

Architecture Patterns with Python

Enabling Test-Driven Development, Domain-Driven Design, and
Event-Driven Microservices

Harry Percival and Bob Gregory

Architecture Patterns with Python

by Harry Percival and Bob Gregory

Copyright © 2020 Harry Percival and Bob Gregory. All rights
reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North,

Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales
promotional use. Online editions are also available for most titles
(http://oreilly.com). For more information, contact our corporate/insti-
tutional sales department: 800-998-9938 or corporate@oreilly.com.

Acquisitions Editor: Ryan Shaw

Development Editor: Corbin Collins

Production Editor: Katherine Tozer

Copyeditor: Sharon Wilkey

Proofreader: Arthur Johnson

Indexer: Ellen Troutman-Zaig

http://oreilly.com/

Interior Designer: David Futato

Cover Designer: Karen Montgomery

Illustrator: Rebecca Demarest

March 2020: First Edition

Revision History for the First Edition

2020-03-05: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781492052203 for re-
lease details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc.

Architecture Patterns with Python, the cover image, and related trade
dress are trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the authors and do not
represent the publisher’s views. While the publisher and the authors
have used good faith efforts to ensure that the information and in-
structions contained in this work are accurate, the publisher and the
authors disclaim all responsibility for errors or omissions, including
without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions con-

http://oreilly.com/catalog/errata.csp?isbn=9781492052203

tained in this work is at your own risk. If any code samples or other
technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your respon-
sibility to ensure that your use thereof complies with such licenses
and/or rights.

978-1-492-05220-3

[LSI]

Preface

You may be wondering who we are and why we wrote this book.

At the end of Harry’s last book,
Test-Driven Development with Python
(O’Reilly),
he found himself asking a bunch of questions about archi-
tecture, such as,
What’s the best way of structuring your application
so that it’s easy to test?
More specifically, so that your core business
logic is covered by unit tests,
and so that you minimize the number of
integration and end-to-end tests you need?
He made vague refer-
ences to “Hexagonal Architecture” and “Ports and Adapters”
and
“Functional Core, Imperative Shell,” but if he was honest, he’d have to
admit that these weren’t things he really understood or had done in
practice.

And then he was lucky enough to run into Bob, who has the answers
to all these
questions.

Bob ended up a software architect because nobody else on his team
was
doing it. He turned out to be pretty bad at it, but he was lucky
enough to run
into Ian Cooper, who taught him new ways of writing
and thinking about code.

http://obeythetestinggoat.com/

Managing Complexity, Solving
Business Problems

We both work for MADE.com, a European ecommerce company that
sells furniture
online; there, we apply the techniques in this book to
build distributed systems
that model real-world business problems.

Our example domain is the first system
Bob built for MADE, and this
book is an attempt to write down all the stuff we
have to teach new
programmers when they join one of our teams.

MADE.com operates a global supply chain of freight partners and
manufacturers.
To keep costs low, we try to optimize the delivery of
stock to our
warehouses so that we don’t have unsold goods lying
around the place.

Ideally, the sofa that you want to buy will arrive in port on the very day
that you decide to buy it, and we’ll ship it straight to your house with-
out
ever storing it. Getting the timing right is a tricky balancing act
when goods take
three months to arrive by container ship. Along the
way, things get broken or water
damaged, storms cause unexpected
delays, logistics partners mishandle goods,
paperwork goes missing,

customers change their minds and amend their orders,
and so on.

We solve those problems by building intelligent software representing
the
kinds of operations taking place in the real world so that we can
automate as
much of the business as possible.

Why Python?

If you’re reading this book, we probably don’t need to convince you
that Python
is great, so the real question is “Why does the Python
community need a book
like this?” The answer is about Python’s pop-
ularity and maturity: although Python is
probably the world’s fastest-
growing programming language and is nearing the top
of the absolute
popularity tables, it’s only just starting to take on the kinds
of prob-
lems that the C# and Java world has been working on for years.
Star-
tups become real businesses; web apps and scripted automations
are becoming
(whisper it) enterprise software.

In the Python world, we often quote the Zen of Python:
“There should
be one—and preferably only one—obvious way to do it.”
Unfortu-
nately, as project size grows, the most obvious way of doing things
isn’t always the way that helps you manage complexity and evolving
requirements.

None of the techniques and patterns we discuss in this book are
new,

but they are mostly new to the Python world. And this book isn’t
a re-

1

placement for the classics in the field such as Eric Evans’s
Domain-
Driven Design
or Martin Fowler’s Patterns of
Enterprise Application
Architecture (both published by Addison-Wesley Professional)—
which we often refer to and
encourage you to go and read.

But all the classic code examples in the literature do tend to be writ-
ten in
Java or C++/#, and if you’re a Python person and haven’t used
either of
those languages in a long time (or indeed ever), those code
listings can be
quite…trying. There’s a reason the latest edition of
that other classic text, Fowler’s
Refactoring (Addison-Wesley Profes-
sional), is in JavaScript.

TDD, DDD, and Event-Driven
Architecture

In order of notoriety, we know of three tools for managing complexity:

1. Test-driven development (TDD) helps us to build code that is cor-
rect
and enables us to refactor or add new features, without fear of
regression.
But it can be hard to get the best out of our tests: How
do we make sure
that they run as fast as possible? That we get as
much coverage and feedback
from fast, dependency-free unit
tests and have the minimum number of slower,
flaky end-to-end
tests?

2. Domain-driven design (DDD) asks us to focus our efforts on build-
ing a good
model of the business domain, but how do we make
sure that our models aren’t
encumbered with infrastructure con-
cerns and don’t become hard to change?

3. Loosely coupled (micro)services integrated via messages (some-
times called
reactive microservices) are a well-established answer
to managing complexity
across multiple applications or business
domains. But it’s not always
obvious how to make them fit with the
established tools of
the Python world—Flask, Django, Celery, and
so on.

NOTE

Don’t be put off if you’re not working with (or interested in) microservices. The vast
majority of the patterns we discuss, including much of the event-driven architecture
material, is absolutely applicable in a monolithic architecture.

Our aim with this book is to introduce several classic architectural
patterns
and show how they support TDD, DDD, and event-driven
services. We hope
it will serve as a reference for implementing them
in a Pythonic way, and that
people can use it as a first step toward
further research in this field.

Who Should Read This Book

Here are a few things we assume about you, dear reader:

You’ve been close to some reasonably complex Python
applications.

You’ve seen some of the pain that comes with trying to manage
that complexity.

You don’t necessarily know anything about DDD or any of the
clas-
sic application architecture patterns.

We structure our explorations of architectural patterns around an ex-
ample app,
building it up chapter by chapter. We use TDD at
work, so
we tend to show listings of tests first, followed by implementation.
If
you’re not used to working test-first, it may feel a little strange at
the
beginning, but we hope you’ll soon get used to seeing code “being
used”
(i.e., from the outside) before you see how it’s built on the
inside.

We use some specific Python frameworks and technologies, includ-
ing Flask,
SQLAlchemy, and pytest, as well as Docker and Redis. If
you’re already
familiar with them, that won’t hurt, but we don’t think
it’s required. One of
our main aims with this book is to build an archi-
tecture for which specific
technology choices become minor imple-
mentation details.

A Brief Overview of What You’ll Learn

The book is divided into two parts; here’s a look at the topics we’ll
cover
and the chapters they live in.

Part I, Building an Architecture to Support
Domain Modeling

Domain modeling and DDD (Chapters 1 and 7)

At some level, everyone has learned the lesson that complex
business
problems need to be reflected in code, in the form of a
model of the domain.
But why does it always seem to be so
hard to do without getting tangled
up with infrastructure con-
cerns, our web frameworks, or whatever else?
In the first chap-
ter we give a broad overview of domain modeling and DDD,

and we
show how to get started with a model that has no exter-
nal dependencies, and
fast unit tests. Later we return to DDD
patterns to discuss how to choose
the right aggregate, and how
this choice relates to questions of data
integrity.

Repository, Service Layer, and Unit of Work patterns (Chapters 2,

4, and 5)

In these three chapters we present three closely related and
mutually reinforcing patterns that support our ambition to keep
the model free of extraneous dependencies. We build a layer of
abstraction around persistent storage, and we build a service
layer to define the entrypoints to our system and capture the
primary use cases. We show how this layer makes it easy to

build
thin entrypoints to our system, whether it’s a Flask API or
a CLI.

Some thoughts on testing and abstractions (Chapters 3 and 6)

After presenting the first abstraction (the Repository pattern),

we take the
opportunity for a general discussion of how to
choose abstractions, and
what their role is in choosing how our
software is coupled together. After
we introduce the Service
Layer pattern, we talk a bit about achieving a test pyramid
and
writing unit tests at the highest possible level of abstraction.

Part II, Event-Driven Architecture

Event-driven architecture (Chapters 8–11)

We introduce three more mutually reinforcing patterns: the Do-
main Events, Message Bus, and Handler patterns. Domain
events are a vehicle for capturing the idea that some
interac-
tions with a system are triggers for others. We use a message
bus to allow actions to trigger events and call appropriate han-
dlers.
We move on to discuss how events can be used as a
pattern for integration
between services in a microservices ar-
chitecture. Finally, we distinguish between commands and
events. Our application is now
fundamentally a message-pro-
cessing system.

Command-query responsibility segregation (Chapter 12)

We present an example of command-query responsibility seg-
regation, with and without
events.

Dependency injection (Chapter 13)

We tidy up our explicit and implicit dependencies and imple-
ment a
simple dependency injection framework.

Addtional Content

How do I get there from here? (Epilogue)

Implementing architectural patterns always looks easy when
you show a simple
example, starting from scratch, but many of
you will probably be wondering how
to apply these principles to
existing software. We’ll provide a
few pointers in the epilogue
and some links to further reading.

Example Code and Coding Along

You’re reading a book, but you’ll probably agree with us when we say
that
the best way to learn about code is to code. We learned most of
what we know
from pairing with people, writing code with them, and
learning by doing, and
we’d like to re-create that experience as much
as possible for you in this book.

As a result, we’ve structured the book around a single example
project
(although we do sometimes throw in other examples). We’ll
build up this project as the chapters progress, as if you’ve paired with
us and
we’re explaining what we’re doing and why at each step.

But to really get to grips with these patterns, you need to mess about
with the
code and get a feel for how it works. You’ll find all the code
on
GitHub; each chapter has its own branch. You can find a list of the
branches on GitHub as well.

https://github.com/cosmicpython/code/branches/all

Here are three ways you might code along with the book:

Start your own repo and try to build up the app as we do, following
the
examples from listings in the book, and occasionally looking to
our repo
for hints. A word of warning, however: if you’ve read Har-
ry’s previous book
and coded along with that, you’ll find that this
book requires you to figure out more on
your own; you may need
to lean pretty heavily on the working versions on GitHub.

Try to apply each pattern, chapter by chapter, to your own (prefer-
ably
small/toy) project, and see if you can make it work for your
use case. This
is high risk/high reward (and high effort besides!). It
may take quite some
work to get things working for the specifics of
your project, but on the other
hand, you’re likely to learn the most.
For less effort, in each chapter we outline an “Exercise for the
Reader,”
and point you to a GitHub location where you can down-
load some partially finished
code for the chapter with a few missing
parts to write yourself.

Particularly if you’re intending to apply some of these patterns in your
own
projects, working through a simple example is a great way to
safely practice.

TIP

At the very least, do a git checkout of the code from our repo as you
read each
chapter. Being able to jump in and see the code in the context of
an actual working
app will help answer a lot of questions as you go, and
makes everything more real.
You’ll find instructions for how to do that
at the beginning of each chapter.

License

The code (and the online version of the book) is licensed under a
Creative
Commons CC BY-NC-ND license, which means you are free
to copy and share it with
anyone you like, for non-commercial purpos-
es, as long as you give attribution.
If you want to re-use any of the
content from this book and you have any
worries about the license,

contact O’Reilly at permissions@oreilly.com.

The print edition is licensed differently; please see the copyright
page.

Conventions Used in This Book

The following typographical conventions are used in this book:

Italic

mailto:permissions@oreilly.com

Indicates new terms, URLs, email addresses, filenames, and
file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer
to program elements such as variable or function names, data-
bases, data types, environment variables, statements, and
keywords.

Constant width bold

Shows commands or other text that should be typed literally by
the user.

Constant width italic

Shows text that should be replaced with user-supplied values
or by values determined by context.

TIP

This element signifies a tip or suggestion.

NOTE

This element signifies a general note.

WARNING

This element indicates a warning or caution.

O’Reilly Online Learning

NOTE

For more than 40 years, O’Reilly Media has provided technology and business
training, knowledge, and insight to help companies succeed.

Our unique network of experts and innovators share their knowledge
and expertise through books, articles, conferences, and our online
learning platform. O’Reilly’s online learning platform gives you on-de-
mand access to live training courses, in-depth learning paths, interac-
tive coding environments, and a vast collection of text and video from
O’Reilly and 200+ other publishers. For more information, please visit
http://oreilly.com.

How to Contact O’Reilly

Please address comments and questions concerning this book to the
publisher:

http://oreilly.com/
http://oreilly.com/

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)

707-829-0515 (international or local)

707-829-0104 (fax)

We have a web page for this book, where we list errata, examples,

and any additional information. You can access this page at https://or-
eil.ly/architecture-patterns-python.

Email bookquestions@oreilly.com to comment or ask technical ques-
tions about this book.

For more information about our books, courses, conferences, and
news, see our website at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments

https://oreil.ly/architecture-patterns-python
mailto:bookquestions@oreilly.com
http://www.oreilly.com/
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

To our tech reviewers, David Seddon, Ed Jung, and Hynek
Schlawack: we absolutely
do not deserve you. You are all incredibly
dedicated, conscientious, and
rigorous. Each one of you is immense-
ly smart, and your different points of
view were both useful and com-
plementary to each other. Thank you from the
bottom of our hearts.

Gigantic thanks also to our Early Release readers for their comments
and
suggestions:
Ian Cooper, Abdullah Ariff, Jonathan Meier, Gil
Gonçalves, Matthieu Choplin,
Ben Judson, James Gregory, Łukasz
Lechowicz, Clinton Roy, Vitorino Araújo,
Susan Goodbody, Josh Har-
wood, Daniel Butler, Liu Haibin, Jimmy Davies, Ignacio
Vergara
Kausel, Gaia Canestrani, Renne Rocha, pedroabi, Ashia Zawaduk,

Jostein
Leira, Brandon Rhodes,
and many more; our apologies if we
missed you on this list.

Super-mega-thanks to our editor Corbin Collins for his gentle chivvy-
ing, and
for being a tireless advocate of the reader. Similarly-superla-
tive thanks to the production staff, Katherine Tozer, Sharon Wilkey,

Ellen Troutman-Zaig, and Rebecca Demarest, for your dedication,

professionalism, and attention to detail. This book is immeasurably
improved thanks to you.

Any errors remaining in the book are our own, naturally.

 python -c "import this"1

Introduction

Why Do Our Designs Go Wrong?

What comes to mind when you hear the word chaos? Perhaps you
think of a noisy
stock exchange, or your kitchen in the morning—
everything confused and
jumbled. When you think of the word order,
perhaps you think of an empty room,
serene and calm. For scientists,

though, chaos is characterized by homogeneity
(sameness), and or-
der by complexity (difference).

For example, a well-tended garden is a highly ordered system. Gar-
deners define
boundaries with paths and fences, and they mark out
flower beds or vegetable
patches. Over time, the garden evolves,

growing richer and thicker; but without
deliberate effort, the garden
will run wild. Weeds and grasses will choke out
other plants, covering
over the paths, until eventually every part looks the
same again—wild
and unmanaged.

Software systems, too, tend toward chaos. When we first start build-
ing a new
system, we have grand ideas that our code will be clean
and well ordered, but
over time we find that it gathers cruft and edge
cases and ends up a confusing
morass of manager classes and util
modules. We find that our sensibly layered
architecture has collapsed

into itself like an oversoggy trifle. Chaotic
software systems are char-
acterized by a sameness of function: API handlers that
have domain
knowledge and send email and perform logging; “business logic”
classes that perform no calculations but do perform I/O; and every-
thing coupled
to everything else so that changing any part of the sys-
tem becomes fraught with
danger. This is so common that software
engineers have their own term for
chaos: the Big Ball of Mud anti-pat-
tern (Figure P-1).

Figure P-1. A real-life dependency diagram (source: “Enterprise Dependency: Big Ball of
Yarn” by Alex Papadimoulis)

https://oreil.ly/dbGTW

TIP

A big ball of mud is the natural state of software in the same way that wilderness
is
the natural state of your garden. It takes energy and direction to
prevent the
collapse.

Fortunately, the techniques to avoid creating a big ball of mud aren’t
complex.

Encapsulation and Abstractions

Encapsulation and abstraction are tools that we all instinctively reach
for
as programmers, even if we don’t all use these exact words. Allow
us to dwell
on them for a moment, since they are a recurring back-
ground theme of the book.

The term encapsulation covers two closely related ideas: simplifying
behavior and hiding data. In this discussion, we’re using the first
sense. We
encapsulate behavior by identifying a task that needs to
be done in our code
and giving that task to a well-defined object or
function. We call that object or function an
abstraction.

Take a look at the following two snippets of Python code:

Do a search with urllib

import json

from urllib.request import urlopen

from urllib.parse import urlencode

params = dict(q='Sausages', format='json')

handle = urlopen('http://api.duckduckgo.com' + '?

raw_text = handle.read().decode('utf8')

parsed = json.loads(raw_text)

results = parsed['RelatedTopics']

for r in results:

 if 'Text' in r:

 print(r['FirstURL'] + ' - ' + r['Text'])

Do a search with requests

import requests

params = dict(q='Sausages', format='json')

parsed = requests.get('http://api.duckduckgo.com/

results = parsed['RelatedTopics']

for r in results:

 if 'Text' in r:

 print(r['FirstURL'] + ' - ' + r['Text'])

Both code listings do the same thing: they submit form-encoded val-
ues
to a URL in order to use a search engine API. But the second is
simpler to read
and understand because it operates at a higher level
of abstraction.

We can take this one step further still by identifying and naming the
task we
want the code to perform for us and using an even higher-
level abstraction to make
it explicit:

Do a search with the duckduckgo module

import duckduckgo

for r in duckduckgo.query('Sausages').results:

 print(r.url + ' - ' + r.text)

Encapsulating behavior by using abstractions is a powerful tool for
making
code more expressive, more testable, and easier to maintain.

NOTE

In the literature of the object-oriented (OO) world, one of the classic
characteriza-
tions of this approach is called
responsibility-driven design;
it uses the words roles
and responsibilities rather than tasks.
The main point is to think about code in terms
of behavior, rather than
in terms of data or algorithms.1

http://www.wirfs-brock.com/Design.html

ABSTRACTIONS AND ABCS

In a traditional OO language like Java or C#, you might use an ab-
stract base
class (ABC) or an interface to define an abstraction. In
Python you can (and we
sometimes do) use ABCs, but you can also
happily rely on duck typing.

The abstraction can just mean “the public API of the thing you’re us-
ing”—a
function name plus some arguments, for example.

Most of the patterns in this book involve choosing an abstraction, so
you’ll
see plenty of examples in each chapter. In addition,
Chapter 3
specifically discusses some general heuristics
for choosing
abstractions.

Layering

Encapsulation and abstraction help us by hiding details and protect-
ing the
consistency of our data, but we also need to pay attention to
the interactions
between our objects and functions. When one func-
tion, module, or object uses
another, we say that the one depends on
the other. These dependencies form a
kind of network or graph.

In a big ball of mud, the dependencies are out of control (as you saw
in
Figure P-1). Changing one node of the graph becomes difficult be-

cause it
has the potential to affect many other parts of the system.

Layered
architectures are one way of tackling this problem. In a lay-
ered architecture,
we divide our code into discrete categories or roles,

and we introduce rules
about which categories of code can call each
other.

One of the most common examples is the three-layered architecture
shown in
Figure P-2.

Figure P-2. Layered architecture

Layered architecture is perhaps the most common pattern for build-
ing business
software. In this model we have user-interface compo-
nents, which could be a web
page, an API, or a command line; these
user-interface components communicate
with a business logic layer
that contains our business rules and our workflows;
and finally, we
have a database layer that’s responsible for storing and retrieving
data.

For the rest of this book, we’re going to be systematically turning this
model inside out by obeying one simple principle.

The Dependency Inversion Principle

You might be familiar with the dependency inversion principle (DIP)

already, because
it’s the D in SOLID.

Unfortunately, we can’t illustrate the DIP by using three tiny code list-
ings as
we did for encapsulation. However, the whole of Part I is es-
sentially a worked
example of implementing the DIP throughout an
application, so you’ll get
your fill of concrete examples.

In the meantime, we can talk about DIP’s formal definition:

1. High-level modules should not depend on low-level modules. Both
should
depend on abstractions.

2. Abstractions should not depend on details. Instead, details should
depend on
abstractions.

But what does this mean? Let’s take it bit by bit.

High-level modules are the code that your organization really cares
about.
Perhaps you work for a pharmaceutical company, and your
high-level modules deal
with patients and trials. Perhaps you work for
a bank, and your high-level
modules manage trades and exchanges.

The high-level modules of a software
system are the functions, class-
es, and packages that deal with our real-world
concepts.

2

By contrast, low-level modules are the code that your organization
doesn’t
care about. It’s unlikely that your HR department gets excited
about filesystems or network sockets. It’s not often that you discuss
SMTP, HTTP,
or AMQP with your finance team. For our nontechnical
stakeholders, these
low-level concepts aren’t interesting or relevant.
All they care about is
whether the high-level concepts work correctly.

If payroll runs on time, your
business is unlikely to care whether that’s
a cron job or a transient function
running on Kubernetes.

Depends on doesn’t mean imports or calls, necessarily, but rather a
more
general idea that one module knows about or needs another
module.

And we’ve mentioned abstractions already: they’re simplified inter-
faces that
encapsulate behavior, in the way that our duckduckgo
module encapsulated a
search engine’s API.

All problems in computer science can be solved by adding an-
other level of
indirection.

—David Wheeler

So the first part of the DIP says that our business code shouldn’t de-
pend on
technical details; instead, both should use abstractions.

Why? Broadly, because we want to be able to change them indepen-
dently of each
other. High-level modules should be easy to change in
response to business
needs. Low-level modules (details) are often, in
practice, harder to
change: think about refactoring to change a func-
tion name versus defining, testing,
and deploying a database migra-
tion to change a column name. We don’t
want business logic
changes to slow down because they are closely coupled
to low-level
infrastructure details. But, similarly, it is important to be
able to
change your infrastructure details when you need to (think about
sharding a database, for example), without needing to make changes
to your
business layer. Adding an abstraction between them (the fa-
mous extra
layer of indirection) allows the two to change (more) inde-
pendently of each
other.

The second part is even more mysterious. “Abstractions should not
depend on
details” seems clear enough, but “Details should depend
on abstractions” is
hard to imagine. How can we have an abstraction
that doesn’t depend on the
details it’s abstracting? By the time we get
to Chapter 4,
we’ll have a concrete example that should make this all
a bit clearer.

A Place for All Our Business Logic:

The Domain Model

But before we can turn our three-layered architecture inside out, we
need to
talk more about that middle layer: the high-level modules or
business
logic. One of the most common reasons that our designs go
wrong is that
business logic becomes spread throughout the layers of
our application,
making it hard to identify, understand, and change.

Chapter 1 shows how to build a business
layer with a Domain Model
pattern. The rest of the patterns in Part I show
how we can keep the
domain model easy to change and free of low-level concerns
by
choosing the right abstractions and continuously applying the DIP.

 If you’ve come across class-responsibility-collaborator (CRC) cards, they’re dri-
ving at the same thing: thinking about responsibilities helps you decide how to split
things up.

 SOLID is an acronym for Robert C. Martin’s five principles of object-oriented de-

sign: single responsibility, open for extension but closed for modification, Liskov
substitution, interface segregation, and dependency inversion. See “S.O.L.I.D: The
First 5 Principles of Object-Oriented Design” by Samuel Oloruntoba.

1

2

https://oreil.ly/UFM7U

Part I. Building an Architecture to
Support Domain Modeling

Most developers have never seen a domain model, only a data
model.

—Cyrille Martraire, DDD EU 2017

Most developers we talk to about architecture have a nagging sense
that
things could be better. They are often trying to rescue a system
that has gone
wrong somehow, and are trying to put some structure
back into a ball of mud.
They know that their business logic shouldn’t
be spread all over the place,
but they have no idea how to fix it.

We’ve found that many developers, when asked to design a new sys-
tem, will
immediately start to build a database schema, with the ob-
ject model treated
as an afterthought. This is where it all starts to go
wrong. Instead, behavior
should come first and drive our storage re-
quirements. After all, our customers don’t care about the data model.
They care about what
the system does; otherwise they’d just use a
spreadsheet.

The first part of the book looks at how to build a rich object model
through TDD (in Chapter 1), and then we’ll show how
to keep that

model decoupled from technical concerns. We show how to build
per-
sistence-ignorant code and how to create stable APIs around our do-
main so
that we can refactor aggressively.

To do that, we present four key design patterns:

The Repository pattern, an abstraction over the
idea of persistent
storage
The Service Layer pattern to clearly define where our
use cases
begin and end

The Unit of Work pattern to provide atomic operations
The Aggregate pattern to enforce the integrity
of our data

If you’d like a picture of where we’re going, take a look at
Figure I-1,

but don’t worry if none of it makes sense
yet! We introduce each box
in the figure, one by one, throughout this part of the book.

Figure I-1. A component diagram for our app at the end of Part I

We also take a little time out to talk about
coupling and abstractions,

illustrating it with a simple example that shows how and why we

choose our
abstractions.

Three appendices are further explorations of the content from Part I:

Appendix B is a write-up of the infrastructure for our example
code:

how we build and run the Docker images, where we manage con-
figuration
info, and how we run different types of tests.

Appendix C is a “proof is in the pudding” kind of content, showing
how easy it is to swap out our entire infrastructure—the Flask API,
the
ORM, and Postgres—for a totally different I/O model involving
a CLI and
CSVs.

Finally, Appendix D may be of interest if you’re wondering how
these
patterns might look if using Django instead of Flask and
SQLAlchemy.

Chapter 1. Domain Modeling

This chapter looks into how we can model business processes with
code, in a way
that’s highly compatible with TDD. We’ll discuss why
domain modeling
matters, and we’ll look at a few key patterns for
modeling domains: Entity,
Value Object, and Domain Service.

Figure 1-1 is a simple visual placeholder for our Domain
Model pat-
tern. We’ll fill in some details in this chapter, and as we move on to
other chapters, we’ll build things around the domain model, but you
should
always be able to find these little shapes at the core.

Figure 1-1. A placeholder illustration of our domain model

What Is a Domain Model?

In the introduction, we used the term business logic layer to describe
the
central layer of a three-layered architecture. For the rest of the
book, we’re
going to use the term domain model instead. This is a

term from the DDD
community that does a better job of capturing our
intended meaning (see the
next sidebar for more on DDD).

The domain is a fancy way of saying the problem you’re trying to
solve. Your
authors currently work for an online retailer of furniture.

Depending on which system
you’re talking about, the domain might
be purchasing and procurement, or product
design, or logistics and
delivery. Most programmers spend their days trying to
improve or au-
tomate business processes; the domain is the set of activities
that
those processes support.

A model is a map of a process or phenomenon that captures a useful
property.
Humans are exceptionally good at producing models of
things in their heads. For
example, when someone throws a ball to-
ward you, you’re able to predict its
movement almost unconsciously,

because you have a model of the way objects move in
space. Your
model isn’t perfect by any means. Humans have terrible intuitions
about how objects behave at near-light speeds or in a vacuum be-
cause our model
was never designed to cover those cases. That
doesn’t mean the model is wrong,
but it does mean that some predic-
tions fall outside of its domain.

The domain model is the mental map that business owners have of
their
businesses. All business people have these mental maps—
they’re how humans think
about complex processes.

You can tell when they’re navigating these maps because they use
business speak.
Jargon arises naturally among people who are col-
laborating on complex systems.

Imagine that you, our unfortunate reader, were suddenly transported
light years
away from Earth aboard an alien spaceship with your
friends and family and had
to figure out, from first principles, how to
navigate home.

In your first few days, you might just push buttons randomly, but soon
you’d
learn which buttons did what, so that you could give one anoth-
er instructions.
“Press the red button near the flashing doohickey and
then throw that big
lever over by the radar gizmo,” you might say.

Within a couple of weeks, you’d become more precise as you adopt-
ed words to
describe the ship’s functions: “Increase oxygen levels in
cargo bay three”
or “turn on the little thrusters.” After a few months,

you’d have adopted
language for entire complex processes: “Start
landing sequence” or “prepare
for warp.” This process would happen
quite naturally, without any formal effort
to build a shared glossary.

THIS IS NOT A DDD BOOK. YOU SHOULD READ A DDD BOOK.

Domain-driven design, or DDD, popularized the concept of domain
modeling,
and it’s been a hugely successful movement in transform-
ing the way people
design software by focusing on the core business
domain. Many of the
architecture patterns that we cover in this book
—including Entity, Aggregate, Value Object (see Chapter 7), and
Repository (in
the next chapter)—come from the DDD tradition.

In a nutshell, DDD says that the most important thing about software
is that it
provides a useful model of a problem. If we get that model
right, our
software delivers value and makes new things possible.

If we get the model wrong, it becomes an obstacle to be worked
around. In this book,
we can show the basics of building a domain
model, and building an architecture
around it that leaves the model as
free as possible from external constraints,
so that it’s easy to evolve
and change.

But there’s a lot more to DDD and to the processes, tools, and tech-
niques for
developing a domain model. We hope to give you a taste
of it, though,
and cannot encourage you enough to go on and read a
proper DDD book:

The original “blue book,” Domain-Driven Design by Eric Evans
(Addison-Wesley Professional)

1

The “red book,” Implementing Domain-Driven Design
by Vaughn
Vernon (Addison-Wesley Professional)

So it is in the mundane world of business. The terminology used by
business
stakeholders represents a distilled understanding of the do-
main model, where
complex ideas and processes are boiled down to
a single word or phrase.

When we hear our business stakeholders using unfamiliar words, or
using terms
in a specific way, we should listen to understand the
deeper meaning and encode
their hard-won experience into our
software.

We’re going to use a real-world domain model throughout this book,

specifically
a model from our current employment. MADE.com is a
successful furniture
retailer. We source our furniture from manufac-
turers all over the world and
sell it across Europe.

When you buy a sofa or a coffee table, we have to figure out how best
to get your goods from Poland or China or Vietnam and into your liv-
ing room.

At a high level, we have separate systems that are responsible for
buying
stock, selling stock to customers, and shipping goods to cus-

tomers. A
system in the middle needs to coordinate the process by
allocating stock
to a customer’s orders; see Figure 1-2.

Figure 1-2. Context diagram for the allocation service

For the purposes of this book, we’re imagining that the business
de-
cides to implement an exciting new way of allocating stock. Until now,

the
business has been presenting stock and lead times based on
what is physically
available in the warehouse. If and when the ware-
house runs out, a product is
listed as “out of stock” until the next ship-
ment arrives from the manufacturer.

Here’s the innovation: if we have a system that can keep track of all
our shipments
and when they’re due to arrive, we can treat the goods
on those ships as
real stock and part of our inventory, just with slight-
ly longer lead times.
Fewer goods will appear to be out of stock, we’ll
sell more, and the business
can save money by keeping lower inven-
tory in the domestic warehouse.

But allocating orders is no longer a trivial matter of decrementing a
single
quantity in the warehouse system. We need a more complex
allocation mechanism.
Time for some domain modeling.

Exploring the Domain Language

Understanding the domain model takes time, and patience, and Post-
it notes. We
have an initial conversation with our business experts
and agree on a glossary
and some rules for the first minimal version
of the domain model. Wherever
possible, we ask for concrete exam-
ples to illustrate each rule.

We make sure to express those rules in the business jargon (the
ubiquitous
language in DDD terminology). We choose memorable
identifiers for our objects
so that the examples are easier to talk
about.

“Some Notes on Allocation” shows some notes we might have taken
while having a
conversation with our domain experts about allocation.

SOME NOTES ON ALLOCATION

A product is identified by a SKU, pronounced “skew,” which is short
for stock-keeping unit. Customers place orders. An order is identified
by an order reference
and comprises multiple order lines, where each
line has a SKU and a quantity. For example:

10 units of RED-CHAIR
1 unit of TASTELESS-LAMP

The purchasing department orders small batches of stock. A batch of
stock has a unique ID called a reference, a SKU, and a quantity.

We need to allocate order lines to batches. When we’ve allocated an
order line to a batch, we will send stock from that specific batch to the
customer’s delivery address. When we allocate x units of stock to a
batch, the available quantity is reduced by x. For example:

We have a batch of 20 SMALL-TABLE, and we allocate an order
line for 2 SMALL-TABLE.

The batch should have 18 SMALL-TABLE remaining.

We can’t allocate to a batch if the available quantity is less than the
quantity of the order line. For example:

We have a batch of 1 BLUE-CUSHION, and an order line for 2
BLUE-CUSHION.

We should not be able to allocate the line to the batch.

We can’t allocate the same line twice. For example:

We have a batch of 10 BLUE-VASE, and we allocate an order line
for 2 BLUE-VASE.

If we allocate the order line again to the same batch, the batch
should still
have an available quantity of 8.

Batches have an ETA if they are currently shipping, or they may be in
warehouse stock. We allocate to warehouse stock in preference to
shipment batches. We allocate to shipment batches in order of which
has the earliest ETA.

Unit Testing Domain Models

We’re not going to show you how TDD works in this book, but we
want to show you
how we would construct a model from this business
conversation.

EXERCISE FOR THE READER

Why not have a go at solving this problem yourself? Write a few unit
tests to
see if you can capture the essence of these business rules in
nice, clean
code.

You’ll find some placeholder unit tests on GitHub, but you could just
start from
scratch, or combine/rewrite them however you like.

Here’s what one of our first tests might look like:

A first test for allocation (test_batches.py)

def test_allocating_to_a_batch_reduces_the_availa

 batch = Batch("batch-001", "SMALL-TABLE", qty

 line = OrderLine('order-ref', "SMALL-TABLE",

 batch.allocate(line)

 assert batch.available_quantity == 18

The name of our unit test describes the behavior that we want to see
from the
system, and the names of the classes and variables that we
use are taken from the
business jargon. We could show this code to

https://github.com/cosmicpython/code/tree/chapter_01_domain_model_exercise

our nontechnical coworkers, and
they would agree that this correctly
describes the behavior of the system.

And here is a domain model that meets our requirements:

First cut of a domain model for batches (model.py)

@dataclass(frozen=True)

class OrderLine:

 orderid: str

 sku: str

 qty: int

class Batch:

 def __init__(

 self, ref: str, sku: str, qty: int, eta:

):

 self.reference = ref

 self.sku = sku

 self.eta = eta

 self.available_quantity = qty

 def allocate(self, line: OrderLine):

 self.available_quantity -= line.qty

OrderLine is an immutable dataclass
with no behavior.

We’re not showing imports in most code listings, in an attempt
to keep them
clean. We’re hoping you can guess
that this came
via from dataclasses import dataclass ; likewise,

typing.Optional and datetime.date . If you want to
double-check
anything, you can see the full working code for
each chapter in
its branch (e.g.,
chapter_01_domain_model).

Type hints are still a matter of controversy in the Python world.

For
domain models, they can sometimes help to clarify or docu-
ment what the
expected arguments are, and people with IDEs
are often grateful for them.
You may decide the price paid in
terms of readability is too high.

Our implementation here is trivial: a Batch just wraps an integer
available_quantity , and we decrement that value on alloca-
tion. We’ve written
quite a lot of code just to subtract one number
from another, but we think that modeling our
domain precisely will
pay off.

Let’s write some new failing tests:

Testing logic for what we can allocate (test_batches.py)

d f k b t h d li (k b t h t li t)

2

3

https://github.com/python-leap/code/tree/chapter_01_domain_model

def make_batch_and_line(sku, batch_qty, line_qty)

 return (

 Batch("batch-001", sku, batch_qty, eta=da

 OrderLine("order-123", sku, line_qty)

)

def test_can_allocate_if_available_greater_than_r

 large_batch, small_line = make_batch_and_line

 assert large_batch.can_allocate(small_line)

def test_cannot_allocate_if_available_smaller_tha

 small_batch, large_line = make_batch_and_line

 assert small_batch.can_allocate(large_line) i

def test_can_allocate_if_available_equal_to_requi

 batch, line = make_batch_and_line("ELEGANT-LA

 assert batch.can_allocate(line)

def test_cannot_allocate_if_skus_do_not_match():

 batch = Batch("batch-001", "UNCOMFORTABLE-CHA

 different_sku_line = OrderLine("order-123", "

 assert batch.can_allocate(different_sku_line)

There’s nothing too unexpected here. We’ve refactored our test suite
so that we
don’t keep repeating the same lines of code to create a
batch and a line for
the same SKU; and we’ve written four simple

tests for a new method
 can_allocate . Again, notice that the
names we use mirror the language of our
domain experts, and the
examples we agreed upon are directly written into code.

We can implement this straightforwardly, too, by writing the
can_allocate
method of Batch :

A new method in the model (model.py)

 def can_allocate(self, line: OrderLine) -> bo

 return self.sku == line.sku and self.avai

So far, we can manage the implementation by just incrementing and
decrementing
 Batch.available_quantity , but as we get into
deallocate() tests, we’ll be
forced into a more intelligent
solution:

This test is going to require a smarter model (test_batches.py)

def test_can_only_deallocate_allocated_lines():

 batch, unallocated_line = make_batch_and_line

 batch.deallocate(unallocated_line)

 assert batch.available_quantity == 20

In this test, we’re asserting that deallocating a line from a batch has
no effect
unless the batch previously allocated the line. For this to
work, our Batch
needs to understand which lines have been allo-
cated. Let’s look at the
implementation:

The domain model now tracks allocations (model.py)

class Batch:

 def __init__(

 self, ref: str, sku: str, qty: int, eta:

):

 self.reference = ref

 self.sku = sku

 self.eta = eta

 self._purchased_quantity = qty

 self._allocations = set() # type: Set[Or

 def allocate(self, line: OrderLine):

 if self.can_allocate(line):

 self._allocations.add(line)

 def deallocate(self, line: OrderLine):

 if line in self._allocations:

 self._allocations.remove(line)

 @property

 def allocated_quantity(self) -> int:

 return sum(line.qty for line in self._all

 @property

 def available_quantity(self) -> int:

 return self._purchased_quantity - self.al

 def can_allocate(self, line: OrderLine) -> bo

 return self.sku == line.sku and self.avai

Figure 1-3 shows the model in UML.

Figure 1-3. Our model in UML

Now we’re getting somewhere! A batch now keeps track of a set of
allocated
 OrderLine objects. When we allocate, if we have enough
available quantity, we
just add to the set. Our
available_quantity is now a calculated property:
purchased
quantity minus allocated quantity.

Yes, there’s plenty more we could do. It’s a little disconcerting that
both allocate() and deallocate() can fail silently, but we
have the
basics.

Incidentally, using a set for ._allocations makes it simple for us
to handle the last test, because items in a set are unique:

Last batch test! (test_batches.py)

def test_allocation_is_idempotent():

 batch, line = make_batch_and_line("ANGULAR-DE

 batch.allocate(line)

 batch.allocate(line)

 assert batch.available_quantity == 18

At the moment, it’s probably a valid criticism to say that the domain
model is
too trivial to bother with DDD (or even object orientation!). In
real life,
any number of business rules and edge cases crop up: cus-
tomers can ask for
delivery on specific future dates, which means we
might not want to allocate
them to the earliest batch. Some SKUs
aren’t in batches, but ordered on
demand directly from suppliers, so
they have different logic. Depending on the
customer’s location, we
can allocate to only a subset of warehouses and shipments
that are
in their region—except for some SKUs we’re happy to deliver from a
warehouse in a different region if we’re out of stock in the home re-

gion. And
so on. A real business in the real world knows how to pile
on complexity faster
than we can show on the page!

But taking this simple domain model as a placeholder for something
more complex, we’re going to extend our simple domain model in the
rest of the book and
plug it into the real world of APIs and databases
and spreadsheets. We’ll
see how sticking rigidly to our principles of
encapsulation and careful
layering will help us to avoid a ball of mud.

MORE TYPES FOR MORE TYPE HINTS

If you really want to go to town with type hints, you could go so far as
wrapping primitive types by using typing.NewType :

Just taking it way too far, Bob

from dataclasses import dataclass

from typing import NewType

Quantity = NewType("Quantity", int)

Sku = NewType("Sku", str)

Reference = NewType("Reference", str)

...

class Batch:

 def __init__(self, ref: Reference, sku: Sku,

 self.sku = sku

 self.reference = ref

 self._purchased_quantity = qty

That would allow our type checker to make sure that we don’t pass a
Sku where a
 Reference is expected, for example.

Whether you think this is wonderful or appalling is a matter of
debate.4

Dataclasses Are Great for Value Objects

We’ve used line liberally in the previous code listings, but what is a
line? In our business language, an order has multiple line items,

where
each line has a SKU and a quantity. We can imagine that a
simple YAML file
containing order information might look like this:

Order info as YAML

Order_reference: 12345

Lines:

 - sku: RED-CHAIR

 qty: 25

 - sku: BLU-CHAIR

 qty: 25

 - sku: GRN-CHAIR

 qty: 25

Notice that while an order has a reference that uniquely identifies it, a
line does not. (Even if we add the order reference to the OrderLine

class,
it’s not something that uniquely identifies the line itself.)

Whenever we have a business concept that has data but no identity,

we
often choose to represent it using the Value Object pattern. A val-
ue object is any
domain object that is uniquely identified by the data it
holds; we usually
make them immutable:

OrderLine is a value object

@dataclass(frozen=True)

class OrderLine:

 orderid: OrderReference

 sku: ProductReference

 qty: Quantity

One of the nice things that dataclasses (or namedtuples) give us is
value
equality, which is the fancy way of saying, “Two lines with the
same orderid ,
 sku , and qty are equal.”

More examples of value objects

from dataclasses import dataclass

from typing import NamedTuple

from collections import namedtuple

@dataclass(frozen=True)

class Name:

 first_name: str

 surname: str

class Money(NamedTuple):

 currency: str

 value: int

Line = namedtuple('Line', ['sku', 'qty'])

def test_equality():

 assert Money('gbp', 10) == Money('gbp', 10)

 assert Name('Harry', 'Percival') != Name('Bob

 assert Line('RED-CHAIR', 5) == Line('RED-CHAI

These value objects match our real-world intuition about how their
values
work. It doesn’t matter which £10 note we’re talking about, be-
cause they all
have the same value. Likewise, two names are equal if
both the first and last
names match; and two lines are equivalent if
they have the same customer order,
product code, and quantity. We
can still have complex behavior on a value
object, though. In fact, it’s
common to support operations on values; for
example, mathematical
operators:

Math with value objects

fiver = Money('gbp', 5)

tenner = Money('gbp', 10)

def can_add_money_values_for_the_same_currency():

 assert fiver + fiver == tenner

def can_subtract_money_values():

 assert tenner - fiver == fiver

def adding_different_currencies_fails():

 with pytest.raises(ValueError):

 Money('usd', 10) + Money('gbp', 10)

def can_multiply_money_by_a_number():

 assert fiver * 5 == Money('gbp', 25)

def multiplying_two_money_values_is_an_error():

 with pytest.raises(TypeError):

 tenner * fiver

Value Objects and Entities

An order line is uniquely identified by its order ID, SKU, and quantity;

if we
change one of those values, we now have a new line. That’s the
definition of a
value object: any object that is identified only by its data
and doesn’t have a
long-lived identity. What about a batch, though?

That is identified by a
reference.

We use the term entity to describe a domain object that has long-
lived
identity. On the previous page, we introduced a Name class as
a value object.
If we take the name Harry Percival and change one
letter, we have the new
 Name object Barry Percival.

It should be clear that Harry Percival is not equal to Barry Percival:

A name itself cannot change…

def test_name_equality():

 assert Name("Harry", "Percival") != Name("Bar

But what about Harry as a person? People do change their names,

and their
marital status, and even their gender, but we continue to
recognize them as the
same individual. That’s because humans, un-
like names, have a persistent
identity:

But a person can!

class Person:

 def __init__(self, name: Name):

 self.name = name

def test_barry_is_harry():

 harry = Person(Name("Harry", "Percival"))

 barry = harry

 barry.name = Name("Barry", "Percival")

 assert harry is barry and barry is harry

Entities, unlike values, have identity equality. We can change their
values,
and they are still recognizably the same thing. Batches, in our
example, are
entities. We can allocate lines to a batch, or change the
date that we expect
it to arrive, and it will still be the same entity.

We usually make this explicit in code by implementing equality opera-
tors on
entities:

Implementing equality operators (model.py)

class Batch:

 ...

 def __eq__(self, other):

 if not isinstance(other, Batch):

 return False

 return other.reference == self.reference

 def __hash__(self):

 return hash(self.reference)

Python’s __eq__ magic method
defines the behavior of the class
for the == operator.

For both entity and value objects, it’s also worth thinking through how
__hash__ will work. It’s the magic method Python uses to control

5

the
behavior of objects when you add them to sets or use them as
dict keys;
you can find more info in the Python docs.

For value objects, the hash should be based on all the value attribut-
es,
and we should ensure that the objects are immutable. We get this
for
free by specifying @frozen=True on the dataclass.

For entities, the simplest option is to say that the hash is None ,

meaning
that the object is not hashable and cannot, for example, be
used in a set.
If for some reason you decide you really do want to use
set or dict operations
with entities, the hash should be based on the
attribute(s), such as
 .reference , that defines the entity’s unique
identity over time. You should
also try to somehow make that attribute
read-only.

WARNING

This is tricky territory; you shouldn’t modify __hash__ without
also modifying
__eq__ . If you’re not sure what you’re doing,
further reading is suggested.

“Python Hashes and Equality” by our tech reviewer Hynek Schlawack is a good
place to start.

Not Everything Has to Be an Object:
A Domain Service Function

https://oreil.ly/YUzg5
https://oreil.ly/vxkgX

We’ve made a model to represent batches, but what we actually need
to do is allocate order lines against a specific set of batches that
rep-
resent all our stock.

Sometimes, it just isn’t a thing.

—Eric Evans, Domain-Driven Design

Evans discusses the idea of Domain Service
operations that don’t
have a natural home in an entity or value object. A
thing that allo-
cates an order line, given a set of batches, sounds a lot like a
func-
tion, and we can take advantage of the fact that Python is a multipar-
adigm
language and just make it a function.

Let’s see how we might test-drive such a function:

Testing our domain service (test_allocate.py)

def test_prefers_current_stock_batches_to_shipmen

 in_stock_batch = Batch("in-stock-batch", "RET

 shipment_batch = Batch("shipment-batch", "RET

 line = OrderLine("oref", "RETRO-CLOCK", 10)

 allocate(line, [in_stock_batch, shipment_batc

 assert in_stock_batch.available_quantity == 9

 assert shipment_batch.available_quantity == 1

6

def test_prefers_earlier_batches():

 earliest = Batch("speedy-batch", "MINIMALIST-

 medium = Batch("normal-batch", "MINIMALIST-SP

 latest = Batch("slow-batch", "MINIMALIST-SPOO

 line = OrderLine("order1", "MINIMALIST-SPOON"

 allocate(line, [medium, earliest, latest])

 assert earliest.available_quantity == 90

 assert medium.available_quantity == 100

 assert latest.available_quantity == 100

def test_returns_allocated_batch_ref():

 in_stock_batch = Batch("in-stock-batch-ref",

 shipment_batch = Batch("shipment-batch-ref",

 line = OrderLine("oref", "HIGHBROW-POSTER", 1

 allocation = allocate(line, [in_stock_batch,

 assert allocation == in_stock_batch.reference

And our service might look like this:

A standalone function for our domain service (model.py)

def allocate(line: OrderLine, batches: List[Batch

batch = next(

 batch = next(

 b for b in sorted(batches) if b.can_alloc

)

 batch.allocate(line)

 return batch.reference

Python’s Magic Methods Let Us Use Our Models
with Idiomatic Python

You may or may not like the use of next() in the preceding code,

but we’re pretty
sure you’ll agree that being able to use sorted()

on our list of
batches is nice, idiomatic Python.

To make it work, we implement __gt__ on our domain model:

Magic methods can express domain semantics (model.py)

class Batch:

 ...

 def __gt__(self, other):

 if self.eta is None:

 return False

 if other.eta is None:

 return True

 return self.eta > other.eta

That’s lovely.

Exceptions Can Express Domain Concepts Too

We have one final concept to cover: exceptions
can be used to ex-
press domain concepts too. In our conversations
with domain ex-
perts, we’ve learned about the possibility that
an order cannot be allo-
cated because we are out of stock, and
we can capture that by using
a domain exception:

Testing out-of-stock exception (test_allocate.py)

def test_raises_out_of_stock_exception_if_cannot_

 batch = Batch('batch1', 'SMALL-FORK', 10, eta

 allocate(OrderLine('order1', 'SMALL-FORK', 10

 with pytest.raises(OutOfStock, match='SMALL-F

 allocate(OrderLine('order2', 'SMALL-FORK

DOMAIN MODELING RECAP

Domain modeling

This is the part of your code that is closest to the business,
the
most likely to change, and the place where you deliver the
most
value to the business. Make it easy to understand and modify.

Distinguish entities from value objects

A value object is defined by its attributes. It’s usually best
im-
plemented as an immutable type. If you change an attribute on
a Value Object, it represents a different object. In contrast,
an
entity has attributes that may vary over time and it will still be
the
same entity. It’s important to define what does uniquely
identify
an entity (usually some sort of name or reference field).

Not everything has to be an object

Python is a multiparadigm language, so let the “verbs” in your
code be functions. For every FooManager , BarBuilder , or
BazFactory ,
there’s often a more expressive and readable
manage_foo() , build_bar() ,
or get_baz() waiting to
happen.

This is the time to apply your best OO design principles

Revisit the SOLID principles and all the other good heuristics
like “has a versus is-a,”
“prefer composition over inheritance,”
and so on.

You’ll also want to think about consistency boundaries and
aggregates

But that’s a topic for Chapter 7.

We won’t bore you too much with the implementation, but the main
thing
to note is that we take care in naming our exceptions in the
ubiquitous
language, just as we do our entities, value objects, and
services:

Raising a domain exception (model.py)

class OutOfStock(Exception):

 pass

def allocate(line: OrderLine, batches: List[Batch

 try:

 batch = next(

 ...

 except StopIteration:

 raise OutOfStock(f'Out of stock for sku {

Figure 1-4 is a visual representation of where we’ve ended up.

Figure 1-4. Our domain model at the end of the chapter

That’ll probably do for now! We have a domain service that we can
use for our
first use case. But first we’ll need a database…

1

 DDD did not originate domain modeling. Eric Evans refers to the 2002 book Object
Design by Rebecca Wirfs-Brock and Alan McKean (Addison-Wesley Professional),
which introduced responsibility-driven design, of which DDD is a special case deal-
ing with the domain. But even that is too late, and OO enthusiasts will tell you to

look further back to Ivar Jacobson and Grady Booch; the term has been around
since the mid-1980s.

 In previous Python versions, we might have used a namedtuple. You could also
check out Hynek Schlawack’s excellent attrs.

 Or perhaps you think there’s not enough code? What about some sort of check
that the SKU in the OrderLine matches Batch.sku ? We saved some thoughts
on validation for Appendix E.

 It is appalling. Please, please don’t do this. —Harry

 The __eq__ method is pronounced “dunder-EQ.” By some, at least.

 Domain services are not the same thing as the services from the service layer, al-
though they are often closely related. A domain service represents a business con-
cept or process, whereas a service-layer service represents a use case for your ap-
plication. Often the service layer will call a domain service.

1

2

3

4

5

6

https://pypi.org/project/attrs

Chapter 2. Repository Pattern

It’s time to make good on our promise to use the dependency inver-
sion principle as
a way of decoupling our core logic from infrastructur-
al concerns.

We’ll introduce the Repository pattern, a simplifying abstraction over
data storage,
allowing us to decouple our model layer from the data
layer. We’ll present a
concrete example of how this simplifying ab-
straction makes our system more
testable by hiding the complexities
of the database.

Figure 2-1 shows a little preview of what we’re going to build:
a
Repository object that sits between our domain model and the
database.

Figure 2-1. Before and after the Repository pattern

TIP

The code for this chapter is in the
chapter_02_repository branch on GitHub.

git clone https://github.com/cosmicpython/code.git

cd code

git checkout chapter_02_repository

or to code along, checkout the previous chapter:

git checkout chapter_01_domain_model

Persisting Our Domain Model

In Chapter 1 we built a simple domain model that can allocate orders
to batches of stock. It’s easy for us to write tests against this code be-

https://oreil.ly/6STDu

cause
there aren’t any dependencies or infrastructure to set up. If we
needed to run
a database or an API and create test data, our tests
would be harder to write
and maintain.

Sadly, at some point we’ll need to put our perfect little model in the
hands of
users and contend with the real world of spreadsheets and
web
browsers and race conditions. For the next few chapters we’re
going to look at
how we can connect our idealized domain model to
external state.

We expect to be working in an agile manner, so our priority is to get to
a
minimum viable product as quickly as possible. In our case, that’s
going to be
a web API. In a real project, you might dive straight in with
some end-to-end
tests and start plugging in a web framework, test-
driving things outside-in.

But we know that, no matter what, we’re going to need some form of
persistent
storage, and this is a textbook, so we can allow ourselves a
tiny bit more
bottom-up development and start to think about storage
and databases.

Some Pseudocode: What Are We
Going to Need?

When we build our first API endpoint, we know we’re going to have
some code that looks more or less like the following.

What our first API endpoint will look like

@flask.route.gubbins

def allocate_endpoint():

 # extract order line from request

 line = OrderLine(request.params, ...)

 # load all batches from the DB

 batches = ...

 # call our domain service

 allocate(line, batches)

 # then save the allocation back to the databa

 return 201

NOTE

We’ve used Flask because it’s lightweight, but you don’t need
to be a Flask user to
understand this book. In fact, we’ll show you how
to make your choice of framework
a minor detail.

We’ll need a way to retrieve batch info from the database and instan-
tiate our domain
model objects from it, and we’ll also need a way of
saving them back to the
database.

What? Oh, “gubbins” is a British word for “stuff.” You can just ignore
that. It’s pseudocode, OK?

Applying the DIP to Data Access

As mentioned in the introduction, a layered architecture is a common
approach to structuring a system that has a UI, some logic, and a
database (see
Figure 2-2).

Figure 2-2. Layered architecture

Django’s Model-View-Template structure is closely related, as is
Mod-
el-View-Controller (MVC). In any case, the aim is to keep the layers
separate (which is a good thing), and to have each layer depend only
on the one
below it.

But we want our domain model to have no dependencies
whatsoever.
We don’t want infrastructure concerns bleeding over
into our domain model and
slowing our unit tests or our ability to
make changes.

1

Instead, as discussed in the introduction, we’ll think of our model as
being on the
“inside,” and dependencies flowing inward to it; this is
what people sometimes call
onion architecture (see Figure 2-3).

