

Modern Asynchronous JavaScript

Tackle Complex Async Tasks with Less Code

by Faraz K. Kelhini

Version: P1.0 (December 2, 2021)

Copyright © 2021 The Pragmatic Programmers, LLC.
This book is licensed to
the individual who purchased it.

We don't copy-protect it
because that would limit your ability to use it for your
own purposes. Please don't break

this trust—you can use
this across all of your devices but please do not share this copy
with other members of

your team, with friends, or via
file sharing services. Thanks.

Many of the designations used by manufacturers and
sellers to distinguish their products are claimed as

trademarks. Where those designations appear in this book,
and The Pragmatic Programmers, LLC was aware

of a
trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic

Starter Kit, The Pragmatic Programmer, Pragmatic
Programming, Pragmatic Bookshelf and the linking g
device

are trademarks of The Pragmatic Programmers,
LLC.

Every precaution was taken in the preparation of this book.
However, the publisher assumes no responsibility

for errors
or omissions, or for damages that may result from the use
of information (including program listings)

contained
herein.

About the Pragmatic Bookshelf

The Pragmatic Bookshelf is an agile publishing company.
We’re here because we want to improve the lives of

developers.
We do this by creating timely, practical titles, written by programmers for programmers.

Our Pragmatic courses, workshops, and other products can
help you and your team create better software and

have more
fun. For more information, as well as the latest Pragmatic
titles, please vis it us at

http://pragprog.com.

Our ebooks do not contain any Digital Restrictions
Management, and have always been DRM-free. We

pioneered the
beta book concept, where you can purchase and read a book
while it’s still being written, and

provide feedback to the
author to help make a better book for everyone. Free
resources for all purchasers

include source code downloads
(if applicable), errata and discussion forums, all
available on the book's home

page at pragprog.com. We’re
here to make your life easier.

New Book Announcements

Want to keep up on our latest titles and announcements, and
occasional special offers? Just create an account

on
pragprog.com (an email address and a password is all it takes)
and select the checkbox to receive

newsletters. You can
also follow us on twitter as @pragprog.

About Ebook Formats

If you buy directly from
pragprog.com, you get
ebooks in all available formats for one price. You can
synch your

ebooks amongst all your devices (including
iPhone/iPad, Android, laptops, etc.) via Dropbox.
You get free

http://pragprog.com/
https://pragprog.com/
https://pragprog.com/

updates for the life of the edition. And, of
course, you can always come back and re-download your books
when

needed. Ebooks bought from the Amazon Kindle store are
subject to Amazon's polices. Limitations in Amazon's

file
format may cause ebooks to display differently on different
devices. For more information, please see our

FAQ at
pragprog.com/#about-ebooks. To learn
more about this book and access the free resources, go to

https://pragprog.com/book/fkajs, the book's homepage.

Thanks for your continued support,

Andy Hunt

The Pragmatic Programmers

The team that produced this book includes: Dave Rankin (CEO), Janet Furlow (COO),

Tammy Coron (Managing Editor), Margaret Eldridge (Development Editor),

L. Sakhi MacMillan (Copy Editor), Andy Hunt and Dave Thomas (Founders)

For customer support, please contact
support@pragprog.com.

For international rights, please contact
rights@pragprog.com.

https://pragprog.com/support/#about-ebooks
https://pragprog.com/book/fkajs
mailto:support@pragprog.com
mailto:rights@pragprog.com

Table of Contents

1. Acknowledgments

2. Preface

1. Who Is This Book For?

2. What You Should Know

3. What’s in This Book?

4. Online Resources

3. Introduction

1. Demystifying Asynchronous Execution

2. Working with Events

3. Working with Callback Functions

4. Introducing Promises

5. Creating Settled Promises

6. Handling Rejection

7. Managing Multiple Concurrent Promises

4. 1. Creating Custom Asynchronous Iterators

1. Getting Ready

2. Creating a Custom Iterator

3. Creating a Custom Asynchronous Iterator

4. Iterating over Async Iterables with for…await…of

5. Detecting Whether an Object Is Iterable

6. Wrapping Up

5. 2. Enhancing Custom Iterators with Generators

1. Getting Ready

2. Using a Generator to Define a Custom Iterator

3. Creating an Asynchronous Generator

4. Iterating over Paginated Data

5. Wrapping Up

6. 3. Fetching Multiple Resources

1. Getting Ready

2. Executing Multiple Promises

3. Using Promise.allSettled() to Fetch Multiple Resources

4. Wrapping Up

7. 4. Improving Reliability and Performance

1. Getting Ready

2. Using the Promise.any() Method

3. Avoiding the Single Point of Failure

4. Improving the Performance of Your App

5. Wrapping Up

8. 5. Setting a Time Limit for Async Tasks

1. Getting Ready

2. Comparing Promise.race() to Promise.any()

3. Enforcing a Time Limit for Async Tasks

4. Wrapping Up

9. 6. Canceling Pending Async Requests

1. Getting Ready

2. Canceling Async Tasks After a Period of Time

3. Handling an Aborted Request

4. Removing Multiple Event Listeners

5. Making a User-Cancelable Async Request

6. Aborting Multiple Fetch Requests with One Signal

7. Wrapping Up

10. 7. Accessing Promise Results from Another Module

1. Getting Ready

2. Using Top-Level await

3. Putting Top-Level await to Work

4. Wrapping Up

5. Thank you for reading!

Copyright © 2021, The Pragmatic Bookshelf.

Early Praise for Modern
Asynchronous JavaScript

For developers looking to level up on both their command and

understanding of asynchronous JavaScript, especially newer and less

familiar methods on the Promise API, this is an indispensable

reference and solid guide. Faraz Kelhini walks you through the thorny

problems around working asynchronously with iterables and provides

excellent and inspiring examples and easy-to-study source code.

→ Karl Stolley

Web Developer, Researcher, Professor, and Author of

Programming WebRTC, Illinois Institute of Technology

Faraz Kelhini’s efficient organization and fine writing make Modern

Asynchronous JavaScript a valuable introduction to the topic. The

dozens of succinct code examples that are included round out an

indispensable package for the intermediate-to-advanced

JavaScripter.

→ Victor Gavenda

Former Executive Editor, Pearson Education/Peachpit Press

JavaScript moves fast, and even seasoned developers need to pay

attention to keep up with the language. Modern Asynchronous

JavaScript is a pithy primer on newly introduced JavaScript features

that help make asynchronous code more concise and safer. Anyone

writing asynchronous JavaScript code, whether it runs in a browser or

in Node.js, should pay attention. All of the ugly JavaScript code I’ve

written recently wishes I’d read this book sooner.

→ Lukas Mathis

Software Engineer, UI Designer, and Author of Designed for Use,

Appway

I’ve worked with countless technical writers throughout my career,

and Faraz stands out among them for his ability to clearly and

concisely explain complex topics. His work in Modern Asynchronous

JavaScript meets those high standards and then some. Even for a

non-dev like myself, Faraz makes it easy to grasp the concepts at

work.

→Matt Angelosanto

Managing Editor, LogRocket Blog

Acknowledgments

Writing and producing a book requires a team effort. My sincere

thanks to the entire Pragmatic Bookshelf team for their great efforts

to get this book to fruition. In particular, I would like to thank my

editor, Margaret Eldridge, whose watchful eyes identified gaps in my

writing and saved me from mistakes.

A big thanks to experts who reviewed the book prior to publication,

including Karl Stolley, Lukas Mathis, Michael Fazio, Trevor Burham,

Kevin Gisi, Matthew Margolis, Mike Riley, Francesco Piccoli, and

Stefan Turalski. These wonderful developers offered very helpful

insight on the code quality and suggested ways to improve.

My love to my family for their support and putting up with an author’s

crankiness. I am grateful for that. And special thanks to my dear

friends, Mahsa and Asal, for their encouragement during the writing

of this book. You’re amazing!

Finally, thanks to the eager readers who bought the book while it was

in beta. You put your trust in me, and I appreciate that.

Copyright © 2021, The Pragmatic Bookshelf.

Preface

Modern applications increasingly rely on asynchronous programming

to perform multiple tasks at the same time, and JavaScript is quickly

evolving to address this need. Many new features of JavaScript are

designed to only work asynchronously. As a result, gaining the

knowledge to perform async tasks effectively is a must for today’s

JavaScript programmers.

Designing responsive asynchronous programs might be challenging at

first, but once you get the hang of it, the outcome is rewarding. This

book is here to help you with that. You’ll find multiple examples to help

you write advanced programs using the new capabilities of JavaScript

introduced in ES2020, ES2021, and ESNext. You’ll also discover

various techniques to manage and coordinate the asynchronous parts

of your code
efficiently.

Make sure you actually type and execute the code examples as you

follow along in the book. Some examples may appear simple, but

there’s a big difference between reading the code and being able to

write it on your own.

Who Is This Book For?

If you’re an intermediate to advanced JavaScript programmer or web

developer, this book is for you. We’ll focus squarely on the practical

aspects of asynchronous programming—that is, what each technique

is designed to accomplish and how to use it in your program. If you’ve

been using third-party libraries to manage asynchronous code and

now want to switch to native JavaScript APIs, you’ll benefit from this

guide.

What You Should Know

To use this book, you should already know JavaScript and HTML.

Use of HTML will be infrequent and fairly basic, and I’ll explain each

JavaScript example in detail. So even if your JavaScript or HTML is

rusty, you’ll be able to understand how the code is working.

What’s in This Book?

Modern Asynchronous JavaScript is deliberately succinct. You won’t

learn everything about asynchronous programming so that you can

quickly pick up key tips and tricks. In each chapter, we’ll dive straight

into a different topic, so feel free to jump to any chapter in the book

you want.

Chapter 1 shows you how to define or customize the iteration

behavior of JavaScript objects using custom iterators.

Chapter 2 is where you learn to use a generator function as a

shortcut to create iterators. Generators are useful when you don’t

need to manipulate the state-maintaining behavior of an iterator.

Chapter 3 introduces the Promise.allSettled() method and compares it to

its older sibling Promise.all(). You’ll use Promise.allSettled() to execute

multiple async tasks simultaneously and process the outcome even if

some of them fail.

Chapter 4 gives you tips to protect your app against server downtime

while improving its performance with Promise.any() from ES2021.

Chapter 5 explains how to use the Promise.race() method to set a time

limit for async tasks to avoid entering a state of prolonged or endless

waiting.

Chapter 6 is all about the AbortController API. You’ll learn to use this

API to cancel pending async requests when the user clicks a cancel

button.

Chapter 7 covers top-level await and how to make use of it to initialize

resources, define dependency paths dynamically, and load

dependencies with a fallback implementation.

[1]

Online Resources

To download the example code used in the book, please visit the

Pragmatic Bookshelf website. You can submit feedback and errata

entries, get up-to-date information, and join in the discussions on the

book’s forum page. If you’re reading the book in PDF format, you can

view or download a specific example by clicking on the little gray box

above the code.

Next up is the Introduction. If you’re an experienced JavaScript

programmer, most of the concepts in the Introduction will be familiar,

whereas if you’re more intermediate, you might find the discussion of

callbacks and promises helpful.

FOOTNOTES

https://www.pragprog.com/titles/fkajs

Copyright © 2021, The Pragmatic Bookshelf.

[1]

https://www.pragprog.com/titles/fkajs

Introduction

The introduction of the promise object in ES2015 changed the way

we write asynchronous programs in JavaScript. Similar to callbacks

and events, a promise defines a block of code to be executed once

an operation is finished. But unlike the old approaches, it gives us a

robust mechanism to track the state of multiple asynchronous tasks

and verify whether they are all successful.

But what exactly do we mean when we say a program is

asynchronous?

Demystifying Asynchronous Execution

The concept of asynchrony determines whether a task can start

executing before another task is finished. In a synchronous execution,

the program pauses until the current task is completed before moving

to the next task. But in an asynchronous execution, the program

continues executing even when the previous operation hasn’t finished

yet.

It helps to think of synchronous executions as a line of people waiting

to buy movie tickets. If you are at the end of the line, you can’t buy a

ticket until all the people in front of you have bought theirs. Think of

asynchronous executions like ordering food in a restaurant. You don’t

have to wait for other people who have come earlier to get their food

before you can order yours. Everyone can order food at any time and

receive it when it’s ready. Depending on the type of food you order,

you may get your food sooner or later than other people.

A bar chart can better illustrate the difference:

It’s important to understand that asynchrony and multithreading are

two completely different concepts. JavaScript is often considered a

single-threaded language, mostly because web browsers run one

thread per global environment.

But JavaScript, as a programming language, isn’t single-threaded.

And there are some JavaScript environments that are multi-threaded.

With the introduction of Web Workers, you can even have multiple

threads on web browsers (they don’t run on the same global

environment though).

But even on a single thread, JavaScript is capable of executing

asynchronous code. Threads aren’t the only way to perform tasks in

parallel. Imagine a restaurant with only one cook. The cook can start

a burger cooking and set a timer, then put some pizza in the oven and

set a timer. He can clean the kitchen while the food is cooking. When

the timer goes off, he takes the food out and serves it. If the switch

between tasks is efficient enough, you won’t notice any lags.

You can imagine a multi-threaded environment like a restaurant that

has multiple cooks. One cook is responsible for cooking burgers,

another one is responsible for cooking pizzas. But now you have to

pay more to keep the other cook and make sure they share the

resources properly so there will be no conflict in the kitchen. In other

words, threading describes the number of workers, but asynchrony is

about tasks.

Working with Events

The JavaScript language was created to add interactivity to web

pages, so it needed a way to detect user actions and react to them.

JavaScript’s solution for this need was events: whenever you interact

with a web page, such as when clicking a button, an event takes

place, allowing JavaScript code to react to the action.

Although events have enabled JavaScript programs to detect

interaction with objects and react to them, its lack of flexibility has

been a significant problem for some developers. For example, events

can happen before the program starts listening to them.

