E -

i

Python
Challenges

100 Proven Programming Tasks Designed
to Prepare You for Anything

Michael Inden

APIess”

Michael Inden

Python Challenges

100 Proven Programming Tasks Designed to
Prepare You for Anything

Apress*

Michael Inden

Zurich, Switzerland

ISBN 978-1-4842-7397-5 e-ISBN 978-1-4842-7398-2
https://doi.org/10.1007/978-1-4842-7398-2
© Michael Inden 2022

This work 1s subject to copyright. All rights are solely and exclusively
licensed by the Publisher, whether the whole or part of the material is
concerned, specifically the rights of reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other
physical way, and transmission or information storage and retrieval,
electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service
marks, etc. in this publication does not imply, even in the absence of a
specific statement, that such names are exempt from the relevant protective
laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice
and information in this book are believed to be true and accurate at the date
of publication. Neither the publisher nor the authors or the editors give a
warranty, expressed or implied, with respect to the material contained
herein or for any errors or omissions that may have been made. The
publisher remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

This Apress imprint is published by the registered company APress

Media, LLC part of Springer Nature.

The registered company address is: 1 New York Plaza, New York, NY
10004, U.S.A.

https://doi.org/10.1007/978-1-4842-7398-2

For our lovely princess Sophie Jelena

Preface
First of all, thank you for choosing this book. In it you will find a wide

range of practice exercises on a broad mix of topics that will help you

improve your Python coding skills in an enjoyable manner.
Practice Makes Perfect

We all know the saying practice makes perfect. In crafts and other ar-
eas of real life, there is a lot of practice, but the serious case is rare,
such as in sports, music, and other fields. Oddly enough, this is often
significantly different for us software developers. We actually spend
almost all of our time implementing and tend to rarely spend time

practicing and learning—sometimes not at all. Why is that?

Presumably, this is due to the time pressure that usually dominates
our professional lives, and the fact that there isn’t much suitable exer-
cise material available, even if there are textbooks on algorithms and
coding. Those tend to be either too theoretical or too source code-fo-
cused and contain too little explanation of the solutions. This book

aims to change that.

Why This Book?

So how did | come to tackle this book project? There are several rea-

sons. On the one hand, | was asked again and again by mail or per-

sonally by participants of my workshops for a tutorial book as a sup-
plement to my book Der Weg zum Java-Profi[Ind20]. That’s how the

first idea came about.

What really triggered the whole thing was that a recruiter from Google
approached me quite by surprise with an employment opportunity. As
preparation for the upcoming interviews and to refresh my knowl-
edge, | started to search for suitable material. Additionally, | devel-
oped some exercises for myself. In the process, | discovered the
great, but also partly quite challenging book Cracking the Coding In-
terview by Gayle Laakmann McDowell [McD16], which inspired me

further.

As a result, | initially set out on a Java-focused book project called
Java Challenges in German and later in English. In the meantime, the
idea came up to implement something similar for Python, first as a
German version and later as an English version. So this Python
edition is based on the Java version, but the whole book was revised
and “Pythonified.” For this purpose, | added, slightly modified, or par-
tially removed things in some places. In particular, | show (if appropri-
ate) how to use Python features like List Comprehensions and so on

to make solutions more concise.

Who Is This Book Aimed At?

This book is explicitly not intended for programming novices. It is
aimed at readers who already have basic or even good knowledge of
Python and want to deepen it with exercises. By solving small pro-
gramming exercises, you will expand your knowledge about Python,

algorithms, and sound OO design in an entertaining way.

The following target groups are addresses in particular:

. High school and college students: First of all, this book is
meant for pupils with an interest in computer science as well as for
students of computer science who already know Python quite well
as a language and now want to deepen their knowledge by tack-
ling some exercises.

. Teachers and lecturers: Of course, teachers and lecturers
may also benefit from this book and its large number of exercises
of varying difficulty, either as a stimulus for their own teaching or
as a template for exercises or exams.

. Hobby programmers and young professionals: In addition,
the book is aimed at dedicated hobby programmers and also
young professionals who like to program with Python and want to
develop themselves further. Furthermore, solving the exercises will
help them to be well prepared for potential questions in job

interviews.

Experienced software developers and architects: Finally,
the book is intended for experienced software developers and ar-
chitects who want to supplement or refresh their knowledge to be
able to assist their junior colleagues more effectively and are look-
ing for some inspiration and fresh ideas to do so. In addition, vari-
ous exercises can also be used in job interviews, with the conve-
nience of having the sample solutions directly at hand for compari-
son. Also, for the old hands there should be one or two “aha” expe-
riences while finding solutions and rethinking about algorithms and
data structures.

What Does This Book Teach?

This book provides a widespread mix of exercises on different topics.
Some puzzles may not be of direct, practical importance, but indirect-

ly they help improve your creativity and your ability to find solutions.

In addition to exercises and documented solutions, each topic cov-
ered in the book starts with a short introduction. You can use the in-
troductions to get up to speed with the exercises to about the level of
difficulty. In each subject area, there are always a few easier exercis-
es to get you started. With a little practice, you should also be able to
tackle more difficult problems. Occasionally there are some really
challenging exercises, which experts can try their hand at (or those

who want to become experts).

Practical Tips and Advice

This book is packed with various practical tips. They include interest-

ing background information as well as pitfalls to avoid.

HINT: TIP FROM THE TRENCHES
[In boxes formatted like this you will find some tips worth knowing and

additional hints to the actual text later in the book.

Difficulty Level at a Glance

A well-balanced, appealing exercise book needs a large number of
tasks of different levels of difficulty, which offer you as a reader the
possibility to improve your knowledge step by step. Although | as-

sume a good understanding of Python, the solutions never require

deep knowledge of a specific topic or special language features.

To keep the level of difficulty obvious and straightforward, I use the star
categorization known from other areas, whose meaning in this context is
explained in more detail in Table 0-1.

Table 0-1 Levels of Diffiulty

Stars o
_ Estimation Duration
(meaning)
These tasks should be solvable in a
K Yot
few minutes with simple Python <15 min
(very easy)
knowledge.

The tasks require a little bit of think-
Feh st de :

ing, but then they are directly <30 min
(easy)

solvable.

Stars

(meaning)

Aok e v

(medium)

1 0. 0.0, 81
(difficult)

Kook kA ok

(very
difficult)

Estimation

The tasks are not overly challenging,
but need some thinking, a little bit of
strategy and sometimes a look at dif-

ferent constraints.

Proven problem-solving strategies,
good knowledge of data structures,
and Python knowledge are required

for the solution.

The tasks are really tricky and diffi-
cult to solve. These exercises should
only be tried once you’re able to
solve the book’s easier exercises

without difficulty.

Duration

~ 30—

45 min

~ 45—

90 min

> 60 min

These ratings are only estimations from my side and are rather rough

classifications. Please keep in mind that the difficulty perceived by

each individual also depends very much on their background and lev-

el of knowledge. | have seen colleagues have a hard time with tasks

that | considered quite easy. But | also know the opposite: While oth-

ers seem to solve a task easily, you are in despair yourself because
the penny just won’t drop. Sometimes a break with a coffee or a short
walk helps. Do not get demotivated! Everyone struggles with some

task at some time or another.

NOTE: POSSIBLE ALTERNATIVES TO THE SAMPLE
[SOLUTIONSPIlease note that for some problems there are almost

always some variants, which might be even be more catchy for you.

Therefore | will present interesting alternatives to the (sample) solu-

ltion from time to time as food for thought.

Structure of This Book

Now that you have a rough picture of the contents of this book, | will
introduce the topics of each chapter briefly. As indicated, the exercis-
es are grouped thematically. In this context, the six chapters after the
introduction build the basis and the subsequent three chapters deal

with more advanced topics.

Chapter 1: This chapter describes the basic structure of the following
chapters with an introduction, exercises, and solutions. Additionally, it
provides a framework for the unit tests that are often used to prove
that the solutions are working. Finally, | give some hints for trying out

the examples and solutions.

Chapter 2: The second chapter is dedicated to mathematical opera-
tions as well as tasks about prime numbers and the Roman numeral

system. Besides, | present a few ideas for number games.

Chapter 3: Recursion is an important basic building block concerning
the definition of algorithms. This chapter provides a short introduc-
tion, and the various exercises should help you to understand

recursion.

Chapter 4: Strings are known to be sequences of characters that of-
fer a variety of methods. A solid understanding is important since al-
most no program can operate without strings. Therefore you will get

to know the processing of strings through various exercises.

Chapter 5: Python offers lists, sets, and dictionaries by default. For
everyday programming, a proficient use of all three containers is of

great advantage, and you’ll get training through the exercises.

Chapter 6: Arrays form basic building blocks in many programming
languages. In Python, lists are more common. Regarding perfor-
mance and memory consumption, arrays have advantages, which is

reason enough to take a closer look at the whole thing in this chapter.

Chapter 7: Chapter 3 covered the topic of recursion in an introductory
manner. This chapter reveals more advanced aspects of recursion.

You start with the optimization technique called memoization. After

that, you look at backtracking as a problem-solving strategy, which is
based on trial and error. Just trying out possible solutions may help

keep various algorithms fairly understandable and elegant.

Chapter 8: Tree structures play an important role in computer sci-
ence theory and practice. In many application contexts, trees can be
used profitably. This is the case, for example, for the administration of
a file system, the representation of a project with subprojects and

tasks, or a book with chapters, subchapters, and sections.

Chapter 9: Searching and sorting are two elementary topics in com-
puter science in the area of algorithms and data structures. The
Python standard library implements both of them and thus does the
work for you. However, it is also worth looking behind the scenes, for
example, at different sorting methods and their specific strengths and

weaknesses.

Chapter 10: In this chapter, | summarize the book and give an out-
look on supplementary literature. To expand your skills, besides the
training in programming, it is recommended to study further books. A

selection of helpful titles closes the main part of this book.

Appendix A: Unit tests have proven to be useful for testing smaller

modules. Many of the solutions created in this book are tested with

unit tests using pytest. This appendix provides an introduction to the

topic.

Appendix B: This appendix describes decorators. They allow ele-
gant realizations of cross-cutting functionality to be done transparent-
ly (i. e., without extensions in the implementation of a function itself).
For example, decorators can be used for parameter checks and for

memoization, an advanced recursion topic.

Appendix C: In this book, | sometimes estimate the running time be-
havior and classify the complexity of algorithms. This appendix

presents essentials about it.

Appendix D: This appendix presents some of the enhancements

coming with the current Python 3.10 that may be relevant to you.

Conventions and Executable Programs

Fonts Used

Throughout the text, the following conventions are applied concerning

fonts:

« Normal text appears in the present font.

« Important text passages are marked jtalic or italic and bold.

« Sourcecode listings are written in this font to clarify that this
text is a part of a Python program. Also, classes, methods, func-

tion, and parameters are displayed in this font.

Abbreviations Used

In the book, I use the abbreviations shown in Table 0-2. Other abbreviations

are listed in parentheses in the running text after their first definition and

subsequently used as needed.
Table 0-2 Abbreviations

Abbreviation Meaning

API Application programming interface

American Standard Code for Information

ASCII
Interchange
(G)UI (Graphical) user interface
IDE Integrated development environment

Python Version Used

This book was initially developed and tested with Python 3.9.6 but
rechecked with the new Python 3.10, which was released in October
2021 and is briefly covered in Appendix D. Many of the solutions
should also run in Python 2.7 with minimal adjustments. However, |
have only randomly checked this. In general, it makes sense to use

the more modern Python 3 for new projects.

Download, Source Code, and Executables

The source code of the examples is available at

WWw.apress.com/python-challenges.

There is a PyCharm project! integrated. Because this is a hands-on
book, many of the programs are executable—it is possible to run

them in the IDE or as a unit test.

However, many code snippets are great to try out in the Python com-
mand line interpreter. To ensure this, functions that have already

been developed are shown again at suitable places.

Some examples use special libraries that must be installed up front, like
numpy, pytest, and others, as follows:2
pip install pytest
pip install numpy

Please consult the installation instructions provided on the download

site for further information.

http://www.apress.com/python-challenges

Acknowledgments (English Book)

First of all, | am very grateful to all the people mentioned below in the
acknowledgments section for the German version of this book. Mak-
ing this English version more than a dream and realizing it was possi-
ble due to the effort of Steve Anglin of APress. He organized a lot to
finalize the contract and all the nitty-gritty details around publishing
rights. Additionally, Mark Powers was a great help by offering infor-
mation on the process and many other things around finalizing the

manuscript. Guys, my warm thanks go to you.

Acknowledgments (German Book)

Writing a technical book is a beautiful but laborious and tedious task.
You can hardly do it on your own. Therefore, | would like to thank
those who have directly or indirectly contributed to the book’s emer-
gence. In particular, | benefited from a strong team of proofreaders
during the preparation of the manuscript. It is helpful to learn from dif-

ferent perspectives and experiences.

Many thanks to Martin Stypinski for various valuable hints and sug-
gestions. Also, | want to thank Jean-Claude Brantschen for his practi-
cal proposals. You have Pythonified me even more :-) Multiple com-
ments by Rainer Grimm and Tobias Overkamp around Python and

elegant solutions have further improved the book. Finally, as with

many of my books, Michael Kulla critically reviewed this Python ver-

sion. Many thanks to all of them!

Since this book was written based on the Java version, the acknowl-

edgments in Java Challenge are repeated below:

First of all, | would like to thank Michael Kulla, who is well known as a
trainer for Java SE and Java EE, for his multiple, thorough reviews of
many chapters, the well-founded comments, and great effort. | am
also very grateful to Prof. Dr. Dominik Gruntz for a multitude of sug-
gestions for improvements. Besides, | received one or the other help-
ful suggestions from Jean-Claude Brantschen, Prof. Dr. Carsten
Kern, and Christian Heitzmann. Once again, Ralph Willenborg read it

very carefully and found several typing errors. Many thanks for that!

Thanks also go to the team at dpunkt.verlag (Dr. Michael Barabas,
Anja Weimer, and Veronika Schnabel) for great cooperation. Also, |
would like to thank Torsten Horn for his sound professional review

and Ursula Zimpfer for her eagle eyes in copy editing.

Finally, | would like to thank my wife, Lilija, for her understanding and
support, especially for several nudges to get on the bike and go for a

ride instead of just working on the book.

Suggestions and Criticism

Although great care has been taken and the text was proofread sev-

eral times, misunderstandable formulations or even errors can unfor-
tunately not be completely excluded. If any of these should be notice-
able to you, please do not hesitate to let me know. | am also happy to
receive suggestions or ideas for improvement. Please contact me by

mail at michael inden@hotmail.com.
Zurich, April 2022

Michael Inden

Any source code or other supplementary material referenced by the
author in this book is available to readers on GitHub
(github.com/apress). For more detailed information, please visit

WWW.apress.com/source-code.

Table of Contents
Chapter 1: Introduction

1.1 Structure of the Chapters

1.1.1 Introduction

1.1.2 Exercises

1.1.3 Solutions

1.2 Basic Structure of the PyCharm Project

1.3 Basic Framework for Unit Tests with Pytest
1.4 Note on Programming Style

1.4.1 Thoughts on Source Code Compactness

1.4.2 Example 1

1.4.3 Example 2

1.4.4 Decorators and Sanity Checks at the Beginning_of
Functions

1.4.5 Block Comments in Listings

1.4.6 PEP 8 and the Zen of Python

1.4.7 More Information

1.5 Note on the Exercises
1.6 Trying Out the Examples and Solutions
1.7 Let’s Go: Discovering the Python Challenge

Part I: Fundamentals
Chapter 2: Mathematical Problems

2.1 Introduction

2.1.1 Short Introduction to Division and Modulo
2.1.2 Short Introduction to Divider

2.1.3 Short Introduction to Prime Numbers

2.1.4 Roman Numbers

2.1.5 Number Games

2.1.6 Getting Started with Lambdas

2.2 Exercises

2.2.1 Exercise 1: Basic Arithmetic (K cvesei)
2.2.2 Exercise 2: Number as Text (K k¥cyy)

2.2.3 Exercise 3: Perfect Numbers (K Kk c5ri)
2.2.4 Exercise 4: Prime Numbers (k& s ¥r)

2.2.5 Exercise 5: Prime Number Pairs (k)
2.2.6 Exercise 6: Checksum (K Kk ¥ryrv¥)

2.2.7 Exercise 7: Roman Numbers (k% %k k)
2.2.8 Exercise 8: Combinatorics (Fkxk vri¥)

2.2.9 Exercise 9: Armstrong Numbers (kv vr)
2.2.10 Exercise 10;: Max Change Calculator (X &k %k k)
2.2.11 Exercise 11: Related Numbers (A k)
2.2.12 Exercise 12: Prime Factorization (& k¥ r)
2.3 Solutions

2.3.1 Solution 1: Basic Arithmetic (H s ¥e5¥)
2.3.2 Solution 2: Number as Text (ki)

2.3.3 Solution 3: Perfect Numbers (kK5 v¥)
2.3.4 Solution 4: Prime Numbers (k¥ ryrv¥)

2.3.5 Solution 5: Prime Number Pairs (ki)
2.3.6 Solution 6: Checksum (ks ¥rr)

2.3.7 Solution 7: Roman Numbers (k% %k)
2.3.8 Solution 8: Combinatorics (kv ¥rv¥)

2.3.9 Solution 9: Armstrong Numbers (kK vy)

2.3.10 Solution 10;: Max Change Calculator (% % k)
2.3.11 Solution 11: Related Numbers (kv i)

2.3.12 Solution 12: Prime Factorization (% k¥ r)

2.4 Summary: What You Learned

Chapter 3: Recursion

3.1 Introduction

3.1.1 Mathematical Examples
3.1.2 Algorithmic Examples

3.1.3 Steps When Multiplying the Digits of a Number
3.1.4 Typical Problems: Endless Calls and RecursionError
3.2 Exercises

3.2.1 Exercise 1: Fibonacci (kX ¥c3ri¥)

3.2.2 Exercise 2: Process Digits (kv ¥r)

3.2.3 Exercise 3: GCD (K Kk ycyesy)

3.2.4 Exercise 4: Reverse String (ks ¥ry)

3.2.5 Exercise 5: List Sum (k)

3.2.6 Exercise 6: List Min (ks ¥rr)

3.2.7 Exercise 7: Conversions (X ki)

3.2.8 Exercise 8: Exponential Function (& ¥+r)
3.2.9 Exercise 9: Pascal’s Triangle (kX5 ¥)

3.2.10 Exercise 10: Number Palindromes (k% %k k)
3.2.11 Exercise 11: Permutations (A& ki)

3.2.12 Exercise 12: Count Substrings (K Kk c3rir)
3.2.13 Exercise 13: Ruler (kv ¥e3¥)

3.3 Solutions

3.3.1 Solution 1: Fibonacci (ki)

3.3.2 Solution 2: Process Digits (ks ¥ev¥)

3.3.3 Solution 3: GCD (ks ¥r)

3.3.4 Solution 4: Reverse String (ki)

3.3.5 Solution 5: List Sum (k& ¥rvr)

3.3.6 Solution 6: List Min (k& c¥r)

3.3.7 Solution 7: Conversions (ki)

3.3.8 Solution 8: Exponential Function (ks ¥rsy)
3.3.9 Solution 9: Pascal’s Triangle (K kv ¥r)
3.3.10 Solution 10: Number Palindromes (k% % %)
3.3.11 Solution 11: Permutations (% kv r)
3.3.12 Solution 12: Count Substrings (K kv ¥cv¥)
3.3.13 Solution 13: Ruler (ks ¥rv¥)

3.4 Summary: What You Learned

Chapter 4: Strings
4.1 Introduction
4.1.1 Practically Relevant Functions

4.1.2 Example Conversions and Extractions

4.1.3 Equality

4.1.4 Slicing—Access to Individual Characters and Substrings
4.1.5 Converting a String_into a List of Characters

4.1.6 Iteration

4.1.7 Formatted Output

4.1.8 Character Processing

4.1.9 Example: String Processing
4.2 Exercises
4.2.1 Exercise 1: Number Conversions (k)

4.2.2 Exercise 2: Joiner (ks yevy)

4.2.3 Exercise 3: Reverse String (ks ¥rr)

4.2.4 Exercise 4: Palindrome (k& k)

4.2.5 Exercise 5: No Duplicate Chars (k& k)

4.2.6 Exercise 6;: Remove Duplicate Letters (k& Kk sr)
4.2.7 Exercise 7: Capitalize (A k)

4.2.8 Exercise 8: Rotation (kK rsri)

4.2.9 Exercise 9: Well Formed Braces (kv ¥cv¥)

4.2.10 Exercise 10:

Anagram (K kv)

4.2.11 Exercise 11:
4.2.12 Exercise 12:
4.2.13 Exercise 13:
4.2.14 Exercise 14:
4.2.15 Exercise 15:
4.2.16 Exercise 16:
4.2.17 Exercise 17:

Morse Code (K k wryrv)
Pattern Checker (k& k)

Tennis Score (X ki)
Version Numbers (k¥ vryrvr)

Conversion str_to_number (k Kk vr5ri)
Print Tower (kK r)
Filled Frame (ks ¥r)

4.2.18 Exercise 18:

4.3 Solutions

Guessing Vowels (kv veir)

4.3.1 Solution 1;: Number Conversions (k)
4.3.2 Solution 2: Joiner (¥ ¥r)

4.3.3 Solution 3: Reverse String (ki)

4.3.4 Solution 4: Palindrome (& ¥)

4.3.5 Solution 5: No Duplicate Chars (k& ki)

4.3.6 Solution 6: Remove Duplicate Letters (k& k%)
4.3.7 Solution 7: Capitalize (kv ¥)

4.3.8 Solution 8: Rotation (K ¥ryr)

4.3.9 Solution 9: Well Formed Braces (K kv ¥r)
4.3.10 Solution 10: Anagram (ks ¥r3r)

4.3.11 Solution 11: Morse Code (kv ¥rv¥)
4.3.12 Solution 12: Pattern Checker (k& k)
4.3.13 Solution 13: Tennis Score (K k k)
4.3.14 Solution 14: Version Numbers (kK ryryr)

4.3.15 Solution 15: Conversion str_to_number (ks ¥sr)

4.3.16 Solution 16: Print Tower (K %k kv ¥r)
4.3.17 Solution 17: Filled Frame (k% ¥ +¥)
4.3.18 Solution 18: Guessing Vowels (kv vei¥)
4.4 Summary: What You Learned

Chapter 5: Basic Data Structures: Lists, Sets, and Dictionaries

5.1 Introduction

5.1.1 Sequential Data Types
5.1.2 Lists

5.1.3 Sets

5.1.5 The Stack as a LIFO Data Structure

5.1.6 The Queue as a FIFO Data Structure

5.2 Exercises

5.2.1 Exercise 1: Common Elements (kv ¥rsy)
5.2.2 Exercise 2: Your Own Stack (k)
5.2.3 Exercise 3: List Reverse (ks ¥y)

5.2.4 Exercise 4: Remove Duplicates (X kv ¥r)
5.2.5 Exercise 5: Maximum Profit (d Ak Kk vr¥r)
5.2.6 Exercise 6: Longest Sequence (k& k)

5.2.7 Exercise 7: Well-Formed Braces (K ks vvr)

5.2.8 Exercise 8: Pascal’s Triangle (k% kv r)

5.2.9 Exercise 9: Check Magic Triangle (& k)

5.2.10 Exercise 10: Most Frequent Elements (X Kk vc3r i)

5.2.11 Exercise 11: Addition of Digits (A Ak k)

5.2.12 Exercise 12: List Merge (A Kk rv+¥)

5.2.13 Exercise 13: Excel Magic Select (k)
5.2.14 Exercise 14: Stack-Based Queue (kKX vcyr)

5.3 Solutions

5.3.1 Solution 1;: Common Elements (k& s ¥r)

5.3.2 Solution 2: Your Own Stack (K ks vr)

5.3.3 Solution 3: List Reverse (ks ¥r¥r)

5.3.4 Solution 4;: Remove Duplicates (k)

5.3.5 Solution 5: Maximum Profit (k%)

5.3.6 Solution 6: Longest Sequence (kX kr)

5.3.7 Solution 7: Well-Formed Braces (X k¢ ¥r)

5.3.8 Solution 8: Pascal’s Triangle (& k)

5.3.9 Solution 9: Check Magic Triangle (& k%)

5.3.10 Solution 10: Most Frequent Elements (kK i)

5.3.11 Solution 11: Addition of Digits (& k)

5.3.12 Solution 12: List Merge (kv vr)

5.3.13 Solution 13: Excel Magic Select (k)

5.3.14 Solution 14: Stack-Based Queue (K Kk vr¥ri¥)
5.4 Summary: What You Learned

Chapter 6: Arrays
6.1 Introduction

6.1.1 One-Dimensional Arrays

6.1.2 Multidimensional Arrays

6.1.3 Typical Errors

6.1.4 Special Features

6.1.5 Recapitulation: NumPy

6.2 Exercises

6.2.1 Exercise 1: Even Before Odd Numbers (kX3)
6.2.2 Exercise 2: Flip (ks ¥e5¥)

6.2.3 Exercise 3: Palindrome (kX ¢y ¥)

6.2.4 Exercise 4: Inplace Rotate (& k)

6.2.5 Exercise 5: Jewels Board Init (k& k)

6.2.6 Exercise 6: Jewels Board Erase Diamonds (k& k%)
6.2.7 Exercise 7: Spiral Traversal (k& k)

6.2.8 Exercise 8: Add One to an Array as a Number (ks ¥)
6.2.9 Exercise 9: Sudoku Checker (kX Kk rsr)

6.2.10 Exercise 10: Flood Fill (k)

6.2.11 Exercise 11: Array Min and Max (k)

6.2.12 Exercise 12: Array Split (kK vrvr)

6.2.13 Exercise 13: Minesweeper Board (k& k¥r)

6.3 Solutions

6.3.1 Solution 1: Even Before Odd Numbers (K ki)
6.3.2 Solution 2: Flip (ki)

6.3.3 Solution 3: Palindrome (k¥ ¥c5¥)

6.3.4 Solution 4: Inplace Rotate (K Kk Kk +r)

6.3.5 Solution 5: Jewels Board Init (kK rr)

6.3.6 Solution 6: Jewels Board Erase Diamonds (k& k%)

6.3.7 Solution 7: Spiral Traversal (A k k)

6.3.8 Solution 8: Add One to an Array as a Number (kK ¥cyc)
6.3.9 Solution 9: Sudoku Checker (k k k)

6.3.10 Solution 10: Flood Fill (s ¥r)

6.3.11 Solution 11: Array Min and Max (kv ¥ ¥%)

6.3.12 Solution 12: Array Split (kK +¥)

6.3.13 Solution 13: Minesweeper Board (A Ak ki)

Part II: More Advanced and Tricky Topics
Chapter 7: Advanced Recursion

7.1 Memoization

7.1.1 Memoization for Fibonacci Numbers

7.1.2 Memoization for Pascal’s Triangle

7.1.3 Memoization with Python On-Board Tools
7.2 Backtracking

7.2.1 The n-Queens Problem

7.3 Exercises

7.3.1 Exercise 1: Towers of Hanoi (k& k)

7.3.2 Exercise 2: Edit Distance (k& k)

7.3.3 Exercise 3: Longest Common Subsequence (X k k)
7.3.4 Exercise 4: Way Out of a Labyrinth (k)

7.3.5 Exercise 5: Sudoku Solver (k& k)

7.3.6 Exercise 6: Math Operator Checker (k% %k %)

7.3.7 Exercise 7: Water Jug Problem (k% krv¥)

7.3.8 Exercise 8: All Palindrome Substrings (& k%)

7.3.9 Exercise 9;: The n-Queens Problem (ks kvrv)
7.4 Solutions

7.4.1 Solution 1: Towers of Hanoi (k& k)

7.4.2 Solution 2: Edit Distance (kX k)

7.4.3 Solution 3: Longest Common Subsequence (& k)
7.4.4 Solution 4;: Way Out of a Labyrinth (k& k)

7.4.5 Solution 5: Sudoku Solver (K k k k)

7.4.6 Solution 6: Math Operator Checker (k%)

7.4.7 Solution 7: Water Jug_Problem (% %)

7.4.8 Exercise 8: All Palindrome Substrings (kX k% *)

7.4.9 Solution 9: The n-Queens Problem (k¥ k)

7.5 Summary: What You Learned

Chapter 8: Binary Trees

8.1 Introduction
8.1.1 Structure, Terminology, and Examples of Use
8.1.2 Binary Trees

8.1.3 Binary Trees with Order: Binary Search Trees
8.1.4 Traversals
8.1.5 Balanced Trees and Other Properties

8.1.6 Trees for the Examples and Exercises

8.2 Exercises

8.2.1 Exercise 1: Tree Traversal (K k)

8.2.2 Exercise 2: Inorder, Preorder, and Postorder lterative
b.0.0.0.4%9)

8.2.3 Exercise 3: Tree Height (kk vc+cv¥)

8.2.4 Exercise 4: Lowest Common Ancestor (k% kv r)
8.2.5 Exercise 5: Breadth-First (A kK r¥r)

8.2.6 Exercise 6: Level Sum (k& k%)

8.2.7 Exercise 7: Tree Rotate (kK c¥)

8.2.8 Exercise 8: Reconstruction (k& k)

8.2.9 Exercise 9;: Math Evaluation (kK rv¥)

8.2.10 Exercise 10: Symmetry (kKA scvr)

8.2.11 Exercise 11: Check Binary Search Tree (k& ¥cvr)
8.2.12 Exercise 12: Completeness (kk k% %)

8.2.13 Exercise 13: Tree Printer (k%% %)

8.3 Solutions

8.3.1 Solution 1: Tree Traversal (K k¥ vr)

8.3.2 Solution 2: Inorder, Preorder, and Postorder Iterative
(b.6.0.0.6%¢)

8.3.3 Solution 3: Tree Height (A kv v+r)

8.3.4 Solution 4: Lowest Common Ancestor (k& ki)
8.3.5 Solution 5: Breadth-First (& k)

8.3.6 Solution 6: Level Sum (kX %k5¥)

8.3.7 Solution 7: Tree Rotate (K k Kk +r)

8.3.8 Solution 8: Reconstruction (& Kk c¥)

8.3.9 Solution 9: Math Evaluation (ks)

8.3.10 Solution 10: Symmetry (k)

8.3.11 Solution 11: Check Binary Search Tree (K k¥ ¥r)
8.3.12 Solution 12: Completeness (k% k% %)

8.3.13 Solution 13: Tree Printer (k% %% %)

8.4 Summary: What You Learned

Chapter 9: Searching_and Sorting
9.1 Introduction Search
9.1.1 Search with in(), index(), and count()

9.1.2 Search with rindex()_.and rfind()
9.1.3 Binary Search

9.2 Introduction Sort

9.2.1 Insertion Sort

9.2.2 Selection Sort

9.2.3 Merge Sort

9.2.4 Quick Sort

9.2.5 Bucket Sort
9.2.6 Final Thoughts

9.3 Exercises

9.3.1 Exercise 1: Contains All (ki)
9.3.2 Exercise 2: Partitioning (A& k k+r)
9.3.3 Exercise 3: Binary Search (ki)
9.3.4 Exercise 4: Insertion Sort (K Kk v vr)
9.3.5 Exercise 5: Selection Sort (k)
9.3.6 Exercise 6: Quick Sort (kX c5¥)
9.3.7 Exercise 7: Bucket Sort (K ks ¥r)
9.3.8 Exercise 8: Search in Rotated Data (k& k k)
9.4 Solutions

9.4.1 Solution 1: Contains All (kK ryri)
9.4.2 Solution 2: Partitioning (k% %)
9.4.3 Solution 3: Binary Search (XX ryrv¥)
9.4.4 Solution 4: Insertion Sort (K Kk r3riv)
9.4.5 Solution 5: Selection Sort (K ks vr)

9.4.6 Solution 6: Quick Sort (K Kk Kk ¥r)
9.4.7 Solution 7: Bucket Sort (K Kk ¥r)

9.4.8 Solution 8: Search in Rotated Data (k& k)
9.5 Summary: What You Learned

10.1 Conclusion

10.1.1 Lessons Learned Per Chapter

10.1.2 Noteworthy

10.2 Logic Puzzies

10.2.1 Gold Bags—Detect the Fake

10.2.2 Horse Race—Determine Fastest Three Horses
10.3 Supplementary Literature

10.3.1 Introduction to Algorithms and Data Structures
10.3.2 Basic Books

10.3.3 Specializing_in Interview Questions

10.3.4 Supplements for Job Interviews at Top Companies

Part III: Appendix
Appendix A: Short Introduction to pytest

A.1 Writing and Executing Tests

A.1.1 Installing_pytest

A.1.2 First Unit Test

A.1.3 Executing Tests

A.1.4 Handling Expected Exceptions

A.1.5 Parameterized Tests with pytest

A.2 Further Reading on pytest

Appendix B: Short Introduction to Decorators
B.1 Argument Checks by Decorator

B.2 Syntactic Sugar for Decorators

Checking Multiple Parameters

3
B.4 Logging Function Calls and Parameter Passing

B.5 Improvement with wraps from the functools Module

Appendix C: Quick Start O-Notation

C.1 Estimations with O-Notation

C.1.1 Complexity Classes

C.1.2 Complexity and Program Running Time
Appendix D: Short Introduction to Python 3.10
D.1 Error Messages

D.1.1 Assignment Error Messages

D.1.2 Error Messages for Incomplete Strings
D.2 Case Distinctions with match

D.2.1 Python 3.9.x

D.3 Miscellaneous

D.3.1 Improvements in Context Managers
D.3.2 Performance Improvements

D.3.3 Extension at zip()

Bibliography.

Index

About the Author
Michael Inden
is an Oracle-
certified

Java

developer

with over 20
years of
professional
experience
designing
complex
software
systems for

international

companies,

where he has
worked in
various roles
such as SW
developer,
SW

architect, consultant, team leader, CTO, head of academy, and trainer. After

1 5_:\;
Rl

LA

being a freelancer for more than a year, he is currently working as a Head of
Development.
His special interests are creating high-quality applications with er-

gonomic GUIs, developing and solving programming puzzles, and

coaching. He likes to pass on his knowledge and has led various

courses and talks, both internally and externally, as well as at confer-
ences such as JAX/W-JAX, JAX London, and Oracle Code One.

He is also an author of technical books. His German books Der Weg
zum Java-Profi, Java Challenge, and Python Challenge are all pub-

lished by dpunkt.verlag.

About the Technical Reviewers
Aravind Medamoni
is an experienced software developer. He works as a freelance mo-

bile application developer. He has proficiency in Java, Kotlin, Flutter,
Dart, PHP, JavaScript, Nodejs, MongoDB, and SQL. He worked as

Tech Lead at OpenStackDC for one year as a backend and Android
developer. Aravind has trained many students to start their career in

the software domain. He has won a national level Hackathon.

Charles Bell
conducts research in emerging technologies. He is a member of the

Oracle MySQL development team and is a principal developer for the
MySQL cloud services team. He lives in a small town in rural Virginia
with his loving wife. He received his Doctor of Philosophy in Engi-
neering from Virginia Commonwealth University in 2005. Dr. Bell is an
expert in the database field and has extensive knowledge and experi-
ence in software development and systems engineering. His re-
search interests include 3D printers, microcontrollers, three-dimen-
sional printing, database systems, software engineering, and sensor
networks. He spends his limited free time as a practicing maker fo-
cusing on microcontroller projects and refinement of three-dimen-

sional printers.

Footnotes

1
PyCharm is a highly recommended IDE and is a Python-oriented variant of Intel-

liJ IDEA which is available for free at www.jetbrains.com/de-de/pycharm/.

2
Please remember to install pytest using the pip tool: pip install pytest (on

Mac, use pip3 instead of pip).

http://www.jetbrains.com/de-de/pycharm/

© The Author(s), under exclusive license to APress Media, LLC, part of Springer Nature 2022
M. Inden, Python Challenges
https://doi.org/10.1007/978-1-4842-7398-2 1

1. Introduction

Michael Inden!
(1) Zurich, Switzerland

Welcome to this workbook! Before you get started, | want to briefly outline what you can

expect when reading it.

This book covers a broad range of practice-relevant topics, represented by exercises of
different levels of difficulty. The exercises are (for the most part) independent of each

other and can be solved in any order, depending on your mood or interest.

Besides the exercises, you will find the corresponding answers, including a short de-
scription of the algorithm used for the solution and the actual source code, which is com-

mented on at essential points.

1.1 Structure of the Chapters

Each chapter shares the same structure, so you will quickly find your way around.
1.1.1 Introduction

Each chapter begins with an introduction to the topic to get you familiar with the subject

area or get you in the right mood for the tasks that follow.

1.1.2 Exercises

The introduction is succeeded by a bunch of exercises and the following structure:

https://doi.org/10.1007/978-1-4842-7398-2_1

Task Each exercise first will have an assignment. In it, the desired functionality to be re-
alized is described in a few sentences. Often a function signature is already included as

a clue to the solution.

Examples Supplementary examples are almost always given for clarification with inputs
and expected results. For some quite simple tasks, which mainly serve to get to know an

API, examples are sometimes omitted.

Often, different value assignments of input parameter(s), as well as the expected result, are
shown in a table.

Input A Input B Result

[1,2,4,7,8] [2,3,7,9] [2,7]

The following notation styles apply to the specifications:

. “AB” represents textual specifications.

. True/False stands for Boolean values.

. 123 represent numeric values.

. [valuel, value2,] represents collections like sets or lists, but also arrays.

. { key1 : valuel, key2 : value2, ... } describes dictionaries.

1.1.3 Solutions

The part of solutions follows the structure described below.

Task definition and examples First, you find the task description again so that you
don’t have to constantly flip back and forth between tasks and solutions. Instead, the de-

scription of solutions is self-contained.

Algorithm A description of the chosen algorithm follows. For didactics, | sometime

present an erroneous way or a not-very-optimal solution to then uncover pitfalls and iter-

atively come to an improvement. In fact, one or the other brute force solution is some-
times even usable but offers optimization potentials. | then present corresponding,

sometimes astonishingly simple, but often very effective improvements.

Python shortcut Sometimes the task explicitly excludes certain Python standard func-
tionality for realizing the solution in order to penetrate a problem algorithmically. In prac-
tice, however, you should use the defaults. In the separate short section named “Python

shortcut” | show how to make the solution shorter and more concise.

Examination Some of the tasks are quite easy or only serve to get used to syntax or
API functionality. For this, it often seems sufficient to execute a few calls directly in the
Python command line interpreter. That’s why | don’t use unit tests for this. The same ap-
plies for a graphical presentation of a solution, such as displaying a Sudoku board and if

the corresponding unit test would probably be more difficult to understand.

However, the more complicated the algorithms become, the more sources of errors ex-
ist, such as wrong index values, an accidental or omitted negation, or an overlooked
edge case. For this reason, it makes sense to check functionality with the help of unit
tests. In this book, for reasons of space, this is only accomplished for important inputs.
The companion resources contain over 80 unit tests with roughly 600 test cases, a pretty
good start. Nevertheless, in practice, the amount of unit tests and test cases should be

even more voluminous if possible.

1.2 Basic Structure of the PyCharm Project

The included PyCharm project closely follows the structure of the book. It offers a sepa-
rate folder for each relevant chapter (those with exercises), such as ch02 math or

ch08 recursion_ advanced.

Some of the source code snippets from the respective introductions are located in the

subfolder intro. The provided (sample) solutions are collected in their own subfolder

named solutions and the modules are named according to the task as follows:

ex<no> <taskdescription>.py.

Sources Figure 1-1 shows an outline for Chapter 2.

v [PythonChallenge ~/PycharmProjects/PythonChallenge

> .pytest_cache

> [.scannerwork

> assets

> 1 chO1_introduction

> Ml intro
v [solutions

= ex01_basics.py
ex02_number_as_text.py
ex03_perfectnumber.py
ex04_primes.py
ex05_prime_pairs_first.py
ex05_prime_pairs_optimized.py
ex05_prime_pairs_optimized2.py
ex06_checksum.py
ex07_roman_numbers.py
ex08_combinatorics.py
ex08_combinatorics_cubic.py
ex09_armstrong.py
ex10_max_change.py
ex11_friends.py
ex12_primefactors.py

VOV OV VYV YV VY Y YV VY Y YV YV Y Y

N N N N N N N N Y N

Figure 1-1 Outline of Chapter 2 sources

Utility modules All the useful utility functions developed in the respective chapters are
included in the provided PyCharm project in the form of utility modules. They are com-
bined into a module xyz utils, which resides in its own subdirectory util—for the
chapter about mathematical tasks in the subdirectory ch02 math.util. The same ap-

plies to the other chapters and topics.

Test classes Figure 1-2 shows some associated tests.

tests

.pytest_cache
ch02_math

BE bE hE b hE bl bl bl ghE hE

(o

.pytest_cache
arabicroman2.csv
ex01_basiscs_test.py
ex02_number_as_text_test.py
ex03_perfectnumber_test.py
ex04_primes_test.py
ex05_prime_pairs_test.py
ex06_checksum_test.py
ex07_roman_numbers_test.py
ex07_roman_numbers_with_csv_file_test.py
ex10_armstrong_test.py
ex11_friends_test.py
ex12_max_change_test.py
ex13_prime_factors_test.py

ch03_recursion
ch04_strings

Figure 1-2 Tests

HINT: INSTALLATION OF EXTERNAL LIBRARIES OR FRAMEWORKS
Some examples use special libraries that must be installed up front, like numpy, pytest, and
others, using the pip tool (on Mac use pip3 instead of pip) as follows:

pip install pytest

pip install parameterized

pip install numpy

1.3 Basic Framework for Unit Tests with Pytest

To not exceed the scope of the book, the illustrated unit tests only show the test methods but not
the test module and the imports. To provide you with a basic framework into which you can
insert the test functions and as a starting point for your own experiments, a typical test module is
as follows:
import pytest
from ch02 math.solutions.ex0l basics import calc, \
calc sum and count all numbers div by 2 or 7 v2
@pytest.mark.parametrize ("m, n, expected",
((e¢, 7, 0), (3, 4, 6), (5, 5, 5)1)
def test calc(m, n, expected):
assert calc(m, n) == expected
@pytest.mark.parametrize ("n, expected",
[(3, {"sum": 2, "count": 1}),
(8, {"sum": 19, "count": 4}),
(15, {"sum": 63, "count": 8})1])
def test calc sum and count all numbers div by 2 or 7(n,
expected) :
assert calc sum and count all numbers div by 2 or 7 vZ2(n) ==
expected

In addition to the import needed, this example shows parameterized tests that are ex-
tensively used since they allow testing multiple combinations of values in a simple way.

For details, please see Appendix A.

1.4 Note on Programming Style

During discussions while writing this book the question came up if certain things should
be made more compact. This is why | would like to mention in advance something about

the programming style used in this book.

1.4.1 Thoughts on Source Code Compactness

The most important things for me when programming and especially for the implementa-
tions in this book are easy comprehensibility and a clear structure. This leads to simpli-
fied maintainability and changeability. Therefore, the shown implementations are pro-
grammed as understandable as possible. | like to favor this aspect in this book. In prac-
tice, it is often easier to live with a bit more verbosity than with bad maintainability but

more compact programming.

1.4.2 Example 1

Let’s have a look at a small example for clarification. First, let’s examine the readable, easy-to-
understand variant for inverting the contents of a string, which also shows very nicely the two
important elements of recursive termination and descent:
def reverse string(text):
recursive termination
if len(text) <= 1:
return text
first char = text[0]
remaining = text[1l:]
recursive descent
return reverse string(remaining) + first char
The following much more compact variant does not offer these advantages:
def reverse string short (text):
return text if len(text) <= 1 else \
reverse string short(text[l:]) + text[0O]
Think briefly about in which of the two methods you feel safe making subsequent

changes. And what if you want to add unit tests? How do you find suitable value sets?

1.4.3 Example 2

Let’s bring in another example to illustrate my point. It concerns the following function

count_substrings () which is modeled after the standard count () function. The

later counts the number of occurrences of one string in another, and for the two inputs

“hellohe” and “he,” it returns the result 2.

First, we implement this reasonably straightforwardly as follows:
def count substrings(text, value to find):

recursive termination

if len(text) < len(value to find):
return O

count = 0

remaining = ""

does the text start with the search string?

if text.startswith(value to find):
match: continue the search for the found
term after the location where it was found
remaining = text[len(value to find) :]
count = 1

else:
remove first character and search again
remaining = text[1l:]

recursive descent

return count substrings(remaining, value to find) + count

Let’s try to realize this compactly:
def count substrings short (text, value to find):

return 0 if len(text) < len(value to find) else \
(1 if text.startswith(value to find) else 0) + \
count substrings short (text[l:], value to find)

Would you prefer to change this function or the one shown before?

By the way, the lower one still contains a subtle functional deviation! For the inputs of
“XXXX” and “XX” the first variant always consumes the characters and finds two occur-
rences. The lower, however, moves only one character at a time and thus finds three

occurrences.

Further, integrating the previously realized functionality of advancing by the whole

search string into the second variant will lead to more obscure source code. On the oth-

er hand, you can easily shift by only one character by simply adjusting the upper

text[len(value to find) :] call and then even pull this functionality out of the i f.

1.4.4 Decorators and Sanity Checks at the Beginning of
Functions

To ensure stable programs, it is often a good idea to check the parameters of central

functions for validity. These checks are adequate in the form of simple i £ statements. In
Python, however, this can often be accomplished more elegantly with the help of deco-

rators. To get started, please have a look at Appendix B.

1.4.5 Block Comments in Listings

Please note that there are various block comments in listings, which serve as orientation and for
better understanding. It’s advisable to use such comments with caution, and it’s preferable to
extract individual source code sections to methods or functions in practice. For the book’s
examples, these comments serve as reference points because the introduced or presented facts
are probably still new and unfamiliar to you as a reader.
does the text start with the search string?
if text.startswith(value to find):

match: continue the search for the found

term after the location where it was found

remaining = text[len(value to find) :]

count = 1
else:

remove first character and search again

remaining = text[1l:]

1.4.6 PEP 8 and the Zen of Python

Besides my already presented thoughts about the programming style, I would like to mention

two things explicitly:

« PEP 8 Coding Standard (PEP = Python Enhancement Proposal)

« The Zen of Python—thoughts about Python
PEP 8 Coding Standard

The official coding standard is available online at www .python.org/dev/peps/pep—

0008/ as PEP 8. This is intended to help write clean, consistent, and understandable
Python code. There is a tendency in the Python community to put more emphasis on
pretty source code than in other languages. In general, make it work somehow is not a

sustainable strategy, as | have also motivated.

However, there are a few things about which opinions may differ, for example the limita-
tion of the line length to 79 characters. With today’s HiDPI monitors and resolutions be-
yond Full-HD, longer lines of around 120 characters are certainly possible. But a line
should also not be too long—especially if you want to compare two versions of a file with

each other; this can otherwise be annoying.

| may violate indentation hints for split lines to favor readability when optically appropri-
ate. Additionally, | occasionally name lambdas, which usually encapsulate only a tiny
piece of functionality and thus should not be named, for a better insight into how things
work or express more clearly what was intended. The latter is reported as E731 do

not assign a lambda expression,use a def. Please find moreinfoina

moment.

The Zen of Python

Interestingly, the Python command line interpreter (indicated by >>>) includes a built-in output
of style guides, also known as the Zen of Python. This is obtained by a call to
>>> import this
The following output occurs:
The Zen of Python, by Tim Peters
Beautiful is better than ugly.
Explicit is better than implicit.
Simple is better than complex.

Complex is better than complicated.

http://www.python.org/dev/peps/pep-0008/

Flat is better than nested.

Sparse is better than dense.

Readability counts.

Special cases aren't special enough to break the rules.

Although practicality beats purity.

Errors should never pass silently.

Unless explicitly silenced.

In the face of ambiguity, refuse the temptation to guess.

There should be one-- and preferably only one --obvious way to
do it.

Although that way may not be obvious at first unless you're
Dutch.

Now is better than never.

Although never is often better than *right* now.

If the implementation is hard to explain, it's a bad idea.

If the implementation is easy to explain, it may be a good idea.
Namespaces are one honking great idea -- let's do more of those!

Tooling As mentioned, PyCharm offers itself as IDE and provides various hints for style
and improvement possibilities directly in the editor. A configuration is possible under
Preferences > Editor > Code Style > Pythonaswellas Preferences >
Editor > Inspections > Python. In particular, the latter gives you the option to

enable PEP8 coding style violation.

Alternatively or complementary, you can install the tool £1ake8 as follows—here, and in
the following text I always use $ to indicate input on the console (i.e., the Windows command
prompt and the terminal on MacOS). Please remember to use pip3 on Mac insted of pip.

S pip install flakes8

This helps to uncover various potential problems and violations against PEP 8 if you call it
as follows:
$ flake8 <mypythonmodule>.py mydirwithmodules

Sample run for the project sources Please find an example run that excludes the virtual
environment of Python and ignores some potential problems, just showing the lambdas

assignments mentioned before:
$ flake8 --exclude=venv --ignore=E501,F811,E126,E127,W504

./tests/ch02 math/ex09 armstrong test.py:13:5: E731 do not assign
a lambda expression, use a def

./ch03 recursion/intro/intro.py:137:5: E731 do not assign a
lambda expression, use a def

./ch03 recursion/intro/intro.py:138:5: E731 do not assign a
lambda expression, use a def

./ch03 recursion/solutions/ex01 fibonacci.py:56:5: E731 do not
assign a lambda expression, use a def

./ch05 datastructures/intro/basics.py:41:1: E731 do not assign a
lambda expression, use a def

./ch06 arrays/solutions/ex06 erase and fall down.py:146:5: F841
local variable 'book example' is assigned to but never used
./ch07 recursion advanced/solutions/ex0l towers of hanoi.py:39:5:
E731 do not assign a lambda expression, use a def

Just for your info, these checks are excluded:

. E501 line too long (80 > 79 characters: As already stated, 79 char-
acters per line are pretty few these days.

. F811 redefinition of unused‘...’from line ...:Samplessome-
times redefine variables and functions.

. E126 continuation line over-indented for hanging indent: Minor
deviations from the standard to achieve a nicer layout.

. E127 continuation line over-indented for visual indent: Minor
deviations from the standard to achieve a nicer layout.

. W504 line break after binary operator: Minor deviations from the

standard to achieve a nicer layout.

HINT: SONAR AS AN ALTERNATIVE
[There are other tools for checking your sources. Although somewhat more complex, for

larger projects it is recommended to perform a static source code analysis using Sonar.
For this, you must install Sonar and a Sonar Runner. In return, though, you get a nice
overview as well as a history so that you can quickly recognize both positive and nega-

tive trends and take countermeasures if necessary.

1.4.7 More Information

For more information on how to write clean Python, see the following books:

« Python Tricks: A Buffet of Awesome Python Features by Dan Bader [Bad17]
« Mastering Python by Rick van Hattern [VH16]

1.5 Note on the Exercises

When solving the tasks, the goal is to deal with the appropriate algorithms and data
structures. Python offers an extensive collection of functionalities, for example for calcu-
lating sums and minimums of lists or even more complex things like computing

permutations.

Some of the tasks can be solved with the ready-made standard functionalities in a few
lines. However, this is not the goal within this book, because the exercises serve the al-
gorithmic understanding and the extension of your problem-solving strategies. By ex-
ploring and solving this yourself, you learn a lot in the process. Developing things your-
self is only for training, not for practical use: please keep in mind that in real projects the
standard functionality of Python should always be preferred and you should not dream
of inventing something yourself for which there is already a ready-made solution. That’s
why | often point out in a separate short section named “Python shortcut” a solution that

uses standard Python functionality.

1.6 Trying Out the Examples and Solutions

Basically, | prefer to use as comprehensible constructs as possible instead of fancy syn-
tax or API features of special Python versions. In many cases, you can simply copy the
source code snippets shown into the Python command line interpreter and execute
them. Alternatively, all relevant sources are provided in the PyCharm project that comes
with the book. There, the programs may be launched by a main () function or checked

by corresponding unit tests that are often available.

1.7 Let’s Go: Discovering the Python Challenge

So, enough of the preface! You are probably already excited about the first challenges
through the exercises. | hope you will enjoy this book and gain some new insights while

solving the exercises and experimenting with the algorithms.

If you need a refresher on pytest, decorators, or O-notation, you might want to take a

look at the appendices first.

Part |
Fundamentals

© The Author(s), under exclusive license to APress Media, LLC, part of Springer Nature 2022
M. Inden, Python Challenges
https://doi.org/10.1007/978-1-4842-7398-2 2

2. Mathematical Problems

Michael Inden!
(1) Zurich, Switzerland

In this chapter, you start learning some basics about a few mathematical operations,
including prime numbers and the Roman numeral system. Additionally, | present a
couple of ideas for number games. The chapter is rounded off by a short introduction

to lambdas. With all this knowledge, you should be well prepared for the exercises.
2.1 Introduction

2.1.1 Short Introduction to Division and Modulo

Besides multiplication and division, the modulo operation (%) is also used quite fre-
quently. It is intended to determine the remainder of a division. Let’s illustrate this as

follows for integers where division remainders fall under the table:
(5%7+3)//7=38//7=5
(5#7+3)%7=38%7=3

Even with these few operations, you can solve various tasks. Please recall the following

things for actions on (integer) numbers:

. n/ 10: Obviously divides by the value 10. Since Python 3, this returns a floating
point number as result. If you need an integer, you can use a type conversion with

int (), suchas int (value / 10).

https://doi.org/10.1007/978-1-4842-7398-2_2

. n// 10: Also divides by the value 10. Because the // operator performs an inte-
ger division without a remainder, it is possible to truncate the last digit with it.

. n % 10: Determines the remainder of a division by 10 and thus the last digit.

Extraction of digits To extract the digits of a number, combine modulo and division as
long as the remaining value is greater than 0.
def extract digits (number) :
remaining value = number

while remaining value > O:

digit = remaining value $ 10
remaining value = remaining value // 10
print(digit, end=' ")

print ()

In Python, there is another special feature with the built-in function divmod (), which
returns both the divisor and the remainder as a result—as a shortcut for the operators that are
often called in combination. In addition, you can exploit tuple unpacking in the following,
whereby the result is assigned to the respective variable:
def extract digits (number) :

remaining value = number

while remaining value > O:

remaining value, digit = divmod(remaining value, 10)
print (digit, end=' ")
print ()

Let’s call this method once to understand its way of working—please note that the digits
are output in reverse order.
>>> extract digits(123)
321
Determine number of digits Instead of extracting individual digits, you can also use a
repeated division to determine the number of digits in a decimal number by simply dividing
by 10 until there is no remainder left:
def count digits (number) :
count = 0
remaining value = number

while remaining value > O:

remaining value = remaining value // 10
count += 1

return count

2.1.2 Short Introduction to Divider

In the following, you examine how to determine all real divisors of a number (i. e., those
without the number itself). The algorithm is quite simple. Initially, the result contains the
number 1, as this is always a valid divider. Then you go through all numbers starting by 2 up
to half of the value (all higher values cannot be integer divisors if 2 is already a divisor) and
check if they divide the given number without a remainder. If this is the case, then this
number is a divisor and is included in a result list. You implement the whole thing as follows:
def find proper divisors(value):

divisors = [1]

for i in range (2, value // 2 + 1):

if value % i ==
divisors.append (i)
return divisors

One more small note about naming: For loop variables, short names like i are com-

mon, but current number would also be a readable alternative.

Using list comprehension? you can write the calculation more concisely:

def find proper divisors(value):
return [i for i in range(l, value // 2 + 1) if value % 1

== 0]

Let’s call this method once to understand its operation and confirm it to be working well
based on the output conforming to expectations:
>>> find proper divisors(6)
[1, 2, 3]
>>> find proper divisors (24)
(1, 2, 3, 4, 6, 8, 12]

2.1.3 Short Introduction to Prime Numbers

A prime number is a natural number that is greater than 1 and exclusively divisible by
itself and by 1. There are two quite understandable algorithms for checking whether a

given number is prime or for calculating primes up to a given maximum value.

Brute force algorithm for prime numbers Whether a number is a prime number or not
can be determined as follows. You look for the number to be checked starting from 2 up to at
most half of the number, whether the current number is a divisor of the original number.2 In
that case, it’s not a prime. Otherwise, it needs to be checked further. In Python, this can be
written as follows:
def is prime (potentially prime):

for i in range (2, potentially prime // 2 + 1):
if potentially prime % 1 == 0:
return False
return True

To try it out, run the function in a loop and determine all prime numbers up to the value
25. The program output demonstrates that the functionality works correctly.
>>> primes = []
>>> for number in range (2, 25):

if is prime (number) :
primes.append (number)
print (primes)

Using list comprehension, you can write this more concisely:
>>> primes = [number for number in range (2, 25) if
is prime (number)]

print (primes)
In both cases, you get the prime numbers less than 25 as the correct result:
(2, 3, 4, 5, 7, 11, 13, 17, 19, 23]
Optimization: Sieve of Eratosthenes Another algorithm for determining prime num-
bers up to a given maximum value is called the Sieve of Eratosthenes . It dates

back to the Greek mathematician with the same name.

The whole thing works as follows. Initially, all numbers starting at the value 2 up to the

given maximum value are written down, for example

2,3,4,5,6,7,8,9,10, 11, 12, 13, 14, 15

All numbers are initially considered as potential candidates for prime numbers. Now
the numbers that cannot be prime numbers are eliminated step by step. The smallest
unmarked number is taken, in this case, the number 2, which corresponds to the first

prime number. Now all multiples of it are eliminated, in the example 4, 6, 8, 10, 12, 14:

You continue with the number 3, which is the second prime number. Again, the multi-

ples are eliminated. These are the numbers 6, 9, 12, 15:

2,3,4,5,8,7,%,9,0,11,12,13, 14, 15

The next unmarked number and thus a prime number is 5. The procedure is repeated

as long as there are still unmarked numbers after the current prime number:

2: 3:7‘43 Saﬁa 77%7 /gam: 117%) 13}4}%

This leads to the following result for all prime numbers smaller than 15:
2,3,5,7,11,13

In exercise 4, you are supposed to implement the Sieve of Eratosthenes by yourself. Then

you may use the following values to test your algorithm in addition to the above:

Limit Result

25 [2,3,5,7,11, 13,17, 19, 23]

Limit Result

50 [2,3,5,7,11, 13,17, 19, 23, 29, 31, 37, 41, 43, 47]

HINT: POSSIBLE OPTIMIZATIONS
As you can see, numbers are often crossed out several times. If you are mathemati-

cally a little more experienced, you can prove that at least one prime factor of a com-
posite number must always be smaller equal to the root of the number itself. The rea-
son is that if x is a divisor greater than sqrt(n), then it holds that p = n/xis smaller than
sqrt(n) and thus this value has already been tried. Thus you can optimize the multi-
ples’ elimination. Firstly, you start the elimination with the square of the prime number
since all smaller multiples are already eliminated. Secondly, the calculation has to be
done only up to the root of the upper limit. More details are supplied under

https://en.wikipedia.org/wiki/Sieve of Fratosthenes.

2.1.4 Roman Numbers

The Roman numeral system works with special letters and combinations of them to represent

numbers. The following basic mapping is applicable:3

Roman number I V X L C D M

Value 1 5 10 50 100 500 1000

The corresponding value is usually calculated by adding the values of the individual
digits from left to right. Normally (see the following rules), the largest number is on the

left and the smallest number is on the right, for example, XVI for the value 16.

Rules

https://en.wikipedia.org/wiki/Sieve_of_Eratosthenes

Roman numerals are composed according to certain rules:

1.
Addition rule: The same digits next to each other are added, for example XXX

= 30. Likewise, this applies to smaller digits after larger ones, so XlI = 12.

2.
Repetition rule: No more than three identical digits may follow each other. Ac-
cording to rule 1, you could write the number 4 as Illl, which this rule 2 forbids.

This is where the subtraction rule comes into play.

‘Subtraction rule: If a smaller number symbol appears in front of a larger one, the cor-
responding value is subtracted. Let’s look again at 4. It can be represented as subtrac-
tion 5 — 1. This is expressed as IV in the Roman numeral system. The following rules
apply to the subtraction:

1. | precedes only V and X.

2. X precedes only L and C.
3. C precedes only D and M.

Examples

For better understanding and clarification of the above rules, let’s look at some notations of
Roman numerals and their corresponding values:
- $ {\displaystyle \begin{array} {l} VII\kern8em =5-+1+1\kern20.25em =7\\ {}
MDCLXVI\kern2em =1000+500+100+50+10+5+1\kern3em =1666\\ {}\begin{array} {1}
MMXVII\kern2.5em =1000+1000+10+5+1+1+1\kern5.25em =2018\\ {}
MMXIX\kern3.5em =1000+1000+10-1+10\kern8.5em =2019\end {array } \end {array} } $

Noteworthy

The Arabic numerals common in our modern world rely on the decimal system. The
digits’ position determines their value: thus, 7 can be the number itself, but it can also
represent 70 or 700. However, in the Roman numeral system, the V always stands for

a 5, regardless of the position.

Because of this particular structure of Roman numerals, many math operations are
complex; even a simple addition may cause a bigger or sometimes even a complete
change of the number. This becomes very obvious for the numbers 2018 and 2019 or
for the addition 11l + 1l = V. Even worse, significantly more complex is a multiplication
or division—there are speculations that this was one of the factors why the Roman

Empire collapsed.

NOTE: LARGER NUMBERSThere are special notations for representing larger Ro-
man numerals (in the range of ten thousand and above) because no four or more Ms

are allowed to follow each other. This has no relevance for the tasks of this book. If

interested, you may consult the Internet or other sources.

2.1.5 Number Games

In this section, you’ll look at a few special number constellations:

« Perfect numbers
« Armstrong numbers

« Checksums

In many of the algorithms used below, you subdivide numbers into their digits to be

able to perform corresponding number games.
Perfect Numbers

By definition, a number is called a perfect number if its value is equal to the sum of
its real divisors (i. e., excluding itself). This may sound a bit strange, but it is quite sim-
ple. Let’s consider the number 6 as an example. It possesses as real divisors the

numbers 1, 2, and 3. Interestingly, it now holds

1+2+3=6

Let’s look at another counterpart: the number 20, which has the real divisors 1, 2, 4, 5,
and 10, but their sum is 22 and not 20.

1+2+4+5+10=22

Armstrong Numbers

In this section you examine Armstrong numbers. These are numbers whose individual digits
are first exponentiated by the number of digits in the number and then added together. If this
sum then corresponds to the original number’s value, it is called an Armstrong number. To
keep things a little simpler, let’s look at the special case of three-digit numbers. To be an
Armstrong number, the following equation must be satisfied with this number:

#4$ x\ast 100+y\ast 10+z={x}"3+{y}"3+{z}"3 §
The digits of the number are modeled as x, y, and zand are all in the range from 0 to

0.

The formula x * 100 + y * 10 + z results from the position of the digits and a textual
representation of "xyz", so
wu - § {\displaystyle \begin{array} {1} 1\ast 100+5\ast 10+3\kern0.5em ={}{"} {153} {"}\ \\
{}3\ast 100+7\ast 10+1\kern0.5em ={\kern0.5em }{"} {371}"{"}\end{array}} $
Let’s consider two examples for which this formula is satisfied:
wa § {\displaystyle \begin{array} {1} 153=1\ast 100+5\ast 10+3\kern0.5em =\kern0.5em
{I33+{5}"3+{3}"3=1+125+27=153\\ {}371=3\ast 100+7\ast 10+1\kern0.5em =\kern0.5em
{3W3+{7}"3+{11"3=27+343+1=371\end {array}} $
Variation As a modification, it is also quite interesting for which digits or numbers of the
following equation are fulfilled:
4§ x\ast 100+y\ast 10+z={x}"1+{y}"2+{z}"3 $
or
“$ x\ast 100+y\ast 10+z={x}"3+{y}"2+{z}"1 §
For the first equation, there are the following solutions:

[135, 175, 518, 598]

For the second equation, there is no solution for x, y, and zin the range up to 100. If
you like, you can verify this yourself when implementing the bonus part of exercise 9

—or look at the solutions.

Algorithm for a Simple Checksum

A checksum is coded into various numbers so that it is easy to prove validity. This ap-

plies, for example, to credit card numbers and to data transfers via special protocols.

Let’s assume that a checksum has to be calculated for a number with four digits (hereafter

modeled as a to d). Then you can perform the following calculation based on the position:

“4$ abcd\Rightarrow \left(a\ast 1+b\ast 2+c\ast 3+d\ast 4\right)\%10 $

Once again, let’s illustrate the calculation with examples:

Input Position calculation Value Checksum
1111 1*1+1*2+1*3+1%4 1+42+3+4=10 10% 10=0
1234 1*1+2*2+3*3+4%4 1+44+9+16=30 30 % 10=0
4321 4*1+3*2+2*3+1%4 4+46+6+4=20 20% 10=0
7271 7*1+2*2+7*3+1%4 7+4+21+4=36 36 % 10=06
0815 0*1+8*2+1*3+5*4 0+16+3+20=39 39% 10=9

5180 5*1+1*2+8*3+0*4 5+42+24+0=31 31% 10 =1

2.1.6 Getting Started with Lambdas

This subsection briefly introduces lambda expressions (lambdas for short). The lan-

guage construct lambda comes from functional programming. Lambdas reflect the

mathematical concept of functions with input, processing, and output, for example a
squaring f(x) = x * x. This can also be implemented using functions in Python, but
lambdas offer an even shorter notation. Simply speaking, a lambda is a container for
some source code or an anonymous function, such as one without a function name.
Although lambdas are useful in many ways, sometimes readability and comprehensi-
bility suffer. Therefore the Python style guide (PEP 8) is not necessarily in favor of

lambdas.
Lambda Syntax

Lambdas, unlike functions, have no name, no return, and do not need to be introduced
with de £. This results in an even shorter notation, reduced to the essentials, with the

following syntax where only expressions are allowed, but not statements:
lambda parameter(s): expression
A few simple examples of lambdas are the addition of two numbers, the multiplication by
a factor of 2 or two numbers, and the calculation of power. These actions can be written as
lambdas as follows:
>>> add one = lambda x: x + 1
>>> double it = lambda x: x * 2
>>> mult = lambda a, b : a * b
>>> power of = lambda x, y: x ** y
Please note that the PEP 8 style guide states to not assign a lambda expression and

to use a def instead. Occasionally, as in the above case, | name lambdas for a better
insight into how things work or to express more clearly what was intended even
though they usually encapsulate only a tiny piece of functionality and thus should not

be named.

As an example, to perform doubling as well as exponentiation:
>>> double it = lambda x: x * 2
>>> power of = lambda x, y: x ** y
>>> print (double it (7))
14
>>> print (power of (2,8))

256
In fact, these lambdas look pretty unspectacular, and in particular, it becomes clear that a
lambda is just a small piece of executable source code. Let’s take another look at the
corresponding function definitions for the first two examples to differentiate them:
def add one(x):
return x + 1
def double it (x)

return x * 2

Lambdas in Action with sort()

For lists Python offers a method named sort () to sort the elements. To get started, let’s
look at a list of numbers. First, you sort them according to their natural order:

>>> numbers = [11, 2, 30, 333, 14, 4444, 100, 2222]

>>> numbers.sort ()

>>> print (numbers)

[2, 11, 14, 30, 100, 333, 2222, 4444]

When calling sort () you can use the named parameter key to control sorting. Now
you want to sort the numbers by length. Therefore, you use a lambda to convert the numbers
to strings using str () and sort them by their length with 1en () —within the same length
the ordering is not defined.
>>> numbers = [11, 2, 30, 333, 14, 4444, 100, 2222]
>>> numbers.sort (key=lambda x: len(str(x)))
>>> print (numbers)

(2, 11, 30, 14, 333, 100, 4444, 2222]

A second sort criterion can easily be added using the following tuple:
>>> numbers.sort (key=lambda x: (len(str(x)), x))
>>> print (numbers)

[2, 11, 14, 30, 100, 333, 2222, 4444]

2.2 Exercises

2.2.1 Exercise 1: Basic Arithmetic (ki vr)

Exercise 1a: Basic Arithmetic Operations (kv ¥rvr)

Write function calc (m, n) that multiplies two variables m and n of type int, then

divides the product by two, and outputs the remainder with respect to division by 7.

Examples

*

n m*n//2 Result(n*m//2)%7)

A short reminder: With an integer division, the remainder is truncated. Therefore 25//2

results in the value 12.

Exercise 1b: Statistics (Fk kv vv)

Count as well as sum up the natural numbers that are divisible by 2 or 7 up to a given
maximum value (exclusive) and output it to the console. Write function calc -
sum_and count all numbers div by 2 or 7 (max exclusive).Extend it

so that it returns the two values instead of performing the console output.

Examples

Result
Maximum Divisible by 2 Divisible by 7
Count Sum

Result

Maximum Divisible by 2 Divisible by 7

Count Sum
8 2,4,6 7 4 19
15 2,4,6,8,10,12, 14 7,14 8 63

Exercise 1c: Even or Odd Number (3 ¥« v v)

Create the functions is_even (n) and is_odd (n) that will check if the passed inte-

ger is even or odd, respectively.

2.2.2 Exercise 2: Number as Text (& Kk v ¥r)

Write function number as text (n) which, for a given positive number, converts

the respective digits into corresponding text.

Start with the following fragment for the last digit of a number:
def number as text(n):
% 10

value to text = ""

remainder = n

if remainder == 0:
value to text = "ZERO"
if remainder ==
value to text = "ONE"
#
return value to text
Examples

Input Result

Input Result

7 “SEVEN”

42 “FOUR TWO”

24680 “TWO FOUR SIX EIGHT ZERO”

13579 “ONE THREE FIVE SEVEN NINE”

2.2.3 Exercise 3: Perfect Numbers (k& i3 vr)

By definition, a natural number is called a perfect number if its value is equal to the

sum of its real divisors. This is true, for example, for the numbers 6 and 28:
1+42+3=6

1+2+4+7+4+14=28

Write function calc perfect numbers (max_exclusive) that calculates the

perfect numbers up to a maximum value, say 10,000.

Examples
Input Result
1000 [6, 28, 496]

10000 [6, 28, 496, 8128]

2.2.4 Exercise 4: Prime Numbers (k& sy v)

Write function calc_primes up to (max value) to compute all prime numbers
up to a given value. As a reminder, a prime number is a natural number greater than 1
and exclusively divisible by itself and by 1. To compute a prime number, the Sieve of

Eratosthenes was described before.
Examples

Check your algorithm with the following values:

Input Result

15 [2,3,5,7, 11, 13]
25 [2,3,5,7, 11, 13, 17, 19, 23]
50 [2,3,5,7, 11,13, 17, 19, 23, 29, 31, 37, 41, 43, 47]

2.2.5 Exercise 5: Prime Number Pairs (k% vy)

Compute all pairs of prime numbers with a distance of 2 (twin), 4 (cousin), and 6 (sexy) up to

an upper bound for n. For twins then the following is true:

4§ is\ Prime(n)\&\& is\ Prime\left(n+2\right) $
Examples
The following results are expected for limit 50:

Type Result

twin {3:5,5:7,11: 13,17: 19, 29: 31, 41: 43}

Type Result
cousin {3:7,7:11,13: 17, 19: 23, 37: 41, 43: 47}

sexy {5:11, 7: 13, 11: 17, 13: 19, 17: 23, 23: 29, 31: 37, 37: 43, 41: 47, 47: 53}

2.2.6 Exercise 6: Checksum (k¥ vv)

Create function calc checksum(digits) that performs the following position-based

calculation for the checksum of a number of any length given as a string, with the » digits

modeled as z1 to z,:

o $ {z} 1{z} 2{z} 3\dots {z} n\Rightarrow \left(1\ast {z} 1+2\ast {z} 2+3\ast
{z} 3+\dots +n\ast {z} n\right)\%10 $

Examples
Input Sum Result
“111117 1+2+3+4+5=15 15%10=5

“87654321” 8+ 14+18+20+20+ 18 + 14 +8 =120 120 % 10=0

2.2.7 Exercise 7: Roman Numbers (k% % % i)
Exercise 7a: Roman Numbers » Decimal Numbers (% %k 7 ¥)

Write function from roman number (roman number) that computes the corre-

sponding decimal number from a textually valid Roman number 4

Exercise 7b: Decimal Numbers » Roman Numbers (3 & %k %)

Write function to_roman number (value) that converts a decimal number to a

(valid) Roman number.

Examples

Arabic Roman

17 “XVIIP

444 “CDXLIV”
1971 “MCMLXXI”
2020 ‘MMXX”

2.2.8 Exercise 8: Combinatorics (s %k v v %)
Exercise 8a: Computation of & + b? = ¢

Compute all combinations of the values a, b, and ¢ (each starting from 1 and less than 100)
for which the following formula holds:

wi$ {al2+{b}2={c}"2 $
Bonus (k%%) Reduce the running time of O(n?) to O(r?). If needed, consult Ap-
pendix C for an introduction to O-notation.

Exercise 8b: Computation of a* + b?> = ¢ + d?

Compute all combinations of the values a, b, ¢, and d (each starting from 1 and less than 100)
for which the following formula holds:

wa§ {a}2+{b}"2={c}"2+{d}"2 $
Bonus (%% % 7 vr) Reduce the running time of O(n*) to O(r?).

2.2.9 Exercise 9: Armstrong Numbers (3 %k v v i)

This exercise deals with three-digit Armstrong numbers. By definition, these are numbers for
whose digits x, y, and z from 1 to 9 satisfy the following equation:

“4§ x\ast 100+y\ast 10+z={x}"3+{y}"3+{z}"3 $
Write function calc armstrong numbers () to compute all Armstrong numbers

for x, y, and z (each < 10).
Examples

wa § {\displaystyle \begin{array} {1} 153=1\ast 100+5\ast 10+3\kern0.5em =\kern0.5em
{13M3+{5}"3+{3}"3=1+125+27=153\\ {}371=3\ast 100+7\ast 10+1\kern0.5em =\kern0.5em
{3}"3+{7}"3+{1}"3=27+343+1=371\end {array}} $

Bonus Find a generic version with functions or lambdas and then try the following three
formulas:
=i § {\displaystyle \begin{array} {1} x\ast 100+y\ast 10+z={x}"3+{y}"3+{z}"3\ \\ {}x\ast

100+y\ast 10+z={x}"1+{y}"2+{z} "3\ \\ {}x\ast 100+y\ast 10+z={x}"3+{y}"2+
{z}"\end{array}} $

2.2.10 Exercise 10: Max Change Calculator (% % % i)

Suppose you have a collection of coins or numbers of different values. Write function
calc_max_possible change (values) that determines, for positive integers,
what amounts can be seamlessly generated with it starting from the value 1. The

maximum value should be returned as a result.

Examples

Input Possible values Maximum

Input Possible values Maximum

1,1 1,2 2
1,5 1 1
1,2,4 1,2,3,4,5,6,7 7
1,2,3,7 1,2,3,4,5,6,7,8,9, 10,11, 12, 13 13
1,1,1,1,5, 10, 20, 50 1,2,3,4,5,6, ... 30, ... 39 39

2.2.11 Exercise 11: Related Numbers (3 %k ¥« %)

Two numbers n; and n, are called friends (or related) if the sum of their divisors is

equal to the other number:
sum(divisors(m)) = m
sum(divisors(m)) = m

Write function calc friends (max exclusive) to compute all friends numbers

up to a passed maximum value.

Examples

Input Divisors

S(divisors(220)) = 284 div(220) = 1, 2, 4, 5, 10, 11, 20, 22, 44, 55, 110

Input

Y(divisors(284)) = 220

Y(divisors(1184)) = 1210

Y(divisors(1210)) = 1184

Divisors

div(284)=1,2,4,71, 142

div(1184) =1, 2,4, 8, 16, 32, 37, 74, 148, 296, 592

div(1210) =1, 2, 5, 10, 11, 22, 55, 110, 121, 242, 605

2.2.12 Exercise 12: Prime Factorization (3% % ¥)

Any natural number greater than 1 can be represented as a multiplication of primes.

Remember the fact that 2 is also a prime. Write function

calc prime factors (value) thatreturns a list of prime numbers whose multipli-

cation yields the desired number.

Examples

Input

14

42

1155

2222

Prime factors

2*2*2

2*7

2*3*7

3*5*7*11

2*11*101

Result

[2,2,2]

[2,7]

[2,3,7]

[3,5,7, 11]

[2, 11, 101]

2.3 Solutions

2.3.1 Solution 1: Basic Arithmetic (K ¥eirvr)
Solution 1a: Basic Arithmetic Operations (K ¥y ¥r)

Write function calc (m, n) that multiplies two variables m and n of type int, then

divides the product by two, and outputs the remainder with respect to division by 7.

Examples

*n m*n//2 Result(n*m//2)%7)

A reminder: With an integer division, the remainder is truncated. Therefore 25//2 re-

sults in the value 12.

Algorithm The implementation directly follows the mathematical operations:
def calc(m, n):
returnm * n // 2 % 7
Instead of the particular operator //, you can also perform a conversion of the result of
the simple division into an integer by calling int ():
def calc v2(m, n):

return int(m * n / 2) % 7

Solution 1b: Statistics (kv ¥r)

Count as well as sum up the natural numbers that are divisible by 2 or 7 up to a given

maximum value (exclusive) and output it to the console. Write function calc -

sum_and count all numbers div by 2 or 7 (max_exclusive).Extend it

so that it returns the two values instead of performing the console output.

Examples
Result
Maximum Divisible by 2 Divisible by 7
Count Sum
3 2 -/- 1 2
8 2,4,6 7 4 19
15 2,4,6,8,10,12, 14 7,14 8 63

Algorithm The implementation is a tiny bit more complex than before. It uses two
variables for count and sum as well as a loop. The modulo operator helps to check whether
divisibility is given.
def
calc sum and count all numbers div by 2 or 7(max exclusive):

count = 0
sum = 0
for i in range(l, max exclusive):
if i $ 2 ==0o0r i % 7 == 0:
count += 1
sum += i
print ("count:", count)
print("sum:", sum)

What remains is the desire to return the two values. With Python, this is an easy task
since tuples are applicable for this, for example, with return (sum, count) orthe

even shorter return sum, count.

It is even clearer to use a dictionary. This makes the unit test very readable in the end:
def
calc sum and count all numbers div by 2 or 7 v2(max exclusive):
count = 0
sum = 0
for i in range(l, max exclusive):
if 1 $ 2 =0o0r i % 7 ==
count += 1
sum += i

return {"sum": sum, "count": count}

NOTE: SHADOWING OF BUILT-INS IN SMALL SCOPESPlease note that there is
a minor inconvenience in the two code samples: the shadowing of the built-in func-
tion sum () by the local variable named sum. Of course, it is easily possible to use
sum_ as a variable name. But due to the small scope, | prefer to stick to the more
readable but shadowing name sum. This should never cause a real problem.

If your functions grow and get more complex, please avoid shadowing to prevent

bugs.

NOTE: STRUCTURING WITH BLANK LINESBIank lines sometimes cause prob-
lems when processed in the Python command line interpreter. In IDEs like PyCharm,
on the other hand, this is possible without problems. | will use empty lines for the ex-

amples if this means clearer source code.

Solution 1c: Even or Odd Number (3 s v v %)

Create functions is_even (n) and is_odd (n) that will check if the passed integer

is even or odd, respectively.

Algorithm The implementation uses the modulo operator in each case. A number is even
if a division by 2 has no remainder; otherwise, it is odd.

def is even(n):

[

return n % 2 == 0
def is odd(n):

[©)

return n $ 2 != 0

Verification

For the test of exercise 1a, use a parameterized test and a comma-separated enumeration for
the specification of the input values for m and » and the result. To refresh your knowledge of
pytest, look at Appendix A.
@pytest.mark.parametrize("m, n, expected",
[(6, 7, 0), (3, 4, 6), (5, 5, 51
def test calc(m, n, expected):
assert calc(m, n) == expected
To verify the exercise part 1b, use the Python command line:
>>> calc sum and count all numbers div by 2 or 7(8)
count: 4
sum: 19
For professional programming, it is generally advisable to create unit tests. In other
languages, even a combined return value would be a first hurdle. With Python and tuples in
combination with dictionaries, this is very easy:
@pytest.mark.parametrize ("n, expected",
[(3, {"sum": 2, "count": 1}),
(8, {"sum": 19, "count": 4}),
(15, {"sum": 63, "count": 8})1)
def test calc sum and count all numbers div by 2 or 7 v2(n,
expected) :
assert calc sum and count all numbers div by 2 or 7 v2(n)
== expected
Testing exercise 1c for even or odd is so simple that I’ll just limit the output to two
exemplary calls in the Python command line:
>>> 1s even (2)
True
>>> 1s odd(7)

True

2.3.2 Solution 2: Number as Text (k& vy)

Write function number as text (n) which, for a given positive number, converts

the respective digits into corresponding text.

Examples

Input Result

7 “SEVEN”

42 “FOUR TWO”

24680 “TWO FOUR SIX EIGHT ZERO”

13579 “ONE THREE FIVE SEVEN NINE”

Algorithm Always compute the remainder (i. e., the last digit), print it out, and then
divide by ten. Repeat this until no remainder exists anymore. Note that the digit’s
representation must be appended to the text’s front since the last digit is always extracted.
Otherwise, the digits would appear in the wrong order.
def number as text(n):

value = ""
remaining value = n
while remaining value > O:
remainder as text = digit as text(remaining value %
10)
remaining value = int(remaining value / 10)
value = remainder as text + " " + value
return value.strip ()
Implement the mapping from digit to text with a dictionary as follows:

value to text mapping = {

O: "ZERO", 1: "ONE", 2: "TWO", 3: "THREE", 4: "FOUR",
5: "FIVE", 6: "SIX", 7: "SEVEN", 8: "EIGHT", 9: "NINE"
}
def digit as text(n):
return value to text mapping[n % 10]

Python shortcut As mentioned in the introduction, the built-in Python function
divmod () is often useful for division and modulo. Therewith the process changes only
minimally:
def number as text(n):

value = ""
remaining value = n
while remaining value > O:
remaining value, remainder = divmod(remaining value,
10)
value = digit as text(remainder) + " " + value
return value.strip ()

There is another variant that iterates character by character through the number. It is first
converted into a string. To access the dictionary, you reconvert it into a number.
def number as text shorter(n):

value = ""
for ch in str(n):
value += digit as text (int(ch)) + " "

return value.strip ()

Verification

For testing, use a parameterized test that can be formulated elegantly using pytest:
@pytest.mark.parametrize ("n, expected",

[(7, "SEVEN"),
(42, "FOUR TWO"),
(7271, "SEVEN TWO SEVEN ONE"),
(24680, "TWO FOUR SIX EIGHT ZERO"),
(13579, "ONE THREE FIVE SEVEN
NINE")])

def test number as text(n, expected):

assert number as text (n) == expected

2.3.3 Solution 3: Perfect Numbers (3 %k v vr)

By definition, a natural number is called a perfect number if its value is equal to the

sum of its real divisors. This is true, for example, for the numbers 6 and 28:
1+42+3=6

1+2+4+7+14=28

Write function calc perfect numbers (max exclusive) that calculates the

perfect numbers up to a maximum value, say 10,000.

Examples

Input Result
1000 [6, 28, 496]

10000 [6, 28, 496, 8128]

Algorithm The simplest variant is to check all numbers from 2 to half of the desired
maximum value to see if they represent the original number’s divisor. In that case, the sum of
the divisors is increased by exactly that value. The sum starts with the value 1 because this is
invariably a valid divisor. Finally, you only have to compare the determined sum with the
initial number.
def is perfect number simple (number) :

always divisible by 1

sum of multipliers = 1

for i in range (2, int(number / 2) + 1):
if number % i ==

sum of multipliers += 1

return sum of multipliers == number
Based on this, the actual function is straightforward to implement:
def calc perfect numbers (max exclusive):
results = []
for i1 in range (2, max exclusive):
if is perfect number simple(1):
results.append (i)
return results
Python shortcut Using list comprehensions, this can be written a little shorter and more
elegantly:
def calc perfect numbers comprehension (max exclusive):
return [1 for i1 in range (2, max exclusive) 1if

is perfect number simple (i)]

Verification

For testing, use the following inputs, which show the correct operation for dedicated
numbers:
@pytest.mark.parametrize ("n, expected”,
[(6, True), (28, True),
(496, True), (8128, True)])
def test is perfect number simple(n, expected):
assert is perfect number simple(n) == expected
Now you have tested the basic building block of the examination. However, you should

still make sure that no other values than perfect numbers are supplied—in fact, only these—
for the testing, thus the first four perfect numbers are namely the numbers 6, 28, 496, and
8128:
@pytest.mark.parametrize ("n, expected", [(50, [6, 28]),

(1000, [6, 28, 4961),

(10000, [6, 28, 496,
8128]) 1)
def test calc perfect numbers(n, expected):

assert calc perfect numbers(n) == expected

Implementation Optimization

Based on the function find proper divisors (n) presented in the introductory

section of this chapter that finds all true divisors, you can simplify the check as follows:
def is perfect number based on proper divisors (number) :
divisors = find proper divisors (number)
return sum(divisors) == number

Conveniently, there is a built-in functionality in Python that sums the elements of a

list. This is the function sum (), which you use here.

2.3.4 Solution 4: Prime Numbers (3 K v ¥)

Write function calc primes up to (max value) to compute all prime numbers
up to a given value. As a reminder, a prime number is a natural number greater than 1
and exclusively divisible by itself and by 1. To compute a prime number, the so-called

Sieve of Eratosthenes was described before.
Examples

Check your algorithm with the following values:

Input Result

15 [2,3,5,7, 11, 13]
25 [2,3,5,7,11,13,17, 19, 23]
50 [2,3,5,7,11,13,17, 19, 23, 29, 31, 37, 41, 43, 47]

Algorithm The algorithm follows the Sieve of Eratosthenes. At first, a list of
booleans is created and initialized with True since all numbers are considered po-
tential prime numbers. Mentally, this is analogous to initially writing down the num-

bers 2, 3, 4, ... up to a given maximum value:

2,3,4,5,6,7,8,9,10, 11, 12, 13, 14, 15

Now, starting at the value 2, the “sieving” is started. Because the number 2 is not
crossed out, it is included in the list of prime numbers. Afterwards every multiple of it

is crossed out, because they can’t be prime numbers:

2: 3:74: 5}%: 7)%3 9;,1’6, 1]-7/]&/7 137M3 15

Iteratively you look for the next not-eliminated number. In this case, it is 3, which is the

second prime number. Once again, all multiples of this number are eliminated:

27 3¢ 747 59 ﬂa 7)%: gaM9 117/1/2/7 13*%)%

This procedure is repeated until half of the maximum value is reached. This prime number
calculation is implemented in Python as follows:
def calc primes up to(max value):

initially mark all values as potential prime number

is potentially prime = [True for in range(l, max value +
2)]

run through all numbers starting at 2, optimization only
up to half

for number in range (2, max value // 2 + 1):

if is potentially prime[number]:
erase multiples of current(is potentially prime,

number)

return build primes list(is potentially prime)

The crossing out or erasing the multiples is extracted to the helper function

erase multiples of current (). Asa trick, use on the one hand the step size of i
and on the other hand that the first multiple is determined by adding the start value. For first
attempts, the commented console output can be helpful.
def erase multiples of current (values, number) :

for n in range (number + number, len(values), number):
values[n] = False
print ("Eliminating:", n)

Finally, you need to reconstruct a list of numbers from the list of booleans. It is
essential that you start from the value 2 because the two values below this value are not set to
False (by mistake, but here without negative effect):
def build primes list(is potentially prime):

primes = []
for number in range (2, len(is potentially prime)):
if is potentially prime[number]:
primes.append (number)
return primes

Python shortcut With the help of list comprehensions, this can be written a little shorter
and more elegantly in Python:
def build primes list(is potentially prime):

return [number for number in range (2,
len(is potentially prime))
if is potentially prime[number]]

Python shortcut [would like to show another variant based on compress () from the
module i tertools. This allows you to get a new sequence from a sequence of data and a
sequence of selectors in the form of Boolean values with only the values for which the
selector has the value True or 1:
>>> import itertools
>>> print(list (itertools.compress ("ABCDEF", (1, O, 1, 0, 1,
01)))

['A', 'C', 'E']

For the prime number calculation, you use this as follows:
import itertools
def calc primes up to v2(max value):

is potentially prime = [True for in range(l, max value +
2)1]
for number in range (2, int (max value / 2) + 1):

if is potentially prime[number]:

erase multiples of current (is potentially prime,
number)
mark values 0 and 1 as no prime number
is potentially prime[0:2] = False, False
merging / selection of values
return
list (itertools.compress (range (len(is potentially prime)),

is potentially prime))

Verification

For testing, use the following inputs that show the correct operation:
def input and expected() :

return [(2, [2]),
(3, [2, 31),
(10, [2, 3, 5, 71),
(15, [2, 3, 5, 7, 11, 13]),
(20, [2, 3, 5, 7, 11, 13, 17, 191),
(25, (2, 3, 5, 7, 11, 13, 17, 19, 231),
(50, (2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37,
41, 43, 471)]

@pytest.mark.parametrize ("n, expected",
input and expected())
def test calc primes up to(n, expected):
assert calc primes up to(n) == expected
@pytest.mark.parametrize ("n, expected”,
input and expected())
def test calc primes up to v2(n, expected):

assert calc primes up to v2(n) == expected

2.3.5 Solution 5: Prime Number Pairs (% k5 v 5¥)

Compute all pairs of prime numbers with a distance of 2 (twin), 4 (cousin), and 6

(sexy) up to an upper bound for n. For twins then the following is true:

Is Prime(n) && is_Prime(n + 2)
Examples

The following results are expected for limit 50:

Type Result

Twin {3:5,5:7,11: 13,17: 19, 29: 31, 41: 43}

Cousin {3:7,7:11,13: 17, 19: 23, 37: 41, 43: 47}

Sexy {5:11,7: 13, 11: 17, 13: 19, 17: 23, 23: 29, 31: 37, 37: 43, 41: 47, 47: 53}

Algorithm As a first step, you need to define the conditions for pairs. This can be done
explicitly via if statements or more elegantly by the definition of suitable predicates. For all
numbers starting at 2 up to a desired upper limit, you must check whether the number itself
and the corresponding other number added by 2, 4, or 6 are prime numbers. For this purpose,
you can call function is prime (n), which in turn uses the previously written function for
determining the prime numbers. For twins, I still use the rather non-Pythonic for loop with
if check here. For the other two, dict comprehensions come into play. For more details on

prime twins, see https://en.wikipedia.org/wiki/Twin prime.

def main () :

def is twin pair(n):

return is prime(n) and is prime(n + 2)
def is cousin pair(n):

return is prime(n) and is prime(n + 4)
def is sexy pair(n):

return is prime(n) and is prime(n + 6)
manual update
twin pairs = {}
for i in range(1l, 50):

if is twin pair(i):

twin pairs.update({i: 1 + 2})

https://en.wikipedia.org/wiki/Twin_prime

dict comprehensions

cousin pairs = {i: 1 + 4 for i in range(l, 50) if
is cousin pair (i)}

sexy pairs = {1 : 1 + 6 for i in range(l, 50) if
is sexy pair (i)}

print ("Twins:", twin pairs)

print ("Cousins:", cousin pairs)

print ("Sexy:", sexy pairs)
def is prime(n):

primes = calc primes up to(n + 1)

return n in primes

The realization shown here uses already implemented functionality, which is preferable in

principle, but has two drawbacks in this case:

1.
Every time all prime numbers are computed again up to the given maximum val-
ue. This can be optimized by performing the computation only once and caching

the results appropriately.

2.
At the moment, the checks are still all interwoven. It is clearer to use a validation

function that checks only one condition and returns only one result.

Optimization of the Implementation

Vulnerability 1: Repeated calls First, you should compute the primes up to the maximum
value only once. In this case, you need to raise the limit by 7 so that you can map all pairs
correctly.
def calc prime pairs (max value) :
primes = calc primes up to(max value + 7)
def is twin pair(n):
return is prime (primes, n) and is prime (primes, n + 2)
def is cousin pair(n):
return is prime(primes, n) and is prime (primes, n + 4)

def is sexy pair(n):

return is prime (primes, n) and is prime (primes, n + 6)
manual update
twin pairs = {}
for i in range(l, max value):

if is twin pair(i):

twin pairs.update({i: 1 + 2})
dict comprehensions
cousin pairs = {i: 1 + 4 for i in range(l, max value) if
is cousin pair (i)}

sexy pairs = {i: 1 + 6 for i in range(l, max value) if

is sexy pair (i)}

print ("Twins: ", twin pairs)
print ("Cousins: ", cousin pairs)
print ("Sexy: ", sexy pairs)

Computing the prime numbers is performed once at the beginning of the function.

Thus you achieve a significant performance improvement.

Finally, you move the check for a prime number to the following function:
def is prime(primes, n):

return n in primes

Vulnerability 2: Unclear program structure Your goal is to write more general-purpose

functions. You have already created the basic building blocks. However, the determination of

the pairs should be moved to function calc pairs (). This way, you can write it more

clearly and understandably as follows:
def calc prime pairs improved (max value) :

twin pairs = calc pairs(max value, 2)
cousin pairs = calc pairs (max value, 4)
sexy pairs = calc pairs(max value, 6)

print ("Twins:", twin pairs)
print ("Cousins:", cousin pairs)
print ("Sexy:", sexy pairs)
def calc pairs(max value, distance):
primes = calc primes up to(max value + distance)
return {number: number + distance for number in range (1,

max value)

if is prime (primes, number) and is prime (primes,
number + distance)}

This conversion also lays the foundation to be able to test the whole thing with unit

tests.