Figure 2-3. Onion architecture

IS THIS PORTS AND ADAPTERS?

If you’ve been reading about architectural patterns, you may be ask-
ing
yourself questions like this:

Is this ports and adapters? Or is it hexagonal architecture? Is
that the same as onion architecture? What about the clean ar-
chitecture? What’s a port, and what’s an adapter? Why do you
people have so many words for the same thing?

Although some people like to nitpick over the differences, all these
are
pretty much names for the same thing, and they all boil down to
the
dependency inversion principle: high-level modules (the domain)

should
not depend on low-level ones (the infrastructure).

We’ll get into some of the nitty-gritty around “depending on abstrac-
tions,”
and whether there is a Pythonic equivalent of interfaces,
later
in the book. See also “What Is a Port and What Is an Adapter, in
Python?”.

Reminder: Our Model

Let’s remind ourselves of our domain model (see Figure 2-4):
an allo-
cation is the concept of linking an OrderLine to a Batch . We’re
storing the allocations as a collection on our Batch object.

2

Figure 2-4. Our model

Let’s see how we might translate this to a relational database.

The “Normal” ORM Way: Model Depends on ORM

These days, it’s unlikely that your team members are hand-rolling
their own SQL queries.
Instead, you’re almost certainly using some
kind of framework to generate
SQL for you based on your model ob-
jects.

These frameworks are called object-relational mappers (ORMs) be-
cause they exist to
bridge the conceptual gap between the world of
objects and domain modeling and
the world of databases and rela-
tional algebra.

The most important thing an ORM gives us is persistence ignorance:

the idea
that our fancy domain model doesn’t need to know anything

about how data is
loaded or persisted. This helps keep our domain
clean of direct dependencies
on particular database technologies.

But if you follow the typical SQLAlchemy tutorial, you’ll end up with
something
like this:

SQLAlchemy “declarative” syntax, model depends on ORM (orm.py)

from sqlalchemy import Column, ForeignKey, Intege

from sqlalchemy.ext.declarative import declarativ

from sqlalchemy.orm import relationship

Base = declarative_base()

class Order(Base):

 id = Column(Integer, primary_key=True)

class OrderLine(Base):

 id = Column(Integer, primary_key=True)

 sku = Column(String(250))

 qty = Integer(String(250))

 order_id = Column(Integer, ForeignKey('order.

 order = relationship(Order)

class Allocation(Base):

 ...

3

You don’t need to understand SQLAlchemy to see that our pristine
model is now
full of dependencies on the ORM and is starting to look
ugly as hell besides.
Can we really say this model is ignorant of the
database? How can it be
separate from storage concerns when our
model properties are directly coupled
to database columns?

DJANGO’S ORM IS ESSENTIALLY THE SAME, BUT MORE RESTRICTIVE

If you’re more used to Django, the preceding “declarative” SQLAlche-
my snippet
translates to something like this:

Django ORM example

class Order(models.Model):

 pass

class OrderLine(models.Model):

 sku = models.CharField(max_length=255)

 qty = models.IntegerField()

 order = models.ForeignKey(Order)

class Allocation(models.Model):

 ...

The point is the same—our model classes inherit directly from ORM
classes, so our model depends on the ORM. We want it to be the oth-
er
way around.

Django doesn’t provide an equivalent for SQLAlchemy’s classical
mapper,
but see Appendix D for examples of how to apply dependen-
cy
inversion and the Repository pattern to Django.

Inverting the Dependency: ORM Depends on
Model

Well, thankfully, that’s not the only way to use SQLAlchemy. The al-
ternative is
to define your schema separately, and to define an explic-
it mapper for how to convert
between the schema and our domain
model, what SQLAlchemy calls a
classical mapping:

Explicit ORM mapping with SQLAlchemy Table objects (orm.py)

from sqlalchemy.orm import mapper, relationship

import model

metadata = MetaData()

order_lines = Table(

 'order_lines', metadata,

 Column('id', Integer, primary_key=True, autoi

 Column('sku', String(255)),

 Column('qty', Integer, nullable=False),

 Column('orderid', String(255)),

)

...

https://oreil.ly/ZucTG

def start_mappers():

 lines_mapper = mapper(model.OrderLine, order_

The ORM imports (or “depends on” or “knows about”) the do-
main model, and
not the other way around.

We define our database tables and columns by using
SQLAlchemy’s
abstractions.

When we call the mapper function, SQLAlchemy does its
magic to bind
our domain model classes to the various tables
we’ve defined.

The end result will be that, if we call start_mappers , we will be
able to
easily load and save domain model instances from and to the
database. But if
we never call that function, our domain model class-
es stay blissfully
unaware of the database.

This gives us all the benefits of SQLAlchemy, including the ability to
use
 alembic for migrations, and the ability to transparently query
using our
domain classes, as we’ll see.

When you’re first trying to build your ORM config, it can be useful to
write
tests for it, as in the following example:

4

Testing the ORM directly (throwaway tests) (test_orm.py)

def test_orderline_mapper_can_load_lines(session)

 session.execute(

 'INSERT INTO order_lines (orderid, sku, q

 '("order1", "RED-CHAIR", 12),'

 '("order1", "RED-TABLE", 13),'

 '("order2", "BLUE-LIPSTICK", 14)'

)

 expected = [

 model.OrderLine("order1", "RED-CHAIR", 12

 model.OrderLine("order1", "RED-TABLE", 13

 model.OrderLine("order2", "BLUE-LIPSTICK"

]

 assert session.query(model.OrderLine).all() =

def test_orderline_mapper_can_save_lines(session)

 new_line = model.OrderLine("order1", "DECORAT

 session.add(new_line)

 session.commit()

 rows = list(session.execute('SELECT orderid,

 assert rows == [("order1", "DECORATIVE-WIDGET

https://calibre-pdf-anchor.a/#a216

If you haven’t used pytest, the session argument to this test
needs
explaining. You don’t need to worry about the details of
pytest or its
fixtures for the purposes of this book, but the short
explanation is that
you can define common dependencies for
your tests as “fixtures,” and
pytest will inject them to the tests
that need them by looking at their
function arguments. In this
case, it’s a SQLAlchemy database session.

You probably wouldn’t keep these tests around—as you’ll see shortly,

once
you’ve taken the step of inverting the dependency of ORM and
domain model, it’s
only a small additional step to implement another
abstraction called the
Repository pattern, which will be easier to write
tests against and will
provide a simple interface for faking out later in
tests.

But we’ve already achieved our objective of inverting the traditional
dependency: the domain model stays “pure” and free from in-
frastructure
concerns. We could throw away SQLAlchemy and use a
different ORM, or a totally
different persistence system, and the do-
main model doesn’t need to change at
all.

Depending on what you’re doing in your domain model, and especial-
ly if you
stray far from the OO paradigm, you may find it increasingly
hard to get the
ORM to produce the exact behavior you need, and
you may need to modify your
domain model. As so often happens5

with
architectural decisions, you’ll need to consider a trade-off. As the
Zen of Python says, “Practicality beats purity!”

At this point, though, our API endpoint might look something like
the
following, and we could get it to work just fine:

Using SQLAlchemy directly in our API endpoint

@flask.route.gubbins

def allocate_endpoint():

 session = start_session()

 # extract order line from request

 line = OrderLine(

 request.json['orderid'],

 request.json['sku'],

 request.json['qty'],

)

 # load all batches from the DB

 batches = session.query(Batch).all()

 # call our domain service

 allocate(line, batches)

 # save the allocation back to the database

 session.commit()

 return 201

Introducing the Repository Pattern

The Repository pattern is an abstraction over persistent storage. It
hides the
boring details of data access by pretending that all of our
data is in memory.

If we had infinite memory in our laptops, we’d have no need for clum-
sy databases.
Instead, we could just use our objects whenever we
liked. What would that look
like?

You have to get your data from somewhere

import all_my_data

def create_a_batch():

 batch = Batch(...)

 all_my_data.batches.add(batch)

def modify_a_batch(batch_id, new_quantity):

 batch = all_my_data.batches.get(batch_id)

 batch.change_initial_quantity(new_quantity)

Even though our objects are in memory, we need to put them some-
where so we can
find them again. Our in-memory data would let us
add new objects, just like a
list or a set. Because the objects are in
memory, we never need to call a
 .save() method; we just fetch the
object we care about and modify it in memory.

The Repository in the Abstract

The simplest repository has just two methods: add() to put a new
item in the
repository, and get() to return a previously added item.

We stick rigidly to using these methods for data access in our domain
and our
service layer. This self-imposed simplicity stops us from cou-
pling our domain
model to the database.

Here’s what an abstract base class (ABC) for our repository would
look like:

The simplest possible repository (repository.py)

class AbstractRepository(abc.ABC):

 @abc.abstractmethod

 def add(self, batch: model.Batch):

 raise NotImplementedError

6

 @abc.abstractmethod

 def get(self, reference) -> model.Batch:

 raise NotImplementedError

Python tip: @abc.abstractmethod is one of the only things
that makes
ABCs actually “work” in Python. Python will refuse
to let you instantiate
a class that does not implement all the
abstractmethods defined in its
parent class.

raise NotImplementedError is nice, but it’s neither nec-
essary nor sufficient. In fact, your abstract methods can have
real behavior that subclasses
can call out to, if you really want.

7

ABSTRACT BASE CLASSES, DUCK TYPING, AND PROTOCOLS

We’re using abstract base classes in this book for didactic reasons:

we hope
they help explain what the interface of the repository ab-
straction is.

In real life, we’ve sometimes found ourselves deleting ABCs from our
production
code, because Python makes it too easy to ignore them,

and they end up
unmaintained and, at worst, misleading. In practice
we often just rely on
Python’s duck typing to enable abstractions. To a

Pythonista, a repository is
any object that has add(thing) and

get(id) methods.

An alternative to look into is PEP
544 protocols. These give you typ-
ing without the possibility of inheritance,
which “prefer composition
over inheritance” fans will particularly like.

What Is the Trade-Off?

You know they say economists know the price of everything and
the value of
nothing? Well, programmers know the benefits of
everything and the trade-offs
of nothing.

—Rich Hickey

https://oreil.ly/q9EPC

Whenever we introduce an architectural pattern in this book, we’ll al-
ways
ask, “What do we get for this? And what does it cost us?”

Usually, at the very least, we’ll be introducing an extra layer of ab-
straction,
and although we may hope it will reduce complexity overall,
it does add
complexity locally, and it has a cost in terms of the raw
numbers of moving parts and
ongoing maintenance.

The Repository pattern is probably one of the easiest choices in the
book, though,
if you’re already heading down the DDD and depen-
dency inversion route. As far
as our code is concerned, we’re really
just swapping the SQLAlchemy abstraction
(session.query(Batch)) for a different one
(batches_repo.get) that we
designed.

We will have to write a few lines of code in our repository class each
time we
add a new domain object that we want to retrieve, but in re-
turn we get a
simple abstraction over our storage layer, which we
control. The Repository pattern would make
it easy to make funda-
mental changes to the way we store things (see
Appendix C), and as
we’ll see, it is easy to fake out for unit tests.

In addition, the Repository pattern is so common in the DDD world
that, if you
do collaborate with programmers who have come to

Python from the Java and C#
worlds, they’re likely to recognize it.
Figure 2-5 illustrates the pattern.

Figure 2-5. Repository pattern

As always, we start with a test. This would probably be classified as
an
integration test, since we’re checking that our code (the reposito-
ry) is
correctly integrated with the database; hence, the tests tend to
mix
raw SQL with calls and assertions on our own code.

TIP

Unlike the ORM tests from earlier, these tests are good candidates for
staying part
of your codebase longer term, particularly if any parts of
your domain model mean

the object-relational map is nontrivial.

Repository test for saving an object (test_repository.py)

def test_repository_can_save_a_batch(session):

 batch = model.Batch("batch1", "RUSTY-SOAPDISH

 repo = repository.SqlAlchemyRepository(sessio

 repo.add(batch)

 session.commit()

 rows = list(session.execute(

 'SELECT reference, sku, _purchased_quanti

))

 assert rows == [("batch1", "RUSTY-SOAPDISH",

repo.add() is the method under test here.

We keep the .commit() outside of the repository and make
it the responsibility of the caller. There are pros and cons for
this; some of our reasons will become clearer when we get to
Chapter 6.

We use the raw SQL to verify that the right data has been
saved.

https://calibre-pdf-anchor.a/#a252

The next test involves retrieving batches and allocations, so it’s more
complex:

Repository test for retrieving a complex object (test_repository.py)

def insert_order_line(session):

 session.execute(

 'INSERT INTO order_lines (orderid, sku, q

 ' VALUES ("order1", "GENERIC-SOFA", 12)'

)

 [[orderline_id]] = session.execute(

 'SELECT id FROM order_lines WHERE orderid

 dict(orderid="order1", sku="GENERIC-SOFA"

)

 return orderline_id

def insert_batch(session, batch_id):

 ...

def test_repository_can_retrieve_a_batch_with_all

 orderline_id = insert_order_line(session)

 batch1_id = insert_batch(session, "batch1")

 insert_batch(session, "batch2")

 insert_allocation(session, orderline_id, batc

 repo = repository.SqlAlchemyRepository(sessio

 retrieved = repo.get("batch1")

 expected = model.Batch("batch1", "GENERIC-SOF

 assert retrieved == expected # Batch.__eq__

 assert retrieved.sku == expected.sku

 assert retrieved._purchased_quantity == expec

 assert retrieved._allocations == {

 model.OrderLine("order1", "GENERIC-SOFA",

 }

This tests the read side, so the raw SQL is preparing data to be
read
by the repo.get() .

We’ll spare you the details of insert_batch and
insert_allocation ;
the point is to create a couple of
batches, and, for the
batch we’re interested in, to have one ex-
isting order line allocated to it.

And that’s what we verify here. The first assert == checks
that the
types match, and that the reference is the same (be-
cause, as you remember,
 Batch is an entity, and we have a

custom eq for it).

So we also explicitly check on its major attributes, including
._allocations , which is a Python set of OrderLine val-
ue objects.

https://calibre-pdf-anchor.a/#a261

Whether or not you painstakingly write tests for every model is a judg-
ment
call. Once you have one class tested for create/modify/save,

you might be
happy to go on and do the others with a minimal round-
trip test, or even nothing
at all, if they all follow a similar pattern. In our
case, the ORM config
that sets up the ._allocations set is a little
complex, so it merited a
specific test.

You end up with something like this:

A typical repository (repository.py)

class SqlAlchemyRepository(AbstractRepository):

 def __init__(self, session):

 self.session = session

 def add(self, batch):

 self.session.add(batch)

 def get(self, reference):

 return self.session.query(model.Batch).fi

 def list(self):

 return self.session.query(model.Batch).al

And now our Flask endpoint might look something like the following:

Using our repository directly in our API endpoint

@flask.route.gubbins

def allocate_endpoint():

 batches = SqlAlchemyRepository.list()

 lines = [

 OrderLine(l['orderid'], l['sku'], l['qty

 for l in request.params...

]

 allocate(lines, batches)

 session.commit()

 return 201

EXERCISE FOR THE READER

We bumped into a friend at a DDD conference the other day who
said, “I haven’t
used an ORM in 10 years.” The Repository pattern
and an ORM both act as abstractions
in front of raw SQL, so using
one behind the other isn’t really necessary. Why
not have a go at im-
plementing our repository without using the ORM? You’ll find the code
on GitHub.

We’ve left the repository tests, but figuring out what SQL to write is up
to you. Perhaps it’ll be harder than you think; perhaps it’ll be easier.
But the nice thing is, the rest of your application just doesn’t care.

https://github.com/cosmicpython/code/tree/chapter_02_repository_exercise

Building a Fake Repository for Tests
Is Now Trivial!

Here’s one of the biggest benefits of the Repository pattern:

A simple fake repository using a set (repository.py)

class FakeRepository(AbstractRepository):

 def __init__(self, batches):

 self._batches = set(batches)

 def add(self, batch):

 self._batches.add(batch)

 def get(self, reference):

 return next(b for b in self._batches if b

 def list(self):

 return list(self._batches)

Because it’s a simple wrapper around a set , all the methods are
one-liners.

Using a fake repo in tests is really easy, and we have a simple
ab-
straction that’s easy to use and reason about:

Example usage of fake repository (test_api.py)

fake_repo = FakeRepository([batch1, batch2, batch

You’ll see this fake in action in the next chapter.

TIP

Building fakes for your abstractions is an excellent way to get design
feedback: if
it’s hard to fake, the abstraction is probably too
complicated.

What Is a Port and What Is an
Adapter, in Python?

We don’t want to dwell on the terminology too much here because
the main thing
we want to focus on is dependency inversion, and the
specifics of the
technique you use don’t matter too much. Also, we’re
aware that different
people use slightly different definitions.

Ports and adapters came out of the OO world, and the definition we
hold onto
is that the port is the interface between our application and

whatever
it is we wish to abstract away, and the adapter is the imple-
mentation
behind that interface or abstraction.

Now Python doesn’t have interfaces per se, so although it’s
usually
easy to identify an adapter, defining the port can be harder. If
you’re
using an abstract base class, that’s the port. If not, the port
is just the
duck type that your adapters conform to and that your core applica-
tion
expects—the function and method names in use, and their argu-
ment names and types.

Concretely, in this chapter, AbstractRepository is the port, and
SqlAlchemyRepository and FakeRepository are the
adapters.

Wrap-Up

Bearing the Rich Hickey quote in mind, in each chapter we
summa-
rize the costs and benefits of each architectural pattern we introduce.

We want to be clear that we’re not saying every single application
needs
to be built this way; only sometimes does the complexity of the
app and domain
make it worth investing the time and effort in adding
these extra layers of
indirection.

With that in mind, Table 2-1 shows
some of the pros and cons of the
Repository pattern and our persistence-ignorant
model.

Table 2-1. Repository pattern and persistence ignorance: the trade-offs

Pros Cons

We have a simple interface be-
tween persistent storage and our
domain model.
It’s easy to make a fake version of
the repository for unit testing, or to
swap out different storage solu-
tions, because we’ve fully decou-
pled the model
from infrastructure
concerns.

Writing the domain model before
thinking about persistence helps
us focus on
the business problem
at hand. If we ever want to radical-
ly change our approach,
we can
do that in our model, without need-
ing to worry about foreign keys
or
migrations until later.
Our database schema is really
simple because we have complete

An ORM already
buys you some de-
coupling. Changing
foreign keys might
be hard,
but it should
be pretty easy to
swap between
MySQL and Post-
gres if you
ever need
to.

Maintaining ORM
mappings by hand
requires extra work
and extra code.

Any extra layer of in-
direction always in-
creases mainte-
nance costs and
adds a “WTF factor”

Pros Cons
control over
how we map our ob-
jects to tables.

for Python program-
mers who’ve never
seen the Repository
pattern
before.

Figure 2-6 shows the basic thesis: yes, for simple
cases, a decoupled
domain model is harder work than a simple ORM/ActiveRecord
pat-
tern.

TIP

If your app is just a simple CRUD (create-read-update-delete) wrapper
around a
database, then you don’t need a domain model or a repository.

But the more complex the domain, the more an investment in freeing
yourself from infrastructure concerns will pay off in terms of the ease
of
making changes.

8

Figure 2-6. Domain model trade-offs as a diagram

Our example code isn’t complex enough to give more than a hint of
what
the right-hand side of the graph looks like, but the hints are
there.
Imagine, for example, if we decide one day that we want to
change allocations
to live on the OrderLine instead of on the
Batch object: if we were using
Django, say, we’d have to define and
think through the database migration
before we could run any tests.

As it is, because our model is just plain
old Python objects, we can
change a set() to being a new attribute, without
needing to think
about the database until later.

REPOSITORY PATTERN RECAP

Apply dependency inversion to your ORM

Our domain model should be free of infrastructure concerns,
so
your ORM should import your model, and not the other way
around.

The Repository pattern is a simple abstraction around permanent
storage

The repository gives you the illusion of a collection of in-memo-
ry
objects. It makes it easy to create a FakeRepository for
testing and to swap fundamental details of your
infrastructure
without disrupting your core application. See
Appendix C for an
example.

You’ll be wondering, how do we instantiate these repositories, fake or
real? What will our Flask app actually look like? You’ll find out in the
next
exciting installment, the Service Layer pattern.

But first, a brief digression.

 I suppose we mean “no stateful dependencies.” Depending on a helper library is
fine; depending on an ORM or a web framework is not.

1

2

 Mark Seemann has an excellent blog post on the topic.

 In this sense, using an ORM is already an example of the DIP. Instead of depend-
ing on hardcoded SQL, we depend on an abstraction, the ORM. But that’s not
enough for us—not in this book!

 Even in projects where we don’t use an ORM, we often use SQLAlchemy along-
side Alembic to declaratively create schemas in Python and to manage migrations,

connections, and sessions.

 Shout-out to the amazingly helpful SQLAlchemy maintainers, and to Mike Bayer in
particular.

 You may be thinking, “What about list or delete or update ?” However, in
an ideal world, we modify our model objects one at a time, and delete is usually

handled as a soft-delete—i.e., batch.cancel() . Finally, update is taken care of
by the Unit of Work pattern, as you’ll see in Chapter 6.

 To really reap the benefits of ABCs (such as they may be), be running helpers like
pylint and mypy .

 Diagram inspired by a post called “Global Complexity, Local Simplicity” by Rob
Vens.

2

3

4

5

6

7

8

https://oreil.ly/LpFS9
https://oreil.ly/fQXkP

Chapter 3. A Brief Interlude: On
Coupling and Abstractions

Allow us a brief digression on the subject of abstractions, dear read-
er.
We’ve talked about abstractions quite a lot. The Repository pat-
tern is an
abstraction over permanent storage, for example. But what
makes a good
abstraction? What do we want from abstractions? And
how do they relate to testing?

TIP

The code for this chapter is in the
chapter_03_abstractions branch on GitHub:

git clone https://github.com/cosmicpython/code.git

git checkout chapter_03_abstractions

A key theme in this book, hidden among the fancy patterns, is that we
can use
simple abstractions to hide messy details. When we’re writ-
ing code for fun, or
in a kata,
we get to play with ideas freely, ham-
mering things out and refactoring
aggressively. In a large-scale sys-
tem, though, we become constrained by the
decisions made else-
where in the system.

1

https://oreil.ly/k6MmV

When we’re unable to change component A for fear of breaking com-
ponent B, we say
that the components have become coupled. Local-
ly, coupling is a good thing: it’s
a sign that our code is working togeth-
er, each component supporting the others, all of them
fitting in place
like the gears of a watch. In jargon, we say this works when
there is
high cohesion between the coupled elements.

Globally, coupling is a nuisance: it increases the risk and the cost of
changing
our code, sometimes to the point where we feel unable to
make any changes at
all. This is the problem with the Ball of Mud pat-
tern: as the application grows,
if we’re unable to prevent coupling be-
tween elements that have no cohesion, that
coupling increases su-
perlinearly until we are no longer able to effectively
change our
systems.

We can reduce the degree of coupling within a system
(Figure 3-1) by
abstracting away the details
(Figure 3-2).

Figure 3-1. Lots of coupling

Figure 3-2. Less coupling

In both diagrams, we have a pair of subsystems, with one dependent
on
the other. In Figure 3-1, there is a high degree of coupling between
the
two; the number of arrows indicates lots of kinds of dependencies
between the two. If we need to change system B, there’s a good
chance that the
change will ripple through to system A.

In Figure 3-2, though, we have reduced the degree of coupling by in-
serting a
new, simpler abstraction. Because it is simpler, system A
has fewer
kinds of dependencies on the abstraction. The abstraction
serves to
protect us from change by hiding away the complex details
of whatever system B
does—we can change the arrows on the right
without changing the ones on the left.

Abstracting State Aids Testability

Let’s see an example. Imagine we want to write code for synchroniz-
ing two
file directories, which we’ll call the source and the destination:

If a file exists in the source but not in the destination, copy the file
over.
If a file exists in the source, but it has a different name than in the
destination,
rename the destination file to match.

If a file exists in the destination but not in the source, remove it.

Our first and third requirements are simple enough: we can just com-
pare two
lists of paths. Our second is trickier, though. To detect re-
names,
we’ll have to inspect the content of files. For this, we can use
a hashing
function like MD5 or SHA-1. The code to generate a SHA-1
hash from a file is simple
enough:

Hashing a file (sync.py)

BLOCKSIZE = 65536

def hash_file(path):

 hasher = hashlib.sha1()

 with path.open("rb") as file:

 buf = file.read(BLOCKSIZE)

 while buf:

 hasher.update(buf)

 buf = file.read(BLOCKSIZE)

 return hasher.hexdigest()

Now we need to write the bit that makes decisions about what to do—
the business
logic, if you will.

When we have to tackle a problem from first principles, we usually try
to write
a simple implementation and then refactor toward better de-
sign. We’ll use
this approach throughout the book, because it’s how
we write code in the real
world: start with a solution to the smallest
part of the problem, and then
iteratively make the solution richer and
better designed.

Our first hackish approach looks something like this:

Basic sync algorithm (sync.py)

import hashlib

import os

import shutil

from pathlib import Path

def sync(source, dest):

 # Walk the source folder and build a dict of

 source_hashes = {}

 for folder, _, files in os.walk(source):

 for fn in files:

 source_hashes[hash_file(Path(folder)

 seen = set() # Keep track of the files we've

 # Walk the target folder and get the filename

 for folder, _, files in os.walk(dest):

 for fn in files:

 dest_path = Path(folder) / fn

 dest_hash = hash_file(dest_path)

 seen.add(dest_hash)

 # if there's a file in target that's

 if dest_hash not in source_hashes:

 dest_path.remove()

 # if there's a file in target that ha

 # move it to the correct path

 elif dest_hash in source_hashes and f

 shutil.move(dest_path, Path(folde

 # for every file that appears in source but n

 # the target

 for src_hash, fn in source_hashes.items():

 if src_hash not in seen:

 shutil.copy(Path(source) / fn, Path(d

Fantastic! We have some code and it looks OK, but before we run it
on our
hard drive, maybe we should test it. How do we go about test-
ing this sort of thing?

Some end-to-end tests (test_sync.py)

def test_when_a_file_exists_in_the_source_but_not

 try:

 source = tempfile.mkdtemp()

 dest = tempfile.mkdtemp()

 content = "I am a very useful file"

 (Path(source) / 'my-file').write_text(con

 sync(source, dest)

 expected_path = Path(dest) / 'my-file'

 assert expected_path.exists()

 assert expected_path.read_text() == conte

 finally:

 shutil.rmtree(source)

 shutil.rmtree(dest)

def test_when_a_file_has_been_renamed_in_the_sour

 try:

 source = tempfile.mkdtemp()

 dest = tempfile.mkdtemp()

 content = "I am a file that was renamed"

 source_path = Path(source) / 'source-file

 old_dest_path = Path(dest) / 'dest-filena

 expected_dest_path = Path(dest) / 'source

 source_path.write_text(content)

 old_dest_path.write_text(content)

 sync(source, dest)

 assert old_dest_path.exists() is False

 assert expected_dest_path.read_text() ==

 finally:

 shutil.rmtree(source)

 shutil.rmtree(dest)

Wowsers, that’s a lot of setup for two simple cases! The problem is
that
our domain logic, “figure out the difference between two directo-
ries,” is tightly
coupled to the I/O code. We can’t run our difference al-
gorithm without calling
the pathlib , shutil , and hashlib

modules.

And the trouble is, even with our current requirements, we haven’t
written
enough tests: the current implementation has several bugs
(the
 shutil.move() is wrong, for example). Getting decent cover-
age and revealing
these bugs means writing more tests, but if they’re

all as unwieldy as the preceding
ones, that’s going to get real painful
real quickly.

On top of that, our code isn’t very extensible. Imagine trying to imple-
ment
a --dry-run flag that gets our code to just print out what it’s
going to
do, rather than actually do it. Or what if we wanted to sync to
a remote server,
or to cloud storage?

Our high-level code is coupled to low-level details, and it’s making life
hard.
As the scenarios we consider get more complex, our tests will
get more unwieldy.
We can definitely refactor these tests (some of
the cleanup could go into pytest
fixtures, for example) but as long as
we’re doing filesystem operations, they’re
going to stay slow and be
hard to read and write.

Choosing the Right Abstraction(s)

What could we do to rewrite our code to make it more testable?

First, we need to think about what our code needs from the filesys-
tem.
Reading through the code, we can see that three distinct things
are happening.
We can think of these as three distinct responsibilities
that the code has:

1. We interrogate the filesystem by using os.walk and determine
hashes for a
series of paths. This is similar in both the source and
the
destination cases.

2. We decide whether a file is new, renamed, or redundant.
3. We copy, move, or delete files to match the source.

Remember that we want to find simplifying abstractions for each of
these
responsibilities. That will let us hide the messy details so we
can
focus on the interesting logic.

NOTE

In this chapter, we’re refactoring some gnarly code into a more testable
structure by
identifying the separate tasks that need to be done and giving
each task to a clearly
defined actor, along similar lines to the duckduckgo
example.

For steps 1 and 2, we’ve already intuitively started using an abstrac-
tion, a
dictionary of hashes to paths. You may already have been
thinking, “Why not build up a dictionary for the destination folder as
well as the source, and
then we just compare two dicts?” That seems
like a nice way to abstract
the current state of the filesystem:

source_files = {'hash1': 'path1', 'hash2': 'path2

dest_files = {'hash1': 'path1', 'hash2': 'pathX'}

2

What about moving from step 2 to step 3? How can we abstract out
the
actual move/copy/delete filesystem interaction?

We’ll apply a trick here that we’ll employ on a grand scale later in
the
book. We’re going to separate what we want to do from how to do it.
We’re going to make our program output a list of commands that look
like this:

("COPY", "sourcepath", "destpath"),

("MOVE", "old", "new"),

Now we could write tests that just use two filesystem dicts as inputs,

and we would
expect lists of tuples of strings representing actions as
outputs.

Instead of saying, “Given this actual filesystem, when I run my func-
tion,
check what actions have happened,” we say, “Given this ab-
straction of a filesystem,
what abstraction of filesystem actions will
happen?”

Simplified inputs and outputs in our tests (test_sync.py)

 def test_when_a_file_exists_in_the_source_but

 src_hashes = {'hash1': 'fn1'}

 dst_hashes = {}

 expected_actions = [('COPY', '/src/fn1',

 ...

 def test_when_a_file_has_been_renamed_in_the_

 src_hashes = {'hash1': 'fn1'}

 dst_hashes = {'hash1': 'fn2'}

 expected_actions == [('MOVE', '/dst/fn2',

 ...

Implementing Our Chosen
Abstractions

That’s all very well, but how do we actually write those new
tests, and
how do we change our implementation to make it all work?

Our goal is to isolate the clever part of our system, and to be able to
test it
thoroughly without needing to set up a real filesystem. We’ll
create a “core”
of code that has no dependencies on external state
and then see how it responds
when we give it input from the outside
world (this kind of approach was characterized
by Gary Bernhardt as
Functional
Core, Imperative Shell, or FCIS).

Let’s start off by splitting the code to separate the stateful parts from
the logic.

https://oreil.ly/wnad4

And our top-level function will contain almost no logic at all; it’s just an
imperative series of steps: gather inputs, call our logic, apply outputs:

Split our code into three (sync.py)

def sync(source, dest):

 # imperative shell step 1, gather inputs

 source_hashes = read_paths_and_hashes(source)

 dest_hashes = read_paths_and_hashes(dest)

 # step 2: call functional core

 actions = determine_actions(source_hashes, de

 # imperative shell step 3, apply outputs

 for action, *paths in actions:

 if action == 'copy':

 shutil.copyfile(*paths)

 if action == 'move':

 shutil.move(*paths)

 if action == 'delete':

 os.remove(paths[0])

Here’s the first function we factor out,
read_paths_and_hashes() , which
isolates the I/O part of
our application.

https://calibre-pdf-anchor.a/#a365

Here is where carve out the functional core, the business logic.

The code to build up the dictionary of paths and hashes is now trivial-
ly easy
to write:

A function that just does I/O (sync.py)

def read_paths_and_hashes(root):

 hashes = {}

 for folder, _, files in os.walk(root):

 for fn in files:

 hashes[hash_file(Path(folder) / fn)]

 return hashes

The determine_actions() function will be the core of our busi-
ness logic,
which says, “Given these two sets of hashes and file-
names, what should we
copy/move/delete?”. It takes simple data
structures and returns simple data
structures:

A function that just does business logic (sync.py)

def determine_actions(src_hashes, dst_hashes, src

 for sha, filename in src_hashes.items():

 if sha not in dst_hashes:

 sourcepath = Path(src_folder) / filen

 destpath = Path(dst_folder) / filenam

https://calibre-pdf-anchor.a/#a367

 yield 'copy', sourcepath, destpath

 elif dst_hashes[sha] != filename:

 olddestpath = Path(dst_folder) / dst_

 newdestpath = Path(dst_folder) / file

 yield 'move', olddestpath, newdestpat

 for sha, filename in dst_hashes.items():

 if sha not in src_hashes:

 yield 'delete', dst_folder / filename

Our tests now act directly on the determine_actions() function:

Nicer-looking tests (test_sync.py)

def test_when_a_file_exists_in_the_source_but_not

 src_hashes = {'hash1': 'fn1'}

 dst_hashes = {}

 actions = determine_actions(src_hashes, dst_h

 assert list(actions) == [('copy', Path('/src/

...

def test_when_a_file_has_been_renamed_in_the_sour

 src_hashes = {'hash1': 'fn1'}

 dst_hashes = {'hash1': 'fn2'}

 actions = determine_actions(src_hashes, dst_h

 assert list(actions) == [('move', Path('/dst/

Because we’ve disentangled the logic of our program—the code for
identifying
changes—from the low-level details of I/O, we can easily
test the core of our code.

With this approach, we’ve switched from testing our main entrypoint
function,
 sync() , to testing a lower-level function,

determine_actions() . You might
decide that’s fine because
sync() is now so simple. Or you might decide to
keep some inte-
gration/acceptance tests to test that sync() . But there’s
another
option, which is to modify the sync() function so it can
be unit test-
ed and end-to-end tested; it’s an approach Bob calls
edge-to-edge
testing.

Testing Edge to Edge with Fakes and Dependency
Injection

When we start writing a new system, we often focus on the core logic
first,
driving it with direct unit tests. At some point, though, we want to
test bigger
chunks of the system together.

We could return to our end-to-end tests, but those are still as tricky to
write and maintain as before. Instead, we often write tests that invoke
a whole
system together but fake the I/O, sort of edge to edge:

Explicit dependencies (sync.py)

def sync(reader, filesystem, source_root, dest_ro

 source_hashes = reader(source_root)

 dest_hashes = reader(dest_root)

 for sha, filename in src_hashes.items():

 if sha not in dest_hashes:

 sourcepath = source_root / filename

 destpath = dest_root / filename

 filesystem.copy(destpath, sourcepath)

 elif dest_hashes[sha] != filename:

 olddestpath = dest_root / dest_hashes

 newdestpath = dest_root / filename

 filesystem.move(olddestpath, newdestp

 for sha, filename in dst_hashes.items():

 if sha not in source_hashes:

 filesystem.delete(dest_root/filename)

Our top-level function now exposes two new dependencies, a
reader and a
 filesystem .

We invoke the reader to produce our files dict.

https://calibre-pdf-anchor.a/#a381

We invoke the filesystem to apply the changes we detect.

TIP

Although we’re using dependency injection, there is no need
to define an abstract
base class or any kind of explicit interface. In this
book, we often show ABCs be-
cause we hope they help you understand what the
abstraction is, but they’re not
necessary. Python’s dynamic nature means
we can always rely on duck typing.

Tests using DI

class FakeFileSystem(list):

 def copy(self, src, dest):

 self.append(('COPY', src, dest))

 def move(self, src, dest):

 self.append(('MOVE', src, dest))

 def delete(self, dest):

 self.append(('DELETE', src, dest))

def test_when_a_file_exists_in_the_source_but_not

 source = {"sha1": "my-file" }

 dest = {}

 filesystem = FakeFileSystem()

https://calibre-pdf-anchor.a/#a383

 reader = {"/source": source, "/dest": dest}

 synchronise_dirs(reader.pop, filesystem, "/so

 assert filesystem == [("COPY", "/source/my-fi

def test_when_a_file_has_been_renamed_in_the_sour

 source = {"sha1": "renamed-file" }

 dest = {"sha1": "original-file" }

 filesystem = FakeFileSystem()

 reader = {"/source": source, "/dest": dest}

 synchronise_dirs(reader.pop, filesystem, "/so

 assert filesystem == [("MOVE", "/dest/origina

Bob loves using lists to build simple test doubles, even though
his
coworkers get mad. It means we can write tests like

assert foo not in database .

Each method in our FakeFileSystem just appends some-
thing to the list so we
can inspect it later. This is an example of
a spy object.

The advantage of this approach is that our tests act on the exact
same function
that’s used by our production code. The disadvantage
is that we have to make
our stateful components explicit and pass
them around.
David Heinemeier Hansson, the creator of Ruby on
Rails, famously described this
as “test-induced design damage.”

In either case, we can now work on fixing all the bugs in our imple-
mentation;
enumerating tests for all the edge cases is now much eas-
ier.

Why Not Just Patch It Out?

At this point you may be scratching your head and thinking,
“Why
don’t you just use mock.patch and save yourself the effort?"”

We avoid using mocks in this book and in our production code too.

We’re not
going to enter into a Holy War, but our instinct is that mock-
ing frameworks,
particularly monkeypatching, are a code smell.

Instead, we like to clearly identify the responsibilities in our codebase,

and to
separate those responsibilities into small, focused objects that
are easy to
replace with a test double.

NOTE

You can see an example in Chapter 8,
where we mock.patch() out an email-
sending module, but eventually we
replace that with an explicit bit of dependency
injection in
Chapter 13.

We have three closely related reasons for our preference:

Patching out the dependency you’re using makes it possible to unit
test the
code, but it does nothing to improve the design. Using
mock.patch won’t let your
code work with a --dry-run flag,

nor will it help you run against an FTP
server. For that, you’ll need
to introduce abstractions.

Tests that use mocks tend to be more coupled to the implementa-
tion details
of the codebase. That’s because mock tests verify the
interactions between
things: did we call shutil.copy with the
right arguments? This coupling between
code and test tends to
make tests more brittle, in our experience.

Overuse of mocks leads to complicated test suites that fail to ex-
plain the
code.

NOTE

Designing for testability really means designing for
extensibility. We trade off a little

more complexity for a cleaner design
that admits novel use cases.

MOCKS VERSUS FAKES; CLASSIC-STYLE VERSUS LONDON-SCHOOL TDD

Here’s a short and somewhat simplistic definition of the difference be-
tween
mocks and fakes:

Mocks are used to verify how something gets used; they have
methods
like assert_called_once_with() . They’re associ-
ated with London-school
TDD.

Fakes are working implementations of the thing they’re replacing,

but
they’re designed for use only in tests. They wouldn’t work “in
real life”;
our in-memory repository is a good example. But you can
use them to make assertions about
the end state of a system
rather than the behaviors along the way, so
they’re associated with
classic-style TDD.

We’re slightly conflating mocks with spies and fakes with stubs here,

and you
can read the long, correct answer in Martin Fowler’s classic
essay on the subject
called “Mocks Aren’t Stubs”.

It also probably doesn’t help that the MagicMock objects provided
by
 unittest.mock aren’t, strictly speaking, mocks; they’re spies, if
anything.
But they’re also often used as stubs or dummies. There, we
promise we’re done with
the test double terminology nitpicks now.

What about London-school versus classic-style TDD? You can read
more about those
two in Martin Fowler’s article that we just cited, as

https://oreil.ly/yYjBN

well as on the
Software Engineering Stack Exchange site,
but in this
book we’re pretty firmly in the classicist camp. We like to
build our
tests around state both in setup and in assertions, and we like
to work
at the highest level of abstraction possible rather than doing
checks
on the behavior of intermediary collaborators.

Read more on this in “On Deciding What Kind of Tests to Write”.

We view TDD as a design practice first and a testing practice second.

The tests
act as a record of our design choices and serve to explain
the system to us
when we return to the code after a long absence.

Tests that use too many mocks get overwhelmed with setup code that
hides the
story we care about.

Steve Freeman has a great example of overmocked tests in his talk
“Test-Driven Development”.
You should also check out this PyCon
talk, “Mocking and Patching Pitfalls”,
by our esteemed tech reviewer,
Ed Jung, which also addresses mocking and its
alternatives. And
while we’re recommending talks, don’t miss Brandon Rhodes talking
about
“Hoisting Your I/O”,
which really nicely covers the issues we’re
talking about, using another simple example.

3

https://oreil.ly/H2im_
https://oreil.ly/jAmtr
https://oreil.ly/s3e05
https://oreil.ly/oiXJM

TIP

In this chapter, we’ve spent a lot of time replacing end-to-end tests with
unit tests.

That doesn’t mean we think you should never use E2E tests!
In this book we’re
showing techniques to get you to a decent test
pyramid with as many unit tests as
possible, and with the minimum number of E2E
tests you need to feel confident.

Read on to “Recap: Rules of Thumb for Different Types of Test”
for more details.

SO WHICH DO WE USE IN THIS BOOK? FUNCTIONAL OR OBJECT-ORIENTED
COMPOSITION?

Both. Our domain model is entirely free of dependencies and side ef-
fects,
so that’s our functional core. The service layer that we build
around it
(in Chapter 4) allows us to drive the system edge to edge,

and we use dependency injection to provide those services with
stateful
components, so we can still unit test them.

See Chapter 13 for more exploration of making our
dependency injec-
tion more explicit and centralized.

Wrap-Up

We’ll see this idea come up again and again in the book: we can
make our
systems easier to test and maintain by simplifying the inter-
face between our
business logic and messy I/O. Finding the right ab-

straction is tricky, but here are
a few heuristics and questions to ask
yourself:

Can I choose a familiar Python data structure to represent the
state of the
messy system and then try to imagine a single function
that can return that
state?

Where can I draw a line between my systems, where can I carve
out a
seam
to stick that abstraction in?

What is a sensible way of dividing things into components with dif-
ferent
responsibilities? What implicit concepts can I make explicit?
What are the dependencies, and what is the core business logic?

Practice makes less imperfect! And now back to our regular
programming…

 A code kata is a small, contained programming challenge often used to practice
TDD. See “Kata—The Only Way to Learn TDD” by Peter Provost.

 If you’re used to thinking in terms of interfaces, that’s what we’re trying to define
here.

 Which is not to say that we think the London school people are wrong. Some in-
sanely smart people work that way. It’s just not what we’re used to.

1

2

3

https://oreil.ly/zNUGG
https://oreil.ly/vhjju

Chapter 4. Our First Use Case: Flask
API and Service Layer

Back to our allocations project! Figure 4-1 shows the point we
reached at the end of Chapter 2, which covered the Repository pat-
tern.

Figure 4-1. Before: we drive our app by talking to repositories and the
domain model

In this chapter, we discuss the differences between orchestration log-
ic,
business logic, and interfacing code, and we introduce the Service
Layer
pattern to take care of orchestrating our workflows and defining
the use
cases of our system.

We’ll also discuss testing: by combining the Service Layer with our
repository
abstraction over the database, we’re able to write fast
tests, not just of
our domain model but of the entire workflow for a use
case.

Figure 4-2 shows what we’re aiming for: we’re going to
add a Flask
API that will talk to the service layer, which will serve as the
entrypoint
to our domain model. Because our service layer depends on the
AbstractRepository , we can unit test it by using
FakeRepository but run our production code using
SqlAlchemyRepository .

Figure 4-2. The service layer will become the main way into our app

In our diagrams, we are using the convention that new components
are highlighted with bold text/lines (and yellow/orange color, if you’re
reading a digital version).

TIP

The code for this chapter is in the
chapter_04_service_layer branch on GitHub:

git clone https://github.com/cosmicpython/code.git

cd code

git checkout chapter_04_service_layer

or to code along, checkout Chapter 2:

git checkout chapter_02_repository

Connecting Our Application to the
Real World

Like any good agile team, we’re hustling to try to get an MVP out and
in front of the users to start gathering feedback. We have the core
of
our domain model and the domain service we need to allocate or-
ders,
and we have the repository interface for permanent storage.

Let’s plug all the moving parts together as quickly as we
can and then
refactor toward a cleaner architecture. Here’s our
plan:

1. Use Flask to put an API endpoint in front of our allocate do-
main service.
Wire up the database session and our repository.

Test it with
an end-to-end test and some quick-and-dirty SQL to
prepare test
data.

https://oreil.ly/TBRuy

2. Refactor out a service layer that can serve as an abstraction to
capture the use case and that will sit between Flask and our do-
main model.
Build some service-layer tests and show how they
can use
 FakeRepository .

3. Experiment with different types of parameters for our service layer
functions; show that using primitive data types allows the service
layer’s
clients (our tests and our Flask API) to be decoupled from
the model layer.

A First End-to-End Test

No one is interested in getting into a long terminology debate about
what
counts as an end-to-end (E2E) test versus a functional test ver-
sus an acceptance test versus
an integration test versus a unit test.
Different projects need different
combinations of tests, and we’ve
seen perfectly successful projects just split
things into “fast tests” and
“slow tests.”

For now, we want to write one or maybe two tests that are going to
exercise
a “real” API endpoint (using HTTP) and talk to a real data-
base. Let’s call
them end-to-end tests because it’s one of the most
self-explanatory names.

The following shows a first cut:

A first API test (test_api.py)

@pytest.mark.usefixtures('restart_api')

def test_api_returns_allocation(add_stock):

 sku, othersku = random_sku(), random_sku('oth

 earlybatch = random_batchref(1)

 laterbatch = random_batchref(2)

 otherbatch = random_batchref(3)

 add_stock([

 (laterbatch, sku, 100, '2011-01-02'),

 (earlybatch, sku, 100, '2011-01-01'),

 (otherbatch, othersku, 100, None),

])

 data = {'orderid': random_orderid(), 'sku': s

 url = config.get_api_url()

 r = requests.post(f'{url}/allocate', json=dat

 assert r.status_code == 201

 assert r.json()['batchref'] == earlybatch

random_sku() , random_batchref() , and so on are little
helper functions that
generate randomized characters by using
the uuid module. Because
we’re running against an actual
database now, this is one way to prevent
various tests and runs
from interfering with each other.

https://calibre-pdf-anchor.a/#a459

add_stock is a helper fixture that just hides away the details
of
manually inserting rows into the database using SQL. We’ll
show a nicer
way of doing this later in the chapter.

config.py is a module in which we keep configuration
information.

Everyone solves these problems in different ways, but you’re going to
need some
way of spinning up Flask, possibly in a container, and of
talking to a
Postgres database. If you want to see how we did it,
check out
Appendix B.

The Straightforward Implementation

Implementing things in the most obvious way, you might get some-
thing like this:

First cut of Flask app (flask_app.py)

from flask import Flask, jsonify, request

from sqlalchemy import create_engine

from sqlalchemy.orm import sessionmaker

import config

import model

import orm

import repository

orm.start_mappers()

get_session = sessionmaker(bind=create_engine(con

app = Flask(__name__)

@app.route("/allocate", methods=['POST'])

def allocate_endpoint():

 session = get_session()

 batches = repository.SqlAlchemyRepository(ses

 line = model.OrderLine(

 request.json['orderid'],

 request.json['sku'],

 request.json['qty'],

)

 batchref = model.allocate(line, batches)

 return jsonify({'batchref': batchref}), 201

So far, so good. No need for too much more of your “architecture as-
tronaut”
nonsense, Bob and Harry, you may be thinking.

But hang on a minute—there’s no commit. We’re not actually saving
our
allocation to the database. Now we need a second test, either

one that will
inspect the database state after (not very black-boxy), or
maybe one that
checks that we can’t allocate a second line if a first
should have already
depleted the batch:

Test allocations are persisted (test_api.py)

@pytest.mark.usefixtures('restart_api')

def test_allocations_are_persisted(add_stock):

 sku = random_sku()

 batch1, batch2 = random_batchref(1), random_b

 order1, order2 = random_orderid(1), random_or

 add_stock([

 (batch1, sku, 10, '2011-01-01'),

 (batch2, sku, 10, '2011-01-02'),

])

 line1 = {'orderid': order1, 'sku': sku, 'qty

 line2 = {'orderid': order2, 'sku': sku, 'qty

 url = config.get_api_url()

 # first order uses up all stock in batch 1

 r = requests.post(f'{url}/allocate', json=lin

 assert r.status_code == 201

 assert r.json()['batchref'] == batch1

 # second order should go to batch 2

 r = requests.post(f'{url}/allocate', json=lin

 assert r.status_code == 201

 assert r.json()['batchref'] == batch2

Not quite so lovely, but that will force us to add the commit.

Error Conditions That Require
Database Checks

If we keep going like this, though, things are going to get uglier and
uglier.

Suppose we want to add a bit of error handling. What if the domain
raises an
error, for a SKU that’s out of stock? Or what about a SKU
that doesn’t even
exist? That’s not something the domain even knows
about, nor should it. It’s
more of a sanity check that we should imple-
ment at the database layer, before
we even invoke the domain
service.

Now we’re looking at two more end-to-end tests:

Yet more tests at the E2E layer (test_api.py)

@pytest.mark.usefixtures('restart_api')

def test_400_message_for_out_of_stock(add_stock):

 sku, smalL_batch, large_order = random_sku(),

 add_stock([

 (smalL_batch, sku, 10, '2011-01-01'),

])

 data = {'orderid': large_order, 'sku': sku,

 url = config.get_api_url()

 r = requests.post(f'{url}/allocate', json=dat

 assert r.status_code == 400

 assert r.json()['message'] == f'Out of stock

@pytest.mark.usefixtures('restart_api')

def test_400_message_for_invalid_sku():

 unknown_sku, orderid = random_sku(), random_o

 data = {'orderid': orderid, 'sku': unknown_sk

 url = config.get_api_url()

 r = requests.post(f'{url}/allocate', json=dat

 assert r.status_code == 400

 assert r.json()['message'] == f'Invalid sku {

In the first test, we’re trying to allocate more units than we have
in stock.

In the second, the SKU just doesn’t exist (because we never
called add_stock),
so it’s invalid as far as our app is
concerned.

And sure, we could implement it in the Flask app too:

https://calibre-pdf-anchor.a/#a478

Flask app starting to get crufty (flask_app.py)

def is_valid_sku(sku, batches):

 return sku in {b.sku for b in batches}

@app.route("/allocate", methods=['POST'])

def allocate_endpoint():

 session = get_session()

 batches = repository.SqlAlchemyRepository(ses

 line = model.OrderLine(

 request.json['orderid'],

 request.json['sku'],

 request.json['qty'],

)

 if not is_valid_sku(line.sku, batches):

 return jsonify({'message': f'Invalid sku

 try:

 batchref = model.allocate(line, batches)

 except model.OutOfStock as e:

 return jsonify({'message': str(e)}), 400

 session.commit()

 return jsonify({'batchref': batchref}), 201

But our Flask app is starting to look a bit unwieldy. And our number of
E2E tests is starting to get out of control, and soon we’ll end up with
an
inverted test pyramid (or “ice-cream cone model,” as Bob likes to
call it).

Introducing a Service Layer, and
Using FakeRepository to Unit Test It

If we look at what our Flask app is doing, there’s quite a lot of what we
might call orchestration—fetching stuff out of our repository, validat-
ing
our input against database state, handling errors, and committing
in the
happy path. Most of these things don’t have anything to do with
having a
web API endpoint (you’d need them if you were building a
CLI, for example; see
Appendix C), and they’re not really things that
need to be tested by
end-to-end tests.

It often makes sense to split out a service layer, sometimes called an
orchestration layer or a use-case layer.

Do you remember the FakeRepository that we prepared in
Chapter 3?

Our fake repository, an in-memory collection of batches
(test_services.py)

class FakeRepository(repository.AbstractRepositor

 def __init__(self, batches):

 self._batches = set(batches)

 def add(self, batch):

 self._batches.add(batch)

 def get(self, reference):

 return next(b for b in self._batches if b

 def list(self):

 return list(self._batches)

Here’s where it will come in useful; it lets us test our service layer with
nice, fast unit tests:

Unit testing with fakes at the service layer (test_services.py)

def test_returns_allocation():

 line = model.OrderLine("o1", "COMPLICATED-LAM

 batch = model.Batch("b1", "COMPLICATED-LAMP",

 repo = FakeRepository([batch])

 result = services.allocate(line, repo, FakeSe

 assert result == "b1"

def test_error_for_invalid_sku():

 line = model.OrderLine("o1", "NONEXISTENTSKU"

 batch = model.Batch("b1", "AREALSKU", 100, et

 repo = FakeRepository([batch])

 with pytest.raises(services.InvalidSku, match

 services.allocate(line, repo, FakeSession

FakeRepository holds the Batch objects that will be used
by our test.

Our services module (services.py) will define an allocate()

service-layer function. It will sit between our
allocate_endpoint()
function in the API layer and the
allocate() domain service function from
our domain mod-
el.

We also need a FakeSession to fake out the database ses-
sion, as shown in the following code snippet.

A fake database session (test_services.py)

1

https://calibre-pdf-anchor.a/#a496
https://calibre-pdf-anchor.a/#a497

class FakeSession():

 committed = False

 def commit(self):

 self.committed = True

This fake session is only a temporary solution. We’ll get rid of it and
make
things even nicer soon, in Chapter 6. But in the meantime
the
fake .commit() lets us migrate a third test from the E2E layer:

A second test at the service layer (test_services.py)

def test_commits():

 line = model.OrderLine('o1', 'OMINOUS-MIRROR

 batch = model.Batch('b1', 'OMINOUS-MIRROR', 1

 repo = FakeRepository([batch])

 session = FakeSession()

 services.allocate(line, repo, session)

 assert session.committed is True

A Typical Service Function

We’ll write a service function that looks something like this:

Basic allocation service (services.py)

class InvalidSku(Exception):

 pass

def is_valid_sku(sku, batches):

 return sku in {b.sku for b in batches}

def allocate(line: OrderLine, repo: AbstractRepos

 batches = repo.list()

 if not is_valid_sku(line.sku, batches):

 raise InvalidSku(f'Invalid sku {line.sku}

 batchref = model.allocate(line, batches)

 session.commit()

 return batchref

Typical service-layer functions have similar steps:

We fetch some objects from the repository.

We make some checks or assertions about the request against
the current state of the world.

We call a domain service.

If all is well, we save/update any state we’ve changed.

That last step is a little unsatisfactory at the moment, as our service
layer is tightly coupled to our database layer. We’ll improve
that in
Chapter 6 with the Unit of Work pattern.

DEPEND ON ABSTRACTIONS

Notice one more thing about our service-layer function:

def allocate(line: OrderLine, repo: AbstractRepos

It depends on a repository. We’ve chosen to make the dependency
explicit,
and we’ve used the type hint to say that we depend on
AbstractRepository .
This means it’ll work both when the tests
give it a FakeRepository and
when the Flask app gives it a
SqlAlchemyRepository .

