for
the pod plays a significant role in this process.

If metrics are not set, the HPA controller assumes 100% for the intended measurement during scale-
down and 0% during scale-up. Metrics for pods are delayed until 300 seconds after the pod initiates. This
timeframe is adjustable by modifying the horizontal-pod-autoscaler-cpu-initialization-period flag.

Steps to deploy Horizontal Pod Autoscaler (HPA) and Metric Server using Helm in Kubernetes cluster.
Here we will be using a CentOS 8 box to deploy. Also, make sure to install one of the cluster management
tools (Docker/Minikube/kind)
1. Before you deploy the metric server make sure you have installed the following dependencies

a. Git client
b. Helm
c. Kubectl for interaction with Kubernetes

2. To initiate the process start integrating the metric server repository with the Helm package collection
as follows:

$ helm repo add metrics-server https://kubernetes-sigs.github.io/metrics-
server

3. To refresh the pool update the helm repo

$ helm repo update metrics-server

4. Install the metric-server using helm

$ helm install metrics-server metrics-server/metrics-server

5. To check the status of all the Kubernetes resources deployed to the metrocs-server

$ kubectl get all -n metric-server

6. Create deployment file – my-testapp.yaml

apiVersion: apps/v1
kind: Deployment
metadata:
 name: my-testapp
spec:
 replicas: 2
 selector:
 matchLabels:
 app: my-testapp
 template:
 metadata:
 labels:
 app: my-testapp
 spec:
 containers:
 - name: test-container
 image: test-image
 resources:
 limits:
 cpu: "50m"
 requests:
 cpu: "20m"

7. Deploy the development file

$ kubectl apply -f my-testapp.yaml

8. Create Horizontal Pod Autoscaler

apiVersion: autoscaling/v2beta2
kind: HorizontalPodAutoscaler
metadata:
 name: test-hpa
spec:
 scaleTargetRef:
 apiVersion: apps/v1
 kind: Deployment
 name: my-app
 minReplicas: 1 # Minimum pods to maintain
 maxReplicas: 5 # Maximum pods to scale
 metrics:
 - type: Resource
 resource:
 name: cpu
 target:
 type: Utilization
 averageUtilization: 80 #Scale up if CPU threshold exceeds 80%

Description of Each Attribute Described in the Preceding YAML File
spec.scaleTargetRef: This field indicates the specific Kubernetes entity that the Horizontal Pod
Autoscaler (HPA) is set to monitor and scale. In this context, it is configured to observe the deployment
named “my-app,” overseeing its performance and adjusting the number of pods as needed.
spec.minReplicas: This parameter establishes the minimum threshold for the number of replicas within
the deployment. In this instance, the Horizontal Pod Autoscaler (HPA) ensures that the deployment is
never scaled down to fewer than 1 pod.
Spec.maxReplicas: This attribute sets the maximum allowable number of replicas within the
deployment. In this scenario, the Horizontal Pod Autoscaler (HPA) prevents the deployment from scaling
beyond 5 pods.
metrics.type: This parameter designates the metric type employed by the Horizontal Pod Autoscaler
(HPA) to determine the desired replica count. In this example, the HPA utilizes the Resource type,
indicating that it scales the deployment according to the average CPU utilization.
metrics.resource.name: This field identifies the specific resource monitored by the HPA.
metrics.resource.averageUtilization: This attribute establishes the threshold for the metric. In this
case, the HPA initiates scaling if the average CPU utilization surpasses 80%.

1. Deploy the HPA file

$ kubectl apply -f test-hpa.yaml

2. Monitor HPA

$ kubectl get hpa

Vertical Pod Autoscaling (VPA)

http://metrics.resource.name/

Besides the Horizontal Pod Autoscaler (HPA), there exists a Vertical Pod Autoscaler (VPA), alternatively
referred to as the Vertical Pod Autoscaler. Vertical scaling involves modifying the allocated resources for a
pod such as CPU and memory. This enables you to expand or reduce the capacity of a single pod without
altering the number of instances.

Figure 2-4 Working of vertical pod autoscaler

Vertical scaling becomes handy when an application needs more computer power or memory to handle
extra work or demanding tasks. It’s a good fit for applications that don’t get much benefit from having many
copies running at once. For example, big applications or databases that need more resources on one
computer. Vertical scaling can make applications work better and not waste resources by giving just the
right amount of power to each part as it needs it.

Steps to deploy Vertical Pod Autoscaler (VPA). Here we will be using a CentOS 8 box to deploy. Also, make
sure to install one of the cluster management tools (Docker/Minikube/kind).
1. To deploy VPA first clone the source code of VPA

$ git clone https://github.com/kubernetes/autoscaler.git
$ cd /autoscaler/vertical-pod-autoscaler/hack
$./vpa-up.sh

2. To print the yaml contents with resources

$./vpa-process-yamls.sh print

3. Create deployment file – my-testapp.yaml

apiVersion: apps/v1
kind: Deployment
metadata:
 name: my-testapp
spec:
 replicas: 2
 selector:
 matchLabels:
 app: my-testapp
 template:
 metadata:
 labels:
 app: my-testapp
 spec:
 containers:
 - name: test-container
 image: test-image
 resources:
 limits:

 cpu: "50m"
 requests:
 cpu: "20m"

4. Deploy the development file

$ kubectl apply -f my-testapp.yaml

5. Monitor VPA

$ kubectl get vpa

Comparison of Monolithic and Public Managed Kubernetes Cluster
Monolithic Cloud: It suggests a setup where a single, all-in-one Kubernetes system operates in the cloud,
handling and organizing large, integrated applications or workloads. However, this approach may not align
with the current best practices in building cloud-native applications, where it’s common to favor smaller,
more flexible microservices and distributed systems for better scalability and adaptability.
1. Responsibility: Users, in a self-managed context, bear the responsibility for overseeing the entire

Kubernetes cluster, covering tasks such as upgrades, security patches, and scalability. This demands a
higher level of expertise and hands-on management.

2. Resource Allocation: In self-managed environments, users enjoy direct control over resource
allocation, networking, and other decisions related to the infrastructure.

3. Infrastructure: Within a self-managed framework, users retain the flexibility to deploy the Kubernetes
cluster on their chosen infrastructure, be it on-premises, in a private cloud, or on a public cloud
provider.

4. Utilization: Self-managed solutions are fitting for organizations with specific infrastructure
requirements, custom configurations, or stringent security and compliance needs. They are particularly
favored by those seeking complete control over the cluster.

5. Maintenance: Self-managed setups require users to plan and execute upgrades for both the control
plane and worker nodes. Tasks like node replacements fall under their purview.

6. Customization: In a self-managed setting, users possess full control over the Kubernetes infrastructure,
encompassing both master and worker nodes. This allows for extensive customization and flexibility in
configuring the cluster.

7. Cost: While potentially cost-effective in terms of infrastructure, self-managed configurations may
demand more effort and resources for ongoing maintenance.
Public Managed Cloud: “Public Kubernetes Cloud” means using Kubernetes on the Internet with a

public cloud service. In this arrangement, the Kubernetes system is placed on the cloud, which anyone can
access online. People can use the features and tools given by a public cloud provider, like AWS, Azure, or
Google Cloud, to run, handle, and expand their containerized apps using Kubernetes. These cloud platforms
make it easy to set up and control Kubernetes clusters, letting users concentrate on their apps without
worrying too much about the technical details of the infrastructure.
1. Automation: Public managed services provided by cloud providers abstract much of the underlying

infrastructure and automate tasks associated with the Kubernetes control plane, simplifying
operational responsibilities for users.

2. Cost: While public managed services may have a more predictable cost structure and reduced
operational burden, users may be subject to pricing models specific to the managed service.

3. Infrastructure: Users opting for public managed services are constrained to the infrastructure
provided by the cloud provider. The managed service is closely integrated with the features and
services of the cloud platform.

4. Maintenance: Cloud providers take charge of control plane upgrades and maintenance tasks in public
managed environments. Users typically receive advance notification of any disruptions.

5. Responsibility: In public managed scenarios, the cloud provider assumes responsibility for managing
the Kubernetes control plane, including aspects like upgrades, scaling, and maintenance. Users
primarily focus on managing and deploying their applications.

6. Resource Allocation: Resource allocation in public managed setups is often abstracted, with users
interacting at a higher level of service. The cloud provider takes charge of the underlying infrastructure
details.

7. Utilization: Public managed services are well-suited for organizations seeking a more hands-off
approach to infrastructure management. They prove convenient for those prioritizing ease of use,
automation, and rapid deployment of applications.

Summary
In this chapter, we’ve gone beyond technical details to help you make strategic decisions about your project.
We compared old-fashioned monolithic architectures with modern managed cloud services, giving you
insights into how they work and what’s best for your needs. We also talked about important things like how
to make sure your project can grow and stay safe from cyber threats.

By the end of the chapter, you’ve learned how to create cloud-native solutions that are strong, flexible,
and perfect for your project. We took you on a journey through the world of Cloud-Native DevOps, focusing
on Google Cloud. You’ve learned about scaling Kubernetes, a tool that helps manage your applications, and
how to set it up securely to keep your project safe.

We also talked about deploying Kubernetes within Google Cloud, making sure everything works
smoothly together.

Throughout the chapter, we covered topics like what DevOps means in a Cloud Native Environment, how
to make Kubernetes scale to fit your needs, setting up Kubernetes securely, and comparing old-fashioned
and modern cloud setups. Now, armed with this knowledge, you’re ready to make informed decisions about
your project and succeed in the world of Cloud-Native DevOps.

(1)

© The Author(s), under exclusive license to APress Media, LLC, part of Springer
Nature 2024
M. I. Ahmed, Cloud-Native DevOps
https://doi.org/10.1007/979-8-8688-0407-6_3

3. Security in Cloud-Native Applications
with a Shift-Left Approach
Mohammed Ilyas Ahmed1

Boston, MA, USA

“Securing Cloud-Native: Shifting left to stay ahead of the
curve!”

In this chapter, we delve into the complex world of security within
cloud-native applications, guided by the proactive philosophy of the
“shift-left” approach. As cloud-native applications become increasingly
integral to modern software development, the shift-left approach,
which emphasizes embedding security measures early in the
development process, allows us to preemptively address
vulnerabilities and mitigate the risks of security breaches. This chapter
serves as your comprehensive guide, covering a wide range of topics
essential to securing cloud-native applications effectively.

By the end of the chapter, you’ll understand the critical need for
comprehensive and proactive security measures in the world of
modern, cloud-based applications. These applications are complex and
face a range of ever-evolving cyber threats, making robust security
practices not just beneficial, but essential. The concept of “shift-left” is
central to this approach. It means integrating security early and
throughout the application development process, rather than treating
it as an afterthought. By adopting this approach, organizations can
greatly improve their ability to protect their cloud-native applications.

https://doi.org/10.1007/979-8-8688-0407-6_3

This not only makes the applications stronger against potential
cyberattacks but also ensures they comply with relevant regulations
and standards. You will also learn how to effectively implement these
security measures in your organization. This includes using specific
tools and strategies designed for the unique challenges of cloud-native
environments.

In this chapter, we will be encompassing the following topics:
Introduction to Shift-Left Security in Cloud Native
Infrastructure as Code (IaC) and Security
Securing API in Early Stages

Introduction to Shift-Left Security in Cloud Native
Imagine if “shift-left security” was a superhero in the world of software
development. In the traditional software development universe,
security is like the hero who always arrives in the final act, after the
villains (aka security vulnerabilities) have already caused chaos. This
latecomer hero often finds themselves battling costly and complicated
problems, wishing they had a time machine to go back and prevent the
chaos in the first place.

Enter shift-left security, the proactive superhero who believes in
the mantra, “The early bird catches the worm, and the early coder
catches the bug.” This hero starts their mission at the dawn of the
project, embedding themselves into the very DNA of the software
development life cycle. They’re in every plot twist and turn, from the
initial storyboard to the final credits, ensuring that no villainous
vulnerability sneaks past their watchful eye.

Figure 3-1 Shift-left secure model

In this world, development, operations, and security teams unite like a
superhero squad, collaborating continuously. They’re like a band, with
security as the lead singer, development on guitar, and operations on
drums, each playing their part in harmony from the first note. This
approach not only enhances the overall security of the application but
also turns the development process into a well-oiled machine,
humming along with security as its constant rhythm.

In the dynamic and ever-changing landscape of cloud-native
applications, shift-left security is the agile hero we need. They’re not

just putting out fires; they’re preventing them from igniting in the first
place. So, when you think of shift-left security, picture a cape-wearing,
bug-zapping superhero who’s always one step ahead, ensuring that
every code commit, and deployment is as safe as houses. After all, in
the fast-paced world of software development, being early to the party
doesn’t just mean better snacks; it means a safer, more secure
application.

Shift-Left Secure Right
“Securing Right” involves realizing that just focusing on early security
practices, known as “Shift Left,” isn’t the complete solution for keeping
your software safe. When you release your software, it enters a
dynamic environment where changes and unexpected security issues
are common. This means that the security work you start early on
needs to be continued and adapted even after your product is live in
the market.

The process is ongoing. After your product is released, you need to
keep a close eye on it for security weaknesses. This includes checking
not just your own software but also any components you’ve used. To do
this effectively, you extract Software Bills of Materials (SBOMs) from
your product. These SBOMs are like detailed lists of all the components
in your software. You then regularly compare these lists against the
latest security threat information to identify new risks. The final
crucial step in this process is to assess which of these identified risks
are the most dangerous and need to be addressed first, ensuring that
you’re always tackling the most critical issues.

In your organization, you have different teams with different roles
and perspectives on security. Your development teams are the creators.
They build and refine the software that is essential for your business to
provide services and stay competitive. They typically prioritize their
work based on urgency; unless a task is marked as high-priority, it
might not get immediate attention.

Your DevOps teams are like the efficient engineers of the software
world. They’re responsible for taking the software from its
development stage to being fully operational. They emphasize speed,
efficiency, and reliability. They’re also big fans of automation; if they

find themselves doing the same task repeatedly, they’ll likely automate
that process to save time and reduce errors.

Then there are your operations teams, including SecOps, who are in
charge once the software is live. SecOps are the security experts,
constantly on the lookout for potential threats and vulnerabilities.
They have to stay alert and adaptable because new challenges and
security alerts come up regularly.

The challenge lies in finding strategies and tools that bring these
diverse teams together, harmonizing their different approaches and
expectations. The aim is to simplify the complex array of potential
issues that arise once the software is in production. This involves
condensing these issues into a focused set of problems that the
development teams can effectively address. The tools you choose
should be compatible with cloud-native applications and serve as a
bridge between operations and development teams, fostering a
collaborative environment focused on enhancing overall security. By
achieving this, you not only improve your security posture but also
facilitate better teamwork and efficiency across different departments.

Risk from Third-Party Components

Figure 3-2 Third-party component matrix model

Integration of Third-Party Components: The first stage shows the
integration of third-party components into a production

environment. This can be in the form of libraries, frameworks,
modules, or other software elements.
Potential Vulnerabilities in Third-Party Components: The next
stage highlights that these components may contain vulnerabilities.
These could be due to outdated code, lack of updates, inherent
security flaws, or other weaknesses.
Exposure to External Networks: The diagram then shows how
these components, now part of a production system, are exposed to
external networks, making them accessible to potential attackers.
Exploitation of Vulnerabilities: This critical stage demonstrates
how attackers can discover and exploit the vulnerabilities in these
third-party components. This exploitation could lead to
unauthorized access, data breaches, or other malicious activities.
Impact on the Production System: The final stage shows the
consequences of such exploits, which can range from data theft,
system compromise to complete production shutdown.

Embracing Technologies to Shift Left
There are different tools available that help bring security into the
early stages of software development. Each tool has its strengths and
can work together to make your code, software, and the parts and
pieces it depends on more secure. DevOps teams understood that they
needed to focus on security earlier in the process to prevent creating
too many security issues for their security and operations teams to
handle. This led to the creation of DevSecOps, which combines
development, security, and operations. DevSecOps uses different tools
and technologies to quickly and automatically check security as part of
the continuous integration and continuous delivery (CI/CD) pipeline.
1. Static Application System Testing (SAST)
2. Dynamic Application Security Testing (DAST)
3. Interactive Application Security Testing (IAST)
4. Software Composition Analysis (SCA)

https://www.mend.io/blog/sast-static-application-security-testing/
https://www.mend.io/blog/dast-dynamic-application-security-testing/
https://www.mend.io/blog/iast-interactive-application-security-testing/
https://www.mend.io/blog/software-composition-analysis/

5. Runtime Application Self-protection (RASP)
6. IaC Scanning
7. Infrastructure Scanning
8. Compliance Check
1. Static Application System Testing (SAST)
This is all about mixing security right into the process of making and
running software, think of SAST as a kind of early alert system. It looks
over the code before the code even starts working, like checking a
building’s plan for any mistakes before you start building.

In DevSecOps, the aim is to make sure security is a core part of
making software from start to finish, not just something you add at the
end. SAST helps do this by spotting possible security problems early on
when the code is being written. This means security gets taken care of
as part of the normal process of making the software.

By using SAST, teams who work in DevSecOps can make sure
security is included right from the start in what they create. This
lowers the chance of finding big security problems later on, which can
take a lot of time and money to sort out. Plus, it fits well with the
DevSecOps way of constantly integrating and delivering security,
leading to a safer and more smooth process of developing software.

Example: Before deploying a new version of their banking
application, a development team uses SAST tools to analyze the
codebase. The tool flags potential security vulnerabilities such as SQL
injection or cross-site scripting flaws in the code. By addressing these
issues early in the development process, the team ensures that the
application is more resilient to attacks when it goes live.

2. Dynamic Application Security Testing (DAST)
DAST (Dynamic Application Security Testing) is different from SAST
because it checks the software when it’s being used, like testing a car
for safety while it’s driving. In DevSecOps, the idea is to make security a

part of the whole process of creating and running software. DAST is
special because it tests the software when it’s live and active. This is
important because some problems only show up when the software is
in use, not when you’re just looking at the code.

DAST works well alongside SAST. If SAST is like checking the
blueprint of a building, DAST is like inspecting the building while
people are using it. It helps DevSecOps teams find any security issues
that might have been missed earlier or that only appear when the
software is actually working. Additionally, DAST helps identify issues
like insufficient logging and monitoring, enabling the team to enhance
the application’s ability to detect and respond to security incidents, as
recommended in the OWASP Top 10.

By using DAST, DevSecOps teams can make sure they’re
continuously checking for and fixing security problems in a more real-
life setting. This ongoing testing is a big part of DevSecOps, which is all
about keeping security in mind at every step of making and managing
software.

Example: After launching a new ecommerce website, the
operations team conducts DAST by simulating various attack
scenarios. They use automated tools to probe the website for
vulnerabilities such as improper error handling or insecure server
configurations. By regularly running DAST tests, the team can detect
and mitigate security threats in real-time, safeguarding customer data
and transactions.

3. Interactive Application Security Testing (IAST)
Interactive Application Security Testing (IAST) is a mix of both the
SAST and DAST methods. Think of IAST as a security guard who not
only checks the plans and the finished building but also keeps an eye on
things as the building is being constructed.

For DevSecOps, which is all about including security at every step of
making and running software, IAST is super helpful. It gives instant
updates on security issues while the software is being tested. This
means it can find problems that might only show up in certain
situations or when different parts of the application are working
together.

IAST is special in DevSecOps because it gives quick feedback about
security problems. This lets teams fix these issues as part of their
normal process of developing and testing. It fits right in with the
DevSecOps idea of always keeping security in mind. By using IAST,
DevSecOps teams can better make sure their applications are safe.
They can keep checking and improving security all through the
software’s life, leading to safer software and a smoother development
process.

Example: During the development of a mobile banking app, the
development team implements IAST tools that continuously monitor
the application’s behavior while it undergoes testing. If the application
attempts to access sensitive user data without proper authorization,
the IAST tool immediately alerts the developers. By integrating IAST
into their testing workflow, the team can quickly identify and
remediate security issues before releasing the app to customers.

4. Software Composition Analysis (SCA)
Software Composition Analysis (SCA) is all about making sure security
is part of the whole process of creating and running software. SCA looks
closely at the parts of the software that come from outside sources, like
open-source or third-party components, which are common in
software development today.

The main job of SCA in DevSecOps is to check these outside parts
for any security issues, problems with licenses, or the need for updates.
Since modern software often uses these outside pieces, SCA makes
sure they don’t bring in any security risks. In a DevSecOps setting,
where the aim is to keep security in mind all through the process of
integrating and deploying software continuously, SCA helps do this
automatically. This is really important because it lets teams keep up
the speed of DevOps while also staying safe.

By using SCA, DevSecOps teams can take care of security issues
related to these outside software pieces before they become a
problem. This helps stop security problems before they start and
makes sure the software meets security and licensing rules.

In short, SCA supports the goal of DevSecOps to always include
security, helping teams to create safer software while still using helpful
external software components.

Example: A software development team is building a new web
application using various open-source libraries and third-party
components. Before finalizing the release, they utilize SCA tools to scan
the dependencies for known vulnerabilities and license compliance
issues. By conducting SCA scans, the team ensures that the
application’s dependencies are secure and compliant with legal
requirements, reducing the risk of exploitation and licensing conflicts.

5. Runtime Application Self-protection (RASP)
Runtime Application Self-Protection (RASP) is all about mixing security
into the process of making and looking after software. RASP is like a
smart security system that is built into the software when it’s running.
It’s always checking for and stopping security threats in real-time,
similar to a security guard who is on the lookout during a big event,
ready to act if there’s any trouble.

For DevSecOps teams, RASP is great because it doesn’t just find
problems; it also stops them right then and there, on its own. This
helps the teams keep making and updating software quickly, which is a
big part of DevOps, while making sure that security is always switched
on and working.

With RASP, DevSecOps teams can give their software a strong layer
of security that works well with other security tools they use. It’s
especially good because it keeps the software safe even after it’s out
there for people to use, which is exactly what the DevSecOps approach
wants to achieve: keeping security going strong at all times.

Example: A financial institution implements RASP technology
within its online banking system. When a user attempts to execute a
potentially malicious transaction, the RASP solution dynamically
intercepts the request and applies security controls in real-time. By
deploying RASP, the institution strengthens its defense against attacks
such as account takeover and fraud, enhancing the overall security
posture of its digital banking services.

6. IaC Scanning
Infrastructure as Code (IaC) scanning is an important part of
DevSecOps, which is all about making sure security is part of building

and managing software. IaC scanning checks the code that sets up the
technical infrastructure of a project, like the digital version of a
building’s blueprint. It looks for any mistakes or security gaps before
the system is used.

In DevSecOps, IaC scanning is super helpful because it finds and
fixes security issues before the system is even up and running. It fits
perfectly with the fast-paced cycle of constantly improving and
updating software, where checking for security is part of the routine.

By using IaC scanning, DevSecOps teams can make sure that the
foundations of their software are solid and secure right from the start.
This helps them build and look after their systems more safely and
saves time by catching any problems early on, keeping with the idea of
thinking about security at every step of creating and running software.

Example: A cloud infrastructure team adopts IaC scanning
practices to review the configuration scripts used to deploy virtual
servers and networking components. By analyzing the IaC templates,
the team identifies misconfigurations and security weaknesses before
provisioning the infrastructure. Through regular IaC scanning, they
ensure that the cloud environment is securely configured, minimizing
the risk of data breaches and unauthorized access.

7. Infrastructure Scanning
Infrastructure scanning in the DevSecOps approach is all about
regularly checking the technical setup that software runs on, much like
you’d regularly check a car to make sure it’s safe to drive. In the world
of DevSecOps, where adding security into every step of software
development and maintenance is key, these scans are like routine
check-ups for the digital “buildings” that hold your software.

Automated tools are used to look over the servers, networks, and
other parts involved in running the application, making sure
everything is secure and there are no weak spots that could let hackers
in. Imagine it as having a safety inspector who doesn’t just visit once
but keeps coming back to ensure that everything remains safe over
time.

In the DevSecOps mindset, these regular infrastructure scans are
essential because they’re all about being ahead of the game. They’re
not just done and forgotten; they’re part of an ongoing process that

keeps security tight while the software is being made, and even after
it’s out there for people to use. By making infrastructure scanning a
regular part of their routine, DevSecOps teams can find and fix
problems early on. This continuous approach to security helps keep the
software safe and fits right in with the DevSecOps way of keeping a
constant eye on security throughout the entire life cycle of software.

Example: An ecommerce company conducts regular infrastructure
scans across its server farms and network infrastructure. Automated
tools examine system configurations and network traffic patterns to
detect anomalies or vulnerabilities. By performing infrastructure scans
proactively, the company mitigates security risks and maintains the
availability and integrity of its online storefront, ensuring a secure
shopping experience for customers.

8. Compliance Check
Compliance checks in DevSecOps are like ongoing health inspections
for software to ensure it meets legal and industry rules at all stages of
its life. In DevSecOps, where the goal is to include security from the
start to finish of software creation and use, ensuring compliance is a
key part of this.

Imagine compliance checks as a series of checkpoints that software
must clear during its development to confirm it’s in line with specific
laws and standards. It’s not just about looking at these requirements
once; it’s about making sure the software always follows the rules.

In the DevSecOps approach, these checks happen regularly.
Automated tools help verify that the software respects security
protocols, protects user information, and meets other necessary
guidelines continuously. This is done to avoid any legal troubles and to
make sure the software is safe and reliable for users. By doing these
compliance checks often, DevSecOps teams can quickly find and fix any
parts of the software that might not be up to standard. This forward-
thinking strategy helps dodge potential legal problems, safeguards user
data, and keeps the trust in the software high, all while making sure it’s
ready for use by as many people as possible.

Example: A healthcare software provider integrates automated
compliance checks into its DevSecOps pipeline to ensure adherence to
HIPAA regulations. Throughout the development life cycle, automated

tests validate that the software encrypts patient data, maintains audit
trails, and implements access controls as required by law. By
continuously verifying compliance, the provider avoids regulatory
penalties and builds trust with healthcare organizations relying on
their software solutions.

Security Testing with Shift-Left Approach
Integrating security early and consistently, “Shift Left” Security Testing
adopts a smarter approach to crafting secure software, benefiting not
only the development team but the entire organization. This method
aligns with the broader “Shift Left” movement in software
development, which emphasizes addressing potential challenges, such
as security vulnerabilities, at an early stage. This early intervention
strategy ensures that security is not an afterthought but a fundamental
aspect of the development process, leading to a more robust and
secure product.

Figure 3-3 Advancing security testing to the left

Enforce Security Measures
Integrating security policies is a crucial initial step in implementing
shift-left testing strategies. Such policies serve to establish
automatic and consistent boundaries before the commencement of
work, offering essential information that enhances development
processes, notably in terms of security.
1. Code Review Policy: Require code reviews for all changes to the

codebase, focusing not only on functionality but also on security
considerations. Enforce the use of secure coding standards and
guidelines during code reviews.

2. Security Training and Awareness Policy: Require developers
to undergo regular security training to stay updated on common
security risks, best practices, and emerging threats. Establish
policies for promoting security awareness among development
teams, emphasizing the importance of security throughout the
software development life cycle.

3. Dependency Management Policy: Enforce policies for
managing and updating third-party dependencies and libraries
to mitigate security risks associated with outdated or vulnerable
components. Require regular scans and audits of dependencies
to identify and address security vulnerabilities.

4. Incident Response and Remediation Policy: Define policies
and procedures for responding to security incidents and
vulnerabilities identified during the development process.
Establish escalation paths and timelines for addressing and
remediating security issues in a timely manner.

It’s important to include a consensus on coding standards
(https://owasp.org/www-project-secure-coding-
practices-quick-reference-guide/) within your
security policy framework. These standards specify the
programming languages and configurations to be used by your
team under various circumstances. Uniformity in understanding
among all developers is key. This uniformity not only accelerates
code review processes but also ensures a higher caliber of code
quality. Adhering to these policies should lead to a reduction in
bugs, as following best practices enables developers to steer
clear of poor or insecure coding practices.

Integrate Early Testing in SDLC
As developers become more proficient in secure coding techniques,
it’s advisable to reassess your Software Development Life Cycle
(SDLC). By examining your current methodologies, you can pinpoint
incremental steps to integrate testing earlier in the process. This
evaluation also aids in determining which tools might be most
effective for your specific codebase.

https://owasp.org/www-project-secure-coding-practices-quick-reference-guide/
https://owasp.org/www-project-secure-coding-practices-quick-reference-guide/

One approach to consider is adopting an Agile SDLC model. This
model focuses on developing small increments of code. In this
framework, each sprint encompasses both development and testing
phases, ensuring that every minor feature is thoroughly tested.
1. Iterative Development: Agile SDLC is characterized by iterative

development cycles, known as sprints or iterations, typically
lasting one to four weeks. Each iteration results in a potentially
shippable product increment, allowing for continuous feedback
and improvement.

2. Cross-Functional Teams: Agile teams are cross-functional,
consisting of members with diverse skills and expertise,
including developers, testers, designers, and product owners.
This structure promotes collaboration and shared ownership of
the product.

3. Customer Collaboration: Agile places a strong emphasis on
customer collaboration throughout the development process.
Stakeholders, including end-users and product owners, provide
feedback and prioritize features, ensuring that the product
meets their needs and expectations.

4. Adaptive Planning: Agile SDLC embraces change and adapts to
evolving requirements and priorities. Planning is done
incrementally, with detailed plans created for the upcoming
iteration while allowing for flexibility to accommodate changes
in scope or priorities.

5. Value Delivery: Agile prioritizes delivering value to customers
early and frequently. Features are prioritized based on their
business value, and the development team strives to deliver
working software with each iteration, allowing stakeholders to
realize benefits sooner.

For some organizations, a sudden and complete transition to
shift-left testing may not be feasible. In such cases, development
teams can aim to create unit tests for each new feature they

develop, gradually incorporating more robust testing practices
into their workflow.

Integrate Automation
Embracing security automation tools is a key aspect of shift-left
testing, which emphasizes more frequent security checks during the
development process. Security automation employs software to
automatically detect, investigate, and resolve external threats to
applications and systems. This approach not only expedites the
development life cycle but also contributes to a quicker time-to-
market. Tools that are widely adopted for automation are Jenkins,
GitLab CI/CD, Selenium, CircleCI, Ansible, and Kubernetes (K8s).

Incorporating security automation can significantly streamline
the development process, reducing the time it takes to launch
products.

One practical implementation of this is the application of security
gating on pull requests, a method that integrates seamlessly with
automated security in the early development stages. Pull requests,
crucial in Git-based development workflows, facilitate collaboration by
allowing developers to commit and merge changes into code
repositories. Automated tools can scrutinize these pull requests for
both security and licensing issues before the merging of the code,
enhancing the overall security posture of the development process.

Benefits of Shift-Left Strategy
Enhanced Security: Moving security to the earlier stages of the
Software Development Life Cycle (SDLC) allows for increased and
repeated testing. This approach leads to stronger security and
greater confidence in your code, software, and applications. By
shifting security left, you ensure that the software and applications
you release are secure and of high quality.
Error Reduction: Identifying bugs early in the Software
Development Life Cycle (SDLC) simplifies their resolution. By
conducting testing at earlier stages, issues can be addressed and
rectified before they escalate, mitigating the risk of larger problems
arising. This proactive approach ensures that vulnerabilities are
tackled prior to the final stages of production, where resolving flaws

is more demanding in terms of time and resources. Consequently,
adopting a shift-left model allows for a more efficient and timely
delivery of products. Enterprises that have embraced this approach
have reported a significant 45% increase in quality.
(www.apisec.ai/blog/shift-left-security)
Enhanced Product Quality: The sooner you identify and fix
problems, the less risk they pose, and the less potential damage they
cause. As a result, the quality of your final product is higher. More
rigorous and earlier testing leads to a more dependable and stable
product for users.
Increased Speed: By identifying and resolving issues earlier in the
SDLC, flaws and vulnerabilities are fixed before they can cause harm.
This not only protects your code, software, and applications but also
enhances productivity by speeding up the production process and
reducing the time it takes to bring your software and applications to
market.

Infrastructure as Code (IaC) and Security
It’s a big deal in the DevOps world. Instead of setting up and managing
data centers with actual hardware or by clicking around in software,
IaC uses text files or scripts that computers can read. In simpler terms,
IaC means you handle all your tech stuff – like servers, networks, and
databases – using code, just like you would with computer programs.

In the old days, setting up tech stuff was hands-on and tricky, and
people often made mistakes. But with IaC, everything is automatic,
smoother, and more dependable. Using IaC means all the parts of your
tech setup are written in code. This makes it possible to set up and
change your tech infrastructure quickly, accurately, and safely
whenever you need to.

Role of IaC in Cloud Native
IaC, or Infrastructure as Code, is not just for automating infrastructure
processes; it’s also a strong tool for keeping cloud environments safe.
Here’s how IaC can really help in securing the cloud:

http://www.apisec.ai/blog/shift-left-security

1. Making Compliance and Auditing Easier: IaC helps a lot with
following rules and checking everything’s okay. Businesses often
have to stick to different security and privacy laws. With IaC, the
whole setup of the technology is written in code and kept track of.
This makes it easy to see any changes and keep a record of
everything, which helps a lot in making sure everything is
compliant. It’s also clear and easy to understand for auditors who
need to make sure the systems are safe. This saves time, reduces
the chance of missing something, and makes sure every part of the
technology is checked properly.

2. Keeping Everything Consistent: IaC is key for making sure
everything in the technology setup is the same. This uniformity is
important for safety. Before IaC, tech setups could change over time
because of manual updates, leading to security risks. With IaC, this
issue is pretty much gone. By defining the tech setup in code, every
part is the same, which cuts down on differences. If there’s a
security problem in one place, fixing it in the IaC code fixes it
everywhere.

3. Automating Security Rules: Instead of manually putting security
rules in place, which can lead to mistakes, IaC lets you put these
rules right into the tech setup. This makes sure they’re always
followed the same way everywhere, cutting down on human errors.

4. Supporting Immutable Infrastructure: IaC helps create a setup
where servers aren’t changed once they’re up and running. If
changes are needed, new servers are made using a standard
template, and the old ones are shut down. This keeps things more
secure by limiting the ways attackers can get in. Because
everything stays the same, any odd changes or access can be
spotted and dealt with quickly. It also stops unauthorized changes
because each new deployment is fresh and doesn’t keep any risky
settings from before.

5. Speeding Up Response to Incidents: If there’s a security problem,
IaC lets you act fast. Infected servers can be taken down and
replaced quickly using IaC. This quick action reduces downtime

and damage, helping businesses get back on track fast. By making it
easier to fix security issues quickly, IaC strengthens the cloud
against cyberattacks, giving businesses more confidence in their
digital operations.

Security Strategy Using IaC for Organizations
Implementing DevSecOps principles is key to integrating IaC into an
organization’s security strategy. DevSecOps merges security practices
with DevOps, ensuring security measures are part of the coding
process from the start, not added later by applying IaC within a
DevSecOps framework, infrastructure becomes a part of the coding
process. This enables seamless integration and deployment, allowing
any changes to be efficiently tested and implemented, keeping the
infrastructure secure and current.

Embracing a security-first approach is crucial when using IaC. This
involves prioritizing security from the onset of infrastructure
development, not as an afterthought. With IaC, you can embed security
measures and policies into your infrastructure’s code, ensuring new
deployments automatically adhere to your security standards,
minimizing human error, and strengthening your cloud security.

Addressing environmental drift is another important aspect. This
drift, often caused by manual changes, can create inconsistencies in
your infrastructure. IaC tackles this by serving as the definitive
blueprint for your setup, ensuring uniformity. Regular checks against
this blueprint can quickly spot and rectify any deviations.

Simplifying your infrastructure is also beneficial. Complexity can be
a security hazard; the simpler your setup, the easier it is to manage and
secure. IaC aids in reducing complexity by defining infrastructure in
code, streamlining management, and reducing security risks. In
summary, properly integrating IaC into your security strategy can
significantly reduce human error risks and uphold high compliance
standards, making it an essential tool for managing and securing cloud
infrastructures.

Tools for IaC Security

1. Public Key Infrastructure (PKI)
It is a system that includes digital certificates, certificate
authorities (CAs), and registration authorities. These elements
work together to confirm and authenticate identities on the
Internet, making communications secure and establishing trust
between parties. A common use of PKI is in the Transport Layer
Security (TLS) protocol. TLS encrypts conversations between web
browsers and servers, and email clients and servers, also building
trust for information exchange. TLS relies on the Rivest, Shamir,
and Adleman (RSA) algorithm, a form of public-key cryptography.
RSA creates digital signatures to confirm sender identities and
maintain data integrity.

For managing Infrastructure as Code (IaC), the Certificates-as-
Code feature of HashiCorp Vault is widely used. It allows the
creation and management of TLS certificates and keys within Vault.
You can generate, store, revoke, and audit certificates and keys for
applications through Vault.

2. Vault
Vault is an open-source tool for handling secrets and sensitive data.
It’s used to store passwords, keys, and manage TLS certificates. It
builds on HashiCorp for service and network management, and
HashiCorp Nomad, for application and resource management.
Vault is known for managing secrets, data, TLS certificates, and
keys. Its Certificates-as-Code feature enables managing TLS
certificates and keys efficiently.

3. AWS Certificate Manager (ACM)
It is a cloud-based service for creating and managing TLS
certificates and keys, particularly for AWS applications. It’s a
convenient tool for handling TLS needs in the cloud, offering
creation, storage, revocation, and auditing functionalities.

IaC security tools are essential for managing and securing
infrastructure effectively. They automate deployment and
configuration and enhance security. Popular IaC security tools
include Puppet for server configuration, Chef for automating

application deployment, and Ansible for both deployment
automation and server management.

When using these tools, it’s important to stay updated with the
latest versions, understand how the tool works, ensure your
infrastructure is secure with up-to-date patches and
configurations, and have a solid security incident response plan.

IaC with Terraform
Terraform, an Infrastructure as Code (IaC) tool, is primarily used by
DevOps teams, automates various infrastructure tasks, such as cloud
resource provisioning. This open-source tool is cloud neutral,
developed in Go language by HashiCorp. With Terraform, you can
define your entire infrastructure through code, handling servers from
different providers like AWS or Azure simultaneously. Think of
Terraform as a unifying language that enables you to manage your
entire IT infrastructure.

Terraform’s primary use is in provisioning public cloud
infrastructure on major platforms like AWS and Azure. It works through
a provider system, which are plugins that adapt existing APIs and
languages (like Azure Bicep) into Terraform’s syntax. Another key
function of Terraform is supporting multi-cloud deployments. Unlike
some other IaC tools, Terraform operates across various cloud
providers at once. This allows engineers to use the same syntax across
different environments without needing to learn multiple tools. Also,
terraform is a valuable tool for managing infrastructure in private
cloud environments as well since it allows you to define and deploy
infrastructure resources using code, automating provisioning and
management tasks. By treating infrastructure as code, Terraform
ensures consistency, reproducibility, and scalability across
environments. It integrates seamlessly with various private cloud
providers, enabling efficient infrastructure management and
orchestration.

Additionally, Terraform is used for deploying, managing, and
orchestrating resources with custom cloud providers. This means
wrapping any existing API into Terraform’s declarative syntax, even
outside major cloud services like AWS. Providers can also be tailored
for specific internal requirements, converting existing tools or APIs

into Terraform-compatible formats. In essence, Terraform is a versatile
tool for managing your IT infrastructure, whether it’s in a single cloud,
across multiple clouds, or in customized environments, all through the
lens of IaC.

Terraform Working
Terraform works by allowing users to define their desired
infrastructure configuration in configuration files using HashiCorp
Configuration Language (HCL). These configuration files specify the
infrastructure resources, settings, and dependencies required for
deployment.

Terraform interacts with various cloud providers, infrastructure
platforms, and services through provider plugins. These plugins
translate Terraform configuration into API calls and manage the life
cycle of resources. Terraform supports a wide range of providers,
including AWS, Azure, Google Cloud Platform (GCP), Kubernetes, and
more.

The fundamental Terraform workflow comprises three main stages:
Definition: In this stage, you specify the resources needed for your
infrastructure, which can span various cloud providers and services.
For instance, you might craft a configuration to deploy an application
on virtual machines within a Virtual Private Cloud (VPC) network,
incorporating security groups and a load balancer.
Planning: Terraform generates an execution plan outlining the
actions it will take, such as creating, updating, or deleting
infrastructure components, based on your defined configuration and
the current state of the infrastructure.
Execution: Once approved, Terraform executes the planned
operations in the correct sequence, adhering to any specified
resource dependencies. For example, if modifications are made to
the properties of a VPC and the number of virtual machines within
that VPC is altered, Terraform will first re-create the VPC before
adjusting the virtual machine scaling.

Terraform Architecture

Figure 3-4 Terraform architecture

Terraform Core (Terraform CLI): Terraform’s main part is built using
the Go programming language. This creates the Terraform command
line tool, or CLI, which is how users interact with Terraform. This tool is
open source and available on Terraform’s GitHub page.

Terraform Providers: Providers in Terraform are like special
modules that help it talk to various services, including cloud platforms,
databases, and DNS services.

Each provider is designed to let Terraform manage specific
resources in a service and turn Terraform’s setup instructions into
actions that the service understands. There are many providers for
different services, including big cloud services like AWS, Azure, and
Google Cloud, and others created by the community. With these
providers, Terraform users can consistently manage their setups, no
matter what service they’re using.

Terraform State File: The state file is an important part of how
Terraform works. It’s a file that saves details about what Terraform is
managing and the current condition of those resources. Terraform uses
this file to figure out what changes need to be made when new
instructions are given. It helps make sure that Terraform doesn’t redo
the same task over and over again.

This file can be stored on your computer or somewhere else, like
Azure Storage Account, Amazon S3, or HashiCorp. It’s important to
keep this file safe and back it up regularly, as it has important
information about your setup.

IaC Tools

Figure 3-5 Infrastructure as code tools

Infrastructure as Code (IaC) tools are crucial in modern software
development for managing and setting up technology systems. These
tools have transformed traditional approaches, moving from manual
configurations and physical hardware to using code-based, machine-
readable definitions for infrastructure.

Essentially, IaC treats infrastructure like software: it’s managed and
provisioned through code instead of manual methods. This means the
entire setup of an application’s infrastructure, including networks,
servers, databases, and other services, is defined and maintained in
source code files. These files are subject to version control, enabling
auditing and review like application code.

The automation provided by IaC tools streamlines the process of
establishing, altering, and maintaining versions of infrastructure. This
not only boosts efficiency but also significantly cuts down on errors
that are common in traditional manual setups. By automating
environment configurations, IaC reduces human error, leading to a
more reliable, consistent, and repeatable process in infrastructure
deployment and maintenance.

Nowadays, there’s a broad range of tools accessible for
implementing Infrastructure as Code, and the most suitable one varies
for each Infrastructure or DevOps team. These tools, diverse in their
usage and capabilities, can generally be grouped into several distinct
categories
1. Configuration Management Tools

Chef, Puppet, and Ansible: These tools are primarily used to
automate the configuration and management of software on
existing servers and infrastructure. They ensure that systems are
configured consistently and maintained in a desired state.

Chef uses “recipes” and “cookbooks” to define how systems
should be configured.

Puppet employs “manifests” and “modules” to enforce system
configurations.

Ansible is known for its simplicity and uses “playbooks” to
automate tasks across multiple systems.

2. Container Orchestration Tools
Kubernetes and Docker Swarm: These are used for managing
containerized applications across a cluster of machines.

Kubernetes offers advanced features for container
orchestration, including autoscaling, load balancing, and self-
healing.

Docker Swarm provides native clustering functionality for
Docker containers and is known for its ease of use and integration
with the Docker ecosystem.

3. Server Tools
Docker and Vagrant: These tools are used for creating
reproducible and consistent server environments.

Docker packages software into containers, ensuring that it runs
the same regardless of where the container is deployed.

Vagrant provides a simple way to manage and provision virtual
machines with a consistent environment, defined in a single
configuration file.

The concept of immutable infrastructure promoted by these
tools means once a server or container is deployed, it is not
modified. If changes are needed, a new server or container is built
from a base image.

4. Provisioning Tools
Tools like Terraform, Azure Resource Manager (ARM), Google Cloud
Deployment Manager, and AWS CloudFormation are designed to
automate the provisioning of infrastructure in their respective
cloud environments.

Terraform stands out for its ability to manage multiple cloud
services and its declarative configuration language.

ARM, Google Cloud Deployment Manager, and AWS
CloudFormation are specific to their respective cloud platforms
and provide native tooling for infrastructure automation within
those ecosystems. IaC tools play a crucial role in automating and
managing various aspects of IT infrastructure, from configuration
and server templating to container orchestration and cloud-
specific provisioning. By utilizing these tools, organizations can
achieve more efficient, consistent, and reliable infrastructure
deployment and management.

Value Proposition of IaC Tools
1. Consistency Across Environments

Single Source of Truth: IaC maintains all infrastructure
configurations in code, serving as the definitive source of truth.
This approach ensures that the infrastructure setup is consistent
across different environments, be it development, testing, or
production.

