

Multithreaded JavaScript

Concurrency Beyond the Event Loop

Thomas Hunter II and Bryan English

Multithreaded JavaScript

by
Thomas Hunter II
and
Bryan English

Copyright © 2022 Thomas Hunter II and Bryan English. All rights

reserved.

Printed in the United States of America.

Published by
O’Reilly Media, Inc., 1005 Gravenstein Highway North,

Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales

promotional use. Online editions are also available for most titles

(http://oreilly.com). For more information, contact our

corporate/institutional sales department: 800-998-9938 or

corporate@oreilly.com.

Acquisitions Editor:
Amanda Quinn

Development Editor:
Corbin Collins

Production Editor:
Daniel Elfanbaum

Copyeditor:
Tom Sullivan

Proofreader:
nSight, Inc.

Indexer:
nSight, Inc.

http://oreilly.com/

Interior Designer:
David Futato

Cover Designer:
Karen Montgomery

Illustrator:
Kate Dullea

October 2021:
First Edition

Revision History for the First Edition

2021-09-22:
First Release

See
http://oreilly.com/catalog/errata.csp?isbn=9781098104436
for

release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc.

Multithreaded JavaScript, the cover image, and related trade dress

are
trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the authors, and do

not
represent the publisher’s views. While the publisher and the

authors have used good faith efforts to ensure that the information

and
instructions contained in this work are accurate, the publisher and

the
authors disclaim all responsibility for errors or omissions, including

without limitation responsibility for damages resulting from the use of

or
reliance on this work. Use of the information and instructions

http://oreilly.com/catalog/errata.csp?isbn=9781098104436

contained
in this work is at your own risk. If any code samples or

other technology
this work contains or describes is subject to open

source licenses or the
intellectual property rights of others, it is your

responsibility to
ensure that your use thereof complies with such

licenses and/or rights.

978-1-098-10443-6

[LSI]

Dedication

This book is dedicated to Katelyn and Renée.

Foreword

The book you’re holding now is a fun one. It’s a JavaScript book that

opens with examples written in C, talks about multithreading with an

explicitly single-threaded programming language, provides great

examples of how and when to intentionally block the event loop after

experts have been telling you for years to never do so, and closes

with an excellent list of reasons and caveats about why you might not

actually want to use the mechanisms the book describes. More

importantly, it’s a book that I would consider essential reading for any

JavaScript developer no matter where your code is expected to be

deployed and run.

When I’ve worked with companies to help them build more efficient

and more performant Node.js and JavaScript applications, I’ve often

had to step back and take the time first to discuss many of the

common misconceptions developers have about the programming

language. For instance, I once had an engineer with a long history in

Java and .NET development argue that creating a new promise in

JavaScript was a lot like creating a new thread in Java (it’s not), and

that promises allow JavaScript to run in parallel (they don’t). In a

separate conversation someone had created a Node.js application

that was spawning over a thousand simultaneous worker threads and

wasn’t sure why they weren’t seeing an expected improvement in

performance while testing on a machine that had only eight logical

CPU cores. The lesson from these conversations is clear:

multithreading, concurrency, and parallelism are still very unfamiliar

and difficult topics for a very large percentage of JavaScript

developers.

Dealing with these misconceptions is what led directly to me (working

with my colleague and fellow Node.js Technical Steering Committee

member, Matteo Collina) developing the Broken Promises workshop

in which we would lay out the foundations of asynchronous

programming in JavaScript—teaching engineering teams how to

reason more effectively about the order in which their code would

execute and the timing of various events. It also led directly to the

development of the Piscina open source project (with fellow Node.js

core contributor Anna Henningsen), which provides a best-practice

implementation of a worker pool model on top of Node.js worker

threads. But those only help with part of the challenge.

In this book, Bryan and Thomas expertly lay out the foundations of

multithreaded development in general, and deftly illustrate how the

various JavaScript runtimes like web browsers and Node.js enable

parallel computing with a programming language that includes no

built-in mechanisms to enable it. Because the responsibility for

providing multithreading support has fallen on the runtimes, and

because there are so many differences between those runtimes,

browsers and platforms like Node.js implement multithreading in

different ways. Although they share similar APIs, a worker thread in

Node.js is really not the same thing as a web worker in a web

browser. Support for shared workers, web workers, and service

workers is nearly universal across browsers, and worker threads

have been in Node.js for several years now, but they are all still a

relatively new concept for JavaScript developers. No matter where

your JavaScript runs, this book will provide important insight and

information. Most importantly, however, the authors take the time to

explain exactly why you should care at all about multithreading in your

JavaScript applications.

James Snell,

Node.js Technical Steering Committee Member

Preface

Bryan and I (Thomas) first met during my interview at the San

Francisco branch for DeNA, a Japanese mobile game development

company. Apparently most of the upper management was going to

say no, but after the two of us hung out at a Node.js meetup later

that night, Bryan went and convinced them to give me an offer.

While at DeNA, Bryan and I worked on writing reusable Node.js

modules so that game teams could build out their game servers,

combining components as appropriate to suit the needs of their

game. Performance was something we were always measuring, and

mentoring game teams on performance was a part of the job; our

servers were continuously scrutinized by developers in an industry

that traditionally relied upon C++.

The two of us would work together in other capacities as well.

Another such role was at a small security startup named Intrinsic

where we focused on hardening Node.js apps at such a complete and

granular level that I doubt the world will ever see another product like

it. Performance tuning was a huge concern for that product as well

since customers didn’t want to take a hit to their throughput. We

spent many hours running benchmarks, poring over flamegraphs, and

digging through internal Node.js code. Had the worker threads

module been available in all the versions of Node.js that our

customers demanded, I have no doubt we would have incorporated it

into the product.

We’ve also worked together in nonemployment capacities as well.

NodeSchool SF is one such example wherein we both volunteered to

teach others how to use JavaScript and create Node.js programs.

We have also spoken at many of the same conferences and

meetups.

Both of your authors have a passion for JavaScript and Node.js, and

for teaching them to others and eliminating misconceptions. When we

realized there was such an extreme lack of documentation about

building multithreaded JavaScript applications, we knew what we had

to do. This book was born from our desire to not only educate others

about the capabilities of JavaScript, but also to help prove that

platforms like Node.js are just as capable as any other when it comes

to building performant services that utilize the available hardware.

Target Audience

The ideal reader of this book is an engineer who has been writing

JavaScript for a few years, and who doesn’t necessarily have

experience with writing multithreaded applications or even experience

with more traditionally multithreaded languages like C++ or Java. We

https://oreil.ly/TNS5w

do include some example C application code, as a sort of

multithreaded lingua franca, but it’s not something that the reader is

expected to be familiar with or even understand.

If you do have experience with such languages, that’s great, and this

book will help you understand the JavaScript equivalent to the

functionality provided by whatever language you may be familiar with.

On the other hand, if you’ve only written code using JavaScript, then

this book is also for you. We include information across multiple

layers of learning; this includes both low-level API references, high-

level patterns, and plenty of technical tangents in between to help fill

in any gaps.

Goals

Perhaps the most exuberant goal of this book is to bring knowledge

to the community that it’s possible to build multithreaded applications

using JavaScript. Traditionally, JavaScript code was constrained to a

single core, and indeed there are many Twitter threads and forum

posts describing the language as such. With a title like Multithreaded

JavaScript, we hope to completely dispel the notion that JavaScript

applications are confined to a single core.

At a more concrete level, the goal is to teach you, the reader, several

aspects about writing multithreaded JavaScript applications. By the

time you’re done reading this book you’ll understand the various web

worker APIs provided in browsers, their strengths and weaknesses,

and when to use which. As far as Node.js goes, you’ll understand the

worker threads module and how its APIs compare to those in the

browser.

The book focuses on two approaches to building multithreaded

applications: one using message passing and the other using shared

memory. By reading this book you’ll understand the APIs used to

implement each, when you might want to use one approach or the

other, and in which situations they can be combined—and you’ll even

get your hands dirty with some high-level patterns built upon these

approaches.

Conventions Used in This Book

The following typographical conventions are used in this book:

Italic

Indicates new terms, URLs, email addresses, filenames, and

file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer

to program elements such as variable or function names,

databases, data types, environment variables, statements, and

keywords.

Constant width bold

Shows commands or other text that should be typed literally by

the user.

Constant width italic

Shows text that should be replaced with user-supplied values

or by values determined by context.

TIP

This element signifies a tip or suggestion.

NOTE

This element signifies a general note.

WARNING

This element indicates a warning or caution.

Using Code Examples

Supplemental material (code examples, exercises, etc.) is available

for download at https://github.com/MultithreadedJSBook/code-

samples.

If you have a technical question or a problem using the code

examples, please send email to bookquestions@oreilly.com.

This book is here to help you get your job done. In general, if

example code is offered with this book, you may use it in your

programs and documentation. You do not need to contact us for

permission unless you’re reproducing a significant portion of the code.

For example, writing a program that uses several chunks of code

from this book does not require permission. Selling or distributing

examples from O’Reilly books does require permission. Answering a

question by citing this book and quoting example code does not

require permission. Incorporating a significant amount of example

code from this book into your product’s documentation does require

permission.

We appreciate, but generally do not require, attribution. An attribution

usually includes the title, author, publisher, and ISBN. For example:

“Multithreaded JavaScript by Thomas Hunter II and Bryan English

https://github.com/MultithreadedJSBook/code-samples
mailto:bookquestions@oreilly.com

(O’Reilly). Copyright 2022 Thomas Hunter II and Bryan English, 978-

1-098-10443-6.”

If you feel your use of code examples falls outside fair use or the

permission given above, feel free to contact us at

permissions@oreilly.com.

O’Reilly Online Learning

NOTE

For more than 40 years, O’Reilly Media has provided technology and business training,

knowledge, and insight to help companies succeed.

Our unique network of experts and innovators share their knowledge

and expertise through books, articles, and our online learning

platform. O’Reilly’s online learning platform gives you on-demand

access to live training courses, in-depth learning paths, interactive

coding environments, and a vast collection of text and video from

O’Reilly and 200+ other publishers. For more information, visit

http://oreilly.com.

How to Contact Us

mailto:permissions@oreilly.com
http://oreilly.com/
http://oreilly.com/

Please address comments and questions concerning this book to the

publisher:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)

707-829-0515 (international or local)

707-829-0104 (fax)

We have a web page for this book, where we list errata, examples,

and any additional information. You can access this page at

https://oreil.ly/multithreaded-js.

Email bookquestions@oreilly.com to comment or ask technical

questions about this book.

For news and information about our books and courses, visit

http://oreilly.com.

Find us on Facebook: http://facebook.com/oreilly.

Follow us on Twitter: http://twitter.com/oreillymedia.

Watch us on YouTube: http://www.youtube.com/oreillymedia.

https://oreil.ly/multithreaded-js
mailto:bookquestions@oreilly.com
http://oreilly.com/
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

Acknowledgments

This book was made possible thanks to the detailed technical reviews

provided by the following people:

Anna Henningsen (@addaleax)

Currently part of the MongoDB Developer Tools team in

Germany, Anna has been one of the most active contributors to

Node.js core over the last five years, and participated

significantly in implementing worker threads for the platform.

She is fueled by a passion for Node.js and its community.

Shu-yu Guo (@_shu)

Shu works on JavaScript implementation and standardization.

He is a TC39 delegate, one of the editors of the ECMAScript

specification, and the author of the memory model. He currently

works on the V8 engine at Google, leading JavaScript language

feature implementation and standards. Previously, he has

worked at Mozilla and Bloomberg.

Fernando Larrañaga (@xabadu)

Fernando is an engineer and open source contributor who has

been leading JavaScript and Node.js communities for several

years both in South America and in the United States. He’s

https://twitter.com/addaleax
https://twitter.com/_shu
https://twitter.com/xabadu

currently a senior software engineer at Square and an

organizer of NodeSchool SF, and with previous tenures at other

major tech companies—such as Twilio and Groupon—he has

been developing enterprise-level Node.js and scaling web

applications used by millions of users since 2014.

Chapter 1. Introduction

Computers used to be much simpler. That’s not to say they were

easy to use or write code for, but conceptually there was a lot less to

work with. PCs in the 1980s typically had a single 8-bit CPU core and

not a whole lot of memory. You typically could only run a single

program at one time. What we think of these days as operating

systems would not even be running at the same time as the program

the user was interacting with.

Eventually, people wanted to run more than one program at once,

and multitasking was born. This allowed operating systems to run

several programs at the same time by switching execution between

them. Programs could decide when it would be an appropriate time to

let another program run by yielding execution to the operating

system. This approach is called cooperative multitasking.

In a cooperative multitasking environment, when a program fails to

yield execution for any reason, no other program can continue

executing. This interruption of other programs is not desirable, so

eventually operating systems moved toward preemptive multitasking.

In this model, the operating system would determine which program

would run on the CPU at which time, using its own notion of

scheduling, rather than relying on the programs themselves to be the

sole deciders of when to switch execution. To this day, almost every

operating system uses this approach, even on multi-core systems,

because we generally have more programs running than we have

CPU cores.

Running multiple tasks at once is extremely useful for both

programmers and users. Before threads, a single program (that is, a

single process) could not have multiple tasks running at the same

time. Instead, programmers wishing to perform tasks concurrently

would either have to split up the task into smaller chunks and

schedule them inside the process or run separate tasks in separate

processes and have them communicate with each other.

Even today, in some high-level languages the appropriate way to run

multiple tasks at once is to run additional processes. In some

languages, like Ruby and Python, there’s a global interpreter lock

(GIL), meaning only one thread can be executing at a given time.

While this makes memory management far more practical, it makes

multithreaded programming not as attractive to programmers, and

instead multiple processes are employed.

Until fairly recently, JavaScript was a language where the only

multitasking mechanisms available were splitting tasks up and

scheduling their pieces for later execution, and in the case of Node.js,

running additional processes. We’d typically break code up into

asynchronous units using callbacks or promises. A typical chunk of

code written in this manner might look something like Example 1-1,

breaking up the operations by callbacks or await .

Example 1-1. A typical chunk of asynchronous JavaScript code,
using two different patterns

readFile(filename, (data) => {

 doSomethingWithData(data, (modifiedData) => {

 writeFile(modifiedData, () => {

 console.log('done');

 });

 });

});

// or

const data = await readFile(filename);

const modifiedData = await doSomethingWithData(data);
await writeFile(filename);

console.log('done');

Today, in all major JavaScript environments, we have access to

threads, and unlike Ruby and Python, we don’t have a GIL making

them effectively useless for performing CPU-intensive tasks. Instead,

other trade-offs are made, like not sharing JavaScript objects across

threads (at least not directly). Still, threads are useful to JavaScript

developers for cordoning off CPU-intensive tasks. In the browser,

there are also special-purpose threads that have feature sets

available to them that are different from the main thread. The details

of how we can do this are the topics of later chapters, but to give you

an idea, spawning a new thread and handling a message in a

browser can be as simple as Example 1-2.

Example 1-2. Spawning a browser thread

const worker = new Worker('worker.js');

worker.postMessage('Hello, world');

// worker.js

self.onmessage = (msg) => console.log(msg.data);

The purpose of this book is to explore and explain JavaScript threads

as a programming concept and tool. You’ll learn how to use them

and, more importantly, when to use them. Not every problem needs

to be solved with threads. Not even every CPU-intensive problem

needs to be solved with threads. It’s the job of software developers

to evaluate problems and tools to determine the most appropriate

solutions. The aim here is to give you another tool and enough

knowledge around it to know when to use it and how.

What Are Threads?

In all modern operating systems, all units of execution outside the

kernel are organized into processes and threads. Developers can use

processes and threads, and communication between them, to add

concurrency to a project. On systems with multiple CPU cores, this

also means adding parallelism.

When you execute a program, such as Node.js or a code editor,

you’re initiating a process. This means that code is loaded into a

memory space unique to that process, and no other memory space

can be addressed by the program without asking the kernel either for

more memory or for a different memory space to be mapped in.

Without adding threads or additional processes, only one instruction

is executed at a time, in the appropriate order as prescribed by the

program code. If you’re unfamiliar, you can think of instructions as a

single unit of code, like a line of code. (In fact, an instruction generally

corresponds to one line in your processor’s assembly code!)

A program may spawn additional processes, which have their own

memory space. These processes do not share memory (unless it’s

mapped in via additional system calls) and have their own instruction

pointers, meaning each one can be executing a different instruction at

the same time. If the processes are being executed on the same

core, the processor may switch back and forth between processes,

temporarily stopping execution for that one process while another one

executes.

A process may also spawn threads, rather than full-blown processes.

A thread is just like a process, except that it shares memory space

with the process that it belongs to. A process can have many

threads, and each one has its own instruction pointer. All the same

properties about execution of processes apply to threads as well.

Because they share a memory space, it’s easy to share program

code and other values between threads. This makes them more

valuable than processes for adding concurrency to programs, but at

the cost of some complexity in programming, which we’ll cover later

on in this book.

A typical way to take advantage of threads is to offload CPU-

intensive work, like mathematical operations, to an additional thread

or pool of threads while the main thread is free to interact externally

with the user or other programs by checking for new interactions

inside an infinite loop. Many classic web server programs, such as

Apache, use a system like this to handle large loads of HTTP

requests. This might end up looking something like Figure 1-1. In this

model, HTTP request data is passed to a worker thread for

processing, and when the response is ready, it’s handed back to the

main thread to be returned back to the user agent.

Figure 1-1. Worker threads as they might be used in an HTTP server

In order for threads to be useful, they need to be able to coordinate

with each other. This means they have to be able to do things like

wait for things to happen on other threads and get data from them.

As discussed, we have a shared memory space between threads,

and with some other basic primitives, systems for passing messages

between threads can be constructed. In many cases, these sorts of

constructs are available at the language or platform level.

Concurrency Versus Parallelism

It’s important to distinguish between concurrency and parallelism,

since they’ll come up fairly often when programming in a

multithreaded manner. These are closely related terms that can mean

very similar things depending on the circumstances. Let’s start with

some definitions.

Concurrency

Tasks are run in overlapping time.

Parallelism

Tasks are run at exactly the same time.

While it may seem like these mean the same thing, consider that

tasks may be broken up into smaller parts and then interleaved. In

this case, concurrency can be achieved without parallelism because

the time frames that the tasks run in can be overlapped. For tasks to

be running with parallelism, they must be running at exactly the same

time. Generally, this means they must be running on separate CPU

cores at exactly the same time.

Consider Figure 1-2. In it, we have two tasks running in parallel and

concurrently. In the concurrent case, only one task is being executed

at a given time, but throughout the entire period, execution switched

between the two tasks. This means they’re running in overlapping

time, so it fits the definition of concurrency. In the parallel case, both

tasks are executing simultaneously, so they’re running in parallel.

Since they’re also running in an overlapping time period, they’re also

running concurrently. Parallelism is a subset of concurrency.

Figure 1-2. Concurrency versus parallelism

Threads do not automatically provide parallelism. The system

hardware must allow for this by having multiple CPU cores, and the

operating system scheduler must decide to run the threads on

separate CPU cores. On single-core systems, or systems with more

threads running than CPU cores, multiple threads may be run on a

single CPU concurrently by switching between them at appropriate

times. Also, in languages with a GIL like Ruby and Python, threads

are explicitly prevented from offering parallelism because only one

instruction can be executed at a time throughout the entire runtime.

It’s important to also think about this in terms of timing because

threads are typically added to a program to increase performance. If

your system is only allowing for concurrency due to only having a

single CPU core available or being already loaded with other tasks,

then there may not be any perceived benefit to using extra threads. In

fact, the overhead of synchronization and context-switching between

the threads may end up making the program perform even worse.

Always measure the performance of your application under the

conditions it’s expected to run in. That way you can verify whether a

multithreaded programming model will actually be beneficial to you.

Single-Threaded JavaScript

Historically, the platforms that JavaScript ran on did not provide any

thread support, so the language was thought of as single-threaded.

Whenever you hear someone say that JavaScript is single-threaded,

they’re referring to this historical background and the programming

style that it naturally lent itself to. It’s true that, despite the title of this

book, the language itself does not have any built-in functionality to

create threads. This shouldn’t be that much of a surprise because it

also doesn’t have any built-in functionality to interact with the network,

devices, or filesystem, or to make any system calls. Indeed, even

such basics as setTimeout() aren’t actually JavaScript features.

Instead environments the virtual machine (VM) is embedded in, such

as Node.js or browsers, provide these via environment-specific APIs.

Instead of threads as a concurrency primitive, most JavaScript code

is written in an event-oriented manner operating on a single execution

thread. As various events like user interactions or I/O happen, they

trigger the execution of functions previously set to run upon these

events. These functions are typically called callbacks and are at the

core of how asynchronous programming is done in Node.js and the

browser. Even in promises or the async / await syntax, callbacks

are the underlying primitive. It’s important to recognize that callbacks

are not running in parallel, or alongside any other code. When code in

a callback is running, that’s the only code that’s currently running. Put

another way, only one call stack is active at any given time.

It’s often easy to think of operations happening in parallel, when in

fact they’re happening concurrently. For example, imagine you want

to open three files containing numbers, named 1.txt, 2.txt, and 3.txt,

and then add up the results and print them. In Node.js, you might do

something like Example 1-3.

Example 1-3. Reading from files concurrently in Node.js

import fs from 'fs/promises';

async function getNum(filename) {

 return parseInt(await fs.readFile(filename, 'utf8')
}

try {

 const numberPromises = [1, 2, 3].map(i => getNum(`$
 const numbers = await Promise.all(numberPromises);

 console.log(numbers[0] + numbers[1] + numbers[2]);

} catch (err) {

 console.error('Something went wrong:');

 console.error(err);

}

To run this code, save it in a file called reader.js. Make sure you have

text files named 1.txt, 2.txt, and 3.txt, each containing integers, and

then run the program with node reader.js .

Since we’re using Promise.all() , we’re waiting for all three files to

be read and parsed. If you squint a bit, it may even look similar to the

pthread_join() from the C example later in this chapter. However,

just because the promises are being created together and waited

upon together doesn’t mean that the code resolving them runs at the

same time, it just means their time frames are overlapping. There’s

still only one instruction pointer, and only one instruction is being

executed at a time.

In the absence of threads, there’s only one JavaScript environment to

work with. This means one instance of the VM, one instruction

pointer, and one instance of the garbage collector. By one instruction

pointer, we mean that the JavaScript interpreter is only executing one

instruction at any given time. That doesn’t mean we’re restricted to

one global object though. In both the browser and Node.js, we have

realms at our disposal.

Realms can be thought of as instances of the JavaScript environment

as provided to JavaScript code. This means that each realm gets its

own global object, and all of the associated properties of the global

object, such as built-in classes like Date and other objects like

Math . The global object is referred to as global in Node.js and

window in browsers, but in modern versions of both, you can refer

to the global object as globalThis .

In browsers, each frame in a web page has a realm for all of the

JavaScript within it. Because each frame has its own copy of

Object and other primitives within it, you’ll notice that they have their

own inheritance trees, and instanceof might not work as you

expect it to when operating on objects from different realms. This is

demonstrated in Example 1-4.

Example 1-4. Objects from a different frame in a browser

const iframe = document.createElement('iframe');

https://oreil.ly/uy7E2

();
document.body.appendChild(iframe);

const FrameObject = iframe.contentWindow.Object;

console.log(Object === FrameObject);

console.log(new Object() instanceof FrameObject);

console.log(FrameObject.name);

The global object inside the iframe is accessible with the

contentWindow property.

This returns false, so the Object inside the frame is not the

same as in the main frame.

instanceof evaluates to false , as expected since they’re

not the same Object .

Despite all this, the constructors have the same name

property.

In Node.js, realms can be constructed with the

vm.createContext() function, as shown in Example 1-5. In

Node.js parlance, realms are called Contexts. All the same rules and

properties applying to browser frames also apply to Contexts, but in

Contexts, you don’t have access to any global properties or anything

else that might be in scope in your Node.js files. If you want to use

these features, they need to be manually passed in to the Context.

Example 1-5. Objects from a new Context in Node.js

const vm = require('vm');

const ContextObject = vm.runInNewContext('Object');

console.log(Object === ContextObject);

console.log(new Object() instanceof ContextObject);
console.log(ContextObject.name);

We can get objects from a new context using

runInNewContext .

This returns false, so as with browser iframes, Object inside

the context is not the same as in the main context.

Similarly, instanceof evaluates to false .

Once again, the constructors have the same name property.

In any of these realm cases, it’s important to note that we still only

have one instruction pointer, and code from only one realm is running

at a time, because we’re still only talking about single-threaded

execution.

Hidden Threads

While your JavaScript code may run, at least by default, in a single-

threaded environment, that doesn’t mean the process running your

code is single-threaded. In fact, many threads might be used to have

that code running smoothly and efficiently. It’s a common

misconception that Node.js is a single-threaded process.

Modern JavaScript engines like V8 use separate threads to handle

garbage collection and other features that don’t need to happen in

line with JavaScript execution. In addition, the platform runtimes

themselves may use additional threads to provide other features.

In Node.js, libuv is used as an OS-independent asynchronous I/O

interface, and since not all system-provided I/O interfaces are

asynchronous, it uses a pool of worker threads to avoid blocking

program code when using otherwise-blocking APIs, such as

filesystem APIs. By default, four of these threads are spawned,

though this number is configurable via the UV_THREADPOOL_SIZE

environment variable, and can be up to 1,024.

On Linux systems, you can see these extra threads by using top -H

on a given process. In Example 1-6, a simple Node.js web server

was started, and the PID was noted and passed to top . You can

see the various V8 and libuv threads add up to seven threads,

including the one that the JavaScript code runs in. You can try this

with your own Node.js programs, and even try changing the

UV_THREADPOOL_SIZE environment variable to see the number of

threads change.

