O'REILLY"

Architecture
Patterns
with Python

Enabling Test-Driven Development,
Domain-Driven Design, and Event-Driven
Microservices

Harry J.W. Percival
& Bob Gregory

Architecture Patterns with Python

Enabling Test-Driven Development, Domain-Driven Design, and

Event-Driven Microservices

Harry Percival and Bob Gregory

Beijing + Boston + Farnham - Sebastopol - Tokyo

Architecture Patterns with Python

by Harry Percival and Bob Gregory

Copyright © 2020 Harry Percival and Bob Gregory. All rights

reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North,
Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales
promotional use. Online editions are also available for most titles
(http://oreilly.com). For more information, contact our corporate/insti-

tutional sales department: 800-998-9938 or corporate @oreilly.com.

Acquisitions Editor: Ryan Shaw

Development Editor: Corbin Collins

Production Editor: Katherine Tozer

Copyeditor: Sharon Wilkey

Proofreader: Arthur Johnson

Indexer: Ellen Troutman-Zaig

http://oreilly.com/

Interior Designer: David Futato

Cover Designer: Karen Montgomery

lllustrator: Rebecca Demarest

March 2020: First Edition

Revision History for the First Edition

e 2020-03-05: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781492052203 for re-

lease details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc.
Architecture Patterns with Python, the cover image, and related trade

dress are trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the authors and do not
represent the publisher’s views. While the publisher and the authors
have used good faith efforts to ensure that the information and in-
structions contained in this work are accurate, the publisher and the
authors disclaim all responsibility for errors or omissions, including
without limitation responsibility for damages resulting from the use of

or reliance on this work. Use of the information and instructions con-

http://oreilly.com/catalog/errata.csp?isbn=9781492052203

tained in this work is at your own risk. If any code samples or other
technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your respon-
sibility to ensure that your use thereof complies with such licenses
and/or rights.

978-1-492-05220-3

[LSI]

Preface

You may be wondering who we are and why we wrote this book.

At the end of Harry’s last book, Test-Driven Development with Python

(O’Reilly), he found himself asking a bunch of questions about archi-
tecture, such as, What'’s the best way of structuring your application
so that it’s easy to test? More specifically, so that your core business
logic is covered by unit tests, and so that you minimize the number of
integration and end-to-end tests you need? He made vague refer-
ences to “Hexagonal Architecture” and “Ports and Adapters” and
“Functional Core, Imperative Shell,” but if he was honest, he’d have to
admit that these weren’t things he really understood or had done in

practice.

And then he was lucky enough to run into Bob, who has the answers

to all these questions.

Bob ended up a software architect because nobody else on his team
was doing it. He turned out to be pretty bad at it, but he was lucky
enough to run into lan Cooper, who taught him new ways of writing

and thinking about code.

http://obeythetestinggoat.com/

Managing Complexity, Solving
Business Problems

We both work for MADE.com, a European ecommerce company that
sells furniture online; there, we apply the techniques in this book to
build distributed systems that model real-world business problems.
Our example domain is the first system Bob built for MADE, and this
book is an attempt to write down all the stuff we have to teach new

programmers when they join one of our teams.

MADE.com operates a global supply chain of freight partners and
manufacturers. To keep costs low, we try to optimize the delivery of
stock to our warehouses so that we don’t have unsold goods lying

around the place.

Ideally, the sofa that you want to buy will arrive in port on the very day
that you decide to buy it, and we’ll ship it straight to your house with-
out ever storing it. Getting the timing right is a tricky balancing act
when goods take three months to arrive by container ship. Along the
way, things get broken or water damaged, storms cause unexpected
delays, logistics partners mishandle goods, paperwork goes missing,

customers change their minds and amend their orders, and so on.

We solve those problems by building intelligent software representing
the kinds of operations taking place in the real world so that we can

automate as much of the business as possible.
Why Python?

If you’re reading this book, we probably don’t need to convince you
that Python is great, so the real question is “Why does the Python
community need a book like this?” The answer is about Python’s pop-
ularity and maturity: although Python is probably the world’s fastest-
growing programming language and is nearing the top of the absolute
popularity tables, it’s only just starting to take on the kinds of prob-
lems that the C# and Java world has been working on for years. Star-
tups become real businesses; web apps and scripted automations

are becoming (whisper it) enterprise software.

In the Python world, we often quote the Zen of Python: “There should

"1 Unfortu-

be one—and preferably only one—obvious way to do it.
nately, as project size grows, the most obvious way of doing things
isn’t always the way that helps you manage complexity and evolving

requirements.

None of the techniques and patterns we discuss in this book are new,

but they are mostly new to the Python world. And this book isn’t a re-

placement for the classics in the field such as Eric Evans’s Domain-
Driven Design or Martin Fowler’s Patterns of Enterprise Application
Architecture (both published by Addison-Wesley Professional)—

which we often refer to and encourage you to go and read.

But all the classic code examples in the literature do tend to be writ-
ten in Java or C++/#, and if you’re a Python person and haven’t used
either of those languages in a long time (or indeed ever), those code
listings can be quite...trying. There’s a reason the latest edition of
that other classic text, Fowler’s Refactoring (Addison-Wesley Profes-

sional), is in JavaScript.

TDD, DDD, and Event-Driven
Architecture

In order of notoriety, we know of three tools for managing complexity:

1. Test-driven development (TDD) helps us to build code that is cor-
rect and enables us to refactor or add new features, without fear of
regression. But it can be hard to get the best out of our tests: How
do we make sure that they run as fast as possible? That we get as
much coverage and feedback from fast, dependency-free unit
tests and have the minimum number of slower, flaky end-to-end

tests?

2. Domain-driven design (DDD) asks us to focus our efforts on build-
ing a good model of the business domain, but how do we make
sure that our models aren’t encumbered with infrastructure con-
cerns and don’t become hard to change?

3. Loosely coupled (micro)services integrated via messages (some-
times called reactive microservices) are a well-established answer
to managing complexity across multiple applications or business
domains. But it’s not always obvious how to make them fit with the
established tools of the Python world—Flask, Django, Celery, and

SO on.

NOTE
Don’t be put off if you’re not working with (or interested in) microservices. The vast
majority of the patterns we discuss, including much of the event-driven architecture

material, is absolutely applicable in a monolithic architecture.

Our aim with this book is to introduce several classic architectural
patterns and show how they support TDD, DDD, and event-driven
services. We hope it will serve as a reference for implementing them
in a Pythonic way, and that people can use it as a first step toward

further research in this field.

Who Should Read This Book

Here are a few things we assume about you, dear reader:

« You've been close to some reasonably complex Python
applications.

« You’ve seen some of the pain that comes with trying to manage
that complexity.

« You don’t necessarily know anything about DDD or any of the clas-

sic application architecture patterns.

We structure our explorations of architectural patterns around an ex-
ample app, building it up chapter by chapter. We use TDD at work, so
we tend to show listings of tests first, followed by implementation. If
you’re not used to working test-first, it may feel a little strange at the
beginning, but we hope you’ll soon get used to seeing code “being
used” (i.e., from the outside) before you see how it’s built on the

inside.

We use some specific Python frameworks and technologies, includ-
ing Flask, SQLAIchemy, and pytest, as well as Docker and Redis. If
you’re already familiar with them, that won’t hurt, but we don’t think
it’s required. One of our main aims with this book is to build an archi-
tecture for which specific technology choices become minor imple-

mentation details.

A Brief Overview of What You’ll Learn

The book is divided into two parts; here’s a look at the topics we’ll

cover and the chapters they live in.

Part |, Building an Architecture to Support
Domain Modeling

Domain modeling and DDD (Chapters 1 and 7)

At some level, everyone has learned the lesson that complex
business problems need to be reflected in code, in the form of a
model of the domain. But why does it always seem to be so
hard to do without getting tangled up with infrastructure con-
cerns, our web frameworks, or whatever else? In the first chap-
ter we give a broad overview of domain modeling and DDD,
and we show how to get started with a model that has no exter-
nal dependencies, and fast unit tests. Later we return to DDD
patterns to discuss how to choose the right aggregate, and how

this choice relates to questions of data integrity.

Repository, Service Layer, and Unit of Work patterns (Chapters 2,
4,and 3)

In these three chapters we present three closely related and
mutually reinforcing patterns that support our ambition to keep
the model free of extraneous dependencies. We build a layer of
abstraction around persistent storage, and we build a service
layer to define the entrypoints to our system and capture the

primary use cases. We show how this layer makes it easy to

build thin entrypoints to our system, whether it’s a Flask API or
a CLI.

Some thoughts on testing and abstractions (Chapters 3 and ¢)

After presenting the first abstraction (the Repository pattern),
we take the opportunity for a general discussion of how to
choose abstractions, and what their role is in choosing how our
software is coupled together. After we introduce the Service
Layer pattern, we talk a bit about achieving a test pyramid and

writing unit tests at the highest possible level of abstraction.

Part ll, Event-Driven Architecture

Event-driven architecture (Chapters §—11)

We introduce three more mutually reinforcing patterns: the Do-
main Events, Message Bus, and Handler patterns. Domain
events are a vehicle for capturing the idea that some interac-
tions with a system are triggers for others. We use a message
bus to allow actions to trigger events and call appropriate han-
dlers. We move on to discuss how events can be used as a
pattern for integration between services in a microservices ar-
chitecture. Finally, we distinguish between commands and
events. Our application is now fundamentally a message-pro-

cessing system.

Command-query responsibility segregation (Chapter 12)

We present an example of command-query responsibility seg-

regation, with and without events.

Dependency injection (Chapter 13)

We tidy up our explicit and implicit dependencies and imple-

ment a simple dependency injection framework.

Addtional Content

How do I get there from here? (Epilogue)

Implementing architectural patterns always looks easy when
you show a simple example, starting from scratch, but many of
you will probably be wondering how to apply these principles to
existing software. We’ll provide a few pointers in the epilogue

and some links to further reading.

Example Code and Coding Along

You’'re reading a book, but you’ll probably agree with us when we say
that the best way to learn about code is to code. We learned most of
what we know from pairing with people, writing code with them, and
learning by doing, and we’d like to re-create that experience as much

as possible for you in this book.

As a result, we’ve structured the book around a single example
project (although we do sometimes throw in other examples). We'll
build up this project as the chapters progress, as if you've paired with

us and we’re explaining what we’re doing and why at each step.

But to really get to grips with these patterns, you need to mess about
with the code and get a feel for how it works. You'll find all the code
on GitHub; each chapter has its own branch. You can find a list of the

branches on GitHub as well.

https://github.com/cosmicpython/code/branches/all

Here are three ways you might code along with the book:

« Start your own repo and try to build up the app as we do, following
the examples from listings in the book, and occasionally looking to
our repo for hints. A word of warning, however: if you’ve read Har-
ry’s previous book and coded along with that, you’ll find that this
book requires you to figure out more on your own; you may need
to lean pretty heavily on the working versions on GitHub.

« Try to apply each pattern, chapter by chapter, to your own (prefer-
ably small/toy) project, and see if you can make it work for your
use case. This is high risk/high reward (and high effort besides!). It
may take quite some work to get things working for the specifics of
your project, but on the other hand, you’re likely to learn the most.

« For less effort, in each chapter we outline an “Exercise for the
Reader,” and point you to a GitHub location where you can down-
load some partially finished code for the chapter with a few missing

parts to write yourself.

Particularly if you’re intending to apply some of these patterns in your
own projects, working through a simple example is a great way to

safely practice.

TIP

At the very least,do a git checkout of the code from our repo as you read each
chapter. Being able to jump in and see the code in the context of an actual working
app will help answer a lot of questions as you go, and makes everything more real.

You'll find instructions for how to do that at the beginning of each chapter.

License

The code (and the online version of the book) is licensed under a
Creative Commons CC BY-NC-ND license, which means you are free
to copy and share it with anyone you like, for non-commercial purpos-
es, as long as you give attribution. If you want to re-use any of the

content from this book and you have any worries about the license,

contact O’Reilly at permissions @oreilly.com.

The print edition is licensed differently; please see the copyright

page.
Conventions Used in This Book

The following typographical conventions are used in this book:

Italic

mailto:permissions@oreilly.com

Indicates new terms, URLs, email addresses, filenames, and

file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer
to program elements such as variable or function names, data-
bases, data types, environment variables, statements, and

keywords.

Constant width bold

Shows commands or other text that should be typed literally by

the user.

Constant width italic

Shows text that should be replaced with user-supplied values

or by values determined by context.

TIP

This element signifies a tip or suggestion.

NOTE

This element signifies a general note.

WARNING

This element indicates a warning or caution.

O’Reilly Online Learning

NOTE

For more than 40 years, O’Reilly Media has provided technology and business

training, knowledge, and insight to help companies succeed.

Our unique network of experts and innovators share their knowledge
and expertise through books, articles, conferences, and our online
learning platform. O’Reilly’s online learning platform gives you on-de-
mand access to live training courses, in-depth learning paths, interac-
tive coding environments, and a vast collection of text and video from
O’Reilly and 200+ other publishers. For more information, please visit

http://oreilly.com.

How to Contact O’Reilly

Please address comments and questions concerning this book to the

publisher:

http://oreilly.com/
http://oreilly.com/

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)

707-829-0515 (international or local)

707-829-0104 (fax)

We have a web page for this book, where we list errata, examples,
and any additional information. You can access this page at htips:/or-

eil.ly/architecture-patterns-python.

Email bookquestions @oreilly.com to comment or ask technical ques-

tions about this book.

For more information about our books, courses, conferences, and

news, see our website at hifp/www.oreilly.com.

Find us on Facebook: htip./facebook.com/oreilly

Follow us on Twitter: htip:/twitter.com/oreillymedia

Watch us on YouTube: http:/www.youtube.com/oreillymedia

Acknowledgments

https://oreil.ly/architecture-patterns-python
mailto:bookquestions@oreilly.com
http://www.oreilly.com/
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

To our tech reviewers, David Seddon, Ed Jung, and Hynek
Schlawack: we absolutely do not deserve you. You are all incredibly
dedicated, conscientious, and rigorous. Each one of you is immense-
ly smart, and your different points of view were both useful and com-

plementary to each other. Thank you from the bottom of our hearts.

Gigantic thanks also to our Early Release readers for their comments
and suggestions: lan Cooper, Abdullah Ariff, Jonathan Meier, Gil
Goncalves, Matthieu Choplin, Ben Judson, James Gregory, tukasz
Lechowicz, Clinton Roy, Vitorino Araujo, Susan Goodbody, Josh Har-
wood, Daniel Butler, Liu Haibin, Jimmy Davies, Ignacio Vergara
Kausel, Gaia Canestrani, Renne Rocha, pedroabi, Ashia Zawaduk,
Jostein Leira, Brandon Rhodes, and many more; our apologies if we

missed you on this list.

Super-mega-thanks to our editor Corbin Collins for his gentle chivvy-
ing, and for being a tireless advocate of the reader. Similarly-superla-
tive thanks to the production staff, Katherine Tozer, Sharon Wilkey,
Ellen Troutman-Zaig, and Rebecca Demarest, for your dedication,
professionalism, and attention to detail. This book is immeasurably

improved thanks to you.

Any errors remaining in the book are our own, naturally.

* python -c "import this"

Introduction

Why Do Our Designs Go Wrong?

What comes to mind when you hear the word chaos? Perhaps you
think of a noisy stock exchange, or your kitchen in the morning—
everything confused and jumbled. When you think of the word order,
perhaps you think of an empty room, serene and calm. For scientists,
though, chaos is characterized by homogeneity (sameness), and or-

der by complexity (difference).

For example, a well-tended garden is a highly ordered system. Gar-
deners define boundaries with paths and fences, and they mark out
flower beds or vegetable patches. Over time, the garden evolves,
growing richer and thicker; but without deliberate effort, the garden
will run wild. Weeds and grasses will choke out other plants, covering
over the paths, until eventually every part looks the same again—wild

and unmanaged.

Software systems, too, tend toward chaos. When we first start build-
ing a new system, we have grand ideas that our code will be clean

and well ordered, but over time we find that it gathers cruft and edge
cases and ends up a confusing morass of manager classes and util

modules. We find that our sensibly layered architecture has collapsed

into itself like an oversoggy trifle. Chaotic software systems are char-
acterized by a sameness of function: APl handlers that have domain
knowledge and send email and perform logging; “business logic”
classes that perform no calculations but do perform I/O; and every-
thing coupled to everything else so that changing any part of the sys-
tem becomes fraught with danger. This is so common that software
engineers have their own term for chaos: the Big Ball of Mud anti-pat-

tern (Eigure P-1).

Figure P-1. A real-life dependency diagram (source: “Enterprise Dependency: Big Ball of
Yarn” by Alex Papadimoulis)

https://oreil.ly/dbGTW

TIP
A big ball of mud is the natural state of software in the same way that wilderness is
the natural state of your garden. It takes energy and direction to prevent the

collapse.

Fortunately, the techniques to avoid creating a big ball of mud aren’t

complex.

Encapsulation and Abstractions

Encapsulation and abstraction are tools that we all instinctively reach
for as programmers, even if we don’t all use these exact words. Allow
us to dwell on them for a moment, since they are a recurring back-

ground theme of the book.

The term encapsulation covers two closely related ideas: simplifying
behavior and hiding data. In this discussion, we’re using the first
sense. We encapsulate behavior by identifying a task that needs to
be done in our code and giving that task to a well-defined object or

function. We call that object or function an abstraction.
Take a look at the following two snippets of Python code:

Do a search with urllib

import json
from urllib.request import urlopen

from urllib.parse import urlencode

params = dict(g='Sausages', format='json')
handle = urlopen('http://api.duckduckgo.com' + ":
raw_text = handle.read().decode('utf8")

parsed = json.loads(raw_ text)

results = parsed['RelatedTopics']
for r in results:
if 'Text' in r:
print(r['FirstURL'] + ' - ' + r['Text'])

Do a search with requests

import requests

params = dict(g='Sausages', format='json')

parsed = requests.get('http://api.duckduckgo.com,

results = parsed['RelatedTopics']
for r in results:
if 'Text' in r:
print(r['FirstURL'] + ' - ' + r['Text'])

Both code listings do the same thing: they submit form-encoded val-
ues to a URL in order to use a search engine API. But the second is
simpler to read and understand because it operates at a higher level

of abstraction.

We can take this one step further still by identifying and naming the
task we want the code to perform for us and using an even higher-

level abstraction to make it explicit:

Do a search with the duckduckgo module

import
for r in duckduckgo.query('Sausages').results:

print(r.url + ' - ' + r.text)

Encapsulating behavior by using abstractions is a powerful tool for

making code more expressive, more testable, and easier to maintain.

NOTE
In the literature of the object-oriented (OO) world, one of the classic characteriza-

tions of this approach is called responsibility-driven design; it uses the words roles

and responsibilities rather than tasks. The main point is to think about code in terms

of behavior, rather than in terms of data or algorithms.1

http://www.wirfs-brock.com/Design.html

ABSTRACTIONS AND ABCS

In a traditional OO language like Java or C#, you might use an ab-
stract base class (ABC) or an interface to define an abstraction. In
Python you can (and we sometimes do) use ABCs, but you can also

happily rely on duck typing.

The abstraction can just mean “the public API of the thing you’re us-

ing”—a function name plus some arguments, for example.

Most of the patterns in this book involve choosing an abstraction, so
you’ll see plenty of examples in each chapter. In addition, Chapter 3
specifically discusses some general heuristics for choosing

abstractions.
Layering

Encapsulation and abstraction help us by hiding details and protect-
ing the consistency of our data, but we also need to pay attention to
the interactions between our objects and functions. When one func-
tion, module, or object uses another, we say that the one depends on

the other. These dependencies form a kind of network or graph.

In a big ball of mud, the dependencies are out of control (as you saw

in Eigure P-1). Changing one node of the graph becomes difficult be-

cause it has the potential to affect many other parts of the system.
Layered architectures are one way of tackling this problem. In a lay-
ered architecture, we divide our code into discrete categories or roles,
and we introduce rules about which categories of code can call each

other.

One of the most common examples is the three-layered architecture

shown in Eigure P-2.

Presentation Layer

Y

Business Logic

v

Database Layer

Figure P-2. Layered architecture

Layered architecture is perhaps the most common pattern for build-
ing business software. In this model we have user-interface compo-
nents, which could be a web page, an API, or a command line; these
user-interface components communicate with a business logic layer
that contains our business rules and our workflows; and finally, we
have a database layer that’s responsible for storing and retrieving

data.

For the rest of this book, we’re going to be systematically turning this

model inside out by obeying one simple principle.

The Dependency Inversion Principle

You might be familiar with the dependency inversion principle (DIP)
already, because it’s the D in SOLID.2

Unfortunately, we can't illustrate the DIP by using three tiny code list-

ings as we did for encapsulation. However, the whole of Part | is es-

sentially a worked example of implementing the DIP throughout an

application, so you’ll get your fill of concrete examples.
In the meantime, we can talk about DIP’s formal definition:

1. High-level modules should not depend on low-level modules. Both
should depend on abstractions.
2. Abstractions should not depend on details. Instead, details should

depend on abstractions.
But what does this mean? Let’s take it bit by bit.

High-level modules are the code that your organization really cares
about. Perhaps you work for a pharmaceutical company, and your
high-level modules deal with patients and trials. Perhaps you work for
a bank, and your high-level modules manage trades and exchanges.
The high-level modules of a software system are the functions, class-

es, and packages that deal with our real-world concepts.

By contrast, low-level modules are the code that your organization
doesn’t care about. It’s unlikely that your HR department gets excited
about filesystems or network sockets. It’s not often that you discuss
SMTP, HTTP, or AMQP with your finance team. For our nontechnical
stakeholders, these low-level concepts aren’t interesting or relevant.
All they care about is whether the high-level concepts work correctly.
If payroll runs on time, your business is unlikely to care whether that’s

a cron job or a transient function running on Kubernetes.

Depends on doesn’t mean imports or calls, necessarily, but rather a
more general idea that one module knows about or needs another

module.

And we’ve mentioned abstractions already: they’re simplified inter-
faces that encapsulate behavior, in the way that our duckduckgo

module encapsulated a search engine’s API.

All problems in computer science can be solved by adding an-

other level of indirection.

—David Wheeler

So the first part of the DIP says that our business code shouldn’t de-

pend on technical details; instead, both should use abstractions.

Why? Broadly, because we want to be able to change them indepen-
dently of each other. High-level modules should be easy to change in
response to business needs. Low-level modules (details) are often, in
practice, harder to change: think about refactoring to change a func-
tion name versus defining, testing, and deploying a database migra-
tion to change a column name. We don’t want business logic
changes to slow down because they are closely coupled to low-level
infrastructure details. But, similarly, it is important to be able to
change your infrastructure details when you need to (think about
sharding a database, for example), without needing to make changes
to your business layer. Adding an abstraction between them (the fa-
mous extra layer of indirection) allows the two to change (more) inde-

pendently of each other.

The second part is even more mysterious. “Abstractions should not
depend on details” seems clear enough, but “Details should depend
on abstractions” is hard to imagine. How can we have an abstraction
that doesn’t depend on the details it’s abstracting? By the time we get
to Chapter 4, we’ll have a concrete example that should make this all

a bit clearer.

A Place for All Our Business Logic:
The Domain Model

But before we can turn our three-layered architecture inside out, we
need to talk more about that middle layer: the high-level modules or
business logic. One of the most common reasons that our designs go
wrong is that business logic becomes spread throughout the layers of

our application, making it hard to identify, understand, and change.

Chapter 1 shows how to build a business layer with a Domain Model

pattern. The rest of the patterns in Part | show how we can keep the

domain model easy to change and free of low-level concerns by

choosing the right abstractions and continuously applying the DIP.

- If you’ve come across class-responsibility-collaborator (CRC) cards, they’re dri-
ving at the same thing: thinking about responsibilities helps you decide how to split

things up.

* SOLID is an acronym for Robert C. Martin’s five principles of object-oriented de-
sign: single responsibility, open for extension but closed for modification, Liskov

substitution, interface segregation, and dependency inversion. See “S.0.L.I1.D: The

First 5 Principles of Object-Oriented Design” by Samuel Oloruntoba.

https://oreil.ly/UFM7U

Part |. Building an Architecture to
Support Domain Modeling

Most developers have never seen a domain model, only a data

model.
—Cyrille Martraire, DDD EU 2017

Most developers we talk to about architecture have a nagging sense
that things could be better. They are often trying to rescue a system
that has gone wrong somehow, and are trying to put some structure
back into a ball of mud. They know that their business logic shouldn’t

be spread all over the place, but they have no idea how to fix it.

We've found that many developers, when asked to design a new sys-
tem, will immediately start to build a database schema, with the ob-
ject model treated as an afterthought. This is where it all starts to go
wrong. Instead, behavior should come first and drive our storage re-
quirements. After all, our customers don’t care about the data model.
They care about what the system does; otherwise they’d just use a

spreadsheet.

The first part of the book looks at how to build a rich object model

through TDD (in Chapter 1), and then we’ll show how to keep that

model decoupled from technical concerns. We show how to build per-
sistence-ignorant code and how to create stable APIs around our do-

main so that we can refactor aggressively.

To do that, we present four key design patterns:

The Repository pattern, an abstraction over the idea of persistent

storage

The Service Layer pattern to clearly define where our use cases

begin and end

The Unit of Work pattern to provide atomic operations

The Aggregate pattern to enforce the integrity of our data

If you’d like a picture of where we’re going, take a look at Figure I-1,
but don’t worry if none of it makes sense yet! We introduce each box

in the figure, one by one, throughout this part of the book.

Flask

invokes
," Service Layer \‘,
' Services o S :
! / starts—» of T
: £ Work :
callmethods on provides
," Domain Y ! Adapters :
! ' loads : | Repository | |
1 = I 1 1
> <€ and — !
L L s <«

commits changes to

Figure I-1. A component diagram for our app at the end of Part |

We also take a little time out to talk about coupling_and abstractions,

illustrating it with a simple example that shows how and why we

choose our abstractions.
Three appendices are further explorations of the content from Part I:

« Appendix B is a write-up of the infrastructure for our example code:
how we build and run the Docker images, where we manage con-
figuration info, and how we run different types of tests.

« Appendix C is a “proof is in the pudding” kind of content, showing
how easy it is to swap out our entire infrastructure —the Flask API,
the ORM, and Postgres —for a totally different I/O model involving
a CLI and CSVs.

« Finally, Appendix D may be of interest if you’re wondering how
these patterns might look if using Django instead of Flask and
SQLAIchemy.

Chapter 1. Domain Modeling

This chapter looks into how we can model business processes with
code, in a way that’s highly compatible with TDD. We’ll discuss why
domain modeling matters, and we’ll look at a few key patterns for

modeling domains: Entity, Value Object, and Domain Service.

Figure 1-1 is a simple visual placeholder for our Domain Model pat-
tern. We'll fill in some details in this chapter, and as we move on to
other chapters, we’ll build things around the domain model, but you

should always be able to find these little shapes at the core.

- e e m m E m m E o E E o m mE e EE o mE ===

- Em Em Em o mm Em Em Em Em Em Em Em Em R Em Em Em O Em RN Em Em Em Em Em Em Em Em Em Em o Em Em Em

N e e M o e Em M o e e e e mm w

Figure 1-1. A placeholder illustration of our domain model

What Is a Domain Model?

In the introduction, we used the term business logic layerto describe
the central layer of a three-layered architecture. For the rest of the

book, we’re going to use the term domain model instead. This is a

term from the DDD community that does a better job of capturing our

intended meaning (see the next sidebar for more on DDD).

The domainis a fancy way of saying the problem you're trying to
solve. Your authors currently work for an online retailer of furniture.
Depending on which system you’re talking about, the domain might
be purchasing and procurement, or product design, or logistics and
delivery. Most programmers spend their days trying to improve or au-
tomate business processes; the domain is the set of activities that

those processes support.

A modelis a map of a process or phenomenon that captures a useful
property. Humans are exceptionally good at producing models of
things in their heads. For example, when someone throws a ball to-
ward you, you’re able to predict its movement almost unconsciously,
because you have a model of the way objects move in space. Your
model isn’t perfect by any means. Humans have terrible intuitions
about how objects behave at near-light speeds or in a vacuum be-
cause our model was never designed to cover those cases. That
doesn’t mean the model is wrong, but it does mean that some predic-

tions fall outside of its domain.

The domain model is the mental map that business owners have of
their businesses. All business people have these mental maps—

they’re how humans think about complex processes.

You can tell when they’re navigating these maps because they use
business speak. Jargon arises naturally among people who are col-

laborating on complex systems.

Imagine that you, our unfortunate reader, were suddenly transported
light years away from Earth aboard an alien spaceship with your
friends and family and had to figure out, from first principles, how to

navigate home.

In your first few days, you might just push buttons randomly, but soon
you’d learn which buttons did what, so that you could give one anoth-
er instructions. “Press the red button near the flashing doohickey and

then throw that big lever over by the radar gizmo,” you might say.

Within a couple of weeks, you’d become more precise as you adopt-
ed words to describe the ship’s functions: “Increase oxygen levels in
cargo bay three” or “turn on the little thrusters.” After a few months,
you’d have adopted language for entire complex processes: “Start
landing sequence” or “prepare for warp.” This process would happen

quite naturally, without any formal effort to build a shared glossary.

THIS IS NOT A DDD BOOK. YOU SHOULD READ A DDD BOOK.

Domain-driven design, or DDD, popularized the concept of domain
modeling,! and it’s been a hugely successful movement in transform-
ing the way people design software by focusing on the core business
domain. Many of the architecture patterns that we cover in this book
—including Entity, Aggregate, Value Object (see Chapter 7), and

Repository (in the next chapter)—come from the DDD tradition.

In a nutshell, DDD says that the most important thing about software
is that it provides a useful model of a problem. If we get that model

right, our software delivers value and makes new things possible.

If we get the model wrong, it becomes an obstacle to be worked
around. In this book, we can show the basics of building a domain
model, and building an architecture around it that leaves the model as
free as possible from external constraints, so that it’s easy to evolve

and change.

But there’s a lot more to DDD and to the processes, tools, and tech-
niques for developing a domain model. We hope to give you a taste
of it, though, and cannot encourage you enough to go on and read a

proper DDD book:

« The original “blue book,” Domain-Driven Design by Eric Evans

(Addison-Wesley Professional)

« The “red book,” Implementing Domain-Driven Design by Vaughn

Vernon (Addison-Wesley Professional)

So it is in the mundane world of business. The terminology used by
business stakeholders represents a distilled understanding of the do-
main model, where complex ideas and processes are boiled down to

a single word or phrase.

When we hear our business stakeholders using unfamiliar words, or
using terms in a specific way, we should listen to understand the
deeper meaning and encode their hard-won experience into our

software.

We’re going to use a real-world domain model throughout this book,
specifically a model from our current employment. MADE.com is a
successful furniture retailer. We source our furniture from manufac-

turers all over the world and sell it across Europe.

When you buy a sofa or a coffee table, we have to figure out how best
to get your goods from Poland or China or Vietham and into your liv-

ing room.

At a high level, we have separate systems that are responsible for

buying stock, selling stock to customers, and shipping goods to cus-

tomers. A system in the middle needs to coordinate the process by

allocating stock to a customer’s orders; see Figure 1-2.

« »
person. «person»

Buying Team Customer

Needs to purchase furniture

from suppliers Wants to buy furniture

«system»

Purchasing

asystem»

Ecommerce Dispatches goods to
Manages workflow for buying

stock from suppliers Sells goods online

Notifies about
shipments

Notifies about orders Asks for stock levels

«system» «system»
Allocation Sends instructions to Warehouse

Allocates stock to customer Manages workflow for

orders shipping goods to customers

Figure 1-2. Context diagram for the allocation service

For the purposes of this book, we’re imagining that the business de-
cides to implement an exciting new way of allocating stock. Until now,
the business has been presenting stock and lead times based on
what is physically available in the warehouse. If and when the ware-
house runs out, a product is listed as “out of stock” until the next ship-

ment arrives from the manufacturer.

Here’s the innovation: if we have a system that can keep track of all
our shipments and when they’re due to arrive, we can treat the goods
on those ships as real stock and part of our inventory, just with slight-
ly longer lead times. Fewer goods will appear to be out of stock, we'll
sell more, and the business can save money by keeping lower inven-

tory in the domestic warehouse.

But allocating orders is no longer a trivial matter of decrementing a
single quantity in the warehouse system. We need a more complex

allocation mechanism. Time for some domain modeling.

Exploring the Domain Language

Understanding the domain model takes time, and patience, and Post-
it notes. We have an initial conversation with our business experts
and agree on a glossary and some rules for the first minimal version
of the domain model. Wherever possible, we ask for concrete exam-

ples to illustrate each rule.

We make sure to express those rules in the business jargon (the
ubiquitous language in DDD terminology). We choose memorable
identifiers for our objects so that the examples are easier to talk

about.

‘Some Notes on Allocation” shows some notes we might have taken

while having a conversation with our domain experts about allocation.

SOME NOTES ON ALLOCATION

A productis identified by a SKU, pronounced “skew,” which is short
for stock-keeping unit. Customers place orders. An order is identified
by an order reference and comprises multiple order lines, where each

line has a SKU and a quantity. For example:

« 10 units of RED-CHAIR
o 1 unit of TASTELESS-LAMP

The purchasing department orders small batches of stock. A batch of

stock has a unique ID called a reference, a SKU, and a quantity.

We need to allocate order lines to batches. When we’ve allocated an
order line to a batch, we will send stock from that specific batch to the
customer’s delivery address. When we allocate x units of stock to a

batch, the available quantity is reduced by x. For example:

. We have a batch of 20 SMALL-TABLE, and we allocate an order
line for 2 SMALL-TABLE.
« The batch should have 18 SMALL-TABLE remaining.

We can't allocate to a batch if the available quantity is less than the

quantity of the order line. For example:

« We have a batch of 1 BLUE-CUSHION, and an order line for 2
BLUE-CUSHION.

« We should not be able to allocate the line to the batch.
We can't allocate the same line twice. For example:

. We have a batch of 10 BLUE-VASE, and we allocate an order line
for 2 BLUE-VASE.
« If we allocate the order line again to the same batch, the batch

should still have an available quantity of 8.

Batches have an ETA if they are currently shipping, or they may be in
warehouse stock. We allocate to warehouse stock in preference to
shipment batches. We allocate to shipment batches in order of which
has the earliest ETA.

Unit Testing Domain Models

We’re not going to show you how TDD works in this book, but we
want to show you how we would construct a model from this business

conversation.

EXERCISE FOR THE READER

Why not have a go at solving this problem yourself? Write a few unit
tests to see if you can capture the essence of these business rules in

nice, clean code.

You'll find some placeholder unit tests on GitHub, but you could just

start from scratch, or combine/rewrite them however you like.

Here’s what one of our first tests might look like:

A first test for allocation (test_batches.py)

def test allocating to a batch reduces the avail:
batch = Batch("batch-001", "SMALL-TABLE", gt
line = OrderLine('order-ref', "SMALL-TABLE",

batch.allocate(line)

assert batch.available quantity == 18
The name of our unit test describes the behavior that we want to see

from the system, and the names of the classes and variables that we

use are taken from the business jargon. We could show this code to

https://github.com/cosmicpython/code/tree/chapter_01_domain_model_exercise

our nontechnical coworkers, and they would agree that this correctly

describes the behavior of the system.

And here is a domain model that meets our requirements:

First cut of a domain model for batches (model.py)

(frozen=True) 0@
class OrderLine:
orderid: str
sku: str
gty: int
class Batch:
def init (
self, ref: str, sku: str, gty: int,
) s
self.reference = ref
self.sku = sku
self.eta = eta
self.available quantity = gty

def allocate(self,
self.available quantity -= line.qty

line: OrderLine):

eta:

9 OrderLine isanimmutable dataclass with no behavior.2

We’re not showing imports in most code listings, in an attempt
to keep them clean. We’re hoping you can guess that this came
via from dataclasses import dataclass ; likewise,
typing.Optional and datetime.date . If you wantto
double-check anything, you can see the full working code for

each chapter in its branch (e.g., chapter_01_domain_model).

Type hints are still a matter of controversy in the Python world.
For domain models, they can sometimes help to clarify or docu-
ment what the expected arguments are, and people with IDEs
are often grateful for them. You may decide the price paid in

terms of readability is too high.

Our implementation here is trivial: a Batch just wraps an integer
available quantity, and we decrement that value on alloca-
tion. We'’ve written quite a lot of code just to subtract one number
from another, but we think that modeling our domain precisely will

pay off.2
Let’s write some new failing tests:

Testing logic for what we can allocate (test_batches.py)

https://github.com/python-leap/code/tree/chapter_01_domain_model

det make batch and line(sku, batch gty, line qty
return (
Batch("batch-001", sku, batch gty, eta=d:
OrderLine("order-123", sku, line gty)

def test can allocate if available greater than 1
large batch, small line = make batch and line

assert large batch.can allocate(small line)

def test cannot allocate if available smaller th:
small batch, large line = make batch and linc

assert small batch.can allocate(large line)

def test can allocate if available equal to requ:
batch, line = make batch and line("ELEGANT-LI

assert batch.can allocate(line)

def test cannot allocate if skus do not match():
batch = Batch("batch-001", "UNCOMFORTABLE-CH!

different sku line = OrderLine("order-123",

assert batch.can allocate(different sku line

There’s nothing too unexpected here. We've refactored our test suite
so that we don’t keep repeating the same lines of code to create a

batch and a line for the same SKU; and we’ve written four simple

tests for a new method can_allocate . Again, notice that the
names we use mirror the language of our domain experts, and the

examples we agreed upon are directly written into code.

We can implement this straightforwardly, too, by writing the

can _allocate method of Batch:

A new method in the model (model.py)

def can allocate(self, line: OrderLine) -> b«

return self.sku == line.sku and self.ava:

So far, we can manage the implementation by just incrementing and
decrementing Batch.available quantity, butas we getinto
deallocate() tests, we’ll be forced into a more intelligent

solution:

This test is going to require a smarter model (test_batches.py)

def test can only deallocate allocated lines():
batch, unallocated line = make batch and line
batch.deallocate(unallocated line)

assert batch.available quantity == 20

In this test, we’re asserting that deallocating a line from a batch has
no effect unless the batch previously allocated the line. For this to
work, our Batch needs to understand which lines have been allo-

cated. Let’s look at the implementation:

The domain model now tracks allocations (model.py)

class Batch:
def init (
self, ref: str, sku: str, gty: int, eta:

self.reference = ref

self.sku = sku

self.eta = eta

self. purchased quantity = gty

self. allocations = set() # type: Set[O:

def allocate(self, line: OrderLine):
if self.can allocate(line):

self. allocations.add(line)
def deallocate(self, line: OrderLine):

if line in self. allocations:

self. allocations.remove(line)

def allocated quantity(self) -> int:

return sum(line.qty for line in self. al:

def available quantity(self) -> int:

return self. purchased quantity - self.a:

def can allocate(self, line: OrderLine) -> b«

return self.sku == line.sku and self.ava:

Eigure 1-3 shows the model in UML.

(C) Batch
reference
sku
g (C) OrderLine
_purchased_quantity —
_allocations - e
sku
qty

Figure 1-3. Our model in UML

Now we’re getting somewhere! A batch now keeps track of a set of
allocated OrderLine objects. When we allocate, if we have enough
available quantity, we just add to the set. Our

available quantity is now a calculated property: purchased

quantity minus allocated quantity.