Reliable and Predictable Infrastructure: With IaC, you can
replicate your infrastructure setup accurately at any time. This
reliability is crucial in situations like disaster recovery, where rapid

restoration of services is necessary, or during the scaling process
where identical environments are needed.

2. Time Savings Through Automation
Automating Repetitive Tasks: IaC tools automate the process of
provisioning and managing infrastructure, which traditionally
involves repetitive manual tasks. Automation leads to a significant
reduction in the time and effort required for these tasks.

Focus on Strategic Initiatives: By reducing the time spent on
manual setup and maintenance, developers and operations teams
can redirect their efforts toward more strategic activities. This
includes enhancing the application’s functionality, optimizing
performance, or innovating new features.

3. Promoting DevOps Culture
Facilitating Collaboration: IaC bridges the gap between
development (Dev) and operations (Ops) teams. Both teams can
understand, modify, and manage the infrastructure setup through
code, which promotes a better understanding and collaboration.

Shared Understanding and Responsibility: With IaC,
infrastructure configuration becomes part of the codebase, which
both developers and operations teams interact with. This shared
environment fosters responsibility and understanding across
teams, leading to more efficient problem-solving and decision-
making.

Harmonious Working Environment: Adopting IaC encourages
a culture where teams work together toward common goals,
sharing responsibilities and collaborating effectively. This
harmonious environment is conducive to faster innovation and
improved overall productivity.

Best Practices for IaC
1. Continuous Integration and Delivery (CI/CD): Integrate

infrastructure code into CI/CD pipelines to automate testing,
validation, and deployment processes, enabling rapid and reliable
delivery of infrastructure changes.

2. Version Control: Store infrastructure code in a version control
system (e.g., Git) to track changes, facilitate collaboration, and
enable rollback to previous versions if needed.

3. Monitoring and Logging: Implement monitoring and logging
solutions to track infrastructure changes, monitor resource
usage, and troubleshoot issues effectively, ensuring visibility and
accountability.

4. Modularization: Break down infrastructure code into modular
components to promote reusability, maintainability, and easier
management of complex configurations.

5. Testing: Implement automated testing for infrastructure code to
validate configurations, detect errors, and ensure desired
outcomes before deployment. This includes unit tests, integration
tests, and end-to-end tests.

6. Dependency Management: Manage dependencies carefully,
including versioning of external modules and libraries, to prevent
compatibility issues and ensure reproducibility of infrastructure
deployments.

7. Documentation: Document infrastructure code comprehensively,
including comments, README files, and inline documentation, to
enhance understanding, facilitate onboarding, and ensure
maintainability.

8. Security and Compliance: Embed security and compliance
measures into infrastructure code, such as encryption, access
controls, and compliance checks, to ensure that security
requirements are met consistently.

9. Collaboration and Communication: Foster collaboration and
communication among development, operations, and security
teams to align on infrastructure requirements, share knowledge,
and address challenges effectively.

10. Immutable Infrastructure: Treat infrastructure as immutable,
where changes result in replacing existing resources rather than
modifying them in place. This ensures consistency and reduces
the risk of configuration drift.

11. Infrastructure as Documentation: Use infrastructure code as
the single source of truth for documenting the desired state of the
infrastructure, making it easier to understand and replicate
environments.

12. Infrastructure as Data: Utilize data-driven approaches to define
infrastructure configurations, leveraging variables, templates,
and parameterization to make configurations more dynamic and
adaptable.

Securing API in Early Stages
Let’s begin with the basics. What exactly are APIs? In the world of
today’s mobile, SaaS, and web applications, APIs are incredibly
important. You’ll find them in apps meant for customers, partners, and
even internal use. APIs give away parts of the app’s core functions and
sensitive information, which often includes personal details that need
to be kept private. This makes them a big target for cybercriminals.
Having secure APIs is important because it allows for quick innovation
and easy connection between systems. Keeping APIs secure is a must
for any organization that wants to keep the data flowing through APIs
safe. Key steps to securing an API include confirming user identities,
controlling access, encrypting data, and keeping an eye on API activity.
These security steps are critical for stopping unwanted access and
attacks, such as SQL injections. A secure API setup is crucial for
maintaining the trust and reliability of any online service or platform.

Integrating security into the start of making apps and APIs is super
important. It helps you find and fix weak spots early on, which means
you’re less likely to have problems when people start using the
software. The goal is to make security a regular part of making the app,
not something you try to add at the end. This makes sure that keeping

things safe is a basic part of the app and API infrastructure from the
foundational element.

To integrate security into the start of making apps and APIs, follow
these steps:
Threat Modeling: Begin by identifying potential threats and
vulnerabilities in your application or API. Consider the various attack
vectors and potential weak points.
Security Requirements: Define specific security requirements for
your project. These should include authentication, authorization,
data encryption, input validation, and other relevant measures.
Secure Design: Incorporate security principles into the design
phase of your development process. This includes implementing
secure coding practices, using secure frameworks and libraries, and
following industry best practices.
Code Reviews: Conduct regular code reviews with a focus on
security. This helps identify and address security issues early in the
development life cycle.
Automated Testing: Implement automated security testing tools to
scan your codebase for vulnerabilities continuously. This includes
static analysis tools, dynamic analysis tools, and vulnerability
scanners.
Security Training: Provide security training for developers,
designers, and other team members involved in the project. This
ensures everyone understands their role in maintaining security
throughout the development process.
Secure Deployment: Ensure that security measures are maintained
during the deployment phase. This includes securely configuring
servers, implementing secure communication protocols, and
applying necessary security patches.
Continuous Monitoring: Monitor the application and API for
security incidents and anomalies continuously. Implement logging
and monitoring solutions to detect and respond to security threats
promptly.

Common API Risk Factors

1. Object-Level Authorization Issues
This vulnerability occurs when an API doesn’t properly check
whether a user has the right to access or modify a particular piece
of data. Attackers might manipulate the identifier in a request (like
changing the ID number of an account they want to access) to
bypass these checks. This could lead to data breaches where
unauthorized users gain access to other people’s data. This can be
overcome by implementing proper authentication and
authorization mechanisms within the API by ensuring each request
to access or modify data is thoroughly validated against the user’s
permissions. This involves verifying not only the user’s identity but
also their entitlements to specific resources. Engineers also
conduct rigorous testing to identify and mitigate any
vulnerabilities that could allow attackers to manipulate identifiers
or bypass authorization checks. Additionally, they continuously
monitor and update the authorization mechanisms to adapt to
evolving security threats and ensure robust protection against
unauthorized access and data breaches.

Mitigation Strategies: Implement robust authentication and
authorization checks for each API call, ensuring only entitled users
can access or modify data. Engineers need to strengthen the
authentication and authorization mechanisms of the API. This
involves implementing comprehensive checks for each API call to
verify the user’s identity and permissions before allowing access to
sensitive data. By enforcing strict authentication protocols and
authorization rules, engineers can prevent unauthorized users
from accessing or modifying data they are not entitled to.

2. Function-Level Authorization Issues
Sometimes, the access control policies are so complex that they fail
to strictly adhere to the “least privilege” principle, where users are
given the minimum access necessary for their role. This flaw might
let attackers perform critical operations or access sensitive parts
of the system reserved for administrators or specific roles.

Mitigation Strategies: To mitigate Function-Level
Authorization Issues, engineers should simplify access controls to
ensure that users are granted only the minimum privileges

necessary to perform their roles. This involves conducting regular
audits to review and adjust user permissions based on the
principle of least privilege, where users are granted the lowest level
of access required to carry out their tasks effectively. By
simplifying access controls and adhering to the principle of least
privilege, engineers can reduce the risk of unauthorized access to
sensitive functions and data.

3. Excessive Data Exposure
APIs may inadvertently provide more data in their responses than
is necessary for the client’s request. This could include sensitive
information that, while not displayed to the user, could be
intercepted and misused by an attacker.

Mitigation Strategies: To address Excessive Data Exposure,
engineers should implement strict data filtering mechanisms on
the server side to ensure that only the necessary data is included in
API responses. This involves carefully defining and filtering the
data returned by the API to exclude any sensitive information that
is not required for the specific request. By implementing strict data
filtering measures, engineers can minimize the risk of exposing
sensitive information to unauthorized users and mitigate the
potential impact of data breaches.

4. Improper Asset Management
In the rush to release, teams may forget to properly document or
secure all API endpoints, which can leave some APIs unprotected.
Also, unclear documentation can lead to improper usage of APIs,
potentially opening up security gaps.

Mitigation Strategies: To mitigate Improper Asset
Management issues, engineers should maintain an updated
inventory of all API endpoints and ensure comprehensive
documentation is available for each endpoint. This involves
documenting the purpose, functionality, and security requirements
of each API endpoint to ensure that they are properly secured and
maintained. Additionally, engineers should regularly review and
decommission unused or outdated APIs to reduce the attack
surface and minimize the risk of unauthorized access to sensitive
resources.

5. Insufficient Resource Management and Rate Limiting
Without proper limitations on the number or size of requests, APIs
can be vulnerable to attacks that aim to overwhelm the system,
such as DoS attacks, or to brute-force attacks that repeatedly
attempt to guess user credentials.

Mitigation Strategies: To address Insufficient Resource
Management and Rate Limiting issues, engineers should
implement rate limiting and size checks on API requests to prevent
abuse and mitigate the risk of denial-of-service (DoS) attacks. This
involves setting limits on the number and size of requests allowed
per user or client to ensure that the API infrastructure is not
overwhelmed by excessive traffic. Additionally, engineers should
monitor traffic patterns and implement automated mechanisms to
identify and mitigate attacks quickly, such as temporarily blocking
or throttling malicious users or IP addresses.

6. Injection Flaws
APIs must rigorously validate all incoming data to prevent injection
attacks, where attackers insert malicious commands into data
inputs to manipulate the backend systems.

Mitigation Strategies: To mitigate Injection Flaws, engineers
should implement strict input validation mechanisms to sanitize
and validate all user input before processing it. This involves
validating input data against predefined rules and rejecting any
input that does not meet the specified criteria. Additionally,
engineers should use parameterized queries to interact with
databases and avoid direct execution of client-side data to prevent
injection attacks. By implementing strict input validation
measures, engineers can minimize the risk of injection attacks and
protect the integrity and security of the API.

7. Mass Assignment Issues
Some frameworks allow developers to automatically bind input
data from clients to data models. If not carefully controlled,
attackers can exploit this feature to update fields that should be
immutable, like user permissions or credentials.

Mitigation Strategies: To address Mass Assignment Issues,
engineers should carefully define which properties in the data
models can be bound to user inputs explicitly and review all data
binding operations for potential vulnerabilities. This involves
explicitly specifying the properties that can be modified through
user input and restricting access to sensitive fields that should not
be updated directly. Additionally, engineers should implement
strict validation checks to ensure that only authorized users can
modify sensitive data and prevent unauthorized changes to critical
system settings. By defining explicit data binding rules and
conducting thorough reviews of data binding operations, engineers
can minimize the risk of mass assignment vulnerabilities and
protect the integrity of the application.

What Is API Security Testing?
API security is about keeping your API safe from bad guys who want to
break into it and making sure you build your APIs to be tough against
attacks. It’s not just a bonus part of your API; it’s a whole different thing
you need to think about. Making your API secure is more about how
you think about security, not just adding it as an extra.

When you’re ready to check if your API is secure, you start by laying
out all the details about your API. Testers need to know what kind of
information the API sends and receives. They use different tools like
OpenAPI, Postman, or HAR files to get a clear picture of what’s going on
with the API.

Securing API Using Pynt
Pynt offers a security testing service for APIs that helps developers and
testers ensure their APIs are secure by finding and addressing security
issues at any stage of development. This tool is key for building APIs
that are reliable and secure from the ground up.

According to the 2023 Postman State of the Art survey, performance
and security are what people care about most when they’re using an
API, just like they did the year before. These two aspects are always at
the top of their list.

https://www.postman.com/state-of-api/
https://www.postman.com/state-of-api/

Pynt is great for making sure your APIs are up to par with security
standards. It spots the security gaps in your APIs to strengthen them.
Pynt, catching and fixing issues early on is easier, helping to maintain
secure and safe APIs. In today’s digital age, where online security is
crucial, choosing Pynt is a smart move for keeping your APIs solid and
reliable.

Working of Pynt

Figure 3-6 API security using Pynt

Automated Test Preparation: Pynt streamlines the process of
setting up security tests for your APIs. It smartly utilizes your
existing setups from platforms like Postman, automating the
preparation stage without extra effort on your part.
Seamless Tool Compatibility: Integrating Pynt into your existing
workflow is hassle-free. It’s designed to work effortlessly with the
API testing tools you’re already familiar with, such as Postman or
Newman, meaning there’s no need to switch tools or learn new
software.
Intelligent Security Testing: What makes Pynt stand out is its
ability to comprehend the purpose and function of your existing
tests. It leverages this understanding to craft security tests that are
directly relevant to the scenarios covered by your functional tests,

ensuring that the security aspect aligns with your API’s operational
context.
Fast and Precise Feedback: Efficiency is a key feature of Pynt. It
delivers the outcomes of your security tests rapidly, ensuring that
you don’t have to wait long to get the insights you need. This quick
turnaround time for results means you can act on the findings
promptly, enhancing the security posture of your APIs with minimal
delay.

Expanding on this, Pynt’s ability to automate and integrate
seamlessly makes it a valuable asset in modern API development
environments, where speed and accuracy are critical. It ensures that
security testing is not a bottleneck but rather a streamlined part of the
development process. By providing smart, context-aware security
testing that aligns with your functional requirements, Pynt helps
maintain a high-security standard without slowing down the
development cycle, making it an ideal choice for teams looking to
balance agility with robust security practices.

Pynt Setup
Before starting with the Pynt solution, it’s important to make sure you
have the following prerequisites in place:
Install Postman on Your Computer: First, download and install the
Postman application. You can find it on Postman’s download page
(www.postman.com/downloads). Remember, Pynt needs to work
with Docker and requires access to your local host, so the web
version of Postman won’t work for this.
Set Up Docker: Ensure that Docker is installed and active on your
machine. If you haven’t installed Docker yet, you can download it
from the Docker installation guide
(https://docs.docker.com/engine/install/)
Prepare Your API Test Collection in Postman: Check that your
collection of functional API tests is ready and accessible in your
Postman workspace. Run all the APIs and test cases using Postman’s
collection runner to ensure they are functioning correctly.
Configure Environment Variables: If your API tests depend on
specific environment variables, double-check that these are set up

https://www.postman.com/downloads
http://www.postman.com/downloads
https://docs.docker.com/engine/install/
https://docs.docker.com/engine/install/

correctly in Postman.
Check API Accessibility: Before you start using Pynt for testing,
make sure that the API or service you plan to test is operational and
accessible. This is important to ensure that Pynt can interact with it
effectively for security testing.

Pynt Security Testing
1. At this point, you should already have the Postman application

installed on your computer. Please go ahead and open the
application.

2. Now, you need to import the Pynt Collection to use for a dry run. To
do this, visit the following link: Pynt Collection on Postman. Once
there, create a fork of the collection. For guidance on how to do
this, you can refer to the following screenshot.

https://www.postman.com/pynt-io/workspace/pynt/overview

3. To verify that the Postman app is up and running and Docker is
operational, you should run the Pynt Collection. To do this, click on
the three dots (…) located on the Pynt Collection in Postman. From
the dropdown menu that appears, select the “Run Collection”
option. This action is illustrated in the following screenshot.

4. If you haven’t started Docker yet and you try to run the Pynt CLI,
you’ll likely see an error message saying “Pynt container is not
running.” This is because the Pynt CLI relies on Docker to run the
Pynt container in the background. To understand this better, you
can refer to the following screenshot.

5. First, ensure that Docker is installed on your machine. Installing
Docker is quite straightforward. If you need guidance, refer to the
link provided in the Prerequisite section.

6. Open the Docker Desktop application and wait until Docker is fully
operational. Once Docker Desktop is up and running, you will see
the following screen, indicating that it’s ready for use.

7. To start the Pynt Docker container, you’ll need to run a specific
command. Please note that if the default port number is already in

use on your system, you might need to change it to an available
one. Here’s the command to run the Pynt Docker:

To run the Pynt Docker container, follow these steps based on
your operating system and Docker setup:
– For Docker Desktop on Windows, Mac, or Linux:

Open Command Prompt (cmd) on Windows, or Terminal on
Mac/Linux.

Execute the following command:
$ docker run -p 5001:5001 --pull always
ghcr.io/pynt-io/pynt:postman-latest

– For Docker Engine on Linux:
Open the Terminal.

Execute the following command:
$docker run --pull always --network=host
ghcr.io/pynt-io/pynt:postman-latest

Note Remember, these commands will pull the latest Pynt image
from its repository and run it. Ensure Docker is up and running
before executing these commands.

8. Open your Terminal application and type in the specific command
for Mac that was mentioned earlier. After running this command in
the Terminal, you should see a success message indicating that the
operation has been completed successfully. You can refer to the
example shown in the following screenshot.

9. Now that the Pynt Docker container is up and running, you can
proceed to execute step 4 again. This step involves running the
Pynt collection. Ensure that everything is functioning correctly. If
all components are operational, including the Pynt Docker
container and the Pynt CLI, you should successfully receive output
from the execution of the Pynt collection. This output will indicate
that your API security tests are being processed as expected.

10. We need to create a fork of the “goat” project to enhance our
understanding. Subsequently, we will set up variables as outlined
in the following text. If you’re unfamiliar with the process of
forking, you can easily learn how by visiting this link: Postman
Workspace for Pynt.

11. Go to the “Variables” section in the “Pynt” collection and enter the
needed details in the “CURRENT VALUE” column.
a. API-KEY: Put in your Postman API key here. If you already

have one, just type it in. If not, go to this link to make a new
one. Remember, you can only copy the API key when you first
create it. You don’t need to change this unless your API key
expires.

b. port: This is the left-side port number you used in the Docker
command. The default is 5001.

c. YOUR-COLLECTION: Enter the name or UID of your
functional test collection. If you have two collections with the

https://www.postman.com/pynt-io/workspace/pynt/overview
https://www.postman.com/pynt-io/workspace/pynt/overview
https://postman.co/settings/me/api-keys

same name, use the UID. This is for Pynt to identify the
collection for automated security tests. If you need an
example app to test, Pynt offers a “goat” app you can use. Just
fork it from Pynt’s public workspace then save.

12. Start the “Pynt” collection to obtain the security findings. For
instructions on how to run the collection, see step 3. Once you
initiate the execution, you’ll be able to view the security results
for the OWASP-10 categories.

13. Wait for the entire collection to finish executing. Once the
execution is complete, you will receive a notification indicating
run finished.

14. To view a summary of the results, click on “View Summary.” For a
detailed report, navigate to the “Pynt” collection and expand it.
There, find the final request titled “Show Report” and select
“Send.” After sending the request, you can see the full report by
choosing the “Visualize” tab located in the lower part of the
interface.

Summary
In this chapter, we discussed the importance of security in cloud-native
applications and explored the proactive “shift-left” approach to ensure
robust protection. As cloud-native applications become increasingly
vital in modern software development, it’s essential to embed security
measures early in the development process.

We emphasized the significance of preemptively addressing
vulnerabilities and mitigating the risks of security breaches through
the “shift-left” approach. By integrating security throughout the
application development life cycle, organizations can effectively
protect their cloud-native applications against evolving cyber threats.

Throughout the chapter, we covered various topics essential for
securing cloud-native applications comprehensively. We highlighted
the critical need for proactive security measures, given the complexity

https://www.postman.com/pynt-io/workspace/pynt

and ever-evolving nature of cyber threats faced by cloud-based
applications.

The central concept of “shift-left” was emphasized, stressing the
importance of integrating security early in the development process
rather than treating it as an afterthought. This approach not only
strengthens applications against potential cyberattacks but also
ensures compliance with regulations and standards.

Furthermore, we provided insights into implementing these
security measures effectively within organizations, including the
utilization of specific tools and strategies tailored to the unique
challenges of cloud-native environments.

(1)

© The Author(s), under exclusive license to APress Media, LLC, part of Springer
Nature 2024
M. I. Ahmed, Cloud-Native DevOps
https://doi.org/10.1007/979-8-8688-0407-6_4

4. CI/CD Pipeline in Cloud-Native
DevOps
Mohammed Ilyas Ahmed1

Boston, MA, USA

“Laugh in the Face of Bugs: CI/CD Pipeline in Cloud-Native
DevOps – Making software delivery a stand-up comedy act in
the cloud!”

In this chapter, we will explore the simplification of software
development through the utilization of Continuous Integration and
Continuous Deployment (CI/CD) pipelines. These pipelines facilitate
seamless collaboration among developers and expedite the delivery of
software.

Imagine CI as the Avengers assembling to put together a software
puzzle. They’re like Iron Man spotting errors with his tech-savvy suit
and Captain America fixing them with his shield – all before things get
out of hand. Now, meet Continuous Deployment, the Flash of the coding
world, zooming around and automatically delivering the final product
faster than you can say “supercalifragilisticexpialidocious.”

We will commence by comprehending the essence of CI/CD and its
significance. Visualize Continuous Integration as a collective effort to
assemble puzzle pieces, identifying and rectifying errors early in the
development process. On the other hand, Continuous Deployment
automates the distribution of completed work to various destinations.
The chapter emphasizes the application of CI/CD pipelines within

https://doi.org/10.1007/979-8-8688-0407-6_4

cloud-based settings, ensuring compatibility with cloud technologies
like Amazon Web Services or Microsoft Azure. Practical guidance will
be provided on establishing these pipelines, automating testing
procedures, and deploying software seamlessly. Additionally, we will
delve into aspects of ensuring security, monitoring processes, and
adeptly managing errors.

By the conclusion, you will have a comprehensive understanding of
leveraging CI/CD pipelines in cloud environments for your software
projects. The use of straight forward examples and narratives aims to
facilitate a clear understanding, empowering you to enhance your
approach to software development.

In this chapter, we will be encompassing the following topics:
Overview of CI/CD
Integration of Version Control
Cloud-Agnostic in CI/CD Pipeline
Security in CI/CD

Overview of CI/CD
To put it simply, the CI/CD pipeline is like a helpful system that
automates how software is delivered. CI/CD stands for Continuous
Integration/Continuous Delivery, and it’s a way for development teams
to deliver their code changes more often and with fewer errors. It uses
automation to make things smoother.

Continuous Integration is about developers making small, regular
changes to the code and combining them into a shared place. Think of
it like a teamwork puzzle – everyone adds their piece regularly, and the
system checks to make sure nothing is broken. This automation makes
it easier for teams to share changes often, making collaboration better
and the software higher quality. Continuous Delivery is like a process
that checks for mistakes and puts the team’s code changes in a waiting
area for further testing.

The CI/CD process is important because it makes deploying
software easier and more predictable. It brings order and trust to the
software development process, making teams work together better
and creating better applications at a lower cost.

DevOps emerged as a response to a crucial problem within the Agile
development movement. The challenge was that while Agile developers
were creating new applications and code updates more frequently,
traditional operations teams faced difficulties in testing and deploying
them. This issue counteracted the benefits of swift development.
DevOps addresses this by extending Agile principles throughout the
entire software development life cycle (SDLC), aiming to enhance the
entire workflow through continuous improvement. Exceptional
DevOps teams not only experience quicker code iterations and
deployments but also achieve a shorter time to market for new
concepts, a reduction in bugs, and a more stable infrastructure.

C1/CD Principles
Organizations grappling with improperly implemented continuous
integration frequently encounter a cultural obstacle. Although
engineers are adept at addressing technical issues, the effective
embrace of CI/CD principles demands a substantial cultural shift,
which is inherently difficult. Merely introducing a continuous
integration tool may address technical aspects, but succeeding with
CI/CD requires a transformation in work methods, collaboration, and a
more extensive cultural change. Without a shift in the team’s culture,
the implementation of continuous integration and continuous delivery
becomes notably challenging.

Principles of Continuous Integration
1. Commit to the Mainline: A crucial aspect of continuous

integration is committing changes regularly. While automated
builds can be set up to run on every commit, the cultural practice of
infrequent commits or prolonged branching undermines the
principles. Delayed commits or extended branches make it
challenging to identify the source of integration issues if a build
breaks.

2. Maintain a Single-Source Repository: In intricate applications,
developers often create branches off the main trunk, introducing
complexity and preventing a unified source of truth. Teams should

commit or merge changes to the main trunk at least once a day,
ensuring a continuous and unified codebase.

3. Build Automation: While many organizations claim to practice CI
by scheduling builds, true continuous integration involves testing
and validating each build. Automation of the build process is
essential for effective CI.

4. Make Builds Self-testing: Validating builds involves not only
detecting failures but also ensuring that the build product operates
as expected. Incorporating fast functional and non-functional
testing within the build process is crucial for effective CI.

5. Build Quickly: Swift build times are essential to encourage regular
changes and prevent large change sets. Quick builds facilitate the
isolation of changes, making it easier to identify and address issues
promptly.

6. Test in a Clone: Validating software in its intended environment is
vital for accurate results. Testing in a different environment may
lead to misleading outcomes.

7. Fix Broken Builds Immediately: Detecting and rectifying
problems promptly is critical in CI. Establishing a “stop-the-line”
approach, where issues are addressed immediately, prevents
downstream complications.

Despite the challenges organizations face in implementing true
continuous integration, it’s noteworthy how the software development
community has embraced modern processes to enhance operational
value. Overcoming cultural, emotional, and technical attachments to
legacy technologies is a significant hurdle, and achieving a mindset
shift is crucial for delivering successful continuous integration.

Principles of Continuous Delivery
1. Ensure a Consistent and Dependable Process: Utilize the same

release process across all environments. When a feature or
enhancement undergoes different processes for integration and
QA, issues are prone to arise.

2. Implement Automation Across the Board: Automate builds,
testing, releases, configuration changes, and other tasks. Manual
processes are less repeatable, more susceptible to errors, and less
efficient. Automation not only reduces the effort needed to run and
monitor processes but also ensures consistent results.

3. Enforce Version Control for Everything: Maintain version control
for code, configuration, scripts, databases, and documentation. A
single, reliable source of truth provides a stable foundation for
building processes.

4. Tackle Challenges Early: Address time-consuming or error-prone
tasks at the outset. Dealing with difficult issues first makes the
subsequent tasks likely to be easier to perfect.

5. Embed Quality in Processes: Establish short feedback loops to
address bugs immediately after their creation. Early detection of
issues during post-build tests allows developers to produce higher-
quality code faster, reducing the number of problems discovered
later in the process.

6. Define “Done” as Released: Establish short feedback loops to
address bugs immediately after their creation. Looping issues back
to developers post-build test enables quicker production of higher-
quality code, leading to fewer problems in later, more costly stages
of the process.

7. Shared Responsibility for Everyone: “It works on my station” is
not a valid excuse. Responsibility extends to production. Although
cultural change is challenging, having management support and an
enthusiastic champion facilitates the process.

8. Embrace Continuous Improvement: Out of the initial eight
principles of continuous delivery, this one holds the utmost
importance for effective automation. Cultivating a culture that
seeks continuous improvement is crucial, and automation often
serves as the most accessible and effective means toward that goal.

9. Don’t Overlook the Database: While Agile, source control, and
DevOps practices are standard in software development, manual
processes persist in database releases. Robust source control and
DevOps solutions for databases exist today, offering secure and
efficient automation that accelerates feedback loops between
developers and DBAs, saving time and reducing costly rework.

CI/CD Pipeline Stages

Figure 4-1 CI/CD stages

Source Stage
The source stage is a fundamental step in the CI/CD (Continuous
Integration/Continuous Deployment) pipeline, commonly known as
the version control stage. It acts as the cornerstone of the entire
pipeline, with a primary focus on organizing and storing source code in
a controlled and versioned manner.
Source Code Management
Developers create or modify code on their local machines, and the
source code is then uploaded to a version control system like Git or
Subversion. This ensures organized code management, allowing
easy tracking of changes and providing a safety net for developers to
retrieve or revert modifications.
Version Control
The source stage involves monitoring different versions of the code
to facilitate collaboration among developers. Version control
systems maintain a history of changes, enabling the review,
comparison, and reverting to previous states when necessary.

Branching Strategies
The source stage incorporates branching strategies such as GitFlow
or trunk-based development. These strategies enable developers to
work on different features or fixes concurrently without the risk of
overwriting each other’s work. They support effective feature
development, bug fixing, and experimental research without
disrupting the primary codebase.

Figure 4-2 Release branching strategies

The release branching strategy is a way of organizing work when teams
want to put new features into the final product all at once. Unlike
another strategy where each feature is added directly to the main
project, here, a special branch called “develop” is made to gather all the
new features. This branch is where new features are added one by one.

When a feature is finished and checked, it’s added to the “develop”
branch. When enough features are in the “develop” branch for a new
version, a new branch for that version is made.

After testing and fixing any problems in the version branch, it’s
added to the main project. Usually, the version branch is deleted after
it’s been added.
Pipeline Triggering
In the CI/CD context, the source stage is where the pipeline run is
activated, typically triggered by a new commit or a pull request. This
stage may also include initial quality checks, such as linting or syntax
checks, to ensure that the committed code adheres to predefined
standards and styles.

The source stage is pivotal in upholding code integrity, fostering
collaboration among developers, and establishing a foundation for
subsequent stages in the CI/CD pipeline. It ensures meticulous tracking
of code modifications, offering the flexibility to retrieve or revert
changes as needed. The implementation of branching strategies
facilitates efficient parallel development, and the initiation of the
pipeline run guarantees that the code undergoes essential processes
for quality assurance and deployment in subsequent stages.

Common tools used in the source stage:
– Azure Repos
– GIT
– AWS CodeCommit

Build Stage
The build stage plays a crucial role in the CI/CD (Continuous
Integration/Continuous Deployment) pipeline, acting as a pivotal
phase where the source code, managed and versioned in the source
stage, is transformed into a tangible product ready for execution in a
specific environment. This stage is essential for converting the human-
readable source code into a deployable artifact, laying the groundwork
for the subsequent phases in the pipeline.
Code Compilation and Transformation
Depending on the application type, this phase involves compiling
source code into machine-readable instructions. For example, in Java
applications, source code is compiled into bytecode, while

applications meant for Docker environments are transformed into
Docker images using a Dockerfile.
Dependency Resolution and Management
The build stage handles dependencies by resolving and integrating
external libraries necessary for the application’s functionality. This
ensures that the application is self-contained and includes all the
required components for execution.
Language Translation
Language translation may be needed to ensure compatibility with
the target environment. For instance, translating code from one
programming language to another that is better suited for the
deployment environment.
Asset Bundling
This involves bundling various assets, such as images, stylesheets,
and scripts, into a format suitable for deployment. Bundling
streamlines the deployment process and ensures that all necessary
assets are included in the final artifact.
Preliminary Testing
Preliminary tests, often in the form of unit tests or static code
analysis, are carried out to ensure the basic correctness and quality
of the code. If these tests fail or issues are identified in the build
process, the pipeline may be halted, and developers are notified.

The build stage acts as a critical checkpoint for the CI/CD pipeline.
Its successful completion results in the generation of one or more
deployable artifacts that can seamlessly progress to subsequent stages,
such as testing and deployment. The automation of the build process
enhances the efficiency, consistency, and reliability of software
development, aligning with the “fail fast” principle by promptly
detecting and addressing issues early in the development life cycle.

Common tools used in the build stage:
– Jenkins
– AWS Code Build
– Azure Pipelines
– Gradle

Test Stage

During the testing phase, the application undergoes a thorough
automated testing process to ensure that it complies with both
functional and non-functional requirements before being released to
end-users. This stage encompasses various test types, each targeting
different aspects of the application’s performance and dependability.
Integration Tests
Integration tests guarantee the seamless collaboration of various
parts within the application. They verify that different modules or
features work together as intended, ensuring the proper functioning
of the integrated system.
Functional Tests
Functional tests, often in the form of end-to-end tests or user
interface tests, confirm that the application behaves as expected
from an end-user’s standpoint. This includes testing user interfaces,
interactions, and overall functionality to ensure a positive user
experience.
Performance Tests
Performance tests gauge the application’s ability to handle
anticipated loads, respond swiftly, and remain stable under stress.
This type of testing helps identify and address any performance
bottlenecks, ensuring efficient performance in real-world scenarios.
Security Tests
Security tests are conducted to uncover potential vulnerabilities or
security risks within the application. This involves checking for
weaknesses that could be exploited by malicious entities. Detecting
and resolving security issues at this stage contributes to delivering a
more secure final product.

The testing phase plays a crucial role in the CI/CD pipeline as it
serves as the ultimate checkpoint before deploying the application to
production. Through the automation of these tests, developers can
consistently and efficiently ensure the reliability, functionality, and
security of the application, resulting in a higher-quality software
release. If any issues arise during this stage, the CI/CD pipeline can
pause, enabling developers to address and rectify problems before the
application is made available to end-users.

Common tools used in the test stage:

– Puppeteer
– Jest
– Selenium
– PHPUnit

Deploy Stage
The Deploy stage represents the final phase in the CI/CD (Continuous
Integration/Continuous Deployment) pipeline, where the application
is launched into the production environment, becoming accessible to
end-users. This stage encompasses the seamless transfer of the built
and tested software to the server or cloud platform where it will be
operational.
Deployment Process
The deployment process varies depending on the application’s
nature and the production environment. It may involve actions such
as deploying a Docker container to a Kubernetes cluster, updating a
web application on a cloud service like AWS or Google Cloud, or
simply uploading files to a server.
Automation
The Deploy stage is anticipated to be entirely automated, reducing
the need for manual intervention. Automation promotes consistency
and minimizes the risk of human error throughout the deployment
process.
Post-deployment Tests
Following deployment, post-deployment tests or smoke tests are
often conducted to ensure that the application operates as expected
in the production environment. These tests validate the stability of
the deployed software and its adherence to specified requirements.
Production Monitoring
Once the application is live, continuous monitoring becomes
essential to promptly identify and address any issues. Monitoring
tools track performance metrics, identify potential bottlenecks, and
ensure the ongoing health and stability of the application.
Rollback Mechanism
In case unexpected problems are identified after deployment, a
rollback mechanism allows developers to swiftly return to a previous

version. This ensures a quick response to issues without causing
prolonged downtime for end-users.

The Deploy stage marks the conclusion of the CI/CD pipeline. By
automating the deployment process and incorporating testing and
monitoring measures, the Deploy stage aims to guarantee a seamless
and dependable transition of the application from development to
production. This contributes to the overall efficiency, consistency, and
reliability of the software development and release process.

Common tools used in the Deploy stage:
– Chef
– AWS Elastic
– Ansible
– AWS Code Deploy

CI/CD Best Practices in Cloud Native
1. Unified Source Repository

Imagine a scenario where a software development team is
working on a project with multiple modules and components.
Without a unified source repository, each team member might
store their code and related files in different locations or even use
disparate version control systems. This can lead to confusion,
difficulty in tracking changes, and challenges in collaborating
effectively. By centralizing all code, configuration files, and
documentation in a single version control system like Git, team
members can easily access, review, and contribute to the project.
For example, GitHub provides a centralized platform where
developers can collaborate on code, track changes, and manage
project documentation in a unified repository.

2. Automation Across the Board
Consider a continuous integration/continuous delivery (CI/CD)
pipeline for a web application. Automating various steps in the
pipeline, such as building, testing, deployment, and monitoring,
can greatly enhance efficiency and reduce the likelihood of errors.
For instance, whenever a developer pushes code changes to the
repository, an automated build process is triggered, which

compiles the code, runs automated tests, and generates
deployable artifacts. These artifacts are then automatically
deployed to a staging environment for further testing and
validation. By automating these processes, teams can achieve
faster delivery cycles and ensure consistent, high-quality releases.

3. Consistent Build Processes
In a software development project involving multiple developers
working on different features, maintaining consistency in the
build process is crucial. For example, imagine a team of
developers working on a mobile app using React Native. Each
developer may have their development environment set up with
different versions of Node.js, npm packages, and build tools. By
establishing a consistent build process that mirrors the CI/CD
pipeline, developers can ensure that their local development
environments closely match the production environment. This
reduces the risk of compatibility issues and ensures a smoother
transition from development to deployment.

4. Parallelization Implementation
Suppose a software development team is running a suite of
automated tests as part of their CI/CD pipeline. By parallelizing
these tests, they can significantly reduce the overall execution
time and accelerate the feedback loop. For example, instead of
running all tests sequentially, the team can split them into
multiple batches and execute them concurrently on different
servers or containers. This allows them to leverage the available
computing resources more efficiently and speed up the testing
process. As a result, developers receive timely feedback on their
code changes, enabling them to iterate quickly and deliver
updates faster.

5. Utilize Build Artifacts
Consider a scenario where a team is developing a cloud-based
microservices architecture using Docker containers. After each
successful build, the application artifacts, such as Docker images,
are stored in a centralized repository like Docker Hub or Amazon
ECR. These artifacts contain everything needed to deploy the

application, including the code, dependencies, and runtime
environment. By storing build artifacts in a centralized repository,
teams can easily deploy their applications to different
environments, such as development, staging, and production,
with minimal effort. Additionally, in case of any issues or
rollbacks, teams can revert to previous versions of the artifacts
stored in the repository.

6. Comprehensive Testing Integration
Imagine a software development project where a team is building
an ecommerce platform. As part of their CI/CD pipeline, they
include a variety of automated tests to ensure the quality and
reliability of the application. This includes unit tests to verify the
functionality of individual components, integration tests to test
the interaction between different modules, and end-to-end tests
to validate the entire application workflow. By integrating these
diverse tests into their pipeline, the team can identify and fix bugs
early in the development process, leading to a more stable and
robust application.

7. Effective Management of Environment Configurations
Suppose a team is deploying a web application to multiple
environments, including development, staging, and production.
To ensure consistency across these environments, they use
Infrastructure as Code (IaC) tools like Terraform or AWS
CloudFormation. With IaC, the team can define and manage their
environment configurations in code, allowing them to provision
and configure infrastructure resources automatically. For
example, they can define the desired state of their infrastructure,
including servers, databases, and networking components, using
declarative code. This ensures that each environment is
provisioned consistently and eliminates manual configuration
errors.

8. Continuous Monitoring and Improvement
Consider a scenario where a team is managing a CI/CD pipeline
for a cloud-based SaaS application. They use monitoring tools like
Prometheus and Grafana to track key metrics such as build times,

deployment frequency, and error rates. By continuously
monitoring these metrics and gathering feedback from
developers, the team can identify bottlenecks and areas for
improvement in their pipeline. For example, they may discover
that certain stages of the pipeline are taking longer than expected
or that certain tests are failing frequently. By iteratively
optimizing their pipeline based on this feedback, the team can
improve its efficiency and deliver updates more quickly and
reliably.

9. Foster a Collaborative Culture
Imagine a software development team working on a project with
cross-functional teams, including developers, QA engineers, and
operations specialists. To foster collaboration and alignment, the
team adopts Agile methodologies like Scrum or Kanban. They
hold regular stand-up meetings, sprint planning sessions, and
retrospective meetings to encourage open communication and
feedback sharing. Additionally, they use collaboration tools like
Slack or Microsoft Teams to facilitate real-time communication
and document sharing. By fostering a collaborative culture, the
team can leverage each other’s strengths and expertise to deliver
high-quality software more effectively.

10. Prioritize Security
Suppose a team is developing a web application that handles
sensitive user data, such as personal information and payment
details. To ensure the security of the application, they integrate
security checks and scans into their CI/CD pipeline. For example,
they use static code analysis tools like SonarQube to identify
potential security vulnerabilities in the codebase. They also
perform dependency checks to identify any outdated or
vulnerable libraries used by the application. By prioritizing
security in their pipeline, the team can identify and mitigate
security risks early in the development process, reducing the
likelihood of security breaches and protecting user data.

Benefits of CI/CD in Cloud-Native DevOps

The pipeline incorporates various toolsets and frameworks designed
to assist developers, testers, operations teams, and other project
participants in delivering software to end-users. It offers teams
additional flexibility to adapt quickly and enhances the overall
effectiveness of the software delivery process. While setting up the
pipeline may demand time and involve a significant learning curve, the
advantages surpass the invested time, expenses, and effort.

Enhanced Efficiency
Advantage: To improve productivity within a CI/CD pipeline,
automation plays a crucial role. Especially in scenarios where the
review process spans various environments like development, testing,
and production, involving multiple commands across diverse domains,
automation becomes essential for streamlining these processes. By
automating tasks such as code compilation, testing, deployment, and
monitoring, teams can significantly reduce manual effort, minimize
errors, and accelerate the delivery of software updates. This enhanced
efficiency allows teams to focus more on innovation and value-added
activities rather than repetitive, time-consuming tasks, ultimately
leading to increased productivity and faster time-to-market for their
applications.

Reduced Defect Risk
Advantage: Detecting and addressing defects early in the development
process is crucial for ensuring the overall quality of software
applications. When defects are identified late in the development cycle
or worse, after the software has been released to production, the
consequences can be significant. Not only does it require additional
time and resources to fix these defects, but it can also lead to user
dissatisfaction, a negative impact on the brand’s reputation, and
potential financial losses.

A CI/CD pipeline addresses this challenge by facilitating more
frequent and automated testing of code changes throughout the
development process. As developers commit code to the version
control system, automated build and testing processes are triggered,
allowing for rapid feedback on the quality of the code. By running unit
tests, integration tests, and other automated checks as part of the CI

process, potential defects can be identified early on, often before they
have a chance to propagate further downstream in the development
cycle.

Moreover, the continuous deployment aspect of a CI/CD pipeline
enables rapid deployment of code changes to production-like
environments, where additional testing and validation can occur. This
allows teams to catch defects in a realistic environment and address
them before they impact end-users.

By embracing a CI/CD approach, organizations can significantly
reduce the time and effort required to detect and address defects in
their software. This not only leads to higher software quality but also
enables faster delivery of features and enhancements to users.
Ultimately, by mitigating risks in real-time through continuous testing
and deployment, CI/CD pipelines help organizations deliver more
reliable and robust software solutions while minimizing the costs and
impacts associated with defects.

Accelerated Product Delivery
Advantage: A seamless CI/CD workflow enables multiple daily
releases, automating the building, testing, and delivery of features with
minimal manual intervention. Tools like Docker, Kubernetes, and Travis
CI contribute to achieving this, leading to faster responses to market
shifts, security challenges, consumer needs, and financial pressures.

Effective Log Generation
Advantage: Observability is crucial for DevOps, and logging
information plays a vital role in this aspect. A CI/CD pipeline generates
extensive logging data at every stage of the software development
process, aiding in tracking system performance and studying program
behavior.

Quick Rollback Capability
Advantage: A distinctive benefit of a CI/CD pipeline is the ability to
swiftly and easily rollback code changes in case of issues in the
production environment after a release. This ensures rapid
deployment of the most recent successful build to avoid disruptions.

Improved Planning

Advantage: A CI/CD pipeline facilitates organizational adaptability to
changing economic conditions by maintaining an organized surplus of
items and fostering continuous communication with clients.

Efficient Testing and Monitoring
Advantage: Automated testing and continuous monitoring are integral
to a CI/CD pipeline, ensuring that test cases are automated, repeated
cycles are minimized, and applications perform optimally. It provides
the capability to run test suites on each product assembly without
client intervention, emphasizing quality delivery.

Cost-Effectiveness
Advantage: The CI/CD pipeline, likened to an assembly unit’s delivery
pipeline, takes a cost-effective approach to software delivery. With
automated testing at each stage, issues can be fixed early, leading to
improved code quality and a substantial enhancement in overall
Return on Investment (ROI).

Integration of Version Control
Whether you’re working on a big or small project with a team or all by
yourself, it’s crucial to choose the right tools to create great software.
These tools help automate things and make your work easier. It doesn’t
matter if you’re a freelancer doing your own thing, part of a team
spread out in different places, or part of a small web agency – having a
solid system for releasing your work and a version control system is
super important. It keeps everything organized and makes sure things
run smoothly.

After talking about the distinctions between continuous
integration, continuous delivery, and continuous deployment, let’s link
them together: having a version control system is important for a
continuous deployment tool. The great thing is, you can easily connect
DeployBot with your Git repositories, whether they’re hosted on
GitHub, Bitbucket, GitLab, or your server. This makes the whole process
straightforward and seamless. Now, let’s delve into how version
control operates.

Version Control Overview
Whether you’re engaged in website development, coding small scripts,
or overseeing extensive software projects, having a version control
system is invaluable. Also referred to as revision control or source
control, it keeps a record of and manages changes to files and folders.
Importantly, it enables you to trace the history of modifications and
revert to a previous version if necessary. In collaborative
environments, it is essential to resolve editing conflicts among
multiple developers working on the same project.

Without delving too deeply into Git, one notable feature is
branches. The system adeptly handles different versions of files on
separate branches, facilitating collaboration. Creating development
branches allows team members to work on new features without
jeopardizing the stability of the main version. Once tested and
reviewed, merging changes into the master branch is a straightforward
process.

