The _
Pragmatic

rograrminers

Modern
Asynchronous
JavaScript

Tackle Complex
Async Tasks
with Less Code

Faraz K. Kelhind

edited by Margaret

Modern Asynchronous JavaScript

Tackle Complex Async Tasks with Less Code

by Faraz K. Kelhini

Version: P1.0 (December 2, 2021)

Copyright© 2021 The Pragmatic Programmers, LLC. This book is licensed to the individual who purchased it.
We don't copy-protect it because that would limit your ability to use it for your own purposes. Please don't break
this trust—you can use this across all of your devices but please do not share this copy with other members of

your team, with friends, or via file sharing services. Thanks.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as

trademarks. Where those designations appear in this book, and The Pragmatic Programmers, LLC was aware
of a trademark claim, the designations have been printed in initial capital letters or in all capitals. The Pragmatic
Starter Kit, The Pragmatic Programmer, Pragmatic Programming, Pragmatic Bookshelf and the linking g device

are trademarks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes no responsibility
for errors or omissions, or for damages that mayresult from the use of information (including program listings)
contained herein.

About the Pragmatic Bookshelf

The Pragmatic Bookshelfis an agile publishing company. We’re here because we want to improve the lives of

developers. We do this by creating timely, practical titles, written by programmers for programmers.

Our Pragmatic courses, workshops, and other products can help you and your team create better software and
have more fun. For more information, as well as the latest Pragmatic titles, please visitus at

http://pragprog.com.

Our ebooks do not contain any Digital Restrictions Management, and have always been DRM-free. We
pioneered the beta book concept, where you can purchase and read a book while it's still being written, and
provide feedback to the author to help make a better book for everyone. Free resources for all purchasers
include source code downloads (if applicable), errata and discussion forums, all available on the book's home

page at pragprog.com. We're here to make your life easier.

New Book Announcements

Want to keep up on our latest tittes and announcements, and occasional special offers? Just create an account
on pragprog.com (an email address and a password is all it takes) and select the checkboxto receive

newsletters. You can also follow us on twitter as @pragprog.

About Ebook Formats

If you buy directly from pragprog.com, you get ebooks in all available formats for one price. You can synch your

ebooks amongst all your devices (including iPhone/iPad, Android, laptops, etc.) via Dropbox. You get free

http://pragprog.com/
https://pragprog.com/
https://pragprog.com/

updates for the life of the edition. And, of course, you can always come back and re-download your books when
needed. Ebooks bought from the Amazon Kindle store are subjectto Amazon's polices. Limitations in Amazon's
file format may cause ebooks to display differently on different devices. For more information, please see our

FAQ at pragprog.com/#about-ebooks. To learn more about this book and access the free resources, go to

https://pragprog.com/book/fkajs, the book's homepage.

Thanks for your continued support,

Andy Hunt

The Pragmatic Programmers

The team that produced this book includes: Dave Rankin (CEO), JanetFurlow (COO),
Tammy Coron (Managing Editor), Margaret Eldridge (Development Editor),
L. Sakhi MacMillan (Copy Editor), AndyHuntand Dave Thomas (Founders)

For customer support, please contact support@pragprog.com.

https://pragprog.com/support/#about-ebooks
https://pragprog.com/book/fkajs
mailto:support@pragprog.com
mailto:rights@pragprog.com

Table of Contents

1.

2,

> W D

N oo o & W DN

Acknowledgments

Preface

. Who Is This Book For?

What You Should Know

What's in This Book?

Online Resources

Introduction

. Demystifying_Asynchronous Execution

Working_with Events

Working_with Callback Functions

Introducing_Promises

Creating_Settled Promises

Handling_Rejection

Managing_Multiple Concurrent Promises

Creating Custom Asynchronous lIterators

. Getting_Ready

o o M w DN

Creating_a Custom lterator

Creating_a Custom Asynchronous lterator

lterating_over Async Iterables with for...await...of

Detecting_ Whether an Object Is lterable

Enhancing Custom lterators with Generators

. Getting_Ready

Using_a Generator to Define a Custom lterator

Creating_an Asynchronous Generator

lterating_over Paginated Data

Fetching_Multiple Resources

. Getting_Ready

Executing_Multiple Promises

Improving_Reliability and Performance

. Getting_Ready

. Using_the Promise.any()_Method

10. 7.

N o o M W DN

. Avoiding_the Single Point of Failure

Setting_a Time Limit for Async Tasks

. Getting_Ready

Canceling Pending Async Requests

. Getting_Ready

Canceling_Async Tasks After a Period of Time

Handling_an Aborted Request

Removing_Multiple Event Listeners

Making_a User-Cancelable Async Request

Aborting_Multiple Fetch Requests with One Signal

Accessing Promise Results from Another Module

. Getting_Ready

. Using_Top-Level await

3. Putting_Top-Level await to Work

5. Thank you for reading!

Copyright© 2021, The Pragmatic Bookshelf.

Early Praise for Modern
Asynchronous JavaScript

For developers looking to level up on both their command and
understanding of asynchronous JavaScript, especially newer and less
familiar methods on the Promise API, this is an indispensable
reference and solid guide. Faraz Kelhini walks you through the thorny
problems around working asynchronously with iterables and provides

excellent and inspiring examples and easy-to-study source code.

— Karl Stolley
Web Developer, Researcher, Professor, and Author of

Programming WebRTC, lllinois Institute of Technology

Faraz Kelhini’'s efficient organization and fine writing make Modern
Asynchronous JavaScript a valuable introduction to the topic. The
dozens of succinct code examples that are included round out an
indispensable package for the intermediate-to-advanced

JavaScripter.

— Victor Gavenda

Former Executive Editor, Pearson Education/Peachpit Press

JavaScript moves fast, and even seasoned developers need to pay
attention to keep up with the language. Modern Asynchronous
JavaScript is a pithy primer on newly introduced JavaScript features
that help make asynchronous code more concise and safer. Anyone
writing asynchronous JavaScript code, whether it runs in a browser or
in Node.js, should pay attention. All of the ugly JavaScript code I've

written recently wishes I'd read this book sooner.

— Lukas Mathis

Software Engineer, Ul Designer, and Author of Designed for Use,

Appway

I’'ve worked with countless technical writers throughout my career,
and Faraz stands out among them for his ability to clearly and
concisely explain complex topics. His work in Modern Asynchronous
JavaScript meets those high standards and then some. Even for a
non-dev like myself, Faraz makes it easy to grasp the concepts at

work.

—Matt Angelosanto

Managing Editor, LogRocket Blog

Acknowledgments

Writing and producing a book requires a team effort. My sincere
thanks to the entire Pragmatic Bookshelf team for their great efforts
to get this book to fruition. In particular, | would like to thank my
editor, Margaret Eldridge, whose watchful eyes identified gaps in my

writing and saved me from mistakes.

A big thanks to experts who reviewed the book prior to publication,
including Karl Stolley, Lukas Mathis, Michael Fazio, Trevor Burham,
Kevin Gisi, Matthew Margolis, Mike Riley, Francesco Piccoli, and
Stefan Turalski. These wonderful developers offered very helpful

insight on the code quality and suggested ways to improve.

My love to my family for their support and putting up with an author’s
crankiness. | am grateful for that. And special thanks to my dear
friends, Mahsa and Asal, for their encouragement during the writing

of this book. You're amazing!

Finally, thanks to the eager readers who bought the book while it was

in beta. You put your trust in me, and | appreciate that.

Copyright© 2021, The Pragmatic Bookshelf.

Preface

Modern applications increasingly rely on asynchronous programming
to perform multiple tasks at the same time, and JavaScript is quickly
evolving to address this need. Many new features of JavaScript are
designed to only work asynchronously. As a result, gaining the
knowledge to perform async tasks effectively is a must for today’s

JavaScript programmers.

Designing responsive asynchronous programs might be challenging at
first, but once you get the hang of it, the outcome is rewarding. This
book is here to help you with that. You'll find multiple examples to help
you write advanced programs using the new capabilities of JavaScript
introduced in ES2020, ES2021, and ESNext. You'll also discover
various techniques to manage and coordinate the asynchronous parts

of your code efficiently.

Make sure you actually type and execute the code examples as you
follow along in the book. Some examples may appear simple, but
there’s a big difference between reading the code and being able to

write it on your own.

Who Is This Book For?

If you're an intermediate to advanced JavaScript programmer or web
developer, this book is for you. We’'ll focus squarely on the practical
aspects of asynchronous programming—that is, what each technique
is designed to accomplish and how to use it in your program. If you've
been using third-party libraries to manage asynchronous code and
now want to switch to native JavaScript APIs, you'll benefit from this

guide.

What You Should Know

To use this book, you should already know JavaScript and HTML.
Use of HTML will be infrequent and fairly basic, and I'll explain each
JavaScript example in detail. So even if your JavaScript or HTML is

rusty, you'll be able to understand how the code is working.

What’s in This Book?

Modern Asynchronous JavaScript is deliberately succinct. You won't
learn everything about asynchronous programming so that you can
quickly pick up key tips and tricks. In each chapter, we'll dive straight
into a different topic, so feel free to jump to any chapter in the book

you want.

Chapter 1 shows you how to define or customize the iteration

behavior of JavaScript objects using custom iterators.

Chapter 2 is where you learn to use a generator function as a
shortcut to create iterators. Generators are useful when you don't

need to manipulate the state-maintaining behavior of an iterator.

Chapter 3 introduces the promise.allsettled() method and compares it to
its older sibling promise.all(). YoU'll use Promise.allSettled() t0 execute
multiple async tasks simultaneously and process the outcome even if

some of them fail.

Chapter 4 gives you tips to protect your app against server downtime

while improving its performance with promise.any() from ES2021.

Chapter 5 explains how to use the Promise.race() method to set a time
limit for async tasks to avoid entering a state of prolonged or endless

waiting.

Chapter 6 is all about the AbortController API. You'll learn to use this
API to cancel pending async requests when the user clicks a cancel

button.

Chapter 7 covers top-level await and how to make use of it to initialize
resources, define dependency paths dynamically, and load

dependencies with a fallback implementation.

Online Resources

To download the example code used in the book, please visit the
Pragmatic Bookshelf website.[] You can submit feedback and errata
entries, get up-to-date information, and join in the discussions on the
book’s forum page. If you're reading the book in PDF format, you can
view or download a specific example by clicking on the little gray box

above the code.

Next up is the Introduction. If you're an experienced JavaScript
programmer, most of the concepts in the Introduction will be familiar,
whereas if you're more intermediate, you might find the discussion of

callbacks and promises helpful.

FOOTNOTES

[1] https://www.pragprog.com/titles/fkajs

Copyright© 2021, The Pragmatic Bookshelf.

https://www.pragprog.com/titles/fkajs

Introduction

The introduction of the promise object in ES2015 changed the way
we write asynchronous programs in JavaScript. Similar to callbacks
and events, a promise defines a block of code to be executed once
an operation is finished. But unlike the old approaches, it gives us a
robust mechanism to track the state of multiple asynchronous tasks

and verify whether they are all successful.

But what exactly do we mean when we say a program is

asynchronous?

Demystifying Asynchronous Execution

The concept of asynchrony determines whether a task can start
executing before another task is finished. In a synchronous execution,
the program pauses until the current task is completed before moving
to the next task. But in an asynchronous execution, the program
continues executing even when the previous operation hasn'’t finished

yet.

It helps to think of synchronous executions as a line of people waiting
to buy movie tickets. If you are at the end of the line, you can’t buy a
ticket until all the people in front of you have bought theirs. Think of
asynchronous executions like ordering food in a restaurant. You don’t
have to wait for other people who have come earlier to get their food
before you can order yours. Everyone can order food at any time and
receive it when it’s ready. Depending on the type of food you order,

you may get your food sooner or later than other people.

A bar chart can better illustrate the difference:

Synchyonous Opevation

————— ——— —— T — T ————— T — T ——— —— {—— {——— — o — {— — —— —

I L} L) L I L) 1 L]

Ll L] LI T L} :
o 2 4 6 8 10 12 14 16 18 20 22 24 28
Duration

Asynchyonous Opevation

Task 1

Task 2

wo|

T

o 1 2 3 4 § 6 F B8 9 0 M 12 13

-
=
-
=
-

Duyation

It's important to understand that asynchrony and multithreading are

two completely different concepts. JavaScript is often considered a

single-threaded language, mostly because web browsers run one

thread per global environment.

But JavaScript, as a programming language, isn't single-threaded.

And there are some JavaScript environments that are multi-threaded.

With the introduction of Web Workers, you can even have multiple

threads on web browsers (they don't run on the same global

environment though).

But even on a single thread, JavaScript is capable of executing
asynchronous code. Threads aren’t the only way to perform tasks in
parallel. Imagine a restaurant with only one cook. The cook can start
a burger cooking and set a timer, then put some pizza in the oven and
set a timer. He can clean the kitchen while the food is cooking. When
the timer goes off, he takes the food out and serves it. If the switch

between tasks is efficient enough, you won't notice any lags.

You can imagine a multi-threaded environment like a restaurant that
has multiple cooks. One cook is responsible for cooking burgers,
another one is responsible for cooking pizzas. But now you have to
pay more to keep the other cook and make sure they share the
resources properly so there will be no conflict in the kitchen. In other
words, threading describes the number of workers, but asynchrony is

about tasks.