Example 1-6. Output from top , showing the threads in a
Node.js process

$ top -H -p 81862

top - 14:18:49 up 1 day, 23:18, 1 user, load averag
Threads: 7 total, 0 running, 7 sleeping, 0 st
%Cpu(s): 2.2 us, 0.0 sy, 0.0 ni, 97.8 id, 0.0 wa,
MiB Mem : 15455.1 total, 2727.9 free, 5520.4 use
MiB Swap: 2048.0 total, 2048.0 free, 0.0 use

 PID USER PR NI VIRT RES SHR S %CP
 81862 bengl 20 0 577084 29272 25064 S 0.
 81863 bengl 20 0 577084 29272 25064 S 0.
 81864 bengl 20 0 577084 29272 25064 S 0.
 81865 bengl 20 0 577084 29272 25064 S 0.
 81866 bengl 20 0 577084 29272 25064 S 0.
 81867 bengl 20 0 577084 29272 25064 S 0.
 81868 bengl 20 0 577084 29272 25064 S 0.

Browsers similarly perform many tasks, such as Document Object

Model (DOM) rendering, in threads other than the one used for

JavaScript execution. An experiment with top -H like we did for

Node.js would result in a similar handful of threads. Modern browsers

take this even further by using multiple processes to add a layer of

security by isolation.

It’s important to think about these extra threads when going through a

resource-planning exercise for your application. You should never

assume that just because JavaScript is single-threaded that only one

thread will be used by your JavaScript application. For example, in

production Node.js applications, measure the number of threads used

by the application and plan accordingly. Don’t forget that many of the

native addons in the Node.js ecosystem spawn threads of their own

as well, so it’s important to go through this exercise on an application-

by-application basis.

Threads in C: Get Rich with
Happycoin

Threads are obviously not unique to JavaScript. They’re a long-

standing concept at the operating system level, independent of

languages. Let’s explore how a threaded program might look in C. C

is an obvious choice here because the C interface for threads is what

underlies most thread implementations in higher-level languages, even

if there may seem to be different semantics.

Let’s start with an example. Imagine a proof-of-work algorithm for a

simple and impractical cryptocurrency called Happycoin, as follows:

1. Generate a random unsigned 64-bit integer.

2. Determine whether or not the integer is happy.

3. If it’s not happy, it’s not a Happycoin.

4. If it’s not divisible by 10,000, it’s not a Happycoin.

5. Otherwise, it’s a Happycoin.

A number is happy if it eventually goes to 1 when replacing it with the

sum of the squares of its digits, and looping until either the 1

happens, or a previously seen number arises. Wikipedia defines it

clearly and also points out that if any previously seen numbers arise,

then 4 will arise, and vice versa. You may notice that our algorithm is

needlessly too expensive because we could check for divisibility

before checking for happiness. This is intentional because we’re

trying to demonstrate a heavy workload.

Let’s build a simple C program that runs the proof-of-work algorithm

10,000,000 times, printing any Happycoins found, and a count of

them.

https://oreil.ly/vRr3P

NOTE

The cc in the compilation steps here can be replaced with gcc or clang , depending on

which is available to you. On most systems, cc is an alias for either gcc or clang , so that’s

what we’ll use here.

Windows users may have to do some extra work here to get this going in Visual Studio, and

the threads example won’t work out-of-the-box on Windows because it uses Portable

Operating System Interface (POSIX) threads rather than Windows threads, which are

different. To simplify trying this on Windows, the recommendation is to use Windows

Subsystem for Linux so that you have a POSIX-compatible environment to work with.

With Only the Main Thread

Create a file called happycoin.c, in a directory called ch1-c-threads/.

We’ll build up this file over the course of this section. To start off, add

the code as shown in Example 1-7.

Example 1-7. ch1-c-threads/happycoin.c

#include <inttypes.h>

#include <stdbool.h>

#include <stdio.h>

#include <stdlib.h>

#include <time.h>

uint64_t random64(uint32_t * seed) {

 uint64_t result;

 uint8_t * result8 = (uint8_t *)&result;

 for (size_t i = 0; i < sizeof(result); i++) {

 result8[i] = rand_r(seed);

 }

 return result;

}

This line uses pointers, which may be unfamiliar to you if you’re

coming from a mostly JavaScript background. The short

version of what’s going on here is that result8 is an array of

eight 8-bit unsigned integers, backed by the same memory as

result , which is a single 64-bit unsigned integer.

We’ve added a bunch of includes , which give us handy things like

types, I/O functions, and the time and random number functions we’ll

be needing. Since the algorithm requires the generation of a random

64-bit unsigned integer (i.e., a uint64_t), we need eight random

bytes, which random64() gives us by calling rand_r() until we

have enough bytes. Since rand_r() also requires a reference to a

seed, we’ll pass that into random64() as well.

Now let’s add our happy number calculation as shown in Example 1-

8.

Example 1-8. ch1-c-threads/happycoin.c

uint64_t sum_digits_squared(uint64_t num) {

 uint64_t total = 0;

 while (num > 0) {

 uint64_t num_mod_base = num % 10;

 total += num_mod_base * num_mod_base;

 num = num / 10;

 }

 return total;

}

bool is_happy(uint64_t num) {

 while (num != 1 && num != 4) {

 num = sum_digits_squared(num);

 }

 return num == 1;

}

bool is_happycoin(uint64_t num) {

 return is_happy(num) && num % 10000 == 0;

}

To get the sum of the squares of the digits in sum_digits_squared ,

we’re using the mod operator, % , to get each digit from right to left,

squaring it, then adding it to our running total. We then use this

function in is_happy in a loop, stopping when the number is 1 or 4.

We stop at 1 because that indicates the number is happy. We also

stop at 4 because that’s indicative of an infinite loop where we never

end up at 1. Finally, in is_happycoin() , we do the work of

checking whether a number is happy and also divisible by 10,000.

Let’s wrap this all up in our main() function as shown in Example 1-

9.

Example 1-9. ch1-c-threads/happycoin.c

int main() {

 uint32_t seed = time(NULL);

 int count = 0;

 for (int i = 1; i < 10000000; i++) {

 uint64_t random_num = random64(&seed);

 if (is_happycoin(random_num)) {

 printf("%" PRIu64 " ", random_num);

 count++;

 }

 }

 printf("\ncount %d\n", count);

 return 0;

}

First, we need a seed for the random number generator. The current

time is as suitable a seed as any, so we’ll use that via time() .

Then, we’ll loop 10,000,000 times, first getting a random number

from random64() , then checking if it’s a Happycoin. If it is, we’ll

increment the count and print the number out. The weird PRIu64

syntax in the printf() call is necessary for properly printing out 64-

bit unsigned integers. When the loop completes, we print out the

count and exit the program.

To compile and run this program, use the following commands in your

ch1-c-threads directory.

$ cc -o happycoin happycoin.c

$./happycoin

You’ll get a list of Happycoins found on one line and the count of them

on the next line. For a given run of the program, it might look

something like this:

11023541197304510000 ... [167 more entries] ... 77
count 169

It takes a nontrivial amount of time to run this program; about 2

seconds on a run-of-the-mill computer. This is a case where threads

can be useful to speed things up because many iterations of the

same largely mathematical operation are being run.

Let’s go ahead and convert this example to a multithreaded program.

With Four Worker Threads

We’ll set up four threads that will each run a quarter of the iterations

of the loop that generates a random number and tests if it’s a

Happycoin.

In POSIX C, threads are managed with the pthread_* family of

functions. The pthread_create() function is use to create a

thread. A function is passed in that will be executed on that thread.

Program flow continues on the main thread. The program can wait for

a thread’s completion by calling pthread_join() on it. You can

pass arguments to the function being run on the thread via

pthread_create() and get return values from pthread_join() .

In our program, we’ll isolate the generation of Happycoins in a

function called get_happycoins() and that’s what will run in our

threads. We’ll create the four threads, and then immediately wait for

the completion of them. Whenever we get the results back from a

thread, we’ll output them and store the count so we can print the total

at the end. To help in passing the results back, we’ll create a simple

struct called happy_result .

Make a copy of your existing happycoin.c and name it happycoin-

threads.c. Then in the new file, insert the code in Example 1-10 under

the last #include in the file.

Example 1-10. ch1-c-threads/happycoin-threads.c

#include <pthread.h>

struct happy_result {

 size_t count;

 uint64_t * nums;

};

The first line includes pthread.h , which gives us access to the

various thread functions we’ll need. Then struct happy_result is

defined, which we’ll use as the return value for our thread function

get_happycoins() later on. It stores an array of found happycoins,

represented here by a pointer, and the count of them.

Now, go ahead and delete the whole main() function because we’re

about to replace it. First, let’s add our get_happycoins() function

in Example 1-11, which is the code that will run on our worker

threads.

Example 1-11. ch1-c-threads/happycoin-threads.c

void * get_happycoins(void * arg) {

 int attempts = *(int *)arg;

 int limit = attempts/10000;

 uint32_t seed = time(NULL);

 uint64_t * nums = malloc(limit * sizeof(uint64_t));
 struct happy_result * result = malloc(sizeof(struct
 result->nums = nums;

 result->count = 0;

 for (int i = 1; i < attempts; i++) {

 if (result->count == limit) {

 break;

 }

 uint64_t random_num = random64(&seed);

 if (is_happycoin(random_num)) {

 result->nums[result->count++] = random_num;

 }

 }

 return (void *)result;

}

This weird pointer casting thing basically says “treat this

arbitrary pointer as a pointer to an int , and then get me the

value of that int .”

You’ll notice that this function takes in a single void * and returns a

single void * . That’s the function signature expected by

pthread_create() , so we don’t have a choice here. This means

we have to cast our arguments to what we want them to be. We’ll be

passing in the number of attempts, so we’ll cast the argument to an

int . Then, we’ll set the seed as we did in the previous example, but

this time it’s happening in our thread function, so we get a different

seed per thread.

After allocating enough space for our array and struct

happy_result , we go ahead into the same loop that we did in

main() in the single-threaded example, only this time we’re putting

the results into the struct instead of printing them. Once the loop is

done, we return the struct as a pointer, which we cast as void *

to satisfy the function signature. This is how information is passed

back to the main thread, which will make sense of it.

This demonstrates one of the key properties of threads that we don’t

get from processes, which is the shared memory space. If, for

example, we were using processes instead of threads and some

interprocess communication (IPC) mechanism to transfer results

back, we wouldn’t be able to simply pass a memory address back to

the main process because the main process wouldn’t have access to

memory of the worker process. Thanks to virtual memory, the

memory address might refer to something else entirely in the main

process. Instead of passing a pointer, we’d have to pass the entire

value back over the IPC channel, which can introduce performance

overhead. Since we’re using threads instead of processes, we can

just use the pointer, so that the main thread can use it just the same.

Shared memory isn’t without its trade-offs, though. In our case,

there’s no need for the worker thread to make any use of the

memory it has now passed to the main thread. This isn’t always the

case with threads. In a great multitude of cases, it’s necessary to

properly manage how threads access shared memory via

synchronization; otherwise, some unpredictable results may occur.

We’ll go into how this works in JavaScript in detail in Chapters 4 and

5.

Now, let’s wrap this up with the main() function in Example 1-12.

Example 1-12. ch1-c-threads/happycoin-threads.c

#define THREAD_COUNT 4

int main() {

 pthread_t thread [THREAD_COUNT];

 int attempts = 10000000/THREAD_COUNT;

 int count = 0;

 for (int i = 0; i < THREAD_COUNT; i++) {

 pthread_create(&thread[i], NULL, get_happycoins,
 }

 for (int j = 0; j < THREAD_COUNT; j++) {

 struct happy_result * result;

 pthread_join(thread[j], (void **)&result);

 count += result->count;

 for (int k = 0; k < result->count; k++) {

 printf("%" PRIu64 " ", result->nums[k]);

 }

 }

 printf("\ncount %d\n", count);

 return 0;

}

First, we’ll declare our four threads as an array on the stack. Then,

we divide our desired number of attempts (10,000,000) by the

number of threads. This is what will be passed to

get_happycoins() as an argument, which we see inside the first

loop, which creates each of the threads with pthread_create() ,

passing in the number of attempts per thread as an argument. In the

next loop, we wait for each of the threads to finish their execution

with pthread_join() . Then we can print the results and the total

from all the threads, just like we would in the single-threaded

example.

NOTE

This program leaks memory. One hard part of multithreaded programming in C and some

other languages is that it can be very easy to lose track of where and when memory is

allocated and where and when it should be freed. See if you can modify the code here to

ensure the program exits with all heap-allocated memory freed.

With the changes complete, you can compile and run this program

with the following commands in your ch1-c-threads directory.

$ cc -pthread -o happycoin-threads happycoin-threads.
$./happycoin-threads

The output should look something like this:

2466431682927540000 ... [154 more entries] ... 1576
count 156

You’ll notice output similar to the single-threaded example. You’ll also

notice that it’s a bit faster. On a run-of-the-mill computer it finishes in

about 0.8 seconds. This isn’t quite four times as fast, since there’s

some initial overhead in the main thread, and also the cost of printing

of results. We could print the results as soon as they’re ready on the

thread that’s doing the work, but if we do that, the results may

clobber each other in the output because nothing stops two threads

from printing to the output stream at the same time. By sending the

results to the main thread, we can coordinate the printing of results

there so that nothing gets clobbered.

This illustrates the primary advantage and one drawback of threaded

code. On one hand, it’s useful for splitting up computationally

1

expensive tasks so that they can be run in parallel. On the other

hand, we need to ensure that some events are properly synchronized

so that weird errors don’t occur. When adding threads to your code in

any language, it’s worth making sure that the use is appropriate.

Also, as with any exercise in attempting to make faster programs,

always be measuring. You don’t want to have the complexity of

threaded code in your application if it doesn’t turn out to give you any

actual benefit.

Any programming language supporting threads is going to provide

some mechanisms for creating and destroying threads, passing

messages in between, and interacting with data that’s shared

between the threads. This may not look the same in every language,

because as languages and their paradigms are different, so are their

programmatic models of parallel programming. Now that we’ve

explored what threaded programs look like in a low-level language

like C, let’s dive in to JavaScript. Things will look a little different, but

as you’ll see, the principles remain the same.

 The fact that the total count from the multithreaded example is different from the single-

threaded example is irrelevant because the count is dependent on how many random

numbers happened to be Happycoins. The result will be completely different between two

different runs.

1

Chapter 2. Browsers

JavaScript doesn’t have a single, bespoke implementation like most

other programming languages do. For example, with Python, you’re

probably going to run the Python binary provided by the language

maintainers. JavaScript, on the other hand, has many different

implementations. This includes the JavaScript engine that ships with

different web browsers, such as V8 in Chrome, SpiderMonkey in

Firefox, and JavaScriptCore in Safari. The V8 engine is also used by

Node.js on the server.

These separate implementations each start off by implementing some

facsimile of the ECMAScript specification. As the compatibility charts

that we so often need to consult suggest, not every engine

implements JavaScript the same way. Certainly, browser vendors

attempt to implement JavaScript features in the same manner, but

bugs do happen. At the language level, there are some concurrency

primitives that have been made available, which are covered in more

detail in Chapters 4 and 5.

Other APIs are also added in each implementation to make the

JavaScript that can be run even more powerful. This chapter focuses

entirely on the multithreaded APIs that are provided by modern web

browsers, the most approachable of which is the web worker.

Using these worker threads is beneficial for many reasons, but one

that is particularly applicable to browsers is that, by offloading CPU-

intensive work to a separate thread, the main thread is then able to

dedicate more resources to rendering the UI. This can help contribute

to a smoother, more user-friendly experience than what might have

been traditionally achievable.

Dedicated Workers

Web workers allow you to spawn a new environment for executing

JavaScript in. JavaScript that is executed in this way is allowed to run

in a separate thread from the JavaScript that spawned it.

Communication occurs between these two environments by using a

pattern called message passing. Recall that it’s JavaScript’s nature

to be single-threaded. Web workers play nicely with this nature and

expose message passing by way of triggering functions to be run by

the event loop.

It’s possible for a JavaScript environment to spawn more than one

web worker, and a given web worker is free to spawn even more

web workers. That said, if you find yourself spawning massive

hierarchies of web workers, you might need to reevaluate your

application.

There is more than one type of web worker, the simplest of which is

the dedicated worker.

Dedicated Worker Hello World

The best way to learn a new technology is to actually work with it.

The relationship between page and worker that you are building is

displayed in Figure 2-1. In this case you’ll create just a single worker,

but a hierarchy of workers is also achievable.

Figure 2-1. Dedicated worker relationship

First, create a directory named ch2-web-workers/. You’ll keep the

three example files required for this project in there. Next, create an

index.html file inside the directory. JavaScript that runs in the

browser needs to first be loaded by a web page, and this file

represents the basis of that web page. Add the content from

Example 2-1 to this file to kick things off.

Example 2-1. ch2-web-workers/index.html

<html>

 <head>

 <title>Web Workers Hello World</title>

 <script src="main.js"></script>

 </head>

</html>

As you can see, this file is super basic. All it is doing is setting a title

and loading a single JavaScript file named main.js. The remaining

sections in this chapter follow a similar pattern. The more interesting

part is what’s inside the main.js file.

In fact, create that main.js file now, and add the content from

Example 2-2 to it.

Example 2-2. ch2-web-workers/main.js

console.log('hello from main.js');

const worker = new Worker('worker.js');

worker.onmessage = (msg) => {

 console.log('message received from worker', msg.dat

};

worker.postMessage('message sent to worker');

console.log('hello from end of main.js');

Instantiation of a new dedicated worker.

A message handler is attached to the worker.

A message is passed into the worker.

The first thing that happens in this file is that a call to

console.log() is made. This is to make it obvious the order in

which files get executed. The next thing that happens is that a new

dedicated worker gets instantiated. This is done by calling new

Worker(filename) . Once called, the JavaScript engine begins the

download (or cache lookup) for the appropriate file in the

background.

Next, a handler for the message event is attached to the worker.

This is done by assigning a function to the .onmessage property of

the dedicated worker. When a message is received, that function

gets called. The argument provided to the function is an instance of

MessageEvent . It comes with a bunch of properties, but the one

that’s most interesting is the .data property. This represents the

object that was returned from the dedicated worker.

Finally, a call to the dedicated worker’s .postMessage() method is

made. This is how the JavaScript environment that instantiates the

dedicated worker is able to communicate with the dedicated worker.

In this case a basic string has been passed into the dedicated

worker. There are restrictions on what kind of data can be passed

into this method; see the Appendix for more details.

Now that your main JavaScript file is finished, you’re ready to create

the file that will be executed within the dedicated worker. Create a

new file named worker.js and add the contents of Example 2-3 to it.

Example 2-3. ch2-web-workers/worker.js

console.log('hello from worker.js');

self.onmessage = (msg) => {

 console.log('message from main', msg.data);

 postMessage('message sent from worker');

};

In this file a single global function named onmessage is defined and

a function is assigned to it. This onmessage function, inside the

dedicated worker, is called when the worker.postMessage()

method is called from outside the dedicated worker. This assignment

could also have been written as onmessage = or even var

onmessage = , but using const onmessage = or let onmessage

= or even declaring function onmessage won’t work. The self

identifier is an alias for globalThis inside a web worker where the

otherwise familiar window isn’t available.

Inside the onmessage function, the code first prints the message

that was received from outside of the dedicated worker. After that, it

calls the postMessage() global function. This method takes an

argument, and the argument is then provided to the calling

environment by triggering the dedicated worker’s onmessage()

method. The same rules about message passing and object cloning

also apply here. Again, the example is just using a simple string for

now.

There are some additional rules when it comes to loading a dedicated

worker script file. The file that is loaded must be in the same origin

that the main JavaScript environment is running in. Also, browsers

won’t allow you to run dedicated workers when JavaScript runs using

the file:// protocol, which is a fancy way of saying you can’t

simply double-click the index.html file and view the application

running. Instead, you’ll need to run your application from a web

server. Luckily, if you have a recent Node.js installed, you can run the

following command to start a very basic web server locally:

$ npx serve .

Once executed, this command spins up a server that hosts files from

the local filesystem. It also displays the URL that the server is

available as. Typically the command outputs the following URL,

assuming the port is free:

http://localhost:5000

Copy whatever URL was provided to you and open it using a web

browser. When the page first opens you’ll most likely see a plain,

white screen. But that’s not a problem because all of the output is

being displayed in the web developer console. Different browsers

make the console available in different ways, but usually you can

right-click somewhere in the background and click the Inspect menu

option, or you can press Ctrl+Shift+I (or Cmd-Shift-I) to open up the

inspector. Once in the inspector, click on the Console tab, and then

refresh the page just in case any console messages weren’t

captured. Once that’s done you should see the messages that are

displayed in Table 2-1.

Table 2-1. Example console output

Log Location

hello from main.js main.js:1:9

hello from end of main.js main.js:11:9

hello from worker.js worker.js:1:9

message from main, message sent to worker worker.js:4:11

message received from worker, message sent

from worker

main.js:6:11

This output confirms the order in which the messages have been

executed, though it’s not entirely deterministic. First, the main.js file is

loaded, and its output is printed. The worker is instantiated and

configured, its postMessage() method is called, and then the last

message gets printed as well. Next, the worker.js file is run, and its

message handler is called, printing a message. It then calls

postMessage() to send a message back to main.js. Finally, the

onmessage handler for the dedicated worker is called in main.js,

and the final message is printed.

Advanced Dedicated Worker Usage

Now that you’re familiar with the basics of dedicated workers, you’re

ready to work with some of the more complex features.

When you work with JavaScript that doesn’t involve dedicated

workers, all the code you end up loading is available in the same

realm. Loading new JavaScript code is done either by loading a script

with a <script> tag, or by making an XHR request and using the

eval() function with a string representing the code. When it comes

to dedicated workers, you can’t inject a <script> tag into the DOM

because there’s no DOM associated with the worker.

Instead, you can make use of the importScripts() function, which

is a global function only available within web workers. This function

accepts one or more arguments that represent the paths to scripts to

be loaded. These scripts will be loaded from the same origin as the

web page. These scripts are loaded in a synchronous manner, so

code that follows the function call will run after the scripts are loaded.

Instances of Worker inherit from EventTarget and have some

generic methods for dealing with events. However, the Worker class

provides the most important methods on the instance. The following is

a list of these methods, some of which you’ve already worked with,

some of which are new:

worker.postMessage(msg)

This sends a message to the worker that is handled by the

event loop before invoking the self.onmessage function,

passing in msg .

worker.onmessage

If assigned, it is in turn invoked when the self.postMessage

function inside the worker is called.

worker.onerror

If assigned, it is invoked when an error is thrown inside the

worker. A single ErrorEvent argument is provided, having

.colno , .lineno , .filename , and .message properties.

This error will bubble up unless you call

err.preventDefault() .

worker.onmessageerror

If assigned, this is invoked when the worker receives a

message that it cannot deserialize.

worker.terminate()

If called, the worker terminates immediately. Future calls to

worker.postMessage() will silently fail.

Inside the dedicated worker, the global self variable is an instance

of WorkerGlobalScope . The most notable addition is the

importScripts() function for injecting new JavaScript files. Some

of the high-level communication APIs like XMLHttpRequest ,

WebSocket , and fetch() are available. Useful functions that aren’t

necessarily part of JavaScript but are rebuilt by every major engine,

like setTimeout() , setInterval() , atob() , and btoa() , are

also available. The two data-storage APIs, localStorage and

indexedDB , are available.

When it comes to APIs that are missing, though, you’ll need to

experiment and see what you have access to. Generally, APIs that

modify the global state of the web page aren’t available. In the main

JavaScript realm, the global location is available and is an

instance of Location . Inside a dedicated worker, location is still

available, but it’s an instance of WorkerLocation and is a little

different, notably missing a .reload() method that can cause a

page refresh. The document global is also missing, which is the API

for accessing the page’s DOM.

When instantiating a dedicated worker, there is an optional second

argument for specifying the options for the worker. The instantiation

takes on the following signature:

const worker = new Worker(filename, options);

The options argument is an object that can contain the properties

listed here:

type

Either classic (default), for a classic JavaScript file, or

module , to specify an ECMAScript Module (ESM).

credentials

This value determines if HTTP credentials are sent with the

request to get the worker file. The value can be omit to

exclude the credentials, same-origin to send credentials (but

only if the origin matches), or include to always send the

credentials.

name

This names a dedicated worker and is mostly used for

debugging. The value is provided in the worker as a global

named name .

Shared Workers

A shared worker is another type of web worker, but what makes it

special is that a shared worker can be accessed by different browser

environments, such as different windows (tabs), across iframes, and

even from different web workers. They also have a different self

within the worker, being an instance of SharedWorkerGlobalScope .

A shared worker can only be accessed by JavaScript running on the

same origin. For example, a window running on http://localhost:5000

cannot access a shared worker running on http://google.com:80.

WARNING

Shared workers are currently disabled in Safari, and this seems to have been true since at

least 2013, which will undoubtedly harm adoption of the technology.

Before diving into code, it’s important to consider a few gotchas. One

thing that makes shared workers a little hard to reason about is that

they aren’t necessarily attached to a particular window (environment).

Sure, they’re initially spawned by a particular window, but after that

they can end up “belonging” to multiple windows. That means that

when the first window is closed, the shared worker is kept around.

https://oreil.ly/eHlkL

TIP

Since shared workers don’t belong to a particular window, one interesting question is where

should console.log output go? As of Firefox v85, the output is associated with the first

window that spawns the shared worker. Open another window and the first still gets the logs.

Close the first window and the logs are now invisible. Open another window and the historical

logs then appear in the newest window. Chrome v87, on the other hand, doesn’t display

shared worker logs at all. Keep this in mind when debugging.

DEBUGGING SHARED WORKERS

Both Firefox and Chrome offer a dedicated way to debug shared

workers. In Firefox, visit about:debugging in the address bar. Next,

click This Firefox in the left column. Then, scroll down until you see

the Shared Workers section with a list of shared worker scripts. In

our case we see an Inspect button next to an entry for the shared-

worker.js file. With Chrome, visit chrome://inspect/#workers, find the

shared-worker.js entry, and then click the “inspect” link next to it. With

both browsers you’ll be taken to a dedicated console attached to the

worker.