By utilizing hosting platforms like GitHub, Bitbucket, or GitLab,
projects, along with their entire history, are securely backed up online.
In team environments, a VCS is not just a luxury but a necessity,
eliminating the inconveniences of shared folders and the risk of
accidental overwrites. Team members can collaborate on any file, and
the changes can be merged into a common version later.

The most important thing is to keep your code organized and safe.
Every change you make to the code should be securely stored in a
special system called Version Control.

There are a few tools out there, and Git is one of the most popular
ones.
1. Concurrent Versions System (CVS)
2. Distributed workflow
3. Make sure the code stays safe from mistakes or bad intentions

Characteristic of Git
It’s good at handling changes in the code without making things slow.

Everyone working on the code has their copy of the history.
When people make changes, they can prove it’s really them.
The history of changes is like a chain, so if you try to change
something, it shows.

CI/CD Build Tool Implementation
The next thing needed for CI/CD is a Build Tool. This tool manages the
application’s source code and automatically creates the desired
software. The specific steps and the tools used for building software
depend on the technology stack chosen. For example, here are the steps
for building a Java application.
1. Generate.java files from the configuration
2. Source code compilation from .java to .bytecode
3. Test code to bytecode compilation
4. Run unit tests
5. Bundle .class files into a JAR archive
6. If required, save the JAR in an Artifact Repository Manager
7. If necessary, label the code appropriately in the Version Control

System
To set up the sequence of actions in our example, various build

tools can be utilized, such as Ant, the cross-platform XML-based
predecessor to all Java build tools, and Maven, a widely used
declarative XML-based tool leaning toward convention over
configuration.

Cloud-Agnostic in CI/CD Pipeline
In the realm of cloud-based CI/CD setups, we can distinguish between
two main types:

Public Managed Cloud CI/CD Suites: These solutions come pre-
packaged with a ready-to-use CI/CD pipeline. Users are spared the
intricacies of configuring or managing any software or
infrastructure. Examples of such platforms include GitLab SaaS and
Azure Pipelines.
On-Prem Cloud CI/CD Installations: Alternatively, users have the
option to install CI/CD software on cloud server instances, such as
those offered by AWS EC2 or Azure Virtual Machines. While this
approach eliminates the need to manage host infrastructure, users
are still responsible for tasks like installation, configuration, and
ongoing management of the CI/CD software.

Irrespective of the cloud type CI/CD has the following advantages:
Easy Setup: The setup process is expedited and simplified,
especially with fully managed CI/CD suites that eliminate the need to
prepare host servers.
Reliability: Cloud-based servers typically experience less downtime
compared to on-premises infrastructure, enhancing the overall
reliability of a cloud-based CI/CD platform.
Scalability: Scaling up the CI/CD pipeline, especially when
expanding to build additional applications, is more straightforward
in the cloud. This involves deploying additional infrastructure, a task
that proves more challenging on-premises due to the acquisition and
configuration of physical infrastructure.
Deployment: Running the CI/CD suite and hosting applications in
the same cloud environment streamlines the deployment of new
application releases. Unlike on-premises suites, there’s no need to
upload the application to the cloud before deployment, resulting in
time savings and efficiency.

CI/CD Pipeline Using Jenkins
I’ll show you how to make a simple CI/CD pipeline using Jenkins. But
before we start, it’s important to check that Jenkins is set up right with
all the dependencies. Also, it helps if you have a basic idea of how
Jenkins works. For our example, we’re using Jenkins on a Mac
environment. So, let’s get started and go through the steps together.
Grab the installers or step.

If you aim to start using Jenkins, check the Installing Jenkins section
for instructions on how to install Jenkins on the platform of your
choice.

Step 1
Sign into Jenkins and select “New Item”

Step 2
Choose the “Pipeline” option from the menu, give a name to the

pipeline, and click “Ok.”

https://www.jenkins.io/doc/book/installing

Step 3
Go to the pipeline configuration screen for setting up the pipeline.

Here, you can set build triggers and customize different options. The
essential aspect is the “Pipeline Definition” section, where you can
define the stages of the pipeline. It’s important to mention that Pipeline
supports both declarative and scripted syntaxes and uses the following
sample script.

pipeline {
 agent any
 stages {
 stage('Cloud-Native DevOps: Building
Scalable and Reliable Applications') {
 steps {
 echo 'Cloud-Native DevOps:
Building Scalable and Reliable Applications'
 }
 }
 }
}

Once the script is configured select “Apply” and “Save.”
Step 4
To execute the pipeline, select “Build Now.” This will lead to the

execution of the pipeline stages, and you’ll see the outcome in the
“Stage View” section. We have configured only one stage in this
instance, as shown here.

We can ensure that the pipeline ran successfully by examining the
console output detailing the build process.

Step 5
Let’s enhance the pipeline by incorporating two additional stages.

To do this, select the “Configure” option and modify the pipeline
definition as per the following code block.

pipeline {
 agent any
 stages {
 stage('First execution #1') {
 steps {
 echo ' Cloud-Native DevOps:
Building Scalable and Reliable Applications '
 sleep 10

 echo 'This is the First execution
block'
 }
 }
 stage('Second execution #2') {
 steps {
 echo 'This is the second execution
block'
 }
 }

 }
}

After saving the changes, trigger the build by selecting “Build Now”
to run the updated pipeline. When it finishes successfully, check the
console output.

Security in CI/CD
Typically, the key stages of a CI/CD pipeline don’t prioritize security.
Development teams often build, test, and deploy applications without
ensuring security at each step of the CI/CD process. However,
neglecting to include security in the CI/CD process exposes you to
various risks. Your application might inherently lack security, or you
might end up spending time fixing security issues later in the software

development life cycle (SDLC). Security should be seamlessly woven
into the software delivery workflow, not treated as a separate process.

A growing trend in DevOps that tackles this issue and streamlines
the detection and resolution of security issues is DevSecOps. This
approach integrates security into the core of DevOps, fostering
collaboration among developers, engineers, and security teams.
Integrating security into the CI/CD pipeline typically involves including
protective measures and security checks at each stage of the pipeline.

Threats in CI/CD
1. Misconfiguration

Part of managing misconfiguration involves regularly auditing
configurations and following best practices for secure system
configurations. Automated configuration management tools can
help enforce consistent security settings across the CI/CD
pipeline components.

2. Poor Credential Management
Effective credential management practices, such as regularly
rotating credentials and securely storing secrets, can be
automated using credential management tools and solutions.
Additionally, implementing role-based access controls (RBAC) can
automate access permissions based on predefined roles.

3. Exploit of Dependency
Automated dependency scanning tools can help identify
vulnerabilities in code dependencies, and integration with the
CI/CD pipeline can automatically trigger alerts or remediation
actions. Continuous monitoring of dependency repositories can
also help detect and block suspicious or malicious packages.

4. Poisoned Pipeline Execution (PPE)
Implementing automated code review processes as part of the
CI/CD pipeline can help detect and prevent malicious code
injections. Automated pipeline validation checks can also ensure
that pipeline configurations adhere to security policies and
standards.

5. Poor Identity and Access Management (IAM)
IAM solutions with automated provisioning and de-provisioning
capabilities can streamline user access management across the
CI/CD pipeline. Additionally, integrating IAM solutions with
identity governance tools can automate identity life-cycle
management and access reviews.

6. Third-Party Service Consumption
Automated third-party risk assessment tools can help evaluate
the security posture of third-party services accessing the CI/CD
pipeline. Integration with identity and access management
solutions can automate access controls and permissions for
third-party services.

7. Weak Artifact Validation
Automated artifact validation tools can verify the integrity and
authenticity of artifacts before they are deployed in the CI/CD
pipeline. Integration with artifact repositories and CI/CD
platforms can automate artifact scanning and validation
processes.

8. Lack of Adequate Visibility and Logging
Automated logging and monitoring solutions can capture and
analyze logs from various CI/CD pipeline components in real-
time. Integration with security information and event
management (SIEM) systems can automate threat detection and
response workflows based on predefined security policies.

9. Weak Pipeline-Based Access Controls (PBAC)
Automation of access control policies and permissions
management can ensure consistent enforcement of access
controls across the CI/CD pipeline. Role-based access control
(RBAC) solutions can automate access provisioning and
authorization based on predefined roles and responsibilities.

10. Lack of Effective Flow Control Mechanism
Implementing automated approval workflows and gatekeeping
mechanisms can enforce flow control in the CI/CD pipeline.

Integration with version control systems and issue-tracking tools
can automate code review and approval processes based on
predefined criteria.

Automated Tools for Securing CI/CD Pipeline
Static Application Security Testing (SAST)
Static Application Security Testing (SAST) is a way of testing that looks
at the actual source code and binaries of your software to find potential
security problems. It’s like a white-box test because it needs access to
your source code, aiming to make your application more secure.

Usually, you use special SAST software that scans and analyzes your
code. After the scan is done, you get a detailed report showing the
security issues in your application and the specific lines of code that
need fixing. Using SAST on your project helps make your application
less vulnerable. However, there are some downsides to consider. Let’s
explore the pros and cons of SAST. Although SAST tools have a
reputation for generating numerous alerts for minor software flaws
and unexploitable defects, as well as for identifying only specific types
of bugs, they remain vital in any secure development life cycle.
Integration into the development environment helps prevent
developers from making critical security errors, guiding them to avoid
similar mistakes in the future.

To incorporate automated code checking into the development
cycle, it’s essential to consider how well a SAST tool integrates with the
company’s existing development environments. Most tools support
major web languages like Java and .Net, and they should seamlessly
plug into common integrated development environments (IDEs).

While modern application security testing tools are becoming more
comprehensive, they still require developers and security
professionals to identify false positives. Striking a balance between the
depth of testing and the need to avoid excessive false positives is
crucial, especially for companies following Agile or DevOps models. The
efficiency of static analysis tools in daily development may be
impacted by the time it takes to run and the effort required to weed out
false positives.

Limitations

1. Unable to identify issues during runtime
2. Not effective in monitoring problems related to user input
3. Faces challenges with libraries and frameworks commonly used in

modern applications
4. Needs access to the source code
Dynamic Application Security Testing (DAST)
DAST, also known as Black Box Testing, involves scanning the security
of an application while it is actively running. DAST tools conduct
automated scans, mimicking different attacks to identify
vulnerabilities and areas for enhancement.

The decision to prioritize static or dynamic analysis tools depends
on the context of your organization. Static analysis tools provide
developers with feedback and education simultaneously, while
dynamic analysis tools offer a quick win for security teams by promptly
identifying exploitable vulnerabilities.

In most scenarios, it is advisable to utilize both types of tools. Static
and dynamic analysis tools integrate into different stages of the
development process. Run static tools as frequently as practical,
providing feedback directly to developers. This approach enables
managers and the security team to monitor the progress of developers
in resolving issues. On the other hand, dynamic analysis tools (DAST)
should be employed less frequently and typically by dedicated security
and quality assurance professionals. Even in Agile and DevOps
development approaches, DAST can be beneficial. Dynamic scanning is
applied after obtaining a runtime version of the software, often
conducted by QA teams. In a Scrum team, a designated QA team within
each sprint may handle dynamic scanning, distinct from the
developers.

Using dynamic analysis to identify assets is a crucial step. Before
implementing a DAST process, ensure you are aware of the
applications running on your network. Integrating network scanning
into the DAST process helps security teams discover unknown and

rogue applications, enhancing visibility. Understanding the status of
software security involves determining the number of web
applications in operation, addressing a common issue where
companies may lack awareness of all their running applications. This
awareness is vital to prevent vulnerabilities in undiscovered websites
from leading to potential compromises in the future.

Limitations
1. Demands a functional application for testing
2. Requires specialized testing infrastructure and customizations
3. Typically conducted in the later stages of the software

development cycle, often due to performance issues
4. Does not encompass all code paths
Interactive Application Security Testing (IAST)
IAST tools combine the best of SAST and DAST approaches, overcoming
their limitations with a new approach known as interactive application
security testing (IAST), or “glass-box.” They work dynamically while
the application is running, scanning the code like SAST, and are
especially useful during the quality testing stage alongside functional
testing.

Limitations
1. Tools are typically proprietary, leading to a reliance on support

from specific suppliers.
2. Unlike SAST, IAST does not examine each line of code.
3. There is limited support for various languages and technologies.
Securing a CI/CD Pipeline: Recommended
Approaches

1. Threat Modeling
In the CI/CD process within a DevSecOps cycle, threat modeling
plays a crucial role. It involves identifying potential threats,
security issues, and vulnerabilities, and then devising techniques
or countermeasures to prevent, address, and mitigate them. The
threat modeling process typically consists of six steps.

Identifying assets and dependencies
Implementing security controls
Identifying threats
Analyzing attack surface and attack vectors
Establishing security goals
Validating and mitigating threats

2. Network Security
Securing your network is as crucial as fortifying the security of
your CI/CD pipeline. If your network lacks security or harbors any
risks, all the efforts invested in CI/CD security will be rendered
ineffective. Network security encompasses a range of aspects such
as firewall protection, network isolation, VPN, email security, Data
Loss Prevention (DLP), sandboxing, Intrusion Detection System
(IDS), Intrusion Prevention System (IPS), and more.

3. Secure Authentication
Authentication is the process of confirming the identity of a user,
device, or application. Similar to an intruder attempting to exploit
the entrance to your home, a weak authentication process can be
easily circumvented by malicious attackers. Common attack
methods include brute force attacks, dictionary attacks, password
spraying, and credential stuffing, all favored by attackers.

Access control is a security approach that determines who is
granted access and to what extent. Despite being integral, Broken
Access Control and Authentication Failure are often overlooked, as
indicated by their inclusion in the OWASP Top 10 list. Through
access control, one can manage access privileges for users,
processes, and applications. Granting elevated privileges to
unnecessary resources creates a significant vulnerability, allowing

attackers to compromise all data and systems by bypassing the
authentication of a low-level user/API with high access privileges.

Methods like multi-factor authentication (MFA), stringent
credential policies, approval-based access privileges, need-to-
know restrictions, and application vulnerability scanning
significantly contribute to maintaining robust security.

4. Logging
Logging is a vital practice that involves maintaining records of
events, issues, access, and other activities in your system. This not
only aids in the retrospective process but also enables the analysis
of logs to pinpoint the cause of any issue and promptly seek
resolution. In the event of security breaches, log analysis allows the
security team to identify and understand all user, authentication,
and access control activities.

5. Auditing
Security auditing, when conducted, can yield advantages as it
allows security engineers to examine and reflect on all security-
related issues and events. This includes analyzing the root causes,
understanding how the issues were mitigated, and determining the
necessary steps to prevent similar incidents in the future.

6. Monitoring
A component of observability, monitoring plays a crucial role in
upholding the security of your CI/CD pipeline. Critical areas for
monitoring encompass system resources, network traffic,
application health, individual components/tools, and application
delivery status.

7. Remediation
In the event of a security breach in your CI/CD pipeline, have a set
plan. Maintain Security and Incident Response SOPs (Standard
Operating Procedures) for a swift and organized response.
Prioritize actions such as temporarily revoking admin-level access,
continuous log tracing, using IDS, and virtually isolating systems
for analysis. Integrate remediation actions into SOPs for future
prevention and safeguarding systems.

8. Observability
Observability involves utilizing metrics to assess the system’s
health and analyze the root causes of issues, whereas monitoring
captures and presents data in a visualized format. Essentially,
monitoring reveals what is wrong with a system, while
observability goes further to explain why something is wrong.

Summary
This chapter focuses on “CI/CD Pipeline in Cloud-Native DevOps”
which is distinctly focused on elucidating the fundamental principles
governing Continuous Integration (CI) and Continuous
Delivery/Deployment (CD) within the context of cloud-native
applications. It delves into the intricacies of the various stages
encompassed by the CI/CD pipeline, offering readers a thorough
comprehension of the core concepts essential for efficient software
delivery. Notably, the chapter places a significant emphasis on the
integration of version control, particularly leveraging Git and platforms
like GitHub. It explores collaborative strategies such as branching, pull
requests, and code review processes, underscoring their importance in
the software development life cycle.

A key highlight of this chapter is the dedicated attention to
incorporating cloud agnostics in the CI/CD pipeline. This involves a
nuanced exploration of Cloud-Native architecture, microservices, and
container orchestration technologies, facilitating adaptability across
diverse cloud environments. Importantly, the chapter addresses the
critical aspect of security in the CI/CD pipeline, providing insights into
vulnerability scanning, code analysis, compliance checks, secrets
management, and robust authentication and authorization measures.
The chapter’s distinctive focus on the remediation of security threats
underscores its commitment to equipping practitioners with the
knowledge and practices needed to build secure and resilient CI/CD
pipelines in the dynamic landscape of Cloud-Native DevOps.

(1)

© The Author(s), under exclusive license to APress Media, LLC, part of Springer
Nature 2024
M. I. Ahmed, Cloud-Native DevOps
https://doi.org/10.1007/979-8-8688-0407-6_5

5. Open-Source Tools for Cloud-Native
DevOps
Mohammed Ilyas Ahmed1

Boston, MA, USA

“Open-Source Tools: The jesters of Cloud-Native DevOps!”

In this chapter on we delve into the essential components that
streamline and enhance the software development life cycle in cloud-
native environments. The chapter begins with an exploration of the
foundational principles of Cloud-Native DevOps, emphasizing the
critical role of automation in achieving efficiency and scalability. The
spotlight then turns to specific open-source tools that have gained
prominence in this domain. Argo, a powerful workflow management
tool, takes center stage, demonstrating its capabilities in streamlining
complex processes. Kubeflow Pipelines is introduced as a dedicated
solution for enhancing data flow in machine learning workflows,
providing insights into its features and integration capabilities.
Additionally, the chapter explores other orchestration tools, comparing
their strengths and use cases to help readers make informed decisions
based on their specific needs.

Building upon the tool-specific discussions, the chapter transitions
into broader considerations for Cloud-Native DevOps tooling. Best
practices are highlighted to guide readers in the selection and
implementation of these tools, ensuring scalability and flexibility
within their DevOps practices. The narrative unfolds with a focus on

https://doi.org/10.1007/979-8-8688-0407-6_5

addressing challenges commonly faced in Cloud-Native DevOps
tooling, providing strategies and solutions to overcome obstacles.
Real-world case studies exemplify successful implementations,
offering practical insights into the application of these tools in various
scenarios. As the chapter concludes, it takes a forward-looking
approach by examining emerging trends in Cloud-Native DevOps tools,
offering predictions on the future evolution of DevOps practices in
cloud-native environments. The importance of continuous adaptation
and improvement in tooling practices is emphasized, paving the way
for readers to stay ahead in the dynamic landscape of Cloud-Native
DevOps.

In this chapter, we will be encompassing the following topics:
Overview of Open-Source Tools in Cloud Native
Argo Streamlining Workflows
Kubeflow Pipelines
Future Trends in Cloud-Native DevOps Tools

Overview of Open-Source Tools in Cloud Native
By now, you’re likely familiar with the term “cloud native.” When the
term is mentioned, does your mind immediately associate it with
“Kubernetes” as if it’s the superstar of the cloud realm? You’re not alone
in this perception! While Kubernetes rightfully holds the spotlight, it’s
essential to recognize that in the expansive cloud-native domain,
additional players are contributing to the ensemble – it’s not a one-
person show! Let’s take a moment to acknowledge the other projects
harmonizing within the CNCF landscape, collectively creating a
symphony of technological brilliance in the cloud-native space!

The cloud-native landscape comprises a variety of tools, services,
and platforms shaping the present cloud-native ecosystem. The
current list includes numerous well-known DevOps tools, categorized
according to their functionality and their position within the cloud-
native stack layers. Instead of listing every individual tool, the
following sections will delve into each category, offering insights into
some of the most widely used tools in each.

1. Observability and Analysis
These tools focus on providing insights into the performance,
health, and behavior of applications and infrastructure within a
cloud-native environment. They collect, store, and analyze various
types of data, such as metrics, logs, and traces, to help developers
and operators understand system behavior and diagnose issues.
Kubernetes
Kubernetes is a container orchestration platform that automates
the deployment, scaling, and management of containerized
applications. It allows developers to abstract away the
underlying infrastructure and focus on building and running
applications. For example, a company running a microservices
architecture can use Kubernetes to deploy and scale their
services across multiple cloud environments, ensuring high
availability and resilience.
Jaeger
Imagine a large ecommerce platform consisting of multiple
microservices handling various functions like authentication,
product catalog, payment processing, and order fulfillment. With
Jaeger, developers can instrument each microservice to capture
tracing data as requests flow through the system. For example,
when a user places an order, Jaeger traces the request from the
frontend service through the authentication service, product
catalog service, payment service, and finally to the order
fulfillment service. Developers can use Jaeger’s web-based
interface to visualize these traces, identifying any bottlenecks or
latency issues along the way. For instance, they might discover
that the payment service is experiencing high response times,
leading to delayed order processing. By pinpointing the root
cause of the issue, developers can then optimize the payment
service to improve overall system performance and enhance
user experience.
Prometheus
Prometheus is a monitoring and alerting tool designed for cloud-
native environments. It collects time-series data metrics from
monitored targets, stores them locally, and enables querying,
visualization, and alerting based on this data. For instance, a

DevOps team can use Prometheus to monitor the CPU and
memory usage of their application containers, set up alerts for
abnormal behavior, and troubleshoot performance issues.

2. Continuous Integration and Continuous Delivery (CI/CD)
Continuous Integration and Continuous Delivery (CI/CD) is a
software development practice that involves frequently integrating
code changes into a shared repository and automatically deploying
those changes to production environments. For example, in a
CI/CD pipeline, whenever a developer pushes code changes to a
repository, automated tests are triggered to ensure the integrity of
the codebase. Once the tests pass, the changes are automatically
deployed to staging or production environments, enabling rapid
and reliable software delivery.
Argo
Argo is a set of tools for running and managing continuous
integration and continuous delivery (CI/CD) pipelines on
Kubernetes. It allows developers to define complex workflows as
code, automate the deployment of applications, and manage the
entire software delivery process. For example, a development
team can use Argo to automate the testing, building, and
deployment of their applications to different environments, such
as staging and production.
Keptn
Keptn is an open-source control plane for continuous delivery
and automated operations. It helps developers automate tasks
like deploying, testing, and scaling applications. For instance,
Keptn can be used to automatically trigger performance tests
whenever a new version of an application is deployed. Moreover,
it supports various use cases including blue-green deployments,
canary releases, and auto-remediation of issues in production
environments. Its flexibility and extensibility make it a powerful
tool for modern DevOps practices, ensuring smooth and efficient
software delivery pipelines.
OpenGitOps
OpenGitOps is a methodology that leverages GitOps principles
and open-source tools to manage infrastructure and application

deployments. It emphasizes using Git repositories as the single
source of truth for declarative infrastructure and application
definitions. For example, with OpenGitOps, Kubernetes
manifests, Terraform configurations, and application code are all
stored in Git repositories, enabling version control,
collaboration, and automated workflows. Tools like Argo CD and
Flux are commonly used in OpenGitOps workflows to automate
the synchronization of Git repositories with the desired state of
the infrastructure and applications running in Kubernetes
clusters. This approach promotes transparency, repeatability,
and scalability in managing cloud-native environments.

3. Policy and Governance
Policy and governance in software development refer to
establishing rules, standards, and procedures to ensure
compliance, security, and efficiency throughout the development
life cycle. For instance, an organization might implement access
control policies to regulate who can access certain resources or
enforce coding standards to maintain code quality. Additionally,
governance frameworks like ITIL or COBIT provide guidelines for
managing IT processes and ensuring alignment with business
objectives. These policies and frameworks help mitigate risks,
promote transparency, and facilitate smoother collaboration
within development teams.
Open Policy Agent (OPA)
OPA is a policy engine that helps organizations enforce policy-as-
code across the cloud-native stack. It provides a unified language
and framework for defining and enforcing policies related to
security, compliance, and governance. For instance, a company
can use OPA to define and enforce access control policies for
their Kubernetes clusters, ensuring that only authorized users
and applications can access sensitive resources.

4. Service Mesh
A service mesh is a dedicated infrastructure layer that facilitates
communication, observability, and security between services in a

microservices architecture. It abstracts communication
complexities away from individual services and provides a
centralized control plane for managing service-to-service
communication within a distributed system.
Envoy
Envoy is a high-performance, open-source proxy designed for
cloud-native applications. It is often used as a data plane proxy
in service mesh architectures like Istio and Kuma. Envoy handles
traffic routing, load balancing, and observability for
microservices, improving reliability and security. For example, a
company deploying microservices can use Envoy to implement
traffic management policies, secure communication between
services, and collect telemetry data for analysis.
Linkerd
Linkerd is a service mesh solution that provides secure, reliable
communication between services in a cloud-native environment.
It includes a control plane for configuration management and a
data plane proxy for handling traffic. Linkerd helps developers
implement features like mutual TLS encryption, traffic splitting,
and distributed tracing. For example, a team building a
distributed application can use Linkerd to ensure that services
communicate securely and reliably, even as the application
scales.

5. Package Management
Package management refers to the process of installing, upgrading,
configuring, and removing software packages on a computer
system. It involves tools and systems for managing dependencies,
versioning, and distribution of software components.
Helm
Helm is a package manager for Kubernetes that simplifies the
process of deploying, managing, and upgrading applications. It
uses charts, which are packages of pre-configured Kubernetes
resources, to define the structure of an application. Helm allows
developers to share and reuse application configurations,
making it easier to deploy complex applications. For example, a
company can use Helm to deploy a WordPress website with a

MySQL database, including all the necessary configurations and
dependencies.

6. Edge Computing
Edge computing is a distributed computing paradigm that brings
computation and data storage closer to the location where it is
needed, that is, the “edge” of the network. Instead of relying solely
on centralized data centers, edge computing utilizes resources
deployed at or near the source of data generation, such as IoT
devices, sensors, or edge servers.
KubeEdge
KubeEdge extends Kubernetes capabilities to edge computing
environments, allowing organizations to manage containerized
workloads at the edge. It addresses the unique challenges of edge
nodes, such as limited resources and intermittent connectivity,
by providing edge computing features like local data processing
and device management. For example, a company deploying IoT
devices can use KubeEdge to run machine learning models
locally, process sensor data in real-time, and synchronize data
with the cloud.
OpenYurt
OpenYurt is an open-source project that extends the capabilities
of Kubernetes to the edge computing environment. It enables the
seamless management of Kubernetes clusters across edge
devices, allowing for consistent deployment and orchestration of
containerized workloads. OpenYurt provides features such as
node management, application life-cycle management, and edge-
specific optimizations, making it ideal for deploying edge
computing applications. For example, it allows Kubernetes
clusters to be deployed on IoT devices, edge servers, or remote
locations, enabling organizations to leverage Kubernetes’
scalability and flexibility at the edge of the network. Its
integration with cloud-native tools and technologies makes it a
powerful solution for edge computing scenarios.

7. Storage Orchestration
Storage orchestration refers to the automated management and
provisioning of storage resources in a computing environment. It
involves coordinating storage resources, such as disks, volumes,
and file systems, to meet the demands of applications and services
efficiently. Storage orchestration aims to optimize storage
utilization, improve performance, ensure data availability, and
simplify management tasks through automation.
Rook
Rook is a storage orchestrator for Kubernetes that automates
the deployment and management of cloud-native storage
solutions. It supports various storage types, including file, block,
and object storage, and provides features like replication,
snapshotting, and encryption. For example, a company can use
Rook to deploy a distributed file system for storing application
data, ensuring high availability and durability.

8. Distributed Databases
Distributed databases are systems that store data across multiple
nodes or servers, allowing for horizontal scalability, fault tolerance,
and high availability. These databases distribute data processing
and storage tasks across multiple nodes in a network, rather than
relying on a single centralized server.
TiKV
TiKV is a distributed key-value store designed for cloud-native
environments. It provides horizontal scalability, strong
consistency, and low-latency access to data, making it suitable
for high-throughput and low-latency applications. For example, a
company building a real-time analytics platform can use TiKV to
store and retrieve large volumes of data quickly and efficiently,
enabling fast data processing and analysis.
SchemaHero
SchemaHero is an open-source tool designed to simplify
database schema management within Kubernetes
environments. It allows developers and operators to define,
version, and automate the deployment of database schemas

using Kubernetes-native resources. For instance, with
SchemaHero, database schemas can be expressed declaratively
as Custom Resource Definitions (CRDs) and managed alongside
other Kubernetes resources in Git repositories. This enables
automated schema changes, seamless integration with CI/CD
pipelines, and consistent database schema deployments across
different environments. SchemaHero supports various
databases such as PostgreSQL, MySQL, and CockroachDB,
making it a valuable tool for DevOps teams embracing
Kubernetes for database management.

Argo Streamlining Workflows
Argo Workflows serves as an open-source, container-native workflow
engine designed to orchestrate CI/CD tasks on Kubernetes. It operates
as a Kubernetes Custom Resource Definition (CRD), allowing
contributors to develop custom API objects, thereby expanding
Kubernetes capabilities in a compliant fashion.

Executing workflows on Kubernetes offers the advantages of
leveraging its diverse features, including application scaling, canary
deployments, and application healing. Kubernetes provides built-in
functionalities like jobs, deployments, and services that facilitate the
deployment and management of containerized applications by cloud
engineers. Additionally, you can enhance its capabilities through
custom resources and controllers.

Nevertheless, managing workflows on Kubernetes without a
dedicated workflow engine, such as Argo Workflows, can become
challenging and may pose scalability issues. Utilizing Argo Workflows
to oversee and execute workflows on Kubernetes offers numerous
benefits.

Getting Started with Argo
Argo Workflows work with a K8s operator – a Kubernetes-native
application – that is deployed in your K8s cluster. This application
extends the native behavior of your cluster by watching Etcd, the
central datastore associated with a cluster, for Argo-specific manifests

– called Custom Resource Definitions – that define the workflow
process to be carried out.

The order of processes being carried out can be controlled in
several ways. For example, steps within the larger workflow can
depend on other steps in the workflow, which means that any
dependencies of a given step will have been completed before a given
step is carried out, or steps can be made to run sequentially, or if the
steps are running independently of each other, they can be made to run
in parallel to speed up the execution of the larger workflow. Argo
Workflows is implemented using Kubernetes custom resource
definitions (CRDs), making it easy to create and manage your
workflows using your existing knowledge of managing Kubernetes
resources. For instance, you can use the kubectl client to get all
workflows, create workflows, and so on. You can also define a workflow
and its dependencies using the YAML format, which is easy to follow.

Running your workflows on Kubernetes means taking advantage of
its various features and benefits, including scaling of applications,
canary deployments, application healing, and much more. While
Kubernetes has plenty of baked-in functionalities (such as jobs,
deployments, and services) that allow cloud engineers to deploy and
manage containerized applications easily, you can also extend its
functionality using custom resources and custom controllers.

Concepts of Argo CD
Application
Within the Argo framework, an application refers to a collection of
Kubernetes resources collaboratively deployed to manage your
workload. Argo stores comprehensive details of these applications
within your cluster as instances of an embedded Custom Resource
Definition (CRD).

Target State
In contrast, the target state signifies the version of the state as
declared by your Git repository. When alterations occur in the
repository, Argo initiates actions to transition the live state into
alignment with the target state.

Argo Controller
The Argo Application Controller constitutes the element installed in
your cluster, adopting the Kubernetes controller pattern to oversee
your applications. Its role involves monitoring the state of your
applications and conducting comparisons with their corresponding
repositories.

Sync
The Sync process involves implementing the changes identified during
a Refresh. Each Sync operation progressively aligns the cluster with the
target state, ensuring the synchronization of the application with the
declared state in the repository.

Live State
The live state represents the current condition of your application
within the cluster, encompassing aspects like the quantity of created
Pods and the specific image they currently run.

Refresh
Refresh takes place when Argo retrieves the target state from your
repository. While it scrutinizes the changes against the live state, it
refrains from immediately applying them during this stage.

Implementation of Argo Workflows Using Custom
Kubernetes Resources

Figure 5-1 Custom kubernetes using Argo workflow

In the given data pipeline scenario, there are three distinct data
sources, each generating different types of data. The first two sources
produce text files, while the third source generates data in PDF format.
The primary objective is to analyze the data obtained from these
sources. However, there is a challenge since the compiler, which is
responsible for combining and processing the data, can only handle
text input.

To address this limitation, an additional step is introduced between
the PDF data source and the compiler. This intermediary step involves
a process that transforms the PDF data into a text (TXT) format,
ensuring compatibility with the compiler.

Following the extraction and transformation steps, the data is
aggregated. Subsequently, two supplementary processes are integrated
into the workflow to further transform the aggregated text data. These
additional processes convert the text data into SQL and NoSQL
formats. This is essential because the systems chosen for data analysis
operate specifically with these formats.

In the context of an Argo Workflow, the entire sequence of
operations is encapsulated into three distinct jobs: “Extract,”

“Transform,” and “Compile.” These jobs are defined within the Argo
Workflow, orchestrating the entire data pipeline and ensuring a
seamless flow from data extraction to final data formats suitable for
analysis.

Implementation of CI/CD Through Argo Workflows
1. Enterprise-Grade Functionality

Argo Workflows includes comprehensive enterprise features like
Role-Based Access Control (RBAC) and Single Sign-On (SSO),
enhancing security and facilitating proper access management
within your workflow environment.

2. Resilience Against Failures
Argo Workflows is adept at handling container crashes and failures,
ensuring the robustness of your workflows even in the face of
unexpected issues.

3. Scalability Options
If your workflow demands scalability, Argo Workflows offers
autoscaling capabilities. It excels in efficiently managing numerous
workflows simultaneously, accommodating varying workloads
seamlessly.

Integration of Argo CD and Kubernetes
1. Begin by visiting GitHub and establishing a fresh repository for

your application. Subsequently, clone this repository to your local
machine, preparing to commit your Kubernetes manifests.

$ git clone
https://github.com/<username>/<repo>.git

2. Generate a YAML file named “deployment.yaml” in the repository
you’ve established.

apiVersion: apps/v1
kind: Deployment

metadata:
 name: nginx-deployment
 namespace: my-namespace
 labels:
 app.kubernetes.io/name: nginx-app
spec:
 replicas: 3
 selector:
 matchLabels:
 app.kubernetes.io/name: nginx-app
 template:
 metadata:
 labels:
 app.kubernetes.io/name: nginx-app
 spec:
 containers:
 - name: nginx-container
 image: nginx:alpine
 ports:
 - name: http
 containerPort: 80

The provided YAML code defines a Kubernetes Deployment for
running multiple replicas of a Nginx container. Let’s break down
the key components:

apiVersion: Specifies the API version for the Kubernetes
resource, in this case, a Deployment under the “apps/v1” API
version.

metadata: Contains metadata about the Deployment.
kind: Indicates the type of Kubernetes resource, which is a

Deployment.
name: Sets the name of the Deployment to “nginx-

deployment.”
namespace: Specifies the namespace as “my-namespace.”
labels: Assigns labels to the Deployment for identification,

with the label “app.kubernetes.io/name: nginx-app.”
spec: Describes the desired state of the Deployment.
replicas: Specifies the desired number of replicas, set to 3 in

this case.

selector: Defines a label selector to match with Pods
controlled by this Deployment.

template: Describes the Pod template.
metadata: Specifies labels for Pods created from this

template.
spec: Defines the specification of the Pod.
containers: Specifies the containers within the Pod.
name: Sets the name of the container to “nginx-container.”
image: Specifies the Docker image to use, in this case,

“nginx:alpine.”
ports: Configures the container ports, exposing port 80 for

HTTP traffic.
In summary, this YAML defines a Deployment named “nginx-

deployment” that manages three replicas of an Nginx container,
each running in the “argo-demo” namespace. The container uses
the “nginx:alpine” image and exposes port 80 for incoming HTTP
traffic.

3. Create a YAML file named “service.yaml” to configure a load-
balanced service for exposing the deployment.

apiVersion: v1
kind: Service
metadata:
 name: nginx-deployment
 namespace: my-namespace
spec:
 type: ClusterIP
 selector:
 app.kubernetes.io/name: nginx-app
 ports:
 - protocol: TCP
 port: 8080
 targetPort: http

4. Include the manifest in the application namespace.

apiVersion: v1
kind: Namespace
metadata:
 name: my-namespace

5. Commit your changes and push them to git.

$ git add
$ git commit -m "Initialized repository with
Kubernetes YAML files”
$ git push origin master

6. Start deploying your application by installing Argo.
7. Get the latest Argo CLI from GitHub and proceed with the

following steps.

$ wget https://github.com/argoproj/argo-
workflows/releases/download/v3.5.4/argo-linux-
amd64.gz

8. Once the preceding tasks are completed, the subsequent action
involves modifying the file permissions to enable its execution as
a program. This adjustment facilitates the direct execution of
Argo commands from the command line, providing you with the
necessary functionality.

$ chmod +x argocd-linux-amd64

9. The next step is to transfer this file from the current directory to
the /usr/local/bin directory. This enables you to run the “argo”
command seamlessly from any location within the terminal.

$ mv argocd-linux-amd64 /usr/local/bin/argocd

https://github.com/argoproj/argo-cd/releases

10. To confirm the successful installation of Argo Workflows, execute
the following command.

$ argo version
argo: v3.5.4
 BuildDate: 2024-01-14T06:08:41Z

11. The command-line interface (CLI) is also available in Homebrew’s
package list. Utilize the brew install command to install argocd on
your system.

$ brew install argocd

12. Proceed to install Argo within your Kubernetes cluster. This
installation will incorporate the Argo CD API, controller, and
Custom Resource Definitions (CRDs).

$ kubectl create namespace argocd

13. Employ Kubectl to apply the YAML manifest of Argo CD to your
cluster. Before application, you have the option to examine the
manifest to identify the resources that will be generated.

$ kubectl apply -n argocd -f <path to manifest
install.yml>

Note Argo’s components may take a few seconds to be fully
operational in your cluster. Monitor the progress by using Kubectl to
list deployments in the argocd namespace.

14. Retrieve information about Deployments in the “argocd”
namespace of your Kubernetes cluster. It lists the Deployments
along with details such as the number of replicas, the number of
pods running, and the desired state. This command helps you

monitor the status and progress of deployments managed by
Argo CD within the specified namespace.

$ kubectl get deployments -n argocd

15. Set up a port-forwarding connection in your Kubernetes
environment. It forwards local port 8080 to the remote port 443
of the service named “argocd-server” in the “argocd” namespace.
After running this command, you can access the Argo CD UI locally
by opening a web browser and navigating to
https://localhost:8080. This is a common approach to access
services running in a Kubernetes cluster from your local machine
during development or troubleshooting.

$ kubectl port-forward svc/argocd-server -n
argocd 8080:443

Before signing in, it’s necessary to acquire the password for the
default admin user, which is automatically generated during the
Argo installation process.

$ argocd admin initial-password -n argocd

To access the Argo CLI, execute the following command.

$ argocd login localhost:8080

Kubeflow Pipelines
Remember the last quarter when we practically turned our office into a
night owl’s paradise trying to launch that recommendation model, and,
well, missed the deadline? Good times, right? But fear not! Now we
have Kubeflow on our side – the superhero for data nerds like us. It’s
like the ultimate team player, making data engineering, data science,
and business analysis feel like one big happy family. Building,
deploying, and monitoring an ML model has never been this much fun.

Bonus: No need to learn a new language or sacrifice our old code –
Kubeflow’s got it covered, making us look good and saving the day.

In the world of Machine Learning, it’s like teaching computers to
learn and improve by themselves, without telling them exactly how.
Machine Learning is everywhere, made up of different parts. When we
create models, we sometimes forget about the technical side needed
for both training and using them. That’s where Kubeflow comes in.

Machine learning engineers often struggle with keeping these
systems in good shape. It’s tough to handle everything from how the
apps work to what kind of resources they need. For example, the part
where we teach the computer (training) needs a lot of resources, but
when it’s making decisions (inference), it needs to be quick and not use
up too much. So, we need special tools and plans to handle all this. The
usual solutions that work for other apps just don’t quite fit machine
learning.

This is where Kubeflow comes in. It’s like a toolset that aims to
make it easy for businesses to use machine learning, not just when
they’re making the apps but throughout the whole life of those apps.

Kubeflow Overview
Kubeflow, an open-source platform constructed on Kubernetes, strives
to streamline the creation and deployment of machine learning
systems. Officially labeled as the ML toolkit for Kubernetes, Kubeflow
encompasses diverse components catering to different stages of the
machine learning development process. These elements encompass
environments for notebook development, hyperparameter tuning,
feature management, model serving, and, notably, machine learning
pipelines.

Problem Identification
The initial step, as the name implies, entails identifying the problem
that the ML system aims to solve. Discuss model tradeoffs and consider
how outputs from the model will be utilized.

Source, Prepare, and Analyze Data

Define the ground truth for the model. Validate data quality and label
the data.

Model Exploration
Start by establishing a baseline performance for your tasks. Begin with
a simple model using the initial data pipeline and explore various
orthogonal ideas through experiments. Find and modify state-of-the-
art models, attempting to set up a benchmark on your dataset.
Kubeflow Notebooks are designed for quick experimentation without
the hassle of managing scaling.

Model Refinement
Perform model-specific optimizations, such as finding the right set of
hyperparameters. Consider targeted data collection or debugging
models, potentially requiring iterations on previous steps. Katib
facilitates hyperparameter tuning and neural architecture search.

Training the Model
Train the machine learning model for a more extended period,
preparing it for production. Leveraging training operators in Kubeflow,
supporting a variety of frameworks. Evaluate the model on the test
distribution to understand differences between train and test set
distributions.

Deploy the Model
Deploy the model, involving serving it over a REST API, maintaining
model versions, and handling tasks like model rollbacks, canary
deployments, batch prediction, and scaling. Utilize KServe or Kubeflow
pipelines for orchestrating various ways of serving models, including
TensorFlow Extended, TorchServe, TensorRT, and more.

Maintenance
Beyond the “Deploy” step, ongoing tasks include monitoring live data
and model prediction distributions. Monitor for data and concept
drifts, using the data to determine whether retraining is necessary or
specific changes are required. Incorporate TensorBoard through
Kubeflow for effective monitoring in this crucial stage of the ML
workflow.

Figure 5-2 Kubeflow principle

Katib
It is utilized to implement Automated Machine Learning, offering a
web UI for interaction and incorporating Neural Architecture Search
(NAS) to enhance predictive accuracy and model performance.
ML Frameworks
This encompasses a variety of frameworks, including Chainer
(deprecated), MPI, MXNet, PyTorch, and TensorFlow, providing
flexibility in machine learning approaches.
Feature Store (Feast)
It ensures feature sharing and reuse, maintains point-in-time
correctness, upholds data quality and validation, and serves features
at scale.
Pipelines
A solution for end-to-end orchestration, simplifying
experimentations and enhancing reusability.
Metadata

It aids in organizing workflows by tracking and managing
information about executions, models, datasets, and other artifacts.
Tools for Serving
Two model serving systems, KFServing and Seldon Core, facilitate
multi-framework model serving. Learn more about serving tools
here.
Jupyter Notebooks
Collaborative platforms that support team-based model
development.
Central Dashboard
A user interface for managing Kubeflow pipelines and interacting
with various components.
Fairing
Allows remote execution of training jobs, embedding them in
Notebooks or local Python code, and deploying prediction endpoints.

Kubeflow Principles
Kubeflow functions according to fundamental principles that shape its
approach to simplifying machine learning workflows.
1. Composability: Composability refers to the flexibility of selecting

the most suitable components for a project. Often, individuals
entering the field of machine learning focus primarily on the final
model, overlooking the multifaceted nature of the model-building
process. Constructing a model involves various stages, each
composed of distinct building blocks that demand thoughtful
selection. Whether specific requirements dictate the workflow or
different parts of a project necessitate varying versions of
TensorFlow, Kubeflow empowers users to extend Kubernetes’
capabilities. It enables the execution of independent and
configurable steps, integrating machine learning frameworks and
libraries seamlessly.

2. Portability: Portability signifies the ability to execute all facets of a
machine learning project within any environment where Kubeflow
is operational. By managing platform-specific details, Kubeflow
allows developers to concentrate solely on their models. Write the

code once, and Kubeflow takes care of the abstraction, facilitating
deployment on local systems or in the cloud.

3. Scalability: Scalability entails providing projects with access to
additional resources when needed and releasing them when not in
use. Environments may differ in computing resources,
encompassing CPUs, GPUs, and TPUs, and there might be a
necessity to scale across teams and experiments. Kubeflow
capitalizes on Kubernetes’ capabilities, optimizing available
resources and facilitating scalability with minimal manual
intervention.

Kubeflow Pipelines
In Kubeflow, pipelines consist of distinct components, each
representing an individual step within the overall workflow. These
components are executed in isolated Docker containers, allowing them
to have independent sets of dependencies, thereby ensuring
modularity and flexibility.