Verification

If you call the method with the maximum value of 50, you get this result:
Twins: {3: 5, 5: 7, 11: 13, 17: 19, 29: 31, 41: 43}
Cousins: {3: 7, 7: 11, 13: 17, 19: 23, 37: 41, 43: 47}
Sexy: {b5: 11, 7: 13, 11: 17, 13: 19, 17: 23, 23: 29, 31: 37,
37: 43, 41: 47, 47: 53}
Now let’s create another unit test with one test function per special case:

@pytest.mark.parametrize ("n, expected",

[(2, {3: 5, 5: 7, 11: 13, 17: 19, 29:
31, 41: 43},

(4, {3: 7, 7: 11, 13: 17, 19: 23,
37: 41, 43: 47}),

(6, {5: 11, 7: 13, 11: 17, 13: 19,
17: 23, 23: 29, 31: 37, 37: 43, 41: 47, 47: 53})1)
def test calc pairs(n, expected):

max value = 50

assert calc pairs(max value, n) == expected

2.3.6 Solution 6: Checksum (3 % v v 3¥)

Create function calc checksum (digits) that performs the following position-based
calculation for the checksum of a number of any length given as a string, with the » digits
modeled as z1 to z,:

e $ {z} 1{z} 2{z} 3\dots {z} n\Rightarrow \left(1\ast {z} 1+2\ast {z} 2+3\ast

{z} 3+\dots +n\ast {z} n\right)\%10 $
Examples

Digits Sum Result
“111117 1+2+3+4+5=15 15% 10=5

“87654321”7 8+ 14+18+20+20+ 18+ 14 +8 =120 120 % 10=0

Algorithm Traverse all digits from the front to the last position, extract the digit at the
given position, and multiply its numerical value by the current position. Add this to the sum.
Finally, the modulo operation maps the sum to a digit.
def calc checksum(digits):

if not digits.isdigit():

raise ValueError ("illegal chars: not only digits")
crc = 0
for i, current char in enumerate (digits):

value = (int(current char)) * (1 + 1)

crc += value

[e)

return int (crc % 10)

Verification

For testing, use the following inputs, which show the correct operation for valid inputs and
check the handling of errors for wrong inputs:
@pytest.mark.parametrize ("n, expected”,
[("11111", 5),

("22222", 0),
("111111", 1),
("12345678", 4),
("87654321", 0)1)
def test calc checksum(n, expected):

assert calc checksum(n) == expected
def test calc checksum with letters as wrong input() :

with pytest.raises (ValueError) as excinfo:

calc checksum ("ABC")

assert "illegal chars" in str (excinfo.value)

2.3.7 Solution 7: Roman Numbers (% % Kk)
Solution 7a: Roman Numbers » Decimal Numbers (% & Kk v 3v)

Write function from roman number (roman number) that computes the corre-

sponding decimal number from a textually valid Roman number 2

Examples

Arabic Roman

17 “XVIIP

444 “CDXLIV”
1971 “MCMLXXI”
2020 ‘MMXX”

Algorithm You must pay particular attention to the addition rule described in section
2.1.1: The relevant value is normally obtained by adding the individual digits’ values
from left to right whenever a larger character precedes a smaller one. However, if a
smaller number character precedes a larger one, the corresponding value is

subtracted.

With this knowledge, you traverse the characters from right to left and look up the
relevant value in a dictionary. To decide between addition or subtraction, remember the last
relevant character.
def from roman number (roman number) :

value = 0

last digit value = 0
for i in range(len(roman number) - 1, -1, -1):
roman digit = roman number[i]
for roman digit in reversed(roman number) :
digit value = value map[roman digit]
add mode = digit value >= last digit value
if add mode:
value += digit value
last digit value = digit value
else:
value -= digit value
return value
value_map = {"I": 1, "v": 5, "X": 10, "L": 50,
"c": 100, "D": 500, "M": 1000}
In the code, | use a nicer variant of the traversal. Using the standard functionality re-
versed (), you get an iterator that traverses the data in the opposite direction and
provides access to the respective element. Shown in the comment is index-based

processing, which is a little less Python-like (Pythonic).

Solution 7b: Decimal Numbers » Roman Numbers (3% % %k ¥)

Write function to_roman number (value) that converts a decimal number to a

(valid) Roman number.

Algorithm When converting a decimal number to a Roman numeral, you again use a
dictionary. You sort this in descending order so that the largest value (1000) is at the
beginning. The current number value is divided by this factor. This yields the number of
required repetitions of this value. Now the remainder is determined by modulo. The
procedure is repeated until all values are checked and the remainder is greater than 0. In the

following, the procedure is shown for the number 7:
7 => 17/ 1000 => 0 => 0 x 'M'

1 =>1x 'V'

o°

~

~

[C2BNE)|
I

2 /1
2 %51
=> 'VII'

The procedure is implemented in Python as follows (please note that a little pitfall is
included):
def to roman number (value) :
result = ""
remainder = value
descending order => start with largest value
for i in sorted(int to roman digit map.keys(),
reverse=True) :
if remainder > O0:
multiplier = 1
roman digit = int to roman digit map[i]
times = remainder // multiplier
remainder = remainder % multiplier
result += roman digit * times
return result
int to roman digit map = {1: "I", 5: "v", 10: "X", 50: "L",
100: "c", 500: "D", 1000: "M"}
Here again the function divmod () is a good choice. Then the invocation
times = remainder // multiplier
remainder = remainder $ multiplier
results in the following one-liner:
times, remainder = divmod(remainder, multiplier)
However, the conversion shown above is not yet 100 % correct because it does not
respect the rule of three and also repeats digits four times. Try it yourself using 147 as input,
resulting in CXXXXVII. To fix this problem, you may think about implementing special

treatments that are only hinted at below:

multiplier = i
roman digit = int to roman digit map[i]
if remainder >= 900 and roman digit == 'D':

result += "CM"

remainder -= 900}

elif remainder >= 4 and roman digit == 'I':
result += "IV"

remainder -= 4

else:
times = remainder / multiplier
remainder = remainder $ multiplier

result += roman digit * times

However, this quickly becomes confusing.

More elegant is the insertion of other lookup values for the exceptional cases:
int to roman digit map = {1: "I", 4: "IV", 5: "Vv", 9: "IX"
10: "X",

14

40: "xLn", 50: "L", 90: "XC", 100:

"CH ,

400: "cp", 500: "D", 900: "CM",
1000: "M"}
Using this enhanced lookup dictionary solves the problem and you get correct

answers.

Verification

Let’s start the unit test with different values that show the correct conversion , especially

including the four values 17, 444, 1971, and 2020 from the example:
def arabic to roman number map () :
return [(1, "1"), (2, "11I"), (3, "III"), (4, "1V"),
(5, "vV"), (7, "VII"), (9, "IX"), (17, "XVII"),
(40, "XL"™), (90, "XC™), (400, "cD"), (444,

"CDXLIV"),

(500, "D"), (900, "CM"), (1000, "™M"), (lobo,
"MDCLXVI"),

(1971, "MCMLXXI"), (2018, "MMXVIII"), (2019,
"MMXIX"),

(2020, "MMXX"), (3000, "MMM")]
attention different order, so you do not have to define

twice

it

@pytest.mark.parametrize ("expected, roman number",
arabic to roman number map ())
def test from roman number (roman number, expected):
assert from roman number (roman number) == expected
Now let’s take a look at how the testing of the reverse direction is accomplished. Here
you already benefit from the previously defined function
arabic_to_roman number map () to provide the test results.
@pytest.mark.parametrize ("roman number, expected",
arabic to roman number map ())
def test to roman number (roman number, expected):
assert to roman number (roman number) == expected

Without the extraction of the values into a list of tuples, there would have been a du-
plication of the specifications. Only when specifying expected and roman number,

you have to be a bit careful because this is a bidirectional mapping.

Providing data in a CSV file To avoid duplication, you could also read the values from a
file. With the help of the csv module, reading from a CSV file is implemented as follows:
def arabic to roman number map () :

result = []
with open('arabicroman2.csv','rt') as file:
data = csv.reader (file)
skip first = True
for row in data:
if not skip first:
result.append((int (row[0] .strip()),
row[l].strip()))
skip first = False
return result

Assume that the content has the correct structure, as shown below. Furthermore, the CSV
file looks like the following:
arabic, roman
1, T
2, II
3, III

7, VII

2.3.8 Solution 8: Combinatorics (% k)
Solution 8a: Computation of a* + b? = ¢?

Compute all combinations of the values a, b, and ¢ (each starting from 1 and less than 100)
for which the following formula holds:
4§ {a}2+{b}2={c}"2 §
Algorithm The brute force solution uses three nested loops and then checks if the above
formula is satisfied.
brute force, three nested loops
def solve quadratic simple() :
for a in range(1l, 100):
for b in range (1, 100):

for ¢ in range(1l, 100):

if a ** 2 4+ b ** 2 == ¢ ** 2:
if pow(a, 2) + pow(b, 2) == pow(c, 2):
if a *a + b * b ==c¢c * c:

Print("a :"I aI "/ b :"r br "/ C :"/ C)
For squaring, simple multiplication provides better readability than the use of pow ()

or of the operator ** implied in the comment.

Python shortcut By using list comprehension, you can have all tuples generated.
However, such construction is already a bit stylistically dubious.
def solve quadratic shorter():
return [(a,b,c) for a in range(l, 100) for b in range(l,
100)
for ¢ in range(l, 100) if a * a + b * b ==
c * c]

Bonus: Reduce the Running Time of O(r®) to O(n?) (Y& k)

You see three nested loops in the upper solution, resulting in a running time of O(#%). Now
let’s reduce this to O(n?). To achieve this, apply the following transformation (resolving to c):
“§ c=\sqrt{a"{\ast }\ a+{b}"{\ast }\ b} $

Based on this transformation or resolution of the equation to ¢, the square root is
calculated and then the formula is verified:
import math
def solve quadratic():

for a in range(1l, 100):
for b in range (1, 100):
c = int(math.sqrt(a * a + b * b))
if a *a+ b *b==~c¢c * c:
print("a =", a, "/ b =", b, "/ c =", ¢c)

This solution still contains a small flaw. Now ¢ can also be greater than 100! Therefore,
you must ensure that ¢ is below 100. To this end, you supplement the check as follows:
def solve quadratic():

for a in range(1l, 100):
for b in range (1, 100):
c = int(math.sgrt(a * a + b * b))
if ¢ < 100 and a * a + b * b == ¢c * c:

print("a =", a, "/ b =", b, "/ c =", c)
Verification

For testing, call the function solve quadratic () and perform the computation for some
values:
>>> solve quadratic()
=3 /b=4/c=5
4/ b=3/c=05
=5/b=12 / ¢ = 13
6/ b=8/c=10

oY W

OTE: WHY DOES THE COMPUTATION WORK AT ALL?Looking only briefly at
he conversion, you might wonder why the computation does not yield a successful

comparison for all values. In fact, this would be the case purely mathematically, since you
are deriving ¢ from a and b. However, you also use a cast to an int.
c = int (math.sqgrt(a * a + b * b))
if a *a + b * b == c¢c * c:
print("a =", a, "/ b =", b, "/ c =", ¢)
As a result, the decimal digits are truncated. This, in turn, leads to the comparison be-

ing successful only for certain values.

Solution 8b: Computation of a8 + b? = ¢ + &?

Compute all combinations of the values a, b, ¢, and d (each starting from 1 and less than 100)
for which the following formula holds:
wi§ {a}2+{b}"2={c}"2+{d}"2 $
Algorithm Analogous to the previous part of the exercise, the brute force solution
consists of four nested loops. Therein a check whether the above formula is satisfied is
performed. In this particular case, the simple multiplication offers, to my taste, slightly better
readability than the use of the operator * *.
brute force, four nested loops
def solve cubic simple():
for a in range(1l, 100):
for b in range(l, 100):
for ¢ in range(1l, 100):
for d in range (1, 100):
if a*a+b*b=c*c+d*d:
print("a =", a, " / b =", b, " / c =",
c, "/ d=",d
Python shortcut By using list comprehension, you can have all tuples generated,
although such a structure is already stylistically a bit questionable, since it is slightly too
complex:
def solve cubic shorter():
return [(a, b, ¢, d)
for a in range(l, 100) for b in range(1l, 100)
for ¢ in range(l, 100) for d in range(1l, 100)

if a *a+ b *b==c¢c*c+ d* d]
Please note that both variants are not optimal in respect to performance. The next

task is to improve this.

Bonus: Reduce the Running Time of O(n*) to O(n3) (Y& k)

As can easily be seen, the solution uses four nested loops, resulting in a running time of
O(n*). Now you want to reduce this to O(n%). For that purpose, use transformations. First,
you separate to d and then you resolve to d:
o § {d}M{\ast }\ d={a}"{\ast }\ at{b}"{\ast }\ b-{c}"{\ast }\ c\Rightarrow d=\kern0.5em
\sqrt{a™{\ast }\ a+{b}"{\ast }\ b-{c}"{\ast }\c} $
Based on this transformation or resolution of the equation to d, you can compute the
square root and then validate the formula. Additionally, you must ensure that the value is not
negative and the resulting d is below 100.
import math
def solve cubic():
for a in range(1l, 100):
for b in range (1, 100):
for ¢ in range(1l, 100):
value = a * a + b * b - c * ¢
if value > 0:
d = int (math.sqrt (value))
if d < 100 and a *a + b *b==c¢*c +d

print("a :H’ a, " / b :n, b, " / c :n,

c, " / d :", d)
Verification

For testing, use a function call and check some of the values:

>>> solve cubic()

a=1/b=1/c=1/d=1
a=1/b=2/c=1/d=2
a=1/b=2/c=2/d=1
a=1/b=3/c=1/d=3

2.3.9 Solution 9: Armstrong Numbers (k% v v 5¥)

This exercise deals with three-digit Armstrong numbers. By definition, these are numbers for
whose digits x, y, and z from 1 to 9 satisfy the following equation:

4§ x\ast 100+y\ast 10+z={x}"3+{y}"3+{z}"3 §
Write function calc armstrong numbers () to compute all Armstrong numbers

for x, y, and z (each < 10).
Examples

wa § {\displaystyle \begin {array} {1} 153=1\ast 100+5\ast 10+3\kern0.5em =\kern0.5em
{IIN3+{5}"3+{3}"3=1+125+27=153\\ {}371=3\ast 100+7\ast 10+1\kern0.5em =\kern0.5em
{3Y/3+{7}"3+{1}"3=27+343+1=371\end {array}} $
Algorithm Iterate through all combinations of three-digit numbers using three nested
loops. The numeric value is calculated based on the position using the formula x*100+ y * 10
+ z. Also, compute the third power for each digit, sum them, and check if the sum matches
the number.
def calc armstrong numbers() :
results = []
for x in range(1l, 10):
for y in range(1l, 10):
for z in range (1, 10):
numeric value = x * 100 + y * 10 + z
cubic value = int(pow(x, 3) + pow(y, 3) +
pow(z, 3))
if numeric value == cubic value:
results.append (numeric value)

return results

OTE: WHY DON’T THE LOOPS START AT 0?Although you could also use the

alue 0, this is unusual. In the first place, a value assignment with x=0and y=0

ould correspond to the value z. However, there is another reason not to start with 0.
leading 0 is used to mark octal numbers, so we will not use it here. By the way,

since Python 3.8, octal numbers start with the prefix 0o.

Verification

To test, call the above method and examine whether the two combinations of values given as
examples are included in the result list:
def test calc armstrong numbers() :

assert calc armstrong numbers () == [153, 371]

Bonus (k& Kk voiv)

Find a generic version with functions or lambdas and then try the following three formulas:
- § {\displaystyle \begin{array} {1} x\ast 100+y\ast 10+z={x}"3+{y}"3+{z}"3\\\ {}x\ast
100+y\ast 10+z={x} " +{y}"2+{z}"3\\\ {}x\ast 100+y\ast 10+z={x}"3+{y}" 2+
{z}"1\end{array}} $
Algorithm Instead of the concrete calculation, you invoke a matching
cubic_ function:
def calc numbers (cubic function):
results = []
for x in range(1l, 10):
for y in range (1, 10):
for z in range (1, 10):
numeric value = x * 100 + y * 10 + z
cubic value = int(cubic function(x, y, z))
if numeric value == cubic value:
results.append (numeric value)
return results
Thus, the computation can be expressed as a function or a lambda. Please note that
lambdas usually encapsulate only a tiny piece of functionality and thus you should not name
them and assign them to a variable. In this book, I sometimes break this PEP-8 rule for a
better insight into how things work or express more clearly what was intended.
def special (x,y,2z):

return int (pow(x, 3) + pow(y, 3) + pow(z, 3))
special as lambda = lambda x, y, z: int(pow(x, 3) + pow(y, 3)
+ pow(z, 3))
Based on this more general solution, you can now easily try other variants of computation
rules without much effort:
def special2(x, y, z):
return int (pow(x, 1) + pow(y, 2) + pow(z, 3))
Likewise, you finally define the following:
def special3(x, vy, z):
return int (pow(x, 3) + pow(y, 2) + pow(z, 1))

Verification

For testing, you invoke above function with different computation rules and look for that of
Armstrong numbers whether the two combinations of values given as examples are included
in the result list:
>>> def special(x,y,z):

return int (pow(x, 3) + pow(y, 3) + pow(z, 3))

>>> print (calc numbers (special))
[153, 371]
>>> def special2(x,y,z):
return int (pow(x, 1) + pow(y, 2) + pow(z, 3))

>>> print (calc numbers (special2))

[135, 175, 518, 598]

>>> gpecial3 = lambda x, y, z: int(pow(x, 3) + pow(y, 2) +
pow(z, 1))

>>> print(calc numbers (special3))

(]

2.3.10 Solution 10: Max Change Calculator (% % % i)

Suppose you have a collection of coins or numbers of different values. Write function
calc max possible change (values) that determines, for positive integers,
what amounts can be seamlessly generated with it starting from the value 1. The

maximum value should be returned as a result.

Examples

Input Possible values Maximum
1 1 1

1,1 1,2 2

1,5 1 1

1,2, 4 1,2,3,4,5,6,7 7
1,2,3,7 1,2,3,4,5,6,7,8,9,10, 11, 12, 13 13

1,1, 1,1, 5,10, 20, 50 1,2,3,4,5,6,...,30,..,39 39

Algorithm You could try solving this exercise by computing a mapping to all
permutations of the sum of the numbers, but this gets complex fast. Let’s consider another

approach and start sorting the values for ease of use.

Input Possible values Maximum

1,2,3,7 1,2,3,4,5,6,7,8,9,10, 11, 12, 13 13

1,2,3,8 1,2,3,4,5,6,=>_ <=,8,9,10,11,12,13,14 6

If you take a look at the two examples, you may recognize for the cases 1, 2, 3, 7 and
1, 2, 3, 8 the clue to simplify the calculation decisively. Instead of always calculating all
permutations and then checking for a gap in the number line, here indicated by an un-
derscore (_), it is possible to start at the first number, always add the numbers to the

previous sum, and repeat this iteratively until next_ number > sum + 1 becomes true.

Let’s apply this to Python. First, sort the input values. Start with the assumption that there
is nothing to change initially, so max_possible _change = 0. Now check the following
condition for each value. If current value > max_possible change + I holds, then it is
impossible to change. Otherwise, add the current value to max_possible _change. Repeat this
until all values are processed or until the termination condition is met. This leads to the
following implementation:
def calc max possible change (values) :

wrappng / copying necessary so that we do not sort the
original

sorted numbers = list (values)
sorted numbers.sort ()
max possible change = 0
for current value in sorted numbers:

if current value > max possible change + 1:

break
max possible change += current value

return max possible change

Verification

For testing, use the following inputs, which show the correct operation:
@pytest.mark.parametrize ("coins, max_ change",

[C1), 1),

(t1, 1, 1, 1, 5, 10, 20, 501, 39)1)
def test calc max possible change (coins, max change) :

assert calc max possible change(coins) == max change

2.3.11 Solution 11: Related Numbers (3 % v v %)

Two numbers n; and n, are called friends (or related) if the sum of their divisors is

equal to the other number:
sum(divisors(nl)) = nz
sum(divisors(n2)) = ny

Write method function calc friends (max exclusive) to compute all friends

numbers up to a passed maximum value.

Examples
Input Divisors
Y(divisors(220)) = 284 div(220) =1, 2,4, 5, 10, 11, 20, 22, 44, 55, 110
S(divisors(284)) = 220 div(284) =1, 2, 4, 71, 142

S(divisors(1184)) = 1210 div(1184) = 1, 2, 4, 8, 16, 32, 37, 74, 148, 296, 592

S(divisors(1210)) = 1184 div(1210) =1, 2, 5, 10, 11, 22, 55, 110, 121, 242, 605

Algorithm It is easy to check whether two numbers are friends by determining for each
number its divisors and therefrom its sum. Now the divisors can be determined from this sum
and then added together. If this second sum is equal to the original number, then the numbers

are friends.

def calc friends(max exclusive):
friends = {}

for i in range (2, max exclusive):

divisorsl = find proper divisors (i)

sum divl = sum(divisorsl)

divisors2 = find proper divisors (sum divl)

sum_div2 = sum(divisors2)

if i == sum divZ and sum divl != sum div2:
friends[i] = sum divl

return friends

For the implementation, you also use the function find proper divisors() to
find all real divisors. This was already presented in the introduction. Once again, it
shows the advantage of subdividing software into smaller, self-contained

functionalities.

Verification

In this case, you again use a parameterized test, which returns both the maximum value and a
dictionary with the two numbers:
@pytest.mark.parametrize ("max, friends",
[(250, {220: 284}),
(300, {220: 284, 284: 220}),
(2_000, {220: 284, 284: 220,
1 184: 1 210, 1 210:
1_1841)1)
def test calc friends(max, friends):
assert calc friends(max) == friends

For some numbers | use the notation of separating the digits with an underscore,

which is an excellent way to simulate a thousand point. This is especially helpful with

larger numbers and serves here only for demonstration.

2.3.12 Solution 12: Prime Factorization (k% & i)

Any natural number greater than 1 can be represented as a multiplication of primes.

Remember the fact that 2 is also a prime. Write function
calc prime factors (value) thatreturns a list of prime numbers whose multipli-

cation yields the desired number.

Examples

Input Prime factors Result

8 2%2%2 [2,2,2]
14 257 [2,7]
42 2%3*7 [2,3,7]

1155 3*5*7*11 [3,5,7, 11]

2222 2*11*101 [2, 11, 101]

Algorithm Start by dividing the number by 2 as long as the number is even and greater
than 2. Then, at some point, you reach an odd number. If it is 1, you are done (see the case
for the number 8). Otherwise, you check if the odd number is a prime number and collect it.
In this case, you are done (for example, above for the number 14). If not, you have to split the
odd number further. Let’s take 50 as an example. First, you divide by 2, there 25 remains,
which is not a prime number. For these, you check for all prime numbers if they represent a
divisor. You continue this procedure until you reach the number 1, which means that all
divisors have been collected. For more info, see

https://en.wikipedia.org/wiki/Integer factorization.

def calc prime factors(value):
all primes = calc primes up to(value)
prime factors = []

remaining value = value

https://en.wikipedia.org/wiki/Integer_factorization

as long as even, divide by 2 again and again

while remaining value % 2 == 0 and remaining value >= 2:
remaining value = remaining value // 2

prime factors.append(2)
check remainder for prime
if is prime(all primes, remaining value):
prime factors.append(remaining value)
else:
remainder is not a prime number, further check
while remaining value > 1:
for current prime in all primes:
if remaining value $ current prime == 0:
remaining value = remaining value //
current prime
prime factors.append(current prime)
start again from the beginning, because
every divisor
may occur more than once
break
return prime factors
def is prime(all primes, n):
return n in all primes
Optimized algorithm If you look at the algorithm just developed, you might be bothered
by all the special treatments. With a little thought, you may conclude that you don’t need to
check number 2 separately since it is also a prime number. Thus, this is covered by the
while loop. Instead of the break for repeated checking of the same number, this can be
expressed in a more stylistically pleasing way with a while loop. With these preliminary
considerations, you arrive at the following implementation:
def calc prime factors optimized(value):
all primes = calc primes up to(value)
prime factors = []
remaining value = value
while remaining value > 1:
for current prime in all primes:

o)

while remaining value % current prime ==

remaining value = remaining value //
current prime
prime factors.append(current prime)

return prime factors

Verification

For testing, use the following inputs, which show the correct operation:
def value and prime factors():

return [(8, [2, 2, 21),
14, [2/ 7])!
42 [2, 3/ 7])!

1155, [3, 5, 7, 111]),
2222, [2, 11, 101])]

@pytest.mark.parametrize ("value, primefactors",

(
(
(
(
(

value and prime factors())
def test calc prime factors(value, primefactors):
assert calc prime factors(value) == primefactors
@pytest.mark.parametrize ("value, primefactors",
value and prime factors())
def test calc prime factors optimized(value, primefactors):

assert calc prime factors optimized(value) == primefactors

2.4 Summary: What You Learned

This chapter on basic mathematical knowledge introduces the modulo operator,
which is quite essential, for example, for the extraction of digits and in the calculation
of checksums. The exercises on combinatorics have shown how small tricks can eas-
ily reduce the running time by an order of magnitude. Also, prime numbers offer some
interesting facets, such as variants to their calculation. In retrospect, this turns out to
be much easier than perhaps first thought. In general, when trying to find a solution

for a problem, the algorithm and the approach should be roughly understood because

then, for example, even the the decomposition into prime factors loses its possible

horror.

Now let’s move on to recursion as an important technique to break down a more com-

plex task into several simpler subtasks.

Footnotes

1
List comprehension is the term used to describe an expression that generates a new result list

based on a sequence of values and a calculation rule (see subsection 5.1.2).

2
As an optimization, you actually only have to calculate up to the root. | briefly discuss this in the fol-

lowing practical tip “Possible optimizations.”

O]

Interestingly the value 0 does not exist in Roman numerals.

I~

For syntactically invalid Roman numbers, such as IXD, an incorrect result, here 489, can be comput-
ed by applying subtraction rule twice inarow: 0 —1 - 10 + 500.

5
For syntactically invalid Roman numbers, such as IXD, an incorrect result, here 489, can be comput-

ed by applying subtraction rule twice in arow: 0 — 1 - 10 + 500.

© The Author(s), under exclusive license to APress Media, LLC, part of Springer Nature 2022
M. Inden, Python Challenges
https://doi.org/10.1007/978-1-4842-7398-2_3

3. Recursion

Michael Inden!
(1) Zurich, Switzerland

In nature and mathematics, you can find the topic self-similarity or recurring structures, such as
snowflakes, fractals, and Julia sets, which are interesting graphical formations. In this context, one
speaks of recursion, meaning that things repeat or resemble each other. Related to methods, this
means that they call themselves. Important therefore is a termination condition in the form of special in-

put values, which leads to the end of the self calls.
3.1 Introduction

Various computations can be described as recursive functions. The goal is to break down a more com-

plex task into several simpler subtasks.
3.1.1 Mathematical Examples

Below you will take a look at the computation of the factorial, summation, and Fibonacci numbers, three

introductory examples for recursive definitions.
Example 1: Factorial

Mathematically, the factorial for a positive number nis defined as the product (i. e., the multiplication)
of all natural numbers from 1 to n, inclusive. For notation, the exclamation mark is placed after the cor-

responding number. For example, 5! stands for the factorial of the number 5:
S5!'=5#4%3%2%1=120

This can be generalized as follows:

MN=nxN-1)x=N=-2)*..%x2=*1

Based on this, the recursive definition is derived:

=§ n!=\left\{{} {n.\left(n-1\right)!,\kern0.37em \forall n>1}"{1,\kern3.359999em n=0,n=1}\right. $
Here, the inverted »A« (V) denotes for all.

https://doi.org/10.1007/978-1-4842-7398-2_3

For the first n, you get the following value progression:

n 1 2 3 4 5 6 7 8

n! 1 2 6 24 120 720 5040 40320

Calculation of the factorial in Python Let’s take a quick look at how the recursive calculation formula of
the factorial can be transferred into a function of the same kind:
def factorial(n):
if n < O:
raise ValueError ("n must be >= 0")
recursive termination
if n == 0 or n ==
return 1
recursive descent
return n * factorial(n - 1)

Figure 3-1 clarifies what this recursive definition generates in terms of calls.

factorial (5)
© call factorial (5) l D return 120 (5*24)

5 * factorial (4)

© call factorial (4) l © return 24 (4%6)
4 * factorial (3)

€© call factorial (3) © return 6 (3*2)
3 * factorial (2)

O call factorial (2) @ return 2 (2*1)

(1)

2 * factorial
o call factorial (1) 1‘; G return 1

Figure 3-1 Recursive callsto factorial (5)

Python shortcut To demonstrate that Python can be used to write compact source code, I will repeatedly
show which shortcuts exist in the following sections. In this case, you can write the calculation in the form of a
lambda as a one-liner. The brevity often offers some disadvantages: Here there is no handling of wrong inputs
and the whole thing is a little bit less readable. All in all, the distinction between recursive termination and
descent is more challenging to recognize. In addition, the mathematical formula is not so clearly evident:
factorial = lambda n: n if n == 1 else n * factorial(n - 1)

Please note that lambdas usually encapsulate only a tiny piece of functionality and thus you should not
name them and assign them to a variable. In this book, | sometimes break this PEP-8 rule for a better

insight into how things work or to express more clearly what was intended.

There are almost always many ways to Rome and the solution. As a variant, I present the function
reduce () from the module functools, which requires an import as shown below. However, no recursion is

used and the readability decreases, which can be compensated by a meaningful function name.
import functools

def factorial (n):

return functools.reduce(lambda n 1, n: n 1 * n, range(l, n + 1))

Example 2: Calculation of the Sum of Numbers Up to n

Mathematically, the sum for a number 7 is defined as the addition of all natural numbers from 1 ascending up to
and including n:
4§ \sum \limits_1”ni=n+n-1+n-2+\dots +2+1 $
This can be defined recursively as follows:
2§ \sum \limits_1"ni=\left\{{} {n+{\sum} 1"{n-1}\;i,\forall n>1}"{1,\kern3.239999em n=1}\right. $

For the first n, you get the following value progression:

n 1 2 3 4 5 6 7 8

sum_of(n) 1 3 6 10 15 21 28 36

Calculation of the sum in Python Again, you convert the recursive calculation formula of the summation
into a recursive function:
def sum of (n):
if n <= O0:
raise ValueError ("n must be >= 1")
recursive termination
if n ==
return 1
recursive descent
return n + sum of (n - 1)
Python shortcut For the calculation of sums it is possible to use a lambda, but again without error handling
and a bit less readable:
sum of = lambda n: n if n == 1 else n + sum of(n - 1)
Likewise, the function reduce () from the module functools can be used, with the disadvantages and
possibilities hinted at earlier to compensate:
import functools
def sum of with reduce(n):
return functools.reduce(lambda n 1, n: n 1 + n, range(l, n + 1))
Optimized calculation of the sum Please keep in mind that the algorithms presented here only served to
illustrate the recursive nature or the functionalities from the Python standard library. However, because there is a
formula for calculating the sum of the numbers from 1 to » that determines the whole thing performance-
optimally in O(1), you should not use the previous variants in practice:
2§ \sum \limits_1”ni=\frac{ {\left(n+1\right)}~{\ast}\;n} {2} $

Example 3: Fibonacci Numbers

Fibonacci numbers are also excellent for recursive definitions, although the formula is already a tiny bit more
complex:
=i § fib(n)=\left\{\begin{array} {c} 1,\kern6.119996em n=1\\ {} 1,\kern5.999996em n=2\\ {} fib\left(n-1\right)+
fib\left(n-2\right),\forall n>2\end {array}\right. $
For the first n, you get the following value progression:

n 1 2

(98]
ENN
W
@)}
~
o]

fibn) 1 1 2 3 5 8 13 21

If the calculation formula is visualized graphically, it quickly becomes obvious how wide the tree of self calls
potentially spans. For larger n, the call tree would be much more expansive, as indicated by the dashed arrows
(see Figure 3-2). Even with this exemplary invocation, it is evident that various calls are made several times, for

example for fib(n — 4) and fib(n — 2), but especially three times for fib(n — 3). This very quickly leads to costly
and tedious computations. You will learn how to optimize this later in section 7.1.

/ fib(n) \
fib(n-1) fib(n-2)
fib(n-2) fib(n-3) fib(n-3) fib(n-4)
\ Kl \l ll \X K/ \l
fib(n-3) fib(n-4)
‘J‘ \‘ ‘/ \‘

Figure 3-2 Fibonacci recursive

|HINT: DIFFERENT DEFINITION WITH ZERO AS THE START VALUE
It should furthermore be noted that there is a variation that starts at the value of 0. Then fib(0) = 0 and

fib(1) = 1 are the base values and afterwards you get fib(n) = fib(n - 1) + fib(n - 2) according to the re-

cursive definition. This produces the same sequence of numbers as the definition above, only with the
value for 0 added.

ATTENTION: RESTRICTED CALL DEPTH

Keep in mind that self calls happen again and again for summing up and computing the Fibonacci
numbers. That’s why you can only pass inputs around 990 here. Larger values will resultin a
RecursionError: maximum recursion depth exceeded. For other recursive functions, there
are similar restrictions on the number of self calls. Other programming languages like Java allow sig-

nificantly more self calls. In Java, over 10,000 self calls are easily possible.

There are several variants in recursion. An advantageous one is called tail-recursive. This is character-
ized by the fact that the recursive call is the last action in the calculation. Such functions can be pro-

cessed without the otherwise usual storing of intermediate results on a stack.

3.1.2 Algorithmic Examples

In the introduction, you looked at mathematical examples. But recursion is also very well suited for al-
gorithmic tasks. For example, it is possible to check for an array or list whether the values stored form a
palindrome. A palindrome is a word that reads the same from the front and the back, such as OTTO or
ABBA. Here it is meant that the elements match pairwise from the front and the back. This applies, for

example, to a list with the following values: { 1, 2, 3, 2, 1 }.
Example 1: Palindrome—Recursive Variant

You can easily test for a palindrome property recursively. Let’s look at this as a program after | have

briefly described the algorithm.

Algorithm If the array or list has the length 0 or 1, then it is a palindrome by definition. If the length is two
and greater, you must check the outer left and outer right elements for a match. After that, a copy of the array or
the list is created, shortened by one position at the front and one at the back. Further checking is then performed
on the remaining part of the array or the list, as shown in the following code:
def is palindrome simple recursive (values):

recursive termination
if len (values) <= 1:

return True

left = 0
right = len(values) -1
if values[left] == values|[right]:

attention: end is exclusive

remainder = values[left + 1 : right]

recursive descent

return is palindrome simple recursive (remainder)

return False

However, the described and implemented approach leads to many copies and extractions of subarrays
or sublists. It is affordable to avoid this effort by keeping the idea but modifying the algorithm minimally
by using a trick.

Optimized algorithm Rather than using a copy, you still use the original data structure. You include
two position markers 1eft and right, which initially span the entire array or list. Now you check if the
left and right values referenced by these positions match. If this is the case, the position markers are
moved inward by one position on both sides, and the whole procedure is called recursively. This is re-
peated until the left position pointer reaches or skips the right one.

The implementation changes as follows:
def is palindrome recursive optimized(values):
return is palindrome recursive in range (values, 0, len(values) - 1)
def is palindrome recursive in range (values, left, right):
recursive termination
if left >= right:
return True
if values[left] == values|[right]:
recursive descent
return is palindrome recursive in range (values, left + 1, right -
1)
return False

Perhaps you wonder why | don’t write the process more compactly and even use less return state-
ments. My main concern in presenting algorithms is comprehensibility. Multiple returns are really only

a problem if a function is very long and confusing.

|HINT: AUXILIARY functions FOR FACILITATING RECURSION
The idea of position pointers in arrays, lists, or strings is a common tool used in solutions to recursion

for optimization and avoidance of, say, array copying. To prevent the whole thing becoming inconve-
nient for callers, it is a good idea to have a high-level function calling a helper function that has addi-
tional parameters. This allows you to include certain information in the recursive descent. In this exam-
ple, these are the left and right limits, so that potentially costly copying can be eliminated. Many subse-

quent examples will take advantage of the general idea.

Example 1: Palindrome—Iterative Variant

Although a recursive definition of an algorithm is sometimes quite elegant, the recursive descent produces self
calls. This potentially creates quite a bit of overhead. Conveniently, any recursive algorithm can be converted

into an iterative one. Let’s look at this for the palindrome calculation. You use two position pointers for the

iterative conversion—instead of the recursive descent, you use a while loop. This terminates when all elements

have been checked or if a mismatch has been detected before.
def is palindrome iterative(values):

left = 0
right = len(values) - 1
same value = True

while left < right and same value:

same value = values|[left] == values[right]
left += 1
right -=1

return same value

Again, a note on compactness: This function could be written as follows, omitting the auxiliary variable:

def is palindrome iterative compact (values) :

left = 0

right = len(values) -1

while left < right and values[left] == values[right]:
left += 1
right -= 1

left >= right or values[left] != values[right]

return left >= right

The return value is determined by the condition implied by the comment, if left >= right holds, then val-
ues is not a palindrome. With this variant, however, you have to think much more about the return.

Again, | prefer understandability and maintainability over brevity or performance.

Python shortcut Of course, the whole thing can be achieved much more easily by calling the built-in
functionality [: : =1]. This produces a string or list (or even an array) with the letters or elements in reverse
order. I discuss this feature of Python called slicing later in Chapters 4 and 5. Let’s return to the exercise of
checking the palindrome property of a list, which can be written exceptionally compactly with slicing:
def is palindrome shorter (values):

return values == values[::-1]

Also, consider for this variant that in the presumably rare case of enormous amounts of data, an inverse

variant of the original list is generated here. Thus, the memory is required twice.

Example 2: Fractal Generation

As mentioned in the beginning, recursion allows you to create graphics as well. In the following, a graphically

simple variant is displayed, which is based on the subdivisions of a ruler:

This can be implemented with a two times recursive descent as follows:
def fractal generator(n):
if n < 1:
return
if n ==
print ("-")
else:
fractal generator(n - 1)
print ("=" * n)
fractal generator(n - 1)
If you use more complex drawing functions instead of ASCII characters, you can use recursion to create

exciting and appealing shapes, for example the snowflake in Figure 3-3.

e ® Python Turthe Graphics

Figure 3-3 Recursive graphic with draw_snowflake()

This stylized representation of a snowflake can be implemented as follows:
import turtle
def draw snowflake(turtle, length, depth):
recursive termination
if depth ==
return

for in range(6):

turtle.right (60)
turtle.forward (length)
recursive descent
draw_snowflake (turtle, length // 3, depth - 1)
turtle.back (length)
screen = turtle.Screen()
turtle.speed(10)
draw_snowflake (turtle, 240, 5)

screen.exitonclick ()

3.1.3 Steps When Multiplying the Digits of a Number

To conclude the algorithmic examples, I would like to clarify the individual steps and self calls once more. As an
artificial example, use the multiplication of the digits of a number, also called cross product, for example for the
value 257 =2 % 5 % 7= 10 % 7 ="70. Using modulo, the extraction of the individual digits and their
multiplication can be implemented quite simply as follows:
def multiply all digits(value):
remainder = value // 10
digit value = value % 10
print ("multiply all digits: %-10d | remainder: %d, digit: %d" %
(value, remainder, digit value))
if remainder > 0:
result = multiply all digits(remainder)
print("-> %d * %d = %d" % (digit value, result, digit value *
result))
return digit value * result
else:
print("-> " + str(value))
return value
Let’s look at the outputs for the two numbers 1234 and 257:
>>> multiply all digits (1234)
multiply all digits: 1234
multiply all digits: 123

remainder: 123, digit: 4
remainder: 12, digit: 3

|
|

multiply all digits: 12 | remainder: 1, digit: 2
|

multiply all digits: 1 remainder: 0, digit: 1
-> 1

-> 2 * 1 =2

-> 3 * 2 =

-> 4 * 6 = 24

24

>>> multiply all digits(257)
multiply all digits: 257 | remainder: 25, digit: 7

multiply all digits: 25 | remainder: 2, digit: 5
multiply all digits: 2 | remainder: 0, digit: 2

-> 2

-> 5 * 2 =10

-> 7 * 10 = 70

70

It is clearly visible how the recursive calls happen with a continuously shorter sequence of numbers. Fi-

nally, the result is constructed or calculated based on the last digit in the other direction.

Python shortcut Again, the whole thing can be accomplished much more easily by calling the functionality
reduce () from module functools Still, the point here is to get acquainted with the recursive description of
multiplying the digits of a number:
import functools
def multiply all digits shorter(value):

return functools.reduce (lambda x, y: int(x) * int(y), str(value))

3.1.4 Typical Problems: Endless Calls and RecursionError

Recursion often allows problems to be expressed and implemented in an understandable way. A detail
worth knowing is that the self calls lead to them being stored temporarily on the stack. For each function
call, a so-called stack frame containing information about the called function and its parameters is
stored on the stack. The stack is, however, limited in its size. Thus only a finite number of nested func-
tion calls can take place—usually around 990. This was already discussed briefly in a practical tip.

A huge number of recursive calls can result in a RecursionError : maximum recursion depth
exceeded. Sometimes the problem occurs because there is no termination condition in the recursion or the
condition is formulated incorrectly.

attention: deliberately wrong for demonstration
def infinite recursion(value):

infinite recursion (value)
def factorial no abortion (number) :

return number * factorial no_ abortion (number - 1)

Sometimes the call is also just wrong, simply because no decreased value is passed:
attention: deliberately wrong for demonstration
def factorial wrong call(n):

if n == 0 or n ==
return 1
return n * factorial wrong call(n)

You may still recognize a direct endless self call fairly well. But this becomes more difficult with an in-

creasing number of lines. With some experience and practice in recursion, even the missing termina-

tion condition in the function factorial no abortion () may still be quite recognizable. But, in the

function factorial wrong call () thisis not that easy to determine. Here you must know more ac-

curately what was intended.

You should take away two things from the examples:

Termination condition: A recursive function must always include at least one termination condi-
tion. But even if defined correctly, it is possible that, for example, the disallowed negative value
range is not checked. For factorial (n) a call with a negative value would then lead to a

RecursionError.

2.
Complexity reduction : A recursive function must always subdivide the original problem into one
or more smaller subproblems. Sometimes, this is already accomplished by reducing the value of

a parameter by 1.

3.2 Exercises

3.2.1 Exercise 1: Fibonacci (K v ¥)
Exercise 1a: Fibonacci Recursive (K v i)

Write function £ib rec (n) that recursively computes Fibonacci numbers based on the following definition:
=i § fib(n)=\left\{\begin{array} {c}1,\kern6.119996em n=1\\ {} 1,\kern5.999996em n=2\\ {} fib\left(n-1\right)+
fib\left(n-2\right),\forall n>2\end {array}\right. $

Example
For example, check the implementation with the following value progression:

Input 1 2 3 4 5 6 7 8

fibm) 1 1 2 3 5 8 13 21

Exercise 1b: Fibonacci Iterative (J % s« ¥)

The recursive calculation of Fibonacci numbers is not efficient, and the running time increases enor-

mously from about the fortieth or fiftieth Fibonacci number. Write an iterative version for the calculation.

3.2.2 Exercise 2: Process Digits (k& rv¥)
Exercise 2a: Count Digits (% s 55r)

Write recursive function count digits (value) thatfinds the number of digits in a positive natural

number. We already discussed how to extract digits in the previous chapter in section 2.1.

Exercise 2b: Cross Sum (K ki3 sr)

Calculate the sum of the digits of a number recursively. Write recursive function calc _sum of dig-

its (value) for this purpose.

Examples
Input Number of digits ~ Cross sum
1234 4 1+2+3+4=10
1234567 7 1+24+3+4+5+6+7=28

3.2.3 Exercise 3: GCD (kk v vv)

Exercise 3a: GCD Recursive (ki 3r3r)

Write function gcd (a, b) that computes the greatest common divisor (GCD)L. GCD can be expressed
mathematically recursively as follows for two natural numbers a and b:

o $ \mathit{\gcd}\left(a,b\right)=\left\{\begin {array} {c}a,\kern2.999999em b=0\\

{}\mathit{\gcd}\left(b,a\%Db\right),b\ne O\end {array}\right. $

Examples
Input 1 Input2 Result
42 7 7

42 28 14

Input 1 Input 2 Result

42 14 14

Exercise 3b: GCD lterative (k% 5 3¥)

Create an iterative version for the GCD calculation.

Exercise 3c: LCM (ki)

Write function 1cm (a, b) that computes the least common multiplier (LCM) . For two natural numbers a and
b, you can calculate this based on the GCD using the following formula:
=2$ \mathit {\operatorname {lcm} }\left(a,b\right)={a} " {\ast }bAmathit{\gcd}\left(a,b\right); $

Examples

Input 1 Input2 Result

2 7 14
7 14 14
42 14 42

3.2.4 Exercise 4: Reverse String (kK ¥ vr)

Write recursive function reverse string (text) that flips the letters of the text passed in.

Examples
Input Result
“A” “A”

“ABC" “CBA”

Input Result

“abcdefghi” “ihgfedcba”

3.2.5 Exercise 5: List Sum (k% s v)

Write function sum rec (values) that recursively computes the sum of the values of the given list. No

call to the built-in functionality sum () is allowed.

Examples
Input Result
[1,2, 3] 6
[1,2,3,-7] -1

3.2.6 Exercise 6: List Min (F ks vv)

Write functionmin rec (values) that uses recursion to find the minimum value of the passed list. For
an empty list, the value sys.maxs1ize should be returned. In the implementation, no call to the built-in

functionality min () is allowed.

Examples
Input Result
[7,2,1,9,7,1] 1

[11,2,33,44,55,6,7] 2

[1,2,3,-7] -7

3.2.7 Exercise 7: Conversions (kK v i¥)

Exercise 7a: Binary (ki 5r)

Write function to binary (n) that recursively converts the given positive integer into a textual binary

representation. No call to int (x, base) may be used.

Examples

Input Result

5 “101”

7 “1117

22 “10110”

42 “101010”
256 “100000000”

Exercise 7b: Octal and Hexadecimal Numbers (% v+)

Write conversions to octal and hexadecimal numbers by implementing the corresponding functions

to_octal(n) and to hex (n).Again, nocallto int (x, base) may be used.

Examples
Input Method Result
7 octal “1’
8 octal “10”
42 octal “52”

15 hexadecimal “F”

Input Method Result

77 hexadecimal “4D”

3.2.8 Exercise 8: Exponential Function (3% i v ¥r)
Exercise 8a: Power of Two (ki3 5r)

Write recursive function is power of 2 (n) that evaluates the given positive integer to see if itis a

power of two.

Examples

Input Result

2 True
10 False
16 True

Exercise 8b: Exponentiation Recursive (Fk k)

Write recursive function power of (value, exponent) that exponentiates the given positive integer
with the positive number specified as second parameter. For example, the call power of (4, 2)
should return the square of 4, so compute 42 = 16. You may not use the built-in functionality pow () or

the operator * *.

Exercise 8c: Exponentiation Iterative (dk s v+ 3)

Write an iterative version of this exponentiation functionality.

Examples

Input base Input exponent Result

Input base Input exponent Result

2 2 4
2 8 256
4 4 256

3.2.9 Exercise 9: Pascal’s Triangle (F k)

Write function print pascal (n) that prints Pascal’s triangle. For the value 5, the following output should

be generated:
]

;1]

¢ 2, 1]

, 3, 3, 1]
, 4, 6, 4, 1]

Starting with the third line, each subsequent line is calculated based on the previous one with the help

[1
[1
[1
1
(1

of an addition, as shown in the last line of the following definition. For each line, these values are
flanked by a 1 at the front and at the back. Since this is a two-dimensional structure, the recursive defin-

ition is a little more complex.

1, row = land col = 1 (top)
1, Vrow € {1, n} and col =1
pascal(row, col) =1 1, Vrow € {l, n} and col = row

pascal(row - 1, col)+

| pascal(row - 1, col - 1), otherwise (based on predecessors)

TipFor background information and an in-depth explanation, please consult

https://en.wikipedia.org/wiki/Pascal's triangle.

3.2.10 Exercise 10: Number Palindromes (3% % % +)

A palindrome is a word that reads the same from the front and the back. You can extend this definition

to the digits of a number. Write recursive function is number palindrome (number) but without

https://en.wikipedia.org/wiki/Pascal%25E2%2580%2599s_triangle

converting the number into a string and then using string functionalities like [::-11.

Examples

Input Result

7 True
13 False
171 True
47742 False

3.2.11 Exercise 11: Permutations (k& kv 5¥)

Calculate all permutations of a sequence of letters given as a string; this means all possible combina-
tions of these letters. Implement this calculation in function calc permutations (text).Consider

also the case of duplicate letters, but do not use the standard Python functionality from the itertools

module.
Examples
Input Result
N “A”
“AA” “AA”
“AB” “AB”, “BA”

“ABC” “ABC, “BAC”, “ACB”, “CAB”, “CBA”, “BCA”

“AACH “AAC”, “ACA”, “CAAH

3.2.12 Exercise 12: Count Substrings (& Kk ¥ ¥)

Write function count substrings (text, value to_ find) that counts all occurrences of the
given substring. Thereby, when a pattern is found, it should be consumed; in other words, it should not
be available for hits again. This is shown n the following table as the last case. Implement the whole

thing yourself without resorting to the standard count ().

Examples
Input Search term Result
“xhixhix” “x” 3
“xhixhix” “hi” 2
“mic” “mic” 1
“haha” “ho” 0
“XXXXyZz” “xx” 2

3.2.13 Exercise 13: Ruler (G Kk v v¥)

In the introduction, | showed how to draw a simple shape of a ruler as well as a stylized snowflake (see
Figure 3-3) using recursion. In this exercise, you want to imitate an English-style ruler. This involves di-
viding an area of one inch into 1/2 and 1/4 and 1/8. In doing so, the length of the strokes decreases by

one each time.
Example

The output should look somewhat like the following:
-———- 0

——2

3.3 Solutions

3.3.1 Solution 1: Fibonacci (K v+ 5¥)
Solution 1a: Fibonacci Recursive (¥ v« v v v)

Write function £ib rec (n) that recursively computes Fibonacci numbers based on the following definition:
g fib(n)=\left\{\begin{array} {c} 1,\kern6.119996em n=1\\ {}1,\kern5.999996em n=2\\ {} fib\left(n-1\right)+
fib\left(n-2\right),\forall n>2\end {array}\right. $

Example

For example, check the implementation with the following value progression:

Input 1 2 3 4 5 6 7 8

fibm) 1 1 2 3 5 8 13 21

Algorithm The implementation in Python is exactly derived from the mathematical definition:
def fib rec(n):
if n <= 0:
raise ValueError ("n must be >= 1")
recursive termination
if n==1or n ==
return 1
recursive descent
return fib rec(n - 1) + fib_rec(n - 2)
Python shortcut To calculate Fibonacci numbers, you can use a lambda and write the whole thing as a one-
liner—but without error handling and somewhat less readable. In addition, the recursive termination and descent

are more difficult to recognize.
fib = lambda n: n if n < 2 else fib(n - 1) + fib(n - 2)

|ATTENTION: OPTIMIZATION

Keep in mind that self calls happen again and again when calculating Fibonacci numbers. Even worse,
that is the case for values that have already been calculated before. This is suboptimal. In addition to
the iterative variant shown in the following, the technique memoization discussed in section 7.1 can be
used for optimization. In Python, decorators are suitable for this purpose, which | briefly introduce in

Appendix B.

Solution 1b: Fibonacci lterative (F %k v+)

The recursive calculation of Fibonacci numbers is not efficient, and the running time increases enor-

mously from about the fortieth to fiftieth Fibonacci number. Write an iterative version for the calculation.

Algorithm Similarly to the recursive version, the iterative implementation checks at first the input for
validity and then for the special cases for the invocation with the values 1 or 2. After that, you use two helper
variables and a loop that runs from 2 to n. You then calculate the corresponding Fibonacci number from the sum
of the two helper variables. After that, the two helper variables are assigned appropriately. This results in the
following implementation:
def fib iterative(n):

if n <= 0:
raise ValueError ("n must be >= 1")
if n ==1 or n ==
return 1
fib n 2 =1
fib n 1 =1
for in range(2, n):
fib n = fib n 1 + fib n 2
"shift" by one position
fib n 2 = fib n 1
fib n 1 = fib n

return fib n

Verification

For testing, use the following inputs, which show the correct functioning:
def input and expected():
return [(1, 1), (2, 1), (3, 2), (4, 3),

(5, 5), (6, 8, (7, 13), (8, 21)]
@pytest.mark.parametrize("n, expected", input and expected())
def test fib rec(n, expected):

assert fib rec(n) == expected

@pytest.mark.parametrize("n, expected", input and expected())

def test fib iterative(n, expected):

assert fib iterative(n) == expected

3.3.2 Solution 2: Process Digits (kv ¥r)
Solution 2a: Count Digits (Fk Kk v)

Write recursive function count digits (value) thatfinds the number of digits in a positive natural

number. You explored how to extract digits in the previous chapter in section 2.1.

Examples
Input Number of digits ~ Cross sum
1234 4 1+42+3+4=10
1234567 7 1+243+4+5+6+7=28

Algorithm If the number is less than 10, then return the value 1 because this corresponds to a digit.
Otherwise, calculate the remaining value by dividing the number by 10. This invokes the counting method
recursively as follows:
def count digits(value):

if value < O:
raise ValueError ("value must be >= 0")
recursive termination
if value < 10:
return 1
recursive descent

return count digits(value // 10) + 1

ATTENTION: SANITY CHECKS AT THE BEGINNING OF THE METHOD
[To ensure stable programs, it is often a good idea to check the parameters for validity. This can be ac-

complished in the form of simple i £ statements, as you have done several times before. In Python,
however, this can be achieved more elegantly with the help of decorators, which | briefly introduce in
Appendix B.

Python shortcut Of course, there are different variants to solve this task non-recursively and in a more
performant way. With list comprehension, every digit is converted into a 1. They are summed up using the built-
in sum () function. However, this tends to be a fancy, artificial solution. It is much clearer and more

understandable to convert the number into a string and then call the built-in function 1en () to count the digits:

def count digits_ shorter(value):
return sum ([l for in str(value)])
def count digits tricky(value):

return len(str (value))
Solution 2b: Cross Sum (% % 5 3 i)

Calculate the sum of the digits of a number recursively. Write recursive function calc _sum of dig-

its (value) for this purpose.

Algorithm Based on the solution for the first subtask, you only vary the returned value for the digit as well
as the addition and the self call as follows:
def calc sum of digits(value):
if value < O:
raise ValueError ("value must be >= 0")
recursive termination
if value < 10:
return value
remainder = value // 10
last digit = value % 10
recursive descent
return calc_sum of digits(remainder) + last digit
Python shortcut The built-in function divmod () is useful here:
def calc sum of digits(value):
if value < 0:
raise ValueError ("value must be >= 0")
recursive termination
if value < 10:
return value
remainder, last digit = divmod(value, 10)
recursive descent
return calc _sum of digits(remainder) + last digit
To sum the digits, you again use list comprehension, which converts each digit into a numerical value. The
sum is calculated with the built-in function sum () :
def calc sum of digits shorter(value):
return sum([int(ch) for ch in str(value)])
However, this assignment is not about brevity, but about getting to know the recursive description of the

calculation of the sum of the digits.

Verification

For testing, use the following inputs, which show the correct operation:
@pytest.mark.parametrize ("number, expected", [(1234, 4), (1234567, 7)1)
def test count digits (number, expected):

assert count digits (number) == expected
@pytest.mark.parametrize ("number, expected", [(1234, 10), (1234567, 28)])
def test calc sum of digits (number, expected):

assert calc sum of digits(number) == expected

3.3.3 Solution 3: GCD (Fk kv ¥ vr)
Solution 3a: GCD Recursive (K v i)

Write function gcd (a, b) that computes the greatest common divisor (GCD)2. GCD can be expressed

mathematically recursively as follows for two natural numbers a and b:

i $ \mathit{\gcd}\left(a,b\right)=\left\{{} {\mathit{\gcd}\left(b,a\%b\right),\kern0.36em b\ne
0}"{a,\kern3.839998em b=0}\right. $

Examples

Input 1 Input2 Result

42 7 7
42 28 14
42 14 14

Algorithm The calculation of the GCD can be coded in Python fairly directly from the mathematical
definition:
def gcd(a, b):

recursive termination
if b ==

return a
recursive descent
return gcd(b, a % b)

Python shortcut Of course, this task can be achieved in a much more straightforward way by calling the
built-in functionality gcd () from the module math. However, this assignment is about getting to know the
recursive calculation of the GCD.
>>> import math
>>> math.gcd (42, 7)

7
>>> math.gcd (42, 14)
14

Solution 3b: GCD lterative (F Kk v)
Create an iterative version for the GCD calculation.
Algorithm The self call is transformed into a loop that is executed until the condition of the recursive

termination is met. The trick is to reassign the variables as specified by the recursive definition.
def gcd iterative(a, b):

while b != 0:
remainder = a % b
a =>b
b = remainder
here applies b == 0
return a
Verification

For testing, use the following inputs, which show the correct operation:
@pytest.mark.parametrize ("a, b, expected",

(42, 7, 7)), (42, 28, 14), (42, 14, 14)])
def test gcd(a, b, expected):

assert gcd(a, b) == expected

@pytest.mark.parametrize ("a, b, expected",

[(42, 7, 7), (42, 28, 14), (42, 14, 14)1)
def test gcd iterative(a, b, expected):

assert gcd iterative(a, b) == expected
Solution 3c: LCM (v v vc)

Write function 1cm (a, b) that computes the least common multiplier (LCM) . For two natural numbers
a and b, you can calculate this based on the GCD using the following formula:

lem(a, b) = a= b/ gcd(a, b);

Examples

Input 1 Input2 Result

Input 1 Input 2 Result

2 7 14
7 14 14
42 14 42

Algorithm The calculation of the LCM can also be directly implemented from the mathematical definition,
as long as you have already completed the functionality for the GCD:
def lcm(a, b):

return a * b // gcd(a, b)

Python shortcut Of course, this task can be achieved in a much more straightforward way by calling the
built-in functionality 1cm () from the module math:
>>> import math
>>> math.lcm (2, 7)
14

Verification

For testing, use the following inputs, which show the correct operation:
@pytest.mark.parametrize ("a, b, expected",

[(2, 7, 14), (7, 14, 14), (42, 14, 42)1])
def test lcm(a, b, expected):

assert lcm(a, b) == expected

HINT: CALCULATE LCM WITHOUT USING GCD
[Without the calculation of the GCD, you proceeds as follows. You determine both the maximum and the
minimum of the two numbers. Starting from the larger number, this is increased by itself until the smaller
number divides the resulting number perfectly (i.e., without a remainder).
def lcm iterative(a, b):

larger = max(a, b)

smaller = min(a, b)

value = larger

while value % smaller != O0:

value += larger

return value

3.3.4 Solution 4: Reverse String (k% v v vr)

Write recursive function reverse string (text) that flips the letters of the text passed in.

Examples
Input Result
“p? A
“ABC” “CBA”
“abcdefghi” “ihgfedcba”

Algorithm Extract the first character until you have a string of length 1 and then concatenate the whole in
reverse order:
def reverse string(text):
recursive termination
if len(text) <= 1:
return text
first char = text[0]
remaining = text[l:]
recursive descent
return reverse_string(remaining) + first char
Python shortcut This can be achieved much easier by the following calls:
reversed text = text[::-1]
reversed text = "".Jjoin(reversed(text))
However, this task is about getting to know recursion.

Verification

For testing, use the following inputs, which show the correct operation:
@pytest.mark.parametrize ("input, expected",
[("a", "A"), ("ABC", "CBA"),
("abcdefghi", "ihgfedcba")])
def test reverse string(input, expected):

assert reverse string(input) == expected

3.3.5 Solution 5: List Sum (k% v v 3¥)

Write function sum rec (values) that recursively computes the sum of the values of the given list. No

call to the built-in functionality sum () is allowed.

Examples
Input Result
[1,2,3] 6

[1,2,3,-7] -1

Algorithm Compute the partial sum with the recursive definition as long as
sum(values(0)) = values[0]
sum(values(0 ... n)) = values[0] + sum(values(1 ... n))

until only a single element is left. As mentioned in the introduction, a helper function is useful, containing

the actual processing and logic. Here the current value in the list is added to the recursively determined result:
def sum rec(values):

return sum helper (values, 0)
def sum helper (values, pos):

recursive termination

if pos >= len(values):

return 0
recursive descent

return values[pos] + sum _helper (values, pos + 1)
Alternative algorithm Alternatively, it is also possible to let the pos counter run from 1length - 1to

0, so the recursion reverses to the following:
sum(values(0 ... n)) = sum(values(0 ... n - 1)) + values[n]

This can be implemented in the form of functions sum tail (values) and
sum tail helper (values, pos) as follows:
def sum tail(values):
return sum tail helper (values, len(values) - 1)
def sum tail helper (values, pos):
recursive termination
if pos < 0:

return 0

recursive descent
return sum_tail helper (values, pos - 1) + values|[pos]

Python shortcut Of course, the whole thing can be achieved in a much more straightforward way by calling
the built-in functionality sum () . However, this assignment is about getting to know the recursive description of
the sum calculation.
result = sum(values)

Likewise, the function reduce () from the module functools can be used—but this is less
understandable and less readable:
import functools
def sum lambda (values):

return functools.reduce (lambda x, y: x + y, values)

Verification

The following inputs show the correct operation:
@pytest.mark.parametrize ("values, expected",
(ccy, 1, ¢ (1, 2, 31,), (11, 2, 3, =71, -1)1)
def test sum rec(values, expected):
assert sum rec(values) == expected
@pytest.mark.parametrize ("values, expected",
rcrxy, 1, ¢ 1, 2, 31, o, (11, 2, 3, =71, -1)1)
def test sum tail(values, expected):
assert sum tail (values) == expected
@pytest.mark.parametrize ("values, expected",
(cr11, n, ¢ 11, 2, 31, o), (11, 2, 3, =71, -1)1)
def test sum lambda (values, expected):

assert sum lambda (values) == expected

3.3.6 Solution 6: List Min (k% v 3r)

Write function min rec (values) that uses recursion to find the minimum value of the passed list. For
an empty list, the value sys.maxsize should be returned. In the implementation, no call to the built-in

functionality min () is allowed.

Examples

Input Result

[7,2,1,9,7,1] 1

Input Result
[11,2,33,44,55,6,7] 2

[17 2; 37 -7] -7

Algorithm Check the list starting from the first element and compare it with an initial minimum set to
sys.maxsize. If the current element is smaller, it becomes the new minimum. Repeat this check for the list
shortened by one position until the position has reached the end of the list.
def min rec(values):

return min helper (values, 0, sys.maxsize)
def min helper(values, pos, min value):
recursive termination
if pos >= len(values):
return min value
value = values[pos]
if value < min value:
min value = value
recursive descent
return min_helper (values, pos + 1, min value)

Python shortcut An invocation of the built-in functionality min () would be much simpler. However, this
task is about the recursive determination of the minimum.
result = min(values)

Verification

For testing, use the following inputs, which show the correct functionality:
@pytest.mark.parametrize ("values, expected",
(¢t?, 2, 1, 9, 7, 11, 1), (11, 2, 3, =71, =-17),
(f11, 2, 33, 44, 55, 6, 71, 2), ([1,
sys.maxsize)])
def test min rec(values, expected):

assert min rec(values) == expected

3.3.7 Solution 7: Conversions (kK ¥ vy 3¥)
Solution 7a: Binary (Fk kv i)

Write function to_binary (n) that recursively converts the given positive integer into a textual binary

representation. No callto int (x, base) may be used.

Examples

Input Result

5 “101”

7 “1117

22 “10110”

42 “101010”
256 “100000000”

Algorithm The conversion is based on the already known extraction of the last digit and the determination of
remainder, as was introduced in section 2.1. To convert a decimal number into a binary number, check whether
the number passed can be represented by a single digit in the binary system (i. e., whether it is smaller than 2).
Otherwise, the last digit is extracted first using the modulo operator and also the remainder. For this, you call the
function recursively and then concatenate the string representation of the last digit. This results in the following

sequence for the value 22:

Invocation Process Result

to_binary(22) to_binary(22/2) + str(22%2) => to_binary(11) + “0” “10110”

to_binary(11) to_binary(11/2) + str(11%?2) => to_binary(5) + “1” “1011”
to_binary(5) to_binary(5/2) + str(5%2) => to_binary(2) + “1” “101”
to_binary(2) to_binary(2/2) + str(2%2) => to_binary(1) + “0” “10”
to_binary(1) str(1) => “1” “1”

Now let’s implement the whole thing in Python as follows:
def to binary(n):
if n < O:
raise ValueError ("n must be >= 0")

recursive termination: check for digit in binary system

if n <= 1:
return str (n)
remainder, last digit = divmod(n, 2)

recursive descent

return to_binary(remainder) + str(last digit)

Solution 7b: Octal and Hexadecimal Numbers (% ¥« v %)

Write conversions to octal and hexadecimal numbers by implementing the corresponding functions

to _octal(n) and to hex (n).Again, nocallto int (x, base) may be used.

Examples
Input Method Result
7 Octal wn
8 Octal “10”
42 Octal w507
15 Hexadecimal “F”
77 Hexadecimal ~ “4D”

Algorithm The algorithm remains basically the same. You check whether the number passed can be
represented by a single digit of the desired number system, such as smaller than 8 (octal) or 16 (hexadecimal).
Otherwise, you first extract the last digit using a modulo operation and also the remainder. For the remainder,
this function is called recursively and then the string representation of the last digit is concatenated. In this
solution, you use an explicit division and the modulo operator for octal number processing and the built-in
function divmod () when checking for hexadecimal numbers:
def to octal(n):

if n < O:
raise ValueError ("n must be >= 0")
recursive termination: check for digit in octal system
if n <= 7:
return str (n)
last digit = n % 8
8

remainder = n //

recursive descent
return to_octal (remainder) + str(last digit)
def to hex(n):
if n < 0O:
raise ValueError ("n must be >= 0")
recursive termination: check for digit in hexadecimal system
if n <= 15:
return as hex digit(n)
remainder, last digit = divmod(n, 16)
recursive descent
return to_hex(remainder) + as hex digit(last digit)
For the sake of completeness there remains the conversion into a hexadecimal digit:
easier handling of hexadecimal conversion
def as hex digit(n):
if 0 <= n < 9:
return str (n)
if 10 <= n <= 15:
special character arithmetic
return chr (ord('A') + (n - 10))

raise ValueError ("value not in range 0 - 15, " 4+ "but is: " + n)

HINT: POSSIBLE OPTIMIZATION
Although the implementation shown for converting a single hexadecimal digit to a string is pretty
straightforward, there is an amazingly elegant variant that is also readable and understandable. It checks in a
given character set with indexed access via [n]:
def as hex digit optimized(n):
if 0 <= n <= 15:
return "0123456789ABCDEF" [n]

raise ValueError ("value not in range 0 - 15, " + "but is: " + n)

Verification

For testing, use the following inputs, which show the correct operation:
@pytest.mark.parametrize ("value, expected",

[(5, "101"), (7, "111™), (22, "10110™),

(42, "101010"), (256, "100000000M™)1)
def test to binary(value, expected):
assert to binary(value) == expected

@pytest.mark.parametrize ("value, expected",

[(42, "52"™), (7, "7™), (8, "10")1)
def test to octal(value, expected):

assert to octal (value) == expected

@pytest.mark.parametrize ("value, expected",
[(77, "4D"), (15, "F"), (16, "10™)])
def test to hex(value, expected):

assert to hex(value) == expected

3.3.8 Solution 8: Exponential Function (3 % i)
Solution 8a: Power of Two (F & v v)

Write recursive function is_power of 2 (n) that evaluates the given positive integer to see if it is a

power of two.

Examples

Input Result

2 True
10 False
16 True

Algorithm If the given number is smaller than the value 2, only the value 1 corresponds to a power, namely
the 0 (i. e., 2°). Now you have to check if it is an odd number. If this is the case, it is impossible for it to be a
multiple and therefore not a power of 2. If the number is even, then check recursively with the number divided
by 2.
def is power of 2(n):

recursive termination
if n < 2:
return n ==
if n % 2 !=0:
return False
recursive descent
return is_power of 2(n // 2)
For the initial check, use a little trick with return n==1, which has the following effect:

n<0:False (negative number, so never the value 1)

n=0:False (0=1)

n=1:True(l1=1)

Let’s take a look at a short version of the implementation. To my mind, the upper one is more
comprehensible. Moreover, in the first version, the recursive termination and the recursive descent are much
clearer.
def is power of 2 short(n):

[}

return n == 1 orn > 0 and n % 2 == 0 and is power of 2 short(n // 2)
Solution 8b: Exponentiation Recursive (k% v« vr¥r)

Write recursive function power of (value, exponent) that exponentiates the given positive integer
with the positive number specified as second parameter. For example, the call power of (4, 2)
should return the square of 4, so compute 42 = 16. You may not use the built-in functionality pow () or

the operator * *.

Algorithm Invoke the method recursively and multiply the number by the result of the self call until the
exponent reaches 0 or 1. Furthermore, you have to reduce the exponent by 1 with each call.
def power of (value, exponent):

if exponent < 0:
raise ValueError ("exponent must be >= 0")
recursive termination
if exponent ==
return 1
if exponent ==
return value
recursive descent
return value * power of (value, exponent - 1)

This alternative has a cost of O(n). But it is quite easy to optimize this and reduce it to O(log(n)).

Optimized algorithm For optimization, use the trick of squaring the value and thereby halving the exponent.
This leaves only the special treatment of an odd exponent, which requires another multiplication.
def power of optimized(value, exponent):

if exponent < 0:
raise ValueError ("exponent must be >= 0")
recursive termination
if exponent ==
return 1
if exponent ==
return value
recursive descent

result = power of optimized(value * value, exponent // 2)

Q

if exponent & 2 ==
return value * result
return result
Python shortcut Of course, the whole thing can be achieved in a much more straightforward way by calling
the built-in functionality pow () or the operator **. But this task is about getting to know the recursive
calculation.
result = pow(value, exponent)

result = value ** exponent

Solution 8c: Exponentiation Iterative (k55 vr)

Write an iterative version of this exponentiation functionality.

Examples

Input base Input exponent Result

2 2 4
2 8 256
4 4 256

Algorithm As with the recursive version, you probably start with the two checks. Besides, the self call has to
be converted into a loop, and the number has to be multiplied with the previous intermediate result. Furthermore,
in each iteration, the exponent has to be reduced. However, a sharp look quickly shows that the two initial checks
are already covered by the general case and therefore are no longer included in the listing.
def power of iterative(value, exponent):

result =1

while exponent > 0:
result *= value
exponent -= 1

return result
Verification

For testing, use the following inputs, which show the correct operation:
@pytest.mark.parametrize ("value, expected",
[(2, True), (3, False), (4, True),
(10, False), (16, True)])

def test is power of2(value, expected):
assert is power of 2(value) == expected
def inputs and expected() :
return [(2, 2, 4), (4, 2, 1l6), (16, 2, 256),
(4, 4, 256), (2, 8, 256)]
@pytest.mark.parametrize ("number, exponent, expected",
inputs_and expected())
def test power of (number, exponent, expected):
assert power of (number, exponent) == expected
@pytest.mark.parametrize ("number, exponent, expected",
inputs_and expected())
def test power of iterative(number, exponent, expected):

assert power of iterative (number, exponent) == expected

3.3.9 Solution 9: Pascal’s Triangle (3 %k v v vr)

Write function print pascal (n) that prints Pascal’s triangle. For the value 5, the following output should

be generated:

]

2, 1]

3, 3, 1]

4, 6, 4, 1]

Starting with the third line, each subsequent line is calculated based on the previous one with the help

1
[1
1
(1
[1

4
14
4
14

of an addition, as shown in the last line of the following definition. For each line, these values are
flanked by a 1 at the front and at the back. Since this is a two-dimensional structure, the recursive defin-

ition is a little more complex.

1, row = 1andcol = 1 (top)
1, Vrow € {1, n} and col =1
pascal(row, col) =11, Vrow € {l, n} and col = row

pascal(row - 1, col)+

| pascal(row - 1, col - 1), otherwise (based on predecessors)

TipFor background information and an in-depth explanation, please consult

https://en.wikipedia.org/wiki/Pascal's triangle.

Algorithm Implement the recursive definition as function as follows:

def calc pascal (row, col):

https://en.wikipedia.org/wiki/Pascal%25E2%2580%2599s_triangle

recursive termination: top
if col == 1 and row ==
return 1
recursive termination: border
if col == 1 or col == row:
return 1
recursive descent
return calc_pascal (row - 1, col) + calc pascal(row - 1, col - 1)
Actually, there is no need for a separate termination condition for the top. Nevertheless, this is shown

here for the sake of better comprehension—but of course, that is a matter of taste.

To calculate Pascal’s triangle, the previous method must now be invoked for each position in the triangle
using two nested loops covering all rows and columns:
def print pascal(n):
for row in range(l, n + 1):
for col in range(l, row + 1):
print (calc pascal (row, col), end=' ")
print ()
To try it out, use the Python console:
>>> print pascal(7)

1

31

6 41

10 10 5 1

6 15 20 15 6 1

Optimized algorithm The pure recursive definition results in quite a lot of computations. It becomes

g w N

1
1
1
1
1
1
1

more understandable, comprehensible, and performant if you work line by line.

The starting point is the first line, which contains only the value 1. For all other values, you must call the
method itself n times and then use the helper function calc_line (previous line values) to compute
the new line. But to avoid mixing the computation and the console output, you add a parameter that is capable of
performing actions, such as logging intermediate steps to the console.
def calc pascal with action(n, action):

recursive termination
if n ==
if action:
action([1])
return [1]
else:

recursive descent

previous line values = calc pascal with action(n - 1, action)
new line = calc line(previous line values)
if action:
action(new_line)
return new line
You can find a bit more complexity in the helper function calc line (previous line) for
calculating the values of the new line based on the previous one. It is important to keep in mind that the previous
line contains at least two values and that you do not sum up to the last element, but only to the second last
element. With the help of list comprehension, however, this can be implemented quite understandably and
briefly as follows:
def calc line(previous line):
value results from the two values of the previous line
current line = [previous line[i] + previous line[i + 1]
for i in range(len(previous line) - 1)]
flanked by a 1 in each case
return [1] + current line + [1]
Verification

For testing, use the following call, which shows the correct operation:
>>> calc _pascal with action(5, print)

r 1]

r 2, 1]

, 3, 3, 11

, 4, 6, 4, 1]

You can then check something more formal with a unit test:
@pytest.mark.parametrize ("n, expected",

(1, [11),

(2, [1, 11),

(3, [1, 2, 11),

(4, (1, 3, 3, 11),

(5, [1, 4, 6, 4, 11),

(6, (1, 5, 10, 10, 5, 11),

(7, [1, 6, 15, 20, 15, 6, 11)1)

def test calc pascal with action(n, expected):

assert calc pascal with action(n, None) == expected

3.3.10 Solution 10: Number Palindromes (% & & X +v)

A palindrome is a word that reads the same from the front and the back. You can extend this definition

to the digits of a number. Write recursive function is number palindrome (number) but without

converting the number into a string and then using string functionalities like [::-11.

Examples

Input Result

7 True
13 False
171 True
47742 False

Algorithm Because of the restriction demanded in the exercise, it is not possible to compare character
by character. However, the operations modulo and division are suitable, which you have already used

for similar tasks. You use both to separate and compare the left and right digits.

Let’s approach the solution with examples:

#digits value calculation
1 digit => special case, 1s always palindrome
2 digits 11 divisor = 10
< 100 1 %10 =1
11/ 10 = 1 palindrome
13
3% 10 =3
13 / 10 = 1 X
3 digits 171 divisor = 100
< 1000 1 %10 =1
171 / 100 = 1
remainder: 7 (171 / 10 = 17 % 10 = 7)
=> check recursively
4 digits 4774 divisor = 1000
<10000 4 $ 10 = 4
4774 / 1000 = 4 ok
remainder: 77 (4774 / 10 = 477 % 100 = 77)

=> check recursively
The right and left digits of a digit have to be extracted. If they match, the new value is determined by first
dividing by 10 (cutting off the last digit) and then using the modulo operator with the appropriately selected

amount of digits to determine the remainder (i. e., cutting off the front number). In particular, you have to figure
out the length of the number as a power of ten to get the correct divisor.
def is number palindrome (number) :
if number < 10:
return True
factor = calc_pow of ten (number)
divisor = int (pow (10, factor))
if number < divisor * 10:
left number = number // divisor
right number = number % 10
cuts away a leading zero
remaining number = (number // 10) % (divisor // 10)
return left number == right number and \
is number palindrome (remaining number)
return False
In the following, the calculation of the power of ten, as well as the counting of digits, are shown as helper
functions, which resides in the utility module math utils:
def calc pow of ten (number):
return count digits(number) - 1
def count digits (number) :
count = 0
while number > 0:
number // 10

count += 1

number

return count

The solution shown is by no means optimal since the factors have to be determined constantly. Further-
more, the entire procedure is still quite difficult to understand from the source code, even though helper

functions have already been extracted.

Optimized algorithm As an optimization, implement the following version. Always separate the last digit,
divide by 10, and call the function with the new values. Beforehand, compute the new value from the current
value and the last digit by multiplying the current value by 10 and appending the last digit. If it is a palindrome,
then the original value corresponds to the calculated value. The recursive termination occurs when either no
more digits exist or only one single digit exists. The trick is that you rebuild the number from the back and
finally compare it with the original value. In contrast to the other recursive helper functions presented so far, you
need two buffers here, one for the current value and one for the remaining value.
def is number palindrome rec (number) :

return is number palindrome rec helper (number, 0, number)
def is number palindrome rec helper (original number, current value,
remaining value) :
recursive termination

if current value == original number:

#

i

1
n

n

print("last digit: %d, new_current: %d, new_remaining:

return True
recursive termination
f (remaining value < 1):

return False

ast digit = remaining value % 10
ew _current = current value * 10 + last digi
ew_remaining = remaining value // 10

(last digit, new_current, new remaining))

t

5d"

return is number palindrome rec helper (original number,

new_remaining)

The calls for the value 121 can be illustrated as follows:

__is number palindrome rec_helper (121, 0, 121) =

last

digit: 1, new current: 1, new remaining: 12

__is number palindrome rec_ helper (121, 1, 12) =>

last

digit: 2, new_current: 12, new remaining: 1

i__s number palindrome_rec_helper (121, 12, 1) =>

last

digit: 1, new current: 121, new remaining:

__is_number palindrome_rec_helper (121, 121, 0)

True

>

0

%

new current,

Certainly it is of interest to see how the entire procedure works for a number that is not a palindrome, for

example 123:

__is number palindrome rec_helper (123, 0, 123) =

last

digit: 3, new current: 3, new remaining: 12

__is number palindrome rec helper (123, 3, 12) =>

last

digit: 2, new _current: 32, new remaining: 1

__is_number palindrome_rec_helper (123, 32, 1) =>

last

digit: 1, new current: 321, new remaining:

__is_number palindrome_rec_helper (123, 321, 0)

False

Verification

For testing, use the following inputs, which show the correct operation:

@pyte

def t

assert is number palindrome (number)

st.mark.parametrize ("number, expected",
[(7, True), (13, False)

(47742, False), (123321,

(1234554321, True)l)

est is number palindrome (number, expected):

3.3.11 Solution 11: Permutations (& kv +%)

>

0

4

== expected

True),

Calculate all permutations of a sequence of letters given as a string; this means all possible combina-
tions of these letters. Implement this calculation in function calc permutations (text).Consider

also the case of duplicate letters, but do not use the standard Python functionality from the itertools

module.
Examples
Input Result
“A “p?
“AA” “AA”
“AB” “AB”, “BA”

“ABC" “ABC, “BAC", “ACB”, “CAB”, “CBA”, “BCA”

“AAC” “AAC”, “ACA”, “CAA”

Algorithm The best way to compute all permutations for a given string is to take a look at the recursive

definition and then implement it:

A= perm(A) =A
AA = A+ perm(A)U A+ perm(A) = AAUAA = AA
AB = A+ perm(B)U B + perm(A) = ABUBA

ABC = A+ perm(BC)U B + perm(AC) U C + perm(AB) = ABCUACBU...

You recognize that for a single character, the permutations consist of the character itself. For multiple characters,
the permutations are computed by finding the permutations of the remaining string without the character and by
later combining them back with the character appropriately—more on this later. The original problem is reduced
from a string of length # to n problems for strings of length n — 1. Thus, for the string ABC, you obtain the
solution illustrated in Figure 3-4.

perm(A B C)

A+perm(B C) B+perm(A C) C+perm(A B)

/ \ / \ / \

B+perm(C) C+perm(B) A+perm(C) C+perm(A) A+perm(B) B+perm(A)

! l l ! | !

ABC ACB BAC BCA CAB CBA

Figure 3-4 Computation of the permutations of ABC

With this knowledge in mind, the implementation will become much easier, and you can transform the

following steps into Python.

. Select and extract the ith character.
. Build the remaining string and calculate the permutations for it.

. Put the whole thing together again.

This is implemented as follows:
def calc permutations (text):
recursive termination
if is blank(text) or len(text) == 1:
return {text}
combinations = set ()
extract i-th character as new first character
for i, new first in enumerate (text):
recursive descent for rest without i-th character
permutations = calc permutations (text[0:i] + text[i + 1:])
adding the extracted character to all partial solutions
for perm in permutations:
combinations.add(new_first + perm)
return combinations
def is blank(text):
return not (text and text.strip())
This implementation leads to the creation of quite a lot of instances of strings and sets as intermediate

buffers. How can this be improved?

Optimized algorithm The drawbacks mentioned above are negligible for a short string. However, the
longer the string gets, creating all the temporary objects and performing the string actions become

more noticeable. How can this be avoided?

Let’s revisit ideas you’ve seen in other solutions. Instead of assembling the strings, you can cleverly pass
them as parameters. One of them defines the remaining string, and the other one the currently already calculated
prefix.
def calc permutations mini opt (text):

return calc permutations mini opt helper (text, "")
def calc permutations mini opt helper (remaining, prefix):
recursive termination
if len(remaining) ==
return {prefix}
candidates = set ()
for i, current char in enumerate (remaining):
new prefix = prefix + current char
new_remaining = remaining[0:1] + remaining[i + 1:]
recursive descent
candidates.update(calc permutations mini opt helper (new remaining,
new prefix))
return candidates

Let me comment a bit on the optimization. While calling the method calc permutations ("abcde-
fghij"™) takes about 7 to 8 seconds with my iMac (i7 4Ghz),
calc permutations mini opt ("abcdefghij") finishes after only about 4 to 5 seconds—this is

due to the very large number of calls, for which smaller optimizations may be worthwhile.

However, if you add one additional character to the input, the overhead grows enormously to around

111 seconds and for the optimized version to around 85 seconds. Such increases in running time are, of
course, absolutely undesirable. After reading Chapter 7 covering more advanced recursion techniques,
you may want to look again at the computation of the permutations to attempt an improvement with the

help of memoization. However, this will be at the expense of the required memory.

Python shortcut Interestingly, Python provides ready-made functionality in the i tertools module. Its
result is a bit clumsy because the permutations are represented as a sequence of single characters. For your
desired representation of the outcome, you only need to merge the values of the result tuples with join ().
Again, the performance is better than that of the optimized variant. A call with “abcdefghij” takes about 3

seconds; with one character longer, it takes about 50 seconds.
import itertools

def calc permutations built in(text):

result tuples = list(itertools.permutations(text))
return {"".join(tuple) for tuple in result tuples}
Verification

For testing, use the following inputs, which show the correct operation:

def input and expected():
return [("A", {"A"}),
("AA", {"AA"}),
("AB", {"AB", "BA"}),
("ABC", {"ABC", "BAC", "ACB", "CAB", "CBA", "BCA"}),
("AAC", {"AAC", "ACA", "CAA"})]
@pytest.mark.parametrize ("input, expected", input and expected())
def test calc permutations (input, expected):
assert calc permutations (input) == expected
@pytest.mark.parametrize ("input, expected", input and expected())
def test calc permutations mini opt (input, expected):
assert calc permutations mini opt (input) == expected
@pytest.mark.parametrize ("input, expected", input and expected())
def test calc permutations built in(input, expected):

assert calc permutations built in(input) == expected

3.3.12 Solution 12: Count Substrings (k% v)

Write function count substrings (text, value to find) that counts all occurrences of the
given substring. Thereby, when a pattern is found, it should be consumed, so it should not be available
for hits again. This is shown in the following table as the last case. Implement the whole thing yourself

without resorting to the standard count ().

Examples
Input Searchterm Result
“xhixhix” “X” 3
“xhixhix” “hi” 2
“mic” “mic” 1
“haha” “ho” 0
“Xxxxyz” “xx” 2

Algorithm First of all, check whether the first characters from the source text and the search string match. If

this is the case, the number is increased and the search continues. If there is no match, then the source text is

shortened by the first character. The process is continued recursively as previously described. The termination
criterion is that the length of the given input is smaller than that of the search text. This indicates that no
occurrences can exist.
def count substrings(text, value to find):
recursive termination
if len(text) < len(value to find):
return 0
count = 0
remaining = ""
does the text start with the search string?
if text.startswith(value to find):
hit: continue the search for the found
term after the occurrence
remaining = text[len(value to find) :]
count =1
else:
remove first character and search again
remaining = text[1l:]
recursive descent

return count_substrings (remaining, value to find) + count

HINT: POSSIBLE VARIATION
[You could imagine that a small modification of the requirements would now be to find all potential substrings
rather than continuing to search behind them after finding a substring. Interestingly, this simplifies the
implementation:
def count substrings v2(text, value to find):

recursive termination

if len(text) < len(value to find):

return 0O

does the text starts with the search string?

count = 1 if text.startswith(value to find) else 0

remove first character and search again

remaining = text[1l:]

recursive descent

return count substrings v2(remaining, value to find) + count

Optimized algorithm Calls to text [len (value to find) :] and text[1:] keep generating new
strings in the original algorithm. For short input values, this is not so dramatic. But for a very long text,

this can be unfavorable.

Well, what might an optimization look like? You still traverse the input from left to right. But instead of

shortening the input, it is more feasible to use a position pointer 1eft. This causes the following adjustments:

1.Since the text does not get shorter, you must now subtract the value of 1e £t from the original
length.

2.
You used startswith () to compare for a match. Conveniently there is a variant that allows for

providing an offset.

3.
If there is a match, you must move the position pointer by the number of characters in the search

pattern, otherwise by one position.

This results in the following implementation:
def count substrings optimized(text, value to find):
return count substrings helper (text, value to find, 0)
def count substrings_ helper (text, value to find, left):
if len(text) - left < len(value to find):
return 0
count = 1 if text.startswith(value to find, left) else 0
if text.startswith(value to find, left):
left += len(value to find)
else:
left += 1
return count substrings helper (text, value to find, left) + count
Python shortcut Conveniently, this functionality is already built into Python. Therefore, a call to the

built-in functionality count () for strings would be much simpler. However, the point here is to look at

variants and see how to avoid too many temporary strings.

In practice, please use calls like the following, here for the inputs from the example of this task:
print ("xhixhix".count ("x"))
prlnt "xhixhix".count ("hi"))
"mic".count ("mic"))
"haha".count ("ho"))
print ("xxxxyz".count ("xx"))

(
(
(
(

Verification

The following inputs show the correct operation for the three variants. You find the same entries here in the first
and last test cases. You have, therefore, already outsourced this to a function to avoid duplication.
def create inputs and expected():

return [("xhixhix", "x", 3), ("xhixhix", "hi", 2), ("mic", "mic", 1),
"haha", "ho", 0), ("xxxxyz", "xx", 2), ("xxxx", "xx", 2),

XX-XXX-XXXX—-XXXXX-XXxxxx", "xx", 9),

(
(
("
("XX—XXX—XXXX—XXXKXX-XXXxXxXX", "xxx", 5)]

@pytest.mark.parametrize ("input, search for, expected",

create inputs_and expected())
def test count substrings (input, search for, expected):
assert count substrings (input, search for) == expected

@pytest.mark.parametrize ("input, search for, expected",

[("xhixhix", "x", 3), ("xhixhix", "hi", 2),
"mic", "mic", 1), ("haha", "hO", O),
"XX", 3) ,

TXX=XXX—XXXX-XXXXX-XXXXxX", "xx", 15),

", 100 1)

(
(
("xxxxyz", "xx", 3), ("xxxx",
(
(

TXX—XXX—XXXX—XXXXX-XXXXXX", "xXxxX
def test count substrings v2(input, search for, expected):
assert count substrings_ v2 (input, search for) == expected
@pytest.mark.parametrize ("input, search for, expected",
create inputs and expected())
def test count substrings optimized(input, search for, expected):

assert count substrings optimized(input, search for) == expected

3.3.13 Solution 13: Ruler (kK v v 3¥)

In the introduction, | showed how to draw a simple shape of a ruler as well as a stylized snowflake (see
Figure 3-3) using recursion. In this exercise, you want to imitate an English-style ruler. This involves di-
viding an area of one inch into 1/2 and 1/4 and 1/8. In doing so, the length of the strokes decreases by

one each time.
Example

The output should look somewhat like the following:
-——- 0

— 2
Algorithm The drawing of the full inch markers is done in a loop. The intermediate lines are generated in
function draw interval () . This, in turn, takes advantage of the recursive nature of the distribution of lines.
A shorter line is drawn around each slightly longer centerline. This is repeated as long as the line length is
greater than or equal to 1.
def draw ruler (major tick count, max length):
draw line (max length, "0")
for i in range(l, major tick count + 1):
draw_interval (max length - 1)
draw line (max length, 1)
Finally, you need two helper functions for drawing an interval and a line of the specified length, including an
optional marker (for the full inch numbers):
def draw interval (center length):
if center length > 0:
draw_interval (center length - 1)
draw_line(center length, "")
draw_interval (center length - 1)
def draw line(count, label):

print (("-" * count) + " " + str(label))
Verification
For testing, you call the draw_ruler () function as follows:

>>> draw_ruler (3, 4)
-—— 0

——-- 3

3.4 Summary: What You Learned

This introductory chapter laid the foundation for a good understanding of recursion. The exercises ex-
panded your knowledge on how to use recursion to solve problems. This is crucial to be able to imple-

ment recursive solutions in the following chapters in an efficient way and with a solid basis.

Now let’s move on to sequences of characters, also known as strings. Very few program can live with-

out them—time to get into it.

Footnotes

1
Colloquially, this is the largest natural number by which two integers can be divided without a remainder.

2
Colloquially, this is the largest natural number by which two integers can be divided without a remainder.

© The Author(s), under exclusive license to APress Media, LLC, part of Springer Nature 2022
M. Inden, Python Challenges
https://doi.org/10.1007/978-1-4842-7398-2 4

4. Strings

Michael Inden!
(1) Zurich, Switzerland

Strings model character sequences and possess the type str, which offers a variety of

functions. In this chapter, you will learn about this topic through various exercises.
4.1 Introduction

Strings consist of single characters and, like lists, are sequential data types (see sec-
tion 5.1.1), which is why many actions can be performed analogously, such as slicing.
Unlike other languages, Python does not have a data type for individual characters, so

they are simply represented as strings of length 1.

Strings can be created as character sequences in double or single quotes, as shown by the

following two lines:
strl = "DOUBLE QUOTED STRING"
str2 = 'SINGLE QUOTED STRING'

4.1.1 Practically Relevant Functions

For strings, I’ll go over the most common functions that are useful in practice. Let’s assume

that the variable str is a string. Then you can call the following functions:

« len (str) gets the length of the string. This is a general Python function for query-
ing the length of sequential data types such as lists or tuples, etc., but also strings.

« str[index] provides index-based access to individual letters.

« str[start:end]/str[start:end:step] exiracts the characters between the

positions start and end - 1. As a special feature, a stepwidth can be specified. In-

https://doi.org/10.1007/978-1-4842-7398-2_4

terestingly, even the range specification can be omitted and with [: : -1] only a
negative step size can be used, resulting in a new string with the reverse letter order
of the original string.

str[:end] extracts the characters between the beginning and the position end - 1.
str[start:] extracts the characters between the position start and the end of
the string.

str.lower ()/str.upper () creates a new string consisting of lowercase or up-
percase letters. Numbers and punctuation marks are not converted.

str.strip () removes whitespace at the beginning and end of text and returns
this as a new string. As a special feature, you can pass a character that will be re-
moved instead of whitespace.

str.isalpha()/str.isdigit()/... checks if all characters of the string are al-
phanumeric, digits, etc.

str.startswith (other)/str.endswith (other) checks whether the string
starts or ends with the given string.

str.find (other)/str.rfind (other) searches for the supplied string and re-
turns the index of the first occurrence or -1 on nonexistence. The function r£ind ()
searches from the end. As a special feature, it is possible to specify an index range
in both cases.

str.index (other, start, end)/str.rindex(other, start, end) re-
turns the index of the first or last occurrence of other. Unlike £ind (), an exception
is thrown if the index is not present.

str.count (text) counts how many times text occurs in the string.
str.replace (old, new) creates a new string in which all occurrences of o1d
are replaced by new.

str.split(delim) returns a list of substrings resulting from splitting the original
string. The delimiter is no regular expressionl. Without specifying a delimiter, a text

is split with respect to whitespace.

. str.join(1list) does the opposite of split (). Specifically, the elements
passed as a list are joined to the string as a delimiter.

« str.capitalize()/str.title () converts the first character to uppercase. With
title () additionally within a string, the beginning of each new word is converted

to uppercase.

4.1.2 Example Conversions and Extractions

Let’s take an introductory look at simple actions on strings such as converting to lowercase or
uppercase and splitting:

name = "Carl Heinz Miller"
print (name. lower ())
print (name.upper ())
print (name.split())
time = '20:26:45"
hrs, mins, secs = time.split(':")
print (hrs, mins, secs)
This results in the following output:
carl heinz miller
CARL HEINZ MILLER
['Carl', 'Heinz', 'Miller']
20 26 45
In addition, you can repeat text with * and remove text components, often whitespace,
from the margins with strip () . As you can see, you can even pass in characters.
print ("-repeater-" * 3)
with whitespace = " --CONTENT-- "
strippedl = with whitespace.strip()
stripped2 = strippedl.strip("-")
print("stripl:", strippedl, "length:", len(strippedl))
print ("strip2:", stripped2, "length:", len(stripped2))
This results in the following output:
—repeater—--repeater—-repeater-
stripl:
-—-CONTENT-- length: 11

strip2: CONTENT length: 7

4.1.3 Equality

Now let’s look at the definition of two strings and how they can be compared, in particular the

effects of == (content equality) and is (reference equality):

strl = 'String with same contents but different quotes'
str2 = "String with same contents but different quotes"
str3 = "String with same contents but XXX

quotes".replace ("XXX", "different")
print("strl:", strl)
print("str2:", str2)
print ("str3:", str3)
if strl == str2:
print ("same content")

if strl is str2:

print ("same reference strl / str2")

if strl == str3:
print ("same content")

if strl is str3:

print ("same reference strl / str3")

You get the following output:

strl: String with same contents but different quotes

str2: String with same contents but different quotes

str3: String with same contents but different guotes

same content
same reference strl / str2")

same content

That the output of references str1 and str2 is the same may be surprising at first.