Working with Events

The JavaScript language was created to add interactivity to web
pages, so it needed a way to detect user actions and react to them.
JavaScript’s solution for this need was events: whenever you interact
with a web page, such as when clicking a button, an event takes

place, allowing JavaScript code to react to the action.

Although events have enabled JavaScript programs to detect
interaction with objects and react to them, its lack of flexibility has
been a significant problem for some developers. For example, events

can happen before the program starts listening to them.

If the user moves the cursor over the box before the onmouseover
property is assigned, the code won't be executed. Therefore, it’s
always necessary to make sure the event handlers are assigned

before an event occurs.

Additionally, events can be frustrating to use when working with more
than one element. For instance, there’s no easy way to detect
whether a collection of images have been loaded, or check the order

in which they have loaded.

Working with Callback Functions

Perhaps the simplest asynchronous execution in JavaScript is the
setTimeout() function. This function defines a callback function to be
executed in the future independently of the main program flow, so it

doesn't block the execution of the program.

Another common asynchronous execution in JavaScript is Ajax.
Similar to setTimeout(), an Ajax call doesn’t stop the execution flow of
the program. It specifies a piece of code to run as soon as the code

receives data from a server.

The main advantage of using callbacks is that the program can
continue doing useful work while other tasks are running, so it feels

more responsive and there will be fewer “hangs.”

Nesting callbacks is a common practice in JavaScript. But nesting too
many callbacks can make the code hard to understand and lead to a
maintainability issue known as callback hell. The following code is an

example of callback hell:

intro/intro_ex01.js

firstFunction((x) => {
// process...
secondFunction(x, (y) => {

// process...

http://media.pragprog.com/titles/fkajs/code/intro/intro_ex01.js

thirdFunction(y, (z) => {
// And so on...

})s
})s
1)

Callback hell is the result of poor coding practice. If you nest more
than a few callbacks, your code will quickly become unmanageable.

One way to fix this code is to define each function separately:

intro/intro_ex02.js

firstFunction((x) => {
// process...

secondFunction(x);

1)

secondFunction(x, (y) => {
// process...

thirdFunction(y);
1)

thirdFunction(y, (z) => {
// process...
fourthFunction(z);

// And so on...

http://media.pragprog.com/titles/fkajs/code/intro/intro_ex02.js

1)

By moving functions to the top level, we'll have a shallower code that
is separated into small logical sections. This small change results in a

more manageable code.

Still, the callback model is difficult to work with when more complex
functionality is needed. With promises, you can easily chain multiple
asynchronous tasks dynamically. For example, you can make two
async requests simultaneously, wait for the results, and then
determine what other async task to do based on the intermediate
result. Or you can use a promise to track the state of multiple async

operations and react as soon as one of them is completed.

That doesn’'t mean you should stop using callbacks though. Callbacks
are still useful when your code may receive a notification more than
once. For instance, the setinterval() method defines a callback function
to be executed repeatedly, with a fixed time delay between each call.
You can't call a promise again once it's executed, but you can call a

callback function multiple times.

Introducing Promises

Originally, the promise construct was used by libraries such as Q,
RSVP,js, and WinJS. But it quickly became popular enough to
encourage the Ecma Technical Committee to take advantage of it in
the ES2015 standard.

Newer JavaScript APIs use the promise object rather than the old-
school callback function. For example, the Fetch API not only
provides a simpler syntax compared to the complex API of
XMLHttpRequest but also prevents callback hell by returning a promise.

Let’s look at a simple example:

intro/intro_ex03.js

const promise = fetch(

'https://eloux.com/async_js/examples/1.json");

promise.then((result) => {
// process
}, (error) => {

console.log(error);

1)

The fetch() method allows us to retrieve files across the network. This

method returns a promise object that acts as a placeholder for the

http://media.pragprog.com/titles/fkajs/code/intro/intro_ex03.js

future result of the operation. To react to the result, we use the then()

method.

then() accepts two functions as parameters. The first function is called
once the promise is succeeded, and the fulfillment value is passed to
the function as an argument. The second function is called only if the

promise is failed, with the rejection reason passed as its argument.

The promise returned by fetch() remains in the pending state until the
Ajax request is completed. The spec uses the term unsettled to
describe a promise that’s pending. After receiving data, the promise
transitions either to fulfilled or rejected state. At this point, the

promise is considered settled.

It's worth noting that a promise cannot succeed or fail more than
once. It also cannot switch from failure to success or vice versa. Both
arguments of then() are optional. So when we don't need to listen for

fulfillment or rejection, we can omit the related argument.

Creating Settled Promises

When working your way through the examples in this book, you may
want to key in and alter each example to gain practice. The static
Promise.resolve() and Promise.reject() methods allow you to quickly create
settled promises and see how the code works when you give it a

different value.

For example, the following code creates a promise that’s already

fulfilled with the value 10:

intro/intro_ex05.js

const promise = Promise.resolve(10);

promise.then((data) => {
console.log(data); // = 10

1)

Here, we have a settled promise that represents only a known value.
This promise will never be in the rejected state, so adding a rejection
handler is pointless. To create a promise in the rejected state, we can

pass a value to the promise.reject() method, like this:

intro/intro_ex06.js

const promise = Promise.reject('Error!");

http://media.pragprog.com/titles/fkajs/code/intro/intro_ex05.js
http://media.pragprog.com/titles/fkajs/code/intro/intro_ex06.js

promise.then(null, (error) => {

console.error(error); // = Error!

})s

This code creates a settled promise that’s rejected with a predefined
value. If we add a fulfilment handler to this code, it will never be

called.

Note that we won't be covering testing or debugging extensively in
this book. Don't forget to take advantage of these methods when

debugging your code.

Handling Rejection

There are two primary ways to handle a rejected promise. In the
previous example, we used the pattern then(fulfill, reject), but we can

also use the catch() method:

intro/intro_ex07.js

const promise = Promise.reject('Error!");

promise.catch((error) => {

console.error(error); // = Error!

})s

When chaining promises and an error occurs, the interpreter skips all
then() methods that follow and executes the first catch() method it can

find. Consider the following code:

intro/intro_ex08.js

const promise = Promise.reject('Error!");

promise.then((value) => {
// this won't be executed
console.log('Hi!");

}).then((value) => {

// this won't be executed either

http://media.pragprog.com/titles/fkajs/code/intro/intro_ex07.js
http://media.pragprog.com/titles/fkajs/code/intro/intro_ex08.js

}).catch((error) => {

console.error(error);

})s

// Llogs:

// = Error!

Here, we've used catch() to combine multiple rejection handlers into

one case at the end of the chain.

It's important to understand that the pattern then(fulfill, reject) isn’t
always equivalent to then(fulfill).catch(reject). Using these patterns

interchangeably could potentially lead to an error. For example:

intro/intro_ex09.js

const promise = Promise.resolve(10);

promise.then((result) => {
throw new Error();
}, (error) => {
// this won't be executed
console.error('An error occurred in the fulfillment

handler');
1)

http://media.pragprog.com/titles/fkajs/code/intro/intro_ex09.js

// Llogs:

// = Uncaught (in promise) Error

The fulfillment handler in this code throws an error, but the rejection

handler isn't executed. Switching to catch() can fix this problem:

intro/intro_ex10.js

const promise = Promise.resolve(10);

promise.then((result) => {
throw new Error();
}).catch((error) => {
console.error('An error occurred in the fulfillment

handler');
1)

// Llogs:

// = An error occurred in the fulfillment handler

The rejection handler in the then() method cannot handle errors that
occur in the fulfillment handler. You'd need to chain an additional then()

to do that or, better yet, use the catch() method.

http://media.pragprog.com/titles/fkajs/code/intro/intro_ex10.js

Managing Multiple Concurrent Promises

We can chain multiple promises to perform additional asynchronous
operations one after another. But what if we want to execute multiple
promises at the same time and react as soon as one or all of them
are settled? JavaScript provides the following methods for this

purpose:

Promise.race() — lets you know as soon as one of the given promises

either fulfills or rejects

* Promise.allsettled() — lets you know when all of the given promises
either fulfill or reject

* Promise.all() — lets you know as soon as one of the given promises
rejects or when all of them fulfill

* Promise.any() — lets you know as soon as one of the given promises

fulfills or when none of them fulfills

Promise.race() and Promise.all() have been around since the introduction of
the promise object in ES2015, while promise.allSettled() and Promise.any()
were introduced in ES2020 and ES2021, respectively. Later in the
book, we’ll learn how to take advantage of each of these methods in
our asynchronous programs. But before we do that, let’s look at an
important technique for processing data from external sources:

asynchronous iteration.

Copyright© 2021, The Pragmatic Bookshelf.

Chapter 1

Creating Custom Asynchronous
Iterators

Iterating over collections is one of the most common tasks in
programming. That's why almost every new edition of ECMAScript
introduces features to improve the iteration capabilities of the
language. These new features make coding easier and more
efficient, and they allow you to perform tasks that would previously

require external libraries.

As a JavaScript developer, you'll often work with synchronous data
like customer order information stored via in-memory lists. Ilterators
give you a neat way to process them, allowing you to move through
the elements in the data structure. What about when you need to
process asynchronous data via web APIs, like stock prices?
Synchronous iterators cannot represent such data sources, so that’s

where you'll need to use asynchronous iteration.

The process of asynchronous iteration is a bit like cooking pancakes

on a griddle. The first step is to heat a lightly oiled griddle. Then you

pour the batter onto the griddle, filling it up with pancakes. You wait
until the edges start to bubble, indicating they’re ready to flip. Each
pancake will be ready at a different time, depending on when you
poured the batter and how even the heat source is. You flip the
pancakes and take them off as they’re ready. So while preparing this
simple meal, in a sense, you are acting as an asynchronous iterator

function.

In this chapter, you'll get aquainted with iterators and learn to create
your own custom iterators. Because sync and async iterators are
closely related, we'll start with synchronous iterators. Then you'll use

what you've learned to create async iterators.

Getting Ready

lterators have been around since ES2015, so browser support is
solid. Following are the JavaScript features we’ll discuss in this

chapter along with some links to up-to-date sources for browser

support:

o Async functions(?
e for await...of |OOpS[3]

e async and await keywords[‘—‘]

In the Node environment, you'll need a minimum Node version of 7.6.0
to use the async and await keywords and a minimum version of 10.0.0
to use for await...of. You can also use a Babel plugin to make use of the

features in older browsers or Node versions.[2]

Creating a Custom lterator

Collection objects (including Array, Set, and Map) come with built-in
iterators that allow us to navigate their values. So, we don’t have to
create our own iterators. But sometimes these objects don't serve
our purpose. What if we want to customize the iteration behavior of
an object to return values backward or randomly? Or iterate over a
plain object or class, both being not iterable by default? In that case,

we’'ll need to define our own Symbol.iterator.

Set and Map

ES2015 introduced two new data structures: Set and
o Map. A Set is like an array, a collection of values, but it
can’'t contain duplicates and the items cannot be
accessed individually. Instead, a Set provides methods
to iterate over its elements or assert if it contains a
value. A Map is similar to an object, mapping keys to

values, but provides more functionality in certain

situations. Maps are usually used as caches for storing
Set and
etan %?g which then can be readily accessed when

needed.

Iterable or lterator?

Iterable is an object that allows its values to be looped
o over in a for...of construct. It does so by providing a
method whose key is symbol.iterator. That method should
be able to produce any number of iterators. Iterator, on
the other hand, is an object that’s used to obtain the

values to be iterated.

Remember, to be classified as an iterable, an object must come with
a symbol.iterator property and specify the return value for each
iteration. In the following example, we have a plain object that’s
iterable because we've defined an iterable protocol that allows us to

access the items of the object one at a time:

iterators/iterator_ex03.js

const collection = {
a: 10,
b: 20,
c: 30,

http://media.pragprog.com/titles/fkajs/code/iterators/iterator_ex03.js

[Symbol.iterator]() {
let i = 0;
const values = Object.keys(this);
return {
next: () => {
return {
value: this[values[i++]],

done: i > values.length

}s
}
s

const iterator = collection[Symbol.iterator]();

console.log(iterator.next()); // = {value: 10, done:

false}
console.log(iterator.next()); // = {value: 206, done:
false}
console.log(iterator.next()); // = {value: 36, done:
false}

console.log(iterator.next()); // = {value: undefined,

done: true}

The next() method returns the iteration result of the object. This
method always returns an object with two properties: value and done.
The value property holds the value returned by the iterator. And the
done property holds a Boolean value, which is set to true only when

there is no more value to return.

We need a way to keep track of the values we want to return, so we
define a counter variable with the initial value of 0. To define the return
value, we use object.keys(), which obtains an array of the object’s
property names. Now if we call collection[Symbol.iterator](), it returns an
object containing a next() method. And with each call to next(), the

method returns a {value, done} pair.

Using next() isn’t the only way to iterate over iterable objects. The
for...of Statement lets us create a loop and easily repeat the same
function on iterable objects. for...of works better if we want to quickly
get the values of all items in the object. next(), on the other hand, is
more verbose but allows us to see what’s happening in each iteration.