Yes, there’s plenty more we could do. It’s a little disconcerting that
both allocate() and deallocate() can fail silently, but we

have the basics.

Incidentally, using a set for . _allocations makes it simple for us

to handle the last test, because items in a set are unique:

Last batch test! (test _batches.py)

def test allocation is idempotent():
batch, line = make batch and line("ANGULAR-DI
batch.allocate(line)
batch.allocate(line)

assert batch.available quantity ==

At the moment, it’s probably a valid criticism to say that the domain
model is too trivial to bother with DDD (or even object orientation!). In
real life, any number of business rules and edge cases crop up: cus-
tomers can ask for delivery on specific future dates, which means we
might not want to allocate them to the earliest batch. Some SKUs
aren’t in batches, but ordered on demand directly from suppliers, so
they have different logic. Depending on the customer’s location, we
can allocate to only a subset of warehouses and shipments that are
in their region—except for some SKUs we’re happy to deliver from a

warehouse in a different region if we’re out of stock in the home re-

gion. And so on. A real business in the real world knows how to pile

on complexity faster than we can show on the page!

But taking this simple domain model as a placeholder for something
more complex, we’re going to extend our simple domain model in the
rest of the book and plug it into the real world of APIs and databases
and spreadsheets. We'll see how sticking rigidly to our principles of

encapsulation and careful layering will help us to avoid a ball of mud.

MORE TYPES FOR MORE TYPE HINTS
If you really want to go to town with type hints, you could go so far as

wrapping primitive types by using typing.NewType :

Just taking it way too far, Bob

from import dataclass

from import NewType

Quantity = NewType('"Quantity", int)
Sku = NewType('"Sku", str)
Reference = NewType('Reference", str)

class Batch:
def init (self, ref: Reference, sku: Sku,

self.sku = sku
self.reference = ref
self. purchased quantity = gty

That would allow our type checker to make sure that we don’t pass a
Sku where a Reference is expected, for example.

Whether you think this is wonderful or appalling is a matter of

debate.*

Dataclasses Are Great for Value Objects

We’ve used line liberally in the previous code listings, but what is a
line? In our business language, an order has multiple /ine items,
where each line has a SKU and a quantity. We can imagine that a

simple YAML file containing order information might look like this:

Order info as YAML

Order reference: 12345
Lines:
- sku: RED-CHAIR
gty: 25
- sku: BLU-CHAIR
gty: 25
- sku: GRN-CHAIR
gty: 25

Notice that while an order has a reference that uniquely identifies it, a
line does not. (Even if we add the order reference to the OrderLine

class, it’s not something that uniquely identifies the line itself.)

Whenever we have a business concept that has data but no identity,
we often choose to represent it using the Value Object pattern. A val-
ue objectis any domain object that is uniquely identified by the data it

holds; we usually make them immutable:

OrderLine is a value object

(frozen=True)
class OrderLine:
orderid: OrderReference
sku: ProductReference

gty: Quantity

One of the nice things that dataclasses (or namedtuples) give us is
value equality, which is the fancy way of saying, “Two lines with the

same orderid, sku,and gty are equal”

More examples of value objects

from import dataclass
from import NamedTuple
from import namedtuple

(frozen=True)
class Name:
first name: str

surname: str

class Money(NamedTuple):

currency: str

value: int

Line = namedtuple('Line’', ['sku', 'gty'])

def test equality():

assert Money('gbp', 10) == Money('gbp', 10)
assert Name('Harry', 'Percival') != Name('Bol
assert Line('RED-CHAIR', 5) == Line('RED-CHA!

These value objects match our real-world intuition about how their
values work. It doesn’t matter which £10 note we’re talking about, be-
cause they all have the same value. Likewise, two names are equal if
both the first and last names match; and two lines are equivalent if
they have the same customer order, product code, and quantity. We
can still have complex behavior on a value object, though. In fact, it'’s
common to support operations on values; for example, mathematical

operators:

Math with value objects

fiver = Money('gbp', 5)
tenner = Money('gbp', 10)

def can add money values for the same currency()

assert fiver + fiver == tenner

def can_ subtract money values():

assert tenner - fiver == fiver

def adding different currencies fails():
with pytest.raises(ValueError):

Money('usd', 10) + Money('gbp', 10)

def can multiply money by a number():

assert fiver * 5 == Money('gbp', 25)

def multiplying two money values is an error():
with pytest.raises(TypeError):

tenner * fiver

Value Objects and Entities

An order line is uniquely identified by its order ID, SKU, and quantity;
if we change one of those values, we now have a new line. That’s the
definition of a value object: any object that is identified only by its data
and doesn’t have a long-lived identity. What about a batch, though?

That /s identified by a reference.

We use the term entity to describe a domain object that has long-
lived identity. On the previous page, we introduced a Name class as
a value object. If we take the name Harry Percival and change one

letter, we have the new Name object Barry Percival.

It should be clear that Harry Percival is not equal to Barry Percival:

A name itself cannot change...

def test name equality():

assert Name("Harry", "Percival") != Name("Ba:

But what about Harry as a person? People do change their names,
and their marital status, and even their gender, but we continue to
recognize them as the same individual. That’s because humans, un-

like names, have a persistent identity-

But a person can!

class Person:
def init (self, name: Name):

self.name = name

def test barry is harry():
harry = Person(Name("Harry", "Percival'"))
barry = harry

barry.name = Name("Barry", "Percival'")

assert harry is barry and barry is harry

Entities, unlike values, have identity equality. We can change their
values, and they are still recognizably the same thing. Batches, in our
example, are entities. We can allocate lines to a batch, or change the

date that we expect it to arrive, and it will still be the same entity.

We usually make this explicit in code by implementing equality opera-

tors on entities:

Implementing equality operators (model.py)

class Batch:

def eq (self, other):
if not isinstance(other, Batch):
return False

return other.reference == self.reference

def hash (self):

return hash(self.reference)

Python’s _ _eq magic method defines the behavior of the class

for the == operator.2

For both entity and value objects, it’s also worth thinking through how

__hash__ will work. It’s the magic method Python uses to control

the behavior of objects when you add them to sets or use them as

dict keys; you can find more info in the Python docs.

For value objects, the hash should be based on all the value attribut-
es, and we should ensure that the objects are immutable. We get this

for free by specifying @frozen=True on the dataclass.

For entities, the simplest option is to say that the hash is None,
meaning that the object is not hashable and cannot, for example, be
used in a set. If for some reason you decide you really do want to use
set or dict operations with entities, the hash should be based on the
attribute(s), such as .reference, that defines the entity’s unique
identity over time. You should also try to somehow make that attribute

read-only.

WARNING
This is tricky territory; you shouldn’t modify __hash _ without also modifying
__eq___.lfyou’re not sure what you’re doing, further reading is suggested.

“Python Hashes and Equality” by our tech reviewer Hynek Schlawack is a good

place to start.

Not Everything Has to Be an Object:
A Domain Service Function

https://oreil.ly/YUzg5
https://oreil.ly/vxkgX

We’ve made a model to represent batches, but what we actually need
to do is allocate order lines against a specific set of batches that rep-

resent all our stock.
Sometimes, it just isn’t a thing.
—Eric Evans, Domain-Driven Design

Evans discusses the idea of Domain Service operations that don’t
have a natural home in an entity or value object.® A thing that allo-
cates an order line, given a set of batches, sounds a lot like a func-
tion, and we can take advantage of the fact that Python is a multipar-

adigm language and just make it a function.
Let’s see how we might test-drive such a function:

Testing our domain service (test_allocate.py)

def test prefers current stock batches to shipme:
in stock batch = Batch("in-stock-batch", "RE"
shipment batch = Batch("shipment-batch", "RE’
line = OrderLine("oref", "RETRO-CLOCK", 10)

allocate(line, [in_ stock batch, shipment bat«

assert in stock batch.available quantity == !

assert shipment batch.available quantity ==

def test prefers earlier batches():
earliest = Batch('"speedy-batch", "MINIMALIST-
medium = Batch("normal-batch", "MINIMALIST-SI
latest = Batch("slow-batch", "MINIMALIST-SPO(
line = OrderLine("orderl", "MINIMALIST-SPOON'

allocate(line, [medium, earliest, latest])

assert earliest.available quantity == 90
assert medium.available quantity == 100
assert latest.available quantity == 100

def test returns allocated batch ref():
in stock batch = Batch("in-stock-batch-ref",
shipment batch = Batch("shipment-batch-ref",
line = OrderLine("oref", "HIGHBROW-POSTER",
allocation = allocate(line, [in stock batch,

assert allocation == in stock batch.referencs

And our service might look like this:

A standalone function for our domain service (model.py)

def allocate(line: OrderLine, batches: List[Batcl

aal AL -_— el /

PacrcCll — liexc |

b for b in sorted(batches) if b.can alloc

)
batch.allocate(line)

return batch.reference

Python’s Magic Methods Let Us Use Our Models
with Idiomatic Python

You may or may not like the use of next () inthe preceding code,
but we’re pretty sure you’ll agree that being able to use sorted()

on our list of batches is nice, idiomatic Python.
To make it work, we implement _ gt on our domain model:

Magic methods can express domain semantics (model.py)

class Batch:

def gt (self, other):
if self.eta is None:
return False
if other.eta is None:
return True

return self.eta > other.eta

That’s lovely.

Exceptions Can Express Domain Concepts Too

We have one final concept to cover: exceptions can be used to ex-
press domain concepts too. In our conversations with domain ex-
perts, we’ve learned about the possibility that an order cannot be allo-
cated because we are out of stock, and we can capture that by using

a domain exception:

Testing out-of-stock exception (test_allocate.py)

def test raises out of stock exception if cannot
batch = Batch('batchl', 'SMALL-FORK', 10, et:
allocate(OrderLine('orderl', 'SMALL-FORK', 1f

with pytest.raises(OutOfStock, match='SMALL-]
allocate(OrderLine('order2', 'SMALL-FORK

DOMAIN MODELING RECAP
Domain modeling

This is the part of your code that is closest to the business, the
most likely to change, and the place where you deliver the most

value to the business. Make it easy to understand and modify.

Distinguish entities from value objects

A value object is defined by its attributes. It’s usually best im-
plemented as an immutable type. If you change an attribute on
a Value Object, it represents a different object. In contrast, an
entity has attributes that may vary over time and it will still be
the same entity. It’s important to define what does uniquely

identify an entity (usually some sort of name or reference field).

Not everything has to be an object

Python is a multiparadigm language, so let the “verbs” in your
code be functions. For every FooManager , BarBuilder, or
BazFactory , there’s often a more expressive and readable
manage foo(), build bar(),or get baz() waitingto
happen.

This is the time to apply your best OO design principles

Reuvisit the SOLID principles and all the other good heuristics
like “has a versus is-a,” “prefer composition over inheritance,”
and so on.

You'll also want to think about consistency boundaries and

aggregates

But that’s a topic for Chapter 7.

We won’t bore you too much with the implementation, but the main
thing to note is that we take care in naming our exceptions in the

ubiquitous language, just as we do our entities, value objects, and

services:

Raising a domain exception (model.py)

class OutOfStock(Exception):

pass

def allocate(line: OrderLine, batches: List[Batcl
try:
batch = next(

except StopIteration:

raise OutOfStock(f'Out of stock for sku -

Eigure 1-4 is a visual representation of where we’ve ended up.

--

—> Batch

allocate()

- Em mm Em o Em o Em Em o Em Em Em Em Em Em Em R Em o R Em E Em Em Em Em R R Em mm A Em o Em

o mm o mm Em Em Em Em Em Em Em M Em Em Em EE E R B EE Em A Em Em M Em EE A Em Em Em Em Em Em Em Em Em o

Figure 1-4. Our domain model at the end of the chapter

That’ll probably do for now! We have a domain service that we can

use for our first use case. But first we’ll need a database...

- DDD did not originate domain modeling. Eric Evans refers to the 2002 book Object
Design by Rebecca Wirfs-Brock and Alan McKean (Addison-Wesley Professional),
which introduced responsibility-driven design, of which DDD is a special case deal-
ing with the domain. But even that is too late, and OO enthusiasts will tell you to
look further back to Ivar Jacobson and Grady Booch; the term has been around

since the mid-1980s.

* In previous Python versions, we might have used a namedtuple. You could also

check out Hynek Schlawack’s excellent atirs.

" Or perhaps you think there’s not enough code? What about some sort of check
that the SKU in the OrderLine matches Batch.sku ? We saved some thoughts

on validation for Appendix E.

- ltis appalling. Please, please don’t do this. —Harry

'
|

- The __eq method is pronounced “dunder-EQ.” By some, at least.
* Domain services are not the same thing as the services from the service layer, al-

though they are often closely related. A domain service represents a business con-
cept or process, whereas a service-layer service represents a use case for your ap-

plication. Often the service layer will call a domain service.

https://pypi.org/project/attrs

Chapter 2. Repository Pattern

It’s time to make good on our promise to use the dependency inver-
sion principle as a way of decoupling our core logic from infrastructur-

al concerns.

We’ll introduce the Repository pattern, a simplifying abstraction over
data storage, allowing us to decouple our model layer from the data
layer. We'll present a concrete example of how this simplifying ab-
straction makes our system more testable by hiding the complexities

of the database.

Eigure 2-1 shows a little preview of what we’re going to build: a
Repository object that sits between our domain model and the

database.

Doman [Domain ¢ Repositories

Abstract SQLAlchemy
' : bt i implements i
Z{_____J/i—’f—)- i | Z{_____in_J[—). ! Repository <3-P ________ Repository

Figure 2-1. Before and after the Repository pattern

TIP

The code for this chapter is in the chapter_02_repository branch on GitHub.

git clone https://github.com/cosmicpython/code.git
cd code

git checkout chapter 02 repository

or to code along, checkout the previous chapter:

git checkout chapter 01 domain model

Persisting Our Domain Model

In Chapter 1 we built a simple domain model that can allocate orders

to batches of stock. It’s easy for us to write tests against this code be-

https://oreil.ly/6STDu

cause there aren’t any dependencies or infrastructure to set up. If we
needed to run a database or an APl and create test data, our tests

would be harder to write and maintain.

Sadly, at some point we’ll need to put our perfect little model in the
hands of users and contend with the real world of spreadsheets and
web browsers and race conditions. For the next few chapters we’re
going to look at how we can connect our idealized domain model to

external state.

We expect to be working in an agile manner, so our priority is to get to
a minimum viable product as quickly as possible. In our case, that’s
going to be a web API. In a real project, you might dive straight in with
some end-to-end tests and start plugging in a web framework, test-

driving things outside-in.

But we know that, no matter what, we’re going to need some form of
persistent storage, and this is a textbook, so we can allow ourselves a
tiny bit more bottom-up development and start to think about storage

and databases.

Some Pseudocode: What Are We
Going to Need?

When we build our first APl endpoint, we know we’re going to have

some code that looks more or less like the following.

What our first API endpoint will look like

def allocate endpoint():
extract order line from request

line = OrderLine(request.params, ...)
load all batches from the DB
batches = ...

call our domain service
allocate(line, batches)
then save the allocation back to the datab:

return 201

NOTE
We’ve used Flask because it’s lightweight, but you don’t need to be a Flask user to
understand this book. In fact, we’ll show you how to make your choice of framework

a minor detail.

We’ll need a way to retrieve batch info from the database and instan-
tiate our domain model objects from it, and we’ll also need a way of

saving them back to the database.

What? Oh, “‘gubbins” is a British word for “stuff.” You can just ignore

that. It's pseudocode, OK?

Applying the DIP to Data Access

As mentioned in the introduction, a layered architecture is a common
approach to structuring a system that has a Ul, some logic, and a

database (see Figure 2-2).

Presentation Layer

v

Business Logic

Y

Database Layer

Figure 2-2. Layered architecture

Django’s Model-View-Template structure is closely related, as is Mod-
el-View-Controller (MVC). In any case, the aim is to keep the layers
separate (which is a good thing), and to have each layer depend only

on the one below it.

But we want our domain model to have no dependencies
whatsoever.! We don’t want infrastructure concerns bleeding over
into our domain model and slowing our unit tests or our ability to

make changes.

Instead, as discussed in the introduction, we’ll think of our model as
being on the “inside,” and dependencies flowing inward to it; this is

what people sometimes call onion architecture (see Eigure 2-3).

Presentation Layer

Y

Domain Model

*

Database Layer

Figure 2-3. Onion architecture

IS THIS PORTS AND ADAPTERS?

If you’ve been reading about architectural patterns, you may be ask-

ing yourself questions like this:

Is this ports and adapters? Or is it hexagonal architecture? Is
that the same as onion architecture? What about the clean ar-
chitecture? What's a port, and what's an adapter? Why do you

people have so many words for the same thing?

Although some people like to nitpick over the differences, all these
are pretty much names for the same thing, and they all boil down to
the dependency inversion principle: high-level modules (the domain)

should not depend on low-level ones (the infrastructure).

We’ll get into some of the nitty-gritty around “depending on abstrac-
tions,” and whether there is a Pythonic equivalent of interfaces, later

in the book. See also “What Is a Port and What Is an Adapter,.in

Python?”.

Reminder: Our Model

Let’s remind ourselves of our domain model (see Figure 2-4): an allo-
cation is the concept of linking an OrderLine toa Batch.We'’re

storing the allocations as a collection on our Batch object.

'§3' Batch
reference
sku
€ (C) OrderLine
_purchased_quantity —
_allocations | orderid
sku
qty

Figure 2-4. Our model

Let’s see how we might translate this to a relational database.

The “Normal” ORM Way: Model Depends on ORM

These days, it’s unlikely that your team members are hand-rolling
their own SQL queries. Instead, you’re almost certainly using some
kind of framework to generate SQL for you based on your model ob-

jects.

These frameworks are called object-relational mappers (ORMSs) be-
cause they exist to bridge the conceptual gap between the world of
objects and domain modeling and the world of databases and rela-

tional algebra.

The most important thing an ORM gives us is persistence ignorance:

the idea that our fancy domain model doesn’t need to know anything

about how data is loaded or persisted. This helps keep our domain

clean of direct dependencies on particular database technologies.?

But if you follow the typical SQLAIchemy tutorial, you’ll end up with

something like this:

SQLAIchemy “declarative” syntax, model depends on ORM (orm.py)

from import Column, ForeignKey, Intege
from import declaratis
from import relationship

Base = declarative base()

class Order (Base):

id = Column(Integer, primary key=True)

class OrderLine(Base):
id = Column(Integer, primary key=True)
sku = Column(String(250))
gty = Integer(String(250))
order id = Column(Integer, ForeignKey('order

order = relationship(Order)

class Allocation(Base):

You don’t need to understand SQLAIchemy to see that our pristine
model is now full of dependencies on the ORM and is starting to look
ugly as hell besides. Can we really say this model is ignorant of the
database? How can it be separate from storage concerns when our

model properties are directly coupled to database columns?

DJANGO’S ORM IS ESSENTIALLY THE SAME, BUT MORE RESTRICTIVE

If you’re more used to Django, the preceding “declarative” SQLAIche-

my snippet translates to something like this:

Django ORM example

class Order (models.Model):

pass

class OrderLine(models.Model):
sku = models.CharField(max length=255)
gty = models.IntegerField()

order = models.ForeignKey(Order)

class Allocation(models.Model):

The point is the same—our model classes inherit directly from ORM
classes, so our model depends on the ORM. We want it to be the oth-

er way around.

Django doesn’t provide an equivalent for SQLAlchemy’s classical
mapper, but see Appendix D for examples of how to apply dependen-

cy inversion and the Repository pattern to Django.

Inverting the Dependency: ORM Depends on
Model

Well, thankfully, that’s not the only way to use SQLAIchemy. The al-
ternative is to define your schema separately, and to define an explic-
it mapper for how to convert between the schema and our domain

model, what SQLAlchemy calls a classical mapping:

Explicit ORM mapping with SQLAIchemy Table objects (orm.py)

from import mapper, relationship

import (1

metadata = MetaData()

order lines = Table(@
'order lines', metadata,
Column('id', Integer, primary key=True, auto:
Column('sku', String(255)),
Column('gty', Integer, nullable=False),
Column('orderid', String(255)),

https://oreil.ly/ZucTG

def start mappers():
lines mapper = mapper (model.OrderLine, order
3]

The ORM imports (or “depends on” or “knows about”) the do-

main model, and not the other way around.

We define our database tables and columns by using

SQLAIchemy’s abstractions.#

When we call the mapper function, SQLAlchemy does its
magic to bind our domain model classes to the various tables

we’ve defined.

The end result will be that, if we call start mappers , we will be
able to easily load and save domain model instances from and to the
database. But if we never call that function, our domain model class-

es stay blissfully unaware of the database.

This gives us all the benefits of SQLAlIchemy, including the ability to
use alembic for migrations, and the ability to transparently query

using our domain classes, as we’ll see.

When you’re first trying to build your ORM config, it can be useful to

write tests for it, as in the following example:

Testing the ORM directly (throwaway tests) (test_ orm.py)

def test orderline mapper can load lines(session

session.execute(
'"INSERT INTO order lines (orderid, sku, ¢
'("orderl", "RED-CHAIR", 12),'
'("orderl", "RED-TABLE", 13),'
'("order2", "BLUE-LIPSTICK", 14)'

)

expected = [
model .OrderLine("orderl", "RED-CHAIR", 1!
model .OrderLine("orderl", "RED-TABLE", 1!
model.OrderLine("order2", "BLUE-LIPSTICK'

]

assert session.query(model.OrderLine).all()

def test orderline mapper can save lines(session
new line = model.OrderLine("orderl", "DECORA'
session.add(new line)

session.commit ()

rows = list(session.execute(' SELECT orderid,
assert rows == [("orderl", "DECORATIVE-WIDGE

https://calibre-pdf-anchor.a/#a216

If you haven’t used pytest, the session argument to this test
needs explaining. You don’t need to worry about the details of
pytest or its fixtures for the purposes of this book, but the short
explanation is that you can define common dependencies for
your tests as “fixtures,” and pytest will inject them to the tests
that need them by looking at their function arguments. In this

case, it’'s a SQLAIchemy database session.

You probably wouldn’t keep these tests around—as you’ll see shortly,
once you’ve taken the step of inverting the dependency of ORM and
domain model, it’s only a small additional step to implement another
abstraction called the Repository pattern, which will be easier to write
tests against and will provide a simple interface for faking out later in

tests.

But we’ve already achieved our objective of inverting the traditional
dependency: the domain model stays “pure” and free from in-
frastructure concerns. We could throw away SQLAIchemy and use a
different ORM, or a totally different persistence system, and the do-

main model doesn’t need to change at all.

Depending on what you’re doing in your domain model, and especial-
ly if you stray far from the OO paradigm, you may find it increasingly
hard to get the ORM to produce the exact behavior you need, and

you may need to modify your domain model.> As so often happens

with architectural decisions, you’ll need to consider a trade-off. As the

Zen of Python says, “Practicality beats purity!”

At this point, though, our APl endpoint might look something like the

following, and we could get it to work just fine:

Using SQLAIchemy directly in our API endpoint

def allocate endpoint():

session = start session()

extract order line from request
line = OrderLine(
request.json['orderid'],
request.json['sku'],

request.json['gty'],

load all batches from the DB

batches = session.query(Batch).all()

call our domain service

allocate(line, batches)

save the allocation back to the database

session.commit ()

return 201

Introducing the Repository Pattern

The Repository pattern is an abstraction over persistent storage. It
hides the boring details of data access by pretending that all of our

data is in memory.

If we had infinite memory in our laptops, we’d have no need for clum-
sy databases. Instead, we could just use our objects whenever we
liked. What would that look like?

You have to get your data from somewhere

import
def create a batch():
batch = Batch(...)

all my data.batches.add(batch)

def modify a batch(batch id, new quantity):

batch = all my data.batches.get(batch id)

batch.change initial quantity(new quantity)

Even though our objects are in memory, we need to put them some-
where so we can find them again. Our in-memory data would let us
add new objects, just like a list or a set. Because the objects are in
memory, we never need to calla .save () method; we just fetch the

object we care about and modify it in memory.
The Repository in the Abstract

The simplest repository has just two methods: add() to putanew

item in the repository, and get () to return a previously added item.®
We stick rigidly to using these methods for data access in our domain
and our service layer. This self-imposed simplicity stops us from cou-

pling our domain model to the database.

Here’s what an abstract base class (ABC) for our repository would

look like:

The simplest possible repository (repository.py)

class AbstractRepository(abc.ABC):

1]
def add(self, batch: model.Batch):

raise NotImplementedError @

L1

def get(self, reference) -> model.Batch:

raise NotImplementedError

Python tip: @abc.abstractmethod is one of the only things
that makes ABCs actually “work” in Python. Python will refuse
to let you instantiate a class that does not implement all the

abstractmethods defined in its parent class.?

raise NotImplementedError is nice, butit’s neither nec-
essary nor sufficient. In fact, your abstract methods can have

real behavior that subclasses can call out to, if you really want.

ABSTRACT BASE CLASSES, DUCK TYPING, AND PROTOCOLS

We’re using abstract base classes in this book for didactic reasons:
we hope they help explain what the interface of the repository ab-

straction is.

In real life, we’ve sometimes found ourselves deleting ABCs from our
production code, because Python makes it too easy to ignore them,
and they end up unmaintained and, at worst, misleading. In practice
we often just rely on Python’s duck typing to enable abstractions. To a
Pythonista, a repository is any object that has add(thing) and
get(1d) methods.

An alternative to look into is PEP 544 protocols. These give you typ-
ing without the possibility of inheritance, which “prefer composition

over inheritance” fans will particularly like.

What Is the Trade-Off?

You know they say economists know the price of everything and
the value of nothing? Well, programmers know the benefits of

everything and the trade-offs of nothing.

—Rich Hickey

https://oreil.ly/q9EPC

Whenever we introduce an architectural pattern in this book, we’ll al-

ways ask, “What do we get for this? And what does it cost us?”

Usually, at the very least, we’ll be introducing an extira layer of ab-
straction, and although we may hope it will reduce complexity overall,
it does add complexity locally, and it has a cost in terms of the raw

numbers of moving parts and ongoing maintenance.

The Repository pattern is probably one of the easiest choices in the
book, though, if you're already heading down the DDD and depen-
dency inversion route. As far as our code is concerned, we’re really
just swapping the SQLAIchemy abstraction

(session.query(Batch)) for a different one

(batches repo.get)that we designed.

We will have to write a few lines of code in our repository class each
time we add a new domain object that we want to retrieve, but in re-
turn we get a simple abstraction over our storage layer, which we
control. The Repository pattern would make it easy to make funda-
mental changes to the way we store things (see Appendix C), and as

we’ll see, it is easy to fake out for unit tests.

In addition, the Repository pattern is so common in the DDD world

that, if you do collaborate with programmers who have come to

Python from the Java and C# worlds, they’re likely to recognize it.

Figure 2-5 illustrates the pattern.

Application Layer

Domain Model
Objects

Repository

v

Database Layer

Figure 2-5. Repository pattern

As always, we start with a test. This would probably be classified as
an integration test, since we’re checking that our code (the reposito-
ry) is correctly integrated with the database; hence, the tests tend to

mix raw SQL with calls and assertions on our own code.

TIP
Unlike the ORM tests from earlier, these tests are good candidates for staying part
of your codebase longer term, particularly if any parts of your domain model mean

the object-relational map is nontrivial.

Repository test for saving an object (test_repository.py)

def test repository can save a batch(session):
batch = model.Batch("batchl", "RUSTY-SOAPDISI

repo = repository.SqlAlchemyRepository(sessic
repo.add(batch) ©

session.commit() @

rows = list(session.execute(

'SELECT reference, sku, purchased quant:

))
assert rows == [("batchl", "RUSTY-SOAPDISH",

repo.add () isthe method under test here.
® we keep the .commit () outside of the repository and make
it the responsibility of the caller. There are pros and cons for
this; some of our reasons will become clearer when we get to

Chapter 6.

We use the raw SQL to verify that the right data has been

saved.

https://calibre-pdf-anchor.a/#a252

The next test involves retrieving batches and allocations, so it’s more

complex:

Repository test for retrieving a complex object (test_repository.py)

def

def

def

insert order line(session):
session.execute(©
'INSERT INTO order lines (orderid, sku, ¢
' VALUES ("orderl", "GENERIC-SOFA", 12)'
)
[[orderline id]] = session.execute(
'SELECT id FROM order lines WHERE orderic
dict(orderid="orderl", sku="GENERIC-SOFA'
)

return orderline id

insert batch(session, batch id): @

test repository can retrieve a batch with al.
orderline id = insert order line(session)
batchl id = insert batch(session, "batchl")
insert batch(session, "batch2")

insert allocation(session, orderline id, bat«

repo = repository.SqglAlchemyRepository(sessic

retrieved = repo.get("batchl")

expected = model.Batch("batchl", "GENERIC-SOI

assert retrieved == expected # Batch. eq
assert retrieved.sku == expected.sku @
assert retrieved. purchased quantity == expe«
assert retrieved. allocations == (4]

model.OrderLine("orderl", "GENERIC-SOFA",

This tests the read side, so the raw SQL is preparing data to be

read by the repo.get() .

We'll spare you the details of insert batch and
insert allocation ;the pointis to create a couple of
batches, and, for the batch we’re interested in, to have one ex-

isting order line allocated to it.

And that’s what we verify here. The first assert == checks
that the types match, and that the reference is the same (be-
cause, as you remember, Batch is an entity, and we have a

custom eq for it).

So we also explicitly check on its major attributes, including
. _allocations, whichis a Python set of OrderLine val-

ue objects.

https://calibre-pdf-anchor.a/#a261

Whether or not you painstakingly write tests for every model is a judg-
ment call. Once you have one class tested for create/modify/save,
you might be happy to go on and do the others with a minimal round-
trip test, or even nothing at all, if they all follow a similar pattern. In our
case, the ORM config that setsupthe . allocations setis a little

complex, so it merited a specific test.

You end up with something like this:

A typical repository (repository.py)

class SglAlchemyRepository(AbstractRepository):

def init (self, session):

self.session = session

def add(self, batch):
self.session.add(batch)

def get(self, reference):

return self.session.query(model.Batch).f:

def list(self):

return self.session.query(model.Batch).a:

And now our Flask endpoint might look something like the following:

Using our repository directly in our API endpoint

def allocate endpoint():
batches = SqglAlchemyRepository.list()
lines = [
OrderLine(l['orderid'], 1l['sku'], 1['qgty
for 1 in request.params...

]

allocate(lines, batches)
session.commit ()

return 201

EXERCISE FOR THE READER
We bumped into a friend at a DDD conference the other day who

said, “l haven’t used an ORM in 10 years.” The Repository pattern
and an ORM both act as abstractions in front of raw SQL, so using
one behind the other isn’t really necessary. Why not have a go at im-
plementing our repository without using the ORM? You'll find the code
on GitHub.

We’'ve left the repository tests, but figuring out what SQL to write is up
to you. Perhaps it’ll be harder than you think; perhaps it’ll be easier.

But the nice thing is, the rest of your application just doesn’t care.

https://github.com/cosmicpython/code/tree/chapter_02_repository_exercise

Building a Fake Repository for Tests
Is Now Trivial!

Here’s one of the biggest benefits of the Repository pattern:

A simple fake repository using a set (repository.py)

class FakeRepository(AbstractRepository):

def init (self, batches):
self. batches = set(batches)

def add(self, batch):
self. batches.add(batch)

def get(self, reference):
return next(b for b in self. batches if 1}

def list(self):
return list(self. batches)

Because it’s a simple wrapper around a set , all the methods are

one-liners.

Using a fake repo in tests is really easy, and we have a simple ab-

straction that’s easy to use and reason about:

Example usage of fake repository (test_api.py)

fake repo = FakeRepository([batchl, batch2, batcl

You’'ll see this fake in action in the next chapter.

TIP
Building fakes for your abstractions is an excellent way to get design feedback: if

it’s hard to fake, the abstraction is probably too complicated.

What Is a Port and What Is an
Adapter, in Python?

We don’t want to dwell on the terminology too much here because
the main thing we want to focus on is dependency inversion, and the
specifics of the technique you use don’t matter too much. Also, we'’re

aware that different people use slightly different definitions.

Ports and adapters came out of the OO world, and the definition we

hold onto is that the port is the interface between our application and

whatever it is we wish to abstract away, and the adapter is the imple-

mentation behind that interface or abstraction.

Now Python doesn’t have interfaces per se, so although it’s usually
easy to identify an adapter, defining the port can be harder. If you’re
using an abstract base class, that’s the port. If not, the port is just the
duck type that your adapters conform to and that your core applica-
tion expects—the function and method names in use, and their argu-

ment names and types.

Concretely, in this chapter, AbstractRepository is the port, and
SqglAlchemyRepository and FakeRepository are the

adapters.
Wrap-Up

Bearing the Rich Hickey quote in mind, in each chapter we summa-
rize the costs and benefits of each architectural pattern we introduce.
We want to be clear that we’re not saying every single application
needs to be built this way; only sometimes does the complexity of the
app and domain make it worth investing the time and effort in adding

these extra layers of indirection.

With that in mind, Table 2-1 shows some of the pros and cons of the

Repository pattern and our persistence-ignorant model.

Table 2-1. Repository pattern and persistence ignorance: the trade-offs

Pros Cons

« We have a simple interface be- « An ORM already

tween persistent storage and our
domain model.

It’s easy to make a fake version of
the repository for unit testing, or to
swap out different storage solu-
tions, because we'’ve fully decou-
pled the model from infrastructure
concerns.

Writing the domain model before
thinking about persistence helps
us focus on the business problem
at hand. If we ever want to radical-
ly change our approach, we can
do that in our model, without need-
ing to worry about foreign keys or
migrations until later.

Our database schema is really

simple because we have complete

buys you some de-
coupling. Changing
foreign keys might
be hard, but it should
be pretty easy to
swap between
MySQL and Post-
gres if you ever need

to.

Maintaining ORM
mappings by hand
requires extra work
and extra code.

Any extra layer of in-
direction always in-
creases mainte-
nance costs and
adds a “WTF factor”

control over how we map our ob-
Pros Cons
jects to tables.
for Python program-
mers who’ve never
seen the Repository

pattern before.

Figure 2-6 shows the basic thesis: yes, for simple cases, a decoupled
domain model is harder work than a simple ORM/ActiveRecord pat-

tern.8

TIP
If your app is just a simple CRUD (create-read-update-delete) wrapper around a

database, then you don’t need a domain model or a repository.

But the more complex the domain, the more an investment in freeing
yourself from infrastructure concerns will pay off in terms of the ease

of making changes.

Cost of Changes
A

/ Domain Model w/Repository Pattern

Complexity of Business Domain/Logic

Figure 2-6. Domain model trade-offs as a diagram

Our example code isn’t complex enough to give more than a hint of
what the right-hand side of the graph looks like, but the hints are
there. Imagine, for example, if we decide one day that we want to
change allocations to live on the OrderLine instead of on the
Batch object: if we were using Django, say, we’d have to define and
think through the database migration before we could run any tests.
As it is, because our model is just plain old Python objects, we can
change a set () tobeing a new attribute, without needing to think

about the database until later.

REPOSITORY PATTERN RECAP

Apply dependency inversion to your ORM

Our domain model should be free of infrastructure concerns, so
your ORM should import your model, and not the other way

around.

The Repository pattern is a simple abstraction around permanent

storage

The repository gives you the illusion of a collection of in-memo-
ry objects. It makes it easy to create a FakeRepository for
testing and to swap fundamental details of your infrastructure
without disrupting your core application. See Appendix C for an

example.

You'll be wondering, how do we instantiate these repositories, fake or
real? What will our Flask app actually look like? You'll find out in the

next exciting installment, the Service Layer pattern.

But first, a brief digression.

- | suppose we mean “no stateful dependencies.” Depending on a helper library is
fine; depending on an ORM or a web framework is not.

* Mark Seemann has an excellent blog post on the topic.

- In this sense, using an ORM is already an example of the DIP. Instead of depend-
ing on hardcoded SQL, we depend on an abstraction, the ORM. But that’s not

enough for us—not in this book!

- Even in projects where we don’t use an ORM, we often use SQLAIchemy along-
side Alembic to declaratively create schemas in Python and to manage migrations,
connections, and sessions.

: Shout-out to the amazingly helpful SQLAIchemy maintainers, and to Mike Bayer in

particular.

' You may be thinking, “What about 1ist or delete or update ?” However, in
an ideal world, we modify our model objects one at a time, and delete is usually
handled as a soft-delete—i.e., batch.cancel () . Finally, update is taken care of

by the Unit of Work pattern, as you’ll see in Chapter 6.

r

- To really reap the benefits of ABCs (such as they may be), be running helpers like

pylint and mypy .

)
)

Diagram inspired by a post called “Global Complexity, Local Simplicity” by Rob

Vens.

https://oreil.ly/LpFS9
https://oreil.ly/fQXkP

Chapter 3. A Brief Interlude: On
Coupling and Abstractions

Allow us a brief digression on the subject of abstractions, dear read-
er. We've talked about abstractions quite a lot. The Repository pat-
tern is an abstraction over permanent storage, for example. But what
makes a good abstraction? What do we want from abstractions? And

how do they relate to testing?

TIP

The code for this chapter is in the chapter_03_abstractions branch on GitHub:

git clone https://github.com/cosmicpython/code.git

git checkout chapter 03 abstractions

A key theme in this book, hidden among the fancy patterns, is that we
can use simple abstractions to hide messy details. When we’re writ-
ing code for fun, or in a kata,! we get to play with ideas freely, ham-
mering things out and refactoring aggressively. In a large-scale sys-
tem, though, we become constrained by the decisions made else-

where in the system.

https://oreil.ly/k6MmV

When we’re unable to change component A for fear of breaking com-
ponent B, we say that the components have become coupled. Local-
ly, coupling is a good thing: it’s a sign that our code is working togeth-
er, each component supporting the others, all of them fitting in place
like the gears of a watch. In jargon, we say this works when there is

high cohesion between the coupled elements.

Globally, coupling is a nuisance: it increases the risk and the cost of
changing our code, sometimes to the point where we feel unable to
make any changes at all. This is the problem with the Ball of Mud pat-
tern: as the application grows, if we’re unable to prevent coupling be-
tween elements that have no cohesion, that coupling increases su-
perlinearly until we are no longer able to effectively change our

systems.

We can reduce the degree of coupling within a system (Eigure 3-1) by

abstracting away the details (Figure 3-2).

System j System
A B

—

—>

Figure 3-1. Lots of coupling

System

=3

System

Abstraction]

W

Figure 3-2. Less coupling

In both diagrams, we have a pair of subsystems, with one dependent
on the other. In Eigure 3-1, there is a high degree of coupling between
the two; the number of arrows indicates lots of kinds of dependencies
between the two. If we need to change system B, there’s a good

chance that the change will ripple through to system A.

In Figure 3-2, though, we have reduced the degree of coupling by in-
serting a new, simpler abstraction. Because it is simpler, system A

has fewer kinds of dependencies on the abstraction. The abstraction
serves to protect us from change by hiding away the complex details
of whatever system B does—we can change the arrows on the right

without changing the ones on the left.
Abstracting State Aids Testability

Let’s see an example. Imagine we want to write code for synchroniz-

ing two file directories, which we’ll call the source and the destination:

« If a file exists in the source but not in the destination, copy the file
over.