If the user moves the cursor over the box before the onmouseover

property is assigned, the code won’t be executed. Therefore, it’s

always necessary to make sure the event handlers are assigned

before an event occurs.

Additionally, events can be frustrating to use when working with more

than one element. For instance, there’s no easy way to detect

whether a collection of images have been loaded, or check the order

in which they have loaded.

Working with Callback Functions

Perhaps the simplest asynchronous execution in JavaScript is the

setTimeOut() function. This function defines a callback function to be

executed in the future independently of the main program flow, so it

doesn’t block the execution of the program.

Another common asynchronous execution in JavaScript is Ajax.

Similar to setTimeOut(), an Ajax call doesn’t stop the execution flow of

the program. It specifies a piece of code to run as soon as the code

receives data from a server.

The main advantage of using callbacks is that the program can

continue doing useful work while other tasks are running, so it feels

more responsive and there will be fewer “hangs.”

Nesting callbacks is a common practice in JavaScript. But nesting too

many callbacks can make the code hard to understand and lead to a

maintainability issue known as callback hell. The following code is an

example of callback hell:

intro/intro_ex01.js

firstFunction((x) => {

 ​// process...​

 secondFunction(x, (y) => {

 ​// process...​

http://media.pragprog.com/titles/fkajs/code/intro/intro_ex01.js

 thirdFunction(y, (z) => {

 ​// And so on...​

 });

 });

});

Callback hell is the result of poor coding practice. If you nest more

than a few callbacks, your code will quickly become unmanageable.

One way to fix this code is to define each function separately:

intro/intro_ex02.js

firstFunction((x) => {

 ​// process...​

 secondFunction(x);

});

secondFunction(x, (y) => {

 ​// process...​

 thirdFunction(y);

});

thirdFunction(y, (z) => {

 ​// process...​

 fourthFunction(z);

 ​// And so on...​

http://media.pragprog.com/titles/fkajs/code/intro/intro_ex02.js

});

By moving functions to the top level, we’ll have a shallower code that

is separated into small logical sections. This small change results in a

more manageable code.

Still, the callback model is difficult to work with when more complex

functionality is needed. With promises, you can easily chain multiple

asynchronous tasks dynamically. For example, you can make two

async requests simultaneously, wait for the results, and then

determine what other async task to do based on the intermediate

result. Or you can use a promise to track the state of multiple async

operations and react as soon as one of them is completed.

That doesn’t mean you should stop using callbacks though. Callbacks

are still useful when your code may receive a notification more than

once. For instance, the setInterval() method defines a callback function

to be executed repeatedly, with a fixed time delay between each call.

You can’t call a promise again once it’s executed, but you can call a

callback function multiple times.

Introducing Promises

Originally, the promise construct was used by libraries such as Q,

RSVP.js, and WinJS. But it quickly became popular enough to

encourage the Ecma Technical Committee to take advantage of it in

the ES2015 standard.

Newer JavaScript APIs use the promise object rather than the old-

school callback function. For example, the Fetch API not only

provides a simpler syntax compared to the complex API of

XMLHttpRequest but also prevents callback hell by returning a promise.

Let’s look at a simple example:

intro/intro_ex03.js

​const​ promise = fetch(​

'https://eloux.com/async_js/examples/1.json'​);

promise.then((result) => {

 ​// process​

}, (error) => {

 console.log(error);

});

The fetch() method allows us to retrieve files across the network. This

method returns a promise object that acts as a placeholder for the

http://media.pragprog.com/titles/fkajs/code/intro/intro_ex03.js

future result of the operation. To react to the result, we use the then()

method.

then() accepts two functions as parameters. The first function is called

once the promise is succeeded, and the fulfillment value is passed to

the function as an argument. The second function is called only if the

promise is failed, with the rejection reason passed as its argument.

The promise returned by fetch() remains in the pending state until the

Ajax request is completed. The spec uses the term unsettled to

describe a promise that’s pending. After receiving data, the promise

transitions either to fulfilled or rejected state. At this point, the

promise is considered settled.

It’s worth noting that a promise cannot succeed or fail more than

once. It also cannot switch from failure to success or vice versa. Both

arguments of then() are optional. So when we don’t need to listen for

fulfillment or rejection, we can omit the related argument.

Creating Settled Promises

When working your way through the examples in this book, you may

want to key in and alter each example to gain practice. The static

Promise.resolve() and Promise.reject() methods allow you to quickly create

settled promises and see how the code works when you give it a

different value.

For example, the following code creates a promise that’s already

fulfilled with the value 10:

intro/intro_ex05.js

​const​ promise = Promise.resolve(10);

promise.then((data) => {

 console.log(data); ​// ⇒ 10​

});

Here, we have a settled promise that represents only a known value.

This promise will never be in the rejected state, so adding a rejection

handler is pointless. To create a promise in the rejected state, we can

pass a value to the Promise.reject() method, like this:

intro/intro_ex06.js

​const​ promise = Promise.reject(​'Error!'​);

http://media.pragprog.com/titles/fkajs/code/intro/intro_ex05.js
http://media.pragprog.com/titles/fkajs/code/intro/intro_ex06.js

promise.then(​null​, (error) => {

 console.error(error); ​// ⇒ Error!​

});

This code creates a settled promise that’s rejected with a predefined

value. If we add a fulfillment handler to this code, it will never be

called.

Note that we won’t be covering testing or debugging extensively in

this book. Don’t forget to take advantage of these methods when

debugging your code.

Handling Rejection

There are two primary ways to handle a rejected promise. In the

previous example, we used the pattern then(fulfill, reject), but we can

also use the catch() method:

intro/intro_ex07.js

​const​ promise = Promise.reject(​'Error!'​);

promise.​catch​((error) => {

 console.error(error); ​// ⇒ Error!​

});

When chaining promises and an error occurs, the interpreter skips all

then() methods that follow and executes the first catch() method it can

find. Consider the following code:

intro/intro_ex08.js

​const​ promise = Promise.reject(​'Error!'​);

promise.then((value) => {

 ​// this won't be executed​

 console.log(​'Hi!'​);

}).then((value) => {

 ​// this won't be executed either​

http://media.pragprog.com/titles/fkajs/code/intro/intro_ex07.js
http://media.pragprog.com/titles/fkajs/code/intro/intro_ex08.js

}).​catch​((error) => {

 console.error(error);

});

​// logs:​

​// ⇒ Error!​

Here, we’ve used catch() to combine multiple rejection handlers into

one case at the end of the chain.

It’s important to understand that the pattern then(fulfill, reject) isn’t

always equivalent to then(fulfill).catch(reject). Using these patterns

interchangeably could potentially lead to an error. For example:

intro/intro_ex09.js

​const​ promise = Promise.resolve(10);

promise.then((result) => {

 ​throw​ ​new​ Error();

}, (error) => {

 ​// this won't be executed​

 console.error(​'An error occurred in the fulfillment

handler'​);

});

http://media.pragprog.com/titles/fkajs/code/intro/intro_ex09.js

​// logs:​

​// ⇒ Uncaught (in promise) Error​

The fulfillment handler in this code throws an error, but the rejection

handler isn’t executed. Switching to catch() can fix this problem:

intro/intro_ex10.js

​const​ promise = Promise.resolve(10);

promise.then((result) => {

 ​throw​ ​new​ Error();

}).​catch​((error) => {

 console.error(​'An error occurred in the fulfillment

handler'​);

});

​// logs:​

​// ⇒ An error occurred in the fulfillment handler​

The rejection handler in the then() method cannot handle errors that

occur in the fulfillment handler. You’d need to chain an additional then()

to do that or, better yet, use the catch() method.

http://media.pragprog.com/titles/fkajs/code/intro/intro_ex10.js

Managing Multiple Concurrent Promises

We can chain multiple promises to perform additional asynchronous

operations one after another. But what if we want to execute multiple

promises at the same time and react as soon as one or all of them

are settled? JavaScript provides the following methods for this

purpose:

Promise.race() – lets you know as soon as one of the given promises

either fulfills or rejects

Promise.allSettled() – lets you know when all of the given promises

either fulfill or reject

Promise.all() – lets you know as soon as one of the given promises

rejects or when all of them fulfill

Promise.any() – lets you know as soon as one of the given promises

fulfills or when none of them fulfills

Promise.race() and Promise.all() have been around since the introduction of

the promise object in ES2015, while Promise.allSettled() and Promise.any()

were introduced in ES2020 and ES2021, respectively. Later in the

book, we’ll learn how to take advantage of each of these methods in

our asynchronous programs. But before we do that, let’s look at an

important technique for processing data from external sources:

asynchronous iteration.

Copyright © 2021, The Pragmatic Bookshelf.

Chapter
1

Creating Custom Asynchronous
Iterators

Iterating over collections is one of the most common tasks in

programming. That’s why almost every new edition of ECMAScript

introduces features to improve the iteration capabilities of the

language. These new features make coding easier and more

efficient, and they allow you to perform tasks that would previously

require external libraries.

As a JavaScript developer, you’ll often work with synchronous data

like customer order information stored via in-memory lists. Iterators

give you a neat way to process them, allowing you to move through

the elements in the data structure. What about when you need to

process asynchronous data via web APIs, like stock prices?

Synchronous iterators cannot represent such data sources, so that’s

where you’ll need to use asynchronous iteration.

The process of asynchronous iteration is a bit like cooking pancakes

on a griddle. The first step is to heat a lightly oiled griddle. Then you

pour the batter onto the griddle, filling it up with pancakes. You wait

until the edges start to bubble, indicating they’re ready to flip. Each

pancake will be ready at a different time, depending on when you

poured the batter and how even the heat source is. You flip the

pancakes and take them off as they’re ready. So while preparing this

simple meal, in a sense, you are acting as an asynchronous iterator

function.

In this chapter, you’ll get aquainted with iterators and learn to create

your own custom iterators. Because sync and async iterators are

closely related, we’ll start with synchronous iterators. Then you’ll use

what you’ve learned to create async iterators.

Getting Ready

Iterators have been around since ES2015, so browser support is

solid. Following are the JavaScript features we’ll discuss in this

chapter along with some links to up-to-date sources for browser

support:

Async functions

for await...of loops

async and await keywords

In the Node environment, you’ll need a minimum Node version of 7.6.0

to use the async and await keywords and a minimum version of 10.0.0

to use for await...of. You can also use a Babel plugin to make use of the

features in older browsers or Node versions.

[2]

[3]

[4]

[5]

Creating a Custom Iterator

Collection objects (including Array, Set, and Map) come with built-in

iterators that allow us to navigate their values. So, we don’t have to

create our own iterators. But sometimes these objects don’t serve

our purpose. What if we want to customize the iteration behavior of

an object to return values backward or randomly? Or iterate over a

plain object or class, both being not iterable by default? In that case,

we’ll need to define our own Symbol.iterator.

Set and Map

ES2015 introduced two new data structures: Set and

Map. A Set is like an array, a collection of values, but it

can’t contain duplicates and the items cannot be

accessed individually. Instead, a Set provides methods

to iterate over its elements or assert if it contains a

value. A Map is similar to an object, mapping keys to

values, but provides more functionality in certain

Set and Map
situations. Maps are usually used as caches for storing

data, which then can be readily accessed when

needed.

Iterable or Iterator?

Iterable is an object that allows its values to be looped

over in a for...of construct. It does so by providing a

method whose key is Symbol.iterator. That method should

be able to produce any number of iterators. Iterator, on

the other hand, is an object that’s used to obtain the

values to be iterated.

Remember, to be classified as an iterable, an object must come with

a Symbol.iterator property and specify the return value for each

iteration. In the following example, we have a plain object that’s

iterable because we’ve defined an iterable protocol that allows us to

access the items of the object one at a time:

iterators/iterator_ex03.js

​const​ collection = {

 a: 10,

 b: 20,

 c: 30,

http://media.pragprog.com/titles/fkajs/code/iterators/iterator_ex03.js

 [Symbol.iterator]() {

 ​let​ i = 0;

 ​const​ values = Object.keys(​this​);

 ​return​ {

 next: () => {

 ​return​ {

 value: ​this​[values[i++]],

 done: i > values.length

 }

 }

 };

 }

};

​const​ iterator = collection[Symbol.iterator]();

console.log(iterator.next()); ​// ⇒ {value: 10, done:

false}​

console.log(iterator.next()); ​// ⇒ {value: 20, done:

false}​

console.log(iterator.next()); ​// ⇒ {value: 30, done:

false}​

console.log(iterator.next()); ​// ⇒ {value: undefined,

done: true}​

The next() method returns the iteration result of the object. This

method always returns an object with two properties: value and done.

The value property holds the value returned by the iterator. And the

done property holds a Boolean value, which is set to true only when

there is no more value to return.

We need a way to keep track of the values we want to return, so we

define a counter variable with the initial value of 0. To define the return

value, we use Object.keys(), which obtains an array of the object’s

property names. Now if we call collection[Symbol.iterator](), it returns an

object containing a next() method. And with each call to next(), the

method returns a {value, done} pair.

Using next() isn’t the only way to iterate over iterable objects. The

for...of statement lets us create a loop and easily repeat the same

function on iterable objects. for...of works better if we want to quickly

get the values of all items in the object. next(), on the other hand, is

more verbose but allows us to see what’s happening in each iteration.

Let’s rewrite this example using for...of to simplify the code:

iterators/iterator_ex03_with_for-of.js

​ ​const​ collection = {

​ a: 10,

​ b: 20,

​ c: 30,

http://media.pragprog.com/titles/fkajs/code/iterators/iterator_ex03_with_for-of.js

​ [Symbol.iterator]() {

​ ​let​ i = 0;

​ ​const​ values = Object.keys(​this​);

​ ​return​ {

​ next: () => {

​ ​return​ {

​ value: ​this​[values[i++]],

​ done: i > values.length

​ }

​ }

​ };

​ }

​ };

​

»​for​ (​const​ value ​of​ collection) {

» console.log(value);

»}

​

​ ​// logs:​

​ ​// ⇒ 10​

​ ​// ⇒ 20​

​ ​// ⇒ 30​

[Symbol.iterator]() works like any other method except that it’s

automatically called if we use for...of on the object. The following

image shows how for...of works behind the scenes:

The iterator object is designed to maintain an internal pointer to a

position in the items; and each time through the loop, it gives the

succeeding value.