Let’s rewrite this example using for...of to simplify the code:

iterators/iterator_ex03_with_for-of.js

const collection = {
a: 10,
b: 20,
c:. 30,

http://media.pragprog.com/titles/fkajs/code/iterators/iterator_ex03_with_for-of.js

[Symbol.iterator]() {
let 1 = 0;
const values = Object.keys(this);
return {
next: () => {
return {
value: this[values[i++]],

done: i1 > values.length

}s
}
}s

for (const value of collection) {

console.log(value);

// logs:
// = 10
// = 20
// = 30

[symbol.iterator]() works like any other method except that it's
automatically called if we use for...of on the object. The following

image shows how for...of works behind the scenes:

-— R
° Adtempts +o loop over €ach ftime Through
. Hhe iterable by calling ——>| +he loop, for...of
) [Symlool. irerator]() calls next()
-+ — 4

3T W

2 =

o d S .

0 @3 [Symbol.iterator] ()

B:e returns an iterator

ggo

22

N4 \

Herator provides a I_ [nex+() returns a valve
next() method]

Hevator
object

Resutt

[] [oei] [oe] [r]

The iterator object is designed to maintain an internal pointer to a

position in the items; and each time through the loop, it gives the
succeeding value.

Now, what happens when we use for...of to iterate over a native object
that’s already iterable, like an array? Calling [Symbol.iterator]() On an

array will return the result of the values() method because that’s the

default iterator of arrays.

While values() is the default iterator of sets and arrays, entries() is the

default iterator of maps. An object may have several iterators, such

as keys(), values(), and entries(), but only one of them serves as the
default iterator. Built-in iterators make it possible to iterate over
collection objects easily, and custom iterators allow us to define or
customize the iteration behavior of objects. But if we want to work
with asynchronous sources, we’ll need to create custom

asynchronous iterators.

Creating a Custom Asynchronous Iterator

Suppose we want a function that retrieves several URLs and
processes the result of each URL separately before moving on to the
next. In other words, we want to retrieve and parse the URLs
asynchronously, but not the results. That’s one scenario where an

asynchronous iterator is useful.

An asynchronous iterator is very similar to a regular non-async
iterator except that its next() method returns a promise rather than a
plain object. Thus, instead of immediately returning the result, the
promise will provide the value (or failure reason) at some point in the
future (like the griddle from our opening analogy, which yields a

pancake at some point).

An object is classified as asynchronous iterable when it has a
Symbol.asynciterator method that returns an asynchronous iterator.
Without further ado, let’s look at a simple example of an async

iterable object:

iterators/iterator_ex04.js

const collection = {
a: 1o,
b: 20,
c: 30,

http://media.pragprog.com/titles/fkajs/code/iterators/iterator_ex04.js

[Symbol.asyncIterator]() {
const keys = Object.keys(this);
let i = 0;
return {
next: () => {
return new Promise((resolve, reject) => {
setTimeout(() => {
resolve({
value: this[keys[i++]],
done: i > keys.length

})s
}, 1000);

1)

s
}
}s

const iterator = collection[Symbol.asyncIterator]();

iterator.next().then(result => {

console.log(result); // = {value: 16, done:

false}
1)

iterator.next().then(result => {

console.log(result); // = {value: 26, done:

false}
1)

iterator.next().then(result => {

console.log(result); // = {value: 30, done:

false}
1)

iterator.next().then(result => {
console.log(result); // = {value: undefined,

done: true}

});

Typically, a sync iterator returns an object containing a next() method.
With each call to next(), a {value, done} pair is returned with the value
property containing the yielded value. Similarly, an async iterator
returns an object containing a next() method. But rather than a plain

object, next() returns a promise (line 10) that fulfills to {value, done}.

For the sake of simplicity, we’ve used the setTimeout() method to
resolve the promise after one second. But in a real-world example

we’re more likely to make a call to an APl and wait for a response.

Retrieving URLs Separately

Let’s look at a more concrete example. Remember the use case in

Creating_a Custom Asynchronous lferator, for an asynchronous

iterator that retrieves several URLs and processes them separately?

Here’'s how we can implement it:

iterators/iterator_ex05.js

const srcArr = |
'https://eloux.com/async_js/examples/1.json’,
'https://eloux.com/async_js/examples/2.json’,
'https://eloux.com/async_js/examples/3.json’,
1;

srcArr[Symbol.asyncIterator] = function() {
let 1 = 0;
return {
async next() {
if (i === srcArr.length) {
return {
done: true
}s
}
const url = srcArr[i++];

const response = await fetch(url);

http://media.pragprog.com/titles/fkajs/code/iterators/iterator_ex05.js

if (!response.ok) {
throw new Error('Unable to retrieve URL: '
url);
}
return {
value: await response.json(),
done: false
}s
}
}s
}s

const iterator = srcArr[Symbol.asyncIterator]();

iterator.next().then(result => {

console.log(result.value.firstName); // = John

});

iterator.next().then(result => {

console.log(result.value.firstName); // = Peter

1)

iterator.next().then(result => {

console.log(result.value.firstName); // = Anna

+

});

We begin with replacing the default iterator of srcarr (line 7). By
assigning a new function to the symbol.asynciterator property of the
array, we can define our custom iterator. Within the function, we
create a counter variable to keep track of the array index. Then we

return an object containing an async next() method.

It's essential to use the async keyword here so that the function
returns a promise each time it's called. Line 11 checks whether the
end of array has been reached by comparing the value of the counter
variable to the length of the array. If that’s true, there’s no point in

continuing the iteration.

It's also important to ensure the response was successful (status in
the range 200-299) before proceeding further. Check the value of
response.ok (line 18). If it doesn’t have a value of true, then there’s been

an error fetching the URL.

Async iterators are invaluable tools when working with web APls.
Often, the data can only be retrieved in the form of stream or
pagination. Iterators make it possible to gracefully obtain the amount
of data we need and process them. We’ll see an example of this in
the next chapter where we write a function to retrieve a specified

number of commits from the GitHub API.

Now that you have a foundation in the mechanics of iterators, let’s

find out how to quickly loop over their items.

Iterating over Async lterables with for...
await...of

In the previous example, we called the [symbol.asynciterator]() of the
iterable to get an iterator object and called its next() method to
resume the execution of the iterator. But sometimes we want a more
straightforward way of accessing the items of an async iterable. We
want to quickly get the result of all promises and terminate the loop

automatically once the done property has a value of true.

The for..of loop does allow you to loop over iterable objects, but it
doesn’t work with asynchronous iterables (returns undefined). ES2018
introduced for...await...of as a variant of for...of that can iterate over both

sync and async iterables.

To see this statement in action, let’s look at this rewritten version of
the previous example. Notice how for...await...of saves lines of code by

executing the same statement for the value of each property:

iterators/iterator_ex06.js

const srcArr = |
'https://eloux.com/async_js/examples/1.json’,
'https://eloux.com/async_js/examples/2.json’,
'https://eloux.com/async_js/examples/3.json’,

15

http://media.pragprog.com/titles/fkajs/code/iterators/iterator_ex06.js

srcArr[Symbol.asyncIterator] = function() {
let 1 = 0;
return {
async next() {
if (i === srcArr.length) {
return {
done: true
}s
}
const url = srcArr[i++];
const response = await fetch(url);
if (!response.ok) {

throw new Error('Unable to retrieve URL:

url);
}
return {
value: await response.json(),
done: false
}s
}
}s

}s

(async function() {
for await (const url of srcArr) {

console.log(url.firstName);

}
NO;

// Llogs:

// = John
// = Peter
// = Anna

When we run this code, the JavaScript engine executes the
Symbol.asynciterator method of the object to obtain an asynchronous
iterator. With each iteration of the loop, the iterator executes the next()
method and returns a promise (this happens behind the scenes). As
soon as the promise is fulfilled, the value of the value property is
assigned to url. As with for...of, the loop will continue until done has a

value of true.

Because we can use for...await...of only inside asynchronous functions
and generators, we've wrapped the statement in an IIFE
(immediately invoked function expression). Otherwise, the code would

throw a syntaxError.

It's a common practice to enclose for...await...of in a try...catch statement.
This way when a promise rejects, we can gracefully handle the

rejection:

iterators/iterator_ex07.js

const collection = {
[Symbol.asyncIterator]() {
return {
next: () => {
return Promise.reject(new Error('Something

went wrong. "))

}
}s
}
¥

(async function() {
try {
for await (const value of collection) {}
} catch (error) {

I

console.error('Caught:

}
HNO;

+ error. message) >

// Llogs:

http://media.pragprog.com/titles/fkajs/code/iterators/iterator_ex07.js

// = Caught: Something went wrong.

This iterator returns a Promise object that is rejected. Without
try...catch, we would see an Uncaught (in promise) Error in the browser’s
console. The try...catch statement allows us to specify a response

should an exception be thrown.

The for...await...of statement provides a convenient, concise way of
accessing the items of an async iterable. By wrapping it in a try...catch
statement, we have the ability to handle promise rejections the way

we want.

To Infinity and Beyond!

An interesting aspect of iterators is that they are infinite.
o For instance, you may have a Fibonacci iterator that

delivers an infinite sequence.

Detecting Whether an Object Is Iterable

So far we’ve been working with iterable objects that we “own.”
Before iterating over an object that we haven't created, it’'s important

to ensure that the object is iterable; otherwise, the code may throw a

TypeError:

iterators/iterator_ex08.js

// a plain object

const collection = {

a: 10,

b: 20,

c: 30
}s5

for (let value of collection) { // = TypeError:
collection is not 1iterable

console.log(value);

Detecting whether an object is iterable isn't complicated: check for
the existence of [symboliterator] on the object and ensure it's a function

(the for...of construct performs a similar check before execution):

iterators/iterator_ex09.js

http://media.pragprog.com/titles/fkajs/code/iterators/iterator_ex08.js
http://media.pragprog.com/titles/fkajs/code/iterators/iterator_ex09.js

function isIterable(object) {

return typeof object[Symbol.iterator] === "function”

console.log(isIterable({a: 10, b: 20})); // = false
console.log(isIterable(123)); // = false

console.log(isIterable("abc")); // = true

console.log(isIterable([10, 20, 30])); // = true

The process of detecting async iterables is almost the same, except

that you'll need to look for [symbol.asynciterator] on the object like this:

iterators/iterator_ex10.js

const collection = {
[Symbol.asyncIterator]: async function() {
/] ..
}
}s

function isAsyncIterable(object) {
return typeof object[Symbol.asyncIterator] ===

"function";

}

http://media.pragprog.com/titles/fkajs/code/iterators/iterator_ex10.js

console.log(isAsyncIterable(collection)); // = true

When working with objects originating from external sources, you
might expect that they will always remain in a certain shape. But
writing your code based on this assumption is a recipe for error.
Before using the objects you haven't created, always ensure they

have the property/method you're looking for.

Wrapping Up

‘Symbol.iterator’ and ‘Symbol.asynclterator’ are the cornerstone of
iterables, and you can take advantage of them to create custom
iterators. Custom iterators allow you to define or customize the
iteration behavior of JavaScript objects. You can’t use ‘for...of* to
iterate over async iterables; instead you should use ‘for...await...of".
Next up, we’ll work with generator functions to enhance your

JavaScript code.

FOOTNOTES

[2] https://caniuse.com/async-functions

[3] https://caniuse.com/mdn-javascript_statements_for_await_of

[4] https://caniuse.com/mdn-javascript_operators_await

[5] https://babeljs.io/docs/en/babel-plugin-proposal-async-generator-functions

Copyright© 2021, The Pragmatic Bookshelf.

https://caniuse.com/async-functions
https://caniuse.com/mdn-javascript_statements_for_await_of
https://caniuse.com/mdn-javascript_operators_await
https://babeljs.io/docs/en/babel-plugin-proposal-async-generator-functions

Chapter 2

Enhancing Custom Iterators
with Generators

Custom iterators are powerful tools that allow us to define how an
object should be navigated. However, they require meticulous
programming to maintain their internal state. What if you want a quick
way of defining an iterator without going through the hassle of
implementing the iterable protocol? Luckily, JavaScript provides

generator functions as a shortcut to create iterators.

Every generator function is an iterator, but the opposite is not true.
You may want to define a custom iterator protocol directly when you
need an object with complicated state-maintaining behavior or you
want to provide other methods besides next(). But in most other
cases, you are best suited to define a generator that returns an

iterator because state maintenance is mainly done for you.

In this chapter, we’'ll cover how synchronous and asynchronous

generators work by adapting the examples from the previous chapter.

Then we’ll look at a real-world example so you can see for yourself

where asynchronous generators are useful.

Getting Ready

As with iterators, generator functions have been available since
ES2015 and browser support is solid.[®! In the Node environment,
you'll need a minimum Node version of 4.0.0. And if you want to use
generators in older browsers or Node versions, you can use a Babel

plugin.[?]

Using a Generator to Define a Custom
Iterator

Generator functions enhance the process of defining the iterable
protocol by providing an iterative algorithm. When called, a generator
function doesn’t execute its body immediately. Instead, it returns a

special type of iterator known as a generator object, as shown in the

following image.