Why is that? As an optimization, Python sometimes groups identical objects together.

However, this behavior is not guaranteed. At the latest, when actions are performed on

the strings, like above the replace () references are no longer the same, but the con-

tent is in this case, of course, identical.

4.1.4 Slicing— Access to Individual Characters and Substrings

In the following code you use powerful slicing operations to access single characters, whole
components, and even non-contiguous ranges. After that, you count occurrences and simulate a

search and research. Finally, you replace a text component.

strange message= "a message containing only a message"
mid chars = strange message[10:20]

last seven chars = strange message[-7:]
print ("mid chars:", mid chars, " / last seven chars:",

last seven chars)
first char = strange message[0]
print (first char, "count:", strange message.count (first char))
print(last seven chars, "count:",
strange message.count (last seven chars))
search and continue searching
print("find message:", strange message.find("message"))
print ("find next message:", strange message.find("message", 3))
replace (all)
print ("replace by info:", strange message.replace ("message",
"info"))
This results in the following output:
mid chars: containing / last seven chars: message
a count: 5
message count: 2
find message: 2
find next message: 28

replace by info: a info containing only a info

4.1.5 Converting a String into a List of Characters

Sometimes you want to process text as single characters. A call to 1ist () can be helpful for
this:
print (list ("Text als Liste"))

This results in the following outputs:

['T‘] lel’ 'Xl’ 't', v V, la|, lll’ 'Sl’ v ', ILV, li|, lSl’

4.1.6 lteration

There are several variants when looping through the individual characters of a string. First, it is
possible to work indexed with a for loop and 1en () in combination with range () .
However, this is the least adequate way in Python. It is better to work with enumerate (),
which provides access to both the index and the value. Sometimes you don’t need access to the
index at all; then the third variant with in is recommended.
message = "Python has several loop variants"
for i in range (len (message)):

print (i, message[i], end="',"')
print ()
for i, current char in enumerate (message) :

print (i, current char, end=',"')
print ()
for current char in message:

print (current char, end=',"')
print ()

These loops produce the following output:

op,1vy,2t,3 h,4d90,5n6 ,7h8a9%s,10 ,11 s,12 ¢,13 v,14
e,15 r,16 a,17 1
,18 ,19 1,20 0,21 0,22 p,23 ,24 v,25 a,26 r,27 1,28 a,29 n,30
t,31 s,
op,1vy,2¢¢,3h,4d0,5n6 ,7h84a9%s,10 ,11 5,12 ¢,13 v,14
e,15 r,16 a,17 1
;18 ,19 1,20 0,21 0,22 p,23 ,24 v,25 a,26 r,27 1,28 a,29 n,30
t,31 s,

P,v,t,h,o,n, ,h,a,s, ,s,e,v,e,r,a,1, ,1,0,0,p, ,v,a,r,i,a,n,t,s,

4.1.7 Formatted Output

The following calls to capitalize () and title ()
text = "this is a very special string"

print(text.capitalize())

print (text.title())

result in this output:
This is a very special string
This Is A Very Special String

Python offers different ways of formatting output with placeholders. In the simplest case,
you specify the values in a comma-separated way in print () . Alternatively, you can
specify placeholders in the text using { } , which will then be filled with the values of the call
to of format () . There is also the variant with placeholders like $s and %d as well as the
modulo operator in combination with a tuple that provides the values. Finally, an explicitly
formatted string with £"text" and named parameters can be used.
product = "Apple iMac"
price = 3699
variants of the formatted output
print ("the", product, "costs", price)
print("the {} costs {}".format (product, price))
print (f"the %s costs %d" % (product, price))
print(f"the {product} costs {price}")

This results in the following output for all four variants:
the Apple iMac costs 3699

4.1.8 Character Processing

If you need to process single characters, the functions ord () and chr () can be useful. Here
chr () converts a numerical value into a string of length 1 and ord () converts such a such a
string into an int value:

>>> ord ("A")

65

>>> chr (65)
A

>>> ord("0")
48

>>> chr (48)
lOl

4.1.9 Example: String Processing

As a final example of string processing, you want to count the number of occurrences of each
letter in a string, treating lowercase and uppercase letters equally. For the text “Otto,” you
expect 2 x t and 2 x o due to the conversion to lowercase letters. Such a processing is also
called a histogram . This is a representation of the distribution of objects, often numerical
values. It is also known from photography for the brightness distribution of a picture. The
following is about the distribution or determination of the frequencies of letters for a text. To
do this, you first convert the input to lowercase with 1ower () and then iterate through this
string. By calling isalpha () you make sure that you only include letters in your count.
from operator import itemgetter
def generate character histogram(word) :

char count map = {}

for current char in list (word.lower()):

if current char.isalpha():
if current char in char count map:
char count map[current char] += 1
else:
char count map[current char] =1

return dict (sorted(char count map.items(),

key=itemgetter (0)))
Let’s try this out in the Python command line:

>>> generate character histogram("Otto")
{'o': 2, '"t': 2}
>>> generate character histogram("Hello Micha")
{'a': 1, '¢': 1, 'e':' 1, 'h': 2, 'i': 1, '1': 2, 'm': 1, 'o':
1}
>>> generate character histogram("Python Challenges, Your
Python Training")
{ta': 2, 'c¢': 1, 'e': 2, 'g': 2, 'h': 3, 'i': 2, '"1': 2, 'n':

4.2 Exercises

4.2.1 Exercise 1: Number Conversions (ki ¥vr)

Based on a string, implement a validation for binary numbers and a conversion to it.

Repeat both for hexadecimal numbers.

NoteThe conversion can be solved with int (value, radix) and base 2 for binary
numbers and base 16 for hexadecimal numbers. Do not use these explicitly; imple-

ment them yourself.

Examples

Input Method Result

“10101” is_binary_number() True

“1117 binary to decimal() 7

“‘AB” hex_to_decimal() 171

Exercise 1a (ki)

Write function is binary number (number) that checks that a given string consists

only of the characters 0 and 1 (i. e., represents a binary number).

Exercise 1b (G Kk vr3rsr)

Write function binary to decimal (number) that converts a (valid) binary number

represented as a string to the corresponding decimal number.

Exercise 1¢ (KA vrvir)

Write the entire conversion again, but this time for hexadecimal numbers.

4.2.2 Exercise 2: Joiner (K vryc)

Write function join (values, delimiter) thatjoins a list of strings with the given
delimiter and returns it as one string. Implement this yourself without using any special

Python functionality like join () provided by type str.

Example
Input Separator Result
[“hello”, “world”, “message”] “+++7 “hello +++ world +++ message”

4.2.3 Exercise 3: Reverse String (kK v vv)

Write function reverse (text) that reverses the letters in a string and returns it as a

result. Implement this yourself; in other words, do not use any special Python function-

ality,suchas [::-1].
Examples
Input Result
“ABCD” “DCBA”

“OTTO” “‘OTTO”

‘PETER” “RETEP”

4.2.4 Exercise 4: Palindrome (3 % % v)

Exercise 4a (K Kk e vr)

Write function is palindrome (text) that checks whether a given string is a palin-
drome regardless of case. A palindrome is a word that reads the same from the front
and the back.

NoteYou can easily solve the verification with [: : -1] . Explicitly do not use Python

components; implement the functionality yourself.

Examples
Input Result
“Otto” True
“ABCBX” False

“ABCXcba” True

Exercise 4b (Fk %k ki ¥v)

Write an extension that does not consider spaces and punctuation as relevant, allowing whole
sentences to be checked, such as this one:

Was it a car or a cat I saw?

4.2.5 Exercise 5: No Duplicate Chars (k% k%)

Determine if a given string contains duplicate letters. Uppercase and lowercase letters
should not make any difference. Write function

check no duplicate chars (text) forthis purpose.

Examples

Input Result

“Otto” False
“Adrian” False
“Micha” True

“ABCDEFG” True

4.2.6 Exercise 6: Remove Duplicate Letters (k& Kk %)

Write function remove duplicates (text) that keeps each letter only once in a giv-
en text, thus deleting all subsequent duplicates regardless of case. However, the origi-

nal order of the letters should be preserved.

Examples
Input Result
“pananas” “pans”
“lalalamama” “lam”
“MICHAEL” “MICHAEL”

“AaBbcCdD” “ABcd*

4.2.7 Exercise 7: Capitalize (k %k vy)

Exercise 7a (kK v v i)

Write function capitalize (text) that converts a given text into an English title for-
mat where each word starts with a capital letter. You must explicitly not use the built-in

function title () of the type str.

Examples

Input Result

“this is a very special title” “This Is A Very Special Title”

“effective java is great” “Effective Java Is Great”

Exercise 7b: Modification (J % v ¥)

Assume now that the input is a list of strings and that a list of strings should be re-

turned, with the individual words and then starting with a capital letter.

Exercise 7c: Special treatment (% Kk 55)

In headings, it is common to encounter special treatment of words. For example, “is”
and “a” are not capitalized. Implement this as function
capitalize special 2 (words, ignorable words), which gets the words

excluded from the conversion as the second parameter.

Example

Input Exceptions Result

[“thiS”’ “iS”’ “a”’ “title”] [“iS”’ “a”] [“ThiS”’ “iS”, “a”’ “Title”]

4.2.8 Exercise 8: Rotation (s ¥r)

Consider two strings, str1 and str2, where the first string is supposed to be longer

than the second. Figure out if the first one contains the other one. In doing so, the char-
acters within the first string may also be rotated. Characters can be moved from the be-
ginning or the end to the opposite position (even repeatedly). To do this, create function

contains rotation(strl, str2),which is case-insensitive during the check.

Examples
Input 1 Input 2 Result
“ABCD” “ABC” True
“ABCDEF “EFAB” True (“ABCDEF” < x 2 = “CDEFAB” contains “EFAB”)
“BCDE” “EC” False

“Challenge” “GECH” True

4.2.9 Exercise 9: Well Formed Braces (3 K v« ¥)

Write function check_braces (text) that checks whether the sequence of round

braces passed as a string contains matching (properly nested) pairs of braces.

Examples

Input Result Comment

“()) True

Input Result Comment

‘(0 True

“0))) Fal Although it has the same amount of opening and closing
alse

Oy braces, it is not properly nested

“() False No suitable bracing

4.2.10 Exercise 10: Anagram (¥ % v v)

The term anagram is used to describe two strings that contain the same letters in the
same frequency. Here, uppercase and lowercase should not make any difference.

Write function is anagram(strl, str2).

Examples
Input 1 Input 2 Result
“Otto” “Toto” True
“Mary “Army” True
“‘Ananas” “Bananas” False

4.2.11 Exercise 11: Morse Code (3 Kk i ¥ %)

Write function to morse code (text) thatis capable of translating a given text into
Morse code characters. They consist of sequences of one to four short and long tones

per letter, symbolized by a dot (.) or a dash (-). It is desirable for easier distinguishabili-

ty to place a space between each tone and three spaces between each sequence of
letter tones. Otherwise, S (...) and EEE (...) would not be distinguishable from each

other.

For simplicity, limit yourself to the letters E, O, S, T, W with the following encoding:

Letter Morse code

Examples

Input Result

SOS S

Bonus Try to find out the corresponding Morse code for all letters of the alphabet so

you can convert your name. You can find the necessary hints for this at

https://en.wikipedia.org/wiki/Morse code.

https://en.wikipedia.org/wiki/Morse_code

4.2.12 Exercise 12: Pattern Checker (k% %)

Write function matches pattern (pattern, text) thatexamines a space-sepa-
rated string (second parameter) against the structure of a pattern passed in the form of

individual characters as the first parameter.

Examples
Input pattern Input text Result
“Xyyx” “tim mike tim” True
“Xyyx” “tim mike tom tim” False
“Xyxx” “tim mike tim” False
“XXXX” “im tim” True

4.2.13 Exercise 13: Tennis Score (k& Kk v %)

Write function tennis score (score, playerl name, player2 name) that
makes an announcement in a familiar style such as Fifteen Love, Deuce, or Advantage
Player X, based on a textual score for two players, PL1 and PL2. The score is given in
the format <PL1 points>:<PL2 points>.

The following counting rules apply to a game in tennis:

. A game is won (Game <PlayerX>) when a player reaches four or more points
and is ahead by at least two points.
. Points from zero to three are named Love, Fifteen, Thirty, and Forty.

. In case of at least three points and a tie, this is called Deuce.

. With at least three points and a one-point difference, this is called Advantage

<PlayerX> for the one who has one more point.

Examples

Input Score

“1:0”, “Micha”, “Tim” “Fifteen Love”
“2:27, “Micha”, “Tim” “Thirty Thirty”

“2:3”, “Micha”, “Tim” “Thirty Forty”

“3:3”, “Micha”, “Tim” “Deuce”

“4:3”, “Micha”, “Tim” “Advantage Micha”
“4:4”, “Micha”, “Tim” “Deuce”

“5:4”, “Micha”, “Tim” “Advantage Micha”

“6:4”, “Micha”, “Tim” “Game Micha”

4.2.14 Exercise 14: Version Numbers (kK v ¥%)

Write function compare versions (versionl, version2) thatcompares version
numbers in the format MAJOR.MINOR.PATCH with each other. Thereby the specifica-
tion of PATCH is optional. In particular, the return value should be represented in the

form of the characters <, =, and >.

Examples

Version 1

1.11.17

2.1

235

3.1

33

7.2.71

Version 2

235

213

24

24

3.2.9

7.2.71

Result

4.2.15 Exercise 15: Conversion str_to_number (G Kk 3 5¥)

Convert a string into an integer. To do this, write function str to number (text) on

your own.

NoteThe conversion can be easily achieved with int (value) . Do not use this ex-

plicitly, but implement the entire conversion yourself.

Examples
Input Result
“+123” 123

“-123” -123

Input Result

“1271” 7271

“ABC” ValueError
“0123” 83 (for bonus task)
“0123” -83 (for bonus task)

“0128” ValueError (for bonus task)

Bonus Enable the parsing of octal numbers.

4.2.16 Exercise 16: Print Tower (% Kk i)

Write function print tower (n) that represents a tower of n slices stacked on top of

each other as ASCII graphics, symbolized by the character #. Also, draw a lower

boundary line.
Example

A tower of height three should look something like this:
|

i
[
iEA AR A E

4.2.17 Exercise 17: Filled Frame (k% 3¢ ¥%)

Write function print box (width, height, fillchar) thatdraws a rectangle of

the specified size as an ASCII graphic and fills it with the passed-in fill character.
Examples

Below you see two rectangles filled differently:

- + tomm— - +
| xAHxx | SSSSSSS|
| FAFxx | SSSSSSS|
| FAFxx | SSSSSSS|
t-———- + | SSSSSSS|

| SSSSSSS|

tommm - +

4.2.18 Exercise 18: Guessing Vowels (kK i ¥r)

Write function translate vowel (text, replacement) thatreplaces all vowelsina
given text with a character or string. This can be used for a little guessing quiz, for example, or

to determine word similarities based on consonants only.

Input Replacement Result
“guide” “ “g?2d?”
“lawnmower” “I-wnm-w-r”
“‘quiz” “ ‘97"
“lawnmower” “lwnmwr”

4.3 Solutions

4.3.1 Solution 1: Number Conversions (ki)

Based on a string, implement a validation for binary numbers and a conversion to it.

Repeat both for hexadecimal numbers.

NoteThe conversion can be solved with int (value, radix) and base 2 for binary

numbers and base 16 for hexadecimal numbers. Do not use these explicitly; imple-

ment them yourself.

Examples

Input Method Result

“10101” is_binary_number() True

~

“1117 binary to_decimal()

“AB” hex_to_decimal() 171

Solution 1a (K vevr)

Write function is binary number (number) that checks that a given string consists

only of the characters 0 and 1 (i. e., represents a binary number).

Algorithm The brute force and index-based version iterates through the string character by
character from the beginning to the end, checking whether the current character is 0 or 1. If
another character is detected, the loop terminates and then False is returned.

def is binary number (number) :

is binary = True

1i=0

while i < len(number) and is binary:
current char = number[i]
is binary = (current char == "0" or current char == "1")
i+=1

return is binary

This can also be formulated as a search problem but needs some thought here when
returning:
def is binary number v2 (number) :
i=20
while i < len (number) and number([i] in ["O0", "1"]:
i+=1
return i1 >= len (number)
Python shortcut The whole thing can be implemented in an easier and more
understandable way with Python specifics:
def is binary number short cut (word):
for current char in word:
if current char not in ["O", "1"]:
return False

return True

PYTHON STYLE: DON’T ASK FOR PERMISSION, ASK FOR FORGIVENESS
[There is—as indicated in the task —still the possibility to use int (). Then you follow the
Python motto of “Don’t ask for permission, ask for forgiveness.” In this case, it means trying
potentially dangerous actions, like index accesses with the wrong index and reacting
appropriately if they fail. With a strong Java background, I take a rather critical view of this
habit—sure, the approach is often practical, but sometimes it is a bit risky. But let’s look at
this stylistically perfectly good variant of the check:
def is binary number v3 (number):
try:

int (number, 2)

return True

except ValueError:

return False

Solution 1b (kA 73 +r)

Write function binary to decimal (number) that converts a (valid) binary number

represented as a string to the corresponding decimal number.

Algorithm You traverses the string character by character from left to right and processes

each character as a binary digit. The current character is used to calculate the value by

multiplying the previously converted value by 2 and adding the current value. It is possible to
formulate the algorithm more clearly, meaning without special treatments, because a valid
input is ensured by the previously implemented function is binary number (number) .
def binary to decimal (number) :
if not is binary number (number) :
raise ValueError (number + " is not a binary number")
decimal value = 0
for current char in number:
value = int (current char)
decimal value = decimal value * 2 + value

return decimal value

Solution 1c (kv ¥v)

Write the entire conversion again, but this time for hexadecimal numbers.

Algorithm For hexadecimal numbers, the factor has to be changed to 16. In addition, the
letters A to F are now permitted in both lowercase and uppercase. Their value is determined by
a subtraction ord (current char.upper()) - ord("A") + 10— thus forming
“A” to “F” to the values 0 to 5 and add 10, which then gives the correct value.
def hex to decimal (number) :

if not is hex number (number) :

raise ValueError (number + " is not a hex number")
decimal value = 0
for current char in number:

if current char.isdigit():

value = int (current char)

else:

value ord(current_char.upper()) - ord("A") + 10
decimal value = decimal value * 16 + value
return decimal value
The check for valid hexadecimal numbers uses a tricky check with in under the
specification of all possible digits and letters for hexadecimal numbers:
def is hex number (number) :

for current char in number:

if current char not in "0123456789ABCDEFabcdef":
return False

return True

Verification

For testing, use the following inputs, which show the correct functionality:
@pytest.mark.parametrize ("value, expected",
[("10101", True), ("222", False),
("12345", False)l])
def test is binary number (value, expected):
assert 1s binary number (value) == expected
@pytest.mark.parametrize ("value, expected",
((¢*111", 7), ("12010", 10), ("1111",
15), ("10000", 16)1)
def test binary to decimal (value, expected):
assert binary to decimal (value) == expected
@pytest.mark.parametrize ("value, expected",
c¢*7"™, 7), ("a", 10), ("r", 15),
("10", 16)1)
def test hex to decimal (value, expected):

assert hex to decimal (value) == expected

4.3.2 Solution 2: Joiner (% v Yo i)

Write function join (values, delimiter) thatjoins a list of strings with the given
delimiter and returns it as one string. Implement this yourself without using any special

Python functionality like join () provided by type str.

Example

Input Separator Result

Input Separator Result

[“hello”, “world”, “message”] “+++” “hello +++ world +++ message”

Algorithm Traverse the list of values from front to back. Insert the text into a string, add
the separator string, and repeat this until the last value. As a special treatment, no separator
string may be added after this.
def join(values, delimiter):

result = ""
for i, current value in enumerate (values):
result += current value
no separator after last occurrence
if i < len(values) - 1:
result += delimiter
return result

Python shortcut String joining can be written in a compact and understandable way and
without special handling using the appropriate function join () :
result = delimiter.join(values)

A variant with reduce () from module functools looks like this:
import functools
result = functools.reduce (lambda strl, str2: strl + delimiter +
str2, wvalues)

By the way, the function join () is also handy when you want to convert the values of a

list into a string. For this purpose, you use an empty string as a delimiter.
"".join (values) # trick: Convert list to string

Verification

For testing, use the following inputs, which show the correct functionality:

@pytest.mark.parametrize ("values, delimiter, expected",

[(["hello", "world", "message"], " +++

w

"hello +++ world +++ message")])

def test join(values, delimiter, expected):

assert join(values, delimiter) == expected

4.3.3 Solution 3: Reverse String (& Kk i ¥%)

Write function reverse (text) that reverses the letters in a string and returns it as a

result. Implement this yourself; in other words, without using any special Python func-

tionality, suchas [::-1].
Examples
Input Result

“ABCD” “DCBA”

“‘OTTO” ‘OTTO”

‘PETER “RETEP”

Algorithm Initially, an idea could be to traverse the original string character by character
from the end and add the respective character to the result:
def reverse (text) :

reversed text = ""
for i in range(len(text) - 1, -1, -1):
current char = text[i]
reversed text += current char
return reversed text
A bit messy is the for loop with the multiple - 1. The built-in functionality

reversed () allows you to run through the text character by character from back to front,
which is more readable:
def reverse nicer (text):

reversed text = ""

for current char in reversed(text):

reversed text += current char

return reversed text

However, a small problem exists. The string concatenations with += are potentially ex-
pensive because strings are immutable in Python and thereby new string objects are

created. Generally, each externally visible change creates a new string.

Optimized algorithm So how could it be more memory-efficient, for example, if very

long strings are to be reversed extremely frequently?

The idea is to convert the string with 1ist () into a list and work directly on it. In addi-
tion, you use two pointers, left and right, which initially point to the first and last charac-
ter, respectively. Now you swap the individual letters, and the position pointers move
inwards. Repeat the whole process as long as left < right is valid; if left >= right, the

process is aborted.

Let’s illustrate the procedure for the text ABCD, where 1 stands for /eft and r for right:
A BCD

1 r
DBCA
1 r
DCBA
r 1 => End

You implement the described procedure as follows:
def reverse inplace (text):

original chars = list (text)
left = 0
right = len(original chars) - 1

while left < right:

left char = original chars[left]

right char = original chars[right]
original chars[left] = right char
original chars[right] = left char
left+=1

right-=1

trick: convert list to string

return "".join (original chars)

Python shortcut Of course, the whole thing can be achieved much easier by the following

two calls. Still, this exercise is about to get to know the character-by- character processing and

possible optimizations.

reversed text = text[::-1])
reversed text = "".join(reversed(text)))
Verification

Let’s write a unit test to verify the desired functionality:
def input and expected():

return [("ABCD", "DCBA"), ("OTTO", "OTTO"),

"RETEP")]

@pytest.mark.parametrize ("input, expected",
input and expected())

def test reverse (input, expected):

assert reverse (input) == expected

@pytest.mark.parametrize ("input, expected",
input and expected())

def test reverse inplace (input, expected):

assert reverse inplace (input) == expected

4.3.4 Solution 4: Palindrome (3% %k ¥3¥)

Solution 4a (F Kk v ¥%)

("PETER",

Write function is palindrome (text) that checks whether a given string is a palin-

drome regardless of case. A palindrome is a word that reads the same from the front

and the back.

components; implement the functionality yourself.

NoteYou can easily solve the verification with [: : -17]. Explicitly do not use Python

Examples

Input Result

“Otto” True

“ABCBX” False

“ABCXcba” True

JOB INTERVIEW TIPS
[n a job interview, here are possible questions you may ask to clarify the scope of the

assignment:

« Should it be case-sensitive?
ANSWER: No
 Are spaces relevant?

ANSWER: First yes, later no, then to be ignored

Algorithm As in exercise 3, the string is represented as a list and you advance one position
inward from the left and one position from the right, as long as the characters match and as
long as the left position is still smaller than the right position:
def is palindrome (text) :
left = 0
right = len(text) - 1
lower input = text.lower ()
is same char = True
while left < right and is same char:
is same char = (lower input[left] ==
lower input[right])
left += 1
right -= 1
return is same char
Python shortcut Of course, the whole thing can be achieved in a straightforward way by

calling the built-in functionality [: : =17. Still, this will generate an additional string.

def is palindrome short (text):
adjusted input = text.lower ()
return adjusted input == adjusted input[::-1]

Algorithm with recursion How can you solve the palindrome problem recursively and
without using a list as an auxiliary data structure? After reading Chapter 3 and working
through some of the exercises on recursion given there, you should be able to implement this
easily. With the strategy or the idiom of the helper function in mind, the following recursive
implementation emerges, which, starting from the outside, always checks two characters. This
is continued inward as long as the characters match and the left position is smaller than the
right one.
def is palindrome rec (text):

return is palindrome rec in range (text.lower (), O,
len (text) - 1)
def is palindrome rec in range (text, left, right):
if left >= right:
return True
if text[left] == text[right]:
return is palindrome rec in range (text, left + 1, right
- 1)
return False

An alternative way is always to shorten the string by the characters. Why is this logical
solution not so good practically? The answer is obvious: This causes many temporary
string objects to be created. Besides, a large number of copy actions would have to

take place.

Solution 4b (kA kv +)

Write an extension that does not consider spaces and punctuation as relevant, allowing whole
sentences to be checked, such as this one:
Was it a car or a cat I saw?

Algorithm You can incorporate special checks for whitespace into the algorithm. Still, it is
easier to create a version of the function and replace all unwanted punctuation and whitespace
therein before calling the original function.
def is palindrome special (text, ignore spaces and punctuation):

adjusted input = text.lower ()

if ignore spaces and punctuation:

adjusted input = adjusted input.replace(" ", "")
adjusted input = adjusted input.replace("!"™, "")
adjusted input = adjusted input.replace(".", "")

return is palindrome rec (adjusted input)
Please note that replace () unfortunately does not support regular expression to re-
move the special characters. Here this is the case for a space, exclamation mark, and

period. Therefore, you simply call this three times appropriately.

I[HINT: REGULAR EXPRESSIONS WITH PYTHON
[f you prefer to use a regular expression after all, you can utilize the re module as follows:
import re
def is palindrome special with reg ex(text,
ignore spaces_and punctuation) :

adjusted input = text.lower ()

if ignore spaces and punctuation:

adjusted input = re.sub(r"[!\.\2]", "",

adjusted input)

return is palindrome rec (adjusted input)

Verification

To verify, you again write a unit test with the following inputs that show the correct operation:
def palindrome inputs and expecteds () :
return [("Otto", True),
("ABCBX", False),
("ABCXcba", True)]
@pytest.mark.parametrize ("input, expected",
palindrome inputs and expecteds())
def test is palindrome (input, expected):
assert 1s palindrome (input) == expected
@pytest.mark.parametrize ("input, expected",
palindrome inputs and expecteds())
def test is palindrome rec (input, expected):

assert is palindrome rec (input) == expected

@pytest.mark.parametrize ("input, expected",
[("Was it a car or a cat i saw.",
True),
("This is not a Palindrome!",

False) 1)
def test is palindrome special (input, expected):

ignore spaces and punctuation = True

assert is palindrome special (input,

ignore spaces_and punctuation)

== expected

FINDINGS: PAY ATTENTION TO COMPREHENSIBILITY
[t is absolutely natural for strings to choose an iterative solution due to their API and
position/index-based access. This would no longer be convenient if you had to determine the
palindrome property for the digits of a number. This can be done with recursion and some
consideration even without the detour via conversion shown as exercise 10 in section 3.3.10.
Having developed the functionality reverse () in the previous exercise, you can profitably
use it here as follows:
def is palindrome with reverse (text):

adjusted input = text.lower ()

return adjusted input == reverse (adjusted input)

[This demonstrates that problem- and context-aware programming enables the cre-
ation of comprehensible and maintainable solutions. The properties of understandabil-
ity, maintainability, and changeability are of high importance in practice since source
code is usually modified far more frequently due to changing or new requirements

than created completely from scratch.

4.3.5 Solution 5: No Duplicate Chars (3% k¥ ¥)

Determine if a given string contains duplicate letters. Uppercase and lowercase letters
should not make any difference. Write function

check no duplicate chars (text) forthis purpose.

Examples

Input Result
“Otto” False
“Adrian” False
“Micha” True

‘“ABCDEFG” True

Algorithm When solving the task, you might get the idea of storing the individual
characters in a set. You run through the input character by character from front to back. For
each character, you check whether it is already in the set. If so, you have encountered a
duplicate character and abort processing. Otherwise, you insert the character into the set and
continue with the next character until you reach the end of the input or detect a duplicate
character.
def check no duplicate chars (text):

contained chars = set()
for current char in text.upper():
if current char in contained chars:
return False
contained chars.add(current char)
return True

Python Shortcut Although the implementation shown is quite straightforward, other even
more compact alternatives exist. They take advantage of the fact that any string can be
converted into a list or set using the functions 1ist () or set () . If there are no duplicates,
the number of characters must be equal to the length of the string. Many words, but few
instructions ... the whole thing can be formulated as follows:
def check no duplicate chars v2 (text):

upper case input = text.upper/()

return len (upper case input) == len(set (upper case input))

Verification

You again use a unit test to verify the desired functionality:
@pytest.mark.parametrize ("input, expected",
[("Otto", False), ("Adrian", False),
("Micha", True), ("ABCDEFG", True)])
def test check no duplicate chars (input, expected):

assert check no duplicate chars (input) == expected

4.3.6 Solution 6: Remove Duplicate Letters (3% k)

Write function remove duplicates (text) that keeps each letter only once in a giv-
en text, thus deleting all subsequent duplicates regardless of case. However, the origi-

nal order of the letters should be preserved.

Examples
Input Result
“pananas” “pans”
‘lalalamama” “lam”
“MICHAEL” “MICHAEL”

“AaBbcCdD” “ABcd”

Algorithm Again, you run through the string character by character and store the
respective letters in a set called already seen. If the current character is not yet contained
there, it will be included in both the set and the result text. However, if such a character
already exists, you continue with the next character of the input.
def remove duplicates (text):

result = ""

already seen = set()
for current char in text:
if not current char.lower () in already seen:
already seen.add(current char.lower())
result += current char

return result

Verification

Check the removal of duplicate letters using the following unit test:
@pytest.mark.parametrize ("input, expected",

[

("bananas", "bans"),
("lalalamama", "lam"),
("MICHAEL", "MICHAEL"),
("AaBbcCdD", "ABcd")])
def test remove duplicates (input, expected):

assert remove duplicates (input) == expected

4.3.7 Solution 7: Capitalize (¥ i ¥ 3¥)
Exercise 7a (K Kk % vcix)

Write function capitalize (text) that converts a given text into an English title for-
mat where each word starts with a capital letter. You must explicitly not use the built-in

function title () of the type str.
Examples
Input Result
“this is a very special title” “This Is A Very Special Title”

“effective java is great” “Effective Java Is Great”

Algorithm Because strings are immutable, initially you copy the contents into a list upon
which you make the modifications. You traverse this list from front to back, looking for the
beginning of a new word. As an indicator, you use a boolean flag
capitalize next char. This indicates that the first letter of the next word has to be
capitalized. Initially, this flag is True, so the current (first) character is converted into a
capital letter. This happens only for letters, not for numbers. After the conversion, the flag gets
reset and letters are skipped until a space is found. You then reset the flag to True. This
procedure gets repeated until the end of the list is reached. Finally, a new string is created from
the list containing the modifications.
def capitalize(text):

input chars = list (text)
capitalize next char = True
for i, current char in enumerate (input chars):
if current char.isspace():
capitalize next char = True

elif capitalize next char and current char.isalpha():

input chars[i] = current char.upper /()
capitalize next char = False
return "".join (input chars)

Let’s try the whole thing in the Python command line:
>>> capitalize ("seems to be okay")

'Seems To Be Okay'

Now, however, you may wonder about the behavior that is supposed to occur for letters
after digits or other non-letters:
>>> capitalize ("what should happen with -a +b 1c")
'What Should Happen With -A +B 1C'

[HINT: SPECIAL TREATMENT VARIANT

A moment ago, I brought up a special case. It is a matter of definition how to deal with it. If
letters after special characters should not be converted to uppercase, this can be achieved
easily. The difference compared to before is subtle: You remove the isalpha () check and
call upper () in every case. This is possible because the function can handle not only letters
but also other characters.

def capitalize special (text):

input chars = list (text)

capitalize next char = True
for i, current char in enumerate (input chars):
if current char.isspace():
capitalize next char = True

elif capitalize next char:

input chars[i] = current char.upper ()
capitalize next char = False
return "".join (input chars)

This then yields the following output:
>>> capitalize special ("what should happen with -a +b 1c")
'What Should Happen With -a +b 1c'

Behavior for whitespace It is also interesting to see how whitespace is handled:
print (capitalize ("This is a text"))
print (capitalize ("This \t is a text"))
This returns the following, not entirely without surprise—which is not to be considered
further for your task:
This 1is a text

This is a text
Python shortcut The desired functionality can be implemented as follows with list
comprehension and split () :

def capitalize shorter (text):

converted = [word[O].upper() + word[l:] for word in
text.split ()]
return " ".Jjoin (converted)

This provides for the two inputs the same result:
>>> print(capitalize shorter ("This is a text"))
This Is A Text
>>> print(capitalize shorter ("This \t is a text"))
This Is A Text

Exercise 7b: Modification (& v)

Assume now that the input is a list of strings and that a list of strings should be re-

turned, with the individual words and then starting with a capital letter.

Algorithm First, create a list to store the converted words. Then iterate through all

elements of the given list and process each one by calling the function
capitalize word (). To convert the first character to a capital letter, retrieve it indexed
with [0] and then call upper () . The remaining characters are returned by slicing with
[1:]. Anew word is formed from both and inserted into the result. To make the function
capitalize word() error-tolerant, it handles an empty input with a sanity check.
def capitalize words (words):

return [capitalize word(word) for word in words]
def capitalize word(word):

if not word:

return ""

return word[0] .upper () + word[l:]

Exercise 7c: Special treatment (k% 55 5%)

In headings, it is common to encounter special treatment of words. For example, “is”
and “a” are not capitalized. Implement this as function
capitalize special 2 (words, ignorable words) that gets the words ex-

cluded from the conversion as the second parameter.

Example
Input Exceptions Result
[“thiS”, “iS”’ “a”, “title”] [“iS”’ “a”] [“ThiS”’ “iSH’ “a”’ “Title”]

Algorithm The previously developed functionality is extended by a list of words that
should not be converted. When traversing, you check if the current word is one from the
negative list. If so, it is added to the result without modification. Otherwise, you perform the
actions as before.
def capitalize special 2 (words, ignorable words):

capitalized words = []

for word in words:

if word in ignorable words:
capitalized words.append (word)

else:

capitalized words.append(capitalize word(word))

return capitalized words

Verification

For testing, use the following inputs, which show the correct functionality:

@pytest.mark.parametrize ("input, expected",
[("this is a very

"This Is A Very

("effective java

"Effective Java

def test capitalize (input, expected):
assert capitalize(input) == expected

@pytest.mark.parametrize ("words, expected",

special title",
Special Title"),
is great",

Is Great™)])

[(["this"™, "is", "a", "very",
"special", "title"],
["This", "Is", "A", "Very",
"Special", "Title"]),
(["effective", "java", "is",
"great"],
["Effective", "Java", "Is",
"Great"])])
def test capitalize words (words, expected):
assert capitalize words (words) == expected
@pytest.mark.parametrize ("words, expected",
[(["this"™, "is", "a", "very",
"special", "title"],
["This", "is", "a", "Very",
"Special", "Title"]),
(["effective", "java", "is",

"great"] ,

["Effective", "Java", "is",
"Great"])])
def test capitalize special 2 (words, expected):

assert capitalize special 2 (words, ["a", "is"]) == expected
4.3.8 Solution 8: Rotation (ks ¥r)

Consider two strings, str1 and str2, where the first string is supposed to be longer

than the second. Figure out if the first one contains the other one. In doing so, the char-
acters within the first string may also be rotated. Characters can be moved from the be-
ginning or the end to the opposite position (even repeatedly). To do this, create function

contains rotation(strl, str2),which is case-insensitive during the check.

Examples
Input 1 Input 2 Result
“ABCD” “ABC” True
“ABCDEF “EFAB” True (“ABCDEF” < x 2 = “CDEFAB” contains “EFAB”)
“BCDE” “EC” False

“Challenge” “GECH” True

JOB INTERVIEW TIPS: POSSIBLE QUESTIONS AND SOLUTION IDEAS

[n a job interview, here are possible questions you may ask to clarify the assignment:

« Is the direction of the rotation known </ —?
ANSWER: No, arbitrary

« Should the rotation check be case-sensitive?
ANSWER: No, treat as same

Idea 1: Brute Force As a first idea, you could try all combinations. You start without
rotation. Then you rotate string st r1 to the left and check if this rotated string is con-
tained in str2. In the worst case, this procedure is repeated up to n times. This is ex-

tremely inefficient.

Idea 2: First check if rotation makes sense Another idea for solving this is to collect
all characters in a Set per string in advance and then use issubset () to check if all
needed letters are included. But even this is laborious and does not really reflect well

the problem to be solved.

Idea 3: Procedure in reality Think for a while and consider how you might solve the
problem on a piece of paper. At some point, you get the idea to write the word twice in a
sequence:

ABCDEF EFAB

ABCDEFABCDEF EFAB

Algorithm Checking whether one string can be present in the other if rotated can be solved
very elegantly with the simple trick of writing the longer string behind the other. In the
combination, you check whether the string to be searched for is contained there. With this
approach, the solution is both surprisingly short and extremely simple:

def contains rotation(strl, str2):

new doubled strl = (strl + strl).lower()
return strZ2.lower () in new doubled strl
Verification

For testing, use the following inputs, which show the correct operation:
@pytest.mark.parametrize ("strl, str2, expected",
[("ABCD", "ABRC", True),
("ABCDEF", "EFAB", True),
("BCDE", "EC", False),
("Challenge", "GECH", True)])
def test contains rotation(strl, str2, expected):

assert contains rotation(strl, str2) == expected

4.3.9 Solution 9: Well Formed Braces (% %k v ¥r5¥)

Write function check braces (text) to check whether the sequence of round

braces passed as string contains matching (properly nested) pairs of braces.

Examples

Input

‘()

‘O0)

‘()
()"

()"

Result

True

True

False

False

Comment

Although it has the same amount of opening and closing

braces, it is not properly nested.

No suitable bracing

Algorithm Without much consideration, you might be tempted to try all possible

combinations. After some thinking, you probably come to the following optimization: You
only count the number of opening braces and compare it with the number of closing braces.
You have to consider the detail of a closing brace before an opening one. Proceed as follows:
Traverse the string from front to back. If the current character is an opening brace, increase the
counter for opening braces by one. If it is a closing brace, reduce the counter by one. If the

counter fall below 0, you encounter a closing brace without a corresponding opening brace. In

the end, the counter must be equal to 0, so that it represents a correct bracing.
def check braces(text):

opening count = 0

for ch in text:
if ch == " (":

opening count += 1
elif ch == ")":

opening count -= 1

if opening count < O:
return False

return opening count == 0

Verification

Test your newly developed check for correct bracing with the following inputs for a
parameterized test—using an additional hint parameter as a trick, which is not used for testing,
but only for preparing an informative output:
@pytest.mark.parametrize ("input, expected, hint",
[(mco)", True, "ok"),

("()O", True, "ok"),

("(O))) ()", False, "not properly
nested"),

("(()", False, "no matching
parenthesis"),

(") ()", False, "starts with closing
parenthesis")])
def test check braces (input, expected, hint):

assert check braces (input) == expected

4.3.10 Solution 10: Anagram (kK v v 3¥)

The term “ anagram” is used to describe two strings that contain the same letters in the
same frequency. Here, uppercase and lowercase should not make any difference.

Write function is _anagram(strl, str2).

Examples

Input 1 Input 2 Result

“Otto” “Toto” True

Input 1 Input 2 Result

“Mary “‘Army” True

“Ananas” “Bananas” False

Algorithm The description of the task provides hints on how you can proceed. First, you

convert the words with function calc char frequencies (text) into a histogram.

Here, you run character by character through the respective word and fill a dictionary. This is

done for both words. Afterwards, to find a deviation, the resulting two dictionaries are

compared with each other.
def is anagram(strl, str2):

char countsl calc_char frequencies(strl)
char counts2 = calc_char frequencies(str2)
return char countsl == char counts2
def calc char frequencies (text):
char counts = {}
for current char in text.upper/():
if current char in char counts:
char counts[current char] += 1
else:
char counts[current char] =1

return char counts

Python shortcut The creation of the histogram (i. e., the counting of the letter frequencies)

can be written a bit more compactly—but less comprehensibly for my taste. So let’s take

advantage of the fact that setdefault () returns the current value for the key or else the

default value given here in case of non-existence.
def calc char frequencies shorter (text):
char counts = {}
for current char in text.upper/():
char counts[current char] =
char counts.setdefault (current char, 0) + 1

return char counts

Verification

For testing, use the following inputs, which show the correct functioning:
@pytest.mark.parametrize ("strl, str2, expected",
[("Otto", "Toto", True),
("Mary", "Army", True),
("Ananas", "Bananas", False)])
def test is anagram(strl, str2, expected):

assert is anagram(strl, str2) == expected

4.3.11 Solution 11: Morse Code (3 %k ¥« 5 3)

Write function to_morse code (text) thatis capable of translating a given text into
Morse code characters. They consist of sequences of one to four short and long tones
per letter, symbolized by a dot (.) or dash (-). It is desirable for easier distinguishability
to place a space between each tone and three spaces between each sequence of let-

ter tones. Otherwise, S (...) and EEE (...) would not be distinguishable from each other.

For simplicity, limit yourself to the letters E, O, S, T, W with the following encoding:

Letter Morse code

Examples

Input Result

SOS e

TWEET -.--..-

WEST

Algorithm The string is traversed character by character and the current character is
mapped to the corresponding Morse code. The function convert to morse code (
current char) performs this task
def to morse code (text):

converted msg = ""

for current char in text.upper/():
converted letter = convert_to_morse_code(current_char)
converted msg += converted letter
converted msg += " "

return converted msg.strip ()

While in other programming languages the mapping of single letters is accomplished using
a switch, in Python there is a trick with a dictionary:
def convert to morse code (current char):

chars to morse = {"E": ".",
nom. ow_ . _w
"ste "o "
npn. w_m
"Wt ", - ="}

return chars to morse[current char]

Modern Python and match In many languages, case distinctions may be expressed
using the if statement as well as the switch statement. The latter was missing in
Python for a long time. With Python 3.10 comes match, an even more powerful variant
for case discrimination with which we can now finally also realize the switch state-

ment. Please consult section D.2 in Appendix D for more details.

As mentioned, you can use the new keywords match and case to formulate case
distinctions like the following:
def convert to morse code (current char):
value = "2"

match current char:

case "E": value non
case "O": value LU ——
case "S": wvalue woo,o"
case "T": value n_mn

case "W": wvalue "n,o—- ="

return value

Bonus

Experiment and research a little bit to find out the corresponding Morse code for all let-
ters of the alphabet so you can convert your name. You can find the necessary hints for

thisathttps://en.wikipedia.org/wiki/Morse code.

Verification

Let’s check it using a unit test as follows:
@pytest.mark.parametrize ("input, expected",

[("sos", ". . . - - -
("TWEET", "- . - -

("osT", "- - -

("wgsT", ". - -

def test to morse code (input, expected):

assert to morse code(input) == expected

4.3.12 Solution 12: Pattern Checker (3% Kk s ¥r)

Write function matches pattern (pattern, text) thatexamines a space-sepa-
rated string (second parameter) against the structure of a pattern passed in the form of

individual characters as the first parameter.

https://en.wikipedia.org/wiki/Morse_code

Examples

Input pattern Input text Result
“Xyyx” “tim mike tim” True
“Xyyx” “tim mike tom tim” False
“Xyxx” “tim mike tim” False
“XXXX” “tim tim tim” True

JOB INTERVIEW TIPS: PROBLEM SOLVING STRATEGIES
(With exercises like this, you should always ask a few questions to clarify the context and gain

a better understanding. For this example, possible questions include the following:

1.
Is the pattern limited to the characters x and y?

ANSWER: No, but only one letter each as a placeholder

2.
Is the pattern always only four characters long?

ANSWER: No, arbitrary

3.
Does the pattern ever contain spaces?

ANSWER: No

4.
Is the input always separated with exactly one space?

ANSWER: Yes

Algorithm As always, it is important first to understand the problem and identify appropriate
data structures. You may recognize the pattern specification as a sequence of characters and the
input values as space-separated words. They can be transformed into a corresponding list of
individual values using split (). Initially, you check whether the length of the pattern and
the list of input values match. Only in this case you run through the pattern character by
character, as you have done so many times before. As an auxiliary data structure, you use a
dictionary, which maps individual characters of the pattern to words. Now you check whether
another word has already been inserted for a pattern character. With the help of this trick, you
can easily detect mapping errors.

def matches pattern (pattern, text):

perparation

values = text.split("™ ")
if len(values) != len(pattern) or (len(values) == 1 and not
values[0]) :

return False
placeholder to value map = {}
run through all characters
for i, pattern char in enumerate (pattern):
value = values|[i]
add, if not already there
if pattern char not in placeholder to value map:
placeholder to value map[pattern char] = value
does stored value match current string?
assigned value = placeholder to value map|[(pattern char)]
if not assigned value == value:
return False
return True

In the code, before the actual check, you still need to verify the special case of an emp-

ty input explicitly, since "".split (" ") resultsin a list of length 1.

Verification

For testing, use the following inputs, which show the correct functionality:
@pytest.mark.parametrize ("pattern, input, expected",

[("X", "", False),

("", "x", False)])
def test matches pattern special cases(pattern, input,
expected) :
assert matches pattern(pattern, input) == expected
@pytest.mark.parametrize ("pattern, input, expected",
[("xyyx", "tim mike mike tim", True),
("xyyx", "time mike tom tim", False),
("xyxx", "tim mike mike tim", False),
("xxxx", "tim tim tim tim", True)])

def test matches pattern(pattern, input, expected):

assert matches pattern(pattern, input) == expected

4.3.13 Solution 13: Tennis Score (kX Kk s ¥r)

Write function tennis score (score, playerl name, player2 name) that
makes an announcement in a familiar style such as Fifteen Love, Deuce, or Advantage
Player X based on a textual score for two players, PL1 and PL2. The score is given in

the format <PL1 points>:<PL2 points>.

The following counting rules apply to a game in tennis:

. A game is won (Game <PlayerX>) when a player reaches four or more points

and is ahead by at least two points.

Points from zero to three are named Love, Fifteen, Thirty, and Forty.
. In case of at least three points and a tie, this is called Deuce.
. With at least three points and one point difference, this is called Advantage

<PlayerX> for the one who has one more point.

Examples

Input Score

“1:0”, “Micha”, “Tim” “Fifteen Love”

Input Score

“2:2”, “Micha”, “Tim” “Thirty Thirty”

“2:3”, “Micha”, “Tim” “Thirty Forty”

“3:3”, “Micha”, “Tim” “Deuce”

“4:3”, “Micha”, “Tim” “Advantage Micha”
“4:4”, “Micha”, “Tim” “Deuce”

“5:4”, “Micha”, “Tim” “Advantage Micha”

“6:4”, “Micha”, “Tim” “Game Micha”

Algorithm In this case, it is a two-step algorithm:

1.
First, a score in terms of two int values should be obtained from the textual

representation.

2.
Afterwards, it is your task to generate the corresponding textual score names

based on these values.

When parsing the score, you can rely on standard functionality such as split () and
int () . In addition, for reusable functionality, it is reasonable to include certain security
checks. First, both values should be positive. After that, the specifics on the scores are to be
tested. The player who reaches four points first wins the match, but only if they lead at least
with two points. If both players have three or more points, then the point difference must be
less than three. Otherwise, it is not a valid state in tennis. You extract the parsing with the
checks into the function extract points (score).

def extract points(score):

values = score.strip() .split(":")

if len(values) != 2:
raise ValueError("illegal format -- score has not" +
"format <points>:<points>, e.\,g. 7:6")
scorel = int(values[0])
score?2 = int(values[1l])

sanity check

if scorel < 0 or scorez < O:
raise ValueError ("points must be > 0")

prevents both e. g. 6:3 and 5:1

if (scorel > 4 or score2 > 4) and abs(scorel - score2) > 2:
raise ValueError ("point difference must be < 3, " +

"otherwise invalid score")

return scorel, score?

After extracting the two scores separated by “:” from the input, you proceed with the
conversion. Again, you use a multi-step decision procedure. According to the rules, a simple
mapping comes into play for scores below three. This is perfectly described in terms of a
dictionary. Starting from three points, a tie, advantage, or game win can occur. It is also
possible for one player to win with four points if the other scores a maximum of two points.
For the winning message, it is only necessary to determine which of the two players has more
points. The described logic is implemented as follows:
def tennis score(score, playerl name, player2 name) :

points = extract points(score)
scorel = points[0]
score?2 = points[1]

if scorel >= 3 and scoreZ >= 3:
return generate info(scorel, score2, playerl name,
player2 name)
elif scorel >= 4 or score2 >= 4:
return "Game " + (playerl name if (scorel > score2)
else player2 name)
else:
special naming
point names = {0: "Love", 1l: "Fifteen", 2: "Thirty", 3:

"Forty"}

return point names[scorel] + " " + point names[score2]
Only one last detail remains, namely the generation of the hint text for advantage or
victory:
def generate info(scorel, score2, playerl name, player2 name) :
score difference = abs(scorel - scoreZ2)
player name = playerl name if (scorel > score2) else
player2 name
if scorel == score2:
return "Deuce"
if score difference == 1:
return "Advantage " + player name
if score difference ==
return "Game " + player name
raise ValueError ("Unexpected difference: " +

score difference)

Verification

Let’s test the tennis scoring functionality with an imaginary gameplay:
@pytest.mark.parametrize ("score, expected",
[("1:0", "Fifteen Love"),
2:2", "Thirty Thirty"),
2:3", "Thirty Forty"),
3:3", "Deuce"),
"4:3", "Advantage Micha"),
4:4", "Deuce"),
5:4", "Advantage Micha"),
6:4", "Game Micha"™)])
def test tennis score hard win(score, expected):
assert tennis score(score, "Micha", "Tim") == expected
You should add more imaginary game sequences to neatly cover the edge cases of a close
victory and an unchallenged victory:
@pytest.mark.parametrize ("score, expected",
[("1:0", "Fifteen Love"),
("2:2", "Thirty Thirty"),

("3:2", "Forty Thirty™),
("4:2", "Game Micha")])
def test tennis score normal win(score, expected):
assert tennis score(score, "Micha", "Tim") == expected
@pytest.mark.parametrize ("score, expected",
[("1:0", "Fifteen Love"),
("2:0", "Thirty Love"),
("3:0", "Forty Love"),
("4:0", "Game Micha")])
def test tennis score straight win(score, expected):

assert tennis score(score, "Micha", "Tim") == expected

4.3.14 Solution 14: Version Numbers (% i v vr)

Write function compare versions (versionl, version2) that permits you to
compare version numbers in the format MAJOR.MINOR.PATCH with each other,
thereby the specification of PATCH is optional. In particular, the return value should be

represented in the form of the characters <, =, and >.

Examples

Version 1 Version 2 Result

1.11.17 235 <
2.1 213 <
235 24 <
3.1 24 >

33 3.2.9 >

Version 1 Version 2 Result

7.2.71 7.2.71 =

Algorithm Split the textual version numbers into a list containing version number

components by calling split (). Loop through them and convert them to a version number

using int () . Then compare in pairs using a separate function compare () starting at
MAJOR, then MINOR and PATCH if necessary. If one input has more values than the other,

then the single last number is not used except when the version number matches up to that

component, such as for 3.1 and 3.1.7.

def

def

compare versions (versionl, version2):

vl numbers versionl.split(".")
vZ2 numbers = versionZ.split(".")
pos = 0

compare result = "="

while pos < len(vl numbers) and

pos < len(vZ numbers) and compare result == "=":

current vl = int (vl numbers[pos])

current vZ2 = int(v2Z numbers[pos])

compare result = compare (current vl, current v2)
pos += 1

same start about 3.1 and 3.1.7
if compare result == "=":
return compare (len (vl numbers), len(vZ numbers))
return compare result
compare (vall, val2):
if vall < val2:
return "<"
if vall > val2:
return ">"

return "="

Verification

Test the comparison of version numbers with the following inputs for a parameterized test:

@pytest.mark.parametrize ("versionl, version2, expected",
[("1.11.17", "2.3.5", "<"),

2.3.5", "2.4", "<"M),

2.1", "2.1.3", "<"M),

"3.1t, 2.4, ">T),

3.3", "3.2.9", ">"),

"7.2.71", "7.2.71", "=")])

def test compare versions(versionl, version2, expected):

assert compare versions (versionl, version2) == expected

|I-IINT: HANDLING OF TRAILING ZEROS
[The assignment did not specify a special case, namely the treatment of additional ze-

ros in version numbers, such as for 3.1 and 3.1.0 or 3 and 3.0.0. You will find an exten-

sion that handles these special features in the accompanying sources.

4.3.15 Solution 15: Conversion str_to_number (K v v 5%)

Convert a string into an integer. To do this, write function str to number (text) on

your own.

NoteThe conversion can be easily achieved with int (value). Do not use this explic-

itly, but implement the entire conversion yourself.

Examples
Input Result
“+123” 123

“-123” -123

Input Result

“1271” 7271

“ABC” ValueError

“0123” 83 (for bonus task)

“0123” -83 (for bonus task)

“0128” ValueError (for bonus task)

Algorithm Let’s start brute force without looking for all details. So the initial step is
checking if the first character is +/- and set flag is negative accordingly. You also check if
the first character is a sign (+ or -) to start processing the digits one position later if necessary.
Then run through all characters and convert them to digits. The previous value is multiplied by

10 each time, and at the end, the corresponding numeric value results.
def str to number first try(text):

is negative = text[0] == "-"
value = 0
startpos = 1 if starts with sign(text) else O

for pos in range(startpos, len(text)):
digit value = ord(text[pos]) - 48
value = value * 10 + digit value
return -value if is negative else value
def starts with sign(text):
return text[0] in ["-", "+"]

Corrected algorithm Even without a more thorough analysis, it is clear that the above
variant does not work correctly when mixing letters with digits. In this case, it is reasonable to
throw a ValueError when a check with isdigit () fails:
def str to number (text):

—— uw_mn

is negative = text[0] =

value = 0
startpos = 1 if starts with sign(text) else O
for pos in range(startpos, len(text)):

if not text[pos].isdigit():

raise ValueError (text + " contains not only
digits")
digit value = ord(text[pos]) - 48
value = value * 10 + digit value

return -value if is negative else value

[HINT: VARIANT
A variant would be to abort processing upon finding the first character that is not a dig-

it, as implemented in Perl, for example. Then the number string “123ab4567” would be-

come 123.

Verification

To test the functionality, use three numbers: one with a positive sign, one with a negative sign,
and one without. The positive sign should just be ignored during the conversion. Check the
reaction to input with letters instead of numbers separately and expect a ValueError.
@pytest.mark.parametrize ("input, expected",
[("+123", 123), ("-123", -123),
("123", 123), ("7271", 7271)])
def test str to number (input, expected):
assert str to number (input) == expected
def test str to number invalid input():
with pytest.raises (ValueError):
str to number ("ABC")

Bonus: Enable the Parsing of Octal Numbers

Octal numbers are identified in Python by a leading prefix O or, since Python 3.8, 0o and,
according to their name, have base 8 rather than base 10. To support octal numbers, you must

first determine whether the leading prefix exists. If this is the case, the factor for the positions

in the number system must be changed to 8. Finally, with base 8, the two digits 8 and 9 are no
longer allowed. Therefore, you add another check in the loop for processing the values. All in
all, the source code is a bit bloated by the special treatments. The complexity is just
manageable, especially because you use problem- adapted auxiliary functions with speaking
names here.

def str to number bonus (text):

1s negative = text[0] == "-"
is octal = text[0:2] == '0o' or \

(starts with sign(text) and text[1:3] == "0o")
value = 0

factor = 8 if is octal else 10
startpos = calc start pos(text, 1is octal)
for pos in range(startpos, len(text)):
if not text[pos].isdigit():
raise ValueError (text + " contains not only digits")
digit value = ord(text[pos]) - 48
if is octal and digit value >= 8:
raise ValueError (text + " found digit >= 8")
value = value * factor + digit value
return -value if is negative else value
def calc start pos(text, is octal):
pos = 0
if is octal:
pos = 3 if starts with sign(text) else 2
elif starts with sign(text):
pos = 1

return pos

Verification

To test the functionality, use three numbers: one with a positive, one with a negative sign, and
one without. The positive sign should just be ignored during the conversion. In addition, check
a positive and negative octal number. In a separate test, it is ensured that digits greater than or
equal to 8 must not occur in octal numbers.

@pytest.mark.parametrize ("input, expected",

[("+123", 123), ("-123", -123),
("123", 123), ("7271", 7271),
("+0077", ©63), ("-0077", -63),
("0o77", 63), ("+00123", 83),
("-0o0123", -83), ("0ol23", 83)])
def test str to number bonus (input, expected):

assert str to number bonus (input) == expected
def test str to number bonus invalid input () :

with pytest.raises (ValueError) as excinfo:

str to number bonus ("00128")

assert str (excinfo.value).find("found digit >= 8") != -1

4.3.16 Solution 16: Print Tower (k% %k v ¥)

Write function print tower (n) that represents a tower of n slices stacked on top of
each other as ASCII graphics, symbolized by the character #. Also, draw a lower

boundary line.
Example

A tower of height three should look something like this:
|
il
|4
R
Algorithm You can divide the drawing into three steps: draw the top bar, the slices, and
then the bottom boundary. Thus, the algorithm can be described using three function calls:
def print tower (height):
draw top (height)
draw_slices (height)
draw bottom (height)
You implement the drawing of the individual components of this tower in a couple of
helper functions, as already indicated:
def draw top (height):

print (" " * (height + 1) + "[|")
def draw bottom(height) :
print("-" * ((height + 1) * 2 + 1))
Drawing the slices of the tower is a bit more complex due to their different sizes and the

required computation of the free space on the left and right side:
def draw slices (height):

for i in range (height - 1, -1, -1):
value = height - 1
padding = 1 + 1
print (" " * padding + "#" * value + "|" + "#" * value)

It is obvious how the problem can be broken down into increasingly smaller subprob-
lems. Each function becomes thereby short for itself and usually also well testable (if

no console outputs, but computations with return take place).

Algorithm with recursion Interestingly, the drawing of the individual slices of the tower
can also be expressed recursively as follows:
def draw slices rec(slice, height):
if slice > 1:
draw_slices rec(slice - 1, height)
print (" " * (height - slice + 1) + "#" * slice + "|" + "#"
* slice)
Then, the call must be minimally modified:
def print tower rec(height):
draw_top (height)
draw slices rec(height, height)
draw bottom (height)

Verification

To check the functionality, use the Python command line interpreter one more time—here to
print a tower of height four:
>>> print tower (4)
|
il
|4

|
A4 | A

4.3.17 Solution 17: Filled Frame (3 % 3 v ¥)

Write function print box (width, height, fillchar) thatdraws a rectangle of

the specified size as an ASCII graphic and fills it with the passed-in fill character.
Examples

Below you see two rectangles filled differently:

to———= - tommm -
FAFxx	SSSSSSS
AFoxx	SSSSSSS
xAFxx	SSSSSSS
t————- + |SSSSSSS|

| SSSSSSS|

e +

Algorithm To draw the filled frame, you traverse all lines and likewise all positions in the
x-direction. In this exercise, the main concern is to correctly solve the special treatments at the
corners and the edges with the index positions. In addition, with print () it is crucial to set
the end character to empty to avoid the otherwise usual line break.
def print box(width, height, fillchar):

for vy in range (height) :

for x in range(width):

if x == 0 and (y == 0 or y == height - 1):
print ("+", end="")
elif x == width - 1 and (y == 0 or y == height -
1)
print ("+", end="")
elif y == 0 or y == height - 1:
print("-", end="")
elif x == 0 or x == width - 1:

print(" | ", end:" ")

else:
print(fillchar, end="")
print ()

Verification

To check the functionality, use the Python command line interpreter again:
>>> print box (9, 7, "$")

| SSSSSSS |
| $SSSSSS|
| $SSSSSS |
| $SSSSSS|
| $SSSSSS|

4.3.18 Solution 18: Guessing Vowels (¥ % v v i)

Write function translate vowel (text, replacement) thatreplaces all vowelsina
given text with a character or string. This can be used for a little guessing quiz, for example, or

to determine word similarities based on consonants only.

Input Replacement Result
“guide” “r” “g?77d?”
‘“lawnmower” “” “l-wnm-w-r”
“quiz” “ “‘Qz”
“lawnmower” “lwnmwr”

Algorithm To convert the given text, you traverse it character by character from front to

back. You collect the result in a new string. If you find a vowel, you insert the given

replacement string, otherwise the consonant (or more precisely, the original character, which
could also be a digit or a punctuation mark).
def translate vowel (text, replacement):
translated = ""
for letter in text:
if is vowel (letter):
translated += replacement
else:
translated += letter
return translated
def is vowel (letter):
return letter in "AAEIOOUladeioduu"

Python shortcut Interestingly, strings in Python provide the method maketrans () to
create a mapping dictionary and the function translate () to transform according to the
passed mapping. Next, you implement the transformation as follows:
def translate vowel shorter (text, replacement) :

vowels = "AAEIOOUtadeioduii"

trans dict = text.maketrans (vowels, replacement *
len (vowels))

return text.translate(trans dict)
Verification

To check the functionality, use the Python command line interpreter:
>>> print(translate vowel ("guide™, "?2"))
print(translate vowel ("guide", "-"))
print (translate vowel ("table tennis™, " "))
(
(

print (translate vowel ("quiz", " "))

(

(

(_
print(translate vowel ("lawnmower", ""))

g??d?

g--dt_

bl t nn s

g _ z

lwnmwr

The chosen algorithm is even capable of transforming entire sentences:
>>> print(translate vowel ("the guide recommends Java", "-"))

th- g--d- r-c-mm-nds J-v-
>>>
>> print (translate vowel ("fit through the Python challenge", "-

"))
f-t thr--gh th- Pyth-n ch-11l-ng-

4.4 Summary: What You Learned

Strings are an integral part of almost every program. You built up a sound understand-
ing by solving simple tasks like palindrome checking and string reversing. Other tasks
can be significantly simplified using suitable auxiliary data structures, such as sets or
dictionaries. They help when checking for well-formed braces, converting a word into
Morse code, and other tasks. | hope you feel that solving problems is becoming easier

the more basic knowledge you have in different areas, especially data structures.

That’s why you will have a deeper look into this topic in the next chapter, which intro-

duces lists, sets, and dictionaries in more depth.

Footnotes

1
https://en.wikipedia.org/wiki/Regular expression

https://en.wikipedia.org/wiki/Regular_expression

© The Author(s), under exclusive license to APress Media, LLC, part of Springer Nature 2022
M. Inden, Python Challenges
https://doi.org/10.1007/978-1-4842-7398-2_5

5. Basic Data Structures: Lists, Sets, and
Dictionaries

Michael Indent
(1) Zurich, Switzerland

In Python, lists, sets, and key-value mappings (dictionaries) are provided directly in the lan-
guage as container classes . They manage objects of other classes (also potentially of differ-

ent data types).
5.1 Introduction

In the following, | first describe sequential data types and especially their operations. After that,

you briefly look at lists, sets, and dictionaries.

5.1.1 Sequential Data Types

In Python, sequential data types exist as the basis for various data containers, such as lists, tuples, and
strings. The name derives from the fact that these data containers combine sequences of elements. This
means that the elements have a defined order and can be addressed via an index. Among other things,

the following operations are defined:

« in: elem in values checks if the elementis in the sequence.

« not in:elem not in values checks if the elementis notin the sequence.

e +/+=:valuesl + values2andvaluesl += values2 appends the sequence val-
ues? to the other sequence and returns a new sequence.

« *: Repeats the sequence n times.

. [index]: values[index] leads to an indexed access and returns the ith element from
values. Specifically, [-1] can be used to access the last element.

+ [start:end]:values[start:end] performs slicing and returns the elements from posi-

tion start to exclusive end from values as a new sequence. There are two interesting

https://doi.org/10.1007/978-1-4842-7398-2_5

variants. On the one hand, [:] (i. e. without range specification) returns a copy of the en-
tire sequence. On the other hand, [start:] and [:end] respectively return the parts
starting at start to the end or from the beginning to the index end exclusive.

« [start:end:step]:values|[start:end:step] results in slicing and returns the ele-
ments from position start to exclusive end with a step size of step from values as a new
sequence. There is an interesting variant [: : -1] without range specification and with nega-
tive step size, which creates a new sequence in reverse order of the original sequence.

« len(): len (values) returns the size (i. e. the number of elements in the data container).

e min ()/max (): Callstomin (values) resp. max (values) gets the element with the small-
est or largest value from values.

« sum(): sum(values) sums the values from values.
Example

Let’s look at an example of these operations because understanding them is essential for solving tasks
and everyday programming in Python. First, you define some lists and then perform indexed accesses

and slicing on them:

namesl = ["Micha", "Tim", "Tom", "Willi'"]
names2 = ["Marcello", "Karthi", "Michael"]
names = namesl + names?2

print (names)

print (names[-11])

print (names[::2])

e

(
(
print(names[::-1])
(
print("len: %d, min: %s, max: %$s" % (len(names), min (names),
max (names)))
This results in the following output:
['Micha', 'Tim', 'Tom', 'Willi', 'Marcello', 'Karthi', 'Michael']
Michael
['Michael', 'Karthi', 'Marcello', 'Willi', 'Tom', 'Tim', 'Micha']
["Micha', 'Tom', 'Marcello', 'Michael']
len: 7, min: Karthi, max: Willi
Custom implementation of rindex() A useful functionality, which unfortunately can only be found
in strings but not in sequential containers, is the search from the end with rindex () . However, you
can easily implement this as a function or lambda as follows by inverting the sequential container and

getting the position there:

def rindex (values, item):

reversed values = values([::-1]

return len(values) - reversed values.index(item) - 1
last index of = lambda values, item: len(values) -
values[::-1].index(item) - 1
5.1.2 Lists

A list is a sequence of elements ordered by their position. Duplicates are allowed. Lists provide high-
performance indexed access. Since the list is a sequential data type, it possesses all the previously
described operators for sequences. In addition, the following indexed, 0-based accesses and operations
can be performed on lists:

« pop (i) returns the ith element of the list and removes it from the list. By default (i. e., with-
out specifying the index), the first element is returned.

- list[i] = element replaces the element at position i with the passed element.

« append (element) appends the element to the end of the list.

. insert (i, element) insertsthe element atindex i in the list.

« extend (other_list) appends the elements of other 1ist tothe end of the list.

« count (value) counts how many times the value value occurs in the list.

« index (value) returns the index where the value value first occurs in the list.

. remove (value) removes the element with the value value from the list. Only the first one
will be deleted if multiple elements with this value exist. If there is no such value, a
ValueError is raised.

- reverse () reverses the order of the elements in the list.

« sort () sorts the list in ascending order. An inverse (descending) sort is obtained with

sort (reverse=True).
Example

Let’s consider an example of these operations. First, you define two lists and then add elements. You
also remove one element and add several elements.

numbers = [1, 2, 3, 4]

names = ["Peter", "Tim", "Mike", "Tom", "Mike"]

names.append ("Tom")

names.insert (1, "Carsten")

names.remove ("Tom")
print (names)
names.extend (numbers)
names.reverse ()
prlnt(names)

("pop:", names.pop())

("Tom idx:", names.index ("Tom"))
print ("Mike count:", names.count ("Mike"))

This results in the following output:

['Peter', 'Carsten', 'Tim', 'Mike', 'Mike', 'Tom']
(4, 3, 2, 1, 'Tom', 'Mike', 'Mike', 'Tim', 'Carsten', 'Peter']
pop: Peter
Tom idx: 4

Mike count: 2

List Comprehension

Python offers comprehensions as elegant possibilities for creating new data structures. A list
comprehension is an expression that generates a new result list based on a sequence of values and a
calculation rule to generate a new list of results:
>>> even = [n for n in range(10) if n % 2 == 0]
>>> even

[0, 2, 4, 6, 8]

More complex expressions can also be specified, such as the creation of tuples:

>>> [(x, y) for x in range(3) for y in range(5)]

(o, 0, o, 1), O, 2), (0, 3), (0, 4), (1, 0), (1, 1), (1, 2), (1,
3), (1, 4),

(2, 0), (2, 1), (2, 2), (2, 3), (2, 4)]
>>> [(x, y, z) for x in range(3) for y in range(3) for z in range (3)]
[(o, o, o), (0, o0, 1y, (0, 0, 2), (0, 1, 0), (0, 1, 1), (0, 1, 2),
(0, 2, 0), (O,

2, 1), o, 2, 2), (1, 0, 0), (1, 0, 1), (1, 0, 2y, (1, 1, 0), (1, 1,
1),

(2, 1, 2), (1, 2, 0), (1, 2, 1), (1, 2, 2), (2, 0, 0), (2, 0, 1),
(2, 0, 2),

(2, 1, 0), (2, 1, 1), (2, 1, 2y, (2, 2, 0), (2, 2, L)y, (2, 2, 2)]
In addition, you saw the specification of a condition in the initial example. In general, you should

avoid the complexity getting too large. This assists in ensuring understandability and

maintainability.

Regardless, comprehensions are a compelling and helpful feature of Python that you should

undoubtedly master.

Variant as set and dictionary comprehension Similar possibilities exist for sets and dictionaries.
Two examples follow, one for the determination of all odd numbers up to 10 and another for the

mapping of even numbers to their square:

>>> {1 for i in range(10) if i % 2 != 0}
{1, 3, 5, 7, 9}
>>> {n: n ** 2 for n in range(10) if n % 2 == 0}

{0: 0, 2: 4, 4: 16, 6: 36, 8: 64}

Example: Custom Implementation of remove_all()

Removing all elements from a collection that match a certain value is a functionality that is un-

fortunately not built in. Different variants to solve this are shown below.

Inplace variants First, you start with inplace variants, which means that the original list gets
modified and consequently nothing is returned. Therefore, you repeatedly call remove () until a
ValueError occurs when the value to be deleted is no longer found.

not optimal variant
def remove all inplace(list, value):
try:
while True:
list.remove (value)
except (ValueError):
pass

With this variant, it may be perceived as unattractive that exceptions are used to regulate the control

flow. Perhaps you come to the following alternative:

not optimal variant

def remove all inplace improved(values, item):
while item in values:

values.remove (1tem)

At first these solutions look quite good, but both variants iterate using the outer loop (while
true/in) and a hidden inner one (by the implementation of remove ()) resulting in a running

time of O(n?).

Variant offering better performance There is a solution that offers a running time of O(#n): You
traverse through the list, and for every value, you check whether it matches the one to be deleted. If this
is not the case, you continue with the next entry. If you find an entry to be deleted, you copy the
successor into the position given by the write counter. The write counter is always moved on if no
match is found. Finally, all values up to the write counter correspond to the desired result. You extract
this with slicing.
def remove all fast(values, item):

write idx = 0
for value in values:
if value != item:
values[write idx] = value
write idx += 1
return values[:write idx]

Improved variants Next, you use a list comprehension that retains only the values that satisfy the
condition specified in if. This does not change the original list but creates a new result list. Again, this
solution offers a running time of O(n) but uses slightly more memory.
def remove all v2(values, item):

return [value for value in values if value != item]

This also applies to the following variant. Here, you use the built-in function filter (). While in

Python 2 this returns a list, in Python 3, you only get a £i1ter object that provides a function iter
() and is thus iterable. You can, therefore, easily wrap this in a list—please see the following practical
tip about the implications.

def remove all v3(values, item):

return list(filter(lambda x: x != item, values))

ATTENTION: WHY DOES FILTER() NO LONGER RETURN A LIST?
As convenient as it is for smaller datasets to get the data as a list, there are some reasons why

this is not feasible for large datasets. First of all, it may require a lot of memory. Secondly, not
all values have to be kept for different calculations. Thus, the change of the mode of operation
on Lazy Evaluation in Python 3 helps to save memory and increase performance. If you want
to process the data directly and need a list, a simple wrapping is appropriate, as shown above.
[The dataset described by the filter is converted into a list.

Example: Custom Implementation of collect_ali()

Another useful functionality is to collect elements that match a certain condition. This can be solved as

follows:

Iteration
def collect all(values, condition):
result = []
for elem in values:
if condition(elem) :
result.append (elem)
return result
List Comprehension
def collect all v2(values, condition):
return [elem for elem in values if condition (elem)]
Filter
def collect all v3(values, condition):

return list(filter (condition, wvalues))

Check Implementations

Let’s try some of the implementations of the functionality once. First, three variants of
remove all () are tested to delete the entry Mike. Finally, collect all () should keep all
entries with the value Mi ke.
>>> names = ["Tim", "Tom", "Mike", "Mike", "Mike"]
remove all inplace(names, "Mike")
print (names)

['Tim', 'Tom']

>>> print(remove all v2(["Tim", "Tom", "Mike", "Mike", "Mike"],
"Mike"))
['Tim', 'Tom']
>>> print(remove all fast(["Tim", "Tom", "Mike", "Mike", "Mike"],
"Mike"))
['Tim', 'Tom']
>>> names = ["Tim", "Tom", "Mike", "Mike", "Mike"]
print(collect all(names, lambda value: value == "Mike"))

['Mike', 'Mike', 'Mike']

5.1.3 Sets

Let’s now explore sets. The mathematical concept states that they contain no duplicates. Thus, sets form

an unordered data structure that does not contain duplicates, but also does not provide indexed access.

Instead, some set operations exist such as a test for containment and computation of union, intersection,

difference, and symmetric difference.l In addition, there are the following actions:

- add (element) adds an element to the set if it does not already exist.

« update (elements) inserts the elements elements from a list or tuple into a set if not al-
ready present in the original set.

- remove (element)/discard (element) deletes the element from the set. If the element
does not exist, remove () will raise a KeyError. With discard (), on the other hand,
nonexistence will be ignored and nothing will happen.

« pop () removes the first element from the set (as an iteration would return them).

« clear () deletes all elements from the set.

« copy () returns a (shallow) copy of the set.2
Example

As an example of sets, you start by defining a set of colors (more precisely, their names) in curly
brackets. Then you add another set and then a single element.
color set = {"RED", "GREEN", "BLUE"}
color set.update (["YELLOW", "ORANGE"])
color set.add("GOLD")
print(color set)
This results in the following output (showing that insertion order does not get preserved in sets):
{'RED', 'BLUE', 'YELLOW', 'GOLD', 'GREEN', 'ORANGE'}
Finally, you define two sets with numbers and calculate the typical set operations such as union,
intersection, and difference:
number setl = {1, 2, 3, 4, 5, 6, 7, 8}
number set2 = {2, 3, 5, 7, 9, 11, 13}
print ("union: %s\nintersection: %$s\ndiff 1-2: %$s\nsym diff: %s" %

((number setl | number set2), (number setl & number set2

A

— ~

14
(number setl - number set2), (number setl number set2)))

This results in the following output:
union: {1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 13}
intersection: {2, 3, 5, 7}
diff 1-2: {8, 1, 4, 6}
sym diff: {1, 4, 6, 8, 9, 11, 13}

5.1.4 Key-Value Mappings (Dictionaries)

Let’s now turn to mappings from keys to values. They are also called dictionaries or lookup
tables; other terms are associative arrays and hashes, respectively. Regardless of the name,
the underlying idea is to assign a value for a unique key. An intuitive example is a telephone di-
rectory where names are mapped to telephone numbers. A search by name (key) usually re-
turns a phone number (value) quite quickly. If there is no mapping back from phone number to

name, finding a name to a phone number becomes quite laborious.

Dictionaries store key-value pairs and offer, among others, the following functions and operations:

. dictionary[key] = value adds a mapping (from key to value) as an entry to this
dictionary. If a value is already stored for the given key, it gets overwritten with the new
value.

. update (other_dictionary) inserts all entries from the passed dictionary into this
dictionary. This overwrites values of already existing entries analogous to the way simple as-
signment works.

. items () generates a list containing all key-value pairs of the dictionary as tuples.

keys () /values () returns a list containing all keys or values stored in the dictionary.

. get (key, default value) getthe associated value for a key key. If no entry exists
for the key, the default value default value is returned. If no default value was specified
in the call, None is returned.

. pop (key) deletes an entry (key and associated value) from the dictionary. The value
associated with the key key is returned. If no entry was stored for this key, a KeyError is
the result.

. clear () removes all entries of the dictionary.

Unfortunately, there are no functions like contains_key () or contains value () to check
if a special key or value is stored in the dictionary. However, this functionality can be easily

recreated by querying with in, as you will see in the following example.
Example

Again, you implement an example to learn about some of the possibilities. To do this, you define a
dictionary with an initial payload of names and ages. Then you add one as well as several values. For
inspection, you print out the dictionary, its keys, its values, and its entries. Finally, you check for the

existence of specific values in these results.

mapping = {"Micha" : 49, "Peter": 42, "Tom": 27}
mapping ["NEW"] = 42
mapping.update ({"Jim" : 37, "John": 55})
print (mapping)
print (mapping.items())
print (mapping.keys())
print (mapping.values())
"contains key"
print("contains key Micha?", "Micha" in mapping)
print ("Micha values:", mapping.pop ("Micha"))
print("contains key Micha?", "Micha" in mapping.keys())
"contains value"
print ("contains wvalue 55?", 55 in mapping.values{())
This results in the following output:
{'"Micha': 49, 'Peter': 42, 'Tom': 27, 'NEW': 42, 'Jim': 37, 'John':
55}

dict items([('Micha', 49), ('Peter', 42), ('Tom', 27), ('NEW', 42),
('Jim', 37),
("John', 55)1)

dict keys(['Micha', 'Peter', 'Tom', 'NEW', 'Jim', 'John'])
dict values([49, 42, 27, 42, 37, 55])

contains key Micha? True

Micha values: 49

contains key Micha? False

contains value 557 True

Example: Filtering Elements of a Dictionary in a General Way

Sometimes you want to find all key-value mappings whose values meet a particular condition. This can
be programmed in a generally appropriate and elegant way for later reuse as follows:
def filter dict (input dict, key value condition):

filtered dict = dict()

for key, value in input dict.items():

if key value condition((key, value)):
filtered dictlkey] = value

return filtered dict

def filter by value(input dict, value condition):

filtered result = filter dict (input dict,

lambda item :
value condition (item[1]))
return filtered result

You can either use the more general function, which gets a filter for key and value, or the spe-

cific function designed directly for value filtering.

Let’s define a mapping of cities to (approximate) population numbers and a filter condition on larger
cities between 200,000 and 700,000 inhabitants to see the whole thing in action. The last call shows
how easy it is to extract only the keys if only they are of interest.
cities sizes = {"Cologne": 1 000 000, "Kiel": 250 000, "Bremen":
550 000,

"Zurich": 400 000, "Oldenburg": 170 000}
print(filter dict(cities sizes, lambda item: 200 000 <= item[l] <=
700 _000))
filtered cities = filter by value(cities sizes,

lambda size: 200 000 <= size <=
700 _000)
print(filtered cities)
print (set (filtered cities.keys()))
This results in the following output:
{'Kiel': 250000, 'Bremen': 550000, 'Zurich': 400000}
{'Kiel': 250000, 'Bremen': 550000, 'Zurich': 400000}

{"Bremen', 'Zurich', 'Kiel'}
5.1.5 The Stack as a LIFO Data Structure

In the following, | describe the data structure stack. It is not directly a part of Python, but it
proves to be very practical for various use cases and can be easily implemented.

A stack is similar to a stack of paper or a desk tray in which you put things on top of a pile and from
which you can only take things from the top. In addition, a view of the top element is possible. Beyond
that, it offers size information or at least a check whether elements are present. This results in the
following methods that form the API:

1.
push (element) adds an element on top.

2.
pop () picks and removes the top element.

3.peek () takes a peek at the top element.

4.
is_empty () checks if the stack is empty.

These four methods are sufficient to use stacks profitably for various tasks in practice and for
algorithms, for example, when sequences have to be reversed. This property is described in
computer science by the term LIFO for Last In, First Out. Sometimes it is referred as FCFS for

First Come, First Serve.
Exercise 2 is about implementing a stack on your own.

Example

After solving Exercise 2, you can put some elements on the stack, look at the top element, take
elements from the top again, and finally, check if the stack is empty according to expectations:
def main():

stack = Stack()

stack.push ("first")

stack.push ("second")

print ("PEEK: " + stack.peek())

print ("POP: " + stack.pop())

print ("POP: " + stack.pop())

print ("ISEMPTY: " + str(stack.is empty()))

This provides the following output:
PEEK: second
POP: second
POP: first
ISEMPTY: true

5.1.6 The Queue as a FIFO Data Structure

To conclude this introduction to basic data structures, | would like to talk about queues. They
are also not a part of Python. Like a stack, a queue is often very useful and can also be easily

implemented.

A queue is similar to a line at a cash register. People queue up, and the person who came first

is served first, known in computer science as FIFO for First In, First Out.

Normally, only a few actions, such as adding and removing elements, benefit from a queue. In
addition, a look at the element at the beginning is possible. Beyond that, it offers size information or at

least a check whether elements are present. This results in the following methods that form the API:

1.
enqueue (element) adds an element to the end of the queue.

2.

dequeue () takes a look at the element at the beginning of the queue.
3.

peek () takes a look at the element at the beginning of the queue.

4,
is_empty () checks if the queue is empty.

These four methods are sufficient to create queues for various tasks in practice and for algo-

rithms, such as if you intend to transform recursive algorithms into iterative ones.
Implementation

The method names reflect the concept described earlier. For this purpose, the implementation stores its
elements in a list and inserts elements at the end. By using pop (0) or shorter pop () the foremost
element is provided.
class Queue:
def init (self):
self.values = []
def enqueue (self, elem):
self.values.append(elem)
def dequeue (self):
if self.is empty():
raise QueuelsEmptyException ()
return self.values.pop (0);
def peek(self):
if (self.is empty()):
raise QueuelsEmptyException ()
return self.values|[O0]
def is empty(self):
return len(self.values) ==
class QueuelsEmptyException (Exception) :

pass

Example

To understand how it works, you can insert some elements into the queue and then process them as long
as there are elements. In particular, reprocessing is aimed for the entry Michael.

def main () :
waiting persons = Queue ()
waiting persons.enqueue ("Marcello")
waiting persons.enqueue ("Michael")
waiting persons.enqueue ("Karthi")

while not waiting persons.is empty():
if waiting persons.peek() == "Michael":
reprocess at the end
waiting persons.enqueue ("Michael again")
next person = waiting persons.dequeue ()
print ("Processing " + next person)
The small sample program provides the following output:
Processing Marcello
Processing Michael
Processing Karthi

Processing Michael again

INOTE: DOES IT NEED THE CUSTOM CREATIONS OF STACK AND QUEUE?Let’s recap:
With a stack, you get the element stored last as the first element (that is, in reverse insertion
order). This is why it is called Last-In-First-Out (LIFO) . For insertion, as you know, you con-
ceptually use a function called push () and for removal you use one called pop () . On the oth-
er hand, a queue represents a queue as we know it from shopping or ticket machines. Here,
the person who was there first gets to go first. Accordingly, one speaks of First-In-First-Out
(FIFO). Typically, the corresponding operations are called enqueue () and dequeue ().
Easily emulate stack and queue with lists As mentioned, Python offers neither stack nor queue as
a data structure by default, but does offer powerful lists in terms of functionality. With them, the
functions of stack and queue previously mentioned can be implemented easily. In both cases you use
the function append () to add elements, such as to emulate push () or enqueue () . In addition, the
list provides the function pop () . It can optionally be passed an index that determines the position of
the element to be removed—without index, simply the last element. Let’s see how to emulate a stack
and a queue with a list:

List as Stack

stack of tasks = []

Add "tasks" to the stack via append()

stack of tasks.append("Task 1")

stack of tasks.append("Task 2")

stack of tasks.append("Task 3")

stack of tasks.append("Task 4")

Take the top 2 "tasks" from the stack via pop ()

last tasks = stack of tasks.pop()

second last tasks = stack of tasks.pop()

print ("Top most:", last tasks)

print ("2nd from top:", second last tasks)

List as Queue

queue of numbers = []

Add 3 elements to the queue via append()

queue of numbers.append("First")

queue of numbers.append("Second")

queue of numbers.append ("Third")

Remove elements via pop(0) until the queue is empty

while len(queue of numbers) > O0:

print ("Processing:", queue of numbers.pop(0))
The above program produces the following output:

Top most: Task 4

2nd from top: Task 3

Processing: First

Processing: Second

Processing: Third

Discussion: What is not optimal about this? First of all, it is pretty obvious that the function
names of the list do not optimally match those commonly used for stacks and queues. Worse,
if you accidentally specify no index or the wrong index for pop (), this leads to confusion. Even
worse, stacks and queues conceptually do not allow indexed access to elements, but lists do.
And this is only the beginning of possible problems. Because the above implementations (or to
be precise, usages) are lists, you can also call arbitrary functions that have nothing to do with
stacks and queues at all, such as insert () or remove (). If this is not clear enough, you
could also sort the elements by calling sort () and thus probably mess up the desired order a

lot. As you can see, the pitfalls are many.
Conclusion

Based on this reasoning and the need for intuitive handling without risk of misuse, the defini-

tion of your own classes for providing the specific data structures stack and queue becomes

|obvious.

5.2 Exercises

5.2.1 Exercise 1: Common Elements (k% v)

Find the common elements of two lists, A and B, and return them as a set. Implement this, both
with and without using matching functions from Python’s sets. Write your own function £ind -

common (valuesl, values2), which works like the Python function intersection ().

Examples
Input A Input B Result
[1,2,4,7,8] [2,3,7,9] {2,7}

[1,2,7,4,7,8] [7,7,3,2,9] {2,7}

[2,4,6,8] [1,3,5,7,9] ©@=set()

5.2.2 Exercise 2: Your Own Stack (& Kk s v)

Define the basic requirements for a stack and implement class Stack based on these require-

ments using a list.

5.2.3 Exercise 3: List Reverse (& Kk i)
Exercise 3a: List Reverse (% i)

Write function reverse (values) that returns the elements of the original list in reverse order

—of course without calling the reverse () function of the list.

Examples

Input Result
[1,2,3,4] [4,3,2,1]

[“A”, “BB”, “CCC”, “DDDD”] [“DDDD”, “CCC”, “BB”, “A”]

Exercise 3b: List Reverse Inplace (k& v 3¥)

What is different if you want to implement reversing the order inplace to be memory- optimal for

very large datasets? What should be given then?

Exercise 3c: List Reverse Without Performant Index Access (% % i)

Now let’s assume that no performant random index access is available. What happens if you
want to reverse the order and any position-based access will result in O(n) and therefore O(r?)

for the complete reversal process. How do you avoid this?

TipUse a stack.

5.2.4 Exercise 4: Remove Duplicates (3 %k v v ¥)

You are supposed to remove duplicate entries from a list. The constraint is that the original or-

der should be preserved. Write function remove duplicates (values).

Examples
Input Result
[1,1,2,3,4,1,2,3] [1,2,3,4]
[7,5,3,5,1] [7,5,3,1]

[1,1,1,1] [1]

5.2.5 Exercise 5: Maximum Profit (3k % %k %)

Imagine that you have a sequence of prices ordered in time and that you want to calculate the
maximum profit. The challenge is to determine at which time (or value, in this case) it would be
ideal to buy and to sell. Write function max revenue (prices) for this purpose, where the

temporal order is expressed by the index in the list.

Examples

Input Result

[250, 270, 230, 240, 222, 260, 294, 210] 72

[0, 10, 20, 30, 40, 50, 60, 70] 70
[70, 60, 50, 40, 30, 20, 10, 0] 0
[] 0

5.2.6 Exercise 6: Longest Sequence (k& ki)

Suppose you are modeling stock prices or altitudes of a track by a list of numbers. Find the
longest sequence of numbers whose values ascend or at least stay the same. Write function

find longest growing sequence (values).

Examples
Input Result
[7’ 2’ 7’ 1’ 2’ 57 7’ 1] [1’ 2’ 5’ 7]

[77 27 7, 1, 2, 3, 8, 1, 2, 3, 4’ 5] [17 27 37 47 5]

Input Result

[1,1,2,2,2,3,3,3,3] [1,1,2,2,2,3,3,3,3]

5.2.7 Exercise 7: Well-Formed Braces (k& v s i)

Write function check parentheses (braces_input) that checks whether a sequence of
braces is neatly nested in each case. This should accept any round, square, and curly braces

but no other characters.

Examples
Input Result Comment
Oy Tre

‘01" True

““OHy False Odd number of braces

“((a)” False Wrong character, no braces

“ False No matching braces

Bonus Extend the solution so that a clear assignment of error causes becomes possible. Start with

the following enumeration:
from enum import Enum, auto
class CheckResult (Enum) :

OK = auto()

ODD_LENGTH = auto()

CLOSING BEFORE OPENING = auto ()

MISMATCHING PARENTHESIS = auto()

INVALID CHAR = auto()

REMAINING OPENING = auto ()

5.2.8 Exercise 8: Pascal’s Triangle (% % % i)

Write function pascal (n) that computes Pascal’s triangle in terms of nested lists. As you
know, each new line results from the previous one. If there are more than two elements in it,
two values are added and the sums build the values of the new line. In each case, a 1 is ap-
pended to the front and back.

Example

For the value 5, the desired representation is as follows:

(1]
(1, 1]
(1, 2, 1]

(1, 3, 3, 11
(1, 4, 6, 4, 1]

5.2.9 Exercise 9: Check Magic Triangle (k% % vv)

Write function is magic triangle (values) that checks whether a sequence of numbers
forms a magic triangle. Such a triangle is defined as one where the respective sums of the

three sides’ values must all be equal.
Examples

The following shows this for one triangle each of side length three and side length four:
1 2
65 8 5
2 4 3 4 9
3761

This results in the following sides and sums:

Input Values 1 Values 2
side 1 1+5+3=9 2+5+9+1=17

side 2 3+4+4+2=9 1+6+7+3=17

Input Values 1 Values 2

side 3 2+46+1=9 3+4+8+2=17

Tip Model the individual sides of the triangle as sublists.

5.2.10 Exercise 10: Most Frequent Elements (3 % v vr)

Write function value count (values) that determines a histogram (i. e., the distribution of

the frequencies of the numbers in the given list). Also write function

sort dict by value (dictionary) to sortthe dictionary by its values instead of by keys.
Thereby a descending sorting is to be realized so that smaller values are listed at the

beginning.

Examples
Input Result Most frequent(s)
[1,2,3,4,4,4,3,3,2,4] {1=1, 2=2, 3=3, 4=4} 4=4

[1,1,1,2,2,2,3,3, 3] {1=3, 2=3, 3=3} Depending on query, logically all

5.2.11 Exercise 11: Addition of Digits (3 % %k v ¥r)

Consider two decimal numbers that are to be added. Sounds simple, but for this assignment,
the numbers are interestingly represented as a list of digits. Write function 1ist add (val-

uesl, values?2).Also, consider the special case where there is an overflow.
Exercise 11a: Addition (& Kk)

In the first part of the task, the digits are to be stored in the order of their occurrence in the list.

Examples

Input 1 Input 2 Result
123=[1,2,3] 456=[4,5,6] 579=][5,7,9]
927 =19, 2, 7] 135 =1, 3, 5] 1062 =[1, 0, 6, 2]

Exercise 11b: Addition Inverse (3% Kk ¥ %)

What changes if the digits are stored in reverse order in the list?

Examples

Input 1 Input 2 Result
123=[3,2,1] 456=[6,5,4] 579=[9,7,5]

927=[7,2,9] 135=[5,3,1] 1062=[2,6,0,1]

5.2.12 Exercise 12: List Merge (k% v vr)

Given two lists of numbers, each sorted in ascending order, merge them into a result list ac-

cording to their order. Write function merge (valuesl, values?2).

Examples

Input 1 Input 2 Result

1,4,7,12,20 10, 15, 17, 33 1,4,7,10,12, 15, 17, 20, 33

2,3,5,7 11, 13,17 2,3,5,7,11,13, 17

2,3,5,7,11 7,11, 13,17 2,3,5,7,7,11,11,13, 17

Input 1 Input 2 Result

[1,2,3] d=[1] [1,2,3]

5.2.13 Exercise 13: Excel Magic Select (3 %k v)

If you have worked a little with Excel, then you have probably used the Magic Selection. It con-
tinuously populates a selected area with values based on the previous values. This works for
numbers, weekdays, or dates, for example. To achieve something similar on your own, write
function generate following values (current value, sequence length) thatim-
plements this for numbers. Create a variation suitable for weekdays and with the following sig-
nature: generate following values for - predefined(predefined values,

current value, sequence length).

Examples
Initial
Count Result
value
1 7 [1,2,3,4,5,6,7]
5 4 [5,6,7,8]
[FRIDAY, SATURDAY, SUNDAY, MONDAY, TUESDAY, WEDNES-
FRIDAY 8

DAY, THURSDAY, FRIDAY]

5.2.14 Exercise 14: Stack-Based Queue (% %k v)

You learned about stack and queue data structures in the introduction and implemented a
queue based on a list. Then in exercise 2, you implemented a stack itself. Now you are asked

to build a queue based on the stack data structure.

Example

Please check the functionality with the following procedure:
def main () :
waiting persons = Queue ()
waiting persons.enqueue ("Marcello")
waiting persons.enqueue ("Michael™)
waiting persons.enqueue ("Karthi")
while not waiting persons.is empty():
if waiting persons.peek() == "Michael":
reprocess at the end
waliting persons.enqueue ("Michael again")
next person = waiting persons.dequeue ()
print ("Processing " + next person)
The small sample program should produce the following output:
Processing Marcello
Processing Michael
Processing Karthi

Processing Michael again

5.3 Solutions

5.3.1 Solution 1: Common Elements (kv 3%)

Find the common elements of two lists, A and B, and return them as a set. Implement this, both
with and without using matching functions from Python’s sets. Write your own function £ind -

common (valuesl, values2), which works like the Python function intersection ().