If you remember “The Dependency Inversion Principle”,
this is what
we mean when we say we should “depend on abstractions.” Our
high-level module, the service layer, depends on the repository ab-
straction.
And the details of the implementation for our specific choice
of persistent
storage also depend on that same abstraction. See Fig-
ures 4-3 and 4-4.

See also in Appendix C a worked example of swapping out the
de-
tails of which persistent storage system to use while leaving the
ab-
stractions intact.

But the essentials of the service layer are there, and our Flask
app
now looks a lot cleaner:

Flask app delegating to service layer (flask_app.py)

@app.route("/allocate", methods=['POST'])

def allocate_endpoint():

 session = get_session()

 repo = repository.SqlAlchemyRepository(sessio

 line = model.OrderLine(

 request.json['orderid'],

 request.json['sku'],

 request.json['qty'],

)

 try:

 batchref = services.allocate(line, repo,

 except (model.OutOfStock, services.InvalidSku

 return jsonify({'message': str(e)}), 400

 return jsonify({'batchref': batchref}), 201

We instantiate a database session and some repository
objects.

We extract the user’s commands from the web request and
pass them
to a domain service.

We return some JSON responses with the appropriate status
codes.

The responsibilities of the Flask app are just standard web stuff: per-
request
session management, parsing information out of POST para-
meters, response status
codes, and JSON. All the orchestration logic
is in the use case/service layer,
and the domain logic stays in the
domain.

Finally, we can confidently strip down our E2E tests to just two, one
for
the happy path and one for the unhappy path:

E2E tests only happy and unhappy paths (test_api.py)

@pytest.mark.usefixtures('restart_api')

def test_happy_path_returns_201_and_allocated_bat

 sku, othersku = random_sku(), random_sku('oth

 earlybatch = random_batchref(1)

 laterbatch = random_batchref(2)

 otherbatch = random_batchref(3)

 add_stock([

 (laterbatch, sku, 100, '2011-01-02'),

 (earlybatch, sku, 100, '2011-01-01'),

 (otherbatch, othersku, 100, None),

https://calibre-pdf-anchor.a/#a536

])

 data = {'orderid': random_orderid(), 'sku': s

 url = config.get_api_url()

 r = requests.post(f'{url}/allocate', json=dat

 assert r.status_code == 201

 assert r.json()['batchref'] == earlybatch

@pytest.mark.usefixtures('restart_api')

def test_unhappy_path_returns_400_and_error_messa

 unknown_sku, orderid = random_sku(), random_o

 data = {'orderid': orderid, 'sku': unknown_sk

 url = config.get_api_url()

 r = requests.post(f'{url}/allocate', json=dat

 assert r.status_code == 400

 assert r.json()['message'] == f'Invalid sku {

We’ve successfully split our tests into two broad categories: tests
about web
stuff, which we implement end to end; and tests about or-
chestration stuff, which
we can test against the service layer in
memory.

EXERCISE FOR THE READER

Now that we have an allocate service, why not build out a service for
deallocate ? We’ve added an E2E test and a few stub service-lay-
er tests for
you to get started on GitHub.

If that’s not enough, continue into the E2E tests and flask_app.py, and
refactor the Flask adapter to be more RESTful. Notice how doing so
doesn’t
require any change to our service layer or domain layer!

TIP

If you decide you want to build a read-only endpoint for retrieving allo-
cation
info, just do “the simplest thing that can possibly work,” which is
repo.get() right in the Flask handler. We’ll talk more about reads
versus
writes in Chapter 12.

Why Is Everything Called a Service?

Some of you are probably scratching your heads at this point trying to
figure
out exactly what the difference is between a domain service
and a service layer.

We’re sorry—we didn’t choose the names, or we’d have much cooler
and friendlier
ways to talk about this stuff.

https://github.com/cosmicpython/code/tree/chapter_04_service_layer_exercise

We’re using two things called a service in this chapter. The first is an
application service (our service layer). Its job is to handle requests
from the
outside world and to orchestrate an operation. What we
mean is that the
service layer drives the application by following a
bunch of simple steps:

Get some data from the database
Update the domain model
Persist any changes

This is the kind of boring work that has to happen for every operation
in your
system, and keeping it separate from business logic helps to
keep things tidy.

The second type of service is a domain service. This is the name for
a piece of
logic that belongs in the domain model but doesn’t sit natu-
rally inside a
stateful entity or value object. For example, if you were
building a shopping
cart application, you might choose to build taxa-
tion rules as a domain service.
Calculating tax is a separate job from
updating the cart, and it’s an important
part of the model, but it
doesn’t seem right to have a persisted entity for
the job. Instead a
stateless TaxCalculator class or a calculate_tax function
can do
the job.

Putting Things in Folders to See
Where It All Belongs

As our application gets bigger, we’ll need to keep tidying our directory
structure. The layout of our project gives us useful hints about what
kinds of
object we’ll find in each file.

Here’s one way we could organize things:

Some subfolders

.

├── config.py

├── domain

│ ├── __init__.py

│ └── model.py

├── service_layer

│ ├── __init__.py

│ └── services.py

├── adapters

│ ├── __init__.py

│ ├── orm.py

│ └── repository.py

├── entrypoints

│ ├── __init__.py

│ └── flask_app.py

└── tests

 ├── __init__.py

 ├── conftest.py

 ├── unit

 │ ├── test_allocate.py

 │ ├── test_batches.py

 │ └── test_services.py

 ├── integration

 │ ├── test_orm.py

 │ └── test_repository.py

 └── e2e

 └── test_api.py

Let’s have a folder for our domain model. Currently that’s just
one file,
but for a more complex application, you might have
one file per class; you
might have helper parent classes for
Entity , ValueObject , and
 Aggregate , and you might
add an exceptions.py for domain-layer exceptions
and, as
you’ll see in Part II, commands.py and events.py.

We’ll distinguish the service layer. Currently that’s just one file
called services.py for our service-layer functions. You could
add service-layer exceptions here, and as you’ll see in
Chapter 5, we’ll add unit_of_work.py.

Adapters is a nod to the ports and adapters terminology. This
will fill
up with any other abstractions around external I/O (e.g.,

a redis_client.py).
Strictly speaking, you would call these sec-
ondary adapters or driven
adapters, or sometimes inward-fac-
ing adapters.

Entrypoints are the places we drive our application from. In the
official ports and adapters terminology, these are adapters too,

and are
referred to as primary, driving, or outward-facing
adapters.

What about ports? As you may remember, they are the abstract inter-
faces that the
adapters implement. We tend to keep them in the same
file as the adapters that
implement them.

Wrap-Up

Adding the service layer has really bought us quite a lot:

Our Flask API endpoints become very thin and easy to write: their
only responsibility is doing “web stuff,” such as parsing JSON
and
producing the right HTTP codes for happy or unhappy cases.

We’ve defined a clear API for our domain, a set of use cases or
en-
trypoints that can be used by any adapter without needing to know

anything
about our domain model classes—whether that’s an API,
a CLI (see
Appendix C), or the tests! They’re an adapter for our
domain too.

We can write tests in “high gear” by using the service layer, leaving
us
free to refactor the domain model in any way we see fit. As long
as
we can still deliver the same use cases, we can experiment with
new
designs without needing to rewrite a load of tests.

And our test pyramid is looking good—the bulk of our tests
are fast
unit tests, with just the bare minimum of E2E and integration
tests.

The DIP in Action

Figure 4-3 shows the
dependencies of our service layer: the domain
model
and AbstractRepository (the port, in ports and adapters
terminology).

When we run the tests, Figure 4-4 shows
how we implement the ab-
stract dependencies by using FakeRepository (the
adapter).

And when we actually run our app, we swap in the “real” dependency
shown in
Figure 4-5.

Figure 4-3. Abstract dependencies of the service layer

Figure 4-4. Tests provide an implementation of the abstract
dependency

Figure 4-5. Dependencies at runtime

Wonderful.

Let’s pause for Table 4-1,
in which we consider the pros and cons of
having a service layer at all.

Table 4-1. Service layer: the trade-offs

Pros Cons

We have a single place to
capture all the use cases for
our application.

We’ve placed our clever do-
main logic behind an API,
which leaves us free to
refactor.
We have cleanly separated
“stuff that talks HTTP” from
“stuff that talks
allocation.”
When combined with the
Repository pattern and Fake

Repository , we have
a
nice way of writing tests at a
higher level than the domain
layer;
we can test more of our
workflow without needing to
use integration tests
(read on
to Chapter 5 for more elabora-
tion on this).

If your app is purely a
web app, your con-
trollers/view functions
can be
the single place to
capture all the use cases.

It’s yet another layer of
abstraction.

Putting too much logic
into the service layer can
lead to the Anemic Do-
main
anti-pattern. It’s bet-
ter to introduce this layer
after you spot orchestra-
tion
logic creeping into
your controllers.

You can get a lot of the
benefits that come from
having rich domain mod-
els
by simply pushing
logic out of your con-

Pros Cons

trollers and down to the
model layer,
without
needing to add an extra
layer in between (aka “fat
models, thin
controllers”).

But there are still some bits of awkwardness to tidy up:

The service layer is still tightly coupled to the domain, because
its
API is expressed in terms of OrderLine objects. In
Chapter 5,

we’ll fix that and talk about
the way that the service layer enables
more productive TDD.

The service layer is tightly coupled to a session object. In
Chapter 6,
we’ll introduce one more pattern that works closely with
the Repository and
Service Layer patterns, the Unit of Work pat-
tern, and everything will be absolutely lovely.
You’ll see!

 Service-layer services and domain services do have confusingly similar names.

We tackle this topic later in “Why Is Everything Called a Service?”.

1

Chapter 5. TDD in High Gear and
Low Gear

We’ve introduced the service layer to capture some of the additional
orchestration responsibilities we need from a working application.

The service layer helps us
clearly define our use cases and the work-
flow for each: what
we need to get from our repositories, what pre-
checks and current state
validation we should do, and what we save
at the end.

But currently, many of our unit tests operate at a lower level, acting
directly on the model. In this chapter we’ll discuss the trade-offs
in-
volved in moving those tests up to the service-layer level, and
some
more general testing guidelines.

HARRY SAYS: SEEING A TEST PYRAMID IN ACTION WAS A LIGHT-BULB MOMENT

Here are a few words from Harry directly:

I was initially skeptical of all Bob’s architectural patterns, but seeing
an actual test pyramid made me a convert.

Once you implement domain modeling and the service layer, you re-
ally actually can
get to a stage where unit tests outnumber integration
and end-to-end tests by
an order of magnitude. Having worked in
places where the E2E test build would
take hours (“wait ‘til tomorrow,”
essentially), I can’t tell you what a
difference it makes to be able to
run all your tests in minutes or seconds.

Read on for some guidelines on how to decide what kinds of tests to
write
and at which level. The high gear versus low gear way of think-
ing really changed
my testing life.

How Is Our Test Pyramid Looking?

Let’s see what this move to using a service layer, with its own ser-
vice-layer tests,
does to our test pyramid:

Counting types of tests

$ grep -c test_ test_*.py

tests/unit/test_allocate.py:4

tests/unit/test_batches.py:8

tests/unit/test_services.py:3

tests/integration/test_orm.py:6

tests/integration/test_repository.py:2

tests/e2e/test_api.py:2

Not bad! We have 15 unit tests, 8 integration tests, and just 2 end-to-
end tests. That’s
already a healthy-looking test pyramid.

Should Domain Layer Tests Move to
the Service Layer?

Let’s see what happens if we take this a step further. Since we can
test our
software against the service layer, we don’t really need tests
for the domain
model anymore. Instead, we could rewrite all of the
domain-level tests from
Chapter 1 in terms of the service layer:

Rewriting a domain test at the service layer
(tests/unit/test_services.py)

domain-layer test:

y

def test_prefers_current_stock_batches_to_shipmen

 in_stock_batch = Batch("in-stock-batch", "RET

 shipment_batch = Batch("shipment-batch", "RET

 line = OrderLine("oref", "RETRO-CLOCK", 10)

 allocate(line, [in_stock_batch, shipment_batc

 assert in_stock_batch.available_quantity == 9

 assert shipment_batch.available_quantity == 1

service-layer test:

def test_prefers_warehouse_batches_to_shipments()

 in_stock_batch = Batch("in-stock-batch", "RET

 shipment_batch = Batch("shipment-batch", "RET

 repo = FakeRepository([in_stock_batch, shipme

 session = FakeSession()

 line = OrderLine('oref', "RETRO-CLOCK", 10)

 services.allocate(line, repo, session)

 assert in_stock_batch.available_quantity == 9

 assert shipment_batch.available_quantity == 1

Why would we want to do that?

Tests are supposed to help us change our system fearlessly, but of-
ten
we see teams writing too many tests against their domain model.
This causes
problems when they come to change their codebase and
find that they need to
update tens or even hundreds of unit tests.

This makes sense if you stop to think about the purpose of automated
tests. We
use tests to enforce that a property of the system doesn’t
change while we’re
working. We use tests to check that the API con-
tinues to return 200, that the
database session continues to commit,
and that orders are still being allocated.

If we accidentally change one of those behaviors, our tests will break.

The
flip side, though, is that if we want to change the design of our
code, any
tests relying directly on that code will also fail.

As we get further into the book, you’ll see how the service layer forms
an API
for our system that we can drive in multiple ways. Testing
against this API
reduces the amount of code that we need to change
when we refactor our domain
model. If we restrict ourselves to testing
only against the service layer,
we won’t have any tests that directly
interact with “private” methods or
attributes on our model objects,

which leaves us freer to refactor them.

TIP

Every line of code that we put in a test is like a blob of glue, holding
the system in a
particular shape. The more low-level tests we have, the
harder it will be to change
things.

On Deciding What Kind of Tests to
Write

You might be asking yourself, “Should I rewrite all my unit tests, then?

Is it
wrong to write tests against the domain model?” To answer those
questions, it’s
important to understand the trade-off between coupling
and design feedback (see
Figure 5-1).

Figure 5-1. The test spectrum

Extreme programming (XP) exhorts us to “listen to the code.” When
we’re writing
tests, we might find that the code is hard to use or notice
a code smell. This
is a trigger for us to refactor, and to reconsider our
design.

We only get that feedback, though, when we’re working closely with
the target
code. A test for the HTTP API tells us nothing about the
fine-grained design of
our objects, because it sits at a much higher
level of abstraction.

On the other hand, we can rewrite our entire application and, so long
as we
don’t change the URLs or request formats, our HTTP tests will
continue to pass.
This gives us confidence that large-scale changes,

like changing the database schema,
haven’t broken our code.

At the other end of the spectrum, the tests we wrote in Chapter 1
helped us to
flesh out our understanding of the objects we need. The
tests guided us to a
design that makes sense and reads in the do-
main language. When our tests read
in the domain language, we feel
comfortable that our code matches our intuition
about the problem
we’re trying to solve.

Because the tests are written in the domain language, they act as liv-
ing
documentation for our model. A new team member can read
these tests to quickly
understand how the system works and how the
core concepts interrelate.

We often “sketch” new behaviors by writing tests at this level to see
how the
code might look. When we want to improve the design of the

code, though, we will need to replace
or delete these tests, because
they are tightly coupled to a particular
implementation.

High and Low Gear

Most of the time, when we are adding a new feature or fixing a bug,

we don’t
need to make extensive changes to the domain model. In
these cases, we prefer
to write tests against services because of the
lower coupling and higher coverage.

For example, when writing an add_stock function or a
cancel_order feature,
we can work more quickly and with less
coupling by writing tests against the
service layer.

When starting a new project or when hitting a particularly gnarly prob-
lem,
we will drop back down to writing tests against the domain model
so we
get better feedback and executable documentation of our
intent.

The metaphor we use is that of shifting gears. When starting a jour-
ney, the
bicycle needs to be in a low gear so that it can overcome in-
ertia. Once we’re off
and running, we can go faster and more effi-
ciently by changing into a high gear;
but if we suddenly encounter a
steep hill or are forced to slow down by a
hazard, we again drop
down to a low gear until we can pick up speed again.

Fully Decoupling the Service-Layer
Tests from the Domain

We still have direct dependencies on the domain in our service-layer
tests, because we use domain objects to set up our test data and to
invoke
our service-layer functions.

To have a service layer that’s fully decoupled from the domain, we
need to
rewrite its API to work in terms of primitives.

Our service layer currently takes an OrderLine domain object:

Before: allocate takes a domain object (service_layer/services.py)

def allocate(line: OrderLine, repo: AbstractRepos

How would it look if its parameters were all primitive types?

After: allocate takes strings and ints (service_layer/services.py)

def allocate(

 orderid: str, sku: str, qty: int, repo: A

) -> str:

We rewrite the tests in those terms as well:

Tests now use primitives in function call (tests/unit/test_services.py)

def test_returns_allocation():

 batch = model.Batch("batch1", "COMPLICATED-LA

 repo = FakeRepository([batch])

 result = services.allocate("o1", "COMPLICATED

 assert result == "batch1"

But our tests still depend on the domain, because we still manually
instantiate
 Batch objects. So, if one day we decide to massively
refactor how our Batch
model works, we’ll have to change a bunch
of tests.

Mitigation: Keep All Domain Dependencies in
Fixture Functions

We could at least abstract that out to a helper function or a fixture
in
our tests. Here’s one way you could do that, adding a factory
function
on FakeRepository :

Factory functions for fixtures are one possibility
(tests/unit/test_services.py)

class FakeRepository(set):

 @staticmethod

 def for_batch(ref, sku, qty, eta=None):

 return FakeRepository([

 model.Batch(ref, sku, qty, eta),

])

 ...

def test_returns_allocation():

 repo = FakeRepository.for_batch("batch1", "CO

 result = services.allocate("o1", "COMPLICATED

 assert result == "batch1"

At least that would move all of our tests’ dependencies on the domain
into one place.

Adding a Missing Service

We could go one step further, though. If we had a service to add
stock,
we could use that and make our service-layer tests fully ex-
pressed
in terms of the service layer’s official use cases, removing all
dependencies
on the domain:

Test for new add_batch service (tests/unit/test_services.py)

def test_add_batch():

 repo, session = FakeRepository([]), FakeSessi

 services.add_batch("b1", "CRUNCHY-ARMCHAIR",

 assert repo.get("b1") is not None

 assert session.committed

TIP

In general, if you find yourself needing to do domain-layer stuff directly
in your ser-
vice-layer tests, it may be an indication that your service
layer is incomplete.

And the implementation is just two lines:

A new service for add_batch (service_layer/services.py)

def add_batch(

 ref: str, sku: str, qty: int, eta: Option

 repo: AbstractRepository, session,

):

 repo.add(model.Batch(ref, sku, qty, eta))

 session.commit()

def allocate(

 orderid: str, sku: str, qty: int, repo: A

) -> str:

 ...

NOTE

Should you write a new service just because it would help remove
dependencies
from your tests? Probably not. But in this case, we
almost definitely would need an
add_batch service one day anyway.

That now allows us to rewrite all of our service-layer tests purely
in
terms of the services themselves, using only primitives, and without
any dependencies on the model:

Services tests now use only services (tests/unit/test_services.py)

def test_allocate_returns_allocation():

 repo, session = FakeRepository([]), FakeSessi

 services.add_batch("batch1", "COMPLICATED-LAM

 result = services.allocate("o1", "COMPLICATED

 assert result == "batch1"

def test_allocate_errors_for_invalid_sku():

 repo, session = FakeRepository([]), FakeSessi

 services.add_batch("b1", "AREALSKU", 100, Non

 with pytest.raises(services.InvalidSku, match

 services.allocate("o1", "NONEXISTENTSKU",

This is a really nice place to be in. Our service-layer tests depend on
only
the service layer itself, leaving us completely free to refactor the
model as
we see fit.

Carrying the Improvement Through to
the E2E Tests

In the same way that adding add_batch helped decouple our ser-
vice-layer
tests from the model, adding an API endpoint to add a
batch would remove
the need for the ugly add_stock fixture, and
our E2E tests could be free
of those hardcoded SQL queries and the
direct dependency on the database.

Thanks to our service function, adding the endpoint is easy, with just
a little
JSON wrangling and a single function call required:

API for adding a batch (entrypoints/flask_app.py)

@app.route("/add_batch", methods=['POST'])

def add batch():

def add_batch():

 session = get_session()

 repo = repository.SqlAlchemyRepository(sessio

 eta = request.json['eta']

 if eta is not None:

 eta = datetime.fromisoformat(eta).date()

 services.add_batch(

 request.json['ref'], request.json['sku'],

 repo, session

)

 return 'OK', 201

NOTE

Are you thinking to yourself, POST to /add_batch? That’s not
very RESTful! You’re
quite right. We’re being happily sloppy, but
if you’d like to make it all more RESTy,

maybe a POST to /batches,
then knock yourself out! Because Flask is a thin
adapter, it’ll be
easy. See the next sidebar.

And our hardcoded SQL queries from conftest.py get replaced with
some
API calls, meaning the API tests have no dependencies other
than the API,
which is also nice:

API tests can now add their own batches (tests/e2e/test_api.py)

def post_to_add_batch(ref, sku, qty, eta):

url = config get api url()

 url = config.get_api_url()

 r = requests.post(

 f'{url}/add_batch',

 json={'ref': ref, 'sku': sku, 'qty': qty,

)

 assert r.status_code == 201

@pytest.mark.usefixtures('postgres_db')

@pytest.mark.usefixtures('restart_api')

def test_happy_path_returns_201_and_allocated_bat

 sku, othersku = random_sku(), random_sku('oth

 earlybatch = random_batchref(1)

 laterbatch = random_batchref(2)

 otherbatch = random_batchref(3)

 post_to_add_batch(laterbatch, sku, 100, '2011

 post_to_add_batch(earlybatch, sku, 100, '2011

 post_to_add_batch(otherbatch, othersku, 100,

 data = {'orderid': random_orderid(), 'sku': s

 url = config.get_api_url()

 r = requests.post(f'{url}/allocate', json=dat

 assert r.status_code == 201

 assert r.json()['batchref'] == earlybatch

Wrap-Up

Once you have a service layer in place, you really can move the ma-
jority
of your test coverage to unit tests and develop a healthy test
pyramid.

RECAP: RULES OF THUMB FOR DIFFERENT TYPES OF TEST

Aim for one end-to-end test per feature

This might be written against an HTTP API, for example. The
objective
is to demonstrate that the feature works, and that all
the moving parts
are glued together correctly.

Write the bulk of your tests against the service layer

These edge-to-edge tests offer a good trade-off between cov-
erage,
runtime, and efficiency. Each test tends to cover one
code path of a
feature and use fakes for I/O. This is the place to
exhaustively
cover all the edge cases and the ins and outs of
your business logic.

Maintain a small core of tests written against your domain model

These tests have highly focused coverage and are more brittle,

but they have
the highest feedback. Don’t be afraid to delete
these tests if the
functionality is later covered by tests at the
service layer.

Error handling counts as a feature

Ideally, your application will be structured such that all errors
that
bubble up to your entrypoints (e.g., Flask) are handled in
the same way.
This means you need to test only the happy

1

path for each feature, and to
reserve one end-to-end test for all
unhappy paths (and many unhappy path
unit tests, of course).

A few
things will help along the way:

Express your service layer in terms of primitives rather than do-
main objects.

In an ideal world, you’ll have all the services you need to be able to
test
entirely against the service layer, rather than hacking state via
repositories or the database. This pays off in your end-to-end tests
as well.

Onto the next chapter!

 A valid concern about writing tests at a higher level is that it can lead to combinato-
rial explosion for more complex use cases. In these cases, dropping down to lower-
level unit tests of the various collaborating domain objects can be useful. But see
also Chapter 8 and “Optionally: Unit Testing Event Handlers in Isolation with a Fake

Message Bus”.

1

Chapter 6. Unit of Work Pattern

In this chapter we’ll introduce the final piece of the puzzle that ties
to-
gether the Repository and Service Layer patterns: the Unit of Work
pattern.

If the Repository pattern is our abstraction over the idea of persistent
storage,
the Unit of Work (UoW) pattern is our abstraction over the
idea of atomic operations. It
will allow us to finally and fully decouple
our service layer from the data layer.

Figure 6-1 shows that, currently, a lot of communication occurs
across the layers of our infrastructure: the API talks directly to the
database
layer to start a session, it talks to the repository layer to ini-
tialize
 SQLAlchemyRepository , and it talks to the service layer to
ask it to allocate.

TIP

The code for this chapter is in the
chapter_06_uow branch on GitHub:

git clone https://github.com/cosmicpython/code.git

cd code

git checkout chapter_06_uow

or to code along, checkout Chapter 4:

git checkout chapter_04_service_layer

https://oreil.ly/MoWdZ

Figure 6-1. Without UoW: API talks directly to three layers

Figure 6-2 shows our target state. The Flask API now does only two
things: it initializes a unit of work, and it invokes a service. The ser-
vice
collaborates with the UoW (we like to think of the UoW as being
part of the
service layer), but neither the service function itself nor
Flask now needs
to talk directly to the database.

And we’ll do it all using a lovely piece of Python syntax, a context
manager.

Figure 6-2. With UoW: UoW now manages database state

The Unit of Work Collaborates with
the Repository

Let’s see the unit of work (or UoW, which we pronounce “you-wow”)
in action. Here’s how the service layer will look when we’re finished:

Preview of unit of work in action
(src/allocation/service_layer/services.py)

def allocate(

 orderid: str, sku: str, qty: int,

 uow: unit_of_work.AbstractUnitOfWork

) -> str:

 line = OrderLine(orderid, sku, qty)

 with uow:

 batches = uow.batches.list()

 ...

 batchref = model.allocate(line, batches)

 uow.commit()

We’ll start a UoW as a context manager.

uow.batches is the batches repo, so the UoW provides us
access to our permanent storage.

When we’re done, we commit or roll back our work, using the
UoW.

The UoW acts as a single entrypoint to our persistent storage, and it
keeps track of what objects were loaded and of the latest state.1

This gives us three useful things:

A stable snapshot of the database to work with, so the
objects we
use aren’t changing halfway through an operation
A way to persist all of our changes at once, so if something
goes
wrong, we don’t end up in an inconsistent state
A simple API to our persistence concerns and a handy place
to get
a repository

Test-Driving a UoW with Integration
Tests

Here are our integration tests for the UOW:

A basic “round-trip” test for a UoW (tests/integration/test_uow.py)

def test_uow_can_retrieve_a_batch_and_allocate_to

 session = session_factory()

 insert_batch(session, 'batch1', 'HIPSTER-WORK

 session.commit()

 uow = unit_of_work.SqlAlchemyUnitOfWork(sessi

 with uow:

 batch = uow.batches.get(reference='batch1

 line = model.OrderLine('o1', 'HIPSTER-WOR

 batch.allocate(line)

 uow.commit()

 batchref = get_allocated_batch_ref(session,

 assert batchref == 'batch1'

We initialize the UoW by using our custom session factory
and
get back a uow object to use in our with block.

The UoW gives us access to the batches repository via
uow.batches .

We call commit() on it when we’re done.

For the curious, the insert_batch and
get_allocated_batch_ref helpers
look like this:

Helpers for doing SQL stuff (tests/integration/test_uow.py)

def insert_batch(session, ref, sku, qty, eta):

 session.execute(

 'INSERT INTO batches (reference, sku, _pu

 ' VALUES (:ref, :sku, :qty, :eta)',

 dict(ref=ref, sku=sku, qty=qty, eta=eta)

)

https://calibre-pdf-anchor.a/#a698
https://calibre-pdf-anchor.a/#a699

def get_allocated_batch_ref(session, orderid, sku

 [[orderlineid]] = session.execute(

 'SELECT id FROM order_lines WHERE orderid

 dict(orderid=orderid, sku=sku)

)

 [[batchref]] = session.execute(

 'SELECT b.reference FROM allocations JOIN

 ' WHERE orderline_id=:orderlineid',

 dict(orderlineid=orderlineid)

)

 return batchref

Unit of Work and Its Context Manager

In our tests we’ve implicitly defined an interface for what a UoW
needs to do. Let’s make that explicit by using an abstract
base class:

Abstract UoW context manager
(src/allocation/service_layer/unit_of_work.py)

class AbstractUnitOfWork(abc.ABC):

 batches: repository.AbstractRepository

 def __exit__(self, *args):

 self.rollback()

 @abc.abstractmethod

 def commit(self):

 raise NotImplementedError

 @abc.abstractmethod

 def rollback(self):

 raise NotImplementedError

The UoW provides an attribute called .batches , which will
give us access
to the batches repository.

If you’ve never seen a context manager, __enter__ and
__exit__ are
the two magic methods that execute when we
enter the with block and
when we exit it, respectively.

They’re our setup and teardown phases.

We’ll call this method to explicitly commit our work when we’re
ready.

If we don’t commit, or if we exit the context manager by raising
an error,
we do a rollback . (The rollback has no effect if
commit() has been
called. Read on for more discussion of
this.)

The Real Unit of Work Uses SQLAlchemy
Sessions

The main thing that our concrete implementation adds is the
data-
base session:

The real SQLAlchemy UoW
(src/allocation/service_layer/unit_of_work.py)

DEFAULT_SESSION_FACTORY = sessionmaker(bind=creat

 config.get_postgres_uri(),

))

class SqlAlchemyUnitOfWork(AbstractUnitOfWork):

 def __init__(self, session_factory=DEFAULT_SE

 self.session_factory = session_factory

 def __enter__(self):

 self.session = self.session_factory() #

 self.batches = repository.SqlAlchemyRepos

 return super().__enter__()

 def __exit__(self, *args):

 super().__exit__(*args)

 self.session.close()

 def commit(self):

 self.session.commit()

 def rollback(self):

 self.session.rollback()

The module defines a default session factory that will connect
to Postgres,
but we allow that to be overridden in our integra-
tion tests so that we
can use SQLite instead.

The __enter__ method is responsible for starting a data-
base session and instantiating
a real repository that can use
that session.

We close the session on exit.

Finally, we provide concrete commit() and rollback()

methods that
use our database session.

Fake Unit of Work for Testing

Here’s how we use a fake UoW in our service-layer tests:

Fake UoW (tests/unit/test_services.py)

https://calibre-pdf-anchor.a/#a728
https://calibre-pdf-anchor.a/#a730

class FakeUnitOfWork(unit_of_work.AbstractUnitOfW

 def __init__(self):

 self.batches = FakeRepository([])

 self.committed = False

 def commit(self):

 self.committed = True

 def rollback(self):

 pass

def test_add_batch():

 uow = FakeUnitOfWork()

 services.add_batch("b1", "CRUNCHY-ARMCHAIR",

 assert uow.batches.get("b1") is not None

 assert uow.committed

def test_allocate_returns_allocation():

 uow = FakeUnitOfWork()

 services.add_batch("batch1", "COMPLICATED-LAM

 result = services.allocate("o1", "COMPLICATED

 assert result == "batch1"

...

FakeUnitOfWork and FakeRepository are tightly cou-
pled,
just like the real UnitofWork and Repository class-
es.
That’s fine because we recognize that the objects are
collaborators.

Notice the similarity with the fake commit() function
from
FakeSession (which we can now get rid of). But it’s
a sub-
stantial improvement because we’re now faking out
code that
we wrote rather than third-party code. Some
people say, “Don’t
mock what you don’t own”.

In our tests, we can instantiate a UoW and pass it to
our ser-
vice layer, rather than passing a repository and a session.
This
is considerably less cumbersome.

https://oreil.ly/0LVj3

DON’T MOCK WHAT YOU DON’T OWN

Why do we feel more comfortable mocking the UoW than the ses-
sion?
Both of our fakes achieve the same thing: they give us a way to
swap out our
persistence layer so we can run tests in memory in-
stead of needing to
talk to a real database. The difference is in the re-
sulting design.

If we cared only about writing tests that run quickly, we could create
mocks
that replace SQLAlchemy and use those throughout our code-
base. The problem is
that Session is a complex object that expos-
es lots of persistence-related
functionality. It’s easy to use Session

to make arbitrary queries against
the database, but that quickly leads
to data access code being sprinkled all
over the codebase. To avoid
that, we want to limit access to our persistence
layer so each compo-
nent has exactly what it needs and nothing more.

By coupling to the Session interface, you’re choosing to couple to
all the
complexity of SQLAlchemy. Instead, we want to choose a sim-
pler abstraction and
use that to clearly separate responsibilities. Our
UoW is much simpler
than a session, and we feel comfortable with
the service layer being able to
start and stop units of work.

“Don’t mock what you don’t own” is a rule of thumb that forces us to
build
these simple abstractions over messy subsystems. This has the

same performance
benefit as mocking the SQLAlchemy session but
encourages us to think carefully
about our designs.

Using the UoW in the Service Layer

Here’s what our new service layer looks like:

Service layer using UoW (src/allocation/service_layer/services.py)

def add_batch(

 ref: str, sku: str, qty: int, eta: Option

 uow: unit_of_work.AbstractUnitOfWork

):

 with uow:

 uow.batches.add(model.Batch(ref, sku, qty

 uow.commit()

def allocate(

 orderid: str, sku: str, qty: int,

 uow: unit_of_work.AbstractUnitOfWork

) -> str:

 line = OrderLine(orderid, sku, qty)

 with uow:

 batches = uow.batches.list()

 if not is_valid_sku(line.sku, batches):

 raise InvalidSku(f'Invalid sku {line.

 batchref = model.allocate(line, batches)

 uow.commit()

 return batchref

Our service layer now has only the one dependency, once
again
on an abstract UoW.

Explicit Tests for Commit/Rollback
Behavior

To convince ourselves that the commit/rollback behavior works, we
wrote
a couple of tests:

Integration tests for rollback behavior (tests/integration/test_uow.py)

def test_rolls_back_uncommitted_work_by_default(s

 uow = unit_of_work.SqlAlchemyUnitOfWork(sessi

 with uow:

 insert_batch(uow.session, 'batch1', 'MEDI

 new_session = session_factory()

 rows = list(new_session.execute('SELECT * FRO

 assert rows == []

def test_rolls_back_on_error(session_factory):

 class MyException(Exception):

 pass

 uow = unit_of_work.SqlAlchemyUnitOfWork(sessi

 with pytest.raises(MyException):

 with uow:

 insert_batch(uow.session, 'batch1',

 raise MyException()

 new_session = session_factory()

 rows = list(new_session.execute('SELECT * FRO

 assert rows == []

TIP

We haven’t shown it here, but it can be worth testing some of the more
“obscure”
database behavior, like transactions, against the “real”
database—that is, the same
engine. For now, we’re getting away with using
SQLite instead of Postgres, but in
Chapter 7, we’ll switch
some of the tests to using the real database. It’s convenient

that our UoW
class makes that easy!

Explicit Versus Implicit Commits

Now we briefly digress on different ways of implementing the UoW
pattern.

We could imagine a slightly different version of the UoW that commits
by default
and rolls back only if it spots an exception:

A UoW with implicit commit… (src/allocation/unit_of_work.py)

class AbstractUnitOfWork(abc.ABC):

 def __enter__(self):

 return self

 def __exit__(self, exn_type, exn_value, trace

 if exn_type is None:

 self.commit()

 else:

 self.rollback()

Should we have an implicit commit in the happy path?

And roll back only on exception?

It would allow us to save a line of code and to remove the explicit
commit from our
client code:

...would save us a line of code
(src/allocation/service_layer/services.py)

def add_batch(ref: str, sku: str, qty: int, eta:

 with uow:

 uow.batches.add(model.Batch(ref, sku, qty

 # uow.commit()

This is a judgment call, but we tend to prefer requiring the explicit
commit
so that we have to choose when to flush state.

Although we use an extra line of code, this makes the software safe
by default.
The default behavior is to not change anything. In turn,

that makes our code
easier to reason about because there’s only one
code path that leads to changes
in the system: total success and an
explicit commit. Any other code path, any
exception, any early exit
from the UoW’s scope leads to a safe state.

Similarly, we prefer to roll back by default because
it’s easier to un-
derstand; this rolls back to the last commit,
so either the user did one,

or we blow their changes away. Harsh but simple.

Examples: Using UoW to Group
Multiple Operations into an Atomic

Unit

Here are a few examples showing the Unit of Work pattern in use.

You can
see how it leads to simple reasoning about what blocks of
code happen
together.

Example 1: Reallocate

Suppose we want to be able to deallocate and then reallocate orders:

Reallocate service function

def reallocate(line: OrderLine, uow: AbstractUnit

 with uow:

 batch = uow.batches.get(sku=line.sku)

 if batch is None:

 raise InvalidSku(f'Invalid sku {line.

 batch.deallocate(line)

 allocate(line)

 uow.commit()

If deallocate() fails, we don’t want to call allocate() ,

obviously.

If allocate() fails, we probably don’t want to actually com-
mit
the deallocate() either.

Example 2: Change Batch Quantity

Our shipping company gives us a call to say that one of the container
doors
opened, and half our sofas have fallen into the Indian Ocean.

Oops!

Change quantity

def change_batch_quantity(batchref: str, new_qty:

 with uow:

 batch = uow.batches.get(reference=batchre

 batch.change_purchased_quantity(new_qty)

 while batch.available_quantity < 0:

 line = batch.deallocate_one()

 uow.commit()

Here we may need to deallocate any number of lines. If we get
a failure
at any stage, we probably want to commit none of the
changes.

Tidying Up the Integration Tests

We now have three sets of tests, all essentially pointing at the data-
base:
test_orm.py, test_repository.py, and test_uow.py. Should we
throw any
away?

└── tests

 ├── conftest.py

 ├── e2e

 │ └── test_api.py

 ├── integration

 │ ├── test_orm.py

 │ ├── test_repository.py

 │ └── test_uow.py

 ├── pytest.ini

 └── unit

 ├── test_allocate.py

 ├── test_batches.py

 └── test_services.py

You should always feel free to throw away tests if you think they’re
not going to
add value longer term. We’d say that test_orm.py was
primarily a tool to help
us learn SQLAlchemy, so we won’t need that
long term, especially if the main things
it’s doing are covered in
test_repository.py. That last test, you might keep around,
but we
could certainly see an argument for just keeping everything at the
highest
possible level of abstraction (just as we did for the unit tests).

EXERCISE FOR THE READER

For this chapter, probably the best thing to try is to implement a
UoW
from scratch. The code, as always, is on GitHub. You could either fol-
low the model we have quite closely,
or perhaps experiment with sep-
arating the UoW (whose responsibilities are
 commit() ,

rollback() , and providing the .batches repository) from the
context manager, whose job is to initialize things, and then do the
commit
or rollback on exit. If you feel like going all-functional rather
than
messing about with all these classes, you could use
@contextmanager from
 contextlib .

We’ve stripped out both the actual UoW and the fakes, as well as par-
ing back
the abstract UoW. Why not send us a link to your repo if you
come up with
something you’re particularly proud of?

TIP

This is another example of the lesson from Chapter 5:
as we build better abstrac-
tions, we can move our tests to run against them,
which leaves us free to change
the underlying details.

Wrap-Up

https://github.com/cosmicpython/code/tree/chapter_06_uow_exercise

Hopefully we’ve convinced you that the Unit of Work pattern is useful,
and
that the context manager is a really nice Pythonic way
of visually
grouping code into blocks that we want to happen atomically.

This pattern is so useful, in fact, that SQLAlchemy already uses a
UoW
in the shape of the Session object. The Session object in
SQLAlchemy is the way
that your application loads data from the
database.

Every time you load a new entity from the database, the session be-
gins to track
changes to the entity, and when the session is flushed,

all your changes are
persisted together. Why do we go to the effort of
abstracting away the SQLAlchemy session if it already implements
the pattern we want?

Table 6-1 discusses some of the trade-offs.

Table 6-1. Unit of Work pattern: the trade-offs

Pros Cons

We have a nice abstrac-
tion over the concept of
atomic operations, and
the
context manager
makes it easy to see, vi-
sually, what blocks of
code are
grouped to-
gether atomically.

We have explicit control
over when a transaction
starts and finishes, and
our
application fails in a
way that is safe by de-
fault. We never have to
worry
that an operation
is partially committed.

It’s a nice place to put all
your repositories so
client code can access
them.

Your ORM probably already
has some perfectly good ab-
stractions around
atomicity.

SQLAlchemy even has context
managers. You can go a long
way
just passing a session
around.

We’ve made it look easy, but
you have to think quite careful-
ly about
things like rollbacks,

multithreading, and nested
transactions. Perhaps just
sticking to what Django or
Flask-SQLAlchemy gives you
will keep your life
simpler.

Pros Cons

As you’ll see in later
chapters, atomicity isn’t
only about transactions;

it
can help us work with
events and the message
bus.

For one thing, the Session API is rich and supports operations that
we don’t
want or need in our domain. Our UnitOfWork simplifies
the session to its
essential core: it can be started, committed, or
thrown away.

For another, we’re using the UnitOfWork to access our
Repository objects.
This is a neat bit of developer usability that
we couldn’t do with a plain
SQLAlchemy Session .

UNIT OF WORK PATTERN RECAP

The Unit of Work pattern is an abstraction around data integrity

It helps to enforce the consistency of our domain model, and
improves
performance, by letting us perform a single flush op-
eration at the
end of an operation.

It works closely with the Repository and Service Layer patterns

The Unit of Work pattern completes our abstractions over data
access by
representing atomic updates. Each of our service-
layer use cases runs in a
single unit of work that succeeds or
fails as a block.

This is a lovely case for a context manager

Context managers are an idiomatic way of defining scope in
Python. We can use a
context manager to automatically roll
back our work at the end of a request,
which means the system
is safe by default.

SQLAlchemy already implements this pattern

We introduce an even simpler abstraction over the SQLAlche-
my Session object
in order to “narrow” the interface between
the ORM and our code. This helps
to keep us loosely coupled.

Lastly, we’re motivated again by the dependency inversion principle:

our
service layer depends on a thin abstraction, and we attach a con-
crete
implementation at the outside edge of the system. This lines up
nicely with
SQLAlchemy’s own
recommendations:

Keep the life cycle of the session (and usually the transaction)

separate and
external. The most comprehensive approach, rec-
ommended for more substantial
applications, will try to keep the
details of session, transaction, and
exception management as
far as possible from the details of the program doing
its work.

—SQLALchemy “Session Basics” Documentation

 You may have come across the use of the word collaborators to describe objects
that work together to achieve a goal. The unit of work and the repository are a great
example of collaborators in the object-modeling sense. In responsibility-driven de-
sign, clusters of objects that collaborate in their roles are called object neighbor-

hoods, which is, in our professional opinion, totally adorable.

1

https://oreil.ly/tS0E0

Chapter 7. Aggregates and
Consistency Boundaries

In this chapter, we’d like to revisit our domain model to talk about in-
variants
and constraints, and see how our domain objects can main-
tain their own
internal consistency, both conceptually and in persis-
tent storage. We’ll
discuss the concept of a consistency boundary
and show how making it
explicit can help us to build high-perfor-
mance software without compromising
maintainability.

Figure 7-1 shows a preview of where we’re headed: we’ll introduce
a
new model object called Product to wrap multiple batches, and
we’ll make
the old allocate() domain service available as a
method on Product instead.

Figure 7-1. Adding the Product aggregate

Why? Let’s find out.

TIP

The code for this chapter is in the appendix_csvs branch
on GitHub:

git clone https://github.com/cosmicpython/code.git

cd code

git checkout appendix_csvs

or to code along, checkout the previous chapter:

git checkout chapter_06_uow

https://oreil.ly/vlnGg

Why Not Just Run Everything in a
Spreadsheet?

What’s the point of a domain model, anyway? What’s the fundamental
problem
we’re trying to address?

Couldn’t we just run everything in a spreadsheet? Many of our users
would be
delighted by that. Business users like spreadsheets be-
cause they’re simple,
familiar, and yet enormously powerful.

In fact, an enormous number of business processes do operate by
manually sending
spreadsheets back and forth over email. This “CSV
over SMTP” architecture has
low initial complexity but tends not to
scale very well because it’s difficult
to apply logic and maintain con-
sistency.

Who is allowed to view this particular field? Who’s allowed to update
it? What
happens when we try to order –350 chairs, or 10,000,000 ta-
bles? Can an employee
have a negative salary?

These are the constraints of a system. Much of the domain logic we
write exists
to enforce these constraints in order to maintain the in-
variants of the
system. The invariants are the things that have to be
true whenever we finish
an operation.

Invariants, Constraints, and
Consistency

The two words are somewhat interchangeable, but a constraint is a
rule that restricts the possible states our model can get into, while an
invariant
is defined a little more precisely as a condition that is always
true.

If we were writing a hotel-booking system, we might have the con-
straint that double
bookings are not allowed. This supports the invari-
ant that a room cannot have more
than one booking for the same
night.

Of course, sometimes we might need to temporarily bend the rules.

Perhaps we
need to shuffle the rooms around because of a VIP
booking. While we’re moving
bookings around in memory, we might
be double booked, but our domain model
should ensure that, when
we’re finished, we end up in a final consistent state,
where the invari-
ants are met. If we can’t find a way to accommodate all our guests,

we should raise an error and refuse to complete the operation.

Let’s look at a couple of concrete examples from our business re-
quirements; we’ll start with this one:

An order line can be allocated to only one batch at a time.

—The business

This is a business rule that imposes an invariant. The invariant is that
an
order line is allocated to either zero or one batch, but never more
than one.
We need to make sure that our code never accidentally
calls Batch.allocate()
on two different batches for the same
line, and currently, there’s nothing
there to explicitly stop us from do-
ing that.

Invariants, Concurrency, and Locks

Let’s look at another one of our business rules:

We can’t allocate to a batch if the available quantity is less than
the
quantity of the order line.

—The business

Here the constraint is that we can’t allocate more stock than is avail-
able to a
batch, so we never oversell stock by allocating two cus-
tomers to the same
physical cushion, for example. Every time we up-
date the state of the system, our code needs
to ensure that we don’t
break the invariant, which is that the available
quantity must be
greater than or equal to zero.

In a single-threaded, single-user application, it’s relatively easy for us
to
maintain this invariant. We can just allocate stock one line at a
time, and
raise an error if there’s no stock available.

This gets much harder when we introduce the idea of concurrency.

Suddenly we
might be allocating stock for multiple order lines simul-
taneously. We might
even be allocating order lines at the same time
as processing changes to the
batches themselves.

We usually solve this problem by applying locks to our database ta-
bles. This
prevents two operations from happening simultaneously on
the same row or same
table.

As we start to think about scaling up our app, we realize that our
model
of allocating lines against all available batches may not scale.

If we process
tens of thousands of orders per hour, and hundreds of
thousands of
order lines, we can’t hold a lock over the whole
batches table for
every single one—we’ll get deadlocks or perfor-
mance problems at the very least.

What Is an Aggregate?

OK, so if we can’t lock the whole database every time we want to allo-
cate an
order line, what should we do instead? We want to protect the
invariants of our
system but allow for the greatest degree of concur-

rency. Maintaining our
invariants inevitably means preventing concur-
rent writes; if multiple users can
allocate DEADLY-SPOON at the
same time, we run the risk of overallocating.

On the other hand, there’s no reason we can’t allocate DEADLY-

SPOON at the
same time as FLIMSY-DESK . It’s safe to allocate two
products at the
same time because there’s no invariant that covers
them both. We don’t need them
to be consistent with each other.

The Aggregate pattern is a design pattern from the DDD community
that helps us
to resolve this tension. An aggregate is just a domain
object that contains
other domain objects and lets us treat the whole
collection as a single unit.

The only way to modify the objects inside the aggregate is to load the
whole
thing, and to call methods on the aggregate itself.

As a model gets more complex and grows more entity and value ob-
jects,
referencing each other in a tangled graph, it can be hard to
keep track of who
can modify what. Especially when we have collec-
tions in the model as we do
(our batches are a collection), it’s a good
idea to nominate some entities to be
the single entrypoint for modify-
ing their related objects. It makes the system
conceptually simpler
and easy to reason about if you nominate some objects to be
in
charge of consistency for the others.

For example, if we’re building a shopping site, the Cart might make a
good
aggregate: it’s a collection of items that we can treat as a single
unit.
Importantly, we want to load the entire basket as a single blob
from our data
store. We don’t want two requests to modify the basket
at the same time, or we
run the risk of weird concurrency errors. In-
stead, we want each change to the
basket to run in a single database
transaction.

We don’t want to modify multiple baskets in a transaction, because
there’s no
use case for changing the baskets of several customers at
the same time. Each
basket is a single consistency boundary respon-
sible for maintaining its own
invariants.

An AGGREGATE is a cluster of associated objects that we treat
as a unit for the
purpose of data changes.

—Eric Evans, Domain-Driven Design blue book

Per Evans, our aggregate has a root entity (the Cart) that encapsu-
lates access
to items. Each item has its own identity, but other parts
of the system will always
refer to the Cart only as an indivisible whole.

TIP

Just as we sometimes use _leading_underscores to mark methods or func-
tions
as “private,” you can think of aggregates as being the “public” classes of our
model, and the rest of the entities and value objects as “private.”

Choosing an Aggregate

What aggregate should we use for our system? The choice is some-
what arbitrary,
but it’s important. The aggregate will be the boundary
where we make sure
every operation ends in a consistent state. This
helps us to reason about our
software and prevent weird race issues.

We want to draw a boundary around a
small number of objects—the
smaller, the better, for performance—that have to
be consistent with
one another, and we need to give this boundary a good name.

The object we’re manipulating under the covers is Batch . What do
we call a
collection of batches? How should we divide all the batches
in the system into
discrete islands of consistency?

We could use Shipment as our boundary. Each shipment contains
several
batches, and they all travel to our warehouse at the same
time. Or perhaps we
could use Warehouse as our boundary: each
warehouse contains many batches,
and counting all the stock at the
same time could make sense.

Neither of these concepts really satisfies us, though. We should be
able to
allocate DEADLY-SPOONs and FLIMSY-DESKs at the same
time, even if they’re in the
same warehouse or the same shipment.
These concepts have the wrong granularity.

When we allocate an order line, we’re interested only in batches
that
have the same SKU as the order line. Some sort of concept like
GlobalSkuStock could work: a collection of all the batches for a
given SKU.

It’s an unwieldy name, though, so after some bikeshedding via
SkuStock , Stock ,
 ProductStock , and so on, we decided to
simply call it Product—after all, that was the first concept we came
across in our exploration of the
domain language back in Chapter 1.

So the plan is this: when we want to allocate an order line, instead of
Figure 7-2, where we look up all the Batch objects in
the world and
pass them to the allocate() domain service…

Figure 7-2. Before: allocate against all batches using the domain service

…we’ll move to the world of Figure 7-3, in which there is a new
Product object for the particular SKU of our order line, and it will be
in charge
of all the batches for that SKU, and we can call a
.allocate() method on that
instead.

Figure 7-3. After: ask Product to allocate against its batches

Let’s see how that looks in code form:

Our chosen aggregate, Product (src/allocation/domain/model.py)

class Product:

 def __init__(self, sku: str, batches: List[Ba

 self.sku = sku

 self.batches = batches

 def allocate(self, line: OrderLine) -> str:

 try:

 batch = next(

 b for b in sorted(self.batches) i

)

 batch.allocate(line)

 return batch.reference

 except StopIteration:

 raise OutOfStock(f'Out of stock for s

Product ’s main identifier is the sku .

Our Product class holds a reference to a collection of
batches for that SKU.

Finally, we can move the allocate() domain service to
be a
method on the Product aggregate.

NOTE

This Product might not look like what you’d expect a Product
model to look
like. No price, no description, no dimensions.
Our allocation service doesn’t care
about any of those things.
This is the power of bounded contexts; the concept
of a
product in one app can be very different from another.
See the following sidebar for

more
discussion.

https://calibre-pdf-anchor.a/#a871

AGGREGATES, BOUNDED CONTEXTS, AND MICROSERVICES

One of the most important contributions from Evans and the DDD
community
is the concept of
bounded contexts.

In essence, this was a reaction against attempts to capture entire
businesses
into a single model. The word customer means different
things to people
in sales, customer service, logistics, support, and so
on. Attributes
needed in one context are irrelevant in another; more
perniciously, concepts
with the same name can have entirely different
meanings in different contexts.
Rather than trying to build a single
model (or class, or database) to capture
all the use cases, it’s better
to have several models, draw boundaries
around each context, and
handle the translation between different contexts
explicitly.

This concept translates very well to the world of microservices, where
each
microservice is free to have its own concept of “customer” and
its own rules for
translating that to and from other microservices it in-
tegrates with.

In our example, the allocation service has Product(sku,

batches) ,
whereas the ecommerce will have Product(sku,

description, price, image_url,
dimensions, etc...) .

As a rule of thumb, your domain models should
include only the data
that they need for performing calculations.

https://martinfowler.com/bliki/BoundedContext.html

Whether or not you have a microservices architecture, a key consid-
eration
in choosing your aggregates is also choosing the bounded
context that they
will operate in. By restricting the context, you can
keep your number of
aggregates low and their size manageable.

Once again, we find ourselves forced to say that we can’t give this is-
sue
the treatment it deserves here, and we can only encourage you
to read up on it
elsewhere. The Fowler link at the start of this sidebar
is a good starting point, and either
(or indeed, any) DDD book will
have a chapter or more on bounded contexts.

One Aggregate = One Repository

Once you define certain entities to be aggregates, we need to apply
the rule
that they are the only entities that are publicly accessible to
the outside
world. In other words, the only repositories we are al-
lowed should be
repositories that return aggregates.

NOTE

The rule that repositories should only return aggregates is the main place
where we
enforce the convention that aggregates are the only way into our
domain model. Be
wary of breaking it!

In our case, we’ll switch from BatchRepository to
ProductRepository :

Our new UoW and repository (unit_of_work.py and repository.py)

class AbstractUnitOfWork(abc.ABC):

 products: repository.AbstractProductRepositor

...

class AbstractProductRepository(abc.ABC):

 @abc.abstractmethod

 def add(self, product):

 ...

 @abc.abstractmethod

 def get(self, sku) -> model.Product:

 ...

The ORM layer will need some tweaks so that the right batches auto-
matically get
loaded and associated with Product objects. The nice
thing is, the Repository
pattern means we don’t have to worry about
that yet. We can just use
our FakeRepository and then feed
through the new model into our service
layer to see how it looks with
Product as its main entrypoint:

Service layer (src/allocation/service_layer/services.py)

def add_batch(

 ref: str, sku: str, qty: int, eta: Option

 uow: unit_of_work.AbstractUnitOfWork

):

 with uow:

 product = uow.products.get(sku=sku)

 if product is None:

 product = model.Product(sku, batches=

 uow.products.add(product)

 product.batches.append(model.Batch(ref, s

 uow.commit()

def allocate(

 orderid: str, sku: str, qty: int,

 uow: unit_of_work.AbstractUnitOfWork

) -> str:

 line = OrderLine(orderid, sku, qty)

 with uow:

 product = uow.products.get(sku=line.sku)

 if product is None:

 raise InvalidSku(f'Invalid sku {line.

 batchref = product.allocate(line)

 uow.commit()

 return batchref

What About Performance?

We’ve mentioned a few times that we’re modeling with aggregates
because we want
to have high-performance software, but here we
are loading all the batches when
we only need one. You might expect
that to be inefficient, but there are a few
reasons why we’re comfort-
able here.