Shared workers can be used to hold a semipersistent state that is

maintained when other windows connect to it. For example, if

Window 1 tells the shared worker to write a value, then Window 2

can ask the shared worker to read that value back. Refresh Window

1 and the value is still maintained. Refresh Window 2 and it’s also

retained. Close Window 1 and it’s still retained. However, once you

close or refresh the final window that is still using the shared worker,

the state will be lost and the shared worker script will be evaluated

again.

WARNING

A shared worker JavaScript file is cached while multiple windows are using it; refreshing a

page won’t necessarily reload your changes. Instead, you’ll need to close other open browser

windows, then refresh the remaining window, to get the browser to run your new code.

With these caveats in mind, you’re now ready to build a simple

application that uses shared workers.

Shared Worker Hello World

A shared worker is “keyed” based on its location in the current origin.

For example, the shared worker you’ll work with in this example is

located somewhere like http://localhost:5000/shared-worker.js.

Whether the worker is loaded from an HTML file located at /red.html,

/blue.html, or even /foo/index.html, the shared worker instance will

always remain the same. There is a way to create different shared

worker instances using the same JavaScript file, and that’s covered in

“Advanced Shared Worker Usage”.

The relationship between the page and the worker that you are

building is displayed in Figure 2-2.

Figure 2-2. Shared worker relationship

Now, it’s time to create some files. For this example, create a

directory named ch2-shared-workers/, and all the files necessary will

live in this directory. Once that’s done, create an HTML file containing

the content in Example 2-4.

Example 2-4. ch2-shared-workers/red.html

<html>

 <head>

 <title>Shared Workers Red</title>

 <script src="red.js"></script>

 </head>

</html>

Much like the HTML file you created in the previous section, this one

just sets a title and loads a JavaScript file. Once that’s done, create

another HTML file containing the content in Example 2-5.

Example 2-5. ch2-shared-workers/blue.html

<html>

 <head>

 <title>Shared Workers Blue</title>

 <script src="blue.js"></script>

 </head>

</html>

For this example you’re going to work with two separate HTML files,

each representing a new JavaScript environment that will be available

on the same origin. Technically, you could have reused the same

HTML file in both windows, but we want to make it very explicit that

none of the state is going to be associated with the HTML files or the

red/blue JavaScript files.

Next, you’re ready to create the first JavaScript file loaded directly by

an HTML file. Create a file containing the content in Example 2-6.

Example 2-6. ch2-shared-workers/red.js

console.log('red.js');

const worker = new SharedWorker('shared-worker.js');

worker.port.onmessage = (event) => {

 console.log('EVENT', event.data);

};

};

Instantiate the shared worker

Note the worker.port property for communications

This JavaScript file is rather basic. What it does is instantiate a

shared worker instance by calling new SharedWorker() . After that

it adds a handler for message events that are emitted from the

shared worker. When a message is received, it is simply printed to

the console.

Unlike with Worker instances, where you called .onmessage

directly, with SharedWorker instances you’ll make use of the

.port property.

Next, copy and paste the red.js file that you created in Example 2-6

and name it blue.js. Update the console.log() call to print blue.js;

otherwise, the content will remain the same.

Finally, create a shared-worker.js file, containing the content in

Example 2-7. This is where most of the magic will happen.

Example 2-7. ch2-shared-workers/shared-worker.js

const ID = Math.floor(Math.random() * 999999);

console.log('shared-worker.js', ID);

const ports = new Set();

self.onconnect = (event) => {

 const port = event.ports[0];

 ports.add(port);

 console.log('CONN', ID, ports.size);

 port.onmessage = (event) => {

 console.log('MESSAGE', ID, event.data);

 for (let p of ports) {

 p.postMessage([ID, event.data]);

 }

 };

};

Random ID for debugging

Singleton list of ports

Connection event handler

Callback when a new message is received

Messages are dispatched to each window

The first thing that happens in this file is that a random ID value is

generated. This value is printed in the console and later passed to the

calling JavaScript environments. It’s not particularly useful with a real

application, but it does a great job proving that state is retained, and

when state is lost, when dealing with this shared worker.

Next, a singleton Set named ports is created. This will contain a

list of all of the ports that are made available to the worker. Both the

worker.port available in the window and the port provided in a

service worker are an instance of the MessagePort class.

The final thing that happens in the outer scope of this shared worker

file is that a listener for the connect event is established. This

function is called every time a JavaScript environment creates a

SharedWorker instance that references this shared worker. When

this listener is called, an instance of MessageEvent is provided as

the argument.

There are several properties available on the connect event, but the

most important one is the ports property. This property is an array

that contains a single element which is a reference to the

MessagePort instance that allows communication with the calling

JavaScript environment. This particular port is then added to the

ports set.

1

An event listener for the message event is also attached to the port.

Much like the onmessage method you used previously with the

Worker instance, this method is called when one of the external

JavaScript environments calls the applicable .postMessage()

method. When a message is received, the code prints the ID value

and the data that was received.

The event listener also dispatches the message back to the calling

environments. It does this by iterating the ports set, calling the

.postMessage() method for each of the encountered ports. Since

this method only takes a single argument, an array is passed in to

sort of emulate multiple arguments. The first element of this array is

the ID value again, and the second is the data that was passed in.

If you’ve worked with WebSockets using Node.js before, then this

code pattern might feel familiar. With most popular WebSockets

packages, an event is triggered when a connection is made, and the

connection argument can then have a message listener attached to it.

At this point you’re ready to test your application again. First, run the

following command inside your ch2-shared-workers/ directory, and

then copy and paste the URL that is displayed:

$ npx serve .

Again, in our case, we’re given the URL http://localhost:5000. This

time, though, instead of opening the URL directly, you’ll want to first

open the web inspector in your browser and then open a modified

version of the URL.

Switch to your browser and open a new tab. It’s fine if this opens

your home page, a blank tab, or whatever your default page is. Then,

open the web inspector again and navigate to the console tab. Once

that’s done, paste the URL that was given to you, but modify it to

open the /red.html page. The URL that you enter might look

something like this:

http://localhost:5000/red.html

Press Enter to open the page. The serve package will probably

redirect your browser from /red.html to /red, but that’s fine.

Once the page has loaded, you should see the messages listed in

Table 2-2 displayed in your console. If you open the inspector after

loading the page, then you probably won’t see any logs, though doing

so then refreshing the page should display the logs. Note that at the

time of writing, only Firefox will display messages generated in

shared-worker.js.

Table 2-2. First window console output

Log Location

red.js red.js:1:9

shared-worker.js 278794 shared-worker.js:2:9

CONN 278794 1 shared-worker.js:9:11

In our case we can see that the red.js file was executed, that this

particular shared-worker.js instance generated an ID of 278794, and

that there is currently a single window connected to this shared

worker.

Next, open another browser window. Again, open the web inspector

first, switch to the Console tab, paste the base URL that was

provided by the serve command, and then add /blue.html to the

end of the URL. In our case the URL looks like this:

http://localhost:5000/blue.html

Press Enter to open the URL. Once the page loads, you should only

see a single message printed in the console output stating that the

blue.js file was executed. At this point it’s not too interesting. But

switch back to the previous window you had opened for the red.html

page. You should see that the new log listed in Table 2-3 has been

added.

Table 2-3. First window console output, continued

Log Location

CONN 278794 2 shared-worker.js:9:11

Now things are getting a little exciting. The shared worker

environment now has two references to a MessagePort instance

pointing to two separate windows. At the same time, two windows

have references to MessagePort instances for the same shared

worker.

Now you’re ready to send a message to the shared worker from one

of the windows. Switch focus to the console window and type in the

following command:

worker.port.postMessage('hello, world');

Press Enter to execute that line of JavaScript. You should see a

message in the first console that is generated in the shared worker, a

message in the first console from red.js, and a message in the

second window’s console from blue.js. In our case we see the

outputs listed in Table 2-4.

Table 2-4. First and second window console output

Log Location Console

MESSAGE 278794 hello,

world

shared-

worker.js:12:13

1

EVENT Array [278794,

“hello, world”]

red.js:6:11 1

EVENT Array [278794,

“hello, world”]

blue.js:6:11 2

At this point you’ve successfully sent a message from the JavaScript

environment available in one window to the JavaScript environment in

a shared worker, and then passed a message from the worker to two

separate windows.

Advanced Shared Worker Usage

Shared workers are governed by the same object cloning rules

described in the Appendix. Also, like their dedicated worker

equivalent, shared workers also have access to the

importScripts() function for loading external JavaScript files. As

of Firefox v85/Chrome v87 you may find Firefox more convenient to

debug shared workers with due to the output of console.log()

from the shared worker being available.

The shared worker instances do have access to a connect event,

which can be handled with the self.onconnect() method. Notably

missing, especially if you’re familiar with WebSockets, is a

disconnect or close event.

When it comes to creating a singleton collection of port instances,

like in the sample code in this section, it’s very easy to create a

memory leak. In this case, just keep refreshing one of the windows,

and each refresh adds a new entry to the set.

This is far from ideal. One thing you can do to address this is to add

an event listener in your main JavaScript environments (i.e., red.js

and blue.js) that fires when the page is being torn down. Have this

event listener pass a special message to the shared worker. Within

the shared worker, when the message is received, remove the port

from the list of ports. Here’s an example of how to do this:

// main JavaScript file

window.addEventListener('beforeunload', () => {

 worker.port.postMessage('close');

});

// shared worker

port.onmessage = (event) => {

 if (event.data === 'close') {

 ports.delete(port);

 return;

 }

};

Unfortunately, there are still situations where a port can stick around.

If the beforeunload event doesn’t fire, or if an error happens when

it’s fired, or if the page crashes in an unanticipated way, this can lead

to expired port references sticking around in the shared worker.

A more robust system would also need a way for the shared worker

to occasionally “ping” the calling environments, sending a special

message via port.postMessage() , and have the calling

environments reply. With such an approach the shared worker can

delete port instances if it doesn’t receive a reply within a certain

amount of time. But even this approach isn’t perfect, as a slow

JavaScript environment can lead to long response times. Luckily,

interacting with ports that no longer have a valid JavaScript

associated with them doesn’t have much of a side effect.

The full constructor for the SharedWorker class looks like this:

const worker = new SharedWorker(filename, nameOrOptio

The signature is slightly different than when instantiating a Worker

instance, notably that the second argument can either be an options

object, or the name of the worker. Much like with a Worker instance,

the name of the worker is available inside the worker as self.name .

At this point you may be wondering how that works. For example,

could the shared worker be declared in red.js with a name of “red

worker” and in blue.js with a name of “blue worker”? In this case, two

separate workers will be created, each with a different global

environment, a different ID value, and the appropriate self.name .

You can think of these shared worker instances as being “keyed” by

not only their URL but also their name. This may be why the signature

changes between a Worker and a SharedWorker , as the name is

much more important for the latter.

Other than the ability to replace the options argument with a string

name, the options argument for a SharedWorker is exactly the

same as it is for a Worker .

In this example, you’ve only created a single SharedWorker

instance per window, assigned to worker , but there is nothing

stopping you from creating multiple instances. In fact, you can even

create multiple shared workers that point to the same instance,

assuming the URLs and names match. When this happens, both of

the SharedWorker instances’ .port properties are able to receive

messages.

These SharedWorker instances are definitely capable of maintaining

state between page loads. You’ve been doing just that, with the ID

variable holding a unique number and ports containing a list of

ports. This state even persists through refreshes as long as one

window remains open, like if you were to refresh the blue.html page

followed by the red.html page. However, that state would be lost if

both pages were refreshed simultaneously, one closed and the other

refreshed, or if both were closed. In the next section you’ll work with

a technology that can continue to maintain state—and run code—

even when connected windows are closed.

Service Workers

A service worker functions as a sort of proxy that sits between one

or more web pages running in the browser and the server. Because a

service worker isn’t associated with just a single web page but

potentially multiple pages, it’s more similar to a shared worker than to

a dedicated worker. They’re even “keyed” in the same manner as

shared workers. But a service worker can exist and run in the

background even when a page isn’t necessarily still open. Because of

this you can think of a dedicated worker as being associated with one

page, a shared worker as being associated with one or more pages,

but a service worker as being associated with zero or more pages.

But a shared worker doesn’t magically spawn into existence. Instead,

it does require a web page to be opened first to install the shared

worker.

Service workers are primarily intended for performing cache

management of a website or a single page application. They are

most commonly invoked when network requests are sent to the

server, wherein an event handler inside the service worker intercepts

the network request. The service worker’s claim to fame is that it can

be used to return cached assets when a browser displays a web

page but the computer it’s running on no longer has network access.

When the service worker receives the request, it may consult a cache

to find a cached resource, make a request to the server to retrieve

some semblance of the resource, or even perform a heavy

computation and return the result. While this last option makes it

similar to the other web workers you’ve looked at, you really shouldn’t

use service workers just for the purpose of offloading CPU-intensive

work to another thread.

Service workers expose a larger API than that of the other web

workers, though their primary use case is not for offloading heavy

computation from the main thread. Service workers are certainly

complex enough to have entire books dedicated to them. That said,

because the primary goal of this book is to teach you about the

multithreaded capabilities of JavaScript, we won’t cover them in their

entirety. For example, there’s an entire Push API available for

receiving messages pushed to the browser from the server that won’t

be covered at all.

Much like with the other web workers, a service worker can’t access

the DOM. They also can’t make blocking requests. For example,

setting the third argument of XMLHttpRequest#open() to false ,

which would block code execution until the request succeeds or times

out, is not allowed. Browsers will only allow service workers to run on

a web page that has been served using the HTTPS protocol. Luckily

for us, there is one notable exception, where localhost may load

service workers using HTTP. This is to make local development

easier. Firefox doesn’t allow service workers when using its Private

Browsing feature. Chrome, however, does allow service workers

when using its Incognito feature. That said, a service worker instance

can’t communicate between a normal and Incognito window.

Both Firefox and Chrome have an Applications panel in the inspector

that contains a Service Workers section. You can use this to both

view any service workers associated with the current page and to

also perform a very important development action: unregister them,

which basically allows you to reset the browser state to before the

worker was registered. Unfortunately, as of the current browser

versions, these browser panels don’t provide a way to hop into the

JavaScript inspectors for the service workers.

DEBUGGING SERVICE WORKERS

To get into the inspector panels for your service worker instances,

you’ll need to go somewhere else. In Firefox, open the address bar

and visit about:debugging#/runtime/this-firefox. Scroll down to the

service workers and any workers you create today should be visible

at the bottom. For Chrome, there are two different screens available

for getting access to the browser’s service workers. The more robust

page is located at chrome://serviceworker-internals/. It contains a

listing of service workers, their status, and basic log output. The other

one is at chrome://inspect/#service-workers, and it contains a lot less

information.

Now that you’re aware of some of the gotchas with service workers,

you’re ready to build one out.

Service Worker Hello World

In this section you’re going to build a very basic service worker that

intercepts all HTTP requests sent from a basic web page. Most of

the requests will pass through to the server unaltered. However,

requests made to a specific resource will instead return a value that

is calculated by the service worker itself. Most service workers would

instead do a lot of cache lookups, but again, the goal is to show off

service workers from a multithreaded point of view.

The first file you’ll need is again an HTML file. Make a new directory

named ch2-service-workers/. Then, inside this directory, create a file

with the content from Example 2-8.

Example 2-8. ch2-service-workers/index.html

<html>

 <head>

 <title>Service Workers Example</title>

 <script src="main.js"></script>

 </head>

</html>

This is a rather basic file that just loads your application’s JavaScript

file, which comes next. Create a file named main.js, and add the

content from Example 2-9 to it.

Example 2-9. ch2-service-workers/main.js

navigator.serviceWorker.register('/sw.js', {

 scope: '/'

});

navigator.serviceWorker.oncontrollerchange = () => {
 console.log('controller change');

};

async function makeRequest() {

 const result = await fetch('/data.json');

 const payload = await result.json();

 console.log(payload);

}

Registers service worker and defines scope.

Listens for a controllerchange event.

Function to initiate request.

Now things are starting to get a little interesting. The first thing going

on in this file is that the service worker is created. Unlike the other

web workers you worked with, you aren’t using the new keyword

with a constructor. Instead, this code depends on the

navigator.serviceWorker object to create the worker. The first

argument is the path to the JavaScript file that acts as the service

worker. The second argument is an optional configuration object that

supports a single scope property.

The scope represents the directory for the current origin wherein

any HTML pages that are loaded in it will have their requests passed

through the service worker. By default, the scope value is the same

as the directory that the service worker is loaded from. In this case,

the / value is relative to the index.html directory, and because sw.js is

located in the same directory, we could have omitted the scope and it

would behave exactly the same.

Once the service worker has been installed for the page, all outbound

HTTP requests will get sent through the service worker. This includes

requests made to different origins. Since the scope for this page is

set to the uppermost directory of the origin, any HTML page that is

opened in this origin will then have to make requests through the

service worker for assets. If the scope had been set to /foo, then a

page opened at /bar.html will be unaffected by the service worker,

but a page at /foo/baz.html would be affected.

The next thing that happens is that a listener for the

controllerchange event is added to the

navigator.serviceWorker object. When this listener fires, a

message is printed to the console. This message is just for

debugging when a service worker takes control of a page that has

been loaded and which is within the scope of the worker.

Finally, a function named makeRequest() is defined. This function

makes a GET request to the /data.json path, decodes the response

as JavaScript Object Notation (JSON), and prints the result. As you

might have noticed, there aren’t any references to that function.

Instead, you’ll manually run it in the console later to test the

functionality.

With that file out of the way, you’re now ready to create the service

worker itself. Create a third file named sw.js, and add the content

from Example 2-10 to it.

Example 2-10. ch2-service-workers/sw.js

let counter = 0;

self.oninstall = (event) => {

 console.log('service worker install');

};

self.onactivate = (event) => {

 console.log('service worker activate');

 event.waitUntil(self.clients.claim());

};

self.onfetch = (event) => {

 console.log('fetch', event.request.url);

 if (event.request.url.endsWith('/data.json')) {

 counter++;

 event.respondWith(

 new Response(JSON.stringify({counter}), {

 headers: {

 'Content-Type': 'application/json'

 }

 })

);

 return;

 }

 // fallback to normal HTTP request

 event.respondWith(fetch(event.request));

};

Allows service worker to claim the opened index.html page.

Override for when /data.json is requested.

Other URLs will fall back to a normal network request.

The first thing that happens in this file is that a global variable

counter is initialized to zero. Later, when certain types of requests

are intercepted, that number will increment. This is just an example to

prove that the service worker is running; in a real application you

should never store state that’s meant to be persistent in this way. In

fact, expect any service workers to start and stop fairly frequently, in

a manner that’s hard to predict and that differs depending on browser

implementation.

After that, we create a handler for the install event by assigning a

function to self.oninstall . This function runs when this version of

the service worker is installed for the very first time in the browser.

Most real-world applications will perform instantiation work at this

stage. For example, there’s an object available at self.caches

which can be used to configure caches that store the result of

network requests. However, because this basic application doesn’t

have much to do in the way of instantiation, it just prints a message

and finishes.

Next up is a function for handling the activate event. This event is

useful for performing cleanup work when new versions of the service

worker are introduced. With a real-world application, it’s probably

going to do work like tearing down old versions of caches.

In this case, the activate handler function is making a call to the

self.clients.claim() method. Calling this allows the page

instance that first created the service worker, that is, the index.html

page you’ll open for the first time, to then get controlled by the

service worker. If you didn’t have this line, the page wouldn’t be

controlled by the service worker when first loaded. However,

refreshing the page or opening index.html in another tab would then

allow that page to be controlled.

The call to self.clients.claim() returns a promise. Sadly, event

handler functions used in service workers are not async functions

able to await promises. However, the event argument is an object

with a .waitUntil() method, which does work with a promise.

Once the promise provided to that method resolves, it will allow the

oninstall and onactivate (and later onfetch) handlers to

finish. By not calling that method, like in the oninstall handler, the

step is considered finished once the function exits.

The last event handler is the onfetch function. This one is the most

complex and also the one that will be called the most throughout the

lifetime of the service worker. This handler is called every time a

network request is made by a web page under control of the service

worker. It’s called onfetch to signal that it correlates to the

fetch() function in the browser, though it’s almost a misnomer

because any network request will be passed through it. For example,

if an image tag is later added to the page, the request would also

trigger onfetch .

This function first logs a message to confirm that it’s being run and

also printing the URL that is being requested. Other information about

the requested resource is also available, such as headers and the

HTTP method. In a real-world application this information can be used

to consult with a cache to see if the resource already exists. For

example, a GET request to a resource within the current origin could

be served from the cache, but if it doesn’t exist, it could be requested

using the fetch() function, then inserted into the cache, then

returned to the browser.

This basic example just takes the URL and checks to see if it’s for a

URL that ends in /data.json. If it is not, the if statement body is

skipped, and the final line of the function is called. This line just takes

the request object (which is an instance of Request), passes it to

the fetch() method, which returns a promise, and passes that

promise to event.respondWith() . The fetch() method will

resolve an object that will then be used to represent the response,

which is then provided to the browser. This is essentially a very basic

HTTP proxy.

However, circling back to the /data.json URL check, if it does pass,

then something more complicated happens. In that case the

counter variable is incremented, and a new response is generated

from scratch (which is an instance of Response). In this case, a

JSON string is constructed that contains the counter value. This is

provided as the first argument to Response , which represents the

response body. The second argument contains meta information

about the response. In this case the Content-Type header is set to

application/json , which suggests to the browser that the

response is a JSON payload.

Now that your files have been created, navigate to the directory

where you created them using your console and run the following

command to start another web server:

$ npx serve .

Again, copy the URL that was provided, open a new web browser

window, open the inspector, then paste the URL to visit the page. You

should see this message printed in your console (and possibly

others):

controller change main.js:6:11

Next, browse to the list of service workers installed in your browser

using the aforementioned technique. Within the inspector, you should

see the previously logged messages; specifically you should see

these two:

service worker install sw.js:4:11

service worker activate sw.js:8:11

Next, switch back to the browser window. While in the Console tab of

the inspector, run the following line of code:

makeRequest();

This runs the makeRequest() function, which triggers an HTTP GET

request to /data.json of the current origin. Once it completes, you

should see the message Object { counter: 1 } displayed in

your console. That message was generated using the service worker,

and the request was never sent to the web server. If you switch to

the network tab of the inspector, you should see what looks like an

otherwise normal request to get the resource. If you click the

request, you should see that it replied with a 200 status code, and

the Content-Type header should be set to application/json as

well. As far as the web page is concerned, it did make a normal

HTTP request. But you know better.

Switch back to the service worker inspector console. In here, you

should see that a third message has been printed containing the

details of the request. On our machine we get the following:

fetch http://localhost:5000/data json sw js:13:11

fetch http://localhost:5000/data.json sw.js:13:11

At this point you’ve successfully intercepted an HTTP request from

one JavaScript environment, performed some computation in another

environment, and returned the result back to the main environment.

Much like with the other web workers, this calculation was done in a

separate thread, running code in parallel. Had the service worker

done some very heavy and slow calculations, the web page would

have been free to perform other actions while it waited for the

response.

TIP

In your first browser window, you might have noticed an error that an attempt to download the

favicon.ico file was made but failed. You might also be wondering why the shared worker

console doesn’t mention this file. That’s because, at the point when the window was first

opened, it wasn’t yet under control of the service worker, so the request was made directly

over the network, bypassing the worker. Debugging service workers can be confusing, and

this is one of the caveats to keep in mind.

Now that you’ve built a working service worker, you’re ready to learn

about some of the more advanced features they have to offer.

Advanced Service Worker Concepts

Service workers are intended to only be used for performing

asynchronous operations. Because of that, the localStorage API,

which technically blocks when reading and writing, isn’t available.

However, the asynchronous indexedDB API is available. Top-level

await is disabled within service workers as well.

When it comes to keeping track of state, you’ll mostly be using

self.caches and indexedDB . Again, keeping data in a global

variable isn’t going to be reliable. In fact, while debugging your

service workers, you might find that they occasionally end up

stopped, at which point you’re not allowed to hop into the inspector.

The browsers have a button that allows you to start the worker again,

allowing you to hop back into the inspector. It’s this stopping and

starting that flushes out global state.

Service worker scripts are cached rather aggressively by the

browser. When reloading the page, the browser may make a request

for the script, but unless the script has changed, it won’t be

considered for being replaced. The Chrome browser does offer the

ability to trigger an update to the script when reloading the page; to

do this, navigate to the Application tab in the inspector, then click

“Service Workers,” then click the “Update on reload” checkbox.

Every service worker goes through a state change from the time of

its inception until the time it can be used. This state is available within

the service worker by reading the self.serviceWorker.state

property. Here’s a list of the stages it goes through:

parsed

This is the very first state of the service worker. At this point

the JavaScript content of the file has been parsed. This is more

of an internal state that you’ll probably never encounter in your

application.

installing

The installation has begun but is not yet complete. This

happens once per worker version. This state is active after

oninstall is called and before the event.respondWith()

promise has resolved.

installed

At this point the installation is complete. The onactivate

handler is going to be called next. In my testing I find that the

service workers jump from installing to activating so

fast that I never see the installed state.

activating

This state happens when onactivate is called but the

event.respondWith() promise hasn’t yet resolved.

activated

The activation is complete, and the worker is ready to do its

thing. At this point fetch events will get intercepted.

redundant

At this point, a newer version of the script has been loaded,

and the previous script is no longer necessary. This can also be

triggered if the worker script download fails, if it contains a

syntax error, or if an error is thrown.