Now, what happens when we use for...of to iterate over a native object

that’s already iterable, like an array? Calling [Symbol.iterator]() on an

array will return the result of the values() method because that’s the

default iterator of arrays.

While values() is the default iterator of sets and arrays, entries() is the

default iterator of maps. An object may have several iterators, such

as keys(), values(), and entries(), but only one of them serves as the

default iterator. Built-in iterators make it possible to iterate over

collection objects easily, and custom iterators allow us to define or

customize the iteration behavior of objects. But if we want to work

with asynchronous sources, we’ll need to create custom

asynchronous iterators.

Creating a Custom Asynchronous Iterator

Suppose we want a function that retrieves several URLs and

processes the result of each URL separately before moving on to the

next. In other words, we want to retrieve and parse the URLs

asynchronously, but not the results. That’s one scenario where an

asynchronous iterator is useful.

An asynchronous iterator is very similar to a regular non-async

iterator except that its next() method returns a promise rather than a

plain object. Thus, instead of immediately returning the result, the

promise will provide the value (or failure reason) at some point in the

future (like the griddle from our opening analogy, which yields a

pancake at some point).

An object is classified as asynchronous iterable when it has a

Symbol.asyncIterator method that returns an asynchronous iterator.

Without further ado, let’s look at a simple example of an async

iterable object:

iterators/iterator_ex04.js

​1: ​const​ collection = {

​- a: 10,

​- b: 20,

​- c: 30,

http://media.pragprog.com/titles/fkajs/code/iterators/iterator_ex04.js

​5: [Symbol.asyncIterator]() {

​- ​const​ keys = Object.keys(​this​);

​- ​let​ i = 0;

​- ​return​ {

​- next: () => {

10: ​return​ ​new​ Promise((resolve, reject) => {

​- setTimeout(() => {

​- resolve({

​- value: ​this​[keys[i++]],

​- done: i > keys.length

15: });

​- }, 1000);

​- });

​- }

​- };

20: }

​- };

​-

​- ​const​ iterator = collection[Symbol.asyncIterator]();

​-

25: iterator.next().then(result => {

​- console.log(result); ​// ⇒ {value: 10, done:

false}​

​- });

​-

​- iterator.next().then(result => {

30: console.log(result); ​// ⇒ {value: 20, done:

false}​

​- });

​-

​- iterator.next().then(result => {

​- console.log(result); ​// ⇒ {value: 30, done:

false}​

35: });

​-

​- iterator.next().then(result => {

​- console.log(result); ​// ⇒ {value: undefined,

done: true}​

​- });

Typically, a sync iterator returns an object containing a next() method.

With each call to next(), a {value, done} pair is returned with the value

property containing the yielded value. Similarly, an async iterator

returns an object containing a next() method. But rather than a plain

object, next() returns a promise (line 10) that fulfills to {value, done}.

For the sake of simplicity, we’ve used the setTimeout() method to

resolve the promise after one second. But in a real-world example

we’re more likely to make a call to an API and wait for a response.

Retrieving URLs Separately

Let’s look at a more concrete example. Remember the use case in ​

Creating a Custom Asynchronous Iterator​, for an asynchronous

iterator that retrieves several URLs and processes them separately?

Here’s how we can implement it:

iterators/iterator_ex05.js

​1: ​const​ srcArr = [

​- ​'https://eloux.com/async_js/examples/1.json'​,

​- ​'https://eloux.com/async_js/examples/2.json'​,

​- ​'https://eloux.com/async_js/examples/3.json'​,

​5:];

​-

​- srcArr[Symbol.asyncIterator] = ​function​() {

​- ​let​ i = 0;

​- ​return​ {

10: ​async​ next() {

​- ​if​ (i === srcArr.length) {

​- ​return​ {

​- done: ​true​

​- };

15: }

​- ​const​ url = srcArr[i++];

​- ​const​ response = ​await​ fetch(url);

http://media.pragprog.com/titles/fkajs/code/iterators/iterator_ex05.js

​- ​if​ (!response.ok) {

​- ​throw​ ​new​ Error(​'Unable to retrieve URL: '​ +

url);

20: }

​- ​return​ {

​- value: ​await​ response.json(),

​- done: ​false​

​- };

25: }

​- };

​- };

​-

​- ​const​ iterator = srcArr[Symbol.asyncIterator]();

30:

​- iterator.next().then(result => {

​- console.log(result.value.firstName); ​// ⇒ John​

​- });

​-

35: iterator.next().then(result => {

​- console.log(result.value.firstName); ​// ⇒ Peter​

​- });

​-

​- iterator.next().then(result => {

40: console.log(result.value.firstName); ​// ⇒ Anna​

​- });

We begin with replacing the default iterator of srcArr (line 7). By

assigning a new function to the Symbol.asyncIterator property of the

array, we can define our custom iterator. Within the function, we

create a counter variable to keep track of the array index. Then we

return an object containing an async next() method.

It’s essential to use the async keyword here so that the function

returns a promise each time it’s called. Line 11 checks whether the

end of array has been reached by comparing the value of the counter

variable to the length of the array. If that’s true, there’s no point in

continuing the iteration.

It’s also important to ensure the response was successful (status in

the range 200–299) before proceeding further. Check the value of

response.ok (line 18). If it doesn’t have a value of true, then there’s been

an error fetching the URL.

Async iterators are invaluable tools when working with web APIs.

Often, the data can only be retrieved in the form of stream or

pagination. Iterators make it possible to gracefully obtain the amount

of data we need and process them. We’ll see an example of this in

the next chapter where we write a function to retrieve a specified

number of commits from the GitHub API.

Now that you have a foundation in the mechanics of iterators, let’s

find out how to quickly loop over their items.

Iterating over Async Iterables with for…
await…of

In the previous example, we called the [Symbol.asyncIterator]() of the

iterable to get an iterator object and called its next() method to

resume the execution of the iterator. But sometimes we want a more

straightforward way of accessing the items of an async iterable. We

want to quickly get the result of all promises and terminate the loop

automatically once the done property has a value of true.

The for..of loop does allow you to loop over iterable objects, but it

doesn’t work with asynchronous iterables (returns undefined). ES2018

introduced for...await...of as a variant of for...of that can iterate over both

sync and async iterables.

To see this statement in action, let’s look at this rewritten version of

the previous example. Notice how for...await...of saves lines of code by

executing the same statement for the value of each property:

iterators/iterator_ex06.js

​ ​const​ srcArr = [

​ ​'https://eloux.com/async_js/examples/1.json'​,

​ ​'https://eloux.com/async_js/examples/2.json'​,

​ ​'https://eloux.com/async_js/examples/3.json'​,

​];

http://media.pragprog.com/titles/fkajs/code/iterators/iterator_ex06.js

​

​ srcArr[Symbol.asyncIterator] = ​function​() {

​ ​let​ i = 0;

​ ​return​ {

​ ​async​ next() {

​ ​if​ (i === srcArr.length) {

​ ​return​ {

​ done: ​true​

​ };

​ }

​ ​const​ url = srcArr[i++];

​ ​const​ response = ​await​ fetch(url);

​ ​if​ (!response.ok) {

​ ​throw​ ​new​ Error(​'Unable to retrieve URL: '​ +

url);

​ }

​ ​return​ {

​ value: ​await​ response.json(),

​ done: ​false​

​ };

​ }

​ };

​ };

​

»(​async​ ​function​() {

» ​for​ ​await​ (​const​ url ​of​ srcArr) {

» console.log(url.firstName);

» }

»})();

​

​ ​// logs:​

​ ​// ⇒ John​

​ ​// ⇒ Peter​

​ ​// ⇒ Anna​

When we run this code, the JavaScript engine executes the

Symbol.asyncIterator method of the object to obtain an asynchronous

iterator. With each iteration of the loop, the iterator executes the next()

method and returns a promise (this happens behind the scenes). As

soon as the promise is fulfilled, the value of the value property is

assigned to url. As with for...of, the loop will continue until done has a

value of true.

Because we can use for...await...of only inside asynchronous functions

and generators, we’ve wrapped the statement in an IIFE

(immediately invoked function expression). Otherwise, the code would

throw a SyntaxError.

It’s a common practice to enclose for...await...of in a try...catch statement.

This way when a promise rejects, we can gracefully handle the

rejection:

iterators/iterator_ex07.js

​const​ collection = {

 [Symbol.asyncIterator]() {

 ​return​ {

 next: () => {

 ​return​ Promise.reject(​new​ Error(​'Something

went wrong.'​))

 }

 };

 }

};

(​async​ ​function​() {

 ​try​ {

 ​for​ ​await​ (​const​ value ​of​ collection) {}

 } ​catch​ (error) {

 console.error(​'Caught: '​ + error.message);

 }

})();

​// logs:​

http://media.pragprog.com/titles/fkajs/code/iterators/iterator_ex07.js

​// ⇒ Caught: Something went wrong.​

This iterator returns a Promise object that is rejected. Without

try...catch, we would see an Uncaught (in promise) Error in the browser’s

console. The try...catch statement allows us to specify a response

should an exception be thrown.

The for...await...of statement provides a convenient, concise way of

accessing the items of an async iterable. By wrapping it in a try...catch

statement, we have the ability to handle promise rejections the way

we want.

To Infinity and Beyond!

An interesting aspect of iterators is that they are infinite.

For instance, you may have a Fibonacci iterator that

delivers an infinite sequence.

Detecting Whether an Object Is Iterable

So far we’ve been working with iterable objects that we “own.”

Before iterating over an object that we haven’t created, it’s important

to ensure that the object is iterable; otherwise, the code may throw a

TypeError:

iterators/iterator_ex08.js

​// a plain object​

​const​ collection = {

 a: 10,

 b: 20,

 c: 30

};

​for​ (​let​ value ​of​ collection) { ​// ⇒ TypeError:

collection is not iterable​

 console.log(value);

}

Detecting whether an object is iterable isn’t complicated: check for

the existence of [Symbol.iterator] on the object and ensure it’s a function

(the for...of construct performs a similar check before execution):

iterators/iterator_ex09.js

http://media.pragprog.com/titles/fkajs/code/iterators/iterator_ex08.js
http://media.pragprog.com/titles/fkajs/code/iterators/iterator_ex09.js

​function​ isIterable(object) {

 ​return​ ​typeof​ object[Symbol.iterator] === ​"function"​

;

}

console.log(isIterable({a: 10, b: 20})); ​// ⇒ false​

console.log(isIterable(123)); ​// ⇒ false​

console.log(isIterable(​"abc"​)); ​// ⇒ true​

console.log(isIterable([10, 20, 30])); ​// ⇒ true​

The process of detecting async iterables is almost the same, except

that you’ll need to look for [Symbol.asyncIterator] on the object like this:

iterators/iterator_ex10.js

​const​ collection = {

 [Symbol.asyncIterator]: ​async​ ​function​() {

 ​// ...​

 }

};

​function​ isAsyncIterable(object) {

 ​return​ ​typeof​ object[Symbol.asyncIterator] === ​

"function"​;

}

http://media.pragprog.com/titles/fkajs/code/iterators/iterator_ex10.js

console.log(isAsyncIterable(collection)); ​// ⇒ true​

When working with objects originating from external sources, you

might expect that they will always remain in a certain shape. But

writing your code based on this assumption is a recipe for error.

Before using the objects you haven’t created, always ensure they

have the property/method you’re looking for.

[2]

[3]

[4]

[5]

Wrapping Up

‘Symbol.iterator‘ and ‘Symbol.asyncIterator‘ are the cornerstone of

iterables, and you can take advantage of them to create custom

iterators. Custom iterators allow you to define or customize the

iteration behavior of JavaScript objects. You can’t use ‘for...of‘ to

iterate over async iterables; instead you should use ‘for...await...of‘.

Next up, we’ll work with generator functions to enhance your

JavaScript code.

FOOTNOTES

https://caniuse.com/async-functions

https://caniuse.com/mdn-javascript_statements_for_await_of

https://caniuse.com/mdn-javascript_operators_await

https://babeljs.io/docs/en/babel-plugin-proposal-async-generator-functions

Copyright © 2021, The Pragmatic Bookshelf.

https://caniuse.com/async-functions
https://caniuse.com/mdn-javascript_statements_for_await_of
https://caniuse.com/mdn-javascript_operators_await
https://babeljs.io/docs/en/babel-plugin-proposal-async-generator-functions

Chapter
2

Enhancing Custom Iterators
with Generators

Custom iterators are powerful tools that allow us to define how an

object should be navigated. However, they require meticulous

programming to maintain their internal state. What if you want a quick

way of defining an iterator without going through the hassle of

implementing the iterable protocol? Luckily, JavaScript provides

generator functions as a shortcut to create iterators.

Every generator function is an iterator, but the opposite is not true.

You may want to define a custom iterator protocol directly when you

need an object with complicated state-maintaining behavior or you

want to provide other methods besides next(). But in most other

cases, you are best suited to define a generator that returns an

iterator because state maintenance is mainly done for you.

In this chapter, we’ll cover how synchronous and asynchronous

generators work by adapting the examples from the previous chapter.

Then we’ll look at a real-world example so you can see for yourself

where asynchronous generators are useful.

Getting Ready

As with iterators, generator functions have been available since

ES2015 and browser support is solid. In the Node environment,

you’ll need a minimum Node version of 4.0.0. And if you want to use

generators in older browsers or Node versions, you can use a Babel

plugin.