For each component developed, a dedicated Docker image is
created. This image accepts specific inputs, executes a defined
operation, and exposes designated outputs. Additionally, a separate
Python script, named “pipeline.py,” is crafted to convert these Docker
images into pipeline components and construct the entire pipeline
using these components.

The pipeline involves the creation of four distinct components:
1. Preprocess-data

This component loads the Boston Housing dataset from
sklearn.datasets and divides it into training and test sets.

2. Train-model
Dedicated to training a model for predicting the median value of
homes in Boston, leveraging the Boston Housing dataset.

3. Test-model
This component computes and outputs the mean squared error of
the trained model on the test dataset.

4. Deploy-model
Although not the primary focus of this article, this component
signals its intention to deploy the model. In a practical setting, this
could serve as a generic component for deploying various models
to Quality Assurance or Production environments.

By encapsulating each step in a separate Docker container and
orchestrating them through a well-defined Python script, Kubeflow
ensures modularity, allowing for seamless integration and
customization of machine learning workflows. Several other servers
have to be taken under the Kubeflow model to avoid security posture
and that we see the emergence of IaC tools that are based on the
language models. These language models can be used for the
consistency and saves iteration time to guide the Kubeflow pipeline for
debugging, auditing, and compliance requirements.

Kubeflow in Cloud Native Applications
Kubeflow, embraced as an open-source initiative within the Cloud
Native Computing Foundation (CNCF), assumes a crucial role in
simplifying, scaling, and enhancing the portability of machine learning
(ML) on Kubernetes. Let’s explore practical scenarios to showcase how
Kubeflow positively impacts various facets of the machine learning life
cycle:
1. Streamlining ML Workflows

Scenario: A data science team seeks to streamline the complete
ML workflow, encompassing tasks from data preprocessing to
model training and deployment.

Kubeflow’s Contribution: Kubeflow empowers teams to
construct and manage end-to-end ML pipelines. Leveraging
components such as Jupyter Notebooks and Argo, it facilitates
seamless collaboration, experimentation, and workflow
automation.

2. Enabling Scalable Model Training
Scenario: An organization requires a scalable solution for training
ML models across diverse datasets.

Kubeflow’s Contribution: Kubeflow’s integration with
Kubernetes provides a solution for scalable and distributed model
training. Harnessing the orchestration capabilities of Kubernetes,
Kubeflow efficiently allocates resources for training large models
across clusters.

3. Simplifying Model Deployment and Serving
Scenario: Post-model training, the need arises to deploy models
for real-time predictions or inferences.

Kubeflow’s Contribution: Components like KFServing within
Kubeflow simplify the deployment and serving of ML models. This
ensures a consistent and scalable approach to serving models
across various environments.

4. Facilitating Hyperparameter Tuning and Optimization
Scenario: Optimizing hyperparameters is critical for enhancing
model performance.

Kubeflow’s Contribution: Katib, an integral part of Kubeflow,
streamlines automated hyperparameter tuning. It empowers users
to define search spaces, algorithms, and objectives, automating the
quest for optimal hyperparameters.

5. Promoting Collaboration Across Teams
Scenario: Data engineering, data science, and business analyst
teams seek a unified platform for seamless collaboration.

Kubeflow’s Contribution: Kubeflow serves as a collaborative
hub, bringing diverse teams together. Through features like shared
Jupyter Notebooks and a central dashboard, it fosters collaboration
and knowledge exchange among team members.

6. Supporting Multiple ML Frameworks
Scenario: Development teams work with various ML frameworks
such as TensorFlow, PyTorch, and others.

Kubeflow’s Contribution: Kubeflow’s support for multiple ML
frameworks ensures flexibility. It accommodates the preferences
and expertise of different teams, allowing them to work with the
frameworks they are most comfortable using.

7. Ensuring Reproducibility and Versioning
Scenario: Ensuring the reproducibility of ML experiments and
tracking model versions is crucial for quality control.

Kubeflow’s Contribution: Kubeflow’s metadata tracking
system aids in organizing and versioning ML workflows. It captures
crucial information about executions, models, datasets, and
artifacts, ensuring transparency and reproducibility.

Future Trends in Cloud-Native DevOps Tools
Over the years, successful implementation of DevOps tools has been
shown to enhance new project intake efficiency to a greater extent.
This approach has become the favored project management strategy
for complex software development projects, widely recognized for its
transformative potential in the industry.

Adopting DevOps involves embracing open communication, and
transparency, improving customer experience, enhancing quality, and
meeting project deadlines. These benefits enable organizations to
leverage DevOps for more seamless, continuous communication,
collaboration, and integration between development (Dev) and IT
operations (Ops) teams. The ceaseless transformation, emerging
trends, and best practices within the DevOps space make it an exciting
area to watch both now and in the future. In this blog, let’s explore the
latest DevOps trends shaping the future.

DataOps
DataOps is emerging as a critical trend in cloud-native DevOps,
focusing on streamlining and automating data integration,
management, and analytics processes. DataOps tools automate data
pipelines, enable self-service access to data, and promote collaboration
between data engineers, data scientists, and other stakeholders. These
tools facilitate faster and more reliable delivery of data-driven insights,
enhancing decision-making and driving innovation in cloud-native
environments.

AIOps (Artificial Intelligence for IT Operations)

AIOps leverages artificial intelligence and machine learning techniques
to automate and optimize IT operations processes, including
monitoring, incident management, and performance analysis. In cloud-
native DevOps, AIOps tools provide proactive insights into
infrastructure and application health, detect anomalies and potential
issues, and recommend remediation actions. By leveraging AI-driven
automation, organizations can improve system reliability, reduce
downtime, and enhance the overall efficiency of cloud-native
deployments.

Hyperautomation
Hyperautomation refers to the integration of advanced automation
technologies, such as robotic process automation (RPA), AI, and
machine learning, to automate complex end-to-end business
processes. In cloud-native DevOps, hyperautomation tools orchestrate
and automate the entire software delivery life cycle, from code
development and testing to deployment and monitoring. These tools
enable organizations to achieve greater agility, scalability, and
efficiency by eliminating manual tasks, reducing human errors, and
accelerating time-to-market for cloud-native applications.

Adoption of Cloud-Native Technologies
Cloud-native technologies such as microservices, containerization, and
serverless computing are continuously gaining traction within DevOps
environments. These technologies offer improved scalability, faster
deployment and iteration, and greater flexibility and agility. The
adoption of cloud-native technologies is expected to continue as
organizations aim to improve operational efficiency. Kubernetes and
similar orchestration platforms will play a crucial role in this process,
fostering a consistent, cloud-based environment for managing
containerized infrastructure and applications. This increased adoption
of cloud and development is leading to the new trend of “Multi Cloud.”

Infrastructure as Code (IaC) Management
Infrastructure as Code (IaC) involves managing infrastructure using
the same tools and processes as code. Multi-cloud infrastructure

management refers to the use of multiple cloud computing platforms
within a single organization. Multi-cloud support for IaC allows
organizations to automate the provisioning and management of
infrastructure across multiple cloud platforms. This practice enables
greater consistency and standardization, reduces complexity, and
facilitates workload migration.

Artificial Intelligence (AI) Evolution
Automation and AI are continuously evolving and expected to play a
significant role in advancing DevOps. These technologies streamline
repetitive tasks, boost productivity, and reduce human errors.
Predictive analytics and incident management are areas where AI is
making a difference, analyzing historical performance data and log data
to predict outcomes and identify issues before they occur. Integrating
automation and AI in DevOps enhances process efficiency and
application reliability. However, organizations need to carefully
consider their impact and align them with business goals and values.

Security and Compliance
Security and compliance are critical considerations, and organizations
are expected to prioritize integrating best practices into their
processes and tools. Cloud security, application security, and
compliance with regulations and standards are crucial areas that will
continue to be of utmost importance. This focus on security and
compliance will lead to an increased role for DevSecOps specialists in
DevOps teams.

Collaboration Between DevOps Teams
DevOps aims to enable efficient collaboration between development
and operations teams. Continuous Integration and Delivery (CI/CD),
incident management, and capacity planning are crucial areas where
collaboration between these teams is expected to be vital in the
coming years. Success in DevOps relies heavily on robust collaboration
between development and operations teams.

Fresh Dimension in Quantum Computing

In its early phases, quantum computing presents substantial
possibilities for DevOps and cloud-native structures. The capability to
execute intricate calculations at unparalleled speeds has the potential
to transform different facets of software development and
implementation. For instance, quantum computing can significantly
diminish the time needed for data-intensive activities such as testing
and debugging or enhance the efficiency of resource distribution in
cloud settings.

Adapting to Change
Agility stands as a fundamental element within a thriving cloud-native
DevOps. The essence lies in the capacity to promptly address shifts in
the market, evolving customer demands, and technological progress.
Achieving agility extends beyond technological solutions; it requires
organizational readiness to welcome change and adjust processes
accordingly. This entails a willingness to experiment, glean insights
from setbacks, and consistently enhance operations.

Artificial Intelligence for IT Operations (AIOps)
AIOps, short for Artificial Intelligence for IT Operations, utilizes
machine learning and data science to automate and improve IT
operations. Its applications include automating routine tasks, real-time
issue identification and response, and predictive analytics for
forecasting future problems. The integration of AIOps into DevOps
practices has the potential to significantly enhance efficiency and
response times. By automating mundane tasks, DevOps teams gain
more time to address complex issues. Additionally, real-time issue
identification and response contribute to minimizing downtime and
enhancing the overall end-user experience.

ChatOps
ChatOps is a collaborative model that merges conversation and work
into a unified platform. This model streamlines communication,
automates routine tasks, and enhances transparency. In the realm of
DevOps, ChatOps facilitates the automation of deployment, system
monitoring, and incident response within a chat conversation context.

This approach streamlines workflows, improves communication, and
accelerates operational speed and efficiency.

GitOps
GitOps represents a method for implementing Continuous Deployment
for cloud-native applications, utilizing Git as a singular source of truth
for declarative infrastructure and applications. GitOps enables the
management of infrastructure and deployment of new features and
updates by making changes to a Git repository. This approach offers
various advantages, including heightened productivity, improved audit
trails, and more stable and reliable deployments. As businesses
increasingly adopt cloud-native technologies, GitOps is poised to
become an increasingly prominent trend in the DevOps landscape.

No Operations (NoOps)
NoOps is a concept centered around automating IT operations to the
extent that a dedicated team is unnecessary. Operations are not
eliminated but rather automated and abstracted, enabling developers
to focus on coding rather than managing infrastructure. Implementing
NoOps can substantially boost efficiency, empowering developers to
work without operational hindrances. However, it necessitates a high
level of automation and a cultural shift toward a hands-off approach to
operations. The NoOps trend is anticipated to persist as automation
technologies continue to advance.

Summary
In this insightful chapter, the book navigates through the crucial
elements that optimize the software development life cycle within
cloud-native environments. It begins by establishing the foundational
principles of Cloud-Native DevOps, underscoring the pivotal role of
automation for efficiency and scalability. The focus then shifts to key
open-source tools, with Argo taking the spotlight as a robust workflow
management tool adept at streamlining intricate processes. Kubeflow
Pipelines is introduced as a specialized solution for enhancing data

flow in machine learning workflows, providing a comprehensive
exploration of its features and integration capabilities.

Moving beyond individual tools, the chapter widens its scope to
encompass broader considerations for Cloud-Native DevOps tooling.
Best practices are outlined to assist readers in selecting and
implementing tools, ensuring scalability and flexibility in their DevOps
practices. The narrative addresses common challenges in Cloud-Native
DevOps tooling, offering practical strategies to overcome obstacles.
Real-world case studies showcase successful tool implementations,
providing valuable insights into their application in diverse scenarios.

As the chapter concludes, it adopts a forward-looking stance by
examining emerging trends in Cloud-Native DevOps tools. Predictions
on the future evolution of DevOps practices in cloud-native
environments are presented, emphasizing the continuous need for
adaptation and improvement in tooling practices. The chapter
encompasses a comprehensive exploration of open-source tools,
highlights the capabilities of Argo and Kubeflow Pipelines, offers best
practices for tool selection, addresses challenges, showcases real-
world implementations, and provides a glimpse into the future trends
of Cloud-Native DevOps.

(1)

© The Author(s), under exclusive license to APress Media, LLC, part of Springer
Nature 2024
M. I. Ahmed, Cloud-Native DevOps
https://doi.org/10.1007/979-8-8688-0407-6_6

6. Scalability and Autoscaling Strategies
Mohammed Ilyas Ahmed1

Boston, MA, USA

“Auto-scaling: Why let your applications take a nap when they
could be running marathons”

In this chapter, we will explore the fundamental principles and
advanced strategies for achieving scalability, with a focus on
autoscaling mechanisms. We will begin by examining the core concepts
of scalability, distinguishing between horizontal and vertical scaling
approaches, and discussing the challenges posed by stateless and
stateful services. Understanding these principles will provide a solid
foundation for devising effective scalability strategies.

Autoscaling, a key component of modern cloud-native
architectures, enables applications to automatically adjust their
resource allocation based on workload demands. We will delve into the
nuances of reactive and proactive autoscaling, exploring how triggers,
metrics, and dynamic policies drive autoscaling events.
Implementation of autoscaling mechanisms involves leveraging
container orchestration platforms, cloud provider services, or building
custom solutions tailored to specific requirements. We will discuss the
practical considerations and best practices for implementing and fine-
tuning autoscaling configurations.

Furthermore, we will address the importance of monitoring,
metrics collection, and testing in ensuring the effectiveness and
reliability of autoscaling policies. Balancing performance requirements

https://doi.org/10.1007/979-8-8688-0407-6_6

with cost considerations and mitigating scalability bottlenecks are
essential aspects of optimizing autoscaling strategies.

In this chapter, we will be encompassing the following topics:
Scaling Principles in Cloud-Native Applications
Multi-cloud Strategies
Autoscaling Implementation in AWS
Future Trends in Scalability and Autoscaling

Scaling Principles in Cloud-Native Applications
Cloud-native architecture is a strategic approach to designing and
building systems specifically for cloud environments, like those offered
by providers such as Amazon Web Services (AWS), Microsoft Azure, or
Google Cloud Platform. This approach acknowledges and leverages the
unique capabilities and characteristics of cloud computing, such as on-
demand resource allocation, elasticity, and pay-as-you-go pricing
models.

In contrast, traditional architectures are typically designed for on-
premises or fixed infrastructure setups. These setups often require
significant upfront investment in hardware and software, and they are
typically configured with a fixed capacity to handle peak loads. Scaling
up or down in traditional architectures can be time-consuming and
may require manual intervention.

Cloud-native architecture, however, takes advantage of the dynamic
nature of cloud environments. Instead of relying on fixed
infrastructure, cloud-native systems are designed to be flexible and
scalable. Not only cloud-native systems but also cloud-enabled systems
leverage native Kubernetes services to scale efficiently, ensuring
optimal resource utilization and enhanced performance across diverse
workloads. This approach enables organizations to harness the full
potential of Kubernetes orchestration, whether they are building from
scratch or transitioning existing applications to the cloud. They can
automatically adapt to changing workloads by dynamically
provisioning and de-provisioning resources as needed. This elasticity
enables organizations to optimize resource usage.

Synchronization across cloud regions is often necessary, and not all
cloud services offer these capabilities uniformly. This refers to setting

up an active configuration across cloud regions. Resilience is a central
focus of cloud-native architecture, emphasizing fault tolerance and the
ability to withstand failures. Cloud-native systems are typically
designed as distributed systems, distributing workloads across
various servers or regions. In case of component failure, the system
can seamlessly reroute traffic to healthy instances, thereby reducing
downtime and maintaining uninterrupted availability.

Overall, cloud-native architecture represents a shift in mindset
from traditional, fixed infrastructure approaches to more dynamic,
scalable, and cost-effective solutions tailored specifically for the cloud.
By embracing cloud-native principles and best practices, organizations
can unlock the full potential of cloud computing and drive innovation
and growth in the digital age.

Utilizing Automation in Cloud-Native Architecture
Automation serves as a cornerstone in software systems, gaining even
greater significance within the realm of cloud-native architecture. The
cloud environment presents fertile ground for automation, offering
unparalleled opportunities to streamline and optimize system
management processes. Despite initial setup costs, the long-term
benefits of automation far exceed the investment. Automation not only
reduces manual effort but also enhances the resilience and
performance of cloud-native systems.

A key advantage of automation lies in its ability to expedite critical
processes like system repair, scaling, and deployment. Unlike manual
interventions, automated workflows can promptly respond to dynamic
changes in workload demands, ensuring optimal resource allocation
and system responsiveness. Moreover, automation fosters consistency
and repeatability in system operations, mitigating the risk of human
error and enhancing overall system reliability.

Cloud-native architecture embodies an iterative approach, where
continuous improvement and adaptation are fundamental principles.
As systems evolve and requirements change, automation plays a
pivotal role in enabling agility and scalability. With deeper insights into
system behavior and performance, organizations can identify new
opportunities for automation, allowing for ongoing refinement and
optimization.

Examples
1. Automated scaling in response to fluctuating user demands,

ensuring optimal resource utilization and cost-efficiency.
2. Automated deployment pipelines for deploying new features and

updates seamlessly, reducing deployment errors and downtime.
3. Automated monitoring and alerting systems that detect and

respond to performance issues in real-time, enhancing system
reliability and availability.

4. Automated backup and disaster recovery processes that ensure
data integrity and minimize data loss in the event of system
failures.

Several Key Areas Within Cloud-Native
Architecture Are Ripe for Automation
Infrastructure Provisioning and Management
Infrastructure provisioning and management tools like Google Cloud
Deployment Manager or Terraform enable organizations to automate
the creation and configuration of cloud infrastructure. For example,
Terraform allows developers to define infrastructure as code using a
simple declarative language, which can then be executed to provision
and manage cloud resources. This automation streamlines the
deployment process, facilitating rapid scalability and ensuring
consistency across environments.

Monitoring and Remediation
Automated monitoring and logging solutions, such as Google Cloud
Monitoring or Prometheus, enable organizations to continuously track
system performance and identify potential issues in real-time. For
instance, Google Cloud Monitoring provides comprehensive visibility
into cloud resources, allowing users to set up custom alerts and
notifications for specific metrics. Automated remediation actions, such
as autoscaling or resource resizing, further enhance system resilience

by automatically adjusting resources to meet changing workload
demands.

Continuous Integration/Continuous Delivery
(CI/CD)
CI/CD automation tools like Google Cloud Build, Jenkins, and Spinnaker
automate the build, testing, and deployment processes, enabling
organizations to deliver software updates and enhancements
seamlessly. For example, Google Cloud Build automatically builds and
tests code changes in a CI pipeline, while Jenkins provides extensive
plugin support for automating various stages of the software delivery
life cycle. Spinnaker, on the other hand, offers advanced deployment
strategies and canary analysis for safely rolling out changes to
production environments.

Dynamic Scaling
Automated scaling mechanisms, such as Google Cloud Autoscaler or
Kubernetes Horizontal Pod Autoscaler, dynamically adjust system
resources based on fluctuating workload demands. For instance,
Google Cloud Autoscaler automatically adds or removes virtual
machine instances based on CPU utilization, ensuring optimal resource
utilization and cost-efficiency. By leveraging automation across these
critical areas, organizations can realize the full benefits of cloud-native
architecture, enabling them to remain agile, resilient, and cost-
effective in today’s dynamic business environment.
1. Strategic Management

Effectively managing various types of data, including user-specific
details like shopping cart contents or employee records, as well as
system-wide information such as active job instances or deployed
software versions, is crucial for building distributed, cloud-native
architectures. Therefore, it becomes imperative to meticulously
design systems with a keen eye on how and when to handle this
data, aiming to minimize reliance on stateful components
whenever feasible.

One approach to achieving this is by leveraging stateless
microservices architecture, where each service manages its own

data and communicates with other services via APIs. For instance,
the ecommerce platform may use a stateless user service to handle
user-specific data and a separate inventory service to manage
system-wide inventory information. By decoupling data
management from individual services, the architecture becomes
more resilient and adaptable to changes. Additionally, adopting
cloud-native technologies like serverless computing and managed
databases can further enhance data management capabilities. For
example, using a serverless function to process user orders or
employing a managed database service like Amazon DynamoDB for
storing user profiles can reduce the complexity of data
management tasks and improve scalability. Overall, by carefully
considering how and when to handle different types of data and
leveraging cloud-native technologies, organizations can design
robust and adaptable architectures that enable seamless
scalability, fault tolerance, and efficient resource utilization in
dynamic cloud environments.
1. Scalability stateless components facilitate seamless scalability

by allowing additional instances to be added as demand
increases. Conversely, scaling down involves gracefully
terminating instances once their current tasks are completed.

2. Fault tolerance repairing a failed instance of a stateless
component is straightforward; it can be gracefully terminated
and promptly replaced with a new instance.

3. Rollback capability in the event of a faulty deployment,
reverting to a previous version is simplified with stateless
components. Terminating them and launching instances of the
previous version is a straightforward process.

4. Load balancing stateless components streamline load
balancing, as any instance can handle any request. Conversely,
load balancing across stateful components is more intricate, as
each instance typically holds the user’s session state, requiring
it to manage all requests from that user.

By prioritizing statelessness in component design,
organizations can achieve enhanced scalability, fault tolerance,
rollback flexibility, and load-balancing efficiency within their cloud-
native architectures. This strategic approach ensures systems are
well-equipped to meet the demands of dynamic cloud
environments.

2. Defense in Depth
In traditional architecture, a significant reliance is placed on
perimeter security, where a fortified network boundary separates
trusted internal components from potentially harmful external
entities. However, this conventional approach is susceptible to
both insider threats and external attacks, like sophisticated
phishing attempts. Moreover, with the growing demand for remote
and mobile work options, the concept of a rigid network perimeter
is becoming increasingly outdated.

On the contrary, cloud-native architectures, originating from
Internet-facing services, inherently face external threats head-on.
Consequently, they adopt a defense-in-depth strategy, which
emphasizes authentication between components and reduces the
level of trust even among internal elements. This approach
effectively eliminates the binary distinction of “inside” and
“outside” within the architecture, recognizing that threats can
originate from within the system as well.

Moreover, cloud-native architectures extend this concept
beyond simple authentication, incorporating additional measures
such as rate limiting and protection against script injections. Each
component within the architecture is engineered to protect itself
from potential threats posed by other components. This not only
bolsters the resilience of the architecture but also simplifies
deployment in cloud environments, where the absence of a trusted
network infrastructure between services and users is common.

3. Managed Services
In the expansive landscape of cloud computing, the array of
services available goes well beyond basic infrastructure
provisioning. Leading cloud providers offer a wide range of
managed services, each providing comprehensive functionalities

to ease the complexities of backend software and infrastructure
management. While the benefits of these managed services are
undeniable, some organizations approach them cautiously, wary of
potential vendor lock-in. However, it’s crucial to understand that
leveraging managed services often leads to significant reductions
in time and operational overhead, making them a compelling
option for many businesses.

The decision to adopt managed services involves a delicate
balance between portability and operational efficiency, taking into
account both financial considerations and skill-related factors.
Generally, managed services can be categorized into three primary
groups:

These services, exemplified by offerings like Cloud SQL or Cloud
Bigtable, present minimal risk and straightforwardly offer the
benefits of managed solutions.
Although not inherently compatible with open-source or lacking
direct open-source alternatives, services such as BigQuery are so
user-friendly that their operational benefits outweigh potential
risks.
Other services: These are the more challenging cases where
migration may prove difficult, and the operational advantages
are less apparent. Each scenario requires a thorough
assessment, considering factors like the service’s strategic
significance, the operational overhead associated with self-
management, and the effort required for migration.

The potential risks associated with migration seldom outweigh
the significant savings in time, effort, and operational risks
achieved by having the cloud provider manage the service at scale
on behalf of the organization. Therefore, embracing managed
services can often lead to enhanced efficiency and agility in cloud
environments.

4. Polyglot Architecting
An essential hallmark of a cloud-native system is its perpetual
evolution, a characteristic that extends to its architecture. As a
cloud-native architect, your role entails an ongoing pursuit of
refining, simplifying, and enhancing the system’s architecture. This

continuous refinement is necessitated by the ever-changing needs
of the organization, the evolving landscape of IT systems, and the
advancing capabilities of cloud providers.

While this commitment to ongoing improvement undoubtedly
demands consistent investment, the lessons learned from past
experiences are crystal clear: stagnant, inflexible IT systems
quickly become obsolete, hindering an organization’s ability to
adapt to emerging threats and opportunities. In contrast, systems
that are agile, adaptable, and responsive not only thrive but also
pave the way for innovation and growth.

Therefore, the ethos of continuous architecting is essential for
maintaining the vitality and relevance of cloud-native systems. By
embracing change and actively shaping the architecture to align
with evolving requirements and technological advancements,
cloud-native architects ensure that their organizations remain
resilient, competitive, and future-ready in an ever-evolving digital
landscape.

5. Embrace Immutable Components for Enhanced Agility
Achieving a high level of agility and adaptability in your
infrastructure can be facilitated by adopting immutable
components. This typically involves configuring servers or virtual
machines (VMs) in a manner that prevents modifications after
deployment.

Once an immutable server is deployed, there’s no need for
subsequent modifications. Instead, the focus shifts to maintaining
the deployed server in its original state, avoiding any alterations. In
the event of issues, swift and straightforward server replacement
ensures uninterrupted application functionality.

The advantages of employing an immutable infrastructure are
manifold:
1. Consistency and Reliability: Immutable components

contribute to a stable and dependable infrastructure,
simplifying testing procedures.

2. Simplified Deployment: Deploying immutable components is
straightforward and predictable.

3. Versioned and Automated Deployment: Each deployment of
immutable components is versioned and automated,
facilitating environment rollback processes.

4. Mitigation of Configuration Drifts: Immutable infrastructure
helps prevent configuration drifts, snowflake servers, and
errors, thereby enhancing system stability.

5. Seamless Autoscaling: Cloud services seamlessly support
autoscaling with immutable components.

Mutable servers not only escalate costs but also prolong iteration
times, thereby delaying time-to-market. In contrast, immutable
infrastructure fosters agile development, enhancing reliability,
consistency, and efficiency in deployed environments. With immutable
infrastructure, recreating environments within minutes becomes
achievable, further streamlining operations and bolstering resilience.

Multi-cloud Strategies
Developing a multi-cloud strategy is increasingly essential to safeguard
against system failures and avoid dependency on a single cloud
provider. Thus, establishing a robust multi-cloud approach is crucial to
introduce redundancy and bolster resilience, enabling the distribution
of applications across various cloud platforms. To accomplish this
effectively, several key steps should be followed:
Evaluate Cloud Providers
Assess potential cloud providers based on criteria such as
geographical coverage, service offerings, pricing structures,
performance metrics, and reliability. By thoroughly understanding
organizational requirements and conducting comprehensive
evaluations, businesses can identify the optimal mix of cloud
providers for their multi-cloud environment.
Define Deployment Models and SLAs
Establish clear deployment models and define service level
agreements (SLAs) to ensure consistent performance and

availability across multiple cloud providers. This entails specifying
uptime guarantees, response times, data governance policies, and
compliance measures to ensure accountability and regulatory
adherence. It also involves determining how applications and
services will be deployed, managed, and integrated across different
cloud platforms.
Embrace Cloud-Native Architectures
Adopt cloud-native architectures and practices, leveraging
technologies like Docker to encapsulate applications and their
dependencies for seamless deployment and scalability. Additionally,
organizations should utilize container orchestration platforms such
as Kubernetes to automate container deployment, scaling, and
management within a multi-cloud environment.
Implement Modern Integration Approaches
Adopt contemporary integration methodologies like API
management and event-driven architectures to facilitate seamless
communication between diverse cloud services and applications.
Standardizing data formats and protocols promotes interoperability
and simplifies data exchange across various cloud platforms.

By adhering to these guidelines, organizations can establish a
resilient multi-cloud environment that enhances redundancy, improves
system reliability, and ensures seamless interoperability across
diverse cloud platforms.

Reactive and Preemptive Scaling
In our traditional approach, when we need more computational power,
we tend to expand by adding more physical machines to our
infrastructure. This scalability is crucial for accommodating a growing
user base on our platform, ensuring that our services remain
responsive and available even during peak usage periods. By adding
more machines, we can distribute the workload effectively and prevent
system overloads or failures.

However, managing a large number of machines running
continuously presents practical challenges. Firstly, it can be financially
taxing to maintain a significant fleet of machines, especially if they are
not fully utilized at all times. Secondly, there are sustainability concerns

associated with the continuous energy consumption and carbon
footprint of running numerous servers.

Moreover, the demand for computing resources fluctuates
throughout the day. During peak hours, when user activity is high, we
require more computational power to handle the increased workload.
Conversely, during off-peak hours, such as late at night or early
morning, the demand for resources decreases.

To address these challenges, we need to adopt a more dynamic
approach to scaling our infrastructure. Instead of relying solely on
adding more machines, we should implement mechanisms to adjust
the allocation of computing resources based on real-time demand. This
involves dynamically scaling up or down the number of servers or
virtual instances in response to changes in user activity.

By dynamically optimizing our resource allocation, we can achieve
several benefits. Firstly, we can reduce costs by only utilizing the
necessary amount of computing power at any given time, thereby
minimizing unnecessary expenses. Secondly, we can maintain optimal
performance levels by ensuring that our system resources are aligned
with current demand. Finally, we can contribute to sustainability
efforts by reducing energy consumption and minimizing our
environmental impact.

There are two primary methods for scaling machines to meet
changing resource requirements: vertical scaling and horizontal
scaling.

Reactive Scaling
Reactive scaling is a strategy employed to dynamically adjust the
number of machines or servers in a system based on the changing
demands of user traffic. Essentially, it involves continuously
monitoring the usage patterns of a service or application and
automatically scaling the infrastructure up or down to ensure optimal
performance and resource utilization.

In the context provided, the approach involved closely observing
the demand for a service, known as Spaces, while simultaneously
evaluating the number of machines currently active in the system. This
evaluation is typically done by analyzing metrics such as CPU usage,
memory usage, network traffic, and other relevant indicators.

By comparing the demand for the service with the available
resources, the system can make informed decisions about whether to
scale up (add more machines) or scale down (remove or deactivate
machines) to efficiently handle the workload. This dynamic adjustment
helps maintain a balance between resource availability and demand,
ensuring that users experience consistent performance and
responsiveness from the application.

In essence, reactive scaling enables systems to adapt in real-time to
changes in user activity, optimizing resource allocation and overall
system efficiency.

Additionally, most cloud providers bill usage time in hourly
increments, while machines provisioned for reactive scaling were
often used for less than an hour before being deleted. This led to a
significant increase in the number of unique machines provisioned,
resulting in higher cloud costs due to billing for full hours even if the
machine was only utilized for a fraction of that time. In essence, this
billing model led to inefficiencies compared to maintaining a
consistent number of machines.

Preemptive Scaling
As our platform progressed, we recognized the need for a more
efficient approach to enhance performance while mitigating costs. We
aimed to anticipate demand on the platform and ensure that machines
were provisioned before users accessed the platform. To achieve this
goal, we implemented proactive scaling solutions, enabling us to scale
machines preemptively based on insights gleaned from historical user
traffic data.

The proactive scaling strategy involved analyzing extensive
historical data about user usage patterns. By leveraging advanced
algorithms, we forecasted the platform’s future resource requirements
at various points in time. This predictive information empowered us to
scale up or down the number of machines well in advance of user traffic
spikes or declines.

Essentially, our proactive scaling approach involves the following.
1. Data Analysis

We meticulously examined historical user traffic data, including
usage patterns, peak hours, and seasonal trends, to gain insights
into future resource demands.

2. Algorithm Deployment
Utilizing machine learning algorithms and predictive analytics, we
developed models to forecast the platform’s resource needs
accurately.

3. Preemptive Scaling
Based on the predictions generated by our algorithms, we
proactively adjusted the number of machines in our infrastructure
to ensure optimal performance and cost efficiency.

By adopting proactive scaling measures, we were able to optimize
resource allocation, minimize service interruptions, and enhance the
overall user experience on our platform. This proactive approach
significantly improved our ability to meet fluctuating demand and
adapt to changing user requirements effectively.

Cloud Native for Edge Computing
The adoption of cloud-native principles has emerged as a pivotal
strategy, revolutionizing how applications are managed and deployed
at the network edge. Edge computing brings computational resources
closer to data sources, minimizing latency and optimizing bandwidth
usage, particularly crucial for real-time processing and low-latency
applications.

At its core, cloud-native methodologies in edge computing entail
structuring applications as collections of microservices encapsulated
within lightweight containers. These containers house the application
code, dependencies, and runtime environment, ensuring consistency
and portability across diverse edge devices and environments.
Leveraging containers facilitates seamless deployment, scaling, and
management of edge applications, enabling effortless updates and
minimizing downtime.

Moreover, container orchestration platforms like Kubernetes play a
pivotal role in automating the deployment, scaling, and orchestration
of containerized applications in edge environments. These platforms

empower dynamic resource allocation, efficient load balancing, and
autonomous recovery mechanisms, ensuring optimal performance and
reliability, even in highly distributed edge deployments.

Beyond containerization and orchestration, cloud-native practices
such as DevOps, continuous integration/continuous deployment
(CI/CD), and infrastructure as code (IaC) are integral components in
streamlining the development, testing, and deployment workflows in
edge computing. This agile and automated approach fosters rapid
iteration, accelerates time-to-market, and enhances operational
efficiency for edge applications.

In essence, embracing cloud-native principles in edge computing
empowers organizations to harness the scalability, resilience, and
agility needed to effectively navigate the complexities of edge
deployments. By embracing a cloud-native approach, businesses can
fully capitalize on the potential of edge computing to deliver
innovative, responsive, and high-performing applications at the
network edge.
1. Optimizing Resource Efficiency in Edge Environments

Cloud-native principles prioritize the efficient utilization of
computing resources within edge environments. A typical cloud-
native architecture harnesses containers, which are lightweight
and isolated runtime environments for applications. Containers
serve as a technology for packaging and deploying applications,
ensuring consistent and reliable deployment across diverse
environments by encapsulating the following components into a
single package:

The executable code responsible for the application’s
functionality necessitates dependencies to ensure seamless code
execution. Additionally, libraries play a crucial role in providing
essential functionalities and supporting code execution.
Furthermore, all requisite system tools and configurations are
essential components for the application’s successful operation.
Containers leverage the kernel of the host operating system,
reducing virtualization overhead and enabling efficient resource
utilization. This characteristic is particularly advantageous in edge
computing scenarios where processing power and data storage are
limited.

Moreover, container orchestration aids in resource allocation
by orchestrating tools to allocate resources based on application
requirements. This ensures each container receives the necessary
resources without over-provisioning or under-provisioning.

Efficient resource utilization directly correlates with cost
savings, especially in scenarios where edge devices operate in
remote or resource-constrained locations. By optimizing resource
usage, organizations can maximize the value derived from their
cloud-native architectures while minimizing operational expenses.

2. Enhancing Scalability with Cloud-Native Principles
Cloud-native principles revolutionize the scalability of systems,
enabling them to dynamically adjust and adapt to fluctuating
demands. Microservices architecture facilitates seamless scaling of
instances in response to workload fluctuations and evolving
requirements. Dynamic autoscaling empowers edge systems to
automatically adjust their capacity in real-time, aligning with
changes in demand. During peak usage periods or sudden spikes in
processing needs, the system effortlessly scales out to
accommodate the increased workload. Conversely, during periods
of low demand or reduced activity, the system scales down to
optimize resource utilization and conserve energy.

Several edge computing use cases highlight the significant
benefits of dynamic autoscaling:

In a smart city application, edge devices responsible for traffic
monitoring can dynamically scale their microservices to handle
increased processing demands during rush hours, ensuring
efficient traffic management. Conversely, scaling down during
quieter periods helps conserve resources and minimize energy
consumption.
In manufacturing plants leveraging Industrial Internet of Things
(IIoT) technology, edge devices monitoring machinery can adjust
processing capabilities based on the production load. Scaling up
during peak production times ensures optimal efficiency, while
scaling down during downtime reduces operational costs.
Edge devices deployed in healthcare applications can
dynamically scale during emergencies or critical health events,

ensuring timely processing of vital data. Scaling down during
routine periods helps prolong device battery life and optimize
resource allocation.
For video surveillance systems deployed at the edge, dynamic
autoscaling enables the adjustment of processing capabilities
during events requiring intensive video analysis, such as large
crowds or security alerts. Scaling down during periods of
minimal activity conserves resources and reduces operational
overhead.
By leveraging cloud-native principles, edge applications can
seamlessly scale both horizontally at the edge and vertically in
the cloud. This unified architecture ensures flexibility and
resilience across diverse deployment locations and strategies,
empowering organizations to effectively meet evolving demands
and maximize operational efficiency in edge computing
environments.

3. Enhancing Resilience with High Fault Tolerance
Cloud-native architectures prioritize fault tolerance, leveraging
distributed designs and redundant microservices to ensure
seamless operation even in challenging scenarios such as network
disruptions or device failures. Fault tolerance is particularly crucial
for edge devices.

The distributed nature of cloud-native applications minimizes
the impact of potential failures by eliminating single points of
failure (SPOFs). In the event of an issue or outage affecting a
specific microservice, the remaining services continue to operate
autonomously, preserving overall system functionality.

Cloud-native edge computing employs several strategies to
maintain high fault tolerance:

Deployment of duplicate instances of critical components and
microservices to mitigate the impact of failures and ensure
continuous operation.
Adoption of resilient communication patterns, such as
implementing circuit breakers or retry mechanisms, to handle
network disruptions and mitigate cascading failures.

Establishment of redundant routes for data transmission to
circumvent potential network bottlenecks or failures.

Additionally, automated recovery mechanisms play a vital role in
enhancing fault tolerance. Orchestration tools like Kubernetes monitor
the health and performance of edge applications, automatically
detecting anomalies or failures. Upon detection, these tools initiate
corrective actions, such as replacing problematic instances with
healthy ones, to maintain system integrity and reliability.

By implementing these strategies, cloud-native edge computing
environments can achieve high fault tolerance, ensuring uninterrupted
operation and resilience in the face of unforeseen challenges and
disruptions.
4. Enhancing Security at the Edge

Cloud-native edge computing significantly strengthens security
measures within edge environments, particularly crucial as devices
often vary in their level of trustworthiness. The cloud-native
approach to edge computing enhances security in the following
ways:

Containerized Microservices
Each microservice operates within its own container, effectively
isolating it from other components. This containment limits the
potential impact of security incidents, as any vulnerabilities or
flaws within one microservice do not affect the integrity of other
system parts.

Isolation Benefits
The isolated nature of containers makes it challenging for
intruders to move laterally from one container to another. This
isolation significantly reduces the risk of unauthorized access and
prevents the spread of malicious activities across the system.

Rapid Deployment of Security Patches
The lightweight nature of containers allows for swift deployment of
security patches and updates. This agility ensures that
vulnerabilities can be addressed promptly, minimizing the window
of exposure to potential threats.

Fine-Grained Access Control
The modular design of cloud-native edge computing facilitates
fine-grained access control and authentication mechanisms. Each
microservice can have its own tailored security policy, reducing the
attack surface and limiting the impact of potential breaches.

5. Efficient Deployment and Updates
Cloud-native methodologies streamline the process of deploying
and updating applications in dynamic and dispersed edge
environments. Continuous integration (CI) and continuous
deployment (CD), fundamental concepts in cloud-native
development, underpin the rapid deployment and updating of
applications:

Continuous Integration (CI)
This practice involves integrating code changes into a shared
repository on a regular basis. It ensures that new features, bug
fixes, or enhancements are continuously tested and validated,
reducing the likelihood of integration issues and ensuring the
reliability of the application.

Continuous Deployment (CD)
CD automates the process of deploying validated code changes into
a production environment swiftly and reliably.

In edge scenarios, where devices often possess diverse
configurations, CI becomes indispensable for maintaining
consistency and reliability across applications. Conversely, CD
enables organizations to release updates promptly and securely to
edge devices. Cloud-native edge applications frequently employ
rolling updates, a strategy that gradually replaces old instances
with new versions. This approach minimizes downtime and
ensures uninterrupted operation.

Moreover, over-the-air (OTA) updates play a crucial role in edge
scenarios, allowing teams to remotely update and manage
software on edge devices. OTA updates are particularly significant
in industries such as manufacturing, where edge devices on the

factory floor must receive updates without disrupting the
production process.

6. Cost-Efficiency in IT Operations
Optimizing the utilization of computing resources plays a pivotal
role in the economic feasibility of deploying applications within
edge environments. Cloud-native edge computing offers a range of
strategies to lower IT expenses:

Autoscaling
Autoscaling dynamically adjusts resource allocation based on
fluctuating workloads, ensuring efficient resource utilization. Edge
devices adapt to varying activity levels, efficiently allocating
resources during periods of high demand and minimizing costs
during idle times.

Containerization
The lightweight nature of containers reduces overhead, allowing
multiple containers to run on a single device without
compromising performance. This maximizes resource utilization
without incurring costly duplication.

Serverless Computing
Organizations leverage serverless computing, paying only for the
actual computing resources consumed during the execution of
functions or services. This pay-as-you-go model proves
particularly advantageous in edge scenarios characterized by
sporadic bursts of computation.

Local Data Processing
Cloud-native edge applications utilize data filtering, aggregation,
and compression locally to minimize the volume of data traversing
the network. By reducing data transmission, bandwidth expenses
are minimized, contributing to overall cost savings.

7. Enhanced Performance
Cloud-native methodologies, when combined with strategic
network architecture, significantly enhance connectivity reliability
and minimize latency in dynamic edge environments.

Cloud-native edge computing relies on specialized
communication protocols tailored for efficient edge interactions.
Two prominent protocols are
MQTT (Message Queuing Telemetry Transport): Designed for
constrained devices and low-bandwidth, high-latency, or
unreliable networks, MQTT is a lightweight and efficient
messaging protocol.
CoAP (Constrained Application Protocol): CoAP facilitates
lightweight communication suitable for edge environments,
ensuring efficient data exchange while conserving bandwidth
and minimizing latency.

Moreover, decentralized processing and edge intelligence play a
pivotal role in performance enhancement. Cloud-native edge devices
boast computational capabilities for advanced local processing,
reducing the need for frequent data transfers and alleviating network
congestion.

Dynamic load balancing further contributes to performance
optimization by distributing traffic across multiple edge devices or
microservice instances, preventing network bottlenecks. For instance,
in smart grid scenarios where devices monitor and control energy
distribution, load balancing ensures the network’s ability to handle
demand fluctuations while maintaining optimal performance.

Autoscaling Implementation in AWS
Auto Scaling, an Amazon Web Service, enables instances to
automatically adjust their capacity in response to changes in traffic or
CPU load. This service monitors all instances configured within the
Auto Scaling group, ensuring balanced loads across them. Depending
on the configured scaling policies, instances are added or removed to
maintain optimal performance.

When setting up the autoscaling group, parameters such as Desired
Capacity, Minimum Capacity, Maximum Capacity, and CPU Utilization
are configured. For example, if CPU utilization across all instances
exceeds 80%, an additional instance is launched, while if it drops below
20%, an instance may be terminated. These thresholds are

customizable based on specific requirements. If any instance fails for
any reason, the Auto Scaling group automatically maintains the
Desired Capacity by launching a replacement instance. Autoscaling
operates on the principle of Horizontal Scaling, where resources are
added or removed dynamically based on demand. This service is
invaluable as it eliminates the need for manual instance provisioning
and monitoring, streamlining the management of resources in dynamic
environments.

Autoscaling across different regions in AWS involves deploying
resources in multiple AWS regions and configuring autoscaling groups
(ASGs) to manage the scaling of those resources based on demand.
Here’s a general outline of how you can achieve this:
Deploy Resources in Multiple Regions: First, you need to deploy
your application resources (e.g., EC2 instances, databases, load
balancers) across multiple AWS regions. This ensures that your
application can handle traffic from different geographic locations
and provides redundancy in case of region-specific failures.
Set Up Auto-Scaling Groups (ASGs): Create autoscaling groups for
each resource type (e.g., EC2 instances) in each region where you’ve
deployed resources. ASGs automatically adjust the number of
instances in response to changes in demand or health checks.
Configure Scaling Policies: Define scaling policies for your ASGs to
specify when and how to scale. For example, you can set up policies
to scale based on CPU utilization, network traffic, or other custom
metrics. Ensure that you configure these policies appropriately for
each region based on its specific traffic patterns and requirements.
Cross-Region Load Balancing: If you’re using a load balancer to
distribute traffic across regions, configure it to distribute traffic
evenly among the regions where you’ve deployed resources. AWS
provides services like Route 53 for DNS-based load balancing or the
Elastic Load Balancing service for distributing traffic across multiple
regions.
Monitoring and Alerting: Set up monitoring and alerting for your
autoscaling groups and resources to track performance metrics and
respond to any issues proactively. AWS CloudWatch is a useful tool
for monitoring various AWS resources and setting up alarms based
on predefined thresholds.