CENERATOR
FUNCGTION

m Infhally retums
Stavk a genevrator object
Pavses the generator.
The code eXecution Yemaing
pavsed urhl Hae generah:nr’ $
i ed. o
next() method is called. I Yle‘d- <

| NexH) I
al +h neyato ain

retums Hhe value specified by yield, . I E Pauses the generator agal
or undefined if there’s no ualve. Yield

Then Yesumes the execution. ‘ NexH) I

Finigh | €=—— retumsthe ualue and resumes
‘+he execution

We can run the generator function’s body by calling its next() method.
The yield keyword pauses the generator and specifies the value to be

returned. With that in mind, let’s adapt the example in Creating a

Custom lterator. The result of this code is identical, but it’'s much

easier to implement.

Notice the asterisk following the function keyword at line 5. This is our

generator function and defines a custom iterator for collection:

generators/gen_ex01.js

const collection = {

a: 190,
b: 20,
c:. 30,

[Symbol.iterator]: function*() {
for (let key in this) {
yield this[key];

}
}s

const iterator = collection[Symbol.iterator]();

console.log(iterator.next()); // = {value: 10,
done: false}
console.log(iterator.next()); // = {value: 20,
done: false}

console.log(iterator.next()); // = {value: 30,

http://media.pragprog.com/titles/fkajs/code/generators/gen_ex01.js

done: false}
console.log(iterator.next()); // = {value:

undefined, done: true}

We’ve used a for...in loop inside the generator to iterate over the
object’s properties. With each iteration, the yield keyword halts the
loop’s execution and returns the value of the succeeding property to

the caller.

It's possible to call a generator function as many times as needed,
and each time it returns a new generator object. But a generator
object can be iterated only once. Since the object returned by a
generator is always an iterator, we can use the for...of syntax to

iterate over the result as well.

Now that we know how synchronous generators work, we're ready to

look at its asynchronous counterpart.

Creating an Asynchronous Generator

An async generator is similar to a sync generator in that calling next()
resumes the execution of the generator until reaching the yield
keyword. But rather than returning a plain object, next() returns a

promise.

You can think of an async generator as a combination of an async
function and a generator function. Let’s rewrite the example from

Retrieving URLs Separately, using a generator function. Notice the

async keyword and the asterisk symbol (*) at line 7 indicating an

asynchronous generator function:

generators/gen_ex02.js

const srcArr = |
'https://eloux.com/async_js/examples/1.json’,
'https://eloux.com/async_js/examples/2.json’,
'"https://eloux.com/async_js/examples/3.json",

K

srcArr[Symbol.asyncIterator] = async function*() {
let 1 = 0;
for (const url of this) {
const response = await fetch(url);

if (!response.ok) {

http://media.pragprog.com/titles/fkajs/code/generators/gen_ex02.js

I

throw new Error('Unable to retrieve URL: +
response.status);
}
yield response.json();
}
}s

const iterator = srcArr[Symbol.asyncIterator]();

iterator.next().then(result => {

console.log(result.value.firstName); // = John

});

iterator.next().then(result => {

console.log(result.value.firstName); // = Peter

});

iterator.next().then(result => {

console.log(result.value.firstName); // = Anna

});

Within this generator, we’ve used the await keyword to wait for the
fetch operation to complete. As with non-async generator functions,

yield returns the result to the function’s caller. Notice how this

asynchronous generator simplifies the process of defining the
asynchronous iterable protocol. It’s not only easier to write but also

less error-prone.

In production, you'll also want to use catch() to handle errors and
rejected cases during the iteration. A well-designed program should
be able to recover from common errors without terminating the
application. You can chain a catch() method the same way as its sister

method then(). For example:

iterator.next()
.then(result => {
console.log(result.value.firstName);

1)

.catch(error => {

I

console.error('Caught:

})s

+ error. message) >

If an error occurs, catch() will be executed with the rejection reason
passed as its argument. Now let’s look at a more complex example of

an async generator.

Iterating over Paginated Data

One situation we want to use asynchronous iteration over
synchronous is when working with web APls that provide paginated
data. By using an asynchronous iterator, we can seamlessly make
multiple network requests and iterate over the results. For example,
GitHub provides an API that allows us to retrieve commits for a
repository. The response is in JSON format and contains the data for
the last 30 commits of the repository. The API will also provide

pagination link headers for the remaining commits.

Say we want to retrieve info for the last 90 commits of a particular
GitHub repository. We can achieve that using an asynchronous
iterator or, better yet, a generator. Let’s create an asynchronous

generator and program it to handle the pagination:

generators/gen_ex03.js

// create an async generator function

async function* generator(repo) {

// create an infinite Lloop

for (5;) {

// fetch the repo

const response = await fetch(repo);

http://media.pragprog.com/titles/fkajs/code/generators/gen_ex03.js

// parse the body text as JSON

const data = await response.json();

// yield the info of each commit
for (let commit of data) {

yield commit;

// extract the URL of the next page from the

headers
const link = response.headers.get('Link");

repo = /<(.*?)>; rel="next"/.exec(link)?. [1];
// 1f there's no "next page", break the Lloop.

if (repo === undefined) {

break;

async function getCommits(repo) {

// set a counter

let i = 0;

for await (const commit of generator(repo)) {

// process the commit

console.log(commit);

// break at 90 commits
if (++1 === 90) {

break;

getCommits('https://api.github.com/repos/tc39/propos

temporal/commits");

Here, we've created two async functions, one of which is a generator.
The generator function is responsible for retrieving the resource,
parsing it as JSON, and sending the info of each commit to the

generator’s caller.

In order to fetch the last 90 commits, not just 30, we put these tasks
in a loop within the generator. And each time through the loop, we

fetch the next batch of commits. The expression

response.headers.get('Link’) at line 19 extracts the URL of the next page
from the headers and assigns it to the repo variable so that we can

access the new URL in the next loop.

If there’s no “next page” in the headers, that means there are no

more commits to fetch, so we break the loop (line 24).

Within the getcommits() function, we define a counter variable to keep
track of the number of fetched commits. When the number reaches
90, we stop calling the generator (line 40). The takeaway from this
example is that asynchronous generators allow us to smoothly and
continuously make several network requests and iterate over the

results.

Another interesting use case for asynchronous generator would be
fetching images from a photo sharing website like Flickr. The Flickr
API provides an endpoint for fetching images based on given
keywords.[8l Say you want to create a program that retrieves and
processes photos taken in London. Since there are millions of photos
of London on Flickr, the API cannot return them all at once. Instead, it
returns photos in batches of 100. With an async generator function,
you can fetch and navigate the batches asynchronously. Using an
async generator would also open up the possibility to seamlessly

aggregate photos from several sources.

Wrapping Up

Generators enhance the process of creating iterables by providing an
iterative algorithm. An async generator is similar to a sync generator
except that it returns a promise rather than a plain object. Use a
generator function when you don't want to manipulate the state-

maintaining behavior of the object.

Armed with the foundation of asynchronous iterators and generators,
you can now make more powerful asynchronous programs. Up next,
you'll get the result of multiple promises that are not dependent on

each other by using the ES2020 promise.allSettled() method.

FOOTNOTES

[6] https://caniuse.com/es6-generators

[7] https://babeljs.io/docs/en/babel-plugin-proposal-async-generator-functions#installation

[8] https://www.flickr.com/services/api/flickr.photos.search.htm

Copyright© 2021, The Pragmatic Bookshelf.

https://caniuse.com/es6-generators
https://babeljs.io/docs/en/babel-plugin-proposal-async-generator-functions#installation
https://www.flickr.com/services/api/flickr.photos.search.htm

Chapter 3

Fetching Multiple Resources

Suppose you want to take an action after multiple async requests
have completed, regardless of their success or failure. For example,
you need to obtain data from four separate web APIs and process
the result, but there might be a network error for a resource that you
can live without. The promise.all() method isn’t suitable for this task
because a single network error will cause the method to reject

immediately.

Fortunately, ECMAScript provides a newer tool that's designed to
report the outcome of all requests: Promise.allsettled(). With this
method, we can track the state of multiple promises without letting
any promise spoil the result of others. We’'ll start this chapter by
examining a common async task: executing multiple promises and
handling the result. Once you've learned about potential pitfalls, we'll
look at the promise.allsettled() method and see how it compares to

Promise.all().

Getting Ready

Although Promise.allSettled() is relatively new, all modern browsers
already support it. But before running the examples in older
browsers, you'll want to ensure the browser supports it.[2] In the
Node environment, you'll need a minimum Node version of 12.9.0. You
can also use a Babel plugin to make use of the feature in older

browsers or Node versions.[19]

Executing Multiple Promises

When creating complex JavaScript applications, you'll inevitably
encounter circumstances where you need to execute multiple
promises. Say you have an async function that retrieves a blog post,
like this:

promise.allSettled/tracking_promises_ex01.js

async function getPost(id = 1) {
try {
return await Utility.loadPost(id);
} catch (error) {

// handle error

This code works great to retrieve a single blog post. But what if you
need to retrieve multiple posts? Easy! Create a loop to get the posts

you desire:

promise.allSettled/tracking_promises_ex02.js

const postIds = ['1', '2', '3', '4'];

postIds.forEach(async id => {

const post = await getPost(id);

http://media.pragprog.com/titles/fkajs/code/promise.allSettled/tracking_promises_ex01.js
http://media.pragprog.com/titles/fkajs/code/promise.allSettled/tracking_promises_ex02.js

// process the post
})

But there’s a problem here: the await keyword will pause the loop until
it gets a response from getpost(). In other words, this code will load
the posts sequentially rather than making multiple requests at the

same time.

One way to fix this issue is to use the promise.all() method. Promise.all()
returns a single promise that resolves once all the promises in the

iterable have resolved:

promise.allSettled/tracking_promises_ex03.js

const postlds = ['1', '2', '3', '4'];

const promises = postIds.map(async (id) => {
return await getPost(id);

1)

const arr = Promise.all(promises);

But there’s a catch here, too! If one of the promises in the iterable

rejects, promise.all() immediately rejects, causing every other post not

http://media.pragprog.com/titles/fkajs/code/promise.allSettled/tracking_promises_ex03.js

to load. It’s not fair to honest objects who have kept their promise,
right?

Until fairly recently, JavaScript didn’'t provide a built-in method to wait
for all promises to settle (either fulfilled or rejected). Fortunately,
ES2020 is here to change that by introducing the promise.allSettled()
method. With this method, we can get the result of all promises

passed to the method.

Using Promise.allSettled() to Fetch Multiple
Resources

The Promise.allsettled() method returns a pending promise that resolves
when all of the given promises have either successfully fulfilled or
rejected (“settled,” in other words). This behavior is very useful to
track multiple asynchronous tasks that are not dependent on one

another to complete.

The following image shows how the Promise.allSettled() method resolves

a pending promise:

Irerable = [promise1, promise2, promise3)]

\Z

Promise.allsetrHed(Herable)

N

I Pending I
\L l e \I/
All promises Two promises All promises
futfilled. vejected, one fulfilled. rejected

V v V

fulfilled fuMfilled fulfilled

In the following example, we attempt to fetch three resources, one of
which doesn’t exist. Notice how Promise.allSettled() reports the result of

every promise:

promise.allSettled/tracking_promises_ex04.js

const promises = |
fetch('https://picsum.photos/206"', {mode: "no-cors"”
1
fetch('https://does-not-exist', {mode: "no-cors"}),
fetch('https://picsum.photos/106/206"', {mode: "no-

cors"})

1;

Promise.allSettled(promises).
then((results) => results.forEach((result) =>

console.log(result)));

// logs:
// => { status: "fulfilled", value: Response }
// => { status: "rejected", reason: TypeError }

// => { status: "fulfilled", value: Response }

Rather than immediately rejecting when one of the promises fails,

Promise.allSettled() waits until they all have completed.

http://media.pragprog.com/titles/fkajs/code/promise.allSettled/tracking_promises_ex04.js

Notice how the result of all promises is passed as an array to then()
and how they are in the same order as the iterable that was given
even though they settled out of order. The outcome of each promise
has a status property, indicating whether the promise has fulfilled.
When a promise is rejected, the result won't have a value property.

Instead, it has a reason property containing the rejection reason.

Keep in mind that the promise returned by Promise.allSettled() will almost
always be fulfilled. The promise will reject if and only if we pass a

value that’s not iterable, such as a plain object.