Philosophically, service workers should be treated as a form of

progressive enhancement. This means that any web pages using

them should still behave as usual if the service worker isn’t used at

all. This is important because you might encounter a browser that

doesn’t support service workers, or the installation phase might fail,

or privacy-conscientious users might disable them entirely. In other

words, if you’re only looking to add multithreading capabilities to your

application, then choose one of the other web workers instead.

The global self object used inside service workers is an instance of

ServiceWorkerGlobalScope . The importScripts() function

available in other web workers is available in this environment as well.

Like the other workers, it’s also possible to pass messages into, and

receive messages from, a service worker. The same

self.onmessage handler can be assigned. This can, perhaps, be

used to signal to the service worker that it should perform some sort

of cache invalidation. Again, messages passed in this way are subject

to the same cloning algorithm that we discuss in the Appendix.

While debugging your service workers, and the requests that are

being made from your browser, you’ll need to keep caching in mind.

Not only can the service worker implement caches that you control

programmatically, but the browser itself also still has to deal with

regular network caching. This can mean requests sent from your

service worker to the server might not always be received by the

server. For this reason, keep the Cache-Control and Expires

headers in mind, and be sure to set intentional values.

There are many more features available to service workers than

those covered in this section. Mozilla, the company behind Firefox,

was nice enough to put together a cookbook website full of common

strategies when building out service workers. This website is

available at https://serviceworke.rs and we recommend checking it

out if you’re considering implementing service workers in your next

web app.

Service workers, and the other web workers you’ve looked at,

certainly come with a bit of complexity. Lucky for us, there are some

convenient libraries available, and communication patterns that you

can implement, to make managing them a little easier.

https://serviceworke.rs/

CROSS-DOCUMENT COMMUNICATION

There are other ways to employ multithreaded JavaScript

programming in browsers without needing to instantiate a web

worker. These can be done by communicating across different

browser contexts, both fully open pages and iframes. Browsers

provide APIs to allow for communication across these pages.

The first approach works by embedding iframes in a web page, or by

creating a pop-up window, and has been available before web

workers existed. The parent window is able to get a reference to the

child window and can then call a .postMessage() method on that

reference to send messages to the child. The child window can then

listen for message events on its window object. The child can also

pass messages back to the parent window. This pattern likely

inspired the web worker interfaces.

The second approach is a bit more universal. It allows for

communication across not only pop-ups and iframes but also any

window that is opened for the same origin. It goes even further and

allows for communication across worker threads as well. This

communication is achieved by instantiating a new

BroadcastChannel instance, passing in the name of a channel as

the first argument. This channel then allows for pub/sub (publish and

subscribe) communication. The resulting object has a

.postMessage() method and can have an .onmessage handler

assigned. All objects that are listening on this channel across different

environments will all have their message handler called when a

message has been posted. The instance also has a .close()

method to disconnect the instance from the channel.

Message Passing Abstractions

Each of the web workers covered in this chapter expose an interface

for passing messages into, and receiving messages from, a separate

JavaScript environment. This allows you to build applications that are

capable of running JavaScript simultaneously across multiple cores.

However, you’ve really only worked with simple, contrived examples

so far, passing along simple strings and calling simple functions.

When it comes to building larger applications it’ll be important to pass

messages along that can scale and run code in workers that can

scale, and simplifying the interface when working with workers will

also reduce potential errors.

The RPC Pattern

So far, you’ve only worked with passing basic strings along to

workers. While this is fine for getting a feel for the capabilities of web

workers, it’s something that isn’t going to scale well for a full

application.

For example, let’s assume you have a web worker that does a single

thing, like sum all the square root values from 1 to 1,000,000. Well,

you could just call the postMessage() for the worker, without

passing arguments, then run the slow logic in the onmessage

handler, and send the message back using the worker’s

postMessage() function. But what if the worker also needs to

calculate Fibonacci sequence? In that case you could pass in a string,

one for square_sum , and one for fibonacci . But what if you need

arguments? Well, you could pass in square_sum|1000000 . But

what if you need argument types? Maybe you get something like

square_sum|num:1000000 . You can probably see what we’re

getting at.

The RPC (Remote Procedure Call) pattern is a way to take a

representation of a function and its arguments, serialize them, and

pass them to a remote destination to have them get executed. The

string square_sum|num:1000000 is actually a form of RPC that we

accidentally recreated. Perhaps it could ultimately translate into a

function call like squareNum(1000000) , which is considered in “The

Command Dispatcher Pattern”.

There’s another bit of complexity that an application needs to worry

about as well. If the main thread only sends a single message to a

web worker at a time, then when a message is returned from the

web worker, you know it’s the response to the message. But if you

send multiple messages to a web worker at the same time, there’s

no easy way to correlate the responses. For example, imagine an

application that sends two messages to a web worker and receives

two responses:

worker.postMessage('square_sum|num:4');

worker.postMessage('fibonacci|num:33');

worker.onmessage = (result) => {

 // Which result belongs to which message?

 // '3524578'

 // 4.1462643

};

Luckily, there does exist a standard for passing messages around

and fulfilling the RPC pattern that inspiration can be drawn from. This

standard is called JSON-RPC, and it’s fairly trivial to implement. This

standard defines JSON representations of request and response

objects as “notification” objects, a way to define the method being

called and arguments in the request, the result in the response, and a

mechanism for associating requests and responses. It even supports

https://jsonrpc.org/

error values and batching of requests. For this example you’ll only

work with a request and response.

Taking the two function calls from our example, the JSON-RPC

version of those requests and responses might look like this:

// worker.postMessage

{"jsonrpc": "2.0", "method": "square_sum", "params":
{"jsonrpc": "2.0", "method": "fibonacci", "params": [

// worker.onmessage

{"jsonrpc": "2.0", "result": "3524578", "id": 2}

{"jsonrpc": "2.0", "result": 4.1462643, "id": 1}

In this case there’s now a clear correlation between the response

messages and their request.

JSON-RPC is intended to use JSON as the encoding when serializing

messages, particularly when sending messages over the network. In

fact, those jsonrpc fields define the version of JSON-RPC that the

message is adhering to, which is very important in a network setting.

However, because web workers use the structured clone algorithm

(covered in the Appendix) that allows passing JSON-compatible

objects along, an app could just pass objects directly without paying

the cost of JSON serialization and deserialization. Also, the jsonrpc

fields might not be as important in the browser where you have

tighter control of both ends of the communication channel.

With these id properties correlating request and response objects,

it’s possible to then correlate which message relates to which. You’ll

build a solution for correlating these two in “Putting It All Together”.

But, for now, you need to first determine which function to call when a

message is received.

The Command Dispatcher Pattern

While the RPC pattern is useful for defining protocols, it doesn’t

necessarily provide a mechanism for determining what code path to

execute on the receiving end. The command dispatcher pattern

solves this, providing a way to take a serialized command, find the

appropriate function, and then execute it, optionally passing in

arguments.

This pattern is fairly straightforward to implement and doesn’t require

a whole lot of magic. First, we can assume that there are two

variables that contain relevant information about the method or

command that the code needs to run. The first variable is called

method and is a string. The second variable is called args and is

an array of values to be passed into the method. Assume these have

been pulled from the RPC layer of the application.

The code that ultimately needs to run might live in different parts of

the application. For example, maybe the square sum code lives in a

third-party library, and the Fibonacci code is something that you’ve

declared more locally. Regardless of where that code lives, you’ll

want to make a single repository that maps these commands to the

code that needs to be run. There are several ways to pull this off, for

example by using a Map object, but because the commands are

going to be fairly static, a humble JavaScript object will suffice.

Another important concept is that only defined commands should be

executed. If the caller wants to invoke a method that doesn’t exist, an

error should be gracefully generated that can be returned to the

caller, without crashing the web worker. And, while the arguments

could be passed into the method as an array, it would be a much

nicer interface if the array of arguments were spread out into normal

function arguments.

Example 2-11 shows an example implementation of a command

dispatcher that you can use in your applications.

Example 2-11. Example command dispatcher

const commands = {

 square_sum(max) {

 let sum = 0;

 for (let i = 0; i < max; i++) sum += Math.sqrt(i)

(; ;) q ()
 return sum;

 },

 fibonacci(limit) {

 let prev = 1n, next = 0n, swap;

 while (limit) {

 swap = prev; prev = prev + next;

 next = swap; limit--;

 }

 return String(next);

 }

};

function dispatch(method, args) {

 if (commands.hasOwnProperty(method)) {

 return commands[method](...args);

 }

 throw new TypeError(`Command ${method} not defined!
}

The definition of all supported commands.

Check to see if command exists.

Arguments are spread and method is invoked.

This code defines an object named commands that contains the

entire collection of commands that are supported by the command

dispatcher. In this case the code is inlined but it’s absolutely fine, and

even encouraged, to reach out to code that lives elsewhere.

The dispatch() function takes two arguments, the first being the

name of the method and the second being the array of arguments.

This function can be invoked when the web worker receives an RPC

message representing the command. Within this function the first step

is to check if the method exists. This is done using

commands.hasOwnProperty() . This is much safer than calling

method in commands or even commands[method] since you don’t

want noncommand properties like __proto__ being called.

If the command is determined to exist, then the command arguments

are spread out, with the first array element being the first argument,

etc. The function is then called with the arguments, with the result of

the call being returned. However, if the command doesn’t exist, then a

TypeError is thrown.

This is about as basic of a command dispatcher as you can create.

Other, more advanced dispatchers might do things like type checking,

where the arguments are validated to adhere to a certain primitive

type or where objects follow the appropriate shape, throwing errors

generically so that the command method code doesn’t need to do it.

These two patterns will definitely help your applications out, but the

interface can be streamlined even more.

Putting It All Together

With JavaScript applications, we often think about performing work

with outside services. For example, maybe we make a call to a

database or maybe we make an HTTP request. When this happens

we need to wait for a response to happen. Ideally, we can either

provide a callback or treat this lookup as a promise. Although the

web worker messaging interface doesn’t make this straightforward,

we can definitely build it out by hand.

It would also be nice to have a more symmetrical interface within a

web worker, perhaps by making use of an asynchronous function,

one where the resolved value is automatically sent back to the calling

environment, without the need to manually call postMessage()

within the code.

In this section, you’ll do just that. You’ll combine the RPC pattern and

the command dispatcher pattern and end up with an interface that

makes working with web workers much like working with other

external libraries you may be more familiar with. This example uses a

dedicated worker, but the same thing could be built with a shared

worker or service worker.

First, create a new directory named ch2-patterns/ to house the files

you’re going to create. In here first create another basic HTML file

named index.html containing the contents of Example 2-12.

Example 2-12. ch2-patterns/index.html

<html>

 <head>

 <title>Worker Patterns</title>

 <script src="rpc-worker.js"></script>

 <script src="main.js"></script>

 </head>

</html>

This time the file is loading two JavaScript files. The first is a new

library, and the second is the main JavaScript file, which you’ll now

create. Make a file named main.js, and add the contents of

Example 2-13 to it.

Example 2-13. ch2-patterns/main.js

const worker = new RpcWorker('worker.js');

Promise.allSettled([

 worker.exec('square_sum', 1_000_000),

 worker.exec('fibonacci', 1_000),

 worker.exec('fake_method'),

 worker.exec('bad'),

]).then(([square_sum, fibonacci, fake, bad]) => {

 console.log('square sum', square_sum);

 console.log('fibonacci', fibonacci);

 console.log('fake', fake);

 console.log('bad', bad);

});

This file represents application code using these new design patterns.

First, a worker instance is created, but not by calling one of the web

worker classes you’ve been working with so far. Instead, the code

instantiates a new RpcWorker class. This class is going to be

defined soon.

After that, four calls to different RPC methods are made by calling

worker.exec . The first one is a call to the square_sum method,

the second is to the fibonacci method, the third is to a method

that doesn’t exist called fake_method , and the fourth is to a failing

method named bad . The first argument is the name of the method,

and all the following arguments end up being the arguments that are

passed to the method.

The exec method returns a promise, one that will resolve if the

operation succeeds and will reject if the operation fails. With this in

mind, each of the promises has been wrapped into a single

Promise.allSettled() call. This will run all of them and then

continue the execution once each is complete—regardless of success

or failure. After that the result of each operation is printed.

allSettled() results include an array of objects with a status

string property, and either a value or reason property depending

on success or failure.

Next, create a file named rpc-worker.js, and add the contents of

Example 2-14 to it.

Example 2-14. ch2-patterns/rpc-worker.js (part 1)

class RpcWorker {

 constructor(path) {

 this.next_command_id = 0;

 this.in_flight_commands = new Map();

 this.worker = new Worker(path);

 this.worker.onmessage = this.onMessageHandler.bin
 }

This first part of the file starts the RpcWorker class and defines the

constructor. Within the constructor a few properties are initialized.

First, the next_command_id is set to zero. This value is used as the

JSON-RPC-style incrementing message identifier. This is used to

correlate the request and response objects.

Next, a property named in_flight_commands is initialized to an

empty Map . This contains entries keyed by the command ID, with a

value that contains a promise’s resolve and reject functions. The size

of this map grows with the number of parallel messages sent to the

worker and shrinks as their correlating messages are returned.

After that, a dedicated worker is instantiated and assigned to the

worker property. This class effectively encapsulates a Worker

instance. After that the onmessage handler of the worker is

configured to call the onMessageHandler for the class (defined in

the next chunk of code). The RpcWorker class doesn’t extend

Worker because it doesn’t really want to expose functionality of the

underlying web worker, instead creating a completely new interface.

Continue modifying the file by adding the content from Example 2-15

to it.

Example 2-15. ch2-patterns/rpc-worker.js (part 2)

 onMessageHandler(msg) {

 const { result, error, id } = msg.data;

 const { resolve, reject } = this.in_flight_comman
 this.in_flight_commands.delete(id);

 if (error) reject(error);

 else resolve(result);

 }

}

This chunk of the file defines the onMessageHandler method, which

runs when the dedicated worker posts a message. This code

assumes that a JSON-RPC-like message is passed from the web

worker to the calling environment, and so, it first extracts the

result , error , and id values from the response.

Next, it consults the in_flight_commands map to find the matching

id value, retrieving the appropriate rejection and resolving functions,

deleting the entry from the list in the process. If the error value was

provided, then the operation is considered a failure and the

reject() function is called with the erroneous value. Otherwise, the

resolve() function is called with the result of the operation. Note

that this doesn’t support throwing falsy values.

For a production-ready version of this library you would also want to

support a timeout value for these operations. Theoretically, it’s

possible for an error to be thrown in such a way, or for a promise to

never end up resolving in the worker, and the calling environment

would want to reject the promise and also clear the data from the

map. Otherwise the application might end up with a memory leak.

Finally, finish up this file by adding the remaining content from

Example 2-16 to it.

Example 2-16. ch2-patterns/rpc-worker.js (part 3)

 exec(method, ...args) {

 const id = ++this.next_command_id;

 let resolve, reject;

 const promise = new Promise((res, rej) => {

 resolve = res;

 reject = rej;

 });

 this.in_flight_commands.set(id, { resolve, reject
 this.worker.postMessage({ method, params: args, i
 return promise;

 }

}

This last chunk of the file defines the exec() method, which is called

when the application wants to execute a method in the web worker.

The first thing that happens is that a new id value is generated.

Next, a promise is created, which will later be returned by the

method. The reject and resolve functions for the promise are

pulled out and are added to the in_flight_commands map,

associated with the id value.

After that, a message is posted to the worker. The object that is

passed into the worker is an object roughly adhering to the JSON-

RPC shape. It contains the method property, a params property

that is the remaining arguments in an array, and the id value that

was generated for this particular command execution.

This is a fairly common pattern, useful for associating outgoing

asynchronous messages with incoming asynchronous messages. You

might find yourself implementing a similar pattern if you needed to,

say, put a message onto a network queue and later receive a

message. But, again, it does have memory implications.

With the RPC worker file out of the way, you’re ready to create the

last file. Make a file named worker.js, and add the contents of

Example 2-17 to it.

Example 2-17. ch2-patterns/worker.js

const sleep = (ms) => new Promise((res) => setTimeout

function asyncOnMessageWrap(fn) {

 return async function(msg) {

 postMessage(await fn(msg.data));

 }

}

const commands = {

 async square_sum(max) {

 await sleep(Math.random() * 100);

 let sum = 0; for (let i = 0; i < max; i++) sum +=

; (; ;)
 return sum;

 },

 async fibonacci(limit) {

 await sleep(Math.random() * 100);

 let prev = 1n, next = 0n, swap;

 while (limit) { swap = prev; prev = prev + next;
 return String(next);

 },

 async bad() {

 await sleep(Math.random() * 10);

 throw new Error('oh no');

 }

};

self.onmessage = asyncOnMessageWrap(async (rpc) => {
 const { method, params, id } = rpc;

 if (commands.hasOwnProperty(method)) {

 try {

 const result = await commands[method](...params
 return { id, result };

 } catch (err) {

 return { id, error: { code: -32000, message: er
 }

 } else {

 return {

 id, error: {

 code: -32601,

,
 message: `method ${method} not found`

 }

 };

 }

});

Adds artificial slowdown to methods.

A basic wrapper to convert onmessage to an async function.

Artificial random slowdowns are added to the commands.

The BigInt result is coerced into a JSON-friendly string

value.

The onmessage wrapper is injected.

A successful JSON-RPC-like message is resolved on success.

An erroneous JSON-RPC-like message is rejected if a method

doesn’t exist.

This file has a lot going on. First, the sleep function is just a

promise equivalent version of setTimeout() . The

asyncOnMessageWrap() is a function that can wrap an async

function and be assigned the onmessage handler. This is a

https://calibre-pdf-anchor.a/#a412

convenience to pull out the data property of the incoming message,

pass it to the function, await the result, then pass the result to

postMessage() .

After that, the commands object from before has made its return.

This time, though, artificial timeouts have been added and the

functions have been made into async functions. This lets the

methods emulate an otherwise slow asynchronous process.

Finally, the onmessage handler is assigned using the wrapper

function. The code inside it takes the incoming JSON-RPC-like

message and pulls out the method , params , and id properties.

Much like before, the commands collection is consulted to see if it

has the method. If it doesn’t, a JSON-RPC-like error is returned. The

-32601 value is a magic number defined by JSON-RPC to represent

a method that doesn’t exist. When the command does exist, the

command method is executed, then the resolved value is coerced into

a JSON-RPC-like successful message and returned. If the command

throws, then a different error is returned, using another JSON-RPC

magic number of -32000 .

Once you’ve got the file created, switch to your browser and open

the inspector. Then, launch the web server again using the following

command from within the ch2-patterns/ directory:

$ npx serve .

Next, switch back to browser and paste in the URL from the output.

You won’t see anything interesting on the page, but in the console you

should see the following messages:

square sum { status: "fulfilled", value: 666666166
fibonacci { status: "fulfilled", value: "43466557
fake { status: "rejected", reason: { code: -
 message: "method fake_method not foun
bad { status: "rejected", reason: { code: -
 message: "oh no" } }

In this case you can see that both the square_sum and fibonacci

calls ended successfully, while the fake_method command resulted

in failure. More importantly, under the hood, the calls to the methods

are resolving in different orders, but thanks to the incrementing id

values the responses are always properly correlated to their

requests.

 As of Firefox v85, regardless of how many entries are in the ports set, calling

console.log(ports) will always display a single entry. For now, to debug the size, call

console.log(ports.size) instead.

1

Chapter 3. Node.js

Outside browsers, there’s only one JavaScript runtime of note, and

that’s Node.js. Although it started as a platform emphasizing single-

threaded concurrency in servers with continuation-passing style

callbacks, a lot of effort went into making it a general-purpose

programming platform.

Many tasks performed by Node.js programs don’t fit into its

traditional use case of serving web requests or handling network

connections. Instead, a lot of newer Node.js programs are command-

line tools acting as build systems, or parts of them, for JavaScript.

Such programs are typically heavy on I/O operations, just like servers

are, but they also typically do a lot of data processing.

For example, tools like Babel and TypeScript will transform your code

from one language (or language version) to another. Tools like

Webpack, Rollup, and Parcel will bundle and minify your code for

distribution to your web frontend or to other environments where load

times are crucial, like serverless environments. In situations like

these, while there’s a lot of filesystem I/O going on, there’s also a lot

of data processing, which is generally done synchronously. These are

the sorts of situations where parallelism is handy and might get the

job done quicker.

1

https://babeljs.io/
https://typescriptlang.org/
https://webpack.js.org/
https://rollupjs.org/
https://parceljs.org/

Parallelism can also be useful in the original Node.js use case, which

is servers. Data processing may happen a lot, depending on your

application. For example, server side rendering (SSR) involves a lot

of string manipulation where the source data is already known. This is

one of many examples where we might want to add parallelism to our

solutions. “When to Use” examines a situation where parallelism

improves template rendering time.

Today, we have worker_threads for parallelizing our code. This

wasn’t always the case, but that didn’t mean we were limited to

single-threaded concurrency.

Before We Had Threads

Prior to threads being available in Node.js, if you wanted to take

advantage of CPU cores, you needed to use processes. As

discussed in Chapter 1, we don’t get some of the benefits we’d get

from threads if we use processes. That being said, if shared memory

isn’t important (and in many cases it isn’t!) then processes are

perfectly able to solve these kinds of problems for you.

Consider Figure 1-1 from Chapter 1. In that scenario, we have

threads responding to HTTP requests sent to them from a main

thread, which is listening on a port. While this concept is great for

handling traffic from several CPU cores, we can also use processes

to achieve a similar effect. It might look something like Figure 3-1.

Figure 3-1. Processes as they might be used in an HTTP server

Although we could do something like this using the child_process

API in Node.js, we’re better off using cluster , which was purpose-

built for this use case. This module’s purpose is to spread network

traffic across several worker processes. Let’s go ahead and use it in

a simple “Hello, World” example.

The code in Example 3-1 is a standard HTTP server in Node.js. It

simply responds to any request, regardless of path or method, with

“Hello, World!” followed by a new line character.

Example 3-1. A “Hello, World” server in Node.js

const http = require('http');

http.createServer((req, res) => {

 res.end('Hello, World!\n');

}).listen(3000);

Now, let’s add four processes with cluster . With the cluster

module, the common approach is to use an if block to detect

whether we’re in the main listening process or one of the worker

processes. If we’re in the main process, then we have to do the work

of spawning the worker processes. Otherwise, we just set up an

ordinary web server as before in each of the workers. This should

look something like Example 3-2.

Example 3-2. A “Hello, World” server in Node.js using cluster

const http = require('http');

const cluster = require('cluster');

if (cluster.isPrimary) {

 cluster.fork();

 cluster.fork();

 cluster.fork();

 cluster.fork();

} else {

 http.createServer((req, res) => {

 res.end('Hello, World!\n');

 }).listen(3000);

}

Require the cluster module.

Change code paths depending on whether we’re in the primary

process.

In the primary process, create four worker processes.

In the worker processes, create a web server and listen, like in

Example 3-1.

You may notice that we’re creating web servers that listen on the

same port in four difference processes. It seems like a mistake. After

all, if we try to bind a server to a port that’s already being used, we

usually get an error. Don’t worry! We’re not actually listening on the

same port four times. It turns out Node.js does some magic for us in

cluster .

When worker processes are set up in a cluster, any call to

listen() will actually cause Node.js to listen on the primary

process rather than on the worker. Then, once a connection is

received in the primary process, it’s handed off to a worker process

via IPC. On most systems, this happens on a round-robin basis. This

somewhat convoluted system is how each worker can appear to be

listening on the same port, when in fact it’s just the primary process

listening on that port and passing connections off to all the workers.

NOTE

Historically, the isPrimary property on cluster used to be called isMaster , and for

compatibility reasons, it’s still there as an alias at time of writing. The change was introduced

in Node.js v16.0.0.

This change was made in an effort to reduce the amount of potentially harmful language in

Node.js. The project aims to be a welcoming community, and words with a given usage that

are rooted in a history of slavery are antithetical to that goal.

Processes incur some extra overhead that threads don’t, and we also

don’t get shared memory, which helps with faster transfer of data.

For that, we need the worker_threads module.

The worker_threads Module

Node.js’s support for threads is in a built-in module called

worker_threads . It provides an interface to threads that mimics a

lot of what you’d find in web browsers for web workers. Since

Node.js is not a web browser, not all the APIs are the same, and the

environment inside these worker threads isn’t the same as what you’d

find inside web workers.

Instead, inside Node.js worker threads you’ll find the usual Node.js

API available via require , or import if you’re using ESM. There

are a few differences in the API compared to the main thread though:

You can’t exit the program with process.exit() . Instead this will

just exit the thread.

You can’t change working directories with process.chdir() . In

fact, this function is not even available.

You can’t handle signals with process.on() .

Another important thing to note is that the libuv worker pool is

shared across worker threads. Recall “Hidden Threads”, where it

was noted that the libuv thread pool consists of a default of four

threads to create nonblocking interfaces to low-level blocking APIs. If

you’re finding yourself bound by that thread pool’s size (due to, for

example, a lot of filesystem I/O), you’ll find that adding more threads

via worker_threads won’t lighten the load. Instead, apart from

considering various caching solutions and other optimizations,

consider increasing your UV_THREADPOOL_SIZE . Likewise, you might

find that you have little choice but to increase this when adding

JavaScript threads via the worker_threads module, due to their

usage of the libuv thread pool.

There are other caveats too, so you’re encouraged to have a look at

the Node.js documentation for a full list of differences for your

particular version of Node.js.

You can create a new worker thread by using the Worker

constructor, like in Example 3-3.

Example 3-3. Spawning a new worker thread in Node.js

const { Worker } = require('worker_threads');

const worker = new Worker('/path/to/worker-file-name.