First, we’re purposefully modeling our data so that we can make a
single
query to the database to read, and a single update to persist
our changes. This
tends to perform much better than systems that is-
sue lots of ad hoc queries. In
systems that don’t model this way, we
often find that transactions slowly
get longer and more complex as
the software evolves.

Second, our data structures are minimal and comprise a few strings
and
integers per row. We can easily load tens or even hundreds of
batches in a few
milliseconds.

Third, we expect to have only 20 or so batches of each product at a
time.
Once a batch is used up, we can discount it from our calcula-
tions. This means
that the amount of data we’re fetching shouldn’t get
out of control over time.

If we did expect to have thousands of active batches for a product,
we’d have
a couple of options. For one, we could use lazy-loading for
the batches in a
product. From the perspective of our code, nothing
would change, but in the
background, SQLAlchemy would page
through data for us. This would lead to more
requests, each fetching
a smaller number of rows. Because we need to find only a
single
batch with enough capacity for our order, this might work pretty well.

EXERCISE FOR THE READER

You’ve just seen the main top layers of the code, so this shouldn’t be
too hard,
but we’d like you to implement the Product aggregate
starting from Batch ,
just as we did.

Of course, you could cheat and copy/paste from the previous listings,

but even
if you do that, you’ll still have to solve a few challenges on
your own,
like adding the model to the ORM and making sure all the
moving parts can
talk to each other, which we hope will be instructive.

You’ll find the code on GitHub. We’ve put in a “cheating” implementa-
tion in the delegates to the existing
 allocate() function, so you
should be able to evolve that toward the real
thing.

We’ve marked a couple of tests with @pytest.skip() . After
you’ve read the rest of this chapter, come back to these tests to have
a go
at implementing version numbers. Bonus points if you can get
SQLAlchemy to
do them for you by magic!

If all else failed, we’d just look for a different aggregate. Maybe we
could
split up batches by region or by warehouse. Maybe we could
redesign our data
access strategy around the shipment concept. The
Aggregate pattern is designed
to help manage some technical con-
straints around consistency and performance.
There isn’t one correct

https://github.com/cosmicpython/code/tree/chapter_07_aggregate_exercise

aggregate, and we should feel comfortable changing our
minds if we
find our boundaries are causing performance woes.

Optimistic Concurrency with Version
Numbers

We have our new aggregate, so we’ve solved the conceptual problem
of choosing
an object to be in charge of consistency boundaries. Let’s
now spend a little
time talking about how to enforce data integrity at
the database level.

NOTE

This section has a lot of implementation details; for example, some of it is Postgres-
specific. But more generally, we’re showing one way of managing concurrency is-
sues, but it is just one approach. Real requirements in this area vary a lot from
project to project. You
shouldn’t expect to be able to copy and paste code from here

into production.

We don’t want to hold a lock over the entire batches table, but how
will we
implement holding a lock over just the rows for a particular
SKU?

One answer is to have a single attribute on the Product model that
acts as a marker for
the whole state change being complete and to
use it as the single resource
that concurrent workers can fight over. If
two transactions read the
state of the world for batches at the
same time, and both want to update
the allocations tables, we
force both to also try to update the
 version_number in the
products table, in such a way that only one of them
can win and
the world stays consistent.

Figure 7-4 illustrates two concurrent
transactions doing their read op-
erations at the same time, so they see
a Product with, for example,

version=3 . They both call Product.allocate()
in order to
modify a state. But we set up our database integrity
rules such that
only one of them is allowed to commit the new Product
with
version=4 , and the other update is rejected.

TIP

Version numbers are just one way to implement optimistic locking. You
could
achieve the same thing by setting the Postgres transaction isolation
level to
SERIALIZABLE , but that often comes at a severe performance cost.
Version num-
bers also make implicit concepts explicit.

Figure 7-4. Sequence diagram: two transactions attempting a concurrent update on
Product

OPTIMISTIC CONCURRENCY CONTROL AND RETRIES

What we’ve implemented here is called optimistic concurrency con-
trol because
our default assumption is that everything will be fine
when two users want to
make changes to the database. We think it’s
unlikely that they will conflict
with each other, so we let them go
ahead and just make sure we have a way to
notice if there is a prob-
lem.

Pessimistic concurrency control works under the assumption that two
users
are going to cause conflicts, and we want to prevent conflicts in
all cases, so
we lock everything just to be safe. In our example, that
would mean locking
the whole batches table, or using SELECT

FOR UPDATE—we’re pretending
that we’ve ruled those out for per-
formance reasons, but in real life you’d
want to do some evaluations
and measurements of your own.

With pessimistic locking, you don’t need to think about handling fail-
ures
because the database will prevent them for you (although you
do need to think
about deadlocks). With optimistic locking, you need
to explicitly handle
the possibility of failures in the (hopefully unlikely)

case of a clash.

The usual way to handle a failure is to retry the failed operation from
the
beginning. Imagine we have two customers, Harry and Bob, and
each submits an order
for SHINY-TABLE . Both threads load the

product at version 1 and allocate
stock. The database prevents the
concurrent update, and Bob’s order fails with
an error. When we retry
the operation, Bob’s order loads the product at
version 2 and tries to
allocate again. If there is enough stock left, all is
well; otherwise, he’ll
receive OutOfStock . Most operations can be retried this
way in the
case of a concurrency problem.

Read more on retries in “Recovering from Errors Synchronously” and
“Footguns”.

Implementation Options for Version Numbers

There are essentially three options for implementing version
numbers:

1. version_number lives in the domain; we add it to the
Product constructor,
and Product.allocate() is responsi-
ble for incrementing it.

2. The service layer could do it! The version number isn’t strictly a
domain
concern, so instead our service layer could assume that
the current version number
is attached to Product by the reposi-
tory, and the service layer will increment it
before it does the
commit() .

3. Since it’s arguably an infrastructure concern, the UoW and reposi-
tory
could do it by magic. The repository has access to version
numbers for any
products it retrieves, and when the UoW does a
commit, it can increment the
version number for any products it
knows about, assuming them to have changed.

Option 3 isn’t ideal, because there’s no real way of doing it without
having to
assume that all products have changed, so we’ll be incre-
menting version numbers
when we don’t have to.

Option 2 involves mixing the responsibility for mutating state between
the service
layer and the domain layer, so it’s a little messy as well.

So in the end, even though version numbers don’t have to be a do-
main concern,
you might decide the cleanest trade-off is to put them
in the domain:

Our chosen aggregate, Product (src/allocation/domain/model.py)

class Product:

 def __init__(self, sku: str, batches: List[Ba

 self.sku = sku

 self.batches = batches

 self.version_number = version_number

1

 def allocate(self, line: OrderLine) -> str:

 try:

 batch = next(

 b for b in sorted(self.batches) i

)

 batch.allocate(line)

 self.version_number += 1

 return batch.reference

 except StopIteration:

 raise OutOfStock(f'Out of stock for s

There it is!

TIP

If you’re scratching your head at this version number business, it might
help to re-
member that the number isn’t important. What’s important is
that the Product

database row is modified whenever we make a change to the
 Product aggre-
gate. The version number is a simple, human-comprehensible way
to model a thing

that changes on every write, but it could equally be a
random UUID every time.

Testing for Our Data Integrity Rules

Now to make sure we can get the behavior we want: if we have two
concurrent attempts to do allocation against the same Product ,

https://calibre-pdf-anchor.a/#a920

one of them
should fail, because they can’t both update the version
number.

First, let’s simulate a “slow” transaction using a function that does
al-
location and then does an explicit sleep:

time.sleep can reproduce concurrency behavior
(tests/integration/test_uow.py)

def try_to_allocate(orderid, sku, exceptions):

 line = model.OrderLine(orderid, sku, 10)

 try:

 with unit_of_work.SqlAlchemyUnitOfWork()

 product = uow.products.get(sku=sku)

 product.allocate(line)

 time.sleep(0.2)

 uow.commit()

 except Exception as e:

 print(traceback.format_exc())

 exceptions.append(e)

Then we have our test invoke this slow allocation twice, concurrently,

using
threads:

An integration test for concurrency behavior
(tests/integration/test_uow.py)

2

def test_concurrent_updates_to_version_are_not_al

 sku, batch = random_sku(), random_batchref()

 session = postgres_session_factory()

 insert_batch(session, batch, sku, 100, eta=No

 session.commit()

 order1, order2 = random_orderid(1), random_or

 exceptions = [] # type: List[Exception]

 try_to_allocate_order1 = lambda: try_to_alloc

 try_to_allocate_order2 = lambda: try_to_alloc

 thread1 = threading.Thread(target=try_to_allo

 thread2 = threading.Thread(target=try_to_allo

 thread1.start()

 thread2.start()

 thread1.join()

 thread2.join()

 [[version]] = session.execute(

 "SELECT version_number FROM products WHER

 dict(sku=sku),

)

 assert version == 2

 [exception] = exceptions

 assert 'could not serialize access due to con

 orders = list(session.execute(

 "SELECT orderid FROM allocations"

 " JOIN batches ON allocations.batch_id =

 " JOIN order_lines ON allocations.orderli

 " WHERE order_lines.sku=:sku",

 dict(sku=sku),

))

 assert len(orders) == 1

 with unit_of_work.SqlAlchemyUnitOfWork() as u

 uow.session.execute('select 1')

We start two threads that will reliably produce the concurrency
behavior we
want: read1, read2, write1, write2 .

We assert that the version number has been incremented only
once.

We can also check on the specific exception if we like.

And we double-check that only one allocation has gotten
through.

Enforcing Concurrency Rules by Using Database
Transaction Isolation Levels

To get the test to pass as it is, we can set the transaction isolation lev-
el
on our session:

https://calibre-pdf-anchor.a/#a938
https://calibre-pdf-anchor.a/#a941

Set isolation level for session
(src/allocation/service_layer/unit_of_work.py)

DEFAULT_SESSION_FACTORY = sessionmaker(bind=creat

 config.get_postgres_uri(),

 isolation_level="REPEATABLE READ",

))

TIP

Transaction isolation levels are tricky stuff, so it’s worth spending time
understand-
ing the Postgres documentation.

Pessimistic Concurrency Control Example:

SELECT FOR UPDATE

There are multiple ways to approach this, but we’ll show one.

SELECT FOR UPDATE
produces different behavior; two concurrent
transactions will not be allowed to
do a read on the same rows at the
same time:

SELECT FOR UPDATE is a way of picking a row or rows to use as a
lock
(although those rows don’t have to be the ones you update). If
two
transactions both try to SELECT FOR UPDATE a row at the

3

https://oreil.ly/5vxJA
https://oreil.ly/i8wKL

same time, one will
win, and the other will wait until the lock is re-
leased. So this is an example
of pessimistic concurrency control.

Here’s how you can use the SQLAlchemy DSL to specify FOR

UPDATE at
query time:

SQLAlchemy with_for_update (src/allocation/adapters/repository.py)

 def get(self, sku):

 return self.session.query(model.Product)

 .filter_by(sku=sku) \

 .with_for_update() \

 .first()

This will have the effect of changing the concurrency pattern from

read1, read2, write1, write2(fail)

to

read1, write1, read2, write2(succeed)

Some people refer to this as the “read-modify-write” failure mode.

Read “PostgreSQL Anti-Patterns: Read-Modify-Write Cycles” for a
good overview.

https://oreil.ly/uXeZI

We don’t really have time to discuss all the trade-offs between
REPEATABLE READ
and SELECT FOR UPDATE , or optimistic ver-
sus pessimistic locking in general.
But if you have a test like the one
we’ve shown, you can specify the behavior
you want and see how it
changes. You can also use the test as a basis for
performing some
performance experiments.

Wrap-Up

Specific choices around concurrency control vary a lot based on busi-
ness
circumstances and storage technology choices, but we’d like to
bring this
chapter back to the conceptual idea of an aggregate: we
explicitly model an
object as being the main entrypoint to some sub-
set of our model, and as being in
charge of enforcing the invariants
and business rules that apply across all of
those objects.

Choosing the right aggregate is key, and it’s a decision you may re-
visit
over time. You can read more about it in multiple DDD books.
We
also recommend these three online papers on
effective aggregate
design
by Vaughn Vernon (the “red book” author).

Table 7-1 has some thoughts on the trade-offs of implementing the
Aggregate pattern.

https://dddcommunity.org/library/vernon_2011

Table 7-1. Aggregates: the trade-offs

Pros Cons

Python might not have “official” public
and private methods, but we do have
the underscores convention, because
it’s often useful to try to indicate what’s
for
“internal” use and what’s for “out-
side code” to use. Choosing aggre-
gates is
just the next level up: it lets
you decide which of your domain mod-
el classes
are the public ones, and
which aren’t.
Modeling our operations around explic-
it consistency boundaries helps us
avoid
performance problems with our
ORM.

Putting the aggregate in sole charge of
state changes to its subsidiary models
makes the system easier to reason
about, and makes it easier to control
invariants.

Yet another new
concept for new
developers to
take on. Ex-
plaining entities
versus
value ob-
jects was al-
ready a mental
load; now
there’s a third
type of domain
model object?
Sticking rigidly
to the rule that
we modify only
one aggregate
at a time is a
big
mental shift.
Dealing with
eventual consis-

Pros Cons

tency between
aggregates can
be complex.

AGGREGATES AND CONSISTENCY BOUNDARIES RECAP

Aggregates are your entrypoints into the domain model

By restricting the number of ways that things can be changed,

we make the system easier to reason about.

Aggregates are in charge of a consistency boundary

An aggregate’s job is to be able to manage our business rules
about invariants as they apply to a group of related objects.
It’s
the aggregate’s job to check that the objects within its
remit are
consistent with each other and with our rules, and
to reject
changes that would break the rules.

Aggregates and concurrency issues go together

When thinking about implementing these consistency checks,

we
end up thinking about transactions and locks. Choosing the
right aggregate is about performance as well as conceptual
or-
ganization of your domain.

Part I Recap

Do you remember Figure 7-5, the diagram we showed at the
begin-
ning of Part I to preview where we were heading?

Figure 7-5. A component diagram for our app at the end of Part I

So that’s where we are at the end of Part I. What have we achieved?

We’ve
seen how to build a domain model that’s exercised by a set of

high-level unit tests. Our tests are living documentation: they describe
the
behavior of our system—the rules upon which we agreed with our
business
stakeholders—in nice readable code. When our business
requirements change, we
have confidence that our tests will help us
to prove the new functionality, and
when new developers join the
project, they can read our tests to understand how
things work.

We’ve decoupled the infrastructural parts of our system, like the data-
base and
API handlers, so that we can plug them into the outside of
our application.
This helps us to keep our codebase well organized
and stops us from building a
big ball of mud.

By applying the dependency inversion principle, and by using ports-
and-adapters-inspired patterns like Repository and Unit of Work,

we’ve made it possible to
do TDD in both high gear and low gear and
to maintain a healthy test pyramid.
We can test our system edge to
edge, and the need for integration and
end-to-end tests is kept to a
minimum.

Lastly, we’ve talked about the idea of consistency boundaries. We
don’t want to
lock our entire system whenever we make a change, so
we have to choose which
parts are consistent with one another.

For a small system, this is everything you need to go and play with
the ideas of
domain-driven design. You now have the tools to build

database-agnostic domain
models that represent the shared lan-
guage of your business experts. Hurrah!

NOTE

At the risk of laboring the point—we’ve been at pains to point out that
each pattern
comes at a cost. Each layer of indirection has a price in terms
of complexity and du-
plication in our code and will be confusing to programmers
who’ve never seen
these patterns before. If your app is essentially a simple CRUD
wrapper around a

database and isn’t likely to be anything more than that
in the foreseeable future,

you don’t need these patterns. Go ahead and
use Django, and save yourself a lot of
bother.

In Part II, we’ll zoom out and talk about a bigger topic: if aggregates
are our
boundary, and we can update only one at a time, how do we
model processes that
cross consistency boundaries?

 Perhaps we could get some ORM/SQLAlchemy magic to tell us when an object is
dirty, but how would that work in the generic case—for example, for a
CsvRepository ?

 time.sleep() works well in our use case, but it’s not the most reliable or effi-

cient way to reproduce concurrency bugs. Consider using semaphores or similar
synchronization primitives shared between your threads to get better guarantees of
behavior.

1

2

3

 If you’re not using Postgres, you’ll need to read different documentation. Annoy-
ingly, different databases all have quite different definitions. Oracle’s
SERIALIZABLE is equivalent to Postgres’s REPEATABLE READ , for example.

3

Part II. Event-Driven Architecture

I’m sorry that I long ago coined the term “objects” for this topic
because it
gets many people to focus on the lesser idea.

The big idea is “messaging."…The key in making great and
growable systems is
much more to design how its modules
communicate rather than what their internal
properties and be-
haviors should be.

—Alan Kay

It’s all very well being able to write one domain model to manage a
single bit
of business process, but what happens when we need to
write many models? In
the real world, our applications sit within an or-
ganization and need to exchange
information with other parts of the
system. You may remember our context
diagram shown in Figure II-1.

Faced with this requirement, many teams reach for microservices in-
tegrated
via HTTP APIs. But if they’re not careful, they’ll end up pro-
ducing the most
chaotic mess of all: the distributed big ball of mud.

In Part II, we’ll show how the techniques from Part I can be extended
to
distributed systems. We’ll zoom out to look at how we can com-

pose a system from
many small components that interact through
asynchronous message passing.

We’ll see how our Service Layer and Unit of Work patterns allow us to
reconfigure our app
to run as an asynchronous message processor,
and how event-driven systems help
us to decouple aggregates and
applications from one another.

Figure II-1. But exactly how will all these systems talk to each other?

We’ll look at the following patterns and techniques:

Domain Events

Trigger workflows that cross consistency boundaries.

Message Bus

Provide a unified way of invoking use cases from any endpoint.

CQRS

Separating reads and writes avoids awkward compromises in
an event-driven
architecture and enables performance and
scalability improvements.

Plus, we’ll add a dependency injection framework. This has nothing to
do with
event-driven architecture per se, but it tidies up an awful lot of
loose
ends.

Chapter 8. Events and the Message
Bus

So far we’ve spent a lot of time and energy on a simple problem that
we could
easily have solved with Django. You might be asking if the
increased testability
and expressiveness are really worth all the effort.

In practice, though, we find that it’s not the obvious features that
make a mess
of our codebases: it’s the goop around the edge. It’s re-
porting, and permissions,
and workflows that touch a zillion objects.

Our example will be a typical notification requirement: when we can’t
allocate
an order because we’re out of stock, we should alert the buy-
ing team. They’ll
go and fix the problem by buying more stock, and all
will be well.

For a first version, our product owner says we can just send the alert
by email.

Let’s see how our architecture holds up when we need to plug in
some of the
mundane stuff that makes up so much of our systems.

We’ll start by doing the simplest, most expeditious thing, and talk
about
why it’s exactly this kind of decision that leads us to the Big Ball
of Mud.

Then we’ll show how to use the Domain Events pattern to separate
side effects from our
use cases, and how to use a simple Message
Bus pattern for triggering behavior
based on those events. We’ll show
a few options for creating
those events and how to pass them to the
message bus, and finally we’ll show
how the Unit of Work pattern can
be modified to connect the two together elegantly,
as previewed in
Figure 8-1.

Figure 8-1. Events flowing through the system

TIP

The code for this chapter is in the
chapter_08_events_and_message_bus branch on
GitHub:

git clone https://github.com/cosmicpython/code.git

cd code

git checkout chapter_08_events_and_message_bus

or to code along, checkout the previous chapter:

git checkout chapter_07_aggregate

Avoiding Making a Mess

So. Email alerts when we run out of stock. When we have new re-
quirements like ones that really have nothing to do with the core do-
main, it’s all too easy to
start dumping these things into our web con-
trollers.

First, Let’s Avoid Making a Mess of Our Web
Controllers

As a one-off hack, this might be OK:

Just whack it in the endpoint—what could go wrong?

(src/allocation/entrypoints/flask_app.py)

@ "/ ll " h d ' '

https://oreil.ly/M-JuL

@app.route("/allocate", methods=['POST'])

def allocate_endpoint():

 line = model.OrderLine(

 request.json['orderid'],

 request.json['sku'],

 request.json['qty'],

)

 try:

 uow = unit_of_work.SqlAlchemyUnitOfWork()

 batchref = services.allocate(line, uow)

 except (model.OutOfStock, services.InvalidSku

 send_mail(

 'out of stock',

 'stock_admin@made.com',

 f'{line.orderid} - {line.sku}'

)

 return jsonify({'message': str(e)}), 400

 return jsonify({'batchref': batchref}), 201

…but it’s easy to see how we can quickly end up in a mess by patch-
ing things up
like this. Sending email isn’t the job of our HTTP layer,
and we’d like to be
able to unit test this new feature.

And Let’s Not Make a Mess of Our Model Either

Assuming we don’t want to put this code into our web controllers, be-
cause
we want them to be as thin as possible, we may look at putting
it right at
the source, in the model:

Email-sending code in our model isn’t lovely either
(src/allocation/domain/model.py)

 def allocate(self, line: OrderLine) -> str:

 try:

 batch = next(

 b for b in sorted(self.batches) i

)

 #...

 except StopIteration:

 email.send_mail('stock@made.com', f'O

 raise OutOfStock(f'Out of stock for s

But that’s even worse! We don’t want our model to have any depen-
dencies on
infrastructure concerns like email.send_mail .

This email-sending thing is unwelcome goop messing up the nice
clean flow
of our system. What we’d like is to keep our domain model
focused on the rule
“You can’t allocate more stuff than is actually
available.”

The domain model’s job is to know that we’re out of stock, but the
re-
sponsibility of sending an alert belongs elsewhere. We should be able
to turn
this feature on or off, or to switch to SMS notifications instead,

without
needing to change the rules of our domain model.

Or the Service Layer!

The requirement “Try to allocate some stock, and send an email if it
fails” is
an example of workflow orchestration: it’s a set of steps that
the system has
to follow to achieve a goal.

We’ve written a service layer to manage orchestration for us, but
even here
the feature feels out of place:

And in the service layer, it’s out of place
(src/allocation/service_layer/services.py)

def allocate(

 orderid: str, sku: str, qty: int,

 uow: unit_of_work.AbstractUnitOfWork

) -> str:

 line = OrderLine(orderid, sku, qty)

 with uow:

 product = uow.products.get(sku=line.sku)

 if product is None:

 raise InvalidSku(f'Invalid sku {line.

 try:

 batchref = product.allocate(line)

 uow.commit()

 return batchref

 except model.OutOfStock:

 email.send_mail('stock@made.com', f'O

 raise

Catching an exception and reraising it? It could be worse, but it’s
defi-
nitely making us unhappy. Why is it so hard to find a suitable home
for
this code?

Single Responsibility Principle

Really, this is a violation of the single responsibility principle (SRP).

Our use case is allocation. Our endpoint, service function, and do-
main methods
are all called allocate , not
allocate_and_send_mail_if_out_of_stock .

TIP

Rule of thumb: if you can’t describe what your function does without using
words
like “then” or “and,” you might be violating the SRP.

1

One formulation of the SRP is that each class should have only a sin-
gle reason
to change. When we switch from email to SMS, we
shouldn’t have to update our
 allocate() function, because that’s
clearly a separate responsibility.

To solve the problem, we’re going to split the orchestration
into sepa-
rate steps so that the different concerns don’t get tangled up. The
domain model’s job is to know that we’re out of stock, but the respon-
sibility
of sending an alert belongs elsewhere. We should be able to
turn this feature
on or off, or to switch to SMS notifications instead,

without needing to change
the rules of our domain model.

We’d also like to keep the service layer free of implementation de-
tails. We
want to apply the dependency inversion principle to notifica-
tions so that our
service layer depends on an abstraction, in the same
way as we avoid depending
on the database by using a unit of work.

All Aboard the Message Bus!

The patterns we’re going to introduce here are Domain Events and
the Message Bus.
We can implement them in a few ways, so we’ll
show a couple before settling on the one we like most.

The Model Records Events

2

First, rather than being concerned about emails, our model will be in
charge of
recording events—facts about things that have happened.

We’ll use a message bus to respond to events and invoke a new
operation.

Events Are Simple Dataclasses

An event is a kind of value object. Events don’t have any behavior,
because
they’re pure data structures. We always name events in the
language of the
domain, and we think of them as part of our domain
model.

We could store them in model.py, but we may as well keep them in
their own file
(this might be a good time to consider refactoring out a
directory called
domain so that we have domain/model.py and do-
main/events.py):

Event classes (src/allocation/domain/events.py)

from dataclasses import dataclass

class Event:

 pass

@dataclass

class OutOfStock(Event):

 sku: str

Once we have a number of events, we’ll find it useful to have a
parent
class that can store common attributes. It’s also useful
for type
hints in our message bus, as you’ll see shortly.

dataclasses are great for domain events too.

The Model Raises Events

When our domain model records a fact that happened, we say it rais-
es an event.

Here’s what it will look like from the outside; if we ask Product to
allocate
but it can’t, it should raise an event:

Test our aggregate to raise events (tests/unit/test_product.py)

def test_records_out_of_stock_event_if_cannot_all

 batch = Batch('batch1', 'SMALL-FORK', 10, eta

 product = Product(sku="SMALL-FORK", batches=[

 product.allocate(OrderLine('order1', 'SMALL-F

 allocation = product.allocate(OrderLine('orde

 assert product.events[-1] == events.OutOfStoc

 assert allocation is None

Our aggregate will expose a new attribute called .events

that will contain
a list of facts about what has happened, in the
form of Event objects.

Here’s what the model looks like on the inside:

The model raises a domain event (src/allocation/domain/model.py)

class Product:

 def __init__(self, sku: str, batches: List[Ba

 self.sku = sku

 self.batches = batches

 self.version_number = version_number

 self.events = [] # type: List[events.Eve

 def allocate(self, line: OrderLine) -> str:

 try:

 #...

 except StopIteration:

 self.events.append(events.OutOfStock(

 # raise OutOfStock(f'Out of stock for

 return None

https://calibre-pdf-anchor.a/#a1041

Here’s our new .events attribute in use.

Rather than invoking some email-sending code directly, we
record those
events at the place they occur, using only the lan-
guage of the domain.

We’re also going to stop raising an exception for the out-of-
stock
case. The event will do the job the exception was doing.

NOTE

We’re actually addressing a code smell we had until now, which is that we were
us-
ing
exceptions for control flow. In general, if you’re implementing domain
events,

don’t raise exceptions to describe the same domain concept.
As you’ll see later
when we handle events in the Unit of Work pattern, it’s
confusing to have to reason

about events and exceptions together.

The Message Bus Maps Events to Handlers

A message bus basically says, “When I see this event, I should in-
voke the following
handler function.” In other words, it’s a simple pub-
lish-subscribe system.
Handlers are subscribed to receive events,

https://calibre-pdf-anchor.a/#a1044
https://calibre-pdf-anchor.a/#a1045
https://calibre-pdf-anchor.a/#a1046
https://oreil.ly/IQB51

which we publish to the bus. It
sounds harder than it is, and we usual-
ly implement it with a dict:

Simple message bus (src/allocation/service_layer/messagebus.py)

def handle(event: events.Event):

 for handler in HANDLERS[type(event)]:

 handler(event)

def send_out_of_stock_notification(event: events.

 email.send_mail(

 'stock@made.com',

 f'Out of stock for {event.sku}',

)

HANDLERS = {

 events.OutOfStock: [send_out_of_stock_notific

} # type: Dict[Type[events.Event], List[Callable

NOTE

Note that the message bus as implemented doesn’t give us concurrency because
only one handler will run at a time.
Our objective isn’t to support parallel threads but
to separate
tasks conceptually, and to keep each UoW as small as possible.
This
helps us to understand the codebase because the “recipe” for how to
run each use

case is written in a single place.
See the following sidebar.

IS THIS LIKE CELERY?

Celery is a popular tool in the Python world for deferring self-con-
tained
chunks of work to an asynchronous task queue. The message
bus we’re
presenting here is very different, so the short answer to the
above question is no; our message bus
has more in common with a
Node.js app, a UI event loop, or an actor framework.

If you do have a requirement for moving work off the main thread, you
can still use our event-based metaphors, but we suggest you
use ex-
ternal events for that. There’s more discussion in
Table 11-1, but es-
sentially, if you
implement a way of persisting events to a centralized
store, you
can subscribe other containers or other microservices to
them. Then
that same concept of using events to separate responsi-
bilities
across units of work within a single process/service can be ex-
tended across
multiple processes—which may be different containers
within the same
service, or totally different microservices.

If you follow us in this approach, your API for distributing tasks
is your
event classes—or a JSON representation of them. This allows
you a
lot of flexibility in who you distribute tasks to; they need not
necessari-
ly be Python services. Celery’s API for distributing tasks is
essentially
“function name plus arguments,” which is more restrictive,
and
Python-only.

Option 1: The Service Layer Takes
Events from the Model and Puts
Them on the Message Bus

Our domain model raises events, and our message bus will call the
right
handlers whenever an event happens. Now all we need is to
connect the two. We
need something to catch events from the model
and pass them to the message
bus—the publishing step.

The simplest way to do this is by adding some code into our service
layer:

The service layer with an explicit message bus
(src/allocation/service_layer/services.py)

from . import messagebus

...

def allocate(

 orderid: str, sku: str, qty: int,

 uow: unit_of_work.AbstractUnitOfWork

) -> str:

 line = OrderLine(orderid, sku, qty)

 with uow:

 product = uow.products.get(sku=line.sku)

 if product is None:

 raise InvalidSku(f'Invalid sku {line.

 try:

 batchref = product.allocate(line)

 uow.commit()

 return batchref

 finally:

 messagebus.handle(product.events)

We keep the try/finally from our ugly earlier implementa-
tion (we haven’t
gotten rid of all exceptions yet, just
OutOfStock).

But now, instead of depending directly on an email in-
frastructure,
the service layer is just in charge of passing
events from the model
up to the message bus.

That already avoids some of the ugliness that we had in our naive
im-
plementation, and we have several systems that work like this one, in
which the
service layer explicitly collects events from aggregates and
passes them to
the message bus.

Option 2: The Service Layer Raises
Its Own Events

Another variant on this that we’ve used is to have the service layer
in
charge of creating and raising events directly, rather than having
them
raised by the domain model:

Service layer calls messagebus.handle directly
(src/allocation/service_layer/services.py)

def allocate(

 orderid: str, sku: str, qty: int,

 uow: unit_of_work.AbstractUnitOfWork

) -> str:

 line = OrderLine(orderid, sku, qty)

 with uow:

 product = uow.products.get(sku=line.sku)

 if product is None:

 raise InvalidSku(f'Invalid sku {line.

 batchref = product.allocate(line)

 uow.commit()

 if batchref is None:

 messagebus.handle(events.OutOfStock(l

 return batchref

As before, we commit even if we fail to allocate because the
code is simpler this way
and it’s easier to reason about: we al-
ways commit unless something goes
wrong. Committing when
we haven’t changed anything is safe and keeps the
code
uncluttered.

Again, we have applications in production that implement the pattern
in this
way. What works for you will depend on the particular trade-
offs you face, but
we’d like to show you what we think is the most ele-
gant solution, in which we
put the unit of work in charge of collecting
and raising events.

Option 3: The UoW Publishes Events
to the Message Bus

The UoW already has a try/finally , and it knows about all the
aggregates
currently in play because it provides access to the reposi-
tory. So it’s
a good place to spot events and pass them to the mes-
sage bus:

The UoW meets the message bus
(src/allocation/service_layer/unit_of_work.py)

class AbstractUnitOfWork(abc.ABC):

 ...

 def commit(self):

 self._commit()

 self.publish_events()

 def publish_events(self):

 for product in self.products.seen:

 while product.events:

 event = product.events.pop(0)

 messagebus.handle(event)

 @abc.abstractmethod

 def _commit(self):

 raise NotImplementedError

...

class SqlAlchemyUnitOfWork(AbstractUnitOfWork):

 ...

 def _commit(self):

 self.session.commit()

We’ll change our commit method to require a private
._commit()
method from subclasses.

After committing, we run through all the objects that our
reposi-
tory has seen and pass their events to the message bus.

That relies on the repository keeping track of aggregates that
have been loaded
using a new attribute, .seen , as you’ll see
in the next listing.

NOTE

Are you wondering what happens if one of the
handlers fails? We’ll discuss error
handling in detail in Chapter 10.

Repository tracks aggregates that pass through it
(src/allocation/adapters/repository.py)

class AbstractRepository(abc.ABC):

 def __init__(self):

 self.seen = set() # type: Set[model.Prod

 def add(self, product: model.Product):

 self._add(product)

 self.seen.add(product)

 def get(self, sku) -> model.Product:

 product = self._get(sku)

 if product:

 self.seen.add(product)

 return product

 @abc.abstractmethod

 def _add(self, product: model.Product):

 raise NotImplementedError

 @abc.abstractmethod

 def _get(self, sku) -> model.Product:

 raise NotImplementedError

class SqlAlchemyRepository(AbstractRepository):

 def __init__(self, session):

 super().__init__()

 self.session = session

 def _add(self, product):

 self.session.add(product)

 def _get(self, sku):

 return self.session.query(model.Product).

For the UoW to be able to publish new events, it needs to be
able to ask
the repository for which Product objects have
been used during this session.
We use a set called .seen

to store them. That means our implementations
need to call
super().__init__() .

The parent add() method adds things to .seen , and now
requires subclasses
to implement ._add() .

Similarly, .get() delegates to a ._get() function, to be
implemented by
subclasses, in order to capture objects seen.

NOTE

The use of ._underscorey() methods and subclassing is definitely not
the only
way you could implement these patterns. Have a go at the
Exercise for the Reader
in this chapter and experiment
with some alternatives.

After the UoW and repository collaborate in this way to automatically
keep
track of live objects and process their events, the service layer
can be
totally free of event-handling concerns:

Service layer is clean again (src/allocation/service_layer/services.py)

def allocate(

d id k i

https://calibre-pdf-anchor.a/#a1097

 orderid: str, sku: str, qty: int,

 uow: unit_of_work.AbstractUnitOfWork

) -> str:

 line = OrderLine(orderid, sku, qty)

 with uow:

 product = uow.products.get(sku=line.sku)

 if product is None:

 raise InvalidSku(f'Invalid sku {line.

 batchref = product.allocate(line)

 uow.commit()

 return batchref

We do also have to remember to change the fakes in the service lay-
er and make them
call super() in the right places, and to imple-
ment underscorey methods, but the
changes are minimal:

Service-layer fakes need tweaking (tests/unit/test_services.py)

class FakeRepository(repository.AbstractRepositor

 def __init__(self, products):

 super().__init__()

 self._products = set(products)

 def _add(self, product):

 self._products.add(product)

 def _get(self, sku):

 return next((p for p in self._products if

...

class FakeUnitOfWork(unit_of_work.AbstractUnitOfW

 ...

 def _commit(self):

 self.committed = True

EXERCISE FOR THE READER

Are you finding all those ._add() and ._commit() methods “su-
per-gross,” in
the words of our beloved tech reviewer Hynek? Does it
“make you want to beat
Harry around the head with a plushie snake”?
Hey, our code listings are
only meant to be examples, not the perfect
solution! Why not go see if you
can do better?

One composition over inheritance way to go would be to implement a
wrapper class:

A wrapper adds functionality and then delegates
(src/adapters/repository.py)

class TrackingRepository:

 seen: Set[model.Product]

 def __init__(self, repo: AbstractRepository):

 self.seen = set() # type: Set[model.Prod

 self._repo = repo

 def add(self, product: model.Product):

 self._repo.add(product)

 self.seen.add(product)

 def get(self, sku) -> model.Product:

 product = self._repo.get(sku)

 if product:

 self.seen.add(product)

 return product

By wrapping the repository, we can call the actual .add()
and .get() methods, avoiding weird underscorey methods.

See if you can apply a similar pattern to our UoW class in
order to get
rid of those Java-y _commit() methods too. You can find the code
on GitHub.

Switching all the ABCs to typing.Protocol is a good way to
force yourself to avoid using inheritance. Let us know if you come up
with something nice!

You might be starting to worry that maintaining these fakes is going to
be a
maintenance burden. There’s no doubt that it is work, but in our
experience
it’s not a lot of work. Once your project is up and running,

the interface for
your repository and UoW abstractions really don’t
change much. And if you’re
using ABCs, they’ll help remind you when
things get out of sync.

Wrap-Up

https://github.com/cosmicpython/code/tree/chapter_08_events_and_message_bus_exercise

Domain events give us a way to handle workflows in our system. We
often find,
listening to our domain experts, that they express require-
ments in a causal or
temporal way—for example, “When we try to al-
locate stock but there’s none
available, then we should send an email
to the buying team.”

The magic words “When X, then Y” often tell us about an event that
we can make
concrete in our system. Treating events as first-class
things in our model helps
us make our code more testable and ob-
servable, and it helps isolate concerns.

And Table 8-1 shows the trade-offs as we
see them.

Table 8-1. Domain events: the trade-offs

Pros Cons

A message
bus gives us a
nice way to
separate re-
sponsibilities
when we have
to take multi-
ple actions in
response to a
request.
Event han-
dlers are nice-
ly decoupled
from the
“core” applica-
tion logic,

making it easy
to change
their imple-

The message bus is an additional thing
to wrap your head around; the implemen-
tation
in which the unit of work raises
events for us is neat but also magic. It’s
not
obvious when we call commit that
we’re also going to go and send email to
people.

What’s more, that hidden event-handling
code executes synchronously,
meaning
your service-layer function
doesn’t finish
until all the handlers for any events are
finished. That
could cause unexpected
performance problems in your web end-
points
(adding asynchronous processing
is possible but makes things even more
confusing).

More generally, event-driven workflows
can be confusing because after things
are split across a chain of multiple han-
dlers, there is no single place
in the sys-

Pros Cons

mentation
later.
Domain
events are a
great way to
model the real
world, and we
can use them
as part of our
business lan-
guage when
modeling with
stakeholders.

tem where you can understand how a re-
quest will be fulfilled.

You also open yourself up to the possibil-
ity of circular dependencies between
your
event handlers, and infinite loops.

Events are useful for more than just sending email, though. In
Chapter 7 we
spent a lot of time convincing you that you should de-
fine aggregates, or
boundaries where we guarantee consistency.

People often ask, “What
should I do if I need to change multiple ag-
gregates as part of a request?” Now
we have the tools we need to an-
swer that question.

If we have two things that can be transactionally isolated (e.g., an or-
der and a
product), then we can make them eventually consistent by
using events. When an
order is canceled, we should find the products
that were allocated to it
and remove the allocations.

DOMAIN EVENTS AND THE MESSAGE BUS RECAP

Events can help with the single responsibility principle

Code gets tangled up when we mix multiple concerns in one
place. Events can
help us to keep things tidy by separating pri-
mary use cases from secondary
ones.
We also use events for
communicating between aggregates so that we don’t
need to
run long-running transactions that lock against multiple tables.

A message bus routes messages to handlers

You can think of a message bus as a dict that maps from
events to their
consumers. It doesn’t “know” anything about the
meaning of events; it’s just
a piece of dumb infrastructure for
getting messages around the system.

Option 1: Service layer raises events and passes them to message
bus

The simplest way to start using events in your system is to
raise them from
handlers by calling
bus.handle(some_new_event) after you commit your
unit
of work.

Option 2: Domain model raises events, service layer passes them
to message bus

The logic about when to raise an event really should live with
the model, so
we can improve our system’s design and testabil-
ity by raising events from
the domain model. It’s easy for our
handlers to collect events off the model
objects after commit
and pass them to the bus.

Option 3: UoW collects events from aggregates and passes them
to message bus

Adding bus.handle(aggregate.events) to every han-
dler is annoying, so we
can tidy up by making our unit of work
responsible for raising events that
were raised by loaded ob-
jects.
This is the most complex design and might rely on ORM
magic, but it’s clean
and easy to use once it’s set up.

In Chapter 9, we’ll look at this idea in more
detail as we build a more
complex workflow with our new message bus.

 This principle is the S in SOLID.

 Our tech reviewer Ed Jung likes to say that the move from imperative to event-
based flow control changes what used to be orchestration into choreography.

1

2

https://oreil.ly/AIdSD

Chapter 9. Going to Town on the
Message Bus

In this chapter, we’ll start to make events more fundamental to the in-
ternal
structure of our application. We’ll move from the current state in
Figure 9-1, where events are an optional
side effect…

Figure 9-1. Before: the message bus is an optional add-on

…to the situation in Figure 9-2, where
everything goes via the mes-
sage bus, and our app has been transformed
fundamentally into a

message processor.

Figure 9-2. The message bus is now the main entrypoint to the service layer

TIP

The code for this chapter is in the
chapter_09_all_messagebus branch on GitHub:

git clone https://github.com/cosmicpython/code.git

cd code

git checkout chapter_09_all_messagebus

or to code along, checkout the previous chapter:

git checkout chapter_08_events_and_message_bus

A New Requirement Leads Us to a
New Architecture

Rich Hickey talks about situated software, meaning software that
runs for
extended periods of time, managing a real-world process.

Examples include
warehouse-management systems, logistics sched-
ulers, and payroll systems.

This software is tricky to write because unexpected things happen all
the time
in the real world of physical objects and unreliable humans.

For example:

During a stock-take, we discover that three SPRINGY-

MATTRESS es have been
water damaged by a leaky roof.

https://oreil.ly/oKNkn

A consignment of RELIABLE-FORK s is missing the required doc-
umentation and is
held in customs for several weeks. Three
RELIABLE-FORK s subsequently fail safety
testing and are
destroyed.

A global shortage of sequins means we’re unable to manufacture
our next batch
of SPARKLY-BOOKCASE .

In these types of situations, we learn about the need to change batch
quantities
when they’re already in the system. Perhaps someone
made a mistake on the number
in the manifest, or perhaps some so-
fas fell off a truck. Following a
conversation with the business, we
model the situation as in
Figure 9-3.

Figure 9-3. Batch quantity changed means deallocate and reallocate

An event we’ll call BatchQuantityChanged should lead us to
change the
quantity on the batch, yes, but also to apply a business
rule: if the new
quantity drops to less than the total already allocated,

we need to
deallocate those orders from that batch. Then each one
will require
a new allocation, which we can capture as an event called
AllocationRequired .

1

Perhaps you’re already anticipating that our internal message bus
and events can
help implement this requirement. We could define a
service called
 change_batch_quantity that knows how to adjust
batch quantities and also how
to deallocate any excess order lines,

and then each deallocation can emit an
 AllocationRequired

event that can be forwarded to the existing allocate
service, in
separate transactions. Once again, our message bus helps us to
en-
force the single responsibility principle, and it allows us to make
choices about
transactions and data integrity.

Imagining an Architecture Change: Everything
Will Be an Event Handler

But before we jump in, think about where we’re headed. There are
two
kinds of flows through our system:

API calls that are handled by a service-layer function
Internal events (which might be raised as a side effect of a service-
layer function)
and their handlers (which in turn call service-layer
functions)

Wouldn’t it be easier if everything was an event handler? If we rethink
our API
calls as capturing events, the service-layer functions can be
event handlers
too, and we no longer need to make a distinction be-
tween internal and external
event handlers:

services.allocate() could be the handler for an
AllocationRequired event and could emit Allocated
events as its output.
services.add_batch() could be the handler for a
BatchCreated
event.

Our new requirement will fit the same pattern:

An event called BatchQuantityChanged can invoke a handler
called
 change_batch_quantity() .

And the new AllocationRequired events that it may raise
can be passed on to
 services.allocate() too, so there is no
conceptual difference between a
brand-new allocation coming
from the API and a reallocation that’s
internally triggered by a
deallocation.

All sound like a bit much? Let’s work toward it all gradually. We’ll
fol-
low the
Preparatory
Refactoring workflow, aka “Make the change
easy; then make the easy change”:

1. We refactor our service layer into event handlers. We can
get used
to the idea of events being the way we describe inputs to the
sys-
tem. In particular, the existing services.allocate() function
will
become the handler for an event called
AllocationRequired .

2

https://oreil.ly/W3RZM

2. We build an end-to-end test that puts BatchQuantityChanged

events
into the system and looks for Allocated events coming
out.

3. Our implementation will conceptually be very simple: a new
han-
dler for BatchQuantityChanged events, whose implementa-
tion will emit
 AllocationRequired events, which in turn will be
handled by the exact same
handler for allocations that the API
uses.

Along the way, we’ll make a small tweak to the message bus and
UoW, moving the
responsibility for putting new events on the mes-
sage bus into the message bus itself.

Refactoring Service Functions to
Message Handlers

We start by defining the two events that capture our current API in-
puts— AllocationRequired and BatchCreated :

BatchCreated and AllocationRequired events
(src/allocation/domain/events.py)

@dataclass

class BatchCreated(Event):

 ref: str

 sku: str

 qty: int

 eta: Optional[date] = None

...

@dataclass

class AllocationRequired(Event):

 orderid: str

 sku: str

 qty: int

Then we rename services.py to handlers.py; we add the existing
message handler
for send_out_of_stock_notification ; and
most importantly, we change all the
handlers so that they have the
same inputs, an event and a UoW:

Handlers and services are the same thing
(src/allocation/service_layer/handlers.py)

def add_batch(

 event: events.BatchCreated, uow: unit_of_

):

 with uow:

 product = uow.products.get(sku=event.sku)

 ...

def allocate(

 event: events.AllocationRequired, uow: un

) -> str:

 line = OrderLine(event.orderid, event.sku, ev

 ...

def send_out_of_stock_notification(

 event: events.OutOfStock, uow: unit_of_wo

):

 email.send(

 'stock@made.com',

 f'Out of stock for {event.sku}',

)

The change might be clearer as a diff:

Changing from services to handlers
(src/allocation/service_layer/handlers.py)

 def add_batch(

- ref: str, sku: str, qty: int, eta: Optio

- uow: unit_of_work.AbstractUnitOfWork

+ event: events.BatchCreated, uow: unit_of

):

 with uow:

- product = uow.products.get(sku=sku)

+ product = uow.products.get(sku=event.sku

 ...

 def allocate(

- orderid: str, sku: str, qty: int,

- uow: unit_of_work.AbstractUnitOfWork

+ event: events.AllocationRequired, uow: u

) -> str:

- line = OrderLine(orderid, sku, qty)

+ line = OrderLine(event.orderid, event.sku, e

 ...

+

+def send_out_of_stock_notification(

+ event: events.OutOfStock, uow: unit_of_w

+):

+ email.send(

 ...

Along the way, we’ve made our service-layer’s API more structured
and more consistent. It was a scattering of
primitives, and now it uses
well-defined objects (see the following sidebar).

FROM DOMAIN OBJECTS, VIA PRIMITIVE OBSESSION, TO EVENTS AS AN INTERFACE

Some of you may remember “Fully Decoupling the Service-Layer
Tests from the Domain”, in which we changed our service-layer API
from being in terms of domain objects to primitives. And now we’re
moving
back, but to different objects? What gives?

In OO circles, people talk about primitive obsession as an anti-pat-
tern: avoid
primitives in public APIs, and instead wrap them with cus-
tom value classes, they
would say. In the Python world, a lot of peo-
ple would be quite skeptical of
that as a rule of thumb. When mind-
lessly applied, it’s certainly a recipe for
unnecessary complexity. So
that’s not what we’re doing per se.

The move from domain objects to primitives bought us a nice bit of
decoupling:
our client code was no longer coupled directly to the do-
main, so the service
layer could present an API that stays the same
even if we decide to make changes
to our model, and vice versa.

So have we gone backward? Well, our core domain model objects
are still free to
vary, but instead we’ve coupled the external world to
our event classes.
They’re part of the domain too, but the hope is that
they vary less often, so
they’re a sensible artifact to couple on.

And what have we bought ourselves? Now, when invoking a use case
in our application,
we no longer need to remember a particular combi-

nation of primitives, but just a single
event class that represents the
input to our application. That’s conceptually
quite nice. On top of that,
as you’ll see in Appendix E, those
event classes can be a nice place
to do some input validation.

The Message Bus Now Collects Events from the
UoW

Our event handlers now need a UoW. In addition, as our message
bus becomes
more central to our application, it makes sense to put it
explicitly in charge of
collecting and processing new events. There
was a bit of a circular dependency
between the UoW and message
bus until now, so this will make it one-way:

Handle takes a UoW and manages a queue
(src/allocation/service_layer/messagebus.py)

def handle(event: events.Event, uow: unit_of_work

 queue = [event]

 while queue:

 event = queue.pop(0)

 for handler in HANDLERS[type(event)]:

 handler(event, uow=uow)

 queue.extend(uow.collect_new_events()

The message bus now gets passed the UoW each time it starts
up.

When we begin handling our first event, we start a queue.

We pop events from the front of the queue and invoke their
handlers (the
 HANDLERS dict hasn’t changed; it still maps
event types to handler functions).

The message bus passes the UoW down to each handler.

After each handler finishes, we collect any new events that
have been
generated and add them to the queue.

In unit_of_work.py, publish_events() becomes a less active
method,
 collect_new_events() :

UoW no longer puts events directly on the bus
(src/allocation/service_layer/unit_of_work.py)

-from . import messagebus

-

https://calibre-pdf-anchor.a/#a1187

 class AbstractUnitOfWork(abc.ABC):

@@ -23,13 +21,11 @@ class AbstractUnitOfWork(abc.

 def commit(self):

 self._commit()

- self.publish_events()

- def publish_events(self):

+ def collect_new_events(self):

 for product in self.products.seen:

 while product.events:

- event = product.events.pop(0)

- messagebus.handle(event)

+ yield product.events.pop(0)

The unit_of_work module now no longer depends on
messagebus .

We no longer publish_events automatically on commit.
The message bus
is keeping track of the event queue instead.

And the UoW no longer actively puts events on the message
bus; it
just makes them available.

Our Tests Are All Written in Terms of Events Too

Our tests now operate by creating events and putting them on the
message bus, rather than invoking service-layer functions directly:

Handler tests use events (tests/unit/test_handlers.py)

class TestAddBatch:

 def test_for_new_product(self):

 uow = FakeUnitOfWork()

- services.add_batch("b1", "CRUNCHY-ARMCHA

+ messagebus.handle(

+ events.BatchCreated("b1", "CRUNCHY-A

+)

 assert uow.products.get("CRUNCHY-ARMCHAI

 assert uow.committed

...

 class TestAllocate:

 def test_returns_allocation(self):

 uow = FakeUnitOfWork()

- services.add_batch("batch1", "COMPLICATE

- result = services.allocate("o1", "COMPLI

+ messagebus.handle(

+ events.BatchCreated("batch1", "COMPL

+)

+ result = messagebus.handle(

+ events.AllocationRequired("o1", "COM

+)

 assert result == "batch1"

A Temporary Ugly Hack: The Message Bus Has to
Return Results

Our API and our service layer currently want to know the allocated
batch reference
when they invoke our allocate() handler. This
means we need to put in
a temporary hack on our message bus to let
it return events:

Message bus returns results
(src/allocation/service_layer/messagebus.py)

 def handle(event: events.Event, uow: unit_of_wor

+ results = []

 queue = [event]

 while queue:

 event = queue.pop(0)

 for handler in HANDLERS[type(event)]:

- handler(event, uow=uow)

+ results.append(handler(event, uow=uo

 queue.extend(uow.collect_new_events(

+ return results

It’s because we’re mixing the read and write responsibilities in our
system.
We’ll come back to fix this wart in Chapter 12.

Modifying Our API to Work with Events

Flask changing to message bus as a diff
(src/allocation/entrypoints/flask_app.py)

 @app.route("/allocate", methods=['POST'])

 def allocate_endpoint():

 try:

- batchref = services.allocate(

- request.json['orderid'],

- request.json['sku'],

- request.json['qty'],

- unit_of_work.SqlAlchemyUnitOfWork(),

+ event = events.AllocationRequired(

+ request.json['orderid'], request.jso

)

+ results = messagebus.handle(event, unit_

+ batchref = results.pop(0)

 except InvalidSku as e:

Instead of calling the service layer with a bunch of primitives
extracted
from the request JSON…

We instantiate an event.

Then we pass it to the message bus.

And we should be back to a fully functional application, but one that’s
now
fully event-driven:

What used to be service-layer functions are now event handlers.

That makes them the same as the functions we invoke for handling
internal events raised by
our domain model.
We use events as our data structure for capturing inputs to the
system,
as well as for handing off of internal work packages.

The entire app is now best described as a message processor, or
an event processor
if you prefer. We’ll talk about the distinction in
the
next chapter.

Implementing Our New Requirement

We’re done with our refactoring phase. Let’s see if we really have
“made the
change easy.” Let’s implement our new requirement,
shown in Figure 9-4: we’ll receive as our
inputs some new

https://calibre-pdf-anchor.a/#a1219

BatchQuantityChanged events and pass them to a handler,
which in
turn might emit some AllocationRequired events, and
those in turn will go
back to our existing handler for reallocation.

Figure 9-4. Sequence diagram for reallocation flow

WARNING

When you split things out like this across two units of work,
you now have two data-
base transactions, so you are opening yourself up
to integrity issues: something
could happen that means the first transaction completes
but the second one does
not. You’ll need to think about whether this is acceptable,
and whether you need to

notice when it happens and do something about it.
See “Footguns” for more
discussion.

Our New Event

The event that tells us a batch quantity has changed is simple; it just
needs a batch reference and a new quantity:

New event (src/allocation/domain/events.py)

@dataclass

class BatchQuantityChanged(Event):

 ref: str

 qty: int

Test-Driving a New Handler

Following the lessons learned in Chapter 4,
we can operate in “high
gear” and write our unit tests at the highest
possible level of abstrac-
tion, in terms of events. Here’s what they might
look like:

Handler tests for change_batch_quantity (tests/unit/test_handlers.py)

class TestChangeBatchQuantity:

 def test_changes_available_quantity(self):

 uow = FakeUnitOfWork()

 messagebus.handle(

 events.BatchCreated("batch1", "ADORAB

)

 [batch] = uow.products.get(sku="ADORABLE-

 assert batch.available_quantity == 100

 messagebus.handle(events.BatchQuantityCha

 assert batch.available_quantity == 50

 def test_reallocates_if_necessary(self):

 uow = FakeUnitOfWork()

 event_history = [

 events.BatchCreated("batch1", "INDIFF

 events.BatchCreated("batch2", "INDIFF

 events.AllocationRequired("order1", "

 events.AllocationRequired("order2", "

]

 for e in event_history:

 messagebus.handle(e, uow)

 [batch1, batch2] = uow.products.get(sku="

 assert batch1.available_quantity == 10

 assert batch2.available_quantity == 50

 messagebus.handle(events.BatchQuantityCha

 # order1 or order2 will be deallocated, s

 assert batch1.available_quantity == 5

 # and 20 will be reallocated to the next

 assert batch2.available_quantity == 30

The simple case would be trivially easy to implement; we just
modify a quantity.

But if we try to change the quantity to less than
has been allo-
cated, we’ll need to deallocate at least one order,
and we ex-
pect to reallocate it to a new batch.