Let’s look at the rewritten version of this code, this time with the

Promise.all() method:

promise.allSettled/tracking_promises_ex05.js

const promises = |
fetch('https://picsum.photos/206"', {mode: "no-cors"”
1
fetch('https://does-not-exist', {mode: "no-cors"}),
fetch('https://picsum.photos/106/206"', {mode: "no-

cors"})

1;

Promise.all(promises).

then((results) => results.forEach((result) =>

http://media.pragprog.com/titles/fkajs/code/promise.allSettled/tracking_promises_ex05.js

console.log(result)));

// Llogs:
// => Uncaught (in promise) TypeError: Failed to fetch

This time, the promise rejects immediately upon the second input
promise rejecting. One important difference between these two
methods is that promise.allSettled() has an extra property that promise.all()
doesn’t: status. In fact, Promise.all() returns the raw value that

Promise.allSettled() tucks into its resulting object. Compare:

promise.allSettled/tracking_promises_ex06.js

const promises = [
Promise.resolve(1l),

Promise.resolve(2)

1;

Promise.allSettled(promises).
then((results) => results.forEach((result) =>

console.log(result)));

// Llogs:
// => { status: "fulfilled", value: 1 }
// => { status: "fulfilled", value: 2 }

http://media.pragprog.com/titles/fkajs/code/promise.allSettled/tracking_promises_ex06.js

Promise.all(promises).

then((results) => results.forEach((result) =>

console.log(result)));

// Llogs:
[/ =>1
/) => 2

Notice how promise.all() directly returns the response. If you're in an old
JavaScript environment that doesn’t support Promise.allSettled() or if
you'd like to directly return the promises, there’s a simple workaround

for you. Consider the following code:

promise.allSettled/tracking_promises_ex07.js

const promises = |
fetch('https://picsum.photos/206"', {mode: "no-cors'

1)
fetch('https://does-not-exist', {mode: "no-cors"}),

I

n

fetch('https://picsum.photos/106/260', {mode: "no-
cors"})

].map(p => p.catch(e => e));

Promise.all(promises).

then((results) => results.forEach((result) =>

console.log(result)));

http://media.pragprog.com/titles/fkajs/code/promise.allSettled/tracking_promises_ex07.js

Here, we've applied the map() method to an iterable of promises.
Within the method, we use catch() to return promises that resolve with
an error value. This way, we can simulate the behavior of
Promise.allSettled() While being able to directly access the result of

promises.

Often, we use Promise.all() and Promise.allSettled() With similar types of
requests, but there’s no written rule that we should. You may find
yourself in a situation where you need to read a local file, retrieve a
JSON document from a web API, and load an XML document from
another API. Once you obtain data from all three async requests, you
want to process them. promise.all() and Promise.allSettled() are ideal for

such scenarios.

Keep in mind that you will want to use these methods only when you
need to process the result of multiple async requests together. If it's
possible to process the result of each async request individually, then
handle each promise with its own then() handler. This way, you can

execute your code as soon as each promise is resolved.

Wrapping Up

In this chapter, we looked at potential pitfalls when executing multiple
promises at the same time. We learned why looping over
asynchronous tasks could be a bad idea because it will cause the
promises to run sequentially. Then we learned about the

Promise.allSettled() method and compared it to Promise.all().

While promise.all() is very strict in its execution policy, Promise.allSettled()
is forgiving. That doesn’'t mean promise.allSettled() iS superior to
Promise.all(): they complement each other. Using Promise.all() is more
appropriate when you have essential async tasks that are dependent
on each other. On the other hand, promise.allsettled() iS more suitable
for async tasks that might fail but are not essential for your program

to function.

As of ES2021, the ECMAScript standard includes one more method
for the promise object: promise.any(). This method is the opposite of
Promise.all(). In the next chapter, we're going to learn how Promise.any()
can help you when you need to focus on the promise that resolves

first.

FOOTNOTES

[9] https://caniuse.com/mdn-javascript_builtins_promise_allsettled

https://caniuse.com/mdn-javascript_builtins_promise_allsettled

[10]ttps://lwww.npmjs.com/package/babel-plugin-polyfill-es-shims

Copyright© 2021, The Pragmatic Bookshelf.

https://www.npmjs.com/package/babel-plugin-polyfill-es-shims

Chapter 4

Improving Reliability and
Performance

Nobody likes slow applications. As a programmer, you want to
always strive to build apps that provide a snappy user experience.
But what’s more important is designing apps that are able to recover
quickly from difficult conditions. When working with web APls, for
instance, you need to be prepared for server downtime. How would

your application react if it couldn’t reach a server?

Building apps that are responsive and reliable should be at the top of
the list of every developer. ES2021 promise.any() is a recent addition to
ECMAScript that helps us achieve both of these goals at the same
time. We can protect our app from potential APl downtimes by
making network requests to multiple APls asynchronously and using
the result of the one that’s accessible. What's more, we can improve
the performance of critical application services by using the API that

responds first.

WEe'll start this chapter by looking at how Promise.any() works. Once
you get the hang of it, the next step is to learn how to make our app

resilient against API issues and enhance its performance.

Getting Ready

The promise.any() method is a newcomer to the ECMAScript standard,
so before running the examples, you'll want to ensure your browser
supports it.[111 |n the Node environment, you'll need a minimum Node
version of 15.0.0. You can also use a Babel plugin to make use of the

feature in older browsers or Node versions.[12]

Using the Promise.any() Method

Promise.any() returns a pending promise that resolves asynchronously
as soon as one of the promises in the given iterable fulfills. All right,

let’'s execute the following code and see what happens:

promise.any/promise.any_ex01.js

const promises = |
Promise.reject(new Error('failure #1')),
Promise.reject(new Error('failure #2')),

Promise.resolve('YES!")

1;

Promise.any(promises).

then((result) => console.log(result));

// logs:
// => YES!

Here we have an array of three promise objects passed to
Promise.any(). Because Promise.resolve() returns a promise that’s already
fulfilled, the promise returned by promise.any() is immediately fulfilled

with the given value.

But what happens if all input promises reject?

http://media.pragprog.com/titles/fkajs/code/promise.any/promise.any_ex01.js

promise.any/promise.any_ex02.js

const promises = [
Promise.reject(new Error('failure #1')),
Promise.reject(new Error('failure #2')),

Promise.reject(new Error('failure #3'"))

1;

Promise.any(promises).then(
(result) => {console.log(result)},

(error) => {console.error(error)}

)5

// Llogs:
// => AggregateError: No Promise in Promise.any was

resolved

The AggregateError Object wraps all the rejection reasons of all the
input promises in a single error, and we can read them using the errors
property. Edit line 9 of the preceding code and replace

console.error(error) With console.error(error.errors), like this:

promise.any/promise.any_ex03.js

const promises = [
Promise.reject(new Error('failure #1')),

Promise.reject(new Error('failure #2')),

http://media.pragprog.com/titles/fkajs/code/promise.any/promise.any_ex02.js
http://media.pragprog.com/titles/fkajs/code/promise.any/promise.any_ex03.js

Promise.reject(new Error('failure #3'"))

K

Promise.any(promises).then(
(result) => {console.log(result)},

(error) => {console.error(error.errors)}

)5

You should see a message like this in your browser’s console
showing all the rejection reasons we've specified in the input

promises:

© » v Array(3) [Error, Error, Error] debugger eval code:18:23
P @: Error: failure #1
P 1: Error: failure #2
P 2: Error: failure #3
length: 3
b <prototype>: Array []

Only one other case causes Promise.any() to reject: passing an iterable

that's empty. Here’s an example:

promise.any/promise.any_ex04.js

Promise.any([]).then(
(result) => {console.log(result)},

(error) => {console.log(error)}

)5

// Llogs:

http://media.pragprog.com/titles/fkajs/code/promise.any/promise.any_ex04.js

// => AggregateError: No Promise in Promise.any was

resolved

Notice the empty array at line 1 that causes pPromise.any() to reject. The
error message is exactly the same as when all promises reject, which
is something to be wary of because you don't want to misunderstand

the reason for the failure.

Now that you know how the promise.any() method works, it's time to
look at some real-world examples. Up next, we're going to learn how

to take advantage of this method to make our app more resilient.

Avoiding the Single Point of Failure

A single point of failure (SPOF) is a component of a system that with
just one malfunction or fault will stop the entire system from working.
If you want to have a reliable application, you should be able to

identify and avoid potential SPOFs in the system.

A common SPOF in web applications occurs when fetching critical
resources, such as data for financial markets, from external APlIs. If
the API is inaccessible, the app will stop working. The Promise.any()
method is extremely useful in this regard. It enables us to request
data from multiple APIs and use the result of the first successful

promise.

Let’s look at an example. In the following code, we have an array
containing the URL of two APls, both of which return the same info.
Promise.any() Will attempt to fetch the two URLs at the same time; so

as long as one of the APls is available, the code works fine:

promise.any/promise.any_ex05.js

const apis = [
'"https://eloux.com/todos/1",
'"https://jsonplaceholder. typicode.com/todos/1'

1;

http://media.pragprog.com/titles/fkajs/code/promise.any/promise.any_ex05.js

async function fetchData(api) f{
const response = await fetch(api);
if (response.ok) {

return response.json();

} else {

return Promise.reject(new Error('Request failed’

))s
}

function getData() {
return Promise.any([
fetchData(apis[0]),
fetchData(apis[1])

1);

getData().then((response) =>

console.log(response.title));

Now, to see what actually happens behind the scenes, check the
network tab of your browser’s console. Press F12 on your keyboard
to open developer tools and then navigate to the network. The

following image shows the Network tab of Mozilla Firefox:

" O Inspector Console [Debugger 14 Network {3} Style Editor »» 0] e X
@] ¥ Filter URLs [l Q @ ©Disable Cache No Throttling % -}:I-

All HTML €SS JS XHR Fonts Images Media WS Other

Status Met... Domain File Initiator Type Transferred Size
GET & eloux.com 1 /-7 (fetch) json 509B 83 B
GET @ jsonplaceholder.typicode.com 1 /7 (fetch) json 1.31KB 83 B

You can see that the status of both requests is 200, which means
they are successfully fulfilled. But remember, promise.any() only uses
the result of the first promise that fulfills, so the other result is

ignored.

To see what happens if one of the APIs fails, we're going to block
one of the requests. If you're using Firefox, click on the icon that says
Request Blocking and enter eloux.com in the given field and press
enter. This step will block any request to eloux.com, allowing you to

simulate that the API is inaccessible, as shown in the image that

follows:
e {3 Inspector Console [© Debugger T4 Network {J} Style Editor »» |j-_| eve X
W Y Filter URLs Il Q @ [DisableCache NoThrottings X%
Al HTML €SS JS XHR Fonts Images Media WS Other,
Search Blocking [4] status Method Domai File Initiator Type Transferr... Size
M Enable Request Blocking © GET eloux.com 1 /.7 (fetch) Blocked ...
M eloux.com GET & jsonpla... 1 /7 (fetch) json 1.32 KB 838

If you refresh the page, you'll see that the request to eloux.com is

unsuccessful. But since the other API is available, our code works

fine. Now, what happens if both APIs are unavailable? Go ahead and
enter jsonplaceholder.typicode.com, the URL of the other API, to block it.
Switch back to the Console tab and run the code again. You should

see an error message like this:

Uncaught (in promise) AggregateError: No Promise in

Promise.any was resolved

We’re getting an AggregateError that denotes all promises passed to
Promise.any() are rejected. But this error message isn't the best way to
handle a rejected promise. Let’s chain a catch() method and output a

custom error message:

promise.any/promise.any_ex06.js

const apis = [
'https://eloux.com/todos/1",
'https://jsonplaceholder.typicode.com/todos/1"'

15

async function fetchData(api) {
const response = await fetch(api);
if (response.ok) {
return response.json();
} else {

return Promise.reject(new Error('Request failed'

http://media.pragprog.com/titles/fkajs/code/promise.any/promise.any_ex06.js

));

function getData() {

return Promise.any([
fetchData(apis[@]),
fetchData(apis[1])

]1).catch(() => {
return Promise.reject(

new Error(‘'Unable to access the API')

)

1

getData().then(
(response) => console.log(response.title),

(error) => console.error(error)

);

Here, we're using the catch() method to take over error handling. We
return a promise that is rejected and give a reason as to why. Now
run the code again. You should see our custom error message logged

to the console, as shown in the screenshot that follows:

© » Error: Unable to access the API debugger eval code:31:22

So far we’ve learned how to execute multiple promises at the same
time to make our app more reliable. But this approach has one more

benefit: performance.

Improving the Performance of Your App

As a programmer, it's always in your best interest to build apps that
respond quickly to user requests. Promise.any() allows you to improve
the performance of critical app services by using the data from the
API that responds first. As we saw in Avoiding_the Single Point of
Failure, if more than one promise is fulfilled, we'll get back the first

fulfillment value. The other fulfilment values are ignored.

Open the network tab again and check the timeline column. It
provides the amount of time it took (in milliseconds) to get a response
from each API. Remember you turned on request blocking in the last
example to simulate the failure of the requests—turn request blocking
off for this example. Also, mark the Disable Cache checkbox so that
the browser retrieves a fresh copy of each file rather than loading
them from the cache. Now run the code from the last example again.

You should see a result like this:

I Qa o All HTML (S5 JS XHR Fonts Images Media WS Other & Disable Cache No Throftling » -;:I-
Status Method Domain File Initiator Type Transferred Size JUnH 160 ms 320
200 GET 8 elouxcom 1 7 (fetch) json 3288 838 | | 233 ms
200 GET & jsonplaceh... 1 /7 (fetch) json 1.31KB 538 [N 137 ms

So if we only used the first API, it would take our app at least 233
milliseconds to retrieve and handle the data. With the second API

added, it’'s now 137 ms, which is about 40 percent faster. This is a

nice improvement in load time. Obviously, you'll see different results
depending on your distance from the servers and internet connection

speed.

So in addition to avoiding the single point of failure issue, you can use
Promise.any() to improve the performance of your application—and

that’'s a win-win.

Wrapping Up

Promise.any() iS @ valuable addition to the Promise object. This method
allows us to execute multiple promises asynchronously and use the
result of the one that’s accessible to respond faster. Make use of the
Promise.any() method in your applications to avoid the dreaded SPOF
and you'll potentially see some welcome performance improvement
too. Faster applications equal happier users, which is the promise of

Promise.any().