The filename here is the entrypoint file that we want to run

inside the worker thread. This is similar to the entrypoint in the

main file that we’d specify as an argument to node on the

command line.

workerData

It’s not sufficient to just be able to create a worker thread. We need

to interact with it! The Worker constructor takes a second argument,

an options object, that among other things allows us to specify a

set of data to be passed immediately to the worker thread. The

https://oreil.ly/CYxtz

options object property is called workerData , and its contents

will be copied into the worker thread via the means described in the

Appendix. Inside the thread, we can access the cloned data via the

workerData property of the worker_threads module. You can

see how this works in Example 3-4.

Example 3-4. Passing data to a worker thread via workerData

const {

 Worker,

 isMainThread,

 workerData

} = require('worker_threads');

const assert = require('assert');

if (isMainThread) {

 const worker = new Worker(__filename, { workerData:
} else {

 assert.strictEqual(workerData.num, 42);

}

Rather than using a separate file for the worker thread, we can

use the current file with __filename and switch the behavior

based on isMainThread .

It’s important to note that the properties of the workerData object

are cloned rather than shared between threads. Unlike in C, shared

memory in JavaScript threads does not mean all the variables are

visible. This means any changes you make in that object will not be

visible in the other thread. They are separate objects. That being

said, you can have memory that’s shared between threads via

SharedArrayBuffer . These can be shared via workerData or by

being sent through a MessagePort , which is covered in the next

section. Additionally, SharedArrayBuffer is covered in depth in

Chapter 4.

MessagePort

A MessagePort is one end of a two-way data stream. By default,

one is provided to every worker thread to provide a communication

channel to and from the main thread. It’s available in the worker

thread as the parentPort property of the worker_threads

module.

To send a message via the port, the postMesage() method is

called on it. The first argument is any object that can be passed, as

described in the Appendix, which will end up being the message data

being passed to the other end of the port. When a message is

received on the port, the message event is fired, with the message

data being the first argument to the event handler function. In the

main thread, the event and the postMessage() method are on the

worker instance itself, rather than having to get them from a

MessagePort instance. Example 3-5 shows a simple example

where messages sent to the main thread are echoed back to a

worker thread.

Example 3-5. Bidirectional communication via the default
MessagePorts

const {

 Worker,

 isMainThread,

 parentPort

} = require('worker_threads');

if (isMainThread) {

 const worker = new Worker(__filename);

 worker.on('message', msg => {

 worker.postMessage(msg);

 });

} else {

 parentPort.on('message', msg => {

 console.log('We got a message from the main threa
 });

 parentPort.postMessage('Hello, World!');

}

You can also create a pair of MessagePort instances connected to

each other via the MessageChannel constructor. You can then pass

one of the ports via an existing message port (like the default one) or

via workerData . You might want to do this in situations where

neither of two threads that need to communicate are the main thread,

or even just for organizational purposes. Example 3-6 is the same as

the previous example, except using ports created via

MessageChannel and passed via workerData .

Example 3-6. Bidirectional communication via MessagePort
created with MessageChannel

const {

 Worker,

 isMainThread,

 MessageChannel,

 workerData

} = require('worker_threads');

if (isMainThread) {

 const { port1, port2 } = new MessageChannel();

 const worker = new Worker(__filename, {

 workerData: {

 port: port2

 },

 transferList: [port2]

 });

 port1.on('message', msg => {

 port1.postMessage(msg);

 });

} else {

 const { port } = workerData;

 port.on('message', msg => {

 console.log('We got a message from the main threa
 });

 port.postMessage('Hello, World!');

}

You’ll notice we used the transferList option when instantiating

the Worker . This is a way of transferring ownership of objects from

one thread to another. This is required when sending any

MessagePort , ArrayBuffer , or FileHandle objects via

workerData or postMessage . Once these objects are transferred,

they can no longer be used on the sending side.

TIP

In more recent versions of Node.js, Web Hypertext Application Technology Working Group

(WHATWG) ReadableStream and WritableStream are available. You can learn more

about them in the Node.js documentation and in use by some APIs. They can be transferred

via transferList over MessagePorts to enable another way of communicating across

threads. Under the hood, these are implemented using a MessagePort to send data across.

https://oreil.ly/TRJf0

Happycoin: Revisited

Now that we’ve seen the basics of spawning threads in Node.js and

having them communicate with each other, we have enough to rebuild

our example from “Threads in C: Get Rich with Happycoin” in Node.js.

Recall that Happycoin is our imaginary cryptocurrency, with a

completely ridiculous proof-of-work algorithm that goes as follows:

1. Generate a random unsigned 64-bit integer.

2. Determine whether or not the integer is happy.

3. If it’s not happy, it’s not a Happycoin.

4. If it’s not divisible by 10,000, it’s not a Happycoin.

5. Otherwise, it’s a Happycoin.

Much like we did in C, we’ll make a single-threaded version first, and

then adapt the code to run on multiple threads.

With Only the Main Thread

Let’s start with generating random numbers. First, let’s create a file

called happycoin.js, in a directory called ch3-happycoin/. Fill it with

the contents of Example 3-7.

Example 3-7. ch3-happycoin/happycoin.js

const crypto = require('crypto');

const big64arr = new BigUint64Array(1)

function random64() {

 crypto.randomFillSync(big64arr);

 return big64arr[0];

}

They crypto module in Node.js gives us some handy functions for

getting cryptographically secure random numbers. We’ll definitely

want this since we’re building a cryptocurrency after all! Luckily, it’s

less of an ordeal than it is in C.

The randomFillSync function fills a given TypedArray with

random data. Since we’re looking for only a single 64-bit unsigned

integer, we can use a BigUint64Array . This particular

TypedArray , along with its cousin BigInt64Array , are recent

additions to JavaScript that were made possible by the new bigint

type, which stores arbitrarily large integers. Returning the first (and

only) element of this array after we’ve filled it with random data gives

us the random 64-bit unsigned integer that we’re looking for.

Now let’s add our happy number calculation. Add the contents of

Example 3-8 to your file.

Example 3-8. ch3-happycoin/happycoin.js

function sumDigitsSquared(num) {

 let total = 0n;

 while (num > 0) {

 const numModBase = num % 10n;

 total += numModBase ** 2n;

 num = num / 10n;

 }

 return total;

}

function isHappy(num) {

 while (num != 1n && num != 4n) {

 num = sumDigitsSquared(num);

 }

 return num === 1n;

}

function isHappycoin(num) {

 return isHappy(num) && num % 10000n === 0n;

}

These three functions, sumDigitsSquared , isHappy , and

isHappycoin , are direct translations from their C counterparts in

“Threads in C: Get Rich with Happycoin”. One thing you might notice

if you’re not familiar with bigint is the n suffix on all the number

literals in this code. This suffix tells JavaScript that these numbers are

to be treated as bigint values, rather than values of type number .

This is important because, while both types support mathematical

operators like + , - , ** , and so on, they cannot interoperate

without doing an explicit conversion. For example, 1 + 1n would be

invalid because it’s an attempt to add the number 1 to the bigint

1.

Let’s finish off the file by implementing our Happycoin mining loop and

outputting the count of found Happycoins. Add Example 3-9 to your

file.

Example 3-9. ch3-happycoin/happycoin.js

let count = 0;

for (let i = 1; i < 10_000_000; i++) {

 const randomNum = random64();

 if (isHappycoin(randomNum)) {

 process.stdout.write(randomNum.toString() + ' ');
 count++;

 }

}

process.stdout.write('\ncount ' + count + '\n');

The code here is very similar to what we did in C. We loop

10,000,000 times, getting a random number and checking if it’s a

Happycoin. If it is, we print it out. Note that we’re not using

console.log() here because we don’t want to insert a newline

character after each number found. Instead we want spaces, so

we’re writing to the output stream directly. When we output the count

after the loop, we need an additional newline character at the

beginning of the output to separate it from the numbers above.

To run this program, use the following command in your ch3-

happycoin directory:

$ node happycoin.js

Your output should be exactly the same as it was in C. That is, it

should look something like this:

5503819098300300000 ... [125 more entries] ... 527
count 127

This takes quite a bit longer than the C example. On a run-of-the-mill

machine, this took about 1 minute and 45 seconds with Node.js

v16.0.0.

There are a variety of reasons why this takes so much longer. When

building applications and optimizing for performance, it’s important to

figure out what the sources of performance overhead are. Yes, in

general, JavaScript is often “slower than C,” but this enormous

difference can’t be explained by that alone. Yes, we’ll get better

performance in the next section when we split this into multiple

threads of work, but as you’ll see, it’s not nearly enough to make this

implementation compelling when compared to the C example.

And on that note, let’s see what this looks like when we use

worker_threads to split out the load.

With Four Worker Threads

To add worker threads, we will start from the code we had. Copy the

contents of happycoin.js to happycoin-threads.js. Then insert the

contents of Example 3-10 at the very beginning of the file, before the

existing content.

Example 3-10. ch3-happycoin/happycoin-threads.js

const {

 Worker,

 isMainThread,

 parentPort

} = require('worker_threads');

We’ll need these parts of the worker_threads module, so we

require them at the beginning.
Now, replace everything from let

count = 0; to the end of the file with Example 3-11.

Example 3-11. ch3-happycoin/happycoin-threads.js

const THREAD_COUNT = 4;

if (isMainThread) {

 let inFlight = THREAD_COUNT;

 let count = 0;

 for (let i = 0; i < THREAD_COUNT; i++) {

 const worker = new Worker(__filename);

 worker.on('message', msg => {

 if (msg === 'done') {

 if (--inFlight === 0) {

 process.stdout.write('\ncount ' + count + '
 }

 } else if (typeof msg === 'bigint') {

 process.stdout.write(msg.toString() + ' ');

 count++;

 }

 })

 }

} else {

 for (let i = 1; i < 10_000_000/THREAD_COUNT; i++) {
 const randomNum = random64();

 if (isHappycoin(randomNum)) {

 parentPort.postMessage(randomNum);

 }

}
 }

 parentPort.postMessage('done');

}

We’re splitting behavior here with an if block. If we’re on the main

thread, we start four worker threads using the current file.

Remember, __filename is a string containing the path and name of

the current file. We then add a message handler for that worker. In

the message handler, if the message is simply done , then the

worker has completed its work, and if all other workers are done,

we’ll output the count. If the message is a number, or more correctly,

a bigint , then we assume it’s a Happycoin, and we’ll print it out

and add it to the count like we did in the single-threaded example.

On the else side of the if block, we’re running in one of the

worker threads. In here, we’ll do the same sort of loop as we did in

the single-threaded example, except we’re only looping 1/4 of the

number of times we did before, since we’re doing the same work

across four threads. Also, rather than writing directly to the output

stream, we’re sending found Happycoins back to the main thread via

the MessagePort given to us, called parentPort . We’ve already

set up the handler on the main thread for this. When the loop exits,

we send a done on the parentPort to indicate to the main thread

that we won’t be finding any more Happycoins on this thread.

We could have simply printed the Happycoins to the output

immediately, but just like with the C example, we don’t want the

different threads to clobber each other in the output, so we need to

synchronize. Chapters 4 and 5 go over more advanced techniques

for synchronization, but for now it’s enough to just send the data back

to the main thread through the parentPort and let the main thread

handle output.

Now that we’re done adding threads to this example, you can run it

with the following command in your ch3-happycoin directory:

$ node happycoin-threads.js

You should see output that looks something like this:

17241719184686550000 ... [137 more entries] ... 176
count 139

Like with the C example, this code runs quite a bit faster. In a test on

the same computer and Node.js version as the single-threaded

example, it ran in about 33 seconds. This is a huge improvement over

the single-threaded example, so another big win for threads!

NOTE

This is not the only way to split this kind of problem up for thread-based computation. For

example, other synchronization techniques could be used to avoid passing data between

threads, or the messages could be batched. Always be sure to test and compare to find out

whether threads are an ideal solution and which thread techniques are most applicable to your

problem, and the most efficient.

Worker Pools with Piscina

Many types of workloads will naturally lend themselves to using

threads. In Node.js, most workloads involve processing an HTTP

request. If within that code you find yourself doing a lot of math or

synchronous data processing, it may make sense to offload that work

to one or more threads. These types of operations involve submitting

a single task to a thread and waiting for a result from it. In much the

same way a threaded web server often works, it makes sense to

maintain a pool of workers that can be sent various tasks from the

main thread.

This section only takes a shallow look at thread pools, adapting the

familiar Happycoins application and abstracting the pooling

mechanism using a package. “Thread Pool” covers thread pools

extensively, building out an implementation from scratch.

NOTE

The concept of pooled resources isn’t unique to threads. For example, web browsers typically

create pools of socket connections to web servers so that they can multiplex all the various

HTTP requests required to render a web page across those connections. Database client

libraries often do a similar thing with sockets connected to the database server.

There’s a handy module available for Node.js called generic-pool, which is a helper module for

dealing with arbitrary pooled resources. These resources could be anything, like database

connections, other sockets, local caches, threads, or pretty much anything else that might

require having multiple instances of something but only accessing one at a time, without

caring which one it is.

For the use case of discrete tasks sent to a pool of worker threads,

we have the piscina module at our disposal. This module

encapsulates the work of setting up a bunch of worker threads and

allocating tasks to them. The name of the module comes from the

Italian word for “pool.”

The basic usage is straightforward. You create an instance of the

Piscina class, passing in a filename , which will be used in the

worker thread. Behind the scenes, a pool of worker threads is

created, and a queue is set up to handle incoming tasks. You can

enqueue a task by calling .run() , passing in a value containing all

the data necessary to complete this task, and noting that the values

will be cloned as they would be with postMessage() . This returns a

promise that resolves once the tasks have been completed by a

https://oreil.ly/2a6ua
https://oreil.ly/0p8zi

worker, giving a result value. In the file to be run in the worker, a

function must be exported that takes in whatever is passed to

.run() and returns the result value. This function can also be an

async function, so that you can do asynchronous tasks in a worker

thread if you need to. A basic example calculating square roots in

worker threads is found in Example 3-12.

Example 3-12. Computing square roots with piscina

const Piscina = require('piscina');

if (!Piscina.isWorkerThread) {

 const piscina = new Piscina({ filename: __filename
 piscina.run(9).then(squareRootOfNine => {

 console.log('The square root of nine is', squareR
 });

}

module.exports = num => Math.sqrt(num);

Much like cluster and worker_threads , piscina

provides a handy boolean for determining whether we’re in the

main thread or a worker thread.

We’ll use the same technique for using the same file as we did

with the Happycoin example.

https://calibre-pdf-anchor.a/#a558

Since .run() returns a promise, we can just call .then() on

it.

The exported function is used in the worker thread to perform

the actual work. In this case, it’s just calculating a square root.

While it’s all fine and good to run one task on the pool, we need to be

able to run many tasks on the pool. Let’s say we want to calculate

the square roots of every number less than ten million. Let’s go ahead

and loop ten million times. We’ll also replace the logging with an

assertion that we’ve gotten a numeric result, since logging will be

quite noisy. Have a look at Example 3-13.

Example 3-13. Computing ten million square roots with piscina

const Piscina = require('piscina');

const assert = require('assert');

if (!Piscina.isWorkerThread) {

 const piscina = new Piscina({ filename: __filename
 for (let i = 0; i < 10_000_000; i++) {

 piscina.run(i).then(squareRootOfI => {

 assert.ok(typeof squareRootOfI === 'number');

 });

 }

}

module.exports = num => Math.sqrt(num);

This seems like it ought to work. We’re submitting ten million numbers

to be processed by the worker pool. However, if you run this code,

you’ll get a nonrecoverable JavaScript memory allocation error. On

one trial of this with Node.js v16.0.0, the following output was

observed.

FATAL ERROR: Reached heap limit Allocation failed

 - JavaScript heap out of memory

 1: 0xb12b00 node::Abort() [node]

 2: 0xa2fe25 node::FatalError(char const*, char const
 3: 0xcf8a9e v8::Utils::ReportOOMFailure(v8::internal
 char const*, bool) [node]

 4: 0xcf8e17 v8::internal::V8::FatalProcessOutOfMemor
 char const*, bool) [node]

 5: 0xee2d65 [node]

[... 13 more lines of a not-particularly-useful C++
Aborted (core dumped)

What’s going on here? It turns out the underlying task queue is not

infinite. By default, the task queue will keep growing and growing until

we run into an allocation error like this one. To avoid having this

happen, we need to set a reasonable limit. The piscina module

lets you set a limit by using a maxQueue option in its constructor,

which can be set to any positive integer. Through experimentation, the

maintainers of piscina have found that an ideal maxQueue value is

the square of the number of worker threads it’s using. Handily, you

can use this number without even knowing it by setting maxQueue to

auto .

Once we’ve established a bound for the queue size, we need to be

able to handle it when the queue is full. There are two ways to detect

that the queue is full:

1. Compare the values of piscina.queueSize and

piscina.options.maxQueue . If they’re equal, then the queue is

full. This can be done prior to calling piscina.run() to avoid

attempting to enqueue when it’s full. This is the recommended way

to check.

2. If piscina.run() is called when the queue is full, the returned

promise will reject with an error indicating that the queue is full.

This isn’t ideal because by this point we’re already in a further tick

of the event loop and many other attempts to enqueue may

already have happened.

When we know that the queue is full, we need a way of knowing

when it’ll be ready for new tasks again. Fortunately, piscina pools

emit a drain event once the queue is empty, which is certainly an

ideal time to start adding new tasks. In Example 3-14, we put this all

together with an async function around the loop that submits the

tasks.

Example 3-14. Computing ten million square roots with
piscina , without crashing

const Piscina = require('piscina');

const assert = require('assert');

const { once } = require('events');

if (!Piscina.isWorkerThread) {

 const piscina = new Piscina({

 filename: __filename,

 maxQueue: 'auto'

 });

 (async () => {

 for (let i = 0; i < 10_000_000; i++) {

 if (piscina.queueSize === piscina.options.maxQu
 await once(piscina, 'drain');

 }

 piscina.run(i).then(squareRootOfI => {

 assert.ok(typeof squareRootOfI === 'number');
 });

 }

 })();

}

module.exports = num => Math.sqrt(num);

The maxQueue option is set to auto , which limits the queue

size to the square of the number of threads that piscina is

using.

The for loop is wrapped in an async immediately invoked

function expression (IIFE) in order to use an await within it.

When this check is true, the queue is full.

We then wait for the drain event before submitting any new

tasks to the queue.

Running this code does not result in an out-of-memory crash like it did

before. It takes a fairly long time to complete, but it does finally exit

without issue.

As seen here, it’s easy to fall into a trap where using a tool in what

seems like the most sensible way isn’t the best approach. It’s

important to fully understand tools like piscina when building out

your multithreaded applications.

On that note, let’s see what happens when we try to use piscina

to mine Happycoins.

https://calibre-pdf-anchor.a/#a573

A Pool Full of Happycoins

To use piscina to produce Happycoins, we’ll use a slightly different

approach from what we did in the original worker_threads

implementation. Instead of getting a message back every time we

have a Happycoin, we’ll batch them together and send them all at

once when we’re done. This trade-off saves us the effort of setting up

a MessageChannel to send data back to the main thread with; the

side effect is that we’ll only get our results in batches, rather than as

soon as they’re ready. The main thread will still do the job of

spawning the appropriate threads and retrieving all the results.

TRADE-OFFS

All programming is about trade-offs. Multithreaded programming is no

exception. In fact, you’ll find trade-offs at every turn. Sacrificing

convenience in one place will often give you performance gains

elsewhere, or vice versa. Sometimes if one operation is slightly

slower, another will be significantly faster.

As with all things, measure. You can think as hard as you want about

the problem, but the surest way to know whether your trade-off is

going to be worth it is to measure. Check your code in a variety of

conditions and see if it behaves in a way that’s actually beneficial in

all the ways that matter. Crucially, the ways that matter are

determined by the problem at hand, your interpretation of it, and the

needs of your stakeholders.

In addition to measuring, documentation can save you hours, days, or

even weeks of frustration in the future. It’s a pain to make a trade-off

and then months down the road being unsure what led to that

decision and starting to question everything.

To start off, copy your happycoin-threads.js file to a new one called

happycoin-piscina.js. We’ll build off our old worker_threads

example here. Now replace everything before the

require('crypto') line with Example 3-15.

Example 3-15. ch3-happycoin/happycoin-piscina.js

const Piscina = require('piscina');

Yep, that’s it! Now we’ll get to the more substantial stuff. Replace

everything after the isHappycoin() function declaration with the

contents of Example 3-16.

Example 3-16. ch3-happycoin/happycoin-piscina.js

const THREAD_COUNT = 4;

if (!Piscina.isWorkerThread) {

 const piscina = new Piscina({

 filename: __filename,

 minThreads: THREAD_COUNT,

 maxThreads: THREAD_COUNT

 });

 let done = 0;

 let count = 0;

 for (let i = 0; i < THREAD_COUNT; i++) {

 (async () => {

 const { total, happycoins } = await piscina.run
 process.stdout.write(happycoins);

 count += total;

 if (++done === THREAD_COUNT) {

 console.log('\ncount', count);

 }

 })();

 }

}

We’ll use the isWorkerThread property to check that we’re in

the main thread.

We’re using the same technique as earlier to create worker

threads using this same file.

We want to restrict the number of threads to be exactly four, to

match our previous examples. We’ll want to time this and see

what happens, so sticking with four threads reduces the

number of variables here.

We know we have four threads, so we’ll enqueue our task four

times. Each one will complete once it has checked its chunk of

random numbers for Happycoins.

We submit the task to the queue in this async IIFE, so that

they all get queued in the same event loop iteration. Don’t

worry, we won’t get out-of-memory errors like we did before

because we know we have exactly four threads and we’re only

enqueueing four tasks. As we’ll see later, the task returns both

https://calibre-pdf-anchor.a/#a592

the output string and the total count of Happycoins that the

thread has found.

Much like we’ve done in previous Happycoin implementations,

we’ll check that all threads have completed their tasks before

outputting the grand total count of Happycoins that we’ve found.

Next we’ll add the code from Example 3-17, which adds the exported

function that’s used in piscina ’s worker threads.

Example 3-17. ch3-happycoin/happycoin-piscina.js

module.exports = () => {

 let happycoins = '';

 let total = 0;

 for (let i = 0; i < 10_000_000/THREAD_COUNT; i++) {
 const randomNum = random64();

 if (isHappycoin(randomNum)) {

 happycoins += randomNum.toString() + ' ';

 total++;

 }

 }

 return { total, happycoins };

}

https://calibre-pdf-anchor.a/#a602

We’re doing our typical Happycoin-hunting loop here, but as in

other parallelism examples, we’re dividing our total search

space by the number of threads.

We’re passing the string of found Happycoins and the total

count of them back to the main thread by returning a value from

this function.

To run this, you’ll have to install piscina if you haven’t done so yet

for the earlier examples. You can use the following two commands in

your ch3-happycoin directory to set up a Node.js project and add the

piscina dependency. The third line can then be used to run the

code:

$ npm init -y

$ npm install piscina

$ node happycoin-piscina.js

You should see output the same as earlier examples, with a slight

twist. Rather than seeing each Happycoin come in one by one, you’ll

see them either roughly all at once, or in four large groupings of them.

This is the trade-off we made by returning the whole strings rather

than the Happycoins one by one. This code should run in roughly the

same time as happycoin-threads.js, since it uses the same principle,

but with the abstraction layer that piscina provides us.

You can see that we’re not using piscina in the typical manner.

We’re not passing it a multitude of discrete tasks that end up

requiring careful queueing. The primary reason for this is

performance.

If, for example, we had a loop iterating ten million times in the main

thread, each time adding another task to the queue and await -ing

its response, it would end up being just as slow as running all the

code synchronously on the main thread. We could not await the reply

and just add things to the queue as soon as we can, but it turns out

the overhead of passing messages 20 million times is a lot greater

than simply passing eight messages.

When dealing with raw data, like numbers or byte streams, there are

usually faster ways of transferring data between threads using

SharedArrayBuffers , and we’ll see more about those in the next

chapter.

 Yes, other nonbrowser JavaScript runtimes exist, like Deno, but Node.js has such a massive

amount of popularity and market share at time of writing that it’s the only one worth talking

about here. This may change by the time you’re reading this, and that’s great for the world of

JavaScript! Hopefully, there’s a newer edition of this book that covers your nonbrowser

JavaScript runtime of choice.

1

Chapter 4. Shared Memory

So far you’ve been exposed to the web workers API for browsers,

covered in Chapter 2, and the worker threads module for Node.js,

covered in “The worker_threads Module”. These are two powerful

tools for working with concurrency in JavaScript, allowing developers

to run code in parallel in a way that wasn’t previously available to

JavaScript.

However, the interaction you’ve had with them so far has been fairly

shallow. While it’s true they allow you to run code in parallel, you’ve

only done so using message-passing APIs, ultimately depending on

the familiar event loop to handle the receipt of a message. This is a

much less performant system than the threading code you worked

with in “Threads in C: Get Rich with Happycoin” where these

disparate threads are able to access the same shared memory.

This chapter covers two powerful tools available to your JavaScript

applications: the Atomics object and the SharedArrayBuffer

class. These allow you to share memory between two threads

without depending on message passing. But before diving into a

complete technical explanation for these objects, a quick introductory

example is in order.

In the wrong hands, the tools covered here can be dangerous,

introducing logic-defying bugs to your application that slither in the

shadows during development only to rear their heads in production.

But when honed and used properly, these tools allow your application

to soar to new heights, squeezing never-before-seen levels of

performance from your hardware.

Intro to Shared Memory

For this example you will build a very basic application that is able to

communicate between two web workers. While this does require an

initial bit of boilerplate using postMessage() and onmessage ,

subsequent updates won’t rely on such functionality.

This shared memory example will work in a browser as well as in

Node.js, though the setup work required is a little different for the two

of them. For now, you’ll build out an example that works in the

browser, and a lot of description is provided. Later, once you’re a

little more familiar, you’ll build out an example using Node.js.

Shared Memory in the Browser

To get started, create another directory to house this project in

named ch4-web-workers/. Then, create an HTML file named

index.html, and add the content from Example 4-1 to it.