Testing and Optimization: Regularly test and optimize your
autoscaling configurations to ensure that they effectively handle
traffic fluctuations across different regions. This may involve
adjusting scaling policies, instance types, or other configuration
parameters based on performance data and feedback.
Disaster Recovery and Failover: Implement a disaster recovery
plan that includes failover procedures between regions in case of
catastrophic failures or downtime in one region. This ensures high
availability and resilience for your application across different
geographic locations.

By following these steps, you can effectively implement autoscaling
across different regions in AWS to ensure optimal performance, high
availability, and resilience for your applications.

Benefits of Autoscaling
1. Dynamic Scaling

AWS autoscaling service operates seamlessly, requiring no manual
intervention from users. It continuously monitors the incoming
traffic to the application and dynamically adjusts the number of
resources (such as instances or containers) up or down as needed.
This ensures that the application can efficiently handle fluctuations
in user demand without experiencing performance degradation or
downtime. For example, during peak traffic periods, the
autoscaling service automatically adds more resources to ensure
optimal performance and responsiveness. Conversely, during
periods of low traffic, it scales down resources to minimize costs
and avoid over-provisioning.

2. Pay-As-You-Go Model
Autoscaling optimizes resource utilization based on real-time
demand, resulting in cost savings for users. With this model, users
are billed only for the resources they actually use, rather than
paying for fixed or over-provisioned capacity. As a result,
organizations can optimize their spending by aligning resource
usage with actual demand patterns. This flexibility allows
businesses to scale their applications without incurring

unnecessary expenses, making it a cost-effective solution for
managing varying workloads.

3. Automatic Performance Optimization
In addition to adjusting resource allocation, AWS autoscaling
ensures optimal application performance. By continuously
monitoring workload metrics and performance indicators, such as
response times and latency, the autoscaling service proactively
adjusts resource levels to maintain desired performance levels. For
instance, if the application experiences an increase in traffic,
autoscaling can automatically provision additional resources to
handle the load, preventing performance bottlenecks and ensuring
a seamless user experience. Conversely, during periods of low
demand, resources are scaled down to conserve resources and
minimize costs while still maintaining acceptable performance
levels. This automatic performance optimization allows
organizations to meet the demands of dynamic workloads while
ensuring consistent and reliable application performance.

4. Enhanced Resource Allocation
Autoscaling optimizes the utilization of cloud resources by
dynamically adjusting resource allocation based on real-time
demand. By aligning resource provisioning with actual usage
patterns, it ensures that resources are utilized efficiently, leading to
cost savings and promoting environmentally sustainable practices
through reduced energy consumption in data centers.

Moreover, autoscaling streamlines the scaling process by
automating the adjustment of resources, eliminating the need for
manual intervention. This automation reduces the burden on IT teams,
allowing them to allocate their time and resources to more strategic
initiatives rather than spending it on managing capacity and scaling
resources manually.

Steps to Create Autoscaling
1. Log in to the AWS Management Console.

2. Navigate to the Amazon EC2 console.

3. Navigate to the left-hand side and choose “Launch Templates.”
Once you’re on the new page, click the option to “Create launch
template.”

4. Provide the template name as shown in the following screenshot.

5. Select the Amazon Machine Image.

6. Choose the instance type and generate a new key pair if you do not
already possess one.

7. Choose the security group and create a new key pair if you do not
already possess one.

8. Choose “Create launch template.”

9. Following the completion of the template creation process, you’ll
find that the template has been successfully generated. To
continue, scroll down the page and select the “Auto Scaling Groups”
option located on the left-hand side.

10. Select on the Create Auto Scaling group.

11. Enter the name for the autoscaling group, select the created
template “test-template” from the dropdown then select next.

12. Choose either the VPC or stick with the default VPC, and then
select the desired Availability Zone.

13. Customize the Group size and Scaling policies to suit your specific
needs. You have the option to configure the settings as follows:
Desired: 3, Minimum: 3, Maximum: 6. Adjust these parameters
based on your requirements for optimal scaling behavior.

14. Select the target scaling policy and then select “Create Auto
Scaling Group.”

15. As you can see the test-scaling group is created.

16. As we set the desired state to 3, you’ll notice that there are
currently 3 instances running.

Future Trends in Scalability and Autoscaling
Machine Learning-Driven Autoscaling
Predictive Autoscaling: By analyzing historical workload patterns and
performance metrics, machine learning algorithms can predict future
resource demands with greater accuracy. This allows autoscaling
systems to proactively adjust resources before demand spikes occur,
reducing the risk of under-provisioning or over-provisioning.

Anomaly Detection: Machine learning models can identify
anomalies or unusual patterns in application metrics, such as sudden
increases in traffic or deviations from expected behavior. Detecting
these anomalies early allows autoscaling systems to take corrective
actions, such as scaling resources or triggering alerts, to maintain
optimal performance and availability.

Serverless Architectures and Event-Driven Scaling
Fine-grained Autoscaling: In serverless architectures, autoscaling
operates at a granular level, scaling resources dynamically in response
to individual function invocations or events. This fine-grained

scalability ensures that resources are allocated precisely where and
when they are needed, optimizing resource utilization and minimizing
costs.

Dynamic Resource Provisioning: Serverless platforms handle
resource provisioning automatically, abstracting away the
complexities of infrastructure management. Resources are
provisioned dynamically in real-time, allowing applications to scale
seamlessly in response to changes in workload without requiring
manual intervention.

Edge Computing and Distributed Scaling
Edge-Native Autoscaling: Edge computing environments are
characterized by distributed edge nodes located closer to the source of
data generation. Autoscaling in these environments requires tailored
solutions that can dynamically allocate resources across distributed
nodes based on workload demands, taking into account factors such as
network latency and device capabilities.

Federated Autoscaling: Federated learning techniques enable
collaborative autoscaling across distributed edge nodes while
preserving data privacy and security. Edge devices can collectively
optimize resource allocation and share insights without compromising
sensitive data, allowing for efficient and scalable edge computing
solutions.

Hybrid and Multi-cloud Scalability
Interoperable Autoscaling: Hybrid and multi-cloud environments
require interoperable autoscaling mechanisms that can seamlessly
scale workloads across different cloud providers and on-premises
infrastructure. Standardized APIs and protocols facilitate
communication and coordination between disparate environments,
enabling workload mobility and resource elasticity.

Policy-Based Autoscaling: Organizations define policies governing
autoscaling behavior based on business requirements, compliance
regulations, and cost considerations. These policies dictate how
resources are allocated and scaled across hybrid and multi-cloud
environments, ensuring optimal performance and cost-efficiency.

Cost-Efficient Autoscaling Strategies
Cost-Efficient Autoscaling Strategies include cost-aware scaling
policies that adjust resource allocation based on real-time pricing and
usage data, and leveraging spot and preemptible instance utilization to
optimize resource costs while maintaining performance and reliability.

Cost-Aware Scaling Policies: Autoscaling strategies incorporate
cost optimization algorithms that dynamically adjust resource
allocation based on real-time pricing and usage data. By considering
factors such as spot instance pricing, on-demand rates, and workload
patterns, organizations can optimize resource utilization and minimize
infrastructure costs while maintaining service levels.

Spot and Preemptible Instance Utilization: Integrating spot
instances and preemptible VMs into autoscaling strategies enables
organizations to leverage low-cost resources during periods of low
demand. By dynamically provisioning spot instances or preemptible
VMs when available, organizations can reduce costs without sacrificing
performance or reliability.

Summary
In this chapter, we’ve delved into the fundamental concepts of
scalability and autoscaling mechanisms in cloud-native applications.
We began by exploring the basics of scalability, distinguishing between
horizontal and vertical scaling methods, and understanding the
challenges posed by managing stateless and stateful services. With this
foundational understanding, we then delved into the realm of
autoscaling, a crucial aspect of modern cloud-native architectures.
Autoscaling allows applications to dynamically adjust their resource
allocation based on fluctuating workload demands. We examined the
intricacies of both reactive and proactive autoscaling strategies,
including the utilization of triggers, metrics, and dynamic policies to
orchestrate scaling events effectively. Implementation considerations
were also discussed, covering various approaches such as leveraging
container orchestration platforms, cloud provider services, or custom-
built solutions tailored to specific requirements. Moreover, we
highlighted the significance of monitoring, metrics collection, and
rigorous testing in ensuring the reliability and efficiency of autoscaling

policies. By striking a balance between performance optimization and
cost considerations, organizations can effectively mitigate scalability
bottlenecks and optimize their autoscaling strategies. Looking ahead,
we discussed emerging trends and future directions in scalability and
autoscaling, providing insights into potential advancements such as
machine learning-driven autoscaling and the adoption of serverless
computing paradigms. Overall, this chapter serves as a comprehensive
guide to understanding, implementing, and optimizing scalability and
autoscaling strategies in cloud-native environments.

(1)

© The Author(s), under exclusive license to APress Media, LLC, part of Springer
Nature 2024
M. I. Ahmed, Cloud-Native DevOps
https://doi.org/10.1007/979-8-8688-0407-6_7

7. Collaborative Development in the
Cloud Native
Mohammed Ilyas Ahmed1

Boston, MA, USA

“Where teamwork makes the dream work... and keeps the
servers from getting too lonely!”

This chapter focuses on the symbiotic relationship between
collaboration and cloud computing. It delves into key aspects such as
improving collaboration between developers and operations teams,
optimizing data movement within cloud environments, and
implementing specialized processes for supply chain management. By
exploring these topics, readers gain insights into maximizing efficiency
and effectiveness in cloud-based operations.

First, we’ll see why it’s essential for developers and operations
teams to work closely, often called DevOps. When they work together
well, it helps in making things smoother, faster, and better quality. We’ll
look at the tools and methods that help them work together effectively,
especially in cloud setups.

Then, we’ll talk about making data move around efficiently in the
cloud. This is important for organizations that want to use their data
effectively. We’ll discuss different ways to store, process, and move
data in the cloud, showing how it can be done well with real-life
examples.

https://doi.org/10.1007/979-8-8688-0407-6_7

Lastly, we’ll discuss using special processes and managing the
supply chain in the cloud. We’ll show how these can help in integrating
data, analyzing it, and making better decisions. When organizations
combine these processes with cloud technology, they can see and
manage their operations better.

Overall, the chapter highlights that working together in the cloud is
not just about using technology; it’s also about having a smart strategy.
By collaborating, optimizing, and innovating, organizations can make
the most out of the cloud and succeed in today’s digital world.

In this chapter, we will be encompassing the following topics:
Enabling Collaboration Between Developers and Operations
Agile and Scrum Methodology in Cloud Native
Optimizing Cloud-Based Data Flow
ETL Processes and Supply Chain Management

Enabling Collaboration Between Developers and
Operations
The DevSecOps culture extends beyond simply adopting security tools
and procedures; it embodies a mindset that permeates the entire
organization. Collaboration and accountability stand as fundamental
principles within this culture. Collaboration fosters seamless
cooperation among cross-functional teams, while accountability
ensures that all individuals assume responsibility for security and
reliability throughout the development process.

DevOps Culture
When considering how to encourage cooperation between
Development (Dev) and Operations (Ops), I envision a unified team
with common goals and tools. The outdated approach of having
separate teams for software delivery and infrastructure management
is flawed. We should shift the focus toward providing valuable,
enjoyable, and seamless customer experiences to boost market share
for enterprises. This requires management to structure teams aligned
with these objectives and empower them to take ownership. They

should design the appropriate tech stack to deliver results effectively
and monitor outcomes proactively.
Deploy Ambassadors to Every Team
To enhance business value, companies must instigate a cultural
transformation that amplifies collaboration between development
and IT Ops, effectively merging them into one cohesive unit. A
proactive approach involves appointing ambassadors from each
team to participate in the other’s crucial meetings and relay insights
back to their respective teams. Regular joint meetings also facilitate
this shift. This alteration in team dynamics cultivates a finely tuned
operation – developers start considering operational needs, while
operations personnel offer assistance in creating deployment
scripts. This synchronization empowers the team to confidently
deploy new software versions, fostering agility and innovation
without compromising software stability and reliability.

Example: Imagine a company has a software development team
and an IT operations team. They appoint one person from each team
to attend the other team’s meetings. For instance, a developer
attends operations meetings, while someone from operations
attends development meetings. These ambassadors share insights
and concerns from their respective teams, ensuring that both sides
understand each other’s needs and challenges. As a result,
developers learn about the operational requirements for deploying
software, while operations personnel gain insights into the
development process.
Promote Cross-Pollination
A fruitful method for fostering collaboration between Development
(Dev) and Operations (Ops) is through cross-pollination. In
environments where these teams are distinct, encourage members
from the Dev team to spend time in Ops, and vice versa, to grasp
each other’s challenges. Alternatively, consider establishing delivery
teams where both development and operations experts collaborate
within a unified team structure. This arrangement encourages active
pairing to devise solutions that cater to both development and
maintenance needs. Additionally, deliberately integrating
automation testing for failure scenarios can be instrumental in

identifying issues that may otherwise only surface during
production.

Example: Consider a software company where developers spend
a week working alongside the operations team, and vice versa.
During this time, developers assist with tasks like deploying
software updates, while operations staff gain a better understanding
of the development process. Additionally, the company forms cross-
functional delivery teams comprising both developers and
operations experts. These teams work closely together on projects,
sharing knowledge and expertise to ensure that applications are
both developed and maintained effectively.
Eliminate Silos
To enhance collaboration between development and IT Ops, it’s
crucial to blur the boundaries separating them as distinct teams.
Instead, transition to a framework of practices that everyone can
adopt. By bringing team members together in the same physical
space, silos and obstacles can be eliminated, resulting in improved
productivity and fostering a culture that prioritizes challenging
norms, continuous learning, and, above all, collaboration.

Example: Picture a company that adopts a new way of working
where developers and operations staff sit together in an open
workspace rather than in separate departments. By physically
bringing everyone together, communication barriers are broken
down, and collaboration is encouraged. Team members collaborate
on projects from start to finish, leading to increased productivity and
a culture of teamwork and innovation.
Enhance Learning Methods
Improving collaboration between development and operations relies
on refining the methods of learning. While discussions in DevOps
often center on tools and meetings, these elements can divert
attention from the core issues. To truly enhance DevOps,
organizations should concentrate on establishing processes that
enable rapid learning feedback loops. A valuable starting point is the
Plan-Do-Study-Act (PDSA) cycle, initially introduced by W. Edwards
Deming, a pioneer in modern quality control. By implementing the
PDSA cycle, organizations acquire a powerful mechanism for
advancement. This entails planning the DevOps process,

implementing it, and then carefully examining the outcomes to
extract insights. By posing the question, “What did we learn here?”
after each cycle, organizations can progressively refine their
processes. This ongoing cycle of improvement, with contributions
from various teams, steadily enhances the process with each
iteration.

Example: Suppose an organization implements a new learning
process inspired by the Plan-Do-Study-Act (PDSA) cycle. In this
process, teams plan a new development or operations procedure,
implement it, study the results, and then adjust based on what
they’ve learned. For example, after deploying a new software update,
the team reviews the process to identify any areas for improvement.
By continually learning and adapting, the organization improves its
development and operations practices over time.
User-Centric Experience Teams
Teams specializing in user or digital experience management serve
as an effective avenue for Operations and Development to enhance
collaboration throughout the application life cycle. This joint effort
yields insights not only into performance but also into relevance,
usability, and even the expenses associated with service delivery.

Example: Imagine a company forms dedicated teams focused on
improving the user experience of its software products. These teams
include members from both development and operations
backgrounds who collaborate closely throughout the software
development life cycle. For example, they work together to identify
user needs, test new features, and ensure that software updates are
deployed smoothly. By prioritizing the user experience and
collaborating effectively, the company delivers high-quality software
that meets user expectations.

Agile and Scrum Methodology in Cloud Native
Cloud-native development, when paired with Agile practices, offers a
flexible and collaborative approach perfectly suited to the demands of
cloud environments. This approach emphasizes iterative development
cycles, continuous delivery, and close collaboration among cross-
functional teams. Agile’s iterative nature complements the dynamic

and scalable aspects of cloud-native applications, enabling rapid
adjustments and enhancements. Moreover, Agile principles prioritize
customer satisfaction and value delivery, ensuring that cloud-native
solutions effectively meet evolving user needs. Through automation
and continuous improvement, Agile methodologies streamline the
delivery of high-quality software optimized for cloud-native
architectures and technologies.
Collaborate for Intricate Bugs
Work together on quickly fixing complex bugs – “But it works on my
machine,” we all dread hearing. This problem is worsened when
teams are dispersed throughout the globe, and the back-and-forth
work on bugs costs the developers and, ultimately, the company a lot
of time and money. Rather than allowing complex faults or patches to
be passed from one person to the next, development and testing
teams can use the cloud to interact in real-time and resolve issues
more quickly. Remote teams can collaborate utilizing the same
online environment, where troubleshooting and issue fixes can
happen in real-time, thanks to cloud technologies that enable “VM
publishing” and “over-the-shoulder view.” Further, having a gold
version also allows testers to access a live reproduction of an issue
for instant evaluation, as well as provisioning of several
environments to protect test teams from being barred from a
release.
Standard Version for Every Release
Create a standardized version for every release by constructing an
application that involves numerous intricate tasks beyond just
creating virtual machines, such as establishing network connections
and configuring firewall policies. Consequently, delivering a
complete application, particularly from scratch, can be a challenging
and time-intensive endeavor. Cloud technology can aid developers
and testers in swiftly and effortlessly provisioning an entire
environment or application. By establishing the “gold version” of
each release or milestone, developers can revert to the designated
version whenever necessary, allowing for multiple copies of any
release to be accessible to test engineers and facilitating parallel
testing environments.
Automate for Hotfix

Automate the generation of “hotfix” replicas to align support,
development, test, and operations teams – an application’s life cycle
extends well beyond its initial release. Even after many users have
migrated to newer versions, companies must still assist those using
older versions of the product. Leveraging cloud technology, test and
support teams can significantly streamline this process by
replicating previous versions using templates and the “gold” version.
This allows teams to reproduce the specific issue reported by the
customer, rather than working with the current version, and validate
the proposed update with the client.
Keeping the Clients Updated with the Latest Updates
Finding problems or mistakes early during software creation is
important. It’s not only cheaper and easier to fix issues and design
flaws early on, but it also leads to better results. Using cloud services
that allow sharing of new versions with a specific group of clients
can offer valuable additional insights and help identify faults or
issues at an early stage. Moreover, the ability of the cloud to provide
unlimited server access makes experimentation and innovation
much easier. Developers don’t have to wait as long to create the next
version as they would if they were restricted to working on a limited
number of physical servers. This means they can iterate more
quickly, improving the software more rapidly.
Implementation of Agile in Cloud Native
Use templates for development and testing to expedite environment
setup. These templates contain essential components with clear
interfaces, forming the basis of robust applications. By integrating
key elements of a software stack, developers can create fresh and
innovative products efficiently. Consider crafting comprehensive
application stacks as templates to facilitate rapid setup of entire
application environments by your development and testing teams,
requiring minimal time and effort.

At the core of any cloud technology lies virtualization across all
layers. Dev/test templates should seamlessly integrate virtual
machines (VMs), networks, storage, installed applications, and security
protocols into a unified provisioning entity through the template
approach. For even speedier provisioning, development and test teams
can establish a repository of pre-made templates containing

application components like the application server tier, web tier, and
database tier. Then, they can combine these elements as needed to set
up the entire application for a specific release. It’s crucial to ensure that
your library contains the latest versions of these components,
incorporating all essential security updates.

Benefits of Agile Methodology
1. Abundant Testing and Staging Servers: Embracing cloud-native

methodologies means having access to a rich pool of resources for
testing and staging environments. Unlike traditional setups that
rely on physical servers, cloud-native approaches leverage
virtualization or containerization to provide on-demand access to
servers. This abundance of resources eliminates delays and
ensures that development teams can swiftly initiate or continue
work without being hindered by server availability.

2. Concurrent Development Process: Cloud-native methodologies
enable Agile development to operate concurrently and seamlessly.
By leveraging cloud-native infrastructure, teams can rapidly
provision resources and platforms, reducing the time spent on
setup and configuration. This agility empowers teams to work on
different aspects of the project simultaneously, streamlining the
development workflow and fostering collaboration. Consequently,
development cycles become more efficient and responsive to
changing requirements.

3. Innovation and Experimentation: Cloud-native approaches
foster a culture of innovation and experimentation within Agile
teams. The flexibility of cloud-native infrastructure allows teams to
quickly spin up development environments to test new ideas or
features. This agility encourages creativity and risk-taking, as
teams can experiment freely without worrying about resource
limitations. By facilitating rapid iteration and exploration, cloud-
native methodologies drive continuous improvement and
innovation in products and services.

4. Enhanced Continuous Integration and Delivery (CI/CD): Cloud-
native practices play a pivotal role in enhancing CI/CD workflows
within Agile development. Leveraging cloud-native tools and
services, such as container orchestration platforms and serverless
computing, teams can automate build, test, and deployment
processes. This automation accelerates delivery pipelines, reduces
manual intervention, and ensures the reliability of deployments. As
a result, teams can deliver value to customers more frequently and
consistently, driving business agility and competitiveness.

5. Expanded Availability of Development Platforms and External
Services: Cloud-native methodologies broaden the availability of
development platforms and external services for Agile teams.
Cloud-native ecosystems offer a plethora of services, such as
managed databases, AI/ML tools, and DevOps solutions, that can be
seamlessly integrated into development workflows. By leveraging
these services, teams can enhance collaboration, productivity, and
innovation, while reducing time-to-market and operational
overhead.

6. Flexibility in Handling Complex Features: Cloud-native
architectures provide Agile teams with the flexibility to handle
complex features and evolving requirements. With cloud-native
technologies like microservices and serverless computing, teams
can decompose applications into smaller, independent components
that can be scaled and deployed independently. This modularity
and flexibility enable teams to respond quickly to changing
demands, deploy updates with confidence, and maintain high levels
of performance and resilience. As a result, Agile teams can deliver
value to customers more effectively, even in dynamic and
unpredictable environments.

Roles in Scrum
In the Scrum framework, the organizational structure is purposefully
kept simple, comprising just three distinct team roles: the Product
Owner, the Scrum Master, and the Development Team. Each role plays a

crucial part in ensuring the successful implementation of the Scrum
methodology within a project or organization. Let’s delve into each role
to understand its significance and responsibilities within the Scrum
framework.
Scrum Master
The Scrum Master, distinct from a conventional project manager,
operates as a facilitator and mediator within the team, sharing
leadership duties with the Product Owner and Development Team.
Responsibilities of the Scrum Master include maintaining the team’s
focus and motivation while resolving any obstacles hindering their
progress. For instance, if a Development Team member faces
frequent interruptions from another project, the Scrum Master
intervenes to facilitate a resolution. Moreover, the Scrum Master
ensures the effective implementation of the Scrum framework and
Agile principles. This involves coaching the Product Owner,
Development Team, and project stakeholders on Scrum processes, as
well as overseeing their proper execution. Additionally, logistical
arrangements for activities like sprint review sessions fall under the
Scrum master’s purview, such as ensuring access to necessary
facilities like a meeting room with a projector.
Development Team
Scrum development teams typically consist of a close-knit group,
usually no more than seven members. Traditionally, the Scrum
framework prefers these members to be co-located, but the rise of
remote work has led to the evolution of distributed Scrum practices.
These teams comprise individuals with diverse skill sets, such as
front-end developers, back-end developers, and DevOps engineers.
Each member brings expertise in coding languages, frameworks,
tools, and technologies relevant to the project. It’s crucial for the
team to be balanced according to the project’s needs for optimal
efficiency. For instance, if the software system requires a simpler
front end but a complex back end, there should be more back-end
developers than front-end developers to ensure smooth progress. A
successful Scrum development team operates with a “united we
stand” mentality, aiding each other toward individual and collective
success. They self-organize and collaborate closely to overcome
challenges and achieve project objectives.

Product Owner
The ambassador for the eventual software product, known as the
Product Owner (PO), holds the highest authority within the Scrum
framework. Their primary responsibility is ensuring the quality of
the software produced, representing both internal and external
customers, as well as stakeholders like end users. This role demands
a profound comprehension of business, customer needs, and market
dynamics. To effectively manage the product backlog and organize it
into Sprints, the PO must possess this comprehensive
understanding. Any proposed changes to the product backlog, its
features, or priority order must be advocated to the PO by other
team members.

Depending on the project and organization, the Product Owner
might also participate in the development team’s execution of the
product backlog, perhaps as a senior developer. However, more
commonly, they oversee the product backlog and delegate tasks to the
development team. Additionally, the Product Owner plays a pivotal role
in determining when the product reaches its Minimum Viable Product
(MVP) status, indicating it’s ready for its first working iteration to be
shipped.

Artifacts in Scrum
In Agile Scrum software development, the term “artifacts” refers to
tangible or intangible entities created throughout the development
process, akin to the original Latin meaning of the word, which denotes
something crafted or produced. These artifacts serve as essential
elements that guide and facilitate the iterative development approach
of Scrum. The three primary artifacts in Scrum are the Product Backlog,
Sprint Backlog, and Increment.
Sprint Backlog
The Sprint Backlog represents a distilled subset of items selected
from the Product Backlog for implementation during a specific
sprint. It reflects the commitment of the Development Team to
deliver a cohesive set of features or improvements within the
sprint’s time frame.

Unlike the Product Backlog, which outlines the long-term vision,
the Sprint Backlog provides a detailed, actionable plan for the
current sprint. It is a dynamic document that evolves as the sprint
progresses, with tasks being added, modified, or removed based on
emerging insights and priorities. The Sprint Backlog serves as a
visual aid, enabling the team to track progress, identify bottlenecks,
and adapt their approach to ensure successful sprint completion.
Product Backlog
The Product Backlog serves as the backbone of the Scrum
framework, embodying the collective vision and goals of the
software product under development. It encompasses a
comprehensive list of all features, enhancements, and fixes
envisioned for the product, meticulously prioritized based on their
perceived value and urgency.

This backlog is not merely a static document but rather a living
artifact that evolves alongside the project. It is continuously refined,
updated, and reprioritized by the Product Owner in collaboration
with stakeholders and the development team. The Product Backlog
ensures alignment between development efforts and the
overarching business objectives, guiding the team’s focus toward
delivering maximum value with each iteration.
Increment
The Increment represents the tangible outcome of each sprint,
comprising the cumulative work completed by the Development
Team. It is a functional, usable version of the product that
incorporates the latest features, enhancements, and fixes developed
during the sprint.

Each increment builds upon the previous ones, gradually shaping
the product toward its ultimate vision. The Increment is a testament to
the team’s iterative and incremental approach, showcasing their
continuous progress and commitment to delivering value with each
sprint. In summary, these Scrum artifacts work in tandem to facilitate
collaboration, transparency, and agility within the development
process. They provide the necessary structure and guidance for the
team to effectively plan, execute, and deliver high-quality software
products in a dynamic and ever-evolving environment.

Optimizing Cloud-Based Data Flow
When discussing cloud optimization, the conversation typically
revolves around technical aspects like workload management,
resource usage efficiency, and cost-effectiveness. However, as
governmental entities increasingly rely on cloud services to fulfill their
core mission objectives, the concept of optimization transcends mere
technical efficiency and cost savings. It encompasses deriving
maximum value from cloud technologies to advance the organization’s
mission. Achieving optimal cloud utilization involves more than just
optimizing technical parameters; it entails leveraging cloud
capabilities to enhance mission delivery, streamline workflows, and
contribute to the agency’s sustainability initiatives. This multi-faceted
approach to optimization necessitates collaboration with a diverse
array of stakeholders beyond the traditional IT sphere.

Figure 7-1 Cloud data flow

Strategy

Government organizations primarily generate value for their
constituents by achieving the strategic objectives outlined in their
missions. Therefore, efforts to optimize cloud utilization should be
directed toward advancing agencies’ mission outcomes and
overarching business goals. Beyond facilitating mission execution
through the adoption of new applications and workflows, cloud
optimization also facilitates the quantification of mission impact by
gathering data on mission performance. This data empowers leaders
to make informed decisions aimed at enhancing service effectiveness,
improving user experiences, and streamlining internal operations.

An IT company migrated its recruitment and hiring application
from infrastructure-as-a-service (IaaS) to platform-as-a-service (PaaS)
to enhance user experience, automation, and data integrity. This
transition to PaaS resulted in reduced system downtime, seamless
integration with other hiring applications, a significant reduction in
manual intervention, and ultimately led to a decrease in time-to-hire.
Additionally, leveraging cloud technology provided the company with
enhanced visibility into key metrics for the first time, enabling the
measurement of various hiring process milestones such as application
submission time, candidate selection duration, background
investigation duration, and offer letter issuance time. Traditional IT
metrics, including fewer system failures, reduced downtime, and
increased automation, provided valuable insights into the user
experience for both hiring managers and candidates.
Enhanced User Experience: By transitioning to PaaS, the company
could streamline the user interface and optimize the application’s
performance. This led to a smoother and more intuitive experience
for both hiring managers and candidates, resulting in higher user
satisfaction.
Automation: Moving to PaaS allowed the company to automate
various aspects of the hiring process, such as candidate screening,
scheduling interviews, and sending out notifications. This
automation not only saved time but also reduced the potential for
human error, leading to a more efficient hiring workflow.
Data Integrity: Leveraging PaaS provided better data management
capabilities, ensuring the integrity and security of candidate
information throughout the hiring process. This helped in

maintaining compliance with data protection regulations and
mitigating the risk of data breaches.
Reduced System Downtime: PaaS offered better scalability and
redundancy compared to IaaS, resulting in reduced system
downtime. This ensured that the recruitment application was
available and accessible to users at all times, thereby minimizing
disruptions to the hiring process.
Cloud technology provided the company with enhanced visibility
into key metrics related to the hiring process. By measuring various
milestones such as application submission time, candidate selection
duration, and offer letter issuance time, the company gained
valuable insights into the efficiency and effectiveness of its
recruitment efforts. This data-driven approach allowed for
continuous improvement and optimization of the hiring process.

Organization
The evolution of cloud technology into a mission-enabling tool also
necessitates a shift in how it integrates with the broader organization.
It’s crucial for mission leaders to actively participate in decisions
regarding cloud investments, just as cloud leaders should be involved
in the selection and implementation of cloud-based mission tools.
Although adjusting governance structures and organizational cultures
to facilitate this level of collaboration may pose challenges, our
research underscores its significance in achieving widespread success.

Furthermore, there exists a complex interplay between workforce
dynamics and operational strategies. When cloud solutions alter how
agencies fulfill their missions, it can prompt changes in workforce
composition and operational methodologies. For instance, the
widespread adoption of remote work, largely facilitated by cloud
technology, has transformed the landscape of modern employment.
With approximately half of the US workforce now operating remotely,
and forecasts indicating continued growth in cloud-based conferencing
technologies, organizations must adapt to heightened cybersecurity
demands as employees access data from diverse locations and devices.
Consequently, this evolution in security requirements may necessitate
the acquisition of new talents with specialized skills.

Therefore, optimizing an organization’s approach to cloud
integration requires a holistic transformation beyond mere IT-focused
migrations. In this comprehensive model, cloud technologies are
deeply ingrained in strategic decision-making processes and long-term
workforce planning initiatives. Effective execution of a cloud strategy
mandates organizational readiness and a robust talent development
strategy to meet the evolving needs of the future cloud workforce.
Agencies can evaluate their existing organizational structures,
delineate the requisite roles and skills for a cloud-centric workforce,
and formulate a roadmap for achieving these objectives. Moreover, skill
realignment should be complemented by a culture that fosters
collaboration and innovation. Cloud optimization presents an
opportune moment for agencies to infuse innovation into their
operations. By establishing a modernized cloud architecture that
serves as a springboard for emerging technologies such as artificial
intelligence and machine learning, organizations can drive innovation
and advance mission objectives.

Finance
Cost savings is a fundamental aspect of FinOps, but it encompasses
more than just reducing expenses. At its core, FinOps aims to enhance
mission performance alongside financial efficiency. FinOps contributes
to mission improvement through three key mechanisms:
1. Cloud technology facilitates the consolidation of data and

operations across various organizational segments, fostering
efficiencies. However, this convergence can lead to friction as
different cultural norms collide. FinOps plays a crucial role in
establishing a common language that allows different
organizational units to identify, quantify, and compare mission
value. By necessitating value-based decision-making, FinOps
encourages leaders to align on uniform terms and definitions for
mission value organization-wide. Additionally, embedding FinOps
teams in diverse organizational segments promotes the adoption
of common terms and practices while preserving each unit’s
distinct culture.

2. Once a shared understanding of mission value is established,
organizations can begin measuring it. FinOps methodologies, such
as show-back and charge-back mechanisms, facilitate the
definition of common key performance indicators (KPIs) and
metrics for mission value. Internal billing for cloud services
encourages both service providers and users to assess their
contributions in terms of mission value and evaluate the return on
investment. Moreover, these practices drive organizational
efficiency by promoting the automation of internal processes,
particularly as cloud investments expand.

3. FinOps aids in identifying and addressing common obstacles
hindering optimal cloud utilization. Firstly, its continuous nature
helps organizations navigate the fast pace of change and frequent
decision-making scenarios, such as choosing between lifting and
shifting or refactoring applications. Secondly, FinOps sheds light on
shadow IT, enabling centralized IT visibility into IT systems
deployed by business units independently. This visibility allows
organizations to assess whether alternative solutions could better
meet their needs. Lastly, FinOps drives the modernization of
procurement systems, a critical aspect given the dynamic nature of
cloud usage. Several federal agencies are exploring ways to update
procurement policies to leverage the cloud’s flexibility effectively,
such as moving away from static IT budgets set at the beginning of
fiscal years.

These concerted efforts enable cloud adoption to not only generate
cost savings but also enhance mission effectiveness. For instance, a
federal agency streamlined its HR systems by transitioning to the
cloud, resulting in reduced administrative burdens, faster processing
times, and enhanced flexibility, particularly evident during the
pandemic through online employee orientation sessions.

Sustainability
Providing value to communities extends beyond merely offering
services; it involves preserving existing value while creating new
opportunities. Communities consist of diverse stakeholders with
varied needs and interests, and the worth of a government agency

transcends its service provision to encompass how those services are
delivered. Questions of equity and sustainability arise in this context,
and cloud technology offers avenues for government agencies to
address them while optimizing benefits for communities.

Moreover, the vast scale of cloud providers enables them to invest
significantly in eco-friendly technologies, such as wind, nuclear, and
solar power, to support their server infrastructures. Consequently, the
technology supply chain of agencies can become substantially more
sustainable. Additionally, cloud providers can strategically allocate
workloads to minimize overall energy consumption. For instance, the
adoption of lower-power chips like ARM processors can yield
substantial energy savings for simpler tasks. While individual
organizations may not have sufficient workload diversity to justify
investing in such processors, cloud service providers explore
opportunities to aggregate diverse workloads across multiple IaaS
customers, resulting in considerable energy efficiencies.

This transition not only promises billions of dollars in energy cost
savings but also stands to mitigate carbon emissions by millions of
metric tons. Many cloud providers are also adopting environmental,
social, and governance (ESG) metrics to gauge overall sustainability
performance, supplementing power consumption data to assess
operations’ environmental impact comprehensively.

Data Pipeline Architecture Factors
Designing the architecture of your data pipeline requires careful
consideration and planning. While this process may demand
significant time and effort upfront, it lays the foundation for a system
that is straightforward to implement, manage, and scale as your
business expands. To avoid potential challenges down the road, here
are several factors to keep in mind during the planning stages of your
data pipeline architecture.
1. Cloud Storage Costs Are Not Low

In the past, data storage was limited by on-premises servers, which
constrained the size of data architecture. However, with the rise of
big data, cloud storage has become the norm, offering seemingly
affordable solutions. Yet, it’s essential to recognize that cloud

storage isn’t limitless, despite its apparent affordability. When
designing your data architecture, prioritize cost-efficiency across
all systems, regardless of their pricing structures. Even if you’re
using inexpensive cloud storage or a budget-friendly data pipeline
provider, optimizing these aspects is crucial. This practice not only
fosters long-term savings but also becomes vital when
transitioning data to more costly platforms.

Cloud data warehouses like Snowflake and Big Query often have
intricate pricing models for both computation and storage, which
may catch users off guard. Leverage your data pipeline architecture
to transfer data into each system in the most efficient format
possible. Store your data in the most space-efficient manner
feasible to minimize costs when migrating it to pricier platforms,
preventing unexpected expenses.

2. Focus on Security and Encryption
Ensuring the security and encryption of your data infrastructure,
including pipelines, is of utmost importance. Pipelines involve the
movement of data, making it essential to implement encryption
measures at both the source and destination of your data.

Two key aspects of encryption require attention:
Encryption at Rest: This involves storing data in an encrypted
format either at the source or destination systems. While your data
pipeline may not directly control this encryption, it must seamlessly
integrate with securely encrypted endpoints.
Encryption in Motion: Data should be encrypted as it traverses
through the pipeline. Transport Layer Security (TLS) is a widely used
protocol for achieving this encryption during data transmission.

Most tools and platforms used in data management, such as data
warehouses, cloud storage solutions, and data pipeline providers, offer
built-in encryption mechanisms. It’s crucial to assess these
mechanisms to ensure they align with your data security requirements
and seamlessly integrate. For more complex data architectures,
involving a security expert may be necessary to ensure comprehensive
protection.

Prioritize Compliance in the Initial Stage
When integrating your data pipeline into a commercial product,
ensuring compliance with regulatory standards is paramount. These
standards encompass data security and encryption requirements,
often extending beyond what might be initially anticipated. Achieving
compliance demands dedicated engineering efforts and meticulous
planning.

Regulatory laws vary by region, necessitating consideration not
only of your current location but also potential future expansions. For
instance, in the United States, while there isn’t a unified federal law
governing consumer data protection, specific states, like California,
enforce regulations. Moreover, if your company’s growth strategy
includes European markets within the next few years, it’s imperative to
construct pipelines compliant with the General Data Protection
Regulation (GDPR) from the outset.

In cases where interpretation of these legal frameworks is unclear,
seeking guidance from legal professionals is advisable.

Best Practices in Data Pipeline Architecture
In data pipeline architecture, adhering to industry-standard best
practices is crucial for achieving efficiency, reliability, and
maintainability. Here are key recommendations:
1. Establish Clear Data Objectives: It’s imperative to define the

objectives of your data pipeline clearly. Ensure alignment with your
organization’s overarching goals and business strategy to
maximize effectiveness.

2. Integrate Data Quality Checks: Incorporate data quality checks at
different stages of the pipeline to detect and rectify issues early in
the data flow. This proactive approach ensures that the data
remains accurate and reliable throughout its journey.

3. Prioritize Security and Privacy: Implement robust security
measures to protect sensitive data. Utilize encryption, enforce
strong access controls, and leverage data governance tools to

comply with relevant data protection laws and regulations,
safeguarding privacy.

4. Document and Monitor: Maintain detailed documentation of your
data pipeline architecture, including its components and
processes. Establish robust monitoring mechanisms to promptly
identify and address any issues that arise, ensuring continuous
performance optimization.

5. Conduct Rigorous Testing: Thoroughly test your data pipeline
architecture through various testing methods, including unit
testing, integration testing, and end-to-end testing. This
comprehensive approach validates reliability and performance,
identifying and rectifying potential vulnerabilities.

6. Foster Collaboration: Encourage collaboration among data
engineers, data scientists, and other stakeholders involved in the
data pipeline architecture. By promoting cross-functional
teamwork, ensure that the architecture addresses the diverse
needs and requirements of your organization effectively.

Consider Future Growth When Planning for
Performance and Scalability
Performance and scalability are pivotal factors in data pipeline design.
Performance considerations revolve around the pipeline’s ability to
efficiently process a specified volume of data within a given timeframe.
For instance, if the destination system requires processing 100 rows
per second, your pipeline must be capable of meeting this requirement.

Scalability, on the other hand, pertains to the pipeline’s capacity to
accommodate increasing data volumes without compromising service
delivery or encountering performance bottlenecks. It’s crucial to align
your team’s expectations with realistic goals and budgetary
constraints. Adjustments to goals may be necessary based on
feasibility assessments.

An effectively designed architecture will distribute workload across
multiple cloud-based servers or clusters, leveraging resources like
memory, storage, and CPU efficiently. This distributed approach not

only enhances performance but also bolsters resilience against
potential failures. Anticipate that the data volume and throughput
demand on your pipeline and overall data infrastructure will expand
over time. Position your architecture to accommodate future
scalability requirements.

Several common approaches to handling scalability include
1. Implementing application containers (e.g., Docker) to manage

workloads across server clusters.
2. Adding redundancy by incorporating additional servers to mitigate

risks of outages or hardware failures.
3. Continuously balancing incoming request loads across multiple

servers.
4. Employing autoscaling mechanisms to dynamically adjust server

capacities in response to fluctuating traffic demands.
5. Leveraging automation tools like Amazon Web Services (AWS)

CloudFormation, Terraform, and Ansible to streamline the process
of adding new servers to your cluster as needed.

ETL Processes and Supply Chain Management
“Cloud-native ETL” refers to the utilization of Extract, Transform, Load
(ETL) tools and methodologies that are specifically designed to
leverage the capabilities of cloud computing platforms, rather than
relying on traditional on-premises infrastructure. This approach offers
several advantages over traditional methods.

Firstly, cloud native ETL solutions are typically provided as fully
managed services by public cloud providers. This means that the cloud
provider handles all aspects of infrastructure management and
maintenance, including support requests, software updates, and
system monitoring. As a result, organizations utilizing cloud native
ETL can offload the burden of managing complex IT infrastructure to
the cloud provider, freeing up valuable resources and reducing
operational overhead.

Secondly, cloud-native ETL solutions offer enhanced scalability
compared to traditional on-premises setups. In the cloud,
organizations can easily scale up or down their resources, such as
storage or compute power, by provisioning additional server instances
or CPUs as needed. This scalability is essential for handling fluctuating
workloads and accommodating business growth without the need for
costly hardware upgrades or infrastructure redesigns.

Furthermore, cloud services are designed to be accessible from
various devices, including smartphones, tablets, and laptops, allowing
users to access ETL processes and data remotely. This mobile
accessibility enables greater flexibility and efficiency in data
management and analysis, as users can access and interact with data
from anywhere, at any time.

Overall, adopting cloud-native ETL solutions can significantly
streamline data integration and processing workflows, improve
scalability and flexibility, and reduce the burden of infrastructure
management on IT teams. By harnessing the power of cloud
computing, organizations can unlock new opportunities for innovation
and growth in their data-driven initiatives.

Transition from on-prem to ETL
Cloud-native ETL solutions are increasingly becoming a preferred
choice for organizations, but understanding why and how
organizations transition from on-premises to cloud-based ETL is
crucial. Several factors play a role in evaluating cloud-native ETL
solutions.
Speed
The speed of data processing is a critical consideration. While cloud-
based ETL solutions can offer impressive speed, they may encounter
latency issues, particularly if the cloud servers are located in distant
regions. However, if your business operates across multiple
locations, some latency may be acceptable.
Cybersecurity
Both cloud and on-premises ETL solutions can be secured effectively.
However, the choice depends on specific security requirements.
Many Chief Information Security Officers (CISOs) believe that the

cloud is as secure as or even safer than on-premises solutions.
Nonetheless, on-premises ETL may be necessary for handling
sensitive data subject to strict regulations, such as healthcare or
financial information.
Reliability
Cloud services offer high reliability, with cloud providers responsible
for addressing any downtime or service interruptions. This can be a
significant advantage, especially for IT support staff who prefer to
avoid sudden emergencies. Cloud vendors typically offer Service
Level Agreements (SLAs) guaranteeing a certain level of uptime,
assuring organizations. For example, AWS Glue, a cloud native ETL
solution, ensures a monthly uptime of 99.9%, equivalent to
approximately 44 minutes of allowable outages per month.
Hybrid Approach
Organizations may opt for a hybrid ETL model, combining both on-
premises and cloud-based solutions to best meet their specific
requirements. In this approach, certain data and processes remain
on-premises while others are migrated to the cloud. This hybrid
model allows organizations to leverage the benefits of both
environments while accommodating their unique needs and
constraints.
Enhanced Real-Time Monitoring and Collaboration
The integration of cloud connectivity into supply chain management
offers planners immediate access to live data spanning the entire
supply chain network. This empowers decision-makers with up-to-
the-minute insights into inventory levels, production progress, order
modifications, and notifications of any delays. Through a unified
cloud platform, stakeholders across manufacturing and logistics
sectors can collaborate seamlessly, ensuring synchronized execution
of operations. This real-time visibility and coordination streamline
decision-making processes and facilitate agile responses to dynamic
market conditions, ultimately optimizing supply chain performance.
Transition Management
Transitioning from traditional on-premises tools to cloud-based
solutions necessitates comprehensive training for planners. It is
crucial to effectively communicate the benefits of the new system
and provide ongoing support to ensure widespread user adoption

throughout the organization. Establishing clear channels for
feedback and addressing user concerns promptly can facilitate a
smoother transition process.
Migration Challenges
The integration of data and systems between the cloud platform and
internal ERP/IT systems poses significant complexity and demands
considerable time and IT resources. Developing a meticulously
planned migration roadmap is essential to navigate this process
effectively. Additionally, thorough validation of integrations is
imperative to ensure seamless connectivity and data
synchronization between disparate systems. By proactively
addressing migration challenges and adhering to a structured
approach, organizations can mitigate risks and optimize the success
of their cloud migration initiatives.
Enhanced Resilience to Disruptions
In the face of natural calamities, cyber threats, and other unforeseen
disruptions, conventional on-premises IT infrastructures are
vulnerable to significant downtimes and operational interruptions.
However, leveraging cloud-based solutions empowers planners with
unparalleled resilience. By migrating planning operations to the
cloud, organizations ensure that their planners have uninterrupted
access to critical plans and data regardless of their physical location.
This capability enables seamless continuity of supply chain
operations even amidst chaos, ensuring minimal disruptions and
maintaining business continuity. Moreover, cloud-based platforms
often incorporate robust security measures and data redundancy
protocols, further bolstering resilience against potential threats and
enhancing overall disaster recovery capabilities. Thus, embracing
cloud technology not only safeguards planning operations but also
fortifies the organization’s resilience in the face of adversity.