Implementation

Our new handler is very simple:

Handler delegates to model layer
(src/allocation/service_layer/handlers.py)

def change_batch_quantity(

 event: events.BatchQuantityChanged, uow:

):

 with uow:

 product = uow.products.get_by_batchref(ba

 product.change_batch_quantity(ref=event.r

 uow.commit()

We realize we’ll need a new query type on our repository:

A new query type on our repository
(src/allocation/adapters/repository.py)

class AbstractRepository(abc.ABC):

 ...

 def get(self, sku) -> model.Product:

 ...

 def get_by_batchref(self, batchref) -> model.

 product = self._get_by_batchref(batchref)

 if product:

 self.seen.add(product)

 return product

 @abc.abstractmethod

 def _add(self, product: model.Product):

 raise NotImplementedError

 @abc.abstractmethod

 def _get(self, sku) -> model.Product:

 raise NotImplementedError

 @abc.abstractmethod

 def _get_by_batchref(self, batchref) -> model

 raise NotImplementedError

 ...

class SqlAlchemyRepository(AbstractRepository):

 ...

 def _get(self, sku):

 return self.session.query(model.Product).

 def _get_by_batchref(self, batchref):

 return self.session.query(model.Product).

 orm.batches.c.reference == batchref,

).first()

And on our FakeRepository too:

Updating the fake repo too (tests/unit/test_handlers.py)

class FakeRepository(repository.AbstractRepositor

 ...

 def _get(self, sku):

 return next((p for p in self._products if

 def _get_by_batchref(self, batchref):

 return next((

 p for p in self._products for b in p.

 if b.reference == batchref

), None)

NOTE

We’re adding a query to our repository to make this use case easier to
implement.
So long as our query is returning a single aggregate, we’re not
bending any rules. If
you find yourself writing complex queries on your
repositories, you might want to
consider a different design. Methods like get_most_popular_products or

find_products_by_order_id in particular would
definitely trigger our spidey
sense. Chapter 11 and the epilogue have some tips on managing complex queries.

A New Method on the Domain Model

We add the new method to the model, which does the quantity
change and
deallocation(s) inline and publishes a new event. We
also modify the existing
allocate function to publish an event:

Our model evolves to capture the new requirement
(src/allocation/domain/model.py)

class Product:

 ...

 def change_batch_quantity(self, ref: str, qty

 batch = next(b for b in self.batches if b

 batch._purchased_quantity = qty

 while batch.available_quantity < 0:

 line = batch.deallocate_one()

 self.events.append(

 events.AllocationRequired(line.or

)

...

class Batch:

 ...

 def deallocate_one(self) -> OrderLine:

 return self._allocations.pop()

We wire up our new handler:

The message bus grows
(src/allocation/service_layer/messagebus.py)

HANDLERS = {

 events.BatchCreated: [handlers.add_batch],

 events.BatchQuantityChanged: [handlers.change

 events.AllocationRequired: [handlers.allocate

 events.OutOfStock: [handlers.send_out_of_stoc

} # type: Dict[Type[events.Event], List[Callable

And our new requirement is fully implemented.

Optionally: Unit Testing Event
Handlers in Isolation with a Fake
Message Bus

Our main test for the reallocation workflow is edge-to-edge
(see the
example code in “Test-Driving a New Handler”). It uses
the real mes-
sage bus, and it tests the whole flow, where the
BatchQuantityChanged
event handler triggers deallocation, and
emits new AllocationRequired events, which in
turn are han-
dled by their own handlers. One test covers a chain of multiple
events
and handlers.

Depending on the complexity of your chain of events, you may decide
that you
want to test some handlers in isolation from one another.
You can do this
using a “fake” message bus.

In our case, we actually intervene by modifying the
publish_events() method
on FakeUnitOfWork and decou-
pling it from the real message bus, instead making
it record what
events it sees:

Fake message bus implemented in UoW (tests/unit/test_handlers.py)

class FakeUnitOfWorkWithFakeMessageBus(FakeUnitOf

 def __init__(self):

 super().__init__()

 self.events_published = [] # type: List[

 def publish_events(self):

 for product in self.products.seen:

 while product.events:

 self.events_published.append(prod

Now when we invoke messagebus.handle() using the
FakeUnitOfWorkWithFakeMessageBus ,
it runs only the handler
for that event. So we can write a more isolated unit
test: instead of
checking all the side effects, we just check that
BatchQuantityChanged leads to AllocationRequired if the
quantity drops
below the total already allocated:

Testing reallocation in isolation (tests/unit/test_handlers.py)

def test_reallocates_if_necessary_isolated():

 uow = FakeUnitOfWorkWithFakeMessageBus()

 # test setup as before

 event_history = [

 events.BatchCreated("batch1", "INDIFFEREN

 events.BatchCreated("batch2", "INDIFFEREN

 events.AllocationRequired("order1", "INDI

 events.AllocationRequired("order2", "INDI

]

 for e in event_history:

 messagebus.handle(e, uow)

 [batch1, batch2] = uow.products.get(sku="INDI

 assert batch1.available_quantity == 10

 assert batch2.available_quantity == 50

 messagebus.handle(events.BatchQuantityChanged

 # assert on new events emitted rather than do

 [reallocation_event] = uow.events_published

 assert isinstance(reallocation_event, events.

 assert reallocation_event.orderid in {'order1

 assert reallocation_event.sku == 'INDIFFERENT

Whether you want to do this or not depends on the complexity of your
chain of
events. We say, start out with edge-to-edge testing, and re-
sort to
this only if necessary.

EXERCISE FOR THE READER

A great way to force yourself to really understand some code is to
refactor it.
In the discussion of testing handlers in isolation, we used
something called
 FakeUnitOfWorkWithFakeMessageBus , which
is unnecessarily complicated and
violates the SRP.

If we change the message bus to being a class,
then building a
FakeMessageBus is more straightforward:

An abstract message bus and its real and fake versions

class AbstractMessageBus:

 HANDLERS: Dict[Type[events.Event], List[Calla

 def handle(self, event: events.Event):

 for handler in self.HANDLERS[type(event)]

 handler(event)

class MessageBus(AbstractMessageBus):

 HANDLERS = {

 events.OutOfStock: [send_out_of_stock_not

 }

class FakeMessageBus(messagebus.AbstractMessageBu

3

 def __init__(self):

 self.events_published = [] # type: List[

 self.handlers = {

 events.OutOfStock: [lambda e: self.ev

 }

So jump into the code on
GitHub and see if you can get a class-
based version
working, and then write a version of
test_reallocates_if_necessary_isolated()
from earlier.

We use a class-based message bus in Chapter 13,
if you need more
inspiration.

Wrap-Up

Let’s look back at what we’ve achieved, and think about why we did it.

What Have We Achieved?

Events are simple dataclasses that define the data structures for in-
puts
and internal messages within our system. This is quite powerful
from a DDD
standpoint, since events often translate really well into
business language
(look up event storming if you haven’t already).

https://github.com/cosmicpython/code/tree/chapter_09_all_messagebus

Handlers are the way we react to events. They can call down to our
model or call out to external services. We can define multiple
han-
dlers for a single event if we want to. Handlers can also raise other
events. This allows us to be very granular about what a handler does
and really stick to the SRP.

Why Have We Achieved?

Our ongoing objective with these architectural patterns is to try to
have
the complexity of our application grow more slowly than its size.

When we
go all in on the message bus, as always we pay a price in
terms of architectural
complexity (see Table 9-1), but we buy our-
selves a
pattern that can handle almost arbitrarily complex require-
ments without needing
any further conceptual or architectural change
to the way we do things.

Here we’ve added quite a complicated use case (change quantity,

deallocate,
start new transaction, reallocate, publish external notif-
ication), but
architecturally, there’s been no cost in terms of complexi-
ty. We’ve added new
events, new handlers, and a new external
adapter (for email), all of which are
existing categories of things in our
architecture that we understand and know
how to reason about, and
that are easy to explain to newcomers. Our moving
parts each have
one job, they’re connected to each other in well-defined ways,
and
there are no unexpected side effects.

Table 9-1. Whole app is a message bus: the trade-offs

Pros Cons

Handlers
and ser-
vices are
the same
thing, so
that’s
simpler.
We have
a nice
data
structure
for inputs
to the
system.

A message bus is still a slightly unpredictable
way of doing things from
a web point of view.

You don’t know in advance when things are
going to end.

There will be duplication of fields and struc-
ture between model objects and events,

which will have a maintenance cost. Adding a
field to one usually means adding a field to at
least
one of the others.

Now, you may be wondering, where are those
BatchQuantityChanged events
going to come from? The answer
is revealed in a couple chapters’ time. But
first, let’s talk about events
versus commands.

1

 Event-based modeling is so popular that a practice called event storming has
been developed for facilitating event-based requirements gathering and domain
model elaboration.

 If you’ve done a bit of reading about event-driven architectures, you may be think-

ing, “Some of these events sound more like commands!” Bear with us! We’re trying
to introduce one concept at a time. In the next chapter, we’ll introduce the distinc-
tion between commands and events.

 The “simple” implementation in this chapter essentially uses the messagebus.py
module itself to implement the Singleton Pattern.

1

2

3

Chapter 10. Commands and
Command Handler

In the previous chapter, we talked about using events as a way of
representing
the inputs to our system, and we turned our application
into a message-processing
machine.

To achieve that, we converted all our use-case functions to event
handlers.
When the API receives a POST to create a new batch, it
builds a new BatchCreated
event and handles it as if it were an
internal event.
This might feel counterintuitive. After all, the batch
hasn’t been
created yet; that’s why we called the API. We’re going to
fix that conceptual
wart by introducing commands and showing how
they can be handled by the same
message bus but with slightly differ-
ent rules.

TIP

The code for this chapter is in the
chapter_10_commands branch on GitHub:

git clone https://github.com/cosmicpython/code.git

cd code

git checkout chapter_10_commands

or to code along, checkout the previous chapter:

git checkout chapter_09_all_messagebus

https://oreil.ly/U_VGa

Commands and Events

Like events, commands are a type of message—instructions sent by
one part of
a system to another. We usually represent commands
with dumb data
structures and can handle them in much the same
way as events.

The differences between commands and events, though, are
important.

Commands are sent by one actor to another specific actor with the
expectation that
a particular thing will happen as a result. When we
post a form to an API handler,
we are sending a command. We name
commands with imperative mood verb phrases like
“allocate stock” or
“delay shipment.”

Commands capture intent. They express our wish for the system to
do something.
As a result, when they fail, the sender needs to receive
error information.

Events are broadcast by an actor to all interested listeners. When we
publish
 BatchQuantityChanged , we don’t know who’s going to
pick it up. We name events
with past-tense verb phrases like “order
allocated to stock” or “shipment delayed.”

We often use events to spread the knowledge about successful
commands.

Events capture facts about things that happened in the past. Since
we don’t
know who’s handling an event, senders should not care
whether the receivers
succeeded or failed. Table 10-1 recaps the
differences.

Table 10-1. Events versus commands

Event Command

Named Past tense Imperative mood

Error handling Fail independently Fail noisily

Sent to All listeners One recipient

What kinds of commands do we have in our system right now?

Pulling out some commands (src/allocation/domain/commands.py)

class Command:

 pass

@dataclass

class Allocate(Command):

 orderid: str

 sku: str

 qty: int

@dataclass

class CreateBatch(Command):

 ref: str

 sku: str

 qty: int

 eta: Optional[date] = None

@dataclass

class ChangeBatchQuantity(Command):

 ref: str

 qty: int

commands.Allocate will replace
events.AllocationRequired .

commands.CreateBatch will replace
events.BatchCreated .

commands.ChangeBatchQuantity will replace
events.BatchQuantityChanged .

Differences in Exception Handling

Just changing the names and verbs is all very well, but that won’t
change the behavior of our system. We want to treat events and com-
mands similarly,
but not exactly the same. Let’s see how our mes-
sage bus changes:

Dispatch events and commands differently
(src/allocation/service_layer/messagebus.py)

Message = Union[commands.Command, events.Event]

def handle(message: Message, uow: unit_of_work.Ab

 results = []

 queue = [message]

 while queue:

 message = queue.pop(0)

 if isinstance(message, events.Event):

 handle_event(message, queue, uow)

 elif isinstance(message, commands.Command

 cmd_result = handle_command(message,

 results.append(cmd_result)

 else:

 raise Exception(f'{message} was not a

 return results

It still has a main handle() entrypoint that takes a
message , which may
be a command or an event.

We dispatch events and commands to two different helper
functions, shown next.

Here’s how we handle events:

Events cannot interrupt the flow
(src/allocation/service_layer/messagebus.py)

def handle_event(

 event: events.Event,

 queue: List[Message],

 uow: unit_of_work.AbstractUnitOfWork

):

 for handler in EVENT_HANDLERS[type(event)]:

 try:

 logger.debug('handling event %s with

 handler(event, uow=uow)

 queue.extend(uow.collect_new_events()

 except Exception:

 logger.exception('Exception handling

 continue

https://calibre-pdf-anchor.a/#a1304

Events go to a dispatcher that can delegate to multiple han-
dlers per
event.

It catches and logs errors but doesn’t let them interrupt
mes-
sage processing.

And here’s how we do commands:

Commands reraise exceptions
(src/allocation/service_layer/messagebus.py)

def handle_command(

 command: commands.Command,

 queue: List[Message],

 uow: unit_of_work.AbstractUnitOfWork

):

 logger.debug('handling command %s', command)

 try:

 handler = COMMAND_HANDLERS[type(command)]

 result = handler(command, uow=uow)

 queue.extend(uow.collect_new_events())

 return result

 except Exception:

 logger.exception('Exception handling comm

 raise

https://calibre-pdf-anchor.a/#a1310

The command dispatcher expects just one handler per
command.

If any errors are raised, they fail fast and will bubble up.

return result is only temporary; as mentioned in “A Tem-
porary Ugly Hack: The Message Bus Has to Return Results”,
it’s a temporary hack to allow the message bus to return the
batch
reference for the API to use. We’ll fix this in Chapter 12.

We also change the single HANDLERS dict into different ones for
commands and events. Commands can have only one handler, ac-
cording
to our convention:

New handlers dicts (src/allocation/service_layer/messagebus.py)

EVENT_HANDLERS = {

 events.OutOfStock: [handlers.send_out_of_stoc

} # type: Dict[Type[events.Event], List[Callable

COMMAND_HANDLERS = {

 commands.Allocate: handlers.allocate,

 commands.CreateBatch: handlers.add_batch,

 commands.ChangeBatchQuantity: handlers.change

} # type: Dict[Type[commands.Command], Callable]

https://calibre-pdf-anchor.a/#a1316

Discussion: Events, Commands, and
Error Handling

Many developers get uncomfortable at this point and ask, “What hap-
pens when an
event fails to process? How am I supposed to make
sure the system is in a
consistent state?” If we manage to process
half of the events during messagebus.handle before an
out-of-
memory error kills our process, how do we mitigate problems caused
by the
lost messages?

Let’s start with the worst case: we fail to handle an event, and the
system is
left in an inconsistent state. What kind of error would cause
this? Often in our
systems we can end up in an inconsistent state
when only half an operation is
completed.

For example, we could allocate three units of
DESIRABLE_BEANBAG to a customer’s
order but somehow fail to
reduce the amount of remaining stock. This would
cause an inconsis-
tent state: the three units of stock are both allocated and
available,

depending on how you look at it. Later, we might allocate those
same
beanbags to another customer, causing a headache for customer
support.

In our allocation service, though, we’ve already taken steps to pre-
vent that
happening. We’ve carefully identified aggregates that act as
consistency
boundaries, and we’ve introduced a UoW that manages
the atomic
success or failure of an update to an aggregate.

For example, when we allocate stock to an order, our consistency
boundary is the
 Product aggregate. This means that we can’t acci-
dentally overallocate: either
a particular order line is allocated to the
product, or it is not—there’s no
room for inconsistent states.

By definition, we don’t require two aggregates to be immediately con-
sistent, so
if we fail to process an event and update only a single ag-
gregate, our system
can still be made eventually consistent. We
shouldn’t violate any constraints of
the system.

With this example in mind, we can better understand the reason for
splitting
messages into commands and events. When a user wants to
make the system do
something, we represent their request as a com-
mand. That command should modify
a single aggregate and either
succeed or fail in totality. Any other bookkeeping, cleanup, and notif-
ication we need to do can happen via an event. We
don’t require the
event handlers to succeed in order for the command to be
successful.

Let’s look at another example (from a different, imaginary projet) to
see why not.

Imagine we are building an ecommerce website that sells expensive
luxury goods.
Our marketing department wants to reward customers
for repeat visits. We will
flag customers as VIPs after they make their
third purchase, and this will
entitle them to priority treatment and spe-
cial offers. Our acceptance criteria
for this story reads as follows:

Given a customer with two orders in their history

When the customer places a third order,

Then they should be flagged as a VIP.

When a customer first becomes a VIP

Then we should send them an email to congratulate

Using the techniques we’ve already discussed in this book, we de-
cide that we
want to build a new History aggregate that records
orders and can raise domain
events when rules are met. We will
structure the code like this:

VIP customer (example code for a different project)

class History: # Aggregate

 def __init__(self, customer_id: int):

 self.orders = set() # Set[HistoryEntry]

 self.customer_id = customer_id

 def record_order(self, order_id: str, order_a

 entry = HistoryEntry(order_id, order_amou

 if entry in self.orders:

 return

 self.orders.add(entry)

 if len(self.orders) == 3:

 self.events.append(

 CustomerBecameVIP(self.customer_i

)

def create_order_from_basket(uow, cmd: CreateOrde

 with uow:

 order = Order.from_basket(cmd.customer_id

 uow.orders.add(order)

 uow.commit() # raises OrderCreated

def update_customer_history(uow, event: OrderCrea

 with uow:

 history = uow.order_history.get(event.cus

 history.record_order(event.order_id, even

 uow.commit() # raises CustomerBecameVIP

def congratulate_vip_customer(uow, event: Custome

 with uow:

 customer = uow.customers.get(event.custom

 email.send(

 customer.email_address,

 f'Congratulations {customer.first_nam

)

The History aggregate captures the rules indicating when a
customer becomes a VIP.
This puts us in a good place to han-
dle changes when the rules become more
complex in the
future.

Our first handler creates an order for the customer and raises a
domain
event OrderCreated .

Our second handler updates the History object to record
that an order was
created.

Finally, we send an email to the customer when they become a
VIP.

Using this code, we can gain some intuition about error handling in an
event-driven system.

https://calibre-pdf-anchor.a/#a1336
https://calibre-pdf-anchor.a/#a1337
https://calibre-pdf-anchor.a/#a1338
https://calibre-pdf-anchor.a/#a1339

In our current implementation, we raise events about an aggregate
after we
persist our state to the database. What if we raised those
events before we
persisted, and committed all our changes at the
same time? That way, we could be
sure that all the work was com-
plete. Wouldn’t that be safer?

What happens, though, if the email server is slightly overloaded? If all
the work
has to complete at the same time, a busy email server can
stop us from taking money
for orders.

What happens if there is a bug in the implementation of the
History aggregate?
Should we fail to take your money just be-
cause we can’t recognize you as a VIP?

By separating out these concerns, we have made it possible for
things to fail
in isolation, which improves the overall reliability of the
system. The only
part of this code that has to complete is the com-
mand handler that creates an
order. This is the only part that a cus-
tomer cares about, and it’s the part that
our business stakeholders
should prioritize.

Notice how we’ve deliberately aligned our transactional boundaries to
the start
and end of the business processes. The names that we use
in the code match the
jargon used by our business stakeholders, and
the handlers we’ve written match
the steps of our natural language

acceptance criteria. This concordance of names
and structure helps
us to reason about our systems as they grow larger and more
com-
plex.

Recovering from Errors
Synchronously

Hopefully we’ve convinced you that it’s OK for events to fail indepen-
dently
from the commands that raised them. What should we do,

then, to make sure we
can recover from errors when they inevitably
occur?

The first thing we need is to know when an error has occurred, and
for that we
usually rely on logs.

Let’s look again at the handle_event method from our message
bus:

Current handle function (src/allocation/service_layer/messagebus.py)

def handle_event(

 event: events.Event,

 queue: List[Message],

 uow: unit_of_work.AbstractUnitOfWork

):

 for handler in EVENT_HANDLERS[type(event)]:

 try:

 logger.debug('handling event %s with

 handler(event, uow=uow)

 queue.extend(uow.collect_new_events()

 except Exception:

 logger.exception('Exception handling

 continue

When we handle a message in our system, the first thing we do is
write a log
line to record what we’re about to do. For our
CustomerBecameVIP use case, the
logs might read as follows:

Handling event CustomerBecameVIP(customer_id=1234

with handler <function congratulate_vip_customer

Because we’ve chosen to use dataclasses for our message types, we
get a neatly
printed summary of the incoming data that we can copy
and paste into a Python
shell to re-create the object.

When an error occurs, we can use the logged data to either repro-
duce the problem
in a unit test or replay the message into the system.

Manual replay works well for cases where we need to fix a bug before
we can
re-process an event, but our systems will always experience

some background
level of transient failure. This includes things like
network hiccups, table
deadlocks, and brief downtime caused by
deployments.

For most of those cases, we can recover elegantly by trying again. As
the
proverb says, “If at first you don’t succeed, retry the operation with
an
exponentially increasing back-off period.”

Handle with retry (src/allocation/service_layer/messagebus.py)

from tenacity import Retrying, RetryError, stop_a

...

def handle_event(

 event: events.Event,

 queue: List[Message],

 uow: unit_of_work.AbstractUnitOfWork

):

 for handler in EVENT_HANDLERS[type(event)]:

 try:

 for attempt in Retrying(

 stop=stop_after_attempt(3),

 wait=wait_exponential()

):

 with attempt:

 logger.debug('handling event

 handler(event, uow=uow)

 queue.extend(uow.collect_new_

 except RetryError as retry_failure:

 logger.error(

 'Failed to handle event %s times,

 retry_failure.last_attempt.attemp

)

 continue

Tenacity is a Python library that implements common patterns
for retrying.

Here we configure our message bus to retry operations up to
three times,
with an exponentially increasing wait between
attempts.

Retrying operations that might fail is probably the single best way to
improve
the resilience of our software. Again, the Unit of Work and
Command Handler
patterns mean that each attempt starts from a
consistent state and won’t leave
things half-finished.

https://calibre-pdf-anchor.a/#a1357

WARNING

At some point, regardless of tenacity , we’ll have to give up trying to
process the
message. Building reliable systems with distributed messages is
hard, and we have
to skim over some tricky bits. There are pointers to more
reference materials in the
epilogue.

Wrap-Up

In this book we decided to introduce the concept of events before the
concept
of commands, but other guides often do it the other way
around. Making
explicit the requests that our system can respond to
by giving them a name
and their own data structure is quite a funda-
mental thing to do. You’ll
sometimes see people use the name
Command Handler pattern to describe what
we’re doing with Events,

Commands, and Message Bus.

Table 10-2 discusses some of the things you
should think about be-
fore you jump on board.

Table 10-2. Splitting commands and events: the trade-offs

Pros Cons

Treating commands
and events differently
helps us understand
which things
have to
succeed and which
things we can tidy up
later.
CreateBatch is
definitely a less con-
fusing name than Ba

tchCreated . We
are
being explicit
about the intent of
our users, and explic-
it is better than
im-
plicit, right?

The semantic differences be-
tween commands and events can
be subtle. Expect
bikeshedding
arguments over the differences.

We’re expressly inviting failure.

We know that sometimes things
will break, and
we’re choosing to
handle that by making the failures
smaller and more isolated.
This
can make the system harder to
reason about and requires better
monitoring.

In Chapter 11 we’ll talk about using events as an integration pattern.

Chapter 11. Event-Driven
Architecture: Using Events to
Integrate Microservices

In the preceding chapter, we never actually spoke about how we
would receive
the “batch quantity changed” events, or indeed, how
we might notify the
outside world about reallocations.

We have a microservice with a web API, but what about other ways of
talking
to other systems? How will we know if, say, a shipment is de-
layed or the
quantity is amended? How will we tell the warehouse
system that an order has
been allocated and needs to be sent to a
customer?

In this chapter, we’d like to show how the events metaphor can be ex-
tended
to encompass the way that we handle incoming and outgoing
messages from the
system. Internally, the core of our application is
now a message processor.
Let’s follow through on that so it becomes
a message processor externally as
well. As shown in Figure 11-1, our
application will receive
events from external sources via an external
message bus (we’ll use Redis pub/sub
queues as an example) and
publish its outputs, in the form of events, back
there as well.

Figure 11-1. Our application is a message processor

TIP

The code for this chapter is in the
chapter_11_external_events branch on GitHub:

git clone https://github.com/cosmicpython/code.git

cd code

git checkout chapter_11_external_events

or to code along, checkout the previous chapter:

git checkout chapter_10_commands

https://oreil.ly/UiwRS

Distributed Ball of Mud, and Thinking
in Nouns

Before we get into that, let’s talk about the alternatives. We regularly
talk to
engineers who are trying to build out a microservices architec-
ture. Often they
are migrating from an existing application, and their
first instinct is to
split their system into nouns.

What nouns have we introduced so far in our system? Well, we have
batches of
stock, orders, products, and customers. So a naive at-
tempt at breaking
up the system might have looked like Figure 11-2
(notice that
we’ve named our system after a noun, Batches, instead
of Allocation).

Figure 11-2. Context diagram with noun-based services

Each “thing” in our system has an associated service, which exposes
an HTTP API.

Let’s work through an example happy-path flow in Figure 11-3:
our
users visit a website and can choose from products that are in stock.

When
they add an item to their basket, we will reserve some stock for
them. When an
order is complete, we confirm the reservation, which

causes us to send dispatch
instructions to the warehouse. Let’s also
say, if this is the customer’s third
order, we want to update the cus-
tomer record to flag them as a VIP.

Figure 11-3. Command flow 1

We can think of each of these steps as a command in our system:

ReserveStock ,
 ConfirmReservation , DispatchGoods ,

MakeCustomerVIP , and so forth.

This style of architecture, where we create a microservice per data-
base table
and treat our HTTP APIs as CRUD interfaces to anemic
models, is the most common
initial way for people to approach ser-
vice-oriented design.

This works fine for systems that are very simple, but it can quickly de-
grade into
a distributed ball of mud.

To see why, let’s consider another case. Sometimes, when stock ar-
rives at the
warehouse, we discover that items have been water dam-
aged during transit. We
can’t sell water-damaged sofas, so we have
to throw them away and request more
stock from our partners. We
also need to update our stock model, and that
might mean we need
to reallocate a customer’s order.

Where does this logic go?

Well, the Warehouse system knows that the stock has been dam-
aged, so maybe it
should own this process, as shown in Figure 11-4.

Figure 11-4. Command flow 2

This sort of works too, but now our dependency graph is a mess. To
allocate stock, the Orders service drives the Batches system, which
drives
Warehouse; but in order to handle problems at the warehouse,

our Warehouse
system drives Batches, which drives Orders.

Multiply this by all the other workflows we need to provide, and you
can see
how services quickly get tangled up.

Error Handling in Distributed Systems

“Things break” is a universal law of software engineering. What hap-
pens in our
system when one of our requests fails? Let’s say that a

network error happens
right after we take a user’s order for three
MISBEGOTTEN-RUG , as shown in
Figure 11-5.

We have two options here: we can place the order anyway and leave
it
unallocated, or we can refuse to take the order because the alloca-
tion can’t be
guaranteed. The failure state of our batches service has
bubbled up and is
affecting the reliability of our order service.

When two things have to be changed together, we say that they are
coupled. We
can think of this failure cascade as a kind of temporal
coupling: every part
of the system has to work at the same time for
any part of it to work. As the
system gets bigger, there is an exponen-
tially increasing probability that some
part is degraded.

Figure 11-5. Command flow with error

CONNASCENCE

We’re using the term coupling here, but there’s another way to de-
scribe
the relationships between our systems. Connascence is a term
used by some
authors to describe the different types of coupling.

Connascence isn’t bad, but some types of connascence are stronger
than
others. We want to have strong connascence locally, as when
two classes are
closely related, but weak connascence at a distance.

In our first example of a distributed ball of mud, we see Connascence
of
Execution: multiple components need to know the correct order of
work for an
operation to be successful.

When thinking about error conditions here, we’re talking about Con-
nascence of
Timing: multiple things have to happen, one after anoth-
er, for the operation to
work.

When we replace our RPC-style system with events, we replace both
of these types
of connascence with a weaker type. That’s Con-
nascence of Name: multiple
components need to agree only on the
name of an event and the names of fields
it carries.

We can never completely avoid coupling, except by having our soft-
ware not talk
to any other software. What we want is to avoid inappro-
priate coupling.
Connascence provides a mental model for under-

standing the strength and type of
coupling inherent in different archi-
tectural styles. Read all about it at
connascence.io.

The Alternative: Temporal Decoupling
Using Asynchronous Messaging

How do we get appropriate coupling? We’ve already seen part of the
answer, which is that we should think in
terms of verbs, not nouns.

Our domain model is about modeling a business
process. It’s not a
static data model about a thing; it’s a model of a verb.

So instead of thinking about a system for orders and a system for
batches,
we think about a system for ordering and a system for allo-
cating, and
so on.

When we separate things this way, it’s a little easier to see which sys-
tem
should be responsible for what. When thinking about ordering,

really we want
to make sure that when we place an order, the order is
placed. Everything else
can happen later, so long as it happens.

http://www.connascence.io/

NOTE

If this sounds familiar, it should! Segregating responsibilities is
the same process
we went through when designing our aggregates and commands.

Like aggregates, microservices should be consistency boundaries.

Between two
services, we can accept eventual consistency, and that
means we don’t need to
rely on synchronous calls. Each service ac-
cepts commands from the outside world
and raises events to record
the result. Other services can listen to those
events to trigger the next
steps in the workflow.

To avoid the Distributed Ball of Mud anti-pattern, instead of temporal-
ly coupled HTTP
API calls, we want to use asynchronous messaging
to integrate our systems. We
want our BatchQuantityChanged
messages to come in as external messages from
upstream systems,

and we want our system to publish Allocated events for
down-
stream systems to listen to.

Why is this better? First, because things can fail independently, it’s
easier
to handle degraded behavior: we can still take orders if the al-
location system
is having a bad day.

Second, we’re reducing the strength of coupling between our sys-
tems. If we
need to change the order of operations or to introduce
new steps in the process,
we can do that locally.

Using a Redis Pub/Sub Channel for
Integration

Let’s see how it will all work concretely. We’ll need some way of get-
ting
events out of one system and into another, like our message bus,

but for
services. This piece of infrastructure is often called a message
broker. The
role of a message broker is to take messages from pub-
lishers and deliver them
to subscribers.

At MADE.com, we use Event Store; Kafka or RabbitMQ
are valid al-
ternatives. A lightweight solution based on Redis
pub/sub channels
can also work just fine, and because
Redis is much more generally
familiar to people, we thought we’d use it for this
book.

NOTE

We’re glossing over the complexity involved in choosing the right messaging
plat-
form. Concerns like message ordering, failure handling, and idempotency
all need
to be thought through. For a few pointers, see
“Footguns”.

Our new flow will look like Figure 11-6:
Redis provides the
BatchQuantityChanged event that kicks off the whole process,

and our Allocated event is published back out to Redis again at
the
end.

https://eventstore.org/
https://redis.io/topics/pubsub

Figure 11-6. Sequence diagram for reallocation flow

Test-Driving It All Using an End-to-
End Test

Here’s how we might start with an end-to-end test. We can use our
existing
API to create batches, and then we’ll test both inbound and
outbound messages:

An end-to-end test for our pub/sub model
(tests/e2e/test_external_events.py)

def test_change_batch_quantity_leading_to_realloc

 # start with two batches and an order allocat

 orderid, sku = random_orderid(), random_sku()

 earlier_batch, later_batch = random_batchref(

 api_client.post_to_add_batch(earlier_batch, s

 api_client.post_to_add_batch(later_batch, sku

 response = api_client.post_to_allocate(orderi

 assert response.json()['batchref'] == earlier

 subscription = redis_client.subscribe_to('lin

 # change quantity on allocated batch so it's

 redis_client.publish_message('change_batch_qu

 'batchref': earlier_batch, 'qty': 5

 })

 # wait until we see a message saying the orde

 messages = []

 for attempt in Retrying(stop=stop_after_delay

 with attempt:

 message = subscription.get_message(ti

 if message:

 messages.append(message)

 print(messages)

 data = json.loads(messages[-1]['data

 assert data['orderid'] == orderid

 assert data['batchref'] == later_batc

https://calibre-pdf-anchor.a/#a1423

You can read the story of what’s going on in this test from the
comments:
we want to send an event into the system that
causes an order line to be
reallocated, and we see that reallo-
cation come out as an event in Redis too.

api_client is a little helper that we refactored out to share
between
our two test types; it wraps our calls to
requests.post .

redis_client is another little test helper, the details of
which
don’t really matter; its job is to be able to send and re-
ceive messages
from various Redis channels. We’ll use a
channel called
 change_batch_quantity to send in our re-
quest to change the quantity for a
batch, and we’ll listen to an-
other channel called line_allocated to
look out for the ex-
pected reallocation.

Because of the asynchronous nature of the system under test,
we need to use
the tenacity library again to add a retry loop
—first, because it may
take some time for our new
line_allocated message to arrive, but also
because it
won’t be the only message on that channel.

https://calibre-pdf-anchor.a/#a1424
https://calibre-pdf-anchor.a/#a1426
https://calibre-pdf-anchor.a/#a1430

Redis Is Another Thin Adapter Around Our
Message Bus

Our Redis pub/sub listener (we call it an event consumer) is very
much like
Flask: it translates from the outside world to our events:

Simple Redis message listener
(src/allocation/entrypoints/redis_eventconsumer.py)

r = redis.Redis(**config.get_redis_host_and_port(

def main():

 orm.start_mappers()

 pubsub = r.pubsub(ignore_subscribe_messages=T

 pubsub.subscribe('change_batch_quantity')

 for m in pubsub.listen():

 handle_change_batch_quantity(m)

def handle_change_batch_quantity(m):

 logging.debug('handling %s', m)

 data = json.loads(m['data'])

 cmd = commands.ChangeBatchQuantity(ref=data[

 messagebus.handle(cmd, uow=unit_of_work.SqlAl

main() subscribes us to the change_batch_quantity

channel on load.

Our main job as an entrypoint to the system is to deserialize
JSON,
convert it to a Command , and pass it to the service lay-
er—much as the
Flask adapter does.

We also build a new downstream adapter to do the opposite job—
converting
domain events to public events:

Simple Redis message publisher
(src/allocation/adapters/redis_eventpublisher.py)

r = redis.Redis(**config.get_redis_host_and_port(

def publish(channel, event: events.Event):

 logging.debug('publishing: channel=%s, event=

 r.publish(channel, json.dumps(asdict(event)))

We take a hardcoded channel here, but you could also store
a
mapping between event classes/names and the appropriate
channel,
allowing one or more message types to go to different
channels.

Our New Outgoing Event

Here’s what the Allocated event will look like:

New event (src/allocation/domain/events.py)

@dataclass

class Allocated(Event):

 orderid: str

 sku: str

 qty: int

 batchref: str

It captures everything we need to know about an allocation: the de-
tails of the
order line, and which batch it was allocated to.

We add it into our model’s allocate() method (having added a
test
first, naturally):

Product.allocate() emits new event to record what happened
(src/allocation/domain/model.py)

class Product:

 ...

 def allocate(self, line: OrderLine) -> str:

 ...

 batch.allocate(line)

 self.version_number += 1

 self.events.append(events.Allocated(

 orderid=line.orderid, sku=line.sk

 batchref=batch.reference,

))

 return batch.reference

The handler for ChangeBatchQuantity already exists, so all we
need to add
is a handler that publishes the outgoing event:

The message bus grows
(src/allocation/service_layer/messagebus.py)

HANDLERS = {

 events.Allocated: [handlers.publish_allocated

 events.OutOfStock: [handlers.send_out_of_stoc

} # type: Dict[Type[events.Event], List[Callable

Publishing the event uses our helper function from the Redis
wrapper:

Publish to Redis (src/allocation/service_layer/handlers.py)

def publish_allocated_event(

 event: events.Allocated, uow: unit_of_wor

):

 redis_eventpublisher.publish('line_allocated

Internal Versus External Events

It’s a good idea to keep the distinction between internal and external
events
clear. Some events may come from the outside, and some
events may get upgraded
and published externally, but not all of them
will. This is particularly important
if you get into
event sourcing
(very
much a topic for another book, though).

TIP

Outbound events are one of the places it’s important to apply validation.
See
Appendix E for some validation philosophy and examples.

https://oreil.ly/FXVil

EXERCISE FOR THE READER

A nice simple one for this chapter: make it so that the main
allocate() use
case can also be invoked by an event on a Redis
channel, as well as (or instead of)
via the API.

You will likely want to add a new E2E test and feed through some
changes into
 redis_eventconsumer.py .

Wrap-Up

Events can come from the outside, but they can also be published
ex-
ternally—our publish handler converts an event to a message on
a Redis
channel. We use events to talk to the outside world. This kind
of temporal
decoupling buys us a lot of flexibility in our application in-
tegrations, but
as always, it comes at a cost.

Event notification is nice because it implies a low level of cou-
pling, and is
pretty simple to set up. It can become problematic,

however, if there really is
a logical flow that runs over various
event notifications...It can be hard to
see such a flow as it’s not
explicit in any program text....This can make it hard to debug
and modify.

—Martin Fowler, “What do you mean by ‘Event-
Driven’”

Table 11-1 shows some trade-offs to think about.

Table 11-1. Event-based microservices integration: the trade-offs

Pros Cons

Avoids the distributed
big ball of mud.

Services are decou-
pled: it’s easier to
change individual ser-
vices and add
new
ones.

The overall flows of information
are harder to see.

Eventual consistency is a new
concept to deal with.

Message reliability and choices
around at-least-once versus at-
most-once delivery
need think-
ing through.

https://oreil.ly/uaPNt

More generally, if you’re moving from a model of synchronous mes-
saging to an
async one, you also open up a whole host of problems
having to do with message
reliability and eventual consistency. Read
on to “Footguns”.

Chapter 12. Command-Query
Responsibility Segregation (CQRS)

In this chapter, we’re going to start with a fairly uncontroversial in-
sight:
reads (queries) and writes (commands) are different, so they
should be treated differently (or have their responsibilities segregat-
ed, if you will). Then we’re going to push that insight as far
as we can.

If you’re anything like Harry, this will all seem extreme at first,
but
hopefully we can make the argument that it’s not totally unreason-
able.

Figure 12-1 shows where we might end up.

TIP

The code for this chapter is in the
chapter_12_cqrs branch on GitHub.

git clone https://github.com/cosmicpython/code.git

cd code

git checkout chapter_12_cqrs

or to code along, checkout the previous chapter:

git checkout chapter_11_external_events

First, though, why bother?

https://oreil.ly/YbWGT

Figure 12-1. Separating reads from writes

Domain Models Are for Writing

We’ve spent a lot of time in this book talking about how to build soft-
ware that
enforces the rules of our domain. These rules, or con-
straints, will be different
for every application, and they make up the
interesting core of our systems.

In this book, we’ve set explicit constraints like “You can’t allocate
more stock
than is available,” as well as implicit constraints like “Each
order line is
allocated to a single batch.”

We wrote down these rules as unit tests at the beginning of the book:

Our basic domain tests (tests/unit/test_batches.py)

def test_allocating_to_a_batch_reduces_the_availa

 batch = Batch("batch-001", "SMALL-TABLE", qty

 line = OrderLine('order-ref', "SMALL-TABLE",

 batch.allocate(line)

 assert batch.available_quantity == 18

...

def test_cannot_allocate_if_available_smaller_tha

 small_batch, large_line = make_batch_and_line

 assert small_batch.can_allocate(large_line) i

To apply these rules properly, we needed to ensure that operations
were consistent, and so we introduced patterns like Unit of Work and
Aggregate
that help us commit small chunks of work.

To communicate changes between those small chunks, we intro-
duced the Domain Events pattern
so we can write rules like “When
stock is damaged or lost, adjust the
available quantity on the batch,

and reallocate orders if necessary.”

All of this complexity exists so we can enforce rules when we change
the
state of our system. We’ve built a flexible set of tools for writing
data.

What about reads, though?

Most Users Aren’t Going to Buy Your
Furniture

At MADE.com, we have a system very like the allocation service. In a
busy day, we
might process one hundred orders in an hour, and we
have a big gnarly system for
allocating stock to those orders.

In that same busy day, though, we might have one hundred product
views per second.
Each time somebody visits a product page, or a
product listing page, we need
to figure out whether the product is still
in stock and how long it will take
us to deliver it.

The domain is the same—we’re concerned with batches of stock, and
their
arrival date, and the amount that’s still available—but the access
pattern
is very different. For example, our customers won’t notice if
the query
is a few seconds out of date, but if our allocate service is
inconsistent,
we’ll make a mess of their orders. We can take advan-
tage of this difference by
making our reads eventually consistent in
order to make them perform better.

IS READ CONSISTENCY TRULY ATTAINABLE?

This idea of trading consistency against performance makes a lot of
developers
nervous at first, so let’s talk quickly about that.

Let’s imagine that our “Get Available Stock” query is 30 seconds out
of date
when Bob visits the page for ASYMMETRICAL-DRESSER .

Meanwhile, though, Harry has already bought the last item. When we
try to
allocate Bob’s order, we’ll get a failure, and we’ll need to either
cancel his
order or buy more stock and delay his delivery.

People who’ve worked only with relational data stores get really ner-
vous
about this problem, but it’s worth considering two other scenar-
ios to gain some
perspective.

First, let’s imagine that Bob and Harry both visit the page at the same
time. Harry goes off to make coffee, and by the time he returns, Bob
has
already bought the last dresser. When Harry places his order, we
send it to
the allocation service, and because there’s not enough
stock, we have to refund
his payment or buy more stock and delay his
delivery.

As soon as we render the product page, the data is already stale.

This insight
is key to understanding why reads can be safely incon-
sistent: we’ll always need
to check the current state of our system
when we come to allocate, because all
distributed systems are incon-

sistent. As soon as you have a web server and two
customers, you
have the potential for stale data.

OK, let’s assume we solve that problem somehow: we magically build
a totally
consistent web application where nobody ever sees stale
data. This time Harry
gets to the page first and buys his dresser.

Unfortunately for him, when the warehouse staff tries to dispatch his
furniture,
it falls off the forklift and smashes into a zillion pieces. Now
what?

The only options are to either call Harry and refund his order or buy
more
stock and delay delivery.

No matter what we do, we’re always going to find that our software
systems are
inconsistent with reality, and so we’ll always need busi-
ness processes to cope
with these edge cases. It’s OK to trade per-
formance for consistency on the
read side, because stale data is es-
sentially unavoidable.

We can think of these requirements as forming two halves of a sys-
tem:
the read side and the write side, shown in Table 12-1.

For the write side, our fancy domain architectural patterns help us to
evolve
our system over time, but the complexity we’ve built so far

doesn’t buy
anything for reading data. The service layer, the unit of
work, and the clever
domain model are just bloat.

Table 12-1. Read versus write

Read side Write side

Behavior Simple read Complex business logic

Cacheability Highly
cacheable

Uncacheable

Consistency Can be stale Must be transactionally
consistent

Post/Redirect/Get and CQS

If you do web development, you’re probably familiar with the
Post/Re-
direct/Get pattern. In this technique, a web endpoint accepts an
HTTP POST and responds with a redirect to see the result. For ex-
ample, we might
accept a POST to /batches to create a new batch
and redirect the user to
/batches/123 to see their newly created batch.

This approach fixes the problems that arise when users refresh the
results page
in their browser or try to bookmark a results page. In the

case of a refresh,
it can lead to our users double-submitting data and
thus buying two sofas when they
needed only one. In the case of a
bookmark, our hapless customers will end up
with a broken page
when they try to GET a POST endpoint.

Both these problems happen because we’re returning data in re-
sponse to a write
operation. Post/Redirect/Get sidesteps the issue by
separating the read and
write phases of our operation.

This technique is a simple example of command-query separation
(CQS). In CQS we
follow one simple rule: functions should either
modify state or answer
questions, but never both. This makes soft-
ware easier to reason about: we should
always be able to ask, “Are
the lights on?” without flicking the light switch.

NOTE

When building APIs, we can apply the same design technique by returning a
201

Created, or a 202 Accepted, with a Location header containing the URI
of our new
resources. What’s important here isn’t the status code we use
but the logical sepa-
ration of work into a write phase and a query phase.

As you’ll see, we can use the CQS principle to make our systems
faster and more
scalable, but first, let’s fix the CQS violation in our ex-
isting code. Ages ago, we introduced an allocate endpoint that

takes an order and
calls our service layer to allocate some stock. At
the end of the call, we
return a 200 OK and the batch ID. That’s led to
some ugly design flaws so that
we can get the data we need. Let’s
change it to return a simple OK message and
instead provide a new
read-only endpoint to retrieve allocation state:

API test does a GET after the POST (tests/e2e/test_api.py)

@pytest.mark.usefixtures('postgres_db')

@pytest.mark.usefixtures('restart_api')

def test_happy_path_returns_202_and_batch_is_allo

 orderid = random_orderid()

 sku, othersku = random_sku(), random_sku('oth

 earlybatch = random_batchref(1)

 laterbatch = random_batchref(2)

 otherbatch = random_batchref(3)

 api_client.post_to_add_batch(laterbatch, sku,

 api_client.post_to_add_batch(earlybatch, sku,

 api_client.post_to_add_batch(otherbatch, othe

 r = api_client.post_to_allocate(orderid, sku,

 assert r.status_code == 202

 r = api_client.get_allocation(orderid)

 assert r.ok

 assert r.json() == [

 {'sku': sku, 'batchref': earlybatch},

]

@pytest.mark.usefixtures('postgres_db')

@pytest.mark.usefixtures('restart_api')

def test_unhappy_path_returns_400_and_error_messa

 unknown_sku, orderid = random_sku(), random_o

 r = api_client.post_to_allocate(

 orderid, unknown_sku, qty=20, expect_succ

)

 assert r.status_code == 400

 assert r.json()['message'] == f'Invalid sku {

 r = api_client.get_allocation(orderid)

 assert r.status_code == 404

OK, what might the Flask app look like?

Endpoint for viewing allocations
(src/allocation/entrypoints/flask_app.py)

from allocation import views

...

@app.route("/allocations/<orderid>", methods=['GE

def allocations_view_endpoint(orderid):

 uow = unit_of_work.SqlAlchemyUnitOfWork()

 result = views.allocations(orderid, uow)

 if not result:

 return 'not found', 404

 return jsonify(result), 200

All right, a views.py, fair enough; we can keep read-only stuff in
there,
and it’ll be a real views.py, not like Django’s, something
that knows how
to build read-only views of our data…

Hold On to Your Lunch, Folks

Hmm, so we can probably just add a list method to our existing repos-
itory
object:

Views do…raw SQL? (src/allocation/views.py)

from allocation.service_layer import unit_of_work

def allocations(orderid: str, uow: unit_of_work.S

 with uow:

 results = list(uow.session.execute(

 'SELECT ol.sku, b.reference'

 ' FROM allocations AS a'

 ' JOIN batches AS b ON a.batch_id = b

 ' JOIN order_lines AS ol ON a.orderli

 ' WHERE ol.orderid = :orderid',

 dict(orderid=orderid)

))

 return [{'sku': sku, 'batchref': batchref} fo

Excuse me? Raw SQL?

If you’re anything like Harry encountering this pattern for the first time,

you’ll be wondering what on earth Bob has been smoking. We’re
hand-rolling our
own SQL now, and converting database rows directly
to dicts? After all the
effort we put into building a nice domain model?
And what about the Repository
pattern? Isn’t that meant to be our ab-
straction around the database? Why don’t
we reuse that?

Well, let’s explore that seemingly simpler alternative first, and see
what it
looks like in practice.

We’ll still keep our view in a separate views.py module; enforcing a
clear
distinction between reads and writes in your application is still a
good idea.
We apply command-query separation, and it’s easy to see
which code modifies
state (the event handlers) and which code just
retrieves read-only state (the views).

TIP

Splitting out your read-only views from your state-modifying
command and event
handlers is probably a good idea, even if you
don’t want to go to full-blown CQRS.

Testing CQRS Views

Before we get into exploring various options, let’s talk about testing.

Whichever approaches you decide to go for, you’re probably going to
need
at least one integration test. Something like this:

An integration test for a view (tests/integration/test_views.py)

def test_allocations_view(sqlite_session_factory)

 uow = unit_of_work.SqlAlchemyUnitOfWork(sqlit

 messagebus.handle(commands.CreateBatch('sku1b

 messagebus.handle(commands.CreateBatch('sku2b

 messagebus.handle(commands.Allocate('order1',

 messagebus.handle(commands.Allocate('order1',

 # add a spurious batch and order to make sure

 messagebus.handle(commands.CreateBatch('sku1b

 messagebus.handle(commands.Allocate('otherord

 messagebus.handle(commands.Allocate('otherord

 assert views.allocations('order1', uow) == [

 {'sku': 'sku1', 'batchref': 'sku1batch'},

 {'sku': 'sku2', 'batchref': 'sku2batch'},

]

We do the setup for the integration test by using the public en-
trypoint to
our application, the message bus. That keeps our
tests decoupled from
any implementation/infrastructure details
about how things get stored.

“Obvious” Alternative 1: Using the
Existing Repository

How about adding a helper method to our products repository?

A simple view that uses the repository (src/allocation/views.py)

from allocation import unit_of_work

def allocations(orderid: str, uow: unit_of_work.A

 with uow:

 products = uow.products.for_order(orderid

 batches = [b for p in products for b in p

 return [

 {'sku': b.sku, 'batchref': b.referenc

 for b in batches

https://calibre-pdf-anchor.a/#a1508

 if orderid in b.orderids

]

Our repository returns Product objects, and we need to find
all the
products for the SKUs in a given order, so we’ll build a
new helper method
called .for_order() on the repository.

Now we have products but we actually want batch references,

so we
get all the possible batches with a list comprehension.

We filter again to get just the batches for our specific
order.
That, in turn, relies on our Batch objects being able to tell us
which order IDs it has allocated.

We implement that last using a .orderid property:

An arguably unnecessary property on our model
(src/allocation/domain/model.py)

class Batch:

 ...

 @property

 def orderids(self):

 return {l.orderid for l in self._allocati

https://calibre-pdf-anchor.a/#a1515
https://calibre-pdf-anchor.a/#a1516

You can start to see that reusing our existing repository and domain
model classes
is not as straightforward as you might have assumed.

We’ve had to add new helper
methods to both, and we’re doing a
bunch of looping and filtering in Python, which
is work that would be
done much more efficiently by the database.

So yes, on the plus side we’re reusing our existing abstractions, but
on the
downside, it all feels quite clunky.

Your Domain Model Is Not Optimized
for Read Operations

What we’re seeing here are the effects of having a domain model that
is designed primarily for write operations, while our requirements for
reads are often conceptually quite different.

This is the chin-stroking-architect’s justification for CQRS. As we’ve
said before,
a domain model is not a data model—we’re trying to cap-
ture the way the
business works: workflow, rules around state
changes, messages exchanged;
concerns about how the system re-
acts to external events and user input.
Most of this stuff is totally irrel-
evant for read-only operations.

TIP

This justification for CQRS is related to the justification for the Domain
Model pat-
tern. If you’re building a simple CRUD app, reads and writes are
going to be closely
related, so you don’t need a domain model or CQRS. But
the more complex your
domain, the more likely you are to need both.

To make a facile point, your domain classes will have multiple meth-
ods for
modifying state, and you won’t need any of them for read-only
operations.

As the complexity of your domain model grows, you will find yourself
making
more and more choices about how to structure that model,
which make it more and
more awkward to use for read operations.

“Obvious” Alternative 2: Using the
ORM

You may be thinking, OK, if our repository is clunky, and working with
Products is clunky, then I can at least use my ORM and work with
Batches .
That’s what it’s for!

A simple view that uses the ORM (src/allocation/views.py)

from allocation import unit_of_work, model

def allocations(orderid: str, uow: unit_of_work.A

 with uow:

 batches = uow.session.query(model.Batch).

 model.OrderLine, model.Batch._allocat

).filter(

 model.OrderLine.orderid == orderid

)

 return [

 {'sku': b.sku, 'batchref': b.batchref

 for b in batches

]

But is that actually any easier to write or understand than the raw
SQL
version from the code example in “Hold On to Your Lunch,

Folks”? It may not look too bad up there, but we
can tell you it took
several attempts, and plenty of digging through the
SQLAlchemy
docs. SQL is just SQL.

But the ORM can also expose us to performance problems.

SELECT N+1 and Other Performance
Considerations

The so-called
 SELECT N+1
problem is a common performance
problem with ORMs: when retrieving a list of
objects, your ORM will
often perform an initial query to, say, get all the IDs
of the objects it
needs, and then issue individual queries for each object to
retrieve
their attributes. This is especially likely if there are any foreign-key re-
lationships on your objects.

NOTE

In all fairness, we should say that SQLAlchemy is quite good at avoiding
the
SELECT N+1 problem. It doesn’t display it in the preceding example, and
you can
request
eager loading
explicitly to avoid it when dealing with joined objects.

Beyond SELECT N+1 , you may have other reasons for wanting to
decouple the
way you persist state changes from the way that you re-
trieve current state.
A set of fully normalized relational tables is a
good way to make sure that
write operations never cause data cor-
ruption. But retrieving data using lots
of joins can be slow. It’s com-
mon in such cases to add some denormalized views,
build read repli-
cas, or even add caching layers.

Time to Completely Jump the Shark

https://oreil.ly/OkBOS
https://oreil.ly/XKDDm

On that note: have we convinced you that our raw SQL version isn’t
so weird as
it first seemed? Perhaps we were exaggerating for effect?
Just you wait.

So, reasonable or not, that hardcoded SQL query is pretty ugly, right?
What if
we made it nicer…

A much nicer query (src/allocation/views.py)

def allocations(orderid: str, uow: unit_of_work.S

 with uow:

 results = list(uow.session.execute(

 'SELECT sku, batchref FROM allocation

 dict(orderid=orderid)

))

 ...

…by keeping a totally separate, denormalized data store for our view
model?

Hee hee hee, no foreign keys, just strings, YOLO
(src/allocation/adapters/orm.py)

allocations_view = Table(

 'allocations_view', metadata,

 Column('orderid', String(255)),

 Column('sku', String(255)),

 Column('batchref', String(255)),

)

OK, nicer-looking SQL queries wouldn’t be a justification for anything
really,
but building a denormalized copy of your data that’s optimized
for read operations
isn’t uncommon, once you’ve reached the limits of
what you can do with indexes.

Even with well-tuned indexes, a relational database uses a lot of CPU
to perform
joins. The fastest queries will always be SELECT * from

mytable WHERE key = :value .

More than raw speed, though, this approach buys us scale. When
we’re writing
data to a relational database, we need to make sure that
we get a lock over the
rows we’re changing so we don’t run into con-
sistency problems.

If multiple clients are changing data at the same time, we’ll have
weird race
conditions. When we’re reading data, though, there’s no
limit to the number
of clients that can concurrently execute. For this
reason, read-only stores can
be horizontally scaled out.

TIP

Because read replicas can be inconsistent, there’s no limit to how many we
can
have. If you’re struggling to scale a system with a complex data store,
ask whether
you could build a simpler read model.