Example 4-1. ch4-web-workers/index.html

<html>

 <head>

 <title>Shared Memory Hello World</title>

 <script src="main.js"></script>

 </head>

</html>

Once you’re done with that file you’re ready for the more complicated

part of the application. Create a file named main.js containing the

content from Example 4-2.

Example 4-2. ch4-web-workers/main.js

if (!crossOriginIsolated) {

 throw new Error('Cannot use SharedArrayBuffer');

}

const worker = new Worker('worker.js');

const buffer = new SharedArrayBuffer(1024);

const view = new Uint8Array(buffer);

console.log('now', view[0]);

worker.postMessage(buffer);

setTimeout(() => {

 console.log('later', view[0]);

 console.log('prop', buffer.foo);

}, 500);

When crossOriginIsolated is true, then

SharedArrayBuffer can be used.

Instantiates a 1 KB buffer.

A view into the buffer is created.

A modified property is read.

This file is similar to one that you created before. In fact, it’s still

making use of a dedicated worker. But a few complexities have been

added. The first new thing is the check for the

crossOriginIsolated value, which is a global variable available in

modern browsers. This value tells you if the JavaScript code currently

being run is capable of, among other things, instantiating a

SharedArrayBuffer instance.

For security reasons (related to the Spectre CPU attack), the

SharedArrayBuffer object isn’t always available for instantiation.

In fact, a few years ago browsers disabled this functionality entirely.

Now, both Chrome and Firefox support the object and require

additional HTTP headers to be set when the document is served

before it will allow a SharedArrayBuffer to be instantiated.

Node.js doesn’t have the same restrictions. Here are the required

headers:

Cross-Origin-Opener-Policy: same-origin

Cross-Origin-Embedder-Policy: require-corp

The test server that you’ll run automatically sets these headers. Any

time you build a production-ready application that uses

SharedArrayBuffer instances you’ll need to remember to set

these headers.

After a dedicated worker is instantiated, an instance of a

SharedArrayBuffer is also instantiated. The argument that follows,

1,024 in this case, is the number of bytes allocated to the buffer.

Unlike other arrays or buffer objects you might be familiar with, these

buffers cannot shrink or grow in size after they’ve been created.

A view to work with the buffer named view has also been created.

Such views are covered extensively in “SharedArrayBuffer and

TypedArrays”, but for now, think of them as a way to read from and

write to a buffer.

1

This view into the buffer allows us to read from it using the array

index syntax. In this case, we’re able to inspect the 0th byte in the

buffer by logging a call to view[0] . After that, the buffer instance is

passed into the worker using the worker.postMessage() method.

In this case the buffer is the only thing being passed in. However, a

more complex object could have been passed in as well, with the

buffer being one of the properties. Whereas the algorithm discussed

in the Appendix mostly clobbers complex objects, instances of

SharedArrayBuffer are an intentional exception.

Once the script is finished with the setup work, it schedules a function

to run in 500 ms. This script prints the 0th byte of the buffer again

and also attempts to print a property attached to the buffer named

.foo . Note that this file otherwise does not have a

worker.onmessage handler defined.

Now that you’re finished with the main JavaScript file you’re ready to

create the worker. Make a file named worker.js and add the content

from Example 4-3 to it.

Example 4-3. ch4-web-workers/worker.js

self.onmessage = ({data: buffer}) => {

 buffer.foo = 42;

 const view = new Uint8Array(buffer);

 view[0] = 2;

 console.log('updated in worker');

};

A property on the buffer object is written.

The 0th index is set to the number 2.

This file attaches a handler for the onmessage event, which is run

after the .postMessage() method in main.js is fired. Once called,

the buffer argument is grabbed. The first thing that happens in the

handler is that a .foo property is attached to the

SharedArrayBuffer instance. Next, another view is created for the

buffer. After that the buffer is updated through the view. Once that’s

done, a message is printed so that you can see what has happened.

Now that your files are complete, you’re ready to run your new

application. Open up a terminal window and run the following

command. It’s a little different than the serve commands you ran

before because it needs to provide the security headers:

$ npx MultithreadedJSBook/serve .

As before, open the link displayed in your terminal. Next, open the

web inspector and visit the Console tab. You might not see any

output; if so, refresh the page to execute the code again. You should

see logs printed from the application. An example of the output has

been reproduced in Table 4-1.

Table 4-1. Example console output

Log Location

now 0 main.js:10:9

updated in worker worker.js:5:11

later 2 main.js:15:11

prop undefined main.js:16:11

The first printed line is the initial value of the buffer as seen in main.js.

In this case the value is 0 . Next, the code in worker.js is run, though

the timing of this is mostly indeterminate. About half a second later,

the value as perceived in main.js is printed again, and the value is

now set to 2 . Again, notice that other than the initial setup work, no

message passing happened between the thread running the main.js

file and the thread running the worker.js file.

NOTE

This is a very simple example that, while it works, is not how you would normally write

multithreaded code. There is no guarantee that the value updated in worker.js would be visible

in main.js. For example, a clever JavaScript engine could treat the value as a constant, though

you’d be hard-pressed to find a browser where this doesn’t happen.

After the buffer value is printed, the .foo property is also printed

and a value of undefined is displayed. Why might this be? Well,

while it’s true that a reference to the memory location that stores the

binary data contained in the buffer has been shared between the two

JavaScript environments, the actual object itself has not been shared.

If it had been, this would violate the constraint of the structured clone

algorithm wherein object references cannot be shared between

threads.

Shared Memory in Node.js

The Node.js equivalent of this application is mostly similar; however,

the Worker global provided by browsers isn’t available, and the

worker thread won’t make use of self.onmessage . Instead, the

worker threads module must be required to gain access to this

functionality. Since Node.js isn’t a browser the index.html file isn’t

applicable.

To create a Node.js equivalent, you’ll only need two files, which can

be put in the same ch4-web-workers/ folder you’ve been using. First,

create a main-node.js script, and add the content from Example 4-4

to it.

Example 4-4. ch4-web-workers/main-node.js

#!/usr/bin/env node

const { Worker } = require('worker_threads');

const worker = new Worker(__dirname + '/worker-node.j

const buffer = new SharedArrayBuffer(1024);

const view = new Uint8Array(buffer);

console.log('now', view[0]);

worker.postMessage(buffer);

setTimeout(() => {

 console.log('later', view[0]);

 console.log('prop', buffer.foo);

 worker.unref();

}, 500);

The code is a little different, but it should feel mostly familiar.

Because the Worker global isn’t available, it is instead accessed by

pulling the .Worker property from the required worker_threads

module. When instantiating the worker a more explicit path to the

worker must be provided than what is accepted by browsers. In this

case the path ./worker-node.js was required, even though browsers

are fine with just worker.js. Other than that, the main JavaScript file

for this Node.js example is mostly unchanged when compared to the

browser equivalent. The final worker.unref() call was added to

prevent the worker from keeping the process running forever.

Next, create a file named worker-node.js, which will contain the

Node.js equivalent of the browser worker. Add the content from

Example 4-5 to this file.

Example 4-5. ch4-web-workers/worker-node.js

const { parentPort } = require('worker_threads');

parentPort.on('message', (buffer) => {

 buffer.foo = 42;

 const view = new Uint8Array(buffer);

 view[0] = 2;

 console.log('updated in worker');

});

In this case the self.onmessage value isn’t available to the worker.

Instead, the worker_threads module is required again, and the

.parentPort property from the module is used. This is used to

represent a connection to the port from the calling JavaScript

environment.

The .onmessage handler can be assigned to the parentPort

object, and the method .on('message', cb) can be called. If

using both, they’ll be called in the order that they were used. The

callback function for the message event receives the object being

passed in (buffer in this case) directly as an argument, while the

onmessage handler provides a MessageEvent instance with a

.data property containing buffer . Which approach you use mostly

depends on personal preference.

Other than that the code is exactly the same between Node.js and

the browser, the same applicable globals like SharedArrayBuffer

are still available, and they still work the same for the sake of this

example.

Now that these files are complete, you can run them using this

command:

$ node main-node.js

The output from this command should be equivalent to the output in

Table 4-1 as displayed in the browser. Again, the same structured

clone algorithm allows instances of SharedArrayBuffer to be

passed along, but only the underlying binary buffer data, not a direct

reference to the object itself.

SharedArrayBuffer and TypedArrays

Traditionally the JavaScript language didn’t really support interaction

with binary data. Sure, there were strings, but they really abstracted

the underlying data storage mechanism. There were also arrays, but

those can contain values of any type and aren’t appropriate for

representing binary buffers. For many years that was sort of “good

enough,” especially before the advent of Node.js and the popularity of

running JavaScript outside of a web page context took off.

The Node.js runtime is, among other things, capable of reading and

writing to the filesystem, streaming data to and from the network, and

so on. Such interactions are not only limited to ASCII-based text files

but can also include piping binary data as well. Since there wasn’t a

convenient buffer data structure available, the authors created their

own. Thus, the Node.js Buffer was born.

As the boundaries of the JavaScript language itself were pushed, so

too grew the APIs and the capabilities of the language to interact with

the world outside of the browser window. Eventually the

ArrayBuffer object and later the SharedArrayBuffer object

were created and are now a core part of the language. Most likely, if

Node.js were created today, it would not have created its own

Buffer implementation.

Instances of ArrayBuffer and SharedArrayBuffer represent a

buffer of binary data that is of fixed length and cannot be resized.

While the two are quite similar, it is the latter that will be the focus of

this section because it allows applications to share memory across

threads. Binary data, while ubiquitous and a first-class concept in

many traditional programming languages like C, can be easy to

misunderstand, especially for developers using high-level languages

such as JavaScript.

Just in case you haven’t had experience with it, binary is a system of

counting that is 2 based, which at the lowest level is represented as

1s and 0s. Each of these numbers is referred to as a bit. Decimal,

the system humans mostly use for counting, is 10 based and is

represented with numerals from 0 to 9. A combination of 8 bits is

referred to as a byte and is often the smallest addressable value in

memory since it’s usually easier to deal with than individual bits.

Basically, this means CPUs (and programmers) work with bytes

instead of individual bits.

These bytes are often represented as two hexadecimal characters,

which is a 16 based system of counting using the numerals 0–9 and

the letters A–F. In fact, when you log an instance of an

ArrayBuffer using Node.js, the resulting output displays the value

of the buffer using hexadecimal.

Given an arbitrary set of bytes that is stored on disk, or even in a

computer’s memory, it’s a little ambiguous what the data means. For

example, what might the hexadecimal value 0x54 (the 0x prefix in

JavaScript means the value is in hexadecimal) represent? Well, if it’s

part of a string, it might mean the capital letter T. However, if it

represents an integer, it might mean the decimal number 84. It might

even refer to a memory location, part of a pixel in a JPEG image, or

any other number of things. The context here is very important. That

same number, represented in binary, looks like 0b01010100 (the

0b prefix represents binary).

Keeping this ambiguity in mind, it’s also important to mention that the

contents of an ArrayBuffer (and SharedArrayBuffer) can’t be

directly modified. Instead, a “view” into the buffer must first be

created. Also, unlike other languages which might provide access to

abandoned memory, when an ArrayBuffer in JavaScript is

instantiated the contents of the buffer are initialized to 0. Considering

these buffer objects only store numeric data, they truly are a very

elementary tool for data storage, one that more complicated systems

are often built upon.

Both ArrayBuffer and SharedArrayBuffer inherit from Object

and come with those associated methods. Other than that, they come

with two properties. The first is the read-only value .byteLength ,

representing the byte length of the buffer, and the second is the

.slice(begin, end) method, which returns a copy of the buffer

depending on the range that is provided.

The begin value of .slice() is inclusive, while the end value is

exclusive, and is notably different than, say,

String#substr(begin, length) , where the second parameter is

a length. If the begin value is omitted, it defaults to the first

element, and if the end value is omitted, it defaults to the last

element. Negative numbers represent values from the end of the

buffer.

Here’s an example of some basic interaction with an ArrayBuffer :

const ab = new ArrayBuffer(8);

const view = new Uint8Array(ab)

for (i = 0; i < 8; i++) view[i] = i;

console.log(view);

// Uint8Array(8) [

// 0, 1, 2, 3,

// 4, 5, 6, 7

//]

ab.byteLength; // 8

ab.slice(); // 0, 1, 2, 3, 4, 5, 6, 7

ab.slice(4, 6); // 4, 5

ab.slice(-3, -2); // 5

Different JavaScript environments display the contents of an

ArrayBuffer instance differently. Node.js displays a list of

hexadecimal pairs as if the data were going to be viewed as a

Uint8Array . Chrome v88 displays an expandable object with

several different views. Firefox, however, won’t display the data, and

will need to first be passed through a view.

The term view has been mentioned in a few places, and now is a

good time to define it. Due to the ambiguity of what binary data can

mean, we need to use a view to read and write to the underlying

buffer. There are several of these views available in JavaScript. Each

of these views extends from a base class called TypedArray . This

class can’t be instantiated directly and isn’t available as a global, but

it can be accessed by grabbing the .prototype property from an

instantiated child class.

Table 4-2 contains a list of the view classes that extend from

TypedArray .

Table 4-2. Classes that extend TypedArray

Class Bytes Minimum Value M

Int8Array 1 –128 1

Uint8Array 1 0 2

Uint8Clamp

edArray

1 0 2

Int16Array 2 –32,768 3

Uint16Arra

y

2 0 6

Int32Array 4 –2,147,483,648 2

Uint32Arra

y

4 0 4

Float32Arr

ay

4 1.4012984643e-45 3

Class Bytes Minimum Value M

Float64Arr

ay

8 5e–324 1

BigInt64Ar

ray

8 –

9,223,372,036,854,775,808

9

BigUint64A

rray

8 0 1

The Class column is the name of the class that is available for

instantiation. These classes are globals and are accessible in any

modern JavaScript engine. The Bytes column is the number of bytes

that are used to represent each individual element in the view. The

Minimum Value and Maximum Value columns display the valid numeric

ranges that can be used to represent an element in the buffer.

When creating one of these views, the ArrayBuffer instance is

passed into the constructor of the view. The buffer byte length must

be a multiple of the element byte length used by the particular view

that it’s being passed into. For example, if an ArrayBuffer

composed of 6 bytes were created, it is acceptable to pass that into

an Int16Array (byte length of 2) because this will represent three

Int16 elements. However, the same 6-byte buffer cannot be

passed into an Int32Array because it would represent one and a

half elements, which isn’t valid.

The names of these views might be familiar if you’ve programmed

with lower-level languages such as C or Rust.

The U prefix to half of these classes refers to unsigned, which

means that only positive numbers may be represented. Classes

without the U prefix are signed and so negative and positive numbers

may be represented, though with only half the maximum value. This is

because a signed number uses the first bit to represent the “sign,”

conveying if the number is positive or negative.

The numeric range limitations come from the amount of data that can

be stored in a single byte to uniquely identify a number. Much like with

decimal, numbers are counted from zero on up to the base, and then

roll over to a number on the left. So, for a Uint8 number, or an

“unsigned integer represented by 8 bits,” the maximum value

(0b11111111) is equal to 255.

JavaScript doesn’t have an integer data type, only its Number type,

which is an implementation of the IEEE 754 floating-point number. It

is equivalent to the Float64 data type. Otherwise, any time a

https://oreil.ly/gOSK8

JavaScript Number is written to one of these views, some sort of

conversion process needs to happen.

When a value is written to Float64Array , it can be left mostly as

the same. The minimum allowed value is the same as

Number.MIN_VALUE , while the maximum is Number.MAX_VALUE .

When a value is written to a Float32Array , not only are the

minimum and maximum value ranges reduced but the decimal

precision will be truncated as well.

As an example of this, consider the following code:

const buffer = new ArrayBuffer(16);

const view64 = new Float64Array(buffer);

view64[0] = 1.1234567890123456789; // bytes 0 - 7

console.log(view64[0]); // 1.1234567890123457

const view32 = new Float32Array(buffer);

view32[2] = 1.1234567890123456789; // bytes 8 - 11

console.log(view32[2]); // 1.1234568357467651

In this case, the decimal precision for the float64 number is

accurate to the 15th decimal, while the precision for the float32

number is only accurate to the 6th decimal.

This code exemplifies another thing of interest. In this case, there is a

single ArrayBuffer instance named buffer , and yet there are

two different TypedArray instances that point to this buffer data.

Can you think of what’s weird with this? Figure 4-1 might give you a

hint.

Figure 4-1. Single ArrayBuffer and multiple TypeArray views

What do you think will be returned if you were to read either

view64[1] , view32[0] , or view32[1] ? In this case, a truncated

version of the memory used to store data of one type will be

combined, or split, to represent data of another type. The values

returned are interpreted in the wrong way and are nonsensical,

though they should be deterministic and consistent.

When numeric values that are outside of the range of the supported

TypedArray for nonfloats are written, they need to go through some

sort of conversion process to fit the target data type. First, the

number must be converted into an integer, as if it were passed into

Math.trunc() . If the value falls outside of the acceptable range,

then it wraps around and resets at 0 as if using the modulus (%)

operator. Here are some examples of this happening with a

Uint8Array (which is a TypedArray with a max element value of

255):

const buffer = new ArrayBuffer(8);

const view = new Uint8Array(buffer);

view[0] = 255; view[1] = 256;

view[2] = 257; view[3] = -1;

view[4] = 1.1; view[5] = 1.999;

view[6] = -1.1; view[7] = -1.9;

console.log(view);

Table 4-3 contains a list of the values output on the second line, with

their correlating values on the first line.

Table 4-3. TypedArray conversions

Input 255 256 257

Output 255 0 1

This behavior is a little different for Uint8ClampedArray . When a

negative value is written, it is converted into 0 . When a value greater

than 255 is written, it’s converted into 255. When a noninteger value

is provided, it’s instead passed to Math.round() . Depending on

your use case, it may make more sense to use this view.

Finally, the BigInt64Array and BigUint64Array entries also

deserve some special attention. Unlike the other TypedArray views,

which work with the Number type, these two variants work with the

BigInt type (1 is a Number while 1n is a BigInt). This is

because the numeric values that can be represented using 64 bytes

fall out of the range of the numbers than can be represented using

JavaScript’s Number . For that reason, setting a value with these

views must be done with a BigInt , and the values retrieved will also

be of type BigInt .

In general, using multiple TypedArray views, especially those of

different sizes, to look into the same buffer instance is a dangerous

thing and should be avoided when possible. You might find that you

accidentally clobber some data when performing different operations.

It is possible to pass more than one SharedArrayBuffer between

threads, so if you find yourself needing to mix types, then you might

benefit from having more than one buffer.

Now that you’re familiar with the basics of ArrayBuffer and

SharedArrayBuffer you’re ready to interact with them using a

more complex API.

Atomic Methods for Data
Manipulation

Atomicity is a term that you might have heard before, particularly

when it comes to databases, where it’s the first word in the acronym

ACID (atomicity, consistency, isolation, durability). Essentially, if an

operation is atomic, it means that while the overall operation may be

composed of multiple smaller steps, the overall operation is

guaranteed to either entirely succeed or entirely fail. For example, a

single query sent to a database is going to be atomic, but three

separate queries aren’t atomic.

Then again, if those three queries are wrapped in a database

transaction, then the whole lot becomes atomic; either all three

queries run successfully, or none run successfully. It’s also important

that the operations are executed in a particular order, assuming they

manipulate the same state or otherwise have any side effects than

can affect each other. The isolation part means that other operations

can’t run in the middle; for example, a read can’t occur when only

some of the operations have been applied.

Atomic operations are very important in computing, especially when it

comes to distributed computing. Databases, which may have many

client connections, need to support atomic operations. Distributed

systems, where many nodes on a network communicate, also need

to support atomic operations. Extrapolating that idea a little, even

within a single computer where data access is shared across multiple

threads, atomicity is important.

JavaScript provides a global object named Atomics with several

static methods available on it. This global follows the same pattern as

the familiar Math global. In either case you can’t use the new

operator to create a new instance, and the available methods are

stateless, not affecting the global itself. Instead, with Atomics ,

they’re used by passing in a reference to the data that is to be

modified.

The rest of this section lists all but three of the methods that are

available on the Atomics object. The remaining methods are

covered in “Atomic Methods for Coordination”. With the exception of

Atomics.isLockFree() , all of these methods accept a

TypedArray instance as the first argument and the index to act

upon as the second argument.

Atomics.add()

old = Atomics.add(typedArray, index, value)

This method adds the provided value to the existing value in a

typedArray that is located at index . The old value is returned.

Here’s what the nonatomic version might look like:

const old = typedArray[index];

typedArray[index] = old + value;

return old;

Atomics.and()

old = Atomics.and(typedArray, index, value)

This method performs a bitwise and using value with the existing

value in typedArray located at index . The old value is returned.

Here’s what the nonatomic version might look like:

const old = typedArray[index];

typedArray[index] = old & value;

return old;

Atomics.compareExchange()

old = Atomics.compareExchange(typedArray, index, oldE

This method checks typedArray to see if the value

oldExpectedValue is located at index . If it is, then the value is

replaced with value . If not, then nothing happens. The old value is

always returned, so you can tell if the exchange succeeded if

oldExpectedValue === old . Here’s what the nonatomic version

might look like:

const old = typedArray[index];

if (old === oldExpectedValue) {

 typedArray[index] = value;

}

return old;

Atomics.exchange()

old = Atomics.exchange(typedArray, index, value)

This method sets the value in typedArray located at index to

value . The old value is returned. Here’s what the nonatomic version

might look like:

const old = typedArray[index];

typedArray[index] = value;

return old;

Atomics.isLockFree()

free = Atomics.isLockFree(size)

This method returns a true if size is a value that appears as the

BYTES_PER_ELEMENT for any of the TypedArray subclasses

(usually 1, 2, 4, 8), and a false if otherwise. If true , then using

the Atomics methods will be quite fast using the current system’s

hardware. If false , then the application might want to use a manual

locking mechanism, like what is covered in “Mutex: A Basic Lock”,

especially if performance is the main concern.

Atomics.load()

value = Atomics.load(typedArray, index)

This method returns the value in typedArray located at index .

Here’s what the nonatomic version might look like:

const old = typedArray[index];

return old;

Atomics.or()

2

old = Atomics.or(typedArray, index, value)

This method performs a bitwise or using value with the existing

value in typedArray located at index . The old value is returned.

Here’s what the nonatomic version might look like:

const old = typedArray[index];

typedArray[index] = old | value;

return old;

Atomics.store()

value = Atomics.store(typedArray, index, value)

This method stores the provided value in typedArray located at

index . The value that was passed in is then returned. Here’s what

the nonatomic version might look like:

typedArray[index] = value;

return value;

Atomics.sub()

old = Atomics.sub(typedArray, index, value)

This method subtracts the provided value from the existing value in

typedArray that is located at index . The old value is returned.

Here’s what the nonatomic version might look like:

const old = typedArray[index];

typedArray[index] = old - value;

return old;

Atomics.xor()

old = Atomics.xor(typedArray, index, value)

This method performs a bitwise xor using value with the existing

value in typedArray located at index . The old value is returned.

Here’s what the nonatomic version might look like:

const old = typedArray[index];

typedArray[index] = old ^ value;

return old;

Atomicity Concerns

The methods covered in “Atomic Methods for Data Manipulation” are

each guaranteed to execute atomically. For example, consider the

Atomics.compareExchange() method. This method takes an

oldExpectedValue and a new value , replacing the existing value

only if it equals oldExpectedValue with the new value . While this

operation would take several individual statements to represent with

JavaScript, it’s guaranteed that the overall operation will always

execute entirely.

To illustrate this, imagine you have a Uint8Array named

typedArray , and the 0th element is set to 7. Then, imagine that

multiple threads have access to that same typedArray , and each of

them executes some variant of the following line of code:

let old1 = Atomics.compareExchange(typedArray, 0, 7,
let old2 = Atomics.compareExchange(typedArray, 0, 7,

It’s entirely nondeterministic the order that these three methods are

called in, or even the timing of their calls. In fact, they could be called

simultaneously! However, with the atomicity guarantee of the

Atomics object, it’s guaranteed that exactly one of the threads will

have the initial 7 value returned, while the other thread will get the

updated value of 1 or 2 returned.
A timeline of how these

operations work can be seen in Figure 4-2, with the

CEX(oldExpectedValue, value) being a shorthand for

Atomics.compareExchange() .

Figure 4-2. Atomic form of Atomics.compareExchange()

On the other hand, if you’re using the nonatomic equivalent of

compareExchange() , such as reading and writing to

typedArray[0] directly, it is entirely possible that the program will

accidentally clobber a value. In this case both threads read the

existing value at about the same time, then they both see that the

original value is present, then they both write at about the same time.

Here is an annotated version of the nonatomic compareExchange()

code again:

const old = typedArray[0]; // GET()

if (old === oldExpectedValue) {

 typedArray[0] = value; // SET(value)

}

This code performs multiple interactions with shared data, notably the

line where the data is retrieved (labeled as GET()) and later where

the data is later set (labeled as SET(value)). For this code to

function properly it would need a guarantee that other threads aren’t

able to read or write to the value while the code is running. This

guarantees that only one thread gets exclusive access to shared

resources is called a critical section.

Figure 4-3 shows a timeline of how this code might run, as is, without

the exclusive access guarantees.

Figure 4-3. Nonatomic form of Atomics.compareExchange()

In this case both threads think they have successfully set the value,

but the desired outcome only persists for the second thread. This

class of bug is referred to as a race condition, where two or more

threads are racing against each other to perform some action. The

worst thing about these bugs is that they don’t happen consistently,

are notoriously hard to reproduce, and may only happen in one

3

environment, such as a production server, and not another

environment, like your development laptop.

To benefit from the atomic properties of the Atomics object when

interacting with an array buffer, you’ll need to take care when mixing

Atomics calls with direct array buffer access. If one thread of your

application is using the compareExchange() method, and another

thread is directly reading and writing to the same buffer location, then

the safety mechanisms will have been defeated and your application

will have nondeterministic behavior. Essentially, when using Atomics

calls, there’s an implicit lock in place to make interactions convenient.