. If a file exists in the source, but it has a different name than in the
destination, rename the destination file to match.

. If a file exists in the destination but not in the source, remove it.

Our first and third requirements are simple enough: we can just com-
pare two lists of paths. Our second is trickier, though. To detect re-

names, we’ll have to inspect the content of files. For this, we can use
a hashing function like MD5 or SHA-1. The code to generate a SHA-1

hash from a file is simple enough:

Hashing a file (sync.py)

BLOCKSIZE = 65536

def hash file(path):
hasher = hashlib.shal()
with path.open("rb") as file:
buf = file.read(BLOCKSIZE)
while buf:
hasher.update(buf)
buf = file.read(BLOCKSIZE)

return hasher.hexdigest()

Now we need to write the bit that makes decisions about what to do—

the business logic, if you will.

When we have to tackle a problem from first principles, we usually try
to write a simple implementation and then refactor toward better de-
sign. We’'ll use this approach throughout the book, because it’s how
we write code in the real world: start with a solution to the smallest
part of the problem, and then iteratively make the solution richer and

better designed.
Ouir first hackish approach looks something like this:

Basic sync algorithm (sync.py)

import
import
import

from import Path

def sync(source, dest):
Walk the source folder and build a dict of
source hashes = {}
for folder, , files in os.walk(source):
for fn in files:

source hashes[hash file(Path(folder)

seen = set() # Keep track of the files we'wve

Walk the target folder and get the filename
for folder, , files in os.walk(dest):
for fn in files:
dest path = Path(folder) / fn
dest _hash = hash file(dest path)
seen.add(dest hash)

if there's a file in target that's
if dest hash not in source hashes:

dest path.remove()

if there's a file in target that h:

move it to the correct path

elif dest hash in source hashes and :
shutil.move(dest path, Path(folds

for every file that appears in source but 1

the target

for src _hash, fn in source hashes.items():
if src_hash not in seen:

shutil.copy(Path(source) / fn, Path(«

Fantastic! We have some code and it looks OK, but before we run it
on our hard drive, maybe we should test it. How do we go about test-

ing this sort of thing?

Some end-to-end tests (test_sync.py)

def test when a file exists in the source but nof
try:
source = tempfile.mkdtemp()

dest = tempfile.mkdtemp()

content = "I am a very useful file"

(Path(source) / 'my-file').write text(co:

sync (source, dest)

expected path = Path(dest) / 'my-file'
assert expected path.exists()

assert expected path.read text() == conte

finally:
shutil.rmtree(source)

shutil.rmtree(dest)

def test when a file has been renamed in the sou:
try:
source = tempfile.mkdtemp()

dest = tempfile.mkdtemp/()

content = "I am a file that was renamed"

source path = Path(source) / 'source-filce

old dest path = Path(dest) / 'dest-filen:
expected dest path = Path(dest) / 'source
source path.write text(content)

old dest path.write text(content)

sync(source, dest)

assert old dest path.exists() is False

assert expected dest path.read text() ==

finally:
shutil.rmtree(source)

shutil.rmtree(dest)

Wowsers, that’s a lot of setup for two simple cases! The problem is
that our domain logic, “figure out the difference between two directo-
ries,” is tightly coupled to the I/O code. We can’t run our difference al-
gorithm without calling the pathlib, shutil,and hashlib

modules.

And the trouble is, even with our current requirements, we haven't
written enough tests: the current implementation has several bugs
(the shutil.move() is wrong, for example). Getting decent cover-

age and revealing these bugs means writing more tests, but if they’re

all as unwieldy as the preceding ones, that’s going to get real painful

real quickly.

On top of that, our code isn’t very extensible. Imagine trying to imple-
menta --dry-run flag that gets our code to just print out what it’s
going to do, rather than actually do it. Or what if we wanted to sync to

a remote server, or to cloud storage?

Our high-level code is coupled to low-level details, and it’'s making life
hard. As the scenarios we consider get more complex, our tests will
get more unwieldy. We can definitely refactor these tests (some of
the cleanup could go into pytest fixtures, for example) but as long as
we’re doing filesystem operations, they’re going to stay slow and be

hard to read and write.

Choosing the Right Abstraction(s)

What could we do to rewrite our code to make it more testable?

First, we need to think about what our code needs from the filesys-
tem. Reading through the code, we can see that three distinct things
are happening. We can think of these as three distinct responsibilities

that the code has:

1. We interrogate the filesystem by using os.walk and determine
hashes for a series of paths. This is similar in both the source and
the destination cases.

2. We decide whether a file is new, renamed, or redundant.

3. We copy, move, or delete files to match the source.

Remember that we want to find simplifying abstractions for each of
these responsibilities. That will let us hide the messy details so we

can focus on the interesting logic.2

NOTE
In this chapter, we’re refactoring some gnarly code into a more testable structure by

identifying the separate tasks that need to be done and giving each task to a clearly

defined actor, along similar lines to the duckduckgo example.

For steps 1 and 2, we've already intuitively started using an abstrac-
tion, a dictionary of hashes to paths. You may already have been
thinking, “Why not build up a dictionary for the destination folder as
well as the source, and then we just compare two dicts?” That seems

like a nice way to abstract the current state of the filesystem:

source files = {'hashl': 'pathl', 'hash2': 'path.
dest files = {'hashl': 'pathl', 'hash2': 'pathX"':

What about moving from step 2 to step 3? How can we abstract out

the actual move/copy/delete filesystem interaction?

We’'ll apply a trick here that we’ll employ on a grand scale later in the
book. We’re going to separate what we want to do from howto do it.
We’re going to make our program output a list of commands that look
like this:

("COPY", "sourcepath", "destpath"),
(IIMOVE"’ lloldll’ llnewll)’

Now we could write tests that just use two filesystem dicts as inputs,
and we would expect lists of tuples of strings representing actions as

outputs.

Instead of saying, “Given this actual filesystem, when | run my func-
tion, check what actions have happened,” we say, “Given this ab-
straction of a filesystem, what abstraction of filesystem actions will

happen?”

Simplified inputs and outputs in our tests (test_sync.py)

def test when a file exists in the source buf
src_hashes = {'hashl’': 'fnl'}

dst hashes = {}
expected actions = [('COPY', '/src/fnl',

def test when a file has been renamed in the
src_hashes = {'hashl': 'fnl'}
dst hashes = {'hashl': 'fn2'}
expected actions == [('MOVE', '/dst/fn2',

Implementing Our Chosen
Abstractions

That’s all very well, but how do we actually write those new tests, and

how do we change our implementation to make it all work?

Our goal is to isolate the clever part of our system, and to be able to
test it thoroughly without needing to set up a real filesystem. We’'ll
create a “core” of code that has no dependencies on external state
and then see how it responds when we give it input from the outside
world (this kind of approach was characterized by Gary Bernhardt as

Functional Core, Imperative Shell, or FCIS).

Let’s start off by splitting the code to separate the stateful parts from

the logic.

https://oreil.ly/wnad4

And our top-level function will contain almost no logic at all; it’s just an

imperative series of steps: gather inputs, call our logic, apply outputs:

Split our code into three (sync.py)

def sync(source, dest):
imperative shell step 1, gather inputs
source hashes = read paths and hashes(source

dest hashes = read paths and hashes(dest) ©

step 2: call functional core

actions = determine actions(source hashes, d¢

imperative shell step 3, apply outputs
for action, *paths in actions:
if action == 'copy':
shutil.copyfile(*paths)
if action == 'move':
shutil.move (*paths)
if action == 'delete':

os.remove(paths[0])

® Here’s the first function we factor out,

read paths and hashes() , which isolates the I/O part of

our application.

https://calibre-pdf-anchor.a/#a365

@ Here is where carve out the functional core, the business logic.
The code to build up the dictionary of paths and hashes is now trivial-

ly easy to write:

A function that just does I/O (sync.py)

def read paths and hashes(root):
hashes = {}
for folder, , files in os.walk(root):
for fn in files:
hashes[hash file(Path(folder) / fn)]
return hashes

The determine actions() function will be the core of our busi-
ness logic, which says, “Given these two sets of hashes and file-
names, what should we copy/move/delete?”. It takes simple data

structures and returns simple data structures:

A function that just does business logic (sync.py)

def determine actions(src_hashes, dst hashes, sr«
for sha, filename in src hashes.items():

if sha not in dst hashes:

sourcepath = Path(src folder) / filer
destpath = Path(dst folder) / filenar

https://calibre-pdf-anchor.a/#a367

yield 'copy', sourcepath, destpath

elif dst hashes[sha] != filename:
olddestpath = Path(dst folder) / dst
newdestpath = Path(dst folder) / £filce
yield 'move’', olddestpath, newdestpai

for sha, filename in dst hashes.items():
if sha not in src_ hashes:
yield 'delete', dst folder / filename

Our tests now act directly on the determine actions() function:

Nicer-looking tests (test_sync.py)

def test when a file exists in the source but nof
src_hashes = {'hashl': 'fnl'}
dst hashes = {}
actions = determine actions(src_hashes, dst |

assert list(actions) == [('copy', Path('/src,

def test when a file has been renamed in the sou:
src_hashes = {'hashl': 'fnl'}
dst hashes = {'hashl’': "fn2'}

actions = determine actions(src_hashes, dst |

assert list(actions) == [('move', Path('/dst,

Because we’ve disentangled the logic of our program—the code for
identifying changes —from the low-level details of 1/0O, we can easily

test the core of our code.

With this approach, we’ve switched from testing our main entrypoint
function, sync () , to testing a lower-level function,

determine actions () . You might decide that’s fine because
sync () is now so simple. Or you might decide to keep some inte-
gration/acceptance tests to test that sync () . But there’s another
option, which is to modify the sync () function so it can be unit test-
ed and end-to-end tested; it’'s an approach Bob calls edge-to-edge

testing.

Testing Edge to Edge with Fakes and Dependency
Injection

When we start writing a new system, we often focus on the core logic
first, driving it with direct unit tests. At some point, though, we want to

test bigger chunks of the system together.

We could return to our end-to-end tests, but those are still as tricky to
write and maintain as before. Instead, we often write tests that invoke

a whole system together but fake the 1/O, sort of edge to edge:

Explicit dependencies (sync.py)

def sync(reader, filesystem, source root, dest r«

source hashes = reader(source root) @

dest hashes = reader(dest root)

for sha, filename in src hashes.items():
if sha not in dest hashes:
sourcepath = source root / filename
destpath = dest root / filename
filesystem.copy(destpath, sourcepath

elif dest hashes[sha] != filename:
olddestpath = dest root / dest hashe:s
newdestpath = dest root / filename

filesystem.move(olddestpath, newdest;j

for sha, filename in dst hashes.items():
if sha not in source hashes:

filesystem.delete(dest root/filename

% our top-level function now exposes two new dependencies, a

reader anda filesystem.

® Weinvoke the reader to produce our files dict.

https://calibre-pdf-anchor.a/#a381

® We invoke the filesystem to apply the changes we detect.

TIP

Although we’re using dependency injection, there is no need to define an abstract
base class or any kind of explicit interface. In this book, we often show ABCs be-
cause we hope they help you understand what the abstraction is, but they’re not

necessary. Python’s dynamic nature means we can always rely on duck typing.

Tests using DI

class FakeFileSystem(list): ®

def copy(self, src, dest): @
self.append(('COPY', src, dest))

def move(self, src, dest):
self.append((MOVE', src, dest))

def delete(self, dest):
self.append(('DELETE', src, dest))

def test when a file exists in the source but nof
source = {"shal": "my-file" }
dest = {}
filesystem = FakeFileSystem()

https://calibre-pdf-anchor.a/#a383

def

reader = {"/source": source, "/dest": dest}

synchronise dirs(reader.pop, filesystem, "/sc
assert filesystem == [("COPY", "/source/my-f:
test when a file has been renamed in the soul
source = {"shal": "renamed-file" }
dest = {"shal": "original-file" }

filesystem = FakeFileSystem()

reader = {"/source": source, "/dest": dest}

synchronise dirs(reader.pop, filesystem, "/sc

assert filesystem == [("MOVE", "/dest/origin:

Bob /oves using lists to build simple test doubles, even though

his coworkers get mad. It means we can write tests like

assert fo0 not in database.

2]

Each method in our FakeFileSystem just appends some-

thing to the list so we can inspect it later. This is an example of

a spy object.

The advantage of this approach is that our tests act on the exact
same function that’s used by our production code. The disadvantage
is that we have to make our stateful components explicit and pass
them around. David Heinemeier Hansson, the creator of Ruby on

Rails, famously described this as “test-induced design damage.”

In either case, we can now work on fixing all the bugs in our imple-
mentation; enumerating tests for all the edge cases is now much eas-

ier.

Why Not Just Patch It Out?

At this point you may be scratching your head and thinking, “Why

don’t you just use mock.patch and save yourself the effort?"”

We avoid using mocks in this book and in our production code too.
We’re not going to enter into a Holy War, but our instinct is that mock-

ing frameworks, particularly monkeypatching, are a code smell.

Instead, we like to clearly identify the responsibilities in our codebase,
and to separate those responsibilities into small, focused objects that

are easy to replace with a test double.

NOTE
You can see an example in Chapter 8, where we mock.patch() outan email-

sending module, but eventually we replace that with an explicit bit of dependency
injection in Chapter 13.

We have three closely related reasons for our preference:

« Patching out the dependency you’re using makes it possible to unit
test the code, but it does nothing to improve the design. Using
mock.patch won't let your code work with a --dry-run flag,
nor will it help you run against an FTP server. For that, you’ll need
to introduce abstractions.

« Tests that use mocks tend to be more coupled to the implementa-
tion details of the codebase. That’s because mock tests verify the
interactions between things: did we call shutil.copy with the
right arguments? This coupling between code and test tends to
make tests more brittle, in our experience.

« Overuse of mocks leads to complicated test suites that fail to ex-
plain the code.

NOTE
Designing for testability really means designing for extensibility. We trade off a little

more complexity for a cleaner design that admits novel use cases.

MOCKS VERSUS FAKES; CLASSIC-STYLE VERSUS LONDON-SCHOOL TDD

Here’s a short and somewhat simplistic definition of the difference be-

tween mocks and fakes:

« Mocks are used to verify how something gets used; they have
methods like assert called once with() . They’re associ-
ated with London-school TDD.

« Fakes are working implementations of the thing they’re replacing,
but they’re designed for use only in tests. They wouldn’t work “in
real life”; our in-memory repository is a good example. But you can
use them to make assertions about the end state of a system
rather than the behaviors along the way, so they’re associated with

classic-style TDD.

We’re slightly conflating mocks with spies and fakes with stubs here,
and you can read the long, correct answer in Martin Fowler’s classic

essay on the subject called “Mocks Aren’t Stubs”.

It also probably doesn’t help that the MagicMock objects provided
by unittest.mock arenk, strictly speaking, mocks; they’re spies, if
anything. But they’re also often used as stubs or dummies. There, we

promise we’re done with the test double terminology nitpicks now.

What about London-school versus classic-style TDD? You can read

more about those two in Martin Fowler’s article that we just cited, as

https://oreil.ly/yYjBN

well as on the Software Engineering_Stack Exchange site, but in this

book we’re pretty firmly in the classicist camp. We like to build our
tests around state both in setup and in assertions, and we like to work
at the highest level of abstraction possible rather than doing checks

on the behavior of intermediary collaborators.2

Read more on this in “On Deciding What Kind of Tests to Write”.

We view TDD as a design practice first and a testing practice second.
The tests act as a record of our design choices and serve to explain

the system to us when we return to the code after a long absence.

Tests that use too many mocks get overwhelmed with setup code that

hides the story we care about.

Steve Freeman has a great example of overmocked tests in his talk

“Test-Driven Development”. You should also check out this PyCon

talk, “Mocking_and Patching_Pitfalls”, by our esteemed tech reviewer,

Ed Jung, which also addresses mocking and its alternatives. And
while we’re recommending talks, don’t miss Brandon Rhodes talking

about “Hoisting_Your 1/O”; which really nicely covers the issues we’re

talking about, using another simple example.

https://oreil.ly/H2im_
https://oreil.ly/jAmtr
https://oreil.ly/s3e05
https://oreil.ly/oiXJM

TIP

In this chapter, we’ve spent a lot of time replacing end-to-end tests with unit tests.
That doesn’t mean we think you should never use E2E tests! In this book we’re
showing techniques to get you to a decent test pyramid with as many unit tests as
possible, and with the minimum number of E2E tests you need to feel confident.

Read on to “Recap: Rules of Thumb for Different Types of Test” for more details.

SO WHICH DO WE USE IN THIS BOOK? FUNCTIONAL OR OBJECT-ORIENTED
COMPOSITION?

Both. Our domain model is entirely free of dependencies and side ef-
fects, so that’s our functional core. The service layer that we build
around it (in Chapter 4) allows us to drive the system edge to edge,
and we use dependency injection to provide those services with

stateful components, so we can still unit test them.

See Chapter 13 for more exploration of making our dependency injec-

tion more explicit and centralized.

Wrap-Up

We’ll see this idea come up again and again in the book: we can
make our systems easier to test and maintain by simplifying the inter-

face between our business logic and messy I/O. Finding the right ab-

straction is tricky, but here are a few heuristics and questions to ask

yourself:

Can | choose a familiar Python data structure to represent the
state of the messy system and then try to imagine a single function

that can return that state?

Where can | draw a line between my systems, where can | carve

out a seam to stick that abstraction in?

What is a sensible way of dividing things into components with dif-

ferent responsibilities? What implicit concepts can | make explicit?

What are the dependencies, and what is the core business logic?

Practice makes less imperfect! And now back to our regular

programming...

- A code kata is a small, contained programming challenge often used to practice
TDD. See “Kata—The Only Way to Learn TDD” by Peter Provost.

* If you’re used to thinking in terms of interfaces, that’s what we’re trying to define

here.

" Which is not to say that we think the London school people are wrong. Some in-

sanely smart people work that way. It’s just not what we’re used to.

https://oreil.ly/zNUGG
https://oreil.ly/vhjju

Chapter 4. Our First Use Case: Flask
APl and Service Layer

Back to our allocations project! Eigure 4-1 shows the point we
reached at the end of Chapter 2, which covered the Repository pat-

tern.

Tests

{-models.aocate()L‘st/add batches—l

/ Domain \ ’ Repositories

’
-

Abstract SQLAIchemy
Repository Repository

v

Figure 4-1. Before: we drive our app by talking to repositories and the
domain model

In this chapter, we discuss the differences between orchestration log-
ic, business logic, and interfacing code, and we introduce the Service
Layer pattern to take care of orchestrating our workflows and defining

the use cases of our system.

We’ll also discuss testing: by combining the Service Layer with our
repository abstraction over the database, we’re able to write fast
tests, not just of our domain model but of the entire workflow for a use

case.

Figure 4-2 shows what we’re aiming for: we’re going to add a Flask
API that will talk to the service layer, which will serve as the entrypoint
to our domain model. Because our service layer depends on the
AbstractRepository, we can unit test it by using
FakeRepository but run our production code using

SglAlchemyRepository.

instantiates

Flask Tests instantiate
I |
invoke invoke
2 2 \
' Service Layer :
: services.allocate() services.add_batch() :

models.aIIocate()#list/add batches

! Domain ‘. y Repositories "\
: : Abstract FakeRepository :
; . retrieves . Repositor B (in-memory) !
| — « | oY A ;
I E E N SQLAIchemy :
O ! ! Repository I

Figure 4-2. The service layer will become the main way into our app

In our diagrams, we are using the convention that new components
are highlighted with bold text/lines (and yellow/orange color, if you're

reading a digital version).

TIP

The code for this chapter is in the chapter_04_service_layer branch on GitHub:

git clone https://github.com/cosmicpython/code.git
cd code

git checkout chapter 04 service layer

or to code along, checkout Chapter 2:

git checkout chapter 02 repository

Connecting Our Application to the
Real World

Like any good agile team, we’re hustling to try to get an MVP out and
in front of the users to start gathering feedback. We have the core of
our domain model and the domain service we need to allocate or-

ders, and we have the repository interface for permanent storage.

Let’s plug all the moving parts together as quickly as we can and then

refactor toward a cleaner architecture. Here’s our plan:

1. Use Flask to put an API endpoint in front of our allocate do-
main service. Wire up the database session and our repository.
Test it with an end-to-end test and some quick-and-dirty SQL to

prepare test data.

https://oreil.ly/TBRuy

2. Refactor out a service layer that can serve as an abstraction to
capture the use case and that will sit between Flask and our do-
main model. Build some service-layer tests and show how they
can use FakeRepository.

3. Experiment with different types of parameters for our service layer
functions; show that using primitive data types allows the service
layer’s clients (our tests and our Flask API) to be decoupled from

the model layer.

A First End-to-End Test

No one is interested in getting into a long terminology debate about
what counts as an end-to-end (E2E) test versus a functional test ver-
Sus an acceptance test versus an integration test versus a unit test.
Different projects need different combinations of tests, and we’ve
seen perfectly successful projects just split things into “fast tests” and

“slow tests.”

For now, we want to write one or maybe two tests that are going to
exercise a “real” APl endpoint (using HTTP) and talk to a real data-
base. Let’s call them end-to-end tests because it’s one of the most

self-explanatory names.

The following shows a first cut:

A first APl test (test_api.py)

('restart api')
def test api returns allocation(add stock):
sku, othersku = random sku(), random sku('otl
earlybatch = random batchref(1)
laterbatch = random batchref(2)
otherbatch = random batchref(3)
add stock([@
(laterbatch, sku, 100, '2011-01-02"),
(earlybatch, sku, 100, '2011-01-01"),
(otherbatch, othersku, 100, None),
1)

data = {'orderid': random orderid(),

sku': ¢
url = config.get api url() ©

r = requests.post(f'{url}/allocate', json=daf
assert r.status code == 201

assert r.json()['batchref'] == earlybatch

random sku(), random batchref () ,and soon are little
helper functions that generate randomized characters by using
the uuid module. Because we’re running against an actual

database now, this is one way to prevent various tests and runs

from interfering with each other.

https://calibre-pdf-anchor.a/#a459

add_stock is a helper fixture that just hides away the details
of manually inserting rows into the database using SQL. We'll

show a nicer way of doing this later in the chapter.

config.py is a module in which we keep configuration

information.

Everyone solves these problems in different ways, but you’re going to
need some way of spinning up Flask, possibly in a container, and of
talking to a Postgres database. If you want to see how we did it,

check out Appendix B.

The Straightforward Implementation

Implementing things in the most obvious way, you might get some-
thing like this:

First cut of Flask app (flask_app.py)

from import Flask, jsonify, request
from import create engine

from import sessionmaker
import

import

import

import

orm.start mappers()
get session = sessionmaker(bind=create engine(co:

app = Flask(__name)

("/allocate", methods=['POST'])
def allocate endpoint():
session = get session()
batches = repository.SqlAlchemyRepository(se:
line = model.OrderLine(
request.json['orderid'],
request.json['sku'],

request.json['gty'],

batchref = model.allocate(line, batches)

return jsonify({'batchref': batchref}), 201

So far, so good. No need for too much more of your “architecture as-

tronaut” nonsense, Bob and Harry, you may be thinking.

But hang on a minute —there’s no commit. We’re not actually saving

our allocation to the database. Now we need a second test, either

one that will inspect the database state after (not very black-boxy), or
maybe one that checks that we can’t allocate a second line if a first

should have already depleted the batch:

Test allocations are persisted (test_api.py)

('restart api')
def test allocations are persisted(add stock):

sku = random sku()
batchl, batch2 = random batchref(l), random !
orderl, order2 = random orderid(l), random o:
add_stock([

(batchl, sku, 10, '2011-01-01"),

(batch2, sku, 10, '2011-01-02"),
1)

linel = {'orderid': orderl, 'sku

sku, 'qty

qty

line2 = {'orderid': order2, 'sku sku,

url = config.get api url()

first order uses up all stock in batch 1
r = requests.post(f'{url}/allocate', json=1lii
assert r.status code == 201

assert r.json()['batchref'] == batchl

second order should go to batch 2
r = requests.post(f'{url}/allocate', json=1lii
assert r.status code == 201

assert r.json()['batchref'] == batch2

Not quite so lovely, but that will force us to add the commit.

Error Conditions That Require
Database Checks

If we keep going like this, though, things are going to get uglier and

uglier.

Suppose we want to add a bit of error handling. What if the domain
raises an error, for a SKU that’s out of stock? Or what about a SKU
that doesn’t even exist? That’s not something the domain even knows
about, nor should it. It’s more of a sanity check that we should imple-
ment at the database layer, before we even invoke the domain

service.
Now we’re looking at two more end-to-end tests:

Yet more tests at the EZE layer (test_api.py)
('restart api')
def test 400 message for out of stock(add stock)

sku, small. batch, large order = random sku(),
add_stock([

(small. batch, sku, 10, '2011-01-01"),
1)

data = {'orderid': large order,

sku sku,
url = config.get api url()

r = requests.post(f'{url}/allocate', json=dai
assert r.status code == 400

assert r.json()['message'] == f'Out of stock

('restart api')
def test 400 message for invalid sku(): @

unknown sku, orderid = random sku(), random

data = {'orderid': orderid, 'sku unknown_ sl
url = config.get api url()

r = requests.post(f'{url}/allocate', json=daf
assert r.status code == 400

assert r.json()['message'] == f'Invalid sku -

% 1n the first test, we’re trying to allocate more units than we have

in stock.

In the second, the SKU just doesn’t exist (because we never
called add stock), so it’s invalid as far as our app is

concerned.

And sure, we could implement it in the Flask app too:

https://calibre-pdf-anchor.a/#a478

Flask app starting to get crufty (flask _app.py)

def

def

is valid sku(sku, batches):

return sku in {b.sku for b in batches}

("/allocate", methods=['POST'])
allocate endpoint():
session = get session()
batches = repository.SglAlchemyRepository(se:
line = model.OrderLine(
request.json['orderid'],
request.json['sku'],

request.json['gty'],

if not is valid sku(line.sku, batches):

return jsonify({'message': f'Invalid sku

try:
batchref = model.allocate(line, batches)
except model.OutOfStock as e:

return jsonify({'message': str(e)}), 400

session.commit ()

return jsonify({'batchref': batchref}), 201

But our Flask app is starting to look a bit unwieldy. And our number of
E2E tests is starting to get out of control, and soon we’ll end up with
an inverted test pyramid (or “ice-cream cone model,” as Bob likes to

call it).

Introducing a Service Layer, and
Using FakeRepository to Unit Test It

If we look at what our Flask app is doing, there’s quite a lot of what we
might call orchestration—fetching stuff out of our repository, validat-
ing our input against database state, handling errors, and committing
in the happy path. Most of these things don’t have anything to do with
having a web API endpoint (you’d need them if you were building a
CLI, for example; see Appendix C), and they’re not really things that

need to be tested by end-to-end tests.

It often makes sense to split out a service layer, sometimes called an

orchestration layer or a use-case layer.

Do you remember the FakeRepository that we prepared in

Chapter 3?

Our fake repository, an in-memory collection of batches

(test_services.py)

class FakeRepository(repository.AbstractReposito:

def init (self, batches):
self. batches = set(batches)

def add(self, batch):
self. batches.add(batch)

def get(self, reference):

return next(b for b in self. batches if }

def list(self):

return list(self. batches)

Here’s where it will come in useful; it lets us test our service layer with

nice, fast unit tests:

Unit testing with fakes at the service layer (test_services.py)

def test returns allocation():
line = model.OrderLine("ol", "COMPLICATED-LAI
batch = model.Batch("bl", "COMPLICATED-LAMP",
repo = FakeRepository([batch]) ©

result = services.allocate(line, repo, FakeSe

assert result == "bl"

def test error for invalid sku():
line = model.OrderLine("ol", "NONEXISTENTSKU'
batch = model.Batch("bl", "AREALSKU", 100, ei
repo = FakeRepository([batch]) o

with pytest.raises(services.InvalidSku, matcl

services.allocate(line, repo, FakeSessiol

(3]

° FakeRepository holdsthe Batch objects that will be used
by our test.

(2]

Our services module (services.py) will define an allocate()
service-layer function. It will sit between our

allocate endpoint () function inthe APl layer and the
allocate() domain service function from our domain mod-
ell

® We also need a Fakesession to fake out the database ses-

sion, as shown in the following code snippet.

A fake database session (test_services.py)

https://calibre-pdf-anchor.a/#a496
https://calibre-pdf-anchor.a/#a497

class FakeSession():

committed = False

def commit(self):

self.committed = True

This fake session is only a temporary solution. We’ll get rid of it and

make things even nicer soon, in Chapter 6. But in the meantime the

fake .commit () lets us migrate a third test from the E2E layer:

A second test at the service layer (test_services.py)

def test commits():
line = model.OrderLine('ol', 'OMINOUS-MIRROR
batch = model.Batch('bl', 'OMINOUS-MIRROR',
repo = FakeRepository([batch])

session = FakeSession()

services.allocate(line, repo, session)

assert session.committed is True

A Typical Service Function
We’'ll write a service function that looks something like this:

Basic allocation service (services.py)

class InvalidSku(Exception):

def

def

pass

is valid sku(sku, batches):

return sku in {b.sku for b in batches}

allocate(line: OrderLine, repo: AbstractRepo:

batches = repo.list() @

if not is wvalid sku(line.sku, batches): @
raise InvalidSku(f'Invalid sku {line.sku’

batchref = model.allocate(line, batches) @

session.commit() @

return batchref

Typical service-layer functions have similar steps:

We fetch some objects from the repository.

We make some checks or assertions about the request against

the current state of the world.

We call a domain service.

If all is well, we save/update any state we’ve changed.

That last step is a little unsatisfactory at the moment, as our service
layer is tightly coupled to our database layer. We'll improve that in
Chapter 6 with the Unit of Work pattern.

DEPEND ON ABSTRACTIONS

Notice one more thing about our service-layer function:

def allocate(line: OrderLine, repo: AbstractRepos

It depends on a repository. We've chosen to make the dependency
explicit, and we’ve used the type hint to say that we depend on
AbstractRepository . This means it'll work both when the tests
give it a FakeRepository and when the Flask app gives it a

SglAlchemyRepository.

If you remember “The Dependency Inversion Principle”, this is what

we mean when we say we should “depend on abstractions.” Our
high-level module, the service layer, depends on the repository ab-
straction. And the details of the implementation for our specific choice
of persistent storage also depend on that same abstraction. See Fig-
ures 4-3 and 4-4.

See also in Appendix C a worked example of swapping out the de-
tails of which persistent storage system to use while leaving the ab-

stractions intact.

But the essentials of the service layer are there, and our Flask app

now looks a lot cleaner:

Flask app delegating to service layer (flask_app.py)

("/allocate", methods=['POST'])
def allocate endpoint():
session = get session() @
repo = repository.SqlAlchemyRepository(sessic
line = model.OrderLine(
request.json['orderid'], @
request.json['sku'], @
request.json['gqty'], @
)
try:
batchref = services.allocate(line, repo,

except (model.OutOfStock, services.InvalidSki

return jsonify({'message': str(e)}), 400

return jsonify({'batchref': batchref}), 201

® We instantiate a database session and some repository

objects.

We extract the user’s commands from the web request and
pass them to a domain service.
© We return some JSON responses with the appropriate status
codes.

The responsibilities of the Flask app are just standard web stuff: per-
request session management, parsing information out of POST para-
meters, response status codes, and JSON. All the orchestration logic
is in the use case/service layer, and the domain logic stays in the

domain.

Finally, we can confidently strip down our E2E tests to just two, one

for the happy path and one for the unhappy path:

EZE tests only happy and unhappy paths (test_api.py)

('restart api')
def test happy path returns 201 and allocated baf
sku, othersku = random sku(), random sku('otl
earlybatch = random batchref(1)
laterbatch = random batchref (2)
otherbatch = random batchref(3)
add_stock([
(laterbatch, sku, 100, '2011-01-02"),
(earlybatch, sku, 100, '2011-01-01"),
(otherbatch, othersku, 100, None),

https://calibre-pdf-anchor.a/#a536

def

1)

data = {'orderid': random orderid(),

sku': ¢
url = config.get api url()

r = requests.post(f'{url}/allocate', json=dai
assert r.status code == 201

assert r.json()['batchref'] == earlybatch

('restart api')
test unhappy path returns 400 and error mess:
unknown sku, orderid = random sku(), random
data = {'orderid': orderid, 'sku': unknown_s]
url = config.get api url()
r = requests.post(f'{url}/allocate', json=daf
assert r.status code == 400

assert r.json()['message'] == f£'Invalid sku -

We’ve successfully split our tests into two broad categories: tests

about web stuff, which we implement end to end; and tests about or-

chestration stuff, which we can test against the service layer in

memory.

EXERCISE FOR THE READER

Now that we have an allocate service, why not build out a service for

deallocate ? We've added an E2E test and a few stub service-lay-

er tests for you to get started on GitHub.

If that’s not enough, continue into the E2E tests and flask_app.py, and
refactor the Flask adapter to be more RESTful. Notice how doing so

doesn’t require any change to our service layer or domain layer!

TIP
If you decide you want to build a read-only endpoint for retrieving allo-
cation info, just do “the simplest thing that can possibly work,” which is
repo.get () rightinthe Flask handler. We'll talk more about reads

versus writes in Chapter 12.

Why Is Everything Called a Service?

Some of you are probably scratching your heads at this point trying to
figure out exactly what the difference is between a domain service

and a service layer.

We’'re sorry—we didn’t choose the names, or we’d have much cooler

and friendlier ways to talk about this stuff.

https://github.com/cosmicpython/code/tree/chapter_04_service_layer_exercise

We’re using two things called a service in this chapter. The first is an
application service (our service layer). Its job is to handle requests
from the outside world and to orchestrate an operation. What we
mean is that the service layer drives the application by following a

bunch of simple steps:

. Get some data from the database
« Update the domain model

« Persist any changes

This is the kind of boring work that has to happen for every operation
in your system, and keeping it separate from business logic helps to

keep things tidy.

The second type of service is a domain service. This is the name for
a piece of logic that belongs in the domain model but doesn'’t sit natu-
rally inside a stateful entity or value object. For example, if you were
building a shopping cart application, you might choose to build taxa-
tion rules as a domain service. Calculating tax is a separate job from
updating the cart, and it’s an important part of the model, but it
doesn’t seem right to have a persisted entity for the job. Instead a
stateless TaxCalculator class or a calculate tax function can do
the job.

Putting Things in Folders to See
Where It All Belongs

As our application gets bigger, we’ll need to keep tidying our directory
structure. The layout of our project gives us useful hints about what

kinds of object we’ll find in each file.
Here’s one way we could organize things:

Some subfolders

—— config.py

—— domain @

I—— __init .py
L model.py

— service layer @
|— __init .py
L services.py

—— adapters ©
— init .py

—— Orm.py
L repository.py
—— entrypoints @

I— __init .py

L flask app.py

L tests

— init .py

—— conftest.py

—— unit

— test allocate.py
—— test batches.py

L test services.py
—— integration
I—— test orm.py

L test repository.py
L e2e

L test api.py

® | et's have a folder for our domain model. Currently that’s just

one file, but for a more complex application, you might have
one file per class; you might have helper parent classes for
Entity, ValueObject, and Aggregate, and you might
add an exceptions.py for domain-layer exceptions and, as

you’ll see in Part I, commands.py and events.py.

We’ll distinguish the service layer. Currently that’s just one file
called services.py for our service-layer functions. You could
add service-layer exceptions here, and as you’ll see in

Chapter 5, we’ll add unit_of work.py.

Adapters is a nod to the ports and adapters terminology. This
will fill up with any other abstractions around external 1/O (e.g.,
a redis_client.py). Strictly speaking, you would call these sec-
ondary adapters or driven adapters, or sometimes inward-fac-

ing adapters.

Entrypoints are the places we drive our application from. In the
official ports and adapters terminology, these are adapters too,
and are referred to as primary, driving, or outward-facing

adapters.

What about ports? As you may remember, they are the abstract inter-
faces that the adapters implement. We tend to keep them in the same

file as the adapters that implement them.
Wrap-Up

Adding the service layer has really bought us quite a lot:

« Our Flask APl endpoints become very thin and easy to write: their
only responsibility is doing “web stuff,” such as parsing JSON and
producing the right HTTP codes for happy or unhappy cases.

. We've defined a clear API for our domain, a set of use cases or en-

trypoints that can be used by any adapter without needing to know

anything about our domain model classes—whether that’s an API,
a CLI (see Appendix C), or the tests! They’re an adapter for our
domain too.

« We can write tests in “high gear” by using the service layer, leaving
us free to refactor the domain model in any way we see fit. As long
as we can still deliver the same use cases, we can experiment with
new designs without needing to rewrite a load of tests.

« And our test pyramid is looking good—the bulk of our tests are fast

unit tests, with just the bare minimum of E2E and integration tests.

The DIP in Action

Figure 4-3 shows the dependencies of our service layer: the domain
model and AbstractRepository (the port, in ports and adapters

terminology).

When we run the tests, Figure 4-4 shows how we implement the ab-

stract dependencies by using FakeRepository (the adapter).

And when we actually run our app, we swap in the “real” dependency

shown in Figure 4-5.

Service Layer |

¢ ¢ depends on abstraction
Domain Model AbstractReFository
(Port)

Figure 4-3. Abstract dependencies of the service layer

Tests)
Service Layer provides
Domain Model AbstractRepository
implements T

FakeRepository <4+—
(in-memory)

Figure 4-4. Tests provide an implementation of the abstract
dependency

Flask API (Presentation Layer) —_—

Y

Service Layer

Y Y

Domain Model AbstractRepository

ets
?nodel SqlAlchemyRepository |[€4—
definitions
from * uses

ORM
(another abstraction)

¢ talks to

Database

Figure 4-5. Dependencies at runtime

Wonderful.

Let’s pause for Table 4-1, in which we consider the pros and cons of

having a service layer at all.

Table 4-1. Service layer: the trade-offs

Pros Cons

« We have a single place to « If your app is purely a

capture all the use cases for
our application.

We’ve placed our clever do-
main logic behind an API,
which leaves us free to
refactor.

We have cleanly separated
“stuff that talks HTTP” from
“stuff that talks allocation.”
When combined with the
Repository pattern and Fake
Repository, we have a
nice way of writing tests at a
higher level than the domain
layer; we can test more of our
workflow without needing to
use integration tests (read on
to Chapter 5 for more elabora-

tion on this).

web app, your con-
trollers/view functions
can be the single place to
capture all the use cases.
It’s yet another layer of
abstraction.

Putting too much logic
into the service layer can
lead to the Anemic Do-
main anti-pattern. It’s bet-
ter to introduce this layer
after you spot orchestra-
tion logic creeping into
your controllers.

You can get a lot of the
benefits that come from
having rich domain mod-
els by simply pushing

logic out of your con-

Pros Cons

trollers and down to the
model layer, without
needing to add an extra
layer in between (aka “fat

models, thin controllers”).

But there are still some bits of awkwardness to tidy up:

« The service layer is still tightly coupled to the domain, because its
APl is expressed in terms of OrderLine objects. In Chapter 5,
we’ll fix that and talk about the way that the service layer enables
more productive TDD.