Keeping the read model up to date is the challenge! Database views
(materialized or otherwise) and triggers are a common solution, but
that limits
you to your database. We’d like to show you how to reuse
our event-driven
architecture instead.

Updating a Read Model Table Using an Event
Handler

We add a second handler to the Allocated event:

Allocated event gets a new handler
(src/allocation/service_layer/messagebus.py)

EVENT_HANDLERS = {

 events.Allocated: [

 handlers.publish_allocated_event,

 handlers.add_allocation_to_read_model

],

Here’s what our update-view-model code looks like:

Update on allocation (src/allocation/service_layer/handlers.py)

def add_allocation_to_read_model(

 event: events.Allocated, uow: unit_of_wor

):

 with uow:

 uow.session.execute(

 'INSERT INTO allocations_view (orderi

 ' VALUES (:orderid, :sku, :batchref)

 dict(orderid=event.orderid, sku=event

)

 uow.commit()

Believe it or not, that will pretty much work! And it will work
against
the exact same integration tests as the rest of our options.

OK, you’ll also need to handle Deallocated :

A second listener for read model updates

events.Deallocated: [

 handlers.remove_allocation_from_read_model,

 handlers.reallocate

],

...

def remove_allocation_from_read_model(

 event: events.Deallocated, uow: unit_of_w

):

 with uow:

 uow.session.execute(

 'DELETE FROM allocations_view '

 ' WHERE orderid = :orderid AND sku =

Figure 12-2 shows the flow across the two requests.

Figure 12-2. Sequence diagram for read model

In Figure 12-2, you can see two
transactions in the POST/write opera-
tion, one to update the write model and one
to update the read model,
which the GET/read operation can use.

REBUILDING FROM SCRATCH

“What happens when it breaks?” should be the first question we ask
as engineers.

How do we deal with a view model that hasn’t been updated because
of a bug or
temporary outage? Well, this is just another case where
events and commands can
fail independently.

If we never updated the view model, and the ASYMMETRICAL-

DRESSER was forever in
stock, that would be annoying for cus-
tomers, but the allocate service would
still fail, and we’d take ac-
tion to fix the problem.

Rebuilding a view model is easy, though. Since we’re using a service
layer to
update our view model, we can write a tool that does the
following:

Queries the current state of the write side to work out what’s cur-
rently
allocated
Calls the add_allocate_to_read_model handler for each al-
located item

We can use this technique to create entirely new read models from
historical
data.

Changing Our Read Model
Implementation Is Easy

Let’s see the flexibility that our event-driven model buys us in action,

by seeing what happens if we ever decide we want to implement a
read model by
using a totally separate storage engine, Redis.

Just watch:

Handlers update a Redis read model
(src/allocation/service_layer/handlers.py)

def add_allocation_to_read_model(event: events.Al

 redis_eventpublisher.update_readmodel(event.o

def remove_allocation_from_read_model(event: even

 redis_eventpublisher.update_readmodel(event.o

The helpers in our Redis module are one-liners:

Redis read model read and update
(src/allocation/adapters/redis_eventpublisher.py)

def update_readmodel(orderid, sku, batchref):

 r.hset(orderid, sku, batchref)

def get_readmodel(orderid):

 return r.hgetall(orderid)

(Maybe the name redis_eventpublisher.py is a misnomer now, but
you get the idea.)

And the view itself changes very slightly to adapt to its new backend:

View adapted to Redis (src/allocation/views.py)

def allocations(orderid):

 batches = redis_eventpublisher.get_readmodel(

 return [

 {'batchref': b.decode(), 'sku': s.decode(

 for s, b in batches.items()

]

And the exact same integration tests that we had before still pass,
be-
cause they are written at a level of abstraction that’s decoupled from
the
implementation: setup puts messages on the message bus, and
the assertions
are against our view.

TIP

Event handlers are a great way to manage updates to a read model,
if you decide
you need one. They also make it easy to change the
implementation of that read
model at a later date.

EXERCISE FOR THE READER

Implement another view, this time to show the allocation for a single
order line.

Here the trade-offs between using hardcoded SQL versus going via a
repository
should be much more blurry. Try a few versions (maybe
including going
to Redis), and see which you prefer.

Wrap-Up

Table 12-2 proposes some pros and cons for each of our options.

As it happens, the allocation service at MADE.com does use “full-
blown” CQRS,
with a read model stored in Redis, and even a second
layer of cache provided
by Varnish. But its use cases are quite a bit
different from what
we’ve shown here. For the kind of allocation ser-
vice we’re building, it seems
unlikely that you’d need to use a sepa-
rate read model and event handlers for
updating it.

But as your domain model becomes richer and more complex, a sim-
plified read
model become ever more compelling.

Table 12-2. Trade-offs of various view model options

Option Pros Cons

Just
use
reposi-
tories

Simple, consistent
approach.

Expect performance issues
with complex query
patterns.

Use
custom
queries
with
your
ORM

Allows reuse of DB
configuration and
model definitions.

Adds another query lan-
guage with its own quirks
and syntax.

Use
hand-
rolled
SQL

Offers fine control
over performance
with a standard
query syntax.

Changes to DB schema
have to be made to your
hand-rolled queries and
your
ORM definitions. High-
ly normalized schemas may
still have performance
limitations.

Option Pros Cons

Create
sepa-
rate
read
stores
with
events

Read-only copies are
easy to scale out.
Views can be con-
structed when data
changes so that
queries are as simple
as possible.

Complex technique. Harry
will be forever suspicious of
your tastes and
motives.

Often, your read operations will be acting on the same conceptual ob-
jects as your
write model, so using the ORM, adding some read
methods to your repositories,
and using domain model classes for
your read operations is just fine.

In our book example, the read operations act on quite different con-
ceptual
entities to our domain model. The allocation service thinks in
terms of
 Batches for a single SKU, but users care about allocations
for a whole order,
with multiple SKUs, so using the ORM ends up be-
ing a little awkward. We’d be
quite tempted to go with the raw-SQL
view we showed right at the beginning of
the chapter.

On that note, let’s sally forth into our final chapter.

Chapter 13. Dependency Injection
(and Bootstrapping)

Dependency injection (DI) is regarded with suspicion in the Python
world. And
we’ve managed just fine without it so far in the example
code for this
book!

In this chapter, we’ll explore some of the pain points in our code
that
lead us to consider using DI, and we’ll present some options
for how
to do it, leaving it to you to pick which you think is most Pythonic.

We’ll also add a new component to our architecture called boot-
strap.py;
it will be in charge of dependency injection, as well as some
other initialization
stuff that we often need. We’ll explain why this sort
of thing is called
a composition root in OO languages, and why boot-
strap script is just fine
for our purposes.

Figure 13-1 shows what our app looks like without
a bootstrapper: the
entrypoints do a lot of initialization and passing around
of our main
dependency, the UoW.

TIP

If you haven’t already, it’s worth reading Chapter 3
before continuing with this chap-
ter, particularly the discussion of
functional versus object-oriented dependency
management.

Figure 13-1. Without bootstrap: entrypoints do a lot

TIP

The code for this chapter is in the
chapter_13_dependency_injection branch on Git-
Hub:

git clone https://github.com/cosmicpython/code.git

cd code

git checkout chapter_13_dependency_injection

or to code along, checkout the previous chapter:

git checkout chapter_12_cqrs

Figure 13-2 shows our bootstrapper taking over those
responsibilities.

https://oreil.ly/-B7e6

Figure 13-2. Bootstrap takes care of all that in one place

Implicit Versus Explicit Dependencies

Depending on your particular brain type, you may have a slight
feel-
ing of unease at the back of your mind at this point. Let’s bring it out

into the open. We’ve shown you two ways of managing
dependencies
and testing them.

For our database dependency, we’ve built a careful framework of ex-
plicit
dependencies and easy options for overriding them in tests. Our
main handler
functions declare an explicit dependency on the UoW:

Our handlers have an explicit dependency on the UoW
(src/allocation/service_layer/handlers.py)

def allocate(

 cmd: commands.Allocate, uow: unit_of_work

):

And that makes it easy to swap in a fake UoW in our
service-layer
tests:

Service-layer tests against a fake UoW: (tests/unit/test_services.py)

 uow = FakeUnitOfWork()

 messagebus.handle([...], uow)

The UoW itself declares an explicit dependency on the session
factory:

The UoW depends on a session factory
(src/allocation/service_layer/unit_of_work.py)

class SqlAlchemyUnitOfWork(AbstractUnitOfWork):

 def __init__(self, session_factory=DEFAULT_SE

 self.session_factory = session_factory

 ...

We take advantage of it in our integration tests to be able to some-
times use SQLite
instead of Postgres:

Integration tests against a different DB (tests/integration/test_uow.py)

def test_rolls_back_uncommitted_work_by_default(s

 uow = unit_of_work.SqlAlchemyUnitOfWork(sqlit

Integration tests swap out the default Postgres
session_factory for a
SQLite one.

Aren’t Explicit Dependencies Totally
Weird and Java-y?

If you’re used to the way things normally happen in Python, you’ll be
thinking
all this is a bit weird. The standard way to do things is to de-
clare our
dependency implicitly by simply importing it, and then if we
ever need to
change it for tests, we can monkeypatch, as is Right and
True in dynamic
languages:

Email sending as a normal import-based dependency
(src/allocation/service_layer/handlers.py)

from allocation.adapters import email, redis_even

...

def send_out_of_stock_notification(

 event: events.OutOfStock, uow: unit_of_wo

):

 email.send(

 'stock@made.com',

 f'Out of stock for {event.sku}',

)

Hardcoded import

Calls specific email sender directly

https://calibre-pdf-anchor.a/#a1588

Why pollute our application code with unnecessary arguments just for
the
sake of our tests? mock.patch makes monkeypatching nice
and easy:

mock dot patch, thank you Michael Foord
(tests/unit/test_handlers.py)

 with mock.patch("allocation.adapters.email.se

 ...

The trouble is that we’ve made it look easy because our toy example
doesn’t
send real email (email.send_mail just does a print),

but in real life,
you’d end up having to call mock.patch for every
single test that might
cause an out-of-stock notification. If you’ve
worked on codebases with lots of
mocks used to prevent unwanted
side effects, you’ll know how annoying that
mocky boilerplate gets.

And you’ll know that mocks tightly couple us to the implementation.

By
choosing to monkeypatch email.send_mail , we are tied to
doing import email ,
and if we ever want to do from email

import send_mail , a trivial refactor,
we’d have to change all our
mocks.

So it’s a trade-off. Yes, declaring explicit dependencies is unneces-
sary,
strictly speaking, and using them would make our application

code marginally
more complex. But in return, we’d get tests that are
easier to write and
manage.

On top of that, declaring an explicit dependency is an example of the
dependency inversion principle—rather than having an (implicit) de-
pendency on
a specific detail, we have an (explicit) dependency on
an abstraction:

Explicit is better than implicit.

—The Zen of Python

The explicit dependency is more abstract
(src/allocation/service_layer/handlers.py)

def send_out_of_stock_notification(

 event: events.OutOfStock, send_mail: Call

):

 send_mail(

 'stock@made.com',

 f'Out of stock for {event.sku}',

)

But if we do change to declaring all these dependencies explicitly,

who will
inject them, and how? So far, we’ve really been dealing with
only passing the
UoW around: our tests use FakeUnitOfWork ,

while Flask and Redis eventconsumer
entrypoints use the real UoW,

and the message bus passes them onto our command
handlers. If
we add real and fake email classes, who will create them and
pass
them on?

That’s extra (duplicated) cruft for Flask, Redis, and our tests. More-
over,
putting all the responsibility for passing dependencies to the
right handler
onto the message bus feels like a violation of the SRP.

Instead, we’ll reach for a pattern called Composition Root (a boot-
strap
script to you and me),
and we’ll do a bit of “manual DI” (depen-
dency injection without a
framework). See Figure 13-3.

Figure 13-3. Bootstrapper between entrypoints and message bus

Preparing Handlers: Manual DI with
Closures and Partials

1

2

One way to turn a function with dependencies into one that’s ready to
be
called later with those dependencies already injected is to use clo-
sures or
partial functions to compose the function with its
dependencies:

Examples of DI using closures or partial functions

existing allocate function, with abstract uow d

def allocate(

 cmd: commands.Allocate, uow: unit_of_work

):

 line = OrderLine(cmd.orderid, cmd.sku, cmd.qt

 with uow:

 ...

bootstrap script prepares actual UoW

def bootstrap(..):

 uow = unit_of_work.SqlAlchemyUnitOfWork()

 # prepare a version of the allocate fn with U

 allocate_composed = lambda cmd: allocate(cmd,

 # or, equivalently (this gets you a nicer sta

 def allocate_composed(cmd):

 return allocate(cmd, uow)

 # alternatively with a partial

 import functools

 allocate_composed = functools.partial(allocat

later at runtime, we can call the partial funct

the UoW already bound

allocate_composed(cmd)

The difference between closures (lambdas or named functions)

and
 functools.partial is that the former use
late
binding
of variables, which can be a source of confusion if
any of the
dependencies are mutable.

Here’s the same pattern again for the
send_out_of_stock_notification() handler,
which has dif-
ferent dependencies:

Another closure and partial functions example

def send_out_of_stock_notification(

 event: events.OutOfStock, send_mail: Call

):

 send_mail(

 'stock@made.com',

 ...

https://calibre-pdf-anchor.a/#a1607
https://docs.python-guide.org/writing/gotchas/#late-binding-closures

prepare a version of the send_out_of_stock_noti

sosn_composed = lambda event: send_out_of_stock_

...

later, at runtime:

sosn_composed(event) # will have email.send_mail

An Alternative Using Classes

Closures and partial functions will feel familiar to people who’ve done
a bit
of functional programming. Here’s an alternative using classes,

which may
appeal to others. It requires rewriting all our handler func-
tions as
classes, though:

DI using classes

we replace the old `def allocate(cmd, uow)` wit

class AllocateHandler:

 def __init__(self, uow: unit_of_work.Abstract

 self.uow = uow

 def __call__(self, cmd: commands.Allocate):

 line = OrderLine(cmd.orderid, cmd.sku, cm

 with self.uow:

 # rest of handler method as before

 ...

bootstrap script prepares actual UoW

uow = unit_of_work.SqlAlchemyUnitOfWork()

then prepares a version of the allocate fn with

allocate = AllocateHandler(uow)

...

later at runtime, we can call the handler insta

the UoW already injected

allocate(cmd)

The class is designed to produce a callable function, so it has a

call method.

But we use the init to declare the dependencies it
requires.

This sort of thing will feel familiar if you’ve ever made
class-
based descriptors, or a class-based context manager that
takes
arguments.

Use whichever you and your team feel more comfortable with.

https://calibre-pdf-anchor.a/#a1617
https://calibre-pdf-anchor.a/#a1616

A Bootstrap Script

We want our bootstrap script to do the following:

1. Declare default dependencies but allow us to override them
2. Do the “init” stuff that we need to get our app started
3. Inject all the dependencies into our handlers
4. Give us back the core object for our app, the message bus

Here’s a first cut:

A bootstrap function (src/allocation/bootstrap.py)

def bootstrap(

 start_orm: bool = True,

 uow: unit_of_work.AbstractUnitOfWork = unit_o

 send_mail: Callable = email.send,

 publish: Callable = redis_eventpublisher.publ

) -> messagebus.MessageBus:

 if start_orm:

 orm.start_mappers()

 dependencies = {'uow': uow, 'send_mail': send

 injected_event_handlers = {

 event_type: [

 inject_dependencies(handler, dependen

 for handler in event_handlers

]

 for event_type, event_handlers in handler

 }

 injected_command_handlers = {

 command_type: inject_dependencies(handler

 for command_type, handler in handlers.COM

 }

 return messagebus.MessageBus(

 uow=uow,

 event_handlers=injected_event_handlers,

 command_handlers=injected_command_handler

)

orm.start_mappers() is our example of initialization work
that needs
to be done once at the beginning of an app. We also
see things like
setting up the logging module.

We can use the argument defaults to define what the
normal/production
defaults are. It’s nice to have them in a sin-
gle place, but
sometimes dependencies have some side effects
at construction time,
in which case you might prefer to default
them to None instead.

https://calibre-pdf-anchor.a/#a1625

We build up our injected versions of the handler mappings by
using
a function called inject_dependencies() , which
we’ll show next.

We return a configured message bus ready for use.

Here’s how we inject dependencies into a handler function by in-
specting
it:

DI by inspecting function signatures (src/allocation/bootstrap.py)

def inject_dependencies(handler, dependencies):

 params = inspect.signature(handler).parameter

 deps = {

 name: dependency

 for name, dependency in dependencies.item

 if name in params

 }

 return lambda message: handler(message, **dep

We inspect our command/event handler’s arguments.

We match them by name to our dependencies.

https://calibre-pdf-anchor.a/#a1637
https://calibre-pdf-anchor.a/#a1638

We inject them as kwargs to produce a partial.

EVEN-MORE-MANUAL DI WITH LESS MAGIC

If you’re finding the preceding inspect code a little harder to grok,

this
even simpler version may appeal to you.

Harry wrote the code for inject_dependencies() as a first cut
of how to do
“manual” dependency injection, and when he saw it, Bob
accused him of
overengineering and writing his own DI framework.

It honestly didn’t even occur to Harry that you could do it any more
plainly,
but you can, like this:

Manually creating partial functions inline (src/allocation/bootstrap.py)

 injected_event_handlers = {

 events.Allocated: [

 lambda e: handlers.publish_allocated_

 lambda e: handlers.add_allocation_to_

],

 events.Deallocated: [

 lambda e: handlers.remove_allocation_

 lambda e: handlers.reallocate(e, uow)

],

 events.OutOfStock: [

 lambda e: handlers.send_out_of_stock_

]

 }

 injected_command_handlers = {

 commands.Allocate: lambda c: handlers.all

 commands.CreateBatch: \

 lambda c: handlers.add_batch(c, uow),

 commands.ChangeBatchQuantity: \

 lambda c: handlers.change_batch_quant

 }

Harry says he couldn’t even imagine writing out that many lines of
code
and having to look up that many function arguments manually.

This is a perfectly viable solution, though, since it’s only one
line of
code or so per handler you add, and thus not a massive maintenance
burden
even if you have dozens of handlers.

Our app is structured in such a way that we always want to do depen-
dency
injection in only one place, the handler functions, so this super-
manual solution
and Harry’s inspect() -based one will both work
fine.

If you find yourself wanting to do DI in more things and at different
times,
or if you ever get into dependency chains (in which your de-
pendencies have their
own dependencies, and so on), you may get
some mileage out of a “real” DI
framework.

At MADE, we’ve used Inject in a few places,
and it’s fine, although it
makes Pylint unhappy. You might also check out
Punq, as written by
Bob himself, or the
DRY-Python crew’s dependencies.

Message Bus Is Given Handlers at
Runtime

Our message bus will no longer be static; it needs to have the al-
ready-injected
handlers given to it. So we turn it from being a module
into a configurable
class:

MessageBus as a class
(src/allocation/service_layer/messagebus.py)

class MessageBus:

 def __init__(

 self,

 uow: unit_of_work.AbstractUnitOfWork,

 event_handlers: Dict[Type[events.Event],

 command_handlers: Dict[Type[commands.Comm

):

 self.uow = uow

 self.event_handlers = event_handlers

https://pypi.org/project/Inject
https://pypi.org/project/punq
https://github.com/dry-python/dependencies

 self.command_handlers = command_handlers

 def handle(self, message: Message):

 self.queue = [message]

 while self.queue:

 message = self.queue.pop(0)

 if isinstance(message, events.Event):

 self.handle_event(message)

 elif isinstance(message, commands.Com

 self.handle_command(message)

 else:

 raise Exception(f'{message} was n

The message bus becomes a class…

…which is given its already-dependency-injected handlers.

The main handle() function is substantially the same, with
just a few attributes and methods moved onto self .

Using self.queue like this is not thread-safe, which might
be a problem if you’re using threads, because the bus instance
is global
in the Flask app context as we’ve written it. Just some-
thing to watch out for.

https://calibre-pdf-anchor.a/#a1653

What else changes in the bus?

Event and command handler logic stays the same
(src/allocation/service_layer/messagebus.py)

 def handle_event(self, event: events.Event):

 for handler in self.event_handlers[type(e

 try:

 logger.debug('handling event %s w

 handler(event)

 self.queue.extend(self.uow.collec

 except Exception:

 logger.exception('Exception handl

 continue

 def handle_command(self, command: commands.Co

 logger.debug('handling command %s', comma

 try:

 handler = self.command_handlers[type(

 handler(command)

 self.queue.extend(self.uow.collect_ne

 except Exception:

 logger.exception('Exception handling

 raise

handle_event and handle_command are substantially
the same, but instead
of indexing into a static
EVENT_HANDLERS or COMMAND_HANDLERS dict, they
use
the versions on self .

Instead of passing a UoW into the handler, we expect the han-
dlers
to already have all their dependencies, so all they need is
a single argument,
the specific event or command.

Using Bootstrap in Our Entrypoints

In our application’s entrypoints, we now just call
bootstrap.bootstrap()
and get a message bus that’s ready to
go, rather than configuring a UoW and the
rest of it:

Flask calls bootstrap (src/allocation/entrypoints/flask_app.py)

-from allocation import views

+from allocation import bootstrap, views

 app = Flask(__name__)

-orm.start_mappers()

+bus = bootstrap.bootstrap()

https://calibre-pdf-anchor.a/#a1666

 @app.route("/add_batch", methods=['POST'])

@@ -19,8 +16,7 @@ def add_batch():

 cmd = commands.CreateBatch(

 request.json['ref'], request.json['sku']

)

- uow = unit_of_work.SqlAlchemyUnitOfWork()

- messagebus.handle(cmd, uow)

+ bus.handle(cmd)

 return 'OK', 201

We no longer need to call start_orm() ; the bootstrap
script’s initialization
stages will do that.

We no longer need to explicitly build a particular type of UoW;

the bootstrap
script defaults take care of it.

And our message bus is now a specific instance rather than the
global module.

Initializing DI in Our Tests

In tests, we can use bootstrap.bootstrap() with overridden
defaults to get a
custom message bus. Here’s an example in an inte-
gration test:

3

Overriding bootstrap defaults (tests/integration/test_views.py)

@pytest.fixture

def sqlite_bus(sqlite_session_factory):

 bus = bootstrap.bootstrap(

 start_orm=True,

 uow=unit_of_work.SqlAlchemyUnitOfWork(sql

 send_mail=lambda *args: None,

 publish=lambda *args: None,

)

 yield bus

 clear_mappers()

def test_allocations_view(sqlite_bus):

 sqlite_bus.handle(commands.CreateBatch('sku1b

 sqlite_bus.handle(commands.CreateBatch('sku2b

 ...

 assert views.allocations('order1', sqlite_bus

 {'sku': 'sku1', 'batchref': 'sku1batch'},

 {'sku': 'sku2', 'batchref': 'sku2batch'},

]

We do still want to start the ORM…

…because we’re going to use a real UoW, albeit with an in-
memory database.

https://calibre-pdf-anchor.a/#a1689

But we don’t need to send email or publish, so we make those
noops.

In our unit tests, in contrast, we can reuse our FakeUnitOfWork :

Bootstrap in unit test (tests/unit/test_handlers.py)

def bootstrap_test_app():

 return bootstrap.bootstrap(

 start_orm=False,

 uow=FakeUnitOfWork(),

 send_mail=lambda *args: None,

 publish=lambda *args: None,

)

No need to start the ORM…

…because the fake UoW doesn’t use one.

We want to fake out our email and Redis adapters too.

So that gets rid of a little duplication, and we’ve moved a bunch
of
setup and sensible defaults into a single place.

EXERCISE FOR THE READER 1

Change all the handlers to being classes as per the DI using classes
example,
and amend the bootstrapper’s DI code as appropriate. This
will let you
know whether you prefer the functional approach or the
class-based approach when
it comes to your own projects.

Building an Adapter “Properly”: A
Worked Example

To really get a feel for how it all works, let’s work through an example
of how
you might “properly” build an adapter and do dependency in-
jection for it.

At the moment, we have two types of dependencies:

Two types of dependencies
(src/allocation/service_layer/messagebus.py)

 uow: unit_of_work.AbstractUnitOfWork,

 send_mail: Callable,

 publish: Callable,

The UoW has an abstract base class. This is the heavyweight
option for declaring and managing your external dependency.

We’d use this for the case when the dependency is relatively
complex.

Our email sender and pub/sub publisher are defined
as func-
tions. This works just fine for simple dependencies.

Here are some of the things we find ourselves injecting at work:

An S3 filesystem client
A key/value store client
A requests session object

Most of these will have more-complex APIs that you can’t capture
as
a single function: read and write, GET and POST, and so on.

Even though it’s simple, let’s use send_mail as an example to talk
through how you might define a more complex dependency.

Define the Abstract and Concrete
Implementations

We’ll imagine a more generic notifications API. Could be
email, could
be SMS, could be Slack posts one day.

An ABC and a concrete implementation
(src/allocation/adapters/notifications.py)

class AbstractNotifications(abc.ABC):

 @abc.abstractmethod

 def send(self, destination, message):

 raise NotImplementedError

...

class EmailNotifications(AbstractNotifications):

 def __init__(self, smtp_host=DEFAULT_HOST, po

 self.server = smtplib.SMTP(smtp_host, por

 self.server.noop()

 def send(self, destination, message):

 msg = f'Subject: allocation service notif

 self.server.sendmail(

 from_addr='allocations@example.com',

 to_addrs=[destination],

 msg=msg

)

We change the dependency in the bootstrap script:

Notifications in message bus (src/allocation/bootstrap.py)

 def bootstrap(

 start_orm: bool = True,

 uow: unit_of_work.AbstractUnitOfWork = unit_

- send_mail: Callable = email.send,

+ notifications: AbstractNotifications = Email

 publish: Callable = redis_eventpublisher.pub

) -> messagebus.MessageBus:

Make a Fake Version for Your Tests

We work through and define a fake version for unit testing:

Fake notifications (tests/unit/test_handlers.py)

class FakeNotifications(notifications.AbstractNot

 def __init__(self):

 self.sent = defaultdict(list) # type: Di

 def send(self, destination, message):

 self.sent[destination].append(message)

...

And we use it in our tests:

Tests change slightly (tests/unit/test_handlers.py)

 def test_sends_email_on_out_of_stock_error(se

 fake_notifs = FakeNotifications()

 bus = bootstrap.bootstrap(

 start_orm=False,

 uow=FakeUnitOfWork(),

 notifications=fake_notifs,

 publish=lambda *args: None,

)

 bus.handle(commands.CreateBatch("b1", "PO

 bus.handle(commands.Allocate("o1", "POPUL

 assert fake_notifs.sent['stock@made.com']

 f"Out of stock for POPULAR-CURTAINS",

]

Figure Out How to Integration Test the Real Thing

Now we test the real thing, usually with an end-to-end or integration
test. We’ve used MailHog as a
real-ish email server for our Docker
dev environment:

Docker-compose config with real fake email server (docker-
compose.yml)

https://github.com/mailhog/MailHog

version: "3"

services:

 redis_pubsub:

 build:

 context: .

 dockerfile: Dockerfile

 image: allocation-image

 ...

 api:

 image: allocation-image

 ...

 postgres:

 image: postgres:9.6

 ...

 redis:

 image: redis:alpine

 ...

 mailhog:

 image: mailhog/mailhog

 ports:

 - "11025:1025"

 - "18025:8025"

In our integration tests, we use the real EmailNotifications
class,
talking to the MailHog server in the Docker cluster:

Integration test for email (tests/integration/test_email.py)

@pytest.fixture

def bus(sqlite_session_factory):

 bus = bootstrap.bootstrap(

 start_orm=True,

 uow=unit_of_work.SqlAlchemyUnitOfWork(sql

 notifications=notifications.EmailNotifica

 publish=lambda *args: None,

)

 yield bus

 clear_mappers()

def get_email_from_mailhog(sku):

 host, port = map(config.get_email_host_and_po

 all_emails = requests.get(f'http://{host}:{po

 return next(m for m in all_emails['items'] if

def test_out_of_stock_email(bus):

 sku = random_sku()

 bus.handle(commands.CreateBatch('batch1', sku

 bus.handle(commands.Allocate('order1', sku, 1

 email = get_email_from_mailhog(sku)

 assert email['Raw']['From'] == 'allocations@e

 assert email['Raw']['To'] == ['stock@made.com

 assert f'Out of stock for {sku}' in email['Ra

We use our bootstrapper to build a message bus that talks to
the
real notifications class.

We figure out how to fetch emails from our “real” email server.

We use the bus to do our test setup.

Against all the odds, this actually worked, pretty much at the
first go!

And that’s it really.

https://calibre-pdf-anchor.a/#a1728
https://calibre-pdf-anchor.a/#a1730
https://calibre-pdf-anchor.a/#a1731

EXERCISE FOR THE READER 2

You could do two things for practice regarding adapters:

1. Try swapping out our notifications from email to SMS
notifications
using Twilio, for example, or Slack notifications. Can you find
a
good equivalent to MailHog for integration testing?

2. In a similar way to what we did moving from send_mail to a
Notifications
class, try refactoring our
redis_eventpublisher that is currently just
a Callable to
some sort of more formal adapter/base class/protocol.

Wrap-Up

Once you have more than one adapter, you’ll start to feel a lot of pain
from passing dependencies around manually, unless you do some
kind of
dependency injection.

Setting up dependency injection is just one of many typical
setup/ini-
tialization activities that you need to do just once when starting
your
app. Putting this all together into a bootstrap script is often a
good
idea.

The bootstrap script is also good as a place to provide sensible de-
fault
configuration for your adapters, and as a single place to override

those
adapters with fakes for your tests.

A dependency injection framework can be useful if you find yourself
needing to do DI at multiple levels—if you have chained dependen-
cies
of components that all need DI, for example.

This chapter also presented a worked example of changing an implic-
it/simple
dependency into a “proper” adapter, factoring out an ABC,

defining its real
and fake implementations, and thinking through inte-
gration testing.

DI AND BOOTSTRAP RECAP

In summary:

1. Define your API using an ABC.

2. Implement the real thing.

3. Build a fake and use it for unit/service-layer/handler tests.

4. Find a less fake version you can put into your Docker environment.
5. Test the less fake “real” thing.

6. Profit!

These were the last patterns we wanted to cover, which brings us to
the end of Part II. In the epilogue, we’ll try to give you some pointers
for applying these techniques in the Real World .TM

1

 Because Python is not a “pure” OO language, Python developers aren’t necessari-
ly used to the concept of needing to compose a set of objects into a working appli-
cation. We just pick our entrypoint and run code from top to bottom.

 Mark Seemann calls this Pure DI or sometimes Vanilla DI.

 However, it’s still a global in the flask_app module scope, if that makes sense.

This may cause problems if you ever find yourself wanting to test your Flask app in-
process by using the Flask Test Client instead of using Docker as we do. It’s worth
researching Flask app factories if you get into this.

1

2

3

https://oreil.ly/iGpDL
https://oreil.ly/_a6Kl

Epilogue

What Now?

Phew! We’ve covered a lot of ground in this book, and for most of our
audience
all of these ideas are new. With that in mind, we can’t hope
to make you experts
in these techniques. All we can really do is show
you the broad-brush ideas, and
just enough code for you to go ahead
and write something from scratch.

The code we’ve shown in this book isn’t battle-hardened production
code: it’s a
set of Lego blocks that you can play with to make your first
house, spaceship,
and skyscraper.

That leaves us with two big tasks. We want to talk
about how to start
applying these ideas for real in an existing system, and we
need to
warn you about some of the things we had to skip. We’ve given you a
whole new arsenal of ways to shoot yourself in the foot, so we should
discuss
some basic firearms safety.

How Do I Get There from Here?

Chances are that a lot of you are thinking something like this:

“OK Bob and Harry, that’s all well and good, and if I ever get hired to
work
on a green-field new service, I know what to do. But in the
meantime, I’m
here with my big ball of Django mud, and I don’t see
any way to get to your
nice, clean, perfect, untainted, simplistic mod-
el. Not from here.”

We hear you. Once you’ve already built a big ball of mud, it’s hard to
know
how to start improving things. Really, we need to tackle things
step by step.

First things first: what problem are you trying to solve? Is the software
too
hard to change? Is the performance unacceptable? Have you got
weird, inexplicable
bugs?

Having a clear goal in mind will help you to prioritize the work that
needs to
be done and, importantly, communicate the reasons for do-
ing it to the rest of
the team. Businesses tend to have pragmatic ap-
proaches to technical debt
and refactoring, so long as engineers can
make a reasoned argument for fixing
things.

TIP

Making complex changes to a system is often an easier sell if you link it
to feature
work. Perhaps you’re launching a new product or opening your service
to new mar-
kets? This is the right time to spend engineering resources on fixing
the founda-
tions. With a six-month project to deliver, it’s easier to make the
argument for three

weeks of cleanup work. Bob refers to this as architecture
tax.

Separating Entangled
Responsibilities

At the beginning of the book, we said that the main characteristic of a
big ball
of mud is homogeneity: every part of the system looks the
same, because we
haven’t been clear about the responsibilities of
each component. To fix that,
we’ll need to start separating out respon-
sibilities and introducing clear
boundaries. One of the first things we
can do is to start building a service
layer (Figure E-1).

Figure E-1. Domain of a collaboration system

This was the system in which Bob first learned how to break apart a
ball of mud,
and it was a doozy. There was logic everywhere—in the
web pages, in
manager objects, in helpers, in fat service classes that
we’d written to
abstract the managers and helpers, and in hairy com-
mand objects that we’d
written to break apart the services.

If you’re working in a system that’s reached this point, the situation
can feel hopeless,
but it’s never too late to start weeding an over-
grown garden. Eventually, we
hired an architect who knew what he
was doing, and he helped us get things
back under control.

Start by working out the use cases of your system. If you have a
user
interface, what actions does it perform? If you have a backend
pro-
cessing component, maybe each cron job or Celery job is a single
use case. Each of your use cases needs to have an imperative name:

Apply
Billing Charges, Clean Abandoned Accounts, or Raise Pur-
chase Order, for example.

In our case, most of our use cases were part of the manager classes
and had
names like Create Workspace or Delete Document Version.

Each use case
was invoked from a web frontend.

We aim to create a single function or class for each of these support-
ed
operations that deals with orchestrating the work to be done. Each
use case
should do the following:

Start its own database transaction if needed
Fetch any required data
Check any preconditions (see the Ensure pattern in Appendix E)

Update the domain model
Persist any changes

Each use case should succeed or fail as an atomic unit. You might
need to call
one use case from another. That’s OK; just make a note
of it, and try to
avoid long-running database transactions.

NOTE

One of the biggest problems we had was that manager methods called other
man-
ager methods, and data access could happen from the model objects themselves.

It was hard to understand what each operation did without going on a treasure hunt
across the codebase. Pulling all the logic into a single method, and using
a UoW to

control our transactions, made the system easier to reason
about.

CASE STUDY: LAYERING AN OVERGROWN SYSTEM

Many years ago, Bob worked for a software company that had out-
sourced the first
version of its application, an online collaboration
platform for sharing and
working on files.

When the company brought development in-house, it passed through
several
generations of developers’ hands, and each wave of new de-
velopers added more
complexity to the code’s structure.

At its heart, the system was an ASP.NET Web Forms application,

built with an
NHibernate ORM. Users would upload documents into
workspaces, where they could
invite other workspace members to re-
view, comment on, or modify their work.

Most of the complexity of the application was in the permissions mod-
el because
each document was contained in a folder, and folders al-
lowed read, write, and
edit permissions, much like a Linux filesystem.

Additionally, each workspace belonged to an account, and the ac-
count had quotas
attached to it via a billing package.

As a result, every read or write operation against a document had to
load an
enormous number of objects from the database in order to
test permissions and
quotas. Creating a new workspace involved
hundreds of database queries as we set
up the permissions struc-
ture, invited users, and set up sample content.

Some of the code for operations was in web handlers that ran when a
user clicked
a button or submitted a form; some of it was in manager
objects that held
code for orchestrating work; and some of it was in
the domain model. Model
objects would make database calls or copy
files on disk, and the test coverage
was abysmal.

To fix the problem, we first introduced a service layer so that all of the
code
for creating a document or workspace was in one place and
could be understood.
This involved pulling data access code out of
the domain model and into
command handlers. Likewise, we pulled
orchestration code out of the managers and
the web handlers and
pushed it into handlers.

The resulting command handlers were long and messy, but we’d
made a start at
introducing order to the chaos.

TIP

It’s fine if you have duplication in the use-case functions. We’re not
trying to write
perfect code; we’re just trying to extract some meaningful
layers. It’s better to dupli-
cate some code in a few places than to have
use-case functions calling one anoth-
er in a long chain.

This is a good opportunity to pull any data-access or orchestration
code out of
the domain model and into the use cases. We should also

try to pull I/O
concerns (e.g., sending email, writing files) out of the
domain model and up into
the use-case functions. We apply the tech-
niques from Chapter 3 on abstractions
to keep our handlers unit
testable even when they’re performing I/O.

These use-case functions will mostly be about logging, data access,

and error
handling. Once you’ve done this step, you’ll have a grasp of
what your program
actually does, and a way to make sure each oper-
ation has a clearly defined
start and finish. We’ll have taken a step to-
ward building a pure domain model.

Read Working Effectively with Legacy Code by Michael C. Feathers
(Prentice Hall) for guidance on getting legacy code
under test and
starting separating responsibilities.

Identifying Aggregates and Bounded
Contexts

Part of the problem with the codebase in our case study was that the
object
graph was highly connected. Each account had many work-
spaces, and each workspace had
many members, all of whom had
their own accounts. Each workspace contained many
documents,

which had many versions.

You can’t express the full horror of the thing in a class diagram.
For
one thing, there wasn’t really a single account related to a user. In-
stead,
there was a bizarre rule requiring you to enumerate all of the
accounts
associated to the user via the workspaces and take the one
with the earliest
creation date.

Every object in the system was part of an inheritance hierarchy that
included
 SecureObject and Version . This inheritance hierarchy
was mirrored directly
in the database schema, so that every query
had to join across 10 different
tables and look at a discriminator col-
umn just to tell what kind of objects
you were working with.

The codebase made it easy to “dot” your way through these objects
like so:

user.account.workspaces[0].documents.versions[1].

Building a system this way with Django ORM or SQLAlchemy is easy
but is
to be avoided. Although it’s convenient, it makes it very hard to
reason about
performance because each property might trigger a
lookup to the database.

TIP

Aggregates are a consistency boundary. In general, each use case should
update a
single aggregate at a time. One handler fetches one aggregate from
a repository,

modifies its state, and raises any events that happen as a
result. If you need data
from another part of the system, it’s totally fine
to use a read model, but avoid up-

dating multiple aggregates in a single
transaction. When we choose to separate
code into different aggregates,
we’re explicitly choosing to make them eventually
consistent with one
another.

A bunch of operations required us to loop over objects this way—for
example:

Lock a user's workspaces for nonpayment

def lock_account(user):

 for workspace in user.account.workspaces:

 workspace.archive()

Or even recurse over collections of folders and documents:

def lock_documents_in_folder(folder):

 for doc in folder.documents:

 doc.archive()

 for child in folder.children:

 lock_documents_in_folder(child)

These operations killed performance, but fixing them meant giving up
our single
object graph. Instead, we began to identify aggregates and
to break the direct
links between objects.

NOTE

We talked about the infamous SELECT N+1 problem in Chapter 12, and how
we
might choose to use different techniques when reading data for queries versus
reading data for commands.

Mostly we did this by replacing direct references with identifiers.

Before aggregates:

After modeling with aggregates:

TIP

Bidirectional links are often a sign that your aggregates aren’t right.
In our original
code, a Document knew about its containing Folder , and the
 Folder had a
collection of Documents . This makes it easy to traverse the
object graph but
stops us from thinking properly about the consistency
boundaries we need. We

break apart aggregates by using references instead.
In the new model, a
Document had reference to its parent_folder but had no way
to directly ac-
cess the Folder .

If we needed to read data, we avoided writing complex loops and
transforms and
tried to replace them with straight SQL. For example,

one of our screens was a
tree view of folders and documents.

This screen was incredibly heavy on the database, because it relied
on nested
 for loops that triggered a lazy-loaded ORM.

TIP

We use this same technique in Chapter 11, where we replace a
nested loop over
ORM objects with a simple SQL query. It’s the first step
in a CQRS approach.

After a lot of head-scratching, we replaced the ORM code with a big,

ugly stored
procedure. The code looked horrible, but it was much
faster and helped
to break the links between Folder and
Document .

When we needed to write data, we changed a single aggregate at a
time, and we
introduced a message bus to handle events. For exam-
ple, in the new model, when
we locked an account, we could first

query for all the affected workspaces via
 SELECT id FROM

workspace WHERE account_id = ? .

We could then raise a new command for each workspace:

for workspace_id in workspaces:

 bus.handle(LockWorkspace(workspace_id))

An Event-Driven Approach to Go to
Microservices via Strangler Pattern

The Strangler Fig pattern involves creating a new system around the
edges
of an old system, while keeping it running. Bits of old function-
ality
are gradually intercepted and replaced, until the old system is left
doing nothing at all and can be switched off.

When building the availability service, we used a technique called
event
interception to move functionality from one place to another.
This is a three-step
process:

1. Raise events to represent the changes happening in a system you
want to
replace.

2. Build a second system that consumes those events and uses them
to build its
own domain model.

3. Replace the older system with the new.

We used event interception to move from Figure E-2…

Figure E-2. Before: strong, bidirectional coupling based on XML-RPC

to Figure E-3.

Figure E-3. After: loose coupling with asynchronous events (you can find a high-resolution
version of this diagram at cosmicpython.com)

Practically, this was a several month-long project. Our first step was
to write a
domain model that could represent batches, shipments, and
products. We used TDD
to build a toy system that could answer a sin-

gle question: “If I want N units of
HAZARDOUS_RUG, how long will
they take to be delivered?”

TIP

When deploying an event-driven system, start with a “walking skeleton.”
Deploying
a system that just logs its input forces us to tackle all the
infrastructural questions
and start working in production.

CASE STUDY: CARVING OUT A MICROSERVICE TO REPLACE A DOMAIN

MADE.com started out with two monoliths: one for the frontend
ecommerce
application, and one for the backend fulfillment system.

The two systems communicated through XML-RPC. Periodically, the
backend system
would wake up and query the frontend system to
find out about new orders. When
it had imported all the new orders, it
would send RPC commands to update the
stock levels.

Over time this synchronization process became slower and slower
until, one
Christmas, it took longer than 24 hours to import a single
day’s orders. Bob was
hired to break the system into a set of event-
driven services.

First, we identified that the slowest part of the process was calculat-
ing and
synchronizing the available stock. What we needed was a
system that could listen
to external events and keep a running total of
how much stock was available.

We exposed that information via an API, so that the user’s browser
could ask
how much stock was available for each product and how
long it would take to
deliver to their address.

Whenever a product ran out of stock completely, we would raise a
new event that
the ecommerce platform could use to take a product
off sale. Because we didn’t
know how much load we would need to

handle, we wrote the system with a CQRS
pattern. Whenever the
amount of stock changed, we would update a Redis database
with a
cached view model. Our Flask API queried these view models in-
stead of
running the complex domain model.

As a result, we could answer the question “How much stock is avail-
able?” in 2
to 3 milliseconds, and now the API frequently handles hun-
dreds of requests a
second for sustained periods.

If this all sounds a little familiar, well, now you know where our exam-
ple app
came from!

Once we had a working domain model, we switched to building out
some
infrastructural pieces. Our first production deployment was a
tiny system that
could receive a batch_created event and log its
JSON representation. This is
the “Hello World” of event-driven archi-
tecture. It forced us to deploy a message
bus, hook up a producer
and consumer, build a deployment pipeline, and write a
simple mes-
sage handler.

Given a deployment pipeline, the infrastructure we needed, and a ba-
sic domain
model, we were off. A couple months later, we were in
production and serving
real customers.

Convincing Your Stakeholders to Try
Something New

If you’re thinking about carving a new system out of a big ball of mud,

you’re
probably suffering problems with reliability, performance, main-
tainability, or
all three simultaneously. Deep, intractable problems call
for drastic measures!

We recommend domain modeling as a first step. In many overgrown
systems, the
engineers, product owners, and customers no longer
speak the same language.
Business stakeholders speak about the
system in abstract, process-focused terms,
while developers are
forced to speak about the system as it physically exists in
its wild and
chaotic state.

CASE STUDY: THE USER MODEL

We mentioned earlier that the account and user model in our first sys-
tem were
bound together by a “bizarre rule.” This is a perfect exam-
ple of how engineering
and business stakeholders can drift apart.

In this system, accounts parented workspaces, and users were mem-
bers of
workspaces. Workspaces were the fundamental unit for ap-
plying permissions and
quotas. If a user joined a workspace and
didn’t already have an account, we
would associate them with the ac-
count that owned that workspace.

This was messy and ad hoc, but it worked fine until the day a product
owner
asked for a new feature:

When a user joins a company, we want to add them to some de-
fault workspaces
for the company, like the HR workspace or the
Company Announcements workspace.

We had to explain to them that there was no such thing as a compa-
ny, and there
was no sense in which a user joined an account. More-
over, a “company” might have
many accounts owned by different
users, and a new user might be invited to
any one of them.

Years of adding hacks and work-arounds to a broken model caught
up with us, and
we had to rewrite the entire user management func-
tion as a brand-new system.

Figuring out how to model your domain is a complex task that’s the
subject of many
decent books in its own right. We like to use interac-
tive techniques like event
storming and CRC modeling, because hu-
mans are good at collaborating through
play. Event modeling is an-
other technique that brings engineers and product
owners together to
understand a system in terms of commands, queries, and events.

TIP

Check out www.eventmodeling.org and www.eventstorming.org for some great
guides to visual modeling of systems with events.

The goal is to be able to talk about the system by using the same
ubiquitous
language, so that you can agree on where the complexity
lies.

We’ve found a lot of value in treating domain problems as TDD kata.

For example,
the first code we wrote for the availability service was
the batch and order
line model. You can treat this as a lunchtime
workshop, or as a spike at the
beginning of a project. Once you can
demonstrate the value of modeling, it’s
easier to make the argument
for structuring the project to optimize for modeling.

CASE STUDY: DAVID SEDDON ON TAKING SMALL STEPS

Hi, I’m David, one of the tech reviewers on this book. I’ve worked on
several complex Django monoliths, and so I’ve known the pain that
Bob and
Harry have made all sorts of grand promises about soothing.

When I was first exposed to the patterns described here, I was rather
excited. I had successfully used some of the techniques already on
smaller projects, but here was a blueprint for much larger, database-
backed
systems like the one I work on in my day job. So I started try-
ing to figure
out how I could implement that blueprint at my current
organization.

I chose to tackle a problem area of the codebase that had always
bothered me.
I began by implementing it as a use case. But I found
myself running
into unexpected questions. There were things that I
hadn’t considered
while reading that now made it difficult to see what
to do. Was it a
problem if my use case interacted with two different
aggregates? Could
one use case call another? And how was it going
to exist within
a system that followed different architectural principles
without resulting
in a horrible mess?

What happened to that oh-so-promising blueprint? Did I actually un-
derstand
the ideas well enough to put them into practice? Was it even
suitable for my
application? Even if it was, would any of my col-
leagues agree to such a
major change? Were these just nice ideas
for me to fantasize about while I got
on with real life?

It took me a while to realize that I could start small. I didn’t
need to be
a purist or to get it right the first time: I could experiment,
finding what
worked for me.

And so that’s what I’ve done. I’ve been able to apply some of the
ideas
in a few places. I’ve built new features whose business logic
can be tested without the database or mocks. And as a team, we’ve
introduced a service layer to help define the jobs the system does.

If you start trying to apply these patterns in your work, you may go
through
similar feelings to begin with. When the nice theory of a book
meets the reality
of your codebase, it can be demoralizing.

My advice is to focus on a specific problem and ask yourself how you
can
put the relevant ideas to use, perhaps in an initially limited and
imperfect fashion.
You may discover, as I did, that the first problem
you pick might be a bit too difficult; if so, move on to something else.

Don’t try to boil the ocean, and don’t be too
afraid of making mis-
takes. It will be a learning experience, and you can be confident
that
you’re moving roughly in a direction that others have found useful.

So, if you’re feeling the pain too, give these ideas a try. Don’t feel you
need permission
to rearchitect everything. Just look for somewhere
small to start. And above all, do it
to solve a specific problem. If you’re

successful in solving it, you’ll know you got something
right—and oth-
ers will too.

Questions Our Tech Reviewers
Asked That We Couldn’t Work into
Prose

Here are some questions we heard during drafting that we couldn’t
find a good place to address elsewhere in the book:

Do I need to do all of this at once? Can I just do a bit at a time?

No, you can absolutely adopt these techniques bit by bit. If you
have an existing system, we recommend building a service lay-
er to try to keep orchestration in one place. Once you have that,
it’s much easier to push logic into the model and push edge
concerns like validation or error handling to the entrypoints.

It’s worth having a service layer even if you still have a big,

messy Django ORM because it’s a way to start understanding
the boundaries of operations.

Extracting use cases will break a lot of my existing code; it’s too
tangled

Just copy and paste. It’s OK to cause more duplication in the
short term. Think of this as a multistep process. Your code is in
a bad state now, so copy and paste it to a new place and then
make that new code clean and tidy.

Once you’ve done that, you can replace uses of the old code
with calls to your new code and finally delete the mess. Fixing
large codebases is a messy and painful process. Don’t expect
things to get instantly better, and don’t worry if some bits of
your application stay messy.

Do I need to do CQRS? That sounds weird. Can’t I just use
repositories?

Of course you can! The techniques we’re presenting in this
book are intended to make your life easier. They’re not some
kind of ascetic discipline with which to punish yourself.

In our first case-study system, we had a lot of View Builder ob-
jects that used repositories to fetch data and then performed
some transformations to return dumb read models. The advan-
tage is that when you hit a performance problem, it’s easy to
rewrite a view builder to use custom queries or raw SQL.

How should use cases interact across a larger system? Is it a prob-
lem for one to call another?

This might be an interim step. Again, in the first case study, we
had handlers that would need to invoke other handlers. This
gets really messy, though, and it’s much better to move to us-
ing a message bus to separate these concerns.

Generally, your system will have a single message bus imple-
mentation and a bunch of subdomains that center on a particu-
lar aggregate or set of aggregates. When your use case has
finished, it can raise an event, and a handler elsewhere can
run.

Is it a code smell for a use case to use multiple repositories/aggre-
gates, and if so, why?

An aggregate is a consistency boundary, so if your use case
needs to update two aggregates atomically (within the same
transaction), then your consistency boundary is wrong, strictly
speaking. Ideally you should think about moving to a new ag-
gregate that wraps up all the things you want to change at the
same time.

If you’re actually updating only one aggregate and using the
other(s) for read-only access, then that’s fine, although you
could consider building a read/view model to get you that data

instead—it makes things cleaner if each use case has only one
aggregate.

If you do need to modify two aggregates, but the two opera-
tions don’t have to be in the same transaction/UoW, then con-
sider splitting the work out into two different handlers and using
a domain event to carry information between the two. You can
read more in these papers on aggregate design by Vaughn
Vernon.

What if I have a read-only but business-logic-heavy system?

View models can have complex logic in them. In this book,

we’ve encouraged you to separate your read and write models
because they have different consistency and throughput re-
quirements. Mostly, we can use simpler logic for reads, but
that’s not always true. In particular, permissions and authoriza-
tion models can add a lot of complexity to our read side.

We’ve written systems in which the view models needed exten-
sive unit tests. In those systems, we split a view builder from a
view fetcher, as in Figure E-4.

https://oreil.ly/sufKE

Figure E-4. A view builder and view fetcher (you can find a high-resolution version of this dia-
gram at cosmicpython.com)

+
This makes it easy to test the view builder by giving it mocked data
(e.g., a list of dicts). “Fancy CQRS” with event handlers is really a way
of running our complex view logic whenever we write so that we can
avoid running it when we read.

Do I need to build microservices to do this stuff?

Egads, no! These techniques predate microservices by a
decade or so. Aggregates,
domain events, and dependency in-

version are ways to control complexity in large
systems. It just
so happens that when you’ve built a set of use cases and a
model
for a business process, moving it to its own service is
relatively easy, but
that’s not a requirement.

I’m using Django. Can I still do this?

We have an entire appendix just for you: Appendix D!

Footguns

OK, so we’ve given you a whole bunch of new toys to play with.

Here’s the
fine print. Harry and Bob do not recommend that you copy
and paste our code into
a production system and rebuild your auto-
mated trading platform on Redis
pub/sub. For reasons of brevity and
simplicity, we’ve hand-waved a lot of tricky
subjects. Here’s a list of
things we think you should know before trying this
for real.

Reliable messaging is hard

Redis pub/sub is not reliable and shouldn’t be used as a gener-
al-purpose
messaging tool. We picked it because it’s familiar
and easy to run. At MADE, we
run Event Store as our messag-
ing tool, but we’ve had experience with RabbitMQ and
Amazon
EventBridge.

Tyler Treat has some excellent blog posts on his site brave-
newgeek.com; you
should read at least read “You Cannot Have
Exactly-Once Delivery”
and “What You Want Is What You
Don’t: Understanding Trade-Offs in Distributed Messaging”.

We explicitly choose small, focused transactions that can fail
independently

In Chapter 8, we update our process so that deallocating an or-
der line and
reallocating the line happen in two separate units
of work.
You will need monitoring to know when these transac-
tions fail, and tooling to
replay events. Some of this is made
easier by using a transaction log as your
message broker (e.g.,

Kafka or EventStore). You might also look at the
Outbox pat-
tern.

We don’t discuss idempotency

We haven’t given any real thought to what happens when han-
dlers are retried.
In practice you will want to make handlers
idempotent so that calling them
repeatedly with the same mes-
sage will not make repeated changes to state.
This is a key
technique for building reliability, because it enables us to
safely
retry events when they fail.

There’s a lot of good material on idempotent message handling, try
starting
with “How to Ensure Idempotency in an Eventual Consistent

https://oreil.ly/pcstD
https://oreil.ly/j8bmF
https://oreil.ly/sLfnp
https://oreil.ly/yERzR

DDD/CQRS Application” and “(Un)Reliability in Messaging”.

Your events will need to change their schema over time

You’ll need to find some way of documenting your events and
sharing schema
with consumers. We like using JSON schema
and markdown because it’s simple but
there is other prior art.
Greg Young wrote an entire book on managing event-driven
systems over time: Versioning in an Event Sourced System
(Leanpub).

More Required Reading

A few more books we’d like to recommend to help you on your way:

Clean Architectures in Python by Leonardo Giordani (Leanpub),

which came out in 2019, is one of the few previous books on appli-
cation architecture in Python.

Enterprise Integration Patterns by Gregor Hohpe and Bobby Woolf
(Addison-Wesley Professional) is a pretty good start for messaging
patterns.

Monolith to Microservices by Sam Newman (O’Reilly), and New-
man’s first book,
Building Microservices (O’Reilly). The Strangler
Fig pattern is mentioned as a
favorite, along with many others.