Sadly, not all of the operations you’ll need to perform with shared

memory can be represented using the Atomics methods. When that

happens you’ll need to come up with a more manual locking

mechanism, allowing you to read and write freely and preventing

other threads from doing so. This concept is covered later in “Mutex:

A Basic Lock”.

RETURN VALUES IGNORE CONVERSION

One caveat concerning the Atomics methods is that the returned

values aren’t necessarily aware of the conversion that the particular

TypedArray will go through, but instead consider the value before

going through the conversion. For example, consider the following

situation where a value is stored that is larger than what can be

represented by the given view:

const buffer = new SharedArrayBuffer(1);

const view = new Uint8Array(buffer);

const ret = Atomics.store(view, 0, 999);

console.log(ret); // 999

console.log(view[0]); // 231

This code creates a buffer and then a Uint8Array view into that

array. It then uses Atomics.store() to store the value 999 using

the view. The return value from the Atomics.store() call is the

value that was passed in, 999 , even though the value that was

actually stored in the underlying buffer is the value 231 (999 is

greater than the maximum supported 255). You will need to keep this

limitation in mind when building your applications. To stay on the safe

side, you should craft your application to not rely on this data

conversion and only write values that are within range.

Data Serialization

Buffers are extremely powerful tools. That said, working with them

from an entirely numeric point of view can start to get a little difficult.

Sometimes you’ll need to store things that represent nonnumeric data

using a buffer. When this happens you’ll need to serialize that data in

some manner before writing it to the buffer, and you’ll later need to

deserialize it when reading from the buffer.

Depending on the type of data that you’d like to represent, there will

be different tools that you can use to serialize it. Some tools will work

for different situations, but each comes with different trade-offs with

regard to storage size and serialization performance.

Booleans

Booleans are easy to represent because they take a single bit to

store the data, and a bit is less than a byte. So you can then create

one of the smallest views, such as a Uint8Array , then point it at an

ArrayBuffer with a byte length of 1, and be set. Of course, the

interesting thing here is that you can then store up to eight of these

booleans using a single byte. In fact, if you’re dealing with a ton of

boolean values, you might be able to outperform the JavaScript

engine by storing large numbers of them in a buffer since there is

additional metadata overhead for each boolean instance. Figure 4-4

shows a list of booleans represented as a byte.

Figure 4-4. Boolean values stored in a byte

When storing data in individual bits like this, it’s best to start with the

least significant bit, e.g., the bit farthest to the right labeled 0, then

move on to more significant bits if you find yourself adding more

booleans to the byte that you’re storing them in. The reason for this is

simple: as the number of booleans you need to store grows, so too

will the size of the buffer, and existing bit locations should remain

correct. While the buffer itself can’t grow dynamically, newer releases

of your application might need to instantiate large buffers.

If the buffer that stores the booleans is today 1 byte, and tomorrow 2

bytes, by using the least significant digits first the decimal

representation of the data will remain either a 0 or a 1. However, if

the most significant digit were used, then today the value might be 0

and 128, while tomorrow it might be 32,768 and 0. This could

potentially cause issues if you’re persisting these values somewhere

and using them between releases.

The following is an example of how to store and retrieve these

boolean values so that they’re backed in an ArrayBuffer :

const buffer = new ArrayBuffer(1);

const view = new Uint8Array(buffer);

function setBool(slot, value) {

 view[0] = (view[0] & ~(1 << slot)) | ((value|0) <<
}

function getBool(slot) {

 return !((view[0] & (1 << slot)) === 0);

}

This code creates a one-byte buffer (0b00000000 in binary) then

creates a view into the buffer. To set the value in the least significant

digit in the ArrayBuffer to true, you would use the call

setBool(0, true) . To set the second least significant digit to

false, you would call setBool(1, false) . To retrieve the values

stored at the third least significant digit, you would then call

getBool(2) .

The setBool() function works by taking the boolean value and

converting it into an integer (value|0 converts false to 0 and

true to 1). Then it “shifts the value left” by adding zeros to the right

based on which slot to store it in (0b1<<0 stays 0b1 , 0b1<<1

becomes 0b10 , etc.). It also takes the number 1 and shifts it based

on the slot (so 0b1000 if the slot is 3), then inverts the bits

(using ~), and gets a new value by AND-ing (&) the existing value

with this new value (view[0] & ~(1 << slot)). Finally, the

modified old value and the new shifted values are OR-ed together

(|) and assigned to view[0] . Basically, it reads the existing bits,

replaces the appropriate bit, and writes the bits back.

The getBool() function works by taking the number 1, shifting it

based on the slot, then using & to compare it to the existing value.

The shifted value (on the right of &) only contains a single 1 and

seven 0s. The AND-ing between this modified value and the existing

value returns either a number representing the value of the shifted

slot, assuming the value at the slot position located at view[0]

was truthy; otherwise, it returns 0. This value is then checked to see

if it is exactly equal to 0 (===0), and the result of that is negated

(!). Basically, it returns the value of the bit at slot .

This code has some shortcomings and shouldn’t necessarily be used

in production. For example, it isn’t meant for working with buffers that

are larger than a single byte, and you’ll encounter undefined behavior

when reading or writing to entries past 7. A production-ready version

would consider the size of storage and do bounds checking, but that’s

an exercise left to the reader.

Strings

Strings aren’t as easy to encode as they may seem at first glance.

It’s easy to assume that each character in a string can be

represented using a single byte, and that the .length property of a

string is sufficient to choose the size of a buffer to store it in. While

this may seem to work sometimes, particularly with simple strings,

you’ll soon encounter errors when dealing with more complex data.

The reason this will work with simple strings is that data represented

using ASCII does allow a single character to fit into a single byte. In

fact, in the C programming language, the data storage type that

represents a single byte of data is referred to as a char .

There are many ways to encode individual characters using strings.

With ASCII the entire range of characters can be represented with a

byte, but in a world of many cultures, languages, and emojis, it’s

absolutely impossible to represent all these characters in such a

manner. Instead, we use encoding systems where a variable number

of bytes can be used to represent a single character. Internally,

JavaScript engines use a variety of encoding formats to represent

strings depending on the situation, and the complexity of this is hidden

from our applications. One possible internal format is UTF-16, which

uses 2 or 4 bytes to represent a character, or even up to 14 bytes to

represent certain emojis. A more universal standard is UTF-8, which

uses 1 to 4 bytes of storage per character and is backwards

compatible with ASCII.

The following is an example of what happens when a string is iterated

using its .length property and the resulting values are mapped to a

Uint8Array instance:

// Warning: Antipattern!

function stringToArrayBuffer(str) {

 const buffer = new ArrayBuffer(str.length);

 const view = new Uint8Array(buffer);

 for (let i = 0; i < str.length; i++) {

 view[i] = str.charCodeAt(i);

 }

 return view;

}

stringToArrayBuffer('foo'); // Uint8Array(3) [102, 1
stringToArrayBuffer('€'); // Uint8Array(1) [172]

In this case storing the basic string foo is fine. However, the €

character, which is really represented by the value 8,364, is greater

than the maximum 255 value supported by Uint8Array and has

accordingly been truncated to 172. Converting that number back into

a character gives the wrong value.

An API is available to modern JavaScript for encoding and decoding

strings directly to ArrayBuffer instances. This API is provided by

the globals TextEncoder and TextDecoder , both of which are

constructors and are globally available in modern JavaScript

environments including browsers and Node.js. These APIs encode

and decode using the UTF-8 encoding due to its ubiquity.

Here’s an example of how to safely encode strings into the UTF-8

encoding using this API:

const enc = new TextEncoder();

enc.encode('foo'); // Uint8Array(3) [102, 111, 111]
enc.encode('€'); // Uint8Array(3) [226, 130, 172]

And here’s how to decode such values:

const ab = new ArrayBuffer(3);

const view = new Uint8Array(ab);

view[0] = 226; view[1] = 130; view[2] = 172;

const dec = new TextDecoder();

dec.decode(view); // '€'

dec.decode(ab); // '€'

Notice that TextDecoder#decode() works with either the

Uint8Array view, or with the underlying ArrayBuffer instance.

This makes it convenient to decode data that you might get from a

network call without the need to first wrap it in a view.

Objects

Considering that objects can already be represented as strings using

JSON, you do have the option of taking an object that you’d like to

make use of across two threads, serializing it into a JSON string, and

writing that string to an array buffer using the same TextEncoder

API that you worked with in the previous section. This can essentially

be performed by running the following code:

const enc = new TextEncoder();

return enc.encode(JSON.stringify(obj));

JSON takes a JavaScript object and converts it into a string

representation. When this happens, there are many redundancies in

the output format. If you wanted to reduce the size of a payload even

more, you could make use of a format like MessagePack, which is

able to reduce the size of a serialized object even more by

representing object metadata using binary data. This makes tools like

MessagePack not necessarily a good fit in situations where plain text

is appropriate, like an email, but in situations where binary buffers are

passed around it might not be as bad. The msgpack5 npm package

is a browser and Node.js compatible package for doing just that.

That said, the performance trade-offs when communicating between

threads is not usually due to the size of the payload being

https://msgpack.org/

transferred, but is more than likely due to the cost of serializing and

deserializing payloads. For that reason it’s usually better to pass

simpler data representations between threads. Even when it comes

to passing objects between threads, you might find that the

structured clone algorithm, combined with the .onmessage and

.postMessage methods, is going to be faster and safer than

serializing objects and writing them to buffers.

If you do find yourself building an application that serializes and

deserializes objects and writes them to a SharedArrayBuffer , you

might want to reconsider some of the architecture of the application.

You’re almost always better off finding a way to take objects that

you’re passing around, serializing them using lower-level types, and

passing those along instead.

 This restriction may change in the future; see “In-Place Resizable and Growable

ArrayBuffers” for a proposal.

 If running JavaScript on rare hardware, it is possible that this method may return a false for

1, 2, or 8. That said, 4 will always return true .

 It’s possible, with the way code is compiled, ordered, and executed, that a racy program can

fail in a way that can’t be explained by this diagram of interleaving steps. When this happens

you may end up with a value that defies all expectations.

1

2

3

https://oreil.ly/im1CV

Chapter 5. Advanced Shared
Memory

Chapter 4 looked at using the SharedArrayBuffer object to read

and write directly to a collection of shared data from across separate

threads. But doing so is risky business, allowing one thread to

clobber data that was written by another thread. However, thanks to

the Atomics object, you are able to perform very basic operations

with that data in a way that prevents data from being clobbered.

Although the basic operations provided by Atomics are convenient,

you will often find yourself needing to perform more complex

interactions with that data. For example, once you’ve serialized data

as described in “Data Serialization”, like a 1 kilobyte string, you’ll then

need to write that data to the SharedArrayBuffer instance, and

none of the existing Atomics methods will allow you to set the entire

value all at once.

This chapter covers additional functionality for coordinating reads and

writes to shared data across threads for situations when the

previously covered Atomics methods just aren’t enough.

Atomic Methods for Coordination

These methods are a little different than the ones that were already

covered in “Atomic Methods for Data Manipulation”. Specificially, the

methods previously covered each work with a TypedArray of any

kind and may operate on both SharedArrayBuffer and

ArrayBuffer instances. However, the methods listed here will only

work with Int32Array and BigInt64Array instances, and they

only make sense when used with SharedArrayBuffer instances.

If you try to use these methods with the wrong type of TypedArray ,

you’ll get one of these errors:

Firefox v88

Uncaught TypeError: invalid array type for the operat

Chrome v90 / Node.js v16

Uncaught TypeError: [object Int8Array] is not an int3

As far as prior art goes, these methods are modeled after a feature

available in the Linux kernel called the futex, which is short for fast

userspace mutex. Mutex itself is short for mutual exclusion, which is

when a single thread of execution gets exclusive access to a

particular piece of data. A mutex can also be referred to as a lock,

where one thread locks access to the data, does its thing, and then

unlocks access, allowing another thread to then touch the data. A

futex is built on two basic operations, one being “wait” and the other

being “wake.”

Atomics.wait()

status = Atomics.wait(typedArray, index, value, timeo

This method first checks typedArray to see if the value at index

is equal to value . If it is not, the function returns the value not-

equal . If the value is equal, it will then freeze the thread for up to

timeout milliseconds. If nothing happens during that time, the

function returns the value timed-out . On the other hand, if another

thread calls Atomics.notify() for that same index within the

time period, the function then returns with a value of ok . Table 5-1

lists these return values.

Table 5-1. Return values from Atomics.wait()

Value Meaning

not-equal The provided value didn’t equal the value

present in the buffer.

timed-out Another thread didn’t call Atomics.notify()

within the allotted timeout .

ok Another thread did call Atomics.notify() in

time.

You might be wondering why this method doesn’t throw an error for

the first two conditions and silently succeed instead of returning an

ok . Because multithreaded programming is used for performance

reasons, it stands to reason that calling these Atomics methods will

be done in the hotpaths of an application, which are areas where the

application spends the most time. It’s less performant in JavaScript to

instantiate Error objects and generate stack traces than to return a

simple string, so the performance of this approach is pretty high.

Another reason is that the not-equal case doesn’t really represent

an error case but that something you’re waiting for has already

happened.

This blocking behavior might be a little shocking at first. Locking an

entire thread sounds a bit intense, and in many cases it is. Another

example of what can cause an entire JavaScript thread to lock is the

alert() function in a browser. When that function is called, the

browser displays a dialog and nothing at all can run—not even any

background tasks using the event loop—until the dialog is dismissed.

The Atomics.wait() method similarly freezes the thread.

This behavior is so extreme, in fact, that the “main” thread—the

default thread that is available when running JavaScript, outside of a

web worker—is not allowed to call this method, at least in a browser.

The reason is that locking the main thread would be such a poor user

experience that the API authors didn’t even want to allow it. If you do

try to call this method in the main thread of a browser, you will get

one of the following errors:

Firefox

Uncaught TypeError: waiting is not allowed on this th

Chrome v90

Uncaught TypeError: Atomics.wait cannot be called in

Node.js, on the other hand, does allow Atomics.wait() to be

called in the main thread. Since Node.js doesn’t have a UI, this isn’t

necessarily a bad thing. Indeed, it can be useful when writing scripts

where calling fs.readFileSync() is acceptable.

If you’re a JavaScript developer who has ever worked at a company

with mobile or desktop developers, you may have overheard them

talk about “offloading work from the main thread” or “locking the main

thread.” These concerns, which have traditionally belonged to

developers of native apps, will be enjoyed by us JavaScript engineers

more and more as the language advances. With regards to browsers

this issue is often referred to as scroll jank, which is when a CPU is

too busy to draw the UI while scrolling.

Atomics.notify()

awaken = Atomics.notify(typedArray, index, count = In

The Atomics.notify() method attempts to awaken other threads

that have called Atomics.wait() on the same typedArray and at

the same index . If any other threads are currently frozen, then they

will wake up. Multiple threads can be frozen at the same time, each

waiting to be notified. The count value then determines how many

of them to awaken. The count value defaults to Infinity ,

meaning that every thread will be awakened. However, if you have

four threads waiting and set the value to three, then all but one of

1

them will be woken up. “Timing and Nondeterminism” examines the

order of these waking threads.

The return value is the number of threads that have been awoken

once the method is complete. If you were to pass in a TypedArray

instance that points to a nonshared ArrayBuffer instance, this will

always return a 0 . If no threads happen to be listening at the time it

will also return a 0 . Because this method doesn’t block the thread, it

can always be called from a main JavaScript thread.

Atomics.waitAsync()

promise = Atomics.waitAsync(typedArray, index, value,

This is essentially a promise-based version of Atomics.wait() and

is the latest addition to the Atomics family. As of this writing it is

available in Node.js v16 and Chrome v87 but not yet available in

Firefox or Safari.

This method is essentially a less-performant, nonblocking version of

Atomics.wait() that returns a promise which resolves the status

of the wait operation. Due to the loss of performance (a resolving

promise is going to have more overhead than pausing a thread and

returning a string), it isn’t necessarily as useful for the hotpath of a

CPU-heavy algorithm. On the other hand, it can be useful in situations

where a lock change is more convenient to signal another thread than

to perform message-passing operations via postMessage() .

Because this method doesn’t block the thread, it can be used in the

main thread of an application.

One of the driving factors for adding this method is so that code

compiled using Emscripten (covered in “Compiling C Programs to

WebAssembly with Emscripten”) that makes use of threading is

allowed to execute in the main thread and not just in worker threads.

Timing and Nondeterminism

In order for an application to be correct it usually needs to behave in

a deterministic fashion. The Atomics.notify() function accepts an

argument count that contains the number of threads to wake up.

The glaring question in this situation is which threads get woken up

and in which order?

Example of Nondeterminism

Threads are woken up in FIFO (first in, first out) order, meaning the

first thread that called Atomics.wait() is the first to be woken up,

the second to call is the second to be woken up, and so on.

Measuring this can be difficult, however, because log messages

printed from different workers aren’t guaranteed to be displayed in

the terminal in the true order that they were executed in. Ideally, you

should build your application in such a way that it continues to work

fine regardless of the order in which threads have been awoken.

To test this for yourself, you can create a new application. First,

create a new directory named ch5-notify-order/. In it, start off by

creating another basic index.html file using the content from

Example 5-1.

Example 5-1. ch5-notify-order/index.html

<html>

 <head>

 <title>Shared Memory for Coordination</title>

 <script src="main.js"></script>

 </head>

</html>

Next, create another main.js file, containing the content from

Example 5-2.

Example 5-2. ch5-notify-order/main.js

if (!crossOriginIsolated) throw new Error('Cannot use

const buffer = new SharedArrayBuffer(4);

const view = new Int32Array(buffer);

for (let i = 0; i < 4; i++) {

 const worker = new Worker('worker.js');

 worker.postMessage({buffer, name: i});

}

setTimeout(() => {

 Atomics.notify(view, 0, 3);

}, 500);

Four dedicated workers are instantiated.

The shared buffer is notified at index 0.

The notification is sent at half a second.

This file first creates a 4-byte buffer, which is the smallest buffer that

can support the needed Int32Array view. Next, it creates four

different dedicated workers using a for loop. For each of the

workers it immediately calls the appropriate postMessage() call to

pass in both the buffer as well as the identifier for the thread. This

results in five different threads that we care about; namely the main

thread and threads that we’ve nicknamed 0, 1, 2, and 3.

JavaScript creates those threads, and the underlying engine goes to

work assembling resources, allocating memory, and otherwise doing

a lot of magic for us behind the scenes. The amount of time that it

takes to perform those tasks is nondeterministic, which is

unfortunate. We can’t know that, for example, it always takes 100 ms

to complete the preparation work. In fact, this number will change

wildy across machines depending on things like core count and how

busy the machine happens to be at the time the code is run. Lucky for

us, the postMessage() call is essentially queued up for us; the

JavaScript engine will call the worker’s onmessage function once it’s

ready.

After that, the main thread finishes its work, then waits half a second

(500 ms) using setTimeout , and finally calls Atomics.notify() .

What would happen if the setTimeout value were too low, say 10

ms? Or even if it were called in the same stack outside of

setTimeout ? In that case the threads wouldn’t yet be initialized, the

worker wouldn’t have had time to call Atomics.wait() , and the call

would immediately return with a 0 . What would happen if the time

value is too high? Well, the application might be painfully slow, or any

timeout value used by Atomics.wait() might have been

exceeded.

On Thomas’s laptop the threshold of readiness seems to be

somewhere around 120 ms. At that point some of the threads are

ready and some aren’t. At about 100 ms usually none of the threads

are ready, and at 180 ms usually all of the threads are ready. But

usually is a word that we don’t like to use in programming. It is

difficult to know an exact amount of time before a thread is ready.

Often this is an issue when first starting an application, not one that is

present throughout the life cycle of the application.

To finish off the application, create a file named worker.js, and add

the content from Example 5-3 to it.

Example 5-3. ch5-notify-order/worker.js

self.onmessage = ({data: {buffer, name}}) => {

 const view = new Int32Array(buffer);

 console.log(`Worker ${name} started`);

 const result = Atomics.wait(view, 0, 0, 1000);

 console.log(`Worker ${name} awoken with ${result}`)
};

Wait on 0th entry in buffer, assuming initial value of 0 , for up to

1 second.

The worker accepts the shared buffer and the name of the worker

thread and stores the values, printing a message that the thread has

been initialized. It then calls Atomics.wait() using the 0th index of

the buffer. It assumes an initial value of 0 is present in the buffer

(which it is, since we haven’t modified the value). The method call

also uses a timeout value of one second (1,000 ms). Finally, once

the method call is complete, the value is printed in the terminal.

Once you’ve finished creating these files, switch to a terminal and run

another web server to view the content. Again, you can do so by

running the following command:

$ npx MultithreadedJSBook/serve .

As usual, navigate to the URL printed in the terminal and open the

console. If you don’t see any output, you may need to refresh the

page to run the application again. Table 5-2 contains the output from

a test run.

Table 5-2. Example nondeterministic output

Log Location

Worker 1 started worker.js:4:11

Worker 0 started worker.js:4:11

Worker 3 started worker.js:4:11

Worker 2 started worker.js:4:11

Worker 0 awoken with ok worker.js:7:11

Worker 3 awoken with ok worker.js:7:11

Worker 1 awoken with ok worker.js:7:11

Worker 2 awoken with timed-out worker.js:7:11

You will most likely get different output. In fact, if you refresh the

page again, you may get different output once again. Or you may

even get consistent output across multiple runs. Ideally, though, the

final worker name that is printed with the “started” messages will also

be the worker that fails with the “timed-out” message.

This output might be a little confusing. Earlier we stated that the order

seems to be FIFO ordered, but the numbers here aren’t from 0 to 3.

The reason is that the order doesn’t depend on the order that the

threads were created (0, 1, 2, 3), but the order in which the threads

executed the Atomics.wait() call (1, 0, 3, 2 in this case). Even

with that in mind the order of the “awoken” messages is confusing (0,

3, 1, 2 in this case). This is likely due to a race condition in the

JavaScript engine where different threads print messages, likely at

almost the exact same moment.

Once printed, the messages don’t get displayed directly to the

screen. If that could happen, then the messages could overwrite each

other, and you’d end up with visual tearing of pixels. Instead, the

engine queues up the messages to be printed, and some other

mechanism internal to the browser, but hidden away from us

developers, determines the order in which they’re taken from the

queue and printed to the screen. For that reason, the order of the

two sets of messages won’t necessarily correlate. But the only way

to truly tell any order is that the message that times out happens to

be from the final thread that was started. Indeed, in this case the

“timed-out” message is always from the last worker that was started.

Detecting Thread Preparedness

This experiment begs the question: how can an application

deterministically know when a thread has finished going through initial

setup and is thus prepared to take on work?

A simple way to do so is to call postMessage() from within the

worker threads to post back to the parent thread at some point

during the onmessage() handler. This works because once the

onmessage() handler has been called the worker thread has

finished its initial setup and is now running JavaScript code.

Here’s an example of the quickest way to pull this off. First, copy the

ch5-notify-order/ directory you created and paste it as a new ch5-

notify-when-ready/ directory. Inside this directory the index.html file

will remain the same, though the two JavaScript files will be updated.

First, update main.js to contain the content from Example 5-4.

Example 5-4. ch5-notify-when-ready/main.js

if (!crossOriginIsolated) throw new Error('Cannot use

const buffer = new SharedArrayBuffer(4);

const view = new Int32Array(buffer);

const now = Date.now();

let count = 4;

for (let i = 0; i < 4; i++) {

 const worker = new Worker('worker.js');

(j);
 worker.postMessage({buffer, name: i});

 worker.onmessage = () => {

 console.log(`Ready; id=${i}, count=${--count}, ti
 if (count === 0) {

 Atomics.notify(view, 0);

 }

 };

}

Instantiate four workers.

Immediately post a message to the workers.

Notify on the 0th entry once all four workers reply.

The script has been modified so that Atomics.notify() will be

called after each of the four workers has posted a message back to

the main thread. Once the fourth and final worker has posted a

message, the notification is then sent. This allows the application to

post a message as soon as it’s ready, likely saving hundreds of

milliseconds in the best case, and preventing a failure in the worst

case (like when running the code on a very slow single-core

computer).

The Atomics.notify() call has also been updated to simply wake

up all threads instead of just three, and the timeout has been set

back to the default of Infinity . This was done to show that every

thread will receive the message on time.

Next, update worker.js to contain the content from Example 5-5.

Example 5-5. ch5-notify-when-ready/worker.js

self.onmessage = ({data: {buffer, name}}) => {

 postMessage('ready');

 const view = new Int32Array(buffer);

 console.log(`Worker ${name} started`);

 const result = Atomics.wait(view, 0, 0);

 console.log(`Worker ${name} awoken with ${result}`)
};

Post message back to parent thread to signal readiness.

Wait for notification on the 0th entry.

This time the onmessage handler immediately calls

postMessage() to send a message back to the parent. Then, the

wait call happens shortly afterward. Technically, if the parent thread

were to somehow receive the message before the

Atomics.wait() call were made, then the application could

conceivably break. But the code is relying on the fact that message

passing is far slower than iterating over lines of code within a

synchronous JavaScript function.

One thing to keep in mind is that calling Atomics.wait() will pause

the thread. This means postMessage() can’t be called afterward.

When you run this code, the new logs print out three pieces of

information: the name of the thread, the countdown (always in the

order of 3, 2, 1, 0), and finally the amount of time it took for the

thread to be ready since the start of the script. Run the same

command that you ran before and open the resulting URL in your

browser. Table 5-3 contains the log output from some sample runs.