Examples
Input A Input B Result
[1,2,4,7,8] [2,3,7,9] {2,7}

[FRZ3 e =1 B [2G| R 2

[2,4,6,8] [1,3,5,7,9] D =set()

Algorithm Use dictionaries and manage a counter for being contained in list 1 or 2. You first run
through all elements from list 1 and enter the value 1 in the dictionary. Now you run through all
elements of the second list. You increase the counter if an entry already exists in the dictionary for the
value. Thus, all elements contained in both lists receive the value 2 and with multiple occurrences, a
higher value. On the other hand, elements exclusively from list 2 are never stored. Finally, you keep
only those entries whose number is greater than or equal to 2.
def find common (valuesl, values2):

results = {}
populate from collectionl (valuesl, results)
mark if also in second(values2, results)
return remove all just in first(results)
def populate from collectionl (valuesl, results):
for eleml in valuesl:
results[eleml] = 1
def mark if also in second(values2, results):
for elem?2 in values2:
if elem?2 in results:
results[elem?2] += 1
def remove all just in first(results):
final result = set()
for key, value in results.items() :
if value >= 2:
final result.add(key)
return final result

Python shortcut With the help of set comprehension, the last function becomes a one-liner:

def remove all just in first (results):
return {key for key, value in results.items () if value >= 2}

Despite this improvement, it seems too complicated. How can you make it better?

Optimized algorithm In fact, the problem can be solved much more compactly and understandably.
Check all elements from the first collection to see if they are contained in the second collection. If so,
these values get included in the result set.
def find common short (valuesl, values2):

results = set()
for eleml in valuesl:
if eleml in values2:
results.add(eleml)
return results

Python shortcut With the help of set comprehension, this becomes a one-liner:

def find common short comprehension(valuesl, values2):
return {eleml for eleml in valuesl if eleml in values2?}
Built-in Python shortcut For your own projects, please use the built-in functionality in the form of
intersection():
def find common build in(valuesl, values2):

return set (valuesl).intersection(values?2)

Verification

Test the implementation through the following unit tests:
def inputs and expected():
return [([1, 2, 4, 7, 81, [2, 3, 7, 91, {2, 7}),
(tx, 2, 7, 4, 7, 81, (7, 7, 3, 2, 91, {2, 7},
([2, 4, 6, 81, [1, 3, 5, 7, 91, set())]
@pytest.mark.parametrize ("valuesl, values2, expected",
inputs and expected())
def test find common (valuesl, values2, expected):
result = find common (valuesl, values2)
assert result == expected
@pytest.mark.parametrize ("valuesl, values2, expected",
inputs and expected())
def test find common (valuesl, values2, expected):
result = find common short (valuesl, values2)

assert result== expected

5.3.2 Solution 2: Your Own Stack (% %k v v i)

Define the basic requirements for a stack and implement class Stack based on these require-

ments using a list.

Algorithm It is possible to implement a stack yourself, using a list as a data storage, but not
providing direct access to it externally. Users just have access through the following methods typical of

a stack:

‘push (element) adds an element on top.

‘pop () picks and removes the top element.

3.peek () takes a look at the top element.

4.
is empty () checks if the stack is empty.

Each call to push () adds an element at the end of the list. This way, you simulate the stack. When
accessing the top element, it is checked upfront whether the stack is empty, in which case a
StackIsEmptyException is thrown. Otherwise, the top element is returned.
class Stack:

def init (self):
self. wvalues = []
def push(self, elem):
self. values.append(elem)
def pop(self):
if self.is empty():
raise StackIsEmptyException ()
return self. values.pop()
def peek(self):
if self.is empty():
raise StackIsEmptyException ()
return self. values[-1]
def is empty(self):
return len(self. values) == 0
class StackIsEmptyException (Exception) :
pass

Perhaps somewhat more comprehensible would be to add elements at the beginning of the list
and take them from there. However, this would be unfavorable in terms of performance. Why?

This would result in constant recopying of the internal data of the list.

In addition, one could argue that the Python online documentation® describes how to use lists
as stacks. Even if possible, the interface is not restricted to the above methods. In my book Der

Weg zum Java-Profi[Ind20] | discuss in detail what can be problematic about this.

[HINT: VISIBILITIY/ACCESSIBILITY
[While languages like Java or C++ have visibilities to control and protect access to private class
components, this is not possible in Python. However, there are two variants with _and to achieve

something similar. What is this all about?

- If names start with _, then by convention, the one underscore means that this method or at-

tribute is considered private and an implementation detail of the class. However, Python

does not enforce this. Especially, access is not prevented. Instead, you must rely on other
programmers to observe this fact.

« A double underscore (__) marks an internal method. When used for attributes, this attribute
is no longer visible to the outside for other classes under its name. This is also true for

methods.

Verification

You verify the correct working of the stack you just implemented using a predefined flow. First, you
insert two elements. Then you look at the top one with peek (). After that, you remove elements twice
with pop () . As expected, they are supplied in reverse order of insertion. Finally, you check to see if
the stack is empty. Because this is the case, a subsequent inspection of the topmost element should
throw a StackIsEmptyException—show here just as a comment.
def main():

stack = Stack()

stack.push ("first")

stack.push ("second")

print ("PEEK: " + stack.peek())

print ("POP: " + stack.pop())

print ("POP: " + stack.pop())

print ("ISEMPTY: " + str(stack.is empty()))
print ("POP: " + stack.pop())

This results in the following output:
PEEK: second
POP: second
POP: first
ISEMPTY: true

5.3.3 Solution 3: List Reverse (k% vy 3¥)

Solution 3a: List Reverse (%55 53r)

Write function reverse (values) that returns the elements of the original list in reverse order

—of course without calling the reverse () function of the list.

Examples

Input Result
[1,2,3,4] [4,3,2,1]
[“A)!, “BB)!’ “CCCH, “DDDD”] [“DDDD”’ “CCCH, “BB”, “A!!]

Algorithm A simple solution is to traverse a list from back to front and add the current element to a
result list. This can be implemented index-based as follows:
def reverse (values):
result = []
for i in range(len(values) - 1, -1, -1):
result.append(values[i])
return result
Python shortcut Using list comprehensions, the whole thing can be written shorter and more
concisely. The first variant is still based on the realization shown above, while the second relies on an
inverted iterator with reversed () :
def reverse with comprehension(values):
return [values[i] for i in range(len(values) - 1, -1, -1)]
def reverse with comprehension nicer (values):
return [value for value in reversed(values)]
Using 1ist () in combination with reversed () is even shorter and nicer:
def reverse with list nicer(values):
return list (reversed (values))
In fact, with slicing, the whole thing can be written briefly as follows, where again the result is a
new list with the contents reversed from the original:

reversed = values|[::-1]

Solution 3b: List Reverse Inplace (3 % 5 i)

What is different if you want to implement reversing the order inplace to be memory- optimal for

very large datasets? What should be given then?

Algorithm Based on indexed access, you proceed inwards from the beginning and the end,
swapping the elements:
def reverse inplace(original):
left = 0
right = len(original) - 1

run from the left and right, swap the elements based on their
positions
while left < right:
left elem = original[left]
right elem = original[right]

swap
original[left] = right elem
original[right] = left elem
left += 1

right -=1

return original
Python shortcut Please keep in mind that in real projects, the standard functionality reverse ()

should be used, which works inplace:

values.reverse ()

Solution 3c: List Reverse Without Performant Index Access (k% i i)

Now let’s assume that no performant random index access is available. What happens if you
want to reverse the order and any position-based access will result in O(n) and therefore O(n?)

for the complete reversal process. How do you avoid this?

TipUse a stack.

Algorithm In the case that no performant indexed-based access is available and you still have to
reverse the order with running time complexity of O(n), a stack comes into play—just as for various
other algorithms, including this one. You traverse the list from front to back and put the current element
on the stack each time. Afterwards, you iteratively remove the top element from the stack and add it to a
result list until the stack is empty.
def list reverse with stack(values):
Go through the list from front to back and £fill a stack
all values = Stack()
for element in values:
all values.push(element)
Empty the stack and £ill a result list
result = []
while not all values.is empty():
result.append(all values.pop())

return result

Verification

Let’s experiment with the input values from the example and invoke the function you created earlier—
in the accompanying project all variants will of course be tested:
def list reverse inputs and expected():
return [([1, 2, 3, 41, [4, 3, 2, 11),
(("a", "BB", "CCC", "DDDD"], ["DDDD", "CCC", "BB",
"A"])]
@pytest.mark.parametrize ("inputs, expected",
list reverse inputs and expected())
def test reverse(inputs, expected):
result = reverse (inputs)
assert result == expected
@pytest.mark.parametrize ("inputs, expected",
list reverse inputs and expected())
def test reverse inplace (inputs, expected):
modifiable inputs = list (inputs)
reverse inplace (modifiable inputs)

assert modifiable inputs == expected

5.3.4 Solution 4: Remove Duplicates (k% v 5¥)

You are supposed to remove duplicate entries from a list. The constraint is that the original or-

der should be preserved. Write function remove duplicates (values).

Examples

Input Result
[1,1,2,3,4,1,2,3] [1,2,3,4]
[7,5,3,5,1] [7,5,3,1]

[1,1,1,1] [1]

Algorithm Traverse the list from front to back and successively fill a set with the entries contained

in the list. For each element of the list, check whether it is already contained in the set of entries found.

If not, it will be included and also added to the result. Otherwise, the next element gets checked.
def remove duplicates(values):
result = []
already found numbers = set()
for elem in values:
if elem not in already found numbers:
already found numbers.add (elem)
result.append (elem)
return result
Optimized algorithm While implementing you might get the idea of simply deleting the duplicates
by refilling them into a set. This works but potentially messes up the order of the elements. A
workaround is to use a dictionary. Calling fromkeys () creates a dictionary based on the passed list
and automatically removes duplicate keys. In addition, since Python 3.6, the insertion order is
preserved. With this knowledge, implementing the removal of duplicates is a snap.
list with duplicates = ["a", "b", "a", "c", "d", "c", "d"]
order may change
no duplicatesl = list(set(list with duplicates))
stable order
no duplicates2 = list(dict.fromkeys(list with duplicates))

Python shortcut With this knowledge, create the following implementation of the removal of
duplicates as a function:
def remove duplicates with dict (values):

return list (dict.fromkeys (values))

Verification

Again, you use the introductory example’s values to verify the implementation. The tests for the two
optimized versions are not shown below because they are, apart from the function call, identical.
def inputs and expected():
return [([1, 1, 2, 3, 4, 1, 2, 31, [1, 2, 3, 41),
(7, 5, 3, 5, 11, 17, 5, 3, 11),
(t1, 1, 1, 11, (1)1
@pytest.mark.parametrize ("inputs, expected",
inputs and expected())
def test remove duplicates(inputs, expected):
result = remove duplicates (inputs)
assert result == expected
@pytest.mark.parametrize ("inputs, expected",

inputs and expected())

def test remove duplicates with dict (inputs, expected):
result = remove duplicates with dict (inputs)

assert result == expected

5.3.5 Solution 5: Maximum Profit (3 % s v 3)

Imagine that you have a sequence of prices ordered by time and you want to calculate the
maximum profit. The challenge is to determine at which time (or value in this case) it would be
ideal to buy and to sell. Write function max revenue (prices) for this purpose, where the

temporal order is expressed by the index in the list.

Examples

Input Result

[250, 270, 230, 240, 222, 260, 294, 210] 72

[0, 10, 20, 30, 40, 50, 60, 70] 70
[70, 60, 50, 40, 30, 20, 10, 0] 0
[] 0

Algorithm Initially, you may be tempted to determine the minimum and the maximum and sim-
ply return the difference. After a short reflection, it becomes clear that a time dimension has to
be considered in this case. First, a purchase and then a sale at a higher price must take place

to realize a profit.

The next idea is to run through the list twice. First, all minimum values are determined by looking
to see if the current value is less than the current minimum. This is then added to the list of minimum
values valid for the time. In the second run, you determine the largest difference by comparing element
by element. If the current value is greater than the currently valid minimum value, then the profit thus
obtained is the difference between the current value and the minimum value determined at the position.
Finally, the maximum profit is calculated from the maximum of the current maximum and the current

profit. For the above example 1, the result is as follows:

Value 255 260 250 240 228 270 300 210 245

Minimum 255 255 250 240 228 228 228 210 210
Difference 0 5 0 0 0 42 72 0 35
Max. Difference 0 5 5 5 5 42 72 72 72

According to this idea, you express the whole thing in Python by first determining all relevant
minimum values and then, based on that, the maximum:
def max revenue (prices):
relevant mins = calc_relevant mins (prices)
return calc max revenue (prices, relevant mins)
The actual work happens in the following two helper functions:
def calc relevant mins(prices):
relevant mins = []
current min = sys.maxsize
for current price in prices:
current min = min(current min, current price)
relevant mins.append(current min)
return relevant mins
def calc max revenue (prices, relevant mins):
max revenue = 0
for i, price in enumerate (prices):
if price > relevant mins[i]:
current revenue = price - relevant mins[i]
max revenue = max(max revenue, current revenue)
return max revenue

Optimized algorithm The variation just shown requires two passes. As long as the accesses
are made in memory, this hardly plays a crucial role in the performance. The situation is some-
what different if the data is determined each time, for example, via a REST call or from a

database.

In fact, the number of necessary calls and loop iterations can be reduced. However, this optimization
can probably only be achieved if the previous implementation has been completed first.
def max revenue optimized(prices):

current min = sys.maxsize

max_revenue = 0

for current price in prices:

current min = min(current min, current price)
current revenue = current price - current min
max revenue = max(max_revenue, current revenue)

return max revenue

Verification

For testing, you again use the values from the introductory example:
def prices and expected():
return [([0, 10, 20, 30, 40, 50, 60, 701, 70),
(70, 0, 50, 40, 30, 20, 101, 0),
({1, 0)]
@pytest.mark.parametrize ("prices, expected", prices and expected())
def test max revenue (prices, expected):
result = max revenue (prices)

assert result == expected

5.3.6 Solution 6: Longest Sequence (k& kv vr)

Suppose you are modeling stock prices or altitudes of a track by a list of numbers. Find the
longest sequence of numbers whose values ascend or at least stay the same. Write function

find longest growing sequence (values).

Examples
Input Result
[77 27 77 17 27 57 77 1] [1’ 27 57 7]

[7,2,7,1,2,3,8,1,2,3,4,5] [1,2,3,4,5]

[1,1,2,2,2,3,3,3,3] [1,1,2,2,2,3,3,3,3]

Algorithm Here a so-called greedy algorithm is used. The idea is to collect the subsequent el-
ements starting from one element until the next element is smaller than the current one. A tem-
porary list and a result list are used for this purpose. Both are initially empty and are succes-
sively filled: the temporary list at each element read that is greater than or equal to the prede-
cessor and the result list whenever a smaller successor value is found. If a value is smaller, the
temporary list is cleared and starts as a one-element list with the current value. If the result list
at a flank change is shorter than the temporary list with the previously collected elements, then
the temporary list becomes the new result list. This procedure is repeated until you reach the

end of the initial list.

Let’s look at a procedure for the input 1272134572:

Input Current character ~ Temporary list Result list
1272134572 1 1

1272134572 2 12

1272134572 7 127

1272134572 2 2 127
1272134572 1 1 127
1272134572 3 13 127
1272134572 4 134 127
1272134572 5 1345 127
1272134577 7 13457 127

1272134572 2 2 13457

def find longest growing sequence (values):
[]
[]

last value = sys.maxsize

longest subsequence

current subsequence

for current value in values:
if current value >= last value:
last value = current value
current subsequence.append(current value)
else:
end of this sequence, start new sequence
if len(current subsequence) >= len(longest subsequence) :
longest subsequence = current subsequence
current subsequence = []
last value = current value
current subsequence.append(current value)
important, because otherwise the last sequence might not be
considered
if len(current subsequence) >= len(longest subsequence):
longest subsequence = current subsequence
return longest subsequence

Be sure to note the additional check after the for loop—otherwise, a final sequence would not

be correctly returned as a result.

Mini optimization The check should be optimized a bit further. As you can see, assigning the value
and adding it to the current temporary list happens in every case. Thus, these actions can be separated
from the condition and written as follows:
for current value in values:

if current value < last value:
end of this sequence, start new sequence
if len(current subsequence) >= len(longest subsequence) :

longest subsequence = current subsequence

current subsequence = []

last value = current value

current subsequence.append (current value)

Procedure for sections of equal length When checking for the longest sequence, you can

either compare with > or >=. If there are two or more sequences of the same length, in the first

case with > the first one is taken as a result, with >= always the last one.

Alternative and optimized algorithm Sometimes creating temporary data structures can be rather
undesirable, for example, when the subsections can become huge. In such a case, it offers itself to
determine only the respective index borders. As a final step, you extract the appropriate part.
def find longest growing sequence optimized(values):

if len(values) == 0:
return values
longest = (0, 0)
start current = 0
end current = 0
for end current in range(l, len(values)):
flank change
if values[end current] < values[end current - 1]:
if end current - start current > len(longest):
longest = (start current, end current)
start current = end current
if end current - start current > len(longest):
longest = (start current, end current)

return values[longest[0] : longest[1]]

Verification

Use the sequences of values from the introduction to compare the computed results with your
expectations:
@pytest.mark.parametrize ("values, expected",

(cct7, 2, 7, 1, 2, 5, 7, 11, 11, 2, 5, 71),
(ts, 2, 7, 1, 2, 3, 8, 1, 2, 3, 4, 5],
(1, 2, 3, 4, 51),
(rx, 1, 2, 2, 2, 3, 3, 3, 31,
(1, 1, 2, 2, 2, 3, 3, 3, 31),
(]]

(r1, 111
def test find longest growing sequence (values, expected):
result = find longest growing sequence (values)

assert result == expected

5.3.7 Solution 7: Well-Formed Braces (k% v)

Write function check parentheses (braces input) that checks whether a sequence of

braces is neatly nested in each case. This should accept any round, square and curly braces

but no other characters.

Examples
Input Result Comment
“) True

‘ALY True

““QOHyy False Odd number of braces

“((a)y” False Wrong character, no braces

“(False No matching braces

Algorithm Traverse the string from front to back. If the current character is an opening brace (that
is, one of the characters (, [, or {), store it in a stack. If it is a closing brace, try to match it with the last
opening brace. If there is no opening brace yet, or if the brace types do not match, False is returned. If
they match, the next character is read. If it is an opening brace, proceed as before. If it is a closing
brace, get the top element from the stack and compare it to the character just read. Check for matching
the type of braces, which are (), [], and { }. Let’s look at a flow for the input (()]:

Input Currentcharacter Stack Comment

(0] Start

(O] ((Store
(0] ((Store
[0]) (Match

(0]] (Mismatch

The implementation uses a stack and performs the checks and actions described above:
def check parentheses(braces input):

odd length cannot be a well-formed bracing
if len(braces input) % 2 != 0:
return False
opening parentheses = Stack()
for char in braces input:
if is opening parenthesis (char):
opening parentheses.push (char)
elif is closing parenthesis (char):
if opening parentheses.is empty () :
closing before opening brace
return False
last opening parens = opening parentheses.pop ()
if not is matching parenthesis pair(last opening parens,
char) :
different pairs of braces
return False
else:
invalid character
return False
return opening parentheses.is empty ()
Once again, it is recommended to extract helper functions such as
is opening parenthesis () to be able to implement the actual algorithm at a higher level of
abstraction and thus more clearly. Finally, let’s take an examining look at the three helper functions—
for the closing braces, here is an elegant Python variant with in for a list of characters instead of a
character-by-character check with or and:
def is opening parenthesis(ch):
return ch == '(' or ch == '"[' or ch == "{'
def is closing parenthesis(ch):
return ch in [")", "I1", "}"]

def is matching parenthesis pair (opening, closing):

return (opening == '(' and closing == ")') or \
(opening == '[' and closing == ']') or \
(opening == '{' and closing == '}")

Checking for matching pair of braces can also be written more elegantly using a list of tuples
containing the opening and closing braces:

Alternative variant using tuple notation

def is matching parenthesis pair (opening, closing):

return (opening, closing) in [('(', ")"), ('"[', "1"), ("{', "1")]

Verification

Use the values from the introduction to see your just-implemented functionality in action:

@pytest.mark.parametrize ("values, expected",

(("mo", True), ("OI[1{}", True),
("recoO i), True),
(""", False), ("((})", False),
("G, False), (") (O (", False),
("0 (", False), ("(OA(", False)l])
def test check parentheses(values, expected):
result = check parentheses (values)
assert result == expected

Let’s look again at the implementation of the check and the return values. Several comments
exist why True or False is returned. Wouldn't it be more intuitive to express this with a suit-

able enumeration as a return? Let’s take a look at that now in the bonus.

Bonus

Extend the solution so that a clear assignment of error causes becomes possible. Start with the
following enumeration:
from enum import Enum, auto
class CheckResult (Enum) :
OK = auto()
ODD_LENGTH = auto ()
CLOSING BEFORE OPENING = auto ()
MISMATCHING PARENTHESIS = auto()
INVALID CHAR = auto()
REMAINING OPENING = auto ()

By using the enumeration, possible error causes may be communicated more clearly. Besides, you
can omit the comments on the return values in the source code since the enumeration values adequately
describe them.
def check parentheses v2(braces input):

odd length cannot be well-formed braces
if len(braces input) % 2 != 0:
return CheckResult.ODD LENGTH

opening parentheses = Stack()
for current char in braces input:
if is opening parenthesis (current char):
opening parentheses.push (current char)
elif is closing parenthesis(current char):
if opening parentheses.is empty():
return CheckResult.CLOSING BEFORE OPENING
last opening parens = opening parentheses.pop ()
if not is matching parenthesis pair(last opening parens,
current char) :
return CheckResult .MISMATCHING PARENTHESIS
else:
return CheckResult.INVALID CHAR
if opening parentheses.is empty():
return CheckResult.OK
return CheckResult.REMAINING OPENING

Verification

Using enumeration not only increases the readability of the application’s source code but also adds
clarity and conciseness to the unit test. As usual, use the values from the introductory example to see
your just implemented functionality in action:
@pytest.mark.parametrize ("values",
(O™, (MO, MMrecoO)11
def test check parentheses v2(values):
result = check parentheses v2(values)
assert result == CheckResult.OK
@pytest.mark.parametrize ("values, expected",
[("(()", CheckResult.ODD LENGTH),
("o,
CheckResult .MISMATCHING PARENTHESIS),
("cO ",
CheckResult .MISMATCHING PARENTHESIS),
(" Oy
CheckResult.CLOSING BEFORE OPENING),
(" () ((", CheckResult.REMAINING OPENING),
("()A(", CheckResult.INVALID CHAR)])
def test check parentheses v2 errors(values, expected):

result = check parentheses v2(values)

assert result == expected

5.3.8 Solution 8: Pascal’s Triangle (k& Kk v ¥)

Write function pascal (n) that computes Pascal’s triangle in terms of nested lists. As you
know, each new line results from the previous one. If there are more than two elements in it,
two values are added, and the sums build the values of the new line. In each case, a 1 is ap-

pended to the front and back.
Example

For the value 5, the desired representation is as follows:
(1]

1

;o 2, 1]
3, 3, 11

, 4, 6, 4, 1]

Algorithm The determination of the individual lines is done recursively. For the first line, a one-
element list with the value 1 is generated. For all others, you calculate the values by invoking helper
function calc line (previous line) based on the predecessor line and then add the
intermediate result to the overall result. It might be a bit irritating that the call is 1-based, but the list
index is, of course, 0-based.
def pascal(n):

result = []
__pascal helper(n, result)
return result
def pascal helper(n, results):
if n ==
recursive termination
results.append([1])
else:
recursive descent
previous line = pascal helper(n - 1, results)
calculate based on previous line
current line = calc line(previous line)
results.append(current line)

return results[n - 1]

Computing a row’s values based on the predecessor row is performed for all rows with n =2 as
follows: If there is more than one value stored in the predecessor row list, iterate through it and

sum each. To complete the computation, the value 1 is appended at the front and the back.

Somewhat more formally it can be written as follows, where the index of the rows and columns

starts from 1 and not as in Python from 0:

1, row = 1 and col = 1 (top)
1, Vrow € {1,n} and col = 1
pascal(row,col) = < 1, Vrow € {1,n} and col = row

pascal(row — 1, col) +

\ pascal(row — 1,col — 1), otherwise (based on predecessors)

The implementation is done directly and is much more understandable than the purely recursive
definition for each value already presented in section 3.3.9.
each row is calculated from the values of the row above it,
flanked in each case by a 1
def calc line(previous line):
current line = [previous line[i] + previous line[i + 1]
for i in range(len(previous line) - 1)]

return [1] + current line + [1]
Verification

To test the implementation, define a function where you compute Pascal’s triangle for the passed value
and then print it appropriately:
def print pascal(n):
for line in pascal (n):
print(line)
Let’s try it out:
>>> print pascal (4)

(1]

(1, 1]

(1, 2, 1]
(1, 3, 3, 11

If you like it a bit more formal, a matching unit test is provided:

@pytest.mark.parametrize ("n,

(L, [[111),
(2, [[11, (1, 111)
(3, [(r11, 11, 11, r 2y
(4, [[1], [1
111
def test pascal (n, expected):
result = pascal (n)
assert result == expected

5.3.9 Solution 9: Check Magic Triangle (k% % v 3)

expected",

Write function is magic triangle (values) that checks whether a sequence of numbers

forms a magic triangle. Such a triangle is defined as one where the respective sums of the

three sides’ values must all be equal.

Examples

The following shows this for one triangle each of side length three and side length four:

1 2

6 5 8 5

2 4 3 4

3761

This results in the following sides and sums:

Input Values 1

side 1 1+5+3=9

side 2 3+4+2=9

side 3 2+46+1=9

Values 2

2+5+9+1=17

1+46+7+3=17

3+44+8+2=17

TipModel the individual sides of the triangle as sublists.

[HINT: PROBLEM SOLVING STRATEGIES FOR THE JOB INTERVIEW

If the problem is initially unclear, it is advisable to reduce the problem to one or two concrete

value assignments and to find the appropriate abstractions based on these.

Using the triangle of side length three as an example, you can build the sides shown above. If you
think for a while, you will find that the sides can be expressed as sublists. However, the last side
requires special treatment. For closing the figure again, the value of position 0 has to be taken into
account. Still, it is not part of the sublist. Here two tricks offer themselves. The first one is to duplicate
the list and extend it by the Oth element:
values with loop = list (values)
close the triangle
values with loop.append(values[0])
sidel = values with loop[0:3]
side2 = values with loop[2:5]
side3 = values with loop[4:7]

Alternatively, create three slices and add the Oth element in the third to fit:

sidel = wvalues[0:3]
side?2 = values[2:5]
side3 = values[4:0]

close the triangle

side3.append(values[0])

Algorithm: For triangles with side length three With the previous knowledge gathered, you start
implementing the check for the special case of a triangle of side length three. Therefore, you first
determine the sides and then build and compare the partial sums of the numbers contained there:
def is magicé6 (values):

values with loop = list (values)

values with loop.append(values[0]) # close the triangle

sidel = values with loop[0:3]

side2 = values with loop[2:5]

side3 = values with loop[4:7]

return compare sum of sides(sidel, side2, side3)

You extract the summing of the values of the sides as well as their comparison into the following

function:
def compare sum of sides(sidel, side2, side3):

suml = sum(sidel)
sum?2 = sum(side?2)
sum3 = sum(side3)

return suml == sum?2 and sum?2 == sum3

Intermediate inspection Now you should at least check the implementation with some values
before you move on to the generalization:
>>> is magico6 ([1, 5, 3, 4, 2, 6])
True
>>> is magice6 ([1, 2, 3, 4, 5, 6])
False
Algorithm, general variant With the knowledge gained from the concrete example, a general
variant can be created. The variance resides in calculating the indices for the sides of the triangle.
Additionally, you add a sanity check at the beginning of the function. This prevents you from working
on potentially invalid data constellations.
def is magic triangle(values):
if len(values) % 3 != 0:
raise ValueError ("Not a triangle!", len(values), "must be a
factor of 3")
side length = 1 + len(values) // 3
values with loop = list (values)
close the triangle

values with loop.append(values[0])

sidel = values with loop[0: side length]
side?2 = values with loop[side length - 1: side length * 2 - 1]
side3 = values with loop[(side length - 1) * 2: side length * 3 -
2]
return compare sum of sides(sidel, side2, side3)
Verification

Let’s check the implementation with the following unit test:
@pytest.mark.parametrize ("values, expected",
(1, 5, 3, 4, 2, 6], True)

(rr, 2, 3, 4, 5, o], False),
(2, 5, 9, 1, 6, 7, 3, 4, 81, True),
(rr, 2, 3, 4, 5, 6, 7, 8, 91, False)])
def test is magic triangle(values, expected):
result = is magic triangle(values)
assert result == expected

Alternative algorithm Based on the generalization already done, it is possible to omit the
extraction of the sublists. Therefore, you once again use the idea of a position counter and traverse the
original list in two loops. The outer loop represents the current side; in an inner loop, the respective
position is handled. Two tricks are used:

1.
The variable pos models the current position within the list. The new position is deter-
mined by adding 1. However, you need to reaccess the list’s first value at the end of the

list, so a modulo operation is used here.

2.
After adding up the values for one side, you must go back by one position since the end

value of one side of the triangle is also the start value of the next side.

As usual, add a sanity check at the beginning of the method. This will prevent you from potentially
invalid data constellations.
def is magic triangle v2(values):
if len(values) % 3 != 0:
raise ValueError ("Not a triangle: " + len(values))
side length = 1 + len(values) // 3
pos = 0
sum_of sides = [0, 0, O]
for current side in range(3):
for in range(side length):
sum_of sides[current side] += values[pos]
trick 1: with modulo => no special treatment

pos = (pos + 1) % len(values)

trick 2: The sides overlap, end field = next start field

pos —-=1
return sum of sides[0] == sum of sides[1l] and \
sum of sides[1l] == sum of sides([Z2]
Verification

The verification is performed with a unit test analogous to the previous one and therefore not

shown again.

5.3.10 Solution 10: Most Frequent Elements (% % v v vr)

Write function value count (values) that determines a histogram (i. e., the distribution of
the frequencies of the numbers in the given list). Also, write function
sort dict by value (dictionary) to sortthe dictionary by its values instead of by keys.

Thereby a descending sorting is realized, so that smaller values are listed at the beginning.

Examples

Input Result Most frequent(s)

[1,2,3,4,4,4,3,3,2,4] {4=4,3=3,2=2,1=1} 4=4

[1,1,1,2,2,2,3,3, 3] {1=3, 2=3, 3=3} Depending on query, logically all

Algorithm Based on the input values, you compute a histogram as a dictionary with frequency
values:
def value count (values):
value to count = {}
for elem in values:
if elem not in value to count:
value to countlelem] = 0
value to count[elem] += 1
return value to count
As a final step, you still need to sort the resulting dictionary by value. Conveniently, this can be
done with sorted () and specifying how the values are accessed and inverted. However, this returns a
list of value pairs that you transfer to a dictionary with dict ().
def sort dict by value(dictionary):
return dict (sorted(dictionary.items (), key=itemgetter(l),

reverse=True))

Verification

As usual, use the values from the introduction to check your just implemented functionality with unit
tests:
@pytest.mark.parametrize ("values, expected",

r(rt1, 2, 3, 4, 4, 4, 3, 3, 2, 47,
{1: 1, 2: 2, 3: 3, 4: 4}),
(r», 1, », 2, 2, 2, 3, 3, 31,
{(1: 3, 2: 3, 3: 311
)

def test value count (values, expected):
result = value count (values)
assert result == expected

@pytest.mark.parametrize ("dictionary, expected",

[({1: 1, 2: 2, 3: 3, 4: 4},
{4: 4, 3: 3, 2: 2, 1: 1})1)
def test sort dict by value(dictionary, expected):
result = sort dict by value(dictionary)

assert result == expected

5.3.11 Solution 11: Addition of Digits (kA ++)

Consider two decimal numbers that are to be added. Sounds simple, but for this assignment,
the numbers are interestingly represented as a list of digits. Write function 1ist add(val-

uesl, values?2).Also, consider the special case where there is an overflow.
Solution 11a: Addition (G %k 5 5r)

In the first part of the task, the digits are to be stored in the order of their occurrence in the list.

Examples
Input 1 Input 2 Result
123=[1,2,3] 456=[4,5,6] 579=[5,7,9]

927=[9,2,7] 135=[1,3,5] 1062=[1,0,6,2]

Algorithm Start with a simplification, namely that the numbers have the same amount of digits.
Analogous to adding on the blackboard, you go from back to front from position to position and add the
digits in each case. There may be a carry, which you must take into account in the following addition. If
there is also a carry at the end of the processing (so for you at the front-most position), you must add the

value 1 to the result at the front position. See Figure 5-1.

927
+ 135

1 01

1062

Figure 5-1 Example of an addition with carries

You apply this procedure to two lists of digits and traverse them from back to front—at the
beginning still simplifying lists of equal length, which avoids special treatments.
def list add(valuesl, values2):
result = []
carry = 0
for i in range(len(valuesl) - 1, -1, -1):
sum = valuesl[i] + values2[i] + carry
result.insert (0, sum % 10)
carry = 1 if sum >= 10 else O
add a 1 at the front of a carryover
if carry ==
result.insert (0, 1)
return result
A deviating implementation would be to use iterators, here not the forward variant with iter (),
but the backward variant with reversed () . However, this implementation struggles with the same
problem as before with input data of different lengths.
def list add with iter (valuesl, values2):

result = []

carry = 0

backiteratorl = reversed(valuesl)
backiterator?2 = reversed(values?2)

while True:

try:

valuel next (backiteratorl)

value? next (backiterator?)

sum = valuel + value2 + carry
result.insert (0, sum % 10)
carry = 1 if sum >= 10 else 0

except Stoplteration:

break
consider carryover
if carry ==
result.insert (0, 1)

return result

|I-IINT: POSSIBLE ALTERNATIVE WITH zZIP()?

'You could also come up with the idea of combining the two sequences of values with zip ()
and traversing them backwards. However, then you still need a wrapping with 1ist (), since
zip () is not reversible. However, this variant also fails since zip () restricts the combination
to the smallest length of the sequences passed. Thus, again, you cannot add sequences of

numbers of different lengths.

Improved algorithm If you want to provide a generally valid addition, you have to add the digits again
starting from the back. However, with unequal length, it is then at some point no longer possible to
access any digits because one number has fewer digits than the other. The auxiliary function

safe get at () helps to handle a potentially failing access and provides a fallback of 0 in this case.

def list add improved(valuesl, values2):

result = []

carry = 0

idxl = len(valuesl) - 1
idx2 = len(values2) - 1

while idxl >= 0 or idx2 >= 0:
valuel = safe get at(valuesl, idxl)
value2 = safe get at(values2, idx2)
sum = valuel + wvalue2 + carry
result.insert (0, sum % 10)
carry = 1 if sum >= 10 else O
idxl -= 1
idx2 -=1
add a 1 at the front of a carryover
if carry ==
result.insert (0, 1)
return result
Let’s take a quick look at the implementation of the safe indexed access, which maps accesses
outside the allowed index range to the value 0. I use the Python feature of two comparison operators.
def safe get at (values, pos):

if 0 <= pos < len(values):

return values|[pos]
return 0

In the implementation, my Java origin can be spotted.

In Python, it is stylistically nicer to handle expected index exceptions as follows:
def safe get at (values, pos):
try:
return values|[pos]
except IndexError:

return O

Verification

Use unit tests to verify that the implementation produces the desired result for a given sequence of
numbers:
@pytest.mark.parametrize ("valuesl, values2, expected",
(1, 2, 31, (4, 5, el, [5, 7, 91),
9, 2, 71, (1, 3, 51, [1, O, 6, 21)])
def test list add improved(valuesl, values2, expected):
result = list add improved(valuesl, values2)
assert result == expected
Let’s also consider the special case of unequal lengths of numbers for both implementations—only
the second improved variant handles this correctly:
>>> list add([7,2,11, [(1,2,7,0,0,0])
[8, 4, 8]
>>> list add improved((7, 2, 11, [1, 2, 7, 0, 0, 0])
(1, 2, 7, 17, 2, 1]

Solution 11b: Addition Inverse (3 % % 5)

What changes if the digits are stored in reverse order in the list?

Examples

Input 1 Input 2 Result

123=[3,2,1] 456=[6,5,4] 579=[9,7,5]

Input 1 Input 2 Result

927=[7,2,9] 135=[5,3,1] 1062=[2,6,0,1]

Algorithm If the order of the digits in the list is reversed to that within the number, things get
simpler. You can then add directly, and the handling of numbers with unequal amounts of digits
becomes easier. Again, you use the function safe get at (). Moreover, in case of an overflow, it is

only necessary to add in the natural direction.
def list add inverse(valuesl, values2):

result = []

carry = 0

idx = 0

while idx < len (valuesl) or idx < len(values?):
valuel = safe get at(valuesl, idx)
value2 = safe get at(values2, idx)

sum = valuel + value2 + carry
carry = 1 if sum >= 10 else O
result.append(sum % 10)
idx += 1
add a 1 as carry to the "front"
if carry == 1:
result.append (1)

return result

Verification

Consider two numbers in the form of lists with single digits—the values are written the other way
around than in the number. In particular, this variant allows the addition of numbers of different lengths
without having to deal with two index values.
@pytest.mark.parametrize ("valuesl, values2, expected",
(3, 2, 11, e, 5, 41, (9, 7, 31),
(t7, 2, 91, I[5, 3, 11, [2, 6, 0, 11)1)
def test list add inverse(valuesl, values2, expected):
result = list add inverse(valuesl, values2)

assert result == expected

5.3.12 Solution 12: List Merge (k% i v vv)

Given two lists of numbers, each sorted in ascending order, merge them into a result list ac-

cording to their order. Write function merge (valuesl, values2).

Examples

Input 1 Input 2 Result

1,4,7,12,20 10, 15, 17, 33 1,4,7,10, 12, 15, 17, 20, 33

2,3,5,7 11, 13,17 2,3,5,7,11,13, 17

2,3,5,7, 11 7,11,13,17 2,3,5,7,7,11, 11, 13, 17

[1,2,3] =[] [1,2,3]

Algorithm At first, the problem seems quite easy to solve. You start at the beginning of both lists.
Then you compare the respective position’s values, insert the smaller one into the result, and increase
the position in the list from which the element originates. This looks like the following:
def merge first try(valuesl, values2):

posl = 0
pos2 = 0
result = []

while posl < len(valuesl) or pos2 < len(values2):

valuel valuesl [posl]

value? values2 [pos2]
if valuel < value2:
result.append (valuel)
posl +=1
else:
result.append (value?2)
pos2 += 1
return result
Although this solution seems to be intuitive and good, it still contains problems. To identify them,
let’s try the function once for the second combination of values:
>>> merge first try([2, 3, 5, 7], [11, 13, 17])

IndexError: list index out of range

As a quick fix, you could replace the or with an and, which eliminates problems with exceptions.
But this leads to another problem: Not all of the elements of both lists are processed any longer, usually
depending on the value distribution even different numbers. So this is not a universal solution, but still a
good start. You only have to cover the special needs of the elements remaining in a list appropriately.

They are added to the result for this purpose.
def merge (valuesl, values2):

posl = 0
pos2 = 0
result = []

while posl < len(valuesl) and pos2 < len(values2):

valuel = wvaluesl[posl]

value?2 = values2[pos2]
if valuel < value2:
result.append (valuel)
posl +=1
else:
result.append (value?2)
pos2 += 1
add _remaining(result, valuesl, posl)
add remaining(result, values2, pos2)
return result
You move the functionality of appending the remaining elements into function
add_remaining (). Interestingly, no special checks are required before calling it. This is indirectly
given by supplying the respective index as well as the termination condition in the for loop.
def add remaining(result, values, idx):
for i in range(idx, len(values)):
result.append(values[i])
Python shortcut for add_remaining() In fact, adding the remaining elements is done in a shorter
and more understandable way using slicing, as follows:
def add remaining(result, values, idx):
result += values[idx:]
Python shortcut The sorted merging of two lists can be easily implemented using the + operator
and with the help of sorted ():
def merge(valuesl, values2):
return sorted(valuesl + values2)

Alternative algorithm One variant is to generate the result data structure in advance. Howev-

er, this leads to more index variables, and the entire thing becomes confusing. How can you

avoid index access?

Instead of the potentially error-prone index accesses, try a variant with iterators. You run through
the two lists from front to back and insert the elements as usual. Also, the appending of the remaining
part can be transferred quite easily to iterators.
def merge with iter(valuesl, values2):

result = []
iteratorl = iter (valuesl)
iterator?2 = iter (values2)

while True:
try:
valuel, iteratorl = peek(iteratorl)
value2, iterator2 = peek(iterator2)
if valuel < value2:
result.append (valuel)
next (iteratorl)
else:
result.append (value?2)
next (iterator?)
except StopIteration:
break
add remaining with iter(result, iteratorl)
add remaining with iter(result, iterator2)
return result
The last thing you implement is the addition of the remaining elements. However, this is a little bit
more complex with iterators than the two variants shown before.
def add remaining with iter(result, it):
while True:
try:
value = next(it)
result.append (value)
except StopIteration:
break
Another difficulty is that you cannot simply read out both elements via next (), since only one
element is transferred to the result at a time. Therefore, you use a trick and create the function peek (),
which first determines the next element and then reconstructs the iterator. In the above algorithm, you
first take a look at the respective elements, and after comparing the value, you consume the element
from the matching input data.
def peek(it):

first = next(it)
return first, itertools.chain([first], it)

The built-in function chain () is used here, which links two iterables together (i.e., make one

out of two). Here it is used to restore the original dataset of the iterator.

Verification

Test the functionality with the value combinations from the introduction:
def inputs and expected():

return [([1, 4, 7, 12, 201, [l10, 15, 17, 331,
(1, 4, 7, 10, 12, 15, 17, 20, 331),
(12, 3, 5, 71, [11, 13, 171,
(2, 3, 5, 7, 11, 13, 171),
({2, 3, 5, 7, 111, [7, 11, 13, 171,
(2, 3, s, 7, 7, 11, 11, 13, 171),
(rx, 2, 31, (1, [1, 2, 3])]

@pytest.mark.parametrize ("valuesl, values2, expected",
inputs and expected())
def test merge(valuesl, values2, expected):
result = merge (valuesl, values?2)
assert result == expected
@pytest.mark.parametrize ("valuesl, values2, expected",
inputs and expected())
def test merge with iter(valuesl, values2, expected):
result = merge with iter (valuesl, values2)

assert result == expected

5.3.13 Solution 13: Excel Magic Select (% %k v)

If you have worked a little with Excel, then you have probably used the Magic Selection. It con-
tinuously populates a selected area with values based on the previous values. This works for
numbers, weekdays, or dates, for example. To achieve something similar on your own, write
function generate following values (current value, sequence length) thatim-
plements this for numbers. Create a variation suitable for weekdays and with the following sig-
nature: generate following values for - predefined(predefined values,

current value, sequence length).

Examples

Initial
Count Result
value
1 7 [1,2,3,4,5,6,7]
5 4 [5,6,7,8]
[FRIDAY, SATURDAY, SUNDAY, MONDAY, TUESDAY, WEDNES-
FRIDAY 8

DAY, THURSDAY, FRIDAY]

Algorithm At first, you might think that this is based on something very sophisticated. But when
thinking a second time about the algorithm, you quickly realize that all you need is a list as the result
data structure and a loop to populate it:
def generate following values (current value, sequence length):

result = []

while sequence length > 0:
result.append(current value)
current value += 1
sequence length -=1

return result

Python shortcut With list comprehension, you write it briefly as follows:
def generate following values v2(start value, sequence length):

return [value for value in range(start value,
start value + sequence length)]

Alternatively, this can be implemented by combining various functionalities from the itertools
module. However, I like the two previous variants much better in terms of readability and
comprehensibility.
def generate following values built in(start value, sequence length):

return list (itertools.islice(itertools.count(start value),
sequence length))

Modified algorithm It is similarly easy to fill in with days of the week or via a list of predefined

values, which, unlike numerical values, always repeat according to the length of the sequence.

With this knowledge, you minimally modify the previously used algorithm:

def generate following values for predefined(predefined values,
current value,
sequence_ length) :
result = []
current pos = predefined values.index (current value)
while sequence length > 0:
result.append(current value)
current value, current pos = next cyclic(predefined values,
current pos)
sequence length -= 1
return result
This function is intended to allow the cyclical traversal of a list in the forward direction by starting
again at the beginning after the last element:
def next cyclic(values, current pos):
next pos = (current pos + 1) % len(values)

return values[next pos], next pos

Verification

To track completion, you use a parameterized test, among other things one starting on a Friday, to
generate eight values:
@pytest.mark.parametrize ("start value, sequence length, expected",
r¢x, 7, (1, 2, 3, 4, 5, 6, 71),
(5, 4, [5, 6, 7, 81)1)

def test generate following values(start value, sequence length,

expected) :
result = generate following values (start value, sequence length)
assert result == expected

def predefined values():
return ["Monday", "Tuesday", "Wednesday", "Thursday",
"Friday", "Saturday", "Sunday"]
@pytest.mark.parametrize ("predefined values, current value, "
"sequence length, expected",
[(predefined values(), "Monday", 3,
["Monday", "Tuesday", "Wednesday"]),
(predefined values (), "Friday", 8,
["Friday", "Saturday", "Sunday", "Monday",
"Tuesday", "Wednesday", "Thursday",
"Friday"])])

def test generate following values for predefined(predefined values,
current value,
sequence length,
expected) :
result =
generate following values for predefined(predefined values,
current value,
sequence length)

assert result == expected

5.3.14 Solution 14: Stack-Based Queue (% %k i vr)

You learned about stack and queue data structures in the introduction and implemented a
queue based on a list. Then in exercise 2, you implemented a stack itself. Now you are asked

to build a queue based on the stack data structure.
Example

Please check the functionality with the following procedure:

def main():
waiting persons = Queue ()
waiting persons.enqueue ("Marcello")
waiting persons.enqueue ("Michael")
waiting persons.enqueue ("Karthi")

while not waiting persons.is empty():
if waiting persons.peek() == "Michael":
reprocess at the end
waiting persons.enqueue ("Michael again")
next person = waiting persons.dequeue ()
print ("Processing " + next person)
The small sample program should produce the following output:
Processing Marcello
Processing Michael
Processing Karthi
Processing Michael again
Algorithm You have already learned that a stack is suitable for reversing a list’s order. Suppose you

combine two stacks appropriately, one as an input buffer and one as an output buffer. In this case, you

can implement a queue quite easily as follows. The only thing that’s a bit tricky is that you just transfer
the data from the input buffer to the output buffer when the latter is empty.
class Queue:
def init (self):
self. inbox = Stack()
self. outbox = Stack()
def enqueue(self, elem):
self. inbox.push (elem)
def dequeue (self):
if self.is empty():
raise QueuelsEmptyException ()
self. transfer inbox to outbox()
return self. outbox.pop()
def peek(self):
if self.is empty():
raise QueuelsEmptyException ()
self. transfer inbox to outbox()
return self. outbox.peek()
def is empty(self):
return self. inbox.is empty() and self. outbox.is empty ()
def transfer inbox to outbox(self):
if self. outbox.is empty():
transfer inbox to outbox
while not self. inbox.is empty():

self. outbox.push(self. inbox.pop())

Verification

To test your implementation of the stack-based queue, execute the main () function and see if

the output is as expected.

5.4 Summary: What You Learned

This chapter deepened your knowledge of basic data structures like lists, sets, and dictionaries.
This knowledge is essential in business applications. These structures are useful for solving
many tasks, not only individually but also in combination, such as the deletion of duplicates

from lists. In addition, the exercise of the magic triangle, for example, trained abstract thinking.

A small delicacy was to program the auto-completion of Excel itself. It is quite surprising what
an elegant implementation this results in. Finally, you developed some functionality for merging

lists. This is an elementary component for Merge Sort.

Footnotes

1
All elements contained in either A or B, but not both sets.

[\S]

This functionality can be found for lists too, but there slicing is often the better choice to copy data.

(98]

https://docs.python.org/3/tutorial /datastructures.html

https://docs.python.org/3/tutorial/datastructures.html

© The Author(s), under exclusive license to APress Media, LLC, part of Springer Nature 2022
M. Inden, Python Challenges
https://doi.org/10.1007/978-1-4842-7398-2 6

6. Arrays

Michael Indenl
(1) Zurich, Switzerland

Arrays are data structures that store values of the same data type in a contiguous
memory area. Thus, arrays are more memory-optimal and perform better than lists
but are not supported natively in Python. However, they are supported by the ar-

ray and numpy modules. In the following, you will look at the processing of data

with the help of additional modules and deepen it with the help of exercises.
6.1 Introduction

While arrays are basic building blocks in many other programming languages, they exist
in Python only as extensions, such as in the array and numpy modules. Because the
former has only one-dimensional arrays and a cryptic syntax like
>>> import array
>>> ints = array.array('i', [2, 4, 6, 81])
>>> ints
array('i', [2, 4, 6, 81])

the choice for the following descriptions falls on numpy,! whose array
implementation is more elegant and more pleasant to handle. In particular, arrays can be

created quite easily from lists, even multidimensional ones:
import numpy as np

numbers = np.array([1l, 2, 3, 4, 5, 6, 71])
primes = np.array([2, 3, 5, 7, 11, 13, 17])

twodim = np.array ([["Al", "A2"],
|:"B1", "B2":| ,

https://doi.org/10.1007/978-1-4842-7398-2_6

["Cl", "c2":|:|)
NumPy almost feels like a built-in data type since many operations like slicing and
index accesses or the standard function 1en () are possible. You'll look at what to

consider for multidimensional arrays later.

By providing arrays as a stand-alone module, an import is necessary. But arrays,
unlike many built-in data types in other languages, are not just simple data contain-
ers but can do much more in terms of functionality than in Java or C++, for

example.

NumPYy offers various mathematical functionalities. | will go into more detail about
NumPy specialties later. Upfront you will investigate one-dimensional and multidi-

mensional arrays in this introduction and build a basic understanding of arrays.

6.1.1 One-Dimensional Arrays

As an introduction to processing data with arrays and to build knowledge of possi-

ble interview questions, let’s look at some examples.
Textual Output

Arrays provide an appealing textual output, which is greatly beneficial for following the
upcoming examples, especially the two-dimensional ones.

>>> grades = np.array(["Al", "A2", "B1", "B2", "C1", "C2"])
>>> grades

array(['Al', 'A2', 'B1', 'B2', 'Cl', 'C2'], dtype='<U2'")

Example 1: Swapping Elements

A common functionality is swapping elements at two positions. This can be achieved in a
simple and readable way by providing function swap (values, first, second)

as follows:
def swap(values, first, second):

valuel = values[first]

value?2 = values|[second]
values[first] = value?2
values[second] = valuel

Of course, you can also solve this with only three assignments and a temporary
variable. Still, I think the previous version is a bit more comprehensible.
def swap(values, first, second):
tmp = values[first]
values[first] = values[second]
values[second] = tmp
In Python, there is the following variant based on a tuple assignment:
def swap with tuple(values, first, second):
values|[second], values[first] = values[first],

values[second]

HINT: PREFER READABILITY AND COMPREHENSIBILITY
Please keep in mind that readability and understandability are the keys to correct-

ness and maintainability. Besides, this often facilitates testability.

While the helper variable to save one assignment is pretty catchy here, there are
definitely more elaborate traceable low-level optimizations in other use cases.

They are usually more difficult to read and less comprehensible.

Example 2: Basic Functionality for Arrays

Now let’s write the function find (values, search for) to search for a value in a
one-dimensional array or a list and return the position or -1 for not found:
def find(values, search for):
for i, current value in enumerate (values):
if current value == search for:
return 1

return -1

This can be solved as a typical search problem with a while loop where the condition

1s given as a comment at the end of the loop:
def find(values, search for):

pos = 0

while pos < len(values) and not values|[pos] ==
search for:

pos += 1
1 >= len(values) or values[i] == search for
return -1 if pos >= len(values) else pos

Please note the following: The Python built-in function 1en () returns the length of
a list, so also for arrays, as long as they are one-dimensional. Alternatively, NumPy
provides the attribute size on the array. For two-dimensional arrays, the values

differ, but more about this later.

Pythonic variant with enumerate () Indexed accesses can hardly be avoided when
working on array elements and are often quite intuitive. However, such accesses via the
index in combination with range (1len (values)) do not necessarily correspond to
good style in Python. Sometimes there are more elegant ways, like the following one with
enumerate ():
def find with enumerate (values, search for):

for i, value in enumerate (values):
if value == search for:
return i

return -1

Example 3: Remove Duplicates

The following shows a sorted array of positive numbers, but with duplicate values.

Removing the duplicates should provide the following result:
(1, 2, 2, 3, 3, 3, 4, 4, 4, 4] => [1, 2, 3, 4]

OB INTERVIEW TIPS: PROBLEM-SOLVING STRATEGIES

For assignments like this, you should always ask a few questions to clarify the context
and gain a better understanding. For this example, possible questions include the

following:

1.
Is it necessary to keep the order/sorting of the numbers?

2.
May a new array be created or must the actions be processed inplace —with-

in the original array?

‘For inplace there are further questions:

a'What exactly should happen when removing/deleting?

b.
What value represents no entry?

Solution 1 for Example 3: New array and sorted input Suppose you are to re-

turn a new array as a result when eliminating duplicates.

Maybe when you implement it you get the idea to remove the duplicates simply by
refilling in a set. However, this does not guarantee that the original order is preserved. To
be on the safe side, it is recommended to use a dictionary to ensure that the insertion order
of the keys is preserved. Using fromkeys (), a dictionary is created based on the passed
list and duplicate keys are automatically removed. As a second step, you prepare a new

array based on the keys. This procedure can be implemented as follows:
def remove duplicates new array(sorted numbers) :

order may change

unique values = list (set(sorted numbers))
stable order
unique values = list (dict.fromkeys (sorted numbers))

return np.array(unique values)
Solution 2 for Example 3: Unsorted/arbitrary numbers The previous task of
removing duplicates in sorted numbers was easy to solve with Python on-board facilities.

But how should you proceed with non-sorted data, assuming that the original order has to

be maintained? Specifically, the result shown on the right should then result from the left
sequence of values.
(1, 4, 4, 2, 2, 3, 4, 3, 41 => [1, 4, 2, 3]

Interestingly, a set would not make sense as a result data structure in this case because
it would mess up the original order. If you think for a moment, ask an experienced
colleague, or browse through a good book, you might discover that you can use a set as an
auxiliary data structure for already discovered numbers. To store the result, you use a list.
This variant (combination) works just as well with already sorted data.
def remove duplicates stable (numbers) :

return np.array(collect unique values stable (numbers))
def collect unique values stable (numbers) :
result = []
unique values = set()
for value in numbers:
if value not in unique values:

unique values.add(value)

result.append (value)
return result

This example illustrates the advantages of programming small functionalities that
are self-contained and follow the SRP (Single Responsibility Principle). Even
more: Keeping public methods understandable and moving details to (preferably
private) helper methods often allows you to keep subsequent changes as local as
possible. By the way, | discuss the SRP in detail in my book Der Weg zum Java-
Profi[Ind20].

As a special feature since Python 3.6, the order of the keys when creating a dictionary
with fromkeys () corresponds to the later iteration order, so the collection can be
written even shorter as follows:
def collect unique values stable shorter (numbers) :

return list (dict.fromkeys (numbers))

Solution 3 for Example 3: Inplace Given this sorted array again

sortedNumbers = [1, 2, 2, 3, 3, 3, 4, 4, 4, 4]

all duplicates are to be removed, but this time you’re not allowed to create a new array.

This implementation is a little bit more difficult. The algorithm is as follows: Run through
the array, check for each element, whether it already exists, and whether it is a duplicate.
This check can be performed by comparing the current element with its predecessor. This
simplification is possible because sorting exists; without it, it would be much more
complicated to solve. You start the processing at the frontmost position and proceed step
by step. Thereby you collect all numbers without duplicates on the left side of the array.
To know where to read or write in the array, you use position pointers named read pos
and write pos, respectively. If you find a duplicate number, the read pointer moves on
and the write pointer stays in place.
def remove duplicates inplace first try(sorted numbers):

prev_value = sorted numbers[0]

write pos = 1

read pos =1

while read pos < len(sorted numbers):

current value = sorted numbers[read pos]
if prev value != current value:
sorted numbers[write pos] = current value

write pos += 1
prev _value = current value
read pos += 1
Let’s call this function once:
>>> sorted numbers = np.array([1l, 2, 2, 3, 3, 3, 4, 4, 4,
41)
>>> remove duplicates inplace first try(sorted numbers)
>>> print (sorted numbers)
This variant is functionally correct, but the result is confusing:
[1 2 3 4 3 3 4 4 4 4]
This is because you are working inplace here. There is no hint how the result can be
separated, up to where the values are valid and where the invalid, removed values start.

Accordingly, two things are recommended:

1.
You should return the length of the valid range.

2.You should delete the following positions with a special value, like -1 for prim-
itive number types or for reference types often None. This value must not be

part of the value set. Otherwise, irritations and inconsistencies are inevitable.

The following modification solves both issues and also uses a for loop, which makes
everything a bit more elegant and shorter:
def remove duplicates inplace improved(sorted numbers) :
write index = 1

for 1 in range(l, len(sorted numbers)):

current value = sorted numbers([i]
prev_value = sorted numbers[write index - 1]
if prev value != current value:
sorted numbers|[write index] = current value

write index += 1
delete the positions that are no longer needed
for i in range(write index, len(sorted numbers)):
sorted numbers[i] = -1
return write index
An invocation of this function returns the length of the valid range (additionally, after

the last valid index in the modified array, all values are set to -1). Let’s check this by
running the following lines:
>>> sorted numbers = np.array(I[1l, 2, 2, 3, 3, 3, 4, 4, 4,
4])

>>> pos = remove duplicates inplace improved(sorted numbers)
>>> print ("pos:", pos, " / values:", sorted numbers)
pos: 4 / values: [1 2 3 4 -1 -1 -1 -1 -1 -1]

Interim conclusion The example illustrates several problematic issues. First, that
it is often more complex to work inplace —that is, without creating new arrays, but
directly within the original array. Second, to handle changes when values remain in
the array but are no longer part of the result, you can either return a counter or

erase the values with a neutral, special value. However, it is often more under-

standable and therefore recommended to use the variants shown, which create a

new array.

JOB INTERVIEW TIPS: ALTERNATIVE WAYS OF LOOKING AT THINGS
As simple as the assignment may have sounded at first, it does hold some potential for
different approaches and solution strategies. When removing duplicates, you could also
come up with the idea of replacing elements by no entry—for object references the value
None:
[("Tim", "Tim", "Jim", "Tom", "Jim", "Tom"]
=>
["Tim", None, "Jim", "Tom", None, None]
For a non-sorted array, it is also possible to retain the values in the order of their
original occurrence:
(1, 2, 2, 4, 4, 3, 3, 3, 2, 2, 3, 1] => [1, 2, 4, 3]
Alternatively, it is possible to remove only consecutive duplicates at a time:
(1, 2, 2, 4, 4, 3, 3, 3, 2, 2, 3, 11 => [1, 2, 4, 3, 2, 3,
1]
As you can see, there is more to consider, even for apparently simple tasks. This

is why requirements engineering and the correct coverage of requirements are a

real challenge.

Example 4: Rotation by One or More Positions

Let’s look at another problem, namely rotating an array by n positions to the left or
to the right, where the elements are then to be shifted cyclically at the beginning or
the end, respectively, as visualized below, where the middle array is the starting

point:

The algorithm for a rotation by one element to the right is simple: Remember the
last element and then repeatedly copy the element that is one ahead in the direc-
tion of rotation to the one behind it. Finally, the cached last element is inserted at

the foremost position.

Please note that the following two functions work inplace (on the passed array) so they
do not return a value:
def rotate right (values):
if len(values) < 2:
return
end pos = len(values) - 1
temp = values[end pos]
for 1 in range(end pos, 0, -1):
values[i] = wvalues[i - 1]
values[0] = temp
The rotation to the left works analogously:
def rotate left (values):
if len(values) < 2:
return
end pos = len(values) - 1
temp = values[0]
for i in range(end pos):
values[1i] = wvalues[i + 1]
values[end pos] = temp
Let’s try the whole thing out in the Python command line:
>>> numbers = np.array([1l, 2, 3, 4])
>>> rotate right (numbers)
>>> numbers
array([4, 1, 2, 31)
>>>
>>> numbers = np.array([1l, 2, 3, 4])
>>> rotate left (numbers)

>>> print (numbers)

[2 3 4 1]
In case you are wondering about the different console outputs, it should be noted

that there is a difference between the formatting with repr () and

str ().Inthe first case, you get the type info and then the values are com-

ma-separated as output. In the second case, the output is the same as the stan-
dard of lists.

Rotation around n positions (simple) An obvious extension is to rotate by a certain
number of positions. This can be solved using brute force by calling the just-developed
functionality » times:
def rotate right by n simple(values, n):

for i in range(n):
rotate right (values)

This solution is acceptable in principle, although not performant due to the frequent

copy actions. How can it be more efficient?

HINT: OPTIMIZATION OF LARGE VALUES FOR n
There is one more small feature to consider. Namely, if nis larger than the length

of the array, you don’t have to rotate all the time; you can limit this to what is actu-

ally needed by using the modulo operationi < n % len(values).

Rotation around n positions (tricky) Alternatively, imagine that »n positions are added to
the original array. This is accomplished by using an independent buffer that caches the last
n elements. It is implemented in the function £i11 temp with last n (). This first
creates a suitably sized array and puts the last n values there. Then you copy the values as
before, but with an offset of x. Finally, you just need to copy the values back from the
buffer using copy temp buffer to start().
def rotate right by n(values, n):

adjusted n = n $ len(values)

temp buffer = fill temp with last n(values, adjusted n)

copy n positions to the right

for 1 in range(len(values) - 1, adjusted n - 1, -1):

values[i] = values[i - adjusted n]
copy temp buffer to start(temp buffer, values)
return values
def fill temp with last n(values, n):
temp buffer = np.arange (n)
for i in range (n):
temp buffer[i] = values[len(values) - n + 1i]
return temp buffer
def copy temp buffer to start(temp buffer, values):
for 1 in range(len(temp buffer)):
values[i] = temp buffer([i]
Here’s another hint: The function just presented for rotation can be suboptimal in
terms of memory, especially if the value of nis very large and the array itself is also
huge, but for our examples, this does not matter. Interestingly, the simple version
would then be better in terms of memory, although probably rather slow due to the

frequent copy actions.

6.1.2 Multidimensional Arrays

In this section, | will briefly discuss multidimensional arrays . Because it is more
common in practice and easy to imagine visually, | will just discuss two-dimension-

al arrays.2

Using a two-dimensional rectangular array, you can model a playfield, such as a
Sudoku puzzle or a landscape represented by characters. For a better understanding and an
introduction, let’s consider an example. Suppose # represents a boundary wall, $ stands for
an item to be collected, P stands for the player, and X stands for the exit from a level.

These characters are used to describe a playfield as follows:
FHAHHE AR

P
HHHEH S X #H###
f##HH#SE S HHFHHS

FHAH AR AR
In Python, a two-dimensional array can be used for processing, which you can

construct based on strings converted to lists as follows:

def main() :
world = np.array ([list ("##H###H###HFHH###HE")
list ("## P #4")

list ("###4# S X H####"),
()
()

14

"

=

~

List ("#####HF S HHHHHFHF"),
List ("H####HHHSHASFAEAE")])
print array(world)
def print array(values):
max y, max X = get dimension (values)

for y in range(max y):
for x in range (max x):
value = values]|[y] [x]
print (value, end=" ")
print ()
def get dimension(values):
if isinstance(values, 1list):
return len(values), len(values[0])
if isinstance(values, np.ndarray):
return values.shape

raise ValueError ("unsupported type", type(values))
In the code above, you can see the helper function get dimension (values) to
determine the dimensions for both lists and NumPy arrays. This allows using one

or the other without worrying. See subsection 6.1.4 for a broader explanation.

Let’s run the module TWO_DIM ARRAY WORLD EXAMPLE.PY to see the
output functionality in action. In the following, I will refer to similar things from time to
time. Besides debugging, the console output is quite helpful, especially for

multidimensional arrays.

¥HHEFFF O F A HH A

P #
$ X ## #
4+ F A $ ## # # # #

¥ HEEEFFFEE O HH A

Accessing values There are two variants of how to specify the coordinates when
accessing: one is [x][y] and the other is [y][x] if you think in a more line-oriented way.
Between different developers, this can lead to misunderstandings and discussions. A small
remedy can be achieved if you write an access function, like get at (values, x,
y) , and consider the respective preference there. I will use this access function in the
introduction and later switch over to direct array accesses:
def get at(values, x, V)

return values|[y] [x];

Introductory Example

Your task is to rotate an array by 90 degrees to the left or right. Let’s take a look at this for
two rotations to the right:

1111 4321 4444
2222 => 4321 => 3333
3333 4321 2222
4444 4321 1111

Let’s try to formalize the procedure a bit. The easiest way to implement the rotation is
to create a new array and then populate it appropriately. For the determination of the
formulas, let’s use concrete example data, which facilitates the understanding (xn and yn
stand for the new coordinates; in the following, the rotation to the left and the rotation to
the right is shown on the left/right):

x 0123

v _———

0 ABCD

1 EFGH
xn 01 xn 01
yn - yn -
0 DH 0 EA
1 CG 1 FB

3 AE 3 HD
You see that a 4 x2 array turns into a 2 x 4 array.

The rotation is based on the following calculation rules, where max x and max vy are

the respective maximum coordinates:

Orig -> new X new_ y
rotate left: (x,y) => vy max x - X
rotate right: (x,y) => max y -y X

You proceed to the implementation with this knowledge: You first create a suitably
large array by calling np.empty () and traverse the original array line by line and then
position by position. Based on the formulas above, the rotation can be implemented as
follows:
class RotationDirection (Enum) :

LEFT 90 = auto()
RIGHT 90 = auto()
def rotate(values, dir):
orig length y, orig length x = values.shape
rotated array = np.empty((orig length x, orig length y),
values.dtype)
for y in range(orig length y):
for x in range(orig length x):
max X = orig length x - 1

max y = orig length y - 1

orig value = values|[y] [x]
if dir == RotationDirection.LEFT 90:

new x =y

new y = max x — X

rotated array([new y][new x] = orig value
if dir == RotationDirection.RIGHT 90:

new x = max y - y

new y = X

rotated array[new y][new x] = orig value

return rotated array

Let’s take a look at the operations in the Python command line:
def main():
letters = np.array([["A", "B", "C", "D"],
("g", "r", "G", "H"]])
left rotated = rotate(letters,
RotationDirection.LEFT 90)
print (left rotated)
right rotated = rotate(letters,
RotationDirection.RIGHT 90)
print (right rotated)
Finally, the call to print () shows the arrays rotated by 90 degrees to the left and to

the right:

[['D" 'H']
['C' 'G']
['B' "F']
["A" "E']]
[['E" "A'"]
['F' "B']
['G' 'C']
['"H' 'D']]

Modeling Directions

You will encounter directions in a variety of use cases. They can, of course, be modeled
simply using an enumeration. In the context of two-dimensional arrays, it is extremely
convenient and contributes significantly to readability and comprehensibility to define all
essential cardinal directions in the enumeration and, moreover, offsets in x- and y-
directions. For better manageability of the delta values, I offera to _dx dy () function:
class Direction (Enum) :

N = (0, -1)

NE = (1, -1)
E = (1, 0)
SE = (1, 1)

Nw = (-1, -1)
def to dx dy(self):
return self.value
@classmethod
def provide random direction(cls):
random index = randrange (len(list(Direction)))

return list (Direction) [random index]

HINT: RANDOM NUMBERS

[n the example, you see the function randrange (), which generates random numbers

in the range 0 to the specified boundary exclusive. An alternative is

random.randint (). To get a random number greater than or equal to 0.0 and less
than 1.0, use the call random. random (). For example, if you want to simulate the

numbers of a dice, you could implement this as follows:
dice eyes = random.randint (1, 6)

Example: Random traversal To go a little deeper on processing with directions,
let’s develop a traversal for a playfield. Whenever you hit array boundaries, you

randomly choose a new direction not equal to the old one:

def main () :
world = np.array([list ("ABCDEF"),
list ("GHIJKL"),
list ("MNOPQR"),
list ("abcdef"),
list ("ghijkl1™)])
dir = Direction.provide random direction ()

print ("Direction:", dir.name)

pos x = 0
pos y = 0
steps = 0

while steps < 25:

print (world[pos y][pos x], " ", end="")
dx, dy = dir.to dx dy()
if not is on board(world, pos x + dx, pos y + dy):
dir = select new dir(world, dir, pos X, pos V)
dx, dy = dir.to dx dy()
print ("\nNew Direction:", dir.name)
pos x += dx
pos_y += dy
steps += 1
def select new dir(world, dir, pos X, pos y):
old dir = dir
while True:
dir = Direction.provide random direction ()
dx, dy = dir.to dx dy()
if old dir != dir and is on board(world, pos x + dx,
pos y + dy):
break
return dir
In this assignment, you immediately get in touch with another useful function named
is on board/(). Its task is to check whether a passed x-y value is valid for the array,
here assuming that the array is rectangular.2
def is on board(values, next pos x, next pos y):
max y, max x = values.shape
return 0 <= next pos x < max x and 0 <= next pos y <
max_y
Ifym1ﬁm1ﬂm1n0¢ﬂeRANDOM_TRAVERSAL_DIRECTION_EXAMPLE.PY,you
will get output like the following, which shows the direction changes very well. The
output is limited by the maximum number of 25 steps. Therefore, only 3 letters are found
at the end.
Direction: SE
A HOdKk
New Direction: N
e Q K E

New Direction: SW

J Obg

New Direction: N

aMGA

New Direction: E

B CDETF

New Direction: SW
K P c

HINT: VARIATION WITH BUFFER FIELDS AT THE BORDER

Especially for two-dimensional arrays and accesses to adjacent cells, it may be useful to

add an unused element at each border field to avoid special cases, indicated below with a
X :

XXX KXXXXXX

X X

X X

X X

XXX KXXXXXX

Using this trick, you always have eight adjacent cells. This helps to avoid special

treatments in your programs. This is also true, for example, when walking through
the array. Instead of checking for the array boundaries, you can restrict yourself to
checking if you reach a boundary field. Sometimes it is handy to use a neutral ele-

ment, such as the value 0, since this does not affect computations.

6.1.3 Typical Errors

Not only when accessing arrays, but especially there, you find a multiplicity of potential

sources of errors, in particular, the following:

. Off-by-one: Sometimes you are off by one element when accessing because,
for example, the index calculation contains an error, such as adding or subtract-

ing 1 to correct the index or comparing positions with <, <=, >, or >=.

« Array bounds: Similarly, the bounds of the array are sometimes inadvertently
disregarded, for example, by incorrect use of <, <= or >, >= when comparing
length or lower or upper bounds.#

« Dimensions: As mentioned, how x and y are represented depends on the cho-
sen flavor. This quickly causes x and y to be interchanged for two-dimensional
arrays.

« Rectangular property: Although an n x m array is assumed to be rectangular,
this need not be the case in Python when using nested lists. You can specify a
different length for each new row, but many of the examples below use rec-
tangular arrays,? especially because they are only supported by NumPy. The
reason lies in the arrangement in memory for maximum performance.

« Neutral element: What represents no value. Is it -1 or None? How do you deal

with this if these are possible values?

6.1.4 Special Features

| would like to point out something extraordinary. Practically, almost all of our de-
veloped program modules can be used for NumPy arrays and lists without chang-
ing much in the algorithmic part of the functions. Often, all that is needed is the de-
termination of the sizes shown below. This is a significant advantage in contrast to
algorithms in, say, Java and C++, which must be developed specifically for lists

and other types.

For many algorithms for two-dimensional arrays, you can use the function
get dimension (values) to determine the dimensions for both lists and NumPy
arrays. A few examples require some manual work but rarely a completely new

implementation.
def get dimension(values):

if isinstance(values, list):

return len(values), len(values[0])

if isinstance(values, np.ndarray):
return values.shape
raise ValueError ("unsupported type", type(values))

For nested lists, it returns the number of lines and the length of the first line. This
corresponds exactly to the dimensions that can be obtained from NumPy via the shape
attribute as a tuple:
nested lists = [[O0, 1, 2, 3],

(4, 5, 6, 71,
[8, 9, 10, 101]
nested lists array = np.array(nested lists)
print (get dimension(nested lists))
print (get dimension(nested lists array))
This results in the following output:
(3, 4)
(3, 4)
Special Treatment for Generalizations

Sometimes you want to apply functionalities not only for special types but in general. In
doing so, you occasionally need to initialize arrays with an empty value or query whether
an array is empty. You will look at this in more detail in the solution part of exercise 6,
where you want to be able to use arrays with letters in addition to arrays with numbers to
model a playfield. An empty field is then indicated by, for example, the numerical value 0,
a single space character, or an empty string. You could formulate this general-purpose
check as function is empty cell (values2dim, x, y) as follows:
def is empty cell (values2dim, x, y):

return is empty (values2dim[y] [x])
def is empty(value):

if type(value) is str:

return value == " " or len(value) == 0

return value == 0

6.1.5 Recapitulation: NumPy

So far, you have used NumPy in various examples without it being remarkably dif-
ferent in handling than lists. This is a big plus. Nevertheless, | would like to intro-

duce a few things explicitly and point out others.

What is NumPy? NumPy stands for Numerical Python and is a module for process-
ing arrays. Besides basic functionalities, there are mathematical extensions for lin-

ear algebra and matrices.
Creating NumPy Arrays Based on Lists

Let’s take a quick look at how easy it is to create a corresponding NumPy array from a
list:
numbers = [1, 2, 3, 4, 5, 6, 7]
numbers array = np.array (numbers)
firstprimes = [2, 3, 5, 7, 11, 13, 17]
firstprimes array = np.array(firstprimes)
print (numbers array)
print (firstprimes array)

You receive the following output:
[1 2345 6 7]
[2 3 5 7 11 13 17]

The whole thing also works without problems with two-dimensional nested lists:

twodim = np.array([["Al", "A2"],
|:"B1", "B2"] ,
[“Cl”, "C2ll]])

print (twodim)
print (len (twodim)) # 3
print (twodim.size) # 6
print (twodim.shape) # (3, 2)
You get the following output of the array (lengths are not shown here):

[['"A1l" "A2']

['B1' '"B2']

['C1'" 'C2']]

Creating NumPy Arrays with Particular Values

Sometimes you want to preinitialize arrays with a special value; for numbers this is often

the value 0 or the 1. NumPy offers specific functions for this purpose:

e Zeros ()
e Oones ()

s empty ()

Let’s call these functions to create arrays. Note that the first value corresponds to the
number of rows and the second one corresponds to the number of columns. Additionally,
you can optionally specify a data type.
array with zeros = np.zeros((2, 4), dtype='int')
print (array with zeros)
array with ones = np.ones((5, 10))
print (array with ones)
empty strings array = np.empty((3, 3), dtype="str")
print (empty strings array)

This leads to the following output, which illustrates that by default (here for the ones)
float is chosen as the data type:

[[0 O O O]
0 00 011

[1.

N = =
e e
e e
N e
L e e
L e e e
R e e e
e e
e e

N e

[

L | v 'l]

L) L) Vl]

L] L} LI} :| :|
Such initializations can also be achieved with Python on-board tools as follows but the

[
[
[
[
[
[
[
[
[
[

NumPy variant feels more comprehensible for me:
zeros with lists = [[0 for x in range(4)] for y in range(2)]

print (zeros with lists)

ones with lists = [[1l for x in range(10)] for y in range(5)]
print (ones with lists)

empty string with list = [["" for x in range(3)] for y in
range (3)]

print (empty string with list)

ATTENTION: FAULTY VARIANT WITH LIST COMPREHENSION
Please note the following pitfall: You might like to create something similar to the above

using list comprehensions:

width = 10
height = 5
generates non-independent references board = [[0] * width]

* height print (board)

Attention: modification happens in all lines! board[1][1]
= 1

print (board)

The lists created in this way are not independent of each other, and changes have

effects on the other lines.

Other Functionalities of NumPy Arrays

Previously | indicated that NumPy offers some mathematical functionalities out of
the box. But not only that. There are various others, which you can explore in detalil

inhttps://numpy.org/doc/stable/reference/routines.array-ma-

nipulation.html.As an example, I'll demonstrate the vertical and horizontal
flipping of the contents of an array, which you are supposed to rebuild by hand in

exercise 2.

Let’s look at how this works using two arrays, where the 1 stands for horizontal and 0
for vertical:
import numpy as np

https://numpy.org/doc/stable/reference/routines.array-manipulation.html

numbers = np.array([[1l, 2, 3, 4],
(1, 2, 3, 471,
(1, 2, 3, 411)
print (np.flip (numbers, 1))
numbers?2 = np.array([[1l, 1, 1, 17,
(2, 2, 2, 21,
[3, 3, 3, 311)
print (np.flip (numbers2, 0))

This results in the following output:
4 3 2 1]

4 3 2 1]

4 3 2 1]]

[l
[
[
[[3 3 3 3]
[
[

2 2 2 2]
1 11 1]]

Advantages of NumPy

As is well known, lists in Python are very convenient and provide an ordered and
changeable sequence of values. The values stored can be of different types (het-
erogeneous) or contain only the same types (homogeneous). Multidimensional
structures are possible by nesting lists. NumPy allows only homogeneous value

assignments, which is often an advantage rather than a disadvantage.

What are the indisputable advantages of using NumPy instead of the built-in lists?

. NumPy arrays fit seamlessly and are easy to use.
. NumPy arrays use (slightly) less memory.

. NumPy arrays are (much) faster than lists for various use cases.

However, the last point only applies when processing enormous amounts of data,

especially when performing mathematical operations such as matrix multiplication.

Normal array accesses are sometimes even slower than indexed list accesses. |

will show this with an example later.

Memory Consumption

To compare the memory consumption of lists and NumPy arrays, I created a list and an
array with 100,000 elements each. To determine the used memory, I used the
getsizeof () functionality from the sys module.
import numpy as np
import sys
numbers = [1 for i1 in range (100 000)]
print ("Size of each element:", sys.getsizeof (numbers[0]))
print ("Size of the list:", sys.getsizeof (numbers))
numbers array = np.arange (100 000)
print ("Size of each element:", numbers array.itemsize)
print ("Size of the Numpy array:",
sys.getsizeof (numbers array))
The following output occurred:
Size of each element: 24
Size of the list: 824456
Size of each element: 8
Size of the Numpy array: 800096
You can see that (on my machine®) each element in a list occupied 24 bytes, but in

NumPy, only 8 bytes. With NumPy the total size resulted from the number of ele-
ments, their size in bytes, and the number of bytes for the NumPy array as

management:
100.000 = 8 + 96 = 800.096
With lists, the output confused me. According to the number for a single element

100.000 = 24 + x = 2.400.000

should be occupied, but surprisingly | got around 824.000.

Performance Comparison

Finally, let’s compare lists and arrays concerning their performance. | started with
the basic functionality of indexed access to recognize that lists have a slight ad-

vantage here. However, when it comes to actions on all elements of an array, par-
ticularly complex mathematical operations like matrix multiplication, the picture re-
versed massively. NumPy clearly showed its strengths. Let’s have a closer look at

this through examples in more detail.

Index based accesses For indexed accesses, NumPy was a bit slower than the built-in
lists. This can be observed in the first example, the flipping of the content by single

assignments:
for size in (100, 1000, 10000, 100000, 1 000 000):

print ("performing idx assign for ", size, "elements")
orig values = range(size)

array = np.asarray(orig values)

result list = list(orig values)
result array = array/[:]
start = time.process time ()

for i in range(size):
result list[i] = orig values[size - 1 - 1]
end = time.process time ()
print ("list idx assign took %.2f ms" % ((end - start) *
1000))
start = time.process time ()
for i in range(size):
result array[i] = array[size - 1 - 1]
end = time.process time ()

print("array idx assign took $%$.2f ms" % ((end - start) *
1000))

Here, indexed reads and writes are especially in demand. I looked at the outputs and
saw that in this case, the lists were about 20% faster on my iMac:
performing idx assign for all 100 elements
list idx assign took 0.02 ms
array idx assign took 0.03 ms
performing idx assign for all 1000 elements
list idx assign took 0.26 ms
array idx assign took 0.33 ms
performing idx assign for all 10000 elements
list idx assign took 2.75 ms
array 1dx assign took 3.44 ms
performing idx assign for all 100000 elements
list idx assign took 27.81 ms
array 1idx assign took 35.23 ms
performing idx assign for all 1000000 elements
list idx assign took 273.67 ms
array idx assign took 354.75 ms

I modified it slightly and added a constant value to each element in the data container
as an action. In that case, NumPy provided a nice shorthand and was a bit faster from
about 1.000 elements. The more elements [managed, the clearer the differences for these
actions.
result list = [1i + 5 for i in range(size)]
result array = arrayl + 5

Matrix multiplication Let’s look at one example where performance improvements
are noticeable (more accurately, drastic) when using NumPy: the common matrix
multiplication. This consists of row-by-row and then element-by-element multiplication
(the mathematical details are not relevant here, as I only want to compare performance
here):
def python implementation (arrl, arr2):

result = [[0 for in range(len(arrl))] for in
range (len(arr2[0]))]
for row in range(len(arrl)):
for x1 y2 in range(len(arr2[0])):

for y2 in range(len(arr2)):

result[row] [x1 y2] += arrl[row] [y2] *
arr2[y2] [x1 y2]
return result
def numpy implementation (arrl, arr2):
return np.array(arrl) .dot (arr2)

I ran the two variants with the following source code snippet once:

max x = 100
max y = 50
arrl = [[random.randrange(l, 100) for in range (max x)] for

__in range (max y)]
arr2 = [[random.randrange(l, 100) for in range(max y)] for
_in range (max x)]
start = time.process time ()
python implementation (arrl, arr2)
end = time.process time ()
print ("list perform dot product took %.2f ms" $ ((end -
start) * 1000))
start = time.process time ()
numpy implementation (arrl, arr2)
end = time.process time ()
print ("array perform dot product took %.2f ms" $ ((end -
start) * 1000))
Thus, I obtained the following output, which shows the clear speed advantages of
NumPy by a factor of about 50—-60%:
list perform dot product took 86.52 ms

array perform dot product took 1.85 ms

6.2 Exercises
6.2.1 Exercise 1: Even Before Odd Numbers (kK& v 5¥)

Write function order even before odd (numbers). This is supposed to re-

arrange a given array or a list of int values so that the even numbers appear first,

followed by the odd numbers. The order within the even and odd numbers is not of

relevance.

Examples

Input Result
[1,2,3,4,5,6,7,8,9,10] [2,4,6,8,10,3,7,1,9,5]
[2,4,6,1, 8] [2,4,6,8,1]

[2,4,6,8,1] [2,4,6,8,1]

6.2.2 Exercise 2: Flip (Fk ks ir)

Write generic functions for flipping a two-dimensional array horizontally with
flip horizontally(values2dim) and vertically with

flip vertically(values2dim). The array should be rectangular, so no line

should be longer than another.
Examples

The following illustrates how this functionality should work:

flip horizontally () flip vertically()
123 321 1144 3366
456 => 654 2255 => 2255
789 987 3366 1144

6.2.3 Exercise 3: Palindrome (3 % v ¥r)

Write function is palindrome (values) that checks an array of strings for

whether its values form a palindrome.

Examples
Input Result
[“One”, “Test”, “—”, “Test”, “One”] True
[“Max”, “Mike”, “Mike”, “Max”] True
[“Tim”, “Tom”, “Mike”, “Max”] False

6.2.4 Exercise 4: Inplace Rotate (% % %k v ¥)
Exercise 4a: Iterative (Fk ¥k 7 ¥v)

In the introductory section, | showed how to rotate arrays. Now try this inplace with-
out creating a new array. Your task is to rotate a two-dimensional, square-shaped
array by 90 degrees clockwise. Write generic function rotate inplace (val-

ues2dim) that iteratively implements this.

Example

For a 6 x 6 array, this is visualized below:

123456 FGHIUJI1
JKLMN?7 ETUVK2
IVWXO08 => DSZWIL 3
HUZYPO CRYXM4
GTSROQO BQPONS5
FEDCZBA A0 9 876

Exercise 4b: Recursive (k% k7 vr)

Write recursive function rotate inplace recursive (values2dim) thatim-

plements the desired 90-degree clockwise rotation.

6.2.5 Exercise 5: Jewels Board Init (s % %k v)
Exercise 5a: Initialize (Fk % Kk v vr)

Initialize a two-dimensional rectangular array with random-based numbers repre-
senting various types of diamonds or jewels as numerical values. The constraint is
that initially there must not be three diamonds of the same type placed horizontally
or vertically in direct sequence. Write function init jewels board(width,
height, num of colors) to generate a valid array of the given size and quan-

tity of different types of diamonds.

Example

A random distribution of diamonds represented by digits may look like this for four
different colors and shapes:

2 3 3 4 4 2

313 4

4 3 3 3
1

4

w = b w

12 2

13
4 1
2 2
3 2 4 3 3 4

To illustrate this, Figure 6-1 shows another example.

Figure 6-1 Graphical representation of a Jewels board

Bonus: Diagonal Check (k%) Add a check for diagonals. This should
make the constellation from the example invalid, among other things, because of
the diagonals marked in bold with the number 3 at the bottom right.

Exercise 5b: Validity Check (k& %k i)

In this subtask, you want to validate an existing playfield. As a challenge, a list of

violations must be returned. Implement function

check board validity (board2dim) for arectangular array.

Example

To try out the validity check, use the playfield from the introduction, specially marked
here:

values with errors = |

14 4

~
~
~
~

~
~

N RN
~

N R W W
~

3
3
4
1

N W W
w = b W
N W DN

4
1
3
1, 1

3, 2, 4, 4, 3, 3, 411

14 14 ’

This should produce the following errors due to its diagonals:
['Invalid at x=3 y=2 hor=False, ver=False, dia=True',
'Invalid at x=2 y=3 hor=False, ver=False, dia=True',

'"Invalid at x=4 y=4 hor=False, ver=False, dia=True']

6.2.6 Exercise 6: Jewels Board Erase Diamonds

0.2.0.0.¢%9

The challenge is to delete all chains of three or more horizontally, vertically, or diagonally
connected diamonds from the rectangular playfield and subsequently to fill the resulting
empty spaces with the diamonds lying above them, (i.e., roughly in the same way gravity
works in nature). The following is an example of how the erasing and then dropping is

repeated several times until no more change occurs (spaces are shown as _ for better

visibility):

Iteration 1:

1112443 erase 44 fall down
1234243 => 1234 4 => 123444
2331223 2 3312 233124

Iteration 2:

erase fall down

123444 => 123 => 123

233124 2 33124 233124

Exercise 6a: Erase 0.9.0.0.6°9

Write function erase chains (values2dim) that erases all rows of three or
more contiguous diamonds in horizontal, vertical, and diagonal orientations from a

rectangular playfield array.

Examples

An invocation of the method transforms the output array given on the left into the result

shown on the right:

All chains without overlap Special case: overlaps
123334 000O0O0OQO 1112 0 00 2
1 32424 030420 1134 => 00314
124244 => 004040 1213 020 3
123555 003000
1213 4 4 0013414

Exercise 6b: Falling Down (k7 %)

Write function fall down (values2dim) working inplace that drops the dia-

monds from top to bottom, provided there is a space below their position.

Example

An invocation of the method transforms the output array given on the left into the result
shown on the right:

01 3300 0 00O0O0O

01 0O0O0O 0 00O0O0O

003300 => 0023300

0003 34 013300
003000 0133 34

6.2.7 Exercise 7: Spiral Traversal (k& & %k i)

Write generic method spiral traversal (values2dim) that traverses a two-
dimensional rectangular array (or a nested list) in the form of a spiral and prepares
it as a list. The start is in the upper left corner. First the outer layer is traversed and

then the next inner layer.
Example

An example is shown in Figure 6-2.

—"

1 2 3
4
5

1
1
, 3 Ty

Figure 6-2 Basic procedure for the spiral traversal

3
6

~N ON DN B~

12
11
0

A= -

For the following two arrays, the number or letter sequences listed below should be
the results of a spiral traversal:
numbers = [[1, 2, 3, 4],
(12, 13, 14, 517,
(11, 16, 15, 61,
(10, 9, 8, 711
letterPairs = [["AB", "BC", "CD", "DE"],

["JK", "KL", "LM", "EF"],

["IJ", "HI", "GH", "FG"]]
=>
(1, 2, 3, 4, s, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]
[AB, BC, CD, DE, EF, FG, GH, HI, IJ, JK, KL, LM]

6.2.8 Exercise 8: Add One to an Array as a Number

(A7 e)

Consider an array or a list of numbers representing the digits of a decimal number.
Write function add _one (digits) that performs an addition by the value 1 and is

only allowed to use arrays as a data structure for the solution.

Examples

Input Result
[13 3) 2’ 4] [1’ 37 2’ 5]
[1’ 4’ 8’ 9] [17 47 97 O]

[9,9,9,9] [1,0,0,0,0]

6.2.9 Exercise 9: Sudoku Checker (% %k v)

In this challenge, a Sudoku puzzle is examined to see if it is a valid solution. Let’s
assume a 9 x9 array with int values. According to the Sudoku rules, each row
and each column must contain all numbers from 1 to 9. Besides, all numbers from
1 to 9 must, in turn, occur in each 3 x 3 subarray. Write function is sudoku -

valid (board) for checking.

Example

The following is a valid solution:

Q| O N

N O[O |W®
—h
= O OO0]| O

O O N[O W|IN|IN|P>»|—
— O |INI|I[PI N[O O[O D
O N O|WINN| |~V
AP WIN|[OO|— OO | OO
NI =[O | S| N[W] O

N| A~ ||O[O®O | =
N O | ||| | W
WDIN| P&

Bonus While it is nice to be able to check a Sudoku board that is completely filled
with digits for its validity, it is even better to be able to predict for a board with gaps
(i.e., missing digits) whether a valid solution can emerge from it. This is of particu-

lar interest if you want to develop an algorithm for solving a Sudoku puzzle.

Example

Based on the example of the valid Sudoku playfield given above, I deleted the digits in

random places. This surely results in a valid solution.

415 7

QO
»
(o

AN |W | ©

WO | =
~
—_

Qo

6 21| 9
9 |7

— 0O | NI PN
O N[O [([|W | N|0|
»

6.2.10 Exercise 10: Flood Fill (k% ¥ 5¥)
Exercise 10a (K v i)

Write function flood fill (values2dim, start x, start y) thatfillsall

free fields in an array or a two-dimensional nested list with a specified value.

Example

The following shows the filling process for the character *. The filling starts at a given

position, such as the upper left corner. It then continues in all four compass directions until

the boundaries of the array or a boundary represented by another character are found.

" # Mokokok g
" #" "****#n
"4 1 => g
U AT
W om Wowom

Exercise 10b (Fk A v 3 3¥)

w # # "

" #******# "

" #******#"

"# #*****# "
" # #*****# "

" #*****# "

Extend the function to fill any pattern passed as a rectangular array. However, spa-

ces are not allowed in the pattern specification.

Example

The following is an impression of how a flood fill with a pattern could look. The pattern

consists of several lines with characters:

—% =

If the filling starts at the bottom center, you get the following result:

X I 4
—*——f——4
#H# & LGS #
¥ H### # => #| . H#H#HF. | #
S #r——f——>4
#.H .
#.0.#

6.2.11 Exercise 11: Array Min and Max (k5 v 5¥)

Exercise 11a: Min and Max (3 ¥ Y5 i)

Write two functions £ind min (values) and find max (values) that search
for the minimum and maximum, respectively, of a given non-empty array using a

self-implemented search, thus eliminating the usage of built-ins like min () and

sort ().:-)

Example
Input Minimum Maximum
[2,3,4,5,6,7,8,9,1,10] 1 10

Exercise 11b: Min und Max Pos (3 %k ¥ v 3¥)

Implement two helper functions £ind min pos(values, start, end) and
find- max pos(values, start, end) thatseek and return the position of
the minimum and maximum, respectively. Again, assume a non-empty array and
additionally an index range of left and right boundaries. In the case of several iden-

tical values for minimum or maximum, the first occurrence should be returned.

To find the minimum and maximum values, respectively, write two functions find-
_min by pos(values, start, end) and find max by pos(values,

start, end) that use the helper function.

Examples

Method Input Range Result Position

Method Input Range Result Position

find- [5,3,4,2,6,7,8,9,1,
0,10 1 8
_min_xyz() 10]
il [5,3,4,2,6,7,8,9, 1,
0,7 2 3
_min xyz () 10]
find- [5,3,4,2,6,7,8,9,1,
2,7 2 3
_min_xyz() 10]
find - [1,22,3,4,5,10,7,8,9,
- 0,10 49 9
max_ xyz () 49]
find - [1,22,3,4,5,10,7,8,9,
= 0,7 22 1
max xyz() 49]
find - [1,22,3,4,5,10,7,8,9,
- 2,7 10 5
max_ xyz() 49]

6.2.12 Exercise 12: Array Split (3 % kv 5¥)

Say you have an array (or list) of arbitrary integers. For this task, the data structure
is to be reordered so that all values less than a special reference value are placed
on the left. All values greater than or equal to the reference value are placed on the

right. The ordering within the subranges is not relevant and may vary.

Examples

Input Reference element ~ Sample result

[4,7, 1,20] 9 [1,4,7,9,20]

[3,5, 2] 7 [2,3,5,7]
[2,14,10,1,11,12,3,4] 7 [2,1,3,4,7,14, 10, 11, 12]
[3,5,7,1,11,13,17,19] 11 [1,3,5,7,11, 11, 13,17, 19]

Exercise 12a: Array Split (Fk %k v 3r)

Write function array split (values, reference element) toimplement
the functionality described above. In this first part of the exercise, it is allowed to

create new data structures, such as lists.

Exercise 12b: Array Split Inplace (k% %k)

Write function array split inplace (values, reference element) that
implements the functionality described inside the source array (i.e., inplace). It is
explicitly not desirable to create new data structures. To be able to include the ref-
erence element in the result, the creation of an array is allowed once for the result.
Because this has to be returned, it is permitted to return a value for an inplace

function; indeed, it operates only partially inplace here.