So far, we've talked about promise.any(), Promise.allSettled(), and
Promise.all(). One more method that you should know about is
Promise.race(). This method comes in handy when you need to set a

time limit for computationally expensive tasks.

FOOTNOTES

[11]https://caniuse.com/mdn-javascript_builtins_promise_any

[12]https://lwww.npmjs.com/package/babel-plugin-polyfill-es-shims

Copyright© 2021, The Pragmatic Bookshelf.

https://caniuse.com/mdn-javascript_builtins_promise_any
https://www.npmjs.com/package/babel-plugin-polyfill-es-shims

Chapter 5

Setting a Time Limit for Async
Tasks

Internet users are impatient. When working with asynchronous
network requests, how long should we keep them waiting until we get
a response from a server and settle a promise? If the app takes
longer than a few seconds to respond, most users will leave it and
find somewhere else to go. The amount of time it takes for an API to
respond is usually outside the control of our code due to things like
server overload. We need a way to set a time limit to avoid entering a

state of prolonged or endless waiting.

Fortunately, the promise object comes with a method called
Promise.race() that we can take advantage of to enforce a time limit for
the latency of async tasks. This method is designed to race several
promises against each other and return the result of the promise that
settles first. By supplying it with a promise that’s going to be rejected
after an allotted time, we can define how long the code should wait to

get a response from a server.

We'll start this chapter by comparing promise.race() to a method we
already know: promise.any(). Once we get the hang of how it works,
we’ll use it to concurrently fetch data from an external APl and
execute a timer that logs an error after two seconds. We then revise
the code to replace the error message with a function that pulls data
from a cache to use in case the API is inaccessible or doesn’t

respond quickly enough.

Getting Ready

The Promise.race() method has been around for a while, so most
modern browsers already support it.[13] Node.js support for
Promise.race() dates back to as early as version 0.12.0. But if you want
to make use of the feature in even older Node versions or browsers

you can use a Babel plugin.[14]

Comparing Promise.race() to Promise.any()

Recall from Using_the Promise.any() Method, that promise.any() uses
the value of the first promise that fulfills. promise.race() behaves exactly
the same as far as promise fulfilment. However, when it come to
rejection, promise.race() is completely different: it settles as soon as
one of the given promises rejects. In other words, while Promise.any()
rejects if all of the given promises reject, promise.race() rejects if the

first promise that settles is rejected.

To demonstrate, let’s create two promises. Promise A will reject after

one second and promise B will succeed after two seconds:

latency/latency_ex01.js

const promiseA = new Promise((resolve, reject) => {

setTimeout(reject, 1000, 'A’);
1)

const promiseB = new Promise((resolve) => {

setTimeout(resolve, 2000, 'B');
1)

Promise.race([
promiseA,

promiseB

http://media.pragprog.com/titles/fkajs/code/latency/latency_ex01.js

1) .then((response) => {
console.log(response);
}).catch((error) => {

console.error(error); // => A

1)

Promise.any([
promiseA,
promiseB
1) .then((response) => {
console.log(response); // => B
}).catch((error) => {

console.error(error);

})s

Run this code in your browser’s console. You'll be passing the same
array of promises to both methods. But notice that promise.race()
rejects after one second and logs A to the console, while pPromise.any()

succeeds after two seconds and logs B.

Another difference between the two methods is that passing an
empty array (or any other empty iterable) to promise.race() results in a

promise that remains in pending state:

latency/latency_ex02.js

http://media.pragprog.com/titles/fkajs/code/latency/latency_ex02.js

mnmin

Promise.race("").then((response) => {
// this will never be executed
}).catch((error) => {

// neither this one

1)

If we pass Promise.race() an iterable containing nothing, then the first of
nothing can never be determined. So if the returned promise is stuck
in the pending state, the first thing to check is the iterable we’re

passing to the method.

Okay, now that we know how Promise.race() works, let’'s go ahead and

use it in a more practical way.

Enforcing a Time Limit for Async Tasks

The promise.race() method can be useful when fetching an external
resource that may take a while to complete. With this method, we
can race an async task against a promise that’s going to be rejected
after a number of milliseconds. Depending on the promise that settles

first, we either obtain the result or report an error message.

Let’s create a function that attempts to pull data from an APl and
reports an error if the server doesn’t respond quickly enough. We'll
represent each outcome by a promise and use Promise.race() to select

the first accessible result:

latency/latency_ex03.js

function fetchData() {
const timeOut = 2000; // two seconds
const data = fetch(

'"https://jsonplaceholder. typicode.com/todos/1");
const failure = new Promise((resolve, reject) => {
setTimeout(() => {
reject(new Error(Failed to retrieve data after
${timeOut} milliseconds™));
}, timeOut);
1)

return Promise.race([data, failure]);

http://media.pragprog.com/titles/fkajs/code/latency/latency_ex03.js

fetchData().then((response) => {
console.log(response);
}).catch((error) => {

console.error(error);

1)

Here, we've set the timeout to two seconds, which is usually more
than enough to receive a response from an API. To see the timeout
message, go ahead and set a one-millisecond timeout and run the

code again. Sure enough we can see the timeout message:

© » Error: Failed to retrieve data after 1 milliseconds debugger eval code:15:11

This code works fine but simply logging an error doesn'’t offer the
best user experience. We can further improve this code by using
cached data if fresh data isn’'t available in allotted time. Let’s revise

the code a little:

latency/latency_ex04.js

function loadFromCache() {
const data = {
"userId": 1,
"id": 1,

"title": "delectus aut autem",

http://media.pragprog.com/titles/fkajs/code/latency/latency_ex04.js

"completed": false
}s
return new Promise((resolve) => {

resolve(data);

})

function fetchData() {
const timeOut = 2000; // two seconds
const cache = loadFromCache().then((data) => {
return new Promise((resolve) => {
setTimeout (() => {
resolve(data);

}, timeOut);

});

})s
const freshData = fetch(

'https://jsonplaceholder.typicode.com/todos/1");

return Promise.race([freshData, cache]);

fetchData().then((response) => {
console.log(response);

}).catch((error) => {

console.error(error);

1)

In this version of the code, we concurrently fetch data from an
external APl and pull data from a cache to use in case the APl is
inaccessible or doesn’'t respond quickly enough. For the sake of
simplicity, the loadFromcache() function returns a predefined object, but
in a real-world app you'll probably load the cached data from a

database.

Of course, using cached data would work only for certain types of
information that doesn’'t change frequently. If you're retrieving data
like stock prices or exchange rates, then using promise.any() is a better
choice (see Avoiding the Single Point of Failure) since it allows you
to request data from multiple APIs and use the result of the one that’s

accessible.

An interesting use case for promise.race() is to batch async requests.
As explained by Chris Jensen,[! if you have to make a large number
of async requests and don’t want the pending requests to get out of
hand, you can use Promise.race() “to keep a fixed number of parallel
promises running and add one to replace whenever one completes.”
Using promise.race() in this way lets you run multiple jobs in a batched

way while preventing too much work from happening at one time.

You can also apply promise.race() to a computationally expensive
background task. It's easy to imagine cases where some task might
be attempted in the background, such as rendering a complex canvas
while the user is occupied with something else. Using Promise.race()
there, again gives you some knowable time to work with—and the

opportunity to introduce some logic of what to do should the task fail.

Wrapping Up

You can't control how long it takes for a server to respond to
requests, but that shouldn’t stop you from designing apps that are
responsive to user requests. By taking advantage of the Promise.race()
method, you can set a timeout for async requests and react if they

take too long to complete.

In the next chapter, you're going to learn about canceling pending

async requests using the AbortController API.

FOOTNOTES

[13]https://caniuse.com/mdn-javascript_builtins_promise_race

[14]https://www.npmjs.com/package/babel-plugin-polyfill-es-shims

[15hhttps://stackoverflow.com/a/48820037

Copyright© 2021, The Pragmatic Bookshelf.

https://caniuse.com/mdn-javascript_builtins_promise_race
https://www.npmjs.com/package/babel-plugin-polyfill-es-shims
https://stackoverflow.com/a/48820037

Chapter 6

Canceling Pending Async
Requests

Applications today must work with information on remote servers, and
the Fetch API allows you to easily retrieve resources asynchronously
across the network. But sometimes you may want to cancel a
pending async request before it has completed. Perhaps you have a
network-intensive application and async requests are taking too long

to fulfill, or maybe the user clicked a Cancel button.

The AbortController API provides a generic interface that allows you
to cancel a fetch request. The cornerstone of the API is the
AbortController interface, which provides an abort() method. You can
create a cancelable fetch request by passing the signal property of
AbortController as an option to fetch(). Later, when you want to abort the
fetch, simply call the abort() method to terminate the network

transmission.

We'll start this chapter by setting a time limit for a fetch request. This

example should give you a clear idea of how to implement an

AbortController. Then we’ll move on to more advanced topics like
deregistering multiple event listeners in one statement and creating an

abort button to let users cancel async requests.

Getting Ready

All modern browsers support the AbortController API.[18] | the Node
environment, you'll need a minimum Node version of 15.0.0. To run
your program in older browsers or Node versions, you can use a

Babel plugin.@

Canceling Async Tasks After a Period of
Time

Remember Enforcing a Time Limit for Async Tasks, where we used

Promise.race() to concurrently fetch data from an external APl and
execute a timer? With the AbortController API, we can achieve a
similar outcome: cancel a request that we have already issued but

don’t want to wait for the operation to finish.

Promise.race() vs. AbortController

When you only want to automatically cancel a fetch

o request after a specified amount of time, you can use
either Promise.race() Or AbortController. It's a matter of
preference. AbortController is easier to use if you want to
cancel an async request once a specific DOM event is
fired, such as when the user clicks a cancel button.
Promise.race(), on the other hand, works better if you want
to concurrently fetch data and perform another task,

such as pulling backup from a database.

Consider the following example. When we run this code, the

setTimeout() method sets a two-second timer to execute abort(). If the

fetch is complete in the allotted time, the abort will have no effect. If

not, an error is thrown, as follows:

abort/abort_ex01.js

const controller = new AbortController();

const signal = controller.signal;

fetch('https://eloux.com/todos/1", {signal})
.then(response => {
return response.json();
}).then(response => {

console.log(response);

})s

setTimeout(() => controller.abort(), 2000);

To be able to abort a fetch() request, we first need to create an
instance of AbortController (line 1). It's essential to have an
AbortController before initiating the fetch request, so we execute this

statement first.

Next, we obtain a signal object that allows us to exchange information

with the fetch() method:

const signal = controller.signal;

http://media.pragprog.com/titles/fkajs/code/abort/abort_ex01.js

We then pass this signal object as an option to fetch():

fetch('https://eloux.com/todos/1", {signal});

Here, we’re connecting signal and controller with the request. This
connection enables us to abort the request by calling the abort()

method of controller:

controller.abort();

abort() is the only method of controller and will cause the promise object

returned by fetch to reject with an exception, like this:

© » Uncaught (in promise) DOMException: The operation was aborted. debugger eval code:5

At this point, the control will be passed to the catch() method (if it
exists). Upon calling abort(), the APl will notify the signal, which if you

want, you can listen to by attaching an event handler:

signal.addEventListener(‘abort’, () => {

console.log(signal.aborted);

1)

// Llogs:
// => true

Notice how after aborting succeeds, the aborted property of signal has

a value of true.

Aborting a request might take only a few lines of code, but if you
have to do it a dozen times, you're making your app unnecessarily

hefty. So why not turn the code into a function?

abort/abort_ex03.js

function fetchWithTimeout(url, settings, timeout) {
// If the timeout argument doesn't exists
if (timeout === undefined) {

return fetch(url, settings);

// 1f timeout isn't an integer, throw an error
if (!Number.isInteger(timeout)) {
throw new TypeError('The third argument is not an
integer')

}

const controller = new AbortController();
setTimeout(() => controller.abort(), timeout);
settings.signal = controller.signal;

return fetch(url, settings);

http://media.pragprog.com/titles/fkajs/code/abort/abort_ex03.js

This function works like a fetch() method but provides the option of
setting a timeout. If we pass an integer (in milliseconds) as the third
argument, the request will abort after the time expires. If not, it will

retrieve the resource like a regular fetch().

A server might take a longer time than expected to respond to
requests, or might not respond at all. It's always a good idea to set a
time limit for async requests to avoid keeping your users waiting. But
how do you distinguish a fetch request that’s intentionally aborted
from the ones that are terminated because of an error? We’'ll explore

that question next.

Handling an Aborted Request

When abort() successfully cancels a request, the pending promise
rejects with a boMException error. But you don't want to show the
default error message if the operation is canceled by the user. After

all, it’'s not considered an error if the cancelation is intentional.

So let’s add a catch() method to the promise chain to handle the

rejection:

abort/abort_ex04.js

const src = 'https://eloux.com/todos/1";
const controller = new AbortController();

const signal = controller.signal;

fetch(src, {signal})
.then(response => {
return response.json();
})
.then(json => {
console.log(json);
})
.catch(error => {
if (error.name === ‘AbortError') {

console.log('Request successfully canceled");

http://media.pragprog.com/titles/fkajs/code/abort/abort_ex04.js

} else {

console.error('Fetch failed!', error);
}
});

controller.abort();

// logs:

// => Request successfully cancelled

To ensure we're handling the abort error separately, we can check
the name property of the error. If it has a value of AbortError, we know
it's thrown by the AbortController API. If not, then we handle it like

any other error.