Securing Cloud-Integrated Logistics Operations
The cloud-based supply chain presents a multi-faceted landscape with
various layers, components, and data sources, posing intricate security
challenges. However, these complexities can be effectively managed
through a strategic four-step approach:

1. Formulate the Strategy Initiating with a well-defined strategy for
the cloud supply chain is paramount. Embracing a shift-left
approach, which entails integrating security measures earlier in
the development process, is fundamental. This strategic blueprint
doesn’t necessitate an extensive document initially but requires
outlining the vision, roles, and responsibilities. Continuous
iteration and refinement are essential components of this strategic
framework.

2. Understand Software Creation Processes Delving into the
intricacies of software creation within the organization is crucial.
This involves comprehensive documentation and analysis of the
software development life cycle, tracking its journey from
developers’ workstations to the production cloud environment.
Understanding these processes lays the foundation for
implementing robust security measures effectively.

3. Implement Security Quality Guardrails Incorporating proactive
security measures akin to quality controls in traditional
manufacturing processes is imperative. Identifying opportune
points along the software development pipeline to enforce
stringent security checks is essential. Automation plays a pivotal
role in supplementing manual code review efforts to ensure
scalable and efficient security practices.

4. Consider Certifications Beyond internal security measures,
validating the security of applications and cloud infrastructure
procured from external providers is crucial. Leveraging
certifications such as SOC2 Type II and ISO 27001 aids in assessing
the provider’s adherence to rigorous security standards and
independent verification of their security controls. These
certifications provide insights into the provider’s risk evaluation
processes, essential for aligning their security practices with
organizational standards.

Adopting these strategic steps empowers security leaders to steer
their organizations toward robust cloud supply chain security
practices. By ingraining security into the development process and

leveraging certifications for external validation, organizations can
fortify their resilience against evolving cyber threats. With the
escalating reliance on cloud infrastructure and native applications, the
implementation of a comprehensive cloud supply chain security
strategy is imperative to safeguard organizational assets and ensure
seamless operations.

Capabilities of Cloud Computing in Supply Chain
Management

Figure 7-2 Supply chain management capabilities

Cloud-native technologies are changing how supply chains work by
using cloud computing to make them more innovative and efficient.
Let’s explore these capabilities further.
1. Scalability

Cloud-native platforms offer the ability to scale computing
resources dynamically, enabling organizations to handle
fluctuations in demand without incurring significant infrastructure
costs. This scalability ensures that businesses can ramp up
operations during peak seasons or scale down during periods of

low activity, thereby optimizing resource utilization and reducing
operational overhead.

2. Flexibility and Agility
Cloud-native architectures, built upon principles such as
microservices and containerization, empower organizations to
develop and deploy supply chain applications rapidly. This agility
enables businesses to respond quickly to market changes,
customer preferences, and emerging trends, giving them a
competitive edge in the fast-paced global marketplace.

3. Real-Time Visibility
Cloud-native solutions provide real-time visibility into various
aspects of the supply chain, including inventory levels, production
status, transportation logistics, and customer demand. This
visibility enables organizations to make data-driven decisions,
anticipate potential disruptions, and proactively address supply
chain challenges, ultimately improving operational efficiency and
customer satisfaction.

4. Collaboration and Connectivity
Cloud-native platforms facilitate seamless collaboration and
connectivity among supply chain partners, enabling secure data
exchange and communication across the entire ecosystem. By
fostering closer relationships with suppliers, manufacturers,
distributors, and customers, organizations can enhance
transparency, reduce lead times, and optimize inventory
management processes.

5. Data Analytics and Predictive Insights
Cloud-native technologies enable advanced data analytics and
predictive modeling capabilities, leveraging machine learning and
artificial intelligence algorithms to derive actionable insights from
large volumes of supply chain data. By analyzing historical trends,
market dynamics, and customer behavior, organizations can
optimize inventory levels, identify cost-saving opportunities, and
mitigate risks, thereby improving decision-making and strategic
planning processes.

6. Automation and Optimization
Cloud-native solutions facilitate the automation of repetitive
supply chain tasks, such as order processing, inventory
replenishment, and demand forecasting. By automating manual
processes and workflows, organizations can reduce errors,
increase operational efficiency, and optimize resource allocation,
leading to cost savings and productivity gains across the supply
chain.

7. Security and Compliance
Cloud-native platforms incorporate robust security features and
compliance controls to protect sensitive supply chain data and
ensure regulatory compliance. By implementing encryption, access
controls, and threat detection mechanisms, organizations can
mitigate cybersecurity risks, safeguard against data breaches, and
maintain the integrity and confidentiality of supply chain
operations.

When developing a cloud-based Supply Chain Management (SCM)
application, it is crucial to consider several important factors:
1. Data Migration: Plan meticulously for the seamless migration of

data from on-premises or existing web-based monolithic systems
to the cloud. Assess factors, such as data volume, complexity, and
anticipate potential downtime during the migration process to
minimize disruptions.

2. Supplier and Partner Collaboration: Consider features that
promote collaboration with suppliers and partners, fostering
transparency and real-time communication within the supply
chain ecosystem. This enhances coordination and efficiency across
the entire supply chain network.

3. Cloud Platform Selection: Selecting the appropriate cloud
platform (such as AWS, Azure, or Google Cloud) is essential to align
with your company’s cloud strategy and meet various criteria like
performance, compliance, and budgetary considerations.

4. Integration Capabilities: Leverage the capabilities of cloud-
specific APIs and services to enhance functionality, enabling
innovative solutions to efficiently address supply chain challenges.
This facilitates seamless integration with existing software
applications, streamlining operations.

5. Business Continuity: Develop a comprehensive disaster recovery
plan to safeguard supply chain data during unexpected incidents or
system failures. Ensure the implementation of data redundancy
and backup mechanisms to maintain business continuity and
minimize downtime.

6. Performance Monitoring: Implement robust performance
tracking and reporting mechanisms within the cloud environment
to monitor the health and efficiency of supply chain processes. This
enables proactive identification of areas for improvement and
optimization.

7. Data Security: Given the sensitivity of supply chain data stored in
external servers, prioritize robust data security measures.
Implement encryption, access controls, and compliance with
industry regulations to safeguard supply chain data.

8. User Experience and Training: Prioritize a user-friendly interface
and provide comprehensive training to supply chain professionals
to maximize the utilization of the customized cloud solution.
Empowering users with proper training ensures efficient
utilization of the platform’s capabilities.

Summary
In this chapter, the focus was on enabling collaboration between
developers and operations teams, a practice commonly referred to as
DevOps. It delved into the significance of fostering a cohesive working
relationship between these two key groups within an organization,
emphasizing the benefits of collaboration in enhancing productivity,
accelerating development cycles, and ensuring the delivery of high-

quality products and services. By integrating Agile and Scrum
methodologies into cloud-native environments, the chapter explored
how these adaptive frameworks enable teams to effectively manage
projects, respond to changes swiftly, and deliver value to stakeholders
in a dynamic and fast-paced cloud environment.

Furthermore, the chapter delved into the optimization of data flow
in the cloud, emphasizing the importance of efficient data management
practices. It discussed various strategies for storing, processing, and
transferring data within cloud environments, highlighting the need for
organizations to leverage cloud-native tools and technologies to
streamline data operations and enhance scalability and performance.
Additionally, the chapter examined the role of Extract, Transform, Load
(ETL) processes in supply chain management, illustrating how cloud
technology facilitates the seamless integration and analysis of data
from disparate sources to drive informed decision-making and
operational efficiency.

Overall, the chapter underscored the critical role of collaboration,
methodology adaptation, and process optimization in maximizing the
benefits of cloud computing for organizational success. By embracing
these principles and leveraging cloud-native capabilities, businesses
can effectively navigate the complexities of modern IT landscapes,
drive innovation, and achieve strategic objectives in an increasingly
digital world.

(1)

© The Author(s), under exclusive license to APress Media, LLC, part of Springer
Nature 2024
M. I. Ahmed, Cloud-Native DevOps
https://doi.org/10.1007/979-8-8688-0407-6_8

8. IAM Security in Cloud-Native
Environment
Mohammed Ilyas Ahmed1

Boston, MA, USA

“IAM Security in a Cloud-Native Environment: Where we keep
our digital clouds cozy and secure, like a fortress in the sky!”

In this upcoming chapter, get ready to plunge into the wild and
wacky world of Identity and Access Management (IAM) security in
cloud-native DevOps environments. Imagine this: organizations are
jumping onto the cloud train faster than a squirrel chasing a nut on a
scorching summer day. But amid all this digital chaos, we’ve got to talk
about security.

As we bid farewell to the old-school ways and embrace dynamic and
scattered computing setups, managing who gets access to what
becomes as challenging as herding a bunch of hyperactive kittens. But
fear not! We’re here to guide you through building a fortress of security
that’ll have cyber crooks scratching their heads in confusion.

Throughout this chapter, we’ll sprinkle in some practical advice,
share real-life examples, and maybe even crack a joke or two to keep
things entertaining. Whether you’re a tech guru or just starting to dip
your toes into the digital waters, we’ve got your back.

So, grab your life jacket and buckle up! It’s time to navigate the
choppy waters of IAM security in the cloud-native world. Let’s make

https://doi.org/10.1007/979-8-8688-0407-6_8

sure your digital ship sails smoothly and securely through the stormy
seas of cyberspace.

In this chapter, we will be encompassing the following topics:
IAM Fundamentals in Cloud-Native Environments
IAM Best Practices for Service Accounts and API Access
IAM Governance and Policy Management in Cloud-Native

IAM Fundamentals in Cloud-Native Environments
As businesses increasingly migrate to the cloud for its cost savings,
ease of use, and efficiency, they also face security challenges inherent in
online platforms.

IAM (Identity and Access Management) solutions play a critical role
in mitigating risks within native cloud environments. By adopting a
zero-trust approach, which treats every visitor and activity as a
potential threat, IAM solutions ensure that authentication or
authorization is required for every workload.

Foundational Elements of Cloud-Native IAM
Infrastructure
1. Autonomous Components

In cloud-native setups, we use a method called microservices,
where we split different jobs of an application into smaller,
separate services. Each service works on its own, with its own set
of instructions and rules to follow. This helps us to be more flexible
and faster when we’re building and running our applications. One
cool thing about microservices is that they’re really good at
growing when we need them to. Instead of making one service
bigger when more people are using it, we can just make more
copies of it. This is called horizontal scaling. Horizontal scaling,
also known as scale-out, is a method of increasing the capacity of a
system by adding more instances of the same component in
parallel. In the context of microservices architecture, horizontal
scaling refers to replicating individual microservices across
multiple servers or containers to handle increased workload or
user demand.

Microservices architecture decomposes an application into a
set of loosely coupled services, each responsible for a specific
business function or capability. These services are developed,
deployed, and managed independently, enabling greater flexibility
and agility in the software development process. Each
microservice can be scaled independently based on its resource
requirements and workload patterns. With horizontal scaling,
instead of increasing the size (vertical scaling) of a single service
instance to handle increased load, multiple instances of the same
microservice are deployed across different servers or containers.
To distribute incoming requests evenly across multiple instances
of a microservice, a load balancer is typically employed. The load
balancer acts as a traffic router, directing client requests to
available service instances based on predefined algorithms such as
round-robin or least connections. This ensures efficient utilization
of resources and prevents any single instance from being
overloaded. Modern cloud platforms and container orchestration
systems provide autoscaling capabilities, allowing the
infrastructure to automatically provision or deprovision instances
of microservices based on predefined metrics such as CPU
utilization, memory usage, or request latency. This dynamic scaling
ensures that the system can adapt to fluctuating workload
demands in real-time, optimizing resource utilization and
maintaining performance.

Cloud-native environments, especially ones that use tools like
Docker and Kubernetes, make it easy to do this.

Now, in an Identity and Access Management (IAM) system for
cloud-native setups, microservices are super important. This
system usually has a few different microservices, each doing a
specific job related to managing who can access what. For example,
there might be a service that checks if a user is who they say they
are, another one that hands out access tokens, and another one
that deals with managing user profiles. Also, it’s a good idea to keep
the jobs of managing the IAM system separate from the main parts
of the application. This helps keep everything organized and makes
it less likely that changing one thing will mess up something else.

So, we might have a special service just for managing settings and
permissions, like who’s allowed to do what.

Use Case Scenario
Consider a large-scale ecommerce platform that operates entirely
on cloud infrastructure. This platform handles sensitive user data,
including personal information and payment details. Ensuring
secure access to various parts of the system is paramount to
maintaining trust and compliance with data protection regulations
like GDPR or CCPA.

2. Stateless Elements
In cloud-native systems, we use small, independent parts called
microservices to build our applications. Each microservice has its
own job to do, like handling user logins or managing data. These
microservices talk to each other using specific rules, like a shared
language, rather than directly sharing information.

For example, in an Identity and Access Management (IAM)
system, we have different microservices for handling things like
user authentication, generating tokens, and managing user
accounts. Each of these microservices keeps its data separate and
communicates with the others through defined rules.

By keeping data separate and communicating through clear
rules, we ensure that our system stays organized and resilient. It
means that if one part of the system needs to be replaced or
updated, it won’t disrupt the others. They can keep running
smoothly without losing important information. This approach
also streamlines automation processes, a crucial aspect in modern
cloud environments. It functions similarly to a well-coordinated
team where each member understands their role and
communicates seamlessly with others. This organizational
structure ensures continuity even when team members change or
take temporary breaks, allowing the team to maintain its efficiency
and effectiveness.

3. Uniform Interfaces
Microservices can be likened to small teams within an application,
each with its own set of tasks and responsibilities. These teams

communicate with one another through defined rules known as
APIs (Application Programming Interfaces). They often rely on
various external services, such as databases or email providers, to
accomplish their respective tasks.

In a cloud-native setup, it’s crucial that these microservices
treat all services uniformly, without distinguishing between
internal and external ones. This uniformity ensures that regardless
of the source of support, the microservices adhere to the same
communication standards. This flexibility facilitates easier
adjustments and updates as needed. For example, if there’s a need
to switch the database used in an Identity and Access Management
(IAM) system, which handles user access, the system should
seamlessly adapt without causing disruptions to other parts of the
application.

Furthermore, observability plays a vital role in monitoring the
performance of the IAM system and promptly identifying any
issues. It should integrate seamlessly with tools that offer insights
into system operations. Additionally, the IAM system itself should
adhere to clear rules and standards, such as standardized protocols
like OAuth 2.0 and OpenID Connect. These standards ensure
smooth communication with other services and facilitate
interoperability within the broader ecosystem.

4. Consistent Environments
When building and deploying cloud-native applications, it’s
advantageous to break down the process into distinct stages:
building, running, and deploying. This workflow can be automated
using Continuous Integration/Continuous Deployment (CI/CD)
tools. CI/CD allows for the creation of snapshots of the application
at each stage of development, facilitating easy deployment and
testing.

Maintaining consistency across different environments, such as
testing, staging, and production, is essential. Containers are
instrumental in achieving this consistency, as they enable the
deployment of the same application image across various
environments. Additionally, it’s beneficial to share most of the
setup information between these environments while keeping
some environment-specific details separate. Environment

variables are commonly used to store such specific information,
like secret codes or settings. These variables can be securely
managed and accessed across different environments, even stored
in a centralized location like a shared drive if the setup information
isn’t sensitive.

This approach allows for seamless modifications to the
application setup without interrupting its operation. The CI/CD
system can manage the majority of setup-related tasks, eliminating
the need to incorporate additional features within the application
itself. This not only enhances security by reducing the attack
surface but also ensures consistency across all environments.
Furthermore, employing specialized tools enables tracking of
changes made to the setup, facilitating transparency and
accountability within the development process.

Fundamental Pillars of IAM
Identity and Access Management serves as a comprehensive structure
designed to handle the complexities of managing digital identities,
regulating resource access, and enforcing security protocols within an
organizational setup. This framework consists of multiple elements
and methodologies geared toward these objectives. Among these
components, we can discern four fundamental pillars
1. Active Directory Management (ADMgmt)

It is really important for organizations that use Microsoft Active
Directory to handle who can access what. It’s all about making sure
Active Directory is set up securely and works smoothly.

Making sure Active Directory works well with other systems, like
cloud services and special access tools.
Adding and setting up users and groups in Active Directory,
making sure they can only do what they need to.
Watching what changes are made to Active Directory and
keeping a record of them.
Reporting any important security stuff to follow the rules.
Making sure only the right people can use Active Directory and
what they’re allowed to do.

Adding extra security to protect Active Directory from common
problems like weak passwords or sneaky attacks.

ADMgmt tools help organizations handle Active Directory safely
and make sure only the right people can access what they need to.
They also make it easier to use new security tricks with Active
Directory, like giving special access to important accounts.

2. Access Management (AM)
AM tools enable administrators to establish and enforce rules
governing user access, whether they are internal employees,
external contractors, or privileged users with elevated
permissions. While Identity Governance and Administration (IGA)
tools may cover some aspects of access management, AM tools
typically offer more comprehensive features and finer-grained
control.

Key functions of Access Management in IAM security include
the following.
User Role Management
Creating and managing user roles that dictate the actions users
are permitted to perform within the system. This centralizes
access control and simplifies administration.
Authentication Methods
Supporting various authentication methods for users to verify
their identity, such as passwords, one-time codes, or multi-factor
authentication (MFA), using their mobile devices.
Job-Based Access Provisioning
Granting access to resources based on users’ roles or job
functions, ensuring they only have access to the resources
necessary for their work responsibilities.
Multi-factor Authentication (MFA)
Adding additional layers of security by requiring users to
provide multiple forms of identification, such as a password and
a temporary code sent to their mobile device.
Temporary and Conditional Access
Allowing temporary or conditional access privileges to be
granted to users for specific periods or under certain
circumstances, enhancing security while accommodating
changing business needs.

Access Management safeguards sensitive resources by
ensuring that only authorized individuals can access them, without
imposing excessive barriers for legitimate users. By aligning
access permissions with job roles, it streamlines workflow and
minimizes disruptions. Additionally, its flexibility in supporting
various authentication methods ensures compatibility with both
legacy and modern applications, regardless of their location. A
robust Access Management setup enhances overall security
posture and contributes to the smooth operation of the
organization’s IT infrastructure.

3. Identity Governance and Administration (IGA)
Identity Governance and Administration helps security
administrators handle user identities and access throughout a
company. It gives them a clearer view of who has access to what
and lets them set rules to stop any inappropriate access.
Visibility and Control
IGA solutions offer a centralized platform for security
administrators to gain insight into user identities and their
access privileges across various systems and applications. This
visibility allows administrators to identify and mitigate
potential security risks by setting rules and policies to prevent
unauthorized access.
Automated Access Management
GA streamlines access request handling through automated
workflows, enabling efficient and consistent management of
access requests. Automated processes for adding or removing
user access to systems and applications reduce the risk of
human error and ensure timely provisioning and deprovisioning
of access.
Integration with Company Systems
IGA seamlessly integrates with existing directories and other
company systems, facilitating smooth data synchronization and
ensuring that access management is aligned with organizational
policies and procedures.
Access Governance

IGA encompasses access governance processes aimed at
preventing misuse or fraud by ensuring that individuals have
appropriate access rights. This includes implementing
segregation of duties (SoD) policies to prevent conflicts of
interest and limiting access based on predefined roles and
responsibilities.
Monitoring and Auditing
IGA solutions include tools for monitoring user activity and
enforcing compliance with regulatory requirements.
Administrators can track user actions, generate audit logs, and
conduct periodic reviews to ensure adherence to security
policies and regulations.

By enforcing least privilege access principles and automating
access management processes, IGA helps mitigate security risks
associated with excessive user permissions. It strengthens
security posture by ensuring that users only have access to the
resources necessary for their roles, reducing the likelihood of
unauthorized access and potential security breaches. Additionally,
IGA’s focus on access governance and auditing enhances
accountability and transparency, contributing to overall IAM
security effectiveness.

4. Privileged Access Management (PAM)
It is like a set of tools and rules that make sure only the right people
can get into really important stuff. These special accounts, called
privileged accounts, have extra power to control important
systems and data. But because they’re so powerful, they’re a big
target for bad guys trying to break in.

Keeping all the important accounts and their secret codes in one
safe place.
Setting up detailed rules for what each account can do.
Making sure only the right people can ask for access and getting
special permission if needed.
Giving temporary access and changing secret codes
automatically to keep things safe.
Keeping an eye on who’s using these accounts, recording what
they do, and checking everything meets the rules.

PAM helps make sure only the right people can get into the most
important parts of a company’s systems, making it harder for bad guys
to get in. It also helps follow the rule of giving people only the power
they need to do their job, nothing extra. And by giving out permissions
only when needed, it lowers the risk of attacks trying to get more
power than they should.

IAM Components
Identity and Access Management (IAM) is a crucial aspect of
organizational security, especially in today’s digital landscape where
data breaches and unauthorized access are significant concerns.
Delving deeper into each component of IAM provides a comprehensive
understanding of its significance and contribution to ensuring secure
access control within organization.

Authentication
Authentication is the process of verifying the identity of users
attempting to access resources.
IAM systems implement various authentication methods, including
passwords, tokens, biometrics, and multi-factor authentication
(MFA), to enhance security.
Multi-factor authentication adds an extra layer of security by
requiring users to provide multiple forms of verification before
accessing sensitive resources.
Provisioning/Deprovisioning

Provisioning involves creating, updating, and deleting user accounts
based on their roles and status within the organization.
Deprovisioning ensures that access is promptly revoked for users
who leave the organization or no longer require access to certain
resources.
Effective provisioning and deprovisioning processes help
organizations maintain security by ensuring that only authorized
users have access to resources.
Authorization

Authorization determines what actions users are allowed to perform
and which resources they can access.
IAM systems enforce role-based access control (RBAC) or attribute-
based access control (ABAC) to assign permissions to users based on
their roles, responsibilities, and attributes.
Granular authorization policies ensure that users have the
appropriate level of access required to perform their job functions
while preventing unauthorized access to sensitive data.
Permissions

Permissions define the specific actions that users can perform on
resources, such as reading, writing, or deleting files.
IAM systems manage permissions by assigning privileges to users or
groups based on predefined access control lists (ACLs) or policies.
Fine-grained permissions allow organizations to enforce the
principle of least privilege, ensuring that users only have access to
the resources necessary to fulfill their roles.
Reporting

Reporting capabilities in IAM systems provide visibility into user
activities, access requests, and changes in permissions.
Auditing user login history, privilege assignments, and access events
helps organizations detect and respond to security incidents
promptly.
Regular audit reports aid in compliance efforts by demonstrating
adherence to regulatory requirements and security best practices.

Least Privileges Principles
The Principle of Least Privilege, a fundamental aspect of zero-trust
security, entails granting individuals access only when necessary to
perform their tasks, and for the shortest duration possible. By
implementing least privilege access, the likelihood of account
compromise is minimized by removing unused or unnecessary
accounts and mitigating the potential impact of compromised
accounts or insider threats.

While the concept is straightforward, achieving least privilege
access within today’s intricate and expansive identity environments

can pose significant challenges. Nevertheless, striving for least
privilege access is imperative for security teams aiming to safeguard
their infrastructure and users. According to a 2022 IDSA report, 80% of
surveyed firms experienced identity-related breaches in the previous
year, with many attributing these breaches to issues such as
“inadequately managed privileges,” “compromised privileged identity,”
or “excessive privileges leading to an insider attack.” Additionally, least
privilege is essential for compliance, as most security-focused
regulations mandate access management controls and policies, with
least privilege access being a primary guiding principle.

Despite variations in systems and sensitivities, integrating least
privilege access best practices into identity security and access control
processes can benefit every organization. Here’s a starting point for
implementation.

Implementation of Least Privileges
1. The initial phase in adopting the principle of least privilege

involves identifying the critical systems within your organization.
Once these systems are identified, the next step is to determine
who has access to them and what level of access they possess,
including permissions, roles, and group memberships.
Subsequently, the focus shifts to transitioning these access
privileges to a time-bound or contextually provisioned model. This
approach assumes that users typically do not require continuous
access to sensitive resources. Instead, access is granted on a
temporary basis or based on specific contextual factors. This
transition effectively mitigates the risk of over-provisioning,
ensuring that users only have access to resources when necessary.
While not all access scenarios may require time-based restrictions,
migrating sensitive permissions, applications, and roles to a just-
in-time access model guarantees that users will always have the
necessary access at the right time. This approach eliminates the
need for continuous privileged access, thus minimizing the
potential for security breaches due to excessive access privileges.

2. Set clear rules and establish an approval process for accessing
sensitive information. Define specific guidelines outlining which

individuals or roles are authorized to access important data or
resources. Ensure that these rules are consistently followed
whenever there is a request for access to sensitive information,
thereby maintaining security and compliance standards. Decide
how new people will get access when they start, and how they’ll
lose access when they leave. Teach everyone about these rules,
especially for sensitive access, to keep things fair and easy to
understand.

3. The first step to keeping things safe is knowing what’s going on.
But with lots of different apps and systems to manage, it can be
hard to keep track of who has access to what. Security teams need
to be able to find this out quickly and easily. To do this, it helps to
use tools that automatically collect and organize data about who
can access what. So, make sure you have a system that gives you a
clear picture of who has access to what, and keep this information
in one central place. Once you’ve got everything organized, it’s a
good idea to label different roles and permissions so you can easily
spot the important ones.

4. When people get access to important stuff, keep a record of who
approved it, why they got it, and when. This helps when checking if
they still need access and for showing compliance. Make sure this
record is easy for IT, Security, and GRC teams to find. Keep this
record up to date by automatically updating it when someone gets
or loses access.

5. Creating clear rules for who can access what and keeping an
updated list of who can access important stuff helps a lot in making
sure only the right people have access. But it’s also super important
to regularly check if everyone still needs access to what they have.
Instead of just relying on the list, it’s best to directly check the apps
and accounts to make sure everything is up to date. This way, you
can be sure that access hasn’t been given out incorrectly and if it
has, you can fix it. It’s also a good idea to work closely with
managers or system administrators to check if everyone has the
right level of access. This makes sure everyone only has access to
what they need.

6. Checking who has access to what is important to make sure
everything follows the rules. It’s not just about following the rules,
though. Regularly checking access helps to keep things safe by
finding and removing access that isn’t needed. To make sure only
the right people have access, it’s important to check often, like
every three months for important access. These checks should
happen when there are big changes, too. Doing all these checks
manually can take a lot of time and money, so it’s best to automate
them. Set up a schedule for these checks and let your team know so
they can help.

7. It’s crucial to know how giving someone access or permission
might affect security. Sometimes, the effects of giving access might
not be obvious right away. For instance, being part of a group could
give someone more access than they need, which can be hard to
see. Understanding these effects is important when deciding who
gets access to what. During regular checks of access, it’s important
to consider the risks involved, the account that has the access, and
how it might affect other things. Make sure the people who decide
who gets access understand these security risks so they can make
the right choices.

IAM Best Practices for Service Accounts and API
Access
User management is about controlling who can access a computer
system or network. It involves creating accounts for users, deciding
what they can do, keeping an eye on what they’re up to, and managing
what parts of the system they can use. But when it comes to cloud-
based apps, user management gets more complicated. Cloud-based
applications which are allowed to the public network use the Internet
to work, which means they can handle a lot of users and adapt to
changes easily. But they also bring new challenges for managing users.
You need to make it easy for people to sign up, make sure they are who
they say they are, decide what they’re allowed to do, and make sure
they can use other online services too.

Key Components of User Management in Cloud-
Native Applications
1. Authentication and Registration

The first step in managing users within a system is the registration
process, where individuals provide their information to create an
account. This information typically includes details such as a
username, email address, and password. When a user signs up,
their information is securely stored in the cloud database. To
uniquely identify each user, a special code, often referred to as a
user ID or account ID, is assigned. This code serves as a unique
identifier for the user within the system and helps track their
activities and interactions. Once registered, users can log in to the
system to access its features and functionalities. Authentication is
the process of verifying that the person attempting to log in is
indeed the rightful owner of the account. In cloud applications,
where access can be granted remotely from anywhere, additional
security measures are often employed to ensure the authenticity of
the user.

One common method of authentication is through the use of
multi-factor authentication (MFA). In MFA, after entering their
username and password, the user is prompted to provide an
additional form of verification, such as a one-time code sent to
their mobile phone via SMS or generated by an authentication app.
This extra step adds a layer of security by requiring something the
user knows (password) and something they have (their phone).

Implementing robust authentication mechanisms, including
MFA, is crucial for ensuring the security of user accounts and
protecting sensitive data. By verifying the identity of users during
the login process, organizations can prevent unauthorized access
and safeguard against potential security breaches. This emphasis
on security measures not only enhances the trustworthiness of the
system but also instills confidence in users regarding the
protection of their personal information and privacy.

2. Access Control and Authorization

Once a user proves who they are, the next step is deciding what
they’re allowed to do in the system. This is called user
authorization. It means setting up rules for different user roles and
giving permissions based on these roles. For example, an
administrator might have full control over everything, while a
regular user might only be able to see and change their own
information.

Access control goes hand in hand with user authorization. It’s
about making sure that the permissions we’ve set are followed, so
users can only do what they’re allowed to. In cloud-based apps, this
can be tricky because the system is spread out and can grow
quickly. But getting access control right is super important for
keeping the app safe and working properly.

3. Accounts and Settings
User accounts and preferences are important for making things
just right for each person. An account holds all your info and
choices, so the system can work the way you like. In cloud
applications, handling user accounts can be tough because the
system is spread out. We need to make sure your info stays the
same no matter where you access it from. This means we need a
strong plan for keeping track of everything.

4. Security and Account Handling
Managing accounts means doing things like changing passwords,
turning off or deleting accounts, and keeping user info private. In
cloud apps, these tasks can be trickier. For instance, when someone
needs a new password, we have to make sure the link to reset it is
safe and can only be used once. Safety is super important when
dealing with user accounts. We need to keep their info safe from
people who shouldn’t have it and follow the rules about privacy. In
cloud apps, we have to be extra careful, making sure everything
from the way you log in to how the system works behind the scenes
is secure.

Nowadays, people want to use their favorite apps along with the
ones they’re using. This might mean logging in with social media,
linking up with tools they use for work, or syncing with other online

services. Adding these extra apps into a cloud-based system makes
things even more complex. We’ve got to handle special codes and
permissions carefully and make sure everything stays safe.

Implementation of User Management in Cloud
Native
Implementing user management in a cloud-native environment
involves seamlessly integrating user tools and services, ensuring
scalability and adaptability to accommodate growing user bases,
selecting appropriate user management methods such as cloud-based
IAM services or open-source tools, and prioritizing data privacy
through encryption, access controls, and transparent data handling
practices.
1. Connecting User Tools and Services

Connecting user tools and services is another important part of
setting up user management in cloud-based apps. These tools not
only need to work together but also with the rest of the app.

For example, the system that manages users should work
smoothly with the app’s front end so people can sign up, log in, and
update their profiles easily. It also needs to mesh with the app’s
backend to store and get user info and make sure only the right
people can access things. The user system should work with other
systems the app uses. For example, it might need to connect with
an email service to send password-help emails or with a payment
service to handle transactions.

2. Creating for Growth and Adaptability
As more people use the system and more info gets added, the user
system needs to be able to handle the extra load. As the app grows
and changes, the user system should be able to adjust to new needs
and updates. To handle more users, the system might need to grow
horizontally (by adding more copies) or vertically (by making the
current copies stronger), or a mix of both. To stay flexible, it should
be designed in parts that can be changed or added to without
messing up the whole thing.

3. Choosing the Best Way to Manage Users
The key to effectively managing users in cloud-based applications
lies in selecting the appropriate method. Various factors influence
the selection process, such as the application’s functionality, user
management requirements, and the available resources and
expertise.

One common approach is leveraging cloud-based identity and
access management (IAM) services provided by major platforms
like Amazon Web Services (AWS), Azure, or Google Cloud. These
platforms offer a comprehensive suite of tools for user
management tasks such as registration, authentication,
authorization, and data management. They support diverse
authentication methods and authorization models while
prioritizing data privacy and security. Alternatively, another option
involves utilizing open-source tools for user management. While
these tools offer extensive customization options, they require
more time and expertise to implement and maintain.

4. Making Sure Data Stays Safe and Legal
These apps often must follow laws like GDPR, which protect
people’s info. So, we need to set up the system in a way that follows
these rules. This means doing a few things. First, we should only
collect the info we need from users, not more. Then, we should
keep that info safe by encrypting it when it’s moving around or
being stored. To implement compliance with regulations like GDPR
in cloud applications, several measures must be taken. First, it’s
crucial to limit the collection of user information to only what is
necessary, avoiding the gathering of excessive or irrelevant data.
Next, robust encryption protocols should be implemented to
ensure the security of user data during transmission and storage.
Additionally, transparency with users regarding the use of their
information is essential, achieved through clear communication
and providing users with control over their data. Access controls
should be enforced to restrict access to user information to
authorized individuals and services. Finally, maintaining audit
trails enables tracking of access to user data, ensuring
accountability and compliance with regulatory requirements. By

implementing these measures, cloud applications can adhere to
data protection laws and safeguard user privacy effectively.

Secure Handling of API Keys
When we create modern cloud-based apps, we put them together using
different tools like virtual machines, containers, and services from
platforms. These apps need to be kept safe from online dangers. It’s
important to protect special codes called API keys, which help control
access to different parts of the app. Keeping these keys safe from
unauthorized use is important for the app’s overall security.
1. Broaden Your Assessment of Application Risks Beyond

Software Vulnerabilities
In cloud computing, there are more risks than just mistakes in
setting up or updating software. Another big problem is keeping
secrets safe, like special codes called API keys, passwords that are
always the same, and keys for keeping information secret. These
secrets are often buried inside the instructions and programs that
run cloud services. It’s really important to make sure that
everything is set up correctly so that only the right people can
access these secrets.

To do this, it’s crucial to regularly check for any potential
problems and fix them quickly. Also, we need to make sure that the
services we use in the cloud are set up correctly, with the right
permissions and connections to keep things safe. It’s like making
sure all the doors and windows in your house are locked properly
to keep out intruders. Overall, protecting secrets like API keys and
ensuring that cloud services are set up securely is essential for
keeping our data safe from hackers and unauthorized access.

2. Take a Proactive Approach to Examining Code for Weaknesses
During Development
Enterprise-built applications, including serverless PaaS offerings,
must undergo thorough scrutiny to identify both known and
unknown vulnerabilities. One prevalent error in cloud-native
applications is the utilization of known vulnerable open-source
software (OSS) components and frameworks, which constitute

approximately 80% of the code in such applications. Furthermore,
it is essential to conduct scans on all exposed APIs.

3. Consider Using a Special Security Tool Called a Cloud-Native
Web Application Firewall (WAF)
Sometimes, the protection provided by cloud companies isn’t as
good as what you can get from other companies. You might need to
use a different company’s WAF or special rules to control how the
built-in WAF from your cloud service provider works. Or, the WAF
service might be added automatically when you connect to a
dynamic security system like SASE. In cloud-based apps, to filter
out certain types of traffic, you might need a special kind of WAF
that’s built into the app or is very small. But for basic protection
against denial-of-service attacks, what the cloud company offers
should be enough.

4. Plan for Resilience by Using the Special Features of Cloud
Technology
Just moving an application from a regular computer to the cloud
doesn’t automatically make it able to handle lots of users or bounce
back from problems. Instead, design apps so they can grow and
shrink easily using special tools in the cloud. Also, make sure the
app can keep running even if one part of the cloud has trouble by
spreading it across different areas.

5. Protect Web Applications and APIs
WAFs are good for guarding the part of an app that users interact
with, but they don’t cover all the functions exposed in modern
cloud-based apps. That’s why it’s necessary to have extra
protection for APIs and to stop automated programs (bots) from
causing harm. This broader set of protections is what we call web
application and API protection.

6. Don't Think of PaaS Security as Something Completely Different
PaaS security isn’t a whole new issue or area. It’s a growing field
that uses a mix of things we’ve already talked about in this study.
PaaS security relies on good identity and access management,
setting up infrastructure securely, always checking the security of

your cloud setup, keeping an eye on everything happening in your
system, and scanning your applications for any security problems.

7. Make Sure to Have an API Gateway
Access to serverless functions should only happen through these
gateways or brokers. You can use the one provided by your cloud
service or choose a different one from another company. Even if
the serverless code is only used inside your organization, having an
API gateway or event broker is important for keeping everything
secure and under control.

8. Combine Monitoring for Both Operations and Security
You don’t need two different tools one for keeping things running
smoothly and another for watching out for security issues to keep a
close eye on your service at the application level. At the very least,
the information should be shared among different teams. Ideally,
monitoring how well your application is working and looking out
for security problems should be done together, supporting a single
team that handles both development and security (DevSecOps).
This will be more and more crucial as more managed containers
and serverless code are used, and it becomes harder for security
teams to directly watch over operating systems.

Least Privilege for Service Accounts
Service accounts are special accounts made for things like computers
or programs, not people. They can get into apps, data, and networks to
do certain jobs. These accounts work quietly in the background and
only act when they’re needed by a person, a program, or another
service. They have special powers that let them do their tasks and
connect to other things on the network.

In lots of companies, these accounts can get into important apps
and data that the business needs. One thing to note is that these
accounts aren’t connected to any specific person, so they can
sometimes slip under the radar and not get managed for a while. Lots
of companies don’t keep track of each special account to say why it’s
there, who can use it, or what it’s connected to.

Difficulties Associated with Service Accounts
Operational
In many organizations, the management of service accounts
presents a significant operational challenge. This challenge stems
from what is commonly referred to as “service account sprawl.”
Essentially, there are too many service accounts scattered across the
system, making it difficult for administrators to keep track of them
all. This situation is exacerbated by the lack of proper
documentation regarding the purpose and usage of each service
account. Without clear documentation, it becomes almost
impossible to understand why a particular service account was
created or who has access to it. This lack of clarity poses risks when
it comes to updating or decommissioning service accounts.
Administrators must tread carefully because removing or modifying
a service account can inadvertently disrupt other services that rely
on it, leading to potential business disruptions. Adding to the
complexity is the phenomenon where accounts initially designated
for human users end up being utilized as service accounts,
particularly for tasks involving robotic process automation (RPA).
These accounts, though established as “user” accounts, are
effectively used for automated tasks within both internal and
external applications. Identifying such accounts amid the myriad of
user and service accounts poses a significant challenge for
organizations.
Cybersecurity
In cybersecurity, service accounts pose a serious risk because they
let attackers get into sensitive data without getting noticed. These
accounts let attackers stay hidden while they keep accessing
important info and moving around in the company’s computer
networks and online spaces without anyone realizing. What’s more,
sometimes these service accounts accidentally have the power to do
things to other service accounts, which makes the situation even
trickier.

For companies, figuring out who has access to what is already
hard enough. But when you add in the possibility that someone could
gain access through a service account and then use that to get into

even more accounts, it becomes a real headache. It’s like trying to
solve a puzzle where the pieces keep changing.
Risk
The risk associated with service accounts lies in the inability to
effectively manage their permissions through a common approach
such as “model-after.” Typically, in managing human-based accounts,
administrators may compare the permissions of similar users to
determine appropriate access levels, a practice known as “model-
after.” However, this approach becomes flawed when applied to
service accounts.

Service accounts vary significantly in their roles, functionalities,
and the level of access they require. Unlike human-based accounts,
which may have some commonalities in terms of access needs based
on job roles or departments, service accounts are often created for
specific tasks or applications, each with its unique set of
permissions. Attempting to apply a “model-after” approach to
service accounts can lead to misconfigurations or inadequate access
control. Since service accounts do not have a consistent pattern or
behavior across the organization, comparing them to others may
result in incorrect assessments of their permission requirements.
This can leave service accounts either over-privileged, with
unnecessary access that increases the risk of security breaches, or
under-privileged, lacking the necessary permissions to perform their
intended tasks efficiently.
Compliance and Regulatory
It’s crucial to handle service accounts properly to follow the rules
about who can access what. Organizations need to show they’re
following the rules for managing the access of service accounts and
the people who can use them. The main idea for managing service
accounts is to have strict, automatic systems in place for handling
them throughout their life cycle. This is the only way to make sure
they meet the rules and regulations. Additionally, it’s important to
check that what service accounts are allowed to do match up with
what they’re doing, to make sure they have the least amount of
access they need.

Best Practices for Managing Service Accounts

1. Always Create New Service Accounts
When you’re making service accounts in the active directory,
make sure to only give them the least amount of access they need.
Don’t give them administrative rights because if someone gets
into a service account, they could take over the whole system.

2. Keep a List of All Service Accounts Updated
Having an updated list of all service accounts is important. It
helps when you need to make new service accounts or find old
ones that aren’t being used anymore. It also helps with checking if
a service account is still needed.

3. Assign Limited Access
Instead of copying old ones, make new service accounts each
time. This is because some old service accounts might have
elevated privileges. If you copy an old one, you might end up
giving a new service account powers it doesn’t need.

4. Avoid Default Groups with Privileges
Putting service accounts in groups with extra powers can be risky.
If someone gets into the group, they could get access to all the
service accounts’ info. And if someone misuses an account, it’s
hard to tell who did it.

5. Establish Password Policy
Many administrators often neglect to update service account
passwords, or they use identical passwords for all accounts. Just
like with regular user accounts, it’s crucial to establish strict
password guidelines for service accounts. These passwords
should be robust, lengthy, and complex to enhance security. Utilize
tools like Privileged Access Management (PAM) or Password
Managers to generate and manage strong passwords, regulate
access, and enforce password policies.

6. Restricting Access to Sensitive Info
Create rules and policies to control who can access sensitive data.
Use ACLs to stop service accounts from getting to critical info.

Also, use ACLs to block service accounts from changing settings or
writing to important files or folders.

7. Auditing
Auditing for all service accounts and things connected to them.
Keep an eye on the logs to see who’s using the service accounts
and what they’re doing with them.

8. Control Where and When They Log In
Decide which computer service accounts can use to keep them
away from secret info. You can also set them to only log in at
certain times. And make sure they don’t stay logged in too long.

9. Remove Unused Accounts
Unused service accounts are often targeted by hackers and can let
them into your network. Plus, having lots of old accounts makes
things messy and harder to manage.

10. Try to Use Managed Service Accounts
These accounts can’t be used to log in directly, so they’re safer.
They also have passwords managed by the system, so nobody
needs to remember or change them.

11. Take Away Extra User Permissions
Check and get rid of any rights users don’t need. You can do this by
setting up a group policy, like one that says “Don’t let people
access this computer from the network” or “Don’t let people log in
for batch jobs.”

IAM Governance and Policy Management in Cloud
Native
Governance
Governance refers to the establishment and enforcement of policies,
procedures, and controls to ensure that organizational objectives are
met efficiently, ethically, and in compliance with laws and regulations.
IAM contributes to governance in several ways:

Policy Enforcement: IAM systems enforce access policies and
controls to ensure that only authorized users have access to the
appropriate resources. This includes authentication mechanisms
like multi-factor authentication (MFA), password policies, and user
provisioning/deprovisioning processes.
Centralized Control: IAM solutions provide centralized
management of user identities, roles, and access rights across the
organization. This centralization enables administrators to define
and enforce consistent access policies and streamline access
management processes.
Auditability and Accountability: IAM systems generate detailed
audit logs and reports of user activities, access requests, and
changes to access permissions. These audit trails help organizations
track user behavior, monitor compliance with access policies, and
demonstrate regulatory compliance during audits.
Identity Life-cycle Management: IAM facilitates the management
of user identities throughout their life cycle, from onboarding to
offboarding. This includes automating processes for user
provisioning, role assignment, access reviews, and deprovisioning to
ensure that access rights are granted and revoked in a timely
manner based on organizational policies and employee status
changes.