Exercise 12c: Array Split Quick Sort Partition (& Kk v ¥)

For sorting according to Quick Sort, you need a partitioning functionality similar to

the one just developed. However, often the foremost element of the array is used

as the reference element.

Based on the two previously developed implementations that use an explicit refer-
ence element, your task is to create corresponding alternatives such as the func-

tions array split gs(values) and array split gs inplace(values).

Examples
Reference
Input Sample result
element
[9,4,7,1,20] 9 [1,4,7,9,20]
[7, 3,5, 2] 7 [2,3,5,7]
[7,2,14,10,1, 11, 12, 3, 4] 7 [2,1,3,4,7,14,10, 11, 12]
[11,3,5,7,1,11, 13,17, " [1,3,5,7,11, 11, 13, 17,
19] 19]

6.2.13 Exercise 13: Minesweeper Board (¥ % %k ¥ ¥)

The chances are high that you’ve played Minesweeper in the past. To remind you,
it’s a nice little quiz game with a bit of puzzling. What is it about? Bombs are placed
face down on a playfield. The player can choose any field on the board. If a field is
uncovered, it shows a number. This indicates how many bombs are hidden in the
neighboring fields. However, if you are unlucky, you hit a bomb field and you lose.

Your task is about initializing such a field and preparing it for a subsequent game.

Solution 13a (K Kk #rvrvr)

Write function place bombs randomly (width, height, probability)
that creates a playfield specified in size via the first two parameters, randomly filled

with bombs, respecting the probability from 0.0 to 1.0 passed in.

Example

The following is a playfield of size 16 x 7 with bombs placed randomly. Bombs are
represented by asterisks (*) and spaces by dots (.) :

*x k% *x % * * X% *

Exercise 13b (3 k kv ¥v)

Write function calc _bomb_ count (bombs) that computes the number of adja-

cent fields based on the bomb fields passed in and returns a corresponding array.

Examples

A calculation for playfields of size 3 x 3 as well as size 5 x 5, including randomly

distributed bombs results, is the following:

L. B 21 Loxx 2 BB31
* => 1 3 B o, k% B6BBI1
* 0 2B ** . . . => BB432

* . x B64B1
xokox BBB21

Exercise 13¢c (ko)

Write function print board (bombs, bomb symbol, bomb counts) thatal-

lows you to display a board as points and stars as well as numbers and B.

Example

The following is the above playfield of size 16 x 7 with all the calculated values for bomb

neighbors:

BBB4BB3B4BB3B1OO
3 B5B33B4BB43432
13B433334444BBBB
233 B2BB4BB3BB443
BB3234B6B44B5 348
34 B33B4BBS5S4B4BBRB
1 B3BB3B4BBB23BBS3

6.3 Solutions

6.3.1 Solution 1: Even Before Odd Numbers (k5 vv)

Write function order even before odd (numbers). This is supposed to re-
arrange a given array or a list of int values so that the even numbers appear first,
followed by the odd numbers. The order within the even and odd numbers is not of

relevance.

Examples

Input Result

[1,2,3,4,5,6,7,8,9,10] [2,4,6,8,10,3,7,1,9,5]

Input Result

[2,4,6,1,8] [2,4,6,8,1]

[2,4,6,8,1] [2,4,6,8,1]

Algorithm Traverse the array from the beginning. Skip even numbers. As soon as an
odd number is found, search for an even number in the part of the array that follows. If
such a number is found, swap it with the current odd number. The procedure is repeated
until you reach the end of the array.
def order even before odd(numbers) :

i=0
while i1 < len (numbers):
value = numbers[i]
if is even(value):
even number, so continue with next number
i4=1
else:
odd number, jump over all odd ones, until the
first even
=i+ 1
while j < len (numbers) and not
is_even (numbers[J]) :
i o4+= 1
if j < len(numbers):
swap (numbers, i, 7Jj)
else:
no further numbers
break
i4=1
The helper functions for checking and swapping elements have already been

implemented in earlier chapters or sections. They are shown here again to make it easier to

try out the examples in the Python command line:
def is even(n):

return n % 2 == 0
def is odd(n):
return n 5 2 !'= 0

def swap(values, first, second):
tmp = values[first]
values[first] = values|[second]

values[second] = tmp

NOTE: VARIATION OF ODD BEFORE EVENA variation is to arrange all odd
numbers before the even ones. Therefore, it is possible to write function or-

der odd before even (numbers) Where again the ordering within the odd
and even numbers is not important.

The algorithm is identical to that shown except for minimal differences in an invert-

ed test. This modification is so simple that the function is not shown again here.

Optimized Algorithm: Improved Running Time

You recognize that your checks have quadratic running time, here O(n - m), be-
cause you should aim to reduce the running time of an algorithm to O(1) in the best
case, preferably O(n) or at least O(n - log(n)), ideally without reducing readability,
so nested loops are used. This is not quite so dramatic for pure computations and
comprehensibility. For an introduction to the O-notation, please consult Appendix
C.

In this case, reducing the running time to O(n) is actually fairly straightforward. As
in many solutions to other problems, two position markers are used, here nex-
t_evenand next odd. Inthe beginning, it is assumed that the first element is

even and the last odd. Now it is checked if the front number is really even, and the

position marker is moved to the right. If the first odd number is encountered, it is

swapped with the last element. Even if the last element were odd, it would be

swapped again in the next step.

In contrast to the previous solution, this solution does not preserve the order of the

even numbers; it also potentially shuffles the odd numbers to a greater extent.

def order even before odd optimized(numbers) :

next even = 0
next odd = len (numbers) - 1
while next even < next odd:
current value = numbers[next even]
if is even(current value):
next even += 1
else:
swap (numbers, next even, next odd)

next odd -= 1

Let’s take a look at the algorithm for the following unsorted numbers (2, 4, 3, 6, 1).

Here e and o represent the position pointers for next even and next odd,

respectively.
2 4 3 61

A

e

A

O

A

eo
Finally, let’s have a look at what happens for already sorted numbers. Let’s use 1, 2, 3,

4 as examples.
1 2 3 4

€0

Optimized Algorithm: Less Copying

The previous optimization can be taken a little further. Instead of just skipping the
even numbers from the left until you encounter an odd number, you can skip val-
ues starting two additional while loops. However, you still preserve a O(n) run-
ning time from both sides as long as they are even in the front and odd in the back.
This is required since you are traversing the same elements and not performing

steps more than once (this insight requires some experience).

The following implementation applies what has been said and swaps elements only
when it is unavoidable:
def order even before odd optimized v2 (numbers) :
left = 0
right = len (numbers) - 1
while left < right:
run to the first odd number or to the end of the

array

while left < len (numbers) and
is _even (numbers[left]):
left += 1
run to the first even number or to the beginning
of the array
while right >= 0 and i1s odd(numbers[right]) :
right -=1
if left < right:
swap (numbers, left, right)
left += 1
right -=1

Verification

To try it out, use the following inputs that show how it works:

>>> import numpy as np

>>> values = np.array([1l, 2, 3, 4, 5, 6, 7])
order even before odd(values)
print (values)

[2 46 15 3 7]

>>> values = np.array([1l, 2, 3, 4, 5, 6, 7])
order even before odd optimized(values)
print (values)

[6 2 45 3 7 1]

>>> values = np.array([1l, 2, 3, 4, 5, 6, 7])
order even before odd optimized v2(values)
print (values)

[6 2 4 3 5 1 7]

6.3.2 Solution 2: Flip (F kv ves¥)

Write generic functions for flipping a two-dimensional array horizontally with

flip horizontally(values2dim) and vertically with

flip vertically(values2dim). The array should be rectangular (i.e., no line

should be longer than another).
Examples

The following illustrates how this functionality should work:

flip horizontally () flip vertically ()
123 321 1144 3366
456 => 654 2255 => 2255
789 987 3366 1144

Horizontal flipping algorithm Traverse inwards from the left and right side of the
array. To do this, use two position markers 1eftIdx and rightIdx. At each step,
swap the values referenced by these positions and move inward until the positions
overlap. The termination occurs at 1eftIdx >= rightIdx. Repeatthe proce-

dure for all lines.

The following sequence shows the described actions for one line, where 1 represents

leftIdx and r represents rightIdx:

Step Array values
1 12 3 4
1 r
2 4 2 31
L r
3 4 3 21
R 1

Algorithm for vertical flipping Move from the top and bottom towards the center

until both positions overlap. Swap the values and repeat this for all columns. The

implementation traverses the array in the x-direction and operates with two posi-
tion markers on the vertical. After each swap, these position markers are moved

towards each other until they cross. You then proceed with the next x-position.

The implementation uses two position pointers and swaps the respective values until
the position pointers cross:
def flip horizontally(values2dim) :
max y, max x = get dimension(valuesZdim)
for y in range (max y):
left idx = 0
right idx = max x - 1
while left idx < right idx:
left value = values2dim[y] [left idx]
right value = valuesZ2dim[y] [right idx]

swap
values2dim[y] [left idx] = right value
values2dim[y] [right idx] = left value
left idx +=1
right idx -=1

Let’s now take a look at the corresponding implementation of vertical flipping:
def flip vertically(values2dim) :
max y, max x = get dimension (valuesZdim)
for x in range (max x):
top idx = 0
bottom idx = max y - 1
while top idx < bottom idx:

top value = values2dim[top idx] [x]

bottom value = values2dim[bottom idx] [x]
swap

valuesZ2dim[top 1dx][x] = bottom value
valuesZ2dim[bottom idx] [x] = top value

top idx += 1
bottom idx -= 1

Here is the function for determining the dimensions of the two-dimensional array that
returns the correct data for both nested lists and NumPy arrays, listed once again as a
reminder:
def get dimension(values2dim) :

if isinstance(values2dim, list):
return (len (values2dim), len(values2dim([0]))
if isinstance(values?2dim, np.ndarray) :
return values2dim.shape
raise ValueError ("unsupported type", type(values2dim))

Modified algorithm In fact, the implementation for flipping may be simplified a lit-
tle bit. The number of steps can be directly computed in both cases: it is width/2 or
height/2. For odd lengths, the middle element is not taken into account, resulting in

a correct flip.

With these preliminary considerations, here’s the implementation for horizontal
flipping with a for loop as an example. In doing so, you make use of the auxiliary
method developed in the introduction, swap () , for swapping two elements.
def flip horizontally v2(values2dim) :

max y, max x = get dimension(valuesZdim)
for y in range (max y):
row = values2dim[y]
for x in range(max x // 2):
swap (row, X, max x - X — 1)

Optimized algorithm (only for lists) While the solutions shown so far have each
made the swaps at the level of individual elements, you can benefit from reassigning
entire lines for vertical flipping. This is significantly simpler both in terms of complexity
and effort as well as in terms of the amount of source code and it also increases
comprehensibility enormously.
def flip vertically just for lists(values2dim):

max y, = get dimension(values2dim)
for y in range(max y // 2):

swap (values2dim, y, max y - y - 1)

HINT: LIMITATION
This optimization is not possible for NumPy arrays since they operate purely on a

contiguous piece of memory. You can read therein row by row, but you can’t swap

the references to these rows with each other. On the other hand, you can quickly

turn a 4 x4 array into a 2 x 8 array or 8 x 2 array with reshape ().

Verification

To test the functionality, use the inputs from the introductory example, which show the

correct operation:

def

def

Both other functions are tested in exactly the same way as the previous ones so

the associated test functions are not shown here again.

test flip horizontally

()
hori values = [[1, 2, 3],
(4, 5, o],
(7, 8, 91]
flip horizontally(hori values)
expected = [[3, 2, 1],
(6, 5, 4],
(9, 8, 71]
assert hori values == expected

test flip vertically():

vert values = [[1, 1, 4, 4],
(2, 2, 5, 57,
[3, 3, 6, 6]]
flip vertically(vert values)
expected = [[3, 3, 6, 6],
(2, 2, 5, 51,
(1, 1, 4, 471]
assert vert values == expected

6.3.3 Solution 3: Palindrome (3 % ¥ ¥v)

Write function is palindrome (values) that checks an array of strings for

whether its values form a palindrome.

Examples
Input Result
[“One”, “Test”, “—”, “Test”, “One”] True
[“Max”, “Mike”, “Mike”, “Max”] True
[“Tim”, “Tom”, “Mike”, “Max”] False

Algorithm The palindrome check can easily be expressed recursively. Again, two
position pointers are used, which are initially located at the beginning and end of the array.
It is checked whether the two values referenced by them are the same. If so, you continue
to check recursively and move one position further to the middle on both sides with each
recursion step until the positions overlap.
def is palindrome rec(values):

return is palindrome rec in range (values, 0, len(values)
— 1)
def is palindrome rec in range(values, left, right):
recursive termination
if left >= right:
return True
check if left == right
if values[left] == wvalues[right]:
recursive descent
return is palindrome rec in range (values, left + 1,
right - 1)

return False
Optimized algorithm The palindrome check can be converted to an iterative variant

based on the recursive solution without much effort:
def is palindrome iterative (values):

left = 0
right = len(values) - 1
same value = True

while left <= right and same value:

check left == right and repeat until difference

occurs
same value = values[left] == values[right]
left += 1
right -=1

return same value
Besides this variant, you can also take advantage of the fact that the maximum number
of steps is known, and you can terminate the loop directly in case of a violation of the
palindrome property:
def is palindrome short (values):
for i in range (len(values) // 2):
if values[i] != values[len(values) - 1 - 1i]:
return False
return True
Python shortcut Of course, the whole thing can be achieved a lot easier by calling the
built-in functionality [::-1]:
def is palindrome shorter (values):
return values == values|[::-1]

Please keep in mind that for this approach in the presumably rare case of very
large amounts of data, an inverse variant of the original data is generated here and

thus the memory is required twice.

Verification

For unit testing (again, shown only in excerpts for the recursive variant), use the inputs
from the above example. The input and expected values are extracted as a function
because they also serve as parameterization for the other two variants.
def values and expected() :
return [(["A", "Test", " -- ", "Test", "A"], True),
(["Max", "Mike", "Mike", "Max"], True),
(["Tim", "Tom", "Mike", "Max"], False)]
@pytest.mark.parametrize ("values, expected",
values and expected())
def test is palindrome rec (values, expected):
result = 1is palindrome rec(values)

assert result == expected

6.3.4 Solution 4: Inplace Rotate (% % %k v ¥)
Solution 4a: Iterative (kA Kk v vr)

In the introductory section, | showed how to rotate arrays. Now try this inplace (i.e.,
without creating a new array). Your task is to rotate a two-dimensional square
shaped array by 90 degrees clockwise. Write generic function

rotate inplace (values2dim) thatiteratively implements this.

Example

For a 6 x 6 array, this is visualized as follows:

123456 FGHIUJI1
JKLMN7Y ETUVK?2
IVWXO08 => DSZWL 3
HUZYPO CRY XM 4
GTSROQO BQPON?S5
FEDCZBA A0 9 876

Algorithm Define four corner positions TL, TR, BL, and BR corresponding to the

respective corners. Move from left to right and from top to bottom and copy logically as

shown in Figure 6-3.

copy
TL move . TR

_|EimIm.
HiEEEn.
HiEE.
OO0 00
OO0 0nr
_|H|E|mn)
BL BR

S

e o o o o e o om omm omow

\/

Figure 6-3 Procedure for inplace rotation

Repeat the procedure layer by layer for all neighbors of TL until TR is reached
(analogously for the neighbors of the other corners). Then move one position in-
wards at a time until BL and BR intersect. Let’s clarify the procedure again step by

step.

Starting point Given the following array:
123456

JKLMN?7
I VWXOS8
HUZYZPO9
GTSROQO
FEDCBA
Step 1: First, the outer layer is rotated by copying all values to the respective target
position as shown here:
FGHTIUJI1
EKLMN2
DVWXO 3
CU2zYUPA4
BTSUROQDS5
A0 9876
Step 2: Continue with one layer further inwards:
FGHIUJI1
ETUVK?2
DSWXTL 3
CRZYM/4
BQPONS5
A0 9876
Step 3: This continues until the innermost level is reached:
FGHTIUJI1
ETUVZK?2
DSZWTL 3
CRYXMA4
BQPONS5
A0 9876

For the processing steps shown, variable of f set determines which layer you are in,

so width/2 steps are required. Based on the layer, the number of positions to copy is

obtained, for which an inner loop is used. The corresponding positions in the array are

calculated based on their location, as indicated in the figure. Copying is also made easy by

the use of helper variables.

def rotate inplace(values2dim) :

max y, max x = get dimension(values2Zdim)

height = max y - 1
width = max x - 1
offset = 0
while offset <= width // 2:
current width = width - offset * 2
for idx in range(current width):
top, right, bottom, left
lo x = offset + 1dx
lo y = offset
ro x = width - offset
ro y = offset + 1idx
ru x = width - offset - idx
ru y = height - offset
lu x = offset
lu y = height - offset - idx

lo = values2dim[lo y][lo x

[]
ro = values2dim[ro y][ro x]
ru = values2dim[ru y] [ru x]
lu = values2dim[lu y][lu x]
copy over
values2dim[ro y][ro x] = lo
values2dim[ru y] [ru x] = ro
values2dim[lu y][lu x] = ru
values2dim[lo y][lo x] = lu

offset +=1
Alternatively, you can omit helper variables and only cache the value of the upper left

position. However, copying then becomes somewhat tricky because the order in the
implementation must be exactly the other way around. This variant of the ring-shaped
swap 1s implemented by the function rotate elements (). To my taste, the previous
variant is more understandable.
def rotate inplace v2(values2dim) :

side length, @ = get dimension (values2dim)

start = 0

while side length > 0:

for 1 in range(side length):

rotate elements(values2dim, start, side length,

side length = side length - 2
start += 1
def rotate elements(valuesZ2dim, start, len, 1):
end = start + len - 1

tmp = valuesZ2dim[start] [start + i]

values2dim[start] [start + i] = values2dim[end - 1i]
[start]

values2dim[end - i][start] = values2dim[end] [end - 1]

values2dim[end] [end - 1] = values2dim[start + i][end]

values2dim[start + i][end] = tmp

Solution 4b: Recursive (& k)

Write recursive function rotate inplace recursive (values2dim) thatim-

plements the desired 90-degree clockwise rotation.

Algorithm You have already seen that you rotate layer by layer, going from the outer
layer further to the inner layer. This literally screams for a recursive solution:
def rotate inplace recursive (values2dim) :
, Mmax x = get dimension (values2dim)

rotate_inplace_ recursive helper (values2dim, 0, max x -

1)
The component layer copy is identical as before. Recursive calls replace only the
while loop.
def rotate inplace recursive helper (values2dim, left,
right) :
if left >= right:
return
current width = right - left
for 1 in range(current width):
lo = values2dim[left + i][left]

ro = values2dim[right] [left + 1]

ru = values2dim[right - 1i][right]
lu = values2dim[left] [right - 1]
values2dim[left + i][left] = ro
values2dim[right] [left + i] = ru
values2dim[right - i][right] = lu
values2dim[left] [right - i] = lo
__rotate_inplace recursive_ helper (values2dim, left + 1,
right - 1)
Verification

You define the two-dimensional array shown at the beginning. Then you perform the
rotation and compare the result with the expectation.
def test rotation():
values = [['l', '2', '3', '4', '5', '6
['g', 'k', 'L', 'M', 'N', '7
['r', 'v', 'w', 'x', 'o', 's
['H', 'U', 'Zz', 'Y', 'P', 'O
['G', 'T', 's', 'R', 'Q', '0'],
['F', 'E', 'D', 'C', 'B', 'A']]
rotate inplace (values)
expected = [to list("F G H I J 1")
to 1list("E T U V K 2")
to list("D s 2 W L 3"),
to 1list("C R Y X M 4")
to list ("B Q P O N 5"),
this is how it would look by hand
list("A 0 9 8 7 6".replace(" ", ""))]
assert values == expected
def to list (text):

return list (text.replace(" ", ""))

| deliberately show several variants of how to convert a textual representation into
a two-dimensional array. | prefer the second variant, especially if using the function

to list (text), which removes the spaces and then formats the string as a list.

6.3.5 Solution 5: Jewels Board Init (k% K v ¥)
Solution 5a: Initialize (G Kk v 5¥)

Initialize a two-dimensional rectangular array with random-based numbers repre-
senting various types of diamonds or jewels as numerical values. The constraint is
that initially there must not be three diamonds of the same type placed horizontally
or vertically in direct sequence. Write function init jewels board (width,
height, num of colors), which will generate a valid array of the given size

and quantity of different types of diamonds.

Example

A random distribution of diamonds represented by digits may look like this for four
different colors and shapes:

2 3 3 4 4 2

313 4

4 3 3 3
1

4

w = b w

12 2

13
4 1
2 2
3 2 4 3 3 4

To illustrate this, Figure 6-4 shows another example.

Figure 6-4 Graphical representation of a Jewels board

Algorithm First, you create a suitably sized array. Then you fill it row by row and
position by position with random-based values using function
select valid jewel (), which returns the numerical value for the type of
diamond. In this method, you have to make sure that the random number just selected
does not create a row of three horizontally or vertically.
def init jewels board(width, height, num of colors):

board = [[0 for x in range(width)] for vy in
range (height)]
for y in range (height):

for x in range(width) :

board[y] [x] = select_valid jewel (board, x, vy,
num of colors)
return board
def select valid jewel (board, x, y, num of colors):
next jewel nr = -1
is valid = False
while not is valid:
next jewel nr = random.randint(l, num of colors)
is valid = not check horizontally(board, x, vy,
next jewel nr) and \
not check vertically(board, x, vy,
next jewel nr)

return next jewel nr

ATTENTION: THINGS TO KNOW ABOUT INITIALIZATION

The function select valid jewel () still needs optimization. At the moment, you
can’t determine that a valid number can be found for a position, for example, for the
following constellation with only two types and the position *, for which neither 1 nor 2

is valid as a value, because both would lead to a row of three:
1221

2122

11~*

However, the fact that a valid distribution is also available even for only two values
gets obvious by the alternating distribution of the white and black squares of a
chessboard. One way to fix the just-mentioned weakness is to choose a more

powerful algorithm, such as one that uses backtracking.

There is another weak point: The generation of random numbers out of a small

range of values often produces the same number several times, but this number
has probably already been checked. This must be avoided. For this purpose, all
previously selected random numbers can be stored in a set. Besides, you would

have to check whether all expected and possible numbers have already been

ried. This short list shows that it is much more complex than you might initially

expect.

Now let’s move on to checking the horizontal and vertical. At first, you could as-
sume that starting from the current position, you would have to check to the left
and right as well as up and down. However, if you reread the assignment more
carefully, it says that no chains of length three or longer are allowed. Because you
fill the playfield from top to bottom and from left to right, no diamonds to be
checked can exist on the right and below the current position. Thus, you can limit
yourself to checking to the left and to the top. Furthermore, you do not need to
check for longer chains since they cannot occur if you have identified a chain of

three.

With these preliminary considerations, you can use the two helper functions to check
the respective neighboring fields horizontally and vertically by simply verifying that all of
them have the same value as the initial field.
def check horizontally(board, x, y, Jewel nr):

topl = get at(board, x, y - 1)

top2 = get at(board, x, y - 2)

return topl == jewel nr and topZ2 == jewel nr
def check vertically(board, x, y, Jjewel nr):

leftl = get at(board, x - 1, vy)

left2 = get at(board, x - 2, vy)

return leftl == jewel nr and left2 == jewel nr

When accessing the array, the negative offsets may result in invalid array indices.
Therefore, you implement function get at (), which is mainly responsible for checking
the boundaries and returns the value -1 for no longer being on the playfield. This value
can never occur on the playfield, and thus it is counted as no chain when comparing.
Furthermore, you use the function get dimension () again
def get at(values, x, y):

max y, max x = get dimension (values)

if x <0 or y <0 ory > max y or x >= max X:

return -1
return values|[y] [x]
def get dimension(values2dim) :
if isinstance (values2dim, list):
return (len(values2dim), len(values2dim[0]))
if isinstance(values2dim, np.ndarray) :
return values2dim.shape

raise ValueError ("unsupported type", type(values2dim))

ATTENTION: LITTLE SOURCE CODE VS. SMALL BUT MANY METHODS
In this example, | follow the strategy of defining small helper functions, which on

the one hand increases the amount of source code. On the other hand, functionali-
ties can be described and tested very well in isolation. Moreover, this approach of-
ten allows expressing the source code on a comprehensible and conceptual level.

In many cases, this allows extensions to be easily integrated.

Solution to the Bonus Task: Checking Diagonals (& k v ¥r)

Add a check for diagonals. This should make the constellation from the example
invalid, among other things, because of the diagonals marked in bold with the num-
ber 3 at the bottom right.

Algorithm Checking the four diagonals from one position seems much more time-
consuming than checking the horizontal and the vertical. Theoretically, there would be
four directions for each position. As (almost) always, it is a good idea to think about a
problem a little longer. If you follow this advice, you may come to the solution where in
this case, starting from one position, it is sufficient to check only diagonally to the top left
and right because, from the point of view of the positions above, this one corresponds to a
check diagonally left and right below, as is indicated in the following:

X X
X X
X X

Thus, the diagonal check with two helper variables each for the positions of the
compass directions northwest and northeast can be implemented as follows and invoked in
the function select valid jewel():
def check diagonally(board, x, y, Jjewel nr):

up leftl = get at(board, x - 1, y - 1)
up left2 = get at(board, x - 2, y - 2)
up rightl = get at(board, x + 1, y - 1)
up right2 = get at(board, x + 2, y - 2)
return (up leftl == jewel nr and up left2 == jewel nr)
or \
(up_rightl == jewel nr and up right2 == jewel nr)
def select valid jewel (board, x, y, num of colors):
next jewel nr = -1
is valid = False
while not is valid:
next jewel nr = random.randint (l, num of colors)
is valid = not check horizontally(board, x, vy,
next jewel nr) and \
not check vertically(board, x, vy,
next jewel nr) and \
not check diagonally (board, x, vy,
next jewel nr)

return next jewel nr

Verification

To verify that the correct playfields are being created now, let’s generate and output one of
size 5 x 3 with four types of diamonds as follows:
>>> import random
>>> import numpy as np
>>> board = init jewels board(5, 3, 4)
>>> np.array (board)
array ([[3, 4, 3, 3, 21,
(4, 4, 1, 2, 31,

Solution 5b: Validity Check (k% %k v vr)

In this subtask, you want to validate an existing playfield. As a challenge, a list of
violations must be returned. Implement function

check board validity (board2dim) for arectangular array.

Example

To try out the validity check, use the playfield from the introduction, specially marked
here:

values with errors = | , 4,

~
~
~
~

~
~

N RN
~

N R W W
~

3
3
4
1

N W W
w = b w
N W DN

4
1
3
’ 1

3, 2, 4, 4, 3, 3, 411

14 14 14 14

This should produce the following errors due to its diagonals:

['Invalid at x=3 y=2 hor=False, ver=False, dia=True',
'Invalid at x=2 y=3 hor=False, ver=False, dia=True',
'Invalid at x=4 y=4 hor=False, ver=False, dia=True']

Algorithm The validity check can be easily developed based on your previously
implemented functions. You check for horizontal, vertical, and diagonal rows of three for
each playfield position. If such a violation is found, you generate an appropriate error
message.

def check board validity(board2dim) :

errors = []
max y, max X = get dimension (board2dim)
for y in range (max y):
for x in range (max x):
current jewel = boardZ2dim[y] [x]
has chain hor = check horizontally(board2dim, x, vy,

current jewel)

has chain ver = check vertically(board2dim, x, vy,

current jewel)

has chain dia check diagonally(board2dim, x, vy,
current jewel)
if has chain hor or has chain ver or has chain dia:
error msg = "Invalid at x={} y={} hor={}, ver=
{}, dia={}". \
format (x, y, has chain hor, has chain ver,
has chain dia)
errors.append (error msg)

return errors

Verification

To try out the validity check, you first use the playfield from the introduction and create a

NumPy array from it:

>>> values with errors = [[2, 3, 3, 4, 4, 3, 2],
(1, 3, 3, 1, 3, 4, 41,
(4, 1, 4, 3, 3, 1, 31,
(2, 2,1, 1, 2, 3, 21,
(3, 2, 4, 4, 3, 3, 41]
>>> array with errors = np.array(values with errors)

Your functionality should produce the following error messages due to the three faulty
diagonals. This is the case for both calls.
>>> check board validity(values with errors)
['Invalid at x=3 y=2 hor=False, ver=False, dia=True',
'Invalid at x=2 y=3 hor=False, ver=False, dia=True',
'Invalid at x=4 y=4 hor=False, ver=False, dia=True']
>>> check board validity(array with errors)
['Invalid at x=3 y=2 hor=False, ver=False, dia=True',
'Invalid at x=2 y=3 hor=False, ver=False, dia=True',
'Invalid at x=4 y=4 hor=False, ver=False, dia=True']
Subsequently, you replace the problematic digits with a yet unused digit, such as

number 5, and retest the function, expecting no conflicts:

def test check board validity no conflicts():

values = [[2, 3, 3, 4, 4, 3, 21,

(1, 3, 3, 1, 3, 4, 41,

(4, 1, 4, 5, 3, 1, 31,

(2, 2, 5, 1, 2, 3, 21,

(3, 2, 4, 4, 5, 3, 41]
errors = check board validity(values)
assert errors == []

6.3.6 Solution 6: Jewels Board Erase Diamonds (% % %k k)

The challenge is to delete all chains of three or more horizontally, vertically, or diagonally
connected diamonds from the rectangular playfield and subsequently to fill the resulting
empty spaces with the diamonds lying above them (i.e., roughly in the same way as
gravity works in nature). The following is an example of how the erasing and then

dropping is repeated several times until no more change occurs. Spaces are shown as _ for

better visibility.
Iteration 1:
1112443 erase 44 fall down
1 23 42 43 => 1234 4 => 1 2 3 4 4 4
2331223 2 3312 2 3312 4

Iteration 2:

erase fall down

233124 2 33124 233124

Solution 6a: Erase 0.8.0.0.¢%9!

Write function erase chains (values2dim) that erases all rows of three or
more contiguous diamonds in horizontal, vertical, and diagonal orientations from a

rectangular playfield array.

Examples

An invocation of the method transforms the output array given on the left into the result

shown on the right:

All chains without overlap Special case: overlaps
123334 000O0O0DO 1112 000 2
1 324204 030420 1134 => 0034
124244 => 004040 1213 020 3
123555 003000
121344 001344

Algorithm: Preliminary considerations As a first brute force variant, you could
erase the values directly when finding them. In this case, you search for a chain of length
3 or more and then directly erase these fields. However, this has a crucial weakness:
Single diamonds can be part of several chains, as shown in the example above. If you
delete immediately, not all occurrences may be found; depending on which of the checks
1s done first, the other two fail in the following constellation.

XXX

XX

X X

A second idea is to modify the algorithm minimally by choosing an intermediate

representation that symbolizes the deletion request, such as negative numbers,
instead of deletion. After all entries in the array have been processed, the deletion
takes place in a separate pass. Specifically, you remove all negative values from

the array by replacing them with the numerical value 0.

Algorithm The second idea is implemented by function
erase chains (values2dim). It starts with marking all the fields to be deleted

using the functionmark elements for removal (values2dim). Then they are

deleted using the function erase all marked (values2dim). For both methods
you work position by position. First you have to detect chains of length 3 or more.
Function find chains (values2dim, x, y) isresponsible for this. Once a chain
has been found, it is marked by calling
mark chains for removal (values2dim, x, y, dirs with chains).
The next action is to determine whether each field is marked for deletion. In this case, the
stored value is replaced with the value 0 (here by calling the function
blank value (values2dim); details about this seemingly superfluous indirection
will be considered later).
def erase chains(values2dim) :
mark elements for removal (valuesZ2dim)
return erase_all marked(valuesZ2dim)
def mark elements for removal (values2dim) :
max y, max x = get dimension(valuesZdim)
for y in range (max y):
for x in range (max x):
dirs with chains = find chains(values2dim, x, vy)
mark_chains_ for removal (values2dim, x, vy,
dirs with chains)
def erase all marked(values2dim) :
erased something = False
max y, max x = get dimension(values2dim)
for y in range (max y):
for x in range (max_ x):

if is element marked for removal (values2dim[y]

values2dim[y] [x] = blank value (values2dim)
erased something = True
return erased something
def is element marked for removal (value) :
return value < 0
def blank value (values2dim) :

return O

Now let’s move on to the two trickier implementations and start picking up and
recognizing chains of three or more similar diamonds. For this, you check for all relevant
directions if there is a chain (again with the optimization that you must check diagonally
only to the lower right and left). For this, you traverse the fields, count the similar
elements, and stop at a deviation. If you find three or more equal values, then that
direction is included in the list dirs with chains. As a special feature, you check at
the beginning of the function if the current field is empty; you don’t want to collect chains
of blanks.

def find chains(values2dim, start x, start y):

orig value = valuesZdim[start y][start x]
if orig value == 0: # ATTENTION to think of such special
cases
return []

dirs with chains = []
relevant dirs = (Direction.S, Direction.SW, Direction.E,
Direction.SE)

for current dir in relevant dirs:

length =1
dx, dy = current dir.value
next pos x = start x + dx

next pos y = start y + dy
while is on board(values2dim, next pos x, next pos y)
and \
is same (orig value, valuesZ2dim[next pos y]
[next pos x]):
length +=1
next pos x += dx
next pos y += dy
if length >= 3:
dirs with chains.append(current dir)
return dirs with chains
def is on board(valuesZ2dim, next pos X, next pos y):

max y, max x = get dimension(values2Zdim)

return 0 <= next pos x < max x and 0 <= next pos y <
max_y
def is same(vall, val2):

return abs (vall) == abs(val2)

In fact, you are almost there. The only thing missing is the function for marking for
deletion. Did you think at the beginning that this assignment is so complex? Probably not
:-) Let’s get to work. You now traverse all chains and convert the original values into one
marked for deletion. To accomplish this, you rely on helper function
mark element for removal (orig value), which for the sake of simplicity
converts the value to a negative value (with type str, for example, you can use a
conversion to lowercase).
def mark chains for removal (values, start x, start vy,
dirs with chains):

orig value = values|[start y][start x]
for current dir in dirs with chains:
dx, dy = current dir.value
next x = start x
next y = start y
while is on board(values, next x, next y) and \
is same (orig value, values|[next y][next x]):
values[next y][next x] =
mark element for removal (orig value)
next x += dx
next y += dy
def mark element for removal (value) :
return -value if value > 0 else value

| want to point out that the functionalities are solved using side effects. Here, you
are operating directly on the passed data, so this is not bad because the data is not

passed further out. Instead, it is all internal functionalities.

Verification

After this exhausting implementation, let’s test the deletion as well:

def test erase chains|()
values2dim = [[1, 1, 1, 2, 4, 4, 3],
(1, 1, 3, 4, 2, 4, 3],
(1, 3, 1, 1, 2, 2, 311
deleted = erase chains(values2dim)
expected board = [[0, O, O, O, 4, 4, 0],
(o, o, 3, 4, 0, 4, 0],
(o, 3, 0, 1, 2, 0, 01]
assert deleted is True
assert valuesZ2dim == expected board
def test erase chains example 1():
1, 2, 3, 3,

values2dim = | ,

~

~
N
~
~

g D

~

3
2
4
5 ,
4, 471]

values2dim)
4 OI

e
~
[\
N

n oPow o N
N
ol
~

deleted = erase chains(
expected board = [[0, O
[0, 3, 0,

(0, O
0

0

~

~

[0,
[0,

assert deleted is True

~
~

~
w O O H~» O
~

~

~
SO DN
N~ N
S O O O O
~

0
4
3
r 1

4

assert values2dim == expected board

Solution 6b: Falling Down (3 % % %)

Write function fall down (values2dim) working inplace that drops the dia-
monds from top to bottom, provided there is a space below their position.

Example

An invocation of the function transforms the output array given on the left into the result

shown on the right:

0 3 0 000O0O0©O
0 0 0 000O0O0©O
0 3 0 00330060
0 0 4 013300
0

o o o B
O W W O w
O w o o O

3 0 01 3 3 3 4
Algorithm At first, the task seems to be relatively easy to solve. However, the

complexity increases due to a few special characteristics.

As one possible implementation, let’s begin with a brute force solution. From left to
right, the following is checked for all x-positions in the vertical: Starting from the lowest
row to the second highest one, you test whether they represent a blank in each case. If this
is the case, the value from the line above is used. In this case, the value from the line

above is exchanged with the blank (symbolized here as , represented in the model with

the value 0).

1 1 B

2 = =1
2 2

The procedure can be implemented as follows:
def fall down first try(values2dim):
max y, max x = get dimension(valuesZdim)
for x in range (max x):
for y in range(max y - 1, 0, -1):
value = values2dim[y] [x]
if is blank(value):
fall down
values2dim([y] [x] = values2dim[y - 1] [x]
values2dim[y - 1][x] =
blank value (values2dim)
def is blank(value):
return value ==

This works pretty passably, but unfortunately not quite for the following special case:

You recognize that propagation is missing, and thus the numbers do not continue

to fall all the way down, even if there is an empty place below.

As a next idea, you could start falling from the top, but this doesn’t work in every case

either! While with this procedure the previously problematic case

is solved, problems occur now for the first constellation. These problems do not occur

with the variant before.
1 1
2 =

2
You now know that both of the variants discussed do not yet work quite correctly.

Moreover, it was crucial to use the right set of test data to uncover just these spe-

cific problems.

To correct this, you need to implement continuous falling of stones to always move all
values per column. The while loop is used for this:
def fall down(values2dim) :
max y, max x = get dimension(valuesZdim)
for x in range (max x):
for y in range(max y - 1, 0, -1):
current y = vy
fall down until there is no more empty space
under it
while current y < len(values2dim) and \
is blank(values2dim[current y][x]):
fall down
values2dim[current y][x] = valuesZ2dim[current vy
- 1] [x]
values2dim[current y - 1][x] =

blank value (values2dim)

current y += 1

Verification

Let’ take the previously obtained result of the deletion as the starting point for the falling:
def test fall down():

values2dim = [[O, 1, 3, 3, 0, 07,
(o, 1, o, o, 0, 0],
(o, o, 3, 3, 0, 0],
(o, o, o, 3, 3, 4],
(o, o0, 3, 0, 0, 0]]

fall down (values2dim)

expected board = [[0, O, O, O, O, O],
(o, o, 6, 0, 0, 01,
(o, o, 3, 3, 0, 0],
(o, 1, 3, 3, 0, 01,
(0, 1, 3, 3, 3, 4]]

assert valuesZ2dim == expected board

Overall Verification

To experience your functions all together in action, use the example you used for deleting:
def main():
example board = [[1, 1, 1, 2, 4, 4, 3],
(1, 1, 3, 4, 2, 4, 31,
(1, 3, 1, 1, 2, 2, 311
print array (example board)

while erase chains (example board) :

fall down (example board)
print array (example board)
Using the following helper function print array (values) developed in the

introduction

def print array(values2dim) :

max y, max x = get dimension(values2Zdim)
for y in range (max y):

for x in range (max x):

value = values2dim[y] [x]
print (str(value) + " ", end="'")
print ()

gives the expected output:
1112 443

1134243
1311223

Modification to characters Now let’s go one step further and use letters as an
alternative to digits for modeling. You perform the actions on a prepared array of letters,
which allows you to see different deletions and iterations very nicely. However, you must
adapt some of the functions for the type st r appropriately (see the following practical
tip). Add the following lines to the above main () function as indicated by the comment:
main as before

jewels test deletion = [list ("AACCDE"),
list ("AA DE"),
list ("ABCCDE")
list ("AB CCD")
list ("ABCDDD")

]
print array(jewels test deletion)

while erase chains(jewels test deletion):

fall down(Jjewels test deletion)

print array(jewels test deletion)

The desired and expected result should then look like this:
A CCD

(2 o B 1 R 5 B

Implementing the supplementary processing based on characters is the subject of
the following practical tip. You will probably also suddenly realize why a few seem-

ingly unimportant auxiliary functions were created in the previous implementation.

HINT: VARIANTS WITH TYPE STR
Some readers may have wondered why I implement various helper functions when the
functionality seems very simple. The reason is that this way it gets easier to use the
algorithms almost unchanged for other types instead just by redefining the corresponding
helper functions, for example these:
def blank value (values2dim) :
if type(values2dim[0][0]) is str:

return " "
return 0
def is blank(value):
if type(value) is str:

return value == " " or value == " " or len(value) ==
return value ==

def is same(vall, val2):

if type(vall) is str:

return vall.lower () == val2.lower ()
return abs(vall) == abs(val2)
def mark element for removal (value) :
if type(value) is str:

return value.lower ()
return -value if value > 0 else value
def is element marked for removal (value):
if type(value) is str:

return value.islower ()

return value < 0

ing which chains to delete, the actual deletion, and the falling of the diamonds

don’t even need to be adjusted.

Using the approach described ensures that the higher-level functions for determin-

6.3.7 Solution 7: Spiral Traversal (k% %k %)

Write generic method spiral traversal (values2dim) thattraverses a two-

dimensional rectangular array (or a nested list) in the form of a spiral and prepare it

as a list. The start is in the upper left corner. First, the outer layer is traversed, and

then the next inner layer.

Example

An example is shown in Figure 6-5.

1 2 3

AN W

p—

Lh-hy
~J ON O B

12
11
0

A= =

O

-

Figure 6-5 Basic procedure for the spiral traversal

For the following two nested lists of number and letter sequences, the results of a

spiral traversal are shown:

numbers = [[1, 2, 3, 47,
(12, 13, 14, 51,
[11, 16, 15, 6],
[10, 9, 8, 711
letter pairs = [["AB", "BC", "CD", "DE"],

[

["JK", "KL", "LM", "EF"],

["IJ", "HI", "GH", "FG"]]

=>

(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]
[AB, BC, CD, DE, EF, FG, GH, HI, IJ, JK, KL, LM]

JOB INTERVIEW TIPS: CLARIFY ASSUMPTIONS
Before proceeding with a solution, be sure to clarify any constraints or special re-

quirements by asking questions. In this case, ask if the original data should be a

rectangular. Assume that to be the case here.

Algorithm Let’s start with an idea. For a spiral movement, you start going to the right
until you reach the boundary, then change direction downward, and advance again until
you reach the boundary. Then turn to the left and finally up to the boundary. For the spiral

to narrow, the respective limits must be suitably reduced at each change of direction.

Formulating the termination condition correctly is not quite easy when operating. The
following observation helps: The total number of steps is given by width * height — 1 for a
4 x 3 sized data set, thus 4 * 3 — 1 =12 — 1 = 11. With these preliminary considerations,
we implement the spiral traversal as follows:

class Direction (Enum) :

RIGHT = (1, 0)
DOWN = (0, 1)
LEFT = (-1, 0)
Uup = (0, -1)
def spiral traversal (values2dim) :
pos x = 0
pos y = 0
min x = 0
min y =1
max y, max x = get dimension(values2Zdim)
results = []

dir = Direction.RIGHT
steps = 0
all steps = max y * max X
while steps < all steps:
action
results.append(values2dim[pos y] [pos x])
if dir == Direction.RIGHT:
if pos x < max x - 1:
pos x +=1
else:
dir = Direction.DOWN
max x —-= 1
if dir == Direction.DOWN:
if pos y < max y - 1:
pos y +=1
else:
dir = Direction.LEFT

max y -= 1

if dir == Direction.LEFT:
if pos x > min x:
pos x -=1
else:
dir = Direction.UP
min x += 1
if dir == Direction.UP:
if pos y > min y:
pos y -= 1
else:
dir = Direction.RIGHT
min y +=1
possible mistake: You now have to start
one
position further to the right!
pos x +=1
steps += 1
return results

After a complete traversal of one layer, you have to move the position pointer one

position towards the center. This gets easily forgotten.
The algorithm presented works, but it requires quite a few special treatments.

Optimized algorithm Look at the figure again and then think a bit. You know that
initially the whole array is a valid movement area. At each iteration, the outer layer
is processed and you continues inwards. Now you can specify the valid range by
four position markers as before. However, you proceed more cleverly when

updating.

You notice that after moving to the right, the top line is processed so that you can
increase the counter min y by one. If you move down, then the rightmost side is

traversed, and the counter max x is decreased by one. Moving to the left, the bot-

tom row is processed, and the counter max vy is decreased by one. Finally, when
moving upwards, the counter min_x is increased by one. To detect when to incre-

ment, you implement utility function is outside () or range checking.

Additionally, you can still take advantage of defining the direction constants according
to the order in the spiral traversal and then implementing function next () in the enum
that specifies the subsequent direction in each case. Likewise, you define there the offset
values dx and dy as a tuple.

class Direction (Enum) :

RIGHT = (1, 0)

DOWN = (0, 1)

LEFT = (-1, 0)

UupP = (0, -1)

def next (self):
keys = list(Direction. members .keys())
pos = keys.index (self.name)

return list (Direction) [(pos + 1) % len(keys)]
With these thoughts and preliminaries, you are now able to implement the spiral

traversal in a readable and understandable way as follows:
def spiral traversal optimized(values2dim) :

pos x =0

pos y =0

min x = 0

min y = 0

max y, max x = get dimension(valuesZdim)
results = []

dir = Direction.RIGHT

steps = 0

all steps = max y * max X

while steps < all steps:
action
results.append(values2dim[pos y] [pos X])

dx, dy = dir.value

if is outside(pos x + dx, pos y + dy, min x, max X,
min y, max y):
if dir == Direction.RIGHT:
min y +=1
if dir == Direction.DOWN:
max x -= 1
if dir == Direction.LEFT:
max y -= 1
if dir == Direction.UP:
min x += 1
dir = dir.next ()
dx, dy = dir.value
pos x += dx
pos y += dy
steps += 1
return results
def is outside(x, y, min X, max x, min y, max y):
return x < min X or X >= max X or y < min y or y >=

max y

Verification

Check if your algorithm as well as its optimized variant and really performs the expected
traversal through the array or nested list for the inputs from the above example:
def values and expected() :
return [([["A", "B", "C", "D"],
["Jg", "K", "L", "E"],
(", "#", "G", "F"]1],
list ("ABCDEFGHIJKL")),
(cey, 2, 3, 41,
(12, 13, 14, 51,
(11, 1e, 15, 61,
(1o, 9, 8, 711,

(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,

14, 15, 16])]1]
@pytest.mark.parametrize ("values, expected",
values and expected())
def test spiral traversal (values, expected):

result = spiral traversal (values)

assert result == expected
@pytest.mark.parametrize ("values, expected",
values and expected())
def test spiral traversal optimized(values, expected):

result = spiral traversal optimized(values)

assert result == expected

6.3.8 Solution 8: Add One to an Array as a Number
(ke e e

Consider an array or a list of numbers representing the digits of a decimal number.
Write function add one (digits) that performs an addition by the value 1 and is

only allowed to use arrays as data structure for the solution.

Examples

Input Result
[17 37 27 4] [1’ 3’ 27 5]
[1’ 49 87 9] []‘, 4’ 9’ O]

[9,9,9,9] [1,0,0,0,0]

Algorithm You may remember back to your school days and use digit-oriented
processing: traverse the values from back to front and then add the overflow value of the
last addition to the respective digit value. Initially, you start with the assumption that there
is an overflow. If the value 10 is reached again, the overflow must be propagated further.
In the special case that the overflow propagates to the very front, the array must be
increased by one position to accommodate the new leading 1.
def add one(digits):

if len(digits) == 0:
raise ValueError ("must be a valid non empty array /
list")
result = []
run from back to front and add, check for overflow
overflow = 1
for current digit in reversed(digits):
current digit += overflow
overflow = 1 if current digit >= 10 else 0
result.insert (0, current digit % 10)
if overflow ==
result.insert (0, 1)
return result

In the special case that the carry propagates all the way to the front, the array must

be enlarged by one position to accommodate the new leading 1.

Verification

To check your implementation, use the three combinations of values from the introductory

examples, which cover the three main cases of no propagation, propagation by one digit,

and propagation over all digits. Additionally, add a test case for the propagation for two

digits.

def values and expected()

return [([1, 3, 2, 4]

(r1, 4, 8, 9
(1, 3, 9, 9

1, [1, 4, 9, 0]),
1, [1, 4, 0, 0])

(e, ¢, 9, 91, 11, 0, 0, 0O, 0])]
@pytest.mark.parametrize ("values, expected",
values and expected())
def test add one(values, expected):

result = add one(values)

assert result == expected

6.3.9 Solution 9: Sudoku Checker (& %k 7 ¥v)

In this challenge, a Sudoku puzzle is examined to see if it is a valid solution. Let’s

assume a 9 x 9 array with int values. According to the Sudoku rules, each row

and each column must contain all numbers from 1 to 9. Besides, all numbers from

1 to 9 must, in turn, occur in each 3 x 3 subarray. Write function is sudoku -

valid (board) for checking.
Example

The following is a valid solution:

Q|0

N O~ j[|]O|OO|W®
—_—
- O ®|IN|0]| O

OO ||| W|IN|IN| P> —
N| AP DO | —

N O | W[N] | W
WDIN| P

= 1O I[P N[O [|D
OO O||WwWINMN ||~ =N
AP WIN|I[OOD|—=||O[OT|N| O
N = (0|0 | S| N[O W| O

Algorithm In Sudoku, three different types of checks have to be performed. They can
be divided into three corresponding functions very well. First are the functions
check horizontally () and check vertically (), which ensure horizontally
and vertically that all digits from 1 to 9 always occur exactly once in a row or column,
respectively. To check this, you collect all digits stored in the respective alignment in a list
and compare them in the function all desired numbers () to see if they contain
the desired numbers.
def check horizontally(board):

for row in range(9):
collect all values of a row in a list

row values = [board[row] [x] for x in range(9)]

if not all desired numbers (row values):
return False
return True
def check vertically (board):
for x in range(9):
collect all values of a column in a list
column values = [board[row] [x] for row in range(9)]
if not all desired numbers (column values):
return False
return True

You might wonder whether it’s preferable to collect the values in a set. Although
this is obvious and works well for fully filled Sudoku puzzles, collecting data in a set

complicates subsequent checking if you permit empty fields as well.

Regardless, both checks rely on the following helper function:
def all desired numbers(all collected values):
if len(all collected values) != 9:
raise ValueError ("not 9 values to process")
one to nine = {1, 2, 3, 4, 5, 6, 7, 8, 9}
values set = set(all collected values)

return one to nine == values set
| would like to explicitly point out the elegance of the helper function all de-
sired- numbers (). It unifies various things in its brevity: actually, you need to
check that the collected values do not contain duplicates and that there are exactly
nine different digits. Due to your implementation, you don’t need to check the
length. Still, you do it anyway to guard against careless errors with an exception.
By converting the values into a set and comparing it to the set from the expected

values, the process is nice and short.

Next, you need to check each of the nine subfields of size 3 x 3. This doesn’t sound
easy at first. But think a bit: You can use two nested loops to run off the 3 x 3 boxes. Two

more nested loops run the respective x and y values for the boxes. Simple multiplications

and additions are used to derive the corresponding index values in the original array. By
following the previously presented idea of collecting the values into a list, which is finally
checked against the expected target set of digits 1 to 9, the implementation loses its initial
horror.
def check boxes (board) :
3 x 3 box
for y box in range (3):
for x box in range(3):
values per box
box values = collect box values (board, y box,
X box)
if not all desired numbers (box values):
return False
return True
The picking up of digits within a 3 x 3 box is implemented as follows:
def collect box values (board, y box, x box):
box values = []
inside the boxes each 3 x 3
for y in range(3):
for x in range(3):

actual index wvalues

real y y box * 3 + vy

real x X box * 3 + x
box values.append (board[real y][real x])
return box values
For a complete Sudoku check, you then need to combine these values all together by

and:
def is sudoku valid(board) :

return check horizontally(board) and \

check vertically(board) and \

check boxes (board)

Verification

You first define the Sudoku playfield as shown in the introduction and then you test all

three variants.
def main () :

board = [[1,
(4,
(7,
(2,
[3,
[8,
[5,
[6,
[9,
print("H: ",
print("v: ",
print ("B: ",
print ("S: ",

~ ~ ~

~

~ ~ ~

~ s W O o BB 0o O DN
~

~

~ ~

~

~ ~ ~

N P 39 0 b O o0 W
~

~

8,

~ ~ ~

~

~

~

O o N 0o W k3 b
~

~

S,

14

~

~

~

~

~

~

5
8
2
6
9
1
4
7

I4

3,

~ ~

~

~ ~ ~

o N S Jd 01w o
~

~

1,

~ ~ ~

~

~

~

g W W NN o b =
~

~

6,

4

~

~

~

~

~

~

4

8
2
5
9
1
9
7
3
4

4

~ ~ ~

~

~

~

= o O b J o W W

~

T VA VA N T S ST S
~

N

]

~

check horizontally (board))

check vertically (board))

check boxes (board))

is sudoku valid(board))

As expected, you get four times the value True as a result.

Bonus

While it is nice to be able to check a Sudoku board that is completely filled with dig-

its for its validity, it is even better to be able to predict for a board with gaps (i.e.,

still missing digits) whether a valid solution can emerge from it. This is of particular

interest if you want to develop an algorithm for solving a Sudoku puzzle.

Example

Based on the example of the valid Sudoku playfield given above, I deleted the digits in

random places. This surely results in a valid solution.

Q|0
(o)
(o

IO W | ©

WDII|IO©| | —
~
—_

(00

= O | N| PN
D N[O ||W |||
»

9|7 2

Algorithm A partially filled playfield can be checked for validity fairly easily if you
take the previous implementation as a basis. First, you need modeling for the blank fields.
In this case, the value 0 is a good choice. Based on this, you can leave the implementation
for collecting the values horizontally, vertically, and in the boxes as it is. You only have to
slightly modify the final check whether all values from 1 to 9 are included. First, you
remove the value 0 from the collected values, if any. Then you make sure that there are no
duplicates. Finally, you check whether the collected values are a subset of 1 to 9.
def all desired numbers(all collected values):

remove irrelevant empty fields
relevant values =

remove all occurences (all collected values, 0)

no duplicates?

values set = set(relevant values)

if len(relevant values) != len(values set):
return False

only 1 to 97

one to nine = {1, 2, 3, 4, 5, 6, 7, 8, 9}

return one to nine.issuperset (values set)

def remove all occurences (values, item):
return list(filter(lambda x: x != item, values))

The very best comes at the end. This function works for completely filled Sudoku

puzzles and those containing blanks!

Verification

Again you define the Sudoku playfield with blanks, as shown before. After that, you
check a slightly modified playfield, where the value 2 is inserted in the first line at
position 3. Due to this, the playfield becomes invalid.

def create initialized board() :

return [[1, 2, O, 4, 5, 0, 7, 8, 97,
(0, 5, 6, 7, 0, 9, 0, 2, 31,
[7, 8, 0, 1, 2, 3, 4, 5, 6],
(2, 1, 4, 0, 6, 0, 8, 0, 71,
[3, 6, 0, 8, 9, 7, 2, 1, 41,
(6, 9, 7, 0, 1, 4, 3, 6, 01,
[5, 3, 1, 6, 0, 2, 9, 0, 81,
(¢, 0, 2, 9, 7, 8, 5, 3, 11,
(9, 7, o, 0, 3, 1, 6, 4, 2]]

def test_is_sudoku_valid():
board = create initialized board()
is valid sudoku = is sudoku valid(board)
assert is valid sudoku is True

def test is sudoku valid for invalid board() :

board = create initialized board()

change it and make it invalid
board([0] [2] = 2
is valid sudoku = is_ sudoku valid(board)
assert is valid sudoku is False
The faulty playfield of the second test case looks like this and the problematic value is
marked in bold:

1224507839
056709023
78 012 3456
214060807
360897214
0970143¢60
53160290 8
6 02978531
9 700316 42

6.3.10 Solution 10: Flood Fill (3 v v ¥r)
Exercise 10a (dk %k s v ¥)

Write function f1lood fill (values2dim, start x, start y) thatfillsall

free fields in an array or a two-dimensional nested list with a specified value.

Example

The following shows the filling process for the character *. The filling starts at a given
position, such as the upper left corner. It continues in all four compass directions until the

boundaries of the array or a boundary represented by another character are found.

nw # " n***# n " # # n " #******# "
n" #n n****#n " # #n " #******#n
n# #n => n#***#n n# # # n" => n# #*****# "
n # # " " #*# n " # # # n " # #*****# "

mw # w w # " w # # " w # * k% k% k% % # w

Algorithm Recursively check the neighboring cells in the four cardinal directions. If a
field is empty, it gets filled and the check it repeated. If you reach the array boundaries or

a filled cell, you stop. This can be expressed recursively in an elegant way.
def flood fill(values2dim, x, y):
max y, max x = get dimension(values2dim)
recursive termination
if x <0 or y < 0 or x > max x or y >= max y:
return
if values2dim[y] [x] ==
values2dim[y] [x] = "*!
recursive descent: fill all 4 directions
flood fill(values2dim, x, y - 1
flood fill(values2dim, x + 1,
flood fill(values2dim, x, y + 1
(

=

)
)
)
flood fill(values2dim, x - 1, vy)

Verification

Now let’s define the array shown in the introduction as a starting point and then perform a

flood fill with different starting locations.
def create world and expected fills():

first world = [list(" # ")y
list (" ")
list("# #"),
list (" # # "),
list (" # ")]
first filled = [list("***# "),
List ("***x4 "),
Tist ("#***¢ "),
list (" #*# "),
list (™ # ")]
second world = [list (" # # "),
list (" # #")
list ("# # "),

list (" # # "),

list (" # # ")
second filled = [list (" #**x**xxgm),
list(" #******#")’
list ("# #x**xxg M),
Tist (" # frxxxx*g M)
list (" fxxxkxg M)

’
]
return [(first world, first filled, 0, O0,),

(second world, second filled, 4, 4)]
@pytest.mark.parametrize ("world, expected, start x,
start_y",

create world and expected fills())
def test flood fill(world, expected, start x, start y):
flood fill(world, start x, start vy)

assert world == expected

Solution 10b (G v)

Extend the function to fill any pattern passed as a rectangular array. Spaces are

not allowed in the pattern specification.

Example

The following is an impression of how a flood fill with a pattern could look. The pattern

consists of several lines with characters:

If the filling starts at the bottom center, you get the following result:
X el ex
4 —F-—f-—#
#H# # L LHEEL T H
#HE OHF => | HHFL I F
R i

¥ # # i A I

A

Algorithm What needs to be changed to support a pattern? First of all, you must pass
the desired pattern to the function. Interestingly, the fill algorithm remains almost the
same and 1s only modified concerning the fill character’s determination. Instead of a fixed
value, the helper function find fill char () isinvoked here, which determines the
fill character relevant for the position. The recursive descent is expressed elegantly by
using an enumeration for the directions as an alternative to the four individual calls show

before.
def flood fill with pattern(values2dim, x, y, pattern):
max y, max x = get dimension(valuesZdim)
recursive termination
if x <0 or y <0 or x > max x or y >= max y:
return
if values2dim[y] [x] == " ':
determine appropriate £fill character
values2dim[y] [x] = find fill char(y, x, pattern)
recursive descent in 4 directions
for dir in Direction:
dy, dx = dir.value
flood fill with pattern(valuesZ2dim, x + dx, y +
dy, pattern)

class Direction (Enum) :

UP = (-1, 0)
DOWN = (1, 0)
LEFT = (0, -1)
RIGHT = (0, 1)

Now let’s determine the fill character based on the current position in relation to the
width or the height of the playfield array using a simple modulo calculation:
def find fill char(y, x, pattern):
max y, max x = get dimension (pattern)

o) o
°

return patternly $ max y][x max x]

Verification

Analogous to before, you would like to fill the array with delimiters presented in the
introduction with the pattern shown before. Therefore, you provide functions to generate
patterns:

def generate pattern():

return [list(".[|."),
list ("-*-"),
list(".|.™)

]
def generate big world():

return |: [" " ’ " " 4 " " 4 " " ’ " " 14 " " 14 "X" 4 " " 14 " "] 14
[" " 14 " " ’ " " ’ " " 14 " # " 4 " " ’ " " 14 " # " 14 " " :| ’
[" "I " "I " "I "#"l "#"I "#"I " "I " "I "#"]I
["#"I " "I " "I "#"l "#"I "#"I " "I " "I "#"]I
[Mgn, MM, T, g,
[" ", T, MM, T, o g
[]

’
" " " w nw # w w w w w w " " # " " " " " :|
14 ’

’ 4 4 4 ’ ’

For testing, you generate the initial pattern and call the flood fill with the pattern:
>>> world = generate big world()

>>> flood fill with pattern(world, 1, 1, generate pattern())
For control purposes, you now print out the array. This allows you to examine the
filling with the respective pattern.
>>> print array(world)
el ex
_*__#__#
Lo HEEL T #
#1 . H#HEHL | #
#r-——f——4
#.H#]. . #
#.].#
def print array(values2dim) :
max y, max x = get dimension(valuesZdim)
for y in range (max y):
for x in range (max x):
value = values2dim[y] [x]

print (str(value) + " ", end="'")

print ()

6.3.11 Solution 11: Array Min and Max (3 % 5 v ¥%)
Solution 11a: Min and Max (¥ ¥ ¥ ¥ 5¥)

Write two functions £ind min (values) and find max (values) that search
for the minimum and maximum, respectively, of a given non-empty array using a

self-implemented search, thus eliminating the usage of built-ins like min () and

sort () . :)

Example
Input Minimum Maximum
[2,3,4,5,6,7,8,9,1,10] 1 10

Algorithm Loop through the array from the beginning. In both cases, assume that the
first element is the minimum or maximum. The array is traversed from front to back,
searching for a smaller or larger element. If such a candidate is found, the minimum or
maximum gets reassigned.
def find min (values):

if len(values) ==
raise ValueError ("find min not supported for empty
input")
min = values[0]
for i in range(l, len(values)):
if values[i] < min:
min = values[i]
return min
def find max(values):

if len(values) == 0:

raise ValueError ("find max not supported for empty
input™)
max = values|[0]
for i in range(l, len(values)):
if values[i] > max:
max = values|[i]
return max
Due to the boundary condition of a non-empty output array, you can always start

with the first element as minimum or maximum.

Solution 11b: Min und Max Pos (% v s ¥%)

Implement two helper functions £ind min pos(values, start, end) and
find- max pos(values, start, end) thatseek and return the position of
the minimum and maximum, respectively. Again, assume a non-empty array and
additionally an index range of left and right boundaries. In the case of several iden-

tical values for minimum or maximum, the first occurrence should be returned.

To find the minimum and maximum values, respectively, write two functions find-
_min by pos(values, start, end) and find max by pos (values,

start, end) that use the helper function.

Examples
Method Input Range Result Position
find- [5,3,4,2,6,7,8,9,1,

0,10 1 8
_min xyz () 10]

Method Input Range Result Position

£ind- [5,3,4,2,6,7,8,9, 1,
0,7 2 3
_min xyz () 10]
find- [5,3,4,2,6,7,8,9,1,
2,7 2 3
_min xyz () 10]
find - [1,22,3,4,5,10,7,8,9,
- 0, 10 49 9
max_ xyz () 49]
find - [1,22,3,4,5,10,7,8,9,
- 0,7 22 1
max xyz() 49]
find - [1,22,3,4,5,10,7,8,9,
- 2,7 10 5
max xyz() 49]

Algorithm Based on the determined position of the minimum or maximum, the
appropriate return of the corresponding element can be implemented trivially:
def find min by pos(values, start, end):
min pos = find min pos(values, start, end)
return values[min pos]

def find max by pos(values, start, end):
max pos = find max pos(values, start, end)
return values[max pos]

To complete the process, you still need to determine the position of the minimum and
maximum. For this, proceed as follows: To find the respective position of minimum and
maximum, go through all elements, compare with the current value for minimum or
maximum, and update the position if the value is smaller or larger.

def find min pos(values, start, end):

if len(values) == 0:
raise ValueError ("find min pos not supported for
empty input")
if start < 0 or start > end or end > len(values):
raise ValueError ("invalid range")
min pos = start
for i in range(start + 1, end):
if values[i] < values[min pos]:
min pos = 1
return min pos
def find max pos(values, start, end):
if len(values) ==
raise ValueError ("find max pos not supported for
empty input")
if start < 0 or start > end or end > len(values):
raise ValueError ("invalid range")
max pos = start
for i in range(start + 1, end):
if values[i] > values[max pos]:
max pos = i

return max pos
Verification

Test the functionality as usual with the inputs from the introduction:
def test find min and max():

values = [2, 3, 4, 5, 6, 7, 8, 9, 1, 10]

assert find min(values) ==

assert find max(values) == 10
@pytest.mark.parametrize ("lower, upper, expected pos,
expected value",

[(o, 10, 8, 1), (2, 7, 3, 2), (0,

def test find min pos(lower, upper, expected pos,
expected value) :

values = [5, 3, 4, 2, o6, 7, 8, 9, 1, 10]

result pos = find min pos(values, lower, upper)

assert result pos == expected pos

assert values|[result pos] == expected value
@pytest.mark.parametrize ("lower, upper, expected pos,
expected value",

[(o, 10, 9, 49, (2, 7, 5, 10), (0O,

7, 1, 22)1)
def test find max pos(lower, upper, expected pos,
expected value) :

values = [1, 22, 3, 4, 5, 10, 7, 8, 9, 49]

result pos = find max pos(values, lower, upper)

assert result pos == expected pos

assert values[result pos] == expected value

6.3.12 Solution 12: Array Split (F %k kv)

Say you have an array (or list) of arbitrary integers. The data structure must be re-
ordered so that all values less than a special reference value are placed on the left.
All values greater than or equal to the reference value are placed on the right. The

ordering within the subranges is not relevant and may vary.

Examples
Input Reference element Sample result
[4,7,1,20] 9 [1,4,7,9,20]

(3,5, 2] 7 [2,3,5,7]

Input Reference element ~ Sample result

[2,14,10,1,11,12,3,4] 7 [2,1,3,4,7, 14,10, 11, 12]

[3,5,7,1,11, 13,17, 19] 11 [1,3,5,7,11,11, 13,17, 19]

Solution 12a: Array Split (kv v +r)

Write function array split (values, reference element) toimplement
the functionality described above. In this first part of the exercise, it is allowed to

create new data structures, such as lists.

Algorithm To split an array according to a reference element into two halves with
values less than or greater than or equal to the reference value, you define two result lists
called lesser and bigger or equal. Afterwards, you iterate through the array.
Depending on the comparison of the current element with the reference element, you
populate one of the two lists. Finally, you only need to combine the lists and the reference
element into one result list.
def array split(values, reference element):

lesser = []
bigger or equal = []
for current in values:
if current < reference element:
lesser.append (current)
else:
bigger or equal.append(current)
return lesser + [reference element] + bigger or equal

Pythonic algorithm In the solution shown, the for loop with the i f and else is

stylistically somewhat disturbing. With list comprehensions, this could be implemented a

bit nicer as follows. In this alternative, however, the lists are traversed twice.
def array split nicer (values, reference element):

lesser = [value for value in values
if value < reference element]
bigger or equal = [value for value in values
if value >= reference element]

return lesser + [reference element] + bigger or equal

Solution 12b: Array Split Inplace (k& k v ¥)

Write function array split inplace (values, reference element) that
implements the functionality described inside the source array (i.e., inplace). It is
explicitly not desirable to create new data structures. To be able to include the ref-
erence element in the result, the creation of an array is allowed once for the result.
Because this has to be returned, it is permitted to return a value for an inplace

function; indeed, it operates only partially inplace here.

Algorithm After you perform the simpler version, which improves your
understanding of the processes, dare to try the inplace version! Here you cannot use
auxiliary data structures. Rather, you implement the logic by swapping elements several
times. Two position markers indicate which elements are to be swapped. The first position
marker is increased as long as you encounter smaller values than the reference element,
starting from the beginning. You do the same with the position marker for the upper part.
As long as the values are larger than or equal to the reference element, you decrease the
position. Finally, you swap the two values at the index positions found, but only if the
position markers have not yet crossed. When crossing, you find no more mismatching
elements. The last thing to do is to integrate the reference element at the correct position
based on the newly arranged values. Some care has to be taken if the sequence of the
higher elements is empty.
def array split inplace(values, reference element) :

low = 0
high = len(values) - 1
while low < high:
while low < high and values[low] <

reference element:

low += 1
while high > low and values[high] >=
reference element:
high -= 1
if low < high:
swap (values, low, high)
if len(values[high + 1:]) == 0:
return values[:high + 1] + [reference element]
else:
return values[:high] + [reference element] +

values[high:]

Solution 12c: Array Split Quick Sort Partition (k% % 5 3¥)

For sorting according to Quick Sort, you need a partitioning functionality similar to
the one just developed. However, often the foremost element of the array is used

as the reference element.

Based on the two previously developed implementations that use an explicit refer-
ence element, your task is to create corresponding alternatives such as the func-

tions array split gs(values) and array split gs inplace (values).

Examples
Reference
Input Sample result
element
[9,4,7,1,20] 9 [1,4,7,9, 20]

[7,3,5,2] 7 [2,3,5,7]

Reference

Input Sample result

element
[7,2,14,10,1,11,12,3,4] 7 [2,1,3,4,7, 14,10, 11, 12]
[11,3,5,7,1, 11,13, 17, ” [1,3,5,7,11, 11, 13, 17,
19] 19]

Algorithm 1 When the element at position 0 acts as reference element, this is the only
thing that must be taken into account in the implementation. Thus, the processing starts at
index 1.
def array split gs(values):

reference value = values([0]
lesser = [values[i] for i in range(l, len(values))
if values[i] < reference value]
bigger or equal = [values[i] for 1 in range (1,
len (values))
if values[i] >= reference value]
return lesser + [reference value] + bigger or equal

Algorithm 2 The inplace variant also works with two position markers as before and
swaps elements several times if necessary. This is repeated as long as the position markers
have not yet crossed. In this particular situation, you no longer find any unsuitable
elements. The last thing to do is to move the reference element from its position 0 to the
crossover point (i.e., the matching position).
def array split gs inplace(values):

reference value = values[0]
low =1
high = len(values) - 1
while low < high:
while values[low] < reference value and low < high:

low += 1

while values[high] >= reference value and high >=

low:
high -= 1
if low < high:
swap (values, low, high)
important for two elements with values 1, 2 = > then 1

would be pivot, do
not swap!
if reference value > values[high]:
swap (values, 0, high)
Please remember that this function works inplace (meaning it operates directly on

the passed data) and therefore does not return a result.

Verification

Test the functionality as usual with the inputs from the introduction:
>>> values = [2, 14, 10, 1, 11, 12, 3, 4]
>>> array split(values, 7)
(2, 1, 3, 4, 7, 14, 10, 11, 12]
>>> array split inplace (values, 7)
(2, 4, 3, 1, 7, 12, 10, 14]
Let’s have a look at the Quick Sort variants in action:
>>> values2 = [7, 2, 14, 10, 1, 11, 3, 12, 4]
>>> array split gs(values2)
(2, 1, 3, 4, 7, 14, 10, 11, 12]
>>> array split gs inplace (values2)
>>> values?
(1, 2, 4, 3, 7, 11, 10, 12, 14]
Due to the slightly different algorithm, the elements in the first variant remain in the
order in which they appear in the original array. The inplace variants swap ele-
ments, and thus there is a reshuffle. However, all smaller values are still found to

the left of the reference element and all larger ones to the right.

6.3.13 Solution 13: Minesweeper Board (% %k i ¥v)

Chances are high that you’ve played Minesweeper in the past. To remind you, it’s a
nice little quiz game with a bit of puzzling. What is it about? Bombs are placed face
down on a playfield. The player can choose any field on the board. If a field is un-
covered, it shows a number. This indicates how many bombs are hidden in the
neighboring fields. However, if you are unlucky, you hit a bomb field and lose the
game. Your task is about initializing such a field and preparing it for a subsequent

game.
Solution 13a (kv vv)

Write function place bombs randomly (width, height, probability)
that creates a playfield specified in size via the first two parameters, randomly filled

with bombs, respecting the probability from 0.0 to 1.0 passed in.

Example

The following is a playfield of size 16 x 7 with bombs placed randomly. Bombs are
represented by asterisks (*) and spaces by dots (.).
S
e S
* * ok oxo%
* . *x X . *x X% . *x X
* o * . * . . * . . . *
* . . * . *x X . . * . *x k%
* . * X . * . *x x % . . *x X
Algorithm Placing bombs randomly distributed in a playfield works as follows. For
each position, a random number generated with random. random () and a given
probability are used to determine whether a bomb should be placed on the playfield. As a
result, a suitable nested list is generated. Here, a peculiarity is found, namely the playfield

extends in all directions by one position each, as is covered in the following practical tip.

def place bombs randomly(width, height, probability):
bombs = [[False for x in range (width + 2)] for y in

range (height + 2)]

for y in range(l, len(bombs) - 1):
for x in range(l, len(bombs[0]) - 1):
bombs[y] [x] = random.random() < probability

return bombs

NOTE: PLAYFIELD WITH BORDERFor many two-dimensional algorithms, it is
necessary to perform special checks at the borders. In some cases, it is helpful to
place a special artificial border of one position around the actual playfield. In par-
ticular, this often simplifies calculations with neighboring cells in all compass direc-
tions, as is the case here with the bombs. But you have to assign a neutral value
to the border cells. Here this is simply the value 0. Sometimes, however, special
characters like # can be used with str-based playfields.

Some calculations become easier with this artificial boundary cell. However, you
must then note that the bounds range from 1to 1en () - 1—an additional stum-

bling block to the treacherous off-by-one errors commonly made with arrays.

Verification

Let’s omit explicit testing here because, on the one hand, you are dealing with ran-
dom numbers, and a unit test does not directly make sense for this. On the other

hand, the algorithm is quite simple and the functionality is tested indirectly later.

Solution 13b (G A 7 vr)

Write function calc bomb count (bombs) that computes the number of adja-

cent fields based on the bomb fields passed and returns a corresponding array.

Examples

A calculation for playfields of size 3 x 3 as well as size 5 x 5, including randomly

distributed bombs, results in the following:

oo B 21 .FF 2 BB31
* => 1 3B o, xx B 6BBI1

* 0 2B *xx . . . => BB4 32

* * Bo64B1

*okox BBB21

Algorithm To calculate the number of neighboring cells with bombs, you again
consider each cell in turn. Here you take advantage of the special margin, so you don’t
have to do range checks or special handling. First, you initialize a two-dimensional array
of appropriate size with a value of 0 as an assumption that there are no bombs in the
neighborhood. If a cell represents a bomb, you use the value 9 as an indicator. If it does
not contain one, you must check all eight neighboring cells to see if they are home to a
bomb. In this case, the bomb counter is increased by one. The calculation is facilitated by
the use of the already known enumeration for the compass directions and their delta values
in the x- and y-directions.
def calc bomb count (bombs) :

max_ y, max X = get dimension (bombs)
bomb count = [[0 for x in range(max x)] for y in
range (max_y)]
for y in range(l, max y - 1):
for x in range(l, max x - 1):
if not bombs[y] [x]:
for current dir in Direction:
dx, dy = current dir.to dx dy()
if bombs[y + dy][x + dx]:
bomb count[y] [x] += 1
else:
bomb count[y] [x] = 9
return bomb count

For better comprehension, the enumeration Di rection is shown here again:
from enum import Enum
class Direction (Enum) :

N = (0, -1)

E = (1, 0)
SE = (1, 1)
s = (0, 1)
SW = (-1, 1)
W= (-1, 0)
NW = (-1, -1)

def to dx dy(self):

return self.value

Verification

To check the implementation, use the 3 x 3 distribution, but you must consider the
boundary cells accordingly. Until now, modeling of bombs was based on a two-
dimensional nested list of bool. Wouldn’t it be more practical to work on graphical
representations and have them convert appropriately? Let’s consider this as a unit test.
def create bomb array and expected() :

bombsl = ["*..",

" *
. . ’

" *u]

resultl ["B21",
"13B" ,
"O2B":|

bombs2 = [".**,.",
MWk 4% N
Wk % "
"ok *x n

Wk kK n]

result?2 ["2BB31",
"B6BB1",
"BB432",
"B64B1",
"BBB21"]

return [(to bool array(bombsl), to int array(resultl)),

(to_bool array(bombs2), to int array(result2))]
@pytest.mark.parametrize ("bombs, expected",
create bomb array and expected())
def test calc bomb count (bombs, expected):
result = calc bomb count (bombs)
assert result == expected

Let’s look again at the helper functions. First, you have a textual representation of
the distribution of bombs, which is converted into the required array data structure
using to bool array (). Indoing so, you don’t have to worry about generating

the boundary fields. The helper function to_int array () goes one step further
and converts the textual digits into the corresponding int values and takes into

account the representation of bombs as B specifically.

The helper functions look like this:

hiding the border field logic and conversion
def to bool array (bombs) :

width = len (bombs[0])

height = len (bombs)

result = [[False for in range(width + 2)] for in
range (height + 2)]

for y in range (height) :

for x in range (width) :
if bombs[y] [x] == "*':
result[y + 1][x + 1] = True
return result

def to int array(values):

width = len (values[0])
height = len(values)
result = [[0 for in range(width + 2)] for in

range (height + 2)]
for y in range (height):
for x in range (width):

current char = valuesl|y] [X]

if current char == 'B':
result[y + 1]1([x + 1]

Il
Ne)

else:

result[y + 1][x + 1] = int (current char)

return result

HINT: READABILITY AND COMPREHENSIBILITY IN TESTING
These two helper functions enable the creation of test cases to be kept simple and

understandable. This makes it more likely that someone will extend the tests. If
writing unit tests is rather tedious or even difficult, hardly anyone will bother to ex-

tend them.

Solution 13c (K Kk v i)

Write function print board (bombs, bomb symbol, bomb counts) thatal-

lows you to display a board as points and stars as well as numbers and B.

Example

The following is the above playfield of size 16 x 7 with all the calculated values for bomb

neighbors:
BBB4BB3B4BB3BI1OO
3 B5B33B4BB43432
13B433334444BBBB
233 B2BB4BB3BB443
BB3234B6B44B5348B
34B33B4BB54B4BB

1 B3BB3B4BBB2J3BB3

Algorithm For rendering, you use position-based processing. Since you want to
implement both an output based on the bool model and, if passed, the values of the
number of bomb neighbors in this function, a few cases have to be provided in addition to

the loops nested for the x-direction and the y-direction.

def print board(bombs, bomb symbol, solution):
for y in range(l, len(bombs) - 1):
for x in range(l, len(bombs[0]) - 1):
if bombs[y] [x]:
print (bomb symbol, end=" ")

elif solution is not None and len(solution) !=

0:
print(solution[y] [x], end=" ")
else:
print(".", end=" ")
print ()
print ()
Verification

Let’s combine the three functions to experience the functionality in its entirety:
>>> import random

>>> from enum import Enum

>>> bombs = place bombs randomly(l6, 7, 0.4)

>> print board(bombs, '*', None)

****.*.*.*.**
*.**...***..**
....****
* * * k% * X *

* * * k% *
* R S * *x %
.*.*.....*
>>> solution = calc bomb count (bombs)
>>> print board(bombs, 'B', solution)
1 BBBB4B2B4B4BB3 2
14B6BB344BBBRBR43B
1 3B433B4BBBB4 333
B33B222BBB®6BB4RB 2
2 3B 3B344434BBBJ5B

B5343BBB43B34BB3
BBB2B4BBBB211223B

Summary: What You Learned

Just like strings, arrays are basic building blocks in many programming languages.
In Python, lists are often favored, since arrays are not nicely supported in the lan-
guage. However, there is a valid alternative with NumPy, with which arrays can be
easily defined and which can offer significant performance improvements com-
pared to lists. Anyway, it is important to avoid tricky off-by-one errors. In this chap-
ter, you created small helper functions that, when used appropriately, can make
algorithms more understandable. For two-dimensional arrays or nested lists, you
learned, among other things, how to model directions and how this helps fill areas
with patterns. More challenging tasks were the spiral traversal as well as the dele-

tion and filling of a Jewels or Minesweeper playfield.

This chapter concludes the treatment of essential Python language tools and data
structures. Now you turn to more complex topics and start with advanced tech-

niques for recursion.

Footnotes

1
1please remember to install numpy using the pip tool: pip install numpy (on Mac, use pip3

instead of pip).

2
In other languages, multidimensional arrays are often implemented as arrays of arrays and thus

do not necessarily have to be rectangular. In Python, this is equally true for nested lists, but not for

NumPy arrays, which are always rectangular.

3

While this is always true for NumPy array, this is not always given when simulating an array using
nested lists.
4

Therefore, thorough testing and a good selection of test cases are recommended in both cases.

How to achieve this is described in my book Der Weg zum Java-Profi[Ind20].

[

In job interviews, you should clarify this by asking a question.

I

Please note that this may vary from system to system.

Part Il
More Advanced and Tricky Topics

© The Author(s), under exclusive license to APress Media, LLC, part of Springer Nature 2022
M. Inden, Python Challenges
https://doi.org/10.1007/978-1-4842-7398-2 7

7. Advanced Recursion

Michael Inden!
(1) Zurich, Switzerland

In this chapter, you will explore some advanced aspects around recursion. You'll start
with the optimization technique called memoization. After that, you’ll look at backtracking
as a problem-solving strategy that relies on trial and error and tries out possible solu-
tions. Although this is not optimal in terms of performance, it can keep various imple-

mentations comprehensible.
7.1 Memoization

In Chapter 3, you saw that recursion is feasible for describing many algorithms and cal-
culations in an understandable and, at the same time, elegant way. However, you also
noticed that recursion sometimes leads to many self calls, which can harm performance.
This applies, for example, to the calculation of Fibonacci numbers or of Pascal’s triangle.

How can this problem be overcome?

For this purpose, there is a useful technique called memoization . It follows the same
ideas as the caching or buffering of previously calculated values. It avoids multiple exe-

cutions by reusing already calculated results for subsequent actions.

7.1.1 Memoization for Fibonacci Numbers

Conveniently, memoization can often be easily added to an existing algorithm and only

requires minimal modification. Let’s do this for the calculation of Fibonacci numbers.

Let’s briefly repeat the recursive definition of Fibonacci numbers:

https://doi.org/10.1007/978-1-4842-7398-2_7

w4 § fib(n)=\left\{\begin{array} {cc} 1,\kern14em & n=1\\ {} 1,\kern14em & n=2\\ {}
fib\left(n-1\right)+ fib\left(n-2\right),& \forall n>2\end{array}\right. $

The recursive implementation in Python follows the mathematical definition exactly:
def fib rec(n):

if n <= 0:
raise ValueError ("n must be >= 1")
recursive termination
if n == 1 or n ==
return 1
recursive descent
return fib rec(n - 1) + fib rec(n - 2)

So how do you add memoization? In fact, it is not too difficult. You need a helper function
that calls the actual calculation function, and most importantly, a data structure to store
intermediate results. In this case, you use a dictionary that is passed to the computation function.
def fibonacci optimized(n):

return fibonacci memo (n, {})

In the original function, you surround the actual computation with the actions for
memoization. For every computation step, you first look in the dictionary to see if a suitable
result already exists and return it if it does. Otherwise, you execute the algorithm as before, with
the minimal modification that you store the computation result in a variable, to be able to
deposit it at the end suitably in the lookup dictionary.
def fibonacci memo (n, lookup map) :

if n <= 0:
raise ValueError ("n must be > 0")
MEMOIZATION: check if there is a suitable pre-calculated
result
if n in lookup map:
return lookup map.get (n)
normal algorithm with helper variable for storing the
result
result = 0
if n == 1 or n ==
recursive termination
result =1
else:

recursive descent

result = fibonacci memo(n - 1, lookup map) + \
fibonacci memo(n - 2, lookup map)
MEMOIZATION: store calculated result
lookup map[n] = result
return result
Performance comparison If you run both variants for the fortieth Fibonacci number,

the purely recursive variant on my iMac 4GHz delivers a result after about 25 seconds,
but the calculation of the forty-seventh Fibonacci number takes over 800 seconds, which
corresponds to about 13 minutes! With memoization, on the other hand, you receive a

result for both after a few milliseconds.

[Noteslt should be noted that there is a variant of the Fibonacci calculation that starts at
the value 0. Then fib(0) = 0 holds as well as fib(1) = 1 and afterwards recursively fib(n) =

fib(n - 1) + fib(n - 2). This produces the same sequence of numbers as the initial defini-

tion, only with the value for 0 added.

Furthermore, there are the following points to consider:

- Data type: The calculated Fibonacci numbers can get huge quite quickly. Conve-
niently, the Python number types scale, so unlike other languages, it should not be
necessary to define a special type yourself so soon if necessary.

- Recursive termination: For implementation purposes, it’'s worth considering recur-
sive termination before processing with memoization. This would probably be mini-
mally more performant, but then the algorithm can’t be reformulated that clearly from
the existing one. Especially if you are not familiar with memoization yet, the shown

variant seems a bit more catchy.

7.1.2 Memoization for Pascal’s Triangle

Pascal’s triangle is defined recursively, as are the Fibonacci numbers:

1, row = 1and col = 1 (top)

1, Vrow € {1, n} and col = 1

pascal(row, col) =< 1, Vrow € {1, n} and col = row

pascal(row - 1, col)+

| pascal(row - 1, col - 1), otherwise (all other positions)

Let’s first look at the purely recursive implementation again:

def pascal rec(row, col):

1)

recursive termination: top
if col == 1 and row ==
return 1
recursive termination: borders
if col == 1 or col == row:
return 1
recursive descent

return pascal_rec(row - 1, col) + pascal_rec(row - 1, col -

For the computation of Pascal’s triangle by using memoization, the original algorithm hardly

changes. You merely surround it with the accesses to the lookup dictionary and the storage:

def

def

pascal optimized(row, col):
return calc pascal memo (row, col, {})
calc pascal memo (row, col, lookup map) :
MEMOIZATION
key = (row, col)
if key in lookup map:
return lookup map[key]
result = 0
recursive termination: top
if col == 1 and row ==
return 1
recursive termination: borders
if col == 1 or col == row:
return 1
else:

recursive descent

result = calc pascal memo(row - 1, col, lookup map) + \
calc pascal memo(row - 1, col - 1, lookup map)
MEMOIZATION
lookup map[key] = result

return result
A closer look reveals that you cannot use a basic type like int or str for the key but
rather need a more special variant consisting of a row and a column due to the two-di-

mensional layout. For this purpose, you use a tuple consisting of row and column.

Performance comparison To compare the performance, | chose a call with the para-
meters for line 36 and column 12. The purely recursive variant requires a rather long run-
ning time of about 80 seconds for the selected values on an iMac with 4GHz. The opti-

mized variant completes after a few milliseconds.
Conclusion

For the two examples presented here, the purely recursive definition results in many self
calls. Without memaoization, they cause the same intermediate results to be calculated

and discarded over and over again. This is unnecessary and costs performance.

Memoization is a remedy that is as simple as it is ingenious and efficient. Additionally,
many problems may still be solved elegantly with the help of a recursive algorithm, but
without the need to accept the disadvantages in terms of performance. All in all, memo-

ization can often reduce the running time (very) significantly.

INOTE: BACKGROUND KNOWLEDGE ON MEMOIZATIONThe term “memoization,”

which seems a bit strange, goes back to Donald Michie (https://en.wikipedi-

a.org/wiki/Memoization). As described earlier, it is a technique to optimize the

processing of computations by caching partial results. In such a way, nested calls with
the same input can be accelerated significantly. However, for memoization to be used,
the wrapped recursive functions must be pure functions . This means that such a func-
tion returns the same value if it is called with a particular input. In addition, these func-

tions must be free of any side effects.

https://en.wikipedia.org/wiki/Memoization

7.1.3 Memoization with Python On-Board Tools

You know that memoization leads to a vast speedup of recursive computations. When
implemented directly according to the purely recursive definition, there is exponential growth
for the Fibonacci numbers in running time. In combination with the implementation of
memoization, you can achieve enormous speed gains. For this purpose, data from previous
calculations are cached, and each call is first checked to see if a result is already available. You
use a dictionary to store the data. The explicit wrapping and subsequent calling of the actual
functionality can be programmed by hand. However, the whole thing has the following

(cosmetic) disadvantages:

1.
Separation of concerns: Application code and auxiliary code are slightly interwo-
ven. Although the two are quite easy to separate visually, clarity and elegance are

somewhat lost.

‘Source code duplication: Memoization is actually a cross-cutting concern that
should be solved in a general way. If, on the other hand, a separate implementa-
tion is made in each case, careless errors may creep in—even if this is unlikely

due to the low complexity.

Python permits memoization to be implemented with less effort and in a standardized way.

You will briefly look at the following techniques:

. Memoization using a decorator

. Built-in memoization with 1ru cache from the module functools

The nice thing about these variants is that to implement memoization, you don’t mix the
application code with the source code. Better yet, this allows you to provide memoization as a
cross-cutting concern. The prerequisite is an import as follows:
import functools
Memoization with a Decorator

As for the manual implementation, you again use an additional function, here

decorate with memo (func), which defines a data store. In contrast to the manual

implementation, a helper function helper implements the memoization here. For this purpose,

a function is returned, which is identical to the function func but enriched with memoization,

or more precisely, which retrieves or stores its results in the dictionary. Here is a variant that is
closer to the completely manual implementation as well as a slightly modified one where
memoization is less visible.
hand knitted
def decorate with memo (func) :
lookup map = dict()
@functools.wraps (func)
def helper(n):
MEMOIZATION: check if precalculated result exists
if n in lookup map:

return lookup map[n]

result = func(n)
MEMOIZATION: store calculated result
lookup map[n] = result

return result
return helper
memoization not so obvious
def decorate with memo shorter one param(func) :
lookup map = dict()
@functools.wraps (func)
def helper(n):
if n not in lookup map:
lookup map[n] = func(n)
return lookup map[n]

return helper
The example uses the concept of decorators, which is briefly introduced in Appendix B.
In general, decorators work like aspect-oriented programming or proxies, wrapping the
original functionality with some functionality of their own. Therefore, the original function

is passed to the decorator, and the decorator returns a modified function.

NOTE: USABLE TYPESSince you use a dictionary to manage data, the keys stored

there must be immutable. Thus, the arguments may only use immutable types, such as

numbers, strings, or tuples.

Decorator for Fibonacci numbers In Appendix B | explain how to use decorators for
argument checks, leaving the actual function code unaffected. Therefore, the problem to

be solved is reflected as closely as possible without special treatments.

With the knowledge gained, you can implement the memoization-optimized version as
follows—the source code reflects the mathematical (recursive) definition. The cross-cutting
concern of parameter checking and memoization are implemented separately as independent
decorators.

@check argument is positive integer
@decorate with memo shorter one param
def fib rec(n):

recursive termination

if n == 1 or n ==

return 1

recursive descent

return fib rec(n - 1) + fib rec(n - 2)
Decorator for Pascal’s triangle Your memoization decorator has been designed so far
to accept one parameter. But how do you proceed if you need to support two parame-

ters for Pascal’s triangle computation and possibly even more for other functionalities?

It would be awkward and time-consuming to define a decorator with a suitable number of
parameters each time. Conveniently, in Python, parameters can be evaluated and passed as
tuples. Thus, you can implement the decorator in a general manner with the parameters
(*args) as follows:
def decorate with memo shorter (func):

lookup map = dict()
@functools.wraps (func)
def helper (*args):
if args not in lookup map:
lookup maplargs] = func(*args)
return lookup map[args]
return helper

Let’s take a quick look at the usage for Pascal’s triangle:

@decorate with memo shorter

def pascal rec(row, col):

recursive termination: top
if col == 1 and row ==
return 1
recursive termination: borders
if col == 1 or col == row:
return 1
recursive descent
return pascal rec(row - 1, col) + pascal rec(row - 1, col -
1)

Built-in Memoization with Iru_cache from the functools Module

You have seen wrapping with a decorator before. By using a LRU cache (Least Recently
Used) from the functools module, the whole thing can be written even more elegantly
and shorter. Moreover, there is no longer the danger of erroneous calls because the

memoization functionality is not realized by yourself.

LRU cache for Fibonacci numbers As usual, you use the calculation of Fibonacci numbers
as an example. They are also used in the description of the module functools online

(https://docs.python.org/3/1library/functools.html), here minimally

adapted. By marking a function with @1ru_cache, the caching of previous calculation results
can be activated. Here the number may be limited by the argument maxsize. By default, the
value is 128. Specifying None makes the size unlimited but also disables the LRU functionality.
>>> @functools.lru cache (maxsize=None)
@check argument is positive integer
def fib rec(n):
if n ==1 or n ==

return 1

return fib rec(n-1) + fib rec(n-2)
Let’s try a few things. With cache info () it is possible to output information about the
cache. This is done before calling the function and after the calculation.
>>> fib.cache info()
CacheInfo(hits=0, misses=0, maxsize=None, currsize=0)

>>> [fib(n) for n in range(l, 19)]

https://docs.python.org/3/library/functools.html

(1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987,
1597, 2584]

>>> fib.cache info()

CacheInfo(hits=32, misses=18, maxsize=None, currsize=18)
LRU cache for Pascal’s triangle Memoization can also be added to Pascal’s triangle

calculation very easily as follows:
@functools.lru cache (maxsize=None)
def pascal rec(row, col):
recursive termination: top
if col == 1 and row ==
return 1
recursive termination: borders
if col == 1 or col == row:
return 1
recursive descent
return pascal rec(row - 1, col) + pascal rec(row - 1, col -

1)

7.2 Backtracking

Backtracking is a problem-solving strategy based on trial and error, and it investigates
all possible solutions. When detecting an error, previous steps are reset, hence the
name backtracking. The goal is to reach a solution step by step. When an error occurs,
you try another path to the solution. Thus, potentially all possible (and therefore perhaps
also a lot of) ways are followed. However, this also has a disadvantage, namely a rather

long running time until the problem is solved.

To keep the implementation manageable, backtracking is often used in combination with

recursion for the following problems:

. Solving the n-Queens Problem
. Finding a solution to a Sudoku puzzle

. Finding a way out of a maze given as a 2D array or nested lists

7.2.1 The n-Queens Problem

The n-Queens Problem is a puzzle to be solved on an n x n board. Queens (from the chess
game) must be placed so that no two queens can beat each other according to the chess rules.
Thus, other queens may not be placed on the same row, column, or diagonals. As an example,

here is the solution for a 4 x 4 board, where the queens are symbolized by a Q (for queen):

Algorithm

You start with a queen in row 0 and position 0 (upper left corner). After each placement,
a check is made to ensure that there are no collisions in the vertical and diagonal left
and right directions upwards with already placed queens. A check downwards is not
necessary because no queens can be placed there yet since the filling is done from top
to bottom. This is also the reason why a check in the horizontal direction is not

necessary.