These are good to check out if you’re thinking of moving to
mi-

https://oreil.ly/yERzR
https://oreil.ly/Ekuhi

croservices, and they’re also good on integration patterns and the
considerations
of async messaging-based integration.

Wrap-Up

Phew! That’s a lot of warnings and reading suggestions; we hope we
haven’t scared you off completely. Our goal with this book is to give
you
just enough knowledge and intuition for you to start building
some of this
for yourself. We would love to hear how you get on and
what problems you’re
facing with the techniques in your own sys-
tems, so why not get in touch with us
over at
www.cosmicpython.com?

Appendix A. Summary Diagram and
Table

Here’s what our architecture looks like by the end of the book:

Table A-1 recaps each pattern and what it does.

Table A-1. The components of our architecture and what they all do

Layer Component Description

Domain
Defines the busi-
ness logic.

Entity A domain object whose
attributes may change but
that has a recognizable
identity over time.

Value object An immutable domain ob-
ject whose attributes en-
tirely define it. It is fungi-
ble with other identical
objects.

Aggregate Cluster of associated ob-
jects that we treat as a
unit for the purpose of
data changes. Defines
and enforces a consisten-
cy boundary.

Event Represents something
that happened.

Layer Component Description

Command Represents a job the sys-
tem should perform.

Service Layer
Defines the jobs
the system should
perform and or-
chestrates differ-
ent components.

Handler Receives a command or
an event and performs
what needs to happen.

Unit of work Abstraction around data
integrity. Each unit of
work represents an atom-
ic update. Makes reposi-
tories available. Tracks
new events on retrieved
aggregates.

Message
bus
(internal)

Handles commands and
events by routing them to
the appropriate handler.

Layer Component Description

Adapters
(Secondary)

Concrete imple-
mentations of an
interface that
goes from our
system
to the out-
side world (I/O).

Repository Abstraction around per-
sistent storage. Each ag-
gregate has its own
repository.

Event
publisher

Pushes events onto the
external message bus.

Entrypoints (Pri-
mary adapters)

Translate external
inputs into calls
into the service
layer.

Web Receives web requests
and translates them into
commands, passing them
to the internal message
bus.

Event
consumer

Reads events from the
external message bus
and translates them into
commands, passing them
to the internal message
bus.

Layer Component Description

N/A External
message
bus (mes-
sage broker)

A piece of infrastructure
that different services use
to intercommunicate, via
events.

Appendix B. A Template Project
Structure

Around Chapter 4, we moved from just having
everything in one fold-
er to a more structured tree, and we thought it might
be of interest to
outline the moving parts.

TIP

The code for this appendix is in the
appendix_project_structure branch on GitHub:

git clone https://github.com/cosmicpython/code.git

cd code

git checkout appendix_project_structure

The basic folder structure looks like this:

Project tree

.

├── Dockerfile

├── Makefile

├── README.md

├── docker-compose.yml

├── license.txt

https://oreil.ly/1rDRC

├── mypy.ini

├── requirements.txt

├── src

│ ├── allocation

│ │ ├── __init__.py

│ │ ├── adapters

│ │ │ ├── __init__.py

│ │ │ ├── orm.py

│ │ │ └── repository.py

│ │ ├── config.py

│ │ ├── domain

│ │ │ ├── __init__.py

│ │ │ └── model.py

│ │ ├── entrypoints

│ │ │ ├── __init__.py

│ │ │ └── flask_app.py

│ │ └── service_layer

│ │ ├── __init__.py

│ │ └── services.py

│ └── setup.py

└── tests

 ├── conftest.py

 ├── e2e

 │ └── test_api.py

 ├── integration

 │ ├── test_orm.py

 │ └── test_repository.py

 ├── pytest.ini

 └── unit

 ├── test_allocate.py

 ├── test_batches.py

 └── test_services.py

Our docker-compose.yml and our Dockerfile are the main bits
of configuration
for the containers that run our app, and they
can also run the tests (for CI). A
more complex project might
have several Dockerfiles, although we’ve found that
minimizing
the number of images is usually a good idea.

A Makefile provides the entrypoint for all the typical commands
a developer
(or a CI server) might want to run during their nor-
mal workflow: make
build , make test , and so on. This is
optional. You could just use
 docker-compose and pytest

directly, but if nothing else, it’s nice to
have all the “common
commands” in a list somewhere, and unlike
documentation, a
Makefile is code so it has less tendency to become out of date.

All the source code for our app, including the domain model,
the
Flask app, and infrastructure code, lives in a Python pack-
age inside
src,
which we install using pip install -e and
the setup.py file. This makes
imports easy. Currently, the struc-
ture within this module is totally flat,
but for a more complex

1

2

3

project, you’d expect to grow a folder hierarchy
that includes
domain_model/, infrastructure/, services/, and api/.

Tests live in their own folder. Subfolders distinguish different
test
types and allow you to run them separately. We can keep
shared fixtures
(conftest.py) in the main tests folder and nest
more specific ones if we
wish. This is also the place to keep
pytest.ini.

TIP

The pytest docs are really good on test layout and importability.

Let’s look at a few of these files and concepts in more detail.

Env Vars, 12-Factor, and Config,

Inside and Outside Containers

The basic problem we’re trying to solve here is that we need different
config settings for the following:

Running code or tests directly from your own dev machine, per-
haps
talking to mapped ports from Docker containers

https://oreil.ly/QVb9Q

Running on the containers themselves, with “real” ports and
hostnames
Different container environments (dev, staging, prod, and so on)

Configuration through environment variables as suggested by the
12-
factor manifesto will solve this problem,
but concretely, how do we
implement it in our code and our containers?

Config.py

Whenever our application code needs access to some config, it’s go-
ing to
get it from a file called config.py. Here are a couple of examples
from our
app:

Sample config functions (src/allocation/config.py)

import os

def get_postgres_uri():

 host = os.environ.get('DB_HOST', 'localhost')

 port = 54321 if host == 'localhost' else 5432

 password = os.environ.get('DB_PASSWORD', 'abc

 user, db_name = 'allocation', 'allocation'

 return f"postgresql://{user}:{password}@{host

https://12factor.net/config

def get_api_url():

 host = os.environ.get('API_HOST', 'localhost

 port = 5005 if host == 'localhost' else 80

 return f"http://{host}:{port}"

We use functions for getting the current config, rather than con-
stants
available at import time, because that allows client code
to modify
 os.environ if it needs to.

config.py also defines some default settings, designed to work
when
running the code from the developer’s local machine.

An elegant Python package called
environ-config is worth looking
at if
you get tired of hand-rolling your own environment-based config
functions.

TIP

Don’t let this config module become a dumping ground that is full of things only
vaguely related to config and that is then imported all over the place.
Keep things
immutable and modify them only via environment variables.
If you decide to use a
bootstrap script,
you can make it the only place (other than tests) that config is im-

ported to.

4

https://calibre-pdf-anchor.a/#a1827
https://github.com/hynek/environ-config

Docker-Compose and Containers
Config

We use a lightweight Docker container orchestration tool called dock-
er-compose.
It’s main configuration is via a YAML file (sigh):

docker-compose config file (docker-compose.yml)

version: "3"

services:

 app:

 build:

 context: .

 dockerfile: Dockerfile

 depends_on:

 - postgres

 environment:

 - DB_HOST=postgres

 - DB_PASSWORD=abc123

 - API_HOST=app

 - PYTHONDONTWRITEBYTECODE=1

 volumes:

 - ./src:/src

 - ./tests:/tests

 ports:

5

 - "5005:80"

 postgres:

 image: postgres:9.6

 environment:

 - POSTGRES_USER=allocation

 - POSTGRES_PASSWORD=abc123

 ports:

 - "54321:5432"

In the docker-compose file, we define the different services
(containers) that we need for our app. Usually one main image
contains all our code, and we can use it to run our API, our
tests,
or any other service that needs access to the domain
model.

You’ll probably have other infrastructure services, including a
database.
In production you might not use containers for this;

you might have a cloud
provider instead, but docker-compose
gives us a way of producing a
similar service for dev or CI.

The environment stanza lets you set the environment vari-
ables for your
containers, the hostnames and ports as seen
from inside the Docker cluster.
If you have enough containers

that information starts to be duplicated in
these sections, you
can use environment_file instead. We usually call
ours
container.env.

Inside a cluster, docker-compose sets up networking such that
containers are
available to each other via hostnames named
after their service name.

Pro tip: if you’re mounting volumes to share source folders be-
tween your
local dev machine and the container, the
PYTHONDONTWRITEBYTECODE environment variable
tells
Python to not write .pyc files, and that will save you from
having
millions of root-owned files sprinkled all over your local filesys-
tem,
being all annoying to delete and causing weird Python
compiler errors besides.

Mounting our source and test code as volumes means we
don’t need to rebuild
our containers every time we make a code
change.

The ports section allows us to expose the ports from inside
the containers
to the outside world —these correspond to the
default ports we set
in config.py.

6

NOTE

Inside Docker, other containers are available through hostnames named after
their
service name. Outside Docker, they are available on localhost , at the
port de-
fined in the ports section.

Installing Your Source as a Package

All our application code (everything except tests, really) lives inside
an
src folder:

The src folder

├── src

│ ├── allocation

│ │ ├── config.py

│ │ └── ...

│ └── setup.py

Subfolders define top-level module names. You can have multi-
ple if you like.

And setup.py is the file you need to make it pip-installable,

shown next.

pip-installable modules in three lines (src/setup.py)

from setuptools import setup

setup(

 name='allocation',

 version='0.1',

 packages=['allocation'],

)

That’s all you need. packages= specifies the names of subfolders
that you
want to install as top-level modules. The name entry is just
cosmetic, but
it’s required. For a package that’s never actually going
to hit PyPI, it’ll
do fine.

Dockerfile

Dockerfiles are going to be very project-specific, but here are a few
key stages
you’ll expect to see:

Our Dockerfile (Dockerfile)

FROM python:3.8-alpine

7

RUN apk add --no-cache --virtual .build-deps gcc

RUN apk add libpq

COPY requirements.txt /tmp/

RUN pip install -r /tmp/requirements.txt

RUN apk del --no-cache .build-deps

RUN mkdir -p /src

COPY src/ /src/

RUN pip install -e /src

COPY tests/ /tests/

WORKDIR /src

ENV FLASK_APP=allocation/entrypoints/flask_app.py

CMD flask run --host=0.0.0.0 --port=80

Installing system-level dependencies

Installing our Python dependencies (you may want to split out
your dev from
prod dependencies; we haven’t here, for
simplicity)

Copying and installing our source

Optionally configuring a default startup command (you’ll proba-
bly override
this a lot from the command line)

TIP

One thing to note is that we install things in the order of how frequently they
are
likely to change. This allows us to maximize Docker build cache reuse. I
can’t tell
you how much pain and frustration underlies this lesson. For this
and many more
Python Dockerfile improvement tips, check out
“Production-Ready Docker Packag-

ing”.

Tests

Our tests are kept alongside everything else, as shown here:

Tests folder tree

└── tests

 ├── conftest.py

 ├── e2e

 │ └── test_api.py

 ├── integration

 │ ├── test_orm.py

https://pythonspeed.com/docker

 │ └── test_repository.py

 ├── pytest.ini

 └── unit

 ├── test_allocate.py

 ├── test_batches.py

 └── test_services.py

Nothing particularly clever here, just some separation of different test
types
that you’re likely to want to run separately, and some files for
common fixtures,
config, and so on.

There’s no src folder or setup.py in the test folders because we usual-
ly
haven’t needed to make tests pip-installable, but if you have diffi-
culties with
import paths, you might find it helps.

Wrap-Up

These are our basic building blocks:

Source code in an src folder, pip-installable using setup.py
Some Docker config for spinning up a local cluster that mirrors pro-
duction as far as possible
Configuration via environment variables, centralized in a Python
file called config.py, with defaults allowing things to run outside
containers

A Makefile for useful command-line, um, commands

We doubt that anyone will end up with exactly the same solutions we
did, but we hope you
find some inspiration here.

 Splitting out images for production and testing is sometimes a good idea, but
we’ve tended to find that going further and trying to split out different images for dif-
ferent types of application code (e.g., Web API versus pub/sub client) usually ends
up being more trouble than it’s worth; the cost in terms of complexity and longer re-

build/CI times is too high. YMMV.

 A pure-Python alternative to Makefiles is Invoke, worth checking out if everyone
on your team knows Python (or at least knows it better than Bash!).

 “Testing and Packaging” by Hynek Schlawack provides more information on src
folders.

 This gives us a local development setup that “just works” (as much as possible).

You may prefer to fail hard on missing environment variables instead, particularly if

any of the defaults would be insecure in production.

 Harry is a bit YAML-weary. It’s everywhere, and yet he can never remember the
syntax or how it’s supposed to indent.

 On a CI server, you may not be able to expose arbitrary ports reliably, but it’s only
a convenience for local dev. You can find ways of making these port mappings op-
tional (e.g., with docker-compose.override.yml).

 For more setup.py tips, see this article on packaging by Hynek.

1

2

3

4

5

6

7

http://www.pyinvoke.org/
https://hynek.me/articles/testing-packaging
https://oreil.ly/KMWDz

Appendix C. Swapping Out the
Infrastructure: Do Everything with
CSVs

This appendix is intended as a little illustration of the benefits of the
Repository, Unit of Work, and Service Layer patterns. It’s intended to
follow from Chapter 6.

Just as we finish building out our Flask API and getting it ready for re-
lease,
the business comes to us apologetically, saying they’re not
ready to use our API
and asking if we could build a thing that reads
just batches and orders from a couple of
CSVs and outputs a third
CSV with allocations.

Ordinarily this is the kind of thing that might have a team cursing and
spitting
and making notes for their memoirs. But not us! Oh no, we’ve
ensured that
our infrastructure concerns are nicely decoupled from
our domain model and
service layer. Switching to CSVs will be a sim-
ple matter of writing a couple
of new Repository and
UnitOfWork classes, and then we’ll be able to reuse
all of our logic
from the domain layer and the service layer.

Here’s an E2E test to show you how the CSVs flow in and out:

A first CSV test (tests/e2e/test_csv.py)

def test_cli_app_reads_csvs_with_batches_and_orde

 make_csv

):

 sku1, sku2 = random_ref('s1'), random_ref('s2

 batch1, batch2, batch3 = random_ref('b1'), ra

 order_ref = random_ref('o')

 make_csv('batches.csv', [

 ['ref', 'sku', 'qty', 'eta'],

 [batch1, sku1, 100, ''],

 [batch2, sku2, 100, '2011-01-01'],

 [batch3, sku2, 100, '2011-01-02'],

])

 orders_csv = make_csv('orders.csv', [

 ['orderid', 'sku', 'qty'],

 [order_ref, sku1, 3],

 [order_ref, sku2, 12],

])

 run_cli_script(orders_csv.parent)

 expected_output_csv = orders_csv.parent / 'al

 with open(expected_output_csv) as f:

 rows = list(csv.reader(f))

 assert rows == [

 ['orderid', 'sku', 'qty', 'batchref'],

 [order_ref, sku1, '3', batch1],

 [order_ref, sku2, '12', batch2],

]

Diving in and implementing without thinking about repositories and all
that jazz, you might start with something like this:

A first cut of our CSV reader/writer (src/bin/allocate-from-csv)

#!/usr/bin/env python

import csv

import sys

from datetime import datetime

from pathlib import Path

from allocation import model

def load_batches(batches_path):

 batches = []

 with batches_path.open() as inf:

 reader = csv.DictReader(inf)

 for row in reader:

 if row['eta']:

 eta = datetime.strptime(row['eta

 else:

 eta = None

 batches.append(model.Batch(

 ref=row['ref'],

 sku=row['sku'],

 qty=int(row['qty']),

 eta=eta

))

 return batches

def main(folder):

 batches_path = Path(folder) / 'batches.csv'

 orders_path = Path(folder) / 'orders.csv'

 allocations_path = Path(folder) / 'allocation

 batches = load_batches(batches_path)

 with orders_path.open() as inf, allocations_p

 reader = csv.DictReader(inf)

 writer = csv.writer(outf)

 writer.writerow(['orderid', 'sku', 'batch

 for row in reader:

 orderid, sku = row['orderid'], row['s

 qty = int(row['qty'])

 line = model.OrderLine(orderid, sku,

 batchref = model.allocate(line, batch

 writer.writerow([line.orderid, line.s

if __name__ == '__main__':

 main(sys.argv[1])

It’s not looking too bad! And we’re reusing our domain model objects
and our domain service.

But it’s not going to work. Existing allocations need to also be part
of
our permanent CSV storage. We can write a second test to force us
to improve
things:

And another one, with existing allocations (tests/e2e/test_csv.py)

def test_cli_app_also_reads_existing_allocations_

 make_csv

):

 sku = random_ref('s')

 batch1, batch2 = random_ref('b1'), random_ref

 old_order, new_order = random_ref('o1'), rand

 make_csv('batches.csv', [

 ['ref', 'sku', 'qty', 'eta'],

 [batch1, sku, 10, '2011-01-01'],

 [batch2, sku, 10, '2011-01-02'],

])

 make_csv('allocations.csv', [

 ['orderid', 'sku', 'qty', 'batchref'],

 [old_order, sku, 10, batch1],

])

 orders_csv = make_csv('orders.csv', [

 ['orderid', 'sku', 'qty'],

 [new_order, sku, 7],

])

 run_cli_script(orders_csv.parent)

 expected_output_csv = orders_csv.parent / 'al

 with open(expected_output_csv) as f:

 rows = list(csv.reader(f))

 assert rows == [

 ['orderid', 'sku', 'qty', 'batchref'],

 [old_order, sku, '10', batch1],

 [new_order, sku, '7', batch2],

]

And we could keep hacking about and adding extra lines to that
load_batches function,
and some sort of way of tracking and sav-
ing new allocations—but we already have a model for doing that! It’s
called our Repository and Unit of Work patterns.

All we need to do (“all we need to do”) is reimplement those same ab-
stractions, but
with CSVs underlying them instead of a database. And
as you’ll see, it really is relatively straightforward.

Implementing a Repository and Unit
of Work for CSVs

Here’s what a CSV-based repository could look like. It abstracts away
all the
logic for reading CSVs from disk, including the fact that it has
to read two
different CSVs (one for batches and one for allocations),

and it gives us just
the familiar .list() API, which provides the il-
lusion of an in-memory
collection of domain objects:

A repository that uses CSV as its storage mechanism
(src/allocation/service_layer/csv_uow.py)

class CsvRepository(repository.AbstractRepository

 def __init__(self, folder):

 self._batches_path = Path(folder) / 'batc

 self._allocations_path = Path(folder) /

 self._batches = {} # type: Dict[str, mod

 self._load()

 def get(self, reference):

 return self._batches.get(reference)

 def add(self, batch):

 self._batches[batch.reference] = batch

 def _load(self):

 with self._batches_path.open() as f:

 reader = csv.DictReader(f)

 for row in reader:

 ref, sku = row['ref'], row['sku']

 qty = int(row['qty'])

 if row['eta']:

 eta = datetime.strptime(row[

 else:

 eta = None

 self._batches[ref] = model.Batch(

 ref=ref, sku=sku, qty=qty, et

)

 if self._allocations_path.exists() is Fal

 return

 with self._allocations_path.open() as f:

 reader = csv.DictReader(f)

 for row in reader:

 batchref, orderid, sku = row['bat

 qty = int(row['qty'])

 line = model.OrderLine(orderid, s

 batch = self._batches[batchref]

 batch._allocations.add(line)

 def list(self):

 return list(self._batches.values())

And here’s what a UoW for CSVs would look like:

A UoW for CSVs: commit = csv.writer
(src/allocation/service_layer/csv_uow.py)

class CsvUnitOfWork(unit_of_work.AbstractUnitOfWo

 def __init__(self, folder):

 self.batches = CsvRepository(folder)

 def commit(self):

 with self.batches._allocations_path.open(

 writer = csv.writer(f)

 writer.writerow(['orderid', 'sku', 'q

 for batch in self.batches.list():

 for line in batch._allocations:

 writer.writerow(

 [line.orderid, line.sku,

)

 def rollback(self):

 pass

And once we have that, our CLI app for reading and writing batches
and allocations to CSV is pared down to what it should be—a bit
of

code for reading order lines, and a bit of code that invokes our
exist-
ing service layer:

Allocation with CSVs in nine lines (src/bin/allocate-from-csv)

def main(folder):

 orders_path = Path(folder) / 'orders.csv'

 uow = csv_uow.CsvUnitOfWork(folder)

 with orders_path.open() as f:

 reader = csv.DictReader(f)

 for row in reader:

 orderid, sku = row['orderid'], row['s

 qty = int(row['qty'])

 services.allocate(orderid, sku, qty,

Ta-da! Now are y’all impressed or what?

Much love,

Bob and Harry

Appendix D. Repository and Unit of
Work Patterns with Django

Suppose you wanted to use Django instead of SQLAlchemy and
Flask. How
might things look? The first thing is to choose where to in-
stall it. We put it in a separate
package next to our main allocation
code:

├── src

│ ├── allocation

│ │ ├── __init__.py

│ │ ├── adapters

│ │ │ ├── __init__.py

...

│ ├── djangoproject

│ │ ├── alloc

│ │ │ ├── __init__.py

│ │ │ ├── apps.py

│ │ │ ├── migrations

│ │ │ │ ├── 0001_initial.py

│ │ │ │ └── __init__.py

│ │ │ ├── models.py

│ │ │ └── views.py

│ │ ├── django_project

│ │ │ ├── __init__.py

│ │ │ ├── settings.py

│ │ │ ├── urls.py

│ │ │ └── wsgi.py

│ │ └── manage.py

│ └── setup.py

└── tests

 ├── conftest.py

 ├── e2e

 │ └── test_api.py

 ├── integration

 │ ├── test_repository.py

...

TIP

The code for this appendix is in the
appendix_django branch on GitHub:

git clone https://github.com/cosmicpython/code.git

cd code

git checkout appendix_django

Repository Pattern with Django

We used a plug-in called
 pytest-django to help with test
data-
base management.

https://oreil.ly/A-I76
https://github.com/pytest-dev/pytest-django

Rewriting the first repository test was a minimal change—just rewrit-
ing
some raw SQL with a call to the Django ORM/QuerySet
language:

First repository test adapted (tests/integration/test_repository.py)

from djangoproject.alloc import models as django_

@pytest.mark.django_db

def test_repository_can_save_a_batch():

 batch = model.Batch("batch1", "RUSTY-SOAPDISH

 repo = repository.DjangoRepository()

 repo.add(batch)

 [saved_batch] = django_models.Batch.objects.a

 assert saved_batch.reference == batch.referen

 assert saved_batch.sku == batch.sku

 assert saved_batch.qty == batch._purchased_qu

 assert saved_batch.eta == batch.eta

The second test is a bit more involved since it has allocations,
but it is
still made up of familiar-looking Django code:

Second repository test is more involved
(tests/integration/test_repository.py)

@pytest.mark.django_db

def test_repository_can_retrieve_a_batch_with_all

 sku = "PONY-STATUE"

 d_line = django_models.OrderLine.objects.crea

 d_b1 = django_models.Batch.objects.create(

 reference="batch1", sku=sku, qty=100, eta=Non

)

 d_b2 = django_models.Batch.objects.create(

 reference="batch2", sku=sku, qty=100, eta=Non

)

 django_models.Allocation.objects.create(line=

 repo = repository.DjangoRepository()

 retrieved = repo.get("batch1")

 expected = model.Batch("batch1", sku, 100, et

 assert retrieved == expected # Batch.__eq__

 assert retrieved.sku == expected.sku

 assert retrieved._purchased_quantity == expec

 assert retrieved._allocations == {

 model.OrderLine("order1", sku, 12),

 }

Here’s how the actual repository ends up looking:

A Django repository (src/allocation/adapters/repository.py)

class DjangoRepository(AbstractRepository):

 def add(self, batch):

 super().add(batch)

 self.update(batch)

 def update(self, batch):

 django_models.Batch.update_from_domain(ba

 def _get(self, reference):

 return django_models.Batch.objects.filter

 reference=reference

).first().to_domain()

 def list(self):

 return [b.to_domain() for b in django_mod

You can see that the implementation relies on the Django models
having
some custom methods for translating to and from our domain
model.

Custom Methods on Django ORM Classes to
Translate to/from Our Domain Model

1

Those custom methods look something like this:

Django ORM with custom methods for domain model conversion
(src/djangoproject/alloc/models.py)

from django.db import models

from allocation.domain import model as domain_mod

class Batch(models.Model):

 reference = models.CharField(max_length=255)

 sku = models.CharField(max_length=255)

 qty = models.IntegerField()

 eta = models.DateField(blank=True, null=True)

 @staticmethod

 def update_from_domain(batch: domain_model.Ba

 try:

 b = Batch.objects.get(reference=batch

 except Batch.DoesNotExist:

 b = Batch(reference=batch.reference)

 b.sku = batch.sku

 b.qty = batch._purchased_quantity

 b.eta = batch.eta

 b.save()

 b.allocation_set.set(

 Allocation.from_domain(l, b)

 for l in batch._allocations

)

 def to_domain(self) -> domain_model.Batch:

 b = domain_model.Batch(

 ref=self.reference, sku=self.sku, qty

)

 b._allocations = set(

 a.line.to_domain()

 for a in self.allocation_set.all()

)

 return b

class OrderLine(models.Model):

 #...

For value objects, objects.get_or_create can work, but
for entities,
you probably need an explicit try-get/except to han-
dle the upsert.

We’ve shown the most complex example here. If you do decide
to do this,
be aware that there will be boilerplate! Thankfully it’s
not very
complex boilerplate.

Relationships also need some careful, custom handling.

2

https://calibre-pdf-anchor.a/#a1913

NOTE

As in Chapter 2, we use dependency inversion.
The ORM (Django) depends on the
model and not the other way around.

Unit of Work Pattern with Django

The tests don’t change too much:

Adapted UoW tests (tests/integration/test_uow.py)

def insert_batch(ref, sku, qty, eta):

 django_models.Batch.objects.create(reference=

def get_allocated_batch_ref(orderid, sku):

 return django_models.Allocation.objects.get(

 line__orderid=orderid, line__sku=sku

).batch.reference

@pytest.mark.django_db(transaction=True)

def test_uow_can_retrieve_a_batch_and_allocate_to

 insert_batch('batch1', 'HIPSTER-WORKBENCH', 1

 uow = unit_of_work.DjangoUnitOfWork()

 with uow:

 batch = uow.batches.get(reference='batch1

 line = model.OrderLine('o1', 'HIPSTER-WOR

 batch.allocate(line)

 uow.commit()

 batchref = get_allocated_batch_ref('o1', 'HIP

 assert batchref == 'batch1'

@pytest.mark.django_db(transaction=True)

def test_rolls_back_uncommitted_work_by_default()

 ...

@pytest.mark.django_db(transaction=True)

def test_rolls_back_on_error():

 ...

Because we had little helper functions in these tests, the actual
main bodies of the tests are pretty much the same as they were
with
SQLAlchemy.

The pytest-django

mark.django_db(transaction=True) is required to
test
our custom transaction/rollback behaviors.

And the implementation is quite simple, although it took me a few
tries to find which invocation of Django’s transaction magic
would

work:

UoW adapted for Django
(src/allocation/service_layer/unit_of_work.py)

class DjangoUnitOfWork(AbstractUnitOfWork):

 def __enter__(self):

 self.batches = repository.DjangoRepositor

 transaction.set_autocommit(False)

 return super().__enter__()

 def __exit__(self, *args):

 super().__exit__(*args)

 transaction.set_autocommit(True)

 def commit(self):

 for batch in self.batches.seen:

 self.batches.update(batch)

 transaction.commit()

 def rollback(self):

 transaction.rollback()

set_autocommit(False) was the best way to tell Django
to stop
automatically committing each ORM operation immedi-

ately, and to
begin a transaction.

Then we use the explicit rollback and commits.

One difficulty: because, unlike with SQLAlchemy, we’re not
in-
strumenting the domain model instances themselves, the
commit() command needs to explicitly go through all the
ob-
jects that have been touched by every repository and manually
update them back to the ORM.

API: Django Views Are Adapters

The Django views.py file ends up being almost identical to the
old
flask_app.py, because our architecture means it’s a very
thin wrapper
around our service layer (which didn’t change at all, by the way):

Flask app → Django views (src/djangoproject/alloc/views.py)

os.environ['DJANGO_SETTINGS_MODULE'] = 'djangopro

django.setup()

@csrf_exempt

def add_batch(request):

 data = json.loads(request.body)

 eta = data['eta']

 if eta is not None:

 eta = datetime.fromisoformat(eta).date()

 services.add_batch(

 data['ref'], data['sku'], data['qty'], et

 unit_of_work.DjangoUnitOfWork(),

)

 return HttpResponse('OK', status=201)

@csrf_exempt

def allocate(request):

 data = json.loads(request.body)

 try:

 batchref = services.allocate(

 data['orderid'],

 data['sku'],

 data['qty'],

 unit_of_work.DjangoUnitOfWork(),

)

 except (model.OutOfStock, services.InvalidSku

 return JsonResponse({'message': str(e)},

 return JsonResponse({'batchref': batchref}, s

Why Was This All So Hard?

OK, it works, but it does feel like more effort than Flask/SQLAlchemy.

Why is
that?

The main reason at a low level is because Django’s ORM doesn’t
work in the same
way. We don’t have an equivalent of the SQLAlche-
my classical mapper, so our
 ActiveRecord and our domain model
can’t be the same object. Instead we have to
build a manual transla-
tion layer behind the repository. That’s more
work (although once it’s
done, the ongoing maintenance burden shouldn’t be too
high).

Because Django is so tightly coupled to the database, you have to
use helpers
like pytest-django and think carefully about test
databases, right from
the very first line of code, in a way that we didn’t
have to when we started
out with our pure domain model.

But at a higher level, the entire reason that Django is so great
is that
it’s designed around the sweet spot of making it easy to build CRUD
apps with minimal boilerplate. But the entire thrust of our book is
about
what to do when your app is no longer a simple CRUD app.

At that point, Django starts hindering more than it helps. Things like
the
Django admin, which are so awesome when you start out, be-
come actively dangerous
if the whole point of your app is to build a
complex set of rules and modeling
around the workflow of state
changes. The Django admin bypasses all of that.

What to Do If You Already Have
Django

So what should you do if you want to apply some of the patterns in
this book
to a Django app? We’d say the following:

The Repository and Unit of Work patterns are going to be quite a
lot of work. The
main thing they will buy you in the short term is
faster unit tests, so
evaluate whether that benefit feels worth it in
your case. In the longer term, they
decouple your app from Django
and the database, so if you anticipate wanting
to migrate away
from either of those, Repository and UoW are a good idea.

The Service Layer pattern might be of interest if you’re seeing a lot
of duplication in
your views.py. It can be a good way of thinking
about your use cases separately from your web endpoints.

You can still theoretically do DDD and domain modeling with Djan-
go models,
tightly coupled as they are to the database; you may be
slowed by
migrations, but it shouldn’t be fatal. So as long as your
app is not too
complex and your tests not too slow, you may be
able to get something out of
the fat models approach: push as
much logic down to your models as possible,
and apply patterns
like Entity, Value Object, and Aggregate. However, see
the follow-
ing caveat.

With that said,
word
in the Django community is that people find that
the fat models approach runs into
scalability problems of its own, par-
ticularly around managing interdependencies
between apps. In those
cases, there’s a lot to be said for extracting out a
business logic or do-
main layer to sit between your views and forms and
your models.py,

which you can then keep as minimal as possible.

Steps Along the Way

Suppose you’re working on a Django project that you’re not sure is
going
to get complex enough to warrant the patterns we recommend,

but you still
want to put a few steps in place to make your life easier,
both in the medium
term and if you want to migrate to some of our
patterns later. Consider the following:

One piece of advice we’ve heard is to put a logic.py into every
Django app from day one. This gives you a place to put business
logic, and to keep your
forms, views, and models free of business
logic. It can become a stepping-stone
for moving to a fully decou-
pled domain model and/or service layer later.
A business-logic layer might start out working with Django model
objects and only later become fully decoupled from the framework
and work on
plain Python data structures.

https://oreil.ly/Nbpjj

For the read side, you can get some of the benefits of CQRS by
putting reads
into one place, avoiding ORM calls sprinkled all over
the place.

When separating out modules for reads and modules for domain
logic, it
may be worth decoupling yourself from the Django apps
hierarchy. Business
concerns will cut across them.

NOTE

We’d like to give a shout-out to David Seddon and Ashia Zawaduk for
talking
through some of the ideas in this appendix. They did their best to
stop us from say-
ing anything really stupid about a topic we don’t really
have enough personal expe-
rience of, but they may have failed.

For more thoughts and actual lived experience dealing with existing
applications, refer to the epilogue.

 The DRY-Python project people have built a tool called mappers that looks like it
might help minimize boilerplate for this sort of thing.

 @mr-bo-jangles suggested you might be able to use update_or_create ,

but that’s beyond our Django-fu.

1

2

https://mappers.readthedocs.io/en/latest
https://oreil.ly/HTq1r

Appendix E. Validation

Whenever we’re teaching and talking about these techniques, one
question that
comes up over and over is “Where should I do valida-
tion? Does that belong with
my business logic in the domain model, or
is that an infrastructural concern?”

As with any architectural question, the answer is: it depends!

The most important consideration is that we want to keep our code
well separated
so that each part of the system is simple. We don’t
want to clutter our code
with irrelevant detail.

What Is Validation, Anyway?

When people use the word validation, they usually mean a process
whereby they
test the inputs of an operation to make sure that they
match certain criteria.
Inputs that match the criteria are considered
valid, and inputs that don’t
are invalid.

If the input is invalid, the operation can’t continue but should exit with
some kind of error. In other words, validation is about creating pre-
conditions. We find it useful
to separate our preconditions into three
subtypes: syntax, semantics, and
pragmatics.

Validating Syntax

In linguistics, the syntax of a language is the set of rules that govern
the
structure of grammatical sentences. For example, in English, the
sentence
“Allocate three units of TASTELESS-LAMP to order twenty-
seven” is grammatically
sound, while the phrase “hat hat hat hat hat
hat wibble” is not. We can describe
grammatically correct sentences
as well formed.

How does this map to our application? Here are some examples of
syntactic rules:

An Allocate command must have an order ID, a SKU, and a
quantity.

A quantity is a positive integer.
A SKU is a string.

These are rules about the shape and structure of incoming data. An
Allocate
command without a SKU or an order ID isn’t a valid mes-
sage. It’s the equivalent
of the phrase “Allocate three to.”

We tend to validate these rules at the edge of the system. Our rule of
thumb is
that a message handler should always receive only a mes-
sage that is well-formed
and contains all required information.

One option is to put your validation logic on the message type itself:

Validation on the message class (src/allocation/commands.py)

from schema import And, Schema, Use

@dataclass

class Allocate(Command):

 _schema = Schema({

 'orderid': int,

 sku: str,

 qty: And(Use(int), lambda n: n > 0)

 }, ignore_extra_keys=True)

 orderid: str

 sku: str

 qty: int

 @classmethod

 def from_json(cls, data):

 data = json.loads(data)

 return cls(**_schema.validate(data))

The schema library lets us
describe the structure and valida-
tion of our messages in a nice declarative way.

https://pypi.org/project/schema

The from_json method reads a string as JSON and turns it
into our message
type.

This can get repetitive, though, since we need to specify our fields
twice,
so we might want to introduce a helper library that can unify the
validation and
declaration of our message types:

A command factory with schema (src/allocation/commands.py)

def command(name, **fields):

 schema = Schema(And(Use(json.loads), fields),

 cls = make_dataclass(name, fields.keys())

 cls.from_json = lambda s: cls(**schema.valida

 return cls

def greater_than_zero(x):

 return x > 0

quantity = And(Use(int), greater_than_zero)

Allocate = command(

 orderid=int,

 sku=str,

 qty=quantity

)

AddStock = command(

 sku=str,

 qty=quantity

The command function takes a message name, plus kwargs
for the fields of
the message payload, where the name of the
kwarg is the name of the field and
the value is the parser.

We use the make_dataclass function from the dataclass
module to dynamically
create our message type.

We patch the from_json method onto our dynamic
dataclass.

We can create reusable parsers for quantity, SKU, and so on to
keep things DRY.

Declaring a message type becomes a one-liner.

This comes at the expense of losing the types on your dataclass, so
bear that
trade-off in mind.

Postel’s Law and the Tolerant Reader
Pattern

https://calibre-pdf-anchor.a/#a1974
https://calibre-pdf-anchor.a/#a1975

Postel’s law, or the robustness principle, tells us, “Be liberal in what
you
accept, and conservative in what you emit.” We think this applies
particularly
well in the context of integration with our other systems.

The idea here is
that we should be strict whenever we’re sending
messages to other systems, but
as lenient as possible when we’re
receiving messages from others.

For example, our system could validate the format of a SKU. We’ve
been using
made-up SKUs like UNFORGIVING-CUSHION and
MISBEGOTTEN-POUFFE . These follow
a simple pattern: two words,

separated by dashes, where the second word is the
type of product
and the first word is an adjective.

Developers love to validate this kind of thing in their messages, and
reject
anything that looks like an invalid SKU. This causes horrible
problems down the
line when some anarchist releases a product
named COMFY-CHAISE-LONGUE or when
a snafu at the supplier
results in a shipment of CHEAP-CARPET-2 .

Really, as the allocation system, it’s none of our business what the
format of
a SKU might be. All we need is an identifier, so we can sim-
ply describe it as a
string. This means that the procurement system
can change the format whenever
they like, and we won’t care.

This same principle applies to order numbers, customer phone num-
bers, and much
more. For the most part, we can ignore the internal
structure of strings.

Similarly, developers love to validate incoming messages with tools
like JSON
Schema, or to build libraries that validate incoming mes-
sages and share them
among systems. This likewise fails the robust-
ness test.

Let’s imagine, for example, that the procurement system adds new
fields to the
 ChangeBatchQuantity message that record the rea-
son for the change and the
email of the user responsible for the
change.

Since these fields don’t matter to the allocation service, we should
simply
ignore them. We can do that in the schema library by passing
the keyword arg
 ignore_extra_keys=True .

This pattern, whereby we extract only the fields we care about and do
minimal
validation of them, is the Tolerant Reader pattern.

TIP

Validate as little as possible. Read only the fields you need, and don’t
overspecify
their contents. This will help your system stay robust when other
systems change
over time. Resist the temptation to share message
definitions between systems: in-
stead, make it easy to define the data you
depend on. For more info, see Martin

Fowler’s article on the
Tolerant Reader pattern.

IS POSTEL ALWAYS RIGHT?

Mentioning Postel can be quite triggering to some people. They will
tell you
that Postel is the precise reason that everything on the inter-
net is broken and
we can’t have nice things. Ask Hynek about SSLv3

one day.

We like the Tolerant Reader approach in the particular context of
event-based
integration between services that we control, because it
allows for independent
evolution of those services.

If you’re in charge of an API that’s open to the public on the big bad
internet, there might be good reasons to be more conservative about
what
inputs you allow.

Validating at the Edge

https://oreil.ly/YL_La
https://oreil.ly/bzLmb

Earlier, we said that we want to avoid cluttering our code with irrele-
vant
details. In particular, we don’t want to code defensively inside
our domain model.
Instead, we want to make sure that requests are
known to be valid before our
domain model or use-case handlers see
them. This helps our code stay clean
and maintainable over the long
term. We sometimes refer to this as validating
at the edge of the sys-
tem.

In addition to keeping your code clean and free of endless checks
and asserts,
bear in mind that invalid data wandering through your
system is a time bomb;
the deeper it gets, the more damage it can do,

and the fewer tools
you have to respond to it.

Back in Chapter 8, we said that the message bus was a great place to
put
cross-cutting concerns, and validation is a perfect example of
that. Here’s how
we might change our bus to perform validation for
us:

Validation

class MessageBus:

 def handle_message(self, name: str, body: str

 try:

 message_type = next(mt for mt in EVEN

 message = message_type.from_json(body

 self.handle([message])

 except StopIteration:

 raise KeyError(f"Unknown message name

 except ValidationError as e:

 logging.error(

 f'invalid message of type {name}\

 f'{body}\n'

 f'{e}'

)

 raise e

Here’s how we might use that method from our Flask API endpoint:

API bubbles up validation errors (src/allocation/flask_app.py)

@app.route("/change_quantity", methods=['POST'])

def change_batch_quantity():

 try:

 bus.handle_message('ChangeBatchQuantity',

 except ValidationError as e:

 return bad_request(e)

 except exceptions.InvalidSku as e:

 return jsonify({'message': str(e)}), 400

def bad_request(e: ValidationError):

 return e.code, 400

And here’s how we might plug it in to our asynchronous message
processor:

Validation errors when handling Redis messages
(src/allocation/redis_pubsub.py)

def handle_change_batch_quantity(m, bus: messageb

 try:

 bus.handle_message('ChangeBatchQuantity',

 except ValidationError:

 print('Skipping invalid message')

 except exceptions.InvalidSku as e:

 print(f'Unable to change stock for missin

Notice that our entrypoints are solely concerned with how to get a
message from
the outside world and how to report success or failure.

Our message bus takes
care of validating our requests and routing
them to the correct handler, and
our handlers are exclusively focused
on the logic of our use case.

TIP

When you receive an invalid message, there’s usually little you can do but
log the
error and continue. At MADE we use metrics to count the number of
messages a
system receives, and how many of those are successfully
processed, skipped, or
invalid. Our monitoring tools will alert us if we
see spikes in the numbers of bad

messages.

Validating Semantics

While syntax is concerned with the structure of messages, semantics
is the study
of meaning in messages. The sentence “Undo no dogs
from ellipsis four” is
syntactically valid and has the same structure as
the sentence “Allocate one
teapot to order five,"” but it is
meaningless.

We can read this JSON blob as an Allocate command but can’t
successfully
execute it, because it’s nonsense:

A meaningless message

{

 "orderid": "superman",

 "sku": "zygote",

 "qty": -1

}

We tend to validate semantic concerns at the message-handler layer
with a kind
of contract-based programming:

Preconditions (src/allocation/ensure.py)

"""

This module contains preconditions that we apply

"""

class MessageUnprocessable(Exception):

 def __init__(self, message):

 self.message = message

class ProductNotFound(MessageUnprocessable):

 """"

 This exception is raised when we try to perfor

 that doesn't exist in our database.

 """"

 def __init__(self, message):

 super().__init__(message)

 self.sku = message.sku

def product_exists(event, uow):

 product = uow.products.get(event.sku)

 if product is None:

 raise ProductNotFound(event)

We use a common base class for errors that mean a message
is invalid.

Using a specific error type for this problem makes it easier to
report on
and handle the error. For example, it’s easy to map
ProductNotFound to a 404
in Flask.

product_exists is a precondition. If the condition is
False , we raise an
error.

This keeps the main flow of our logic in the service layer clean and
declarative:

Ensure calls in services (src/allocation/services.py)

services.py

from allocation import ensure

def allocate(event, uow):

 line = mode.OrderLine(event.orderid, event.sk

 with uow:

 ensure.product_exists(uow, event)

 product = uow.products.get(line.sku)

 product.allocate(line)

 uow.commit()

We can extend this technique to make sure that we apply messages
idempotently.
For example, we want to make sure that we don’t insert
a batch of stock more
than once.

If we get asked to create a batch that already exists, we’ll log a warn-
ing and
continue to the next message:

Raise SkipMessage exception for ignorable events
(src/allocation/services.py)

class SkipMessage (Exception):

 """"

 This exception is raised when a message can't

 incorrect behavior. For example, we might rec

 times, or we might receive a message that is

 """"

 def __init__(self, reason):

 self.reason = reason

def batch_is_new(self, event, uow):

 batch = uow.batches.get(event.batchid)

 if batch is not None:

 raise SkipMessage(f"Batch with id {event.

Introducing a SkipMessage exception lets us handle these cases
in a generic
way in our message bus:

The bus now knows how to skip (src/allocation/messagebus.py)

class MessageBus:

 def handle_message(self, message):

 try:

 ...

 except SkipMessage as e:

 logging.warn(f"Skipping message {messa

There are a couple of pitfalls to be aware of here. First, we need to be
sure
that we’re using the same UoW that we use for the main logic of
our
use case. Otherwise, we open ourselves to irritating concurrency
bugs.

Second, we should try to avoid putting all our business logic into
these
precondition checks. As a rule of thumb, if a rule can be tested

inside our
domain model, then it should be tested in the domain
model.

Validating Pragmatics

Pragmatics is the study of how we understand language in context.
After we have
parsed a message and grasped its meaning, we still
need to process it in
context. For example, if you get a comment on a
pull request saying, “I think
this is very brave,” it may mean that the
reviewer admires your courage—unless
they’re British, in which case,

they’re trying to tell you that what you’re doing
is insanely risky, and
only a fool would attempt it. Context is everything.

VALIDATION RECAP

Validation means different things to different people

When talking about validation, make sure you’re clear about
what you’re
validating.
We find it useful to think about syntax,

semantics, and pragmatics: the
structure of messages, the
meaningfulness of messages, and the business
logic govern-
ing our response to messages.

Validate at the edge when possible

Validating required fields and the permissible ranges of num-
bers is boring,
and we want to keep it out of our nice clean
codebase. Handlers should always
receive only valid
messages.

Only validate what you require

Use the Tolerant Reader pattern: read only the fields your ap-
plication needs
and don’t overspecify their internal structure.

Treating fields as opaque
strings buys you a lot of flexibility.

Spend time writing helpers for validation

Having a nice declarative way to validate incoming messages
and apply
preconditions to your handlers will make your code-

base much cleaner.
It’s worth investing time to make boring
code easy to maintain.

Locate each of the three types of validation in the right place

Validating syntax can happen on message classes, validating
semantics can happen in the service layer or on the message
bus,
and validating pragmatics belongs in the domain model.

TIP

Once you’ve validated the syntax and semantics of your commands
at the edges of
your system, the domain is the place for the rest
of your validation. Validation of
pragmatics is often a core part
of your business rules.

In software terms, the pragmatics of an operation are usually man-
aged by the
domain model. When we receive a message like “allo-
cate three million units of
 SCARCE-CLOCK to order 76543,” the mes-
sage is syntactically valid and
semantically valid, but we’re unable to
comply because we don’t have the stock
available.

Index

Symbols

@abc.abstractmethod, The Repository in the Abstract

A

abstract base classes (ABCs)

ABC for the repository, The Repository in the Abstract
defining for notifications, Define the Abstract and Concrete
Implementations
switching to typing.Protocol, Option 3: The UoW Publishes
Events to the Message Bus
using duck typing and protocols instead of, The Repository in
the Abstract
using for ports, What Is a Port and What Is an Adapter, in
Python?

abstract methods, The Repository in the Abstract
abstractions, A Brief Interlude: On Coupling and Abstractions-
Wrap-Up

abstracting state to aid testability, Abstracting State Aids Testa-
bility-Abstracting State Aids Testability

AbstractRepository, service function depending on, A Typical
Service Function
AbstractUnitOfWork, Unit of Work and Its Context Manager
choosing right abstraction, Choosing the Right Abstraction(s)-
Implementing Our Chosen Abstractions
explicit dependencies are more abstract, Aren’t Explicit Depen-
dencies Totally Weird and Java-y?

implementing chosen abstraction, Implementing Our Chosen
Abstractions-Wrap-Up

edge-to-edge testing with fakes and dependency injection,

Testing Edge to Edge with Fakes and Dependency Injection-
Testing Edge to Edge with Fakes and Dependency Injection
not using mock.patch for testing, Why Not Just Patch It Out?

simplifying interface between business logic and I/O, Wrap-Up
using to reduce coupling, A Brief Interlude: On Coupling and
Abstractions

adapters
building adapter and doing dependency injection for it, Building
an Adapter “Properly”: A Worked Example-Wrap-Up

defining abstract and concrete implementations, Define the
Abstract and Concrete Implementations

defined, What Is a Port and What Is an Adapter, in Python?

Django views, API: Django Views Are Adapters

exercise for the reader, Figure Out How to Integration Test the
Real Thing
ports-and-adapters inspired patterns, Part I Recap
putting into folder, Putting Things in Folders to See Where It All
Belongs

Aggregate pattern, What Is an Aggregate?

aggregates
about, What Is an Aggregate?

acting as consistency boundaries, Discussion: Events, Com-
mands, and Error Handling
and consistency boundaries recap, Wrap-Up
changing multiple aggregates in a request, Wrap-Up
choosing an aggregrate, Choosing an Aggregate-Choosing an
Aggregate
exercise for the reader, What About Performance?

History aggregate recording orders and raising domain events,

Discussion: Events, Commands, and Error Handling
identifying aggregates and bounded contexts, Identifying Aggre-
gates and Bounded Contexts-An Event-Driven Approach to Go
to Microservices via Strangler Pattern
one aggregrate = one repository, One Aggregate = One
Repository
optimistic concurrency with version numbers, Optimistic Con-
currency with Version Numbers-Implementation Options for Ver-

sion Numbers
performance and, What About Performance?

Product aggregate, Aggregates and Consistency Boundaries
pros and cons or trade-offs, Wrap-Up
query on repository returning single aggregate, Implementation
raising events about, Discussion: Events, Commands, and Error
Handling
repository keeping track of aggregates passing through it,
Option 3: The UoW Publishes Events to the Message Bus
testing for data integrity rules, Testing for Our Data Integrity
Rules-Pessimistic Concurrency Control Example: SELECT
FOR UPDATE
testing Product object to raise events, The Model Raises Events
UoW collecting events from and passing them to message bus,

Wrap-Up
allocate service

allocating against all batches with, Choosing an Aggregate
moving to be a method on Product aggregate, Choosing an
Aggregate

Allocated event, Our New Outgoing Event
AllocationRequired event, Refactoring Service Functions to Mes-
sage Handlers

passing to services.allocate, Imagining an Architecture Change:

Everything Will Be an Event Handler

Anemic Domain anti-pattern, The DIP in Action
APIs

adding API for adding a batch, Carrying the Improvement
Through to the E2E Tests
Django views as adapters, API: Django Views Are Adapters
end-to-end test of allocate API, A First End-to-End Test
modifying API to work with events, A Temporary Ugly Hack: The
Message Bus Has to Return Results
using repository directly in API endpoint, What Is the Trade-Off?
without Unit of Work pattern, talking directly to three layers, Unit
of Work Pattern

application services, Why Is Everything Called a Service?

architecture, summary diagram and table, Summary Diagram and
Table-Summary Diagram and Table
asynchronous messaging, temporal decoupling with, The Alterna-
tive: Temporal Decoupling Using Asynchronous Messaging
atomic operations, Unit of Work Pattern

Unit of Work as abstraction over, Wrap-Up
using Unit of Work to group operations into atomic unit,
Examples: Using UoW to Group Multiple Operations into an
Atomic Unit-Example 2: Change Batch Quantity

B

Ball of Mud pattern, A Brief Interlude: On Coupling and
Abstractions

distributed ball of mud and thinking in nouns, Distributed Ball of
Mud, and Thinking in Nouns-Distributed Ball of Mud, and Think-
ing in Nouns
separating responsibilities, Separating Entangled
Responsibilities

BatchCreated event, Refactoring Service Functions to Message
Handlers

services.add_batch as handler for, Imagining an Architecture
Change: Everything Will Be an Event Handler

batches
allocating against all batches using domain service, Choosing
an Aggregate
asking Product to allocate against, Choosing an Aggregate
batch quantities changed means deallocate and reallocate, A
New Requirement Leads Us to a New Architecture
collection of, Choosing an Aggregate

BatchQuantityChanged event
implementing, Our New Event
invoking handler change_batch_quantity, Imagining an Architec-
ture Change: Everything Will Be an Event Handler

Bernhardt, Gary, Implementing Our Chosen Abstractions
bootstrapping, Dependency Injection (and Bootstrapping)

bootstrapping script, capabilities of, A Bootstrap Script
changing notifications dependency in bootstrap script, Define
the Abstract and Concrete Implementations
dependency injection and bootstrap recap, Wrap-Up
dependency injection with, Aren’t Explicit Dependencies Totally
Weird and Java-y?

initializing dependency injection in tests, Initializing DI in Our
Tests
using in entrypoints, Using Bootstrap in Our Entrypoints
using to build message bus that talks to real notification class,

Figure Out How to Integration Test the Real Thing
bounded contexts, Choosing an Aggregate

identifying aggregates and, Identifying Aggregates and Bound-
ed Contexts-An Event-Driven Approach to Go to Microservices
via Strangler Pattern
product concept and, Choosing an Aggregate

business logic
abstractions simplifying interface with messy I/O, Wrap-Up
separating from state in code, Implementing Our Chosen
Abstractions

business logic layer, What Is a Domain Model?
business rules

invariants, concurrency, and locks, Invariants, Concurrency, and
Locks

invariants, constraints, and consistency, Invariants, Constraints,

and Consistency

C

Celery tool, The Message Bus Maps Events to Handlers
change_batch_quantity

handler tests for, Test-Driving a New Handler
implementation, handler delegating to model layer,
Implementation

choreography, Single Responsibility Principle
classes, dependency injection using, An Alternative Using Classes
classical mapping, Inverting the Dependency: ORM Depends on
Model
closures

dependency injection using, Preparing Handlers: Manual DI
with Closures and Partials
difference from partial functions, Preparing Handlers: Manual DI
with Closures and Partials

cohesion, high, between coupled elements, A Brief Interlude: On
Coupling and Abstractions
collaborators, The Unit of Work Collaborates with the Repository
collections, What Is an Aggregate?