[6]

[7]

Using a Generator to Define a Custom
Iterator

Generator functions enhance the process of defining the iterable

protocol by providing an iterative algorithm. When called, a generator

function doesn’t execute its body immediately. Instead, it returns a

special type of iterator known as a generator object, as shown in the

following image.

We can run the generator function’s body by calling its next() method.

The yield keyword pauses the generator and specifies the value to be

returned. With that in mind, let’s adapt the example in ​Creating a

Custom Iterator​. The result of this code is identical, but it’s much

easier to implement.

Notice the asterisk following the function keyword at line 5. This is our

generator function and defines a custom iterator for collection:

generators/gen_ex01.js

​1: ​const​ collection = {

​- a: 10,

​- b: 20,

​- c: 30,

​5: [Symbol.iterator]: ​function​*() {

​- ​for​ (​let​ key ​in​ ​this​) {

​- ​yield​ ​this​[key];

​- }

​- }

10: };

​-

​- ​const​ iterator = collection[Symbol.iterator]();

​-

​- console.log(iterator.next()); ​// ⇒ {value: 10,

done: false}​

15: console.log(iterator.next()); ​// ⇒ {value: 20,

done: false}​

​- console.log(iterator.next()); ​// ⇒ {value: 30,

http://media.pragprog.com/titles/fkajs/code/generators/gen_ex01.js

done: false}​

​- console.log(iterator.next()); ​// ⇒ {value:

undefined, done: true}​

We’ve used a for...in loop inside the generator to iterate over the

object’s properties. With each iteration, the yield keyword halts the

loop’s execution and returns the value of the succeeding property to

the caller.

It’s possible to call a generator function as many times as needed,

and each time it returns a new generator object. But a generator

object can be iterated only once. Since the object returned by a

generator is always an iterator, we can use the for...of syntax to

iterate over the result as well.

Now that we know how synchronous generators work, we’re ready to

look at its asynchronous counterpart.

Creating an Asynchronous Generator

An async generator is similar to a sync generator in that calling next()

resumes the execution of the generator until reaching the yield

keyword. But rather than returning a plain object, next() returns a

promise.

You can think of an async generator as a combination of an async

function and a generator function. Let’s rewrite the example from ​

Retrieving URLs Separately​, using a generator function. Notice the

async keyword and the asterisk symbol (*) at line 7 indicating an

asynchronous generator function:

generators/gen_ex02.js

​1: ​const​ srcArr = [

​- ​'https://eloux.com/async_js/examples/1.json'​,

​- ​'https://eloux.com/async_js/examples/2.json'​,

​- ​'https://eloux.com/async_js/examples/3.json'​,

​5:];

​-

​- srcArr[Symbol.asyncIterator] = ​async​ ​function​*() {

​- ​let​ i = 0;

​- ​for​ (​const​ url ​of​ ​this​) {

10: ​const​ response = ​await​ fetch(url);

​- ​if​ (!response.ok) {

http://media.pragprog.com/titles/fkajs/code/generators/gen_ex02.js

​- ​throw​ ​new​ Error(​'Unable to retrieve URL: '​ +

response.status);

​- }

​- ​yield​ response.json();

15: }

​- };

​-

​- ​const​ iterator = srcArr[Symbol.asyncIterator]();

​-

20: iterator.next().then(result => {

​- console.log(result.value.firstName); ​// ⇒ John​

​- });

​-

​- iterator.next().then(result => {

25: console.log(result.value.firstName); ​// ⇒ Peter​

​- });

​-

​- iterator.next().then(result => {

​- console.log(result.value.firstName); ​// ⇒ Anna​

30: });

Within this generator, we’ve used the await keyword to wait for the

fetch operation to complete. As with non-async generator functions,

yield returns the result to the function’s caller. Notice how this

asynchronous generator simplifies the process of defining the

asynchronous iterable protocol. It’s not only easier to write but also

less error-prone.

In production, you’ll also want to use catch() to handle errors and

rejected cases during the iteration. A well-designed program should

be able to recover from common errors without terminating the

application. You can chain a catch() method the same way as its sister

method then(). For example:

iterator.next()

 .then(result => {

 console.log(result.value.firstName);

 })

 .​catch​(error => {

 console.error(​'Caught: '​ + error.message);

 });

If an error occurs, catch() will be executed with the rejection reason

passed as its argument. Now let’s look at a more complex example of

an async generator.

Iterating over Paginated Data

One situation we want to use asynchronous iteration over

synchronous is when working with web APIs that provide paginated

data. By using an asynchronous iterator, we can seamlessly make

multiple network requests and iterate over the results. For example,

GitHub provides an API that allows us to retrieve commits for a

repository. The response is in JSON format and contains the data for

the last 30 commits of the repository. The API will also provide

pagination link headers for the remaining commits.

Say we want to retrieve info for the last 90 commits of a particular

GitHub repository. We can achieve that using an asynchronous

iterator or, better yet, a generator. Let’s create an asynchronous

generator and program it to handle the pagination:

generators/gen_ex03.js

​1: ​// create an async generator function​

​- ​async​ ​function​* generator(repo) {

​-

​- ​// create an infinite loop​

​5: ​for​ (;;) {

​-

​- ​// fetch the repo​

​- ​const​ response = ​await​ fetch(repo);

http://media.pragprog.com/titles/fkajs/code/generators/gen_ex03.js

​-

10: ​// parse the body text as JSON​

​- ​const​ data = ​await​ response.json();

​-

​- ​// yield the info of each commit​

​- ​for​ (​let​ commit ​of​ data) {

15: ​yield​ commit;

​- }

​-

​- ​// extract the URL of the next page from the

headers​

​- ​const​ link = response.headers.​get​(​'Link'​);

20: repo = ​/<​​(​​.*​​?)​​>; rel="next"/​.exec(link)?. [1];

​-

​- ​// if there's no "next page", break the loop.​

​- ​if​ (repo === ​undefined​) {

​- ​break​;

25: }

​- }

​- }

​-

​- ​async​ ​function​ getCommits(repo) {

30:

​- ​// set a counter​

​- ​let​ i = 0;

​-

​- ​for​ ​await​ (​const​ commit ​of​ generator(repo)) {

35:

​- ​// process the commit​

​- console.log(commit);

​-

​- ​// break at 90 commits​

40: ​if​ (++i === 90) {

​- ​break​;

​- }

​- }

​- }

45:

​- getCommits(​'https://api.github.com/repos/tc39/proposa

temporal/commits'​);

Here, we’ve created two async functions, one of which is a generator.

The generator function is responsible for retrieving the resource,

parsing it as JSON, and sending the info of each commit to the

generator’s caller.

In order to fetch the last 90 commits, not just 30, we put these tasks

in a loop within the generator. And each time through the loop, we

fetch the next batch of commits. The expression

response.headers.get(’Link’) at line 19 extracts the URL of the next page

from the headers and assigns it to the repo variable so that we can

access the new URL in the next loop.

If there’s no “next page” in the headers, that means there are no

more commits to fetch, so we break the loop (line 24).

Within the getCommits() function, we define a counter variable to keep

track of the number of fetched commits. When the number reaches

90, we stop calling the generator (line 40). The takeaway from this

example is that asynchronous generators allow us to smoothly and

continuously make several network requests and iterate over the

results.

Another interesting use case for asynchronous generator would be

fetching images from a photo sharing website like Flickr. The Flickr

API provides an endpoint for fetching images based on given

keywords. Say you want to create a program that retrieves and

processes photos taken in London. Since there are millions of photos

of London on Flickr, the API cannot return them all at once. Instead, it

returns photos in batches of 100. With an async generator function,

you can fetch and navigate the batches asynchronously. Using an

async generator would also open up the possibility to seamlessly

aggregate photos from several sources.

[8]

[6]

[7]

[8]

Wrapping Up

Generators enhance the process of creating iterables by providing an

iterative algorithm. An async generator is similar to a sync generator

except that it returns a promise rather than a plain object. Use a

generator function when you don’t want to manipulate the state-

maintaining behavior of the object.

Armed with the foundation of asynchronous iterators and generators,

you can now make more powerful asynchronous programs. Up next,

you’ll get the result of multiple promises that are not dependent on

each other by using the ES2020 Promise.allSettled() method.

FOOTNOTES

https://caniuse.com/es6-generators

https://babeljs.io/docs/en/babel-plugin-proposal-async-generator-functions#installation

https://www.flickr.com/services/api/flickr.photos.search.htm

Copyright © 2021, The Pragmatic Bookshelf.

https://caniuse.com/es6-generators
https://babeljs.io/docs/en/babel-plugin-proposal-async-generator-functions#installation
https://www.flickr.com/services/api/flickr.photos.search.htm

Chapter
3

Fetching Multiple Resources

Suppose you want to take an action after multiple async requests

have completed, regardless of their success or failure. For example,

you need to obtain data from four separate web APIs and process

the result, but there might be a network error for a resource that you

can live without. The Promise.all() method isn’t suitable for this task

because a single network error will cause the method to reject

immediately.

Fortunately, ECMAScript provides a newer tool that’s designed to

report the outcome of all requests: Promise.allSettled(). With this

method, we can track the state of multiple promises without letting

any promise spoil the result of others. We’ll start this chapter by

examining a common async task: executing multiple promises and

handling the result. Once you’ve learned about potential pitfalls, we’ll

look at the Promise.allSettled() method and see how it compares to

Promise.all().

Getting Ready

Although Promise.allSettled() is relatively new, all modern browsers

already support it. But before running the examples in older

browsers, you’ll want to ensure the browser supports it. In the

Node environment, you’ll need a minimum Node version of 12.9.0. You

can also use a Babel plugin to make use of the feature in older

browsers or Node versions.

[9]

[10]

Executing Multiple Promises

When creating complex JavaScript applications, you’ll inevitably

encounter circumstances where you need to execute multiple

promises. Say you have an async function that retrieves a blog post,

like this:

promise.allSettled/tracking_promises_ex01.js

​async​ ​function​ getPost(id = 1) {

 ​try​ {

 ​return​ ​await​ Utility.loadPost(id);

 } ​catch​ (error) {

 ​// handle error​

 }

}

This code works great to retrieve a single blog post. But what if you

need to retrieve multiple posts? Easy! Create a loop to get the posts

you desire:

promise.allSettled/tracking_promises_ex02.js

​const​ postIds = [​'1'​, ​'2'​, ​'3'​, ​'4'​];

postIds.forEach(​async​ id => {

 ​const​ post = ​await​ getPost(id);

http://media.pragprog.com/titles/fkajs/code/promise.allSettled/tracking_promises_ex01.js
http://media.pragprog.com/titles/fkajs/code/promise.allSettled/tracking_promises_ex02.js

 ​// process the post​

})

But there’s a problem here: the await keyword will pause the loop until

it gets a response from getPost(). In other words, this code will load

the posts sequentially rather than making multiple requests at the

same time.

One way to fix this issue is to use the Promise.all() method. Promise.all()

returns a single promise that resolves once all the promises in the

iterable have resolved:

promise.allSettled/tracking_promises_ex03.js

​const​ postIds = [​'1'​, ​'2'​, ​'3'​, ​'4'​];

​const​ promises = postIds.map(​async​ (id) => {

 ​return​ ​await​ getPost(id);

});

​const​ arr = Promise.all(promises);

But there’s a catch here, too! If one of the promises in the iterable

rejects, Promise.all() immediately rejects, causing every other post not

http://media.pragprog.com/titles/fkajs/code/promise.allSettled/tracking_promises_ex03.js

to load. It’s not fair to honest objects who have kept their promise,

right?

Until fairly recently, JavaScript didn’t provide a built-in method to wait

for all promises to settle (either fulfilled or rejected). Fortunately,

ES2020 is here to change that by introducing the Promise.allSettled()

method. With this method, we can get the result of all promises

passed to the method.

Using Promise.allSettled() to Fetch Multiple
Resources

The Promise.allSettled() method returns a pending promise that resolves

when all of the given promises have either successfully fulfilled or

rejected (“settled,” in other words). This behavior is very useful to

track multiple asynchronous tasks that are not dependent on one

another to complete.

The following image shows how the Promise.allSettled() method resolves

a pending promise:

In the following example, we attempt to fetch three resources, one of

which doesn’t exist. Notice how Promise.allSettled() reports the result of

every promise:

promise.allSettled/tracking_promises_ex04.js

​const​ promises = [

 fetch(​'https://picsum.photos/200'​, {mode: ​"no-cors"​

}),

 fetch(​'https://does-not-exist'​, {mode: ​"no-cors"​}),

 fetch(​'https://picsum.photos/100/200'​, {mode: ​"no-

cors"​})

];

Promise.allSettled(promises).

 then((results) => results.forEach((result) =>

console.log(result)));

​// logs:​

​// => { status: "fulfilled", value: Response }​

​// => { status: "rejected", reason: TypeError }​

​// => { status: "fulfilled", value: Response }​

Rather than immediately rejecting when one of the promises fails,

Promise.allSettled() waits until they all have completed.

http://media.pragprog.com/titles/fkajs/code/promise.allSettled/tracking_promises_ex04.js

Notice how the result of all promises is passed as an array to then()

and how they are in the same order as the iterable that was given

even though they settled out of order. The outcome of each promise

has a status property, indicating whether the promise has fulfilled.

When a promise is rejected, the result won’t have a value property.

Instead, it has a reason property containing the rejection reason.

Keep in mind that the promise returned by Promise.allSettled() will almost

always be fulfilled. The promise will reject if and only if we pass a

value that’s not iterable, such as a plain object.