Provided the position is valid, move to the next row, trying all positions from0to n - 1.
This procedure is repeated until you have finally placed the queen in the last row. If
there is a problem in positioning a queen, use backtracking: remove the last placed
queen and try again at the next possible position. If the end of the row is reached without
a solution, this is an invalid situation, and the preceding queen must also be placed
again. You can observe that backtracking sometimes goes back up one row, in extreme

cases up to the first row.

Backtracking by example Let’s look at the steps to the solution, where on the horizontal

level, some intermediate steps are partly omitted and invalid positions are marked with x:

=> Backtracking
No correct placement of a queen in the second row can be found with a queen in the first

row and second position. So, a solution is tried at the following position in the first row like so:

=> Backtracking
Even with the queen in the third position in the first row, no valid position for a queen in the
second row can be found. So, you have to go back not only one row but two rows and start the

search again with the queen in row zero in position one:

=> Solution found
Notice that you arrive at a solution through a few trial-and-error steps.

In the following, you will now take a rough look at the implementation of the algorithm.

Implementation of backtracking You again subdivide the previously described algo-
rithm for solving the n-Queens Problem into a couple of functions so that one subprob-

lem can be solved at a time.

First, think about how you want to model the playfield. A list of lists as a two-dimensional
data model offers itself formally. Here, a Q represents a queen, and a blank means an empty
board. To initially create a blank board, write function initialize board (). Then you call
the actual recursive backtracking function solve n queens (), which determines the
solution inplace on the data model. If one is found, the helper function returns True, otherwise
False. To allow callers to evaluate easily, you return a tuple with a solution flag and the
playfield.
def solve n queens(size):

board = initialize board(size)
Start the recursive solution finding
solved = solve_n_queens_helper (board, 0)
return solved, board # (solved, board)
def initialize board(size):
return [[' ' for col in range(size)] for row in range(size)]

Now let’s get back to the main task of finding a solution using recursion and backtracking.
As described, the algorithm proceeds row by row and then tries the respective columns.
def solve n queens helper (board, row):

max row, max col = get dimension (board)
recursive termination

if row >= max row:

return True
solved = False
col =0
while col < max col and not solved:
if is valid position((board, col, row):
place_queen (board, col, row)
recursive descent
solved = solve_n queens_helper (board, row + 1)
Backtracking, if no solution found
if not solved:
remove_queen (board, col, row)
col +=1
return solved
To keep the algorithm as free of details and list accesses as possible as well as thereby
understandable, you define two helper functions place queen () und remove queen ().
def place queen (board, col, row):
board[row] [col] = 'Q'
def remove queen (board, col, row):
board[row] [col] = "' '

Additionally, | want to mention how to process modifications in algorithms with back-
tracking. As one variation (used here), modifications made before the recursion steps
are reverted. As a second variation, you can pass copies during the recursion step and

perform the modification in the copy. Then no undo or delete is necessary anymore.

For the sake of completeness, the implementation of the initialization of the playfield is
shown here:
def get dimension (values2dim) :
if (isinstance(values2dim, list)):
return (len(values2dim), len(values2dim[0]))
if (isinstance(values2dim, np.ndarray)) :
return values2dim.shape

raise Exception ("unsupported type", type(values2dim)) '

What Is Still Missing in the Implementation? What Is the Next Step?

As an exercise in Section 7.3.9 you are left with the task of implementing the is -
valid position (board, col, row) function. This is to check whether a playfield
is valid. Due to the chosen algorithm of the line-by-line approach and because only one
queen can be placed per line, possible collisions may be excluded only vertically and
diagonally.

7.3 Exercises

7.3.1 Exercise 1: Towers of Hanoi (3 % k)

In the Towers of Hanoi problem, there are three towers or sticks named A, B, and C. At
the beginning, several perforated discs are placed on stick A in order of size, with the
largest at the bottom. The goal is now to move the entire stack (i. e., all the discs) from A
to C. The discs must be placed on the top of the stack. The goal is to move one disk at a
time and never place a smaller disc below a larger one. That’s why you need the helper
stick B. Write function solve tower of hanoi (n) that prints the solution on the con-

sole in the form of the movements to be executed.
Example

The whole thing looks something like Figure 7-1.

== —n
— [
EE === -

Figure 7-1 Task definition for the Towers of Hanoi problem

The following solution should be provided for three slices:

Tower Of Hanoi 3

= vs B vs B SO I
|
\Y

Q 2 Q W W Q

-> C
Bonus Create a console-based graphical format. For two slices, this would look something

like this:
Tower Of Hanoi 2

Moving slice: 1 : Tower [A] -> Tower [B]

A B C
l l l
l I l
ik A 14 I

Moving slice: 2 : Tower [A] -> Tower [C]
A B C
I I I
l l l
l #14 i

Moving slice: 1 : Tower [B] -> Tower [C]
A B C
l l l
l l 1
I I AR

7.3.2 Exercise 2: Edit Distance (k& & %k i)

For two strings, compute how many changes they are—case-insensitive—apart; that is, how to

transition one string to the other by applying any of the following actions one or more times:

« Add a character (+),
« Delete a character (-), or

« Change a character (~).

Write function edit distance (strl, str2) thattries the three actions character by

character and checks the other part recursively.
Examples

The following modifications are required for the inputs shown:

Input 1 Input 2 Result Actions

“s $ \mathrm{Micha}\ \underset{+\mathrm{e}}
{\underbrace{\to} \ \mathrm{Michae }\ \under-

“Micha” “Michael” 2
set{+\mathrm{l} }{\underbrace{\to})\
\mathrm{Michae \mathrm{I} $
“rap_
“tables” 4 rapple —» rapples — rapbles — rables — tables
p|e” b5 posh P Pl

Bonus (k& Kk vrvr) Optimize Edit Distance with Memoization

7.3.3 Exercise 3: Longest Common Subsequence (k& Kk ¥r7¥)

The previous exercise was about how many changes are needed to transform two given
strings into each other. Another interesting problem is to find the longest common but
not necessarily contiguous sequence of letters in two strings that occurs in two strings in
the same sequence. Write function 1cs (strl, str2) that recursively processes the

strings from the back. In case of two parts of the same length, it uses the second one.

Examples
Input 1 Input 2 Result
“ABCE” “ZACEF” “ACE”

“ABCXY” “XYACB” “AB”

Input 1 Input 2 Result
“‘“ABCMIXCHXAEL” “MICHAEL” “MICHAEL”

“sunday-Morning” “saturday-Night-Party” “suday-ig”

Bonus Use Memoization for Longest Common Subsequence

7.3.4 Exercise 4: Way Out of a Labyrinth (Fx sk kv +)

In this assignment, you are asked to find the way out of a maze. Assume a maze is giv-
en as a two-dimensional array or nested lists with walls symbolized by # and target posi-
tions (exits) symbolized by X. From any position, a path to all exits is supposed to be de-
termined. If there are two exits in a row, only the first of the two has to be supplied. Itis
only allowed to move in the four compass directions, but not diagonally. Write function

find way out (values, x, y) thatlogs each found exitwith FOUND EXIT at

Example

A larger playfield with four target fields is shown below. The bottom figure shows each of the
paths indicated by a dot (.) . In between you see the logging of the found positions of the exits.
For this example, the search starts from the upper left corner with coordinates x=1, y=1.ons of

the exits. The search starts from the upper left corner with coordinates x=1, y=1.
FHEHHHAHEHEHEH AR AR AR AR S

*o# # # ¥ o# X#X#
o OHHHES HEAE A #HO# F #EHE
+ ## A # #4 #H #F F # #
##E #F HE #H # #HE #F
*o# #HHA LA HE F A
#HHH # #HH#H o HHHE A
ik EEi AR AAAAS ik A A A

ik X X#H###X # #F #F #HEF #A

FHESHHHH A H AR S
FOUND EXIT: x: 30, y: 1
FOUND EXIT: x: 17, y: 8
FOUND EXIT: x: 10, y: 8
FHESHHHH A H A S

#.4 #oooHoL L #o#. L XEXE
#ooHHEHE HEEE R HELF FoHEE #
A £ I #..044 #F F #.. * #
A 230 A IS S £ 2
NS S & & SR O #HE.... #HEE O# 4
#HEF L HFL L HEHEE Lo F # O HEHEE #
FHEFSFE . AR HE *o#HEE A
ik #..X X#HHH#XH # #F #HE #4

FHAEFHFAA A AAA ARSI

Based on the output, it is also clear that two of the target fields marked with x are not de-

tected from the start position. One is the x at the very top right corner, which cannot be

reached due to a missing link. The other is the lower middle X, which is behind another

exit.

7.3.5 Exercise 5: Sudoku Solver (k% kX +v)

Write function solve sudoku (board) that determines a valid solution, if any, for a

partially initialized playfield passed as a parameter.

Example

A valid playfield with some blanks is shown here:

1|2 4 15 7 9
S| 6 3
7|8 112 4 6
114 6 8 V4
3|6 8 7| 2 4
917 1141 3
5|3 21 9 8
21 9 8 || 5
7 1| 6 2

This should be completed to the following solution:

|,

N O HhjJO| OO |(W
—_—k
- O[O |IN]O0[O

AP IO IN||OO | = |O(OCT|N] O
N =100 |HA~ | N |W]| O

QI o | ([Ww | ND|IIN|P»~|—

= O[N] PN]|O©C| D

O Ol N ||~ —(N

N| AW O|O | =
(O DN W
W NP>

7.3.6 Exercise 6: Math Operator Checker (% % %k i)

This assignment is about a mathematically inclined puzzle. For a set of digits and anoth-
er set of possible operators, you want to find all combinations that result in the desired
value. The order of the digits cannot be changed. Still, it is possible to insert any opera-
tor from the possible operators between the digits, except before the first digit. Write
function all combinations with value (n) that determines all combinations that
result in the value passed as parameter. Check this for the digits 1 to 9 and the opera-
tions + and —, and combining the digits. Start with function

find all combinations (values), which is passed the corresponding digits.

Examples

Let’s consider two combinations only for the digits 1, 2, and 3:
1+42+3=6
1+23=24

In total, these digits allow the following different combinations to be formed:

Input Result (all_combinations())

[1,2, {12-3=9, 123=123, 1+2+3=6, 1+2-3=0, 1-2+3=2, 1-23=-22, 1-2-3=-4,
3] 1+23=24, 12+3=15}

Suppose you wanted to generate the value 100 from the given digits 1 to 9 and the set of
available operators (+, —, and combining the digits). This is possible, for example, as

follows:
142+3-4+5+6+78+9=100

In total, the following variants should be determined:

Input Result (allCombinationsWithValue())

[1+23-4+5+6+78-9, 123+4-5+67-89, 123-45-67+89, 12+3-4+5+67+8+9,
100 1423-4+56+7+8+9, 12-3-4+5-6+7+89, 123-4-5-6-7+8-9,
1+2+34-5+67-8+9, 12+3+4+5-6-7+89, 123+45-67+8-9, 1+2+3-4+5+6+78+9]

7.3.7 Exercise 7: Water Jug Problem (3% % v)

Let’s say you have two jugs with capacities of m and n liters. Unfortunately, these jugs
have no markings or indications of their fill level. The challenge is to measure x liters,
where xis less than m or n. At the end of the procedure, one jug should contain x liters

and the other should be empty. Write function solve water jugs(sizel, size2,

desired liters), which displays the solution on the console. If successful, it returns

True, otherwise False.
Examples

For two jugs, one with a capacity of 4 liters and one with a capacity of 3 liters, you can measure

2 liters in the following way:

State Action

Jug 1: 0/Jug 2: 0 Both jugs initial empty

Jug 1: 4/Jug 2: 0 Filljug 1 (unnecessary, but due to the algorithm)
Jug 1: 4/Jug 2: 3 Fill jug 2

Jug 1: 0/Jug 2: 3 Empty jug 1

Jug 1: 3/Jug 2: 0 Pour jug 2 into jug 1

Jug 1:3/lJug2:3 Filljug 2

Jug 1:4/Jug2:2 Pourjug2injug 1

Jug 1: 0/Jug2:2 Empty jug 1

Solved

On the other hand, measuring 2 liters is impossible with two jugs of 4 liters capacity

each.

7.3.8 Exercise 8: All Palindrome Substrings (3 % % %)

In this assignment, you want to determine for a given word whether it contains palin-
dromes and, if so, which ones. Write recursive function all palindrome part-
s_rec (input) that determines all palindromes with at least two letters in the passed

string and returns them sorted alphabetically.1

Examples
Input Result
“BCDEDCB” [“BCDEDCB?”, “CDEDC”, “DED”]

“ABALOTTOLL” [“ABA”,“LL", “LOTTOL”, “OTTO", “TT’]

LEEN 1]

“racecar” [“aceca”, “cec”, “racecar”]
Bonus Find the longest of all palindrome substrings. This time there is no requirement

for maximum performance.

7.3.9 Exercise 9: The n-Queens Problem (k% % 5)

In the n-Queens Problem , n queens are to be placed on an n x n board in such a way
that no two queens can beat each other according to chess rules. Thus, other queens
must not be placed on the same row, column, or diagonal. To do this, extend the solution
shown in Section 7.2.1 and implement function is valid position (board, col,
row) . Also write function print board (board) to display the board as well as output

the solution to the console.
Example

For a 4 x 4 playfield, there is the following solution, with the queens symbolized by a Q.

7.4 Solutions

7.4.1 Solution 1: Towers of Hanoi (k% %k v %)

In the Towers of Hanoi problem, there are three towers or sticks named A, B, and C. At
the beginning, several perforated discs are placed on stick A in order of size, with the
largest at the bottom. The goal is now to move the entire stack (i. e., all the discs) from A
to C. The discs must be placed on the top of the stack. The goal is to move one disk at a
time and never place a smaller disc below a larger one. That’s why you need the helper
stick B. Write function solve tower of hanoi (n) that prints the solution on the con-

sole in the form of the movements to be executed.
Example

The whole thing looks something like Figure 7-2.

== —n
— [
EE === -

Figure 7-2 Task definition for the Towers of Hanoi problem

The following solution should be provided for three slices:

Tower Of Hanoi 3

= vs B vs I SO I
|
\Y

Q 2 Q W W Q

-> C

Algorithm The movement of the disks is implemented in function move tower (n,
source, helper, destination), which gets the number of slices to be moved, the
initial source stick, the auxiliary stick, and the target stick. Initially you use n and ‘A’, ‘B “, and
‘C’ as initial parameters. The function move tower () splits the problem into three smaller

problems:

1.First, the tower, which is smaller by one slice, is transported from the source to the

auxiliary stick.

2.
Then, the last and largest slice is moved from the source to the target stick.
Finally, the remaining tower must be moved from the auxiliary to the target stick.

The action move source to target serves as a recursive termination when the height is 1. It
gets a little tricky by swapping the source, target, and auxiliary stick during the actions.
def move tower(n, source, helper, destination):
if n ==
print(source + " -> " + destination)
else:
move all but last slice from source to auxiliary stick
destination thus becomes the new auxiliary stick
move tower (n - 1, source, destination, helper)
move the largest slice from source to target
print (source + " -> " + destination)
move tower(l, source, helper, destination); //
unverstandlicher
move tower reduced by one from auxiliary staff to
target
move tower (n - 1, helper, source, destination)
In order to show fewer details, it is advisable to use the definition of the following function:
def solve tower of hanoi(n):
print ("Tower Of Hanoi", n)
move tower(n, 'A', 'B', 'C")
To solve the problem, the function must be called with the desired number of slices, like
this:
>>> solve tower of hanoi (3)

Tower Of Hanoi 3

=R vs B vs O B
|
\Y

Q Q P Q W w Q

HINT: RECURSION AS A TOOL
Although the problem sounds rather tricky at first, it can be solved quite easily with re-

cursion. This assignment shows again that recursion is useful to reduce the difficulty by
decomposing a problem into several smaller subproblems that are not so difficult to

solve.

Bonus: Create a Console-Based Graphical Format

For two slices, this would look something like this:

Tower Of Hanoi 2

A B C
| | |
1 | |
AR | |
Moving slice: 1 : Tower [A] -> Tower [B]
A B C
| | |
| | |
i 4 #14 |
Moving slice: 2 : Tower [A] -> Tower [C]
A B C
| | |
| | |
| #l# 4| #4
Moving slice: 1 : Tower [B] -> Tower [C]
A B C
| | |
| | #14

First, let’s look at how the graphical output algorithm changes. This part for finding the
solution remains absolutely the same. You just add class Tower to your implementation and an
action that you pass as a lambda expression when solving. You modify the function
solve tower of hanoi (n) insuch a way that three Tower objects are created there, and
the desired number of disks is placed on the output tower accordingly.
def solve tower of hanoi v2(n):

print ("Tower Of Hanoi", n)

source = Tower ("A")
helper = Tower ("B")
destination = Tower ("C")

Attention: reverse order: largest slice first
for i in range(n, 0, -1):
source.push (i)
action = lambda: print towers(n + 1, source, helper,
destination)
action{()
move tower v2(n, source, helper, destination, action)
The realization of move tower v2 () only gets an action as another parameter. This
allows an action to be executed at the recursive termination.
def move tower v2(n, source, helper, destination, action):
if n ==
elem to move = source.pop ()

destination.push (elem to move)

print ("Moving slice:", elem to move, ":", source, "->",
destination)

action ()

else:

move tower v2(n - 1, source, destination, helper,
action)

move tower v2(1l, source, helper, destination, action)

move tower v2(n - 1, helper, source, destination,
action)

The class Tower Let’s set about creating the Tower class, which uses a string for
identification and a Stack to store the slices:
class Tower:

def init (self, name):

self.name = name

self. wvalues = Stack()
def str (self):

return "Tower [" + self.name + "]"
def push(self, item):

self. values.push (item)
def pop(self):

return self. values.pop()

Additions in the class Stack You can reuse the class Stack built in Section 5.3.2, but
you still have to add two functions:
def size(self):

return len(self. values)
def get at(self, pos):
return self. values([pos]

Console output of towers In Chapter 4 on strings, you learned about a first variant for
drawing towers in Section 4.2.16 in Exercise 16. Taking advantage of the knowledge gained
there, you modify the implementation appropriately. First, you draw the top part of the tower
with draw_top (). Then you draw the slices with draw _slices () and finally a bottom
boundary line with draw_bottom().

def print tower (self, max height):
height = self.values.size() - 1
visual = self.draw top(max height, height)
visual += self.draw slices (max height, height)
visual += self.draw bottom(max height)
return visual
def draw top(self, max height, height):
visual = [" " * max height + self.name + " " *
max height]
for i in range (max height - height - 1, 0, -1):
visual.append (" " * max height + "|" + " " *
max height)
return visual
def draw slices(self, max height, height):
visual = []
for i in range (height, -1, -1):

value = self.values.get at (i)

padding = max height - wvalue
visual.append (" " * padding + "#" * value + "|" +
"#" * yalue + " " * padding)
return visual
def draw bottom(self, height):
return ["-" * (height * 2 + 1)]
Output all towers Finally, you combine the output functionality in the following function to
print the towers represented as three lists side by side:

def print towers (max height, source, helper, destination):

towerl = source.print tower (max height)
tower2 = helper.print tower (max height)
tower3 = destination.print tower (max height)

for (a,b,c) in zip(towerl, tower2, tower3):

print(a + " "+ b+ " " + c)
Verification
For testing, invoke the function. The output shows the correct operation:

>>> solve tower of hanoi v2(2)

Tower Of Hanoi 2

A B C
I I I
#1# I I
4| #4# I I
Moving slice: 1: Tower [A] -> Tower [B]
A B C
I I I
I I I
kA #14 I

Moving slice: 2: Tower [A] -> Tower [C]
A B C
I I I
I I I
I #14 i1

Moving slice: 1: Tower [B] -> Tower [C]
A B C
l
l
l

7.4.2 Solution 2: Edit Distance (3 % % % i)

For two strings, compute how many changes they are—case-insensitive—apart; that is, how to

transition one string to the other by applying any of the following actions one or more times:

« Add a character (+),
« Delete a character (-), or

« Change a character (~).

Write function edit distance(strl, str2) thattries the three actions character by

character and checks the other part recursively.
Examples

The following modifications are required for the inputs shown:

Input 1 Input 2 Result Actions

s $ \mathrm{Micha}\ \underset{+\mathrm{e}}
{\underbrace{\to} }\ \mathrm{Michae }\ \under-
set{+\mathrm{l} }{\underbrace{\to} }\
\mathrm{Michae }\mathrm{l} $

‘Micha” “Michael”

\S}

Input 1 Input 2 Result Actions

“ra -
E) “tables” 4 rapple — rapples — rapbles —» rables — tables

ple B pesh n Tl

Algorithm Let’s start to consider how you can proceed here. If both strings match, then
the edit distance is 0. If one of the two strings contains no (more) characters, then the
distance to the other is the number of characters remaining in the other string. This
means inserting the corresponding characters several times. This defines the recursive

termination.

Otherwise, you check both strings from their beginning and compare them character by
character. If they are the same, you go one position further towards the end of the string. If they

are different, you check three different modifications:

1.)
Insert; Recursive call for the next characters
‘Remove: Recursive call for the next characters

3.
Replace: Recursive call for the next characters

You examine three possible paths and then calculate the minimum from these three

values.

Here’s how you implement this:

def edit distance(strl, str2):

return edit distance helper (strl.lower (), strZ2.lower(),

len(strl) - 1, len(str2) - 1)

def edit distance helper(strl, str2, posl, pos2):

recursive termination

if one of the strings is at the beginning and the other is

not yet, then take the length of the remaining string

if posl < O:

return pos2 + 1
if pos2 < O:
return posl + 1
check if the characters match and then advance to the next
one
if strl[posl] == str2[pos2]:
recursive descent
return edit distance helper(strl, str2, posl - 1, pos2
_1)
else:
recursive descent: check for insert, delete, change
insert in first = edit distance helper(strl, str2,
posl, pos2 - 1)
delete in first = edit distance helper(strl, str2,
posl - 1, pos2)
change = edit distance helper(strl, str2, posl - 1,
pos2 - 1)
minimum from all three variants + 1

return 1 + min(insert in first, delete in first, change)

Verification

For testing, you use the following inputs, which show the correct functionality:
@pytest.mark.parametrize ("valuel, value2, expected",
[("Micha", "Michael", 2),
("rapple", "tables", 4)1)
def test edit distance(valuel, value2, expected):
result = edit distance(valuel, valueZ2)
assert result == expected
Performance Test You also want to check the performance—because it is only a rough
classification that matters, no sophisticated profiling is needed here, but the accuracy of
time.process time () is sufficient:
def main () :
inputs tuples = [["Micha", "Michael"],
["rapple", "tables"],
["sunday-Morning", "saturday-Night"],

["sunday-Morning-Breakfast", "saturday-
Night-Party"]]

for inputs in inputs tuples:

start = time.process time ()

result = edit distance (inputs[0], inputs[1l])

end = time.process time ()

print (inputs[0] + " -> " + inputs[1l] + " edits:",
result)

print ("editDistance() took %.2f ms" % ((end - start) *
1000))

If you run the above lines with (a lot of) patience, you get approximately the following
output. In fact, I stopped the last calculation after a few minutes, which is why it is not shown
here.

Micha -> Michael edits: 2

editDistance () took 0.26 ms

rapple -> tables edits: 4

editDistance () took 0.35 ms

sunday-Morning -> saturday-Night edits: 10

editDistance () took 137443.89 ms

The running times increase significantly the more the two inputs differ. So how can you

make it work better? The solution of the bonus task shows this.

Bonus: Optimize Edit Distance with Memoization (3 % % 7 %)

At the beginning of the chapter, I described memoization as a technique and mentioned that one
often uses a dictionary as a cache—so also here:
def edit distance optimized(strl, str2):
return edit distance memo(strl.lower(), str2.lower(),
len(strl) - 1, len(str2) - 1,
{1
def edit distance memo (strl, str2, posl, pos2, values):
recursive termination
if one of the strings is at the beginning and the other
one
not yet, then take the length of the remaining string
if posl < O:

return pos2 + 1
if pos2 < O:
return posl + 1
MEMOIZATION
if (posl, pos2) in values:
return values.get ((posl, pos2))
result = 0
check if the characters match and then advance to the next
one
if strl[posl] == str2[pos2]:
recursive descent
result = edit distance memo (strl, str2, posl - 1, pos2
- 1, wvalues)
else:
recursive descent: check for insert, delete, change
insert = edit distance memo (strl, str2, posl, pos2 -

1, values)

delete = edit distance memo(strl, str2, posl - 1,

pos2, values)

change __edit distance memo (strl, str2, posl - 1, pos2
- 1, wvalues)
minimum from all three variants + 1
result = 1 + min(insert in first, delete in first,
change)
MEMOIZATION
values|[(posl, pos2)] = result

Suppose you perform the same checks as before. Even with the last calculation of the
Edit Distance of 16, only a minimum running time of less than one millisecond can be

determined.

Using the memoization decorator In Section 7.1.3, you learned how to add memoiza-

tion by using decorators to recursive functions to optimize running time.

For both the calculation of Fibonacci numbers and Pascal’s triangle, it felt natural to

annotate the decorator directly to the function calling itself. However, for Edit Distance, you

have to think a bit. Here you have a two-step procedure, and it is not the initial function that
must be annotated, but the one that performs the actual calculation.
Qdecorate with memo shorter
def edit distance(strl, str2):
return edit distance helper(strl.lower (), str2.lower(),
len(strl) - 1, len(str2) - 1)
@decorate_with memo_shorter

def edit distance helper(strl, str2, posl, pos2):

Let’s recap: An initial parameterization is done by the construct with the helper function.
Forall callsto edit distance helper (), the twoinputs strl and str2 remain un-
changed. The variance is in the positions. Therefore, in the manual implementation, the
key in the dictionary consists only of the positions. However, the universal variant cannot

distinguish this and therefore uses a key consisting of all four parameter values.

7.4.3 Solution 3: Longest Common Subsequence (% % Kk i i)

The previous exercise was about how many changes are needed to transform two given
strings into each other. Another interesting problem is to find the longest common but
not necessarily contiguous sequence of letters in two strings that occurs in two strings in
the same sequence. Write function 1cs (strl, str2) to recursively process the

strings from the back. In case of two parts of the same length, it uses the second one.

Examples
Input 1 Input 2 Result
“ABCE” “ZACEF” “ACE”
“ABCXY” “XYACB” “AB”

“‘“ABCMIXCHXAEL” “MICHAEL” “MICHAEL”

Input 1 Input 2 Result

“sunday-Morning” “saturday-Night-Party” “suday-ig”

Algorithm You move from the back to the front. If the characters match, the character is
included in the result. If the characters differ, the check has to be repeated recursively for the
strings shortened by one character.
def lcs(strl, str2):

return lcs helper(strl, str2, len(strl) - 1, len(str2) -
1)
def 1lcs helper(strl, str2, posl, pos2):
recursive termination
if posl < 0 or pos2 < O:
return ""
are the characters the same?
if strl[posl] == str2[pos2]:
recursive descent
return lcs helper(strl, str2, posl - 1, pos2 - 1) +
strl[posl]
else:
otherwise take away one of both letters and try it
again, but neither letter belongs in the result
lcsl = 1cs helper(strl, str2, posl, pos2 - 1)
lcs2 = 1lcs helper(strl, str2, posl - 1, pos2)
return lcsl if len(lcsl) > len(lcs?2) else 1lcs2

Modified algorithm Alternatively, you can run from front to back until the end of the
strings is reached. Interestingly, the same results are almost always produced because
with the variant from the end, only for the second input combination, you get XY instead

of AB as a result.

In this variant, if the letters are the same, you have to add them in front. In addition, the
skipping of non-matching characters must now be simulated by increasing the respective
position. All in all, the implementation changes as follows:
def lcs from start(strl, str2):

return lcs from start helper(strl, str2, 0, 0)
def lcs from start helper(strl, str2, posl, pos2):
recursive termination: one input is a the end
if posl >= len(strl) or pos2Z2 >= len(str2):
return ""
are both character the same?
if strl[posl] == str2[pos2]:
recursive descent
return strl[posl] + \
__lcs from start helper(strl, str2, posl + 1,
pos2 + 1)
else:
otherwise take away one of both letters and try it

again, but neither letter belongs in the result

lecsl = 1cs from start helper(strl, str2, posl, posZ +
1)

lcs2 = 1lcs from start helper(strl, str2, posl + 1,
pos2)

return lcsl if len(lcsl) > len(lcs2) else 1lcs?2
Verification

For testing, you use the following inputs, which show the correct operation:
@pytest.mark.parametrize ("valuel, value2, expected",
[("ABCE", "ZACEF", "ACE"),
("ABCXY", "XYACB", "AR"),
("ABCMIXCHXAEL", "MICHAEL",
"MICHAEL")])
def test lcs(valuel, value2, expected):
result = lcs(valuel, value?2)
assert result == expected

In the accompanying project, for the sake of completeness, you also test the variant with

the LCS determination from the start (not shown here).

Performance test Again, you want to look at the performance. Here it is also true that

time.process time () is sufficient for classification.

def main () :
inputs tuples = [["ABCMIXCHXAEL", "MICHAEL"],
["sunday-Morning", "saturday-Night-Party"],
["sunday-Morning-Wakeup", "saturday-
Night"]]
for inputs in inputs tuples:
start = time.process time ()
result = lcs(inputs[0], inputs[1l])
end = time.process time ()
print (inputs[0] + " -> " 4+ inputs[l] + " lcs:", result)
print("lcs () took %.2f ms" % ((end - start) * 1000))
Measure the following execution times (they will vary slightly for you):
ABCMIXCHXAEL -> MICHAEL lcs: MICHAEL
lcs () took 0.03 ms
sunday-Morning -> saturday-Night-Party lcs: suday-ig
lcs () took 141523.38 ms
sunday-Morning-Wakeup -> saturday-Night lcs: suday-ig
lcs () took 280070.26 ms

Bonus: Use Memoization for Longest Common Subsequence

This results in long running times for more significant differences in the two inputs since many
possible subsequences exist. Therefore, pure recursion is not performant. So how do you do it
better? Again, you use memoization for performance optimization. This time you use two-
dimensional nested lists of strings for data storage.
def lcs optimized(strl, str2):

values = [[None for in range(len(str2))] for in
range (len(strl))]

return lcs with memo(strl, str2, len(strl) - 1, len(str2)
- 1, wvalues)

The actual implementation uses memoization as follows:

def 1lcs with memo(strl, str2, posl, pos2, values):

recursive termination

if posl < 0 or pos2 < 0:

return ""
MEMOIZATION

if values|[posl] [pos2] is not None:
return values[posl] [pos?2]
lecs = ""
are the characters the same?
if strl[posl] == str2[pos2]:
recursive descent
lecs = lcs with memo(strl, str2, posl - 1, pos2 - 1,
values) + \
strl[posl]
else:
otherwise take away one of both letters and try it
again, but neither letter belongs in the result
lcsl

__lcs with memo(strl, str2, posl, pos2 - 1,
values)
lcs2 = lcs with memo(strl, str2, posl - 1, pos2,
values)
lcs = 1lcsl if len(lcsl) > len(lcs2) else lcs?2
MEMOIZATION
values|[posl] [pos2] = 1lcs

return lcs
With this optimization, the running times can be reduced to a few milliseconds. For
evaluation, start the module EX03 LCS TIMING MEMO.PY and compare your execution
times with these values:
ABCMIXCHXAEL -> MICHAEL 1lcs: MICHAEL
lcs optimized() took 0.03 ms
sunday-Morning -> saturday-Night-Party lcs: suday-ig
lcs optimized() took 0.21 ms
sunday-Morning-Wakeup -> saturday-Night lcs: suday-ig
lcs optimized() took 0.31 ms
Use of the memoization decorator As already described for Edit Distance, the two-step
procedure of LCS requires you to annotate not the initial function but the one that performs the
actual computation:
Qdecorate with memo shorter
def lcs(strl, str2):
return lcs helper(strl, str2, len(strl) - 1, len(str2) -
1)

@decorate_with_memo_shorter

def lcs helper(strl, str2, posl, pos2):

7.4.4 Solution 4: Way Out of a Labyrinth (k% % 5 ¥)

In this assignment, you are asked to find the way out of a maze. Assume a maze is giv-
en as a two-dimensional array or nested lists with walls symbolized by # and target posi-
tions (exits) symbolized by X. From any position, a path to all exits is supposed to be de-
termined. If there are two exits in a row, only the first of the two has to be supplied. Itis
only allowed to move in the four compass directions, but not diagonally. Write function

find way out (values, x, y) thatlogs each found exitwith FOUND EXIT at

Example

A larger playfield with four target fields is shown below. The bottom part shows each of the
paths indicated by a dot (.). In between you see the logging of the found positions of the exits.

For this example, the search starts from the upper left corner with coordinates x=1, y=1.
FHEHAHAHAHEHHHH AR E A S AR S

X#X#
o FHERSE FEAE A #H# F #HF
##t A #O#F #E # A # #
A &3 N A & 3 # #HE #
#HHH # #H# #HE # A
FHHEH id FHHH #O# HHEHEE O#
#HHHHH HHFHHHHAS #4 *o#HE A
i X X###H#X # #F F #HE A

FHEFHHHHAHHE A AR AR
FOUND EXIT: x: 30, y: 1
FOUND EXIT: x: 17, y: 8
FOUND EXIT: x: 10, y: 8
FHEFHHHHA AR H A AR AR
#.# I # 0 #. . XK#XH
SN kI N £ N R N £ X

A & A o4 #E L FL # #
oo oF HHELHHEE L LEL LR #
#o# L HEREL .. ## ##. ... H#HE O #
FHEH L oH L. HEHEE Lo H# HEHEE #
FHEHHEE . CHEREERAEES . L HH # oH#et A
#..X X#HHHX . # # #EH #4
FHAFHHHE AR
Based on the outputs, it is also clear that two of the target fields marked with X are not

detected from the start position. One is the X at the very top right corner, which cannot
be reached due to a missing link. The other is the lower middle X, which is behind anoth-

er exit.

Algorithm The algorithm for finding a way out of a labyrinth checks whether there is a way
in the four compass directions, starting from the current position. To do this, neighboring fields
that have already been visited are marked with the . character, just as you would do in reality
with small stones, for example. The trial and error continues until you come to a X as a solution,
a wall in the form of a #, or an already visited field (marked by .). If there is no possible
direction left for a position, you use backtracking, resume the last chosen path, and try the
remaining paths from there. This is implemented as follows:
def find way out(values, x, y):

if x < 0 or vy < 0 or x > len(values|[0]) or y >= len(values):
return False

recursive termination

if get at(values, x, y) == 'X':
print ("FOUND EXIT: x: {}, y: {}".format(x, vy))
return True

wall or already visited?

if get at(values, x, y) in '#.':
return False

recursive descent

if get at(values, x, y) ==
mark as visited
values|[y] [x] = ".'

try all 4 cardinal directions

up = find way out(values, x, y - 1)

left = find way out(values, x + 1, vy)

down = find way out (values, x, y + 1)
right = find way out(values, x - 1, vy)
found a way = up or left or down or right

backtracking because no valid solution
if not found a way:
values[y]l [x] = ' ' # wrong path, thus delete field
marker
return found a way
raise ValueError ("wrong char in labyrinth")

Note that you use the natural alignment of x and y coordinates in the functions. Still,
when accessing the array or nested lists, the orderis [y] [x] because you are working
in rows, as discussed in the introductory section of the chapter on arrays in Section
6.1.2.

Verification

To try it out, you define the maze from the introduction. Next, you call the function
find way out (), which logs the previously shown exits from the maze and finally
visualizes the ways with dots (.). Here you use a version of print array () thatleaves no

white space between characters to make the maze more recognizable.

def main():

world big = [list ("#######H4#4H#HHH4HHHHHHEHHFHAHSHHEHE"),
list ("# # # # # # X#XH") ,
list ("# ##### #4464 #+4 #H## # ##E #"),
list ("# ## # ¥ H#4 ## # # # #"),
list ("# # ##E # HH# #A # #HE £ #F"),
list ("# # #H#H# 4 H#4 #HE #F #"),
list ("###4# # #HHESE HHEE F HHEHE #"),
list ("#####4# #HAHHHEAH ## #o##EE #"),

list ("## #0OX X####X # # # #H#F ##")

()

List ("####HH#HHHHHAHHHAHAHFEHFSHHRSHIRAS")]
print array(world big)
if find way out (world big, 1, 1):
print array(world big)

Alternative

The implementation shown nicely prepares the paths to the target fields graphically.
However, it has two minor disadvantages. On the one hand, it breaks off directly when
an exit is encountered and thus does not find an exit behind it. On the other hand, if
there are several paths to a target field, the program also logs the finding of an exit sev-

eral times. The latter could be solved quite easily by collecting all solution paths in a set.

If you want to find all reachable exits, it is possible to modify the function shown before so
that visited fields are marked with a #. However, this way, the field is quite filled up at the end
and does not show the way anymore, which was an advantage of the initial variant.
def find way out v2(board, x, y):

if board[y] [x] == "#':
return False
found = boardl[y] [x] == 'X"
if found:
print ("FOUND EXIT: x: {}, y: {}".format(x, vy))
board[y] [x] = "#'
right = find way out v2(board, x + 1, vy)
left
down = find way out v2(board, x, y + 1)

find way out v2(board, x - 1, V)

up = find way out v2(board, x, y - 1)
return found or right or left or down or up

Although the playing field is unrecognizable after that, four exits are found:
FOUND EXIT: x: 10, y: 8

FOUND EXIT: x: 12, y: 8
FOUND EXIT: x: 30, y: 1
FOUND EXIT: x: 17, y: 8

7.4.5 Solution 5: Sudoku Solver (& %k %k i)

Write function solve sudoku (board) that determines a valid solution, if any, for a

partially initialized playfield passed as a parameter.

Example

A valid playfield with some blanks is shown here:

1

4

5

Q|| N

AN | W | O

7 112 /|
1 6 8
3|6 8 71 2
9 1 (14| 3
5|3 219 8
9 8 || 5
7 1| 6 2

This should be completed to the following solution:

|,

N O Hhj]JO| OO (W
—_—k
- O[O |IN]O0|[O

AW N | = |O(COT|N] O
N =100 |~ | NI |W)| O

O Ol NN ||| —(N

O o | ([Ww | N|IIN|P»~|—

= O[N] PN]|O©C| D

N| AW O|O | =
(O DN W
W NP

Algorithm To solve Sudoku, you use backtracking. As with other backtracking
problems, Sudoku can be solved by step-by-step trial and error. In this case, that means
trying different numbers for each of the empty squares. According to the Sudoku rules,
the current digit must not already exist horizontally, vertically, or in a 3 x 3 block. If you
find a valid value assignment, you can continue recursively at the next position to test
whether you arrive at a solution. If none is found, then you try the procedure with the
next digit. However, if none of the digits from 1 to 9 lead to a solution, you need back-

tracking to examine other possible paths to the solution.

You proceed as follows in the implementation:

1.
Check if all rows have been processed; then you have a solution.

2.Find the next empty field. To do this, skip all fields that are already filled. This can

also change lines.
3.
If no empty field exist until the last row, you have found the solution.

4.
Otherwise you try out the digits from 1 to 9.

a.
Is there a conflict? Then you have to try the next digit.

b.
The digit is a possible candidate. You call your function recursively for the fol-

lowing position (next column or even next row).

C. .
If the recursion returns False, this digit does not lead to a solution and you

use backtracking.

def solve sudoku(board) :
return solve sudoku helper (board, 0, 0)
def solve sudoku helper (board, start row, start col):
1) check if all rows have been processed, then you have a
solution.
if start row > 8:
return True
row = start row
col = start col
2) skip fields with numbers until you reach the next empty
field
while board[row] [col] != O:
col += 1
if col > 8:
col =0
row += 1
3) already processed all lines?
if row > 8:
return True
solved = False
4) try for the current field all digits from 1 to 9
through

for num in range (1, 10):
board[row] [col] = num
4a) check if the whole field with the digit is still

valid
if is valid position(board) :
4b) recursive descent for the following field
if col < 8:
recursive descent: next field in x-direction
solved = solve sudoku helper (board, row, col +
1)
else:
recursive descent: next field in new line
solved = solve sudoku helper (board, row + 1,
0)

4c) backtracking if recursion is not successful
if not solved:
backtracking: no solution found
board[row] [col] = 0
else:
return True
else:
try next digit
board[row] [col] = O
return False
def is valid position (board) :
return check horizontally(board) and \
check vertically(board) and \
check boxes (board)

Looking at this implementation, you might already doubt whether this variant is really op-
timal, even without knowing the details of the helper functions shown in the following.
Why? You keep checking the entire playfield for validity at every step, and even worse,

doing that in combination with backtracking! I'll go into this in more detail later.

Let’s first consider the three functions check horizontally (board),

check vertically(board), and check boxes (board). Youimplemented them in

Exercise 9 in Section 6.3.9. They are shown again here for completeness:
def check horizontally (board) :
for row in range(9):
collect all values of a row in a list
row values = [board[row] [x] for x in range(9)]
if not all desired numbers (row values):
return False
return True
def check vertically(board):
for x in range(9):
collect all values of a column in a list
column values = [board[row] [x] for row in range (9)]
if not all desired numbers (column values) :
return False
return True
def check boxes (board) :
for y box in range (3):
for x box in range(3):
box values = collect box values (board, y box, x box)
if not all desired numbers (box values):
return False
return True
The following auxiliary functions still play an important role:
def collect box values (board, y box, x box):
box values = []
for y in range(3):
for x in range(3):
real y = y box * 3 + vy
real x = x box * 3 + x
box values.append(board[real y][real x])
return box values
def all desired numbers(all collected values):
relevant values = list(all collected values)
remove empty fields
relevant values = remove all occurences (relevant values, 0)

check that there are no duplicates

values set = set(relevant values)
if len(relevant values) != len(values set):
return False
only 1 to 9?
return {1, 2, 3, 4, 5, 6, 7, 8, 9}.issuperset(values set)
def remove all occurences (values, val):
return [value for value in values if value != wval]
def print array(values):
for y in range(len(values)):
for x in range(len(values[y])):
print (values|y] [x], end=" ")

print ()

Verification

Test this implementation with the example from the introduction:
def main () :

board = [[1, 2, O, 4, 5, 0, 7, 8, 91,
(0, 5, 6, 7, 0, 9, 0, 2, 31,
(7, 8, 0, 1, 2, 3, 4, 5, 61,
(2, 1, 4, 0, 6, 0, 8, 0, 71,
(3, 6, 0, 8, 9, 7, 2, 1, 41,
(6, 9, 7, 0, 1, 4, 3, 6, 01,
(5, 3, 1, 6, 0, 2, 9, 0, 81,
(6, 0, 2, 9, 7, 8, 5, 3, 11,
(9, 7, 0, 0, 3, 1, 6, 4, 211

if solve sudoku(board):
print ("Solved!")
print array (board)

This provides the following result:

Solved!

1234567289
456789123
78 912345@6
214365897
365897214

8 97 2
5316
642978531
978531642
The solution is displayed within a few fractions of a second. So far, everything has

143675
4 2 97 8
5

worked really well. But what happens if the given playfield contains hardly any digits but

lots of empty fields?

Playfields with more blanks When you tackle the challenge of trying to solve playfields
with only a few given digits, there are many variations to be tried and a lot of backtracking
comes into play. Suppose you wanted to solve something like the following playfield:
board2 = |

(6, 0, 2, 0, 5, 0, 0, 0, 01,
(6, o, o, o, 0o, 4, 0, 3, 01,
(0, o, o, o, 0, 0, 0, 0, 01,
(4, 3, o, o, 0, 8, 0, 0, 01,
(6, 1, o, o0, 0, 0, 2, 0, 01,
(6, o, o, o, 0, 0, 7, 0, 01,
(5, 0, 0, 2, 7, 0, 0, O, O1,
(0, o, o, o0, 0, 0, 0, 8, 11,
(0, o, 0, 6, 0, 0, 0, 0, O]

14

]

~

~

~

~

~

~

In principle, this is already possible with your algorithm, but it takes several minutes. Al-

though this is quite long, you probably couldn’t solve difficult puzzles by hand in this time

span—but with the computer, it should be even faster. So what can you improve?

Reasonable Optimizations

Idea 1: Optimization of the check Checking the entire playfield for validity in every step is

neither useful, necessary, nor performant. As an optimization, you modify the check so that only

a single column, row, and the relevant box are checked at a time. To do this, you first modify the

function is valid position () slightly so that it receives a column and row as

parameters:

def is valid position (board,

return check single horizontally (board,

row, col):

row) and \

check single vertically(board, col) and \
check single box(board, row, col)
Then you create specific test methods such as the following:
def check single horizontally(board, row):
column values = [board[row] [col] for col in range(9)]
return all desired numbers (column values)
def check single vertically(board, col):
row values = [board[row] [col] for row in range(9)]
return all desired numbers (row values)

This optimization results in running times in the range of a few seconds—between 20
and 50 seconds for complicated playfields. This is already much better, but it can still be

much more performant.

Idea 2: More clever testing If you look at the processes, you notice that you try all digits—
this violates a bit of common sense. Wouldn’t it make more sense to only use potentially valid
paths, and to do so, check in advance whether the current digit is even usable in the context?
You can then directly exclude all those digits that already exist in a row, column, or box. To do
this, you need to modify the check as follows and pass the potential digit as parameter.
def is valid position(board, row, col, num):

return check num not in column(board, col, num) and \
check num not in row(board, row, num) and \
check num not in box(board, row, col, num)
def check num not in column (board, col, num):
for row in range(9):
if board[row] [col] == num:
return False
return True
def check num not in row(board, row, num):
for col in range(9):
if board[row] [col] == num:
return False
return True
def check num not in box(board, row, col, num):
adjusted row = row // 3 * 3
adjusted col = col // 3 * 3

for y in range(3):

for x in range(3):
if board[adjusted row + y]ladjusted col + x] == num:
return False
return True
Idea 3: Optimized sequence of setting and checking Finally, you modify the trial and
error so that only after determining that the digit is valid is it placed on the playfield. So far, in
the solve sudoku () function as step 4, you have tried all the digit as follows:

def solve sudoku helper (board, start row, start col):

solved = False
4) for the current field, try all digits from 1 to 9
for num in range(1l, 10):
board[row] [col] = num
4a) check if the whole playfield containing the digit
is still wvalid

if is valid position(board, row, col, num):

You optimized this test twice. First, you changed the initial function is valid posi-
tion (board) tois valid position (board, row, col) so thatitalso getsthe
row and column as parameters. As a further improvement, you pass the number to be

checked is valid position (board, row, col, num).

Now you go one step further and change the order of inserting the value and checking.
Therefore you switch only two lines, namely the assignment and the i £ with the call of the
optimized variant of the validity check:

4) for the current field, try all digits from 1 to 9
for num in range (1, 10):
4a) check if the whole playfield containing the digit is
still valid
if is valid position(board, row, col, num)
board[row] [col] = num
Results of the optimizations made Due to your optimizations—which, by the way, do

not lead to any restrictions in readability or comprehensibility —you can save yourself

from trying out many solution paths that never lead to the goal. The solutions were al-

ways determined in about 1 minute on my iMac (i7 4Ghz), even for more complex play-
ing fields.

The naive way of implementation with the overall check of the board at each step led to
running times of more than 20 minutes for more complex boards. While the first opti-
mization finds a solution after about 3.5 minutes, the combination of ideas 2 and 3 leads

to a running time of about 1 minute.

7.4.6 Solution 6: Math Operator Checker (3 % %k % i)

This assignment is about a mathematically inclined puzzle. For a set of digits and anoth-
er set of possible operators, you want to find all combinations that result in the desired
value. The order of the digits cannot be changed. Still, it is possible to insert any opera-
tor from the possible operators between the digits, except before the first digit. Write
function all combinations with value (n) that determines all combinations that
result in the value passed as parameter. Check it for the digits 1 to 9 and the operations
+, —, and combining the digits. Start with function find all combinations (val-

ues) which is passed the corresponding digits.

Examples

Let’s consider two combinations only for the digits 1, 2, and 3:
1+2+3=6

1+23=24

In total, these digits allow the following different combinations:

Input Result (all_combinations())

[1,2, {12-3=9, 123=123, 1+2+3=6, 1+2-3=0, 1-2+3=2, 1-23=-22, 1-2-3=-4,
3] 1+23=24, 12+3=15}

Suppose you want to generate the value 100 from the given digits 1 to 9 and the set of
available operators (+, —, and combining the digits). This is possible, for example, as

follows:

142+3-4+5+6+78+9=100

In total, the following variants should be determined:

Input Result (allCombinationsWithValue ())

[1423-4+5+6+78-9, 123+4-5+67-89, 123-45-67+89, 12+3-4+5+67+8+9,
100 1+23-4+56+7+8+9, 12-3-4+5-6+7+89, 123-4-5-6-7+8-9, 1+2+34-5+67-8+9,
12+3+4+5-6-7+89, 123+45-67+8-9, 1+2+3-4+5+6+78+9]

Algorithm First, you subdivide the problem at a high level by computing all possible
combinations by calling the function all combinations () and then using
find by value () to search for those combinations whose evaluation yields the desired
value:
def all combinations with value (base values, desired value):

all combinations = find all combinations (base values)
return find by value(all combinations, desired value)
def find by value(all combinations, desired value):
return {key for key, value in all combinations.items ()
if value == desired value}

To calculate the combinations, the input is split into a left part and a right part. This results
in three subproblems to be solved, namely / + r, [— r, and Ir, where / and r stand for the left and
right parts of the input. You compute the result with the function eval (). If there is only one
digit left, this is the result and it constitutes the recursive termination.
def find all combinations(digits):

recursive termination
if len(digits) == 0:
return ({}
if len(digits) ==
last digit = digits[O0]
return {last digit: last digit}

recursive descent

left = digits[0]

right = digits[1l:]

results = find all combinations (right)
create all combinations

solutions = {}

for expression, value in results.items{():

right expr = str(expression)
solutions[str(left) + "+" + right expr] = \
eval (str (left) + "+" + right expr)
solutions([str(left) + "-" + right expr] = \
eval (str(left) + "-" + right expr)
solutions[str(left) + right expr] = \

eval (str(left) + right expr)
return solutions
This variant is quite understandable but has the disadvantage that here again various partial
lists are generated. Since the list with the digits is probably rather short, this does not matter.
Nevertheless, as a mini-optimization, let’s take a look at a variant that works with a position
pointer.
def find all combinations(digits):
return all combinations helper (digits, O0)
def all combinations helper(digits, pos):
recursive termination: last digit
no calculation needed, just digit
if pos == len(digits) - 1:
last digit = digits[len(digits) - 1]
return {last digit: last digit}
recursive descent
results = all combinations helper (digits, pos + 1)
create all combinations
solutions = {}
current digit = digits[pos]
left = str(current digit)
for expression, value in results.items():
right = str(expression)

solutions[left + "+" + right] = eval(left + "+" + right)

solutions[left + "-" + right] = eval(left + "-" + right)
solutions[left + right] = eval (left + right)

return solutions
Verification
First, you write a unit test that checks the values shown in the introduction, namely the inputs 1

to 3, and which combinations can be built upon them.

@pytest.mark.parametrize ("digits, expected",

(e, 2, 31,
{"12-3": 9,
"123": 123,
"1+2+3": 6,
"1+2-3": 0,
"1-243": 2,
"1-23": -22,
"1-2-3": -4,
"1+23": 24,

"124+3": 15})1)
def test all combinations(digits, expected):
result = find all combinations (digits)
assert result == expected
Additionally, you want to verify the functionality for the result value 100.
@pytest.mark.parametrize ("digits, value, expected",
((rx, 2, 3, 4, 5, 6, 7, 8, 91, 100,
{"1+23-4+5+6+78-9",
"12+3+4+5-6-7+89",
"123-45-67+89",
"123+4-5+67-89",
"123-4-5-6-7+8-9",
"123+45-67+8-9",
"1+2+3-4+5+6+78+9",
"12+3-4+5+67+8+9",
"14+423-4456+7+8+9",
"14+424+34-54+67-84+9",
"12-3-4+5-6+7+89"}) 1)

def test all combinations with value(digits, value, expected):
result = all combinations with value(digits, value)

assert result == expected

7.4.7 Solution 7: Water Jug Problem (3% kv %)

Say you have two jugs with capacities of m and n liters. Unfortunately, these jugs have
no markings or indications of their fill level. The challenge is to measure x liters, where x
is less than mor n. At the end of the procedure, one jug should contain x liters and the
other should be empty. Write function solve water jugs(sizel, size2, de-
sired liters) to display the solution on the console and, if successful, return True,

otherwise False.
Examples

For two jugs, one with a capacity of 4 liters and one with a capacity of 3 liters, you can measure

2 liters in the following way:

State Action

Jug 1: 0/Jug 2: 0 Both jugs initial empty

Jug 1: 4/Jug 2: 0 Fill jug 1 (unnecessary, but due to the algorithm)
Jug 1: 4/Jug 2: 3 Fill jug 2

Jug 1: 0/lJug2:3 Emptyjug 1

Jug 1: 3/Jug 2: 0 Pourjug 2intojug 1

Jug 1:3/Jug2:3 Filljug 2

Jug 1:4/Jug2:2 Pourjug2injug 1

State Action

Jug 1: 0/Jug2:2 Empty jug 1

Solved

On the other hand, measuring 2 liters is impossible with two jugs of 4 liters capacity

each.

Algorithm To solve the water jug problem, you use recursion with a greedy algorithm. Here,

at each point in time, you have the following next actions as possibilities:

. Empty jug 1 completely.

. Empty jug 2 completely.

. Fill jug 1 completely.

. Fill jug 2 completely.

. Fill jug 1 from jug 2 until the source jug is empty or the jug to be filled is full.

. Fill jug 2 from jug 1 until the source jug is empty or the jug to be filled is full.

Try these six variants step by step until one of them succeeds. To do this, you need to test
each time whether there is the desired number of liters in one of the jugs and whether the other

is empty.
def is solved(current jugl, current jug2, desired liters):
return (current jugl == desired liters and current jug2 ==
0) or \
(current jug2 == desired liters and current jugl ==

0)

Because trying out many solutions can be quite time-consuming, you remember for
optimization the combinations you have already tried out. This speeds up the calculation by
lengths but makes the implementation only minimally more complicated if you model the
already calculated levels in the form of a tuple. To find the solution, you start with two empty

jugs.
def solve water jugs(sizel, size2, desired liters):

return solve water jugs rec(sizel, size2, desired liters,
0, 0, {})
def solve water jugs rec(sizel, size2, desired liters,
current jugl, current jugZ2,
already tried):
if is solved(current jugl, current jug2, desired liters):
print ("Solved Jug 1:", current jugl, " / 2:",
current jug2)
return True
key = (current jugl, current jug2)
if key not in already tried:
already tried[key] = True
try all 6 variants

print ("Jug 1:", current jugl, " / 2: ", current jug2)

min 2 1 = min(current jug2, (sizel - current jugl))
min 1 2 = min(current jugl, (size2 - current jug2))
result = solve water jugs rec(sizel, sizeZ,

desired liters,
0, current jugz,
already tried) or \
__solve water jugs rec(sizel, size2,
desired liters,
current jugl, O,
already tried) or \
__solve water jugs rec(sizel, size2,
desired liters,
sizel, current jugz,
already tried) or \
__solve water jugs rec(sizel, size2,
desired liters,
current jugl, size2,
already tried) or \
__solve water jugs rec(sizel, size2,
desired liters,
current jugl + min 2 1,

current jug2 - min 2 1,

already tried) or \
__solve water jugs rec(sizel, size2,
desired liters,

current jugl - min 1 2,
current jug2 + min 1 2,
already tried)

already tried[key] = result

return result

return False

ATTENTION: POSSIBLE PITFALL
'When implementing this, you might get the idea of simply examining all six variants
independently, as you would do to determine all exits from a maze, for example. However, I’'m
afraid that’s not right because it would allow multiple actions in one step. Therefore, only one
step has to be examined at a time. Only in case of a failure do you proceed with another one.
Thus, the following variant shown is not correct— it detects the solution, but additional, partly
confusing steps are executed:
// Intuitive, BUT WRONG, because 2 or more steps possible
action emptyl = solve water jugs rec(sizel, sizeZ2,
desired liters,
0, current jugZz,

already tried);
action empty2 = solve water jugs rec(sizel, sizeZ2,
desired liters,

current jugl, O,
already tried);
action filll = solve water jugs rec(sizel, size2,
desired liters,

sizel, current jugZz,
already tried);
action fill2 = solve water jugs rec(sizel, size2,
desired liters,
current jugl, sizeZ2,
already tried);

min 2 1 = min(current jug2, (sizel - current jugl))

action fillupl from2 = solve water jugs rec(sizel, size2,
desired liters,

current jugl +
min 2 1),

current jug2 -
min 2 1, already tried);
min 1 2 = min(current jugl, (sizeZ - current jug2))
action fillup2 froml = solve water jugs rec(sizel, size2,
desired liters,

current jugl -
min 1 2),

current jug2 +

min 1 2, already tried);

Verification

Let’s determine the solution for the combination from the example in the Python command line:
>>> print(solve water jugs (4, 3, 2))

Jug 1: 0 / 2: O

Jug 1: 4 / 2: 0

Jug 1: 4 / 2: 3

Jug 1: 0 / 2: 3

Jug 1: 3 / 2: O

Jug 1: 3 / 2: 3

Jug 1: 4 / 2: 2
Solved Jug 1: 0 / 2: 2
True

Let’s try the counterexample with two 4-liter buckets and the target of 2 liters:
>>> print(solve water jugs (4, 4, 2))
Jug 1: 0 / 2: O

Jug 1: 4 / 2: 0
Jug 1: 4 / 2: 4
Jug 1: 0 / 2: 4
False

7.4.8 Exercise 8: All Palindrome Substrings (3% %k %k i)

In this assignment, you want to determine for a given word whether it contains palin-
dromes and, if so, which ones. Write recursive function a1l palindrome part-
s_rec (input) that determines all palindromes with at least two letters in the passed

string and returns them sorted alphabetically.

Examples
Input Result
“BCDEDCB” [“BCDEDCB?”, “CDEDC”, “DED”]

“ABALOTTOLL” [*ABA”,“LL", “LOTTOL”, “OTTO", “TT’]

LEE 1]

“racecar” [“aceca”, “cec”, “racecar’]

Algorithm This problem is broken down into three subproblems for texts of at least length

1.
Is the entire text a palindrome?
2.
Is the part shortened on the left a palindrome (for all positions from the right)?

3.
Is the right-shortened part a palindrome (for all positions from the left)?

For a better understanding, look at the procedure for the initial value LOTTOL :
1) LOTTOL
2) OTTOL, TTOL, TOL, OL
3) LOTTO, LOTT, LOT, LO
After that, you move both left and right inwards by one character and repeat the checks and
this procedure until the positions overlap. For the example, the checks continue as follows:
1) OTTO
2) TTO, TO
3) OTT, OT

And finally, in the last step, only one check remains because the other substrings consist of

only one character:

1) TT
2) T
3) T

As previously applied several times, a two-step variant is used here. In this case, the
first method primarily initializes the result object and then starts the recursive call
appropriately.

Based on this step-by-step procedure, let’s implement the check for palindrome substrings as
follows:

def all palindrome parts rec (input) :

results = set ()
__all palindrome parts rec(input, 0, len(input) - 1,
results)

return results
def all palindrome parts rec(input, left, right, results):
recursive termination
if left >= right:
return
1) check if the whole string is a palindrome
complete is palindrome = is_palindrome_rec_in range (input,
left, right)
if complete is palindrome:
new candidate = input[left:right + 1]
results.add (new candidate)
2) check text shortened from left
for i in range(left + 1, right):
left part is palindrome =
is_palindrome_rec_in range (input, i, right)
if left part is palindrome:
new candidate = input[i:right + 1]
results.add (new candidate)
3) check text shortened from right
for i in range(right - 1, left, -1):

right part is palindrome =
is palindrome_rec_in range (input, left, 1)
if right part is palindrome:
new candidate = input[left:i + 1]
results.add (new candidate)
recursive descent
__all palindrome parts_rec_in range (input, left + 1, right -
1, results)

Here you use the function is palindrome rec in range (input, left,
right) created in Section 4.2.4 in Exercise 4 to check for palindromes on ranges of a string.
This is shown again here for completeness:
def is palindrome rec in range (input, left, right):

recursive termination
if left >= right:
return True
if inputlleft] == input[right]:
recursive descent
return is palindrome rec in range (input, left + 1, right
- 1)
return False
Although the algorithm is quite comprehensible, it seems rather awkward with all the

loops and index accesses. In fact, an exquisite solution exists.

Optimized algorithm Instead of painstakingly trying through all the shortened substrings,

you can do much better by recursively invoking your function for a shortened part:
def all palindrome parts rec optimized (input) :

results = set ()

__all palindrome parts rec optimized(input, 0, len (input) -
1, results)

return results
def all palindrome parts rec optimized(input, left, right,
results):

recursive termination

if left >= right:

return

1) check if the whole string is a palindrome

if is palindrome rec(input, left, right):
results.add (input[left: right + 1])
recursive descent: 2) + 3) check from left / right
__all palindrome parts rec optimized(input, left + 1, right,
results)
__all palindrome parts rec optimized(input, left, right - 1,
results)
This can be made a bit more readable, but the performance is (slightly) worse due to the
creation of substrings:
def all palindrome parts rec optimized v3 (input) :
results = set()
__all palindrome parts rec optimized v3(input, results)
return results
def all palindrome parts rec optimized v3(input, results):
recursive termination
if len(input) < 2:
return
1) check if the whole string is a palindrome
if is palindrome rec(input, 0, len(input) - 1):
results.add (input)
recursive descent: 2) + 3) check from left / right
~_all palindrome parts rec optimized v3(input[l:], results)
__all palindrome parts rec optimized v3(input[0:len(input) -

1], results)

Verification

For testing, you use the following inputs, which show the correct operation:
def input and expected() :
return [("BCDEDCB",

{"BCDEDCB", "CDEDC", "DED"}),
("ABALOTTOLL",
{"ABA", "LL", "LOTTOL", "OTTO", "TT"}),
("racecar",
{"aceca", "cec", "racecar"})]

@pytest.mark.parametrize ("input, expected",

input and expected())
def test all palindrome parts recs (input, expected):
result = all palindrome parts rec (input)
assert result == expected
@pytest.mark.parametrize ("input, expected",
input and expected())
def test all palindrome parts recs optimized(input, expected):
result = all palindrome parts rec optimized (input)
assert result == expected
@pytest.mark.parametrize ("input, expected",
input and expected())

def test all palindrome parts recs optimized v3(input,

expected) :
result = all palindrome parts rec optimized v3(input)
assert result == expected

Bonus: Find the Longest of All Palindrome Substrings

This time there is no requirement for maximum performance.

Algorithm After calculating all the palindrome substrings, finding the longest one is just a

matter of traversing the values and using 1en () to find the longest one as follows:
def longest palindrome part (input) :

all palindrome parts = all palindrome parts rec(input)

longest = "'

for word in all palindrome parts:

if len(word) > len(longest):
longest = word

return longest

Verification

For testing, you use the following inputs, which show the correct operation:
@pytest.mark.parametrize ("input, expected",
[("ABALOTTOLL", "LOTTOL"),

("dreh malam herd",
"dreh malam herd"),
("abc XYZYX def", " XYZYX ")])
def test longest palindrome (input, expected):
longest = longest palindrome part (input)

assert longest == expected

7.4.9 Solution 9: The n-Queens Problem (% Kk v vr)

In the n-Queens Problem, n queens are to be placed on an n x n board in such a way
that no two queens can beat each other according to chess rules—thus, other queens
must not be placed in the same row, column, or diagonal. To do this, extend the solution
shown in Section 7.2.1 and implement the function is valid position (board,

col, row).Also write function print board (board) to display the board as well as

output the solution to the console.
Example

For a 4 x 4 playfield, here is the following solution, with the queens symbolized by a Q:

Algorithm Let’s recall and repeat the algorithm presented in the introduction.

You attempt to place the queens one after the other at different positions. You start with
a queen in row 0 and position 0 (upper left corner). After each placement, a check is
made to ensure that there are no collisions in the vertical and diagonal left and right di-

rections upwards with queens that have already been placed. A check downwards is

logically not necessary in any case because no queens can be placed there yet. After
all, the filling is done from top to bottom. Since you also proceed line by line, a check in

the horizontal direction is unnecessary.

Provided the position is valid, move to the next row, trying all positions from 0 to n - 1.
This procedure is repeated until you have finally placed the queen in the last row. If
there is a problem positioning a queen, use backtracking: remove the last-placed queen
and try again at the next possible position. If the end of the row is reached without a so-
lution, this is an invalid situation, and the previous queen must also be placed again. You
can see that backtracking sometimes goes back up one row, in extreme cases to the

first row.

Let’s start with the easy part, namely recapping the introduction and creating the playfield

and invoking the function to solve it:
def solve n queens(size):

board = initialize board(size)

start the recursive solution finding

solved = solve_n_queens_helper (board, 0)

return solved, board
def initialize board(size):

return [[' ' for col in range(size)] for row in range(size)]

To model the playfield, you use a nested list. A Q represents a queen, a space a free field. To

keep the algorithm understandable, you extract the two functions, shown next,
place queen () and remove queen () for placing and deleting the queens:
def solve n queens helper (board, row):

max row, max col = get dimension (board)

recursive termination

if row >= max row:

return True

solved = False

col =0

while col < max col and not solved:

if is valid position((board, col, row):

place_queen (board, col, row)

recursive descent
solved = solve_n queens_helper (board, row + 1)
Backtracking, if no solution found
if not solved:
remove_queen (board, col, row)
col +=1
return solved
The extraction of the following two functions leads to a better readability:
def place queen(board, col, row):
board[row] [col] = 'Q'
def remove queen (board, col, row):
board[row] [col] = " '
As areminder, get dimension (values2dim) is shown again:
def get dimension (values2dim) :
if (isinstance(values2dim, list)):
return (len (values2dim), len(values2dim([0]))
if (isinstance(values2dim, np.ndarray)) :
return values2dim.shape
raise Exception ("unsupported type", type(values2dim)) '
Start your own implementation Let’s now get down to implementing the helper function.
First, the one that checks whether a constellation is valid:
def is valid position(board, col, row):
max row, max col = get dimension (board)
return check horizontally(board, row, max col) and \
check vertically(board, col, max row) and \
check diagonally left up(board, col, row) and \
check diagonally right up(board, col, row, max col)

Actually, the horizontal check is superfluous since you are just checking a new row
where no other queen can be placed yet—for the sake of illustration, you implement and

call the function anyway.

In the implementation, you use the following helper function to check in the x and y
directions:
def check horizontally(board, row, max col):
col =0

while col < max col and board[row] [col] == " ':

col +=1
return col >= max col
def check vertically(board, col, max row) :
row = 0
while row < max row and board[row] [col] == "' ':
row += 1
return row >= max roy
Since you fill the board from top to bottom, no queen can be placed below the current
position yet. Thus, you limit yourself to the relevant diagonals to the top left and right:
def check diagonally right up(board, col, row, max col):
diag ru free = True
while col < max col and row >= O:
diag ru free = diag ru free and board[row] [col] == "'
row —= 1
col +=1
return diag ru free
def check diagonally left up(board, col, row):
diag lu free = True
while col >= 0 and row >= O:

diag lu free = diag lu free and board[row] [col] =

row -= 1
col -=1
return diag lu free
The output of the stylized chessboard with n x n squares is implemented as follows—
somewhat special is the calculation of the grid and of the cross lines:
def print board(values):
line = "-" * (len(values[0]) * 2 + 1)
print(line)
for y in range(len(values)):
print("|", end='"")
for x in range(len(values[y])):
print (values|[y] [x], end="']|")
print ()

print(line)

Verification

For two different sized playfields, you compute the solution to the n-Queens Problem using
solve n queens (). Finally, you display the playfield determined as the solution in each
case on the console.
def solve and print(size):

solved and board = solve n queens(size)

if solved and board[0]:

print board(solved and board[1])

def main():

solve and print (4)

solve and print(8)

For the playing fields of sizes 4 x 4 and 8 X § you get the following output (only the second

one is shown):

Alternative Solution Approach

Although the previously chosen representation as a two-dimensional array (or more pre-
cisely as two-dimensional nested lists) is absolutely catchy, there is an optimization. Be-

cause only one queen may be placed per row, it is possible to use a list for modeling the

playfield and the queens’ positioning, which simplifies a lot. Sounds strange at first. How

is it supposed to work?

For the solution of the n-Queens Problem, you need in each case x- and y- coordinates.
You reconstruct them by the following trick: The y-coordinate results from the position in
the list. For the x-coordinate, you store a corresponding numerical value in the list. The
presence of a queen, previously indicated by the character Q, can now be determined
indirectly. If the list contains a numerical value greater than or equal to 0 at the position

of the y-coordinate, then a queen is present.

With this knowledge, you can adjust the implementation of the algorithm in the appropriate
places. In fact, the basic logic does not change, but the function signatures and position
processing do. Conveniently, you also no longer need to generate a two-dimensional model of
the playfield in advance. But let’s look at the actual algorithm first:
def solve n queens(size):

board = []
solved = solve n queens helper (board, 0, size)
return solved, board # (solved, board)
def solve n queens helper (board, row, size):
recursive termination
if row >= size:
return True
solved = False
col =0
while col < size and not solved:
if is valid position(board, col, row, size):
__place queen (board, col, row)
recursive descent
solved = solve n queens helper (board, row + 1,
size)
backtracking, if no solution
if not solved:
__remove queen (board, col, row)
col +=1

return solved

For better readability, you modify the following functions appropriately:
def placeQueen(board, col, row):
if len(board) != row:
raise ValueError ("invalid row" + str(row) + " col: " +
str(col))
board.append(col)
def removeQueen (board, col, row):
if board[row] != col:
raise ValueError ("invalid col"™ + str(col) + " row: " +
str (row))
board.remove (col)

The implementation of the check whether a constellation is valid becomes enormously
simplified. For the vertical, it is checked whether the list already contains the same column.
Only the check of the diagonals is still done in a separate helper method.
def is valid position(board, col, row, size):

yfree = col not in board
return yfree and check diagonally(board, col, row, size)

Again, with the diagonals, you can apply the following trick: The difference in the x-
direction must correspond to the difference in the y-direction for the queens located on a
diagonal. For this, starting from the current position, only the coordinates have to be computed
and compared:

(x - 2, y - 2) X X (x + 2, v - 2)
\ /
(x =1, v - 1) X X (x + 1, v - 1)
\ /
X
(x,¥)

You implement the whole thing as follows:
def check diagonally(board, col, row, size):

diag lu free = True

diag ru free = True

for y in range (row) :
x pos lu = col - (row - y)
X pos ru = col + (row - y)
if x pos lu >= 0:

diag lu free = diag lu free and board[y] != x pos lu

if x pos ru < size:
diag ru free = diag ru free and board[y] != x pos ru
return diag ru free and diag lu free
The output of the stylized chessboard with n x n squares is minimally adapted to the new
data structure:
def print board(board, size):
line = "=-" * (size * 2 + 1)
print (line)
for y in range(size):
print (" |", end='")
for x in range(size):
value = 'Q' if x == board|[y] else ' '
print (value, end="'|")

print ("\n" + line)
Verification

Again, for two playfields, you compute the solution to the n-Queens Problem using
solve n queens (), which is supplied as a tuple, namely in the form of a bool variable as
an indicator whether there is a solution, and as a list with the solution, if it exists. This is then
output to the console:
def solve and print(size):

solved and board = solve n queens(size)

if solved and board[0]:

print board(solved and board[1l], size)

def main () :

solve and print (4)

solve and print(8)

The results are identical to the previous ones and are therefore not shown again.

7.5 Summary: What You Learned

Basic recursion is a very nice technique. When using it a bit more intensively, you see
that simple recursion, besides the advantages, sometimes requires some patience due

to long running times.

In this advanced chapter on recursion, you have significantly expanded your toolbox
with memoization and backtracking. Memoization allows you to increase performance,
and backtracking helps solve entertaining and amusing puzzles, such as Sudoku puz-

zles or the n-Queens problem. It is also possible to find a way out of a maze.

Now that you are fluent in recursion, you are well prepared to expand and use your
knowledge for various algorithms on trees, which are special, very helpful, and exciting

data structures suitable for various kinds of challenges. Let’s get in touch.

Footnotes

1
Of course, you are not interested in empty strings and single characters in this assignment, although of

course, strictly speaking, they are also palindromes by definition.

2
Of course, you are not interested in empty strings and single characters in this assignment, although of

course, strictly speaking, they are also palindromes by definition.

© The Author(s), under exclusive license to APress Media, LLC, part of Springer Nature 2022
M. Inden, Python Challenges
https://doi.org/10.1007/978-1-4842-7398-2 8

8. Binary Trees

Michael Indent
(1) Zurich, Switzerland

While Python provides list, sets, and dictionaries as a rich variety of real-world data structures, it un-
fortunately does not include trees for direct use. However, they are helpful for various use cases and
therefore desirable. Because the topic of trees is quite extensive and not to go beyond the scope of

this book, | will deal mainly with binary trees and binary search trees as special cases.

Before you look at trees in more detail, I would like to mention some fields of usage:

. A file system is hierarchically structured and can be modeled as a tree. Here the nodes corre-
spond to the directories and the leaves to the files.

. Mathematical calculations can be represented by trees. You will explore this in an exercise later.

. In the area of databases, B-trees! are used for efficient storage and search.
. In compiler construction, you can use an abstract syntax tree (AST) to represent the source
code.?

8.1 Introduction

In this introduction, you'll first learn some terminology before briefly exploring binary tree and binary
search trees. After that, I'll discuss traversal and some properties of trees. Finally, I'll introduce three

trees that are used repeatedly in the text and the assignments.
8.1.1 Structure, Terminology, and Examples of Use

Trees allow both structured storage and efficient access to data managed there. For this purpose, trees are
strictly hierarchical and, as in real trees, no branch grows back into the trunk. A branching point is called node
and stores a value. A node at the end of a branch is called leaf —values are also found there. The connecting

branch pieces are called edges . Figure 8-1 gives a first impression.

https://doi.org/10.1007/978-1-4842-7398-2_8

edge ------------ / | ~—

Parent 1 Parent 2 ... Parent n
/ \ x" \s. ," \‘,‘
Child Leaf

v '\
Leaf Leaf

Figure 8-1 A tree with some nodes and leaves

The figure illustrates that trees consist of hierarchically organized nodes. They start from a root
(which, interestingly enough, is located at the top in computer science), branch out into several chil-
dren, which in turn can have any number of child nodes. Thus, they are parents and represent the

roots of subtrees. Each node is referenced by exactly one other node.

8.1.2 Binary Trees

A binary tree is a special tree in which each node stores one value, and each node possesses at most
two successors, often called left and right. This restriction makes it easier to express many algorithms.
As a result, the binary tree is widely used in computer science. It also forms the basis for the binary

search tree presented in the following.

Binary tree, homemade A binary tree can be realized with little effort by the following class called
BinaryTreeNode:
class BinaryTreeNode:
def init (self, item):
self.left = None
self.right = None
self.item = item
def is leaf(self):
return self.left is None and self.right is None
def str (self):
return "BinaryTreeNode [item=%s, left=%s, right=%s]" %
(self.item, self.left, self.right)

For the examples in this book, you do not need to model the binary tree as a standalone class called
BinaryTree, but you will always use a special node as a root of the above type BinaryTreeNode.
However, to further simplify the handling in your own and especially more complex business ap-
plications, the definition of a class BinaryTree is a good idea. There you can also provide various

useful functionalities.

8.1.3 Binary Trees with Order: Binary Search Trees

Sometimes the terms “binary tree” and “binary search tree” (BST for short) are used interchangeably, but this is
not correct. A binary search tree is indeed a binary tree, but one with the additional property that the nodes are
arranged according to their values. The constraint is that the root’s value is greater than that of the left
successor and less than that of the right successor. This constraint applies recursively to all subtrees, as

illustrated by Figure 8-2. Consequently, a BST does not contain any value more than once.

D

AN
B G

7N\
E X

Figure 8-2 Example of a binary search tree with letters

Search in a BST A search in a BST can be performed in logarithmic time due to the ordering of the values.
You implement the function find (startNode, searchFor) for this purpose. Depending on the
comparison of the value with the current node’s value, the search continues in the appropriate part of the tree
until the value is found. If it is not found, None is returned.
def find(current node, search for):

recursive termination
if current node is None:
return None
recursive descent to the left or right depending on the comparison
if current node.item < search for:
return find(current node.right, search for)
if current node.item > search for:
return find(current node.left, search for)

return current node

Insertion into a BST The insertion into a BST may be expressed recursively as well. The insertion has to
start at the root so that the ordering of values within the BST can be ensured.
def insert (current node, value):
recursive termination
if current node is None:
return BinaryTreeNode (value)
recursive descent: to the left or right depending on the comparison
if value < current node.item:
current node.left = insert(current node.left, value)
elif value > current node.item:
current node.right = insert (current node.right, value)
return current node
Example of a BST The functions shown earlier are also part of the utility module for this chapter called
tree utils. Withit, BSTs can be constructed quite easily and readably. In the following, you use the trick
underscore as a prefix to keep the names of the nodes as speaking as possible. Besides, you only need the
assignment to a variable if you want to continue working with the node. In particular, however, the root is
always returned.
3 = BinaryTreeNode (3)
insert (3, 1)

insert(3, 2)

insert (3, 4)

TreeUtils.nice print(3)
print ("tree contains 27?", find(3, 2))

print("tree contains 13?", find(3, 13))

This generates the following output:

tree contains 27?7 BinaryTreeNode [item=2, left=None, right=None]
tree contains 13? None

Problematic insertion order Please note that the sequence in which elements are added can greatly impact
the performance of subsequent actions such as searches. I cover this briefly in Section 8.1.5. The following
example demonstrates how quickly a tree degenerates into something like a list:

4 = BinaryTreeNode (4)
insert(4, 3)

insert (4, 2)

insert(4, 1)

TreeUtils.nice print(4)

This generates the following output:

INT: ASCII OUTPUT OF TREES
For the output of trees in the examples and exercises | call function nice print (). Its implementa-

ion is developed in Exercise 13.

8.1.4 Traversals

When traversing a tree, a distinction is made between depth-first and breadth-first searches. Figure 8-3

illustrates both.

depth-first search breadth-first search

/\

/ \ / \ - Z \
' & d-----e--f--
h' l J k !h___-* 1 ____*J__*k

Figure 8-3 Procedure for a depth-first search and a breadth-first search

In a depth-first search, you traverse the tree as deeply as possible. With the breadth-first search, you
move from the root node level by level through the tree. This is why it is also called level order or
breadth-first.

Breadth-First/Level Order

The following sequence results for the tree from the example when traversing the levels from the root node

downwards—the implementation is the subject of Exercise 5.

abcdefghi3jk
Conversion from tree to list A great advantage of the level order traversal is its good traceability and
comprehensibility. If you have a tree in mind, you can easily predict this traversal and its result. This is

an important and useful feature, especially when testing.

Let’s assume that you have already solved Exercise 5 and thus have access to the implementation. Based on
it, you can convert a tree into a list as follows:
def convert to list(node):
result = []
levelorder (node, lambda item: result.append(item))

return result

Depth-First Searches

The three known depth-first search methods are preorder, inorder, and postorder. Preorder first processes the
node itself and then those from the left and then the right subtree. For inorder, the processing order is first the
left subtree, then the node itself, and then the right subtree. Postorder processes first the subtrees on the left,
then on the right, and finally the node itself. The three depth-first search methods iterate through the previously
shown values as follows:
Preorder: abdheijcfkg
Inorder: hdbiejafkcg
Postorder: h di jebk fgca
The outputs are not quite as intuitive. In the case of a BST, the inorder traversal returns the nodes’ values
according to the order of their values. This yields 1 2 3 4 5 6 7 for the following tree:
4
| === T
2 6
| ==+-——| [==+-=1|
1 3 5 7
Interestingly, these traversals can be easily implemented recursively. The action is highlighted in bold in
each case:
def preorder (node) :
if node is None:
return
print (node.item)
preorder (node.left)
preorder (node.right)
def inorder (node) :
if node is None:
return

inorder (node.left)

print (node.item)

inorder (node.right)
def postorder (node) :

if node is None:

return

postorder (node.left)

postorder (node.right)

print (node.item)

NOTE: PRACTICAL RELEVANCE OF POSTORDERPostorder is an important type of tree traversal for

the following use cases:

« Delete: When deleting a root node of a subtree, you must always ensure that the child nodes are
also deleted correctly. A postorder traversal is a good way to do this.

« Calculations of sizes: To determine the size of a directory or a hierarchical project’s duration, pos-
torder is best suited.

8.1.5 Balanced Trees and Other Properties

One speaks of balanced trees if in a binary tree the heights of the two subtrees differ by at most 1

(sometimes by some other constant value). The opposite is a degenerated tree, which arises from,
among other things, inserting data in ways that are awkward for the tree, specifically when numbers
are added in an ordered fashion into a binary search tree. This causes the tree to degenerate into a

linear list, as you saw in an example in section 8.1.3.

Sometimes one or more rotation(s) restores the balance. For the tree from the introduction, a rotation to the

left and one to the right is visualized in Figure 8-4. In the middle, you can see the balanced starting position.

f6 d4 b2
7/ N\ PN
d4 g7 b2 f6 al/ \d4

bz/ \eS 1/ \3 5/ \7 / \f6
N a C e g c3 .

al c3 es g7

Figure 8-4 Rotation to the left, original, rotation to the right

The Properties Level and Height

As indicated in the introduction, trees are hierarchically structured and consist of nodes, which optionally have
child nodes and may be nested arbitrarily deep. To describe this, the two terms level and height exist. The level
is usually counted from O and starts at the root and then goes down to the lowest leaf. For height, the following
applies. For a single node, it is 1. It is determined by the number of nodes on the way down to the lowest leaf

for a subtree. This is visualized in Figure 8-5 where some nodes labeled as a child are, in fact, also the parent of

others.
height5 ----------------------------- - Root «---------moommome e level 0
PN
height4 ----------------------- - Parent Pafeil s-================e==: level 1
P v\
height 3 --------------- > Child Child Child «---------------- level 2
< \ rd rd
height 2 ----------- «Child Leaf Leaf Leaf =#---------=---=ec--- level 3
rd
heisht 1 ----« Lgal =-----r----c-rc=scmcorecroccnccrcnncccnraeccnonacsases level 4

Figure 8-5 Level and height of a tree

The Properties Completeness and Perfectness

A complete binary tree is characterized by the fact that all levels must be completely filled, except for
the last level. Moreover, all nodes have to be as far to the left as possible in the last level, so there are

no gaps or all nodes are present.

In a complete binary tree , values may be missing on the right side (in algorithmics this is also called left-
full):
4
/ N\
2 6
/N
1 35
If all positions are occupied, this is called a perfect tree.
4
/N
2 6
/N /N
1 35 7
The following constellation (here the missing 5 from the upper tree) is not allowed in a binary tree in the

context of completeness (because the tree is then not left-full):

4

/N
2 6

/ A\ \
1 3 7

Let’s try something more formal:

. A perfect binary tree is one in which all leaves are on the same level and all nodes have two
successors each.

. A complete binary tree is one in which all levels are completely filled —except for the last one,
where nodes may be missing, but only as far to the right as possible.

. A full binary tree means that each node has either no children or two children, as shown in the

following diagram:

4

/N
2 6

/ N\
5 7
This is the weakest requirement.

A graphical illustration for these definitions can be found online at www.programiz.com/dsa/com=

plete-binary-tree.

8.1.6 Trees for the Examples and Exercises

Because you will repeatedly refer to some typical tree structures in the following, you implement three

creation functions in the utility module example trees.
Tree with Letters and Numbers

To try out tree traversal and other actions, construct a tree of seven nodes. Therefore you define objects of type

BinaryTreeNode, which still have to be connected appropriately after their creation. For simplicity, the

examples here are implemented without information hiding. Consequently, you directly access the attributes

left and right.

def create example tree():
al = BinaryTreeNode ("al")
b2 = BinaryTreeNode ("b2")
c3 = BinaryTreeNode ("c3")

()

d4 = BinaryTreeNode ("d4"

http://www.programiz.com/dsa/complete-binary-tree

e5 = BinaryTreeNode ("eb5")
f6
g7 = BinaryTreeNode ("g7")
d4.left = b2

d4.right = f6

b2.left = al

b2.right = c3

f6.left = eb

f6.right = g7

BinaryTreeNode ("f6")

return d4
This results in the following tree with root d4:
d4
| —==—- to———- |
b2 f6
[——+——1 [—=+-—]
al c3 eb g’
You may be surprised about the combination of letters and numbers. | chose this intentionally be-

cause it allows understanding some algorithms a bit easier—for example, to check traversals’ order.

Trees with Textual and Real Digits

For some exercises, you also need a tree where the nodes’ values consist only of digits (but textually
as string). Because it is impossible to name the variables for the individual nodes with digits, let’s use

the trick of starting the variable name with an underscore.

To construct the tree, utilize the function insert (), which puts the value to be inserted in the appropriate
place for it—this is only possible if you work with a BST and its order. As you can easily see, this will be much
easier than the manual linking shown before.
def create number tree():

4 = BinaryTreeNode ("4")

insert(4, "2")
insert(4, "1")
insert(_ 4, "3")
insert(4, "6")
insert(_4, "5")
insert (_ 4, "7")

return 4

This results in the following tree:
4
| === T |
2 6

| —=+-—1| | ==+-—|
1 3 5 7

Variant with integers The tree shown is generated as a variant for integers as follows:
def create integer number tree():

4 = BinaryTreeNode (4)

14

insert(4, 2)
insert(4, 1)
insert(4, 3)
insert(_4, ©6)
insert(_4, 5)
insert(4, 7)

return 4
8.2 Exercises

8.2.1 Exercise 1: Tree Traversal (3 %k v v 3¥)

Extend the functions presented in the introduction for the traversing trees so that they can perform
any action on the current node during the traversal. To do this, add an action to the respective signa-

ture, such as for inorder: inorder (node, action).

Bonus: Fill up a Tree into a List Build a representation of the values of the nodes in the form of a list.
To do this, write function to 1ist (node) that returns the values based on an inorder traversal, and
functions to list preorder (node) and to list postorder (node) that are based on a pre-

order and postorder traversal, respectively.
Example

When using the following tree

d4
| —==—= to———- |
b2 fé
| —=+-~ [==+-~
al c3 eb g7
the conversions should result in something similar to
to list: ['al', 'b2', 'c3', 'd4', 'e5', 'f6', 'g7']
to list preorder: ['d4', 'b2', 'al', 'c3', 'f6', 'e5', 'g7']
to list postorder: ['al', 'c3', 'b2', 'eb', 'g7', 'fe', 'd4']

8.2.2 Exercise 2: Inorder, Preorder, and Postorder Iterative (k% % % i)

In the introduction, you learned about inorder, preorder, and postorder as recursive variants. Now im-

plement these types of traversals iteratively.
Example

Again, you use the following tree:
d4
| —==== T |
b2 f6
| ==+-= [==+——]
al c3 eb g7
The three depth-first search methods traverse this tree as follows:
Preorder: d4 b2 al c3 f6 e5 g7
Inorder: al b2 c3 d4 e5 f6 g7
Postorder: al c3 b2 e5 g7 f6 d4

8.2.3 Exercise 3: Tree Height (3k %k v v 3r)

Implement function get _height (node) to determine the height for a tree and for subtrees with a

single node as root.
Example

The following tree of height 4 is used as a starting point:

8.2.4 Exercise 4: Lowest Common Ancestor (3 %k %k i)

Compute the lowest common ancestor (LCA) for two nodes, A and B, hosted in an arbitrary binary
search tree. The LCA denotes the node that is the ancestor of both A and B and is located as deep as
possible in the tree—the root is always the ancestor of both A and B. Write function

find lca(start node, valuel, value2), which,in addition to the start node of the search

(usually the root), also receives lower and upper limits, which indirectly describe the nodes that are

closest to these values. If the values for the limits are outside the range of values, then there is no

LCA and it returns None.
Example
The following binary tree is shown. If the lowest common ancestor is determined for the nodes with the values

1 and 5, this is the node with the value 4. In the tree, the respective nodes are circled and the ancestor is

additionally marked in bold.

8.2.5 Exercise 5: Breadth-First (k& %k i)

In this exercise, you are asked to implement the breadth-first search, also called level order, using the

function levelorder (start node, action).The breadth-first search starts at the given node—

usually the root—and then works its way through the tree level by level.

[NoteUse a queue to store data on the nodes yet to be visited. The iterative variant is a bit easier to im-

plement than the recursive one.

Examples

For the following two trees, the sequence 123 4 5 6 7 (for the left) and M I C H A E L (for the right) are to be

determined as the result.

8.2.6 Exercise 6: Level Sum (k& k& ki)

In the previous exercise, you implemented the breadth-first search. Now you want to sum up the val-
ues per level of a tree. For this purpose, let's assume that the values are natural numbers of type int.

Write function level sum(start node).

Example

For the tree shown, the sums of the values of the nodes per level should be calculated and return the following
result: {0=4, 1=8, 2=17, 3=16}.

Level Value(s) Result

0 4 4
1 2,6 8
2 1,3,58 17
3 7,9 16

8.2.7 Exercise 7: Tree Rotate (k& k%)

Binary trees, especially binary search trees, may degenerate into lists if values are inserted only in as-
cending or descending order. An unbalance can be addressed by rotating parts of the tree. Write the
functions rotate left (node) and rotate right (node) thatrotate the tree around the node

passed as parameter to the left or right, respectively.
Example

Figure 8-6 visualizes a rotation to the left and a rotation to the right with the balanced starting position in the
middle.

f6 d4 b2

AR N
i’ ¥ " N

bz/ \eS 1/ \3 5/ \7 / \f6
2N a C e g c3 .

al c3 es o7
Figure 8-6 Rotation to the left, original, rotation to the right

8.2.8 Exercise 8: Reconstruction (k& k)

Exercise 8a: Reconstruction from a List (F kv)

In this exercise, you want to reconstruct a binary search tree that is as balanced as possible from an

ascending sorted list of natural numbers.

Example

For example, let these values be given:
\begin{lstlisting}
values = [1, 2, 3, 4, 5, 6, 7]

Then the following tree should be reconstructed from them:

Exercise 8b: Reconstruction from Inorder/Preorder (k% 5 5¥)

Suppose the sequence of values in preorder and inorder is given, each prepared as a list. This infor-
mation about an arbitrary binary tree should be used to reconstruct the corresponding tree. Write func-

tion reconstruct (preorder values, inorder values).

Example

Two sequences of values of the traversals are as follows. Based on these values, you should reconstruct the tree
shown in the previous part of the exercise.
preorder values = [4, 2, 1, 3, 6, 5, 7]

inorder values = [1, 2, 3, 4, 5, 6, 7]

8.2.9 Exercise 9: Math Evaluation (k% v 3)

Consider using a tree to model mathematical expressions with the four operators +, —, /, and =. It is
your task to compute the value of individual nodes, including in particular the value of the root node.

For this purpose, write function evaluate (node).
Example

Represent the expression 3 + 7 = (7 — 1) by the following tree to compute the value 45 for the root node:

8.2.10 Exercise 10: Symmetry (ks v)

Check if an arbitrary binary tree is symmetric in its structure. Therefore, write function is symmet-

ric (node). In addition to the structural examination, you can also check for equality of values.

Examples

To check for symmetry, you use a binary tree that is symmetric in structure (left) and a binary tree that is also

symmetric concerning values (right).

|-~ oo | / \

NOTE: THE SYMMETRY PROPERTYIn a symmetric binary tree, the left and right subtree are mirrored

through the root along an imaginary vertical line (indicated by |):
1

/

I\

2 1 2
/ | \
3 | 3

Depending on the definition, a comparison of the values can be omitted for the symmetry. In this

case, only the structural organization can be counted as relevant.

L |
Bonus: Mirror tree In the hint box, | indicated a mirror axis through the root. Create function in-

vert (node) that mirrors the nodes of a tree at this implied line through the root.

Example

A mirroring looks like this:

8.2.11 Exercise 11: Check Binary Search Tree (kK ¥y 3¥)

In this exercise, you are to check whether an arbitrary binary tree fulfills the property of a binary
search tree (BST), so if the values in the left subtree are smaller than the root node’s value and those
in the right subtree are larger—and this holds for each subtree starting from the root. For simplifica-

tion, assume int values. Write function is bst (node).
Example

Use the following binary tree, which is also a binary search tree. For example, if you replace the number 1 with
a larger number on the left side, it is no longer a binary search tree. However, the right subtree under the 6 is

still a binary search tree.

8.2.12 Exercise 12: Completeness (% % % %)

Check the completeness of a tree. To do this, you initially solve the basics in the first two parts of the

exercise and then proceed to the trickier completeness check.
Exercise 12a: Number of Nodes (v« vr v vr)

Count how many nodes are contained in any binary tree. To do this, write function

count nodes (node).

Example

For the binary tree shown, the value 7 should be determined. If you remove the right subtree, the tree consists

of only 4 nodes.
| —==== T |
2 6
[—=+-—1| [—=+-—|
1 3 5 7

Exercise 12b: Check for Full/Perfect (k& v+ vr)

For an arbitrary binary tree, check if all nodes have two successors or leaves each, and thus the tree
is full. For perfection, all leaves must be at the same height. Write functions is full (node) and

is perfect (node).

Example

The binary tree shown is both perfect and full. If you remove the two leaves below the 2, it is no longer perfect
but still full.

Full and perfect Full but not perfect
4
|===-- oo | | ===-- o= |
2 6 2 6
| ==+-=| | ==+-=| | ===
1 3 5 7 5 7

Exercise 12c: Completeness (kA k k)

In this subtask, you are asked to check if a tree is complete as defined in the introduction, so a binary
tree with all levels fully filled, with the allowed exception on the last level where nodes may be missing,

but only with gaps as far to the right as possible.