Fetch requests aren't the only type of request that can be canceled

with the AbortController API. We can cancel event listeners too!

Removing Multiple Event Listeners

In client-side JavaScript programming, the flow of the code is
determined by events. Whenever something happens to the page or
web browser, the browser emits an event, such as when the user
clicks a link or a given resource has loaded. If we want to do
something when a particular event occurs, we can register one or

more functions to be called using the addeventListener() method.

We can later remove an event handler function from an object using
the removeEventListener() method. If we register dozens of event
handlers, we'll need the exact same number of removeEventListener()
methods to deregister them, which unnecessarily bloats the code.
With AbortController we can deregister multiple event listeners in only

one statement.

Let’s look at a simple example. Say we want to temporarily give an
element some special effect. We want to change the text of the
element when the user’s pointing device (usually a mouse or
trackpad) moves the cursor onto the element and reverse the effect
when it moves past the element. We also want to change the
background color of the element when the device is pressed
(mousedown) or released (mouseup). Here’s how we can implement

this effect using the old approach:

abort/abort_ex05.html

<ldoctype html>

<html lang="en-us">

<head>

<meta charset="utf-8">

<meta name="viewport" content="width=device-width,
initial-scale=1">

<script src="abort ex05.7js" defer></script>
</head>

<body>
<div class="container">Mouse over mel</div>

</body>

</html>

abort/abort_ex05.js

const container = document.querySelector('.container’

)5

function sayHello() {

container.textContent = 'Hello’;

http://media.pragprog.com/titles/fkajs/code/abort/abort_ex05.html
http://media.pragprog.com/titles/fkajs/code/abort/abort_ex05.js

function sayBye() {

container.textContent = 'Bye!’;

function depress() {

container.style.backgroundColor

‘agqua';

function release() {

container.style.backgroundColor

container.
container.
container.

container.

"transparent’;

addEventListener(‘mouseenter ', sayHello);
addEventListener(‘mouseout’, sayBye);
addEventListener(‘mousedown’, depress);

addEventListener(‘mouseup’, release);

Here, we’re attaching four event handlers to an element with a class

of container. Now if we want to stop the effect, we’ll have to remove

each handler one by one. Note that the arguments must be the same

—the type of event and the function of the event handler.

abort/abort_ex06.js

container.

container.

removeEventListener(‘mouseenter’', sayHello);

removeEventListener(‘'mouseout’, sayBye);

http://media.pragprog.com/titles/fkajs/code/abort/abort_ex06.js

container.removeEventListener(‘'mousedown’, depress);

container.removeEventListener(‘mouseup’, release);

But it’s possible to use the AbortController API to achieve the same
result without having to remove each handler separately. The
addeventListener() method now accepts an abort signal as the third
argument. Create a controller object and pass its signal property to

addEventListener(), like this:

abort/abort_ex07.js

const container = document.querySelector('.container’

)
const controller = new AbortController();

const signal = controller.signal;

function sayHello() {

container.textContent = 'Hello’;
}
function sayBye() {
container.textContent = 'Bye!’;

function depress() {

container.style.backgroundColor = ‘aqua’;

http://media.pragprog.com/titles/fkajs/code/abort/abort_ex07.js

function release() {

container.style.backgroundColor = 'transparent’;

container.addEventListener(‘'mouseenter’, sayHello,

{signal});

container.addEventListener(‘'mouseout’, sayBye,
{signal});

container.addEventListener(‘mousedown’, depress,
{signal});

container.addEventListener('mouseup’, release,

{signal});

Now, we can abort all addeventListener() methods with a single
AbortSignal:

controller.abort();

Removing each event handler separately might not be a big issue
when we have a few event handlers, but it becomes unpleasant if we
have dozens. For example, suppose we have a long list of elements,
and we want to enable the user to sort the list by dragging and

dropping the elements.

For each element, there’s an event attached to check for the state of
dragging. We want to disable drag and drop once the user clicks
Save. Using AbortController can be a time-saver in this situation: rather
than removing each event handler separately, we can call abort() to

remove them all.

So far, we’ve been canceling requests programmatically, but what if
you want to give users the option to cancel requests themselves, like

when they decide not to wait for a download?

Making a User-Cancelable Async Request

When including large files on your page, you should take into account
the fact that some users will be on limited bandwidth or mobile
devices with expensive data plans. Therefore, the ability for a user to

load and cancel loading large items is valuable.

Say you need to load a very large photo (in this case, 22 MB in size)
from Wikipedia. You want to define a button that fetches the photo
and another button that aborts the loading. Here’s how the program

will look:

Load Photo Cancel Loading

You can see a live example of this program here:

https://eloux.com/async_js/examples/abort_ex08 complete.html

https://eloux.com/async_js/examples/abort_ex08_complete.html

First, define an HTML <image> element on the page. The src attribute
of this element will be filled once the image is loaded. We also need
an element to inform the user about the outcome, so define a
element with a class of result. Next, create the buttons. We’re going to
disable the abort button until the load button is clicked, so give it a

disabled attribute:

abort/abort ex08.html

<ldoctype html>

<html lang="en-us">

<head>

<meta charset="utf-8">

<title>Making a User Cancelable Async
Request</title>

<meta name="viewport" content="width=device-width,
initial-scale=1">

<script src="abort ex08.js" defer></script>

</head>

<body>
<image class="image">

<button class="loadBtn">Load Photo</button>

<button class="abortBtn" disabled="disabled">Cancel

http://media.pragprog.com/titles/fkajs/code/abort/abort_ex08.html

Loading</button>
</body>

</html>

Now, in the JavaScript file, we need to set up two functions: one to
call when the Load Photo button is clicked and the other to call when

the Cancel Loading button is clicked:

abort/abort_ex08.js

// create a reference to each HTML element

const loadBtn = document.querySelector('.loadBtn");
const abortBtn = document.querySelector('.abortBtn'
)

const image = document.querySelector('.image');

const result = document.querySelector('.result');

const controller = new AbortController();

// abort the request
abortBtn.addEventListener('click’, () =>

controller.abort());

// Load the image
loadBtn.addEventListener('click’, async () => {

http://media.pragprog.com/titles/fkajs/code/abort/abort_ex08.js

loadBtn.disabled = true;
abortBtn.disabled = false;

result.textContent = 'Loading...';

try {
const response = await fetch(

“https://upload.wikimedia.org/wikipedia/com
mons/a/a3/Kayakistas _en Glaciar Grey.jpg , {signal:
controller.signal}l);

const blob = await response.blob();

image.src = URL.createObjectURL(blob);

// remove the "Loading.." text
result.textContent = '’;
}
catch (err) {
if (err.name === ‘AbortError') {
result.textContent = 'Request successfully
canceled';
} else {
result.textContent = 'An error occurred!’

console.error(err);

loadBtn.disabled = false;
abortBtn.disabled = true;

1)

Notice how line 13 of the code registers an async function to be
called when the Load Photo button is clicked. Within the function, we
disable the Load button to prevent another click and enable the
Cancel Loading button. Next we attempt to retrieve the image using

the standard fetch() function.

To be able to display the image we've retrieved, we need to convert it
into an object URL. First use the Blob() constructor to get a Blob object
(line 22). Now you can create a URL that refers to the Blob by passing
the object into the URL.createobjecturL() method (line 23). All that’s left
to do to display the image is insert the resulting data into the src
attribute of the image tag. At the end of the code, we revert the

buttons to their original state.

What's a Blob?

What’s a Blob?

Blob stands for binary large object, which is a data type
0 containing a collection of binary data. In JavaScript, Blob
serves as an essential data interchange method for
several APIs. They’re often used when working with data
that isn't in a JavaScript-native format, such as images,

audio, or other multimedia objects.

Now, what if we need to fetch multiple images and want to let the

user abort them all at the same time?

Aborting Multiple Fetch Requests with One
Signal

Just as we can abort multiple addeventListener() methods, we can abort
multiple fetch requests with a single Abortsignal. Let’s revise the
previous example to fetch an array of images rather than a single

image. The following image shows how our program will look:

Load Photos Cancel Loading

Here’s a live example:

https://eloux.com/async_js/examples/abort_ex09_complete.html

This time, we’'ll first construct a new array of fetch requests out of the
image URLs using the map() method (line 25). Then we execute them
all by passing the array to promise.all(). For each image that’s loaded,
we convert it into a data URL, create an image element, and insert it

into the page.

abort/abort _ex09.html

<ldoctype html>

https://eloux.com/async_js/examples/abort_ex09_complete.html
http://media.pragprog.com/titles/fkajs/code/abort/abort_ex09.html

<html lang="en-us">

<head>

<meta charset="utf-8">

<title>Aborting Multiple Fetch Requests With One
Signal</title>

<meta name="viewport"” content="width=device-width,
initial-scale=1">

<script src="abort _ex09.js" defer></script>
</head>

<body>
<div class="gallery"></div>

<button class="loadBtn">Load Photos</button>
<button class="abortBtn" disabled="disabled">Cancel
Loading</button>
</body>

</html>

abort/abort_ex09.js

const loadBtn = document.querySelector('.LloadBtn");
const abortBtn = document.querySelector('.abortBtn")

const gallery = document.querySelector('.gallery');

http://media.pragprog.com/titles/fkajs/code/abort/abort_ex09.js

const result = document.querySelector('.result");

const controller = new AbortController();

const urls = |

“https://upload.wikimedia.org/wikipedia/commons/thumi
_Baixa _Grande. jpg/320px-Por_do Sol em Baixa Grande. jj

“https://upload.wikimedia.org/wikipedia/commons/thumi

vescens_Luc_Viatour. jpg/320px-Zebrasoma_flavescens Li

“https://upload.wikimedia.org/wikipedia/commons/thum
_kid _1in_capeweed. jpg/320px-Domestic _goat Rid 1in_cape
1;

abortBtn.addEventListener('click’, () => controller.
loadBtn.addEventListener('click’, async () => {
loadBtn.disabled = true;

abortBtn.disabled = false;

result.textContent = 'Loading...';

conct tacke = 11irlc manfirl =s fatch(nrl {<cional-

uuuuuuuuuuuu M s\ M e PN VM oy L~ ~D''=

controller.signal}));

try {

const response = await Promise.all(tasks);
response.forEach(async (r) => {
const img = document.createElement('img"');
const blob = await r.blob();
img.src = URL.createObjectURL(blob);
gallery.appendChild(img);
1)
result.textContent = '’;

} catch (err) {

if (err.name === 'AbortError') {
result.textContent = 'Request successfully can
} else {
result.textContent = 'An error occurred!’

console. er‘r‘or‘(er‘r‘) 5

loadBtn.disabled = false;
abortBtn.disabled = true;

});

Now if we press the Cancel Loading button while the requests are in
progress, it aborts every fetch and throws an error. In the catch block,
we intercept the error and insert a custom message into the page

informing the user that cancelation was successful:

Request successfully canceled

Load Photo Cancel Loading

Note that promise.allsettled() wouldn’t be suitable for this task.
Promise.allSettled() is designed to wait for all promises to settle, so it
doesn’'t make sense to use this method when you need to abort

requests before they’re completed.

Another use case for abort() could be live search: when the user types
a character in the input, it triggers a search request; when that
promise resolves, you want to show the search results. But if the
user presses multiple keys, the first search might resolve before the
last. Aborting the “stale” request ensures that the search results

reflect the most recent query.

Wrapping Up

An interesting aspect of the AbortController APl is that it's provided
by the DOM standard and designed to be generic. That means soon
we'll see it adopted by other standards and libraries as well, lowering

the learning curve for developers who want to use those platforms.

Make use of the AbortController API in your programs to cancel
async requests that are no longer needed or taking too long to
complete. You can do that by calling abort() directly, setting a timer to
call abort(), or providing a cancel button for users to abort requests
whenever they want. You can even use an AbortController to deregister
an event listener, or multiple event listeners, which is an ability that

JavaScript previously lacked.

The final chapter of this book is about the top-level await. In modern
JavaScript programming, it's a common practice to separate the
functionality of a program into independent modules. Modular
programming provides several benefits like the ability to use existing
assets in other programs. It also makes testing and debugging easier
because when we need to fix a specific function, we only have to do it

in one module.

Top-level await is a feature of modules that improves on the regular

await keyword to enable developers to access the result of a promise

from another module without having to use a workaround. In the next

chapter, we’re going to cover this feature.

FOOTNOTES

[16]https://caniuse.com/abortcontroller

[17https://www.npmjs.com/package/yet-another-abortcontroller-polyfill

Copyright© 2021, The Pragmatic Bookshelf.

https://caniuse.com/abortcontroller
https://www.npmjs.com/package/yet-another-abortcontroller-polyfill

Chapter 7

Accessing Promise Results
from Another Module

Often in modular programs, you need the result from another module
before you run the main module. Consider a recipe suggester
(recipe.js) that checks a list of on-hand ingredients asynchronously
(pantry.js). Code for recipe.js should not execute until code for pantry.js
has run. With top-level await we could tell recipe.js to halt its execution
until pantry.js is fully executed. If you used the standard await keyword
in an async function, recipe.js would attempt to access the result of

pantry.js before it was ready.