Let’s look at the rewritten version of this code, this time with the

Promise.all() method:

promise.allSettled/tracking_promises_ex05.js

​const​ promises = [

 fetch(​'https://picsum.photos/200'​, {mode: ​"no-cors"​

}),

 fetch(​'https://does-not-exist'​, {mode: ​"no-cors"​}),

 fetch(​'https://picsum.photos/100/200'​, {mode: ​"no-

cors"​})

];

Promise.all(promises).

 then((results) => results.forEach((result) =>

http://media.pragprog.com/titles/fkajs/code/promise.allSettled/tracking_promises_ex05.js

console.log(result)));

​// logs:​

​// => Uncaught (in promise) TypeError: Failed to fetch​

This time, the promise rejects immediately upon the second input

promise rejecting. One important difference between these two

methods is that Promise.allSettled() has an extra property that Promise.all()

doesn’t: status. In fact, Promise.all() returns the raw value that

Promise.allSettled() tucks into its resulting object. Compare:

promise.allSettled/tracking_promises_ex06.js

​const​ promises = [

 Promise.resolve(1),

 Promise.resolve(2)

];

Promise.allSettled(promises).

 then((results) => results.forEach((result) =>

console.log(result)));

​// logs:​

​// => { status: "fulfilled", value: 1 }​

​// => { status: "fulfilled", value: 2 }​

http://media.pragprog.com/titles/fkajs/code/promise.allSettled/tracking_promises_ex06.js

Promise.all(promises).

 then((results) => results.forEach((result) =>

console.log(result)));

​// logs:​

​// => 1​

​// => 2​

Notice how Promise.all() directly returns the response. If you’re in an old

JavaScript environment that doesn’t support Promise.allSettled() or if

you’d like to directly return the promises, there’s a simple workaround

for you. Consider the following code:

promise.allSettled/tracking_promises_ex07.js

​const​ promises = [

 fetch(​'https://picsum.photos/200'​, {mode: ​"no-cors"​

}),

 fetch(​'https://does-not-exist'​, {mode: ​"no-cors"​}),

 fetch(​'https://picsum.photos/100/200'​, {mode: ​"no-

cors"​})

].map(p => p.​catch​(e => e));

Promise.all(promises).

 then((results) => results.forEach((result) =>

console.log(result)));

http://media.pragprog.com/titles/fkajs/code/promise.allSettled/tracking_promises_ex07.js

Here, we’ve applied the map() method to an iterable of promises.

Within the method, we use catch() to return promises that resolve with

an error value. This way, we can simulate the behavior of

Promise.allSettled() while being able to directly access the result of

promises.

Often, we use Promise.all() and Promise.allSettled() with similar types of

requests, but there’s no written rule that we should. You may find

yourself in a situation where you need to read a local file, retrieve a

JSON document from a web API, and load an XML document from

another API. Once you obtain data from all three async requests, you

want to process them. Promise.all() and Promise.allSettled() are ideal for

such scenarios.

Keep in mind that you will want to use these methods only when you

need to process the result of multiple async requests together. If it’s

possible to process the result of each async request individually, then

handle each promise with its own then() handler. This way, you can

execute your code as soon as each promise is resolved.

[9]

Wrapping Up

In this chapter, we looked at potential pitfalls when executing multiple

promises at the same time. We learned why looping over

asynchronous tasks could be a bad idea because it will cause the

promises to run sequentially. Then we learned about the

Promise.allSettled() method and compared it to Promise.all().

While Promise.all() is very strict in its execution policy, Promise.allSettled()

is forgiving. That doesn’t mean Promise.allSettled() is superior to

Promise.all(): they complement each other. Using Promise.all() is more

appropriate when you have essential async tasks that are dependent

on each other. On the other hand, Promise.allSettled() is more suitable

for async tasks that might fail but are not essential for your program

to function.

As of ES2021, the ECMAScript standard includes one more method

for the promise object: Promise.any(). This method is the opposite of

Promise.all(). In the next chapter, we’re going to learn how Promise.any()

can help you when you need to focus on the promise that resolves

first.

FOOTNOTES

https://caniuse.com/mdn-javascript_builtins_promise_allsettled

https://caniuse.com/mdn-javascript_builtins_promise_allsettled

[10]https://www.npmjs.com/package/babel-plugin-polyfill-es-shims

Copyright © 2021, The Pragmatic Bookshelf.

https://www.npmjs.com/package/babel-plugin-polyfill-es-shims

Chapter
4

Improving Reliability and
Performance

Nobody likes slow applications. As a programmer, you want to

always strive to build apps that provide a snappy user experience.

But what’s more important is designing apps that are able to recover

quickly from difficult conditions. When working with web APIs, for

instance, you need to be prepared for server downtime. How would

your application react if it couldn’t reach a server?

Building apps that are responsive and reliable should be at the top of

the list of every developer. ES2021 Promise.any() is a recent addition to

ECMAScript that helps us achieve both of these goals at the same

time. We can protect our app from potential API downtimes by

making network requests to multiple APIs asynchronously and using

the result of the one that’s accessible. What’s more, we can improve

the performance of critical application services by using the API that

responds first.

We’ll start this chapter by looking at how Promise.any() works. Once

you get the hang of it, the next step is to learn how to make our app

resilient against API issues and enhance its performance.

Getting Ready

The Promise.any() method is a newcomer to the ECMAScript standard,

so before running the examples, you’ll want to ensure your browser

supports it. In the Node environment, you’ll need a minimum Node

version of 15.0.0. You can also use a Babel plugin to make use of the

feature in older browsers or Node versions.

[11]

[12]

Using the Promise.any() Method

Promise.any() returns a pending promise that resolves asynchronously

as soon as one of the promises in the given iterable fulfills. All right,

let’s execute the following code and see what happens:

promise.any/promise.any_ex01.js

​const​ promises = [

 Promise.reject(​new​ Error(​'failure #1'​)),

 Promise.reject(​new​ Error(​'failure #2'​)),

 Promise.resolve(​'YES!'​)

];

Promise.any(promises).

 then((result) => console.log(result));

​// logs:​

​// => YES!​

Here we have an array of three promise objects passed to

Promise.any(). Because Promise.resolve() returns a promise that’s already

fulfilled, the promise returned by Promise.any() is immediately fulfilled

with the given value.

But what happens if all input promises reject?

http://media.pragprog.com/titles/fkajs/code/promise.any/promise.any_ex01.js

promise.any/promise.any_ex02.js

​const​ promises = [

 Promise.reject(​new​ Error(​'failure #1'​)),

 Promise.reject(​new​ Error(​'failure #2'​)),

 Promise.reject(​new​ Error(​'failure #3'​))

];

Promise.any(promises).then(

 (result) => {console.log(result)},

 (error) => {console.error(error)}

);

​// logs:​

​// => AggregateError: No Promise in Promise.any was

resolved​

The AggregateError object wraps all the rejection reasons of all the

input promises in a single error, and we can read them using the errors

property. Edit line 9 of the preceding code and replace

console.error(error) with console.error(error.errors), like this:

promise.any/promise.any_ex03.js

​ ​const​ promises = [

​ Promise.reject(​new​ Error(​'failure #1'​)),

​ Promise.reject(​new​ Error(​'failure #2'​)),

http://media.pragprog.com/titles/fkajs/code/promise.any/promise.any_ex02.js
http://media.pragprog.com/titles/fkajs/code/promise.any/promise.any_ex03.js

​ Promise.reject(​new​ Error(​'failure #3'​))

​];

​

»Promise.any(promises).then(

» (result) => {console.log(result)},

» (error) => {console.error(error.errors)}

»);

You should see a message like this in your browser’s console

showing all the rejection reasons we’ve specified in the input

promises:

Only one other case causes Promise.any() to reject: passing an iterable

that’s empty. Here’s an example:

promise.any/promise.any_ex04.js

Promise.any([]).then(

 (result) => {console.log(result)},

 (error) => {console.log(error)}

);

​// logs:​

http://media.pragprog.com/titles/fkajs/code/promise.any/promise.any_ex04.js

​// => AggregateError: No Promise in Promise.any was

resolved​

Notice the empty array at line 1 that causes Promise.any() to reject. The

error message is exactly the same as when all promises reject, which

is something to be wary of because you don’t want to misunderstand

the reason for the failure.

Now that you know how the Promise.any() method works, it’s time to

look at some real-world examples. Up next, we’re going to learn how

to take advantage of this method to make our app more resilient.

Avoiding the Single Point of Failure

A single point of failure (SPOF) is a component of a system that with

just one malfunction or fault will stop the entire system from working.

If you want to have a reliable application, you should be able to

identify and avoid potential SPOFs in the system.

A common SPOF in web applications occurs when fetching critical

resources, such as data for financial markets, from external APIs. If

the API is inaccessible, the app will stop working. The Promise.any()

method is extremely useful in this regard. It enables us to request

data from multiple APIs and use the result of the first successful

promise.

Let’s look at an example. In the following code, we have an array

containing the URL of two APIs, both of which return the same info.

Promise.any() will attempt to fetch the two URLs at the same time; so

as long as one of the APIs is available, the code works fine:

promise.any/promise.any_ex05.js

​const​ apis = [

 ​'https://eloux.com/todos/1'​,

 ​'https://jsonplaceholder.typicode.com/todos/1'​

];

http://media.pragprog.com/titles/fkajs/code/promise.any/promise.any_ex05.js

​async​ ​function​ fetchData(api) {

 ​const​ response = ​await​ fetch(api);

 ​if​ (response.ok) {

 ​return​ response.json();

 } ​else​ {

 ​return​ Promise.reject(​new​ Error(​'Request failed'​

));

 }

}

​function​ getData() {

 ​return​ Promise.any([

 fetchData(apis[0]),

 fetchData(apis[1])

]);

}

getData().then((response) =>

console.log(response.title));

Now, to see what actually happens behind the scenes, check the

network tab of your browser’s console. Press F12 on your keyboard

to open developer tools and then navigate to the network. The

following image shows the Network tab of Mozilla Firefox:

You can see that the status of both requests is 200, which means

they are successfully fulfilled. But remember, Promise.any() only uses

the result of the first promise that fulfills, so the other result is

ignored.

To see what happens if one of the APIs fails, we’re going to block

one of the requests. If you’re using Firefox, click on the icon that says

Request Blocking and enter eloux.com in the given field and press

enter. This step will block any request to eloux.com, allowing you to

simulate that the API is inaccessible, as shown in the image that

follows:

If you refresh the page, you’ll see that the request to eloux.com is

unsuccessful. But since the other API is available, our code works

fine. Now, what happens if both APIs are unavailable? Go ahead and

enter jsonplaceholder.typicode.com, the URL of the other API, to block it.

Switch back to the Console tab and run the code again. You should

see an error message like this:

Uncaught (in promise) AggregateError: No Promise in

Promise.any was resolved

We’re getting an AggregateError that denotes all promises passed to

Promise.any() are rejected. But this error message isn’t the best way to

handle a rejected promise. Let’s chain a catch() method and output a

custom error message:

promise.any/promise.any_ex06.js

​ ​const​ apis = [

​ ​'https://eloux.com/todos/1'​,

​ ​'https://jsonplaceholder.typicode.com/todos/1'​

​];

​

​ ​async​ ​function​ fetchData(api) {

​ ​const​ response = ​await​ fetch(api);

​ ​if​ (response.ok) {

​ ​return​ response.json();

​ } ​else​ {

​ ​return​ Promise.reject(​new​ Error(​'Request failed'​

http://media.pragprog.com/titles/fkajs/code/promise.any/promise.any_ex06.js

));

​ }

​ }

​

​ ​function​ getData() {

​ ​return​ Promise.any([

​ fetchData(apis[0]),

​ fetchData(apis[1])

»]).​catch​(() => {

» ​return​ Promise.reject(

» ​new​ Error(​'Unable to access the API'​)

»);

» });

​ }

​

​ getData().then(

​ (response) => console.log(response.title),

» (error) => console.error(error)

​);

Here, we’re using the catch() method to take over error handling. We

return a promise that is rejected and give a reason as to why. Now

run the code again. You should see our custom error message logged

to the console, as shown in the screenshot that follows:

So far we’ve learned how to execute multiple promises at the same

time to make our app more reliable. But this approach has one more

benefit: performance.

Improving the Performance of Your App

As a programmer, it’s always in your best interest to build apps that

respond quickly to user requests. Promise.any() allows you to improve

the performance of critical app services by using the data from the

API that responds first. As we saw in ​Avoiding the Single Point of

Failure​, if more than one promise is fulfilled, we’ll get back the first

fulfillment value. The other fulfillment values are ignored.

Open the network tab again and check the timeline column. It

provides the amount of time it took (in milliseconds) to get a response

from each API. Remember you turned on request blocking in the last

example to simulate the failure of the requests—turn request blocking

off for this example. Also, mark the Disable Cache checkbox so that

the browser retrieves a fresh copy of each file rather than loading

them from the cache. Now run the code from the last example again.

You should see a result like this:

So if we only used the first API, it would take our app at least 233

milliseconds to retrieve and handle the data. With the second API

added, it’s now 137 ms, which is about 40 percent faster. This is a

nice improvement in load time. Obviously, you’ll see different results

depending on your distance from the servers and internet connection

speed.

So in addition to avoiding the single point of failure issue, you can use

Promise.any() to improve the performance of your application—and

that’s a win-win.

[11]

[12]

Wrapping Up

Promise.any() is a valuable addition to the Promise object. This method

allows us to execute multiple promises asynchronously and use the

result of the one that’s accessible to respond faster. Make use of the

Promise.any() method in your applications to avoid the dreaded SPOF

and you’ll potentially see some welcome performance improvement

too. Faster applications equal happier users, which is the promise of

Promise.any().

So far, we’ve talked about Promise.any(), Promise.allSettled(), and

Promise.all(). One more method that you should know about is

Promise.race(). This method comes in handy when you need to set a

time limit for computationally expensive tasks.