Example

In addition to the perfect tree used so far, the following tree is also complete by definition. However, if you

remove the children from node H, the tree is no longer complete.

| ==t
A C

Exercise 12d: Completeness Recursive (k& k% %)

In this last subtask, the following challenge remains to be mastered as a special treat. The check is to
be solved without additional data structures and purely recursively. At first, this sounds hardly feasible,
so I'll give a hint.

TipDevelop the solution step by step. Create an auxiliary data structure that models whether or not a

node exists for a certain position. Then traverse the tree and mark the positions appropriately. After-

wards, convert this implementation to a purely recursive one without the auxiliary data structure.

Example

As before, the following tree is complete by definition:

8.2.13 Exercise 13: Tree Printer (k& k%)

In this exercise, you are to implement a binary tree’s graphical output, as you have seen before in the
examples. Therefore, you initially solve the basics in the first three parts of the assignment and then

proceed to the trickier graphical presentation of trees.

TipUse a fixed grid of blocks of width three. This significantly contributes to a balanced representation

and reduces complexity.

Example

The following tree should cover various special cases:

| ==t
A C

Exercise 13a: Width of a Subtree (k%)

In this part of the exercise, you are asked to find the maximum width of a subtree of a given height us-
ing the function subtree width (height). For simplicity, you assume that a maximum of three
characters represents the nodes. Besides, there is a distance of at least three characters between
them. This is true for the leaves when the tree is full. On higher levels, there is naturally more space

between the nodes of two subtrees.

Examples

On the left in Figure 8-7, you see a tree of height 2, and on the right, a tree of height 3. Based on the grid of 3,
you get 9 and 21 as widths.

Height Total width Width of subtree

1 3 0 (no subtree existing)
2 9 3
3 21 9

tree A A

F—+ — 4 fo— = —F - — = —1
B C B C
F—+ — 1 P —+ — 1

width =
9

Figure 8-7 Tree width

Exercise 13b: Draw Node (% 55)

Write function draw_node (current node, line length) that creates a graphical output of a
node, generating the given set of spaces appropriately. The node value should have a maximum of

three characters and be placed in the middle.

TipRemember that if the current node has a left successor, the representation of the layer below

starts on the left with the string * | -".

Example

The example in Figure 8-8 shows a single node with a spacing of five characters. Besides, the node value is

center-aligned in a three-character box.

draw_node (“A", 5)

i

e o

L JlL JlL

/

initial node value
spacing

JIL J

spacing
— (line_length) —

Figure 8-8 Dimensions when drawing nodes

Exercise 13c: Draw Connection Lines (A %k s+ vr)

Write function draw_connections (node, line length) for building a graphical output of the

connection lines of a node to its two successors. Missing successors have to be handled correctly.

TipThe line length refers to the characters between the node representations. The parts representing

the ends are still to be appended appropriately in each case, as well as the middle connector.

Example

The following figure visualizes all cases relevant in drawing, so with none, one, and two successor(s):

A schematic representation is shown again in Figure 8-9.

draw_connections (node, line length)

—|L

__|__

L_1|—

| lline_lengthl line_length| |

left junction right
start end

Figure 8-9 Schematic representation of the connecting lines

Exercise 13d: Tree Representation (k% A X %)

Combine all solutions of the parts of the exercise and complete the necessary steps to be able to print

an arbitrary binary tree suitably on the console. To do this, write function nice print (node).

Example

The output of the tree shown in the introductory example should look something like this through

nice print():

Also, check your algorithm with a real monster of a tree, which you can find in the sources. Here is a much-

slimmed-down representative:

8.3 Solutions

8.3.1 Solution 1: Tree Traversal (kK v ¥ vr)

Extend the functions already presented in the introduction for the traversing trees so that they can
perform any action on the current node during the traversal. To do this, add an action to the respective

signature, such as for inorder: inorder (node, action).

Algorithm With this extension, each method for traversing the tree receives an additional parameter to
define an action. Then this is called at the appropriate place instead of the console output.
def inorder (node, action):

if node is None:
return
inorder (node.left, action)
action(node.item)
inorder (node.right, action)
def preorder (node, action):
if node is None:
return
action(node.item)
preorder (node.left, action)
preorder (node.right, action)
def postorder (node, action):
if node is None:
return
postorder (node.left, action)
postorder (node.right, action)
action (node.item)
Bonus: Fill up a Tree into a List

Build a representation of the values of the nodes in the form of a list. To do this, write function
to list (node) thatreturns the values based on an inorder traversal, and functions
to list preorder (node) and to list postorder (node) that are based on a preorder and

postorder traversal, respectively.

Example

When using the following tree
d4
| ===~ to———= |

b2 £6

[==+-=1 | ==+-—]
al c3 eb g7
the conversions should result in something similar to
to list: ['al', 'b2', 'c3', 'd4', 'e5', 'f6', 'g7']
to list preorder: ['d4', 'b2', 'al', 'c3', 'fe6', 'eb', 'g7']
to list postorder: ['al', 'c3', 'b2', 'ed', 'g7', 'fe6', 'd4’']

Algorithm Instead of the console output used so far as an action, the current value is added depending on
the chosen traversal strategy. For the recursive descent, you use += to add the partial results and the method
append () from 11ist for the value of the current node.
def to list(start node):

if start node is None:
return []
result = []
result += to_list(start node.left)
result.append (startNode.item)
result += to_list(start node.right)
return result
def to list preorder(start node):
if start node is None:
return []
result = []
result.append(start node.item)
result += to_list preorder((start node.left)
result += to_list preorder((start node.right)
return result
def to list postorder(start node):
if start node is None:
return []
result = []
result += to_list postorder (start node.left)
result += to_list postorder (start node.right)
result.append(start node.item)

return result

Verification

Define a tree, perform an inorder traversal with the action passed, and finally populate two more lists from the
tree:
def main () :

def myprint (item) :

print(item, end=' ")
root = example trees.create example tree ()
TreeUtils.nice print (root)
print ("\ninorder with action:")
inorder (root, myprint)
print ("\npreorder with action:")
preorder (root, myprint)
print ("\npostorder with action:")
postorder (root, myprint)
print ("\nto list:", to list(root))
print("to list preorder:", to list preorder (root))

print("to list postorder:", to list postorder (root))

If you execute this main () function, you get the following output, which shows that your implementation

works as expected:
d4
|————= to——- |
b2 6
| —=+-—1 [—=+-=1|
al c3 eb g7
inorder with action:
al b2 c3 d4 e5 f6 g7
preorder with action:
d4d b2 al c3 f6 e5 g7
postorder with action:
al c3 b2 e5 g7 f6 d4
to list: ['al', 'b2', 'c3', 'd4', 'e5', 'fo6', 'g7']
to list preorder: ['d4', 'b2', 'al', 'c3', 'f6', 'eb', 'g7']
to list postorder: ['al', 'c3', 'b2', 'e5', 'g7', 'fe', 'd4d’']

8.3.2 Solution 2: Inorder, Preorder, and Postorder Iterative (% % % k)

In the introduction, you learned about inorder, preorder, and postorder as recursive variants. Now im-

plement these types of traversals iteratively.
Example

Again, you use the following tree:
d4

al c3 eb g7

The three depth-first search methods traverse this tree as follows:
Preorder: d4 b2 al c3 f6 e5 g7
Inorder: al b2 c3 d4 e5 f6 g7
Postorder: al c3 b2 e5 g7 f6 d4
Preliminary considerations for the algorithms For each of the iterative implementations, you need

an auxiliary data structure. This is what | will now discuss in detail for the three variants.

Algorithm for inorder (k% % 55) When implementing an inorder traversal, you use a stack to tem-
porarily store nodes that have to be processed later and variable current node to store the current
node. The basic idea is to start from the root, move to the bottom left of the tree, and put the current
node on the stack until no successor is left. Then you take the uppermost node from the stack and
process it (here by a simple console output). Now you continue with the right successor. Again, if

there is no successor, process the top node from the stack.

The following sequence results for the tree of the example:

current_node Stack Action(s) Direction of descent
d4 [] Push d4 v
b2 [d4] Push b2 v
al [b2, d4] Push a1l Ve
None [al, b2, d4] Pop + action a1l N
None [b2, d4] Pop + action b2 N
c3 [d4] Push c3 v
None [c3, d4] Pop + action ¢c3 N
None [d4] Pop + action d4 N

f6 [] Push 6 /

current node Stack Action(s) Direction of descent

e5 [f6] Push e5 v
None [e5, f6] Pop + action e5 N
None [f6] Pop + action f6 N
g7 [] Push g7 Ve
None [97] Pop + action g7 N
None [] End

Based on this, the iterative implementation of inorder looks like this:
def inorder iterative(start node, action):

if start node is None:

return
nodes to process = Stack()
current node = start node

are there still nodes on the stack or is the current node not None?
while not nodes_to_process.is_empty() or current node is not None:
if current node is not None:
recursive descent to the left
nodes to process.push (current node)
current node = current node.left
else:
no left successor, then process current node
current node = nodes to process.pop ()
action(current node.item)
continue with right successor
current node = current node.right
Algorithm for preorder (3 % Y3 ¥) Interestingly, preorder is quite simple because the root of a subtree is
always processed first. Then the left and right subtree are processed. For this, you again use a stack, which you
fill initially with the current node. As long as the stack is not empty, you determine the top element and execute
the desired action. Then you place the left and right successor nodes on the stack if they exist. It is important to

note that the order of adding is opposite to that of reading. For the left subtree to be processed first, you must

put the right node on the stack before the left one. This is repeated until the stack is empty. The following

sequence results for the tree of the example:

current_ node Stack Action(s)

[d4] Start: push d4
d4 [b2, f6] Pop + action d4, push f6, push b2
b2 [al,c3,f6] Pop + action b2, push ¢3, push a1l
al [c3, 6] Pop + action al
c3 [f6] Pop + action ¢c3
f6 [e5, g7] pop + action f6, push g7, push e5
e5 [97] Pop + action e5
g7 [] Pop + action g7
None [] End

This results in the following iterative preorder implementation, which is structurally very similar to the
recursive variant:
def preorder iterative(start node, action):
if start node is None:
return
nodes to process = Stack()
nodes to process.push(start node)
while not nodes to process.is empty():
current node = nodes to process.pop ()
if current node is not None:
action(current node.item)
so that left is processed first, here order is reversed
nodes to process.push(current node.right)

nodes to process.push(current node.left)

To keep the analogy as strong as possible, it is helpful that collections can also store None values.
This allows you to perform the None check once when extracting from the stack and otherwise keep

the source code free of special handling.

Algorithm for postorder (k% % +) With postorder, you also use a stack for the intermediate stor-
age of the nodes to be processed later. Of the three, however, this algorithm is the one with the great-
est challenges and is tricky to implement because with postorder, although the traversal starts at the
root, the action has to be executed after visiting the left and right subtree. Therefore, you have an in-
teresting change compared to the previous two algorithms. In them, if an element is taken from the
stack, then it is processed and not touched again. With the postorder implementation, an element is

potentially inspected twice or more with peek () and later on removed only after that.

This time, you’ll look at the source code first, and then I’1l give further explanations:
def postorder iterative(start node, action):

if start node is None:

return
nodes to process = Stack()
current node = start node

last node visited = None
while not nodes to process.is empty() or current node is not None:
if current node is not None:
descent to the left
nodes to process.push(current node)
current node = current node.left
else:
peek node = nodes to process.peek()
descent to the right
if peek node.right is not None and \
last node visited != peek node.right:
current node = peek node.right
else:
sub root or leaf processing
last node visited = nodes to process.pop ()
action(last node visited.item)

This is how the process works.: You start with the root node, put it on the stack, and continue in the left
subtree. You repeat this until you no longer find a left successor. Now you have to move to the right successor.
Only after that may the root be processed. Since you have saved all nodes on the stack, you now inspect the
node from the stack. If this one has no right children and you have not just visited it, then you execute the
passed action and remember this node as the last visited. For the other case, that there is a right subtree, you

also traverse it as just described. This procedure is repeated until the stack is empty.

current_node

d4

b2

al

None

None

c3

None

None

f6

e5

None

None

g7

None

None

None

None

Stack

[d4]

[b2, d4]

[al, b2, d4]

[al, b2, d4]

[b2, d4]

[c3, b2, d4]

[c3, b2, d4]

[b2, d4]

[f6, d4]

[e5, f6, d4]

[f6, d4]

[f6, d4]

[97, f6, d4]

[g7, f6, d4]

[f6, d4]

[d4]

[]

peek _node

b2

c3

b2

fo

f6

d4

Action

Push d4

Push b2

Push a1

Action al

Peek + right

Push c3

Action c3

Action b2

Push 6

Push e5

Action e5

Peek + right

Push g7

Action g7

Action f6

Action d4

NOTE: ITERATIVE IMPLEMENTATION OF POSTORDERWhile the implementations of the three
traversals’ recursive variants are all equally easy, and each is not very complex, this does not apply to
the iterative implementations in any way. Preorder and inorder can still be implemented with a little
thinking without major difficulties. With postorder, however, you really have to fight. Therefore, it is no
shame to need a couple of attempts and to apply error corrections.

Don’t worry. It’s not always that tricky. Even the breadth-first traversal discussed later, which travers-

es level by level, is in my estimation much less complex to implement than the iterative postorder.

Recursion can be the key to simplicity in some cases. Sometimes, however, this comes at the ex-
pense of runtime. For optimization, you learned about memoization. However, very understandable

iterative variants can also be found for some problems.

Verification

You define the tree from the introductory example and then traverse it each time using the desired procedure:
def main () :
def myprint (item) :
print(item, end=' ")
root = example trees.create example tree ()
TreeUtils.nice print (root)
print ("inorder iterative:")
inorder iterative(root, myprint)
print ("\npreorder iterative:")
preorder iterative(root, myprint)
print ("\npostorder iterative:")
postorder iterative(root, myprint)
If you execute the above main () function, you get the following output, which shows that your
implementation does what it is supposed to do:
d4
| —==== to—- |
b2 f6é
| —=+-= [==+-—|
al c3 eb g’
inorder iterative:
al b2 c3 d4 e5 f6 g7
preorder iterative:
d4 b2 al c3 £6 e5 g7
postorder iterative:
al c3 b2 e5 g7 f6 d4

Verification with unit test As an example, and because the implementation has already demanded quite a
bit from you, I show the test for postorder. The other two tests are analogous and can be found in the sources of
the companion project. For the test, iteratively the current value is filled into a list. After processing all values,
the resulting list is then checked against the expected values.
def test postorder iterative():

root = example trees.create example tree|()
result = []
postorder iterative (root, lambda item: result.append(item))

assert resul —_—— [llalll, "C3ll, "b2", lle5", "g7ll, "f6", lld4"]

Surprise Algorithm

While preorder was quite easy to design iteratively, it became a bit more difficult with inorder and even

really tricky with postorder.

But then I got a tip from Prof. Dr. Dominik Gruntz on how to simplify the entire process iteratively. Many
thanks to Dominik for this great algorithm suggestion. You keep the sequences analogous to the recursive ones,
however, in reverse order, since you work with a stack. Besides, you integrate artificial new tree nodes.
def inorder iterative v2(root):

stack = Stack()
stack.push (root)
while not stack.is empty () :
current node = stack.pop()
if not current node is None:
if current node.is leaf():
print(current node.item, end=" ")
else:
stack.push (current node.right)
stack.push (BinaryTreeNode (current node.item))
stack.push (current node.left)
print ()
And better yet, you can turn it into a general-purpose function that allows all three traversal variations. To
do this, you first define an enumeration and then the function traverse () that creates an artificial entry with
a tree node at each appropriate point in the sequence. As mentioned, these special nodes ensure that the
processing occurs at the right place.
class Order (Enum) :
PREORDER = auto ()
INORDER = auto()
POSTORDER = auto ()

def traverse(root, order):
stack = Stack()

stack.push (root)
while not stack.is empty():
current node = stack.pop ()
if not current node is None:
if current node.is leaf():
print (current node.item, end = " ")
else:
if order == Order.POSTORDER:
stack.push (BinaryTreeNode (current node.item))
stack.push (current node.right)
if order == Order.INORDER:
stack.push (BinaryTreeNode (current node.item))
stack.push (current node.left)
if order == Order.PREORDER:
stack.push (BinaryTreeNode (current node.item))
print ()

INT: INSIGHT
ith the help of this example, it is easy to grasp that thorough thinking about a problem can lead to

impler, more comprehensible, and less complex source code. Besides, it is always good to get a

econd or third opinion if a solution is more complex than desired.

8.3.3 Solution 3: Tree Height (k% s ¥%)

Implement function get _height (node) to determine the height for both a tree and for subtrees with
a single node as root.

Example

The following tree of height 4 is used as a starting point:

Algorithm The tree height calculation uses a recursive algorithm, which determines the height of the left
and the right subtree. Finally, you must compute the maximum from this and then add the value 1 for the

current level.

def get height (parent):
recursive termination
if parent is None:
return 0
recursive descent
left height = get height (parent.left)
right height = get_height (parent.right)
return 1 + max(left height, right height)

Verification

You construct the tree from the example and then have the heights computed for some selected nodes:
def main () :
e = BinaryTreeNode ("E")
neny
nan

insert

insert

insert
"H"
" I LAl

(e,
(e,
insert (e, "G"
(e,
insert (e,

(e,

)

)

nE

)

insert)
TreeUtils.nice print (e);

print infos(e.left, e, e.right, e.right.right.right)

def print infos(c, e, g, 1i):

print ("\nHeight of root E:", get\ height (e))
print ("Height from left parent C: ", get\ height(c))
print ("Height from right parent G:", get\ height(qg))
print ("Height from right child I: ", get\ height(i))
The following output occurs:
E
| ———————- Fomm |
C
| ————- + | ————- Fm———- |
A F H

Height of root E: 4

Height from left parent C: 2

Height from right parent G: 3
Height from right child I: 1

8.3.4 Solution 4: Lowest Common Ancestor (k% k5 ¥)

Compute the lowest common ancestor (LCA) for two nodes, A and B, hosted in an arbitrary binary
search tree. The LCA denotes the node that is the ancestor of both A and B and is located as deep as
possible in the tree—the root is always the ancestor of both A and B. Write function

find lca(start node, valuel, value2) that,in addition to the start node of the search (usu-
ally the root), also receives lower and upper limits, which indirectly describe the nodes that are closest
to these values. If the values for the limits are outside the range of values, then there is no LCA and it

is supposed to return None.
Example

The following is a binary tree. If the lowest common ancestor is determined for the nodes with the values 1 and
5, this is the node with the value 4. In the figure, the respective nodes are circled and the ancestor is
additionally marked in bold.

Algorithm Intuitively, you may be tempted to go up from the two nodes until the paths cross. Never-
theless, this is impossible whenever no backward direction exists in the node to the parent—Ilike here.
However, in your modeling of trees using the BinaryTreeNode class, you only use references to

children, not to the parent node.

But there is a straightforward implementation starting from the root. From there, you proceed as follows:
Let current value be the value of the current node. In addition, let valuel and value?2 be the passed
node values (i. e. those of the two nodes of the potential successors). If valuel and value2 are smaller than
current value, then due to the sorting property within the binary search tree, both must be located in the
left subtree—continue searching there. If both valuel and value?2 are greater than current value, then
continue searching on the right. Otherwise for the cases valuel < current value < value2or
value2 < current value < valuel, you have found the LCA; it is the current node.
def find lca(start node, valuel, value2):

recursive termination
if start node is None:
return None
current value = start node.item
recursive descent
if valuel < current value and value2 < current value:

return find lca(start node.left, valuel, value2)

if valuel > current value and valueZ > current value:
return find lca(start node.right, valuel, value2)

Here is valuel < current value < value2 or

value2 < current value < valuel

return start node

Verification

You construct the tree shown in the example and invoke your method:
@pytest.mark.parametrize ("valuel, value2, expected",
[((1, 3, 2, (1, 5, 4), (2, 5, 4),
(3, 5, 4), (1, 7, 6)1)
def test find lca(valuel, value2, expected):
root = create lca example tree()
result = find lca(root, valuel, value2)
assert result.item == expected
def test find lca special():
root = create lca example tree()
result = find lca(root, 1, 2)
assert result.item ==

If you only check the quite obvious cases, everything works fine. If you consider checking two nodes
in a parent-child relationship, namely the nodes with the values 1 and 2, you intuitively expect the
node with the value 4. However, the node with the value 2 is calculated. According to the definition

(among others in Wikipedia

(https://en.wikipedia.org/wiki/Towest common ancestor)), each node is also consid-

ered a successor of itself. Thus, the node with the value 2 is indeed the LCA in this case.

For the sake of completeness, the construction of the tree is shown:
def create lca example tree():
6 = BinaryTreeNode (6)
insert(6, 7

insert ,

insert ’

6, 4
6, 5
insert(6, 2
6, 1
6, 3

insert ,

insert

14

(_
-
(_
_
(_
(_

return 6

8.3.5 Solution 5: Breadth-First (k% %)

https://en.wikipedia.org/wiki/Lowest_common_ancestor

In this exercise, you are asked to implement the breadth-first search, also called level order, using the
function levelorder (start node, action).The breadth-first search starts at the given node—

usually the root—and then works its way through the tree level by level.

NoteUse a queue to store data on the nodes yet to be visited. The iterative variant is a bit easier to im-

plement than the recursive one.

Examples

For the following two trees, the sequence 1 234 5 6 7 (for the left) and M I C H A E L (for the right) are to be
determined as the result.
1
| —==—= to—m- | | ===== to——= |
2 3 I C
| ==+== | ==+== [==+== | ==+==
4 5 6 7 H A E L
Algorithm For the breadth-first search, you use a queue as a cache for nodes to be processed later. First,
you insert the root into the queue. Then you process elements as long as there are elements in the queue. This
processing is divided into steps. First, perform the desired action for each element. Then put the left and right
successor nodes into the queue if such a node exists. The algorithm checks in the processing whether the value
in the queue is not equal to None. This avoids the special handling of missing successors when adding them.
def levelorder(start node, action):
if start node is None:
return
to process = Queue ()
to process.enqueue (start node)
while not to process.is empty () :
current = to process.dequeue ()
if current is not None:
action (current.item)
to process.enqueue (current.left)

to process.enqueue (current.right)

To avoid special handling and None checks in the source code as much as possible, you benefit from
the fact that None values can be stored in containers. This allows you to run the None check once

when removing from the queue and not check it when adding the child nodes.

Instead of the while loop, you can also solve this by using recursive calls. If you are interested, study

the source code in the companion project.

Let’s clarify how the processes are in detail.

Queue Action

[1] 1
3, 2] 2
[5,4,3] 3
[7,6,5,4] 4
[7,6,5] 5
[7, 6] 6
[7] 7
[] End
Verification

You construct the tree with the numbers (the left one of the examples) and call your just created function to
perform the level-order traversal:
def create level order example tree():

1

BinaryTreeNode ("1")

= BinaryTreeNode ("2"

" n

= BinaryTreeNode

Al AL

= BinaryTreeNode

= BinaryTreeNode ("

w

BinaryTreeNode ("

()
("3")
("am)
("5™)
("e™)
= BinaryTreeNode ("7")
dleft = 2
.right = 3
.dleft = 4
.right = 5
.left = 6
_3.right = 7

return 1

N N R Ry 0w N
Il

w

def main():

root = create level order example tree ()
tree utils.nice print (root)
print("Levelorder: ")
levelorder (root, lambda item: print(item, end=' "'))
print ("\nlevelorder recursive: ")
levelorder recursive(root, lambda item: print(item, end=' "'))
Then you get the following output—please note that the project sources contain a recursive implementation

of level-order too:

Levelorder:
1 2345%67
levelorder recursive:

1234567
Verification with unit test This can also be expressed quite simply as a unit test:
def test levelorder():
root = create level order example tree ()
result = []
levelorder (root, lambda item: result.append(item))

assert result —_—— ["1", ||2"’ "3", "4"’ "5", "6", "7"]
8.3.6 Solution 6: Level Sum (k% % % i)

In the previous exercise, you implemented the breadth-first search. Now you want to sum up the val-
ues per level of a tree. For this purpose, let's assume that the values are natural numbers of type int.

Write function level sum(start node)
Example

For the tree shown, the sums of the values of the nodes per level should be calculated and return the following
result: {0=4, 1=8, 2=17, 3=16}.

Level Value(s) Result

0 4 4
1 2,6 8

2 1,3,58 17
3 7,9 16

Algorithm The breadth-first search provides a good basis. You are still missing a suitable data structure
and a way to determine the current level to complete the solution. With a bit of thought, you come up with
using a dictionary as the result data structure. The current level serves as the key. The value is formed by a
tuple. You traverse the tree as you did with level order. To determine the levels, you cheat. Since you start from
the root (of a subtree), you can assume level 0. Each change to a lower level increases the value. For this you
use the second value from the tuple. This way, you always know on which level the currently processed node is
located. With this information the summation can be formulated easily:
def level sum(start node):

if start node is None:
return {}
result = {}
to process = Queue ()
pretty cool, tuple (node, level)
to process.enqueue ((start node, 0))
while not to process.is empty():
current node and level = to process.dequeue ()
current node = current node and level[O0]
level = current node and level[l]
if level not in result:
result[level] = 0
result[level] += current node.item
if current node.left is not None:
to process.enqueue ((current node.left, level + 1))
if current node.right is not None:
to process.enqueue ((current node.right, level + 1))
return result

Algorithm with depth-first search Interestingly, the same can be easily implemented using depth-first

search, regardless of the type of traversal. In the following, it is implemented with inorder, and the variants for

preorder and postorder are indicated as comments:

def level sum depth first (root):
results = {}
traverse depth first(root, 0, results)
return dict (sorted(results.items()))
def traverse depth first(current node, level, results):
if current node:
PREORDER
results[level] = results.get(level, 0) + current node.item
traverse depth first(current node.left, level + 1, results)
INORDER
results[level] = results.get(level, 0) + current node.item
traverse depth first (current node.right, level + 1, results)
POSTORDER
results[level] = results.get(level, 0) + current node.item

As before, you use a dictionary as a data structure, whose key is the level. If there is already an entry
for the level, the value of the current node is added. Otherwise, the trick of specifying a default value in

the call get (1evel, 0) ensures a starting value of 0.

Verification

Let’s construct the tree from the example as usual and invoke the function you just implemented:
def main():

root = create example level sum tree()

result = level sum(root)

print ("\nlevel sum:", result)
def create example level sum tree():

4 = BinaryTreeNode (4)

insert(4, 2
insert ’
insert

14

insert ,

4, 1
4, 3
4, 6
insert(4, 5
4, 8
4, 7
4, 9

insert ,

insert

14

-
(_
(_
(_
(_
-
(_
-

insert ,
return 4

Then you get the following output:

| ==+~
7 S
level sum: {0=4, 1=8, 2=17, 3=16}
Verification with unit test This can also be expressed quite simply as a unit test:
def test level sum():
root = create example level sum tree()
result = level sum(root)
assert result == {0: 4, 1: 8, 2: 17, 3: 16}
def test level sum depth first():
root = create example level sum tree()
result = level sum depth first(root)
assert result == {0: 4, 1: 8, 2: 17, 3: 16}

8.3.7 Solution 7: Tree Rotate (k& Kk v r)

Binary trees, especially binary search trees, may degenerate into lists if values are inserted only in as-
cending or descending order. A dysbalance can be addressed by rotating parts of the tree. Write func-
tions rotate left (node) and rotate right (node) that will rotate the tree around the node

passed as parameter to the left or right, respectively.
Example

Figure 8-10 visualizes a rotation to the left and a rotation to the right with the balanced starting position in the

middle.

{6 d4
/7 \ VN RN
d4 g7 b2 6 al d4
7N\ 7\ VRN 7\
b2 e al c3 &5 g7 c3 f6
7N /N
al c3 es g7

Figure 8-10 Rotation to the left, original, rotation to the right

Algorithm At first, you might be frightened by the expected, but in fact only supposed, complexity of the
undertaking. In general, it is a good idea to mentally go through the process using a simple example, such as
the one above. Quite quickly you will realize that far fewer nodes are involved and actions are necessary than
probably expected. To execute the respective rotation, you actually only have to consider the root and the left

or right neighbor as well as a node from the level below, as shown in Figure 8-11.

P ———— rotate left rotate right re==-=n

t RC Root t LC
/N I £ N
Root RRC ¢ LC » RC 1 LLC Root
o NN XN
LC iRLC; LLC :LRC:iRLC: RRC ' LRC: RC
/N o
LLC LRC RLC RRC

Figure 8-11 Nodes affected during rotations

Figure 8-11 illustrates that you just need to reassign two links in the tree to complete the rotation. To
gain a better understanding of this, the relevant nodes are named accordingly. In the figure, LC and
RC stand for Left Child and Right Child, LLC and LRC for Left Left Child and Left Right Child, and RLC
and RRC for Right Left Child and Right Right Child.

With these preliminary considerations, the implementation of the rotations exactly follows the sequence
illustrated in the diagrams:
def rotate left (node):
if node.right is None:
raise ValueError("can't rotate left, no valid root")
rc = node.right
rlc = node.right.left
rc.left = node
node.right = rlc
return rc
def rotate right (node):
if node.left is None:
raise ValueError ("can't rotate right, no wvalid root")
lc = node.left
lrc = node.left.right
lc.right = node
node.left = lrc
return lc
Please keep in mind that these functions change the subtrees’ references and thus may affect previ-

ously cached nodes. The root is suddenly no longer the root but located one level below.

Verification

First, you define the tree in the middle, like the example. Then you rotate it first to the left and then twice to the
right, which should correspond to a simple rotation to the right starting from the tree in the middle.
def main () :

root = example trees.create example tree()

TreeUtils.nice print (root)

print ("\nRotate left")

left rotated root = rotate_left(root)

TreeUtils.nice print (left rotated root)

print ("\nRotate right")

right rotated root = rotate_right(rotate_ right(left rotated root))
TreeUtils.nice print(right rotated root)

Execute the program to see that the rotations work correctly:

d4
| ===~ o
b2 f6
| ==+~ | ==+~
al c3 eb g7
Rotate left
fo
| === Fmmmmmmmm e |
d4 g7
_____ fomm |
b2 eb
[==+==1
al c3
Rotate right
b2
| == Fom s |
al d4
| ===~~ o |
c3 f6
| ==+~
eb g’

Verification with unit test Let’s consider how you could test this using unit tests. Again, it depends on the
appropriate idea and data structure. It would be difficult and costly to check the resulting trees for consistency
structurally. It is much easier if you compare the result of a traversal with the expected values. But pay
attention. When doing this, you have to avoid using the inorder traversal since it always produces the same
node order for an arbitrary binary search tree, regardless of the tree’s structure! Here either a preorder or a
postorder or, better still, a level order traversal is suitable. The latter has the great advantage that the order can
be easily derived from a graphical representation of the tree and is, therefore, best suited for the unit test
because it remains comprehensible and understandable. You already implemented the conversion at the
beginning in Section 8.1.4 as method convert to list ().
def test rotate left():

root = example trees.create example tree()

result = rotate left (root)

as_list = convert to list(result)

assert as list == ["f6", "d4", "g7", "b2", "e5", "al", "c3"]
def test rotate right():

root = example trees.create example tree ()

result = rotate right (root)

as_list = convert to list(result)

assert as list == ["b2", "al", "d4", "c3", "fe", "e5", "g7"]

As a reminder, the function for converting a tree into a list based on a level order is shown here again.

def convert to list(node):

result = []

levelorder (node, lambda item: result.append(item))

return result

8.3.8 Solution 8: Reconstruction (& Kk vr+r)
Solution 8a: Reconstruction from a List (3 & v v ¥r)

In this exercise, you want to reconstruct a binary search tree that is as balanced as possible from an

ascending sorted list of natural numbers.

Example

For example, use these values:

values = [1, 2, 3, 4, 5, 6, 7]
Then the following tree should be reconstructed from them:
4
| —==—= to———= |
2 6
| ==+==1 | ==+==
1 3 5 7

Algorithm Reconstructing a binary search tree from a sorted list in ascending order is not that difficult.
Due to the sorting, you can split the list in half and use the value in the middle as the base for the new node.
You construct the left and right subtree recursively from the list’s left and right parts, respectively. You
continue the bisection until the sublist has only the size 0 or 1.
def reconstruct (values):

recursive termination

if not values: # len(values) == 0 not recommended by PEP 8
return None

mid idx = len(values) // 2

mid value = values[mid idx]

new node = BinaryTreeNode (mid value)

recursive termination
if len(values) ==
return new node
recursive descent
left part = values[0: mid idx]
right part = values[mid idx + l:len(values)]
new node.left = reconstruct(left part)
new node.right = reconstruct(right part)
return new node

You could omit the query on length 1 in the middle of the function without changing the functionality.
The function would then simply be called twice for an empty list and thus terminate directly. For me,

this special treatment was a bit more understandable, but that’s a matter of taste.

Verification

Let’s see the implementation in action and supply an arbitrary but suitably sorted list of int values. With this,
you invoke your function, which returns the root of the tree as a result. Finally, you verify that the tree is indeed
correctly reconstructed by printing various information to the console.
def main():
inputs = [[1, 2, 3, 4, 5, 6, 71,
(1, 2, 3, 4, 5, 6, 7, 811
for values in inputs:
root = reconstruct (values)
print info (root)
The output function is simple to implement:
def print info(root):
TreeUtils.nice print (root)
print ("Root: ", root)
print("Left: ", root.left)
print ("Right:", root.right)
print ()

Root: BinaryTreeNode [item=4, left=BinaryTreeNode [item=2,

Left: BinaryTreeNode [item=2, left=BinaryTreeNode [item=1,

Right: BinaryTreeNode [item=6, left=BinaryTreeNode [item=5,
5

Root: BinaryTreeNode [item=5, left=BinaryTreeNode [item=3,
Left: BinaryTreeNode [item=3, left=BinaryTreeNode [item=2,
Right: BinaryTreeNode [item=7, left=BinaryTreeNode [item=6,
Verification with unit test Once again you use a level order traversal for the unit test to verify the
reconstruction:
def test reconstruct from list():
inputs = [1, 2, 3, 4, 5, 6, 7]
result root = reconstruct (inputs)
result = convert to list (result root)
assert result == [4, 2, o, 1, 3, 5, 7]

Solution 8b: Reconstruction from Inorder/Preorder (G &k 7 7)

Suppose the sequence of values in preorder and inorder is given, each prepared as a list. This infor-
mation about an arbitrary binary tree should be used to reconstruct the corresponding tree. Write func-

tion reconstruct (preorder values, inorder values).

Example

Two sequences of values of the traversals are given below. Based on these values, you should reconstruct the
tree shown in the previous part of the exercise.

preorder values = [4, 2, 1, 3, 6, 5, 7]

inorder values = [1, 2, 3, 4, 5, 6, 7]

Algorithm For a better understanding of the need for two inputs and the algorithm, let’s take another look
at the values of a preorder and inorder traversal with the value of the root highlighted in bold as an example:
Preorder 4 2 1 3 6 5 7
Inorder 123 45¢67

The preorder traversal always starts with the root, so based on the first value, you can create the root first.
By searching for the value of the root in the value sequence of the inorder traversal, you determine how the
values are divided into left and right subtrees. Everything in the inorder to the left of the value of the root
represents the values of the left subtree. Analogously, this applies to the values to the right of it and the right
subtree. This results in the following sublists:

Left: 1 2 3

Right: 5 6 7

To call your function recursively, you need to find the corresponding value sequences for preorder.

How do you do this?

Let’s take a detailed look at the values of a preorder and an inorder traversal. By looking closely, you can
see the following pattern:
e $ {\displaystyle \begin {array} {I}\; preorder\;\overset{root} {\overbrace {4} }\ \overset{left}
{\overbrace{213} }\ \overset{right} {\overbrace {657} }\\ {} Inorder\kern0.36em \underset{left}
{\underbrace{\;123} }\kern0.24em \underset{root} {\underbrace {4} } \kern0.24em \underset {right}
{\underbrace {567} }\end {array}} $
With this knowledge, you can implement the algorithm as follows, taking advantage of slicing to generate

the appropriate chunks from the original and use them for the recursive descent:
def reconstruct clearer (preorder values, inorder values):

recursive termination

len(values) == 0 not recommended by PEP 8

if not preorder values or not inorder values:

return None

root value = preorder values[0]

root = BinaryTreeNode (root value)

recursive termination

if len(preorder values) == 1 and len(inorder values) ==

return root

recursive descent

index = inorder values.index(root value)

left and right part for inorder

left inorder = inorder values[0: index]

right inorder = inorder values[index + 1l: len(inorder values)]

left and right part for preorder

left preorder = preorder values[l: 1 + index]

right preorder = preorder values[index + 1: len(preorder values)]

root.left = reconstruct_clearer(left preorder, left inorder)

root.right = reconstruct clearer (right preorder, right inorder)

return root

Verification

To understand the reconstruction, you provide the appropriate value sequences as three nested lists. As usual,
Pytest automatically extracts the preorder and inorder values from each of these inputs. The result is given in
the form of a level order traversal. This offers good traceability based on the graphical representation.
@pytest.mark.parametrize ("preorder values, inorder values, expected",
((r4, 2, 1, 3, 6, 5, 71, 11, 2, 3, 4, 5, 6, 71,
(4, 2, 6, 1, 3, 5, 71),

81,
(5, 4, 7, 2, 6, 8, 1, 31)1])

def test reconstruct from pre in order (preorder values, inorder values,

expected) :
result root = reconstruct clearer (preorder values, inorder values)
result = convert to list (result root)

assert result == expected

[HINT: THINGS TO KNOW ABOUT RECONSTRUCTION
[nterestingly, using the algorithm shown, any binary tree can be reconstructed, regardless of whether it is also a
binary search tree (for which its nodes follow an order). But it gets even more remarkable. If the values of the
preorder traversal originate from a binary search tree, it is possible to reconstruct it based only on that, as
follows:
def reconstruct from preorder bst (preorder values):

recursive termination

if not preorder values:

return None

root value = preorder values|[0]

root = BinaryTreeNode (root value)

splitting

left values = [value for value in preorder values if value <
root value]

right values = [value for value in preorder values if value >
root value]

recursive descent

root.left = reconstruct from preorder bst (left values)

root.right = reconstruct from preorder bst(right values)

return root

This is possible since, in a binary search tree, the values of the preorder traversal are first the value of
the root, then the values smaller than the root, and finally the values of the right subtree, which are
also larger than the value of the root. This condition also applies recursively. With the help of two filter
conditions, all left and right subtree values can be easily extracted—as shown above—and used as

input for the recursive call.

Try the reconstruction with the following dataset:
inputs = [[4, 2, 1, 3, 6, 5, 71,
(5, 4, 2, 1, 3, 7, 6, 8]]
for values in inputs:
root = reconstruct from preorder bst (values)

TreeUtils.nice print (root)

The first input data generates the following tree:
4
| ===== to—— |
2 6
[==+== | ==+==1
1 3 5 7

8.3.9 Solution 9: Math Evaluation (s ¥y 5¥)

Consider using a tree to model mathematical expressions with the four operators +, —, /, and =. It is
your task to compute the value of individual nodes, including in particular the value of the root node.

For this purpose, write function evaluate (node).

Example

Represent the expression 3 + 7 * (7 — 1) by the following tree to compute the value 45 for the root node:

| ==+==
7 1
Algorithm The problem can be solved simply and clearly by a recursive call in combination with the
appropriate operators as follows. It’s a bit clumsy due to the fact that there is no switch in Python up to
Python 3.9.
def evaluate (node):
value = node.item;
if value == "+":
return evaluate (node.left) + evaluate(node.right)
if value == "-"
return evaluate (node.left) - evaluate (node.right)
if value == "*":
return evaluate (node.left) * evaluate(node.right)
if value == "/":
return evaluate (node.left) / evaluate (node.right)
else:
return int (value)
Python 3.10 introduces match as a new keyword, which is more powerful than switch known from

other programming languages. In combination with a dynamic evaluation, you can write the whole thing as
follows:

def evaluate v2(node):
value = node.item

match value:

Case "+" | mw_mn | mwsmn I II/H:
vall = evaluate v2(node.left)
val2 = evaluate v2(node.right)

return eval (str(vall) + value + str(val2))
case _

return int (value)

Verification

Let’s construct the tree from the example and invoke the above function:
def main():

plus = BinaryTreeNode ("+")

3 = BinaryTreeNode ("3")

mult = BinaryTreeNode ("*")

7 = BinaryTreeNode ("7")

minus = BinaryTreeNode ("-")

1 = BinaryTreeNode ("1")

plus.left = 3
plus.right = mult
mult.left = 7
mult.right = minus
minus.left = 7
minus.right = 1

tree utils.nice print(plus

)
print("+:", evaluate (plus))
print("*:", evaluate (mult))
print("-:", evaluate (minus))
print ("+:", evaluate v2(plus))
print ("*:", evaluate v2(mult))
print ("-:", evaluate v2(minus))

If you execute this main () function, you get on the output of the tree as well as the results of the selected

individual nodes:

+: 45
*: 42
- 6
+: 45
*: 42
-: 6

8.3.10 Solution 10: Symmetry (A Kk v v ¥)

Check if an arbitrary binary tree is symmetric in its structure. Write function is_symmetric (node).

In addition to the structural examination, you can also check for equality of values.
Examples

To check for symmetry, you use a binary tree that is symmetric in structure (left) and a binary tree that is also

symmetric concerning values (right).

|

|
+

|

|

|

|
+

|

|
~
~

NOTE: THE SYMMETRY PROPERTYIn a symmetric binary tree, the left and right subtree are mirrored
through the root along an imaginary vertical line (indicated by |):

Depending on the definition, a comparison of the values can be omitted for the symmetry. In this

case, only the structural organization can be counted as relevant.

Algorithm Once again, you benefit from a good basic knowledge of recursion. Starting from the root, you
check the two opposite successor nodes. The simplest case is that for a node, no successor nodes exist. This
constellation is always symmetrical. If, however, only one of the two successor nodes exists, then the tree is not
symmetric. Accordingly, only the case for two successor nodes is to be considered. Here the respective left and
right subtrees must be mirror-inverted. For this, you check recursively whether the right subtree of the left and
the left subtree of the right node structurally fit each other, as well as the left subtree of the right and the right
subtree of the left node.

def is symmetric(node):

if node is None:
return True
return check if nodes are symmetric(node.left, node.right)
def check if nodes are symmetric(left, right):
if left is None and right is None:
return True
if left is None or right is None:
return False
descend both subtrees
return check if nodes are symmetric(left.right, right.left) and \
check if nodes are symmetric(left.left, right.right)

Advanced algorithm: Value symmetry In fact, the extension to value checking is simple if you have
implemented the previous exercise correctly. Only a Boolean parameter check value has to be added to the
signature and evaluated at the appropriate place before the recursive descent:
def check if nodes and values are symmetric(left, right, check value):

if left is None and right is None:
return True
if left is None or right is None:
return False
check values
if check value and not left.item == right.item:
return False
descend both subtrees
return check if nodes and values are symmetric (left.right, right.left,
check value) and \
check if nodes and values are symmetric (left.left,
right.right,

check value)
Verification

You construct the two trees from the introduction and invoke the function you just created. The first tree is
already known. The other one is explicitly created for this example with
create symmetric number tree (): After that, you add the node with the value 4, which deliberately
breaks the symmetry.
def main() :

root = example trees.create number tree()

TreeUtils.nice print (root)

print ("symmetric:", is_symmetric (root))

root2 = create symmetric number tree()

TreeUtils.nice print (root2)

print ("symmetric:", is_symmetric (root2))
modified tree: add a 4
root2.right.left = BinaryTreeNode ("4")
TreeUtils.nice print (root2)
print ("symmetric:", is_symmetric ((root2))
In create symmetric number tree () you create aroot and then the symmetric structure with
nodes with the values 2 and 3.
def create symmetric number tree():
root = BinaryTreeNode ("1")
root.left = BinaryTreeNode ("2")
root.right = BinaryTreeNode ("2")
root.left.left = BinaryTreeNode ("3")
root.right.right = BinaryTreeNode ("3")
return root

If you execute this main () function, you get the expected results:

4
|--—-- oo |
2 6
| =t | | =t |
1 3 5 7
symmetric: True
1
| ——=—~- to—m- |
2 2
|-+ -]
3 3
symmetric: True
1
|--—-- Lt |
2 2
|-+ | ==+
3 4 3

symmetric: False

Bonus: Mirror Tree

In the hint box, | indicated a mirror axis through the root. Create function invert (node) that mirrors

the nodes of a tree at this implied line through the root.

Example

A mirroring looks like this:
4
|-———- to———- | | ————- to———- |
2 6 > 6 2
| —=+——| [—=—+-—| [—=+-— | —=+-—
1 3 5 7 7 5 3 1
Algorithm At first, you might once again assume that the challenge is difficult to solve. But in fact, it is

much easier to implement with the help of recursion than you initially think.

The algorithm proceeds from the root downwards and swaps the left and right subtrees. To do this,
you store these subtrees in temporary variables and then assign them to the other side. That'’s really

all there is to it!

You implement this in Python as follows:
def invert (root):
if root is None:
return None
inverted right = invert (root.right)
inverted left = invert (root.left)
root.left = inverted right
root.right = inverted left
return root
Python shortcut Using the tuple notation, you can implement the whole thing even more compactly as
follows:
def invert clearer (root):
if root is None:
return None
root.left, root.right = invert(root.right), invert (root.left)

return root

Verification

You construct the left tree from the introduction and invoke the function you just created:
def main():
root = example trees.create number tree ()
newroot = invert (root)
TreeUtils.nice print (newroot)
newroot = invert clearer (newroot)
TreeUtils.nice print (newroot)
If you execute this main () function, you get the expected mirroring and another one results again in the

original:

6 2
| === | ===
7 5 3 1
|-~ oo |
2 6
| === | ==t
1 3 5 7

8.3.11 Solution 11: Check Binary Search Tree (& %k s ¥r)

In this exercise, you check whether an arbitrary binary tree fulfills the property of a binary search tree
(BST), so the values in the left subtree are smaller than the root node’s value and those in the right
subtree are larger—and this holds for each subtree starting from the root. For simplification, assume

int values. Write function is_bst (node).
Example

Use the following binary tree, which is also a binary search tree. For example, if you replace the number 1 with
a larger number on the left side, it is no longer a binary search tree. However, the right subtree under the 6 is
still a binary search tree.
4
| —==== to——= |
2 6
[—=+-=1 [==+-—]
1 3 5 7
Algorithm From the assignment, you recognize a recursive design. A tree with only one node is always a
binary search tree. If there is a left or right successor or even both, you check their values for compliance with
the value relation and perform this recursively for their successors, if they exist.
def is bst (node):
recursive termination
if node is None:
return True
if node.is leaf():
return True
recursive descent
is left bst = True
is right bst = True

if node.left is not None:

is left bst = node.left.item < node.item and is_bst(node.left)
if node.right is not None:

is right bst = node.right.item > node.item and is_bst(node.right)
return is left bst and is_right bst

Verification

You construct the tree from the example and invoke the function you just created. You also apply two

modifications and check again.

def main () :
4 = create integer number tree()
2 = 4.left
6 = 4.right

TreeUtils.nice print(4)

print("is bst(4):", 1is bst(4))

print("is bst(2):", 1is bst(2))

print("is bst(6):", is bst(6))

change the tree on the left in a wrong and on the right in a correct
way

_2.left = BinaryTreeNode (13)

_6.right = None

TreeUtils.nice print(4)

print ("is bst(4):", is bst(4))

print ("is bst(2):", is bst(2))

print("is bst(6):", is bst(6))
If you execute thismain () function, you get both the output of the tree and the results for selected in-
dividual nodes, whether these nodes themselves (but of course with their successors) represent a bi-

nary search tree.

However, if you carelessly store a larger value in the left subtree (e. g., 13), neither the whole tree nor the
part with node 2 as root is a BST. For the right subtree, if you delete the node with the value 7, the right subtree

with the node with the value 6 remains a BST.

2 6
| —=+-—1 | ==
13 3 5
is bst(4) False
is bst(2): False
is bst(_6) True

8.3.12 Solution 12: Completeness (3% % % %)

In this exercise, you check the completeness of a tree. To do this, you initially solve the basics in the

first two parts of the exercise and then proceed to the trickier completeness check.
Solution 12a: Number of Nodes (¥ v ¥r v vr)

Count how many nodes are contained in any binary tree. To do this, write function

count nodes (node).

Example

For the binary tree shown, the value 7 should be determined. If you remove the right subtree, the tree consists

of only 4 nodes.
| —==—= T |
2 6
[—=+-—| [—=+-—|
1 3 5 7

Algorithm The algorithm is really extremely straightforward if you express it recursively. Each node
counts as 1, and then you continue counting in both its left and right subtrees and add their results until you hit
a leaf.
def count nodes (node) :

if node is None:
return 0

return 1 + count nodes (node.left) + count nodes(node.right)

Solution 12b: Check for Full/Perfect (kK v v)

For an arbitrary binary tree, check if all nodes have two successors or leaves each, and thus the tree
is full. For perfection, all leaves must be at the same height. Write functions is full (node) and

is perfect (node).

Example

The binary tree shown is both perfect and full. If you remove the two leaves below the 2, it is no longer perfect
but still full.

Full and perfect Full but not perfect
4 4
| —===- o | | ===~ o |
2 6 2 6
| ==+~ | ==+~ | ==+~
1 3 5 7 5 7

Algorithm The check whether a tree is full is not that difficult if it is implemented recursively. Attention:
Please do not confuse full and complete (see the introduction for definitions). A tree is full if it has no or two
successors. Otherwise, it cannot be a full tree.
def is full (node):

if node is None:
return True

return is full helper (node.left, node.right)

def is full helper(left node, right node):

if left node is None and right node is None:
return True

if left node is not None and right node is not None:
return is full(left node) and is full (right node)

return False

This is a good start. Based on this, you need some smaller extensions to be able to check the perfectness.
First, you must determine the height of the whole tree, starting from the root. This can easily be achieved, as
you implemented it as solution of Exercise 8.3.3. After that, you proceed quite similarto is full (), but
now every node must have two successors. On the level of the leaves, you additionally have to check if they are
at the correct level. You might stumble over the fact that the height of a leaf is 1. Therefore you still need the
level on which they are located. For this, you cheat with an additional parameter current level in your
function. This results in the following implementation:
def is perfect (node):

if node is None:
return True
height = get height (node)
return is perfect helper (node.left, node.right, height, 1)
def is perfect helper(left node, right node, height, current level):
if left node is None or right node is None:
return False
if left node.is leaf() and right node.is leaf():
return on same height (left node, right node, height,

current level)

return is perfect helper (left node.left, left node.right, height,
current level + 1) and \
is perfect helper(right node.left, right node.right, height,
current level + 1)
def on same height (left node, right node, height, current level):
problem: height of the node is 1, therefore you must

take into account the current level here

return get height (left node) + current level == height and \
get height (right node) + current level == height
Verification

You construct the tree with numbers from the introduction and invoke the methods you just created. In
addition, you modify the tree by deleting the reference to the right subtree. Then you invoke the functions
again.
def main () :

4 = example trees.create number tree ()

TreeUtils.nice print(4)

print ("#nodes:", count nodes(4))

print("is full?:", is full(4))
print ("is perfect?:", is perfect(4))
print ()
delete nodes with values 1, 3
2 = 4.left
_2.left = None
_2.right = None
TreeUtils.nice print(4)

print ("#nodes:", count nodes(4))

(
print("is full?:", is full(4))
print ("is perfect?:", is perfect(4))
print ()

If you run thismain () function, you get the expected results:

#nodes: 7

is full?: True

is perfect?: True
4

#nodes: 5
is full?: True

is perfect?: False

Solution 12c: Completeness (k% k k)

In this subtask, you check if a tree is complete as defined in the introduction—as a binary tree with all
levels fully filled, with the allowed exception on the last level where nodes may be missing, but only

with gaps as far to the right as possible.

Example

In addition to the perfect tree used so far, the following tree is also complete by definition. However, if you

remove the children from node H, the tree is no longer complete.

Algorithm At first, this seems to be a rather tricky task, much more complicated than the checks
shown before. If you study the definition again, the tree is supposed to contain successors in pairs.
Moreover, there must be no gaps in the tree, so no node with a missing left successor but with a right
successor. If the tree is not fully filled, then only leaves from the right may be missing. On closer visual
inspection, it is noticeable that you can traverse level by level, but nodes may be missing only in the

last level.

Now the level order traversal comes to mind. You use this here and just add a few checks. For each node
there must be no right successor without a left one. Besides, you check whether you have discovered a missing
node in the meantime. How can this happen? This is possible whenever you want to add a node’s successors to
the queue, but there is only one left or right successor. This is expressed by the flagmissing node. So, ifa
missing successor has been detected, then the nodes processed afterwards must be leaves only.
def levelorder is complete(start node):

if start node is None:

return False

to _process = Queue ()
to process.enqueue (start node)
indicates that a node does not have two successors
missing node = False
while not to process.is empty():
current = to process.dequeue ()
only descendants on the right side
if current.left is None and current.right is not None:
return False
if a missing node was previously detected,
then the next may be only a leaf
if missing node and not current.is leaf():
return False
include sub-elements, mark if not complete
if current.left is not None:
to process.enqueue (current.left)
else:
missing node = True
if current.right is not None:
to process.enqueue (current.right)
else:
missing node = True
all nodes successfully tested

return True

Verification

You construct the tree from the example and invoke the function you just created. In addition, you modify the
tree by removing the leaves below the H node and check again.
def main () :

F = create completness example tree()

TreeUtils.nice print (F)

print("levelorder is complete?", levelorder is complete(F))

remove leaves under H

H = F.right

H.left = None

H.right = None

TreeUtils.nice print (F)

print ("levelorder is complete?", levelorder is complete (F))
def create completness example tree():

F = BinaryTreeNode ("F")

TreeUtils.insert (F, "D")

TreeUtils.insert (F, "H")
TreeUtils.insert (F, "B")
TreeUtils.insert (F, "E")
TreeUtils.insert (F, "A")
TreeUtils.insert (F, "C")
TreeUtils.insert (F, "G")
TreeUtils.insert(F, "I")
return F

If you execute this main () function, you get the expected results:

F
| === Fmm e |
[| | ===~ o= |
B E G I
==+
A c
levelorder is complete? True
F
| =======- tommmm oo |
D H
| === t-———- |
B E
| ==+~
A C

levelorder is complete? False

Solution 12d: Completeness Recursive (kA %k k%)

In this last subtask, the following challenge remains to be mastered as a special treat. The check is to
be solved without additional data structures and purely recursively. At first, this sounds hardly feasible,

so I'll give a hint.

TipDevelop the solution step by step. Create an auxiliary data structure that models whether or not a

node exists for a certain position. Then traverse the tree and mark the positions appropriately. After-

wards, convert this implementation to a purely recursive one without the auxiliary data structure.

Example

As before, the following tree is complete by definition:

Algorithm In fact, the assignment sounds hardly manageable, but that is why it is a tough challenge.
As like so often, it is worthwhile to start by developing a version that does not yet meet all the required

properties and gradually refine it. You start with the ideas from the tip.

The idea is this: You traverse the tree, and for each node that exists, you mark exactly that in a list of

bools When doing so, you number the positions according to level order from left to right and top to bottom.

To determine the position of the current node in the list, you perform the following computation: For the

position 7, the left successor has the position i = 2 + 1 and the right successor has position i * 2 + 2.2 Figure 8-

12 illustrates this.

N
F, — [EJDIH BIEIGIT]AIC
PR N)
D’ “H, R R
/N /N
B, E, G. I
v '\
A G index: 0|1|2|3|4|5|6|7|8

Figure 8-12 Map a tree node to a position in the list/array

Now you still need to know how large the result list needs to be. Theoretically, at most, it can contain 2/¢%&"*
elements. However, for very deep and thus expanding trees, many leaves might not exist at all. To optimize the
memory consumption, you count the number of nodes to determine the actual size needed. This is where
Exercise 12a helps you. Then you traverse all the tree elements using the traverse and mark () function.
Finally, you summarize the data using all assigned().
def is complete(start node):

node count = count_nodes (start node)

node exists = [False] * node count

now you traverse the tree from the root downwards
traverse_and mark (start node, node exists, 0)

return all assigned((node exists)

Let’s move on to traversing the tree and filling the list. Interestingly, it doesn’t matter whether you use
preorder, inorder, or postorder here. The only important thing is that the positions are determined according to
the mentioned computation rule.
def traverse and mark(start node, node exists, pos):

recursive termination
if start node is None:
return
if pos >= len(node exists):
return
action
node exists[pos] = True
recursive descent
traverse and mark(start node.left, node exists, pos * 2 + 1)
traverse and mark(start node.right, node exists, pos * 2 + 2)

Finally, you need to check if there is a position in the list that is not occupied by True. In this case, you
detect that the tree is not complete. This is implemented as follows:
def all assigned(node exists):

for exists in node exists:
if not exists:
return False
return True

If you remember the built-in function all () you can shorten the implementation—I keep the helper
function because it communicates the algorithm more clearly.
def all assigned(node exists):

return all (node exists)
Phew, that was quite a bit of work so far, and you needed several tricks. On a positive note, this algo-

rithm works. I'll show that later along with the algorithm converted purely to recursive processing

based on these ideas.

On the negative side, however, you need quite a bit of additional memory depending on the tree’s

size. Let’s see how you can avoid this by using the purely recursive variant.

Recursive algorithm The goal is to eliminate the use of the list and work only recursively. Therefore, the
previously created traverse and mark () function is a good starting point. Since you’re not allowed to
use a list as a data store, you need the number of nodes as a parameter.
def is complete rec(start node):
return is complete rec helper(start node, 0,

count nodes (start node))

def is complete rec helper (start node, pos, node count):
if start node is None:

return True

if pos >= node count:
return False

if not is complete rec helper (start node.left, 2 * pos + 1,

node count) :

return False

if not is complete rec helper(start node.right, 2 * pos + 2,

node count) :

return False

return True

Without the intermediate steps, it would have been challenging—at least for me —to formulate the task

recursively since the trick of the logic in the position calculation can hardly be derived without the list

in mind. It is quite impressive what these few lines accomplish.

Verification

Again, you construct the tree and modify it after testing. If you take away the node H or I individually or both,

then completeness is no longer given.

def main () :

def

F = create completness example tree()
TreeUtils.nice print (F)

print ("is complete?", is complete (F))
print ("is complete rec?", is complete rec(F))
modification: remove leaves under H
H = F.right

H.left = None

H.right = None
TreeUtils.nice print (F)

print ("is complete?", is complete (F))
print ("is complete rec?", is complete rec(F))
create completness example tree():

F = BinaryTreeNode ("F")
TreeUtils.insert (F, "D")
TreeUtils.insert (F, "H")
TreeUtils.insert (F, "B")
TreeUtils.insert (F, "E")
TreeUtils.insert (F, "A")
TreeUtils.insert (F, "C")
TreeUtils.insert (F, "G")
TreeUtils.insert(F, "I")

return F

If you run thismain () function, you get the expected results—moreover, they are consistent for the

function variations:

is complete? True

is complete rec? True

is complete? False

is complete rec? False

8.3.13 Solution 13: Tree Printer (k% % % %)

In this exercise, you implement a binary tree’s graphical output, as you have seen before in the exam-
ples. Therefore, you initially solve the basics in the first three parts of the assignment and then pro-

ceed to the trickier graphical presentation of trees.

TipUse a fixed grid of blocks of width three. This significantly contributes to a balanced representation

and reduces complexity.

Example

The following tree should cover various special cases:

Solution 13a: Width of a Subtree (kv)

In this part of the exercise, you are asked to find the maximum width of a subtree of a given height us-
ing the function subtree width (height). For simplicity, you assume that a maximum of three
characters represents the nodes. Besides, there is a distance of at least three characters between
them. This is true for the leaves when the tree is full. On higher levels, there is naturally more space

between the nodes of two subtrees.

Examples

Examples On the left, you see a tree of height 2, and on the right, a tree of height 3. Based on the grid of three,
you get 9 and 21 as widths. See Figure 8-13.

Height Total width Width of subtree

1 3 0 (no subtree existing)
2 9 3

3 21 9

4 45 21

tree A A

F—+ — 4 P ———F - — = —1
B C B C
F—+ — 4 F—+ — 4

width !
9

Figure 8-13 Tree width

Algorithm In the diagram, you recognize that the lowest level of a binary tree can contain at most 2"
nodes, with n as the height of the tree. In order not to exceed the scope you want to ignore variable

widths of the nodes. To determine the maximum width for a height, the total width is as follows:
max_num_of_leaves x leaf _width + (max_num_of_leaves - 1) * spacing

This is the basis for the following implementation. Perhaps the last computation is a bit tricky. You have to
subtract the spacing and divide by two since you only want to determine the maximum width of a subtree.
def subtree width (height):

if height <= 0:

return 0
leaf width = 3
spacing = 3
max num of leaves = pow (2, height - 1)
width of tree = max num of leaves * leaf width + \

(max num of leaves - 1) * spacing

width of subtree = (width of tree - spacing) // 2

return width of subtree

Solution 13b: Draw Node (k& v v vx)

Write function draw node (current node, line length) that creates a graphical output of a
node, generating the given set of spaces appropriately. The node value should have a maximum of

three characters and be placed in the middle.

TipRemember that if the current node has a left successor, the representation of the layer below

starts on the left with the string ‘ | -’.

Example

The example shows a single node with a spacing of five characters. Besides, the node value is center-aligned in

a three-character box. See Figure 8-14.

draw_node (“A", 5)

I) S I) S | S | N | I | —
L ﬂL Jr

/

initial node value
spacing

AN S | I) S —_—
ﬂL J

i

e o

spacing
— (line_length) —

Figure 8-14 Dimensions when drawing nodes

Algorithm As usual, it is a good idea to reduce the complexity by subdividing an assignment into several
smaller subtasks. Using function spacing () you create the required spacing both to the left and right of the
node representation. Its preparation first checks for the special cases of no existence or no value in the node.
Then this corresponds graphically to a free space of three characters. Otherwise, you pad the value converted to
a string with spaces if it is shorter than three characters. If it is longer, you truncate the text to three characters.
This is done in the function stringify node value (node). Because subsequent lines start with the text
| = if a left successor exists, you add three more spaces to the front of your string representation.
def draw node (current node, line length):

str node = " "
str node += spacing(line length)
str node += stringify node value (current node)
str node += spacing(line length)
return str node
def stringify node value (node):
if node is None:
return " "
if node.item is None:
return " "
node value = str(node.item)
if len(node value) == 1:
return " " + node value + " "
if len(node value) == 2:
return node value + " "
return node value[0:3]
def spacing(line length):

return " " * line length

Solution 13c: Draw Connection Lines (Fk k3 5¥)

Write function draw_connections (node, line length) to build a graphical output of the con-

nection lines of a node to its two successors. Missing successors must be handled correctly.

TipThe line length refers to the characters between the node representations. The parts representing

ends are still to be appended appropriately in each case, as well as the middle connector.

Example

The following figure visualizes all cases relevant in drawing, with none, one, and two successor(s).

A schematic representation is shown again in Figure 8-15.

draw_connections (node, line length)

—|L

__|__

L_1|—

| lline_lengthl line_length| |

left junction right
start end

Figure 8-15 Schematic representation of the connecting lines

Algorithm When drawing the connecting lines below a node, all three variants with and without left or
right successor are to be covered. Even a little more interesting is the fact that a non-existent node
must also produce a corresponding output of blanks. This is needed if there are no children on the left

side. Otherwise, the nodes on the right side would not be indented correctly.

You subdivide the drawing into three parts. First, you prepare the left part of the output with

draw left connection part (). After that, in draw junction (node) you create the connection

point respecting all special cases. Finally, with draw right connection part () you prepare the right

part.
def

def

def

def

def

draw connections(node, line length):
if node is None:
return " " + spacing(line length) + \
" " + spacing(line length) + "™ "
connection = draw left connection part(node, line length)
connection += draw_junction (node)
connection += draw right connection part(node, line length)
return connection
draw left connection part(node, line length):
if node.left is None:
return " " + spacing(line length)
else:
return " |-" + draw line(line length)
draw right connection part(node, line length):
if node.right is None:
return spacing(line length) + " "
else:
return draw line(line length) + "-| "
draw_junction (node) :
if node.left is None and node.right is None:
return " "
elif node.left is None:
return " +-"
elif node.right is None:
return "-+ "
else:
return "-+-"
draw line(line length):

return "-" * line length

Solution 13d: Tree Representation (% % k%)

Combine all solutions of the parts of the exercise and complete the necessary steps to be able to print

an arbitrary binary tree suitably on the console. To do this, write function nice print (node).

Example

The output of the tree shown in the introductory example should also look something like this through

nice print():

Also, check your algorithm with a real monster of a tree, which you can find in the sources. Here is a much-

slimmed-down representative:

| ==t==|

eb5 g’

BIG
ey |
fo
| = P |
d4 g7
|- b |
b2 e5
| ==+--1
al c3

Algorithm In the previous task, you learned how to map binary trees to lists or arrays. Here, this has

to be slightly modified because in the tree nodes can be missing at arbitrary places in contrast to com-

pleteness. For computing the size of the list, you need the height of the tree. This is also important for

computing the corresponding distances and line lengths. In this case, the trick also helps determine

the maximum width of a subtree and use it appropriately.

These ideas mentioned earlier may be picked up to create a suitable list in which the nodes are stored in a

scattered manner. The following function will assist you in doing so:
def fill nodes into list(start node):

def

height = get height(start node)

nodes = [None] * pow (2, height)

traverse and mark(start node,
return nodes
traverse and mark(start node,
if start node is None:

return
if pos >= len(nodes):

return
action
nodes [pos] = start node

recursive descent

nodes, 0)

nodes, pos):

traverse and mark(start node.left, nodes, pos * 2 + 1)
traverse and mark(start node.right, nodes, pos * 2 + 2)

For drawing, the tree and the list are traversed level by level and the graphical representation is pre-
pared. However, this has the disadvantage that very extensive trees also require quite a lot of addi-

tional memory when drawing since they are kept as an array or list.

There are still a few challenges waiting for you:

. As you start drawing at the top, you need to move the previously prepared lines for each new
level by appropriate positions to the right.

. The distances between the nodes and the lengths of the connecting lines have to be computed
and kept depending on the total height, the current level, and position. Thereby the lowest level still

needs special treatment.

Figure 8-16 illustrates the grid and the different distances between the nodes per level and from one level to

the next.

<9 |A .
[=== —— - e === 2 9
B |- 21 HC| 1

C -~ Tim T o ——i— i | 3 distance
D| <9+ [E] <95 [F !
I T A Bl o B B Al o 0
G43>M<3> I <3>J -

Figure 8-16 Spacing between nodes

The associated implementation benefits from the use of the helper functions:
def nice print vl (node):
if node is None:
return
tree height = get height (node)
all nodes = fill nodes into list (node)
traverse level by level
offset = 0

lines = []
for level in range(tree height):
line length = subtree width(tree height - 1 - level)
indent predecessor lines to the right
for i in range(len(lines)):
lines[i] = " " + spacing(line length) + lines[i]
nodes per level = pow(2, level)
node line = ""
connection line = ""
for pos in range (nodes per level):
current node = all nodes[offset + pos]
node line += draw node (current node, line length)
node line += spacing between nodes (tree height, level)
connection line += draw connections(current node, line length)

connection line += spacing between connections(tree height,

level)

def

def

lines.append(node line)
lines.append(connection line)
jump forward in the list
offset += nodes per level
for line in lines:
print(line)
spacing between nodes (tree height, level):
spacing length = subtree width(tree height - level)
spacing = " " * spacing length
if spacing length > O0:
spacing += " "
return spacing
spacing between connections(tree height, level):
spacing length = subtree width(tree height - level)

return " " * spacing length

Memory-optimized algorithm In the following, | would like to present a modification that does not

need any additional memory. Instead, it renders the graphical representation of the tree with a level

order traversal. You use a list with single lines, wherein those with nodes and connecting lines alter-

nate. In my opinion, the previously shown version is somewhat clearer. The following version needs

the special treatment of changing levels, which is performed more naturally in the first version.

Overall, however, it is still a clear level order traversal, whose action is a bit more extensive in this case.

def

nice print(start node):
if start node is None:

return

to _process = Queue ()
wvery cool: tuple (node, level)
to process.enqueue ((start node, 0))
tree height = get height (start node)
lines = []
level = 0
node line = ""
connection line = ""
additional left spacing = ""
while not to process.is empty() and level < tree height:
levelorder
current node and level = to process.dequeue ()
current node = current node and level[O0]
node level = current node and level[1l]
line length = subtree width(tree height - 1 - level)
change in level
if level != node level:
level = node level
line length = subtree width(tree height - 1 - level)
lines.append(node line)
lines.append (connection line)
for i in range(len(lines)):
lines[i] = " " + additional left spacing + \
spacing (line length) + lines[i]
node line = ""
connection line = ""
node line += draw node (current node, line length)
node line += spacing between nodes (tree height, level)
connection line += draw connections(current node, line length)
connection line += spacing between connections (tree height, level)
levelorder
if current node is not None:
to process.enqueue ((current node.left, level + 1))
to process.enqueue ((current node.right, level + 1))
else:
artificial placeholders
to process.enqueue ((None, level + 1))
to process.enqueue ((None, level + 1))
for line in lines:

print(line)

Verification

You have developed quite a bit. Now you want to see the fruits of your labor. For this purpose, you use the

trees from the introductory example. The first tree shows well the principle way of working. The second is a

combination of the previous example trees, but rotated to the left and right and united under a new root with the

value BIG.

def create tree print example tree():
F = BinaryTreeNode ("F")
TreeUtils.insert (F, "D")
TreeUtils.insert (F, "H")
TreeUtils.insert (F, "B")
TreeUtils.insert (F, "A")
TreeUtils.insert (F, "C")
TreeUtils.insert(F, "I")
return F

def create big tree():

dd4a = example trees.create example tree()
d4b = example trees.create example tree()
BIG = BinaryTreeNode ("BIG")

BIG.left = rotate right (d4a)
BIG.right = rotate left (d4b)
return BIG

These functions result in the following trees:

F
| == Fom e |
D H
| ===~ + L |
B I
| ==+~
A c
BIG
| = P
b2 f6
| mmm o | | mmm e
al d4 d4
| ===~ o= | |===~~ o= |
c3 f6é b2 eb
| ===~ | ==+
eb g’ al c3

If you want to see how beautifully really expansive trees are rendered, call the function for the following
construct:
def create monster tree():

mon = BinaryTreeNode ("MON")
mon.left = create big tree()
mon.right = create big tree()
return mon

In the companion project, you will find a double combination of this monster tree, which for fun | have

named King Kong.

8.4 Summary: What You Learned

This chapter covered probably the most complex topic in this book, which is binary trees. As in many
other languages, they are not part of standard Python. However, binary trees are suitable for solving
numerous problems elegantly. Therefore, this chapter gave an introduction. Besides things like rota-
tion, even mathematical calculations, for example, can be represented and processed very smartly
using binary trees. Something challenging and to puzzle over was certainly the check for complete-

ness and the graphical output of a binary tree.

In the next chapter, you continue with searching and sorting, which are essential topics in computer

science like binary trees.

Footnotes

Please consult textbooks or the Internet for more info about B-trees. A good start is the following page: www . geeks-

forgeeks.org/introduction-of-b-tree-2

NS

To be more precise, it’s used to represent the abstract syntax structure of the source code—not the source code itself.

|98}

The computation gets a little bit easier if you assign the index 1 to the root. Then the children have positions 2jand 2i + 1.

http://www.geeksforgeeks.org/introduction-of-b-tree-2/

© The Author(s), under exclusive license to APress Media, LLC, part of Springer
Nature 2022

M. Inden, Python Challenges

https://doi.org/10.1007/978-1-4842-7398-2 9

9. Searching and Sorting

Michael Indent
(1) Zurich, Switzerland

Searching and sorting are two elementary topics of computer science in
the field of algorithms and data structures. Python provides efficient im-
plementations for both of them and thus takes a lot of work off your
shoulders. However, understanding the underlying algorithms helps in
choosing the most suitable variant for a particular use case. | only skim
over the topic of searching here since it is built in and does not offer a
lot of variations, except for binary search, which is covered in section
9.1.1.

In this chapter, you will primarily dedicate yourself to some essential
sorting algorithms because you will learn some algorithmic tricks in the

meantime.
9.1 Introduction Search

When managing data, sometimes you need to search for items, such as

customers with the first name “Carsten” or an invoice with specific order

https://doi.org/10.1007/978-1-4842-7398-2_9

date. Conveniently, all containers like lists, sets and dictionaries offer
various methods or functions, such as those with which you can search

for elements.
9.1.1 Search with in(), index(), and count()

Sometimes you just need to check if certain data is present in a container. The
keyword in helps with this. Occasionally you may also want to get the
position of the element. Then you use index () , which triggers a
ValueError in case of non-existence:
3 in [1, 2, 3] # => True
[1, 2, 3].index(2) # => 1
[1, 2, 3].index(4) # => ValueError

Furthermore, it is important to remember that index () always returns
the index of the first occurrence. If there are several identical elements and all
their occurrences are to be determined, then you can help yourself with a
combination of in and enumerate (). If necessary, count () returns the
number of identical elements.
print ([1, 2, 3, 2].index(2)) # => 1
print([1 for 1, val in enumerate([1l, 2, 3, 2, 4, 2])
if val == 2]) # => [1, 3, 5]
print([1, 2, 3, 2, 4, 2].count(2)) # => 3

For dictionaries you can get the keys (keys ()), the values (values ()),
or their combination with items (). For queries, there is another short form
for the keys:
programmers = {"Michael": "Python",

"Tim": "C++",

"Karthi": "Java"}

if "Karthi" in programmers.keys () :
print ("Karthi is here™)
Python Shortcut
if "Karthi" in programmers:
print ("Karthi is here II")
if "C++" in programmers.values () :
print ("someone knows C++")
if ("Michael", "Python") in programmers.items () :
print ("Michael knows Python")

In addition, a1l () can be used to check whether a set of elements is
included. With any () you can determine if there is a match.
print(all (elem in [2, 3, 5, 7, 9] for elem in [7,
21)) # => True
print (any(elem in [2, 3, 5, 7, 9] for elem in [7,
21)) # => True
print (any(elem in [2, 3, 5, 7, 9] for elem in
[4])) # => False

9.1.2 Search with rindex() and rfind()

For strings, there are functions rindex () and rfind () to find the position

of a desired element from the end of the string:

print ("Hello".rindex ("1")) # => 3
print ("Hello".rfind("1")) # => 3
print ("Hello".rfind ("x")) # => -1
print ("Hello".rindex ("x")) # => ValueError:

substring not found

Unfortunately, there is no such thing for lists. However, you can program

this quite easily yourself using the function named last index of (),

which is known from Java and, in my opinion, is better understandable. If no
element is found, the return value is -1.
def last index of (values, search for):

for pos in range(len(values) - 1, -1, -1):

if values[pos] == search for:
return pos

return -1
print (last index of([1, 2, 3, 2, 4, 2, 5, 21, 2)) #
=> 7

9.1.3 Binary Search

A brute-force way to search is to iterate over all elements until the desired

element is found or you reach the end of the dataset, like this:
def find(values, search for):

for i, current value in enumerate (values):
if current value == search for:
return 1
return -1

The same applies to the search methods just mentioned. Even if not di-
rectly visible, all of them iteratively look at all elements of the data struc-
ture until they find what they are looking for. They search all resultin a
linear running time. In contrast, there is an efficient search called binary
search, which offers logarithmic running time. But there is a prerequi-
site: binary search requires sorted data. If you have to sort data ex-
plicitly first, then the advantage over a linear search is hardly given, es-

pecially with small datasets.

For larger volumes of data, however, the logarithmic running time of a
binary search is significantly better than that of a linear search. The low
running time is achieved by the algorithm splitting the parts to be processed in
half in each case and then continuing the search in the appropriate chunk.

Figure 9-1 illustrates the principle procedure, with discarded parts marked in

gray.

binary_search(7) . _ _ _ _ . |___i=searchrange
| |
| S S .
I i 213151711113 i step 1
| T T
|
| 21357 |11]13 step 2
I A’/
: 2131517111113 step 3
' £

return: 3 21315|7H1{13] steps

Figure 9-1 Schematic sequence for binary search

In the figure, the arrow points between the elements in the first step—
depending on the implementation of binary search (), the left or
right element directly adjacent to the center is used for comparison if

the number is even.

9.2 Introduction Sort

In this section, | introduce some sorting algorithms that form the basis

for the later exercises.

9.2.1 Insertion Sort

Insertion Sort is illustrated the best by sorting a deck of cards in your hand.
Typically, you start on the left side, then take the next card to the right, and
insert it appropriately into the already sorted left part, which usually causes
some cards to move to the right. With this procedure, you can skip the first
card since it is sorted by itself and start with the second card. Let’s look at this
for the number sequence 4, 2, 7, 9, 1. For this purpose, the respective new
element to be sorted in is marked. The already sorted part on the left is

separated with || from the unsorted part on the right.
4 11 @7 91

4 1| @ 9 1

47 1] @ 1

479 || @

2 4 7 9

In the example, you start with the value 2. For each number, you have

NN

to determine the correct insertion position. There are two ways to do

this, as described below.
Determine Insertion Position

Starting from the current position, move to the left as long as the compared
values are larger. Alternatively, you can also start from the beginning and

move one position to the right as long as the compared values are smaller.
def find insert pos from current (values,

current pos):

insert pos = current pos
while insert pos > 0 and values[insert pos - 1]
> values[current pos]:
insert pos -= 1
return insert pos
def find insert pos from start(values, current pos):
insert pos = 0
while insert pos < current pos and
values[insert pos] < values[current pos]:
insert pos += 1

return insert pos

HINT: STABLE SORTING
When sorting elements of the same value, keeping their original order

[in the collection is referred to as a Stable Sort . This is often a prefer-
able behavior because it prevents data associated with the elements

[from getting out of order.

For the example, find insert pos from current () resultsina
stable sorting, but the second one does not. However, if you replace the <

with <=, the resulting sorting algorithm also becomes stable:
While insert pos < current pos and \
values|[insert pos] <= values[current pos]:

This is due to the fact that a most recently found element of the same

value is always placed behind all elements of the same value.

Implementation of Insertion Sort

After identifying the correct insertion position for a value, all values (up to the
currently considered value) have to be shifted by one position to the right.

Finally, the value is inserted at the determined position.
def insertion sort(values):
for current pos in range(l, len (numbers)):
current val = numbers|[current pos]
insert pos =
find insert pos from current (values, current pos)
move right (values, current pos, insert pos)
numbers[insert pos] = current val
def move right (values, current pos, insert pos):
move pos = current pos
while move pos > insert pos:
values[move pos] = values[move pos - 1]
move pos -= 1

This code shows a well-understandable implementation that focuses on
comprehensibility and not on speed. In fact, it is possible to combine
some actions cleverly and thus avoid multiple runs. Later, in Exercise 4,

you will deal with exactly this optimization.

Let’s try out the implementation on the command line:
>>> values = [4, 2, 7, 9, 1]
>>> insertion sort (values)
>>> print(values)
(1, 2, 4, 7, 9]

9.2.2 Selection Sort

Selection Sort is another intuitive method for sorting. It offers two varia-
tions, one based on the minimum and the other on the maximum. In the
minimum version, the values to be sorted are traversed from front to
back. In each step, the minimum is determined from the section that is
still unsorted. This is moved forward by swapping it with the current ele-
ment. This causes the sorted area to grow from the front and the re-
maining unsorted section to shrink. For the version based on the maxi-
mum, the data to be sorted is processed from the back to the front. The
respective maximum is placed at the end so that the sorted area grows

from the back.

To gain a better understanding, let’s reproduce this for a small set of
values. For this purpose, the respective current minimum or maximum 1is
specially marked. The sorted part is separated from the unsorted part with ||.

You can easily observe how the sorted part grows.

Min Max

- <—

1l 4279 ® 4 27 @ 1 ||
1: 1 || @7 9 4 42 @1 || 9
2: 1 2 |1 79 @ @21 11 79
3: 124 || 9@ 1@ || 47 9
4: 1 2 4 7 || 9 1 11 2 479

The implementation of the version concerning the minimum is as follows:
def selection sort min(values):
for i in range(len(values) - 1):
min idx = 1
find minimum

for j in range(i + 1, len(values)):

if values([J] < values[min idx]:
min idx = J

swap current value with minimum

tmp = values[min 1dx]
values[min idx] = values[i]
values[1i] = tmp

If you only look at algorithms at this low level, it is usually difficult to un-
derstand and comprehend them. Of course, the final algorithms used in
frameworks must be as optimal as possible. This requires estimations
with the O-notation. This is easier to perform on the low level than on
the high level since then all constructs, including invoked functions or
methods, must be considered. However, to learn and get started, it is
much more suitable to program comprehensively first and then optimize

in further steps.

Let’s execute the sorting in the following main () :
def main () :
values = [4, 2, 7, 9, 1]
selection sort min(values)
print (values)

We get the expected output:
[:I- ’ 2 4 4 14 7 ’ 9 :|

OPINION: START WITH COMPREHENSIBILITY
How can Selection Sort be described on a higher level of abstraction?

To do this, let’s use some auxiliary functions that you created for arrays.
[In the corresponding chapter’s introduction, you learned about the

method swap () for swapping elements and the function find min -

pos () for finding the position of the smallest element, which was creat-
ed as solution for Exercise 11 in Section 6.3.11. Conveniently, they can

also be used for lists without modification.

By using these functions, the actual procedure becomes almost
[fmmediately apparent. You traverse the values from the beginning and, in
each case, find the minimum of the remaining part and swap it with the value
of the current position:
def selection sort min readable (values):
for cur idx in range(len(values) - 1):
min idx = find min pos (values, cur idx,
len (values))
swap (values, min_ idx, cur idx)
In the code, the two helper functions from the module array utils
fmarked in bold are used. As usual, the module array utils bundles
several helper functions developed in Chapter 6. The two helper functions
called in the code above are shown again here to ease trying out the example
with the command line:
def find min pos(values, start pos, end pos):
min pos = start pos
for i in range(start pos + 1, end pos):
if values[i] < values[min pos]:

min pos = 1i
return min pos
def swap (values, posl, pos2):
temp = values|[posl]
values[posl] = values[pos2]

values[pos2] = temp

9.2.3 Merge Sort

Merge Sort is based on a divide-and-conquer approach. It recursively splits the

values to be sorted into smaller and smaller subparts of about half the original

size until they consist of only one or possibly no element. Afterwards, the

subparts are combined again. In this merging step, the sorting is done by the

appropriate merging based on the respective values. The processes can be

illustrated as shown in Figure 9-2.

merge_sort (4279 1)

1 split

.
- ~,
= Sa

merge_sort (4 2 7) ’ merge_sort (9 1)
split 1 split

. - . .
- ~, -~ ~,
& ~a £ Sa

merge_sort (4 2) merge _sort (7) merge_sort (9) merge_sort (1)
split i i i

A”‘ \‘A

merge_sort (4) merge_sort (2)

] €
O €——————mm—mm -
—t e ———————

1 1
] i
\Z \
4 2
N merge Pt /,‘ SO merge Pt
f"
24 merge "~ 19
a2 ’,/’ g
247
IS merge -
~\\~ g ’,/
12479

Figure 9-2 Merge Sort procedure

The splitting algorithm can be implemented recursively and well

recursive
split

merge
steps

comprehensibly— though also somewhat inefficiently—as long as you are

allowed to create new lists. The implementation of the function

merge (valuesl, values?2) was already presented as the solution to

Exercise 12 in Section 5.3.12. It is used here:

def merge sort(to sort):

recursive termination: length 0 (only if
initially empty array) or 1

if len(to sort) <= 1:

return to sort

recursive descent: divide into two halves

mid pos = len(to sort) // 2

left = to sort[0: mid pos]

result left = merge_sort(left)

right = to sort[mid pos: len(to sort)]

result right = merge sort(right)

combine the partial results into larger sorted
data set

return merge (result left, result right)

Let’s execute the sorting in the following main () :

def main () :

unsorted values = [4, 2, 7, 9, 1]

sorted values = merge sort (unsorted values)

print (sorted values)

You get the expected output:

(1, 2, 4, 7, 9]

HINT: ANALOGY FROM REAL LIFE LEADS TO OPTIMIZATION
The analogy to sorting a deck of cards is suitable for Merge Sort as well. If
you need to sort a fairly large pile of cards, you can divide it into many, much
smaller piles, sort them separately, and then merge them successively.
However, instead of reducing the piles down to one card, it is a good idea to
sort the smaller piles using another method, often Insertion Sort, which has a

frunning time of O(n) for small, ideally nearly ordered values. This is useful

for fine-tuning. Ingeniously, Merge Sort makes this easy as pie:

def merge sort with insertion sort(to sort):
recursive termination including mini-
optimization
if len(to sort) < 5:
insertion sort (to sort)
return to sort
recursive descent: divide into two halves
mid pos = len(to sort) // 2
left = to sort[0: mid pos]
result left = merge sort(left)
right = to sort[mid pos: len(to sort)]
result right = merge sort(right)
combine the partial results into larger sorted
data set
return merge (result left, result right)

|::inally, | would like to point out that the limit at which one should switch

o Insertion Sort has been set here quite arbitrarily to the value 5. Pre-
sumably, values between 10 and 20 elements are quite practical. How-
ever, it would be best if you rely on the knowledge of algorithm profes-

sionals who create mathematically sound estimates for running times.

9.2.4 Quick Sort

Just like Merge Sort, Quick Sort is based on a divide-and-conquer approach
and splits the values to be sorted into smaller and smaller subparts. A special
element (called a pivot) is chosen that determines the grouping or processing.

For simplicity, you can choose the first element of the subparts to be sorted as

the pivot element, but other ways are conceivable. In Quick Sort, sorting 1s
done based on this pivot element by arranging all elements of the parts
according to their value to the left (less than or equal to) or to the right
(greater than) of the pivot. This way, the pivot element is placed in the correct
position. The whole process is repeated recursively for the left and right parts

until the parts consist of only one element. The processes are shown in Figure
9-3.

quick sort(42791)
l partition @2 791

-

quick_sort (2 1) 4 quick _sort (7 9)
1 partition @] l partition @9

;
[2 4 79

Figure 9-3 Quick Sort

Let’s start with an implementation for lists since this is more easily ac-
cessible and understandable. As a result, breaking down the contents
of a list into smaller and larger elements is easy to implement. Later,
combining the results of the recursive computations is also straightfor-
ward. The whole implementation is intentional, not optimized for speed

but for comprehensibility.

For partitioning, you collect all elements that are less than or equal to or
greater than the value of the pivot element in respectively one separate result
list. You skip the first element because it is the pivot element and then apply
the appropriate filter condition within a list comprehension.
def quick sort (values):

recursive termination

if len(values) <= 1:

return values

collect less than or equal to / greater than
pivot

pivot = values[0]

below or equals = [value for value in values[l:]
if value <= pivot]

aboves = [value for value in values[l:] if value
> pivot]

recursive descent

sorted lowers part = quick sort (below or equals)

sorted uppers part = quick sort (aboves)

assemble

return sorted lowers part + [pivot] +
sorted uppers part

The whole thing is quite intuitive for lists and when not optimized for
performance. It becomes considerably more awkward if you want to re-
alize the partitioning for inplace (i. e., directly in the original array or list
itself). You can see this for yourself later when solving Exercise 6. You

will now take a look at the basic procedure.

Let’s execute the sorting in the following main () :

def main() :

unsorted values = [4, 2, 7, 9, 1]
sorted values = quick sort (unsorted values)

print (sorted values)

We get the expected output:

[1,

2, 4, 7, 9]

Inplace Implementation

The basic algorithm can be implemented as follows, although the realization

of the partitioning, as already mentioned, will be a practice exercise:

def gquick sort inplace(values):

quick sort in range(values, 0, len(values) - 1)
def quick sort in range(values, left, right):

recursive termination

if left >= right:

return

partition index = partition(values, left, right)

recursive descent

quick sort in range(values, left,
partition index - 1)

quick sort in range(values, partition index + 1,
right)

HINT: AVOIDING SIDE EFFECTS BY COPYING

[f the original data set should be left unchanged, you can first create a copy of
[it and then call the inplace function:

def quick sort with copy(values):

copied values = values.copy ()
quick sort inplace (copied values);

return copied values

9.2.5 Bucket Sort

Bucket Sort is an interesting sorting method whose algorithm is only

outlined below since the implementation is the subject of Exercise 7.

Bucket Sort is a two-step procedure for sorting data. First, the values are
collected in special containers called buckets. Then, these values are
transferred appropriately into a sorted list. For the algorithm to be feasible, the
elements to be sorted must have a limited set of values. For example, this
applies to the age information of persons, where you can assume a range of
values from 0 to 150.
ages = [10, 50, 22, 7, 42, 111, 50, 7]

This definition of a maximum number of different values means that a
corresponding number of containers, the buckets, can store the values
or, more precisely, their frequency. One bucket is provided for each

possible value.

Step 1: Distribution to buckets At first, the initial set of data is traversed,
and their occurrence is recorded in the buckets. For the age information above,
the distribution is as follows:
bucket[7] = 2
bucket[1
bucket[2
bucket[4
bucket [50] =
bucket[111] =1
All other buckets store the value 0.

0] 1
2] =1
2] =1

2

Step 2: Preparation of the sorted result In a final step, the buckets are
traversed from the beginning. The respective values are inserted into the result
as many times as their number is stored in the bucket. This produces this
sorting:
result = [7, 7, 10, 22, 42, 50, 50, 111]

9.2.6 Final Thoughts

Many of the more intuitive algorithms, such as Insertion Sort and Selec-
tion Sort, possess the disadvantage of having a running time of O(r?).
However, Insertion Sort has a positive and remarkable feature: As long
as the output data is (nearly) sorted, Insertion Sort becomes extremely

performant with O(n).

Quick Sort and Merge Sort are usually very efficient with a running time
of O(n . log(n)).1 Still, they also have higher complexity of the source
code, especially when working inplace. For frameworks and larger
datasets, performance is essential. Potentially unfavorable for Merge
Sort, on the other hand, is the creation of many copies of subranges.
The same applies to Quick Sort and its partitioning. For both, however,
some variants do this inplace. Interestingly, the respective divisions of
the subranges to be sorted are quite easy to express by recursion, but
the partitioning or merging part is then more complex and more difficult
to implement. This holds in particular if you work inplace. For Merge
Sort, you will find an example in the provided PyCharm project. For

Quick Sort, you may try it in Exercise 6.

Bucket Sort remains. This algorithm sometimes runs even in linear run-
ning time, which is O(n). However, in contrast to the other sorting algo-
rithms presented, it is not generally applicable since it has the already

mentioned restriction concerning the number of allowed values.

9.3 Exercises

9.3.1 Exercise 1: Contains All (3k k5 ¥ 3¥)

The task is to create function contains all (values, search -
values) that checks if all passed values are present in the given list.

Explicitly do not use the Python standard functionality of a11 () . Pro-

gram this yourself.

Examples
Input Searchvalues Result
[0,1,2,3,4,5,6,7,8,9] [7,2] True
[0,1,2,3,4,5,6,7,8,9] [5,11] False

9.3.2 Exercise 2: Partitioning (% % %)

The challenge is to suitably sort or arrange a mixed sequence of the let-
ters A and B in a single pass so that all As occur before the Bs. This can

also be extended to three letters.

Examples
Input Result
“ABAABBBAAABBBA” “AAAAAAABBBBBBB”

“ABACCBBCAACCBBA” “AAAAABBBBBCCCCC”

Exercise 2a: Partitioning Two Letters (k% kv 3¥)

Write function partition2 (text) that takes a given sequence built
out of the two letters A and B and turns it into an ordered sequence

where all As occur before the Bs.

Exercise 2b: Partitioning Three Letters (k% % %k i)

Write function partition3 (text) that partitions a sequence built of
the three letters A, B, and C given as str into an ordered sequence
where all As occur before Bs and they in turn before Cs. Instead of let-
ters, this can be thought of for colors of a flag. Then it is known as the

Dutch Flag Problem.

9.3.3 Exercise 3: Binary Search (% % i)
Exercise 3a: Binary Search Recursive (% v ¥)

Write recursive function binary search(values, search for)

that performs a search for the desired value in a sorted list.

Examples
Input Searchvalues Result
[1,2,3,4,5,7,8,9] 5 True
[1,2,3,4,5,7,8,9] 6 False

Exercise 3b: Binary Search Iterative (% v %)

Your task is to convert the recursive function into an iterative one. As a

modification it should return the position of the search value or -1 for not
found instead of True or False. Additionally, it should be named bi -

nary search iterative (values, search value).

Examples

Input Search values Result

Input Search values Result
[1,2,3,4,5,7,8,9] 5 4

[1,2,3,4,5,7,8,9] 6 -1

9.3.4 Exercise 4: Insertion Sort (3 kv ¥v)

The introductory Section 9.2.1 showed a simplified, easy-to-follow real-
ization of Insertion Sort. In this exercise, the goal is to optimize the
whole thing by now finding the insertion position and performing the
necessary swapping and insertion in one go. Write an optimized version

of insertion sort (values).

Example

Input Result

[7,2,5,1,6,8,9, 4, 3] [1,2,3,4,5,6,7,8,9]

9.3.5 Exercise 5: Selection Sort (3 % 5 3 3¥)

Write a variation of Selection Sort that uses the maximum instead of the

minimum and has the following signature: selection sort -

max inplace (values).

What needs to be modified so that the sort algorithm leaves the original
data unchanged and returns a new sorted list? Implement this require-

ment in function selection sort max copy (values).

Example

Input Result

[7) 27 57 17 67 87 97 47 3] [17 27 37 47 57 67 77 8’ 9]

9.3.6 Exercise 6: Quick Sort (3K Kk i ¥v)

I described Quick Sort in the introductory Section 9.2.4. Whereas the splitting
into two ranges with values less than or equal to the pivot elements can be
implemented very easily when creating new lists, this is more challenging for
lists when performing inplace. You need to implement the partitioning with
the function partition (values, left, right). In the following,
the already existing source code is shown once again:
def gquick sort inplace(values):

quick sort in range(values, 0, len(values) - 1)
def quick sort in range(values, left, right):

recursive termination

if left >= right:

return

partition index = partition(values, left, right)

recursive descent
quick sort in range(values, left,
partition index - 1)

quick sort in range(values, partition index + 1,

right)

Examples
Input Result
[5,2,7,1,4,3,6, 8] [1,2,3,4,5,6,7, 8]
[5,2,7,9,6, 3,1, 4, 8] [1,2,3,4,5,6,7,8,9]

(5,2,7,9,6,3,1,4,2,3,8] [1,2,2,3,3,4,5,6,7,8,9]

9.3.7 Exercise 7: Bucket Sort (kK v vv)

In the introductory Section 9.2.5, a Bucket Sort algorithm was described.
In this exercise, you want to create function bucket sort (values,
expected max) thatimplements this sorting algorithm for a list of val-

ues and an expected maximum value.