« The service layer is tightly coupled to a session object. In
Chapter 6, we’ll introduce one more pattern that works closely with
the Repository and Service Layer patterns, the Unit of Work pat-

tern, and everything will be absolutely lovely. You'll see!

- Service-layer services and domain services do have confusingly similar names.

We tackle this topic later in “Why Is Everything Called a Service?”.

Chapter 5. TDD in High Gear and
Low Gear

We’ve introduced the service layer to capture some of the additional
orchestration responsibilities we need from a working application.
The service layer helps us clearly define our use cases and the work-
flow for each: what we need to get from our repositories, what pre-
checks and current state validation we should do, and what we save

at the end.

But currently, many of our unit tests operate at a lower level, acting
directly on the model. In this chapter we’ll discuss the trade-offs in-
volved in moving those tests up to the service-layer level, and some

more general testing guidelines.

HARRY SAYS: SEEING A TEST PYRAMID IN ACTION WAS A LIGHT-BULB MOMENT

Here are a few words from Harry directly:

| was initially skeptical of all Bob’s architectural patterns, but seeing

an actual test pyramid made me a convert.

Once you implement domain modeling and the service layer, you re-
ally actually can get to a stage where unit tests outnumber integration

and end-to-end tests by an order of magnitude. Having worked in

essentially), | can't tell you what a difference it makes to be able to

run all your tests in minutes or seconds.

Read on for some guidelines on how to decide what kinds of tests to
write and at which level. The high gear versus low gear way of think-

ing really changed my testing life.

)

places where the E2E test build would take hours (“‘wait ‘til tomorrow,’

How Is Our Test Pyramid Looking?

Let’s see what this move to using a service layer, with its own ser-

vice-layer tests, does to our test pyramid:

Counting types of tests

$ grep -c test test *.py
tests/unit/test _allocate.py:4
tests/unit/test batches.py:8

tests/unit/test services.py:3

tests/integration/test orm.py:6
tests/integration/test repository.py:2

tests/e2e/test api.py:2

Not bad! We have 15 unit tests, 8 integration tests, and just 2 end-to-

end tests. That’s already a healthy-looking test pyramid.

Should Domain Layer Tests Move to
the Service Layer?

Let’s see what happens if we take this a step further. Since we can
test our software against the service layer, we don’t really need tests
for the domain model anymore. Instead, we could rewrite all of the

domain-level tests from Chapter 1 in terms of the service layer:

Rewriting a domain test at the service layer

(tests/unit/test _services.py)

domain-laver test:

def test prefers current stock batches to shipmei:
in stock batch = Batch("in-stock-batch", "RE’
shipment batch = Batch("shipment-batch", "RE’
line = OrderLine("oref", "RETRO-CLOCK", 10)

allocate(line, [in stock batch, shipment batc«
assert in_stock batch.available quantity == |

assert shipment batch.available quantity ==

service-layer test:

def test prefers warehouse batches to shipments(
in stock batch = Batch("in-stock-batch", "RE'
shipment batch = Batch("shipment-batch", "RE’
repo = FakeRepository([in_ stock batch, shipme

session = FakeSession()

line = OrderLine('oref', "RETRO-CLOCK", 10)

services.allocate(line, repo, session)

assert in stock batch.available quantity == !

assert shipment batch.available quantity ==

Why would we want to do that?

Tests are supposed to help us change our system fearlessly, but of-
ten we see teams writing too many tests against their domain model.
This causes problems when they come to change their codebase and

find that they need to update tens or even hundreds of unit tests.

This makes sense if you stop to think about the purpose of automated
tests. We use tests to enforce that a property of the system doesn’t
change while we’re working. We use tests to check that the API con-
tinues to return 200, that the database session continues to commit,

and that orders are still being allocated.

If we accidentally change one of those behaviors, our tests will break.
The flip side, though, is that if we want to change the design of our

code, any tests relying directly on that code will also fail.

As we get further into the book, you’ll see how the service layer forms
an API for our system that we can drive in multiple ways. Testing
against this API reduces the amount of code that we need to change
when we refactor our domain model. If we restrict ourselves to testing
only against the service layer, we won’t have any tests that directly
interact with “private” methods or attributes on our model objects,

which leaves us freer to refactor them.

TIP
Every line of code that we put in a test is like a blob of glue, holding the system in a
particular shape. The more low-level tests we have, the harder it will be to change

things.

On Deciding What Kind of Tests to
Write

You might be asking yourself, “Should | rewrite all my unit tests, then?
Is it wrong to write tests against the domain model?” To answer those
questions, it’s important to understand the trade-off between coupling

and design feedback (see Figure 5-1).

Low feedback High feedback
Low barrier to change High barrier to change
High system coverage Focused coverage
— —_—>
API Tests Service-Layer Tests Domain Tests

Figure 5-1. The test spectrum

Extreme programming (XP) exhorts us to “listen to the code.” When
we’re writing tests, we might find that the code is hard to use or notice
a code smell. This is a trigger for us to refactor, and to reconsider our

design.

We only get that feedback, though, when we’re working closely with
the target code. A test for the HTTP API tells us nothing about the
fine-grained design of our objects, because it sits at a much higher

level of abstraction.

On the other hand, we can rewrite our entire application and, so long
as we don’t change the URLs or request formats, our HTTP tests will
continue to pass. This gives us confidence that large-scale changes,

like changing the database schema, haven’t broken our code.

At the other end of the spectrum, the tests we wrote in Chapter 1
helped us to flesh out our understanding of the objects we need. The
tests guided us to a design that makes sense and reads in the do-
main language. When our tests read in the domain language, we feel
comfortable that our code matches our intuition about the problem

we’re trying to solve.

Because the tests are written in the domain language, they act as liv-
ing documentation for our model. A new team member can read
these tests to quickly understand how the system works and how the

core concepts interrelate.

We often “sketch” new behaviors by writing tests at this level to see

how the code might look. When we want to improve the design of the

code, though, we will need to replace or delete these tests, because

they are tightly coupled to a particular implementation.

High and Low Gear

Most of the time, when we are adding a new feature or fixing a bug,
we don’t need to make extensive changes to the domain model. In
these cases, we prefer to write tests against services because of the

lower coupling and higher coverage.

For example, when writing an add_stock function or a
cancel order feature, we can work more quickly and with less

coupling by writing tests against the service layer.

When starting a new project or when hitting a particularly gnarly prob-
lem, we will drop back down to writing tests against the domain model
so we get better feedback and executable documentation of our

intent.

The metaphor we use is that of shifting gears. When starting a jour-
ney, the bicycle needs to be in a low gear so that it can overcome in-
ertia. Once we’re off and running, we can go faster and more effi-
ciently by changing into a high gear; but if we suddenly encounter a
steep hill or are forced to slow down by a hazard, we again drop

down to a low gear until we can pick up speed again.

Fully Decoupling the Service-Layer
Tests from the Domain

We still have direct dependencies on the domain in our service-layer
tests, because we use domain objects to set up our test data and to

invoke our service-layer functions.

To have a service layer that’s fully decoupled from the domain, we

need to rewrite its APl to work in terms of primitives.
Our service layer currently takes an OrderLine domain object:

Before: allocate takes a domain object (service layer/services.py)

def allocate(line: OrderLine, repo: AbstractRepo:

How would it look if its parameters were all primitive types?

After: allocate takes strings and ints (service layer/services.py)

def allocate(
orderid: str, sku: str, gqty: int, repo: !

) => str:

We rewrite the tests in those terms as well:

Tests now use primitives in function call (tests/unit/test _services.py)

def test returns allocation():
batch = model.Batch("batchl", "COMPLICATED-LI
repo = FakeRepository([batch])

result = services.allocate("ol", "COMPLICATEI

assert result == "batchl"

But our tests still depend on the domain, because we still manually
instantiate Batch objects. So, if one day we decide to massively
refactor how our Batch model works, we’ll have to change a bunch

of tests.

Mitigation: Keep All Domain Dependencies in
Fixture Functions

We could at least abstract that out to a helper function or a fixture in
our tests. Here’s one way you could do that, adding a factory function

on FakeRepository:

Factory functions for fixtures are one possibility

(tests/unit/test _services.py)

class FakeRepository(set):

def for batch(ref, sku, gqty, eta=None):
return FakeRepository([

model.Batch(ref, sku, qgqty, eta),
1)

def test returns allocation():
repo = FakeRepository.for batch("batchl", "C(
result = services.allocate("ol", "COMPLICATEI
assert result == "batchl"”

At least that would move all of our tests’ dependencies on the domain

into one place.

Adding a Missing Service

We could go one step further, though. If we had a service to add
stock, we could use that and make our service-layer tests fully ex-
pressed in terms of the service layer’s official use cases, removing all

dependencies on the domain:

Test for new add_batch service (tests/unit/test _services.py)

def test add batch():
repo, session = FakeRepository([]), FakeSess:
services.add batch("bl", "CRUNCHY-ARMCHAIR",
assert repo.get("bl") is not None

assert session.committed

TIP
In general, if you find yourself needing to do domain-layer stuff directly in your ser-

vice-layer tests, it may be an indication that your service layer is incomplete.

And the implementation is just two lines:

A new service for add_batch (service _layer/services.py)

def add batch(
ref: str, sku: str, qty: int, eta: Optio:

repo: AbstractRepository, session,

N
LX]

repo.add(model.Batch(ref, sku, gty, eta))

session.commit ()

def allocate(

orderid: str, sku: str, gqty: int, repo: !

) =-> str:

NOTE
Should you write a new service just because it would help remove dependencies
from your tests? Probably not. But in this case, we almost definitely would need an

add batch service one day anyway.

That now allows us to rewrite all of our service-layer tests purely in
terms of the services themselves, using only primitives, and without

any dependencies on the model:

Services tests now use only services (tests/unit/test _services.py)

def test allocate returns allocation():
repo, session = FakeRepository([]), FakeSess:
services.add batch("batchl", "COMPLICATED-LAI
result = services.allocate("ol", "COMPLICATEI

assert result == "batchl"

def test allocate errors for invalid sku():

repo, session = FakeRepository([]), FakeSess:
services.add batch("bl", "AREALSKU", 100, Nor

with pytest.raises(services.InvalidSku, matcl
services.allocate("ol", "NONEXISTENTSKU",

This is a really nice place to be in. Our service-layer tests depend on
only the service layer itself, leaving us completely free to refactor the

model as we see fit.

Carrying the Improvement Through to
the E2E Tests

In the same way that adding add batch helped decouple our ser-
vice-layer tests from the model, adding an API endpoint to add a
batch would remove the need for the ugly add stock fixture, and
our E2E tests could be free of those hardcoded SQL queries and the

direct dependency on the database.

Thanks to our service function, adding the endpoint is easy, with just

a littte JSON wrangling and a single function call required:

API for adding a batch (entrypoints/flask_app.py)

("/add batch", methods=['POST'])

AA~L£ AAdd Al Al 7N o

ueL duu pdicy) s
session = get session()
repo = repository.SqglAlchemyRepository(sessic
eta = request.json['eta’]
if eta is not None:
eta = datetime.fromisoformat(eta).date()
services.add batch(
request.json['ref'], request.json['sku'],
repo, session

)
return 'OK', 201

NOTE
Are you thinking to yourself, POST to /add batch? That’s not very RESTful! You're
quite right. We’re being happily sloppy, but if you’d like to make it all more RESTy,

maybe a POST to /batches, then knock yourself out! Because Flask is a thin

adapter, it'll be easy. See the next sidebar.

And our hardcoded SQL queries from conftest.py get replaced with
some API calls, meaning the API tests have no dependencies other

than the API, which is also nice:

APl tests can now add their own batches (tests/e2e/test api.py)

def post to add batch(ref, sku, qty, eta):

aan SR ~ S - - amanl 7\

uriL — cCovlLrlry.ygyer dpli uriy)
r = requests.post(
f'{url}/add batch',

json={'ref': ref, 'sku sku, 'qgty gty,

)

assert r.status code == 201

('postgres db')
('restart api')
def test happy path returns 201 and allocated baf
sku, othersku = random sku(), random sku('otl!
earlybatch = random batchref(1)
laterbatch = random batchref(2)
otherbatch = random batchref(3)
post to add batch(laterbatch, sku, 100, '201:
post to add batch(earlybatch, sku, 100, '"201:
post to add batch(otherbatch, othersku, 100,

data = {'orderid': random orderid(), 'sku': ¢
url = config.get api url()

r = requests.post(f'{url}/allocate', json=dai
assert r.status code == 201

assert r.json()['batchref'] == earlybatch

Wrap-Up

Once you have a service layer in place, you really can move the ma-
jority of your test coverage to unit tests and develop a healthy test

pyramid.

RECAP: RULES OF THUMB FOR DIFFERENT TYPES OF TEST

Aim for one end-to-end test per feature

This might be written against an HTTP API, for example. The
objective is to demonstrate that the feature works, and that all

the moving parts are glued together correctly.

Write the bulk of your tests against the service layer

These edge-to-edge tests offer a good trade-off between cov-
erage, runtime, and efficiency. Each test tends to cover one
code path of a feature and use fakes for I/O. This is the place to
exhaustively cover all the edge cases and the ins and outs of

your business logic.1

Maintain a small core of tests written against your domain model

These tests have highly focused coverage and are more brittle,
but they have the highest feedback. Don’t be afraid to delete
these tests if the functionality is later covered by tests at the

service layer.

Error handling counts as a feature

|deally, your application will be structured such that all errors
that bubble up to your entrypoints (e.g., Flask) are handled in

the same way. This means you need to test only the happy

path for each feature, and to reserve one end-to-end test for all

unhappy paths (and many unhappy path unit tests, of course).

A few things will help along the way:

« Express your service layer in terms of primitives rather than do-
main objects.

- In anideal world, you’ll have all the services you need to be able to
test entirely against the service layer, rather than hacking state via
repositories or the database. This pays off in your end-to-end tests

as well.

Onto the next chapter!

- Avalid concern about writing tests at a higher level is that it can lead to combinato-
rial explosion for more complex use cases. In these cases, dropping down to lower-
level unit tests of the various collaborating domain objects can be useful. But see

also Chapter 8 and “Optionally: Unit Testing_ Event Handlers in Isolation with a Fake

Message Bus”.

Chapter 6. Unit of Work Pattern

In this chapter we’ll introduce the final piece of the puzzle that ties to-
gether the Repository and Service Layer patterns: the Unit of Work

pattern.

If the Repository pattern is our abstraction over the idea of persistent
storage, the Unit of Work (UoW) pattern is our abstraction over the
idea of atomic operations. It will allow us to finally and fully decouple

our service layer from the data layer.

Figure 6-1 shows that, currently, a lot of communication occurs
across the layers of our infrastructure: the API talks directly to the
database layer to start a session, it talks to the repository layer to ini-
tialize SQLAlchemyRepository, and it talks to the service layer to

ask it to allocate.

TIP

The code for this chapter is in the chapter_06_uow branch on GitHub:

git clone https://github.com/cosmicpython/code.git
cd code

git checkout chapter 06 uow

or to code along, checkout Chapter 4:

git checkout chapter 04 service layer

https://oreil.ly/MoWdZ

! Services :
A
.'I Domain i : Repositories
I :(+ Abstract SQLA
v/ / ! ' | Repo [<t-1 Repo

\)
initiates
DB
Session
instantiates

using
Session

Figure 6-1. Without UoW: API talks directly to three layers

Figure 6-2 shows our target state. The Flask APl now does only two
things: it initializes a unit of work, and it invokes a service. The ser-
vice collaborates with the UoW (we like to think of the UoW as being

part of the service layer), but neither the service function itself nor

Flask now needs to talk directly to the database.

And we’ll do it all using a lovely piece of Python syntax, a context

manager.

Flask instantiates

Services | Unit of Work
. Y
| starts
; : Abstract ;. . SQLAIchemy
i UoW UoW
provides _provide§
(using session)
Domain / Repositories ", nitiates
‘ ! DB
! session

Abstract SQLA

Ay T e | R

Figure 6-2. With UoW: UoW now manages database state

The Unit of Work Collaborates with
the Repository

Let’s see the unit of work (or UoW, which we pronounce “you-wow”)

in action. Here’s how the service layer will look when we’re finished:

Preview of unit of work in action

(src/allocation/service_layer/services.py)

def allocate(
orderid: str, sku: str, gty: int,
uow: unit of work.AbstractUnitOfWork
) =-> str:
line = OrderLine(orderid, sku, qty)
with uow: @

batches = uow.batches.list() @
batchref = model.allocate(line, batches)

uow.commit() ©

We'll start a UoW as a context manager.

uow.batches is the batches repo, so the UoW provides us

access to our permanent storage.

When we’re done, we commit or roll back our work, using the
UoW.

The UoW acts as a single entrypoint to our persistent storage, and it

keeps track of what objects were loaded and of the latest state.l

This gives us three useful things:

« A stable snapshot of the database to work with, so the objects we
use aren’t changing halfway through an operation

« A way to persist all of our changes at once, so if something goes
wrong, we don’t end up in an inconsistent state

« A simple API to our persistence concerns and a handy place to get

a repository

Test-Driving a UoW with Integration
Tests

Here are our integration tests for the UOW:

A basic “round-trip” test for a UoW (tests/integration/test_uow.py)

def test uow can retrieve a batch and allocate t«
session = session factory()
insert batch(session, 'batchl', 'HIPSTER-WORI

session.commit ()

uow = unit of work.SglAlchemyUnitOfWork(sess:

with uow:

batch = uow.batches.get(reference="'batch:

line = model.OrderLine('ol', 'HIPSTER-WOI

batch.allocate(line)

uow.commit() @

batchref = get allocated batch ref(session,

assert batchref == 'batchl'

9 We initialize the Uow by using our custom session factory and

get back a uow object to use in our with block.
® The Uow gives us access to the batches repository via
uow.batches.
® we-call commit () onitwhen we’re done.

For the curious, the insert batch and

get allocated batch ref helpers look like this:

Helpers for doing SQL stuff (tests/integration/test_uow.py)

def insert batch(session, ref, sku, qgty, eta):
session.execute (
'INSERT INTO batches (reference, sku, p1
' VALUES (:ref, :sku, :qty, :eta)’,
dict(ref=ref, sku=sku, gty=qty, eta=eta)

https://calibre-pdf-anchor.a/#a698
https://calibre-pdf-anchor.a/#a699

def get allocated batch ref(session, orderid, ski
[[orderlineid]] = session.execute(
'SELECT id FROM order lines WHERE orderic
dict (orderid=orderid, sku=sku)

)

[[batchref]] = session.execute(
'SELECT b.reference FROM allocations JOII

WHERE orderline id=:orderlineid’,

dict(orderlineid=orderlineid)

)

return batchref

Unit of Work and Its Context Manager

In our tests we’ve implicitly defined an interface for what a UoW

needs to do. Let’s make that explicit by using an abstract base class:

Abstract UoW context manager

(src/allocation/service layer/unit_of work.py)

class AbstractUnitOfWork(abc.ABC):
batches: repository.AbstractRepository ©

def exit (self, *args): @

self.rollback() ©

def commit(self): @

raise NotImplementedError

def rollback(self): ©

raise NotImplementedError

The UoW provides an attribute called .batches , which will

give us access to the batches repository.

If you’ve never seen a context manager, _ enter and
__exit arethe two magic methods that execute when we
enter the with block and when we exit it, respectively.

They’re our setup and teardown phases.

We’'ll call this method to explicitly commit our work when we’re

ready.

If we don’t commit, or if we exit the context manager by raising
an error, we do a rollback . (The rollback has no effect if
commit () has been called. Read on for more discussion of
this.)

The Real Unit of Work Uses SQLAIchemy
Sessions

The main thing that our concrete implementation adds is the data-

base session:

The real SQLAIchemy UoW

(src/allocation/service _layer/unit_ of work.py)

DEFAULT SESSION FACTORY = sessionmaker (bind=creat
config.get postgres uri(),

))

class SqlAlchemyUnitOfWork (AbstractUnitOfWork):

def init (self, session factory=DEFAULT SI

self.session factory = session_ factory |

def enter (self):
self.session = self.session factory() #
self.batches = repository.SqglAlchemyRepo:

return super(). enter ()

def exit (self, *args):

super(). exit (*args)

self.session.close() ©

def commit(self): @

self.session.commit()

def rollback(self): ©

self.session.rollback()

® The module defines a default session factory that will connect
to Postgres, but we allow that to be overridden in our integra-
tion tests so that we can use SQLite instead.

® The __enter _ method is responsible for starting a data-
base session and instantiating a real repository that can use
that session.

® We close the session on exit.

(4]

Finally, we provide concrete commit () and rollback()

methods that use our database session.

Fake Unit of Work for Testing

Here’s how we use a fake UoW in our service-layer tests:

Fake UoW (tests/unit/test_services.py)

https://calibre-pdf-anchor.a/#a728
https://calibre-pdf-anchor.a/#a730

class FakeUnitOfWork(unit of work.AbstractUnitOfl

def init (self):
self.batches = FakeRepository([]) ©

self.committed = False ®&

def commit(self):

self.committed = True @

def rollback(self):

pass

def test add batch():
uow = FakeUnitOfWork() @

services.add batch("bl", "CRUNCHY-ARMCHAIR",

assert uow.batches.get("bl") is not None

assert uow.committed

def test allocate returns allocation():
uow = FakeUnitOfWork() &

services.add batch("batchl", "COMPLICATED-LAI
result = services.allocate("ol", "COMPLICATEI

assert result == "batchl"

® FakeUnitofwork and FakeRepository are tightly cou-

pled, just like the real UnitofWork and Repository class-
es. That’s fine because we recognize that the objects are

collaborators.

Notice the similarity with the fake commit () function from
FakeSession (which we can now get rid of). But it’s a sub-
stantial improvement because we’re now faking out code that
we wrote rather than third-party code. Some people say, “Don’t

mock what you don’t own”.

In our tests, we can instantiate a UoW and pass it to our ser-
vice layer, rather than passing a repository and a session. This

is considerably less cumbersome.

https://oreil.ly/0LVj3

DON’'T MOCK WHAT YOU DON’'T OWN

Why do we feel more comfortable mocking the UoW than the ses-
sion? Both of our fakes achieve the same thing: they give us a way to
swap out our persistence layer so we can run tests in memory in-
stead of needing to talk to a real database. The difference is in the re-

sulting design.

If we cared only about writing tests that run quickly, we could create
mocks that replace SQLAIchemy and use those throughout our code-
base. The problem is that Session is a complex object that expos-
es lots of persistence-related functionality. It's easy to use Session
to make arbitrary queries against the database, but that quickly leads
to data access code being sprinkled all over the codebase. To avoid
that, we want to limit access to our persistence layer so each compo-

nent has exactly what it needs and nothing more.

By coupling to the Session interface, you’re choosing to couple to

all the complexity of SQLAIchemy. Instead, we want to choose a sim-
pler abstraction and use that to clearly separate responsibilities. Our
UoW is much simpler than a session, and we feel comfortable with

the service layer being able to start and stop units of work.

“Don’t mock what you don’t own” is a rule of thumb that forces us to

build these simple abstractions over messy subsystems. This has the

same performance benefit as mocking the SQLAIchemy session but

encourages us to think carefully about our designs.

Using the UoW in the Service Layer

Here’s what our new service layer looks like:

Service layer using UoW (src/allocation/service layer/services.py)

def add batch(
ref: str, sku: str, gqty: int, eta: Optio:
uow: unit of work.AbstractUnitOfWork o

with uow:
uow.batches.add(model.Batch(ref, sku, gt

uow.commit ()

def allocate(

orderid: str, sku: str, gty: int,

uow: unit of work.AbstractUnitOfWork o
) => str:

line = OrderLine(orderid, sku, qty)

with uow:

batches = uow.batches.list()

if not is wvalid sku(line.sku, batches):

raise InvalidSku(f'Invalid sku {line
batchref = model.allocate(line, batches)
uow.commit ()

return batchref

® Our service layer now has only the one dependency, once

again on an abstract UoW.

Explicit Tests for Commit/Rollback
Behavior

To convince ourselves that the commit/rollback behavior works, we

wrote a couple of tests:

Integration tests for rollback behavior (tests/integration/test_uow.py)

def test rolls back uncommitted work by default(:
uow = unit of work.SglAlchemyUnitOfWork(sess:

with uow:
insert batch(uow.session, 'batchl', 'MED!:

new session = session factory()
rows = list(new_session.execute('SELECT * FR(

def

assert rows == []

test rolls back on error(session factory):
class MyException(Exception):

pass

uow = unit of work.SglAlchemyUnitOfWork(sess:
with pytest.raises(MyException):
with uow:
insert batch(uow.session, 'batchl’,

raise MyException()

new session = session factory()
rows = list(new_session.execute('SELECT * FR(

assert rows == []

We haven’t shown it here, but it can be worth testing some of the more “obscure”
database behavior, like transactions, against the “real” database —that is, the same
engine. For now, we’re getting away with using SQLite instead of Postgres, but in
Chapter 7, we’ll switch some of the tests to using the real database. It’s convenient

that our UoW class makes that easy!

Explicit Versus Implicit Commits

Now we briefly digress on different ways of implementing the UoW

pattern.

We could imagine a slightly different version of the UoW that commits

by default and rolls back only if it spots an exception:

A UoW with implicit commit... (src/allocation/unit_of work.py)

class AbstractUnitOfWork(abc.ABC):

def enter (self):

return self

def exit (self, exn type, exn value, trace
if exn type is None:

self.commit() @

else:
self.rollback() @

® Should we have an implicit commit in the happy path?

® And roll back only on exception?

It would allow us to save a line of code and to remove the explicit

commit from our client code:

...would save us a line of code

(src/allocation/service_layer/services.py)

def add batch(ref: str, sku: str, gty: int, eta:
with uow:
uow.batches.add(model.Batch(ref, sku, gt

uow.commit ()

This is a judgment call, but we tend to prefer requiring the explicit

commit so that we have to choose when to flush state.

Although we use an extra line of code, this makes the software safe
by default. The default behavior is to not change anything. In turn,
that makes our code easier to reason about because there’s only one
code path that leads to changes in the system: total success and an
explicit commit. Any other code path, any exception, any early exit

from the UoW’s scope leads to a safe state.

Similarly, we prefer to roll back by default because it’s easier to un-
derstand; this rolls back to the last commit, so either the user did one,

or we blow their changes away. Harsh but simple.

Examples: Using UoW to Group
Multiple Operations into an Atomic

Unit

Here are a few examples showing the Unit of Work pattern in use.
You can see how it leads to simple reasoning about what blocks of

code happen together.

Example 1: Reallocate
Suppose we want to be able to deallocate and then reallocate orders:

Reallocate service function

def reallocate(line: OrderLine, uow: AbstractUnif
with uow:
batch = uow.batches.get(sku=line.sku)
if batch is None:
raise InvalidSku(f'Invalid sku {line
batch.deallocate(line) @
allocate(line) @

uow.commit ()

® |t deallocate() fails, we don’twanttocall allocate(),

obviously.

If allocate() fails, we probably don’t want to actually com-

mit the deallocate() either.

Example 2: Change Batch Quantity

Our shipping company gives us a call to say that one of the container
doors opened, and half our sofas have fallen into the Indian Ocean.

Oops!

Change quantity

def change batch quantity(batchref: str, new gty
with uow:
batch = uow.batches.get(reference=batchre
batch.change purchased quantity(new qgty)
while batch.available quantity < 0:
line = batch.deallocate one() @

uow.commit ()

% Herewe may need to deallocate any number of lines. If we get

a failure at any stage, we probably want to commit none of the

changes.

Tidying Up the Integration Tests

We now have three sets of tests, all essentially pointing at the data-
base: test orm.py, test _repository.py, and test_uow.py. Should we

throw any away?

L tests

—— conftest.py

— ele

L test api.py
—— integration

— test orm.py

— test repository.py

L test uow.py

pytest.ini

]

unit

—— test allocate.py

— test batches.py
L test services.py

You should always feel free to throw away tests if you think they’re
not going to add value longer term. We’d say that test orm.py was
primarily a tool to help us learn SQLAIchemy, so we won’t need that
long term, especially if the main things it’s doing are covered in
test _repository.py. That last test, you might keep around, but we
could certainly see an argument for just keeping everything at the

highest possible level of abstraction (just as we did for the unit tests).

EXERCISE FOR THE READER

For this chapter, probably the best thing to try is to implement a UoW
from scratch. The code, as always, is on GitHub. You could either fol-
low the model we have quite closely, or perhaps experiment with sep-
arating the UoW (whose responsibilities are commit (),
rollback() , and providing the .batches repository) from the
context manager, whose job is to initialize things, and then do the
commit or rollback on exit. If you feel like going all-functional rather
than messing about with all these classes, you could use

@contextmanager from contextlib.

We’'ve stripped out both the actual UoW and the fakes, as well as par-
ing back the abstract UoW. Why not send us a link to your repo if you

come up with something you’re particularly proud of?

TIP
This is another example of the lesson from Chapter 5: as we build better abstrac-
tions, we can move our tests to run against them, which leaves us free to change

the underlying details.

Wrap-Up

https://github.com/cosmicpython/code/tree/chapter_06_uow_exercise

Hopefully we’ve convinced you that the Unit of Work pattern is useful,
and that the context manager is a really nice Pythonic way of visually

grouping code into blocks that we want to happen atomically.

This pattern is so useful, in fact, that SQLAIchemy already uses a
UoW in the shape of the Session object. The Session objectin
SQLAIchemy is the way that your application loads data from the

database.

Every time you load a new entity from the database, the session be-
gins to track changes to the entity, and when the session is flushed,
all your changes are persisted together. Why do we go to the effort of
abstracting away the SQLAIchemy session if it already implements

the pattern we want?

Table 6-1 discusses some of the trade-offs.

Table 6-1. Unit of Work pattern: the trade-offs

Pros Cons

« We have a nice abstrac- « Your ORM probably already

tion over the concept of
atomic operations, and
the context manager
makes it easy to see, vi-
sually, what blocks of
code are grouped to-
gether atomically.

We have explicit control
over when a transaction
starts and finishes, and
our application fails in a
way that is safe by de-
fault. We never have to
worry that an operation
is partially committed.
It’s a nice place to put all
your repositories so
client code can access

them.

has some perfectly good ab-
stractions around atomicity.
SQLAIchemy even has context
managers. You can go a long
way just passing a session
around.

We’ve made it look easy, but
you have to think quite careful-
ly about things like rollbacks,
multithreading, and nested
transactions. Perhaps just
sticking to what Django or
Flask-SQLAIchemy gives you

will keep your life simpler.

Pros Cons

« Asyou’ll see in later
chapters, atomicity isn’t
only about transactions;
it can help us work with
events and the message

bus.

For one thing, the Session APl is rich and supports operations that
we don’t want or need in our domain. Our UnitOfWork simplifies
the session to its essential core: it can be started, committed, or

thrown away.

For another, we're using the UnitOfWork to access our
Repository objects. This is a neat bit of developer usability that

we couldn’t do with a plain SQLAlchemy Session.

UNIT OF WORK PATTERN RECAP

The Unit of Work pattern is an abstraction around data integrity

It helps to enforce the consistency of our domain model, and

improves performance, by letting us perform a single flush op-

eration at the end of an operation.

It works closely with the Repository and Service Layer patterns

The Unit of Work pattern completes our abstractions over data
access by representing atomic updates. Each of our service-

layer use cases runs in a single unit of work that succeeds or
fails as a block.

This is a lovely case for a context manager

Context managers are an idiomatic way of defining scope in
Python. We can use a context manager to automatically roll

back our work at the end of a request, which means the system
is safe by default.

SQLAIchemy already implements this pattern

We introduce an even simpler abstraction over the SQLAIche-
my Session objectin order to “narrow” the interface between

the ORM and our code. This helps to keep us loosely coupled.

Lastly, we’re motivated again by the dependency inversion principle:
our service layer depends on a thin abstraction, and we attach a con-
crete implementation at the outside edge of the system. This lines up

nicely with SQLAIchemy’s own recommendations:

Keep the life cycle of the session (and usually the transaction)
separate and external. The most comprehensive approach, rec-
ommended for more substantial applications, will try to keep the
details of session, transaction, and exception management as

far as possible from the details of the program doing its work.

—SQLALchemy “Session Basics” Documentation

 You may have come across the use of the word collaborators to describe objects
that work together to achieve a goal. The unit of work and the repository are a great
example of collaborators in the object-modeling sense. In responsibility-driven de-
sign, clusters of objects that collaborate in their roles are called object neighbor-

hoods, which is, in our professional opinion, totally adorable.

https://oreil.ly/tS0E0

Chapter 7. Aggregates and
Consistency Boundaries

In this chapter, we’d like to revisit our domain model to talk about in-
variants and constraints, and see how our domain objects can main-
tain their own internal consistency, both conceptually and in persis-
tent storage. We’'ll discuss the concept of a consistency boundary
and show how making it explicit can help us to build high-perfor-

mance software without compromising maintainability.

Figure 7-1 shows a preview of where we’re headed: we’ll introduce a
new model object called Product to wrap multiple batches, and
we’ll make the old allocate() domain service available as a

method on Product instead.

Before After

Domain Domain :
| Product allocate()
Batch :
allocate()
Order
Line

Figure 7-1. Adding the Product aggregate

Why? Let’s find out.

TIP

The code for this chapter is in the appendix_csvs branch on GitHub:

git clone https://github.com/cosmicpython/code.git
cd code

git checkout appendix csvs

or to code along, checkout the previous chapter:

git checkout chapter 06 uow

https://oreil.ly/vlnGg

Why Not Just Run Everything in a
Spreadsheet?

What’s the point of a domain model, anyway? What’s the fundamental

problem we’re trying to address?

Couldn’t we just run everything in a spreadsheet? Many of our users
would be delighted by that. Business users like spreadsheets be-

cause they’re simple, familiar, and yet enormously powerful.

In fact, an enormous number of business processes do operate by
manually sending spreadsheets back and forth over email. This “CSV
over SMTP” architecture has low initial complexity but tends not to
scale very well because it’s difficult to apply logic and maintain con-

sistency.

Who is allowed to view this particular field? Who’s allowed to update
it? What happens when we try to order —350 chairs, or 10,000,000 ta-

bles? Can an employee have a negative salary?

These are the constraints of a system. Much of the domain logic we
write exists to enforce these constraints in order to maintain the in-
variants of the system. The invariants are the things that have to be

true whenever we finish an operation.

Invariants, Constraints, and
Consistency

The two words are somewhat interchangeable, but a constraintis a
rule that restricts the possible states our model can get into, while an
invariantis defined a little more precisely as a condition that is always

true.

If we were writing a hotel-booking system, we might have the con-
straint that double bookings are not allowed. This supports the invari-
ant that a room cannot have more than one booking for the same

night.

Of course, sometimes we might need to temporarily bend the rules.
Perhaps we need to shuffle the rooms around because of a VIP
booking. While we’re moving bookings around in memory, we might
be double booked, but our domain model should ensure that, when
we’re finished, we end up in a final consistent state, where the invari-
ants are met. If we can’t find a way to accommodate all our guests,

we should raise an error and refuse to complete the operation.

Let’s look at a couple of concrete examples from our business re-

quirements; we’ll start with this one:

An order line can be allocated to only one batch at a time.
—The business

This is a business rule that imposes an invariant. The invariant is that
an order line is allocated to either zero or one batch, but never more
than one. We need to make sure that our code never accidentally
calls Batch.allocate() on two different batches for the same
line, and currently, there’s nothing there to explicitly stop us from do-

ing that.
Invariants, Concurrency, and Locks

Let’s look at another one of our business rules:

We can't allocate to a batch if the available quantity is less than

the quantity of the order line.
—The business

Here the constraint is that we can’t allocate more stock than is avail-
able to a batch, so we never oversell stock by allocating two cus-
tomers to the same physical cushion, for example. Every time we up-
date the state of the system, our code needs to ensure that we don’t
break the invariant, which is that the available quantity must be

greater than or equal to zero.

In a single-threaded, single-user application, it’s relatively easy for us
to maintain this invariant. We can just allocate stock one line at a

time, and raise an error if there’s no stock available.

This gets much harder when we introduce the idea of concurrency.
Suddenly we might be allocating stock for multiple order lines simul-
taneously. We might even be allocating order lines at the same time

as processing changes to the batches themselves.

We usually solve this problem by applying locks to our database ta-
bles. This prevents two operations from happening simultaneously on

the same row or same table.

As we start to think about scaling up our app, we realize that our
model of allocating lines against all available batches may not scale.
If we process tens of thousands of orders per hour, and hundreds of
thousands of order lines, we can’t hold a lock over the whole
batches table for every single one—we’ll get deadlocks or perfor-

mance problems at the very least.

What Is an Aggregate?

OK, so if we can’t lock the whole database every time we want to allo-
cate an order line, what should we do instead? We want to protect the

invariants of our system but allow for the greatest degree of concur-

rency. Maintaining our invariants inevitably means preventing concur-
rent writes; if multiple users can allocate DEADLY-SPOON at the

same time, we run the risk of overallocating.

On the other hand, there’s no reason we can’t allocate DEADLY-
SPOON at the same time as FLIMSY-DESK . It’s safe to allocate two
products at the same time because there’s no invariant that covers

them both. We don’t need them to be consistent with each other.

The Aggregate pattern is a design pattern from the DDD community
that helps us to resolve this tension. An aggregate is just a domain
object that contains other domain objects and lets us treat the whole

collection as a single unit.

The only way to modify the objects inside the aggregate is to load the

whole thing, and to call methods on the aggregate itself.

As a model gets more complex and grows more entity and value ob-
jects, referencing each other in a tangled graph, it can be hard to
keep track of who can modify what. Especially when we have collec-
tions in the model as we do (our batches are a collection), it’s a good
idea to nominate some entities to be the single entrypoint for modify-
ing their related objects. It makes the system conceptually simpler
and easy to reason about if you nominate some objects to be in

charge of consistency for the others.

For example, if we’re building a shopping site, the Cart might make a
good aggregate: it’s a collection of items that we can treat as a single
unit. Importantly, we want to load the entire basket as a single blob
from our data store. We don’t want two requests to modify the basket
at the same time, or we run the risk of weird concurrency errors. In-
stead, we want each change to the basket to run in a single database

transaction.

We don’t want to modify multiple baskets in a transaction, because
there’s no use case for changing the baskets of several customers at
the same time. Each basket is a single consistency boundary respon-

sible for maintaining its own invariants.

An AGGREGATE is a cluster of associated objects that we treat

as a unit for the purpose of data changes.

—Eric Evans, Domain-Driven Design blue book

Per Evans, our aggregate has a root entity (the Cart) that encapsu-
lates access to items. Each item has its own identity, but other parts

of the system will always refer to the Cart only as an indivisible whole.

TIP
Just as we sometimes use _leading_underscores to mark methods or func-
tions as “private,” you can think of aggregates as being the “public” classes of our

model, and the rest of the entities and value objects as “private.”

Choosing an Aggregate

What aggregate should we use for our system? The choice is some-
what arbitrary, but it’s important. The aggregate will be the boundary
where we make sure every operation ends in a consistent state. This
helps us to reason about our software and prevent weird race issues.
We want to draw a boundary around a small number of objects—the
smaller, the better, for performance —that have to be consistent with

one another, and we need to give this boundary a good name.

The object we’re manipulating under the covers is Batch . What do
we call a collection of batches? How should we divide all the batches

in the system into discrete islands of consistency?