FOOTNOTES

https://caniuse.com/mdn-javascript_builtins_promise_any

https://www.npmjs.com/package/babel-plugin-polyfill-es-shims

Copyright © 2021, The Pragmatic Bookshelf.

https://caniuse.com/mdn-javascript_builtins_promise_any
https://www.npmjs.com/package/babel-plugin-polyfill-es-shims

Chapter
5

Setting a Time Limit for Async
Tasks

Internet users are impatient. When working with asynchronous

network requests, how long should we keep them waiting until we get

a response from a server and settle a promise? If the app takes

longer than a few seconds to respond, most users will leave it and

find somewhere else to go. The amount of time it takes for an API to

respond is usually outside the control of our code due to things like

server overload. We need a way to set a time limit to avoid entering a

state of prolonged or endless waiting.

Fortunately, the Promise object comes with a method called

Promise.race() that we can take advantage of to enforce a time limit for

the latency of async tasks. This method is designed to race several

promises against each other and return the result of the promise that

settles first. By supplying it with a promise that’s going to be rejected

after an allotted time, we can define how long the code should wait to

get a response from a server.

We’ll start this chapter by comparing Promise.race() to a method we

already know: Promise.any(). Once we get the hang of how it works,

we’ll use it to concurrently fetch data from an external API and

execute a timer that logs an error after two seconds. We then revise

the code to replace the error message with a function that pulls data

from a cache to use in case the API is inaccessible or doesn’t

respond quickly enough.

Getting Ready

The Promise.race() method has been around for a while, so most

modern browsers already support it. Node.js support for

Promise.race() dates back to as early as version 0.12.0. But if you want

to make use of the feature in even older Node versions or browsers

you can use a Babel plugin.

[13]

[14]

Comparing Promise.race() to Promise.any()

Recall from ​Using the Promise.any() Method​, that Promise.any() uses

the value of the first promise that fulfills. Promise.race() behaves exactly

the same as far as promise fulfillment. However, when it come to

rejection, Promise.race() is completely different: it settles as soon as

one of the given promises rejects. In other words, while Promise.any()

rejects if all of the given promises reject, Promise.race() rejects if the

first promise that settles is rejected.

To demonstrate, let’s create two promises. Promise A will reject after

one second and promise B will succeed after two seconds:

latency/latency_ex01.js

​const​ promiseA = ​new​ Promise((resolve, reject) => {

 setTimeout(reject, 1000, ​'A'​);

});

​const​ promiseB = ​new​ Promise((resolve) => {

 setTimeout(resolve, 2000, ​'B'​);

});

Promise.race([

 promiseA,

 promiseB

http://media.pragprog.com/titles/fkajs/code/latency/latency_ex01.js

]).then((response) => {

 console.log(response);

}).​catch​((error) => {

 console.error(error); ​// => A​

});

Promise.any([

 promiseA,

 promiseB

]).then((response) => {

 console.log(response); ​// => B​

}).​catch​((error) => {

 console.error(error);

});

Run this code in your browser’s console. You’ll be passing the same

array of promises to both methods. But notice that Promise.race()

rejects after one second and logs A to the console, while Promise.any()

succeeds after two seconds and logs B.

Another difference between the two methods is that passing an

empty array (or any other empty iterable) to Promise.race() results in a

promise that remains in pending state:

latency/latency_ex02.js

http://media.pragprog.com/titles/fkajs/code/latency/latency_ex02.js

Promise.race(​""​).then((response) => {

 ​// this will never be executed​

}).​catch​((error) => {

 ​// neither this one​

});

If we pass Promise.race() an iterable containing nothing, then the first of

nothing can never be determined. So if the returned promise is stuck

in the pending state, the first thing to check is the iterable we’re

passing to the method.

Okay, now that we know how Promise.race() works, let’s go ahead and

use it in a more practical way.

Enforcing a Time Limit for Async Tasks

The Promise.race() method can be useful when fetching an external

resource that may take a while to complete. With this method, we

can race an async task against a promise that’s going to be rejected

after a number of milliseconds. Depending on the promise that settles

first, we either obtain the result or report an error message.

Let’s create a function that attempts to pull data from an API and

reports an error if the server doesn’t respond quickly enough. We’ll

represent each outcome by a promise and use Promise.race() to select

the first accessible result:

latency/latency_ex03.js

​function​ fetchData() {

 ​const​ timeOut = 2000; ​// two seconds​

 ​const​ data = fetch(​

'https://jsonplaceholder.typicode.com/todos/1'​);

 ​const​ failure = ​new​ Promise((resolve, reject) => {

 setTimeout(() => {

 reject(​new​ Error(​̀Failed to retrieve data after ​

${timeOut}​ milliseconds`​));

 }, timeOut);

 });

 ​return​ Promise.race([data, failure]);

http://media.pragprog.com/titles/fkajs/code/latency/latency_ex03.js

}

fetchData().then((response) => {

 console.log(response);

}).​catch​((error) => {

 console.error(error);

});

Here, we’ve set the timeout to two seconds, which is usually more

than enough to receive a response from an API. To see the timeout

message, go ahead and set a one-millisecond timeout and run the

code again. Sure enough we can see the timeout message:

This code works fine but simply logging an error doesn’t offer the

best user experience. We can further improve this code by using

cached data if fresh data isn’t available in allotted time. Let’s revise

the code a little:

latency/latency_ex04.js

​function​ loadFromCache() {

 ​const​ data = {

 ​"userId"​: 1,

 ​"id"​: 1,

 ​"title"​: ​"delectus aut autem"​,

http://media.pragprog.com/titles/fkajs/code/latency/latency_ex04.js

 ​"completed"​: ​false​

 };

 ​return​ ​new​ Promise((resolve) => {

 resolve(data);

 })

}

​function​ fetchData() {

 ​const​ timeOut = 2000; ​// two seconds​

 ​const​ cache = loadFromCache().then((data) => {

 ​return​ ​new​ Promise((resolve) => {

 setTimeout(() => {

 resolve(data);

 }, timeOut);

 });

 });

 ​const​ freshData = fetch(​

'https://jsonplaceholder.typicode.com/todos/1'​);

 ​return​ Promise.race([freshData, cache]);

}

fetchData().then((response) => {

 console.log(response);

}).​catch​((error) => {

 console.error(error);

});

In this version of the code, we concurrently fetch data from an

external API and pull data from a cache to use in case the API is

inaccessible or doesn’t respond quickly enough. For the sake of

simplicity, the loadFromCache() function returns a predefined object, but

in a real-world app you’ll probably load the cached data from a

database.

Of course, using cached data would work only for certain types of

information that doesn’t change frequently. If you’re retrieving data

like stock prices or exchange rates, then using Promise.any() is a better

choice (see ​Avoiding the Single Point of Failure​) since it allows you

to request data from multiple APIs and use the result of the one that’s

accessible.

An interesting use case for Promise.race() is to batch async requests.

As explained by Chris Jensen, if you have to make a large number

of async requests and don’t want the pending requests to get out of

hand, you can use Promise.race() “to keep a fixed number of parallel

promises running and add one to replace whenever one completes.”

Using Promise.race() in this way lets you run multiple jobs in a batched

way while preventing too much work from happening at one time.

[15]

You can also apply Promise.race() to a computationally expensive

background task. It’s easy to imagine cases where some task might

be attempted in the background, such as rendering a complex canvas

while the user is occupied with something else. Using Promise.race()

there, again gives you some knowable time to work with—and the

opportunity to introduce some logic of what to do should the task fail.

[13]

[14]

[15]

Wrapping Up

You can’t control how long it takes for a server to respond to

requests, but that shouldn’t stop you from designing apps that are

responsive to user requests. By taking advantage of the Promise.race()

method, you can set a timeout for async requests and react if they

take too long to complete.

In the next chapter, you’re going to learn about canceling pending

async requests using the AbortController API.

FOOTNOTES

https://caniuse.com/mdn-javascript_builtins_promise_race

https://www.npmjs.com/package/babel-plugin-polyfill-es-shims

https://stackoverflow.com/a/48820037

Copyright © 2021, The Pragmatic Bookshelf.

https://caniuse.com/mdn-javascript_builtins_promise_race
https://www.npmjs.com/package/babel-plugin-polyfill-es-shims
https://stackoverflow.com/a/48820037

Chapter
6

Canceling Pending Async
Requests

Applications today must work with information on remote servers, and

the Fetch API allows you to easily retrieve resources asynchronously

across the network. But sometimes you may want to cancel a

pending async request before it has completed. Perhaps you have a

network-intensive application and async requests are taking too long

to fulfill, or maybe the user clicked a Cancel button.

The AbortController API provides a generic interface that allows you

to cancel a fetch request. The cornerstone of the API is the

AbortController interface, which provides an abort() method. You can

create a cancelable fetch request by passing the signal property of

AbortController as an option to fetch(). Later, when you want to abort the

fetch, simply call the abort() method to terminate the network

transmission.

We’ll start this chapter by setting a time limit for a fetch request. This

example should give you a clear idea of how to implement an

AbortController. Then we’ll move on to more advanced topics like

deregistering multiple event listeners in one statement and creating an

abort button to let users cancel async requests.

Getting Ready

All modern browsers support the AbortController API. In the Node

environment, you’ll need a minimum Node version of 15.0.0. To run

your program in older browsers or Node versions, you can use a

Babel plugin.

[16]

[17]

Canceling Async Tasks After a Period of
Time

Remember ​Enforcing a Time Limit for Async Tasks​, where we used

Promise.race() to concurrently fetch data from an external API and

execute a timer? With the AbortController API, we can achieve a

similar outcome: cancel a request that we have already issued but

don’t want to wait for the operation to finish.

Promise.race() vs. AbortController

When you only want to automatically cancel a fetch

request after a specified amount of time, you can use

either Promise.race() or AbortController. It’s a matter of

preference. AbortController is easier to use if you want to

cancel an async request once a specific DOM event is

fired, such as when the user clicks a cancel button.

Promise.race(), on the other hand, works better if you want

to concurrently fetch data and perform another task,

such as pulling backup from a database.

Consider the following example. When we run this code, the

setTimeout() method sets a two-second timer to execute abort(). If the

fetch is complete in the allotted time, the abort will have no effect. If

not, an error is thrown, as follows:

abort/abort_ex01.js

​const​ controller = ​new​ AbortController();

​const​ signal = controller.signal;

fetch(​'https://eloux.com/todos/1'​, {signal})

 .then(response => {

 ​return​ response.json();

 }).then(response => {

 console.log(response);

 });

setTimeout(() => controller.abort(), 2000);

To be able to abort a fetch() request, we first need to create an

instance of AbortController (line 1). It’s essential to have an

AbortController before initiating the fetch request, so we execute this

statement first.

Next, we obtain a signal object that allows us to exchange information

with the fetch() method:

​const​ signal = controller.signal;

http://media.pragprog.com/titles/fkajs/code/abort/abort_ex01.js

We then pass this signal object as an option to fetch():

fetch(​'https://eloux.com/todos/1'​, {signal});

Here, we’re connecting signal and controller with the request. This

connection enables us to abort the request by calling the abort()

method of controller:

controller.abort();

abort() is the only method of controller and will cause the promise object

returned by fetch to reject with an exception, like this:

At this point, the control will be passed to the catch() method (if it

exists). Upon calling abort(), the API will notify the signal, which if you

want, you can listen to by attaching an event handler:

signal.addEventListener(​'abort'​, () => {

 console.log(signal.aborted);

});

​// logs:​

​// => true​

Notice how after aborting succeeds, the aborted property of signal has

a value of true.

Aborting a request might take only a few lines of code, but if you

have to do it a dozen times, you’re making your app unnecessarily

hefty. So why not turn the code into a function?

abort/abort_ex03.js

​function​ fetchWithTimeout(url, settings, timeout) {

 ​// If the timeout argument doesn't exists​

 ​if​ (timeout === ​undefined​) {

 ​return​ fetch(url, settings);

 }

 ​// if timeout isn't an integer, throw an error​

 ​if​ (!Number.isInteger(timeout)) {

 ​throw​ ​new​ TypeError(​'The third argument is not an

integer'​)

 }

 ​const​ controller = ​new​ AbortController();

 setTimeout(() => controller.abort(), timeout);

 settings.signal = controller.signal;

 ​return​ fetch(url, settings);

}

http://media.pragprog.com/titles/fkajs/code/abort/abort_ex03.js

This function works like a fetch() method but provides the option of

setting a timeout. If we pass an integer (in milliseconds) as the third

argument, the request will abort after the time expires. If not, it will

retrieve the resource like a regular fetch().

A server might take a longer time than expected to respond to

requests, or might not respond at all. It’s always a good idea to set a

time limit for async requests to avoid keeping your users waiting. But

how do you distinguish a fetch request that’s intentionally aborted

from the ones that are terminated because of an error? We’ll explore

that question next.

Handling an Aborted Request

When abort() successfully cancels a request, the pending promise

rejects with a DOMException error. But you don’t want to show the

default error message if the operation is canceled by the user. After

all, it’s not considered an error if the cancelation is intentional.

So let’s add a catch() method to the promise chain to handle the

rejection:

abort/abort_ex04.js

​const​ src = ​'https://eloux.com/todos/1'​;

​const​ controller = ​new​ AbortController();

​const​ signal = controller.signal;

fetch(src, {signal})

 .then(response => {

 ​return​ response.json();

 })

 .then(json => {

 console.log(json);

 })

 .​catch​(error => {

 ​if​ (error.name === ​'AbortError'​) {

 console.log(​'Request successfully canceled'​);

http://media.pragprog.com/titles/fkajs/code/abort/abort_ex04.js

 } ​else​ {

 console.error(​'Fetch failed!'​, error);

 }

 });

controller.abort();

​// logs:​

​// => Request successfully cancelled​

To ensure we’re handling the abort error separately, we can check

the name property of the error. If it has a value of AbortError, we know

it’s thrown by the AbortController API. If not, then we handle it like

any other error.