Risk Management
Risk management involves identifying, assessing, and mitigating risks
that could negatively impact an organization’s objectives. IAM plays a
crucial role in risk management by addressing security risks
associated with identity and access management:
Access Control: IAM systems enforce access controls to prevent
unauthorized access to sensitive resources and data. This includes
implementing least privilege principles, role-based access control
(RBAC), and segregation of duties (SoD) to ensure that users have
access only to the resources necessary to perform their job
functions.
Anomaly Detection: IAM solutions incorporate features for
detecting anomalous user behavior, such as unusual login times,

locations, or access patterns. By continuously monitoring user
activities and comparing them against baseline behavior, IAM
systems can identify potential security threats, such as insider
threats or compromised accounts, and trigger alerts for further
investigation.
Risk-Based Authentication: IAM systems can implement risk-based
authentication mechanisms that dynamically adjust the level of
authentication required based on the risk associated with the access
request. For example, high-risk activities or access from unfamiliar
locations may trigger additional authentication checks, such as MFA,
to verify the user’s identity and reduce the likelihood of
unauthorized access.

Compliance
Compliance refers to adherence to regulatory standards, industry
guidelines, and internal policies relevant to an organization’s
operations. IAM helps organizations achieve compliance by addressing
requirements related to identity and access management:
Regulatory Compliance: IAM solutions support compliance with
various regulations and standards, such as GDPR, HIPAA, PCI-DSS,
SOX, etc., by providing features and controls that align with
regulatory requirements. This includes enforcing strong
authentication, data encryption, access controls, audit trails, and
privacy protections to ensure the security and confidentiality of
sensitive information.
Access Governance: IAM systems enable organizations to
implement access governance processes, such as access certification
and access reviews, to ensure that users’ access rights are
appropriate and compliant with regulatory requirements. This
involves regularly reviewing and validating user access permissions,
identifying and remedying access violations or excessive privileges,
and documenting access controls for audit purposes.
Data Protection: IAM solutions help protect sensitive data by
controlling access to it based on users’ roles, responsibilities, and
data classification. This includes encrypting data at rest and in
transit, implementing access controls to prevent unauthorized

access or disclosure, and monitoring data access and usage to detect
and respond to security incidents or data breaches.

IAM Standards
1. Gramm-Leach-Bliley Act (GBLA)

GBLA is a federal law that mandates financial institutions to
maintain customer information confidentiality and protect it from
threats. It includes the Financial Privacy Rule, regulating private
financial information collection and disclosure, and the Safeguards
Rule, requiring security programs implementation. Moreover,
Pretexting provisions prohibit accessing private information
through pretenses. IAM significantly boosts compliance by

Providing centralized administration for assigning and
controlling user access rights
Enforcing Segregation of Duties (SoD) policies
Adjusting access rights as job functions change
Revoking user access upon termination
Managing access based on job roles and adhering to the principle
of “least privilege”
Performing periodic audits of access rights and privileges

2. General Data Protection Regulation (GDPR)
GDPR stands for General Data Protection Regulation. It’s a set of
rules designed to protect the privacy and personal data of
individuals within the European Union (EU). GDPR applies to any
organization that collects, processes, or stores personal data of EU
residents, regardless of where the organization is located. It aims
to give individuals more control over their personal data and
requires organizations to implement strong data protection
measures, obtain consent for data processing, and promptly notify
authorities of data breaches. GDPR also outlines individuals’ rights
regarding their data, including the right to access, correct, and
erase their personal information. Failure to comply with GDPR can
result in significant fines and penalties.

GDPR requires organizations to take responsibility for
protecting the personal data of EU citizens. This means they must

https://www.ftc.gov/tips-advice/business-center/privacy-and-security/gramm-leach-bliley-act

have a system in place to control who can access this data, and
Identity and Access Management (IAM) helps make this possible.

IAM also aligns with the GDPR’s principle of “privacy by design,”
which means using strong technology to safeguard data. With IAM,
users only get access to the customer data they need for their job.
This controlled access reduces the chances of a data breach,
lessens the impact if one does happen, and helps avoid expensive
GDPR fines.
Multi-factor Authentication (MFA): This adds extra layers of
security beyond just passwords. Even if someone steals a
password, they’d need additional credentials, making it harder
for them to access customer data.
Adaptive Authentication: This analyzes users’ access requests
and assigns a risk score based on certain factors. If a login seems
suspicious, the system may ask for more credentials or even
block access altogether. This helps protect customer data and
stay compliant with GDPR.

3. Payment Card Industry Data Standard (PCI-DSS)
The Payment Card Industry Data Standard (PCI-DSS) is a set of
rules about handling credit and debit card information. It’s for
businesses that deal with customer credit cards. But it’s also
important for online stores that take card payments.

One specific rule, called requirement 8.1, talks about identity
and access management. It says companies must have rules to
make sure they know who’s using their systems, especially for
employees and administrators.
1. Giving each employee a unique ID for using card data.
2. Controlling what administrators can do with temporary access

to financial databases.
3. Using automated systems to manage accounts, like removing

old ones.
4. Make sure everyone has strong extra security, like using more

than just a password to log in.

4. Sarbanes-Oxley (SOX)
It is a law that affects all financial institutions. It focuses on keeping
financial reports accurate and making sure companies can provide
the right information during audits. One part of SOX, called Section
404, is about making sure data stays safe. Companies have to put
security measures in place and keep records of what they’re doing
to protect financial information.
1. They help manage who can access financial data and control

access to it.
2. Companies can set limits on what people can do with sensitive

financial info, and give temporary access when needed.
3. They make sure that no one person has too much power over

financial data.
4. IAM systems help bring new employees on board smoothly and

remove access when someone leaves.
5. They also keep track of security steps taken and provide proof

that the company is following SOX rules.

5. Health Insurance Portability and Accountability Act (HIPPA)
It is a law that deals with keeping health data safe. It says that
companies must make sure patient information is protected. This
applies to all the technology used in healthcare. In 2013, they added
something called the HIPAA Omnibus Rule. This made the rules
about data protection more up to date. It says that if there’s a
breach, companies must tell patients about it. They also must
control who can access patient data, even if they’re outside
partners or involved in marketing. The rule also covers how
healthcare information is shared electronically.
1. Companies can separate out what different employees can do

with the data to keep it safe.

2. IAM systems automatically update who has access to what as
people’s roles change. They also limit access to patient data as
much as possible.

3. When someone leaves a company, IAM systems make sure their
access is turned off.

4. IAM systems keep track of who’s been accessing patient data
and make sure it’s done securely.

5. They also help partners access data securely without violating
patient privacy.

Building Concrete IAM
For individuals in the technology field, overseeing a strong Identity and
Access Management system has evolved beyond just protecting
resources. It now involves optimizing business processes and fostering
innovation. To excel in this realm, professionals need to synchronize
IAM plans with business objectives, deploy appropriate identity
solutions, and strive for ongoing advancement and creativity. The
following is your all-encompassing manual.
1. Creating the IAM Roadmap to Match Business Goals

Creating a roadmap to align Identity and Access Management
(IAM) with business goals is essential for strategic success. This
roadmap serves as a guide, ensuring that IAM initiatives resonate
with the overarching objectives of the organization. Whether it
involves modernizing an existing IAM system or implementing a
new one, having a clear vision is crucial. Starting with a clear end
goal in mind is fundamental; understanding the organization’s
growth plans, digital transformation objectives, and potential risks
provides a solid foundation. Engaging stakeholders, including
decision-makers, business unit leaders, and end-users, is vital.
Their input helps shape the IAM strategy, ensuring that it meets
both technical requirements and business expectations.

Conducting a thorough risk assessment is also critical. Identifying
potential IAM-related risks allows for the design of strategies to
mitigate these risks while supporting the organization’s broader
business goals. By following these steps, organizations can develop
IAM initiatives that are closely aligned with their strategic
objectives, fostering efficiency, security, and growth.

2. Integrating Identity Tools
Now, let’s talk about putting these identity tools into action. When
choosing which tools to use, make sure they fit well with how your
company operates and can grow as your company grows. Choose
wisely. There are lots of different identity tools out there like Single
Sign-On (SSO), multi-factor authentication (MFA), and user
provisioning tools. Make your decision based on what your
business needs and what technology your company already uses.

Integration is important. It’s crucial that these identity tools
can easily work together with the other software and systems your
company uses, like cloud platforms or other IT tools. This makes
things more secure and easier for everyone to use. Test things out
before rolling out these tools to everyone, it’s a good idea to test
them out first. This might mean trying them in a small part of the
company to see how they work in practice. It helps to catch any
problems early and make sure everything runs smoothly when you
do put them in place for everyone.

3. Moving Forward from Implementing Identity Tools
Attention should now turn toward making IAM initiatives
operational. This involves several key steps.

Firstly, knowledge dissemination is essential. Regular training
sessions should be conducted to ensure that employees are
familiar with the new IAM processes. A team that is well-informed
is less likely to overlook security measures, reducing the risk of
breaches.

Secondly, audits play a crucial role in operationalizing IAM.
Consistent audits not only ensure compliance with regulations but
also reveal any potential vulnerabilities in the system, allowing for
timely corrections.

Lastly, being prepared for unexpected events is vital. Having a
structured incident response plan in place is necessary. This plan
should include clear protocols for addressing security breaches,
outlining immediate mitigation steps and communication
strategies to minimize the impact of any incidents.

4. Progressing IAM Through Maturity and Innovation
It is crucial in the ever-evolving landscape of technology and
security. This entails staying abreast of the latest developments to
ensure the continued relevance and effectiveness of IAM strategies.
Regular reviews of IAM approaches are necessary to integrate
emerging technologies and methodologies effectively.
Furthermore, soliciting feedback from end-users and IT
professionals facilitates the identification of practical insights and
areas for improvement. In addition, the integration of Artificial
Intelligence (AI) and Machine Learning (ML) marks a significant
advancement in IAM capabilities. AI and ML technologies offer
enhanced threat detection, predictive analytics, and insights into
user behavior, enabling IAM programs to operate at a higher level
of efficiency and security. Embracing these innovations ensures
that IAM remains adaptive and resilient in safeguarding digital
assets and supporting business operations effectively.

Summary
In this chapter, we learned about managing who can access what in
cloud systems, which is called Identity and Access Management (IAM).
It’s like making sure only the right people can get into different rooms
of your digital house to keep it safe. We found out that IAM is super
important for keeping digital stuff secure.

Then, we talked about the best ways to handle service accounts and
API access in cloud setups. It’s like giving each person their own special
key to open certain doors in your house. By doing this right,
organizations can make sure only the right stuff gets accessed,
stopping bad guys from getting in.

Lastly, we looked into IAM governance and policies in cloud
environments. It’s like having rules for everyone living in your digital

house to follow. By having clear rules and controls, just like house rules,
organizations can keep their digital world safe and organized.

Overall, this chapter gave us a good understanding of IAM basics,
how to manage service accounts and API access, and why having rules
and controls is important in cloud environments. Following these ideas
helps keep digital stuff safe and secure.

(1)

© The Author(s), under exclusive license to APress Media, LLC, part of Springer
Nature 2024
M. I. Ahmed, Cloud-Native DevOps
https://doi.org/10.1007/979-8-8688-0407-6_9

9. Threat Analysis for Cloud-Native
Deployments
Mohammed Ilyas Ahmed1

Boston, MA, USA

“Threat Analysis for Cloud-Native Deployments: Because in
the cloud, even rainbows need protection from the storm!”

Cloud-native deployments have revolutionized the way
organizations build, deploy, and scale applications, offering
unprecedented agility and cost-effectiveness. However, with these
advancements come new security challenges, as traditional
approaches to threat mitigation often fall short in the dynamic and
distributed nature of cloud-native environments.

In this chapter, we will discuss into the intricacies of threat analysis
specifically tailored to cloud-native deployments. We will delve into the
unique characteristics of cloud-native architectures, such as
containerization, microservices, and orchestration platforms, and
uncover the vulnerabilities and attack vectors that adversaries may
exploit.

Our exploration will extend beyond mere identification of threats.
We will also equip you with strategies and methodologies to assess
risk, prioritize mitigation efforts, and fortify your cloud-native
infrastructure against potential attacks. Whether you are an IT
professional responsible for architecting secure cloud environments, a
cybersecurity specialist tasked with defending against emerging

https://doi.org/10.1007/979-8-8688-0407-6_9

threats, or a business leader seeking to ensure the resilience of your
digital operations, this chapter will provide valuable insights and
actionable guidance.

By the end of this journey, you will emerge with a comprehensive
understanding of the threat landscape surrounding cloud-native
deployments and the confidence to implement robust security
measures to protect your organization’s assets in the ever-evolving
digital realm.

In this chapter, we will be encompassing the following topics:
Understanding Cloud-Native Security Challenges
Threat Vectors in Microservices Architectures
Security Testing and Validation
Security Controls and Countermeasures

Understanding Cloud-Native Security Challenges
Cloud-native security is like building a strong fence around everything
you have stored and running in the cloud. It’s not just about protecting
the buildings (like apps and platforms), but also the valuable things
inside (like data). By having this fence, we’re keeping out anything bad
that could try to sneak in and cause trouble. It’s all about making sure
everything in the cloud is safe and sound from top to bottom, so you
can trust it to work smoothly and keep your information secure.

The 4C’s of Cloud-Native Security – Cloud, Cluster, Container, and
Code – form the cornerstone of any robust security strategy tailored
for cloud environments. These elements, when considered collectively,
create a layered defense mechanism, addressing a spectrum of security
challenges inherent in cloud computing. While cloud service providers
play a role in securing certain aspects of an enterprise cloud-native
architecture, it’s crucial for organizations to recognize their own
responsibilities within the shared security model of the cloud. As
companies develop cloud-native applications, security must be
integrated into every stage of the development life cycle. Mere
protection of the cloud layer is insufficient; each layer presents its own
set of potential vulnerabilities and attack vectors, demanding tailored
safeguards to mitigate cyber threats effectively. By understanding the
significance of the 4C’s, organizations can craft comprehensive

security strategies and select appropriate cloud-native security
solutions to safeguard their digital assets effectively.

Figure 9-1 Cloud-native security 4C’s

Code
Ensuring the safety of the code involves employing standard security
practices, such as monitoring where the code is deployed and
conducting regular checks to identify any security issues within the
programs. Throughout the entire development process, scrutinizing
the code can help address numerous security concerns in this domain.
Integrating tools that examine the code directly within the
development pipeline can identify any security gaps in newly
developed code. Additionally, utilizing Static Application Security
Testing (SAST) and Dynamic Application Security Testing (DAST) tools
can further bolster security measures by scrutinizing the code for
vulnerabilities and checking the security of external dependencies
used by the code. These tools play a crucial role in identifying and
addressing potential security weaknesses, ensuring the robustness of
the application against threats and attacks.

Container
In addition to scrutinizing code for vulnerabilities, it’s crucial to check
for weaknesses and patch security holes in applications and their
container images to maintain the safety of your cloud system. Many
companies rely on container images from extensive libraries or lists,
but not all of these images are guaranteed to be secure. To mitigate
risks, it’s advisable to utilize container images sourced from reputable
and trusted sources, which have been thoroughly vetted and approved
by security experts. By leveraging trusted container images, you
increase the likelihood of maintaining the security of your containers
and reducing the risk of potential breaches or exploits. Furthermore,

integrating image and container scanning tools into your development
and deployment processes can help identify and address security
vulnerabilities, ensuring the integrity and safety of your cloud
environment. These tools play a crucial role in proactively identifying
and mitigating security risks associated with containerized
applications, contributing to overall system security and resilience.

Cluster
When companies create and take care of their cloud-native apps, they
have to make sure to keep their Kubernetes clusters safe and control
who can use them. Keeping Kubernetes clusters secure is really
important because each cluster has lots of little parts called “pods” that
talk to each other. If a bad person gets into one pod, they could mess up
other parts of the cluster, which could make the whole app unsafe. By
setting strong rules for how the pods talk to each other, we can make
sure only the right things are happening.
1. Define Strong Communication Rules: Establish robust guidelines

dictating how pods communicate with each other, ensuring that
only authorized interactions occur.

2. Implement Message Encryption: Encrypt all messages exchanged
between pods to prevent unauthorized access and ensure data
confidentiality.

3. Enforce Authentication Mechanisms: Implement authentication
mechanisms to verify the identity of users or services attempting
to access parts of the application, thereby restricting access to
sensitive resources to only authenticated entities.

4. Role-Based Access Control (RBAC): Employ RBAC policies to
restrict access privileges, granting users access only to the parts of
the cluster necessary for their specific roles. Additionally,
safeguard important credentials and secrets to prevent
unauthorized access or misuse.

Cloud

1. In the world of cloud computing, there’s a shared responsibility
model. This means that while the cloud service providers like
Amazon Web Services, Microsoft Azure, or Google Cloud take care
of securing the actual infrastructure that runs the cloud, it’s up to
your company to make sure everything you put in the cloud is
secure too.

2. Well, your company is responsible for things like setting up the
cloud services properly, making sure you’re not using default
settings or easy-to-guess passwords, controlling who has access to
what, and making sure any automated processes you have in place
are doing what they’re supposed to do. It’s also about keeping an
eye on everything happening in your cloud setup so that if
something fishy is going on, you can catch it and deal with it
quickly. Essentially, it’s your job to keep your stuff safe and sound
once it’s up in the cloud.

Type of Threats in Cloud Native
1. Insecure Application Features

Unauthorized access to applications often occurs when APIs and
old features aren’t properly secured. Some of these features are
easily accessible to anyone online, which can let them bypass the
security and get into parts of the app they shouldn’t. To overcome
this, organizations need to set up security measures that make
sure only the right people can access different parts of the app. This
way, unauthorized access is blocked.

2. Weak Password Protection
A lot of times, hackers can get into accounts because they figure
out the passwords. This happens a lot when people use the same
password for lots of different websites. If there’s no extra security
like asking for a code from your phone, it’s easier for hackers to get
in.

To prevent this, it’s important to add extra layers of security for
logging in. Different people need different levels of security, so

having options like sending a code to your phone can help stop
attacks that only need one password.

3. Improper Setup
This happens when developers don’t set things up right or forget to
change the default settings when they put their apps online.
Sometimes, they just leave everything as it is, which makes it easy
for hackers to break in and get access to stuff they shouldn’t. To
avoid this, developers need to make sure they set things up
properly before putting their apps online. Changing the default
settings and getting rid of any passwords that are already there can
help keep things safe.

4. Limited Oversight
When organizations use cloud services from other companies, they
don’t have as much control over what happens if there’s an attack.
They have to work with the cloud company to fix things, which can
take a long time. To have more control, organizations can choose to
use cloud services that they can set up on their own servers if
possible. Some cloud companies offer this option, which can help
organizations respond faster to attacks.

5. Confidentiality Risks
Since cloud companies have access to the data they store, it’s hard
for organizations to keep their data safe. Any employee at the cloud
company could look at or move an organization’s data without
them knowing. To deal with this, organizations need to regularly
check who’s accessing their data, keep an eye on what’s happening
in their systems, and only give permission to move data to trusted
sources.

6. Detailed Privilege and Key Management
Administrators can establish specific roles for cloud users,
allowing them to assign permissions that match their needs and
expectations precisely. Less experienced users may accidentally
delete or store database resources, operations they typically
shouldn’t perform. This misunderstanding can pose a security
threat at the application level.

7. Vulnerable Interfaces/APIs
Cloud infrastructure heavily relies on APIs for automation and
seamless integration among various services and resources.
Despite being well-documented for ease of use, these APIs can be
reverse-engineered by attackers. This exposes a risk wherein
attackers can exploit documented API methods to gain
unauthorized access or extract data if the APIs lack adequate
security.

8. Malicious Insiders
Malicious insiders encompass users with malicious intent who
possess privileges to access cloud resources, as well as benign
users whose accounts have been compromised by attackers.
Preventing insider threats in the cloud presents additional
challenges. Cloud-based infrastructure is accessible from the public
Internet, making it simpler for attackers to exploit compromised
accounts. Security misconfigurations can enable malicious users to
escalate privileges across various cloud deployments.

Challenges in Cloud-Native Security
1. Developers Prefer Not to Focus on Security

Security has become increasingly dynamic in today’s technology
landscape, especially with the advent of cloud computing, which
grants developers unprecedented control over infrastructure
deployment and management. As a result, companies are faced
with the challenge of seamlessly integrating security awareness
into the development process.

Traditionally, there was a distinct separation between roles in
software development and network management. This division
often led to discussions centered around the balance between what
could be achieved technically versus what should be done from a
security standpoint. However, with the rise of cloud computing,
these conversations tend to be overlooked. Developers, while
skilled in creating software solutions, typically lack expertise in
security practices. Consequently, security teams are tasked with

incorporating effective security measures into developers’
workflows without causing disruptions or delays.

In order to address this gap, there needs to be a shift in the
approach to security. Rather than enforcing strict control over
development processes, security measures should empower
development teams to make informed decisions about security.
This means providing developers with the necessary tools,
resources, and education to integrate security considerations
seamlessly into their work, ensuring that security becomes an
intrinsic part of the development life cycle rather than an
afterthought.

2. Deciding What Risks Are Acceptable
When it comes to navigating the challenges presented by cloud-
native environments, one of the key questions that arises is How
do we determine what risks are okay to take?

In the realm of security, teams are confronted with a myriad of
questions as they assess the risks associated with cloud-native
deployments.

Are containers inherently secure, or do they require additional
measures to ensure their safety?
Why is it often difficult to detect attacks targeting containers,
and what can be done to improve visibility in this regard?
What vulnerabilities are inherent in serverless computing
frameworks, and how can these be mitigated?
Are we confronting a crisis in the software supply chain, and
what vulnerabilities does this pose to our IT infrastructure?
In instances where default authentication and authorization
settings are disabled, how should organizations proceed to
ensure the security of their systems?

In this dynamic landscape, DevOps teams strive for agility
and rapid deployment, while security teams aim to safeguard
business assets without impeding progress. However, it’s
essential to recognize that this is not a matter of one team
versus the other: instead, it’s about striking a delicate balance
between speed and security. Achieving this balance requires a
thorough understanding of the risks that an organization is
willing to tolerate. Once these acceptable risks are identified, the

focus shifts to implementing measures to mitigate the most
critical vulnerabilities effectively. By prioritizing safeguards and
aligning them with business objectives, organizations can
navigate the complexities of cloud-native security with
confidence and resilience.

3. Keeping Up with Rapidly Changing Technology
One of the biggest challenges facing security teams today is the
rapid evolution of technology. It seems like every day there’s a new
development, whether it’s Kubernetes for managing containerized
applications, the widespread adoption of containerization itself, or
the rise of serverless computing. With these innovations
constantly emerging, it’s difficult for security measures to keep
pace.

In this fast-moving landscape, security teams can often find
themselves playing catch-up, struggling to adapt to new
technologies and the security implications they bring. The speed at
which new frameworks and tools are introduced can leave security
practices lagging, creating gaps in defenses that attackers may
exploit. To address this issue, security teams must collaborate
closely with DevOps teams and other stakeholders right from the
beginning of any technological implementation. By integrating
security considerations into the development process early on,
teams can proactively address potential vulnerabilities and
mitigate risks before they escalate.

Furthermore, empowering developers with the right tools and
resources is essential. Developers are often focused on delivering
features and functionality quickly, and introducing security tasks into
their workflow can sometimes slow down the development process.
Therefore, providing developers with tools that enable them to make
informed security decisions efficiently is key to maintaining both
speed and security in the development life cycle. Overall, the key to
keeping up with the rapid pace of technological change lies in proactive
collaboration, early integration of security measures, and providing
developers with the support they need to prioritize security without
sacrificing efficiency.

3R’s of Cloud-Native Security
The 3R’s of security represent an essential framework for ensuring the
safety of cloud deployments. This approach revolves around the
fundamental principle that the longer attackers have to exploit
vulnerabilities, the greater the potential damage they can inflict.
Therefore, it’s crucial to adopt a proactive stance, embracing change
and responding swiftly to threats. Now, let’s delve deeper into
understanding each of the 3R’s.

Figure 9-2 Cloud-native security 3R’s

Recognize
Identifying threats in a cloud environment requires a proactive
approach that combines comprehensive understanding, threat
intelligence utilization, and regular security assessments.
Organizations must stay informed about emerging attack vectors,
known vulnerabilities, and suspicious activity patterns to
preemptively address potential risks. By implementing robust
monitoring systems and user behavior analytics, they can detect
anomalies and unauthorized access attempts in real-time.
Additionally, proactive threat hunting activities and collaboration
with industry peers enhance the collective ability to identify and
mitigate security threats effectively. This multi-faceted approach
enables organizations to strengthen their security posture and
safeguard their cloud infrastructure against evolving threats.
Respond

Once a security threat has been identified, the next step is to
respond swiftly and effectively. This involves implementing
appropriate security measures and protocols to contain the threat
and mitigate its impact. Depending on the nature and severity of the
threat, response strategies may include deploying security patches
and updates, isolating compromised systems, and implementing
additional security controls to prevent further exploitation. A rapid
and coordinated response is crucial for minimizing the damage
caused by security incidents and restoring normal operations as
quickly as possible.

Imagine a scenario where a cloud security team detects unusual
activity indicating a potential data breach. Upon identification of this
threat, they swiftly initiate their response protocol. First, they
deploy security patches and updates to vulnerable systems to
prevent further exploitation. Simultaneously, they isolate the
compromised systems from the rest of the network to contain the
threat’s spread. Additionally, they enhance security controls, such as
implementing multi-factor authentication or tightening access
controls, to fortify their defenses against similar attacks. This rapid
and coordinated response aims to minimize the impact of the
breach, safeguard sensitive data, and restore normal operations
promptly, emphasizing the importance of swift action in mitigating
security threats in the cloud environment.
Recover
In the aftermath of a security incident, the focus shifts to recovery
and resilience-building. This involves assessing the extent of the
damage, restoring affected systems and data, and implementing
measures to prevent similar incidents from occurring in the future.
Organizations should conduct thorough post-incident reviews to
identify root causes, lessons learned, and areas for improvement. By
leveraging insights gained from these reviews, organizations can
refine their security practices, strengthen their defenses, and
enhance their overall resilience against future security threats.

Security Controls in Cloud Native
Cloud-native security controls encompass various measures aimed at
safeguarding cloud-native environments against cyber threats. These

controls can be broadly categorized into the following types.
1. Deterrent Controls

Deterrent controls serve as a warning system, alerting users when
their actions are potentially harmful. By logging attempted actions
in application logs, these controls discourage users from engaging
in malicious behavior unintentionally. They help prevent security
breaches and data leakage by blocking unauthorized actions.

deterrent control: Captcha verification for
suspicious activities
def captcha_verification(user_action):
 if is_suspicious_activity(user_action):
 require_captcha_verification()

def is_suspicious_activity(user_action):
 # Check if the user action is suspicious
 return user_action ==
"multiple_failed_login_attempts"

def require_captcha_verification():
 # Require captcha verification for
suspicious activities
 print("Please verify captcha to proceed.")

2. Preventive Controls
Preventive controls are proactive measures designed to automate
security defenses and thwart cyber-attacks before they occur.
These controls may include automated scripts, security software,
or policies that reduce the attack surface area and enforce network
access control, minimizing the likelihood of successful attacks.

Preventive control: Automated patch management
def automate_patch_management():
 # Automatically apply security patches to
prevent vulnerabilities
 apply_security_patches()

def apply_security_patches():
 # Apply security patches to vulnerable
systems
 print("Applying security patches")

3. Detective Controls
Detective controls focus on identifying and monitoring potential
security threats and intrusions within cloud-native environments.
Intrusion detection systems, software, policies, and procedures are
used to monitor applications, servers, open ports, and user
behavior for any signs of intrusion or malicious activity. The goal is
to detect and respond to security incidents promptly to mitigate
their impact.

Detective control: Log monitoring for abnormal
behavior
def monitor_logs():
 # Continuously monitor logs for abnormal
behavior
 if detect_abnormal_behavior():
 alert_security_team()

def detect_abnormal_behavior():
 # Check logs for signs of abnormal activity
 return is_abnormal_behavior_detected()

def alert_security_team():
 Alert the security team about detected
abnormal behavior
 print("Abnormal behavior detected: Notifying
security team.")

4. Corrective Controls
Corrective controls are activated in response to a security breach
or incident. These controls aim to remediate the effects of the
breach and restore the security posture of the environment.
Examples include blocking compromised ports, blacklisting

intrusive IP addresses, or halting the execution of malicious
programs to prevent further damage.

Corrective control: Data rollback in case of
breach
def rollback_data():
 # Roll back data to a previous secure state
in case of breach
 restore_from_backup()

def restore_from_backup():
 # Restore data from backup to mitigate the
impact of breach
 print("Restoring data from backup")

5. Workload Controls
Workload controls focus on managing and securing containerized
workloads within cloud-native environments. This includes
managing container images, approved packages, and secure
libraries and repositories. Workload controls ensure that data is
continuously tracked and controlled, particularly in distributed
environments with multiple clients using different versions of
workloads.

Workload control: Continuous vulnerability
scanning
def vulnerability_scanning():
 # Continuously scan for vulnerabilities in
container images
 if detect_vulnerabilities():
 update_containers()

def detect_vulnerabilities():
 # Detect vulnerabilities in container images
 return is_vulnerability_detected()

def update_containers():
 # Update containers with patched versions to
address vulnerabilities

 print("Updating containers to address
vulnerabilities")

6. Identity and Access Management (IAM) Controls
IAM controls are centered around managing user identities and
controlling access to resources within cloud-native environments.
These controls prevent unauthorized access and privilege
escalation by enforcing access policies and permissions. IAM
controls play a crucial role in maintaining the security and integrity
of cloud-native environments by ensuring that only authorized
users have access to sensitive resources.

IAM control: Role-based access control (RBAC)
def implement_RBAC():
 # Implement role-based access control to
manage user permissions
 assign_roles()
 enforce_RBAC_policies()

def assign_roles():
 # Assign roles to users based on their
responsibilities
 print("Assigning roles to users")

def enforce_RBAC_policies():
 # Enforce RBAC policies to control access
permissions
 print("Enforcing RBAC policies")

Threat Vectors in Microservices Architectures
Threat vectors in microservices architectures within cloud-native
environments encompass various avenues through which malicious
actors can exploit vulnerabilities to compromise the security of
systems. These threat vectors pose significant risks to the
confidentiality, integrity, and availability of cloud-native microservices.

Threat Modeling with STRIDE
Before we proceed with the integration process, let’s take a moment to
review the essence of STRIDE threat modeling. STRIDE is an acronym
encompassing six distinct threat categories utilized for assessing
potential risks within software systems
Spoofing Identity
This threat category involves situations where attackers attempt to
impersonate legitimate users, systems, or entities within the
software system. Examples include forging authentication tokens,
manipulating user credentials, or exploiting weaknesses in identity
verification mechanisms. By spoofing identity, attackers may gain
unauthorized access to sensitive data or resources, leading to
potential security breaches and unauthorized actions.
Tampering with Data
Tampering with data refers to unauthorized alterations or
modifications made to data within the software system. Attackers
may tamper with data to manipulate system behavior, compromise
data integrity, or inject malicious payloads. Common examples
include SQL injection attacks, data manipulation attacks, or altering
data in transit. Tampering with data can lead to severe
consequences, including data corruption, unauthorized access, or
the execution of malicious code.
Repudiation
Repudiation threats involve situations where entities attempt to
deny or dispute their actions within the software system. Attackers
may engage in repudiation to evade accountability, deny
involvement in malicious activities, or dispute the validity of
transactions. Examples include falsifying audit logs, deleting
transaction records, or manipulating timestamps to conceal
malicious actions. Repudiation threats can undermine the integrity
of audit trails, hinder forensic investigations, and impede efforts to
hold individuals accountable for their actions.
Information Disclosure
Information disclosure threats involve the unauthorized exposure or
leakage of sensitive information within the software system.
Attackers may exploit vulnerabilities to access confidential data,

such as personally identifiable information (PII), financial records, or
proprietary business data. Common attack vectors include insecure
data storage, inadequate encryption, or insufficient access controls.
Information disclosure can have severe consequences, including
privacy breaches, regulatory non-compliance, and reputational
damage.
Denial of Service
Denial of Service (DoS) threats involve attacks aimed at disrupting
or degrading the availability of services within the software system.
Attackers may overwhelm system resources, exhaust bandwidth, or
exploit vulnerabilities to render services inaccessible to legitimate
users. Distributed Denial of Service (DDoS) attacks, network
flooding, or resource exhaustion attacks are common examples of
DoS threats. Denial of Service attacks can result in service downtime,
loss of revenue, and damage to the organization’s reputation.
Elevation of Privilege
Elevation of Privilege threats involve unauthorized attempts to gain
elevated access rights or permissions within the software system.
Attackers may exploit vulnerabilities to escalate their privileges,
bypass access controls, or gain administrative privileges. Examples
include privilege escalation exploits, backdoor access, or abuse of
misconfigured permissions. Elevation of Privilege attacks can lead to
unauthorized access to sensitive data, unauthorized system
modifications, or compromise of system integrity.

By employing the STRIDE threat modeling framework, software
developers and security professionals can systematically identify,
assess, and mitigate potential security threats and vulnerabilities
within software systems. This proactive approach helps enhance the
overall security posture of applications and mitigate risks before they
can be exploited by malicious actors.

Security Testing and Validation
Security validation lets companies safely test attacks in their setup and
see if they stop them. It’s like a test that gives solid proof of whether
the security measures are doing their job. By testing security, they can
make sure their systems meet all the requirements and truly keep their

customers safe. Even if a company has lots of security tools, they won’t
know if they work until they face a cyber-attack. Some tools might help,
but they might not cover all the bases. So, it’s crucial to test and
validate security measures to make sure they’re protecting the
company.

Red Teaming in Cloud Native
Red Teaming is an advanced way of testing security that’s super smart.
Instead of just finding weak spots like regular tests, Red Teaming acts
like real bad guys to see how well a company’s defenses work. It checks
everything like how people work, the rules they follow, and the tech
they use to make sure everything’s safe.

When companies use a cloud-native setup, they get lots of benefits
like being able to change things easily and save money. But it also
brings some tricky security problems. Cloud systems are always
changing, which makes it hard to keep them safe. Some big issues are
hackers getting into data, settings not being set up right, not
controlling who can access what, and not knowing exactly what’s
happening in the cloud.
Authentic Simulations
Red Team exercises mimic the strategies employed by real threat
actors, providing an authentic assessment of an organization’s
security readiness in a dynamic cloud setting. This enables
organizations to pinpoint and rectify vulnerabilities that might be
overlooked in traditional security assessments.
Comprehensive Assessment
Red Teaming surpasses mere technical vulnerabilities by evaluating
the effectiveness of people, processes, and technologies. This
comprehensive approach ensures a thorough evaluation of an
organization’s overall security stance in the cloud.
Continuous Enhancement
Red Teaming isn’t a one-off activity; it’s an ongoing process. Regular
Red Team assessments help organizations stay proactive against
emerging threats, adapt to evolving attack tactics, and continually
enhance their cloud security measures.
Spotting Weaknesses in Cloud Configurations

Misconfigurations are a primary cause of cloud security breaches.
Red Teaming can pinpoint weaknesses in cloud configurations,
ensuring that organizations adhere to best practices for securing
their cloud assets.
Strengthening Incident Response Abilities
Red Teaming exercises often involve simulated incident scenarios,
enabling organizations to test and refine their incident response
capabilities. This proactive approach assists organizations in
minimizing the impact of actual incidents by refining their response
protocols.

Implementation Steps
1. Understanding Cloud Security

The corporation collaborated with its cloud service provider (CSP)
to thoroughly check its cloud setup. They looked into what security
tools the CSP offers and where the organization needs to take care
of security themselves.

2. Making Realistic Threats
The Red Team, a group of security experts, worked closely with the
organization’s own security team to create fake attack situations.
They made scenarios that copied how real attackers might try to
mess with the organization’s cloud stuff, like sending fake emails or
trying to break into accounts.

3. Keeping Skills Sharp
The organization knew their Red Team needed to stay sharp, so
they gave them extra training. This included learning about cloud
security, the latest threats, and practicing with new tools.

4. Using Tools to Help
To test things at a big scale, the organization used special tools to
make fake attacks on their cloud setup. This helped them find
problems faster and see if their defenses could handle big attacks.

5. Trying Out the Plans

The Red Team put their fake attack plans into action, trying to
break into the organization’s cloud stuff for real. They tried things
like stealing important data or messing up important services.

6. Testing What to Do in Emergencies
While doing fake attacks, the organization also checked how well
they could respond if something bad happened. This helped them
see if they were ready to handle real emergencies and fix problems
quickly.

7. Finding Problems and Fixing Them
After all the tests, the Red Team provided the organization with
detailed reports outlining the problems found and how bad they
could be. This helped the organization know which problems to fix
first to keep their cloud stuff safe.

Best Practices in Cloud-Native Security
1. Ensure Hygiene and Maintain Visibility

Cloud deployments have numerous transient components,
including compute instances, containers, data volumes, serverless
functions, and managed databases or data stores. It’s crucial to
maintain an accurate inventory of cloud assets, understanding who
deployed them, their functions, and whether they pose any security
risks or vulnerabilities.

2. Use Identity and Access Management (IAM)
IAM solutions play a critical role in safeguarding cloud systems
since users can access cloud resources from anywhere. IAM offers
insight into users’ roles and permissions within the cloud
environment. You can monitor user activity and set alerts for
suspicious behavior. Additionally, most IAM systems offer multi-
factor authentication (MFA) and single sign-on (SSO) capabilities.

3. Protect Credentials to Mitigate Social Engineering
To mitigate phishing and other social engineering attacks, employ
security measures such as educating users against sharing
credentials, implementing email and endpoint protection, setting

alerts for login attempts from different locations or multiple IPs,
enforcing session timeouts, and mandating regular password
changes. Additionally, prioritize the use of multi-factor
authentication (MFA).

4. Keep Services and Cloud Systems Updated
Keep in mind that the cloud provider does not shoulder
responsibility for workloads. Except for specific managed services
like DBaaS, your organization is accountable for patching and
updating software such as operating systems, databases, and
content management systems. Utilize automated tools to detect
vulnerabilities in cloud systems and aim to automate security
updates for swift remediation.

Conduct Due Diligence
When utilizing cloud services, software as a service (SaaS), or other
development components, conduct security reviews and test resources
for security, akin to testing your own systems. While cloud provider
software is typically of high quality and secure, the common practice of
employing third-party software on the cloud, such as marketplace
images, container images, or other third-party services, necessitates
caution.

Audit and Improve Configurations
Securing configurations once is insufficient. Cloud environments
undergo constant changes, demanding continuous monitoring to verify
their safety. With every new compute instance or data volume created,
scaled, or replicated, there’s potential for misconfiguration that may
pose security risks.

Security Controls and Countermeasures
Securing data, apps, and infrastructure in cloud setups is super
important. Cloud systems have different parts like the basic setup, the
platform where apps run, the apps themselves, and the data they use.
Let’s talk about how to make each of these parts safe and sound.

1. Infrastructure Layer
Identity and Access Management (IAM): This involves creating
and managing user identities, assigning roles, and setting
permissions for accessing cloud resources.

Network Security: Securing the network infrastructure using
techniques like firewalls, VPNs, and secure connectivity protocols
to protect data in transit.

Encryption: Encrypting data at rest and in transit to prevent
unauthorized access. This can be achieved using encryption keys
and secure communication protocols.

Logging and Monitoring: Implementing logging and
monitoring solutions to track activities, detect anomalies, and
respond to security incidents effectively.

2. Platform Layer
Container Security: Ensuring the security of containerized
applications by scanning images for vulnerabilities, configuring
runtime security policies, and managing access controls.

Service Mesh: Implementing a service mesh to manage secure
communication between microservices, including encryption,
authentication, and access control.

Authentication and Authorization: Implementing strong
authentication mechanisms and access controls to ensure that only
authorized users and services can access platform resources.

3. Application Layer
Secure Coding Practices: Following secure coding standards and
best practices to develop applications that are resilient to common
security threats such as injection attacks and cross-site scripting.

Web Application Firewall (WAF): Deploying a WAF to protect
web applications from various attacks, including SQL injection, XSS,
and CSRF.

API Security: Implementing security measures such as
authentication, authorization, and rate limiting to protect APIs
from abuse and unauthorized access.

4. Data Layer

Data Encryption: Encrypting sensitive data at rest using
encryption algorithms and managing encryption keys securely.

Access Control: Implementing access controls and data
governance policies to restrict access to sensitive data based on
user roles and permissions.

Data Masking/Anonymization: Masking or anonymizing
sensitive data in non-production environments to prevent
unauthorized access and maintain data privacy.

5. DevOps and CI/CD Pipeline
Security Automation: Integrating security checks and controls
into the CI/CD pipeline to automate security testing, vulnerability
scanning, and compliance checks.

Immutable Infrastructure: Adopting immutable
infrastructure patterns to minimize security risks by ensuring that
infrastructure components are immutable and reproducible.

Continuous Monitoring: Implementing continuous monitoring
solutions to detect security vulnerabilities, anomalies, and
potential threats in real-time.

Key Management in Cloud Native
Cryptographic or encryption keys management involves overseeing
their entire life cycle, from creation to destruction, along with ensuring
their secure storage and protection. Key management encompasses
various activities.
Key Distribution: Authorized applications, systems, and users
should have a mechanism to request and retrieve keys for
encryption and decryption purposes.
Key Activation: Keys can be activated either at the time of creation
or later, either manually or automatically. If multiple copies of a key
are activated, they need to be properly stored and monitored.
Key Revocation: If a key is compromised, it may need to be revoked
to prevent further use in encryption or decryption. However, if the
key has already been used for encryption, it may need to be retained
temporarily for decryption purposes.

Key Generation: Encryption keys are created using a pseudo-
random number generator, with each key being meticulously tracked
and audited to maintain accountability.
Key Rotation: It’s advisable to periodically rotate keys to enhance
security. Rotations can occur on a predefined schedule or manually
by administrators. When replacing an old key with a new one, the old
key must be deactivated and retained for decryption.
Key Destruction: In certain cases, keys may need to be permanently
removed, necessitating the deletion of every instance of the key.
Key Expiration: Some encryption keys are created for specific
durations, such as one-time encryption keys used for envelope
encryption. Expired keys should be retained for decryption until they
are no longer needed.
Key Storage: Generated keys must be securely stored and backed up
to prevent loss, tampering, or unauthorized access. Additionally,
passwords and passphrases used for encryption should also be
securely stored.

While it’s conceivable to manage these tasks manually, scaling and
ensuring CIA (Confidentiality, Integrity, Availability) require
automation through a robust key management system. Relying solely
on manual methods, such as writing down keys on sticky notes or
storing them in text files on laptops, is inadequate, especially in
enterprise environments and industries with highly sensitive data. In
such contexts, there’s often a hierarchical structure of keys encrypting
other keys, further emphasizing the need for effective key management
practices.

Summary
In this chapter, we explored how to keep cloud-based systems safe. We
talked about how these systems have changed the way organizations
work, making things quicker and cheaper. But, they also bring new
problems with security, as old ways of keeping systems safe don’t
always work well with the new cloud-based systems.

We looked at the problems that can come up with keeping cloud-
based systems safe. We talked about how these systems are set up and

how they work. We found out where bad actors might try to attack
these systems.

We didn’t just talk about the problems, though. We also talked about
how to figure out which problems are most serious and how to fix
them. Whether you’re someone who sets up these systems, someone
who protects them from bad guys, or someone who runs a business
that uses them, we gave you some good advice on what to do.

We talked about a lot of things in this chapter, like what makes
keeping cloud-based systems safe so hard, where bad guys might try to
attack, how to check that everything is safe, and what you can do to
keep your systems safe.

With all this information, you’re in a better position to keep your
cloud-based systems safe from bad guys. As we finish up this chapter,
we encourage you to keep these ideas in mind and make sure your
systems are as safe as they can be.

(1)

© The Author(s), under exclusive license to APress Media, LLC, part of Springer
Nature 2024
M. I. Ahmed, Cloud-Native DevOps
https://doi.org/10.1007/979-8-8688-0407-6_10

10. Future Trends in Cloud Native
Mohammed Ilyas Ahmed1

Boston, MA, USA

“Future Trends in Cloud-Native: Transforming cloud dreams
into digital realities!”

In this chapter, we will discuss a journey to explore the cutting-edge
developments and emerging paradigms shaping the landscape of
Cloud-Native DevOps. As technology continues to evolve rapidly,
organizations and practitioners must stay informed about the latest
trends and innovations to maintain a competitive edge and effectively
leverage the power of the cloud.