We coulduse Shipment as our boundary. Each shipment contains
several batches, and they all travel to our warehouse at the same
time. Or perhaps we could use Warehouse as our boundary: each
warehouse contains many batches, and counting all the stock at the

same time could make sense.

Neither of these concepts really satisfies us, though. We should be
able to allocate DEADLY-SPOONs and FLIMSY-DESKs atthe same
time, even if they’re in the same warehouse or the same shipment.

These concepts have the wrong granularity.

When we allocate an order line, we’re interested only in batches that
have the same SKU as the order line. Some sort of concept like
GlobalskuStock could work: a collection of all the batches for a
given SKU.

It’s an unwieldy name, though, so after some bikeshedding via
SkuStock, Stock, ProductStock, and so on, we decided to
simply call it Product —after all, that was the first concept we came

across in our exploration of the domain language back in Chapter 1.

So the plan is this: when we want to allocate an order line, instead of
Eigure 7-2, where we look up all the Batch objects in the world and

pass themtothe allocate() domain service...

Repositories \

Service Layer

list all batches @ BatchRepository
list()

allocate()

allocate(orderline, batches)

Domain Model
V)

allocate() @ Batch

Figure 7-2. Before: allocate against all batches using the domain service

...we’ll move to the world of Eigure 7-3, in which there is a new
Product object for the particular SKU of our order line, and it will be
in charge of all the batches for that SKU, and we can call a

.allocate() method on that instead.

Reposnoﬂes\

get me the product for this SKU @ ProductRepository
get()

Service Layer

allocate()

product.allocate(orderline)

@ Batch

allocate()

Figure 7-3. After: ask Product to allocate against its batches

Let’s see how that looks in code form:

Our chosen aggregate, Product (srcs/allocation/domain/model.py)

class Product:

def init (self, sku: str, batches: List[B:
self.sku = sku ©
self.batches = batches @

def allocate(self, line: OrderLine) -> str:
try:
batch = next(
b for b in sorted(self.batches)
)
batch.allocate(line)

return batch.reference

except StopIteration:
raise OutOfStock(f'Out of stock for :

® ©roduct ’s main identifier is the sku .

e Our Product class holds a reference to a collection of
batches forthat SKU.
© Finally, we can move the allocate() domain service to be a

method on the Product aggregate.

NOTE
This Product might not look like what you’d expect a Product model to look
like. No price, no description, no dimensions. Our allocation service doesn’t care
about any of those things. This is the power of bounded contexts; the concept of a
product in one app can be very different from another. See the following sidebar for

more discussion.

https://calibre-pdf-anchor.a/#a871

AGGREGATES, BOUNDED CONTEXTS, AND MICROSERVICES

One of the most important contributions from Evans and the DDD

community is the concept of bounded contexts.

In essence, this was a reaction against attempts to capture entire
businesses into a single model. The word customer means different
things to people in sales, customer service, logistics, support, and so
on. Attributes needed in one context are irrelevant in another; more
perniciously, concepts with the same name can have entirely different
meanings in different contexts. Rather than trying to build a single
model (or class, or database) to capture all the use cases, it’s better
to have several models, draw boundaries around each context, and

handle the translation between different contexts explicitly.

This concept translates very well to the world of microservices, where
each microservice is free to have its own concept of “customer” and
its own rules for translating that to and from other microservices it in-

tegrates with.

In our example, the allocation service has Product (sku,
batches) , whereas the ecommerce will have Product (sku,
description, price, image url, dimensions, etc...).
As a rule of thumb, your domain models should include only the data

that they need for performing calculations.

https://martinfowler.com/bliki/BoundedContext.html

Whether or not you have a microservices architecture, a key consid-
eration in choosing your aggregates is also choosing the bounded
context that they will operate in. By restricting the context, you can

keep your number of aggregates low and their size manageable.

Once again, we find ourselves forced to say that we can’t give this is-
sue the treatment it deserves here, and we can only encourage you
to read up on it elsewhere. The Fowler link at the start of this sidebar
is a good starting point, and either (or indeed, any) DDD book will

have a chapter or more on bounded contexts.

One Aggregate = One Repository

Once you define certain entities to be aggregates, we need to apply
the rule that they are the only entities that are publicly accessible to
the outside world. In other words, the only repositories we are al-

lowed should be repositories that return aggregates.

NOTE
The rule that repositories should only return aggregates is the main place where we
enforce the convention that aggregates are the only way into our domain model. Be

wary of breaking it!

In our case, we’ll switch from BatchRepository to

ProductRepository:

Our new UoW and repository (unit_of work.py and repository.py)

class AbstractUnitOfWork(abc.ABC):

products: repository.AbstractProductReposito:

class AbstractProductRepository(abc.ABC):

def add(self, product):

def get(self, sku) -> model.Product:

The ORM layer will need some tweaks so that the right batches auto-
matically get loaded and associated with Product objects. The nice
thing is, the Repository pattern means we don’t have to worry about
that yet. We can just use our FakeRepository and then feed
through the new model into our service layer to see how it looks with

Product as its main entrypoint:

Service layer (src/allocation/service layer/services.py)

def add batch(
ref: str, sku: str, gqty: int, eta: Optio:
uow: unit of work.AbstractUnitOfWork

with uow:
product = uow.products.get(sku=sku)

if product is None:
product = model.Product(sku, batches:

uow.products.add(product)
product.batches.append(model.Batch(ref, -

uow.commit ()

def allocate(
orderid: str, sku: str, qty: int,
uow: unit of work.AbstractUnitOfWork
) -> str:
line = OrderLine(orderid, sku, qty)

with uow:
product = uow.products.get(sku=line.sku)

if product is None:
raise InvalidSku(f'Invalid sku {line

batchref = product.allocate(line)

uow.commit ()

return batchref

What About Performance?

We’ve mentioned a few times that we’re modeling with aggregates
because we want to have high-performance software, but here we
are loading all the batches when we only need one. You might expect
that to be inefficient, but there are a few reasons why we’re comfort-

able here.

First, we’re purposefully modeling our data so that we can make a
single query to the database to read, and a single update to persist
our changes. This tends to perform much better than systems that is-
sue lots of ad hoc queries. In systems that don’t model this way, we
often find that transactions slowly get longer and more complex as

the software evolves.

Second, our data structures are minimal and comprise a few strings
and integers per row. We can easily load tens or even hundreds of

batches in a few milliseconds.

Third, we expect to have only 20 or so batches of each product at a
time. Once a batch is used up, we can discount it from our calcula-
tions. This means that the amount of data we’re fetching shouldn’t get

out of control over time.

If we did expect to have thousands of active batches for a product,
we’d have a couple of options. For one, we could use lazy-loading for
the batches in a product. From the perspective of our code, nothing
would change, but in the background, SQLAlchemy would page
through data for us. This would lead to more requests, each fetching
a smaller number of rows. Because we need to find only a single

batch with enough capacity for our order, this might work pretty well.

EXERCISE FOR THE READER

You've just seen the main top layers of the code, so this shouldn’t be
too hard, but we’d like you to implement the Product aggregate

starting from Batch, just as we did.

Of course, you could cheat and copy/paste from the previous listings,
but even if you do that, you’ll still have to solve a few challenges on
your own, like adding the model to the ORM and making sure all the

moving parts can talk to each other, which we hope will be instructive.

You'll find the code on GitHub. We’ve put in a “cheating” implementa-
tion in the delegates to the existing allocate() function, so you

should be able to evolve that toward the real thing.

We’ve marked a couple of tests with @pytest.skip() . After
you’ve read the rest of this chapter, come back to these tests to have
a go at implementing version numbers. Bonus points if you can get

SQLAIchemy to do them for you by magic!

If all else failed, we’d just look for a different aggregate. Maybe we
could split up batches by region or by warehouse. Maybe we could
redesign our data access strategy around the shipment concept. The
Aggregate pattern is designed to help manage some technical con-

straints around consistency and performance. There isn’t one correct

https://github.com/cosmicpython/code/tree/chapter_07_aggregate_exercise

aggregate, and we should feel comfortable changing our minds if we

find our boundaries are causing performance woes.

Optimistic Concurrency with Version
Numbers

We have our new aggregate, so we’ve solved the conceptual problem
of choosing an object to be in charge of consistency boundaries. Let’s
now spend a little time talking about how to enforce data integrity at

the database level.

NOTE
This section has a lot of implementation details; for example, some of it is Postgres-
specific. But more generally, we’re showing one way of managing concurrency is-
sues, but it is just one approach. Real requirements in this area vary a lot from
project to project. You shouldn’t expect to be able to copy and paste code from here

into production.

We don’t want to hold a lock over the entire batches table, but how
will we implement holding a lock over just the rows for a particular
SKU?

One answer is to have a single attribute on the Product model that
acts as a marker for the whole state change being complete and to
use it as the single resource that concurrent workers can fight over. If
two transactions read the state of the world for batches at the
same time, and both want to update the allocations tables, we
force both to also try to update the version number inthe
products table, in such a way that only one of them can win and

the world stays consistent.

Figure 7-4 illustrates two concurrent transactions doing their read op-
erations at the same time, so they see a Product with, for example,
version=3 . They both call Product.allocate() inorderto
modify a state. But we set up our database integrity rules such that
only one of them is allowed to commit the new Product with

version=4 , and the other update is rejected.

TIP
Version numbers are just one way to implement optimistic locking. You could
achieve the same thing by setting the Postgres transaction isolation level to
SERIALIZABLE , but that often comes at a severe performance cost. Version num-

bers also make implicit concepts explicit.

Model ‘ Transactionl ' Transaction2 ' Database

| et product !
| ; geLp . >
| ' Product(version=3) |
: I et product
| | | 5P >
' Product(version=3) |
' Product.allocate() |
' Product(version=4) | |
' Product.allocate() | |
' Product(version=4) | |
[e | |
| ' commit Product(version=4) |
| t e |
| . 0K |
: :{]]
' commit Product(version=4)
| | [e |

Error! version is already 4

| | Ra |
Mg ‘ Transactionl I Transaction2 I DataEbase

Figure 7-4. Sequence diagram: two transactions attempting a concurrent update on
Product

OPTIMISTIC CONCURRENCY CONTROL AND RETRIES

What we’ve implemented here is called optimistic concurrency con-
trol because our default assumption is that everything will be fine
when two users want to make changes to the database. We think it’s
unlikely that they will conflict with each other, so we let them go
ahead and just make sure we have a way to notice if there is a prob-

lem.

Pessimistic concurrency control works under the assumption that two
users are going to cause conflicts, and we want to prevent conflicts in
all cases, so we lock everything just to be safe. In our example, that
would mean locking the whole batches table, or using SELECT
FOR UPDATE —we’re pretending that we’ve ruled those out for per-
formance reasons, but in real life you’d want to do some evaluations

and measurements of your own.

With pessimistic locking, you don’t need to think about handling fail-
ures because the database will prevent them for you (although you
do need to think about deadlocks). With optimistic locking, you need
to explicitly handle the possibility of failures in the (hopefully unlikely)

case of a clash.

The usual way to handle a failure is to retry the failed operation from
the beginning. Imagine we have two customers, Harry and Bob, and
each submits an order for SHINY-TABLE . Both threads load the

product at version 1 and allocate stock. The database prevents the
concurrent update, and Bob’s order fails with an error. When we retry
the operation, Bob’s order loads the product at version 2 and tries to
allocate again. If there is enough stock left, all is well; otherwise, he’ll
receive OutOfStock . Most operations can be retried this way in the

case of a concurrency problem.

Read more on retries in “Recovering_from Errors Synchronously” and

‘Footguns”.

Implementation Options for Version Numbers

There are essentially three options for implementing version

numbers:

1. version number lives inthe domain; we add it to the
Product constructor,and Product.allocate() isresponsi-
ble for incrementing it.

2. The service layer could do it! The version number isn’t strictly a
domain concern, so instead our service layer could assume that
the current version number is attached to Product by the reposi-
tory, and the service layer will increment it before it does the

commit () .

3. Since it’s arguably an infrastructure concern, the UoW and reposi-
tory could do it by magic. The repository has access to version
numbers for any products it retrieves, and when the UoW does a
commit, it can increment the version number for any products it

knows about, assuming them to have changed.

Option 3 isn’t ideal, because there’s no real way of doing it without
having to assume that all products have changed, so we’ll be incre-

menting version numbers when we don’t have to.1

Option 2 involves mixing the responsibility for mutating state between

the service layer and the domain layer, so it’s a little messy as well.

So in the end, even though version numbers don’t have to be a do-
main concern, you might decide the cleanest trade-off is to put them

in the domain:

Our chosen aggregate, Product (src/allocation/domain/model.py)

class Product:

def init (self, sku: str, batches: List[B:
self.sku = sku
self.batches = batches

self.version number = version number ©

def allocate(self, line: OrderLine) -> str:
try:
batch = next(
b for b in sorted(self.batches)
)
batch.allocate(line)
self.version number += 1 @
return batch.reference
except StopIteration:
raise OutOfStock(f'Out of stock for :

° There itis!

TIP
If you’re scratching your head at this version number business, it might help to re-
member that the numberisn’t important. What’s important is that the Product
database row is modified whenever we make a change to the Product aggre-
gate. The version number is a simple, human-comprehensible way to model a thing

that changes on every write, but it could equally be a random UUID every time.

Testing for Our Data Integrity Rules

Now to make sure we can get the behavior we want: if we have two

concurrent attempts to do allocation against the same Product,

https://calibre-pdf-anchor.a/#a920

one of them should fail, because they can’t both update the version

number.

First, let’s simulate a “slow” transaction using a function that does al-

location and then does an explicit sleep:2

time.sleep can reproduce concurrency behavior

(tests/integration/test_uow.py)

def try to allocate(orderid, sku, exceptions):
line = model.OrderLine(orderid, sku, 10)
try:
with unit of work.SglAlchemyUnitOfWork()
product = uow.products.get (sku=sku)
product.allocate(line)
time.sleep(0.2)
uow.commit ()
except Exception as e:
print(traceback.format exc())

exceptions.append(e)
Then we have our test invoke this slow allocation twice, concurrently,
using threads:

An integration test for concurrency behavior

(tests/integration/test_uow.py)

def test concurrent updates to version are not a:
sku, batch = random sku(), random batchref ()
session = postgres session factory()
insert batch(session, batch, sku, 100, eta=Nc

session.commit ()

orderl, order2 = random orderid(1l), random o1
exceptions = [] # type: List[Exception]

try to allocate orderl = lambda: try to alloc
try to allocate order2 = lambda: try to alloc
threadl = threading.Thread(target=try to allc
thread2 = threading.Thread(target=try to allc
threadl.start()

thread2.start()

threadl. join()

thread2. join()

[[version]] = session.execute(
"SELECT version number FROM products WHEI
dict (sku=sku),

)

assert version == 2]

[exception] = exceptions

assert 'could not serialize access due to coi

orders = list(session.execute(
"SELECT orderid FROM allocations"
" JOIN batches ON allocations.batch id =

JOIN order lines ON allocations.orderl:
" WHERE order lines.sku=:sku",
dict (sku=sku),

))

assert len(orders) == 4]

with unit of work.SglAlchemyUnitOfWork() as 1

uow.session.execute('select 1)

We start two threads that will reliably produce the concurrency

behavior we want: readl, read2, writel, write2.

We assert that the version number has been incremented only

once.

We can also check on the specific exception if we like.

And we double-check that only one allocation has gotten

through.

Enforcing Concurrency Rules by Using Database
Transaction Isolation Levels

To get the test to pass as it is, we can set the transaction isolation lev-

el on our session:

https://calibre-pdf-anchor.a/#a938
https://calibre-pdf-anchor.a/#a941

Set isolation level for session

(src/allocation/service layer/unit_of work.py)

DEFAULT SESSION FACTORY = sessionmaker (bind=crea
config.get postgres uri(),
isolation level="REPEATABLE READ",

))

TIP
Transaction isolation levels are tricky stuff, so it’s worth spending time understand-

ing the Postgres documentation.2

Pessimistic Concurrency Control Example:
SELECT FOR UPDATE

There are multiple ways to approach this, but we’ll show one.
SELECT FOR UPDATE produces different behavior; two concurrent
transactions will not be allowed to do a read on the same rows at the

same time:

SELECT FOR UPDATE is a way of picking a row or rows to use as a
lock (although those rows don’t have to be the ones you update). If

two transactions both try to SELECT FOR UPDATE a row at the

https://oreil.ly/5vxJA
https://oreil.ly/i8wKL

same time, one will win, and the other will wait until the lock is re-

leased. So this is an example of pessimistic concurrency control.

Here’s how you can use the SQLAlchemy DSL to specify FOR
UPDATE at query time:

SQLAIchemy with_for_update (srcs/allocation/adapters/repository.py)

def get(self, sku):
return self.session.query(model.Product)
.filter by(sku=sku) \
.with for update() \
.first()

This will have the effect of changing the concurrency pattern from

readl, read2, writel, write2(fail)

to

readl, writel, read2, write2(succeed)

Some people refer to this as the “read-modify-write” failure mode.
Read “PostgreSQL Anti-Patterns: Read-Modify-Write Cycles” for a

good overview.

https://oreil.ly/uXeZI

We don’t really have time to discuss all the trade-offs between
REPEATABLE READ and SELECT FOR UPDATE , or optimistic ver-
sus pessimistic locking in general. But if you have a test like the one
we’ve shown, you can specify the behavior you want and see how it
changes. You can also use the test as a basis for performing some

performance experiments.
Wrap-Up

Specific choices around concurrency control vary a lot based on busi-
ness circumstances and storage technology choices, but we’d like to
bring this chapter back to the conceptual idea of an aggregate: we
explicitly model an object as being the main entrypoint to some sub-
set of our model, and as being in charge of enforcing the invariants

and business rules that apply across all of those objects.

Choosing the right aggregate is key, and it’s a decision you may re-
visit over time. You can read more about it in multiple DDD books. We
also recommend these three online papers on effective aggregate

design by Vaughn Vernon (the “red book” author).

Table 7-1 has some thoughts on the trade-offs of implementing the

Aggregate pattern.

https://dddcommunity.org/library/vernon_2011

Table 7-1. Aggregates: the trade-offs

Pros Cons

« Python might not have “official” public « Yet another new

and private methods, but we do have
the underscores convention, because
it’s often useful to try to indicate what’s
for “internal” use and what’s for “out-
side code” to use. Choosing aggre-
gates is just the next level up: it lets
you decide which of your domain mod-
el classes are the public ones, and
which aren’t.

Modeling our operations around explic-
it consistency boundaries helps us
avoid performance problems with our
ORM.

Putting the aggregate in sole charge of
state changes to its subsidiary models
makes the system easier to reason
about, and makes it easier to control

invariants.

concept for new
developers to
take on. Ex-
plaining entities
versus value ob-
jects was al-
ready a mental
load; now
there’s a third
type of domain
model object?
Sticking rigidly
to the rule that
we modify only
one aggregate
at atime is a big
mental shift.
Dealing with

eventual consis-

Pros Cons

tency between
aggregates can

be complex.

AGGREGATES AND CONSISTENCY BOUNDARIES RECAP

Aggregates are your entrypoints into the domain model

By restricting the number of ways that things can be changed,

we make the system easier to reason about.

Aggregates are in charge of a consistency boundary

An aggregate’s job is to be able to manage our business rules
about invariants as they apply to a group of related objects. It’s
the aggregate’s job to check that the objects within its remit are
consistent with each other and with our rules, and to reject

changes that would break the rules.

Aggregates and concurrency issues go together

When thinking about implementing these consistency checks,
we end up thinking about transactions and locks. Choosing the
right aggregate is about performance as well as conceptual or-

ganization of your domain.

Part | Recap

Do you remember Figure 7-5, the diagram we showed at the begin-

ning of Part | to preview where we were heading?

Flask
invokes
. Service Layer '
1 1
1 . 1
: Unit !
' Starts of |
. Work '
1 1
A 1
callmethods on provides
! Domain A ! Adapters '
' : : :
1 : 1 1
1 1 H 1
: ' |oads : Repository :
: and — !
' ¢ Saves | :
1 O ! 1 1
1 ' 1 1
1 ! 1 1
1 1 1 1
\ f 1 1
. 4 \ 1]
commits changes to

Figure 7-5. A component diagram for our app at the end of Part |

So that’'s where we are at the end of Part I. What have we achieved?

We’ve seen how to build a domain model that’s exercised by a set of

high-level unit tests. Our tests are living documentation: they describe
the behavior of our system—the rules upon which we agreed with our
business stakeholders—in nice readable code. When our business
requirements change, we have confidence that our tests will help us
to prove the new functionality, and when new developers join the

project, they can read our tests to understand how things work.

We’ve decoupled the infrastructural parts of our system, like the data-
base and APl handlers, so that we can plug them into the outside of
our application. This helps us to keep our codebase well organized

and stops us from building a big ball of mud.

By applying the dependency inversion principle, and by using ports-
and-adapters-inspired patterns like Repository and Unit of Work,
we’ve made it possible to do TDD in both high gear and low gear and
to maintain a healthy test pyramid. We can test our system edge to
edge, and the need for integration and end-to-end tests is kept to a

minimum.

Lastly, we've talked about the idea of consistency boundaries. We
don’t want to lock our entire system whenever we make a change, so

we have to choose which parts are consistent with one another.

For a small system, this is everything you need to go and play with

the ideas of domain-driven design. You now have the tools to build

database-agnostic domain models that represent the shared lan-

guage of your business experts. Hurrah!

NOTE
At the risk of laboring the point—we’ve been at pains to point out that each pattern
comes at a cost. Each layer of indirection has a price in terms of complexity and du-
plication in our code and will be confusing to programmers who’ve never seen
these patterns before. If your app is essentially a simple CRUD wrapper around a
database and isn’t likely to be anything more than that in the foreseeable future,
you don’t need these patterns. Go ahead and use Django, and save yourself a lot of
bother.

In Part Il, we’ll zoom out and talk about a bigger topic: if aggregates
are our boundary, and we can update only one at a time, how do we

model processes that cross consistency boundaries?

- Perhaps we could get some ORM/SQLAIchemy magic to tell us when an object is
dirty, but how would that work in the generic case —for example, for a

CsvRepository?

time.sleep() works well in our use case, but it’s not the most reliable or effi-
cient way to reproduce concurrency bugs. Consider using semaphores or similar
synchronization primitives shared between your threads to get better guarantees of

behavior.

Cf you’re not using Postgres, you’ll need to read different documentation. Annoy-
ingly, different databases all have quite different definitions. Oracle’s
SERIALIZABLE iS equivalentto Postgres’s REPEATABLE READ, for example.

Part Il. Event-Driven Architecture

I'm sorry that | long ago coined the term “objects” for this topic

because it gets many people to focus on the lesser idea.

The big idea is “messaging.”... The key in making great and
growable systems is much more to design how its modules
communicate rather than what their internal properties and be-

haviors should be.
—Alan Kay

It’s all very well being able to write one domain model to manage a
single bit of business process, but what happens when we need to
write many models? In the real world, our applications sit within an or-
ganization and need to exchange information with other parts of the

system. You may remember our context diagram shown in Figure lI-1.

Faced with this requirement, many teams reach for microservices in-
tegrated via HTTP APIs. But if they’re not careful, they’ll end up pro-

ducing the most chaotic mess of all: the distributed big ball of mud.

In Part I, we’ll show how the techniques from Part | can be extended

to distributed systems. We’ll zoom out to look at how we can com-

pose a system from many small components that interact through

asynchronous message passing.

We’ll see how our Service Layer and Unit of Work patterns allow us to
reconfigure our app to run as an asynchronous message processor,
and how event-driven systems help us to decouple aggregates and

applications from one another.

«person» «person»

Buying Team Customer

Needs to purchase furniture

from suppliers Wants to buy furniture

«System» ”
o ystemn»
Purchasing Ecommerce

Dispatches goods to

Manages workflow for buying

stock from suppliers Sells goods online

Notifies about
shipments

Notifies about orders Asks for stock levels

«system» «system»
Allocation Sends instructions to Warehouse

Allocates stock to customer Manages workflow for

orders shipping goods to customers

Figure II-1. But exactly how will all these systems talk to each other?

We’ll look at the following patterns and techniques:

Domain Events

Trigger workflows that cross consistency boundaries.

Message Bus

Provide a unified way of invoking use cases from any endpoint.

CQRS

Separating reads and writes avoids awkward compromises in
an event-driven architecture and enables performance and

scalability improvements.

Plus, we’ll add a dependency injection framework. This has nothing to
do with event-driven architecture per se, but it tidies up an awful lot of

loose ends.

Chapter 8. Events and the Message
Bus

So far we’ve spent a lot of time and energy on a simple problem that
we could easily have solved with Django. You might be asking if the

increased testability and expressiveness are really worth all the effort.

In practice, though, we find that it’s not the obvious features that
make a mess of our codebases: it’s the goop around the edge. It’s re-

porting, and permissions, and workflows that touch a zillion objects.

Our example will be a typical notification requirement: when we can'’t
allocate an order because we’re out of stock, we should alert the buy-
ing team. They’ll go and fix the problem by buying more stock, and all

will be well.

For a first version, our product owner says we can just send the alert

by email.

Let’s see how our architecture holds up when we need to plug in

some of the mundane stuff that makes up so much of our systems.

We'll start by doing the simplest, most expeditious thing, and talk
about why it’s exactly this kind of decision that leads us to the Big Ball
of Mud.

Then we’ll show how to use the Domain Events pattern to separate
side effects from our use cases, and how to use a simple Message
Bus pattern for triggering behavior based on those events. We’ll show
a few options for creating those events and how to pass them to the
message bus, and finally we’ll show how the Unit of Work pattern can

be modified to connect the two together elegantly, as previewed in

Figure 8-1.

Flask

Service Layer

! Services \; ;' Handlers , E
Do ', Message Bus : . o
5 E : Jot g ; send_mail() Vo
\ gathers events raised by publishes events to dispatches events to /
/ Domain

E Repository

Figure 8-1. Events flowing through the system

TIP
The code for this chapter is in the chapter 08 events and _message bus branch on
GitHub:

git clone https://github.com/cosmicpython/code.git
cd code

git checkout chapter 08 events and message bus

or to code along, checkout the previous chapter:
git checkout chapter 07 aggregate

Avoiding Making a Mess

So. Email alerts when we run out of stock. When we have new re-
quirements like ones that really have nothing to do with the core do-
main, it’s all too easy to start dumping these things into our web con-

trollers.

First, Let’s Avoid Making a Mess of Our Web
Controllers

As a one-off hack, this might be OK:

Just whack it in the endpoint—what could go wrong?

(src/allocation/entrypoints/flask_app.py)

https://oreil.ly/M-JuL

("/allocate”, methods=['POST'])
def allocate endpoint():
line = model.OrderLine(
request.json['orderid'],
request.json['sku'],
request.json['gty'],
)
try:
uow = unit of work.SglAlchemyUnitOfWork(
batchref = services.allocate(line, uow)
except (model.OutOfStock, services.InvalidSki
send mail(
'out of stock',
'stock admin@made.com',
f'{line.orderid} - {line.sku}'

)

return jsonify({'message': str(e)}), 400

return jsonify({'batchref': batchref}), 201

...but it’s easy to see how we can quickly end up in a mess by patch-
ing things up like this. Sending email isn’t the job of our HTTP layer,

and we’d like to be able to unit test this new feature.

And Let’s Not Make a Mess of Our Model Either

Assuming we don’t want to put this code into our web controllers, be-
cause we want them to be as thin as possible, we may look at putting

it right at the source, in the model:

Email-sending code in our model isn’t lovely either

(src/allocation/domain/model.py)

def allocate(self, line: OrderLine) -> str:
try:
batch = next(
b for b in sorted(self.batches)

)
7o

except StopIteration:
email.send mail('stock@made.com', f£'(
raise OutOfStock(f'Out of stock for :

But that’s even worse! We don’t want our model to have any depen-

dencies on infrastructure concerns like email.send mail.

This email-sending thing is unwelcome goop messing up the nice
clean flow of our system. What we’d like is to keep our domain model
focused on the rule “You can’t allocate more stuff than is actually

available.”

The domain model’s job is to know that we’re out of stock, but the re-
sponsibility of sending an alert belongs elsewhere. We should be able
to turn this feature on or off, or to switch to SMS notifications instead,

without needing to change the rules of our domain model.

Or the Service Layer!

The requirement “Try to allocate some stock, and send an email if it
fails” is an example of workflow orchestration: it’s a set of steps that

the system has to follow to achieve a goal.

We’ve written a service layer to manage orchestration for us, but

even here the feature feels out of place:

And in the service layer, it's out of place

(src/allocation/service_layer/services.py)

def allocate(
orderid: str, sku: str, gty: int,
uow: unit of work.AbstractUnitOfWork
) => str:
line = OrderLine(orderid, sku, qty)

with uow:

product = uow.products.get(sku=line.sku)
if product is None:

raise InvalidSku(f'Invalid sku {line

try:
batchref = product.allocate(line)
uow.commit ()
return batchref
except model.OutOfStock:
email.send mail('stock@made.com', f£'(

raise

Catching an exception and reraising it? It could be worse, but it’s defi-
nitely making us unhappy. Why is it so hard to find a suitable home

for this code?
Single Responsibility Principle

Really, this is a violation of the single responsibility principle (SRP).
Our use case is allocation. Our endpoint, service function, and do-
main methods are all called allocate, not

allocate and send mail if out of stock.

TIP
Rule of thumb: if you can’t describe what your function does without using words

like “then” or “and,” you might be violating the SRP.

One formulation of the SRP is that each class should have only a sin-
gle reason to change. When we switch from email to SMS, we
shouldn’t have to update our allocate() function, because that’'s

clearly a separate responsibility.

To solve the problem, we’re going to split the orchestration into sepa-
rate steps so that the different concerns don’t get tangled up.2 The
domain model’s job is to know that we’re out of stock, but the respon-
sibility of sending an alert belongs elsewhere. We should be able to
turn this feature on or off, or to switch to SMS notifications instead,

without needing to change the rules of our domain model.

We’d also like to keep the service layer free of implementation de-
tails. We want to apply the dependency inversion principle to notifica-
tions so that our service layer depends on an abstraction, in the same

way as we avoid depending on the database by using a unit of work.

All Aboard the Message Bus!

The patterns we’re going to introduce here are Domain Events and
the Message Bus. We can implement them in a few ways, so we’ll

show a couple before settling on the one we like most.

The Model Records Events

First, rather than being concerned about emails, our model will be in
charge of recording events—facts about things that have happened.
We’ll use a message bus to respond to events and invoke a new

operation.

Events Are Simple Dataclasses

An eventis a kind of value object. Events don’t have any behavior,
because they’re pure data structures. We always name events in the
language of the domain, and we think of them as part of our domain

model.

We could store them in model.py, but we may as well keep them in
their own file (this might be a good time to consider refactoring out a
directory called domain so that we have domain/model.py and do-

main/events.py):

Event classes (src/allocation/domain/events.py)

from import dataclass

class Event: ©

pass

class OutOfStock(Event): @

sku: str

® Once we have a number of events, we’ll find it useful to have a

parent class that can store common attributes. It’s also useful

for type hints in our message bus, as you’ll see shortly.

® dataclasses are great for domain events too.

The Model Raises Events

When our domain model records a fact that happened, we say it rais-

es an event.

Here’s what it will look like from the outside; if we ask Product to

allocate but it can't, it should raise an event:

Test our aggregate to raise events (tests/unit/test product.py)

def test records out of stock event if cannot al:
batch = Batch('batchl', 'SMALL-FORK', 10, et:
product = Product(sku="SMALL-FORK", batches=|
product.allocate(OrderLine('orderl', 'SMALL-I

allocation = product.allocate(OrderLine('ord:s

assert product.events[-1] == events.OutOfStoc

assert allocation is None

® our aggregate will expose a new attribute called .events

that will contain a list of facts about what has happened, in the

form of Event objects.

Here’s what the model looks like on the inside:

The model raises a domain event (src/allocation/domain/model.py)

class Product:

def init (self, sku: str, batches: List[B:
self.sku = sku
self.batches = batches
self.version number = version number

self.events = [] # type: List[events.Eve

def allocate(self, line: OrderLine) -> str:
try:
#...
except StopIteration:
self.events.append(events.OutOfStock

raise OutOfStock(f'Out of stock fos

return None

https://calibre-pdf-anchor.a/#a1041

@ Here’s our new .events attribute in use.

@ Rather than invoking some email-sending code directly, we
record those events at the place they occur, using only the lan-
guage of the domain.

® Wwe're also going to stop raising an exception for the out-of-

stock case. The event will do the job the exception was doing.

NOTE
We’re actually addressing a code smell we had until now, which is that we were us-

ing_exceptions for control flow. In general, if you’re implementing domain events,

don’t raise exceptions to describe the same domain concept. As you'll see later

when we handle events in the Unit of Work pattern, it’s confusing to have to reason

about events and exceptions together.

The Message Bus Maps Events to Handlers

A message bus basically says, “When | see this event, | should in-
voke the following handler function.” In other words, it’s a simple pub-

lish-subscribe system. Handlers are subscribed to receive events,

https://calibre-pdf-anchor.a/#a1044
https://calibre-pdf-anchor.a/#a1045
https://calibre-pdf-anchor.a/#a1046
https://oreil.ly/IQB51

which we publish to the bus. It sounds harder than it is, and we usual-

ly implement it with a dict:

Simple message bus (src/allocation/service layer/messagebus.py)

def handle(event: events.Event):
for handler in HANDLERS[type(event)]:
handler (event)

def send out of stock notification(event: events
email.send mail(
'stock@made.com',
f'Out of stock for {event.sku}',

HANDLERS = {
events.OutOfStock: [send out of stock notific

} # type: Dict[Type[events.Event], List[Callable

NOTE
Note that the message bus as implemented doesn’t give us concurrency because
only one handler will run at a time. Our objective isn’t to support parallel threads but
to separate tasks conceptually, and to keep each UoW as small as possible. This
helps us to understand the codebase because the “recipe” for how to run each use

case is written in a single place. See the following sidebar.

IS THIS LIKE CELERY?

Celery is a popular tool in the Python world for deferring self-con-
tained chunks of work to an asynchronous task queue. The message
bus we’re presenting here is very different, so the short answer to the
above question is no; our message bus has more in common with a

Node.js app, a Ul event loop, or an actor framework.

If you do have a requirement for moving work off the main thread, you
can still use our event-based metaphors, but we suggest you use ex-
ternal events for that. There’s more discussion in Table 11-1, but es-
sentially, if you implement a way of persisting events to a centralized
store, you can subscribe other containers or other microservices to
them. Then that same concept of using events to separate responsi-
bilities across units of work within a single process/service can be ex-
tended across multiple processes—which may be different containers

within the same service, or totally different microservices.

If you follow us in this approach, your API for distributing tasks is your
event classes—or a JSON representation of them. This allows you a
lot of flexibility in who you distribute tasks to; they need not necessari-
ly be Python services. Celery’s API for distributing tasks is essentially
“function name plus arguments,” which is more restrictive, and

Python-only.

Option 1: The Service Layer Takes
Events from the Model and Puts
Them on the Message Bus

Our domain model raises events, and our message bus will call the
right handlers whenever an event happens. Now all we need is to
connect the two. We need something to catch events from the model

and pass them to the message bus—the publishing step.

The simplest way to do this is by adding some code into our service

layer:

The service layer with an explicit message bus

(src/allocation/service_layer/services.py)

from import messagebus

def allocate(
orderid: str, sku: str, gty: int,
uow: unit of work.AbstractUnitOfWork
) =-> str:
line = OrderLine(orderid, sku, qty)
with uow:

product = uow.products.get(sku=line.sku)

if product is None:
raise InvalidSku(f'Invalid sku {line
try: ©
batchref = product.allocate(line)
uow.commit ()
return batchref
finally: ©

messagebus.handle(product.events)

2 we keepthe try/finally from our ugly earlier implementa-

tion (we haven'’t gotten rid of all exceptions yet, just
OutOfStock).
® But now, instead of depending directly on an email in-
frastructure, the service layer is just in charge of passing

events from the model up to the message bus.

That already avoids some of the ugliness that we had in our naive im-
plementation, and we have several systems that work like this one, in
which the service layer explicitly collects events from aggregates and
passes them to the message bus.

Option 2: The Service Layer Raises
lts Own Events

Another variant on this that we’ve used is to have the service layer in
charge of creating and raising events directly, rather than having

them raised by the domain model:

Service layer calls messagebus.handle directly

(src/allocation/service_layer/services.py)

def allocate(
orderid: str, sku: str, gty: int,
uow: unit of work.AbstractUnitOfWork
) =-> str:
line = OrderLine(orderid, sku, qty)
with uow:
product = uow.products.get(sku=line.sku)
if product is None:
raise InvalidSku(f'Invalid sku {line
batchref = product.allocate(line)

uow.commit() @

if batchref is None:
messagebus.handle(events.OutOfStock(.-

return batchref

% As before, we commit even if we fail to allocate because the

code is simpler this way and it’s easier to reason about: we al-
ways commit unless something goes wrong. Committing when
we haven’t changed anything is safe and keeps the code

uncluttered.

Again, we have applications in production that implement the pattern
in this way. What works for you will depend on the particular trade-
offs you face, but we’d like to show you what we think is the most ele-
gant solution, in which we put the unit of work in charge of collecting

and raising events.

Option 3: The UoW Publishes Events
to the Message Bus

The UoW already has a try/finally, and it knows about all the
aggregates currently in play because it provides access to the reposi-
tory. So it’s a good place to spot events and pass them to the mes-

sage bus:

The UoW meets the message bus

(src/allocation/service _layer/unit_of work.py)

class AbstractUnitOfWork(abc.ABC):

def commit(self):

self. commit() @

self.publish events() @

def publish events(self): @
for product in self.products.seen: @
while product.events:
event = product.events.pop(0)

messagebus.handle(event)

def commit(self):

raise NotImplementedError

class SqglAlchemyUnitOfWork (AbstractUnitOfWork):

def commit(self): ©

self.session.commit/()

2 well change our commit method to require a private

._commit () method from subclasses.

@ After committing, we run through all the objects that our reposi-

tory has seen and pass their events to the message bus.
® That relies on the repository keeping track of aggregates that
have been loaded using a new attribute, .seen, as you’ll see

in the next listing.

NOTE
Are you wondering what happens if one of the handlers fails? We’ll discuss error

handling in detail in Chapter 10.

Repository tracks aggregates that pass through it

(src/allocation/adapters/repository.py)

class AbstractRepository(abc.ABC):

def init (self):
self.seen = set() # type: Set[model.Pro

def add(self, product: model.Product): @
self. add(product)

self.seen.add(product)

def get(self, sku) -> model.Product: @

product = self. get(sku)
if product:
self.seen.add(product)

return product

def add(self, product: model.Product): @

raise NotImplementedError

(3
def get(self, sku) -> model.Product:

raise NotImplementedError

class SglAlchemyRepository(AbstractRepository):

def init (self, session):
super(). init ()

self.session = session

def add(self, product): @

self.session.add(product)

def get(self, sku): @

return self.session.query(model.Product)

° For the UoW to be able to publish new events, it needs to be

able to ask the repository for which Product objects have
been used during this session. We use a set called .seen
to store them. That means our implementations need to call

super()._ init ().

The parent add () method adds thingsto .seen, and now

requires subclasses to implement . add() .