Fetch requests aren’t the only type of request that can be canceled

with the AbortController API. We can cancel event listeners too!

Removing Multiple Event Listeners

In client-side JavaScript programming, the flow of the code is

determined by events. Whenever something happens to the page or

web browser, the browser emits an event, such as when the user

clicks a link or a given resource has loaded. If we want to do

something when a particular event occurs, we can register one or

more functions to be called using the addEventListener() method.

We can later remove an event handler function from an object using

the removeEventListener() method. If we register dozens of event

handlers, we’ll need the exact same number of removeEventListener()

methods to deregister them, which unnecessarily bloats the code.

With AbortController we can deregister multiple event listeners in only

one statement.

Let’s look at a simple example. Say we want to temporarily give an

element some special effect. We want to change the text of the

element when the user’s pointing device (usually a mouse or

trackpad) moves the cursor onto the element and reverse the effect

when it moves past the element. We also want to change the

background color of the element when the device is pressed

(mousedown) or released (mouseup). Here’s how we can implement

this effect using the old approach:

abort/abort_ex05.html

​<!doctype html>​

<html lang=​"en-us"​>

<head>

 <meta charset=​"utf-8"​>

 <meta name=​"viewport"​ content=​"width=device-width,

initial-scale=1"​>

 <script src=​"abort_ex05.js"​ defer></script>

</head>

<body>

 <div class=​"container"​>Mouse over me!</div>

</body>

</html>

abort/abort_ex05.js

​const​ container = document.querySelector(​'.container'​

);

​function​ sayHello() {

 container.textContent = ​'Hello'​;

}

http://media.pragprog.com/titles/fkajs/code/abort/abort_ex05.html
http://media.pragprog.com/titles/fkajs/code/abort/abort_ex05.js

​function​ sayBye() {

 container.textContent = ​'Bye!'​;

}

​function​ depress() {

 container.style.backgroundColor = ​'aqua'​;

}

​function​ release() {

 container.style.backgroundColor = ​'transparent'​;

}

container.addEventListener(​'mouseenter'​, sayHello);

container.addEventListener(​'mouseout'​, sayBye);

container.addEventListener(​'mousedown'​, depress);

container.addEventListener(​'mouseup'​, release);

Here, we’re attaching four event handlers to an element with a class

of container. Now if we want to stop the effect, we’ll have to remove

each handler one by one. Note that the arguments must be the same

—the type of event and the function of the event handler.

abort/abort_ex06.js

container.removeEventListener(​'mouseenter'​, sayHello);

container.removeEventListener(​'mouseout'​, sayBye);

http://media.pragprog.com/titles/fkajs/code/abort/abort_ex06.js

container.removeEventListener(​'mousedown'​, depress);

container.removeEventListener(​'mouseup'​, release);

But it’s possible to use the AbortController API to achieve the same

result without having to remove each handler separately. The

addEventListener() method now accepts an abort signal as the third

argument. Create a controller object and pass its signal property to

addEventListener(), like this:

abort/abort_ex07.js

​const​ container = document.querySelector(​'.container'​

);

​const​ controller = ​new​ AbortController();

​const​ signal = controller.signal;

​function​ sayHello() {

 container.textContent = ​'Hello'​;

}

​function​ sayBye() {

 container.textContent = ​'Bye!'​;

}

​function​ depress() {

 container.style.backgroundColor = ​'aqua'​;

http://media.pragprog.com/titles/fkajs/code/abort/abort_ex07.js

}

​function​ release() {

 container.style.backgroundColor = ​'transparent'​;

}

container.addEventListener(​'mouseenter'​, sayHello,

{signal});

container.addEventListener(​'mouseout'​, sayBye,

{signal});

container.addEventListener(​'mousedown'​, depress,

{signal});

container.addEventListener(​'mouseup'​, release,

{signal});

Now, we can abort all addEventListener() methods with a single

AbortSignal:

controller.abort();

Removing each event handler separately might not be a big issue

when we have a few event handlers, but it becomes unpleasant if we

have dozens. For example, suppose we have a long list of elements,

and we want to enable the user to sort the list by dragging and

dropping the elements.

For each element, there’s an event attached to check for the state of

dragging. We want to disable drag and drop once the user clicks

Save. Using AbortController can be a time-saver in this situation: rather

than removing each event handler separately, we can call abort() to

remove them all.

So far, we’ve been canceling requests programmatically, but what if

you want to give users the option to cancel requests themselves, like

when they decide not to wait for a download?

Making a User-Cancelable Async Request

When including large files on your page, you should take into account

the fact that some users will be on limited bandwidth or mobile

devices with expensive data plans. Therefore, the ability for a user to

load and cancel loading large items is valuable.

Say you need to load a very large photo (in this case, 22 MB in size)

from Wikipedia. You want to define a button that fetches the photo

and another button that aborts the loading. Here’s how the program

will look:

You can see a live example of this program here:

https://eloux.com/async_js/examples/abort_ex08_complete.html

https://eloux.com/async_js/examples/abort_ex08_complete.html

First, define an HTML <image> element on the page. The src attribute

of this element will be filled once the image is loaded. We also need

an element to inform the user about the outcome, so define a

element with a class of result. Next, create the buttons. We’re going to

disable the abort button until the load button is clicked, so give it a

disabled attribute:

abort/abort_ex08.html

​<!doctype html>​

<html lang=​"en-us"​>

<head>

 <meta charset=​"utf-8"​>

 <title>Making a User Cancelable Async

Request</title>

 <meta name=​"viewport"​ content=​"width=device-width,

initial-scale=1"​>

 <script src=​"abort_ex08.js"​ defer></script>

</head>

<body>

 <image class=​"image"​>

 <button class=​"loadBtn"​>Load Photo</button>

 <button class=​"abortBtn"​ disabled=​"disabled"​>Cancel

http://media.pragprog.com/titles/fkajs/code/abort/abort_ex08.html

Loading</button>

</body>

</html>

Now, in the JavaScript file, we need to set up two functions: one to

call when the Load Photo button is clicked and the other to call when

the Cancel Loading button is clicked:

abort/abort_ex08.js

​1: ​// create a reference to each HTML element​

​- ​const​ loadBtn = document.querySelector(​'.loadBtn'​);

​- ​const​ abortBtn = document.querySelector(​'.abortBtn'​

);

​- ​const​ image = document.querySelector(​'.image'​);

​5: ​const​ result = document.querySelector(​'.result'​);

​-

​- ​const​ controller = ​new​ AbortController();

​-

​- ​// abort the request​

10: abortBtn.addEventListener(​'click'​, () =>

controller.abort());

​-

​- ​// load the image​

​- loadBtn.addEventListener(​'click'​, ​async​ () => {

http://media.pragprog.com/titles/fkajs/code/abort/abort_ex08.js

​- loadBtn.disabled = ​true​;

15: abortBtn.disabled = ​false​;

​-

​- result.textContent = ​'Loading...'​;

​-

​- ​try​ {

20: ​const​ response = ​await​ fetch(​

`https://upload.wikimedia.org/wikipedia/com​

​- ​mons/a/a3/Kayakistas_en_Glaciar_Grey.jpg`​, {signal:

controller.signal});

​- ​const​ blob = ​await​ response.blob();

​- image.src = URL.createObjectURL(blob);

​-

25: ​// remove the "Loading.." text​

​- result.textContent = ​''​;

​- }

​- ​catch​ (err) {

​- ​if​ (err.name === ​'AbortError'​) {

30: result.textContent = ​'Request successfully

canceled'​;

​- } ​else​ {

​- result.textContent = ​'An error occurred!'​

​- console.error(err);

​- }

35: }

​-

​- loadBtn.disabled = ​false​;

​- abortBtn.disabled = ​true​;

​- });

Notice how line 13 of the code registers an async function to be

called when the Load Photo button is clicked. Within the function, we

disable the Load button to prevent another click and enable the

Cancel Loading button. Next we attempt to retrieve the image using

the standard fetch() function.

To be able to display the image we’ve retrieved, we need to convert it

into an object URL. First use the Blob() constructor to get a Blob object

(line 22). Now you can create a URL that refers to the Blob by passing

the object into the URL.createObjectURL() method (line 23). All that’s left

to do to display the image is insert the resulting data into the src

attribute of the image tag. At the end of the code, we revert the

buttons to their original state.

What’s a Blob?

What’s a Blob?

Blob stands for binary large object, which is a data type

containing a collection of binary data. In JavaScript, Blob

serves as an essential data interchange method for

several APIs. They’re often used when working with data

that isn’t in a JavaScript-native format, such as images,

audio, or other multimedia objects.

Now, what if we need to fetch multiple images and want to let the

user abort them all at the same time?

Aborting Multiple Fetch Requests with One
Signal

Just as we can abort multiple addEventListener() methods, we can abort

multiple fetch requests with a single AbortSignal. Let’s revise the

previous example to fetch an array of images rather than a single

image. The following image shows how our program will look:

Here’s a live example:

https://eloux.com/async_js/examples/abort_ex09_complete.html

This time, we’ll first construct a new array of fetch requests out of the

image URLs using the map() method (line 25). Then we execute them

all by passing the array to Promise.all(). For each image that’s loaded,

we convert it into a data URL, create an image element, and insert it

into the page.

abort/abort_ex09.html

​<!doctype html>​

https://eloux.com/async_js/examples/abort_ex09_complete.html
http://media.pragprog.com/titles/fkajs/code/abort/abort_ex09.html

<html lang=​"en-us"​>

<head>

 <meta charset=​"utf-8"​>

 <title>Aborting Multiple Fetch Requests With One

Signal</title>

 <meta name=​"viewport"​ content=​"width=device-width,

initial-scale=1"​>

 <script src=​"abort_ex09.js"​ defer></script>

</head>

<body>

 <div class=​"gallery"​></div>

 <button class=​"loadBtn"​>Load Photos</button>

 <button class=​"abortBtn"​ disabled=​"disabled"​>Cancel

Loading</button>

</body>

</html>

abort/abort_ex09.js

​1: ​const​ loadBtn = document.querySelector(​'.loadBtn'​);

​- ​const​ abortBtn = document.querySelector(​'.abortBtn'​)

​- ​const​ gallery = document.querySelector(​'.gallery'​);

http://media.pragprog.com/titles/fkajs/code/abort/abort_ex09.js

​- ​const​ result = document.querySelector(​'.result'​);

​5:

​- ​const​ controller = ​new​ AbortController();

​-

​- ​const​ urls = [

​- ​

`https://upload.wikimedia.org/wikipedia/commons/thumb

10: ​_Baixa_Grande.jpg/320px-Por_do_Sol_em_Baixa_Grande.jp

​- ​

`https://upload.wikimedia.org/wikipedia/commons/thumb

​- ​vescens_Luc_Viatour.jpg/320px-Zebrasoma_flavescens_Lu

​- ​

`https://upload.wikimedia.org/wikipedia/commons/thumb

​- ​_kid_in_capeweed.jpg/320px-Domestic_goat_kid_in_capew

15:];

​-

​- abortBtn.addEventListener(​'click'​, () => controller.a

​-

​- loadBtn.addEventListener(​'click'​, ​async​ () => {

20: loadBtn.disabled = ​true​;

​- abortBtn.disabled = ​false​;

​-

​- result.textContent = ​'Loading...'​;

​-

25: const tasks = urls.map(url => fetch(url, {signal:

25: ​const​ tasks = urls.map(url => fetch(url, {signal:

controller.signal}));

​-

​- ​try​ {

​- ​const​ response = ​await​ Promise.all(tasks);

​- response.forEach(​async​ (r) => {

30: ​const​ img = document.createElement(​'img'​);

​- ​const​ blob = ​await​ r.blob();

​- img.src = URL.createObjectURL(blob);

​- gallery.appendChild(img);

​- });

35: result.textContent = ​''​;

​- } ​catch​ (err) {

​- ​if​ (err.name === ​'AbortError'​) {

​- result.textContent = ​'Request successfully canc

​- } ​else​ {

40: result.textContent = ​'An error occurred!'​

​- console.error(err);

​- }

​- }

​-

45: loadBtn.disabled = ​false​;

​- abortBtn.disabled = ​true​;

​- });

Now if we press the Cancel Loading button while the requests are in

progress, it aborts every fetch and throws an error. In the catch block,

we intercept the error and insert a custom message into the page

informing the user that cancelation was successful:

Note that Promise.allSettled() wouldn’t be suitable for this task.

Promise.allSettled() is designed to wait for all promises to settle, so it

doesn’t make sense to use this method when you need to abort

requests before they’re completed.

Another use case for abort() could be live search: when the user types

a character in the input, it triggers a search request; when that

promise resolves, you want to show the search results. But if the

user presses multiple keys, the first search might resolve before the

last. Aborting the “stale” request ensures that the search results

reflect the most recent query.

Wrapping Up

An interesting aspect of the AbortController API is that it’s provided

by the DOM standard and designed to be generic. That means soon

we’ll see it adopted by other standards and libraries as well, lowering

the learning curve for developers who want to use those platforms.

Make use of the AbortController API in your programs to cancel

async requests that are no longer needed or taking too long to

complete. You can do that by calling abort() directly, setting a timer to

call abort(), or providing a cancel button for users to abort requests

whenever they want. You can even use an AbortController to deregister

an event listener, or multiple event listeners, which is an ability that

JavaScript previously lacked.

The final chapter of this book is about the top-level await. In modern

JavaScript programming, it’s a common practice to separate the

functionality of a program into independent modules. Modular

programming provides several benefits like the ability to use existing

assets in other programs. It also makes testing and debugging easier

because when we need to fix a specific function, we only have to do it

in one module.

Top-level await is a feature of modules that improves on the regular

await keyword to enable developers to access the result of a promise

[16]

[17]

from another module without having to use a workaround. In the next

chapter, we’re going to cover this feature.