Command Handler pattern, Wrap-Up

command-query responsibility segregation (CQRS), Command-
Query Responsibility Segregation (CQRS)-Wrap-Up

building read-only views into our data, Hold On to Your Lunch,

Folks
changing read model implementation to use Redis, Changing
Our Read Model Implementation Is Easy
denormalized copy of your data optimized for read operations,

Time to Completely Jump the Shark
domain model not optimized for read operations, Your Domain
Model Is Not Optimized for Read Operations
domain models for writing, Domain Models Are for Writing
full-blown CQRS versus simpler options, Wrap-Up
Post/Redirect/Get pattern and CQS, Post/Redirect/Get and
CQS
read side and write side, Most Users Aren’t Going to Buy Your
Furniture
reads, Most Users Aren’t Going to Buy Your Furniture

consistency of, Most Users Aren’t Going to Buy Your
Furniture

rebuilding view model from scratch, Updating a Read Model Ta-
ble Using an Event Handler
SELECT N+1 and other performance problems, SELECT N+1

and Other Performance Considerations

simple view using existing repository, “Obvious” Alternative 1:

Using the Existing Repository
testing views, Testing CQRS Views
trade-offs for view model options, Wrap-Up
updating read model table using event handler, Time to Com-
pletely Jump the Shark
view that uses the ORM, “Obvious” Alternative 2: Using the
ORM

commands, Commands and Command Handler-Wrap-Up
command flow to reserve stock, confirm reservation, dispatch
goods, and make customer VIP, Distributed Ball of Mud, and
Thinking in Nouns
command flow when warehouse knows stock is damaged,

Distributed Ball of Mud, and Thinking in Nouns
command flow with error, Error Handling in Distributed Systems
command handler logic in message bus, Message Bus Is Given
Handlers at Runtime
events versus, Commands and Events-Commands and Events
events, commands, and error handling, Discussion: Events,

Commands, and Error Handling-Discussion: Events, Com-
mands, and Error Handling

recovering from errors synchronously, Recovering from Er-
rors Synchronously

exception handling, Differences in Exception Handling

handlers for, Differences in Exception Handling
in our system now, Commands and Events
program output as list of commands, Choosing the Right
Abstraction(s)

splitting commands and events, trade-offs, Wrap-Up
commits

commit method, The Real Unit of Work Uses SQLAlchemy
Sessions
explicit tests for, Explicit Tests for Commit/Rollback Behavior
explicit versus implicit, Explicit Versus Implicit Commits

component diagram at end of Part One, Part I Recap
composition over inheritance in TrackingRepository wrapper class,

Option 3: The UoW Publishes Events to the Message Bus
composition root, Dependency Injection (and Bootstrapping),

Aren’t Explicit Dependencies Totally Weird and Java-y?

concurrency, Invariants, Concurrency, and Locks
aggregates and concurrency issues, Wrap-Up
allowing for greatest degree of, What Is an Aggregate?

enforcing rules using database transactions, Enforcing Concur-
rency Rules by Using Database Transaction Isolation Levels
integration test for, Testing for Our Data Integrity Rules
not provided by message bus implementation, The Message
Bus Maps Events to Handlers

optimistic concurrency with version numbers, Optimistic Con-
currency with Version Numbers-Implementation Options for Ver-
sion Numbers
pessimistic concurrency example, SELECT FOR UPDATE,

Pessimistic Concurrency Control Example: SELECT FOR
UPDATE
reproducing behavior with time.sleep function, Testing for Our
Data Integrity Rules

connascence, Error Handling in Distributed Systems
consistency, Invariants, Constraints, and Consistency

attainment of read consistency, Most Users Aren’t Going to Buy
Your Furniture
eventually consistent reads, Most Users Aren’t Going to Buy
Your Furniture

consistency boundaries, Aggregates and Consistency Boundaries,

What Is an Aggregate?

aggregates acting as, Discussion: Events, Commands, and Er-
ror Handling
microservices as, The Alternative: Temporal Decoupling Using
Asynchronous Messaging
recap, Wrap-Up

constraints, Invariants, Constraints, and Consistency
context manager, Unit of Work Pattern

starting Unit of Work as, The Unit of Work Collaborates with the
Repository
Unit of Work and, Unit of Work and Its Context Manager-Fake
Unit of Work for Testing

control flow, using exceptions for, The Model Raises Events
coupling, A Brief Interlude: On Coupling and Abstractions

avoiding inappropriate coupling, Error Handling in Distributed
Systems
disadvantages of, A Brief Interlude: On Coupling and
Abstractions
domain logic coupled with I/O, Abstracting State Aids Testability
failure cascade as temporal coupling, Error Handling in Dis-
tributed Systems
in tests that use mocks, Why Not Just Patch It Out?
reducing by abstracting away details, A Brief Interlude: On Cou-
pling and Abstractions
separating what you want to do from how to do it, Choosing the
Right Abstraction(s)

temporal decoupling using asynchronous messaging, The Alter-
native: Temporal Decoupling Using Asynchronous Messaging
trade-off between design feedback and, On Deciding What Kind
of Tests to Write

CQRS (see command-query responsibility segregation)

CQS (command-query separation), Post/Redirect/Get and CQS

CRUD wrapper around a database, Part I Recap
CSV over SMTP architecture, Why Not Just Run Everything in a
Spreadsheet?
CSVs, doing everything with, Swapping Out the Infrastructure: Do
Everything with CSVs-Implementing a Repository and Unit of Work
for CSVs

D

data access, applying dependency inversion principle to, Applying
the DIP to Data Access
data integrity

issues arising from splitting operation across two UoWs,

Implementing Our New Requirement
testing for, Testing for Our Data Integrity Rules-Pessimistic Con-
currency Control Example: SELECT FOR UPDATE

data storage, Repository pattern and, Repository Pattern
databases

SQLAlchemy adding session for Unit of Work, The Real Unit of
Work Uses SQLAlchemy Sessions
testing allocations persisted to database, The Straightforward
Implementation
testing transactions against real database, Explicit Tests for
Commit/Rollback Behavior
Unit of Work pattern managing state for, Unit of Work Pattern

dataclasses
events, Events Are Simple Dataclasses
use for message types, Recovering from Errors Synchronously
use for value objects, Dataclasses Are Great for Value Objects

deallocate service, building (exerise), A Typical Service Function
dependencies

abstract dependencies of service layer, The DIP in Action
testing, The DIP in Action

circular dependencies between event handlers, Wrap-Up
depending on abstractions, A Typical Service Function
edge-to-edge testing with dependency injection, Testing Edge to
Edge with Fakes and Dependency Injection-Testing Edge to
Edge with Fakes and Dependency Injection
keeping all domain dependencies in fixture functions, Mitigation:

Keep All Domain Dependencies in Fixture Functions
none in domain model, Applying the DIP to Data Access
real service layer dependencies at runtime, The DIP in Action
service layer dependency on abstract UoW, Using the UoW in
the Service Layer
UoW no longer dependent on message bus, The Message Bus
Now Collects Events from the UoW

dependency chains, A Bootstrap Script
dependency injection, Dependency Injection (and Bootstrapping)-
An Alternative Using Classes

by inspecting function signatures, A Bootstrap Script
explicit dependencies are better than implicit dependencies,

Aren’t Explicit Dependencies Totally Weird and Java-y?

implicit versus explicit dependencies, Implicit Versus Explicit
Dependencies
manual creation of partial functions inline, A Bootstrap Script
manual DI with closures or partial functions, Preparing Han-
dlers: Manual DI with Closures and Partials
recap of DI and bootstrap, Wrap-Up
using classes, An Alternative Using Classes
using DI framework, A Bootstrap Script

dependency inversion principle, Applying the DIP to Data Access,

Wrap-Up
declaring explicit dependency as example of, Aren’t Explicit De-
pendencies Totally Weird and Java-y?

ORM depends on the data model, Inverting the Dependency:

ORM Depends on Model
dictionaries

dictionary of hashes to paths, Implementing Our Chosen
Abstractions
for filesystem operations, Choosing the Right Abstraction(s)

HANDLERS dicts for commands and events, Differences in Ex-
ception Handling

directory structure, putting project into folders, Putting Things in
Folders to See Where It All Belongs
Distributed Ball of Mud anti-pattern

and thinking in nouns, Distributed Ball of Mud, and Thinking in
Nouns-Distributed Ball of Mud, and Thinking in Nouns
avoiding, The Alternative: Temporal Decoupling Using Asyn-
chronous Messaging

Django, Repository and Unit of Work Patterns with Django-Steps
Along the Way

applying patterns to Django app, What to Do If You Already
Have Django

steps along the way, Steps Along the Way
installing, Repository and Unit of Work Patterns with Django
ORM example, The “Normal” ORM Way: Model Depends on
ORM
Repository pattern with, Repository Pattern with Django-
Custom Methods on Django ORM Classes to Translate to/from
Our Domain Model
Unit of Work pattern with, Unit of Work Pattern with Django-Unit
of Work Pattern with Django
using, difficulty of, Why Was This All So Hard?

views are adapters, API: Django Views Are Adapters
Docker dev environment with real fake email server, Figure Out
How to Integration Test the Real Thing

domain driven design (DDD), Domain Modeling, What Is a Domain
Model?

(see also domain model; domain modeling)

Aggregate pattern, What Is an Aggregate?

bounded contexts, Choosing an Aggregate
choosing the right aggregate, references on, Wrap-Up
domain, defined, What Is a Domain Model?
Repository pattern and, What Is the Trade-Off?

Domain Events pattern, Events and the Message Bus
domain exceptions, Exceptions Can Express Domain Concepts
Too
domain language, Exploring the Domain Language
domain layer

fully decoupling service layer from, Fully Decoupling the Ser-
vice-Layer Tests from the Domain-Adding a Missing Service
tests moving to service layer, Should Domain Layer Tests Move
to the Service Layer?

reasons for, Should Domain Layer Tests Move to the Service
Layer?

domain model, Reminder: Our Model-Introducing the Repository
Pattern

deciding whether to write tests against, On Deciding What Kind
of Tests to Write

Django custom ORM methods for conversion, Custom Methods
on Django ORM Classes to Translate to/from Our Domain
Model
email sending code in, avoiding, And Let’s Not Make a Mess of
Our Model Either
events from, passing to message bus in service layer, Option 1:

The Service Layer Takes Events from the Model and Puts Them
on the Message Bus
folder for, Putting Things in Folders to See Where It All Belongs
getting benefits of rich model, The DIP in Action
invariants, constraints, and consistency, Invariants, Constraints,

and Consistency
maintaining small core of tests written against, Wrap-Up
new method on, change_batch_quantity, A New Method on the
Domain Model
not optimized for read operations, Your Domain Model Is Not
Optimized for Read Operations
persisting, Persisting Our Domain Model
raising events, The Model Raises Events
raising events and service layer passing them to message bus,

Wrap-Up
trade-offs as a diagram, Wrap-Up
translating to relational database

normal ORM way, model depends on ORM, The “Normal”
ORM Way: Model Depends on ORM
ORM depends on the model, Inverting the Dependency:

ORM Depends on Model
using spreadsheets instead of, Why Not Just Run Everything in
a Spreadsheet?
writing data, Domain Models Are for Writing
writing tests against, High and Low Gear

domain modeling, Domain Modeling-Exceptions Can Express Do-
main Concepts Too

domain language, Exploring the Domain Language
functions for domain services, Not Everything Has to Be an Ob-
ject: A Domain Service Function-Exceptions Can Express Do-
main Concepts Too
unit testing domain models, Unit Testing Domain Models-Value
Objects and Entities

dataclasses for value objects, Dataclasses Are Great for Val-
ue Objects
value objects and entities, Value Objects and Entities

domain services, Not Everything Has to Be an Object: A Domain
Service Function, Why Is Everything Called a Service?

function for, Not Everything Has to Be an Object: A Domain Ser-
vice Function

driven adapters, Putting Things in Folders to See Where It All
Belongs
duck typing, The Repository in the Abstract

for ports, What Is a Port and What Is an Adapter, in Python?

E

E2E tests (see end-to-end tests)

eager loading, SELECT N+1 and Other Performance
Considerations
edge-to-edge testing, Implementing Our Chosen Abstractions-
Testing Edge to Edge with Fakes and Dependency Injection
Effective Aggregate Design (Vernon), Wrap-Up
email alerts, sending when out of stock, Avoiding Making a Mess-
Or the Service Layer!
end-to-end tests

aiming for one test per feature, Wrap-Up
decoupling of service layer from domain, carrying through to,

Carrying the Improvement Through to the E2E Tests
of allocate API, A First End-to-End Test
replacement with unit tests, Why Not Just Patch It Out?

__enter__ and __exit__ magic methods, Unit of Work and Its Con-
text Manager, The Real Unit of Work Uses SQLAlchemy Sessions
entities

defined, Value Objects and Entities

identity equality, Value Objects and Entities
value objects versus, Exceptions Can Express Domain Con-
cepts Too

entrypoints, Putting Things in Folders to See Where It All Belongs
__eq__magic method, Value Objects and Entities
equality operators, implementing on entities, Value Objects and
Entities
error handling

counting as a feature, Wrap-Up
events, commands, and, Discussion: Events, Commands, and
Error Handling-Discussion: Events, Commands, and Error
Handling
in distributed systems, Error Handling in Distributed Systems-
The Alternative: Temporal Decoupling Using Asynchronous
Messaging

errors, recovering from synchronously, Recovering from Errors
Synchronously
Evans, Eric, What Is an Aggregate?

event handlers
imagined architecture in which everything is an event handler,
Imagining an Architecture Change: Everything Will Be an Event
Handler
in message bus, Message Bus Is Given Handlers at Runtime

managing updates to read model, Changing Our Read Model
Implementation Is Easy
updating read model table using, Time to Completely Jump the
Shark

event storming, A New Requirement Leads Us to a New
Architecture
event-driven architecture

going to microservices via Strangler pattern, An Event-Driven
Approach to Go to Microservices via Strangler Pattern-An
Event-Driven Approach to Go to Microservices via Strangler
Pattern
using events to integrate microservices, Event-Driven Architec-
ture: Using Events to Integrate Microservices-Wrap-Up

events
changing schema over time, Footguns
commands versus, Commands and Events-Differences in Ex-
ception Handling
events, commands, and error handling, Discussion: Events,

Commands, and Error Handling-Discussion: Events, Com-
mands, and Error Handling
internal versus external, Internal Versus External Events
splitting command and events, trade-offs, Wrap-Up

events and the message bus, Events and the Message Bus-Wrap-
Up

domain events and message bus recap, Wrap-Up
domain model raising events, The Model Raises Events
events as simple dataclasses, Events Are Simple Dataclasses
events flowing through the system, Events and the Message
Bus
message bus mapping events to handlers, The Message Bus
Maps Events to Handlers
pros and cons or trade-offs, Wrap-Up
recording events, The Model Records Events
sending email alerts when out of stock, Avoiding Making a
Mess-Or the Service Layer!

avoiding messing up domain model, And Let’s Not Make a
Mess of Our Model Either
avoiding messing up web controllers, First, Let’s Avoid Mak-
ing a Mess of Our Web Controllers
out of place in the service layer, Or the Service Layer!
violating the single responsibility principle, Single Responsi-
bility Principle

service layer raising its own events, Option 2: The Service Layer
Raises Its Own Events
service layer with explicit message bus, Option 1: The Service
Layer Takes Events from the Model and Puts Them on the Mes-
sage Bus

transforming our app into message processor, Going to Town
on the Message Bus-Why Have We Achieved?

imagined architecture, everything will be an event handler,
Imagining an Architecture Change: Everything Will Be an
Event Handler
implementing the new requirement, Implementing Our New
Requirement-Test-Driving a New Handler
modifying API to work with events, A Temporary Ugly Hack:

The Message Bus Has to Return Results
new requirement and new architecture, A New Requirement
Leads Us to a New Architecture
refactoring service functions to message handlers,

Refactoring Service Functions to Message Handlers
temporary hack, message bus returning results, A Temporary
Ugly Hack: The Message Bus Has to Return Results
test driving new handler, Test-Driving a New Handler
tests writtern to in terms of events, Our Tests Are All Written
in Terms of Events Too
unit testing event handlers with fake message bus,

Optionally: Unit Testing Event Handlers in Isolation with a
Fake Message Bus
whole app as message bus, trade-offs, Why Have We
Achieved?

UoW publishes events to message bus, Option 3: The UoW
Publishes Events to the Message Bus

eventually consistent reads, Most Users Aren’t Going to Buy Your
Furniture
exception handling, differences for events and commands,

Differences in Exception Handling
exceptions

expressing domain concepts, Exceptions Can Express Domain
Concepts Too
using for control flow, The Model Raises Events

external events, The Message Bus Maps Events to Handlers,

Event-Driven Architecture: Using Events to Integrate Microser-
vices-Wrap-Up
extreme programming (XP), exhortation to listen to the code, On
Deciding What Kind of Tests to Write

F

faking
FakeNotifications for unit testing, Make a Fake Version for Your
Tests
FakeRepository, Introducing a Service Layer, and Using Fake-
Repository to Unit Test It

adding fixture function on, Mitigation: Keep All Domain De-
pendencies in Fixture Functions

new query type on, Implementation
using to unit test the service layer, Introducing a Service Lay-
er, and Using FakeRepository to Unit Test It

fakes versus mocks, Why Not Just Patch It Out?
FakeSession, using to unit test the service layer, Introducing a
Service Layer, and Using FakeRepository to Unit Test It
FakeUnitOfWork for service layer testing, Fake Unit of Work for
Testing
faking I/O in edge-to-edge test, Testing Edge to Edge with
Fakes and Dependency Injection
tweaking fakes in service layer to call super and implement un-
derscorey methods, Option 3: The UoW Publishes Events to the
Message Bus

filesystems
writing code to synchronize source and target directories,

Abstracting State Aids Testability-Abstracting State Aids
Testability

choosing right abstraction, Choosing the Right
Abstraction(s)-Implementing Our Chosen Abstractions
implementing chosen abstraction, Implementing Our Chosen
Abstractions-Wrap-Up

fixture functions, keeping all domain dependencies in, Mitigation:

Keep All Domain Dependencies in Fixture Functions

Flask framework, Some Pseudocode: What Are We Going to
Need?

API endpoint, What Is the Trade-Off?
calling bootstrap in entrypoints, Using Bootstrap in Our
Entrypoints
endpoint for viewing allocations, Post/Redirect/Get and CQS
Flask API and service layer, Our First Use Case: Flask API and
Service Layer-The DIP in Action

app delegating to service layer, A Typical Service Function
connecting the app to real world, Connecting Our Application
to the Real World
different types of services, Why Is Everything Called a
Service?

end-to-end tests for happy and unhappy paths, A Typical
Service Function
error conditions requiring database checks, Error Conditions
That Require Database Checks
first API end-to-end test, A First End-to-End Test-A First End-
to-End Test
first cut of the app, The Straightforward Implementation-The
Straightforward Implementation
introducing service layer and fake repo to unit test it,
Introducing a Service Layer, and Using FakeRepository to
Unit Test It-A Typical Service Function

putting project into folders, Putting Things in Folders to See
Where It All Belongs
service layer benefits, Wrap-Up
service layer dependencies, The DIP in Action
service layer pros and cons, The DIP in Action
typical service layer function, A Typical Service Function

putting API endpoint in front of allocate domain service,

Connecting Our Application to the Real World
Fowler, Martin, Why Not Just Patch It Out?, Wrap-Up
Freeman, Steve, Why Not Just Patch It Out?
Functional Core, Imperative Shell (FCIS), Implementing Our Cho-
sen Abstractions
functions, Exceptions Can Express Domain Concepts Too

for domain services, Not Everything Has to Be an Object: A Do-
main Service Function
service layer, A Typical Service Function

G

"Global Complexity, Local Simplicity" post, Wrap-Up
__gt__ magic method, Python’s Magic Methods Let Us Use Our
Models with Idiomatic Python

H

handlers
event and command handlers in message bus, Message Bus Is
Given Handlers at Runtime
new HANDLERS dicts for commands and events, Differences in
Exception Handling

__hash__ magic method, Value Objects and Entities
hashing a file, Abstracting State Aids Testability

dictionary of hashes to paths, Choosing the Right Abstraction(s)

hoisting I/O, Why Not Just Patch It Out?

I

I/O
disentangling details from program logic, Implementing Our
Chosen Abstractions
domain logic tightly coupled to, Abstracting State Aids
Testability
simplifying interface with business logic using abstractions,

Wrap-Up
idempotent message handling, Footguns
identity equality (entities), Value Objects and Entities
implicit versus explicit commits, Explicit Versus Implicit Commits
importing dependenies, Aren’t Explicit Dependencies Totally Weird
and Java-y?

inheritance, avoiding use of with wrapper class, Option 3: The
UoW Publishes Events to the Message Bus
integration tests

for concurrency behavior, Testing for Our Data Integrity Rules
test-driving Unit of Work with, Test-Driving a UoW with Integra-
tion Tests

interfaces, Python and, What Is a Port and What Is an Adapter, in
Python?

invariants
invariants, concurrency, and locks, Invariants, Concurrency, and
Locks
invariants, constraints, and consistency, Invariants, Constraints,

and Consistency
protecting while allowing concurrency, What Is an Aggregate?

inward-facing adapters, Putting Things in Folders to See Where It
All Belongs
isolation levels (transaction), Enforcing Concurrency Rules by Us-
ing Database Transaction Isolation Levels

J

Jung, Ed, Why Not Just Patch It Out?

K

katas, A Brief Interlude: On Coupling and Abstractions

L

layered architecture, Applying the DIP to Data Access
case study, layering an overgrown system, Separating Entan-
gled Responsibilities

locks on database tables, Invariants, Concurrency, and Locks
optimistic locking, Optimistic Concurrency with Version Num-
bers, Optimistic Concurrency with Version Numbers
pessimistic locking, Optimistic Concurrency with Version
Numbers

London-school versus classic-style TDD, Why Not Just Patch It
Out?

M

magic methods
allowing use of domain model with idiomatic Python, Python’s
Magic Methods Let Us Use Our Models with Idiomatic Python
__enter__ and __exit__, Unit of Work and Its Context Manager
__eq__, Value Objects and Entities
__hash__, Value Objects and Entities

MagicMock objects, Why Not Just Patch It Out?
mappers, Inverting the Dependency: ORM Depends on Model

message brokers, Using a Redis Pub/Sub Channel for Integration
message bus

abstract message bus and its real and fake versions, Optionally:

Unit Testing Event Handlers in Isolation with a Fake Message
Bus
before, message buse as optional add-on, Going to Town on the
Message Bus
Celery and, The Message Bus Maps Events to Handlers
class given handlers at runtime, Message Bus Is Given Han-
dlers at Runtime
dispatching events and commands differently, Differences in
Exception Handling
event and command handler logic staying the same, Message
Bus Is Given Handlers at Runtime
getting custom with overridden bootstrap defaults, Initializing DI
in Our Tests
handler publishing outgoing event, Our New Outgoing Event
handle_event method, Recovering from Errors Synchronously
handle_event with retries, Recovering from Errors
Synchronously
mapping events to handlers, The Message Bus Maps Events to
Handlers
now collecting events from UoW, The Message Bus Now Col-
lects Events from the UoW

now the main entrypoint to service layer, Going to Town on the
Message Bus
pros and cons or trade-offs, Wrap-Up
recap, Wrap-Up
Redis pub/sub listener as thin adapter around, Redis Is Another
Thin Adapter Around Our Message Bus
returning results in temporary hack, A Temporary Ugly Hack:

The Message Bus Has to Return Results
service layer raising events and calling messagebus.handle,

Option 2: The Service Layer Raises Its Own Events
service layer with explicit message bus, Option 1: The Service
Layer Takes Events from the Model and Puts Them on the Mes-
sage Bus
Unit of Work publishing events to, Option 3: The UoW Publishes
Events to the Message Bus
unit testing event handlers with fake message bus, Optionally:

Unit Testing Event Handlers in Isolation with a Fake Message
Bus
whole app as, trade-offs, Why Have We Achieved?

wiring up new event handlers to, A New Method on the Domain
Model

Message Bus pattern, Events and the Message Bus
messaging

asynchronous, temporal decoupling with, The Alternative: Tem-
poral Decoupling Using Asynchronous Messaging
idempotent message handling, Footguns
reliable messaging is hard, Footguns
using Redis pub/sub channel for microservices integration,

Using a Redis Pub/Sub Channel for Integration
microservices

bounded contexts and, Choosing an Aggregate
event-based integration, Event-Driven Architecture: Using
Events to Integrate Microservices-Wrap-Up

distributed Ball of Mud and thinking in nouns, Distributed Ball
of Mud, and Thinking in Nouns-Distributed Ball of Mud, and
Thinking in Nouns
error handling in distributed systems, Error Handling in Dis-
tributed Systems-The Alternative: Temporal Decoupling Us-
ing Asynchronous Messaging
temporal decoupling using asynchronous messaging, The
Alternative: Temporal Decoupling Using Asynchronous
Messaging
testing with end-to-end test, Test-Driving It All Using an End-
to-End Test-Internal Versus External Events
trade-offs, Wrap-Up
using Redis pub/sub channel for ntegration, Using a Redis
Pub/Sub Channel for Integration

event-driven approach, using Strangler pattern, An Event-
Driven Approach to Go to Microservices via Strangler Pattern-
An Event-Driven Approach to Go to Microservices via Strangler
Pattern

minimum viable product, Persisting Our Domain Model
mock.patch method, Why Not Just Patch It Out?, Aren’t Explicit
Dependencies Totally Weird and Java-y?

mocking
avoiding use of mock.patch, Why Not Just Patch It Out?
don't mock what you don't own, Fake Unit of Work for Testing
mocks versus fakes, Why Not Just Patch It Out?
overmocked tests, pitfalls of, Why Not Just Patch It Out?

"Mocks Aren't Stubs" (Fowler), Why Not Just Patch It Out?
model (domain), What Is a Domain Model?

N

named tuples, Dataclasses Are Great for Value Objects
(see also dataclasses)

nouns, splitting system into, Distributed Ball of Mud, and Thinking
in Nouns-Distributed Ball of Mud, and Thinking in Nouns

O

object neighborhoods, The Unit of Work Collaborates with the
Repository
object-oriented composition, Why Not Just Patch It Out?
object-oriented design principles, Exceptions Can Express Domain
Concepts Too
object-relational mappers (ORMs), The “Normal” ORM Way: Mod-
el Depends on ORM

associating right batches with Product objects, One Aggregate
= One Repository
Django ORM example, The “Normal” ORM Way: Model De-
pends on ORM
Django, custom methods to translate to/from domain model,
Custom Methods on Django ORM Classes to Translate to/from
Our Domain Model
ORM depends on the data model, Inverting the Dependency:

ORM Depends on Model
testing the ORM, Inverting the Dependency: ORM Depends
on Model

orm.start_mappers function, A Bootstrap Script
Repository pattern and, What Is the Trade-Off?
SELECT N+1 performance problem, SELECT N+1 and Other
Performance Considerations
simple view using the ORM, “Obvious” Alternative 2: Using the
ORM

SQLAlchemy, model depends on ORM, The “Normal” ORM
Way: Model Depends on ORM

onion architecture, Applying the DIP to Data Access
optimistic concurrency with version numbers, Optimistic Concur-
rency with Version Numbers-Implementation Options for Version
Numbers
orchestration, Introducing a Service Layer, and Using FakeReposi-
tory to Unit Test It

changing to choreography, Single Responsibility Principle
using application service, Why Is Everything Called a Service?

orchestration layer (see service layer)
Outbox pattern, Footguns

P

partial functions
dependency injection with, Preparing Handlers: Manual DI with
Closures and Partials
difference from closures, Preparing Handlers: Manual DI with
Closures and Partials
manually creating inline, A Bootstrap Script

patterns, deciding whether you need to use them, Part I Recap
PEP 544 protocols, The Repository in the Abstract
performance

consistency boundaries and, Aggregates and Consistency
Boundaries, Wrap-Up
impact of using aggregates, Choosing an Aggregate, What
About Performance?

persistence ignorance, The “Normal” ORM Way: Model Depends
on ORM

trade-offs, Wrap-Up
pessimistic concurrency, Optimistic Concurrency with Version
Numbers

example, SELECT FOR UPDATE, Pessimistic Concurrency
Control Example: SELECT FOR UPDATE

ports
defined, What Is a Port and What Is an Adapter, in Python?

ports-and-adapters inspired patterns, Part I Recap
putting in folder with adapters, Putting Things in Folders to See
Where It All Belongs

Post/Redirect/Get pattern, Post/Redirect/Get and CQS
command-query separation (CQS), Post/Redirect/Get and CQS

PostgreSQL
Anti-Patterns: Read-Modify-Write Cycles, Pessimistic Concur-
rency Control Example: SELECT FOR UPDATE
documentation for transaction isolation levels, Enforcing Con-
currency Rules by Using Database Transaction Isolation Levels

managing concurrency issues, Optimistic Concurrency with Ver-
sion Numbers
SERIALIZABLE transaction isolation level, Optimistic Concur-
rency with Version Numbers

preparatory refactoring workflow, Imagining an Architecture
Change: Everything Will Be an Event Handler
primitives

moving from domain objects to, in service layer, Refactoring
Service Functions to Message Handlers
primitive obsession, Refactoring Service Functions to Message
Handlers

Product object, Aggregates and Consistency Boundaries
acting as consistency boundary, Discussion: Events, Com-
mands, and Error Handling
asking Product to allocate against its batches, Choosing an
Aggregate
code for, Choosing an Aggregate
service layer using, One Aggregate = One Repository
two transactions attempting concurrent update on, Optimistic
Concurrency with Version Numbers
version numbers implemented on, Implementation Options for
Version Numbers

ProductRepository object, One Aggregate = One Repository
projects

organizing into folders, Putting Things in Folders to See Where
It All Belongs
template project structure, A Template Project Structure-Wrap-
Up

protocols, abstract base classes, duck typing, and, The Repository
in the Abstract
publish-subscribe system

message bus as
handlers subscribed to receive events, The Message Bus
Maps Events to Handlers
publishing step, Option 1: The Service Layer Takes Events
from the Model and Puts Them on the Message Bus

using Redis pub/sub channel for microservices integration,

Using a Redis Pub/Sub Channel for Integration
PyCon talk on Mocking Pitfalls, Why Not Just Patch It Out?
pytest

@pytest.skip, What About Performance?

fixtures, Abstracting State Aids Testability
pytest-django plug-in, Repository Pattern with Django, Why
Was This All So Hard?

session argument, Inverting the Dependency: ORM Depends
on Model

Q

queries, Command-Query Responsibility Segregation (CQRS)

(see also command-query responsibility segregation)

questions from tech reviewers, Questions Our Tech Reviewers
Asked That We Couldn’t Work into Prose-Footguns

R

read-modify-write failure mode, Pessimistic Concurrency Control
Example: SELECT FOR UPDATE
reallocate service function, Example 1: Reallocate
reallocation

sequence diagram for flow, Implementing Our New
Requirement
testing in isolation using fake message bus, Optionally: Unit
Testing Event Handlers in Isolation with a Fake Message Bus

Redis pub/sub channel, using for microservices integration, Using
a Redis Pub/Sub Channel for Integration

testing pub/sub model, Test-Driving It All Using an End-to-End
Test

publishing outgoing event, Our New Outgoing Event
Redis as thin adapter around message bus, Redis Is Another
Thin Adapter Around Our Message Bus

Redis, changing read model implementation to use, Changing Our
Read Model Implementation Is Easy
repositories

adding list method to existing repository object, Hold On to Your
Lunch, Folks
CSV-based repository, Implementing a Repository and Unit of
Work for CSVs
new query type on our repository, Implementation
one aggregrate = one repository, One Aggregate = One
Repository
repository keeping track of aggregates passing through it,
Option 3: The UoW Publishes Events to the Message Bus
service layer function depending on abstract repository, A Typi-
cal Service Function
simple view using existing repository, “Obvious” Alternative 1:

Using the Existing Repository
TrackerRepository wrapper class, Option 3: The UoW Publishes
Events to the Message Bus
Unit of Work collaborating with, The Unit of Work Collaborates
with the Repository

Repository pattern, Repository Pattern, Introducing the Repository
Pattern-Wrap-Up

and persistence ignorance, trade-offs, Wrap-Up
building fake repository for tests, Building a Fake Repository for
Tests Is Now Trivial!
ORMs and, What Is the Trade-Off?
recap of important points, Wrap-Up

simplest possible repository, The Repository in the Abstract
testing the repository with retrieving a complex object, What Is
the Trade-Off?
testing the repository with saving an object, What Is the Trade-
Off?
trade-offs, What Is the Trade-Off?
typical repository, What Is the Trade-Off?
using repository directly in API endpoint, What Is the Trade-Off?
with Django, Repository Pattern with Django-Custom Methods
on Django ORM Classes to Translate to/from Our Domain
Model

resources, additional required reading, More Required Reading
responsibilities of code, Choosing the Right Abstraction(s)

separating responsibilities, Separating Entangled
Responsibilities

case study, layering overgrown system, Separating Entan-
gled Responsibilities

retries
message bus handle_event with, Recovering from Errors
Synchronously
optimistic concurrency control and, Optimistic Concurrency with
Version Numbers
Tenacity library for, Recovering from Errors Synchronously

Rhodes, Brandon, Why Not Just Patch It Out?

rollbacks, Unit of Work and Its Context Manager
explicit tests for, Explicit Tests for Commit/Rollback Behavior
rollback method, The Real Unit of Work Uses SQLAlchemy
Sessions

S

seams, Wrap-Up
secondary adapters, Putting Things in Folders to See Where It All
Belongs
Seemann, Mark, blog post, Applying the DIP to Data Access
SELECT * FROM WHERE queries, Time to Completely Jump the
Shark
SELECT FOR UPDATE statement, Optimistic Concurrency with
Version Numbers

pessimistic concurrency control example with, Pessimistic Con-
currency Control Example: SELECT FOR UPDATE

SELECT N+1, SELECT N+1 and Other Performance
Considerations
service functions

making them event handlers, Imagining an Architecture
Change: Everything Will Be an Event Handler
refactoring to message handlers, Refactoring Service Functions
to Message Handlers

service layer, Our First Use Case: Flask API and Service Layer-
The DIP in Action

benefits of, Wrap-Up
benefits to test-driven development, Wrap-Up
connecting our application to real world, Connecting Our Appli-
cation to the Real World
dependencies of, The DIP in Action

real dependencies at runtime, The DIP in Action
testing, The DIP in Action

difference between domain service and, Why Is Everything
Called a Service?

domain layer tests moving to, Should Domain Layer Tests Move
to the Service Layer?

reasons for, Should Domain Layer Tests Move to the Service
Layer?

end-to-end test of allocate API, testing happy and unhappy
paths, A Typical Service Function
error conditions requiring database checks in Flask app, Error
Conditions That Require Database Checks
first cut of Flask app, The Straightforward Implementation-The
Straightforward Implementation
Flask app delegating to, A Typical Service Function
from domain objects to primitives to events as interface,

Refactoring Service Functions to Message Handlers

fully decoupling from the domain, Fully Decoupling the Service-
Layer Tests from the Domain-Adding a Missing Service
introducing and using FakeRepository to unit test it, Introducing
a Service Layer, and Using FakeRepository to Unit Test It-Why
Is Everything Called a Service?

message bus as main entrypoint, Going to Town on the Mes-
sage Bus
pros and cons or trade-offs, The DIP in Action
putting project in folders, Putting Things in Folders to See
Where It All Belongs
raising events and passing them to message bus, Wrap-Up
raising its own events, Option 2: The Service Layer Raises Its
Own Events
sending email alerts when out of stock, avoiding, Or the Service
Layer!
taking events from model and putting them on message bus,

Option 1: The Service Layer Takes Events from the Model and
Puts Them on the Message Bus
totally free of event handling concerns, Option 3: The UoW Pub-
lishes Events to the Message Bus
tweaking fakes in to call super and implement underscorey
methods, Option 3: The UoW Publishes Events to the Message
Bus
typical service function, A Typical Service Function

using Product objects, One Aggregate = One Repository
using Unit of Work in, Using the UoW in the Service Layer
using, test pyramid and, How Is Our Test Pyramid Looking?

writing bulk of tests against, Wrap-Up
writing tests against, High and Low Gear

service-layer services vs. domain services, Not Everything Has to
Be an Object: A Domain Service Function
services

application service and domain service, Why Is Everything
Called a Service?

service layer tests only using services, Adding a Missing
Service

Session object, Wrap-Up
set, fake repository as wrapper around, Building a Fake Repository
for Tests Is Now Trivial!
simplifying abstractions, Choosing the Right Abstraction(s)

single responsibility principle (SRP), Single Responsibility
Principle
Singleton pattern, messagebus.py implementing, Optionally: Unit
Testing Event Handlers in Isolation with a Fake Message Bus
situated software, A New Requirement Leads Us to a New
Architecture
Software Engineering Stack Exchange site, Why Not Just Patch It
Out?

spreadsheets, using instead of domain model, Why Not Just Run
Everything in a Spreadsheet?
spy objects, Testing Edge to Edge with Fakes and Dependency
Injection
SQL

generating for domain model objects, The “Normal” ORM Way:

Model Depends on ORM
helpers for Unit of Work, Test-Driving a UoW with Integration
Tests
ORM and Repository pattern as abstractions in front of, What Is
the Trade-Off?
raw SQL in views, Hold On to Your Lunch, Folks
repository test for retrieving complex object, What Is the Trade-
Off?
repository test for saving an object, What Is the Trade-Off?

SQLAlchemy
database session for Unit of Work, The Real Unit of Work Uses
SQLAlchemy Sessions

not mocking, Fake Unit of Work for Testing
declarative syntax, model depends on ORM, The “Normal”
ORM Way: Model Depends on ORM
explicit ORM mapping with SQLAlchemy Table objects,

Inverting the Dependency: ORM Depends on Model

SELECT N+1 problem and, SELECT N+1 and Other Perfor-
mance Considerations
Session object, Wrap-Up
using directly in API endpoint, Inverting the Dependency: ORM
Depends on Model
using DSL to specify FOR UPDATE, Pessimistic Concurrency
Control Example: SELECT FOR UPDATE

stakeholders, convincing to try something new, Convincing Your
Stakeholders to Try Something New-Questions Our Tech Review-
ers Asked That We Couldn’t Work into Prose
state

abstracting to aid testability, Abstracting State Aids Testability-
Abstracting State Aids Testability
splitting off from logic in the program, Implementing Our Chosen
Abstractions

storage, Repository Pattern
(see also repositories; Repository pattern)

permanent, UoW providing entrypoint to, The Unit of Work Col-
laborates with the Repository

Strangler pattern, going to microservices via, An Event-Driven Ap-
proach to Go to Microservices via Strangler Pattern-An Event-
Driven Approach to Go to Microservices via Strangler Pattern
stubbing, mocks and stubs, Why Not Just Patch It Out?

super function, Option 3: The UoW Publishes Events to the Mes-
sage Bus

tweaking fakes in service layer to call, Option 3: The UoW Pub-
lishes Events to the Message Bus

synchronous execution of event-handling code, Wrap-Up

T

temporal coupling, Error Handling in Distributed Systems
temporal decoupling using asynchronous messaging, The Alterna-
tive: Temporal Decoupling Using Asynchronous Messaging
Tenacity library, Recovering from Errors Synchronously
test doubles

mocks versus fakes, Why Not Just Patch It Out?
mocks versus stubs, Why Not Just Patch It Out?
using lists to build, Testing Edge to Edge with Fakes and De-
pendency Injection

"Test-Driven Development: That's Not What We Meant", Why Not
Just Patch It Out?
test-driven development (TDD), TDD in High Gear and Low Gear-
Wrap-Up

benefits of service layer to, Wrap-Up
classic versus London-school, Why Not Just Patch It Out?
deciding what kinds of tests to write, On Deciding What Kind of
Tests to Write

domain layer tests moving to service layer, Should Domain Lay-
er Tests Move to the Service Layer?
fully decoupling service layer from the domain, Fully Decoupling
the Service-Layer Tests from the Domain-Adding a Missing
Service

adding missing service, Adding a Missing Service
carrying improvement through to E2E tests, Carrying the Im-
provement Through to the E2E Tests
keeping all domain dependencies in fixture functions,

Mitigation: Keep All Domain Dependencies in Fixture
Functions

high and low gear, High and Low Gear
test pyramid with service layer added, How Is Our Test Pyramid
Looking?

test pyramid, examining, TDD in High Gear and Low Gear
types of tests, rules of thumb for, Wrap-Up
unit tests operating at lower level, acting directly on model, TDD
in High Gear and Low Gear

testing
abstracting state to aid testability, Abstracting State Aids Testa-
bility-Abstracting State Aids Testability
after implementing chosen abstraction, Implementing Our Cho-
sen Abstractions-Wrap-Up

avoiding use of mock.patch, Why Not Just Patch It Out?-
Wrap-Up
edge-to-edge testing with fakes and dependency injection,

Testing Edge to Edge with Fakes and Dependency Injection-
Testing Edge to Edge with Fakes and Dependency Injection

end-to-end test of pub/sub model, Test-Driving It All Using an
End-to-End Test
fake database session at service layer, Introducing a Service
Layer, and Using FakeRepository to Unit Test It
fake UoW for service layer testing, Fake Unit of Work for Testing
for data integrity rules, Testing for Our Data Integrity Rules-
Pessimistic Concurrency Control Example: SELECT FOR
UPDATE
integration test for CQRS view, Testing CQRS Views
integration test for overriding bootstrap defaults, Initializing DI in
Our Tests
integration tests for rollback behavior, Explicit Tests for
Commit/Rollback Behavior
tests folder tree, Tests
tests written in terms of events, Our Tests Are All Written in
Terms of Events Too

handler tests for change_batch_quantity, Test-Driving a New
Handler

unit testing event handlers with fake message bus,

Optionally: Unit Testing Event Handlers in Isolation with a
Fake Message Bus

Unit of Work with integration tests, Test-Driving a UoW with Inte-
gration Tests

tidying up tests, Tidying Up the Integration Tests
unit test for bootstrap, Initializing DI in Our Tests
unit testing with fakes at service layer, Introducing a Service
Layer, and Using FakeRepository to Unit Test It

time.sleep function, Testing for Our Data Integrity Rules
reproducing concurrency behavior with, Testing for Our Data In-
tegrity Rules

transactions
concurrent, attempting update on Product, Optimistic Concur-
rency with Version Numbers
simulating a slow transaction, Testing for Our Data Integrity
Rules
Unit of Work and, Wrap-Up
using to enforce concurrency rules, Enforcing Concurrency
Rules by Using Database Transaction Isolation Levels

type hints, Unit Testing Domain Models, Unit Testing Domain
Models

U

underscorey methods
avoiding by implementing TrackingRepository wrapper class,

Option 3: The UoW Publishes Events to the Message Bus
tweaking fakes in service layer to implement, Option 3: The
UoW Publishes Events to the Message Bus

Unit of Work pattern, The Repository in the Abstract, Unit of Work
Pattern-Wrap-Up

and its context manager, Unit of Work and Its Context Manager
fake UoW for testing, Fake Unit of Work for Testing
real UoW using SQLAlchemy session, The Real Unit of Work
Uses SQLAlchemy Sessions

benefits of using, Wrap-Up
collaboration with repository, The Unit of Work Collaborates with
the Repository
explicit tests for commit/rollback behavior, Explicit Tests for
Commit/Rollback Behavior
explicit versus implicit commits, Explicit Versus Implicit Commits
fake message bus implemented in UoW, Optionally: Unit Test-
ing Event Handlers in Isolation with a Fake Message Bus
getting rid of underscorey methods in UoW class, Option 3: The
UoW Publishes Events to the Message Bus
managing database state, Unit of Work Pattern
message bus now collecting events from UoW, The Message
Bus Now Collects Events from the UoW

modifying to connect domain events and message bus, Events
and the Message Bus
pros and cons or trade-offs, Wrap-Up
recap of important points, Wrap-Up
splitting operations across two UoWs, Implementing Our New
Requirement
test driving with integration tests, Test-Driving a UoW with Inte-
gration Tests
tidying up integration tests, Tidying Up the Integration Tests
UoW and product repository, One Aggregate = One Repository
UoW collecting events from aggregates and passing them to
message bus, Wrap-Up
UoW for CSVs, Implementing a Repository and Unit of Work for
CSVs
UoW managing success or failure of aggregate update,

Discussion: Events, Commands, and Error Handling
UoW publishing events to message bus, Option 3: The UoW
Publishes Events to the Message Bus
using UoW in service layer, Using the UoW in the Service Layer
using UoW to group multiple operations into atomic unit,
Examples: Using UoW to Group Multiple Operations into an
Atomic Unit-Example 2: Change Batch Quantity

changing batch quantity example, Example 2: Change Batch
Quantity

reallocate function example, Example 1: Reallocate
with Django, Unit of Work Pattern with Django-Unit of Work Pat-
tern with Django
without, API talking directly to three layers, Unit of Work Pattern

unit testing, Introducing a Service Layer, and Using FakeReposito-
ry to Unit Test It

(see also test-driven development; testing)

of domain models, Unit Testing Domain Models-Value Objects
and Entities
unit tests replacing end-to-end tests, Why Not Just Patch It Out?

unittest.mock function, Why Not Just Patch It Out?
UoW (see Unit of Work pattern)

use-case layer (see service layer)

V

validation, Validation-Validating Pragmatics
value objects

defined, Dataclasses Are Great for Value Objects
and entities, Value Objects and Entities
entities versus, Exceptions Can Express Domain Concepts Too
math with, Dataclasses Are Great for Value Objects
using dataclasses for, Dataclasses Are Great for Value Objects

Vens, Rob, Wrap-Up
Vernon, Vaughn, Wrap-Up

version numbers
implementation options for, Implementation Options for Version
Numbers
in the products table, implementing optimistic locking, Optimistic
Concurrency with Version Numbers

views
Django views as adapters, API: Django Views Are Adapters
keeping totally separate, denormalized datastore for view
model, Time to Completely Jump the Shark
read-only, Post/Redirect/Get and CQS
rebuilding view model from scratch, Updating a Read Model Ta-
ble Using an Event Handler
simple view that uses the ORM, “Obvious” Alternative 2: Using
the ORM
simple view that uses the repository, “Obvious” Alternative 1:

Using the Existing Repository
testing CQRS views, Testing CQRS Views
trade-offs for view model options, Wrap-Up
updating read model table using event handler, Time to Com-
pletely Jump the Shark

W

web controllers, sending email alerts via, avoiding, Avoiding Mak-
ing a Mess

About the Authors

Harry Percival spent a few years being deeply unhappy as a man-
agement consultant. Soon he rediscovered his true geek nature and
was lucky enough to fall in with a bunch of XP fanatics, working on
pioneering the sadly defunct Resolver One spreadsheet. He worked
at PythonAnywhere LLP, spreading the gospel of TDD worldwide at
talks, workshops, and conferences. He is now with MADE.com.

Bob Gregory is a UK-based software architect with MADE.com. He
has been building event-driven systems with domain-driven design
for more than a decade.

Colophon

The animal on the cover of Architecture Patterns with Python is a
Burmese python (Python bivitattus). As you might expect, the
Burmese python is native to Southeast Asia. Today it lives in jungles
and marshes in South Asia, Myanmar, China, and Indonesia; it’s also
invasive in Florida’s Everglades.

Burmese pythons are one of the world’s largest species of snakes.

These nocturnal, carnivorous constrictors can grow to 23 feet and 200

pounds. Females are larger than males. They can lay up to a hundred
eggs in one clutch. In the wild, Burmese pythons live an average of 20

to 25 years.

The markings on a Burmese python begin with an arrow-shaped spot
of light brown on top of the head and continue along the body in rec-
tangles that stand out against its otherwise tan scales. Before they
reach their full size, which takes two to three years, Burmese pythons
live in trees hunting small mammals and birds. They also swim for
long stretches of time—going up to 30 minutes without air.

Because of habitat destruction, the Burmese python has a conserva-
tion status of Vulnerable. Many of the animals on O’Reilly’s covers
are endangered; all of them are important to the world.

The color illustration is by Jose Marzan, based on a black-and-white
engraving from Encyclopedie D’Histoire Naturelle. The cover fonts
are URW Typewriter and Guardian Sans. The text font is Adobe Min-
ion Pro; the heading font is Adobe Myriad Condensed; and the code
font is Dalton Maag’s Ubuntu Mono.

	Preface
	Managing Complexity, Solving Business Problems
	Why Python?
	TDD, DDD, and Event-Driven Architecture
	Who Should Read This Book
	A Brief Overview of What You’ll Learn
	Part I, Building an Architecture to Support Domain Modeling
	Part II, Event-Driven Architecture
	Addtional Content

	Example Code and Coding Along
	License
	Conventions Used in This Book
	O’Reilly Online Learning
	How to Contact O’Reilly
	Acknowledgments

	Introduction
	Why Do Our Designs Go Wrong?
	Encapsulation and Abstractions
	Layering
	The Dependency Inversion Principle
	A Place for All Our Business Logic: The Domain Model

	I. Building an Architecture to Support Domain Modeling
	1. Domain Modeling
	What Is a Domain Model?
	Exploring the Domain Language
	Unit Testing Domain Models
	Dataclasses Are Great for Value Objects
	Value Objects and Entities

	Not Everything Has to Be an Object: A Domain Service Function
	Python’s Magic Methods Let Us Use Our Models with Idiomatic Python
	Exceptions Can Express Domain Concepts Too

	2. Repository Pattern
	Persisting Our Domain Model
	Some Pseudocode: What Are We Going to Need?
	Applying the DIP to Data Access
	Reminder: Our Model
	The “Normal” ORM Way: Model Depends on ORM
	Inverting the Dependency: ORM Depends on Model

	Introducing the Repository Pattern
	The Repository in the Abstract
	What Is the Trade-Off?

	Building a Fake Repository for Tests Is Now Trivial!
	What Is a Port and What Is an Adapter, in Python?
	Wrap-Up

	3. A Brief Interlude: On Coupling and Abstractions
	Abstracting State Aids Testability
	Choosing the Right Abstraction(s)
	Implementing Our Chosen Abstractions
	Testing Edge to Edge with Fakes and Dependency Injection
	Why Not Just Patch It Out?

	Wrap-Up

	4. Our First Use Case: Flask API and Service Layer
	Connecting Our Application to the Real World
	A First End-to-End Test
	The Straightforward Implementation
	Error Conditions That Require Database Checks
	Introducing a Service Layer, and Using FakeRepository to Unit Test It
	A Typical Service Function

	Why Is Everything Called a Service?
	Putting Things in Folders to See Where It All Belongs
	Wrap-Up
	The DIP in Action

	5. TDD in High Gear and Low Gear
	How Is Our Test Pyramid Looking?
	Should Domain Layer Tests Move to the Service Layer?
	On Deciding What Kind of Tests to Write
	High and Low Gear
	Fully Decoupling the Service-Layer Tests from the Domain
	Mitigation: Keep All Domain Dependencies in Fixture Functions
	Adding a Missing Service

	Carrying the Improvement Through to the E2E Tests
	Wrap-Up

	6. Unit of Work Pattern
	The Unit of Work Collaborates with the Repository
	Test-Driving a UoW with Integration Tests
	Unit of Work and Its Context Manager
	The Real Unit of Work Uses SQLAlchemy Sessions
	Fake Unit of Work for Testing

	Using the UoW in the Service Layer
	Explicit Tests for Commit/Rollback Behavior
	Explicit Versus Implicit Commits
	Examples: Using UoW to Group Multiple Operations into an Atomic Unit
	Example 1: Reallocate
	Example 2: Change Batch Quantity

	Tidying Up the Integration Tests
	Wrap-Up

	7. Aggregates and Consistency Boundaries
	Why Not Just Run Everything in a Spreadsheet?
	Invariants, Constraints, and Consistency
	Invariants, Concurrency, and Locks

	What Is an Aggregate?
	Choosing an Aggregate
	One Aggregate = One Repository
	What About Performance?
	Optimistic Concurrency with Version Numbers
	Implementation Options for Version Numbers

	Testing for Our Data Integrity Rules
	Enforcing Concurrency Rules by Using Database Transaction Isolation Levels
	Pessimistic Concurrency Control Example: SELECT FOR UPDATE

	Wrap-Up
	Part I Recap

	II. Event-Driven Architecture
	8. Events and the Message Bus
	Avoiding Making a Mess
	First, Let’s Avoid Making a Mess of Our Web Controllers
	And Let’s Not Make a Mess of Our Model Either
	Or the Service Layer!

	Single Responsibility Principle
	All Aboard the Message Bus!
	The Model Records Events
	Events Are Simple Dataclasses
	The Model Raises Events
	The Message Bus Maps Events to Handlers

	Option 1: The Service Layer Takes Events from the Model and Puts Them on the Message Bus
	Option 2: The Service Layer Raises Its Own Events
	Option 3: The UoW Publishes Events to the Message Bus
	Wrap-Up

	9. Going to Town on the Message Bus
	A New Requirement Leads Us to a New Architecture
	Imagining an Architecture Change: Everything Will Be an Event Handler

	Refactoring Service Functions to Message Handlers
	The Message Bus Now Collects Events from the UoW
	Our Tests Are All Written in Terms of Events Too
	A Temporary Ugly Hack: The Message Bus Has to Return Results
	Modifying Our API to Work with Events

	Implementing Our New Requirement
	Our New Event

	Test-Driving a New Handler
	Implementation
	A New Method on the Domain Model

	Optionally: Unit Testing Event Handlers in Isolation with a Fake Message Bus
	Wrap-Up
	What Have We Achieved?
	Why Have We Achieved?

	10. Commands and Command Handler
	Commands and Events
	Differences in Exception Handling
	Discussion: Events, Commands, and Error Handling
	Recovering from Errors Synchronously
	Wrap-Up

	11. Event-Driven Architecture: Using Events to Integrate Microservices
	Distributed Ball of Mud, and Thinking in Nouns
	Error Handling in Distributed Systems
	The Alternative: Temporal Decoupling Using Asynchronous Messaging
	Using a Redis Pub/Sub Channel for Integration
	Test-Driving It All Using an End-to-End Test
	Redis Is Another Thin Adapter Around Our Message Bus
	Our New Outgoing Event

	Internal Versus External Events
	Wrap-Up

	12. Command-Query Responsibility Segregation (CQRS)
	Domain Models Are for Writing
	Most Users Aren’t Going to Buy Your Furniture
	Post/Redirect/Get and CQS
	Hold On to Your Lunch, Folks
	Testing CQRS Views
	“Obvious” Alternative 1: Using the Existing Repository
	Your Domain Model Is Not Optimized for Read Operations
	“Obvious” Alternative 2: Using the ORM
	SELECT N+1 and Other Performance Considerations
	Time to Completely Jump the Shark
	Updating a Read Model Table Using an Event Handler

	Changing Our Read Model Implementation Is Easy
	Wrap-Up

	13. Dependency Injection (and Bootstrapping)
	Implicit Versus Explicit Dependencies
	Aren’t Explicit Dependencies Totally Weird and Java-y?
	Preparing Handlers: Manual DI with Closures and Partials
	An Alternative Using Classes
	A Bootstrap Script
	Message Bus Is Given Handlers at Runtime
	Using Bootstrap in Our Entrypoints
	Initializing DI in Our Tests
	Building an Adapter “Properly”: A Worked Example
	Define the Abstract and Concrete Implementations
	Make a Fake Version for Your Tests
	Figure Out How to Integration Test the Real Thing

	Wrap-Up

	Epilogue
	What Now?
	How Do I Get There from Here?
	Separating Entangled Responsibilities
	Identifying Aggregates and Bounded Contexts
	An Event-Driven Approach to Go to Microservices via Strangler Pattern
	Convincing Your Stakeholders to Try Something New
	Questions Our Tech Reviewers Asked That We Couldn’t Work into Prose
	Footguns
	More Required Reading
	Wrap-Up

	A. Summary Diagram and Table
	B. A Template Project Structure
	Env Vars, 12-Factor, and Config, Inside and Outside Containers
	Config.py
	Docker-Compose and Containers Config
	Installing Your Source as a Package
	Dockerfile
	Tests
	Wrap-Up

	C. Swapping Out the Infrastructure: Do Everything with CSVs
	Implementing a Repository and Unit of Work for CSVs

	D. Repository and Unit of Work Patterns with Django
	Repository Pattern with Django
	Custom Methods on Django ORM Classes to Translate to/from Our Domain Model

	Unit of Work Pattern with Django
	API: Django Views Are Adapters
	Why Was This All So Hard?
	What to Do If You Already Have Django
	Steps Along the Way

	E. Validation
	What Is Validation, Anyway?
	Validating Syntax
	Postel’s Law and the Tolerant Reader Pattern
	Validating at the Edge
	Validating Semantics
	Validating Pragmatics

	Index