Similarly, .get () delegatestoa . get() function,to be

implemented by subclasses, in order to capture objects seen.

NOTE

The use of ._underscorey() methods and subclassing is definitely not the only

way you could implement these patterns. Have a go at the Exercise for the Reader

in this chapter and experiment with some alternatives.

After the UoW and repository collaborate in this way to automatically
keep track of live objects and process their events, the service layer

can be totally free of event-handling concerns:

Service layer is clean again (src/allocation/service layer/services.py)

def allocate(

https://calibre-pdf-anchor.a/#a1097

orderid: str, sku: str, gty: int,
uow: unit of work.AbstractUnitOfWork
) -> str:

line = OrderLine(orderid, sku, qty)
with uow:

product = uow.products.get(sku=line.sku)
if product is None:

raise InvalidSku(f'Invalid sku {line
batchref = product.allocate(line)
uow.commit ()

return batchref

We do also have to remember to change the fakes in the service lay-
er and make them call super () inthe right places, and to imple-

ment underscorey methods, but the changes are minimal:

Service-layer fakes need tweaking (tests/unit/test_services.py)

class FakeRepository(repository.AbstractReposito:

def init (self, products):
super(). init ()

self. products = set(products)

def add(self, product):

self. products.add(product)

def get(self, sku):

return next((p for p in self. products 1i:

class FakeUnitOfWork(unit of work.AbstractUnitOfl

def commit(self):

self.committed = True

EXERCISE FOR THE READER

Are you finding all those . add() and . commit() methods “su-
per-gross,” in the words of our beloved tech reviewer Hynek? Does it
“make you want to beat Harry around the head with a plushie snake”?
Hey, our code listings are only meant to be examples, not the perfect

solution! Why not go see if you can do better?

One composition over inheritance way to go would be to implement a

wrapper class:

A wrapper adds functionality and then delegates

(src/adapters/repository.py)

class TrackingRepository:

seen: Set[model.Product]

def init (self, repo: AbstractRepository)
self.seen = set() # type: Set[model.Pro

self. repo = repo

def add(self, product: model.Product): @
self. repo.add(product) ©

self.seen.add(product)

def get(self, sku) -> model.Product:
product = self. repo.get(sku)
if product:

self.seen.add(product)

return product

By wrapping the repository, we can call the actual .add()

and .get () methods, avoiding weird underscorey methods.

See if you can apply a similar pattern to our UoW class in order to get
rid of those Java-y commit () methods too. You can find the code
on GitHub.

Switching all the ABCs to typing.Protocol is agood way to
force yourself to avoid using inheritance. Let us know if you come up

with something nice!

You might be starting to worry that maintaining these fakes is going to
be a maintenance burden. There’s no doubt that it is work, but in our
experience it’s not a lot of work. Once your project is up and running,
the interface for your repository and UoW abstractions really don’t
change much. And if you’re using ABCs, they’ll help remind you when

things get out of sync.

Wrap-Up

https://github.com/cosmicpython/code/tree/chapter_08_events_and_message_bus_exercise

Domain events give us a way to handle workflows in our system. We
often find, listening to our domain experts, that they express require-
ments in a causal or temporal way—for example, “When we try to al-
locate stock but there’s none available, then we should send an emaill

to the buying team.”

The magic words “When X, then Y” often tell us about an event that
we can make concrete in our system. Treating events as first-class
things in our model helps us make our code more testable and ob-

servable, and it helps isolate concerns.

And Table 8-1 shows the trade-offs as we see them.

Table 8-1. Domain events: the trade-offs

Pros Cons

« A message « The message bus is an additional thing

bus gives us a
nice way to
separate re-
sponsibilities
when we have
to take multi-
ple actions in
response to a
request.

Event han-
dlers are nice-
ly decoupled
from the
“core” applica-
tion logic,
making it easy
to change

their imple-

to wrap your head around; the implemen-
tation in which the unit of work raises
events for us is neat but also magic. It’s
not obvious when we call commit that
we’re also going to go and send email to
people.

What’s more, that hidden event-handling
code executes synchronously, meaning
your service-layer function doesn’t finish
until all the handlers for any events are
finished. That could cause unexpected
performance problems in your web end-
points (adding asynchronous processing
is possible but makes things even more
confusing).

More generally, event-driven workflows
can be confusing because after things
are split across a chain of multiple han-

dlers, there is no single place in the sys-

tem where you can understand how a re-
Pros Cons _ _
quest will be fulfilled.

mentation « You also open yourself up to the possibil-
later. ity of circular dependencies between
« Domain your event handlers, and infinite loops.

events are a
great way to
model the real
world, and we
can use them
as part of our
business lan-
guage when
modeling with

stakeholders.

Events are useful for more than just sending email, though. In
Chapter 7 we spent a lot of time convincing you that you should de-
fine aggregates, or boundaries where we guarantee consistency.
People often ask, “What should | do if | need to change multiple ag-
gregates as part of a request?” Now we have the tools we need to an-

swer that question.

If we have two things that can be transactionally isolated (e.g., an or-
der and a product), then we can make them eventually consistent by
using events. When an order is canceled, we should find the products

that were allocated to it and remove the allocations.

DOMAIN EVENTS AND THE MESSAGE BUS RECAP

Events can help with the single responsibility principle

Code gets tangled up when we mix multiple concerns in one
place. Events can help us to keep things tidy by separating pri-
mary use cases from secondary ones. We also use events for
communicating between aggregates so that we don’t need to

run long-running transactions that lock against multiple tables.

A message bus routes messages to handlers

You can think of a message bus as a dict that maps from
events to their consumers. It doesn’t “know” anything about the
meaning of events; it’s just a piece of dumb infrastructure for

getting messages around the system.

Option 1: Service layer raises events and passes them to message

bus

The simplest way to start using events in your system is to
raise them from handlers by calling

bus.handle(some new event) after you commit your unit
of work.

Option 2: Domain model raises events, service layer passes them

fo message bus

The logic about when to raise an event really should live with
the model, so we can improve our system’s design and testabil-
ity by raising events from the domain model. It’s easy for our
handlers to collect events off the model objects after commit

and pass them to the bus.

Option 3: UoW collects events from aggregates and passes them

fo message bus

Adding bus.handle(aggregate.events) to every han-
dler is annoying, so we can tidy up by making our unit of work
responsible for raising events that were raised by loaded ob-

jects. This is the most complex design and might rely on ORM

magic, but it’s clean and easy to use once it’s set up.

In Chapter 9, we’ll look at this idea in more detail as we build a more

complex workflow with our new message bus.

- This principle is the Sin SOLID.

* Our tech reviewer Ed Jung likes to say that the move from imperative to event-

based flow control changes what used to be orchestration into choreography.

https://oreil.ly/AIdSD

Chapter 9. Going to Town on the
Message Bus

In this chapter, we’ll start to make events more fundamental to the in-
ternal structure of our application. We’ll move from the current state in

Figure 9-1, where events are an optional side effect...

Flask
| Service Layer

rt ,oTTTE T _ _______ h . T EEEEEE | \I
vy Services | | Handlers L
L | ! =
1 1 1 1
' —> UoW | Message Bus | : D
= : ' ! !
[1 g ‘ v " 1
[1 R el G |
LT ‘ ‘ J :
' , gathers events raised by "publishes events to ~— dispatches events to — S
! Domain

Repository

Event:

D QutOf
Stock

Figure 9-1. Before: the message bus is an optional add-on

...to the situation in Figure 9-2, where everything goes via the mes-

sage bus, and our app has been transformed fundamentally into a

message processor.

Flask
I
puts events on Service Layer
o collects new events published by
Message Bus | Handlers (includes old services) \ -
\
|
Ldispatches t0—— ﬁ ‘ UoW
|
]
v - gathers events raised byJ

Repository

[

Figure 9-2. The message bus is now the main entrypoint to the service layer

- -

TIP

The code for this chapter is in the chapter_09_all_messagebus branch on GitHub:

git clone https://github.com/cosmicpython/code.git
cd code

git checkout chapter 09 all messagebus

or to code along, checkout the previous chapter:

git checkout chapter 08 events and message bus

A New Requirement Leads Us to a
New Architecture

Rich Hickey talks about situated software, meaning software that
runs for extended periods of time, managing a real-world process.
Examples include warehouse-management systems, logistics sched-

ulers, and payroll systems.

This software is tricky to write because unexpected things happen all
the time in the real world of physical objects and unreliable humans.

For example:

« During a stock-take, we discover that three SPRINGY-

MATTRESS es have been water damaged by a leaky roof.

https://oreil.ly/oKNkn

« A consignment of RELIABLE-FORK s is missing the required doc-
umentation and is held in customs for several weeks. Three
RELIABLE-FORK s subsequently fail safety testing and are
destroyed.

« A global shortage of sequins means we’re unable to manufacture

our next batch of SPARKLY-BOOKCASE .

In these types of situations, we learn about the need to change batch
qguantities when they’re already in the system. Perhaps someone
made a mistake on the number in the manifest, or perhaps some so-
fas fell off a truck. Following a conversation with the business,! we

model the situation as in Eigure 9-3.

Batch —» —» Deallocate —p AllocationRequired
Quantit - _
Change | Deallocate —Pp | AllocationRequired

Deallocate —> AllocationRequired
I I

Figure 9-3. Batch quantity changed means deallocate and reallocate

An event we’'ll call BatchQuantityChanged should lead us to
change the quantity on the batch, yes, but also to apply a business
rule: if the new quantity drops to less than the total already allocated,
we need to deallocate those orders from that batch. Then each one
will require a new allocation, which we can capture as an event called

AllocationRequired.

Perhaps you’re already anticipating that our internal message bus
and events can help implement this requirement. We could define a
service called change batch quantity that knows how to adjust
batch quantities and also how to deallocate any excess order lines,
and then each deallocation can emitan AllocationRequired
event that can be forwarded to the existing allocate service, in
separate transactions. Once again, our message bus helps us to en-
force the single responsibility principle, and it allows us to make

choices about transactions and data integrity.

Imagining an Architecture Change: Everything
Will Be an Event Handler

But before we jump in, think about where we’re headed. There are

two kinds of flows through our system:

« API calls that are handled by a service-layer function
« Internal events (which might be raised as a side effect of a service-
layer function) and their handlers (which in turn call service-layer

functions)

Wouldn't it be easier if everything was an event handler? If we rethink
our API calls as capturing events, the service-layer functions can be
event handlers too, and we no longer need to make a distinction be-

tween internal and external event handlers:

« services.allocate() could be the handler for an
AllocationRequired event and could emit Allocated
events as its output.

« services.add batch() could be the handler for a

BatchCreated event2

Our new requirement will fit the same pattern:

« An event called BatchQuantityChanged can invoke a handler
called change batch quantity() .

« Andthe new AllocationRequired events that it may raise
can be passedonto services.allocate() too, sothereis no
conceptual difference between a brand-new allocation coming
from the APl and a reallocation that’s internally triggered by a

deallocation.

All sound like a bit much? Let’s work toward it all gradually. We’ll fol-

low the Preparatory Refactoring workflow, aka “Make the change

easy; then make the easy change”:

1. We refactor our service layer into event handlers. We can get used
to the idea of events being the way we describe inputs to the sys-
tem. In particular, the existing services.allocate() function
will become the handler for an event called

AllocationRequired.

https://oreil.ly/W3RZM

2. We build an end-to-end test that puts BatchQuantityChanged
events into the system and looks for Allocated events coming
out.

3. Our implementation will conceptually be very simple: a new han-
dler for BatchQuantityChanged events, whose implementa-
tion will emit AllocationRequired events, which in turn will be
handled by the exact same handler for allocations that the API

uses.

Along the way, we’ll make a small tweak to the message bus and
UoW, moving the responsibility for putting new events on the mes-

sage bus into the message bus itself.

Refactoring Service Functions to
Message Handlers

We start by defining the two events that capture our current API in-

puts— AllocationRequired and BatchCreated:

BatchCreated and AllocationRequired events

(src/allocation/domain/events.py)

class BatchCreated(Event):

ref: str
sku: str
gty: int
eta: Optional[date] = None

class AllocationRequired(Event):
orderid: str
sku: str

gty: int

Then we rename services.py to handlers.py; we add the existing
message handler for send_out of stock notification;and
most importantly, we change all the handlers so that they have the

same inputs, an event and a UoW:

Handlers and services are the same thing

(src/allocation/service layer/handlers.py)

def add batch(

event: events.BatchCreated, uow: unit of

with uow:

product = uow.products.get(sku=event.sku

def allocate(
event: events.AllocationRequired, uow: ul

) -> str:
line = OrderLine(event.orderid, event.sku, e

def send out of stock notification(
event: events.OutOfStock, uow: unit of w«

email.send(
'stock@made.com’,
f'Out of stock for {event.sku}',

The change might be clearer as a diff:

Changing from services to handlers

(src/allocation/service layer/handlers.py)

def add batch(
- ref: str, sku: str, gty: int, eta: Optic

- uow: unit of work.AbstractUnitOfWork

i event: events.BatchCreated, uow: unit o:

e
L X}

with uow:
- product = uow.products.get (sku=sku)

+ product = uow.products.get (sku=event.ski

def allocate(
- orderid: str, sku: str, gty: int,
- uow: unit of work.AbstractUnitOfWork
+ event: events.AllocationRequired, uow: 1
) => str:
- line = OrderLine(orderid, sku, qty)

+ line = OrderLine(event.orderid, event.sku, ¢

+def send out of stock notification(

S event: events.OutOfStock, uow: unit of 1
+)
+ email.send(

Along the way, we’ve made our service-layer’s APl more structured
and more consistent. It was a scattering of primitives, and now it uses

well-defined objects (see the following sidebar).

FROM DOMAIN OBJECTS, VIA PRIMITIVE OBSESSION, TO EVENTS AS AN INTERFACE

Some of you may remember “Fully Decoupling_ the Service-Layer

Tests from the Domain”, in which we changed our service-layer API

from being in terms of domain objects to primitives. And now we’re

moving back, but to different objects? What gives?

In OO circles, people talk about primitive obsession as an anti-pat-
tern: avoid primitives in public APIs, and instead wrap them with cus-
tom value classes, they would say. In the Python world, a lot of peo-
ple would be quite skeptical of that as a rule of thumb. When mind-
lessly applied, it’s certainly a recipe for unnecessary complexity. So

that’s not what we’re doing per se.

The move from domain objects to primitives bought us a nice bit of
decoupling: our client code was no longer coupled directly to the do-
main, so the service layer could present an API that stays the same

even if we decide to make changes to our model, and vice versa.

So have we gone backward? Well, our core domain model objects
are still free to vary, but instead we’ve coupled the external world to
our event classes. They’re part of the domain too, but the hope is that

they vary less often, so they’re a sensible artifact to couple on.

And what have we bought ourselves? Now, when invoking a use case

in our application, we no longer need to remember a particular combi-

nation of primitives, but just a single event class that represents the
input to our application. That’s conceptually quite nice. On top of that,
as you’ll see in Appendix E, those event classes can be a nice place

to do some input validation.

The Message Bus Now Collects Events from the
UoW

Our event handlers now need a UoW. In addition, as our message
bus becomes more central to our application, it makes sense to put it
explicitly in charge of collecting and processing new events. There
was a bit of a circular dependency between the UoW and message

bus until now, so this will make it one-way:

Handle takes a UoW and manages a queue

(src/allocation/service layer/messagebus.py)

def handle(event: events.Event, uow: unit of worl
queue = [event] &
while queue:

event = queue.pop(0) ©

for handler in HANDLERS[type(event)]: @
handler (event, uow=uow) @

queue.extend(uow.collect new events(

The message bus now gets passed the UoW each time it starts

up.

When we begin handling our first event, we start a queue.

We pop events from the front of the queue and invoke their
handlers (the HANDLERS dict hasn’t changed; it still maps

event types to handler functions).

The message bus passes the UoW down to each handler.

After each handler finishes, we collect any new events that

have been generated and add them to the queue.

In unit_of work.py, publish events() becomes a less active

method, collect new events() :
UoW no longer puts events directly on the bus

(src/allocation/service _layer/unit_ of work.py)

—-from . import messagebus @

https://calibre-pdf-anchor.a/#a1187

class AbstractUnitOfWork(abc.ABC):
@@ -23,13 +21,11 @@ class AbstractUnitOfWork (abc

def commit(self):
self. commit/()

- self.publish events() @

- def publish events(self):
+ def collect new events(self):
for product in self.products.seen:
while product.events:
- event = product.events.pop(0)
- messagebus.handle(event)

+ yield product.events.pop(0)

The unit of work module now no longer depends on

messagebus .

We no longer publish events automatically on commit.

The message bus is keeping track of the event queue instead.

And the UoW no longer actively puts events on the message

bus; it just makes them available.

Our Tests Are All Written in Terms of Events Too

Our tests now operate by creating events and putting them on the

message bus, rather than invoking service-layer functions directly:

Handler tests use events (tests/unit/test_handlers.py)

class TestAddBatch:

def test for new product(self):
uow = FakeUnitOfWork()
- services.add batch("bl", "CRUNCHY-ARMCH:
messagebus.handle(
events.BatchCreated("bl", "CRUNCHY-I

+ + +

)
assert uow.products.get ("CRUNCHY-ARMCHA:

assert uow.committed

class TestAllocate:

def test returns allocation(self):
uow = FakeUnitOfWork()
- services.add batch("batchl", "COMPLICATI

- result = services.allocate("ol", "COMPL:

messagebus.handle(
events.BatchCreated("batchl", "COMPI

)

result = messagebus.handle(

events.AllocationRequired("ol", "COl

+ + + +

)

assert result == "batchl"

A Temporary Ugly Hack: The Message Bus Has to
Return Results

Our API and our service layer currently want to know the allocated
batch reference when they invoke our allocate() handler. This
means we need to put in a temporary hack on our message bus to let

it return events:

Message bus returns results

(src/allocation/service layer/messagebus.py)

def handle(event: events.Event, uow: unit of wo:
+ results = []
queue = [event]
while queue:
event = queue.pop(0)
for handler in HANDLERS[type(event)]:
- handler (event, uow=uow)
+ results.append(handler (event, uow=uc

queue.extend(uow.collect new events

+ return results

It’s because we’re mixing the read and write responsibilities in our

system. We’ll come back to fix this wart in Chapter 12.

Modifying Our API to Work with Events

Flask changing to message bus as a diff

(src/allocation/entrypoints/flask_app.py)

@app.route("/allocate", methods=['POST'])
def allocate endpoint():
try:

- batchref = services.allocate(
- request.json['orderid'], ©
- request.json['sku'],
- request.json['qty'],
- unit of work.SglAlchemyUnitOfWork()

+ event = events.AllocationRequired(@

+ request.json['orderid'], request. jsc
)

+ results = messagebus.handle(event, unit

+ batchref = results.pop(0)

except InvalidSku as e:

Instead of calling the service layer with a bunch of primitives

extracted from the request JSON...
We instantiate an event.

Then we pass it to the message bus.

And we should be back to a fully functional application, but one that’s

now fully event-driven:

« What used to be service-layer functions are now event handlers.

« That makes them the same as the functions we invoke for handling
internal events raised by our domain model.

« We use events as our data structure for capturing inputs to the
system, as well as for handing off of internal work packages.

« The entire app is now best described as a message processor, or
an event processor if you prefer. We'll talk about the distinction in

the next chapter.

Implementing Our New Requirement

We’re done with our refactoring phase. Let’s see if we really have
“made the change easy.” Let’s implement our new requirement,

shown in Figure 9-4: we’ll receive as our inputs some new

https://calibre-pdf-anchor.a/#a1219

BatchQuantityChanged events and pass them to a handler,
which in turn might emit some AllocationRequired events, and

those in turn will go back to our existing handler for reallocation.

API MessageBus Domain_Model

T
I

BatchQuantityChanged event |

>

BatchQuantityChanged Handler + Unit of Work 1)
change batch quantity

1
1
N !
>,
1

emit AllocationRequired event(s)

&
L

AllocationRequired Handler + Unit of Work 2 (or more))

I
' allocate

I
I \\
| V|
T T

API MessageBus Domain_Model

Figure 9-4. Sequence diagram for reallocation flow

WARNING

When you split things out like this across two units of work, you now have two data-
base transactions, so you are opening yourself up to integrity issues: something
could happen that means the first transaction completes but the second one does
not. You’ll need to think about whether this is acceptable, and whether you need to
notice when it happens and do something about it. See “Footguns” for more

discussion.

Our New Event

The event that tells us a batch quantity has changed is simple; it just

needs a batch reference and a new quantity:

New event (src/allocation/domain/events.py)

class BatchQuantityChanged(Event):
ref: str

gty: int

Test-Driving a New Handler

Following the lessons learned in Chapter 4, we can operate in “high
gear” and write our unit tests at the highest possible level of abstrac-

tion, in terms of events. Here’s what they might look like:

Handler tests for change batch_quantity (tests/unit/test_handlers.py)

class TestChangeBatchQuantity:

def test changes available quantity(self):
uow = FakeUnitOfWork()
messagebus.handle(
events.BatchCreated("batchl"”, "ADORAI

)
[batch] = uow.products.get(sku="ADORABLE-

def

assert batch.available quantity == 100 ¢«

messagebus.handle(events.BatchQuantityCh:

assert batch.available quantity == 50 @

test reallocates if necessary(self):

uow = FakeUnitOfWork()

event history = [
events.BatchCreated("batchl"”, "INDIFI
events.BatchCreated("batch2", "INDIF]I

events.AllocationRequired("orderl",

events.AllocationRequired("order2",

]

for e in event history:

messagebus.handle(e, uow)

[batchl, batch2] = uow.products.get(sku='
assert batchl.available quantity == 10
assert batch2.available quantity == 50

messagebus.handle(events.BatchQuantityCh:

orderl or order2 will be deallocated,
assert batchl.available quantity == 5 @
and 20 will be reallocated to the next

assert batch2.available quantity == 30

% The simple case would be trivially easy to implement; we just

modify a quantity.
® Butifwe try to change the quantity to less than has been allo-
cated, we’ll need to deallocate at least one order, and we ex-

pect to reallocate it to a new batch.
Implementation
Our new handler is very simple:

Handler delegates to model layer

(src/allocation/service layer/handlers.py)

def change batch quantity(

event: events.BatchQuantityChanged, uow:

with uow:
product = uow.products.get by batchref (b:
product.change batch quantity(ref=event.:

uow.commit ()

We realize we’ll need a new query type on our repository:

A new query type on our repository

(src/allocation/adapters/repository.py)

class AbstractRepository(abc.ABC):

def

def

def

def

def

get(self, sku) -> model.Product:

get by batchref(self, batchref) -> model
product = self. get by batchref (batchref
if product:

self.seen.add(product)

return product

_add(self, product: model.Product):

raise NotImplementedError

_get(self, sku) -> model.Product:

raise NotImplementedError

_get by batchref(self, batchref) -> mode:

raise NotImplementedError

class SqglAlchemyRepository(AbstractRepository):

def get(self, sku):

return self.session.query(model.Product)

def get by batchref(self, batchref):
return self.session.query(model.Product)
orm.batches.c.reference == batchref,
). first ()

And on our FakeRepository too:

Updating the fake repo too (tests/unit/test_handlers.py)

class FakeRepository(repository.AbstractReposito:

def get(self, sku):

return next((p for p in self. products 1i:

def get by batchref(self, batchref):
return next((

p for p in self. products for b in p

if b.reference == batchref

), None)

NOTE
We’re adding a query to our repository to make this use case easier to implement.
So long as our query is returning a single aggregate, we’re not bending any rules. If
you find yourself writing complex queries on your repositories, you might want to
consider a different design. Methods like get most popular products or

find products by order id in particular would definitely trigger our spidey

sense. Chapter 11 and the epilogue have some tips on managing complex queries.

A New Method on the Domain Model

We add the new method to the model, which does the quantity
change and deallocation(s) inline and publishes a new event. We

also modify the existing allocate function to publish an event:

Our model evolves to capture the new requirement

(src/allocation/domain/model.py)

class Product:

def change batch quantity(self, ref: str, qgt;
batch = next(b for b in self.batches if 1}
batch. purchased quantity = gty
while batch.available quantity < 0O:

line = batch.deallocate one()

self.events.append(
events.AllocationRequired(line.o:

class Batch:

def deallocate one(self) -> OrderLine:

return self. allocations.pop()

We wire up our new handler:

The message bus grows

(src/allocation/service layer/messagebus.py)

HANDLERS = {
events.BatchCreated: [handlers.add batch],

events.BatchQuantityChanged: [handlers.change
events.AllocationRequired: [handlers.allocate

events.OutOfStock: [handlers.send out of stoc

} # type: Dict[Type[events.Event], List[Callable

And our new requirement is fully implemented.

Optionally: Unit Testing Event
Handlers in Isolation with a Fake
Message Bus

Our main test for the reallocation workflow is edge-to-edge (see the
example code in “Test-Driving_.a New Handler”). It uses the real mes-
sage bus, and it tests the whole flow, where the
BatchQuantityChanged event handler triggers deallocation, and
emits new AllocationRequired events, which in turn are han-
dled by their own handlers. One test covers a chain of multiple events

and handlers.

Depending on the complexity of your chain of events, you may decide
that you want to test some handlers in isolation from one another.

You can do this using a “fake” message bus.

In our case, we actually intervene by modifying the
publish events() method on FakeUnitOfWork and decou-
pling it from the real message bus, instead making it record what

events it sees:

Fake message bus implemented in UoW (tests/unit/test_handlers.py)

class FakeUnitOfWorkWithFakeMessageBus (FakeUnitO:

def init (self):
super(). init ()
self.events published = [] # type: List|

def publish events(self):
for product in self.products.seen:
while product.events:
self.events published.append(proc

Now when we invoke messagebus.handle() usingthe
FakeUnitOfWorkwWithFakeMessageBus, it runs only the handler
for that event. So we can write a more isolated unit test: instead of
checking all the side effects, we just check that
BatchQuantityChanged leadsto AllocationRequired if the

quantity drops below the total already allocated:

Testing reallocation in isolation (tests/unit/test_handlers.py)

def test reallocates if necessary isolated():

uow = FakeUnitOfWorkWithFakeMessageBus()

test setup as before

event history = [

events.BatchCreated("batchl", "INDIFFEREI
events.BatchCreated("batch2", "INDIFFEREI

events.AllocationRequired("orderl"”, "IND!:
events.AllocationRequired("order2", "IND:
]
for e in event history:

messagebus.handle(e, uow)

[batchl, batch2] = uow.products.get (sku="IND:
assert batchl.available quantity == 10
assert batch2.available quantity == 50

messagebus.handle(events.BatchQuantityChange«

assert on new events emitted rather than d«
[reallocation event] = uow.events published

assert isinstance(reallocation event, events
assert reallocation event.orderid in {'order!:

assert reallocation event.sku == 'INDIFFEREN'

Whether you want to do this or not depends on the complexity of your
chain of events. We say, start out with edge-to-edge testing, and re-

sort to this only if necessary.

EXERCISE FOR THE READER

A great way to force yourself to really understand some code is to
refactor it. In the discussion of testing handlers in isolation, we used
something called FakeUnitOfWorkWithFakeMessageBus , which

is unnecessarily complicated and violates the SRP.

If we change the message bus to being a class,? then building a

FakeMessageBus is more straightforward:

An abstract message bus and its real and fake versions

class AbstractMessageBus:
HANDLERS: Dict[Type[events.Event], List[Call:

def handle(self, event: events.Event):
for handler in self.HANDLERS[type(event)

handler (event)

class MessageBus (AbstractMessageBus) :
HANDLERS = {
events.OutOfStock: [send out of stock nof

class FakeMessageBus (messagebus.AbstractMessageB

def init (self):
self.events published = [] # type: List|
self.handlers = {
events.OutOfStock: [lambda e: self.e

So jump into the code on GitHub and see if you can get a class-
based version working, and then write a version of

test reallocates if necessary isolated() from earlier.

We use a class-based message bus in Chapter 13, if you need more

inspiration.

Wrap-Up

Let’s look back at what we’ve achieved, and think about why we did it.

What Have We Achieved?

Events are simple dataclasses that define the data structures for in-
puts and internal messages within our system. This is quite powerful
from a DDD standpoint, since events often translate really well into

business language (look up event storming if you haven't already).

https://github.com/cosmicpython/code/tree/chapter_09_all_messagebus

Handlers are the way we react to events. They can call down to our
model or call out to external services. We can define multiple han-
dlers for a single event if we want to. Handlers can also raise other
events. This allows us to be very granular about what a handler does
and really stick to the SRP.

Why Have We Achieved?

Our ongoing objective with these architectural patterns is to try to
have the complexity of our application grow more slowly than its size.
When we go all in on the message bus, as always we pay a price in
terms of architectural complexity (see Iable 9-1), but we buy our-
selves a pattern that can handle almost arbitrarily complex require-
ments without needing any further conceptual or architectural change

to the way we do things.

Here we’ve added quite a complicated use case (change quantity,
deallocate, start new transaction, reallocate, publish external notif-
ication), but architecturally, there’s been no cost in terms of complexi-
ty. We’ve added new events, new handlers, and a new external
adapter (for email), all of which are existing categories of things in our
architecture that we understand and know how to reason about, and
that are easy to explain to newcomers. Our moving parts each have
one job, they’re connected to each other in well-defined ways, and

there are no unexpected side effects.

Table 9-1. Whole app is a message bus: the trade-offs

Pros Cons
« Handlers « A message bus is still a slightly unpredictable
and ser- way of doing things from a web point of view.
vices are You don’t know in advance when things are
the same going to end.
thing, so « There will be duplication of fields and struc-
that’s ture between model objects and events,
simpler. which will have a maintenance cost. Adding a
« We have field to one usually means adding a field to at
a nice least one of the others.
data
structure
for inputs
to the
system.

Now, you may be wondering, where are those
BatchQuantityChanged events going to come from? The answer

is revealed in a couple chapters’ time. But first, let’s talk about events

versus commands.

- Event-based modeling is so popular that a practice called event storming has
been developed for facilitating event-based requirements gathering and domain

model elaboration.

* If you’ve done a bit of reading about event-driven architectures, you may be think-
ing, “Some of these events sound more like commands!” Bear with us! We’re trying
to introduce one concept at a time. In the next chapter, we’ll introduce the distinc-

tion between commands and events.

' The “simple” implementation in this chapter essentially uses the messagebus.py

module itself to implement the Singleton Pattern.

Chapter 10. Commands and
Command Handler

In the previous chapter, we talked about using events as a way of
representing the inputs to our system, and we turned our application

into a message-processing machine.

To achieve that, we converted all our use-case functions to event
handlers. When the APl receives a POST to create a new batch, it
builds a new BatchCreated event and handles it as if it were an
internal event. This might feel counterintuitive. After all, the batch
hasn’t been created yet; that’s why we called the API. We’re going to
fix that conceptual wart by introducing commands and showing how
they can be handled by the same message bus but with slightly differ-

ent rules.

TIP

The code for this chapter is in the chapter_10_commands branch on GitHub:

git clone https://github.com/cosmicpython/code.git
cd code

git checkout chapter 10 commands

or to code along, checkout the previous chapter:

git checkout chapter 09 all messagebus

https://oreil.ly/U_VGa

Commands and Events

Like events, commands are a type of message—instructions sent by
one part of a system to another. We usually represent commands
with dumb data structures and can handle them in much the same

way as events.

The differences between commands and events, though, are

important.

Commands are sent by one actor to another specific actor with the
expectation that a particular thing will happen as a result. When we
post a form to an API handler, we are sending a command. We name
commands with imperative mood verb phrases like “allocate stock” or

“delay shipment.”

Commands capture intent. They express our wish for the system to
do something. As a result, when they fail, the sender needs to receive

error information.

Events are broadcast by an actor to all interested listeners. When we
publish BatchQuantityChanged, we don’t know who’s going to
pick it up. We name events with past-tense verb phrases like “order

allocated to stock” or “shipment delayed.”

We often use events to spread the knowledge about successful

commands.

Events capture facts about things that happened in the past. Since
we don’t know who’s handling an event, senders should not care
whether the receivers succeeded or failed. Table 10-1 recaps the

differences.

Table 10-1. Events versus commands

Event Command

Named Past tense Imperative mood

Error handling Fail independently Fail noisily

Sent to All listeners One recipient

What kinds of commands do we have in our system right now?

Pulling out some commands (src/allocation/domain/commands.py)

class Command:

pass

class Allocate(Command): @

orderid: str

sku: str
gty: int
class CreateBatch(Command): @
ref: str
sku: str
gty: int

eta: Optional[date] = None

class ChangeBatchQuantity(Command): @
ref: str
gty: int

commands.Allocate will replace

events.AllocationRequired.

commands .CreateBatch will replace

events.BatchCreated.

commands .ChangeBatchQuantity will replace

events.BatchQuantityChanged.

Differences in Exception Handling

Just changing the names and verbs is all very well, but that won’t
change the behavior of our system. We want to treat events and com-
mands similarly, but not exactly the same. Let’s see how our mes-

sage bus changes:

Dispatch events and commands differently

(src/allocation/service layer/messagebus.py)

Message = Union[commands.Command, events.Event]

def handle(message: Message, uow: unit of work.Al
results = []
queue = [message]
while queue:
message = queue.pop(0)
if isinstance(message, events.Event):
handle event(message, queue, uow) @
elif isinstance(message, commands.Commanc
cmd result = handle command(message,
results.append(cmd result)
else:
raise Exception(f'{message} was not :

return results

® |t still has a main handle() entrypointthattakes a

message , which may be a command or an event.

® we dispatch events and commands to two different helper

functions, shown next.
Here’s how we handle events:

Events cannot interrupt the flow

(src/allocation/service layer/messagebus.py)

def handle event(
event: events.Event,
queue: List[Message],
uow: unit of work.AbstractUnitOfWork

for handler in EVENT HANDLERS[type(event)]:
try:
logger.debug('handling event %s with
handler (event, uow=uow)
queue.extend(uow.collect new events(
except Exception:
logger.exception('Exception handling

continue @

https://calibre-pdf-anchor.a/#a1304

Events go to a dispatcher that can delegate to multiple han-

dlers per event.

It catches and logs errors but doesn’t let them interrupt mes-

sage processing.

And here’s how we do commands:

Commands reraise exceptions

(src/allocation/service layer/messagebus.py)

def handle command (
command: commands.Command,
queue: List[Message],

uow: unit of work.AbstractUnitOfWork

logger.debug('handling command %s', command)
try:
handler = COMMAND HANDLERS][type (command)
result = handler(command, uow=uow)
queue.extend(uow.collect new events())
return result @
except Exception:
logger.exception('Exception handling com

raise @

https://calibre-pdf-anchor.a/#a1310

% The command dispatcher expects just one handler per

command.

If any errors are raised, they fail fast and will bubble up.

return result isonly temporary; as mentioned in “A Tem-

porary Ugly Hack: The Message Bus Has to Return Results”,

it’s a temporary hack to allow the message bus to return the

batch reference for the API to use. We'll fix this in Chapter 12.

We also change the single HANDLERS dict into different ones for
commands and events. Commands can have only one handler, ac-

cording to our convention:

New handlers dicts (src/allocation/service layer/messagebus.py)

EVENT HANDLERS = {
events.OutOfStock: [handlers.send out of stoc

} # type: Dict[Type[events.Event], List[Callable

COMMAND HANDLERS = {
commands.Allocate: handlers.allocate,
commands .CreateBatch: handlers.add batch,
commands .ChangeBatchQuantity: handlers.change

} # type: Dict[Type[commands.Command], Callable

https://calibre-pdf-anchor.a/#a1316

Discussion: Events, Commands, and
Error Handling

Many developers get uncomfortable at this point and ask, “What hap-
pens when an event fails to process? How am | supposed to make
sure the system is in a consistent state?” If we manage to process
half of the events during messagebus.handle before an out-of-
memory error Kills our process, how do we mitigate problems caused

by the lost messages?

Let’s start with the worst case: we fail to handle an event, and the
system is left in an inconsistent state. What kind of error would cause
this? Often in our systems we can end up in an inconsistent state

when only half an operation is completed.

For example, we could allocate three units of

DESIRABLE BEANBAG to a customer’s order but somehow fail to
reduce the amount of remaining stock. This would cause an inconsis-
tent state: the three units of stock are both allocated and available,
depending on how you look at it. Later, we might allocate those same
beanbags to another customer, causing a headache for customer

support.

In our allocation service, though, we’ve already taken steps to pre-
vent that happening. We’ve carefully identified aggregates that act as
consistency boundaries, and we’ve introduced a UoW that manages

the atomic success or failure of an update to an aggregate.

For example, when we allocate stock to an order, our consistency
boundary is the Product aggregate. This means that we can’t acci-
dentally overallocate: either a particular order line is allocated to the

product, or it is not—there’s no room for inconsistent states.

By definition, we don’t require two aggregates to be immediately con-
sistent, so if we fail to process an event and update only a single ag-
gregate, our system can still be made eventually consistent. We

shouldn’t violate any constraints of the system.

With this example in mind, we can better understand the reason for
splitting messages into commands and events. When a user wants to
make the system do something, we represent their request as a com-
mand. That command should modify a single aggregate and either
succeed or fail in totality. Any other bookkeeping, cleanup, and notif-
ication we need to do can happen via an event. We don’t require the

event handlers to succeed in order for the command to be successful.

Let’s look at another example (from a different, imaginary projet) to

see why not.

Imagine we are building an ecommerce website that sells expensive
luxury goods. Our marketing department wants to reward customers
for repeat visits. We will flag customers as VIPs after they make their
third purchase, and this will entitle them to priority treatment and spe-

cial offers. Our acceptance criteria for this story reads as follows:

Given a customer with two orders in their histor
When the customer places a third order,
Then they should be flagged as a VIP.

When a customer first becomes a VIP
Then we should send them an email to congratulate

Using the techniques we’ve already discussed in this book, we de-
cide that we want to build a new History aggregate that records
orders and can raise domain events when rules are met. We will

structure the code like this:

VIP customer (example code for a different project)

class History: # Aggregate
def init (self, customer id: int):

self.orders = set() # Set[HistoryEntry]

self.customer id = customer id

def record order(self, order id: str, order :

entry = HistoryEntry(order id, order amo1

if entry in self.orders:

return

self.orders.add(entry)

if len(self.orders) == 3:
self.events.append(

CustomerBecameVIP(self.customer :

def create order from basket(uow, cmd: CreateOrds
with uow:
order = Order.from basket(cmd.customer ic
uow.orders.add(order)

uow.commit() # raises OrderCreated

def update customer history(uow, event: OrderCre:
with uow:
history = uow.order history.get(event.cus

history.record order(event.order id, evel

uow.commit() # raises CustomerBecameVIP

def congratulate vip customer(uow, event: Custome
with uow:
customer = uow.customers.get(event.custor
email.send(
customer.email address,

f 'Congratulations {customer.first nar

The History aggregate captures the rules indicating when a
customer becomes a VIP. This puts us in a good place to han-
dle changes when the rules become more complex in the

future.

Our first handler creates an order for the customer and raises a

domain event OrderCreated.

Our second handler updates the History object to record

that an order was created.

Finally, we send an email to the customer when they become a
VIP.