Example

Maximum

Input Result

value
[10, 50, 22, 7, 42, 111, 150 [7,7,10, 22, 42, 50, 50,
50, 7] 111]

9.3.8 Exercise 8: Search in Rotated Data

0. 0.0.0.¢°9)

In this exercise, your task is to implement an efficient binary search in a
sorted sequence of integer values. The challenge is that the values are
ordered but rotated within themselves. According to that, the smallest
element may not be at the front of the data. Additionally, the largest ele-
ment does often not reside at the end of the data (except in the special

case of a rotation by 0 positions).

ipBe careful also to check the special case of a rotation of 0 or a multi-
ple of the length of the data set that would again correspond to a rota-
ion for the value 0.
Exercise 8a: Flank Change Efficient (k% % %)

Write function £ind flank pos (values) that efficiently finds the
position of a flank change in a given sorted sequence of n integer val-
ues, say 25, 33,47, 1, 2, 3,5, 11 in logarithmic time, which is O(log(n)).

Write two functionsmin value (values) andmax value (values)

basedon find flank pos (values) that, according to their names,
determine the minimum and maximum, respectively, from the given

sorted but rotated sequence of values.

Examples

Input Flank position Minimum Maximum

[25,33,47,1,2,3,5,

3 1 47
11]
[5,11, 17, 25,1, 2] 4 1 25
[6,1,2,3,4,5] 1 1 6
0 (special
[1,2,3,4,5,6] 1 6
case)

Exercise 8b: Binary Search in Rotated Data (k% % % i)

Write function binary search rotated(values, search for)
that efficiently searches in a sorted sequence of integer values, say the
number sequence 25, 33,47, 1, 2, 3, 5, 11, for a given value and returns

its position or -1 if not found.

Examples

Input

[25,33,47, 1,2, 3,5,
11]

[25,33,47,1,2, 3, 5,
11]

[25,33,47,1,2,3, 5,
11]

[1,2,3,4,5,6,7]

[1,2,3,4,5,6,7]

9.4 Solutions

9.4.1 Solution 1: Contains All (k% v ¥r)

Flank position

0 (special

case)

0 (special

case)

Search

value

47

13

13

Result

The task is to create function contains all (values, search -
values) that checks if all passed values are present in the given list.

Explicitly do not use the Python standard functionality of a11 () . Pro-
gram this yourself.

Examples
Input Search values Result
[0,1,2,3,4,5,6,7,8,9] [7,2] True
[0,1,2,3,4,5,6,7,8,9] [5,11] False

Algorithm For your implementation, you call the test with in repeatedly,
for all elements passed to be checked for containment:
def contains all(values, search values):
for current in search values:
if current not in values:
return False
return True
Python shortcut Of course this can be written more compactly with the
help of al1l (). Nevertheless, a helper function is probably useful to keep the
calling source code as understandable as possible.
def contains all v2(values, search values):
return all (elem in values for elem in

search values)

Verification

Let’s define a list with the numbers from 0 to 9 and check if the values 7 and

2,as well as 5 and 11, are present there:
@pytest.mark.parametrize ("values, search values,

expected",
8, 91, [7, 2], True),

8, 91, [5, 11], False)])
def test contains all (values, search values,
expected) :

assert contains all (values, search values) ==
expected
@pytest.mark.parametrize ("values, search values,

expected",
8, 91, [7, 21, True),

8, 91, [5, 11], False)l])
def test contains all v2(values, search values,
expected) :

assert contains all v2(values, search values) ==

expected

9.4.2 Solution 2: Partitioning (k% % %)

The challenge is to suitably sort or arrange a mixed sequence of the let-

ters A and B in a single pass so that all As occur before the Bs. This can

also be extended to three letters.

Examples
Input Result
“ABAABBBAAABBBA” “AAAAAAABBBBBBB”

“ABACCBBCAACCBBA” “AAAAABBBBBCCCCC”

Solution 2a: Partitioning Two Letters (k% k)

Write function partition2 (text) that takes a given sequence built
out of the two letters A and B and turns it into an ordered sequence

where all As occur before the Bs.

Algorithm Although you may be initially tempted to compare all possible
positions, an ingenious and performant solution exists that solves the task in
one pass. Work with two position pointers, 1 ow and high, which mark the
front and back positions, in this case, the valid range given by the rearmost A
and the foremost B. This area is initially empty and grows until you reach the
end of the text. The following procedure is used: When an A is found, its
position pointer (Low) is incremented. When a B 1s found, it is swapped to the
back. Afterwards, the position pointer of the Bs (high) is decreased,
expanding the already correctly divided area.
def partition2 (char values):

low = 0

high = len(char values) - 1
while low <= high:
if char values[low] == 'A':
low += 1
else:
swap positions (char values, low, high)
high -=1
low must remain, because theoretically
also a
B can be exchanged to the front
return "".join (char values)
def swap positions(list, posl, pos2Z):
list[posl], list[pos2] = list[pos2], list[posl]
Because a B may also move to the front when swapping, the lower po-
sition pointer must stay unchanged. In one of the next steps, the B will
then move to the back again. This tricky algorithm makes it possible to

arrange all As in front of the Bs in a single pass.

Solution 2b: Partitioning Three Letters (3 % % % +)

Write function partition3 (text) that partitions a sequence built of
the three letters A, B, and C given as str into an ordered sequence
where all As occur before Bs and they in turn before Cs. Instead of let-
ters, this can be thought of for colors of a flag. Then it is known as the

Dutch Flag Problem.

Algorithm The extension from two to three letters (or colors) employs

similar ideas as before, but with a few more tricks and special treatments. You

start again at the beginning of the array or list but use the three position
markers 1ow, mid, and high. Initially, they are located for the first and
middle character at position 0, the one for high at the end position. If an A is
found, the positions for 1 ow and mid shift by one to the right. Before that, the
last character from the lower range is swapped with the current (middle) one.
If you read a B, only the middle position is shifted towards the end. If the
current character is a C, this 1s swapped to the back. The position marker for

the upper area is then reduced by 1.

def partition3(char values):

low = 0
mid = O
high = len(char values) - 1

while mid <= high:
if char values[mid] == 'A':

swap positions(char values, low, mid)

low += 1
mid += 1

elif char values[mid] == 'B':
mid += 1

else:

swap positions (char values, mid, high)

high -= 1

low, mid must remain unchanged,
because also a B or C

can be swapped to the front

return "".join (char values)

Verification

To check functionality, you use two strings consisting of a shuffled sequence
of the letters A and B or A, B, and C, respectively:
def test partition2():

assert partitionZ (list ("ABAABBBAAABBBA")) ==
"AAAAAAABBBBBBB"
def test partition3():

assert partition3(list ("ABACCBBCAACCRBBA")) ==
"AAAAABBBBBCCCCC"

9.4.3 Solution 3: Binary Search (k% s v 3¥)
Solution 3a: Binary Search Recursive (k% v ¥)

Write recursive function binary search(values, search for)

that performs a search for the desired value in a sorted list.

Examples
Input Search values Result
[1,2,3,4,5,7,8,9] 5 True
[1,2,3,4,5,7,8,9] 6 False

Algorithm Divide the list into two halves. Determine the value in the
middle and see if you need to search further in the top or bottom half.

This can be easily determined based on the given sort order.

Valuecenter == Search_for = found, end
Valuecenter < S€arch_for = continue searching in lower part
Valuecenter > S€arch_for=> continue searching in upper part

The implementation in Python strictly follows the description. As usual,
be especially careful at the boundaries of the list or array to avoid making
careless mistakes.
def binary search(sorted values, search for):

mid pos = len(sorted values) // 2
recursive termination
if search for == sorted values[mid pos]:
return True
there are still at least 2 numbers
if len(sorted values) > 1:
if search for < sorted values[mid pos]:
recursive descent: search further in
the lower part
lower half = sorted values[0: mid pos]
return binary search(lower half,
search for)
if search for > sorted values[mid pos]:
recursive descent: continue search in
the upper part
upper half = sorted values[mid pos + 1:
len (sorted values)]
return binary search (upper half,

search for)

return False
To try it out, execute the following code:
def main() :
sorted values = [1, 2, 3, 4, 5, 7, 8, 9]
print ("Given: ", sorted values)
print ("search for 5:",
binary search(sorted values, 5))
print ("search for 6:",
binary search(sorted values, ©6))
The expected result is as follows:
Given: (1, 2, 3, 4, 5, 7, 8, 9]
search for 5: True
search for 6: False
Optimized algorithm The solution shown is not really optimal because
parts of the original data are permanently copied to perform further searches.
The entire process can be done completely without potentially time-
consuming copying with the help of two index variables. The following
solution is certainly preferable:
def binary search optimized(values, search value):
return binary search in range (values,
search value, 0, len(values) - 1)

def binary search in range(values, search for, left,

right) :
if right >= left:
mid idx = (left + right) // 2
if search for == values[mid 1idx]:

return True
recursive descent: search in the lower /

upper part further

if search for < values[mid idx]:
return binary search in range (values,
search for,
left,
mid idx - 1)
else:
return binary search in range (values,
search for,
mid idx +
1, right)

return False

Solution 3b: Binary Search Iterative (kv vr)

Your task is to convert the recursive function into an iterative one. As a

modification it should return the position of the search value or -1 for not
found instead of True or False. Additionally, it should be named bi -

nary search iterative(values, search value).

Examples
Input Search values Result
[1,2,3,4,5,7,8,9] 5 4

[1,2,3,4,5,7,8,9] 6 -1

Algorithm Based on the recursive version just shown, the iterative
implementation may be derived quite easily. Use two position markers left
and right for left and right, which initially start at the beginning and end
(position 0 and 1en (values) — 1). These two markers determine the
respective index boundaries in which further searching is performed. At first,
you compare the value in the middle with the one you are searching for. If the
values are equal, you return the index. Otherwise, you divide the search area
into two parts and continue until either the search is successful or the left and

right position markers cross each other.

def binary search iterative(values, search for):

left = 0
right = len(values) - 1
while right >= left:
mid idx = (left + right) // 2
if search for == values[mid 1dx]:

return mid idx

if search for < values[mid 1dx]:
right = mid idx - 1

else:
left = mid idx + 1

return -1

Verification
For testing, you use the following inputs, which show the correct operation:
@pytest.mark.parametrize ("sorted values, search for,

expected",

5, True),

91,6, False)]l])
def test binary search(sorted values, search for,
expected) :

assert binary search(sorted values, search for)
== expected
@pytest.mark.parametrize ("sorted values, search for,

expected",
5, True),

6, False)])
def test binary search optimized(sorted values,
search for, expected):

assert binary search optimized(sorted values,
search for) == expected
@pytest.mark.parametrize ("sorted values, search for,

expected",
S5, 4),

6, -1)1)
def test binary search iterative (sorted values,
search for, expected):

assert binary search iterative(sorted values,

search for) == expected

9.4.4 Solution 4: Insertion Sort (& %k v ¥r)

Section 9.2.1 showed a simplified, easy-to-follow realization of Insertion
Sort. In this exercise, the goal is to optimize the whole thing by now find-
ing the insertion position and performing the necessary swapping and
insertion in one go. Write an optimized version of

insertion sort (values).

Example

Input Result

[77 27 57 1’ 67 87 99 47 3] [17 2’ 37 47 59 67 77 87 9]

Algorithm For all elements, you perform the following procedure, which
is described exemplarily for the value sequence 24317. Let’s consider 3 as a
value to be sorted in. You must swap with the left neighbor starting from its
position as long as the neighbor’s value is greater than the current one. You
have not yet reached the very front in the list. In this case, you swap the 3 only
with the 4. Next, you need to swap the 1 all the way to the front. Finally, the 7
is already in the right position.
def insertion sort(values):
for i in range(l, len(values)):

check if current element is larger than
predecessor

current idx = 1

while current idx > 0 and values[current idx

- 1] > values[current 1dx]:

swap positions(values, current idx - 1,
current idx)
current idx -=1
def swap positions(values, posl, pos2Z):
values[posl], values|[posZ2] = values[posZ2],
values[posl]

The function to swap the values of two positions can be written very
compactly in Python using the tuple notation and also still without

parentheses.

Verification

Verify that the implementation produces the desired result for the given
sequence of numbers using a unit test:
def test insertion sort():
values = [7, 2, 5, 1, 6, 8, 9, 4, 3]
insertion sort (values)

assert values == [1, 2, 3, 4, 5, 6, 7, 8, 9]

9.4.5 Solution 5: Selection Sort (Fk kv ¥r)

Write a variation of Selection Sort that uses the maximum instead of the
minimum and has the following signature: selection sort -

max inplace (values).

What needs to be modified so that the sort algorithm leaves the original

data unchanged and returns a new sorted list? Implement this require-

ment in function selection sort max copy(values).

Example

Input Result

[7,2,5,1,6,8,9, 4, 3] [1,2,3,4,5,6,7,8,9]

Algorithm The list to be sorted 1s traversed from back to front while the
largest element in each case is moved back to the current position. By calling
the function find max pos (), you determine the position of the maximum
from the remaining unsorted subrange. This function was created as a solution
to Exercise 11 in Section 6.3.11 for arrays; it can also be used for lists without
modification. Subsequently, the element is moved to the back accordingly by
swapping it with the current element. This reduces the size of the remaining,
not-yet-sorted part until it consists only of the foremost element.
def selection sort max inplace (values):

for i in range(len(values) - 1, 0, -1):
max pos = find max pos(values, 0, 1 + 1)
swap positions(values, max pos, 1)
The function with the copy functionality is trivial to implement if you

have created the previous function:

def selection sort max copy(values):
copy = list(values)
selection sort max inplace (copy)

return copy

Verification

Verify that the implementation produces the desired result for the given

sequence of numbers using a unit test:

def test selection sort max inplace():
values = [7, 2, 5, 1, 6, 8, 9, 4, 3]
selection sort max inplace (values)
assert values == [1, 2, 3, 4, 5, 6, 7, 8, 9]

9.4.6 Solution 6: Quick Sort (G kK3 7)

I described Quick Sort in the introductory Section 9.2.4. Whereas the splitting
into two ranges with values less than or equal to the pivot elements can be
implemented very easily when creating new lists, this is more challenging for
a list when performing inplace. Now the partitioning is to be implemented
with the function partition (values, left, right). The already
existing source code is shown once again:
def quick sort inplace(values):

quick sort in range (values, 0, len(values) - 1)
def quick sort in range(values, left, right):

recursive termination

if left >= right:

return

partition index = partition(values, left, right)

recursive descent

quick sort in range(values, left,
partition index - 1)

quick sort in range(values, partition index + 1,
right)
Examples

Input Result

[5,2,7,1,4,3,6, 8] [1,2,3,4,5,6,7, 8]

[57 27 77 97 67 37 17 47 8] [17 27 37 47 57 67 77 87 9]

[5,2,7,9,6,3,1,4,2,3,8] [1,2,2,3,3,4,5,6,7,8,9]

Algorithm Your goal is to subdivide an array or a list (or a range of them)
into two parts by passing the lower start and upper end index and choosing a
value at a special position (e. g., foremost element) as the pivot element. Now
the two parts are rearranged. All elements with values smaller than or equal to
the pivot element should reside in the lower part. Furthermore, all elements
with a value larger than the pivot element should reside in the upper part.
Here, the two indices 1left index and right index each move inward
as long as the conditions values[left index] <= pivot hold for left
and pivot < values[right index] for right. If an inappropriately
ordered element is found on the left side, the examination starts on the right
side. If an inappropriately ordered element is found here as well, the two are
swapped. This process is repeated as long as the position markers do not cross
each other. Finally, the element from the right index position is swapped
with the pivot element. There is also the special case that the array or list has
only two elements. In this case, you also have to make sure that the right value
is actually larger than that of the pivot.
def partition(values, left, right):

pivot = values[left]
left index = left + 1

right index = right
while left index < right index:
move the position left index to the right,
as long as value
less than or equal to pivot and left 1limit
less than right limit
while values[left index] <= pivot and
left index < right index:
left index += 1
move the position right index to the left,
as long as value greater
than pivot and right limit greater than or
equal to left limit
while pivot < values[right index] and
right index >= left index:
right index -=1
if left index < right index:
swap positions(values, left index,
right index)
special case 2-element list with wrong
sorting, but no
pass (left index == right index) as well as
normal case at the very end
if values[right index] < pivot:
swap positions (values, left, right index)

return right index

Verification

Let’s define the three lists from the introductory examples and use them to

check the implementation of Quick Sort:

@pytest.mark.parametrize ("values, expected",
[([51 2/ 7/ 1/ 4/ 3/ 6/ 8]/
[ll 2[3[4, 5, 6, 7,

81),

(5, 2, 7, 9, 6, 3, 1, 4,
81,

(1, 2, 3, 4, 5, 6, 7, 8,
91),

[(5, 2, 7, 9, 6, 3, 1, 4,
2, 3, 81,

(1, 2, 2, 3, 3, 4, 5, 6,
7, 8, 9111)

def test quick sort inplace(values, expected):
quick sort inplace (values)

assert values == expected

9.4.7 Solution 7: Bucket Sort (3 %k 3 ¥)

In the introductory Section 9.2.5, a Bucket Sort algorithm was described.
In this exercise, you want to create function bucket sort (values,
expected max) thatimplements this sorting algorithm for a list of val-

ues and an expected maximum value.

Example

Maximum

Input Result

value
[10, 50, 22, 7, 42, 111, 150 [7,7, 10, 22, 42, 50, 50,
50, 7] 111]

Algorithm Bucket Sort is one of the most straightforward sorting algo-
rithms to implement and also one of the fastest with linear running time

—but with the prerequisite of a limited range of values.

First, you create buckets that store the counts of values. Afterwards,

Bucket Sort is implemented in two steps:

‘Traverse all input values and assign them to the corresponding
buckets. If there are several same elements, you have to incre-
ment the counter.

‘The final step is to reconstruct the values based on the counter
values.

The described procedure is implemented in Python as follows:
def bucket sort (values, expected max) :
buckets = [0] * (expected max + 1)
collect into buckets (values, buckets)
results = [0] * len(values)
fill result from buckets (buckets, results)

return results

The algorithm is thereby described in its basic characteristics. Only the
implementation of the two helper functions remains, which is also done
straightforwardly. To calculate the count of the respective numbers, you have
to iterate through the original values and increment the counter in the bucket

corresponding to the current value.
def collect into buckets(values, buckets):

for current in values:
buckets|[current] += 1
Based on the quantities in the buckets, the generation of the result is just a
little bit more complex. For this purpose, you traverse all buckets. If index i
contains a quantity greater than 0, this index value has to be copied to the
target as often as specified there— in this case, solved by the while loop.
You only have to carry the position in the target list separately.
def fill result from buckets (buckets, results):
result pos = 0
for i, count in enumerate (buckets):
while count > O:
results[result pos] = 1
count -=1

result pos += 1

Verification

Write a short test function to check your implementation of Bucket Sort with

some values:

@pytest.mark.parametrize ("values, max, expected",
[(f1o0, 50, 22, 7, 42, 111,

50, 71, 150,

(o, 50, 22, 7, 42, 111,

T, 8, 9111)
def test bucket sort(values, max, expected):
result = bucket sort(values, max)

assert result == expected

9.4.8 Solution 8: Search in Rotated Data
0. 0.0.0.¢9.

In this exercise, your task is to implement an efficient binary search in a
sorted sequence of integer values. The challenge is that the values are
ordered but rotated within themselves. According to that, the smallest
element may not be at the front of the data. Additionally, the largest ele-
ment does often not reside at the end of the data (except in the special

case of a rotation by 0 positions).

ipBe careful also to check the special case of a rotation of 0 or a multi-
ple of the length of the data set that would again correspond to a rota-

ion for the value 0.

Solution 8a: Flank Change Efficient (& & k)

Write function find flank pos (values) that efficiently finds the
position of a flank change in a given sorted sequence of n integer val-
ues, say 25, 33,47, 1, 2, 3, 5, 11, in logarithmic time, which is O(log(n)).
Write two functionsmin value (values) andmax value (values)
basedon find flank pos (values) that, according to their names,
determine the minimum and maximum, respectively, from the given

sorted but rotated sequence of values.

Examples

Input Flank position Minimum Maximum

[25,33,47,1,2,3,5,

3 1 47
11]
[5, 11,17, 25, 1, 2] 4 1 25
[6,1,2,3,4,5] 1 1 6
0 (special
[1,2,3,4,5, 6] 1 6
case)

Preliminary considerations for the algorithm Let’s start with the brute-

force version of linear search to check your optimized version against it later

on. For the search, you only need to check each element from front to back to

determine if the successor of a value is smaller than the current element:
def find flank pos simple(values):

for i, value in enumerate (values):

[}

next idx = (1 + 1) % len(values)
if value > values[next 1dx]:
return next idx
raise Exception("should never reach here!™)

Of course, when traversing, you also have to consider the special case
that the flank change takes place at the very end of the list. Then you

have a non-rotated list as a base.

Algorithm So, how can you proceed to achieve logarithmic running
time? In this case, you take advantage of the fact that the value se-
guence is sorted. The search ranges can always be divided in half, fol-
lowing the idea of binary search. Because there is a rotation, however,

you must be careful concerning the indices.

There are three comparisons to be made:

. Case A: With the predecessor: If it is larger, you have found the
flank change.

. Case B: With the leftmost element: If it is larger than the current
element, then the flank change must happen somewhere in between.
So, you can exclude the right half.

. Case C: With the rightmost element: If this is smaller, the flank

change must happen on the right side. You can exclude the left half.

At the very beginning, it is crucial to check for the special case of the
non-rotated initial dataset. This can be determined by the fact that the

far left value is smaller than that on the far right.

With these preliminary considerations, the following implementation
emerges:
def find flank pos(values):
return find flank pos in range(values, 0,
len(values) - 1)
def find flank pos in range(values, left, right):
mid pos = left + (right - left) // 2
mid value = values[mid pos]
special case no rotation
if values[left] < values[right]:
return 0O
prev_index = mid pos - 1
if prev index < 0:
prev _index = len(values) - 1
case A: value to the left of this is larger,
then you got a
flank change
if values|[prev index] > mid value:
return mid pos
if values[left] > mid value:
case B: flank change must be on the left,
since first wvalue
larger than in the middle
return find flank pos in range (values, left,

mid pos + 1)

if values[right] < mid value:
case C: flank change must be on the right,
as last wvalue
smaller than in the middle
return find flank pos in range(values,
mid pos + 1, right)
raise Exception ("should not reach here")

Based on this method, it is possible to write the functions for determin-
ing minimum and maximum quite simply as follows with the knowledge
that the position of the flank change contains the minimum and the posi-

tion of the maximum is a position to the left of it.

Due to the convenient Python characteristic of supporting negative indexes
for access from the end of the data structure, no correction needs to be made
for a rotation around O.
def min value(values):

flank pos = find flank pos(values)
return values[flank pos]

def max value (values):

flank pos = find flank pos(values)
return values|[(flank pos - 1) % len(values)]
Verification

Test the determination of the flank change using the following parameterized
test— in particular, also the special case of non-rotated input values is

verified:

@pytest.mark.parametrize ("values, expected",

111, 3),

(re, 7, 1, 2, 3, 4, 51,
2)

(rxr, 2, 3, 4, 5, 6, 71,
0) 1)

def test find flank pos(values, expected):
flank pos = find flank pos(values)

assert flank pos == expected

Solution 8b: Binary Search in Rotated Data (k% X %k)

Write function binary search rotated(values, search for)
that efficiently searches in a sorted sequence of integer values, say the
number sequence 25, 33,47, 1, 2, 3, 5, 11, for a given value and returns

its position or -1 if not found.

Examples
N Search
Input Flank position Result
value
[25,33,47,1,2,3,5,
3 47 2

11]

N Search
Input Flank position Result
value

[25,33,47,1,2,3,5,

3 3 5
11]
[25,33,47,1,2,3,5,
3 13 -1
11]
0 (special
[1,2,3,4,5,6,7] 5 4
case)
0 (special
[1,2,3,4,5,6,7] 13 -1
case)

Algorithm After being able to efficiently determine the flank change in
O(log(n)), one possibility is to enlarge the list. Thereby you cut out the front
part of the list and appends it at the end (this is feasible for medium-sized

lists). Afterwards, you can invoke a binary search, which was developed in

Exercise 3:
25 | 27 | 33 | 2 | 3 | 5 => | 2 | 3 | 5 | 25 |
27 | 33

However, this procedure causes quite a bit of effort. So how can you im-

prove it?

For this purpose, you adapt the binary search to specify a lower and upper
bound. You pick up the idea of the list expansion but make it virtual. Let’s
take a look at the example of the search for the 47 in the number sequence

shown in the exercise, shown in Figure 9-4.

__.'.__.'._-.‘

251331471 112 131511125 334 [I=logical search range

e -

__.'.__.‘.__.'

sep1 [25]33[47) 12 |3]5]11]25:33:47,

__J.__J.__.l

._______}_
start mid end
7 8 10

-_T—_T--'I

sep2 [25]33[47) 112 3] 5|11]25,33147,

-_J.---I.--.l

start end
mid 10
P _9_ L |

step3 [25]33[47) 112 |35 [11]25:33/47,

__J.__J.__.I

- o

Figure 9-4 Rotated binary search procedure

Based on these preliminary ideas, you proceed with the binary search.
First, you determine the position of the flank change and use it to specify your
search value range. Next, you perform a normal binary search, but you use the
modulo operator to bring the extended value range back into the list’s
boundaries and determine the comparison value based on this.
def binary search rotated(values, search for):

flank pos = find flank pos(values)
return binary search rotated in range (values,

search for, flank pos,

flank pos -
1 + len(values))
def binary search rotated in range (values,
search for, start, end):
if start > end:
return -1
mid pos = start + (end - start) // 2
adjusted mid = mid pos % len(values)
mid value = values[adjusted mid]
if mid value == search for:
return adjusted mid
if search for < mid value:
return binary search rotated in range(values,
search for,
start,
mid pos - 1)
if search for > mid value:
return binary search rotated in range(values,
search for,
mid pos
+ 1, end)
Python-specific algorithm | have just described a general algorithm.

In Python, you can take advantage of the fact that the indices can also

be negative and then operate from the end of the list or array.

As before, you take up the idea of performing the binary search with
shifted index. Instead of the virtual extension of the output data and the
mapping back by modulo to the real value range, you simply use that the value

range 1s shifted by n positions. Thus, instead of searching between 0 and n,

you can search in the range between flankpos—n and flankpos — 1.

Then, to make it work with the termination condition, you need to move it
after checking for value equality. Additionally, you need to check for
matching start and end. In the actual call, you need to calculate the start
and end positions appropriately and cover the special case of no rotation.
def binary search rotated2(values, search for):
flank pos = find flank pos(values)
start = flank pos - len(values)
end = flank pos - 1
if flank pos ==
start = 0
end = len(values) - 1
return binary search rotated helper?2(values,
search for, start, end)
def binary search rotated helper2(values,
search for, start, end):
mid pos = start + (end - start) // 2
mid value = values[mid pos]
if mid value == search for:
return mid pos % len(values)
if start == end:
return -1
if search for < mid value:
return binary search rotated helper2(values,
search for,
start,
mid pos - 1)

if search for > mid_value:

return binary search rotated helper2(values,
search for,
mid pos

+ 1, end)

Verification

To check the functionality, you use the value combinations from the
introductory example:
@pytest.mark.parametrize ("values, search for,
expected",
[([25, 33, 47, 1, 2, 3, 5,
111, 47, 2),
([25, 33, 47, 1, 2, 3, 5,

(25, 33, 47, 1, 2, 3, 5,

4),
(1, 2, 3, 4, 5, 6, 171,
13, =-1)1)
def test binary search rotated(values, search for,
expected) :
pos = binary search rotated(values, search for)
assert pos == expected

9.5 Summary: What You Learned

Even if you will hardly ever program a search or sorting algorithm nowa-
days yourself, it is still helpful for algorithmic understanding to have

done this once.

Simple implementations of (linear) searches tend to have a running
time of O(n). You learned how you can benefit from sorted data sets
helping you to use binary search as a trickier search and reducing the

running time down to O(log(n)).

Similar observations apply for sorting: While naive implementations of-
ten have a running time of O(r?), this can usually be reduced to O(n x
log(n)) with Merge Sort and Quick Sort. It is fascinating to see how a
fixed range of values can have a significant effect. Bucket Sort with a

running time of O(n) plays out its strengths with these constraints.

As a nice challenge for the end, you solved a binary search in rotated

data sets, where the values are sorted but shifted by some positions.

Footnotes

1
Strictly speaking and very formal, Quick Sort gets a running time of O(n?) assigned

since for very rare special cases its running time can get quadratic.

© The Author(s), under exclusive license to APress Media, LLC, part of Springer
Nature 2022

M. Inden, Python Challenges

https://doi.org/10.1007/978-1-4842-7398-2 10

10. Conclusion and Supplementary
Literature

Michael Inden!
(1) Zurich, Switzerland

Now, having reached the end of this exercise book, let me conclude.
Additionally, | will present two logic puzzles before we have a look at

the supplementary literature.

10.1 Conclusion

By reading this book, and especially by solving and implementing the
exercises, you should have gained good experience. With this knowl-
edge, various tasks from daily practice should now be somewhat eas-
ier to complete. Of course, you will profit most if you don’t just follow

the solutions presented but also experiment and modify them.

10.1.1 Lessons Learned Per Chapter

https://doi.org/10.1007/978-1-4842-7398-2_10

Let’s recap about what was taught in each chapter and what you

should have learned.

Mathematical: The chapter on basic mathematical knowledge intro-
duced the modulo operator, which is quite essential, for example, for
the extraction of digits and in the calculation of checksums. The exer-
cises on combinatorics showed how small tricks can easily reduce
the running time by an order of magnitude. Also, prime numbers offer
some interesting facets, for example, variants to their calculation. In
retrospect, this turns out to be much easier than perhaps first thought.
In general, when trying to find a solution for a problem, the algorithm
and the approach should be roughly understood, because then, for
example, even decomposition into prime factors loses its possible

horror.

Recursion: The introductory chapter on recursion laid the foundation
for a good understanding. The exercises expanded your knowledge.
Additionally, you were able to use the acquired basic knowledge
profitably in the following chapters. A prime example is various algo-
rithms on trees, which can often be easily expressed recursively —
iteratively, for example, a postorder traversal is already challenging,

whereas with recursion it is effortless.

However, you recognized that simple recursion does not only pos-

sess advantages, but also sometimes requires some patience due to

long running times. In the advanced chapter on recursion, you signifi-
cantly expanded your toolbox with memoization and backtracking.
This allowed you to increase performance and to solve entertaining
and amusing puzzles, such as Sudoku puzzles or the n-Queens
problem. It was also possible to find a way out of a maze. All this re-
quired a bit more programming effort but could be implemented with-

out too much complexity.

Strings: Strings are an integral part of almost every program. Be-
sides simple tasks for palindrome checking or string reversing, some
tasks could be significantly simplified using suitable auxiliary data
structures, such as sets or dictionaries. These helped when checking
for well-formed braces, converting a word into Morse code, and other
tasks. In general, solving problems is easier the more basic knowl-

edge you have in different areas.

Basic data structures: This chapter deepened your knowledge of
basic data structures like lists, sets, and dictionaries. This knowledge
is essential in business applications. Not only individually but also in
combination, they are useful for solving many tasks, such as the dele-
tion of duplicates from lists. In addition, the exercise of the magic tri-
angle, for example, trains abstract thinking. A small delicacy was to
program the auto-completion of Excel itself. It is quite surprising what

an elegant implementation this results in. Finally, you developed

some functionality for merging lists. This is an elementary component

for Merge Sort.

Arrays: Just like strings, arrays are basic building blocks in many
programming languages. In Python, lists are often favored, since ar-
rays are not nicely supported in the language. However, there is a
valid alternative with NumPy, with which arrays can be easily defined
and which can offer significant performance improvements compared

to lists.

In particular, it is important to avoid tricky off-by-one errors. In this
chapter, you created small helper functions that, when used appropri-
ately, can make algorithms more understandable. For two-dimension-
al arrays, you learned, among other things, how to model directions
and how this helps with filling areas with patterns. More challenging
tasks were the spiral traversal as well as the deletion and filling of a

Jewels or Minesweeper playfield.

Binary trees: The most complex topic in this book is probably binary
trees . Since Python does not provide them, they are presumably not
familiar to every Python developer. However, because binary trees
are suitable to solve many problems elegantly, this chapter gave an
introduction. The exercises helped you get to know binary trees and
their possibilities. Besides things like rotation, even mathematical cal-

culations, for example, can be represented and processed very

smartly using binary trees. Something to puzzle over was certainly
the determination of the least common ancestor. This is especially
true for the check for completeness and the graphical output of a bi-

nary tree.

Search and sort: Nowadays, you will hardly program a search or
sorting algorithm yourself. Still, it is helpful for algorithmic understand-
ing to have dealt with it once. While naive implementations often have
a running time of O(n?), this can usually be reduced to O(n . log(n))
with Merge Sort and Quick Sort. It is fascinating to see how a fixed
range of values can have a significant effect. Bucket Sort with a run-

ning time of O(n) plays out its strengths with these constraints.

10.1.2 Noteworthy

When presenting the solutions, | have sometimes deliberately shown
a wrong way or a suboptimal brute force variant to demonstrate the
learning effect when working on an improvement. In everyday work,
too, it is often preferable to proceed iteratively because the require-
ments may not be 100 % precise, new requests arise, etc. Therefore,
it is a good idea to start with a comprehensible implementation of the
task, which allows it to be modified afterward without any problems. It
is often even acceptable to take a not-yet-optimal solution that han-

dles the problem in a conceptually correct way.

Thoughts on Maintainability

One also observes the following: Source code is usually read much
more often than it is written. Think about your daily work routine. Usu-
ally, you do not start on the greenfield but extend an existing system
with some functionality or fix a bug. You appreciate it if the original
program author has chosen comprehensible solutions and program

constructs. Ideally, even unit tests exist as a safety net.

Let’s get back to development. Make sure that you think about the
problem in advance instead of starting directly with the implementa-
tion. The more structured and precisely you have thought through a
problem, the clearer your implementation will be. Once the penny has
dropped, it is often not too big of a step to create or improve an un-
derstandable, well-structured solution. However, if you start too early
with an implementation simply as source code, this unfortunately too
often ends in a disaster and a failure. As a result, some things remain
rather half-baked, and it gets harder to add functionality in a meaning-

ful way.

| like to point out that especially traceability and later simplified main-
tainability are very important in programming. This is achieved in gen-
eral by creating small and comprehensible building blocks. With the

potentially (and presumably only) minimally poorer performance as

well as the lower compactness, they are often easier to live with than

with a fairly certain poor maintainability.

Thoughts on Performance

Keep in mind that in today’s world of distributed applications, the im-
pact of individual instructions or unoptimized methods on perfor-
mance is negligible. By contrast, too frequent or too fine-grained
REST calls or database accesses may have a much more serious
impact on execution time over an algorithm that has not been opti-
mized down to the last detail. Please note that my statements apply
primarily to self-written functionalities in business applications. For
frameworks and algorithms that experience millions of calls (or more),
however, the inner beauty is potentially less important than the per-
formance. There will probably always be a certain trade-off between
the two poles: either compact and performance-optimized or under-

standable, but sometimes a bit slower.

Advantages of Unit Tests

Even when creating only simple programs, you may notice the follow-
ing fact over and over again: If you test implementations of algorithms
purely based on console output, errors often remain unnoticed —

mainly for special cases, limits, and so on. Moreover, without support-

ing unit tests, people tend to think less about the interfaces of classes

and methods’ signatures. But this is exactly what helps to increase
manageability for others. With pytest, writing unit tests is really fun
and smooth. This is mainly due to the pleasant and helpful parame-

terized tests.

By reading this book and reviewing the solutions, you should have
gained a good understanding of unit testing in addition to your skills in
the topics covered. Even more, when developing solutions, there is a

sense of security when the unit tests pass.

10.2 Logic Puzzles

You have dealt with a wide variety of programming puzzles in this book. I
present two logic puzzles to you, which have nothing to do with
programming. Still, you can learn a lot about problem-solving strategies by
answering them. From time to time, something seems impossible at first,
and then there is a straightforward solution. If you like, try your hand at the

following puzzles:

« Gold Bags—Detect the Fake

« Horse Race—Determine Fastest Three Horses

10.2.1 Gold Bags—Detect the Fake

This puzzle is about 10 gold bags, each filled with 10 coins, each of which
weighs 10 g. Thus, each gold bag should weigh 100 g (Figure 10-1).

(o) O o ©
O 0 ------- Ooo ------- 000
o O O 000 © o
© 000 0©0© Oo0 O

Figure 10-1 Gold bags

An impostor has exchanged the gold coins in a bag for fakes, which,
at 9 g instead of 10 g per coin, are somewhat lighter. Find the gold
bag containing the fakes with only one weighing. However, you may
take different numbers of coins from any bag and weigh them

together.
Solution

At first, this task sounds almost impossible since multiple weighing and
comparing are not allowed. You might come up with the following trick
with a bit of pondering: Line up the bags and number them from 1 to 10.
Now work position-based and place as many coins from each
corresponding bag as matches its position, and then weigh them all

together, as shown in Figure 10-2.

] 5 10
O
00
O ------- 000 ------- So00

Figure 10-2 Weighing gold pieces

Without fakes, the result would be as follows:
wa o § {\displaystyle \begin{array} {1}\kern0.72em 1\times 10+2\times
10+3\times 10+4\times 10+5\times 10+6\times 10+7\times 10+8\times
10+9\times 10+10\times 10\\ {}=10+20+30+40+50+60+70+80+90+100\\
{}=550\end {array}} $
Let’s assume that bag 5 contains the fakes and look at the result:
w0 § {\displaystyle \begin{array} {1}\kern0.72em 1\times 10+2\times
10+3\times 10+4\times 10+\mathbf{5}\times \mathbf{9}+6\times
10+7\times 10+8\times 10+9\times 10+10\times 10\\
{}=10+20+30+40+\mathbf{45}+60+70+80+90+100\\ {}=545\end{array}}
$
Let’s now assume that bag 2 contains the fakes and determine the result:
o $ {\displaystyle \begin{array} {1} \kern0.72em 1\times
10+\mathbf{2}\times \mathbf{9}+3\times 10+4\times 10+5\times
10+6\times 10+7\times 10+8\times 10+9\times 10+10\times 10\\
{}=10+\mathbf{18}+30+40+50+60+70+80+90+100\\ {}=548\end{array}}
$
According to this, you can identify the corresponding bag based on the
difference to 550:

“<§ 550- weighed\ weight= position $

10.2.2 Horse Race—Determine Fastest Three
Horses

This puzzle is about solving the following: 25 racehorses are offered
for sale, and you want to buy the three fastest. There is a racetrack
with space for a maximum of five horses. Still, you have neither a
stopwatch nor any other way of measuring time. However, the horses
can compete against each other in races, and you may note the or-
der. Under these restrictions, how do you determine the fastest three,
and how do you proceed? How many races with which horses do you

have to organize at best?

As a simplification, let’s assume here that the horses are not exhaust-
ed by the races, run exactly the same speed in each race, and also
that no two horses are the same speed (just like in a photo finish,

there is always an order and a winner).
Solution

Again , you have to think quite a bit at first to arrange the right races
by a clever exclusion procedure and additionally perform as few of
them as possible. In fact, only seven races are necessary to deter-

mine the fastest three horses. How do you go about it?

Step 1: You let five horses compete against each other in any five
races and thus determine the winners of these races. For better
traceability, all horses get a number between 1 and 25, which normal-
ly says nothing about the placement. In the following, the number is

used for better distinguishability. It is possible to label the horses just

as well with A, B, C, ... but then you need further distinctions for the

races’ winners.

You thus determine the winners from all five races and can directly

remove all horses in the respective fourth and fifth places from your

selection for the next races by the exclusion procedure shown in Figure 10-

3.
position
race 1 2 4 5
race 1 @ 2 4 5
race 2 |@|7 g 9 10
race 3 ||AD[12 13 14 15
race 4 ||@Q[17 18 19 20
race 5 ||@D]22 23 24 25

Figure 10-3 Races1to5

1 2 3 445
exclusion 6 7 8 /9(m

11 12 13)4)5

16 17 18 J4 X0
21 22 23 A4 2%

As a result, 15 horses remain, and if you would like to compare them

with each other, at least three races would yet be necessary after

these five races. According to my statement, however, a total of sev-

en races is enough, so only two races are still allowed. Consequently,

you nevertheless have to reduce the number of horses to be com-

pared to suitably.

Step 2: To have significantly less than 15 horses left for further
selection, you need to run another race, one with all the winners. Why? So
far, you only know something about the horses within the groups
themselves, but not between the groups. To get some information about the
relative speeds of the winners, you let them race against each other. Again,

the last two cannot be among the fastest three horses. See Figure 10-4.

position

race

race 6 1 6 11 W A

Figure 10-4 Race of winners

However, this will automatically eliminate the horses with numbers 17
and 18 (slower than the horse with number 16) and the horses with
numbers 22 and 23 (slower than the horse with number 21) as

candidates.

Step 3: You mark the exclusions in a matrix, and then you combine the
gained knowledge to proceed with the next exclusion. To do this, you insert
a > notation for faster than into the matrix of horses. Because horse 1 also
won in the winner’s race, you are sure that horse 1 is definitely the fastest.

See Figure 10-5.

..
|
|
|
|
|
|
|
|
|
|

]

A=
AN
X %

11212213

AN 7B A

Figure 10-5 Best nine at horse racing

However, there are still nine horses left—actually only eight candidates,
since horse 1 is the fastest. That would indicate at least two more races.
Let’s now consider a bit. You know the orders by the previous races. Since
you want to determine only the fastest three, the horses numbered 8, 12, and
13 are eliminated, and five horses now remain, namely those numbered 2,
3,6,7,and 11. See Figure 10-6.

exclusion ~
DY Y el 657K
R 1>
A 7B AL

Figure 10-6 Final exclusion at horse racing

§6>7>8§,9/,y0 1>2 >3

Thus, you only have to let the other horses (i.e., 2, 3, 6, 7, and 11)
compete against each other. The winner and runner-up of this race are the
overall second and third horse. This results in the following possible

combinations as the final result:

. 1,23
. 1,26
. 1,62
. 1,67
. 1,611

10.3 Supplementary Literature

In this book, my main intention was to provide a couple of program-

ming and brainteaser exercises and an entertaining time in solving

them. If the exercises are easily solvable for you most of the time, you

will find various books below as supplementary reading.

Interestingly, when dealing with a topic, one always comes across
previously unknown literature. Some books inspired me, and so | rec-
ommend them to you. | group the books thematically, and this should

serve as a good starting point for further steps.

10.3.1 Introduction to Algorithms and Data
Structures

There are various books for getting started with algorithms and data
structures. Let me recommend the following for completion or a different

point of view:

« Grokking Algorithms [Bhal6] by Aditya Y. Bhargava

A small but fine book, which offers a readable, comprehensible, and
entertaining introduction, which is enriched by many illustrations. The

examples are in Python.

. A Common-Sense Guide to Data Structures and Algorithms

[Wen17] by Jay Wengrow

A wonderful, easy-to-follow book to get started with algorithms and
data structures. The extensive illustrations make it easy to understand the

steps of the algorithms. Again, the examples are in Python.

. Problem Solving in Data Structures and Algorithms Using
Python [Jail9] by Hemant Jain

Of the three books listed here, this is the most comprehensive. It
goes far beyond the previous ones in terms of the topics presented.
However, it offers fewer explanatory illustrations and is not written as

intuitively as the others.

10.3.2 Basic Books

If you want to take a deep dive scientifically into the subject of algorithms
and data structures, and you like to learn things from scratch, and you like it

a bit more formal, then take a look at one of the following books:

« Algorithms[Sed11] by Robert Sedgewick

This book provides you with an easy-to-read and comprehensible
introduction to the subject. An older edition accompanied me in my
university studies back in the 1990s. However, this book uses Java as the

explanatory language.

. Data Structures and Algorithms with Object-Oriented Design

Patterns in Java [Pre00] by Bruno R. Preiss

This book provides a solid overview of common data structures and
shows how to implement them with Java. Because it was written in 2000, it
does not use generics. Nevertheless, it is my favorite concerning Java and

data structures. However, this book uses Java as the explanatory language.

. Data Structures and Problem Solving Using Java [Wei10] by
Mark Allen Weiss

This book by Mark Allen Weiss offers a slightly more practical ap-
proach than the previously mentioned one. Due to the publication
year of 2010, it uses more modern concepts like generics for the im-
plementation of the data structures. However, this book uses Java as

the explanatory language.

10.3.3 Specializing in Interview Questions

In addition to the basic books mentioned earlier, there are some that focus

primarily on interview questions or small programming tasks:

« Top 30 Java Interview Coding Tasks [Urb18] by Matthew Urban

If you don’t have a lot of time and if you are not that interested in
background information, this short booklet is definitely something for you.
However, this book uses Java as the explanatory language. This book uses
unit tests to check the implementation, but they are based on the somewhat
outdated JUnit 4 instead of the newer JUnit 5.

. Daily Coding Problem [MW19] by Alex Miller and Lawrence Wu

This is another book that provides a lot of information and also exer-
cises including solutions for algorithms and data structures. It focuses

on small programming tasks for every day and is based on Python.

10.3.4 Supplements for Job Interviews at Top
Companies

To prepare for a job interview at one of the top companies, namely
Amazon, Apple, Facebook, Google, and Microsoft, I recommend the
following books as a supplement to my book. Some of them go into more
depth and offer even trickier tasks or more background knowledge. In
addition, all of them also describe the interview process itself and how to

prepare for it.

« Cracking the Coding Interview [McD16] by Gayle Laakmann

McDowell

This is a great book by an extremely competent author. However, it is
advisable to read a book on algorithms beforehand, so that it is easier for
you to follow the explanations. The degree of difficulty of some tasks is

challenging in parts.

. Programming Interviews Exposed [MKG18] by John Mongan,
Noah Kindler, and Eric Giguére

In addition to algorithms and data structures, this book also covers
topics such as concurrency, design patterns, and databases. It contains fewer
exercises but very good explanations. The solutions are presented in

different programming languages.

. Elements of Programming Interviews in Python [ALP16] by Ad-

nan Aziz, Tsung-Hsien Lee, and Amit Prakash

This book covers many different topics, especially data struc-
tures and algorithms. It offers a lot of exercises and programming

challenges.

Part Il
Appendix

© The Author(s), under exclusive license to APress Media, LLC, part of Springer Nature 2022
M. Inden, Python Challenges
https://doi.org/10.1007/978-1-4842-7398-2 11

Short Introduction to pytest

Michael Indenl
(1) Zurich, Switzerland

pytest is a framework written in Python that helps in creating and automating test
cases. It is easy to learn and takes a lot of the work out of writing and managing
test cases. In particular, only the logic for the test cases itself needs to be imple-
mented. Unlike some other frameworks, there is no need to learn a large number

of functions to set up test assertions; one is enough.

The module unittest, which is integrated in Python, is less easy to handle than
pytest and therefore less common. Details about both can be found at

https://knapsackpro.com/testing_ frameworks/difference be-

tween/unittest/vs/pytest. Conveniently, pytest also allows you to use a

possibly existing test base, created with unittest, permitting a step-by-step mi-

gration from unittest to pytest.
A.1 Writing and Executing Tests
A.1.1 Installing pytest

Before you can use pytest, you need to install it. This can be done using the pip

tool, which is simply called pip for Linux and Windows but pip3 for Mac OS.

Open a console and type the following command (in the following text, and this book

in general, I always use $ to indicate input on the console, which is the terminal on

https://doi.org/10.1007/978-1-4842-7398-2_11
https://knapsackpro.com/testing_frameworks/difference_between/unittest/vs/pytest

MacOS or the Windows command prompt):
$ pip install -U pytest
In addition, a few plugins are quite useful, such as this one for parameterized tests
S pip install parameterized
and this one for formatting an HTML page
$ pip install pytest-html

For configuring pytest in PyCharm, please read the online documentation: www . -

Jetbrains.com/help/pycharm/pytest.html #9.

A.1.2 First Unit Test

To test a module, a corresponding test module is usually written. To be recognized
by pytest, it should end with the postfix test or test,such as ex03 palin-
drome_ test. Often, to validate important functionality, you start by testing a few
key functions. This should be extended step by step. Test cases are expressed as
special test functions, which must be marked with the prefix test . Otherwise,
pytest does not consider them as test cases and ignores them during test

execution.

Let’s have a look at an introductory example:
def test index():
ARRANGE
name = "Peter"
ACT
pos = name.index ("t")
expected = 2
ASSERT
assert pos == expected
Interestingly, there’s no dependency on pytest. In fact, the whole thing is automati-

cally linked to pytest, and the execution standard assert is varied in such a way

that pytest hooks in and produces test results.

http://www.jetbrains.com/help/pycharm/pytest.html%25239

Also worth mentioning is the three-way split with ARRANGE-ACT-ASSERT for pre-
paring the actions, executing them, and evaluating the results. This structure helps
to write clean and understandable tests. There is not always an ARRANGE part and
the comments can be omitted if you are more experienced. This is described in

much more detail in my book Der Weg zum Java-Profi[Ind20].

A.1.3 Executing Tests

To run the unit test with pytest, you can either use

. the command line or
. the IDE.

Executing Tests on the Console

Running the unit tests with pytest can be done from the console in the root directory of
your project. In the following code, use python3 and the module specification with —m.
This is the only way the tests always run cleanly for me.
$ python3 -m pytest

This will start all tests and log the result on the console. For this book, it is shortened
as follows:
S python3 -m pytest
================= test session starts ===================
platform darwin -- Python 3.10.1, pytest-7.1.1, pluggy-1.0.0
rootdir: /Users/michaeli/PycharmProjects/PythonChallenge
plugins: metadata-2.0.1, html-3.1.1
collected 645 items
tests/appendix/example test.py

(@]
o\°

tests/ch02 math/ex01 basiscs test.py
................. [2%]
tests/ch02 math/ex02 number as text test.py
.......... [4%]

tests/ch02 math/ex03 perfectnumber test.py
........... [0%]
tests/ch02 math/ex04 primes test.py
......................... [10%]

tests/ch08 binary trees/ex08 reconstruction test.py

[95%]
tests/ch09 search and sort/ex0Ol contains test.py

[95%]
tests/ch09 search and sort/ex02 partition test.py
[96%]
tests/ch09 search and sort/ex03 binary search test.py
...... [96%]
tests/ch09 search and sort/ex04 insertion sort test.py
[97%]
tests/ch09 search and sort/ex05 selection sort test.py
[97%]

tests/ch09 search and sort/ex06 quick sort test.py

[975%]
tests/ch09 search and sort/ex07 bucket sort test.py

[98%]
tests/ch09 search and sort/ex08 search rotated sorted test.py
...... [100%]
=============== 645 passed in 1.97s ======s=============

When getting started with the following parameters,
$ python3 -m pytest --html=pytest-report.html
an additional HTML report of the test results gets generated. This can be examined

with the browser of your choice. An example is shown in Figure A-1.

_ Rkt x

c @ () file:///Users/michaeli/PycharmProjects/PythonChallenge/pytest-report.ht <=« & ¥ = QO Suchen mweomMmae 5% =

%¥ Meistbesucht @) Erste Schritte & Apple @& iCloud Nl Yahoo @ Bing & Google W wikipedia [Facebook W Twitter [Linkedin (3 wetter Online @) Yelp & TripAdvisor

pytest-report.html

Report generated on 07-Nov-2020 at 14:57:05 by pytest-himl v2.1.1

Environment

Packages {"pluggy": "0.13.1", "py": "1.9.0", "pytest": "6.0.2")

Platform mac0S-10.14.6-x86_64-i386-64bit

Plugins {"html": "2.1.1", "metadata": "1.10.0"}
Python 3.8.3
| Summary

627 tests ran in 3.21 seconds.

(Un)check the boxes to filter the results.

627 passed, v v Ofailed, v Oerrors, v + 0 unexpected passes

| Results

§ Show all details / Hide all details

a Result Test Duration Links
Passed tests/appendix/example_test 0.00

: Passed tests/ch02_math/ex01_b test_calc[6-7-0] 0.00

(Passed tests/ch02_math/ex01_basiscs_tes! test_calc[3-4-6] 0.00
Passed st_calcl5-5-5] 0.00

. Passed s alc_v2[6-7-0] 0.00

i Passed tests/ch02_math/ex01_basiscs_tes! st_calc_v2[3-4-6] 0.00

| Passed tests/ch02_math/ex01_basiscs_test.py:test_calc_v2[5-5-5] 0.00

Figure A-1 HTML representation of a test report

Executing Tests from the IDE

Alternatively, it is a bit more convenient to start test execution directly in the IDE. Before
doing so, however, pytest must be configured correctly. Conveniently, pytest is integrated
with the popular IDE PyCharm. Tests can be executed either via a context menu or via
buttons in the GUI. This produces output similar to that shown in Figure A-2.

b ex01_basiscs_test Oms
> test_calc Oms
> test_calc_v2 0Oms
> test_calc_sum_and_count_all_numbers_div_by 2_or_7 Oms
> test_is_even Oms
> test_is_odd Oms

v ex02_number_as_text_test 0ms
> Ex02_NumberAsText_Test 0Oms
V' test_number_as_text Oms

(7-SEVEN) 0O ms
(42-FOUR TWO) 0Oms
(7271-SEVEN TWO SEVEN ONE) 0Oms
(24680-TWO FOUR SIX EIGHT ZERO) 0 ms
(13579-ONE THREE FIVE SEVEN NINE) Oms

Figure A-2 Test run from the GUI of the IDE

A.1.4 Handling Expected Exceptions

Sometimes test cases are supposed to check for the occurrence of exceptions during
processing, and an absence would constitute an error. An example is deliberately
accessing a non-existent position of a string. An ITndexError should be the result. To
handle expected exceptions in the test case in such a way that they represent a test success
and not a failure, the executing functionality must be called specifically surrounded by
with pytest.raises():
def test str to number invalid input():
with pytest.raises (ValueError) :
str to number ("ABC")
def test str to number bonus invalid input():
with pytest.raises (ValueError) as excinfo:
str to number bonus ("00128")
assert str(excinfo.value).find("found digit >= 8") != -1
def test fib rec wrong input():

with pytest.raises (ValueError) as excinfo:

fib rec(0)
assert "n must be >= 1" in str(excinfo.value)

In the second and third test case, you see how easy it is to access the contents of

the thrown exceptions, for example to check the text or other details.

A.1.5 Parameterized Tests with pytest

Sometimes you need to test a large number of value sets. Creating a separate test
function for each of them would make the test module quite bloated and confusing.
To solve this more elegantly, there are several variants. All of them have their spe-

cific strengths and weaknesses.

In the following, assume that calculations are to be checked for fixed ranges of val-

ues or a selected set of inputs..

A parameterized test allows you to do just that: write the test function and define a
set of inputs and expected results. Based on this, the testing framework automati-

cally executes the test function for all specified combinations of values.
Introduction to Parameterized Tests

With pytest, defining parameterized tests is very simple. All you need to do is apply a
suitable import and then specify the desired values as follows:
import pytest
@pytest.mark.parametrize ("valuel, value2, expected",
[("Micha", "Michael", 2),
("rapple™, "tables"™, 4)])
def test edit distance(valuel, valueZ, expected):
result = edit distance (valuel, valueZ2)
assert result == expected
@pytest.mark.parametrize ("sorted values, search value,

expected",

True),

False)])
def test binary search(sorted values, search value,
expected) :

assert binary search(sorted values, search value) ==
expected

In the code, you see that the parameterized test must be annotated with
@pytest.mark.parametrize. The first parameter specifies the parameter
names and the evaluation of the values. These values are passed as a list of tu-
ples. For each parameterization specified as a tuple, a separate test case is creat-

ed and executed.

Other Possibilities in Parameterized Tests

Ingeniously, all collection literals (i.e., tuples, lists, sets, and dictionaries) can be used

when specifying test inputs and results:

@pytest.mark.parametrize ("digits, wvalue, expected",

((¢r1, 2, 3, 4, 5, 6, 7, 8, 9], 100,

{"1+23-4+5+6+78-9",
"12+3+4+5-6-7+89",
"123-45-67+89",
"123+4-5+67-89",
"123-4-5-6-7+8-9",
"123+45-67+8-9",
"1+2+3-4+5+6+78+9",
"12+3-4+5+67+8+9",
"1+23-4+56+7+8+9",
"1+2+34-5+67-8+9",
"12-3-4+5-6+7+89"}) 1)

def test all combinations with value(digits, value,

expected) :

result = all combinations with value (digits, value)

assert result == expected

A.2 Further Reading on pytest

This appendix just provided a first introduction to testing with pytest so you can follow
the examples more easily. Of course, there is much more to discover, such as various
plugins. More information on how to use pytest appropriately can be found in the

following books:

« Python Testing with pytest: Simple, Rapid, Effective, and Scalable by Brian
Okken [Okk17]

« pytest Quick Start Guide: Write better Python code with simple and maintain-
able tests by Bruno Oliveira [Oli18]

Footnotes

1
If the number of values is huge, it is not a good idea to perform a check for all of them, since this

often significantly increases the execution time of the unit tests, without providing any real added
value. Especially here, it is recommended to use representatives from equivalence classes, which
should drastically reduce the number of test cases. For details, refer to my book Der Weg zum
Java-Profi[Ind20].

© The Author(s), under exclusive license to APress Media, LLC, part of Springer
Nature 2022

M. Inden, Python Challenges

https://doi.org/10.1007/978-1-4842-7398-2 12

Short Introduction to Decorators

Michael Inden!
(1) Zurich, Switzerland

In this appendix, | would like to introduce decorators, another topic
that allows us to express solutions to cross-cutting functionalities ele-
gantly. Decorators are useful for parameter checks, for example, and

are used primarily in this book for advanced recursion topics.

Decorators allow you to add already existing functionality to new
functionality transparently, without extensions in the implementation
of a function itself. Although writing decorators is pretty straightfor-
ward, there are a few specifics to keep in mind. Let’s look at this a lit-

tle more closely when examining parameters for functions.
B.1 Argument Checks by Decorator

Previously, you performed various argument checks, such as to en-
sure a valid range of values. In Python, these sanity checks can be

outsourced to a decorator. Consequently, the actual function code

https://doi.org/10.1007/978-1-4842-7398-2_12

can stay as close as possible to the problem to be solved, without

special treatment.

A function to check for positive integers can be implemented as follows

where you pass a function as a parameter and use a function as a return:
def

check argument is positive integer (unary func):
def helper (n) :
if type(n) == int and n > O:
return unary func (n)
else:
raise ValueError ("n must be positive
and of type int")
return helper
As a simple example of usage, let’s consider the calculation of the
factorial where the parameter check is still included:
def factorial (n):
if n <= 0:
raise ValueError ("n must be >= 1")
if n == 1:
return 1
return n * factorial(n - 1)
To activate the check, you can wrap the above function with the

argument check as follows:

factorial =
check argument is positive integer (factorial)
It is also possible to define a new function as follows:

wrapping results in new function

checked factorial =

check argument is positive integer (factorial)
print (checked factorial (b))

print (checked factorial(-5)) # => ValueError

ote: Higher Order Functionsln this example, the decorator is creat-
d using functions or nested functions. There are also higher order

unctions, which are when a function receives another function as a

parameter and returns a function as a result.

B.2 Syntactic Sugar for Decorators

In Python, there is the variant with @. This allows you to place the decorator
name directly on top of the function definition:
@check argument is positive integer
def factorial (n):
if n <= 0:
raise ValueError ("n must be >= 1")
if n ==
return 1
return n * factorial(n - 1)
Now you can omit the two lines
if n <= 0:
raise ValueError ("n must be >= 1")
and write the function in a shorter and clearer way, as follows:
@check argument is positive integer
def factorial (n):

if n ==

return 1

return n * factorial(n - 1)

Note: Difference Between types of DecorationFor @<decorator>, the
decoration is always done. If you call <decorator> (function) you
can also call the function regularly and later switch on the decorator
explicitly. For this example, you call the check as follows, where the
second call produces a ValueError:

invocation with "factorial" as parameter

print (check argument is positive integer (factorial
(35))

print (check argument 1s positive integer (factorial

(=5))

B.3 Checking Multiple Parameters

The check for positive integers can also be extended to multiple parameters
(two, in the following code). For example, this may be used for simple
arithmetic operations like + and — for natural numbers:
def
check arguments are positive integers (binary func):
def helper (paraml, param?):
if type (paraml) == int and paraml > 0 and \
type (param?2) == int and paramZ2 > O0:
return binary func(paraml, paramZ2)
else:
raise ValueError ("both params must be

positive and of type int")

return helper
@check arguments are positive integers
def add(valuel, value?2):

return valuel + value?2
@check arguments are positive integers
def subtract (valuel, value?):

return valuel - value?

ote: Explicit Checks or Decorator?Consider the following: As the
number of parameters increases, the complexity of the checks also
increases, and the comprehensibility potentially decreases. Thus,
rom about three parameters to be checked, an explicit examination
within the respective functions or methods is probably more appropri-

ate. This helps to maintain or even increase traceability and

|maintainability.

B.4 Logging Function Calls and Parameter
Passing

Previously, you considered the somewhat simplified cases of one or two
parameters. However, for various decorators, it is important to be able to be
called for an arbitrary number of parameters, such as for logging calls or for
measuring execution times. For this purpose, the decorator can be defined
more generally as follows:
def audit decorator (func):

def wrapper (*args, **kwargs):

print ("Before calling " 4+ func. name)

result = func(*args, **kwargs)
print ("After calling " + func. name)
return result

return wrapper

Let’s use this decorator once for logging. You write the following as a

combination of two decorators:
@audit decorator
@check arguments are positive integers
def add(valuel, value?l):
return valuel + valueZ

When executing
>>> print("add", add(2, 7))

You get, however, the name of the inner decorator, here helper,
instead of the original function add, which was probably of interest:
Before calling helper
After calling helper
add 9

Based on these i1ssues, I would like to address one more point explicitly:

Decorating has worked quite smoothly so far, but you should consider that

in this way, the following attributes of the function are lost:

__name _ (the name of the function),
. __doc__ (the documentation, the docstring) and

. __module _ (the module where the function was defined).

B.5 Improvement with wraps from the functools
Module

Previously, you saw the somewhat irritating output of the wrapping instead
of the wrapped function. A workaround is to use wraps from the module
functools as follows:
def
check arguments are positive integers (binary func):
@wraps (binary func)
def helper (paraml, param?):
if type(paraml) == int and paraml > 0 and \
type (param2?2) == int and paramZ2 > O0:
return binary func(paraml, paramZ2)
else:
raise ValueError ("both params must be
positive and of type int")
return helper
As a result, the output is as expected:
Before calling add
After calling add
add 9

In addition, you should add @wraps in audit decorator.

Let’s finish the short introduction with profiling and the measurement of
the execution time of functions. For this purpose, you define the following
decorator on yourself:
def timed execution (func):

@wraps (func)
def timed execute (*args, **kwargs):
start time = time.process time ()

result = func(*args, **kwargs)

end time = time.process_time ()

run _time = end time - start time

print (f"'{func. name }' took {run time *
1000:.2f} ms")

return result

return timed execute

© The Author(s), under exclusive license to APress Media, LLC, part of Springer
Nature 2022

M. Inden, Python Challenges

https://doi.org/10.1007/978-1-4842-7398-2 13

Quick Start O-Notation

Michael Inden!
(1) Zurich, Switzerland

In this book, the so-called O-notation is used to classify the running
time of algorithms. This allows a more formal classification of the

complexity of algorithms.
C.1 Estimations with O-Notation

To estimate and describe the complexity of algorithms and classify
their running time behavior, it would be impractical to always take
measurements. In addition, measurements only reflect the running
time behavior under certain restrictions of the hardware (processor
clock, memory, etc.). To be able to classify the consequences of de-
sign decisions independently of such details and on a more abstract
level, computer science uses the so-called O-notation, which indi-
cates the upper bound for the complexity of an algorithm. To do so,
you are able to answer the following question: how does a program

perform when instead of 1,000 input values, for example, 10,000 or

https://doi.org/10.1007/978-1-4842-7398-2_13

100,000 input values are processed? To answer this question, the indi-
vidual steps of an algorithm must be considered and classified. The
aim is to formalize the calculation of complexity to estimate the ef-
fects of changes in the number of input data on the program running

time.

Consider the following while loop as an introductory example:

i =0 // 0(1)
while i < n: // O(n)
create person in db (1) // 0(1)
i+=1 // O(1)

Any single instruction is assigned a complexity of O(1). The loop itself
is assigned the complexity O(n) due to the n executions of the loop
body.l Adding these values together, the cost of running the program
is thus O(1) + O(n) = (O(1) + O(1)) = O(1) + O(n) =2. For an estimation
of complexity, constant summands and factors do not matter. Only
the highest power of nis of interest. Thus, we get a complexity of
O(n) for the program’s illustrated piece. This simplification is permis-
sible since, for larger values of n, the influence of factors and smaller
complexity classes is insignificant. For the understanding of the con-
siderations in the following sections, this informal definition should be

sufficient.

| would like to quote two sentences by Robert Sedgewick that charac-

terize the O-notation, from his standard work Algorithms [Sed92]: “[...]

the O-notation is a useful tool for specifying upper bounds on the run-
ning time, which are independent of the input data’s details and the
implementation. [...] The O-notation proves extremely useful in help-
ing analysts to classify algorithms according to their performance,
and by helping algorithms in their search for the ‘best’ algorithms.”

(translated from the German book).
C.1.1 Complexity Classes

To be able to compare the running time behavior of different algorithms
with each other, seven different complexity classes are usually sufficient.
The following bullet points names the respective complexity class and some

examples:

« O(1): The constant complexity results in a complexity that is inde-
pendent of the number of input data n. This complexity often repre-
sents an instruction or a simple computation that consists of a
few computational steps.

« O(log(n)): With logarithmic complexity, the running time doubles
when the input data set nis squared. A well-known example of this
complexity is binary search.

« O(n): In the case of linear complexity, the running time grows pro-
portionally to the number of elements n. This is the case for simple
loops and iterations, such as a search in an array or a list.

« O(n x log(n)): This complexity is a combination of linear and loga-

rithmic growth. Some of the fastest sorting algorithms (e. g.

Merge Sort) show this complexity.

. O(n?): When doubling the amount of input data n, the quadratic
complexity leads to a quadrupling of the running time. A tenfold in-
crease in the input data already leads to a hundredfold increase in
running time. In practice, this complexity is found with two nested
for or while loops. Simple sorting algorithms usually have this
complexity.

. O(n3): With cubic complexity, a doubling of n already leads to an
eightfold increase of the running time. The naive multiplication of
matrices is an example of this complexity class.

« O(2™): The exponential complexity results for a doubling of nin a
squaring of the running time. At first, this does not sound like
much. But with a tenfold increase, the running time increases by a
factor of 20 billion! The exponential complexity occurs frequently
with optimization problems such as the Traveling Salesman
Problem, where the goal is to find the shortest path between dif-

ferent cities while visiting all cities.

To cope with the problem of exorbitant running time, the program
uses heuristics, which may not find the optimal solution, just an ap-
proximation of it, but have much lower complexity and a significantly

shorter running time.

Table 13-1 shows impressively which effects the mentioned complexity

classes have for different sets of input data 1.2

Table 13-1 Effects of Different Time Complexities

n Ofog(n)) ~ O(n) ONX T omy)

log(n))
10 1 10 10 100
100 2 100 200 10.000
1.000 3 1.000 3.000 1.000.000
10.000 4 10.000 40.000 100.000.000
100.000 5 100.000 500.000 10.000.000.000
1.000.000 6 1.000.000 6.000.000 1.000.000.000.0r

Based on the values shown, you get a feeling for the effects of differ-
ent complexities. Up to about O(n x log(n)) the complexity classes are
favorable. Optimal and desirable, although not achievable for many
algorithms, are the complexities O(1) and O(log(n)). Already O(n?) is
usually not favorable for larger input sets, but it can be used for sim-

ple computations and smaller values for n without any problems.

ote: Influence of Input DataSome algorithms behave differently de-
pending on the input data. For Quick Sort, the average case results
in a complexity of n x log(n), but this can increase to n? in the ex-
reme case. Since the O-notation describes the “worst case,” Quick

Sort is assigned a complexity of O(r?).

C.1.2 Complexity and Program Running Time

The numbers calculated by a special O-complexity for a set of input
values n may sometimes be daunting. Still, they say nothing about
the actual execution time, only about its growth when the input set in-
creases. Based on the introductory example, the O-notation makes
no statement about the duration of individual calculation steps: The
increment 1 += 1 and the database access create person-
_in db (1) were both rated O(1), even though the database access
is several orders of magnitude more expensive than the increment

concerning execution time.

For “normal” instructions without accesses to external systems, such
as file systems, networks or databases (i.e., additions, assignments,
etc.), the impact of nis in many cases not decisive for today’s com-
puters for typical business applications with user interactions. The im-
pact on actual runtime hardly really matters for small n (< 1000) at

complexities O(n) or O(n?) and even sometimes at O(°) nowadays—

but this does not mean that you should not use algorithms that are as
optimal as possible. Rather, the reverse is true: You can also start
with a functionally correct implementation and put it into production.

The optimized version may be rolled out sometime later.

All'in all, I would like to emphasize once again that even multiple
nested loops with the complexity O(n?) or O(r?) are often executed
much faster in absolute terms than some database queries over a
network with complexity O(n). Similar is true for a search in an array
(O(n)) and access to an element of a hash-based data structure
(O(1)). For small n, the computation of the hash values can take
longer than a linear search. However, the larger n gets, the more the

impact of the worse complexity class affects the actual running time.

Footnotes

1
The meaning of the notation becomes more understandable on the next page

with the presentation of examples for other complexity classes.

2
The time complexity O(2") is not shown because its growth is too strong to be ex-

pressed meaningfully without the use of powers of 10.

© The Author(s), under exclusive license to APress Media, LLC, part of Springer
Nature 2022

M. Inden, Python Challenges

https://doi.org/10.1007/978-1-4842-7398-2 14

Short Introduction to Python 3.10

Michael Inden!
(1) Zurich, Switzerland

This appendix presents some of the enhancements implemented in
Python 3.10, which was released in October 2021. Therein are fea-

tures that may be relevant to you. | start with improvements to error

messages. Then | briefly look at match for convenient design and
formulation of case distinctions. Finally, | briefly touch on perfor-

mance improvements as well as type checks and other details.
D.1 Error Messages

Sometimes errors occur in a Python program. Various types of errors
can be observed. When creating programs, SyntaxError Or
IndentationError arise from time to time. These errors can be
fixed easily with the context information and accurate line numbers

provided by Python. Let’s take a look at two short examples.

D.1.1 Assignment Error Messages

https://doi.org/10.1007/978-1-4842-7398-2_14

For the sake of demonstrating the improvements in error messages,
let’s assume you accidentally specified an assignment (=) instead of

a comparison (==)inan if.
Python 3.9.x

With Python 3.9.x, the error is detected, of course, but gets reported rather
unspecifically as invalid syntax, as follows:
>>> if x = 6:
File "<stdin>", line 1
if x = 6:
SyntaxError: invalid syntax

Unfortunately, there is no hint of what is wrong with the syntax. De-
pending on your programming experience, the underlying problem is

either quickly found or you are left guessing.

Improvement with Python 3.10

Let’s look at how the error message for the same lines changes with Python
version 3.10, in particular becoming much more understandable:
>>> if x = 6:
File "<stdin>", line 1
if x = 6:
SyntaxError: invalid syntax. Maybe you meant '=='

or ':='" instead of '='?

As you can see, not only is the problem’s cause mentioned directly,

but two possibilities for remedial action are suggested at once.

D.1.2 Error Messages for Incomplete Strings

Sometimes you might overlook delimiting a string at the beginning or
the end with quotation marks. Let’s take a look at the error messages

generated by different Python versions.

Python 3.9.x

You define a set with some names, but the last one does not end correctly
with a quotation mark.
>>> data = { "Tim", "Tom", "Mike}
File "<stdin>", line 1
data = { "Tim", "Tom", "Mike}

AN

SyntaxError: EOL while scanning string literal

Improvement with Python 3.10

With Python 3.10, the problem is directly apparent from the error message,
namely the missing quotation mark at the end of the string:
>>> data = { "Tim", "Tom", "Mike}

File "<stdin>", line 1

data = { "Tim", "Tom", "Mike}

A

SyntaxError: unterminated string literal (detected
at line 1)

D.2 Case Distinctions with match

In many languages, case distinctions may be expressed using the i f
statement as well as the switch statement. The latter was missing in
Python for a long time. With Python 3.10 comes match, an even more
powerful variant for case discrimination with which we can now finally
also realize the switch statement. In addition, match enables pat-
tern matching, a method that is used in functional languages such as
Erlang/Elixir or Scala, but also makes its way into the current Java 17

(in a trimmed-down form).

Let’s look at some possibilities of match again a few examples.
D.2.1 Python 3.9.x

Suppose you want to map HTTP status codes to their meaning. This can be
solved with an i f cascade as follows (shown here only in excerpts):

http code = 201

if http code == 200:

print ("OK")
elif http code == 201:
print ("CREATED")
elif http code == 404:

print ("NOT FOUND")

elif http code == 418:
print ("I AM A TEAPOT")
else:
print ("UNMATCHED CODE")
However, it is noticeable that this is not easy to read.

Improvement with Python 3.10

Let’s look at how much clearer the above construct becomes with the use of
match. In particular, with _ you can also include a wildcard case that is
jumped to whenever the other cases don’t match.
match http code:
case 200:
print ("OK")
case 201:
print ("CREATED")
case 404:
print ("NOT FOUND")
case 418:
print ("I AM A TEAPOT")
case
print ("UNMATCHED CODE")

Combination of Values

By using the pipe operator (|), it is possible to specify multiple values for
which the following action should be executed. This is shown here for

Thursday and Friday in combination and Saturday and Sunday:

def get info(day):
match day:

case 'Monday':
return "I don't like..."

case 'Thursday' | 'Friday':
return 'Nearly there!'

case 'Saturday' | 'Sunday':
return 'Weekend!!!'

case

return 'In Between...

More Complex Matching |

You have just seen that you can specify values with the pipe operator as
alternatives. However, it is also possible to check iterables for a match:
values = (2,3,4)
match values:

case [1,2,3,4]:

print ("4 in a row")

case [1,2,3] | [2,3,4]:
print ("3 in a row")
case [1,2,41 | [1,3,4]:

print ("3 but not connected")
case

print ("SINGLE OR DOUBLE")

More Complex Matching Il

The capabilities of match are even more powerful, however, which I’1l just
hint at here. Please note that you can specify matching patterns and
additional conditions after the values in case.
class Gender (Enum) :
MALE = auto()
FEMALE = auto()
def classify(person):
match person:
case (name, age, "male" | Gender.MALE) :
print (f"{name} 1is a man and {age}
years old")
case (name, age, "female" |
Gender.FEMALE) :
print (f"{name} is a woman and {age}
years old")
case (name, , gender) if gender is not
None:
print (f"no age specified: {name} is
{gender}")
case (name, age,) if age is not None:
print (f"no gender specified: {name} 1is
{age} years old.")
Here the already mentioned pattern matching takes place. In case,
it is checked whether there is a match with the pattern, but additional-
ly the specified variables are assigned corresponding values. Details

can be found in PEP 622 at www.python.org/dev/peps/pep—

http://www.python.org/dev/peps/pep-0622/

0622/.Again, serves as a wildcard operator and matches with

everything.

Let’s call this classification once as follows:
classify (("Micha", 50, "male"))
classify (("Lili", 42, Gender.FEMALE))
classify (("NO GENDER", 42, None))
classify (("NO AGE", None, "ALL"))

This results in the following outputs:

Micha is a man and 50 years old
Lili is a woman and 42 years old
no gender specified: NO GENDER is 42 years old.

no age specified: NO AGE 1s ALL

D.3 Miscellaneous

D.3.1 Improvements in Context Managers

Context managers are helpful for resource management when open-
ing or closing files. But they are also useful for managing database

connections and many other resources.
Improvement with Python 3.10

With Python 3.10, their syntax becomes a tiny bit more pleasant when using
multiple context managers within one with statement:
with (

open ("inputl.txt") as input filel,

http://www.python.org/dev/peps/pep-0622/

open ("inputZ.txt") as input fileZ,

D.3.2 Performance Improvements

Python has been improved internally concerning performance in sev-
eral places. This mainly applies for constructors like str (),
bytes (), and bytearray (). They have become faster by about

30 %. Please consult https://bugs.python.org/issued1334

for details.

D.3.3 Extension at zip()
Python 3.9.x

Python provides a built-in function called zip () that allows you to
combine two (or more precisely, multiple) iterables into a single unit. This
may be used to combine, for example, two lists, one of programming

languages and another of version numbers:

>>> languages = ['Java', 'Python']
>>> versions = [17.0, 3.10]
>>>

>>> print(list(zip (languages, versions)))
[('Java', 17.0), ('Python', 3.10)]
If one dataset contains more elements than the other, the merge will be

aborted as soon as all elements of the shorter dataset have been processed:
>>> number list = [1, 2, 3, 4, 5, 6]

https://bugs.python.org/issue41334

>>> str list = ['one', 'two', 'three']

>>>

>>> print(list (zip (number list, str list)))

[(1, 'one'), (2, '"two'), (3, 'three')]

This is often really a very good default setting to be able to work fault-
tolerantly. However, sometimes you want to merge the two datasets
only if both can provide the same amount of elements. With Python
3.9.x this was only achievable by the help of additional programming

efforts.

Improvement with Python 3.10

Since Python 3.10, zip () supports the parameter st rict. Use the value
True to specify that an exception should be thrown if one of the iterables is

exhausted before the others:

>>> number list = [1, 2, 3, 4, 5, 6]
>>> str list = ['one', 'two', 'three']
>>>

>>> print(list (zip (number list, str 1list,
strict=True)))
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
ValueError: zip() argument 2 is shorter than

argument 1

D.3.4 Typechecking Improvements

I have not shown type checks in this book so far, as this is a rather advanced
feature of Python. Furthermore, these specifications are optional and only
help while coding but are not evaluated at runtime. For clarification, let’s
assume the following function initially:

def identity(value):

return value

Python 3.9.x

To specify for a function that it expects parameters of either type int or
float as input and also returns them, you can add the following

specifications:
def identity(value: Union[int, float]) ->
Union[int, float]:

return value

Improvement with Python 3.10

The union of types just shown does get a bit clumsy by explicitly specifying
Union. With Python 3.10, the notation looks quite natural and is also

shorter and more readable:

def identity(value: int | float) -> int | float:
return value

This is described as PEP 604 at

www.python.org/dev/peps/pep-0604/.

Hint: Interesting Video About What’s New in Python 3.10
To see the new features live in action, | recommend an instructive

video available on YouTube at www. youtube.com/watch?2v=5-

http://www.python.org/dev/peps/pep-0604/
http://www.youtube.com/watch%253Fv%253D5-A435hIYio

A435hTYio).

http://www.youtube.com/watch%253Fv%253D5-A435hIYio

BIBLIOGRAPHY

« [ALP16] Adnan Aziz, Tsung-Hsien Lee, and Amit Prakash,
Elements Of Programming Interviews in Python (CreateSpace In-
dependent Publishing Platform, 2016).

- [Bad17] Dan Bader, Python Tricks: A Buffet of Awesome Python
Features (Dan Bader, 2017).

- [Bhal6] Aditya Y. Bhargava, Grokking Algorithms (Manning, 2016).

« [Ind20] Michael Inden, Der Weg zum Java-Profi 5th edition (dpunk-
t.verlag, 2020).

. [Jail9] Hemant Jain, Problem Solving in Data Structures and Algo-
rithms Using Python 2nd edition (2019).

« [McD16] Gayle Laakmann McDowell, Cracking the Coding Inter-
view 6th edition (CareerCup, 2016).

« [MKG18] John Mongan, Noah Kindler, and Eric Giguere,
Programming Interviews Exposed 4th edition (Wrox, 2018).

« [MW19] Alex Miller and Lawrence Wu, Daily Coding Problem
(2019).

« [Okk17] Brian Okken, Python Testing with pytest: Simple, Rapid,
Effective, and Scalable (O’Reilly, 2017).

« [Oli18] Bruno Oliveira, pytest Quick Start Guide: Write better
Python code with simple and maintainable tests (Packt Publishing,
2018).

« [Pre00] Bruno R. Preiss, Data Structures and Algorithms with Ob-
ject-Oriented Design Patterns in Java (Wiley, 2000).

« [Sed92] Robert Sedgewick, Algorithmen (Addison-Wesley, 1992).

« [Sed11] Robert Sedgewick, Algorithms 4th edition (Addison Wes-
ley, 2011).

« [Urb18] Matthew Urban, Top 30 Java Interview Coding Tasks (net-
boss, 2018).

« [VH16] Rick van Hattern, Mastering Python. (Packt Publishing,
2016).

« [Weil0] Mark Allen Weiss, Data Structures and Problem Solving
Using Java 4th edition (Pearson, 2010).

« [Wen17] Jay Wengrow, A Common-Sense Guide to Data Struc-

tures and Algorithms (The Pragmatic Programmers, 2017).

Index

A

Abstract syntax tree (AST)
Arrays

add_one(digits)

algorithm

data structure

verification

building blocks

erase diamonds

algorithm

erase chains(values2dim)
erases

fall down(values2dim) 301
falling down

helper functions
implementation
modification

preliminary considerations
solution

verification

errors

even/odd numbers
algorithm

helper functions
implementation

less copying

optimization

solution

variation

verification

features

flip

horizontal flipping algorithm
implementation

limitation

modification

optimization

solution

verification

vertical flipping mode
flood filling process
algorithm

filling process

pattern specification
solution

verification
generalizations

inplace rotation
algorithm

helper variables
innermost level

inwards

iterative

outer layer

procedure layer
recursive

verification

jewels board init

check validation
diagonals

get dimension() function
graphical representation
initialization

little source code vs. small method
validity check

verification

minimum and maximum
algorithm
helper functions
implementation
solution
verification
multidimensional array
NumPy
one-dimensional

See One-dimensional arrays
palindrome
advantage
algorithm
is_palindrome(values) function
iterative variant
Python shortcut
solution
unit testing
verification
split
algorithm
arbitrary integers
inplace
inplace function
lists
Pythonic algorithm
quick sort partition

Quick Sort variants

sorting partition
verification

B

Backtracking
n-Queens problem
Sudoku solver

Binary trees/binary search trees (BST)
ASCII output
BinaryTreeNode class
breadth-first search
algorithm
implementation
level-order
verification

checking process
algorithm

solution

verification
completeness
completeness
full/perfect checking
implementation
nodes

recursive

solution

verification
inorder/preorder/postorder

mnorder solution

insight

iterative implementations
postorder
preorder
surprise algorithm
verification
insertion
integers
letters/numbers
level sum
algorithm
implementation
solution
verification
math evaluation
algorithm
implementation
solution
verification
meaning
mirroring tree
node/edges
postorder
printer
connecting lines
drawing node
implementation

representation

solution

tree width

problematic insertion order
properties
completeness/perfectness
level and height

rotation

reconstruction

algorithm

lists

preorder and inorder
verification

rotation

algorithm

implementation

nodes

preliminary considerations
solution

verification

search

structure storage/terminology
supplementary literature
symmetry

algorithm

imaginary vertical line
mirror tree

solution

verification

symmetry property
textual/real digits
traversals
breadth-first/depth-first searches
depth-first search methods
level order/breadth-first
tree height

algorithm
implementation
solution

verification

tree representation
algorithm

helper functions
memory optimization
solution

spacing node
verification

utility module

Bucket sort algorithm
solution

verification

C

Container classes

D

Data structure

braces

algorithm

enumeration
solution
verification
check magic triangle
algorithm
intermediate inspection
problem solving strategies
solution
verification
common elements
algorithm
matching functions
Python shortcut
solution
stack class
verification
digits
addition
inverse
safe get at() function
verification
ZIP() method
Excel magic select

See Excel magic select
FIFO

See First In, First Out (FIFO)
frequent elements

algorithm

histogram

solution

verification

list merge

algorithm
implementation
Python shortcut
solution

verification

list reverse
algorithm

elements

inplace

order inplace
performant random index
Python shortcut
random index access
reverse() function
verification

longest sequence
greedy algorithm
mini optimization
modeling stock prices/altitudes
optimized algorithm
solution

verification

magic triangle

maximum profit

algorithm
max_revenue(prices) function
solution

verification

Pascal’s triangle
algorithm
representation

solution

verification

remove duplication
algorithm

Python shortcut

remove duplicates(values)
solution

verification

stack class

algorithm

requirements
StackIsEmptyException
verification

visibilities

stack/queue

algorithm

check procedures
implementation
solution

verification

well-formed braces

Data structures, supplementary literature
Decorators

argument checks

checking multiple parameters
explicit checks

functools module

logging function calls/parameter passing
syntactic sugar

wrapped function

E

Excel magic selection

algorithm

implementation

modification

Python shortcut

solution

verification

F

First In, First Out (FIFO)
elements

emulate stack and queue
implementation
G,HILJK

Greatest common divisor (GCD)
L

Last-In-First-Out (LIFO)

Least common multiplier (LCM)
LIFO data structure

Lists/sets/key-value mappings (dictionaries)
Lowest common ancestor (LCA)
algorithm

solution

verification

M

Mathematical operations
arithmetic operations
algorithm

blank lines

built-in function
even/odd number
function

statistics

verification

Armstrong numbers
algorithm

equation

formulas

generic version
verification

checksum

algorithm

calculation

verification
combinatorics

algorithm

computation

Python shortcut

solve quadratic() function
transformation
verification

decimal number

divider

lambda expressions
functional programming
len() method

sort() method

syntax

max change calculator
algorithm
coins/numbers
maximum value
verification

modulo operation (%)/division
number as_text(n)
number games

pair prime numbers
algorithm

optimization

principles

program structure
results

verification

perfect number

prime factorization

algorithm
multiplication
optimized algorithm
solution

verification

prime numbers
algorithm

Python shortcut
results

verification

related numbers
algorithm

calc friends(max_exclusive)
equations

verification

roman numbers
algorithm

decimal numbers
verification

roman numeral system
Sieve of Eratosthenes
supplementary literature
text numbers
Memoization

edit distances
Fibonacci numbers
Pascal’s triangle

pure functions

Python on-board tools
cross-cutting concern
decorator

disadvantages

LRU cache

Pascal’s triangle
techniques

recursive implementation
Merge Sort

Minesweeper board
algorithm

artificial border

bombs
calc_bomb_count(bombs)
initialization
place_bombs_randomly()
position-based processing
print_board()

solution

verification
Multidimensional arrays
accessing values
definition

get dimension(values) function
implementation
is_on_board()

modeling directions

np.empty()

print()

Python command line
random numbers
rotations

strings conversion
variation

N

n-Queens problem
algorithm

approach

diagonals

get dimension()
helper function
implementation
queens

solution

task implementation
verification
Numerical Python (NumPy)
advantage
comprehensions
functionalities
getsizeof() function
index based access
lists

matrix multiplication
memory consumption

particular value

performance comparison
recapitulation

O

One-dimensional arrays
enumerate() function
functionality

interim

optimization
problem-solving strategies
readability/comprehensibility
remove duplication
rotation

sorted input

swapping elements

textual output

tuple assignment
unsorted/arbitrary numbers
O-notation

algorithms

complexity classes, binary search
definition

estimations

input data

normal instructions

sorting algorithms

time complexities

P
Palindrome property

algorithm

iterative variant

optimized algorithm
position pointers

recursive variant
Programming style

block comments
count_substrings() function
decorators and sanity checks
information

PEP 8 coding standard
recursive termination and descent
source code compactness
Zen

PyCharm project

pip tool

sources

tests

utility functions

pytest

handle expected exceptions
installation

parameterized test
collection literals

source code

test execution

console

HTML representation

IDE PyCharm
unit test

Python

checks

project sources
shortcut
solution

tooling

Zen

Python 3.10
case distinctions
pipe operator (])
combination
match

matching patterns and conditions
Python 3.9.x
wildcard case
context managers
error messages
assignment (=)
possibilities
string

type checks
zip() extension
Q

Quick sort

R

Recursion

backtracking
edit distance
algorithm
case-insensitive
memoization
modifications
performance test
verification
Labyrinth
advantages
algorithm
implementation
solution
verification
longest common subsequence
algorithm
implementation
memoization
modification
performance test
solution
verification
math operator checker
algorithm
combinations
verification
memorization

See Memoization

n-Queens problem
implementation
solution

palindromes

algorithm

longest substrings
LOTTOL

step-by-step procedure
strings

subproblems

substrings

verification

Sudoku solver
algorithm

auxiliary function
backtracking problems
checking modification
clever testing

digits

implementation
reasonable optimizations
solve sudoku(board)
valid solution
verification
supplementary literature
Towers of Hanoi problem
algorithm

execution

graphical format
recursion

solution

task definition
verification

water jug problem
algorithm
implementation
solution

verification

Recursive functions
algorithmic tasks
draw_snowflake()
fractal implementation
iterative variant
palindrome property
stylized representation
complexity reduction
conversion

algorithm

octal and hexadecimal numbers
optimization
to_binary(n)
verification
count_substrings
implementation
optimization

solution

variation

verification

endless calls/stack frame
exponential function
exponentiation
is_power of 2(n)
iterative version
power_of(value, exponent)
verification

Fibonacci numbers
iterative

mathematical definition
optimization

recursive

value progression
verification

GCD

iterative version

LCM

natural numbers
solution

verification

iterative

mathematical operation
calculation formula
clarification

restricted call depth

factorial

Fibonacci numbers
Python shortcut
sum of numbers (n)
tail-recursive
min_rec(values)
multiplication
number palindromes
solution

string functionalities
verification

Pascal’s triangle
permutations
computation
solution

process digits
count_digits(value)
Cross sum

divmod() function
built-in function len()
sanity checks
verification
RecursionError
reverse string
algorithm
reverse_string(text)
verification

ruler

draw_interval() function

draw_ruler() function
solution

verification
sum_rec(values)
algorithm

solution

verification
termination condition
S

Search/sorting algorithm
binary search
iterative

recursive

recursive function
verification

bucket sort algorithm
implementation
solution

verification

contains all
algorithm
contains_all() function
Python shortcut
solution

verification
in()/index()/count()
insertion sort

implementation

solution
verification
partitioning
algorithm

solution

three letters

two letters
verification
partitioning

quick sort
implementation
solution
verification
rindex() and rfind()
rotated data

binary search
comparisons

flank change efficient
implementation
preliminary considerations
solution
verification
schematic sequence
selection sort
implementation
solution
verification

sorting

See Sorting algorithms
supplementary literature
Sequential data types
data structure

See Data structure
key-value mappings (dictionaries)
definition
filtering elements
functions and operations
implementation
LIFO data structure
lists
check implementation
collect_all()
comprehension
elements
improved variants
inplace variants
operations
remove_all()
operations
sets
operations
single elements
solving tasks
Slicing operations
conversion

individual characters/substrings

iteration

output

Sorting algorithms
analogy

bucket sort
comprehensibility
insertion
definition
implementation
position

stable sort
merging process
quick

copying option
inplace implementation
main()

pivot

selection

splitting algorithm
Spiral traversal
algorithm
assumption

basic procedure
generic method
procedure

results
verification

Strings

anagram
algorithm
implementation

Python shortcut

solution

verification

braces

algorithm

check braces(text)
solution

verification
capitalization
capitalize(text)
modification

solution

special treatment variant
split() method
verification

whitespace

character sequences
conversion

algorithm

octal numbers

solution
str_to_number(text)
verification

conversions and extractions

duplicate letters

implementation
Python shortcut
solution
verification
equality

filled frame
algorithm
print_box(width, height, fillchar)
solution
verification
formatting output
functions
guessing vowels
algorithm

Python shortcut
solution

translate vowel(text, replacement)
verification
histogram

joiner
implementation
solution

morse code
algorithm

bonus
Python/match
solution

to_morse code(text)

verification

number conversions
binary numbers

1s_binary number(number)
solution

palindrome

algorithm

implementation

iterative solution

regular expression
solution

verification

pattern checker

algorithm

matches pattern(pattern, text)
problem solving strategies
solution

verification

print tower

algorithm

print_tower(n)

recursion

solution

verification

processing

process single characters
remove duplication

remove_duplicates(text)

solution
verification
reverses
implementation
solution
verification
rotation
algorithm
implementation
solution
verification
slicing

See Slicing operations
supplementary literature
tennis score
algorithm
counting rules
solution
tennis_score() function
verification
version numbers
algorithm
compare_versions(versionl, version2)
solution
verification
Structure
algorithm

examination

task structure

Sudoku checker
algorithm

bonus

puzzle

valid solution
verification
Supplementary literature
algorithms/data structures
arrays

binary trees

books

data structures

gold bags, fake detection
horse race

exclusion procedure
matrix

simplification

solution

interview
maintainability
mathematical knowledge
performance
programming puzzles
programming tasks
recursion

search/sorting algorithm

strings

unit tests

T

Traversing trees
algorithm
append() method
implementation
list

solution
verification

U, V,W,X,Y, Z
Unit test, Pytest

	Front Matter
	1. Introduction
	Part I. Fundamentals
	2. Mathematical Problems
	3. Recursion
	4. Strings
	5. Basic Data Structures: Lists, Sets, and Dictionaries
	6. Arrays

	Part II. More Advanced and Tricky Topics
	7. Advanced Recursion
	8. Binary Trees
	9. Searching and Sorting
	10. Conclusion and Supplementary Literature

	Part III. Appendix
	Short Introduction to pytest
	Short Introduction to Decorators
	Quick Start O-Notation
	Short Introduction to Python 3.10

	Back Matter