Throughout this chapter, we will delve into various areas poised to
revolutionize the way we design, deploy, and manage applications in
cloud-native environments. From the rise of serverless computing and
the advent of edge computing to the integration of artificial
intelligence and machine learning into DevOps workflows, we will
examine how these advancements are reshaping traditional
approaches to software development and operations. Furthermore, we
will explore emerging best practices and methodologies that are
driving efficiency, scalability, and reliability in cloud-native
architectures. Moreover, we will discuss the importance of embracing
DevSecOps principles to address security challenges in increasingly
complex and dynamic environments. We will also examine the role of
observability, compliance automation, and environmental

https://doi.org/10.1007/979-8-8688-0407-6_10

sustainability considerations in driving innovation and fostering a
culture of continuous improvement.

By the end of this chapter, readers will gain valuable insights into
the trends and technologies shaping the future of Cloud-Native
DevOps. Whether you are a seasoned practitioner or new to the world
of DevOps, this chapter aims to equip you with the knowledge and
understanding needed to navigate the ever-changing landscape of
cloud-native development and operations.

In this chapter, we will be encompassing the following topics:
Serverless Computing and Function as a Service (FaaS)
AI and Machine Learning Integration Intersection in Cloud Native
Evolution of Containerization Technologies Beyond Docker and
Kubernetes
The Rise of No-Code/Low-Code Platforms in DevOps Workflows

Serverless Computing and Function as a Service
(FaaS)
Serverless computing simplifies the process of deploying and
managing applications by outsourcing the management of servers and
infrastructure to a cloud service provider. This means that instead of
worrying about setting up and maintaining servers, databases, and
other components, developers can focus solely on writing and
deploying their applications.

Think of it like renting a fully equipped kitchen rather than building
one from scratch. You have access to all the tools and equipment you
need without the hassle of purchasing and maintaining them yourself.
Similarly, with serverless computing, developers have access to the
necessary computing resources without the burden of managing the
underlying infrastructure.

One of the key benefits of serverless computing is its scalability.
Resources automatically scale up or down based on demand, ensuring
optimal performance and cost-efficiency. This is akin to having a
kitchen that magically expands or contracts depending on the number
of guests you’re cooking for.

For instance, if you need to set up a database in the cloud, instead of
going through the complex process of provisioning servers,
configuring databases, and managing infrastructure, you can simply
use a serverless database service. With just a few clicks, the database is
up and running, adjusting its capacity in real-time to handle
fluctuations in workload, all without any intervention from the
developer.

In essence, serverless computing simplifies the development and
deployment process, allowing developers to focus on building great
applications without getting bogged down by the complexities of
managing infrastructure.

Benefits of Serverless Computing
Cost Optimization
Serverless architecture follows a “pay as you go” model, meaning you
only pay for the computing resources you use. This eliminates the
need for upfront investment in hardware or software licenses,
reducing operational costs significantly. With traditional setups,
businesses often over-provision resources to handle peak loads,
leading to wasted resources and higher costs. In contrast, serverless
architectures dynamically scale resources based on demand,
ensuring efficient resource utilization and cost optimization.
Improved Latency
One of the key advantages of cloud-based serverless architectures is
their ability to deliver low-latency experiences to users worldwide.
Traditional server setups often suffer from latency issues due to the
geographical distance between the user and the server. However,
with serverless architectures leveraging cloud infrastructure, data
can be served from locations closer to the user, reducing latency and
improving responsiveness. This is particularly crucial for real-time
applications like video streaming, online gaming, or financial
transactions, where even minor delays can impact user experience.
Easy Deployment
Serverless architectures simplify the deployment process, allowing
developers to focus on building and updating applications without
worrying about infrastructure management. With traditional setups,

deploying new features or updates often involves complex
configurations and downtime. In contrast, serverless platforms offer
seamless deployment mechanisms, enabling developers to upload
code modules or functionalities directly to the cloud environment.
This streamlined process accelerates time-to-market and enhances
agility, enabling businesses to respond quickly to changing market
demands.
Scalability
Scalability is a core feature of serverless architectures, allowing
applications to handle varying workloads without manual
intervention. Traditional setups often require businesses to
provision and manage physical servers or virtual machines, which
can be time-consuming and costly. In contrast, serverless platforms
automatically scale resources up or down based on demand,
ensuring optimal performance and cost-efficiency. This dynamic
scaling capability enables businesses to handle spikes in traffic or
seasonal fluctuations without over-provisioning resources, leading
to better resource utilization and cost savings.
Eco-friendly Setup
Cloud-based serverless architectures offer environmental benefits
compared to traditional data center setups. Traditional data centers
consume large amounts of energy to power and cool servers,
contributing to carbon emissions and environmental degradation.
By leveraging cloud infrastructure, businesses can reduce their
carbon footprint by offloading server management to cloud
providers who operate energy-efficient data centers. This shift
toward eco-friendly practices aligns with corporate sustainability
goals and helps mitigate the environmental impact of IT operations.
Flexibility in Development
Serverless architectures enable developers to focus on writing code
and building innovative features without being burdened by server
management tasks. In traditional setups, developers often spend
significant time and effort on provisioning, configuring, and
maintaining servers, diverting resources away from core
development activities. With serverless platforms handling
infrastructure management, developers can allocate more time to
coding, testing, and iterating on new features. This increased

flexibility empowers teams to deliver higher-quality software faster,
driving innovation and competitive advantage in the marketplace.

Function as a Service (FaaS)
In the past, applications were often built as one big piece, which meant
they had to run all at once whenever they were triggered. But as time
went on, developers started moving toward a different approach called
microservices. Microservices are like building blocks for applications –
they’re smaller pieces that can be developed and managed
independently.

Now, imagine a microservice as a tiny worker who can only do one
specific task whenever it’s asked. That’s essentially what a function is
in the context of FaaS (Function as a Service). When you use FaaS, the
service provider sets up a server just for that task when it’s needed.
Once the task is done, the server is shut down until it’s needed again.
This means resources are only used when they’re doing something, and
they can be used elsewhere when they’re not needed.

FaaS makes things simpler for developers because they only need
to focus on writing code for each specific task. But there’s a catch –
each function should only do one thing, and it should do it well. If a
function tries to do too much, like using lots of different tools or calling
other functions, it can slow down the whole application and end up
costing more in the long run. So, keeping functions small and efficient
is key to getting the most out of FaaS.

Benefits of FaaS
Simplified Code
With FaaS, developers can break down their applications into
smaller, independent functions. This makes it easier to manage and
update code, as each function can be developed, tested, and deployed
separately. Additionally, FaaS platforms allow developers to upload
individual functions or their entire application at once, providing
flexibility in development. This simplified approach to coding
reduces complexity and makes it easier for developers to focus on
writing efficient and scalable code.
Faster Time to Market

FaaS enables developers to quickly develop and deploy applications,
reducing time to market. Because functions can be developed and
tested independently, developers can iterate on their code more
rapidly and make changes quickly. This agility allows businesses to
respond to market demands and customer feedback faster, gaining a
competitive edge in the market. Additionally, the ability to scale
resources automatically means that applications can handle
increased demand without any delays in deployment, further
speeding up time to market.
Costs
With Function as a Service (FaaS), you only pay for the computing
resources you actually use. Unlike other providers where you have to
pay upfront for a certain amount of bandwidth whether you use it all
or not, FaaS allows for more precise billing. This means that if your
application doesn’t require much computing power or bandwidth at
a particular time, you won’t be charged for resources you didn’t use.
This can lead to significant cost savings, especially for businesses
with fluctuating workloads.
Scalability
FaaS platforms automatically adjust the resources allocated to your
application based on demand. This means that if your application
experiences a sudden increase in traffic or usage, the platform will
automatically scale up to handle the load without any intervention
from the developer. Conversely, if the demand decreases, the
platform will scale down to save resources. This scalability feature
ensures that your application can handle varying workloads without
any downtime or performance issues, providing a seamless
experience for users.
Reduced Latency
By running applications closer to end-users, FaaS platforms can
reduce latency and improve the responsiveness of applications. This
is achieved by deploying functions in data centers located
geographically closer to the users, minimizing the distance data
needs to travel. As a result, requests can be processed more quickly,
leading to faster load times and a better overall user experience.
Reduced latency is particularly important for real-time applications,

such as online gaming or video streaming, where even small delays
can be noticeable to users.

Best Practices for FaaS
1. Keep Libraries to a Minimum

When you write code for a function, you might use libraries or
external code to perform certain tasks. However, using too many
libraries can make your function slower and more complex.

Example: Let’s say you’re building a function that calculates
the total price of items in a shopping cart. Instead of importing
multiple libraries for different calculations, such as currency
conversion or tax calculation, you can try to write custom code
within the function itself to perform these tasks efficiently.

2. One Task Per Function
Each function in a FaaS architecture should focus on performing a
specific task in response to a particular event. This ensures that the
code is well-organized, easy to maintain, and executes quickly.

Example: Suppose you’re building a web application where
users can upload images. You might have one function to resize
images upon upload, another function to compress images for
faster loading, and a separate function to send a notification to the
user once the image processing is complete. Each function has a
clear and distinct purpose, making the application easier to
manage and scale.

3. Avoid Function-to-Function Calls
In FaaS, functions are designed to be independent and isolated
from each other. While it may be tempting to have one function call
another for complex workflows, this can lead to increased costs
and reduced efficiency.

Example: Imagine you’re developing a chat application where
users can send messages to each other. Instead of having one
function handle message sending and then call another function to
log the message, it’s better to log the message directly within the
sending function. This avoids unnecessary function calls and keeps
the application’s architecture simple and cost-effective.

Key Challenges in Serverless Computing
1. Depending on One Company

Serverless computing relies heavily on services provided by major
cloud providers like Amazon Web Services (AWS), Microsoft Azure,
or Google Cloud Platform. By choosing serverless, businesses
become tied to the ecosystem of a single vendor. This means
they’re limited to the services and tools offered by that specific
provider, making it challenging to switch to another vendor or
integrate services from different providers.

Example: Suppose a company develops its application using
AWS Lambda functions. If they later decide to switch to Azure
Functions, they’ll need to rewrite and restructure their application
to fit the Azure environment, which can be time-consuming and
costly. Additionally, if AWS experiences a service outage, all
applications relying on Lambda functions could be affected,
potentially causing significant disruptions to business operations.

2. Watching and Fixing Issues
Monitoring and debugging serverless functions pose unique
challenges due to their ephemeral nature. Unlike traditional
servers where metrics and logs are readily available, serverless
functions scale dynamically and execute only when triggered,
making it difficult to monitor performance and identify issues.

Example: Let’s say a company experiences a slowdown in their
application’s performance. With traditional servers, they could
analyze logs and metrics to pinpoint the cause and make necessary
adjustments. However, with serverless functions, detailed insights
may be lacking, requiring developers to resort to alternative
methods, such as running functions locally or using specialized
monitoring tools, to diagnose and troubleshoot issues effectively.

3. Slow Starts
Cold starts refer to the delay in launching a new instance of a
serverless function, particularly when it hasn’t been invoked
recently. This delay can vary in duration, ranging from milliseconds

to several seconds, depending on various factors such as the
runtime environment and function complexity.

Example: Imagine a user accesses a mobile application that
relies on serverless functions for processing requests. If a function
experiences a cold start, the initial delay in response time could
frustrate the user and negatively impact their experience. For time-
sensitive applications like real-time gaming or financial
transactions, minimizing cold start latency is crucial to
maintaining user satisfaction and retention.

4. Testing and Putting Stuff Online
Deploying serverless functions differs from traditional application
architectures, requiring teams to adjust their testing and
deployment strategies accordingly. With serverless, developers
deploy individual functions rather than entire applications, which
necessitates a shift in testing methodologies and deployment
pipelines.

Example: Suppose a development team is tasked with
deploying a new feature for an ecommerce website using
serverless functions. Instead of deploying the entire application at
once, they need to test and deploy each function individually. This
requires setting up automated testing frameworks and continuous
integration/continuous deployment (CI/CD) pipelines tailored to
the unique characteristics of serverless architectures.

5. Learning and Skills
Serverless represents a paradigm shift in application development,
requiring developers to adopt a new mindset and skill set. This
includes not only mastering new tools and services offered by
cloud providers but also understanding the principles and best
practices of serverless architecture.

Example: A team of developers accustomed to traditional
server-based architectures may face a learning curve when
transitioning to serverless. They’ll need to learn how to design and
optimize functions for efficiency and scalability, as well as how to
leverage serverless-specific services like AWS Lambda or Azure
Functions effectively. Additionally, the scarcity of educational
resources and expertise in serverless may require organizations to

invest in training programs or hire experienced professionals to
bridge the skills gap.

AI and Machine Learning Integration Intersection
in Cloud Native
In today’s rapidly advancing world of technology, the merging of
Artificial Intelligence (AI) and Cloud-Native Applications is a clear sign
of innovation. This combination isn’t just about using fancy terms; it’s a
mutually beneficial partnership that boosts the strengths of each,
leading to significant progress in different fields.

To understand the significance of this teamwork, we need to grasp
what AI and cloud-native applications are all about. AI is a game-
changer that allows machines to mimic human intelligence, learning,
reasoning, and adapting. On the other hand, cloud-native applications
are a modern way of developing and running software that takes
advantage of the cloud’s scalability, flexibility, and resilience.

The collaboration between AI and cloud-native applications is
causing a stir in various industries, from healthcare and finance to
manufacturing and entertainment. Let’s explore further to see the
exciting innovations and real-world applications that showcase the
power of this partnership.
1. Revolutionizing Industries

AI and cloud-native applications are driving a significant
transformation across various industries, including healthcare,
finance, manufacturing, and entertainment. This collaboration is
reshaping how businesses operate, interact with customers, and
deliver services. For instance, predictive maintenance systems
powered by AI algorithms deployed on cloud platforms are
revolutionizing manufacturing operations by enabling proactive
equipment maintenance, reducing downtime, and optimizing
resource utilization. Similarly, AI-driven recommendation engines
hosted on cloud-native infrastructure are enhancing user
experiences on ecommerce platforms by providing personalized
product recommendations based on individual preferences and
behaviors.

2. Personalization and Enhanced Customer Engagement

The integration of AI and cloud-native applications is
revolutionizing customer engagement by enabling hyper-
personalized experiences. Through advanced analytics and
machine learning algorithms deployed on cloud platforms,
businesses can analyze vast amounts of customer data to
understand preferences, behaviors, and purchase patterns. This
enables them to tailor products, services, and marketing
campaigns to meet the unique needs of individual customers,
thereby driving increased engagement, customer satisfaction, and
loyalty.

3. Advancements in Healthcare
The synergy between AI and cloud-native platforms is driving
significant advancements in the healthcare industry. AI algorithms
deployed on cloud infrastructure are revolutionizing patient care
by enabling early disease detection, personalized treatment plans,
and drug discovery. For example, AI-powered diagnostic tools can
analyze medical images and patient data to identify patterns
indicative of diseases like cancer or identify potential drug
candidates for specific conditions. By harnessing the power of
cloud computing, healthcare providers can access scalable
resources and computational capabilities to analyze vast amounts
of medical data rapidly and accurately, ultimately improving
patient outcomes and saving lives.

4. Empowering Autonomous Systems and IoT
AI and cloud-native technologies are empowering the development
of autonomous systems and Internet of Things (IoT) devices,
revolutionizing automation and real-time data processing
capabilities. Cloud platforms provide the computational resources
and scalability required to deploy AI algorithms for processing data
from sensors and devices in real-time. This enables applications
such as self-driving cars to make split-second decisions for safe
navigation or smart home devices to automate tasks and provide
intelligent insights. By leveraging AI and cloud-native
infrastructure, businesses can create innovative solutions that
enhance efficiency, safety, and convenience in various domains.

5. Addressing Challenges and Seizing Opportunities
While the collaboration between AI and cloud-native applications
offers immense potential, it also presents challenges such as
security, privacy concerns, and integration complexities. However,
these challenges also present opportunities for innovation and the
development of novel solutions. For example, advancements in
federated learning, where AI models are trained across distributed
devices without centralized data collection, address privacy
concerns in cloud-native AI systems. Additionally, investments in
research and development can lead to the creation of robust
security measures, ethical frameworks, and scalable architectures
that unlock the full potential of AI and cloud-native technologies. By
addressing these challenges head-on, businesses can seize
opportunities for growth, differentiation, and competitive
advantage in the digital landscape.

Challenges and Considerations Implementing AI in
Cloud Native
Artificial Intelligence (AI) and Machine Learning (ML) have
revolutionized how businesses operate by enabling them to analyze
data and derive insights that lead to smarter decision-making
processes. With AI and ML, businesses can now understand customer
preferences, predict trends, and personalize experiences, ultimately
enhancing customer satisfaction and loyalty. As technology continues
to advance, more companies are transitioning to cloud-native
application development. Cloud-native apps are built and deployed in
cloud environments, providing scalability, flexibility, and resilience.
Integrating AI and ML into these cloud-native applications has become
increasingly important as businesses seek to leverage the power of
data-driven insights to gain a competitive edge. However, integrating
AI and ML into cloud-native apps comes with its own set of challenges.
These challenges can include ensuring seamless data integration,
managing the complexity of model training and deployment,
addressing scalability and resource management issues, and
navigating security and compliance concerns.

Challenges in Security and Compliance
Security and compliance are paramount when dealing with AI/ML in
cloud-native apps, as data breaches or non-compliance can have severe
consequences.

Solution: Develop a comprehensive security strategy for your
AI/ML cloud-native apps, incorporating encryption and access control
mechanisms for data protection. Utilize cloud-native security services
like AWS IAM, Azure AD, or Google Cloud IAM for user access
management. Implement regular monitoring using security tools like
AWS GuardDuty or Azure Security Center to detect potential threats.
Ensure compliance with regulations like GDPR or HIPAA through
appropriate measures and audits.

Complexity in Deployment and Model Training
Model training and deployment are critical stages in AI/ML
development, but they can be complex in a cloud-native environment.

Solution: Implement DevOps practices and utilize containerization
to streamline model training and deployment processes. CI/CD
pipelines can automate testing, training, and deployment, facilitating
easier updates and version control. Tools like TensorFlow Serving and
Kubernetes can efficiently manage model deployment, while model
monitoring solutions help track performance and identify issues in
real-time.

Obstacles in Data Integration
One of the main hurdles in incorporating AI/ML into cloud-native apps
is ensuring smooth data integration. AI and ML models need access to
large amounts of data, and making this data available across a cloud-
native setup can be complex.

Solution: To tackle this challenge, it’s crucial to establish a robust
data integration strategy. Cloud-native platforms offer various data
connectors and services to help ingest, store, and manage data
efficiently. Services like AWS Glue, Azure Data Factory, or Google Cloud
Dataflow can simplify data collection, transformation, and preparation
for AI/ML tasks. Additionally, tools like Kubernetes can manage data
pipelines and ensure data availability to your AI/ML models.

Scalability Management
AI/ML workloads can be resource-intensive, posing challenges in
maintaining scalability and resource management for cloud-native
apps.

Solution: Adopt containerization and orchestration techniques to
ensure scalability and resource efficiency. Tools like Docker and
Kubernetes are ideal for deploying and managing AI/ML workloads,
allowing horizontal scaling and dynamic resource management.
Autoscaling rules can be set up to adjust resources based on demand,
optimize performance, and reducing operational costs.

Best Practices of Integrating AI/ML in Cloud Native
1. Establish a Clear Strategy: Before embarking on AI/ML

integration, it’s crucial to define a clear strategy. This involves
identifying the specific objectives you aim to achieve with AI/ML,
outlining relevant use cases, and understanding how these
initiatives align with broader business goals. A well-defined
strategy provides direction and ensures that AI/ML efforts
contribute meaningfully to the success of cloud-native
applications.

2. Utilize Managed Services: Leveraging managed AI/ML services
offered by cloud providers can significantly simplify the
integration process. These services typically come with pre-built
models, APIs, and tools that enable developers to incorporate
AI/ML functionalities into their applications with minimal effort.
By utilizing managed services, organizations can accelerate the
deployment of AI/ML capabilities and reduce the complexity
associated with building and maintaining custom solutions.

3. Design for Scalability and Flexibility: Cloud-native architectures
should be designed with scalability and flexibility in mind to
accommodate the dynamic nature of AI/ML workloads. This
involves adopting containerization and orchestration technologies
like Kubernetes, which enable automatic scaling of resources based
on demand. By designing for scalability, organizations can ensure

that their cloud-native applications can efficiently handle
fluctuations in AI/ML usage and accommodate future growth.

4. Implement Effective Data Management and Governance:
Effective data management and governance are essential for the
success of AI/ML initiatives in cloud-native environments.
Organizations must establish robust practices for data quality
assurance, security, and regulatory compliance. This includes
implementing data governance frameworks to govern data access
and usage, as well as leveraging data lakes and warehouses for
centralized data management and analysis.

5. Continuous Monitoring and Optimization: Monitoring and
optimizing AI/ML models is critical for ensuring their effectiveness
and performance. Organizations should implement monitoring and
logging mechanisms to track key metrics such as model accuracy,
latency, and resource utilization in real-time. By continuously
monitoring AI/ML models, organizations can identify potential
issues or inefficiencies and take proactive steps to optimize their
performance through iterative improvements and updates.

6. Ensure Robust Security and Compliance Measures: Security and
compliance are paramount considerations when integrating AI/ML
into cloud-native applications. Organizations must implement
robust security measures to protect sensitive data and ensure
compliance with relevant regulations such as GDPR or HIPAA. This
includes implementing encryption, access controls, and
authentication mechanisms to safeguard data integrity and
prevent unauthorized access.

7. Foster Collaborative Workflows and Knowledge Sharing:
Collaboration between different teams, including data scientists,
developers, and operations teams, is essential for successful AI/ML
integration. Organizations should foster a culture of collaboration
and knowledge sharing to facilitate seamless integration of AI/ML
capabilities into cloud-native applications. By encouraging cross-
functional collaboration, organizations can leverage the expertise
of diverse teams to drive innovation and achieve better outcomes.

8. Embrace Iterative Development and Experimentation:
Adopting an iterative approach to AI/ML development allows
organizations to experiment with different models and techniques
to identify the most effective solutions. By starting with small-scale
projects and iterating based on feedback and insights,
organizations can refine and optimize AI/ML models over time.
This iterative approach enables organizations to adapt to changing
requirements and refine their AI/ML strategies based on real-
world usage and feedback.

Evolution of Containerization Technologies
Beyond Docker and Kubernetes
The growing demand for alternatives to Docker stems from various
drawbacks associated with Docker technology. These drawbacks
include the following.
Complexity: Docker requires a deep understanding of
containerization processes. Users need technical expertise to create
Docker files and effectively manage and maintain containers.
Security Concerns: Misconfigurations in Docker containers can
expose applications to security vulnerabilities, posing risks to users
and their data.
Performance Limitations: Although Docker containers are efficient,
they may not be suitable for resource-intensive applications that
demand high performance and low latency, as resources are shared
with the host system.
Limited Support for GUI Applications: Docker is primarily
designed for isolated containers and is more commonly used for
console-based applications. However, it may not perform optimally
for graphical user interface (GUI) applications.

1. Buildah
Another useful tool in the open-source world is Buildah, which is
based on Linux. Buildah is designed to help create containers that
follow the OCI standards, making them compatible not only with
Docker but also with Kubernetes. It allows users to construct

images from scratch or based on existing ones. Buildah offers a
more adaptable and secure approach to building container images,
suitable for various runtime environments. As a command-line
tool.

Building tools within the image itself, which results in smaller
image sizes, increased security, and easier transportation with
fewer resources
Creation of user-specific images, allowing for easy organization
by the user who created them
Building container images with or without Dockerfiles, which are
text documents containing commands for assembling an image
Creating container images from scratch or using existing ones as
a starting point
Compatibility with Dockerfiles, enabling a smooth transition
from Docker

Reason to Choose Buildah over Docker
Buildah offers more advanced features and capabilities for building
containers compared to Docker. While Docker is suitable for basic
container building and simple docker files, Buildah provides a
cleaner approach and better scripting capabilities.

2. Podman
Podman is a tool that works on Linux and doesn’t need a special
background process to run. It’s free and open-source, and it helps
with putting together, making, and spreading containers. Podman
uses standards called OCI to make sure everything works smoothly.
Like other container tools, Podman also uses OCI standards, so it
works just like Docker. Its way of giving commands is very similar
to Docker’s, which makes it easy for people who already know
Docker to use Podman. Plus, you can use Docker commands with
Podman, so even if you’re new to containers, you can get started
with Podman without any trouble.

Supports rootless containers without requiring elevated
privileges.
Highly adaptable to different computing environments and
adjustable according to specific needs.

The Podman Top command provides comprehensive insights
into container processes.
Simplifies container execution through Systemd files,
streamlining the process as simple as writing a file.

Reason to Choose Podman over Docker
Unlike Docker, which relies on a persistent runtime managed by its
daemon (Dockerd), Podman operates independently without a
daemon. It initiates containers as individual processes and
communicates directly with the registry, offering a more
lightweight and streamlined approach to container management.

3. Containerd
Containerd are a popular alternative to Docker and can be run on
both Linux and Windows. As a container runtime, Containerd
provides tools that manage the complete container life cycle of its
host system, including image transfer, storage, container
execution, and supervision to low-level storage of network
attachments and beyond.

Support for pushing and pulling images
Managing network interfaces by creating, modifying, and
deleting them
Supporting multi-tenancy with CAS storage for global images
Adherence to OCI Runtime Spec (also known as runC)
Handling container runtime and life cycle
Managing network namespaces for containers to connect to
existing namespaces

Reason to Choose Containerd over Docker
Compared to Docker, Containerd is a simpler low-level Daemon
program with all the essential features to build a container. It is less
complex and more flexible in making basic containers.

4. LXD
LXD is another great option if you’re looking for an alternative to
Docker. It’s both a powerful virtual machine manager and a
container system. LXD mainly works with Ubuntu images and
spreads them across Linux setups. It relies on a strong REST API

and can work on a single machine or across a whole group. This
makes it useful for both development and production. LXD is light
on resources and speeds up the process of containerizing data. It
uses special Linux features like control groups and namespaces to
manage containers.

It can adjust resources like CPU, memory, network speed, disk
space, and some parts of the kernel.
Supports advanced snapshots, scheduling, and automatic
expiration.
Makes it easy to set up for multiple users and offers better
security.
Supports live migration, saving the current state of containers,
and passing through hardware like GPUs, USBs, network cards,
and more.
Offers advanced networking support, including OVN, SR-IOV, and
hardware acceleration.

Reason to Choose LXD over Docker
LXD performs better than Docker, particularly in scenarios
involving multiple processors. Additionally, LXD has a longer
history than Docker and manages larger resource sets more
effectively.

5. OpenVZ
OpenVZ is a no-cost, Linux-oriented container virtualization
software. It ensures the isolation and security of various Linux
containers on a single server. This enhances server performance
and prevents applications from interfering with each other.
OpenVZ presents a viable alternative to Docker due to its extensive
range of beneficial functionalities.

OpenVZ makes it easy to create virtual versions of operating
systems, so containers start up quickly and cost less. You can
quickly give out resources to containers using its portal. It’s
reliable for saving copies of container images, which helps if there
are any problems.

Reason to Choose OpenVZ over Docker

OpenVZ makes it easy to create virtual versions of operating
systems, so containers start up quickly and cost less. You can
quickly give out resources to containers using its portal. It’s
reliable for saving copies of container images, which helps if there
are any problems.

6. RunC
RunC is a simple and lightweight tool for running containers. It
includes all the necessary code from Docker for running containers
securely, without needing the entire Docker setup.

Supports all security features available in Linux, making it safe to
use.
Allows live migration through CRIU, a tool developed by Parallels.
Can handle complex hardware features like DPDK, and secure
enclave.

Reason to Choose RunC over Docker
RunC is commonly used in various industries to run containers
with Docker, Containers, and CRI-O. It’s user-friendly and effective,
making containerization easier for everyone.

7. Minikube
Minikube offers an alternative to Docker by creating virtual
machines (VMs). It allows you to build images and VMs on your
local computer and sets up a simple cluster with just one node. This
makes minikube lightweight and easy to use, and it works on Linux,
macOS, and Windows systems.

It supports both the newest and older versions of Kubernetes.
You can use it on macOS, Linux, and Windows.
You can set it up as a virtual machine, a container, or directly on
your computer.
It’s compatible with different container runtimes such as
Containerd and Docker.
It includes a speedy API endpoint for loading images.

Reasons to Choose Minikube over Docker
Docker Desktop’s Kubernetes lacks the features found in minikube,
k3d, or kind. Docker also faces restrictions in handling cross-

platform application activities and other functionalities.

8. Kubernetes
Many developers consider Kubernetes as a dependable substitute
for Docker and favor it for various reasons. While Docker serves as
a container environment, Kubernetes acts as a platform managing
containers from various runtimes. Docker is excellent for modern
app development, but it struggles with scalability when handling
numerous containers. In contrast, Kubernetes excels in managing
many containers from different runtimes.

Uses a declarative model, stating how things should be, and K8s
makes sure they stay that way, fixing any problems.
Automatically change the size of containerized apps and their
resources based on needs.
Provides storage as needed, adding more when necessary.
Automate the process of setting up and updating, with the ability
to go back to earlier versions if needed.

Reasons to Choose Kubernetes over Docker
Kubernetes is like a manager for Docker containers, helping to
organize and automate how they’re set up, resized, and run. It’s
especially useful for handling more complicated containers that
Docker might struggle with.

9. Rancher
Rancher offers a comprehensive solution for teams adopting
containers, addressing the operational complexities associated
with managing Docker and Kubernetes clusters. One key feature is
its support for cross-host networking, which facilitates secure
communication by creating a private software-defined network for
each environment.

Additionally, Rancher provides container load balancing,
ensuring efficient distribution of container workload across
processors. Its distributed DNS-based service discovery feature
allows containers to register automatically over the network,
enhancing ease of use. Moreover, Rancher monitors host resources
and simplifies container deployment directly from Docker

Machine, streamlining the development and management process
for containerized workloads.

Reasons to Choose Rancher over Docker
Docker offers simple container management and creation, while
Rancher provides more advanced functionalities. Rancher serves
as an extension of Kubernetes and can even replace Docker
Desktop. Unlike Docker, Rancher is open-source and available for
free.

The Rise of No-Code/Low-Code Platforms in
DevOps Workflows
Low-code and no-code (LCNC) platforms have gained popularity for
their ability to empower users to create applications without extensive
coding knowledge. These platforms provide an alternative to
traditional software development methods by offering intuitive visual
interfaces and pre-built components. No code platforms, as the name
suggests, eliminate the need for writing any code. Users can build
applications entirely through graphical interfaces, selecting from a
library of pre-designed elements and functionalities. This approach
simplifies the application development process, making it accessible to
individuals with limited technical expertise.

On the other hand, low-code platforms offer a middle ground
between traditional coding and no code solutions. While they still
require some level of coding, it is minimal compared to traditional
development methods. Low-code platforms typically provide visual
development environments where users can drag-and-drop elements,
configure settings, and use pre-built functions to create applications
more efficiently.

Both low-code and no-code platforms aim to democratize software
development by enabling a broader range of users, including business
analysts, citizen developers, and entrepreneurs, to create custom
applications tailored to their specific needs. These platforms
accelerate the development life cycle, reduce reliance on IT
departments, and foster innovation within organizations.

Benefits of No Code and Low Code
1. Making Apps Easier to Build

Regular coding can be intimidating for people without much tech
know-how. But with low-code and no-code platforms, things are
simpler. They use visual tools and easy drag-and-drop features,
making it easy for anyone to create apps, even if they’re not tech-
savvy. This simplicity encourages more people to get involved in
app development, letting them turn their ideas into real apps. It’s
all about fostering innovation and creativity among a wide range
of folks.

2. Cutting Down on Costs
Building software from scratch usually means hiring pricey
developers with specialized skills. But LCNC platforms aim to
lower these costs by cutting down on the need for highly skilled
developers and simplifying the development process.

This means businesses can manage their resources better
since they won’t need such a big development team. It’s especially
helpful for startups and small businesses with tight budgets.

3. Enabling Non-Expert Developers
No-code and low-code platforms give people with specific
knowledge but little coding experience the power to build
applications. These “citizen developers” can contribute to
software creation even without advanced coding skills. By
involving more people in the development process, these
platforms help ensure that technology meets business needs
more effectively. This inclusive approach fosters innovation
within organizations by bringing diverse viewpoints into the
creation of solutions.

4. Quick Development
Building software the traditional way takes a lot of time with
coding, fixing errors, and testing. LCNC speeds up this process a
lot. With no-code and low-code platforms, users can quickly put
together applications using easy interfaces, ready-made parts,

and existing building blocks. This fast pace is handy for projects
that need to get out there fast or for making prototypes and MVPs.

5. Faster Prototyping
Entrepreneurs and startup companies can swiftly test their ideas,
cutting down the time it takes to bring new concepts to market.
They can easily create prototypes and minimum viable products
(MVPs) in a short time, allowing for faster validation in the
market.

6. Cutting Down Development Expenses
Creating software from the ground up usually means hiring
expensive specialized developers. However, LCNC platforms can
cut down software development costs by needing fewer
specialized developers and simplifying the development process.
This efficiency allows businesses to use their resources more
wisely since they won’t need a big development team. This is
especially helpful for startups and small businesses with tight
budgets.

7. Centered on Business
Many times, developers spend a lot of effort dealing with basic
code and infrastructure issues. However, low-code and no-code
platforms handle much of this technical stuff, letting developers
concentrate on the main business logic and special features of the
application. This means developers can use their skills more
effectively.

8. Flexibility and Improving
In today’s fast-paced business world, being able to adjust swiftly
is key. No-code and low-code platforms support a process of
making small changes and improvements to applications as you
go along. This flexibility is especially useful for projects that need
to change often or to address feedback from users efficiently.

9. Keeping Things Running Smoothly
As time goes on, traditional code can get more complicated,
making it harder to maintain and update. No-code and low-code
platforms usually take care of updates and maintenance

automatically, so you don’t have to worry about it as much, and it
doesn’t disrupt your app.

Top of Form

10. Promotes Creativity
By making development simpler, these platforms inspire
creativity and experimentation. Teams can try out new ideas and
features without investing too much time and resources,
fostering a culture of constant improvement and innovation. The
emergence of no-code and low-code platforms marks a significant
change in software development, making it more accessible and
effective. However, they’re not a universal solution. The future of
software development will likely involve a mix of traditional
coding and these modern methods, allowing developers to choose
the best approach for each project. Moving forward, it’s crucial to
acknowledge that while no-code and low-code platforms offer
convenience, they won’t replace the traditional coding methods
that have driven the tech industry for years. Embracing these
platforms alongside traditional approaches will unlock new
opportunities and reshape how we create software.

Use of No Code and Low Code
No-code and low-code platforms are tools that help people make
software without needing to know a lot about coding. They are used in
many different industries and for many different reasons.
Making Tools and Automating Things Inside a Company: Instead
of waiting for the IT department, employees can use these platforms
to create tools that help them work faster.
Quick Solutions for Short-Term Projects: When a project doesn’t
last long or has a deadline, these platforms can help get it done
quickly.
Testing Ideas Quickly: Startups and companies can use them to
make basic versions of their products to see if people like them.
Building Websites and Phone Apps: They can be used to make all
kinds of websites and apps, like online stores or customer portals.

Seeing Data in Useful Ways: They help people make charts and
graphs that show important information from different sources of
data.
Making Work Easier: They can be used to automate tasks like
sending emails or moving data around, saving time.
Managing Content on Websites: They help make websites where
people can easily change the text and pictures without needing to
know how to code.
Starting Online Stores: Businesses can use them to make websites
where people can buy things.
Keeping Track of Customers: They can help keep track of
information about customers and help with sales.
Simple Internet Things: They can be used to make simple devices
that connect to the Internet, like sensors.
Making Chatbots and Virtual Helpers: They can make robots that
talk to people and answer questions.
Teaching Tools: Teachers can use them to make websites where
students can learn and take quizzes.
Organizing Events: They help make websites where people can sign
up for events and buy tickets.
Connecting Buyers and Sellers: They help make websites where
people can buy and sell things.
Helping with Healthcare: They can be used to make apps that track
patients or help with appointments.
Helping Non-Profit Organizations: They can be used to make
websites that help charities and volunteers work together.
Showing Ideas to People: They help make basic versions of apps to
show to people who might want to invest in them.
Connecting Different Software: They help connect different
programs so they can share information.

Summary
In this chapter, we explored Cloud-Native DevOps, which is all about
using the latest technology to develop and manage software in the
cloud. We talked about how important it is for companies and people
working in this field to keep up with new trends and ideas to make the

most out of cloud technology. We looked at some exciting new
developments, like serverless computing, edge computing, and using
artificial intelligence and machine learning in DevOps. These new ideas
are changing the traditional ways we design, put out, and look after
software in the cloud.

We also talked about new ways to make cloud systems more
efficient, scalable, and reliable. We stressed the importance of keeping
things secure, especially as cloud systems get more complex. And we
touched on how observing, automating compliance, and considering
the environment are key to improving and coming up with new ideas.
By the end of the chapter, readers should have a better understanding
of where Cloud-Native DevOps is heading. Whether you’re already
experienced or just starting out, we hope this chapter has given you
useful insights to help you navigate the world of cloud-native
development and operations.

Index
A
Access control lists (ACLs)
Access Management (AM)
Active Directory Management (ADMgmt)
Agile methodologies

architectures and technologies
benefits

Agility
AI/ML, DevOps

See Artificial intelligence (AI)
Amazon ECR
Amazon Web Services (AWS)
API keys
Application Programming Interfaces (APIs)
Argo
Argo streamlining workflows

CI/CD implementation
controller
custom kubernetes
integration
K8s operator
sync process
target state

Artificial intelligence (AI)
containerization technologies
data integration
implementation challenges
innovations and real-world applications
LCNC platforms
model training/deployment
practices
scalability management
security/compliance

Artificial Intelligence for IT Operations (AIOps)
Attribute-based access control (ABAC)

Automated scaling mechanisms
Autoscaling

AWS
benefits
cost-efficient
creation
edge computing/distributed
hybrid and multi-cloud environments
machine learning-driven
serverless architectures/event-driven

Autoscaling groups (ASGs)
AWS Certificate Manager (ACM)
Azure Functions

B
Black Box Testing

C
ChatOps
Cloud computing
Cloud computing services

cloud types
hybrid cloud
IaaS
PaaS
private cloud
public cloud
SaaS

Cloud data flow
data pipeline
data pipeline architecture
finance
FinOps
organization
performance/scalability
prioritize compliance
strategy

sustainability
Cloud-native

architecture
CI/CD
CNCF
containers
fundamentals
layers

application definition/development
orchestration/management
provisioning
runtime

mainframe computing
advantages
architecture
disadvantages
monolithic applications

orchestration tools
Cloud Native Computing Foundation (CNCF)
Cloud Native Maturity Model (CNMM)
Cloud service provider (CSP)
CloudWatch
Collaborative development

developers/operations
Devops culture

Compliance
Concurrent Versions System (CVS)
Constrained Application Protocol (CoAP)
Containerization tools
Continuous integration and continuous delivery (CI/CD)
Continuous integration and continuous deployment (CI/CD) pipelines

approaches
automation
benefits
cloud-agnostics
cloud technologies
Jenkins

practices
principles
security

DAST
Devops
IAST
SAST
threats

stages
build
deploy
source
test

version control
Cryptographic/encryption keys management
Custom resource definitions (CRDs)
Cyberattacks

D
Data Loss Prevention (DLP)
DataOps
Denial of service (DoS)
DevOps

approaches
continuous deployment
continuous development
continuous feedback
continuous integration
continuous monitoring
continuous operations
continuous testing
definition
flexibility/portability
infrastructure automation
principles
technologies

DevSecOps

Distributed databases
Distributed Denial of Service (DDoS) attacks
Docker
Docker Hub
Dynamic Application Security Testing (DAST)
Dynamic scaling

agility and adaptability
defense in depth
managed services
polyglot architecting
strategic management

E
Edge computing
Environmental, social, and governance (ESG)
Extract, Transform, Load (ETL)

cloud-integrated logistics operation
services
supply chain management
transition

F
FinOps
Function as a Service (FaaS)

benefits
challenges
practices

G
General Data Protection Regulation (GDPR)
GitOps
Glass-box
Google Cloud Functions
Google Cloud Platform (GCP)
Governance
Gramm-Leach-Bliley Act (GBLA)

H

HashiCorp Configuration Language (HCL)
Health Insurance Portability and Accountability Act (HIPPA)
Helm
Horizontal Pod Autoscaler (HPA)
Horizontal Pod Autoscaling (HPA)
Hotfix
Hyperautomation

I, J
Identity and Access Management (IAM) security

ADMgmt
AM
building concrete
compliance
components
foundational elements
governance
IGA
least privilege, implementation
least privilege principles
PAM
real-life examples
risk management
service accounts/API access

API keys
cloud-based applications
difficulties
implementation
key components
least privilege
practices

standards
Identity Governance and Administration (IGA)
Infrastructure-as-a-Service (IaaS)
Infrastructure as code (IaC)

infrastructure processes
practices

scanning
security strategy
terraform
tools
value proposition

Integrated development environments (IDEs)
Interactive application security testing (IAST)
Internet of Things (IoT)
Intrusion Detection System (IDS)
Intrusion Prevention System (IPS)

K
Keptn
Key performance indicators (KPIs)
KubeEdge
Kubeflow pipelines

components
definition
machine learning engineers
ML
principles
problem identification
source/prepare/analyze data

Kubernetes
definition
fundamental architecture
installation
master node

autoscaling
HPA
kube-brench, security
manual scaling
scaling
steps
VPA
YAML file

monolithic vs. public managed kubernetes cluster

worker node

L
Linkerd
Low-code and no-code (LCNC) platforms

benefits
pre-built components
uses

M
Machine learning (ML)
Message Queuing Telemetry Transport (MQTT)
Microservices
Microsoft Azure
Minikube
Multi-cloud strategy

edge computing
platforms
preemptive scaling
reactive/proactive scaling

Multi-faceted approach
Multi-factor authentication (MFA)

N
Non-functional testing
No Operations (NoOps)

O
OpenGitOps
Open Policy Agent (OPA)
Open-source software (OSS)
Open-source tools

Argo
kubeflow pipelines

OpenVZ
OpenYurt

P

Package management
“Pay as you go” model
Pay ment Card Industr y Data Standard (PCI-DSS)
Physical security
Plan-Do-Study-Act (PDSA)
Platform-as-a-service (PaaS)
Podman
Policy and governance
Privileged Access Management (PAM)
Privileged accounts
Proactive scaling strategy
Product backlog
Prometheus
Public cloud
Public Kubernetes Cloud
Pynt

security testing
setup

Q
Quantum computing

R
Rancher
Reactive scaling
Red Teaming
Resilience
Role-based access control (RBAC)
Rook
RunC
Runtime Application Self-Protection (RASP)

S
Sarbanes-Oxley (SOX)
Scaling principles

automation
CI/CD

dynamic scaling
infrastructure provisioning/management tools
monitoring/logging

synchronization
SchemaHero
Scrum framework

artifacts
roles

Scrum Master
SecOps
Security information and event management (SIEM) systems
Segregation of duties (SoD)
Serverless computing

advantages
benefits
cloud service provider
database service
definition
disadvantages
platforms

Service mesh
Shift-left approach, securing API

making apps
Pynt
Pynt security testing
Pynt setup
risk factors
testing

Shift-left security
benefits
compliance checks
DAST
Iac scanning
IAST
infrastructure scanning
model
RASP

SAST
SCA
securing right
security testing
software development life cycle
technologies
third-party component

Single points of failure (SPOFs)
Single Sign-On (SSO)
Software-as-a-Service (SaaS)
Software Bills of Materials (SBOMs)
Software Composition Analysis (SCA)
Software development life cycle (SDLC)
Sprint Backlog
Static Application Security Testing (SAST)
Static Application System Testing (SAST)
Storage orchestration
STRIDE threat modeling
Supply chain management (SCM)

T, U
Terraform

architecture
definition
use
working

TestNG
TestSigma
Threat analysis

cloud-native deployments
cloud-native security controls
microservices architectures, threat vectors
practices
security 3R’s
security challenges
security controls/countermeasures
security validation

implementation steps
Red Teaming

types of threats
Threat modeling
TiKV
Transport Layer Security (TLS)
Twelve-Factor App

V
Vault
Vertical Pod Autoscaler (VPA)
Vertical Pod Autoscaling (VPA)
Virtual machines (VMs)

W, X, Y, Z
Web Application Firewall (WAF)

	Front Matter
	1. Unveiling the Cloud-Native Paradigm
	2. Cloud-Native DevOps Architectural Overview
	3. Security in Cloud-Native Applications with a Shift-Left Approach
	4. CI/CD Pipeline in Cloud-Native DevOps
	5. Open-Source Tools for Cloud-Native DevOps
	6. Scalability and Autoscaling Strategies
	7. Collaborative Development in the Cloud Native
	8. IAM Security in Cloud-Native Environment
	9. Threat Analysis for Cloud-Native Deployments
	10. Future Trends in Cloud Native
	Back Matter