FOOTNOTES

https://caniuse.com/abortcontroller

https://www.npmjs.com/package/yet-another-abortcontroller-polyfill

Copyright © 2021, The Pragmatic Bookshelf.

https://caniuse.com/abortcontroller
https://www.npmjs.com/package/yet-another-abortcontroller-polyfill

Chapter
7

Accessing Promise Results
from Another Module

Often in modular programs, you need the result from another module

before you run the main module. Consider a recipe suggester

(recipe.js) that checks a list of on-hand ingredients asynchronously

(pantry.js). Code for recipe.js should not execute until code for pantry.js

has run. With top-level await we could tell recipe.js to halt its execution

until pantry.js is fully executed. If you used the standard await keyword

in an async function, recipe.js would attempt to access the result of

pantry.js before it was ready.

A number of workarounds could be used, but they make the code

more complicated. Top-level await is an addition to the language that

provides a straightforward way to use the await keyword outside of

async functions so that we can perform async tasks directly at the

top level of the module. Now, modules can act as a big async function

and importing modules will wait for the child modules to fully execute

before they themselves start executing.

In this chapter, we’ll find out how top-level await works and how to

make use of it to initialize resources, define dependency paths

dynamically, and load dependencies with a fallback implementation.

Getting Ready

Before using top-level await, make sure your browser or Node version

supports it. You’ll need a minimum Node version of 14.8.0. You can

also use a Babel plugin to make use of the feature in older browsers

or Node versions.

Keep in mind you can’t use top-level await in classic scripts—it only

works in module scripts and browser dev tools. If you get a SyntaxError

like the following, that means you’re not using it in a module:

Adding a module to an HTML file is the same as adding a regular

script except that you should add a type attribute with the value of

module, like this:

<script type=​"module"​ src=​"module1.js"​></script>

Also, modules are subject to same-origin policy, meaning that you

can’t import them from the file system. You’ll need to run the code

examples in this chapter on a server.

[18]

[19]

Using Top-Level await

When the await keyword was first introduced, it wasn’t possible to use

it outside of async functions. You’ve probably encountered the fatal

syntax error await is only valid in async function, too, when attempting to

use it for the first time:

await/Await_ex01.js

​const​ res = ​await​ fetch(​'https://example'​);

​// SyntaxError: await is only valid in async function​

As a way to get access to the feature, I often wrapped the await

statements in an immediately invoked async function expression, like

this:

await/Await_ex02.js

(​async​ ​function​() {

 ​const​ res = ​await​ fetch(​'https://example'​);

}());

It’s unpleasant but functional! With top-level await we no longer have

to do this, because the await keyword works outside of async

functions as well. Go ahead and execute await fetch("https://google.com",

{mode:"no-cors"}); in your browser console. You should see a response

like this:

http://media.pragprog.com/titles/fkajs/code/await/Await_ex01.js
http://media.pragprog.com/titles/fkajs/code/await/Await_ex02.js

But there’s a bigger problem that top-level await allows us solve. Bear

with me for a moment. When working with ES modules, we can make

variables and functions available outside the module using the export

keyword. Then other modules in separate files can use the import

keyword to access those variables and functions. Any export or import

statement must be expressed at the top level of the code.

Say we have a module that retrieves weather data for Tokyo, Japan,

from an external API, and we want to make the result available to

other modules:

await/Await_ex03.js

​let​ result;

​const​ api = ​

`http://api.openweathermap.org/data/2.5/weather?​

​q=Tokyo,Japan&APPID=1b1b3e9e909416e5bbe365a0a8505fbb`​;

​// use your own app id in production​

(​async​ () => {

 ​const​ response = ​await​ fetch(api);

 result = ​await​ response.json();

http://media.pragprog.com/titles/fkajs/code/await/Await_ex03.js

})();

​export​ {result};

In another module, we’d like to import the result and extract the

temperature:

await/Await_ex04.js

​import​ {result} ​from​ ​'./module1.js'​;

console.log(result.main.temp);

​// logs:​

​// => TypeError: Cannot read property 'main' of

undefined​

But this code produces a TypeError because we’re trying to access the

export before the async function finishes executing. We still have a

promise waiting to be settled; until then result has a value of undefined.

Now let’s delay the console.log() method and see what happens. Go

ahead and encapsulate the method in a setTimeout(), like this:

await/Await_ex05.js

​import​ {result} ​from​ ​'./module1.js'​;

http://media.pragprog.com/titles/fkajs/code/await/Await_ex04.js
http://media.pragprog.com/titles/fkajs/code/await/Await_ex05.js

​// don't do this in production​

setTimeout(() => {

 console.log(result.main.temp);

}, 2000);

​// logs:​

​// => 292.94​

This time we get the result we’re looking for (note that the

temperature is in kelvin units). This means that exported variables are

undefined until the promise is settled. But this is a bad way of coding

our module because now every consumer of module1.js needs to

know what a reasonable wait would be.

We can’t use the export keyword inside functions, and prior to the

introduction of top-level await, we couldn’t use the await keyword

outside of async functions either.

One workaround is to export the entire async function as the default

export value:

await/Await_ex06.js

​let​ result;

​const​ api = ​

`http://api.openweathermap.org/data/2.5/weather?​

​q=Tokyo,Japan&APPID=1b1b3e9e909416e5bbe365a0a8505fbb`​;

http://media.pragprog.com/titles/fkajs/code/await/Await_ex06.js

​// use your own app id in production​

​export​ ​default​ (​async​ () => {

 ​const​ response = ​await​ fetch(api);

 result = ​await​ response.json();

})();

​export​ {result};

Then we could wait for the async function to settle before accessing

the variable:

await/Await_ex07.js

​import​ p, {result} ​from​ ​'./module1.js'​;

p.then(()=>{

 console.log(result.main.temp);

})

​// logs:​

​// => 292.94​

But as the code becomes more complicated, it will become more

difficult to manage the modules this way. Other workarounds could

work as well, but they come with their own limitations.

http://media.pragprog.com/titles/fkajs/code/await/Await_ex07.js

Top-level await aims to solve this problem by enabling developers to

use the await keyword outside async functions. You don’t need to do

anything special to start using top-level await except having a modern

browser that supports the feature:

await/Await_ex08.js

​const​ api = ​

`http://api.openweathermap.org/data/2.5/weather?​

​q=Tokyo,Japan&APPID=1b1b3e9e909416e5bbe365a0a8505fbb`​;

​// use your own app id in production​

​const​ response = ​await​ fetch(api);

​const​ result = ​await​ response.json();

​export​ {result};

Then in another module we can access the exported variable directly:

await/Await_ex09.js

​import​ {result} ​from​ ​'./module1.js'​;

console.log(result.main.temp);

​// logs:​

​// => 292.94​

http://media.pragprog.com/titles/fkajs/code/await/Await_ex08.js
http://media.pragprog.com/titles/fkajs/code/await/Await_ex09.js

With top-level await, ECMAScript modules can await resources,

causing other modules who import them to wait before they start

evaluating their own code. Top-level await allows us to do some cool

things that would previously require a lot of effort to achieve. Let’s

take a look at a few practical uses.

Putting Top-Level await to Work

When designing a program to support multiple languages and

regions, you may want to use a runtime value to determine the

language to use. Say you have an ES module and want to load a

language pack dynamically, based on the preferred language of the

user set in the browser. You can take advantage of top-level await to

import the messages:

await/Await_ex10.js

​const​ messages = ​await​ ​import​(​̀./packs/messages-​

${navigator.language}​.js`​);

The navigator.language property allows us to access the preferred

language of the user, which is usually the language of the browser UI.

To embed the value of the property within the string, we’ve put it

inside ${...}. The module will be waiting for the language pack to be

imported and can only evaluate the rest of the body once the pack

has been loaded.

We can also use top-level await to load dependencies with a fallback

implementation. As we learned in ​Avoiding the Single Point of Failure​

, it’s important to protect our app against external server issues.

Network requests to a server might fail. In critical applications, you

http://media.pragprog.com/titles/fkajs/code/await/Await_ex10.js

can provide dependency fallbacks to mitigate such failures using top-

level await. Here’s an example:

await/Await_ex11.js

​let​ d3;

​try​ {

 d3 = ​await​ ​import​(​

'https://cdnjs.cloudflare.com/ajax/libs/d3/6.7.0/d3.min

} ​catch​ {

 d3 = ​await​ ​import​(​

'https://ajax.googleapis.com/ajax/libs/d3js/6.7.0/d3.mi

);

}

In this code, we first attempt to load the D3 JavaScript library from

Cloudflare. If the import fails, we try an alternate CDN. Alternatively,

we can use Promise.any() to execute both requests asynchronously and

use the result of the one that responds faster:

await/Await_ex12.js

​const​ CDNs = [

 ​

'https://cdnjs.cloudflare.com/ajax/libs/d3/6.7.0/d3.min

 ​

http://media.pragprog.com/titles/fkajs/code/await/Await_ex11.js
http://media.pragprog.com/titles/fkajs/code/await/Await_ex12.js

'https://ajax.googleapis.com/ajax/libs/d3js/6.7.0/d3.mi

];

​const​ d3 = ​await​ Promise.any(CDNs);

Another use case for top-level await is resource initialization. For

example:

await/Await_ex13.js

​import​ {dbConnector} ​from​ ​'./utilities.js'​;

​const​ connection = ​await​ dbConnector.connect();

By using top-level await, we can make the module behave like a big

async function. We can now represent resources with await and

handle errors if the module can’t be used.

Remember, a module won’t start evaluating its body until the module

that’s being imported has finished executing its body. So if the other

module has a top-level await, it must be completed before the module

that’s importing it begins executing.

http://media.pragprog.com/titles/fkajs/code/await/Await_ex13.js

Wrapping Up

Previously, await was valid only in async functions. Times changed and

await got easier. We can use top-level await in modules to avoid

wrapping code in an async IIFE. We no longer need a workaround

when accessing the result of a promise from another module. And we

can use await for tasks like initializing resources, defining dependency

paths dynamically, and loading dependencies with a fallback

implementation.

Thank you for reading!

We’ve reached the end of the book! The beauty of JavaScript is that

it is flexible enough to let programmers determine how the language

will evolve. As a result, the inputs and proposals from the JavaScript

community have played an important role in the way the language has

progressed. Anyone can get involved by drafting a proposal (read

https://github.com/tc39/proposals).

An interesting aspect of the process is that new features are

implemented by browsers before they’re added to the specification. If

you want to tune into the features that are coming down the pike,

here are some resources:

Check out the proposals repository on GitHub

(https://github.com/tc39/proposals). Particularly, look for features

that are at stage 3 and stage 4. When a feature is at stage 3, that

means the feature’s semantics, syntax, and API are completed

and it’s very likely to be added to the specification. A stage 4

proposal will be included in the soonest practical standard revision

of the specification.

Watch the Google’s V8 JavaScript engine blog. If something gets

added to Chrome, this is the place you’ll hear about the feature

(https://v8.dev/).

https://github.com/tc39/proposals
https://github.com/tc39/proposals
https://v8.dev/

[18]

[19]

Thank you!
We hope you enjoyed this book and that you’re already thinking about

what you want to learn next. To help make that decision easier, we’re

offering you this gift.

Head over to https://pragprog.com right now and use the coupon

code BUYANOTHER2021 to save 30% on your next ebook. Void

where prohibited or restricted. This offer does not apply to any

edition of the The Pragmatic Programmer ebook.

And if you’d like to share your own expertise with the world, why not

propose a writing idea to us? After all, many of our best authors

Follow and take part in the TC39 Discourse group

(https://es.discourse.group/). TC39 is the committee responsible

for evolving the definition of JavaScript.

Thank you for reading! It was my pleasure to write this book. I hope

you’ve found it useful.

FOOTNOTES

https://caniuse.com/mdn-javascript_operators_await_top_level

https://babeljs.io/docs/en/babel-plugin-syntax-top-level-await

Copyright © 2021, The Pragmatic Bookshelf.

https://pragprog.com/
https://es.discourse.group/
https://caniuse.com/mdn-javascript_operators_await_top_level
https://babeljs.io/docs/en/babel-plugin-syntax-top-level-await

	Acknowledgments
	Preface
	Who Is This Book For?
	What You Should Know
	What’s in This Book?
	Online Resources

	Introduction
	Demystifying Asynchronous Execution
	Working with Events
	Working with Callback Functions
	Introducing Promises
	Creating Settled Promises
	Handling Rejection
	Managing Multiple Concurrent Promises

	1. Creating Custom Asynchronous Iterators
	Getting Ready
	Creating a Custom Iterator
	Creating a Custom Asynchronous Iterator
	Iterating over Async Iterables with for…await…of
	Detecting Whether an Object Is Iterable
	Wrapping Up

	2. Enhancing Custom Iterators with Generators
	Getting Ready
	Using a Generator to Define a Custom Iterator
	Creating an Asynchronous Generator
	Iterating over Paginated Data
	Wrapping Up

	3. Fetching Multiple Resources
	Getting Ready
	Executing Multiple Promises
	Using Promise.allSettled() to Fetch Multiple Resources
	Wrapping Up

	4. Improving Reliability and Performance
	Getting Ready
	Using the Promise.any() Method
	Avoiding the Single Point of Failure
	Improving the Performance of Your App
	Wrapping Up

	5. Setting a Time Limit for Async Tasks
	Getting Ready
	Comparing Promise.race() to Promise.any()
	Enforcing a Time Limit for Async Tasks
	Wrapping Up

	6. Canceling Pending Async Requests
	Getting Ready
	Canceling Async Tasks After a Period of Time
	Handling an Aborted Request
	Removing Multiple Event Listeners
	Making a User-Cancelable Async Request
	Aborting Multiple Fetch Requests with One Signal
	Wrapping Up

	7. Accessing Promise Results from Another Module
	Getting Ready
	Using Top-Level await
	Putting Top-Level await to Work
	Wrapping Up
	Thank you for reading!