A number of workarounds could be used, but they make the code
more complicated. Top-level await is an addition to the language that
provides a straightforward way to use the await keyword outside of
async functions so that we can perform async tasks directly at the
top level of the module. Now, modules can act as a big async function
and importing modules will wait for the child modules to fully execute

before they themselves start executing.

In this chapter, we’ll find out how top-level await works and how to
make use of it to initialize resources, define dependency paths

dynamically, and load dependencies with a fallback implementation.

Getting Ready

Before using top-level await, make sure your browser or Node version
supports it.[18] You'll need a minimum Node version of 14.8.0. You can
also use a Babel plugin to make use of the feature in older browsers

or Node versions.[19]

Keep in mind you can'’t use top-level await in classic scripts—it only
works in module scripts and browser dev tools. If you get a syntaxError

like the following, that means you’re not using it in a module:

[x ﬂ Elements Console Sources Network Performance Memory Application >

MO | topy @ Filter Default levels ¥ No Issues
@ Uncaught SyntaxError: await is only valid in async functions and the top level bodies of modules

5 |

Adding a module to an HTML file is the same as adding a regular
script except that you should add a type attribute with the value of

module, like this:

<script type="module" src="modulel.js"></script>

Also, modules are subject to same-origin policy, meaning that you
can't import them from the file system. You'll need to run the code

examples in this chapter on a server.

Using Top-Level await

When the await keyword was first introduced, it wasn’t possible to use
it outside of async functions. You've probably encountered the fatal
syntax error await is only valid in async function, t00, when attempting to

use it for the first time:

await/Await_ex01.js

const res = await fetch('https://example’);

// SyntaxError: await 1is only valid in async function

As a way to get access to the feature, | often wrapped the await
statements in an immediately invoked async function expression, like
this:

await/Await_ex02.js

(async function() {

const res = await fetch('https://example’);
10D

It's unpleasant but functional! With top-level await we no longer have
to do this, because the await keyword works outside of async
functions as well. Go ahead and execute await fetch("https://google.com",
{mode:"no-cors"}); in your browser console. You should see a response
like this:

http://media.pragprog.com/titles/fkajs/code/await/Await_ex01.js
http://media.pragprog.com/titles/fkajs/code/await/Await_ex02.js

W 1O Inspector [) Console [Debugger TN Network {3} Style Editor () Performance Lk Memory 3 [fD s X
[> Run {(y ~ ~» @ X [ﬁ] Y Filter Qutput ﬁ

1 await fetch("https://google.com”, {mede:"no-cors”}); Errors Warnings Logs Info Debug S5 XHR Requests

»» await fetch(“https://google.com™, {mode:"no-cors"});

< P Response { type: "opaque", url: "", redirected: false,
status: @, ok: false, statusText: "", headers: Headers,
body: null, bodyUsed: false }

But there’s a bigger problem that top-level await allows us solve. Bear
with me for a moment. When working with ES modules, we can make
variables and functions available outside the module using the export
keyword. Then other modules in separate files can use the import
keyword to access those variables and functions. Any export Or import

statement must be expressed at the top level of the code.

Say we have a module that retrieves weather data for Tokyo, Japan,
from an external API, and we want to make the result available to

other modules:

await/Await_ex03.js

let result;

const api =
"http://api.openweathermap.org/data/2.5/weather?
g=Tokyo, Japan&APPID=1blb3e9e909416e5bbe365a0a8505fbb " ;

// use your own app id in production

(async () => {
const response = await fetch(api);

result = await response.json();

http://media.pragprog.com/titles/fkajs/code/await/Await_ex03.js

NO;

export {result};

In another module, we’d like to import the result and extract the

temperature:

await/Await_ex04.js

import {result} from './modulel.js';

console.log(result.main.temp);

// Llogs:
// => TypeError: Cannot read property 'main' of

undefined

But this code produces a TypeError because we’re trying to access the
export before the async function finishes executing. We still have a

promise waiting to be settled; until then result has a value of undefined.

Now let’s delay the console.log() method and see what happens. Go

ahead and encapsulate the method in a setTimeout(), like this:

await/Await_ex05.js

import {result} from './modulel.js’';

http://media.pragprog.com/titles/fkajs/code/await/Await_ex04.js
http://media.pragprog.com/titles/fkajs/code/await/Await_ex05.js

// don't do this in production
setTimeout(() => {
console.log(result.main.temp);

}, 2000);

// Llogs:
// => 292.94

This time we get the result we’re looking for (note that the
temperature is in kelvin units). This means that exported variables are
undefined until the promise is settled. But this is a bad way of coding
our module because now every consumer of module1.js needs to

know what a reasonable wait would be.

We can't use the export keyword inside functions, and prior to the
introduction of top-level await, we couldn’t use the await keyword

outside of async functions either.

One workaround is to export the entire async function as the default

export value:

await/Await_ex06.js

let result;

const api =
“http://api.openweathermap.org/data/2.5/weather?
g=Tokyo, Japan&APPID=1blb3e9e909416e5bbe365a0a8505fbb " ;

http://media.pragprog.com/titles/fkajs/code/await/Await_ex06.js

// use your own app 1id in production

export default (async () => {
const response = await fetch(api);

result = await response.json();

IDIOK

export {result};

Then we could wait for the async function to settle before accessing

the variable:

await/Await_ex07.js

import p, {result} from './modulel.js';

p.then(()=>{

console.log(result.main.temp);

1)

// Llogs:
// => 292.94

But as the code becomes more complicated, it will become more
difficult to manage the modules this way. Other workarounds could

work as well, but they come with their own limitations.

http://media.pragprog.com/titles/fkajs/code/await/Await_ex07.js

Top-level await aims to solve this problem by enabling developers to
use the await keyword outside async functions. You don’t need to do
anything special to start using top-level await except having a modern

browser that supports the feature:

await/Await_ex08.js

const api =
“http://api.openweathermap.org/data/2.5/weather?
g=Tokyo, Japan&APPID=1b1b3e9e909416e5bbe365a0a8505fbb" ;

// use your own app 1id in production

const response = await fetch(api);

const result = await response.json();

export {result};

Then in another module we can access the exported variable directly:

await/Await_ex09.js

import {result} from './modulel.js’';

console.log(result.main.temp);

// Llogs:
// => 292.94

http://media.pragprog.com/titles/fkajs/code/await/Await_ex08.js
http://media.pragprog.com/titles/fkajs/code/await/Await_ex09.js

With top-level await, ECMAScript modules can await resources,
causing other modules who import them to wait before they start
evaluating their own code. Top-level await allows us to do some cool
things that would previously require a lot of effort to achieve. Let’s

take a look at a few practical uses.

Putting Top-Level await to Work

When designing a program to support multiple languages and
regions, you may want to use a runtime value to determine the
language to use. Say you have an ES module and want to load a
language pack dynamically, based on the preferred language of the
user set in the browser. You can take advantage of top-level await to

import the messages:

await/Await_ex10.js

const messages = await import(°./packs/messages-

${navigator.language}.js);

The navigator.language property allows us to access the preferred
language of the user, which is usually the language of the browser Ul.
To embed the value of the property within the string, we’ve put it
inside ${..}. The module will be waiting for the language pack to be
imported and can only evaluate the rest of the body once the pack

has been loaded.

We can also use top-level await to load dependencies with a fallback

implementation. As we learned in Avoiding the Single Point of Failure

, it's important to protect our app against external server issues.

Network requests to a server might fail. In critical applications, you

http://media.pragprog.com/titles/fkajs/code/await/Await_ex10.js

can provide dependency fallbacks to mitigate such failures using top-

level await. Here’s an example:

await/Await_ex11.js

let d3;

try {

d3 = await import(
'"https://cdnjs.cloudflare.com/ajax/Libs/d3/6.7.0/d3.min
} catch {

d3 = await import(
'"https://ajax.googleapis.com/ajax/Libs/d3js/6.7.6/d3.m1
)
}

In this code, we first attempt to load the D3 JavaScript library from
Cloudflare. If the import fails, we try an alternate CDN. Alternatively,
we can use Promise.any() to execute both requests asynchronously and

use the result of the one that responds faster:

await/Await_ex12.js

const CDNs = [

'"https://cdnjs.cloudflare.com/ajax/Libs/d3/6.7.0/d3.min

http://media.pragprog.com/titles/fkajs/code/await/Await_ex11.js
http://media.pragprog.com/titles/fkajs/code/await/Await_ex12.js

'"https://ajax.googleapis.com/ajax/Libs/d3js/6.7.6/d3.m1
1;

const d3 = await Promise.any(CDNs);

Another use case for top-level await is resource initialization. For

example:

await/Await_ex13.js

import {dbConnector} from './utilities.js';

const connection = await dbConnector.connect();

By using top-level await, we can make the module behave like a big
async function. We can now represent resources with await and

handle errors if the module can’t be used.

Remember, a module won't start evaluating its body until the module
that’s being imported has finished executing its body. So if the other
module has a top-level await, it must be completed before the module

that’s importing it begins executing.

http://media.pragprog.com/titles/fkajs/code/await/Await_ex13.js

Wrapping Up

Previously, await was valid only in async functions. Times changed and
await got easier. We can use top-level await in modules to avoid
wrapping code in an async |IFE. We no longer need a workaround
when accessing the result of a promise from another module. And we
can use await for tasks like initializing resources, defining dependency
paths dynamically, and loading dependencies with a fallback

implementation.

Thank you for reading!

We've reached the end of the book! The beauty of JavaScript is that
it is flexible enough to let programmers determine how the language
will evolve. As a result, the inputs and proposals from the JavaScript
community have played an important role in the way the language has
progressed. Anyone can get involved by drafting a proposal (read

https://github.com/tc39/proposals).

An interesting aspect of the process is that new features are
implemented by browsers before they’re added to the specification. If
you want to tune into the features that are coming down the pike,

here are some resources:

e Check out the proposals repository on GitHub

that are at stage 3 and stage 4. When a feature is at stage 3, that
means the feature’s semantics, syntax, and API are completed
and it’s very likely to be added to the specification. A stage 4
proposal will be included in the soonest practical standard revision
of the specification.

» Watch the Google’s V8 JavaScript engine blog. If something gets
added to Chrome, this is the place you'll hear about the feature
(https://v8.dev/).

https://github.com/tc39/proposals
https://github.com/tc39/proposals
https://v8.dev/

e Follow and take part in the TC39 Discourse group
(https://es.discourse.group/). TC39 is the committee responsible

for evolving the definition of JavaScript.

Thank you for reading! It was my pleasure to write this book. | hope

you've found it useful.

FOOTNOTES

[18]https://caniuse.com/mdn-javascript_operators_await_top_level

[19https://babeljs.io/docs/en/babel-plugin-syntax-top-level-await

Copyright © 2021, The Pragmatic Bookshelf.
Thank you!
We hope you enjoyed this book and that you're already thinking about
what you want to learn next. To help make that decision easier, we're

offering you this gift.

Head over to https://pragprog.com right now and use the coupon
code BUYANOTHER2021 to save 30% on your next ebook. Void
where prohibited or restricted. This offer does not apply to any

edition of the The Pragmatic Programmer ebook.

And if you'd like to share your own expertise with the world, why not

propose a writing idea to us? After all, many of our best authors

https://pragprog.com/
https://es.discourse.group/
https://caniuse.com/mdn-javascript_operators_await_top_level
https://babeljs.io/docs/en/babel-plugin-syntax-top-level-await

	Acknowledgments
	Preface
	Who Is This Book For?
	What You Should Know
	What’s in This Book?
	Online Resources

	Introduction
	Demystifying Asynchronous Execution
	Working with Events
	Working with Callback Functions
	Introducing Promises
	Creating Settled Promises
	Handling Rejection
	Managing Multiple Concurrent Promises

	1. Creating Custom Asynchronous Iterators
	Getting Ready
	Creating a Custom Iterator
	Creating a Custom Asynchronous Iterator
	Iterating over Async Iterables with for…await…of
	Detecting Whether an Object Is Iterable
	Wrapping Up

	2. Enhancing Custom Iterators with Generators
	Getting Ready
	Using a Generator to Define a Custom Iterator
	Creating an Asynchronous Generator
	Iterating over Paginated Data
	Wrapping Up

	3. Fetching Multiple Resources
	Getting Ready
	Executing Multiple Promises
	Using Promise.allSettled() to Fetch Multiple Resources
	Wrapping Up

	4. Improving Reliability and Performance
	Getting Ready
	Using the Promise.any() Method
	Avoiding the Single Point of Failure
	Improving the Performance of Your App
	Wrapping Up

	5. Setting a Time Limit for Async Tasks
	Getting Ready
	Comparing Promise.race() to Promise.any()
	Enforcing a Time Limit for Async Tasks
	Wrapping Up

	6. Canceling Pending Async Requests
	Getting Ready
	Canceling Async Tasks After a Period of Time
	Handling an Aborted Request
	Removing Multiple Event Listeners
	Making a User-Cancelable Async Request
	Aborting Multiple Fetch Requests with One Signal
	Wrapping Up

	7. Accessing Promise Results from Another Module
	Getting Ready
	Using Top-Level await
	Putting Top-Level await to Work
	Wrapping Up
	Thank you for reading!