Using this code, we can gain some intuition about error handling in an

event-driven system.

https://calibre-pdf-anchor.a/#a1336
https://calibre-pdf-anchor.a/#a1337
https://calibre-pdf-anchor.a/#a1338
https://calibre-pdf-anchor.a/#a1339

In our current implementation, we raise events about an aggregate
after we persist our state to the database. What if we raised those
events before we persisted, and committed all our changes at the
same time? That way, we could be sure that all the work was com-

plete. Wouldn’t that be safer?

What happens, though, if the email server is slightly overloaded? If all
the work has to complete at the same time, a busy email server can

stop us from taking money for orders.

What happens if there is a bug in the implementation of the
History aggregate? Should we fail to take your money just be-

cause we can’t recognize you as a VIP?

By separating out these concerns, we have made it possible for
things to fail in isolation, which improves the overall reliability of the
system. The only part of this code that has to complete is the com-
mand handler that creates an order. This is the only part that a cus-
tomer cares about, and it’s the part that our business stakeholders

should prioritize.

Notice how we’ve deliberately aligned our transactional boundaries to
the start and end of the business processes. The names that we use
in the code match the jargon used by our business stakeholders, and

the handlers we’ve written match the steps of our natural language

acceptance criteria. This concordance of names and structure helps
us to reason about our systems as they grow larger and more com-

plex.

Recovering from Errors
Synchronously

Hopefully we’ve convinced you that it’s OK for events to fail indepen-
dently from the commands that raised them. What should we do,
then, to make sure we can recover from errors when they inevitably

occur?

The first thing we need is to know when an error has occurred, and

for that we usually rely on logs.

Let’s look again at the handle event method from our message

bus:

Current handle function (src/allocation/service layer/messagebus.py)

def handle event(
event: events.Event,

queue: List[Message],

uow: unit of work.AbstractUnitOfWork

for handler in EVENT HANDLERS[type(event)]:
try:
logger.debug('handling event %s with
handler (event, uow=uow)
queue.extend(uow.collect new events(
except Exception:
logger.exception('Exception handling

continue

When we handle a message in our system, the first thing we do is
write a log line to record what we’re about to do. For our

CustomerBecameVIP use case, the logs might read as follows:

Handling event CustomerBecameVIP(customer id=123«

with handler <function congratulate vip customer

Because we’ve chosen to use dataclasses for our message types, we
get a neatly printed summary of the incoming data that we can copy

and paste into a Python shell to re-create the object.

When an error occurs, we can use the logged data to either repro-

duce the problem in a unit test or replay the message into the system.

Manual replay works well for cases where we need to fix a bug before

we can re-process an event, but our systems will always experience

some background level of transient failure. This includes things like
network hiccups, table deadlocks, and brief downtime caused by

deployments.

For most of those cases, we can recover elegantly by trying again. As
the proverb says, “If at first you don’t succeed, retry the operation with

an exponentially increasing back-off period.”

Handle with retry (src/allocation/service_layer/messagebus.py)

from import Retrying, RetryError, stop :

def handle event(
event: events.Event,
queue: List[Message],

uow: unit of work.AbstractUnitOfWork

for handler in EVENT HANDLERS[type(event)]:
try:
for attempt in Retrying(@
stop=stop after attempt(3),

wait=wait exponential()

with attempt:
logger.debug('handling event
handler (event, uow=uow)
queue.extend(uow.collect new
except RetryError as retry failure:
logger.error (
'Failed to handle event %s times,

retry failure.last attempt.attem

)

continue

Tenacity is a Python library that implements common patterns
for retrying.
® Herewe configure our message bus to retry operations up to
three times, with an exponentially increasing wait between

attempts.

Retrying operations that might fail is probably the single best way to
improve the resilience of our software. Again, the Unit of Work and
Command Handler patterns mean that each attempt starts from a

consistent state and won’t leave things half-finished.

https://calibre-pdf-anchor.a/#a1357

WARNING
At some point, regardless of tenacity, we’ll have to give up trying to process the
message. Building reliable systems with distributed messages is hard, and we have
to skim over some tricky bits. There are pointers to more reference materials in the

epilogue.

Wrap-Up

In this book we decided to introduce the concept of events before the
concept of commands, but other guides often do it the other way
around. Making explicit the requests that our system can respond to
by giving them a name and their own data structure is quite a funda-
mental thing to do. You’ll sometimes see people use the name
Command Handler pattern to describe what we’re doing with Events,

Commands, and Message Bus.

Table 10-2 discusses some of the things you should think about be-

fore you jump on board.

Table 10-2. Splitting commands and events: the trade-offs

Pros Cons

- Treating commands - The semantic differences be-

and events differently
helps us understand
which things have to
succeed and which
things we can tidy up
later.
CreateBatch is
definitely a less con-
fusing name than Ba
tchCreated . We
are being explicit
about the intent of
our users, and explic-
it is better than im-

plicit, right?

tween commands and events can
be subtle. Expect bikeshedding
arguments over the differences.
We’re expressly inviting failure.
We know that sometimes things
will break, and we’re choosing to
handle that by making the failures
smaller and more isolated. This
can make the system harder to
reason about and requires better

monitoring.

In Chapter 11 we’ll talk about using events as an integration pattern.

Chapter 11. Event-Driven
Architecture: Using Events to
Integrate Microservices

In the preceding chapter, we never actually spoke about how we
would receive the “batch quantity changed” events, or indeed, how

we might notify the outside world about reallocations.

We have a microservice with a web API, but what about other ways of
talking to other systems? How will we know if, say, a shipment is de-
layed or the quantity is amended? How will we tell the warehouse
system that an order has been allocated and needs to be sent to a

customer?

In this chapter, we’d like to show how the events metaphor can be ex-
tended to encompass the way that we handle incoming and outgoing
messages from the system. Internally, the core of our application is
now a message processor. Let’s follow through on that so it becomes
a message processor externally as well. As shown in Figure 11-1, our
application will receive events from external sources via an external
message bus (we’ll use Redis pub/sub queues as an example) and

publish its outputs, in the form of events, back there as well.

External Message Bus / Message Broker
(e.g. Redis, Event Store)

external events external events

Allocation Service

commands ‘

E ' Handlers ’ f Adapters

i , N Vo

: Redis ((Internal) Message Bus |~ » 1| Reds
: Eventconsumer : publish_event() Event
: ' o Publisher
E ’ Domain g N
! Flask commands : |: i

; Yo I e

! : C) Allocated |

E internal event : -

' HTTPAPIcalls e S

Figure 11-1. Our application is a message processor

TIP

The code for this chapter is in the chapter _11_external_events branch on GitHub:

git clone https://github.com/cosmicpython/code.git
cd code

git checkout chapter 11 external events

or to code along, checkout the previous chapter:
git checkout chapter 10 commands

https://oreil.ly/UiwRS

Distributed Ball of Mud, and Thinking
iIn Nouns

Before we get into that, let’s talk about the alternatives. We regularly
talk to engineers who are trying to build out a microservices architec-
ture. Often they are migrating from an existing application, and their

first instinct is to split their system into nouns.

What nouns have we introduced so far in our system? Well, we have
batches of stock, orders, products, and customers. So a naive at-
tempt at breaking up the system might have looked like Figure 11-2
(notice that we’ve named our system after a noun, Batches, instead

of Allocation).

«person»] asystemn»
Customer Places order with Orders

Fol

Knows about customer orders

Wants to buy furniture

Reserves stock with

«systemn

Batches

Knows about available stock

Sends instructions to

asystemn

Warehouse

Knows about shipping
instructions

Figure 11-2. Context diagram with noun-based services

Each “thing” in our system has an associated service, which exposes
an HTTP API.

Let’s work through an example happy-path flow in Figure 11-3: our
users visit a website and can choose from products that are in stock.
When they add an item to their basket, we will reserve some stock for

them. When an order is complete, we confirm the reservation, which

causes us to send dispatch instructions to the warehouse. Let’s also
say, if this is the customer’s third order, we want to update the cus-

tomer record to flag them as a VIP.

X Q @ o

Customer Orders Batches Warehouse CRM

Reservation

Add product to basket

b
>

Reserve stock

h
>

Purchase |;

|
|
I
T
I
I
I
I
|
|
|
|
I
I
I
I
I
|
I
|
|
I
|
I
I
I
I
|
|
1
I
|
|
T

Place order _
Confirm reservation _
E Dispatch goods _
Update customer recorci N
Customer Ordlers Batclhes WareHouse CRM

i& Q Q Q

Figure 11-3. Command flow 1

We can think of each of these steps as a command in our system:

ReserveStock, ConfirmReservation, DispatchGoods,

MakeCustomerVIP, and so forth.

This style of architecture, where we create a microservice per data-
base table and treat our HTTP APIs as CRUD interfaces to anemic
models, is the most common initial way for people to approach ser-

vice-oriented design.

This works fine for systems that are very simple, but it can quickly de-

grade into a distributed ball of mud.

To see why, let’s consider another case. Sometimes, when stock ar-
rives at the warehouse, we discover that items have been water dam-
aged during transit. We can’t sell water-damaged sofas, so we have
to throw them away and request more stock from our partners. We
also need to update our stock model, and that might mean we need

to reallocate a customer’s order.
Where does this logic go?

Well, the Warehouse system knows that the stock has been dam-

aged, so maybe it should own this process, as shown in Figure 11-4.

1 Q Q Q -

Warehouse worker Warehouse Batches Orders CRM

.

Report stock damage _

Decrease available stock _“

Reallocate orders
:I

. Update order status

' Update order history

Ware houée worker Wareﬁouse Batc'hes Ordé rs CR'M

Figure 11-4. Command flow 2

This sort of works too, but now our dependency graph is a mess. To
allocate stock, the Orders service drives the Batches system, which
drives Warehouse; but in order to handle problems at the warehouse,

our Warehouse system drives Batches, which drives Orders.

Multiply this by all the other workflows we need to provide, and you

can see how services quickly get tangled up.

Error Handling in Distributed Systems

“Things break” is a universal law of software engineering. What hap-

pens in our system when one of our requests fails? Let’s say that a

network error happens right after we take a user’s order for three

MISBEGOTTEN-RUG, as shown in Figure 11-5.

We have two options here: we can place the order anyway and leave
it unallocated, or we can refuse to take the order because the alloca-
tion can’t be guaranteed. The failure state of our batches service has

bubbled up and is affecting the reliability of our order service.

When two things have to be changed together, we say that they are
coupled. We can think of this failure cascade as a kind of temporal
coupling: every part of the system has to work at the same time for
any part of it to work. As the system gets bigger, there is an exponen-

tially increasing probability that some part is degraded.

% Q Q

Customer Orders Batches

' Place order | |
I ™ i

|

| . Confirm rﬂﬁewatinnx | < network error >

. m | |

Customer Orders Batches

% Q Q

Figure 11-5. Command flow with error

CONNASCENCE

We’re using the term coupling here, but there’s another way to de-
scribe the relationships between our systems. Connascence is a term

used by some authors to describe the different types of coupling.

Connascence isn’t bad, but some types of connascence are stronger
than others. We want to have strong connascence locally, as when

two classes are closely related, but weak connascence at a distance.

In our first example of a distributed ball of mud, we see Connascence
of Execution: multiple components need to know the correct order of

work for an operation to be successful.

When thinking about error conditions here, we’re talking about Con-
nascence of Timing: multiple things have to happen, one after anoth-

er, for the operation to work.

When we replace our RPC-style system with events, we replace both
of these types of connascence with a weaker type. That’s Con-
nascence of Name: multiple components need to agree only on the

name of an event and the names of fields it carries.

We can never completely avoid coupling, except by having our soft-
ware not talk to any other software. What we want is to avoid inappro-

priate coupling. Connascence provides a mental model for under-

standing the strength and type of coupling inherent in different archi-

tectural styles. Read all about it at connascence.io.

The Alternative: Temporal Decoupling
Using Asynchronous Messaging

How do we get appropriate coupling? We've already seen part of the
answer, which is that we should think in terms of verbs, not nouns.
Our domain model is about modeling a business process. It’s not a

static data model about a thing; it's a model of a verb.

So instead of thinking about a system for orders and a system for
batches, we think about a system for ordering and a system for allo-

cating, and so on.

When we separate things this way, it’s a little easier to see which sys-
tem should be responsible for what. When thinking about ordering,
really we want to make sure that when we place an order, the order is

placed. Everything else can happen later, so long as it happens.

http://www.connascence.io/

NOTE
If this sounds familiar, it should! Segregating responsibilities is the same process

we went through when designing our aggregates and commands.

Like aggregates, microservices should be consistency boundaries.
Between two services, we can accept eventual consistency, and that
means we don’t need to rely on synchronous calls. Each service ac-
cepts commands from the outside world and raises events to record
the result. Other services can listen to those events to trigger the next

steps in the workflow.

To avoid the Distributed Ball of Mud anti-pattern, instead of temporal-
ly coupled HTTP API calls, we want to use asynchronous messaging
to integrate our systems. We want our BatchQuantityChanged
messages to come in as external messages from upstream systems,
and we want our system to publish Allocated events for down-

stream systems to listen to.

Why is this better? First, because things can fail independently, it’s
easier to handle degraded behavior: we can still take orders if the al-

location system is having a bad day.

Second, we’re reducing the strength of coupling between our sys-
tems. If we need to change the order of operations or to introduce

new steps in the process, we can do that locally.

Using a Redis Pub/Sub Channel for
Integration

Let’s see how it will all work concretely. We’ll need some way of get-
ting events out of one system and into another, like our message bus,
but for services. This piece of infrastructure is often called a message
broker. The role of a message broker is to take messages from pub-

lishers and deliver them to subscribers.

At MADE.com, we use Event Store; Kafka or RabbitMQ are valid al-

ternatives. A lightweight solution based on Redis pub/sub channels

can also work just fine, and because Redis is much more generally

familiar to people, we thought we’d use it for this book.

NOTE
We’re glossing over the complexity involved in choosing the right messaging plat-
form. Concerns like message ordering, failure handling, and idempotency all need

to be thought through. For a few pointers, see “Footguns”.

Our new flow will look like Eigure 11-6: Redis provides the
BatchQuantityChanged event that kicks off the whole process,
and our Allocated eventis published back out to Redis again at

the end.

https://eventstore.org/
https://redis.io/topics/pubsub

Redis MessageBus Domain_Model

BatchQuantityChanged event | I

>

BatchQuantityChanged Handler + Unit of Work1)

change batch quantity

1
1
N !
,|
1

emit Allocate command(s)

I
|
I
I
1
I
I
1

Allocate Handler + Unit of Work 2 (or more))

I
' allocate

Ny,
>

emit Allocated event(s)

<
<

publish to line_allocated channel

<
<

Redis MessageBus Domain_Model

Figure 11-6. Sequence diagram for reallocation flow

Test-Driving It All Using an End-to-
End Test

Here’s how we might start with an end-to-end test. We can use our
existing API to create batches, and then we’ll test both inbound and

outbound messages:

An end-to-end test for our pub/sub model

(tests/e2e/test external _events.py)

def test change batch quantity leading to realloc

start with two batches and an order allocaf

orderid, sku = random orderid(), random sku(
earlier batch, later batch = random batchref
apli client.post to add batch(earlier batch, ¢
apli client.post to add batch(later batch, skt
response = api client.post to allocate(order:

assert response.json()['batchref'] == earlie:

subscription = redis client.subscribe to('1lii:

change quantity on allocated batch so it's
redis client.publish message('change batch at
'batchref': earlier batch, 'qty': 5

})

wait until we see a message saying the orde

messages = []
for attempt in Retrying(stop=stop after dela:
with attempt:
message = subscription.get message(t:
if message:
messages.append(message)
print (messages)
data = json.loads(messages[-1]['data
assert data['orderid'] == orderid

assert data['batchref'] == later bat«

https://calibre-pdf-anchor.a/#a1423

You can read the story of what’s going on in this test from the
comments: we want to send an event into the system that
causes an order line to be reallocated, and we see that reallo-

cation come out as an event in Redis too.

api_client is a little helper that we refactored out to share
between our two test types; it wraps our calls to

requests.post.

redis client is another little test helper, the details of
which don’t really matter; its job is to be able to send and re-
ceive messages from various Redis channels. We'll use a
channel called change batch quantity to send in our re-
quest to change the quantity for a batch, and we’ll listen to an-
other channel called 1ine allocated to look out for the ex-

pected reallocation.

Because of the asynchronous nature of the system under test,
we need to use the tenacity library again to add a retry loop
—first, because it may take some time for our new

line allocated message to arrive, but also because it

won’t be the only message on that channel.

https://calibre-pdf-anchor.a/#a1424
https://calibre-pdf-anchor.a/#a1426
https://calibre-pdf-anchor.a/#a1430

Redis Is Another Thin Adapter Around Our
Message Bus

Our Redis pub/sub listener (we call it an event consumer) is very

much like Flask: it translates from the outside world to our events:

Simple Redis message listener

(srcsallocation/entrypoints/redis_eventconsumer.py)

r=

def

def

redis.Redis(**config.get redis host and port

main():
orm.start mappers()
pubsub = r.pubsub(ignore subscribe messages='

pubsub.subscribe('change batch quantity') @

for m in pubsub.listen():

handle change batch quantity(m)

handle change batch quantity(m):
logging.debug('handling %s', m)
data = json.loads(m['data']) @
cmd = commands.ChangeBatchQuantity(ref=datal

messagebus.handle(cmd, uow=unit of work.SqglA:

main() subscribes ustothe change batch quantity

channel on load.

® Ourmain job as an entrypoint to the system is to deserialize
JSON, convert itto a Command , and pass it to the service lay-

er—much as the Flask adapter does.

We also build a new downstream adapter to do the opposite job—

converting domain events to public events:

Simple Redis message publisher

(src/allocation/adapters/redis_eventpublisher.py)

r = redis.Redis(**config.get redis host and port

def publish(channel, event: events.Event): @
logging.debug('publishing: channel=%s, event:

r.publish(channel, json.dumps(asdict(event))

° We take a hardcoded channel here, but you could also store a

mapping between event classes/names and the appropriate
channel, allowing one or more message types to go to different

channels.

Our New Outgoing Event
Here’s what the Allocated event will look like:

New event (src/allocation/domain/events.py)

class Allocated(Event):
orderid: str
sku: str
gty: int
batchref: str

It captures everything we need to know about an allocation: the de-

tails of the order line, and which batch it was allocated to.

We add it into our model’'s allocate() method (having added a

test first, naturally):

Product.allocate() emits new event to record what happened

(src/allocation/domain/model.py)

class Product:

def allocate(self, line: OrderLine) -> str:

batch.allocate(line)
self.version number += 1

self.events.append(events.Allocated(
orderid=1line.orderid, sku=line.s]
batchref=batch.reference,

))

return batch.reference

The handler for ChangeBatchQuantity already exists, so all we

need to add is a handler that publishes the outgoing event:

The message bus grows

(src/allocation/service layer/messagebus.py)

HANDLERS = {

events.Allocated: [handlers.publish allocate«
events.OutOfStock: [handlers.send out of stoc

} # type: Dict[Type[events.Event], List[Callable

Publishing the event uses our helper function from the Redis
wrapper:

Publish to Redis (src/allocation/service _layer/handlers.py)

def publish allocated event (
event: events.Allocated, uow: unit of wos

redis eventpublisher.publish('line allocated

Internal Versus External Events

It’s a good idea to keep the distinction between internal and external
events clear. Some events may come from the outside, and some
events may get upgraded and published externally, but not all of them

will. This is particularly important if you get into event sourcing (very

much a topic for another book, though).

TIP
Outbound events are one of the places it’s important to apply validation. See

Appendix E for some validation philosophy and examples.

https://oreil.ly/FXVil

EXERCISE FOR THE READER

A nice simple one for this chapter: make it so that the main
allocate() use case can also be invoked by an event on a Redis

channel, as well as (or instead of) via the API.

You will likely want to add a new E2E test and feed through some

changes into redis eventconsumer.py .

Wrap-Up

Events can come from the outside, but they can also be published ex-
ternally—our publish handler converts an event to a message on
a Redis channel. We use events to talk to the outside world. This kind
of temporal decoupling buys us a lot of flexibility in our application in-

tegrations, but as always, it comes at a cost.

Event notification is nice because it implies a low level of cou-
pling, and is pretty simple to set up. It can become problematic,
however, if there really is a logical flow that runs over various
event notifications...It can be hard to see such a flow as it's not
explicit in any program text.... This can make it hard to debug

and modify.

—Martin Fowler, “What do you mean by ‘Event-

Driven’™

Table 11-1 shows some trade-offs to think about.

Table 11-1. Event-based microservices integration: the trade-offs

Pros Cons

« Avoids the distributed « The overall flows of information
big ball of mud. are harder to see.

« Services are decou- - Eventual consistency is a new
pled: it’s easier to concept to deal with.
change individual ser- « Message reliability and choices
vices and add new around at-least-once versus at-
ones. most-once delivery need think-

ing through.

https://oreil.ly/uaPNt

More generally, if you’re moving from a model of synchronous mes-
saging to an async one, you also open up a whole host of problems

having to do with message reliability and eventual consistency. Read

on to “Footguns”.

Chapter 12. Command-Query
Responsibility Segregation (CQRS)

In this chapter, we’re going to start with a fairly uncontroversial in-
sight: reads (queries) and writes (commands) are different, so they
should be treated differently (or have their responsibilities segregat-

ed, if you will). Then we’re going to push that insight as far as we can.

If you’re anything like Harry, this will all seem extreme at first, but
hopefully we can make the argument that it’s not totally unreason-

able.

Figure 12-1 shows where we might end up.

TIP

The code for this chapter is in the chapter_12_cqrs branch on GitHub.

git clone https://github.com/cosmicpython/code.git
cd code

git checkout chapter 12 cqgrs

or to code along, checkout the previous chapter:

git checkout chapter 11 external events

First, though, why bother?

https://oreil.ly/YbWGT

Flask queries (read operations)

I
commands

(write operations)
i ! Handlers ; '
; N : ' :
| Message Bus — ! —> UoW , Views
; : i |
1 ! : [
Domain .
Repository

Figure 12-1. Separating reads from writes
Domain Models Are for Writing

We’ve spent a lot of time in this book talking about how to build soft-
ware that enforces the rules of our domain. These rules, or con-
straints, will be different for every application, and they make up the

interesting core of our systems.

In this book, we’ve set explicit constraints like “You can’t allocate

more stock than is available,” as well as implicit constraints like “Each

order line is allocated to a single batch.”

We wrote down these rules as unit tests at the beginning of the book:

Our basic domain tests (tests/unit/test_batches.py)

def

def

test allocating to a batch reduces the avail:
batch = Batch("batch-001", "SMALL-TABLE", qgt:
line = OrderLine('order-ref', "SMALL-TABLE",

batch.allocate(line)

assert batch.available quantity == 18

test cannot allocate if available smaller th:
small batch, large line = make batch and line

assert small batch.can allocate(large line)

To apply these rules properly, we needed to ensure that operations

were consistent, and so we introduced patterns like Unit of Work and

Aggregate that help us commit small chunks of work.

To communicate changes between those small chunks, we intro-
duced the Domain Events pattern so we can write rules like “When
stock is damaged or lost, adjust the available quantity on the batch,

and reallocate orders if necessary.”

All of this complexity exists so we can enforce rules when we change
the state of our system. We’ve built a flexible set of tools for writing

data.

What about reads, though?

Most Users Aren’t Going to Buy Your
Furniture

At MADE.com, we have a system very like the allocation service. In a
busy day, we might process one hundred orders in an hour, and we

have a big gnarly system for allocating stock to those orders.

In that same busy day, though, we might have one hundred product
views per second. Each time somebody visits a product page, or a
product listing page, we need to figure out whether the product is still

in stock and how long it will take us to deliver it.

The domain is the same—we’re concerned with batches of stock, and
their arrival date, and the amount that’s still available —but the access
pattern is very different. For example, our customers won'’t notice if
the query is a few seconds out of date, but if our allocate service is
inconsistent, we’ll make a mess of their orders. We can take advan-
tage of this difference by making our reads eventually consistent in

order to make them perform better.

IS READ CONSISTENCY TRULY ATTAINABLE?

This idea of trading consistency against performance makes a lot of

developers nervous at first, so let’s talk quickly about that.

Let’s imagine that our “Get Available Stock” query is 30 seconds out
of date when Bob visits the page for ASYMMETRICAL-DRESSER .
Meanwhile, though, Harry has already bought the last item. When we
try to allocate Bob’s order, we’ll get a failure, and we’ll need to either

cancel his order or buy more stock and delay his delivery.

People who’ve worked only with relational data stores get really ner-
vous about this problem, but it’'s worth considering two other scenar-

ios to gain some perspective.

First, let’s imagine that Bob and Harry both visit the page at the same
time. Harry goes off to make coffee, and by the time he returns, Bob
has already bought the last dresser. When Harry places his order, we
send it to the allocation service, and because there’s not enough
stock, we have to refund his payment or buy more stock and delay his

delivery.

As soon as we render the product page, the data is already stale.
This insight is key to understanding why reads can be safely incon-
sistent: we’ll always need to check the current state of our system

when we come to allocate, because all distributed systems are incon-

sistent. As soon as you have a web server and two customers, you

have the potential for stale data.

OK, let’s assume we solve that problem somehow: we magically build
a totally consistent web application where nobody ever sees stale

data. This time Harry gets to the page first and buys his dresser.

Unfortunately for him, when the warehouse staff tries to dispatch his
furniture, it falls off the forklift and smashes into a zillion pieces. Now

what?

The only options are to either call Harry and refund his order or buy

more stock and delay delivery.

No matter what we do, we’re always going to find that our software

systems are inconsistent with reality, and so we’ll always need busi-
ness processes to cope with these edge cases. It’s OK to trade per-
formance for consistency on the read side, because stale data is es-

sentially unavoidable.

We can think of these requirements as forming two halves of a sys-

tem: the read side and the write side, shown in Table 12-1.

For the write side, our fancy domain architectural patterns help us to

evolve our system over time, but the complexity we’ve built so far

doesn’t buy anything for reading data. The service layer, the unit of

work, and the clever domain model are just bloat.

Table 12-1. Read versus write

Read side Write side
Behavior Simple read Complex business logic
Cacheability Highly Uncacheable
cacheable
Consistency Can be stale Must be transactionally
consistent

Post/Redirect/Get and CQS

If you do web development, you’re probably familiar with the Post/Re-
direct/Get pattern. In this technique, a web endpoint accepts an
HTTP POST and responds with a redirect to see the result. For ex-
ample, we might accept a POST to /batches to create a new batch

and redirect the user to /batches/123 1o see their newly created batch.

This approach fixes the problems that arise when users refresh the

results page in their browser or try to bookmark a results page. In the

case of a refresh, it can lead to our users double-submitting data and
thus buying two sofas when they needed only one. In the case of a
bookmark, our hapless customers will end up with a broken page
when they try to GET a POST endpoint.

Both these problems happen because we’re returning data in re-
sponse to a write operation. Post/Redirect/Get sidesteps the issue by

separating the read and write phases of our operation.

This technique is a simple example of command-query separation
(CQS). In CQS we follow one simple rule: functions should either
modify state or answer questions, but never both. This makes soft-
ware easier to reason about: we should always be able to ask, “Are

the lights on?” without flicking the light switch.

NOTE
When building APIs, we can apply the same design technique by returning a 201
Created, or a 202 Accepted, with a Location header containing the URI of our new
resources. What'’s important here isn’t the status code we use but the logical sepa-

ration of work into a write phase and a query phase.

As you’ll see, we can use the CQS principle to make our systems
faster and more scalable, but first, let’s fix the CQS violation in our ex-

isting code. Ages ago, we introduced an allocate endpoint that

takes an order and calls our service layer to allocate some stock. At
the end of the call, we return a 200 OK and the batch ID. That’s led to
some ugly design flaws so that we can get the data we need. Let’s
change it to return a simple OK message and instead provide a new

read-only endpoint to retrieve allocation state:

APl test does a GET after the POST (tests/e2e/test api.py)

('postgres db')
('restart api')
def test happy path returns 202 and batch is all«

orderid = random orderid()
sku, othersku = random sku(), random sku('otl
earlybatch = random batchref(1)
laterbatch = random batchref(2)
otherbatch = random batchref(3)
apli client.post to add batch(laterbatch, sku,
api client.post to add batch(earlybatch, sku,
api client.post to add batch(otherbatch, othse

r = apl client.post to allocate(orderid, sku,

assert r.status code == 202

r = apli _client.get allocation(orderid)

assert r.ok

assert r.json() == [
{'sku': sku, 'batchref': earlybatch},

('postgres db')
('restart api')
def test unhappy path returns 400 and error mess:
unknown sku, orderid = random sku(), random
r = apl client.post to allocate(
orderid, unknown sku, qty=20, expect suc
)
assert r.status code == 400

assert r.json()['message'] == f£'Invalid sku -
r = api client.get allocation(orderid)
assert r.status code == 404

OK, what might the Flask app look like?

Endpoint for viewing allocations

(src/allocation/entrypoints/flask_app.py)

from allocation import views

("/allocations/<orderid>", methods=['GlI
def allocations view endpoint(orderid):

uow = unit of work.SglAlchemyUnitOfWork()

result = views.allocations(orderid, uow) @

if not result:
return 'not found', 404

return jsonify(result), 200

Al right, a views.py, fair enough; we can keep read-only stuff in

there, and it’ll be a real views.py, not like Django’s, something

that knows how to build read-only views of our data...

Hold On to Your Lunch, Folks

Hmm, so we can probably just add a list method to our existing repos-

itory object:

Views do...raw SQL? (srcs/allocation/views.py)

from import unit of worl

def allocations(orderid: str, uow: unit of work.!
with uow:
results = list(uow.session.execute(
'"SELECT ol.sku, b.reference'
' FROM allocations AS a'

' JOIN batches AS b ON a.batch id =1
' JOIN order lines AS ol ON a.orderl:

' WHERE ol.orderid = :orderid’,

dict (orderid=orderid)

))
return [{'sku': sku, 'batchref': batchref} £«

Excuse me? Raw SQL?

If you’re anything like Harry encountering this pattern for the first time,
you’ll be wondering what on earth Bob has been smoking. We’re
hand-rolling our own SQL now, and converting database rows directly
to dicts? After all the effort we put into building a nice domain model?
And what about the Repository pattern? Isn’t that meant to be our ab-

straction around the database? Why don’t we reuse that?

Well, let’s explore that seemingly simpler alternative first, and see

what it looks like in practice.

We'll still keep our view in a separate views.py module; enforcing a
clear distinction between reads and writes in your application is still a
good idea. We apply command-query separation, and it’s easy to see
which code modifies state (the event handlers) and which code just

retrieves read-only state (the views).

TIP

Splitting out your read-only views from your state-modifying command and event

handlers is probably a good idea, even if you don’t want to go to full-blown CQRS.

Testing CQRS Views

Before we get into exploring various options, let’s talk about testing.

Whichever approaches you decide to go for, you’re probably going to

need at least one integration test. Something like this:

An integration test for a view (tests/integration/test views.py)

def test allocations view(sglite session_ factory

uow = unit of work.SqlAlchemyUnitOfWork (sqglif

messagebus.handle(commands.
messagebus.handle(commands.
messagebus.handle (commands
messagebus.handle (commands.
add a spurious batch and
messagebus.handle (commands
messagebus.handle (commands

messagebus.handle (commands.

CreateBatch('skull
CreateBatch('sku2!l

.Allocate('orderl’,

Allocate('orderl',

order to make surce

.CreateBatch('skull

.Allocate('otheror«

Allocate('otheror«

assert views.allocations('orderl', uow) == |
{'sku': 'skul', 'batchref': 'skulbatch'},

{'sku': 'sku2', 'batchref': 'sku2batch'},

® Wwedothe setup for the integration test by using the public en-

trypoint to our application, the message bus. That keeps our
tests decoupled from any implementation/infrastructure details

about how things get stored.

“Obvious” Alternative 1: Using the
Existing Repository

How about adding a helper method to our products repository?

A simple view that uses the repository (src/allocation/views.py)

from import unit of work

def allocations(orderid: str, uow: unit of work.!
with uow:

products = uow.products.for order (orderic
batches = [b for p in products for b in j

return [

{'sku': b.sku, 'batchref': b.referenc

for b in batches

https://calibre-pdf-anchor.a/#a1508

if orderid in b.orderids ©

Our repository returns Product objects, and we need to find
all the products for the SKUs in a given order, so we’ll build a

new helper method called .for order() on the repository.

Now we have products but we actually want batch references,

so we get all the possible batches with a list comprehension.

We filter again to get just the batches for our specific order.
That, in turn, relies on our Batch objects being able to tell us

which order IDs it has allocated.
We implement that last using a .orderid property:

An arguably unnecessary property on our model

(src/allocation/domain/model.py)

class Batch:

def orderids(self):
return {l.orderid for 1 in self. allocat:

https://calibre-pdf-anchor.a/#a1515
https://calibre-pdf-anchor.a/#a1516

You can start to see that reusing our existing repository and domain
model classes is not as straightforward as you might have assumed.
We've had to add new helper methods to both, and we’re doing a
bunch of looping and filtering in Python, which is work that would be

done much more efficiently by the database.

So yes, on the plus side we’re reusing our existing abstractions, but

on the downside, it all feels quite clunky.

Your Domain Model Is Not Optimized
for Read Operations

What we’re seeing here are the effects of having a domain model that
is designed primarily for write operations, while our requirements for

reads are often conceptually quite different.

This is the chin-stroking-architect’s justification for CQRS. As we’ve
said before, a domain model is not a data model—we’re trying to cap-
ture the way the business works: workflow, rules around state
changes, messages exchanged; concerns about how the system re-
acts to external events and user input. Most of this stuff is totally irrel-

evant for read-only operations.

TIP

This justification for CQRS is related to the justification for the Domain Model pat-
tern. If you’re building a simple CRUD app, reads and writes are going to be closely
related, so you don’t need a domain model or CQRS. But the more complex your

domain, the more likely you are to need both.

To make a facile point, your domain classes will have multiple meth-
ods for modifying state, and you won’t need any of them for read-only
operations.

As the complexity of your domain model grows, you will find yourself
making more and more choices about how to structure that model,

which make it more and more awkward to use for read operations.

“Obvious” Alternative 2: Using the
ORM

You may be thinking, OK, if our repository is clunky, and working with
Products is clunky, then | can at least use my ORM and work with

Batches . That’s what it’s for!

A simple view that uses the ORM (src/allocation/views.py)

from import unit of work, model

def allocations(orderid: str, uow: unit of work.i
with uow:

batches = uow.session.query(model.Batch)
model.OrderLine, model.Batch. allocaf

). filter(
model .OrderLine.orderid == orderid

)

return [
{'sku': b.sku, 'batchref': b.batchre:

for b in batches

But is that actually any easier to write or understand than the raw

SQL version from the code example in “Hold On to Your Lunch,

Folks”? It may not look too bad up there, but we can tell you it took
several attempts, and plenty of digging through the SQLAIchemy
docs. SQL is just SQL.

But the ORM can also expose us to performance problems.

SELECT N+1 and Other Performance
Considerations

The so-called SELECT N+1 problem is a common performance
problem with ORMs: when retrieving a list of objects, your ORM will
often perform an initial query to, say, get all the IDs of the objects it
needs, and then issue individual queries for each object to retrieve
their attributes. This is especially likely if there are any foreign-key re-

lationships on your objects.

NOTE
In all fairness, we should say that SQLAIchemy is quite good at avoiding the
SELECT N+1 problem. It doesn’t display it in the preceding example, and you can

request eager loading explicitly to avoid it when dealing with joined objects.

Beyond SELECT N+1,you may have other reasons for wanting to
decouple the way you persist state changes from the way that you re-
trieve current state. A set of fully normalized relational tables is a
good way to make sure that write operations never cause data cor-
ruption. But retrieving data using lots of joins can be slow. It’s com-
mon in such cases to add some denormalized views, build read repli-

cas, or even add caching layers.

Time to Completely Jump the Shark

https://oreil.ly/OkBOS
https://oreil.ly/XKDDm

On that note: have we convinced you that our raw SQL version isn’t
so weird as it first seemed? Perhaps we were exaggerating for effect?

Just you wait.

So, reasonable or not, that hardcoded SQL query is pretty ugly, right?

What if we made it nicer...

A much nicer query (src/allocation/views.py)

def allocations(orderid: str, uow: unit of work.!
with uow:
results = list(uow.session.execute(
'"SELECT sku, batchref FROM allocatioi

dict (orderid=orderid)

))

...by keeping a totally separate, denormalized data store for our view

modef?

Hee hee hee, no foreign keys, just strings, YOLO

(src/allocation/adapters/orm.py)

allocations view = Table(
'allocations view', metadata,

Column('orderid’', String(255)),

Column('sku', String()) s
Column('batchref', String()) .,

OK, nicer-looking SQL queries wouldn’t be a justification for anything
really, but building a denormalized copy of your data that’s optimized
for read operations isn’t uncommon, once you’ve reached the limits of

what you can do with indexes.

Even with well-tuned indexes, a relational database uses a lot of CPU
to perform joins. The fastest queries will always be SELECT * from

mytable WHERE key = :value.

More than raw speed, though, this approach buys us scale. When
we’re writing data to a relational database, we need to make sure that
we get a lock over the rows we’re changing so we don’t run into con-

sistency problems.

If multiple clients are changing data at the same time, we’ll have
weird race conditions. When we’re reading data, though, there’s no
limit to the number of clients that can concurrently execute. For this

reason, read-only stores can be horizontally scaled out.

TIP

Because read replicas can be inconsistent, there’s no limit to how many we can
have. If you’re struggling to scale a system with a complex data store, ask whether
you could build a simpler read model.

Keeping the read model up to date is the challenge! Database views
(materialized or otherwise) and triggers are a common solution, but
that limits you to your database. We’d like to show you how to reuse

our event-driven architecture instead.

Updating a Read Model Table Using an Event
Handler

We add a second handler to the Allocated event:

Allocated event gets a new handler

(src/allocation/service layer/messagebus.py)

EVENT HANDLERS = {
events.Allocated: [
handlers.publish allocated event,

handlers.add allocation to read model

1,

Here’s what our update-view-model code looks like:

Update on allocation (src/allocation/service layer/handlers.py)

def add allocation to read model(

event: events.Allocated, uow: unit of wo:

with uow:
uow.session.execute (
'INSERT INTO allocations view (order:
' VALUES (:orderid, :sku, :batchref)

dict (orderid=event.orderid, sku=event

)

uow.commit ()
Believe it or not, that will pretty much work! And it will work against
the exact same integration tests as the rest of our options.
OK, you’ll also need to handle Deallocated:

A second listener for read model updates

events.Deallocated: |
handlers.remove allocation from read model,

handlers.reallocate

1,

def remove allocation from read model (

event: events.Deallocated, uow: unit of ¥

with uow:
uow.session.execute (
'DELETE FROM allocations view '
' WHERE orderid = :orderid AND sku =

Figure 12-2 shows the flow across the two requests.

L ke

User Flask

MessageBus Domain Model View

3 POST to allocate Endpoint R

: Allocate Command

.
>

UoW/transaction 1)

allocate() | |

commit write model

- UoW/ransaction2)}

raise Allocated event(s) |

«<
1 [

| . update view model

. 2020K ! ; ; ! |
| GET allocations endpoint | ‘ ‘ :
‘ . get allocations | ‘ . |
l | | l i SELECT on view model |
i some allocations i some allocations | ‘ i some allocations

|—O MessageBus Domain Model View 8

Flask

DB

User

Figure 12-2. Sequence diagram for read model

In Figure 12-2, you can see two transactions in the POST/write opera-
tion, one to update the write model and one to update the read model,

which the GET/read operation can use.

REBUILDING FROM SCRATCH

“What happens when it breaks?” should be the first question we ask

as engineers.

How do we deal with a view model that hasn’t been updated because
of a bug or temporary outage? Well, this is just another case where

events and commands can fail independently.

If we never updated the view model, and the ASYMMETRICAL-
DRESSER was forever in stock, that would be annoying for cus-
tomers, butthe allocate service would still fail, and we’d take ac-

tion to fix the problem.

Rebuilding a view model is easy, though. Since we’re using a service
layer to update our view model, we can write a tool that does the

following:

« Queries the current state of the write side to work out what’s cur-
rently allocated
« Callsthe add allocate to read model handler for each al-

located item

We can use this technique to create entirely new read models from

historical data.

Changing Our Read Model
Implementation Is Easy

Let’s see the flexibility that our event-driven model buys us in action,
by seeing what happens if we ever decide we want to implement a

read model by using a totally separate storage engine, Redis.
Just watch:

Handlers update a Redis read model

(src/allocation/service layer/handlers.py)

def add allocation to read model(event: events.A:

redis eventpublisher.update readmodel (event.«

def remove allocation from read model(event: ever

redis eventpublisher.update readmodel (event.«

The helpers in our Redis module are one-liners:

Redis read model read and update

(src/allocation/adapters/redis_eventpublisher.py)

def update readmodel(orderid, sku, batchref):

r.hset (orderid, sku, batchref)

def get readmodel (orderid):

return r.hgetall(orderid)

(Maybe the name redis_eventpublisher.py is a misnomer now, but

you get the idea.)

And the view itself changes very slightly to adapt to its new backend:

View adapted to Redis (src/allocation/views.py)

def allocations(orderid):
batches = redis eventpublisher.get readmodel
return |
{'batchref': b.decode(), 'sku': s.decode

for s, b in batches.items()

And the exact same integration tests that we had before still pass, be-
cause they are written at a level of abstraction that’s decoupled from
the implementation: setup puts messages on the message bus, and

the assertions are against our view.

TIP
Event handlers are a great way to manage updates to a read model, if you decide
you need one. They also make it easy to change the implementation of that read

model at a later date.

EXERCISE FOR THE READER

Implement another view, this time to show the allocation for a single

order line.

Here the trade-offs between using hardcoded SQL versus going via a
repository should be much more blurry. Try a few versions (maybe

including going to Redis), and see which you prefer.

Wrap-Up

Table 12-2 proposes some pros and cons for each of our options.

As it happens, the allocation service at MADE.com does use “full-
blown” CQRS, with a read model stored in Redis, and even a second
layer of cache provided by Varnish. But its use cases are quite a bit
different from what we’ve shown here. For the kind of allocation ser-
vice we’re building, it seems unlikely that you’d need to use a sepa-

rate read model and event handlers for updating it.

But as your domain model becomes richer and more complex, a sim-

plified read model become ever more compelling.

Table 12-2. Trade-offs of various view model options

Option Pros Cons

Just Simple, consistent Expect performance issues
use approach. with complex query

reposi- patterns.

tories

Use Allows reuse of DB Adds another query lan-
custom configuration and guage with its own quirks
queries model definitions. and syntax.

with

your

ORM

Use Offers fine control Changes to DB schema
hand- over performance have to be made to your
rolled with a standard hand-rolled queries and
SQL query syntax. your ORM definitions. High-

ly normalized schemas may
still have performance

limitations.

Option Pros Cons

Create Read-only copies are ~ Complex technique. Harry

sepa- easy to scale out. will be forever suspicious of
rate Views can be con- your tastes and motives.
read structed when data

stores changes so that

with queries are as simple

events as possible.

Often, your read operations will be acting on the same conceptual ob-
jects as your write model, so using the ORM, adding some read
methods to your repositories, and using domain model classes for

your read operations is just fine.

In our book example, the read operations act on quite different con-
ceptual entities to our domain model. The allocation service thinks in
terms of Batches for a single SKU, but users care about allocations
for a whole order, with multiple SKUs, so using the ORM ends up be-
ing a little awkward. We’d be quite tempted to go with the raw-SQL

view we showed right at the beginning of the chapter.

On that note, let’s sally forth into our final chapter.

Chapter 13. Dependency Injection
(and Bootstrapping)

Dependency injection (D) is regarded with suspicion in the Python
world. And we’ve managed just fine without it so far in the example

code for this book!

In this chapter, we’ll explore some of the pain points in our code that
lead us to consider using DI, and we’ll present some options for how

to do it, leaving it to you to pick which you think is most Pythonic.

We'll also add a new component to our architecture called boot-

strap.py; it will be in charge of dependency injection, as well as some
other initialization stuff that we often need. We’ll explain why this sort
of thing is called a composition rootin OO languages, and why boot-

strap scriptis just fine for our purposes.

Figure 13-1 shows what our app looks like without a bootstrapper: the
entrypoints do a lot of initialization and passing around of our main

dependency, the UoW.

TIP
If you haven't already, it's worth reading Chapter 3 before continuing with this chap-

ter, particularly the discussion of functional versus object-oriented dependency

management.
Entrypoints:
£ tFIask, initializes with orm start mappers() —
ventconsumer... : .
= instantiates ~
|
calls with UoW
and Service Layer
77 Command ~" 7T ",'_'_'_'_'_'_'_'_'_'_'_'_'_'_'_'_: """ N
; : Handlers A Unit of Work kY
: Message Bus '—) " e ' !
- | o stract) chemy| @/
! 1 ! f 4
: ' Yo UoW Uow '
” oo - ------ ® "" R .t i “|
; Doman o epositories :
! || Abstract SQLAIchemy | -
: E '4_'_ Repository Repository |

Figure 13-1. Without bootstrap: entrypoints do a lot

TIP

The code for this chapter is in the chapter_13_dependency injection branch on Git-
Hub:

git clone https://github.com/cosmicpython/code.git
cd code

git checkout chapter 13 dependency injection

or to code along, checkout the previous chapter:
git checkout chapter 12 cqrs

Figure 13-2 shows our bootstrapper taking over those responsibilities.

https://oreil.ly/-B7e6

Entrypaints:
Flask,
Eventconsumer...

initializes with orm.start_mappers()

Bootstrap

instantiates
Command only
Initialize with UoW and all other dependencies

; / Handlers Vo Unit of Work ‘: :
: Message Bus EE— > 0
; ! v Abstract |, _ ||SQLAIchemy|
: :\ o Uow ow |

/ Domain \: Repositories :

: : ! Abstract SQLAIchemy E

D € | Repository | | Repository |

Figure 13-2. Bootstrap takes care of all that in one place
Implicit Versus Explicit Dependencies

Depending on your particular brain type, you may have a slight feel-

ing of unease at the back of your mind at this point. Let’s bring it out

into the open. We’ve shown you two ways of managing dependencies

and testing them.

For our database dependency, we’ve built a careful framework of ex-
plicit dependencies and easy options for overriding them in tests. Our

main handler functions declare an explicit dependency on the UoW:

Our handlers have an explicit dependency on the UoW

(src/allocation/service layer/handlers.py)

def allocate(

cmd: commands.Allocate, uow: unit of worl

And that makes it easy to swap in a fake UoW in our service-layer

tests:

Service-layer tests against a fake UoW: (tests/unit/test_services.py)

uow = FakeUnitOfWork()

messagebus.handle([...], uow)

The UoW itself declares an explicit dependency on the session

factory:

The UoW depends on a session factory

(src/allocation/service layer/unit_of work.py)

class SqlAlchemyUnitOfWork (AbstractUnitOfWork):

def init (self, session_ factory=DEFAULT SI

self.session factory = session factory

We take advantage of it in our integration tests to be able to some-

times use SQLite instead of Postgres:

Integration tests against a different DB (tests/integration/test uow.py)

def test rolls back uncommitted work by default(:
uow = unit of work.SglAlchemyUnitOfWork(sqlif
(1]

° Integration tests swap out the default Postgres

session factory fora SQLite one.

Aren’t Explicit Dependencies Totally
Weird and Java-y?

If you’re used to the way things normally happen in Python, you’ll be
thinking all this is a bit weird. The standard way to do things is to de-
clare our dependency implicitly by simply importing it, and then if we
ever need to change it for tests, we can monkeypatch, as is Right and

True in dynamic languages:

Email sending as a normal import-based dependency

(src/allocation/service layer/handlers.py)

from import email, redis_ ever
def send out of stock notification(
event: events.OutOfStock, uow: unit of wc
email.send(@

'stock@made.com',
f'Oout of stock for {event.sku}',

® Hardcoded import

® cals specific email sender directly

https://calibre-pdf-anchor.a/#a1588

Why pollute our application code with unnecessary arguments just for
the sake of our tests? mock.patch makes monkeypatching nice

and easy:

mock dot patch, thank you Michael Foord
(tests/unit/test_handlers.py)

with mock.patch("allocation.adapters.email. s¢

The trouble is that we’ve made it look easy because our toy example
doesn’t send real email (email.send mail justdoes a print),
but in real life, you’d end up having to call mock.patch for every
single test that might cause an out-of-stock notification. If you've
worked on codebases with lots of mocks used to prevent unwanted

side effects, you’ll know how annoying that mocky boilerplate gets.

And you’ll know that mocks tightly couple us to the implementation.
By choosing to monkeypatch email.send mail, we are tied to
doing import email,andif we everwantto do from email
import send mail, atrivial refactor, we’d have to change all our

mocks.

So it’s a trade-off. Yes, declaring explicit dependencies is unneces-

sary, strictly speaking, and using them would make our application

code marginally more complex. But in return, we’d get tests that are

easier to write and manage.

On top of that, declaring an explicit dependency is an example of the
dependency inversion principle —rather than having an (implicit) de-
pendency on a specific detail, we have an (explicit) dependency on

an abstraction:

Explicit is better than implicit.

—The Zen of Python

The explicit dependency is more abstract

(src/allocation/service layer/handlers.py)

def send out of stock notification(

event: events.OutOfStock, send mail: Cal.

send mail(
'stock@made.com',
f'Out of stock for {event.sku}',

But if we do change to declaring all these dependencies explicitly,
who will inject them, and how? So far, we’ve really been dealing with

only passing the UoW around: our tests use FakeUnitOfWork,

while Flask and Redis eventconsumer entrypoints use the real UoW,
and the message bus passes them onto our command handlers. If
we add real and fake email classes, who will create them and pass

them on?

That’s extra (duplicated) cruft for Flask, Redis, and our tests. More-
over, putting all the responsibility for passing dependencies to the

right handler onto the message bus feels like a violation of the SRP.

Instead, we’ll reach for a pattern called Composition Root (a boot-
strap script to you and me),1 and we’ll do a bit of “manual DI” (depen-

dency injection without a framework). See Figure 13-3.2

Entrypoints
(Flasx;)Redis)

¢ call
repares handlers with correct dependencies injected in
Bootstrapper ?test bootstrapper will use fakes, prod one will use real)

¢ pass injected handlers to

[Message Bus]

l dispatches events and commands to injected handlers

Figure 13-3. Bootstrapper between entrypoints and message bus

Preparing Handlers: Manual DI with
Closures and Partials

One way to turn a function with dependencies into one that’s ready to
be called later with those dependencies already injected is to use clo-
sures or partial functions to compose the function with its

dependencies:

Examples of DI using closures or partial functions

existing allocate function, with abstract uow ¢
def allocate(

cmd: commands.Allocate, uow: unit of worl

line = OrderLine(cmd.orderid, cmd.sku, cmd.qf

with uow:

bootstrap script prepares actual UoW

def bootstrap(..):
uow = unit of work.SqglAlchemyUnitOfWork()

prepare a version of the allocate fn with 1

allocate composed = lambda cmd: allocate(cmd,

or, equivalently (this gets you a nicer st

def allocate composed(cmd):

return allocate(cmd, uow)

alternatively with a partial
import

allocate composed = functools.partial(allocat

later at runtime, we can call the partial funci
the UoW already bound

allocate composed(cmd)

® The difference between closures (lambdas or named functions)

and functools.partial is thatthe former use late binding
of variables, which can be a source of confusion if any of the

dependencies are mutable.

Here’s the same pattern again for the
send out of stock notification() handler, which has dif-

ferent dependencies:

Another closure and partial functions example

def send out of stock notification(

event: events.OutOfStock, send mail: Cal.

send mail(

'stock@made.com’',

https://calibre-pdf-anchor.a/#a1607
https://docs.python-guide.org/writing/gotchas/#late-binding-closures

prepare a version of the send out of stock not:

sosn_composed = lambda event: send out of stock

later, at runtime:

sosn_composed(event) # will have email.send mai.

An Alternative Using Classes

Closures and partial functions will feel familiar to people who’ve done
a bit of functional programming. Here’s an alternative using classes,
which may appeal to others. It requires rewriting all our handler func-

tions as classes, though:

DI using classes

we replace the old "def allocate(cmd, uow) wii
class AllocateHandler:

def init (self, uow: unit of work.Abstract

self.uow = uow

def call (self, cmd: commands.Allocate):

line = OrderLine(cmd.orderid, cmd.sku, cr
with self.uow:

rest of handler method as before

bootstrap script prepares actual UoW

uow = unit of work.SglAlchemyUnitOfWork()

then prepares a version of the allocate fn witl

allocate = AllocateHandler (uow)

later at runtime, we can call the handler inst:
the UoW already injected
allocate(cmd)

® Theclassis designed to produce a callable function, so it has a

call method.

® Butweusethe init to declare the dependencies it requires.

This sort of thing will feel familiar if you’ve ever made class-
based descriptors, or a class-based context manager that

takes arguments.

Use whichever you and your team feel more comfortable with.

https://calibre-pdf-anchor.a/#a1617
https://calibre-pdf-anchor.a/#a1616

A Bootstrap Script

We want our bootstrap script to do the following:

1. Declare default dependencies but allow us to override them
2. Do the “init” stuff that we need to get our app started
3. Inject all the dependencies into our handlers

4. Give us back the core object for our app, the message bus
Here’s a first cut:

A bootstrap function (src/allocation/bootstrap.py)

def bootstrap(
start orm: bool = True, @
uow: unit of work.AbstractUnitOfWork = unit «
send mail: Callable = email.send,
publish: Callable = redis eventpublisher.pub:
) -> messagebus.MessageBus:

if start orm:

orm.start mappers() ©

dependencies = {'uow': uow, 'send mail': senc
injected event handlers = { @&

event type: [

L1

inject dependencies(handler, dependei

for handler in event handlers

]

for event type, event handlers in handle:

}
injected command handlers = { @
command type: inject dependencies(handle:
for command type, handler in handlers.COl
}

return messagebus.MessageBus(@
uow=uow,
event handlers=injected event handlers,

command handlers=injected command handle:

orm.start mappers () isour example of initialization work
that needs to be done once at the beginning of an app. We also

see things like setting up the 1ogging module.

We can use the argument defaults to define what the
normal/production defaults are. It’s nice to have them in a sin-
gle place, but sometimes dependencies have some side effects
at construction time, in which case you might prefer to default

them to None instead.

https://calibre-pdf-anchor.a/#a1625

We build up our injected versions of the handler mappings by
using a function called inject dependencies() , which

we’ll show next.

We return a configured message bus ready for use.

Here’s how we inject dependencies into a handler function by in-

specting it:

DI by inspecting function signatures (src/allocation/bootstrap.py)

def inject dependencies(handler, dependencies):
params = inspect.signature(handler).paramete:
deps = {
name: dependency
for name, dependency in dependencies.iter

if name in params

}

return lambda message: handler (message, **dej

2 we inspect our command/event handler’s arguments.

® We match them by name to our dependencies.

https://calibre-pdf-anchor.a/#a1637
https://calibre-pdf-anchor.a/#a1638

© we inject them as kwargs to produce a partial.

EVEN-MORE-MANUAL DI WITH LESS MAGIC

If you're finding the preceding inspect code a little harder to grok,

this even simpler version may appeal to you.

Harry wrote the code for inject dependencies() as a first cut
of how to do “manual” dependency injection, and when he saw it, Bob

accused him of overengineering and writing his own DI framework.

It honestly didn’t even occur to Harry that you could do it any more

plainly, but you can, like this:

Manually creating partial functions inline (src/allocation/bootstrap.py)

injected event handlers = {
events.Allocated: |
lambda e: handlers.publish allocated
lambda e: handlers.add allocation to
1/
events.Deallocated: |
lambda e: handlers.remove allocation
lambda e: handlers.reallocate(e, uow
1/
events.OutOfStock: [

lambda e: handlers.send out of stock.

}

injected command handlers = ({
commands.Allocate: lambda c: handlers.al.
commands .CreateBatch: \
lambda c: handlers.add batch(c, uow),
commands .ChangeBatchQuantity: \

lambda c: handlers.change batch gquant

Harry says he couldn’t even imagine writing out that many lines of
code and having to look up that many function arguments manually.
This is a perfectly viable solution, though, since it’s only one line of
code or so per handler you add, and thus not a massive maintenance

burden even if you have dozens of handlers.

Our app is structured in such a way that we always want to do depen-
dency injection in only one place, the handler functions, so this super-
manual solution and Harry’s inspect () -based one will both work

fine.

If you find yourself wanting to do DI in more things and at different
times, or if you ever get into dependency chains (in which your de-
pendencies have their own dependencies, and so on), you may get

some mileage out of a “real” DI framework.

At MADE, we’ve used Inject in a few places, and it’s fine, although it
makes Pylint unhappy. You might also check out Pung, as written by

Bob himself, or the DRY-Python crew’s dependencies.

Message Bus Is Given Handlers at
Runtime

Our message bus will no longer be static; it needs to have the al-
ready-injected handlers given to it. So we turn it from being a module

into a configurable class:

MessageBus as a class

(src/allocation/service layer/messagebus.py)

class MessageBus: @

def init (
self,
uow: unit of work.AbstractUnitOfWork,
event handlers: Dict[Type[events.Event],

command handlers: Dict[Type[commands.Com

self.uow = uow

self.event handlers = event handlers

https://pypi.org/project/Inject
https://pypi.org/project/punq
https://github.com/dry-python/dependencies

self.command handlers = command handlers

def handle(self, message: Message): ©
self.queue = [message] ©
while self.queue:
message = self.queue.pop(0)
if isinstance(message, events.Event)
self.handle event (message)
elif isinstance(message, commands.Corl
self.handle command(message)
else:

raise Exception(f'{message} was 1

The message bus becomes a class...

...which is given its already-dependency-injected handlers.

The main handle () function is substantially the same, with

just a few attributes and methods moved onto self .

Using self.queue like this is not thread-safe, which might
be a problem if you’re using threads, because the bus instance
is global in the Flask app context as we’ve written it. Just some-

thing to watch out for.

https://calibre-pdf-anchor.a/#a1653

What else changes in the bus?

Event and command handler logic stays the same

(src/allocation/service layer/messagebus.py)

def handle event(self, event: events.Event):
for handler in self.event handlers[type (¢
try:
logger.debug('handling event $%s 1
handler (event) @
self.queue.extend(self.uow.collec
except Exception:
logger.exception('Exception hand:

continue

def handle command(self, command: commands.Cc
logger.debug('handling command %s', comm:
try:
handler = self.command handlers[type
handler (command) @
self.queue.extend(self.uow.collect ne¢

except Exception:

logger.exception('Exception handling

raise

° handle event and handle command are substantially

the same, but instead of indexing into a static
EVENT HANDLERS or COMMAND HANDLERS dict, they use

the versionson self.

Instead of passing a UoW into the handler, we expect the han-
dlers to already have all their dependencies, so all they need is

a single argument, the specific event or command.

Using Bootstrap in Our Entrypoints

In our application’s entrypoints, we now just call
bootstrap.bootstrap() and geta message bus that’s ready to

go, rather than configuring a UoW and the rest of it:

Flask calls bootstrap (src/allocation/entrypoints/flask_app.py)

—-from allocation import views

+from allocation import bootstrap, views

app = Flask(__name)
-orm.start mappers() @

+bus = bootstrap.bootstrap()

https://calibre-pdf-anchor.a/#a1666

@Qapp.route("/add batch", methods=['POST'])
@@ -19,8 +16,7 @@ def add batch():
cmd = commands.CreateBatch(
request.json['ref'], request.json|['sku’

)
- uow = unit of work.SqlAlchemyUnitOfWork() ¢

- messagebus.handle(cmd, uow)
-+ bus.handle(cmd) @
return 'OK', 201

% weno longer need to call start orm() ; the bootstrap

script’s initialization stages will do that.
® Weno longer need to explicitly build a particular type of UoW,

the bootstrap script defaults take care of it.

© Andour message bus is now a specific instance rather than the

global module.2

Initializing DI in Our Tests

In tests, we can use bootstrap.bootstrap() with overridden
defaults to get a custom message bus. Here’s an example in an inte-

gration test:

Overriding bootstrap defaults (tests/integration/test views.py)

def sglite bus(sglite session factory):

bus = bootstrap.bootstrap(
start orm=True, ©
uow=unit of work.SglAlchemyUnitOfWork(sq:
send mail=lambda *args: None, @
publish=lambda *args: None,

)

yield bus

clear mappers()

def test allocations view(sqlite bus):
sglite bus.handle(commands.CreateBatch('skull

sglite bus.handle(commands.CreateBatch('sku?2l

assert views.allocations('orderl', sqglite bus
{'sku': 'skul', 'batchref': 'skulbatch'},
{'sku': 'sku2', 'batchref': 'sku2batch'},

° We do still want to start the ORM...

® because we're going to use a real UoW, albeit with an in-

memory database.

https://calibre-pdf-anchor.a/#a1689

© But we don’t need to send email or publish, so we make those

noops.

In our unit tests, in contrast, we can reuse our FakeUnitOfWork :

Bootstrap in unit test (tests/unit/test_handlers.py)

def bootstrap test app():
return bootstrap.bootstrap(
start orm=False, @
uow=FakeUnitOfWork(), @
send mail=lambda *args: None, @

publish=lambda *args: None, &

° No need to start the ORM...
@ ...because the fake UoW doesn’t use one.
(3]

We want to fake out our email and Redis adapters too.

So that gets rid of a little duplication, and we’ve moved a bunch of

setup and sensible defaults into a single place.

EXERCISE FOR THE READER 1

Change all the handlers to being classes as per the DI using classes
example, and amend the bootstrapper’s DI code as appropriate. This
will let you know whether you prefer the functional approach or the

class-based approach when it comes to your own projects.

Building an Adapter “Properly”: A
Worked Example
To really get a feel for how it all works, let’s work through an example

of how you might “properly” build an adapter and do dependency in-

jection for it.
At the moment, we have two types of dependencies:

Two types of dependencies

(src/allocation/service layer/messagebus.py)

uow: unit of work.AbstractUnitOfWork, @
send mail: Callable, @
publish: Callable, @

The UoW has an abstract base class. This is the heavyweight
option for declaring and managing your external dependency.
We’d use this for the case when the dependency is relatively

complex.

Our email sender and pub/sub publisher are defined as func-

tions. This works just fine for simple dependencies.
Here are some of the things we find ourselves injecting at work:

« An S3 filesystem client
« A key/value store client

« A requests session object

Most of these will have more-complex APIs that you can’t capture as

a single function: read and write, GET and POST, and so on.

Even though it’s simple, let’s use send mail as an example to talk

through how you might define a more complex dependency.

Define the Abstract and Concrete
Implementations

We’ll imagine a more generic notifications API. Could be email, could

be SMS, could be Slack posts one day.

An ABC and a concrete implementation

(src/allocation/adapters/notifications.py)

class AbstractNotifications(abc.ABC):

def send(self, destination, message):

raise NotImplementedError

class EmailNotifications(AbstractNotifications):

def init (self, smtp host=DEFAULT HOST, Dp
self.server = smtplib.SMTP(smtp host, po:

self.server.noop()

def send(self, destination, message):
msg = f'Subject: allocation service noti:
self.server.sendmail (
from addr='allocations@example.com',
to_addrs=[destination],

msg=msg

We change the dependency in the bootstrap script:

Notifications in message bus (src/allocation/bootstrap.py)

def bootstrap(
start orm: bool = True,
uow: unit of work.AbstractUnitOfWork = unit
- send mail: Callable = email.send,
+ notifications: AbstractNotifications = Emai.
publish: Callable = redis eventpublisher.pul

) —> messagebus.MessageBus:

Make a Fake Version for Your Tests
We work through and define a fake version for unit testing:

Fake notifications (tests/unit/test_handlers.py)

class FakeNotifications(notifications.AbstractNof

def init (self):
self.sent = defaultdict(list) # type: D:

def send(self, destination, message):

self.sent[destination].append(message)

And we use it in our tests:

Tests change slightly (tests/unit/test_handlers.py)

def test sends email on out of stock error (s

fake notifs = FakeNotifications()

bus = bootstrap.bootstrap(
start orm=False,
uow=FakeUnitOfWork(),
notifications=fake notifs,
publish=lambda *args: None,

)

bus.handle(commands.CreateBatch("bl", "P(

bus.handle(commands.Allocate("ol", "POPUI

assert fake notifs.sent['stock@made.com'
f"Out of stock for POPULAR-CURTAINS",

Figure Out How to Integration Test the Real Thing

Now we test the real thing, usually with an end-to-end or integration
test. We've used MailHog as a real-ish email server for our Docker

dev environment:

Docker-compose config with real fake email server (docker-

compose.yml)

https://github.com/mailhog/MailHog

version: "3"

services:

redis pubsub:
build:
context:
dockerfile: Dockerfile

image: allocation-image

api:

image: allocation-image

postgres:
image: postgres:9.6

redis:

image: redis:alpine

mailhog:
image: mailhog/mailhog
ports:
- "11025:1025"
- "18025:8025"

In our integration tests, we use the real EmailNotifications

class, talking to the MailHog server in the Docker cluster:

Integration test for email (tests/integration/test_email.py)

def

def

def

bus(sglite session factory):

bus = bootstrap.bootstrap(
start orm=True,
uow=unit of work.SglAlchemyUnitOfWork(sqg:
notifications=notifications.EmailNotific:
publish=lambda *args: None,

)

yield bus

clear mappers()

get email from mailhog(sku): &
host, port = map(config.get email host and p«
all emails = requests.get(f'http://{host}:{pc

return next(m for m in all emails['items'] 1i:

test out of stock email(bus):
sku = random sku()
bus.handle(commands.CreateBatch(batchl', skt

bus.handle(commands.Allocate('orderl’, sku,

email = get email from mailhog(sku)
assert email['Raw']['From'] == 'allocations@¢

assert email['Raw']['To'] == ['stock@made.cor

assert f£'Out of stock for {sku}' in email] 'R:

We use our bootstrapper to build a message bus that talks to

the real notifications class.
We figure out how to fetch emails from our “real” email server.
We use the bus to do our test setup.

° Against all the odds, this actually worked, pretty much at the

first go!

And that’s it really.

https://calibre-pdf-anchor.a/#a1728
https://calibre-pdf-anchor.a/#a1730
https://calibre-pdf-anchor.a/#a1731

EXERCISE FOR THE READER 2

You could do two things for practice regarding adapters:

1. Try swapping out our notifications from email to SMS notifications
using Twilio, for example, or Slack notifications. Can you find a
good equivalent to MailHog for integration testing?

2. In a similar way to what we did moving from send mail toa
Notifications class, try refactoring our
redis eventpublisher thatis currently justa Callable to

some sort of more formal adapter/base class/protocol.

Wrap-Up

Once you have more than one adapter, you'll start to feel a lot of pain
from passing dependencies around manually, unless you do some

kind of dependency injection.

Setting up dependency injection is just one of many typical setup/ini-
tialization activities that you need to do just once when starting your
app. Putting this all together into a bootstrap script is often a good

idea.

The bootstrap script is also good as a place to provide sensible de-

fault configuration for your adapters, and as a single place to override

those adapters with fakes for your tests.

A dependency injection framework can be useful if you find yourself
needing to do DI at multiple levels—if you have chained dependen-

cies of components that all need DI, for example.

This chapter also presented a worked example of changing an implic-
it/simple dependency into a “proper” adapter, factoring out an ABC,
defining its real and fake implementations, and thinking through inte-

gration testing.

DI AND BOOTSTRAP RECAP

In summary:

1. Define your API using an ABC.

2. Implement the real thing.

3. Build a fake and use it for unit/service-layer/handler tests.

4. Find a less fake version you can put into your Docker environment.
5. Test the less fake “real” thing.

6. Profit!

These were the last patterns we wanted to cover, which brings us to

the end of Part Il. In the epilogue, we’ll try to give you some pointers

for applying these techniques in the Real World™.

- Because Python is not a “pure” OO language, Python developers aren’t necessari-
ly used to the concept of needing to compose a set of objects into a working appli-

cation. We just pick our entrypoint and run code from top to bottom.

* Mark Seemann calls this Pure DI or sometimes Vanilla DI.

: However, it’s still a global inthe £lask app module scope, if that makes sense.
This may cause problems if you ever find yourself wanting to test your Flask app in-
process by using the Flask Test Client instead of using Docker as we do. It’s worth

researching Flask app factories if you get into this.

https://oreil.ly/iGpDL
https://oreil.ly/_a6Kl

Epilogue

What Now?

Phew! We’ve covered a lot of ground in this book, and for most of our
audience all of these ideas are new. With that in mind, we can’t hope
to make you experts in these techniques. All we can really do is show
you the broad-brush ideas, and just enough code for you to go ahead

and write something from scratch.

The code we’ve shown in this book isn’t battle-hardened production
code: it’s a set of Lego blocks that you can play with to make your first

house, spaceship, and skyscraper.

That leaves us with two big tasks. We want to talk about how to start
applying these ideas for real in an existing system, and we need to
warn you about some of the things we had to skip. We’ve given you a
whole new arsenal of ways to shoot yourself in the foot, so we should

discuss some basic firearms safety.

How Do | Get There from Here?

Chances are that a lot of you are thinking something like this:

“OK Bob and Harry, that’s all well and good, and if | ever get hired to
work on a green-field new service, | know what to do. But in the
meantime, I’'m here with my big ball of Django mud, and | don’t see
any way to get to your nice, clean, perfect, untainted, simplistic mod-

el. Not from here.”

We hear you. Once you’ve already built a big ball of mud, it’s hard to
know how to start improving things. Really, we need to tackle things

step by step.

First things first: what problem are you trying to solve? Is the software
too hard to change? Is the performance unacceptable? Have you got

weird, inexplicable bugs?

Having a clear goal in mind will help you to prioritize the work that
needs to be done and, importantly, communicate the reasons for do-
ing it to the rest of the team. Businesses tend to have pragmatic ap-
proaches to technical debt and refactoring, so long as engineers can

make a reasoned argument for fixing things.

TIP
Making complex changes to a system is often an easier sell if you link it to feature
work. Perhaps you’re launching a new product or opening your service to new mar-
kets? This is the right time to spend engineering resources on fixing the founda-
tions. With a six-month project to deliver, it’s easier to make the argument for three

weeks of cleanup work. Bob refers to this as architecture tax.

Separating Entangled
Responsibilities

At the beginning of the book, we said that the main characteristic of a
big ball of mud is homogeneity: every part of the system looks the
same, because we haven’t been clear about the responsibilities of
each component. To fix that, we’ll need to start separating out respon-
sibilities and introducing clear boundaries. One of the first things we

can do is to start building a service layer (Eigure E-1).

@ Workspace
/ T

@ Folder has members

contains owns
manages
has
@ Document H@ Version @ Account
has

Figure E-1. Domain of a collaboration system

This was the system in which Bob first learned how to break apart a

ball of mud, and it was a doozy. There was logic everywhere—in the
web pages, in manager objects, in helpers, in fat service classes that
we’d written to abstract the managers and helpers, and in hairy com-

mand objects that we’d written to break apart the services.

If you’re working in a system that’s reached this point, the situation
can feel hopeless, but it’s never too late to start weeding an over-
grown garden. Eventually, we hired an architect who knew what he

was doing, and he helped us get things back under control.

Start by working out the use cases of your system. If you have a user
interface, what actions does it perform? If you have a backend pro-
cessing component, maybe each cron job or Celery job is a single
use case. Each of your use cases needs to have an imperative name:
Apply Billing Charges, Clean Abandoned Accounts, or Raise Pur-

chase Order, for example.

In our case, most of our use cases were part of the manager classes
and had names like Create Workspace or Delete Document Version.

Each use case was invoked from a web frontend.

We aim to create a single function or class for each of these support-
ed operations that deals with orchestrating the work to be done. Each

use case should do the following:

Start its own database transaction if needed

Fetch any required data

Check any preconditions (see the Ensure pattern in Appendix E)

Update the domain model

Persist any changes

Each use case should succeed or fail as an atomic unit. You might
need to call one use case from another. That’s OK; just make a note

of it, and try to avoid long-running database transactions.

NOTE
One of the biggest problems we had was that manager methods called other man-
ager methods, and data access could happen from the model objects themselves.

It was hard to understand what each operation did without going on a treasure hunt
across the codebase. Pulling all the logic into a single method, and using a UoW to

control our transactions, made the system easier to reason about.

CASE STUDY: LAYERING AN OVERGROWN SYSTEM

Many years ago, Bob worked for a software company that had out-
sourced the first version of its application, an online collaboration

platform for sharing and working on files.

When the company brought development in-house, it passed through
several generations of developers’ hands, and each wave of new de-

velopers added more complexity to the code’s structure.

At its heart, the system was an ASP.NET Web Forms application,
built with an NHibernate ORM. Users would upload documents into
workspaces, where they could invite other workspace members to re-

view, comment on, or modify their work.

Most of the complexity of the application was in the permissions mod-
el because each document was contained in a folder, and folders al-

lowed read, write, and edit permissions, much like a Linux filesystem.

Additionally, each workspace belonged to an account, and the ac-

count had quotas attached to it via a billing package.

As a result, every read or write operation against a document had to
load an enormous number of objects from the database in order to
test permissions and quotas. Creating a new workspace involved
hundreds of database queries as we set up the permissions struc-

ture, invited users, and set up sample content.

Some of the code for operations was in web handlers that ran when a
user clicked a button or submitted a form; some of it was in manager
objects that held code for orchestrating work; and some of it was in
the domain model. Model objects would make database calls or copy

files on disk, and the test coverage was abysmal.

To fix the problem, we first introduced a service layer so that all of the
code for creating a document or workspace was in one place and
could be understood. This involved pulling data access code out of
the domain model and into command handlers. Likewise, we pulled
orchestration code out of the managers and the web handlers and

pushed it into handlers.

The resulting command handlers were long and messy, but we’d

made a start at introducing order to the chaos.

TIP
It’s fine if you have duplication in the use-case functions. We’re not trying to write

perfect code; we’re just trying to extract some meaningful layers. It’s better to dupli-
cate some code in a few places than to have use-case functions calling one anoth-

er in a long chain.

This is a good opportunity to pull any data-access or orchestration

code out of the domain model and into the use cases. We should also

try to pull I/O concerns (e.g., sending email, writing files) out of the
domain model and up into the use-case functions. We apply the tech-

niques from Chapter 3 on abstractions to keep our handlers unit

testable even when they’re performing 1/0O.

These use-case functions will mostly be about logging, data access,

and error handling. Once you’ve done this step, you’ll have a grasp of
what your program actually does, and a way to make sure each oper-
ation has a clearly defined start and finish. We’ll have taken a step to-

ward building a pure domain model.

Read Working Effectively with Legacy Code by Michael C. Feathers
(Prentice Hall) for guidance on getting legacy code under test and

starting separating responsibilities.

|dentifying Aggregates and Bounded
Contexts

Part of the problem with the codebase in our case study was that the
object graph was highly connected. Each account had many work-
spaces, and each workspace had many members, all of whom had
their own accounts. Each workspace contained many documents,

which had many versions.

You can’t express the full horror of the thing in a class diagram. For
one thing, there wasn't really a single account related to a user. In-
stead, there was a bizarre rule requiring you to enumerate all of the
accounts associated to the user via the workspaces and take the one

with the earliest creation date.

Every object in the system was part of an inheritance hierarchy that
included SecureObject and Version . This inheritance hierarchy
was mirrored directly in the database schema, so that every query
had to join across 10 different tables and look at a discriminator col-

umn just to tell what kind of objects you were working with.

The codebase made it easy to “dot” your way through these objects

like so:

user.account.workspaces[0].documents.versions[1]

Building a system this way with Django ORM or SQLAIchemy is easy
but is to be avoided. Although it’'s convenient, it makes it very hard to
reason about performance because each property might trigger a

lookup to the database.

TIP
Aggregates are a consistency boundary. In general, each use case should update a
single aggregate at a time. One handler fetches one aggregate from a repository,
modifies its state, and raises any events that happen as a result. If you need data
from another part of the system, it’s totally fine to use a read model, but avoid up-
dating multiple aggregates in a single transaction. When we choose to separate
code into different aggregates, we’re explicitly choosing to make them eventually

consistent with one another.

A bunch of operations required us to loop over objects this way —for

example:

Lock a user's workspaces for nonpayment
def lock account(user):

for workspace in user.account.workspaces:

workspace.archive()

Or even recurse over collections of folders and documents:

def lock documents in folder(folder):

for doc in folder.documents:

doc.archive()

for child in folder.children:

lock documents in folder(child)

These operations killed performance, but fixing them meant giving up
our single object graph. Instead, we began to identify aggregates and

to break the direct links between objects.

NOTE
We talked about the infamous SELECT N+1 problem in Chapter 12, and how we
might choose to use different techniques when reading data for queries versus

reading data for commands.

Mostly we did this by replacing direct references with identifiers.

Before aggregates:

@ Document

workspace: Workspace

- @ DocumentVersion

parent: Folder tidle = _
versions: List[DocumentVersion] version number: int
document: Document
add_version () — '.
K
|I |I |I
|I I| 'l
Y | ||
(C) Workspace L | (C) Folder \-\\
account: Account parent: Workspace \-. \ I|
owner: User children: List[Folder]) | [
members: List[User] copy._to(target: Folder) = f'l /
add_member(member: User) | —>| add_document(document: Document) /; jf
/

<

v
Account

packages :

(C) BilingPackage Ix—

owner : User

workspaces: List[Workspace]

List[BillingPackage]

account: Account

by

After modeling with aggregates:

add_package)

Document
' Account | Workspace,
© Document - © Workspace
R @ — account_id: int .
parent folder: int owner : int o
owner: int

versions: List[DocumentVersion]

add_version ()

© DocumentVersion

fitle : str

packages : List[BillingPackage]

members: List[int]

add_package ()

version_number: int

add member(member: int)

| Foker

© Folder

workspace id : int
children: List[int]

copy_to(target: int)

(C) BilingPackage

TIP

Bidirectional links are often a sign that your aggregates aren’t right. In our original
code, a Document knew about its containing Folder , and the Folder had a
collection of bocuments . This makes it easy to traverse the object graph but
stops us from thinking properly about the consistency boundaries we need. We
break apart aggregates by using references instead. In the new model, a
Document had reference to its parent folder but had no way to directly ac-
cess the Folder.

If we needed to read data, we avoided writing complex loops and
transforms and tried to replace them with straight SQL. For example,

one of our screens