Table 5-3. Thread start timing

Firefox v88 Chrome v90

T1, 86ms T0, 21ms

T0, 99ms T1, 24ms

T2, 101ms T2, 26ms

T3, 108ms T3, 29ms

In this case, with a 16-core laptop, Firefox seems to take around four

times as long to initialize the worker threads as Chrome does. Also,

Firefox gives a more random thread order than Chrome. Each time

the page is refreshed the order of threads for Firefox changes but the

order in Chrome does not. This then suggests that the V8 engine

used by Chrome is more optimized for starting new JavaScript

environments or instantiating browser APIs than the SpiderMonkey

engine used by Firefox.

Be sure to test this code in multiple browsers to compare the results

that you get. Another thing to keep in mind is that the speed that it

takes to initialize threads will also likely depend on the number of

cores available on your computer. In fact, to have some additional fun

with this program, change the value of 4 that is assigned to the

count variable and in the for loop to a higher number, then run the

code and see what happens. Upon increasing the value to 128 , the

amount of time it took both browsers to initialize threads jumped a lot.

This also consistently breaks the order in which the threads are

prepared on Chrome. Generally, performance is lost when using too

many threads, and this is examined in more detail in “Low Core

Count”.

Example Application: Conway’s
Game of Life

Now that we’ve had a look at Atomics.wait() and

Atomics.notify() , it’s time to look at a concrete example. We’ll

use Conway’s Game of Life, a well-established concept that naturally

lends itself to parallel programming.
The “game” is actually a

simulation of population growth and decay. The “world” this simulation

exists in is a grid of cells that are in one of two states: alive or dead.

The simulation works iteratively, and on each iteration, the following

algorithm is performed for each cell.

1. If the cell is alive:

1. If there are 2 or 3 neighbors alive, the cell remains alive.

2. If there are 0 or 1 neighbors alive, the cell dies (this simulates

underpopulation as a cause of death).

3. If there are 4 or more neighbors alive, the cell dies (this

simulates overpopulation as a cause of death).

2. If the cell is dead:

1. If there are exactly 3 neighbors alive, the cell becomes alive

(this simulates reproduction).

2. In any other case, the cell remains dead.

When talking about “neighbors alive,” we’re referring to any cell that’s

at most one unit away from the current cell, including diagonals, and

we’re referring to the state prior to the current iteration. We can

simplify these rules to the following.

1. If there are exactly 3 neighbors alive, the new cell state is alive

(regardless of how it started).

2. If the cell is alive and exactly 2 neighbors are alive, the cell

remains alive.

3. In all other cases, the new cell state is dead.

For our implementation, we’ll make the following assumptions:

The grid is a square. This is a slight simplification so that there’s

one less dimension to worry about.

The grid wraps around itself like a torus. This means that when

we’re at an edge, and we need to evaluate a neighboring cell

outside the bounds, we’ll look at the cell at the other end.

We’ll write our code for web browsers, since they give us a handy

canvas element with which to plot the state of the Game of Life

world. That being said, it’s relatively straightforward to adapt the

example to other environments that have some kind of image

rendering. In Node.js you could even write to the terminal using ANSI

escape codes.

Single-Threaded Game of Life

To start off, we’ll build up a Grid class, which holds our Game of

Life world as an array and handles each iteration. We’ll build it in a

frontend-agnostic way, and we’ll even make it usable without any

changes in our multithreaded example. To properly simulate the

Game of Life, we’ll need a multidimensional array to represent our

grid of cells. We could use arrays of arrays, but to make things

easier later on, we’ll store it in a one-dimensional array (in fact, a

Uint8Array), and then for any cell with coordinates x and y , we’ll

store it in the array at cells[size * x + y] . We’ll also need two

of these, since one will be for the current state, and one for the

previous state. In another attempt to simplify things for later on, we’ll

store both of them sequentially in the same ArrayBuffer .

Make a directory called ch5-game-of-life/ and add the contents of

Example 5-6 to gol.js in that directory.

Example 5-6. ch5-game-of-life/gol.js (part 1)

class Grid {

 constructor(size, buffer, paint = () => {}) {

 const sizeSquared = size * size;

 this.buffer = buffer;

 this.size = size;

 this.cells = new Uint8Array(this.buffer, 0, sizeS

 this.nextCells = new Uint8Array(this.buffer, size
 this.paint = paint;

 }

Here we’ve started off the Grid class with a constructor. It takes in

a size , which is the width of our square, an ArrayBuffer called

buffer , and a paint function which we’ll use later on. We then

establish our cells and nextCells as instances of Uint8Array

stored side-by-side in the buffer .

Next, we can add the cell retrieval method we’ll need later on when

performing iterations. Add the code in Example 5-7.

Example 5-7. ch5-game-of-life/gol.js (part 2)

 getCell(x, y) {

 const size = this.size;

 const sizeM1 = size - 1;

 x = x < 0 ? sizeM1 : x > sizeM1 ? 0 : x;

 y = y < 0 ? sizeM1 : y > sizeM1 ? 0 : y;

 return this.cells[size * x + y];

 }

To retrieve a cell with a given set of coordinates, we need to

normalize the indices. Recall that we’re saying the grid wraps around.

The normalization we’ve done here makes sure that if we’re one unit

above or below the range, we instead retrieve the cell at the other

end of the range.

Now, we’ll add the actual algorithm that runs on every iteration. Add

the code in Example 5-8.

Example 5-8. ch5-game-of-life/gol.js (part 3)

 static NEIGHBORS = [

 [-1, -1], [-1, 0], [-1, 1], [0, -1], [0, 1], [1,
];

 iterate(minX, minY, maxX, maxY) {

 const size = this.size;

 for (let x = minX; x < maxX; x++) {

 for (let y = minY; y < maxY; y++) {

 const cell = this.cells[size * x + y];

 let alive = 0;

 for (const [i, j] of Grid.NEIGHBORS) {

 alive += this.getCell(x + i, y + j);

 }

 const newCell = alive === 3 || (cell && alive
 this.nextCells[size * x + y] = newCell;

 this.paint(newCell, x, y);

 }

 }

 const cells = this.nextCells;

 this.nextCells = this.cells;

 this.cells = cells;

 }

}

The set of neighbors coordinates are used in the algorithm to

look at neighboring cells in eight directions. We’ll keep this

array handy because we’ll need to use it for every cell.

The iterate() method takes in a range to operate on in the

form of minimum X and Y values (inclusive) and maximum X

and Y values (exclusive). For our single-threaded example, it

will always be (0, 0, size, size) , but putting a range

here will make it easier to split up when we move to a

multithreaded implementation, where we’ll use these X and Y

boundaries to divide the whole grid into sections for each

thread to work on.

We loop over every cell in the grid, and for each one get the number

of neighbors that are alive. We’re using the number 1 to represent

living cells and 0 to represent dead cells, so we can count the

number of neighboring living cells by adding them all up. Once we

have that, we can apply the simplified Game of Life algorithm. We

store the new cell state in the nextCells array, and then provide

the new cell state and coordinates to the paint callback for

visualization. Then we swap the cells and nextCells arrays for

the subsequent iteration to use. That way, inside each iteration,

cells always represents the previous iteration’s result, and

newCells always represents the current iteration’s result.

All the code up until this point will be shared with our multithreaded

implementation. With the Grid class complete, we can now move on

to creating and initializing a Grid instance and tying it to our UI. Add

the code from Example 5-9.

Example 5-9. ch5-game-of-life/gol.js (part 4)

const BLACK = 0xFF000000;

const WHITE = 0xFFFFFFFF;

const SIZE = 1000;

const iterationCounter = document.getElementById('ite
const gridCanvas = document.getElementById('gridcanva
gridCanvas.height = SIZE;

gridCanvas.width = SIZE;

const ctx = gridCanvas.getContext('2d');

const data = ctx.createImageData(SIZE, SIZE);

const buf = new Uint32Array(data.data.buffer);

function paint(cell, x, y) {

 buf[SIZE * x + y] = cell ? BLACK : WHITE;

}

const grid = new Grid(SIZE, new ArrayBuffer(2 * SIZE
for (let x = 0; x < SIZE; x++) {

 for (let y = 0; y < SIZE; y++) {

 const cell = Math.random() < 0.5 ? 0 : 1;

 grid.cells[SIZE * x + y] = cell;

 paint(cell, x, y);

 }

}

ctx.putImageData(data, 0, 0);

We assign some constants for the black-and-white pixels we’ll

draw to the screen and set the size (actually, the width) of the

grid we’re using. Feel free to play around with the size to see

the Game of Life play out in different magnitudes.

We grab an iteration counter and canvas element from the

HTML (which we’ll write later on). We’ll set our canvas width

and height to SIZE , and get a 2D context from it to work with.

We’ll use an ImageData instance to modify the pixels on the

canvas directly, via a Uint32Array .

https://calibre-pdf-anchor.a/#a884

This paint() function will be used both in initialization of the

grid and on each iteration to modify the buffer backing the

ImageData instance. If a cell is alive, it’ll paint it black.

Otherwise, it’ll paint it white.

Now we create the grid instance, passing in the size, an

ArrayBuffer big enough to hold both cells and

nextCells , and our paint() function.

To initialize the grid, we’ll loop over all the cells and assign each

one a random dead or alive state. At the same time, we’ll pass

the result to our paint() function to ensure that the image is

updated.

Whenever an ImageData is modified, we need to add it back

to the canvas, so we’re doing it here now that we’re done

initializing.

Finally, we’re ready to start running iterations. Add the code from

Example 5-10.

Example 5-10. ch5-game-of-life/gol.js (part 5)

let iteration = 0;

function iterate(...args) {

 grid.iterate(...args);

https://calibre-pdf-anchor.a/#a887

 ctx.putImageData(data, 0, 0);

 iterationCounter.innerHTML = ++iteration;

 window.requestAnimationFrame(() => iterate(...args)
}

iterate(0, 0, SIZE, SIZE);

For each iteration, we start off by calling our grid.iterate()

method, which modifies the cells as appropriate. Note that it calls the

paint() function for each cell, so once that happens, our image

data is already set, so we just need to add it to the canvas context

with putImageData() . Then, we’ll update the iteration counter on

the page and schedule another iteration to happen in a

requestAnimationFrame() callback. Finally, we kick everything off

with an initial call to iterate() .

We’re done with the JavaScript, but now we need the supporting

HTML. Fortunately, this is very short. Add the contents of Example 5-

11 to a file called gol.html in the same directory, and then open that

file up in your browser.

Example 5-11. ch5-game-of-life/gol.html

<h3>Iteration: 0</h3>

<canvas id="gridcanvas"></canvas>

<script src="gol.js"></script>

You should now see a 1,000 by 1,000 image displaying Conway’s

Game of Life, going through the iterations as fast as it can. It should

look something like Figure 5-1.

Depending on your computer, you may find that this lags a little bit,

rather than being crisp and smooth. Iterating over all of these cells

and performing calculations on them takes a lot of computing power.

To speed things up a bit, let’s take advantage of some more CPU

cores on your machine using web worker threads.

Figure 5-1. Conway’s Game of Life after 290 iterations

Multithreaded Game of Life

For the multithreaded version of our Game of Life implementation, we

can reuse a lot of the code. In particular, the HTML doesn’t change

and neither does our Grid class. We’ll set up some worker threads

and an additional one to coordinate and modify image data. We need

that additional thread because we can’t use Atomics.wait() on the

main browser thread. We’ll make use of SharedArrayBuffer ,

rather than the regular ArrayBuffer used in the single-threaded

example. To coordinate the threads, we’ll need 8 bytes for

coordination, specifically 4 to synchronize in each direction, since

Atomics.wait() requires at least an Int32Array . Since our

coordination thread will also be generating the image data, we’ll also

need enough shared memory to hold that as well. For a grid of side

length SIZE , this means a SharedArrayBuffer with memory laid

out as in Table 5-4.

Table 5-4. Memory layout for four worker threads

Purpose # of Bytes

Cells (or next cells) SIZE * SIZE

Cells (or next cells) SIZE * SIZE

Image data 4 * SIZE * SIZE

Worker thread wait 4

Coordination thread wait 4

To get started here, copy the .html and .js files from the previous

example to new files named thread-gol.html and thread-gol.js,

respectively. Edit thread-gol.html to make reference to this new

JavaScript file.

Delete everything after the Grid class definition. The next thing we’ll

do is set up some constants. Add Example 5-12 to thread-gol.js.

Example 5-12. ch5-game-of-life/thread-gol.js (part 1)

const BLACK = 0xFF000000;

const WHITE = 0xFFFFFFFF;

const SIZE = 1000;

const THREADS = 5; // must be a divisor of SIZE

const imageOffset = 2 * SIZE * SIZE

const syncOffset = imageOffset + 4 * SIZE * SIZE;

const isMainThread = !!self.window;

The BLACK , WHITE , and SIZE constants have the same purpose

as in the single-threaded example. We’ll set this THREADS constant

to any number that’s a divisor of SIZE , and it will represent the

number of worker threads we’ll spawn for doing the Game of Life

calculation. We’ll be dividing the grid into chunks that can be handled

by each thread. Feel free to play around with the THREADS and

SIZE variables, so long as THREADS divides SIZE . We’ll need the

offsets for where the image data and sync bytes are stored, so those

are handled here as well. Finally, we’re going to use the same file to

run on the main thread and any worker threads, so we’ll need a way

of knowing whether we’re on the main thread or not.

Next, we’ll start writing the code for the main thread. Add the

contents of Example 5-13.

Example 5-13. ch5-game-of-life/thread-gol.js (part 2)

if (isMainThread) {

 const gridCanvas = document.getElementById('gridcan
 gridCanvas.height = SIZE;

 gridCanvas.width = SIZE;

 const ctx = gridCanvas.getContext('2d');

 const iterationCounter = document.getElementById('i

 const sharedMemory = new SharedArrayBuffer(

 syncOffset + // data + imageData

 THREADS * 4 // synchronization

);

 const imageData = new ImageData(SIZE, SIZE);

 const cells = new Uint8Array(sharedMemory, 0, image
 const sharedImageBuf = new Uint32Array(sharedMemory
 const sharedImageBuf8 =

 new Uint8ClampedArray(sharedMemory, imageOffset,

 for (let x = 0; x < SIZE; x++) {

 for (let y = 0; y < SIZE; y++) {

 // 50% chance of cell being alive

 const cell = Math.random() < 0.5 ? 0 : 1;

 cells[SIZE * x + y] = cell;

 sharedImageBuf[SIZE * x + y] = cell ? BLACK : W
 }

 }

 imageData.data.set(sharedImageBuf8);

 ctx.putImageData(imageData, 0, 0);

The SharedArrayBuffer ends 16 bytes later than the

syncOffset , since we need 4 bytes for synchronization for

each of our four threads.

The first part of this is roughly the same as in the single-threaded

example. We’re just grabbing the DOM elements and setting the grid

size. Next, we set up the SharedArrayBuffer , which we’re calling

sharedMemory , and put views on it for the cells (which we’ll

assign values to soon) and got the image data. We’ll use both a

Uint32Array and a Uint8ClampedArray for the image data, for

modification and assignment to the ImageData instance,

respectively.

Then we’ll initialize the grid randomly, and at the same time modify

the image data accordingly and populate that image data to the

canvas context. This sets up our initial state for the grid. At this point,

we can start spawning worker threads. Add the contents of

Example 5-14.

Example 5-14. ch5-game-of-life/thread-gol.js (part 3)

 const chunkSize = SIZE / THREADS;

 for (let i = 0; i < THREADS; i++) {

 const worker = new Worker('thread-gol.js', { name

 worker.postMessage({

 range: [0, chunkSize * i, SIZE, chunkSize * (i
 sharedMemory,

 i

 });

 }

 const coordWorker = new Worker('thread-gol.js', { n
 coordWorker.postMessage({ coord: true, sharedMemory

 let iteration = 0;

 coordWorker.addEventListener('message', () => {

 imageData.data.set(sharedImageBuf8);

 ctx.putImageData(imageData, 0, 0);

 iterationCounter.innerHTML = ++iteration;

 window.requestAnimationFrame(() => coordWorker.po
 });

We set up some worker threads in a loop. For each one, we give it a

unique name for debugging purposes, post it a message telling it

what range (i.e., the boundaries minX , minY , maxX , and maxY) of

the grid we want it to operate in, and send it the s⁠h⁠a⁠r⁠e⁠d⁠M⁠e⁠m​o⁠r⁠y .

Then we add a coordination worker, pass it the sharedMemory , and

let it know that it’s the coordination worker via a message.

From the main browser thread, we’re only going to talk to this

coordination worker. We’ll set it up so that it loops by posting a

message every time it receives one, but only after grabbing the

image data from SharedMemory , making the appropriate UI

updates, and requesting an animation frame.

The rest of the code runs in the other threads. Add the contents of

Example 5-15.

Example 5-15. ch5-game-of-life/thread-gol.js (part 4)

} else {

 let sharedMemory;

 let sync;

 let sharedImageBuf;

 let cells;

 let nextCells;

 self.addEventListener('message', initListener);

 function initListener(msg) {

 const opts = msg.data;

 sharedMemory = opts.sharedMemory;

 sync = new Int32Array(sharedMemory, syncOffset);

 self.removeEventListener('message', initListener)
 if (opts.coord) {

 self.addEventListener('message', runCoord);

 cells = new Uint8Array(sharedMemory);

 nextCells = new Uint8Array(sharedMemory, SIZE *
 sharedImageBuf = new Uint32Array(sharedMemory,
 runCoord();

 } else {

 runWorker(opts);

 }

 }

We’re on the other side of that isMainThread condition now, so we

know we’re in a worker thread or the coordination thread. Here, we

declare some variables, and then add an initial listener to the

message event. Regardless of whether this is a coordination thread

or a worker thread, we’ll need the sharedMemory and sync

variables populated, so we assign those in the listener. Then we

remove the initialization listener, since we won’t need it anymore. The

worker threads won’t rely on message passing at all, and the

coordination thread will have a different listener, as we’ll see in a

moment.

If we’ve initialized a coordination thread we’ll add a new message

listener; a runCoord function that we’ll define later. Then we’ll get

references to cells and nextCells since we’ll need to keep track

on the coordination thread separate from what’s going on in the

Grid instances in the worker threads. Since we’re generating the

image on the coordination thread, we’ll need that too. Then we run

the first iteration of runCoord . If we’ve initialized a worker thread,

we simply go ahead and pass the options (containing the range to

operate) to runWorker() .

Let’s go ahead and define runWorker() right now. Add the contents

of Example 5-16.

Example 5-16. ch5-game-of-life/thread-gol.js (part 5)

 function runWorker({ range, i }) {

 const grid = new Grid(SIZE, sharedMemory);

 while (true) {

 Atomics.wait(sync, i, 0);

 grid.iterate(...range);

 Atomics.store(sync, i, 0);

 Atomics.notify(sync, i);

 }

 }

Worker threads are the only ones that need an instance of the Grid

class, so first we instantiate it, passing in the sharedMemory as the

backing buffer. This works because we decided that the first part of

the sharedMemory would be the cells and nextCells , as it

would be in the single-threaded example.

Then we start an infinite loop. The loop performs the following

operations:

1. It performs an Atomics.wait() on the i th element of the

sync array. In the coordination thread, we’ll do the appropriate

Atomics.notify() to allow this to proceed. We’re waiting for

the coordination thread here because otherwise we may start

changing data and swapping references to cells and

nextCells before other threads are ready and data has made

its way to the main browser thread.

Then it performs the iteration on the Grid instance. Remember,

we’re only operating on the range that the coordination thread said

to operate on via the range property.

2. Once that’s done, it notifies the main thread of having completed

this task. This is done by setting the i th element of the sync

array to 1 with Atomics.store() , and then waking the waiting

thread via Atomics.notify() . We’re using the transition away

from the 0 state as an indicator that we should do some work,

and a transition back to the 0 state to notify that we’ve finished

the work.

We’re using Atomics.wait() to stop the coordination thread from

executing while the worker threads are modifying data, and then stop

the worker threads with Atomics.wait() while the coordination

thread does its work. On either side, we use Atomics.notify() to

wake the other thread and immediately go back into a waiting state,

waiting for the other thread to notify back. Because we use atomic

operations to both modify data and control when it is modified, we

know that all the data accesses are sequentially consistent. In the

interleaving program flow across threads, a deadlock cannot occur,

since we’re always flipping execution back and forth from the

coordination thread to the worker threads. The worker threads never

execute on the same parts of memory as each other, so we don’t

have to worry about this concept from the perspective of solely the

worker threads.

Worker threads can just run infinitely. We don’t have to be worried

about that infinite loop because it will only proceed if

Atomics.wait() returns, which requires that another thread calls

Atomics.notify() for that same array element.

Let’s wrap up the code here with the runCoord() function, which is

triggered via a message from the main browser thread after the

initialization message. Add the contents of Example 5-17.

Example 5-17. ch5-game-of-life/thread-gol.js (part 6)

 function runCoord() {

 for (let i = 0; i < THREADS; i++) {

 Atomics.store(sync, i, 1);

 Atomics.notify(sync, i);

 }

 for (let i = 0; i < THREADS; i++) {

 Atomics.wait(sync, i, 1);

 }

 const oldCells = cells;

 cells = nextCells;

 nextCells = oldCells;

 for (let x = 0; x < SIZE; x++) {

 for (let y = 0; y < SIZE; y++) {

 sharedImageBuf[SIZE * x + y] = cells[SIZE * x
 }

 }

 self.postMessage({});

 }

}

The first thing that happens here is the coordination thread notifying

the worker threads via the i th element of the sync array for each

worker thread, waking them up to perform an iteration. When they’re

done, they’ll notify via the same element of the sync array, so we’ll

wait on those. The fact that each of these calls to Atomics.wait()

blocks the thread execution is exactly why we need this coordination

thread in the first place, rather than just doing it all on the main

browser thread.

Next, we swap the cells and nextCells references. The workers

have already done this for themselves inside the iterate()

method, so we need to follow suit here. Then we’re ready to iterate

over all the cells and convert their values to pixels in the image

data. Finally, we post a message back to the main browser thread,

indicating that the data is ready to be displayed in the UI. The

coordination thread has nothing to do until the next time it receives a

message, at which point runCoord is run again. This method

completes the conceptual loop started in Example 5-14.

Now we’re done! To view the HTML file, remember that in order to

use SharedArrayBuffer , we need a server running with particular

headers set. To do this, run the following in your ch5-game-of-life

directory:

$ npx MultithreadedJSBook/serve .

Then, append /thread-gol.html to the URL provided to see our

multithreaded implementation of Conway’s Game of Life running.

Because we haven’t changed any UI code, it should look exactly the

same as the single-threaded example in Figure 5-1. The only

difference you should see is in performance. The transitions between

iterations likely appear to be much smoother and quicker. You’re not

imagining things! We’ve moved the work of calculating cell states and

plotting pixels into separate threads, so now the main thread is free

to animate more smoothly, and iterations happen faster because

we’re using more CPU cores in parallel to do the work.

Most importantly, we’re avoiding most of the overhead of passing

messages between threads for coordination by just using

Atomics.notify() to let other threads know that they can continue

after having paused themselves with Atomics.wait() .

Atomics and Events

At the heart of JavaScript lies the event loop, which allows the

language to create new call stacks and handle events. It’s always

been there and we JavaScript engineers have always depended on it.

This is true for both JavaScript that runs in the browser, where you

might have jQuery that listens for a click event in the DOM, or

JavaScript that runs on the server, where you might have the Fastify

server that waits for an incoming TCP connection to be established.

Enter the new kid on the block: Atomics.wait() and shared

memory. This pattern now allows applications to halt the execution of

JavaScript, thereby causing the event loop to completely stop

working. Because of this you can’t simply start throwing calls to make

use of multithreading into your application and expect it to work

without problem. Instead, certain restrictions must be followed to

make the application behave nicely.

One such restriction is hinted at when it comes to browsers: the main

thread of the application should not call Atomics.wait() . And,

while it can be done in a simple Node.js script, you should really avoid

doing so in a larger application. For example, if your main Node.js

thread is handling incoming HTTP requests, or has a handler for

receiving operating system signals, what’s going to happen when the

event loop comes to a halt when a wait operation is started?

Example 5-18 is an example of such a program.

Example 5-18. ch5-node-block/main.js

#!/usr/bin/env node

const http = require('http');

const view = new Int32Array(new SharedArrayBuffer(4))
setInterval(() => Atomics.wait(view, 0, 0, 1900), 200

const server = http.createServer((req, res) => {

 res.end('Hello World');

});

server.listen(1337, (err, addr) => {

 if (err) throw err;

() ;
 console.log('http://localhost:1337/');

});

Every 2 seconds the app pauses for 1.9 seconds

If you feel so inclined, create a directory for this file and execute the

server by running the following command:

$ node main.js

Once it’s running, execute the following command in your terminal

several times, waiting a random amount of time between each

invocation:

$ time curl http://localhost:1337

What this application does is first create an HTTP server and listen

for requests. Then, every two seconds, a call to Atomics.wait() is

made. It’s configured in such a way that the application freezes for

1.9 seconds to exaggerate the effect of long pauses. The curl

command you’re running is prefixed with the time command, which

displays the amount of time the following command takes to run. Your

output will then randomly vary between 0 and 1.9 seconds, which is a

huge amount of time for a web request to pause for. Even as you

https://calibre-pdf-anchor.a/#a919

reduce that timeout value closer and closer to 0, you’ll still end up

with micro stutters that globally affect all incoming requests. If web

browsers allowed Atomics.wait() calls in the main thread, you

would definitely be encountering micro stutters from this in websites

you visit today.

Another question still remains: what sort of restrictions should come

into play with each of the additional threads that an application

spawns, considering that each thread has their own event loop?

Our recommendation is to designate ahead of time what the main

purpose of each spawned thread is. Each thread either becomes a

CPU-heavy thread that makes heavy use of Atomics calls or an

event-heavy thread that makes minimal Atomics calls. With such an

approach, you might have a thread that is a worker in the truest

sense, constantly performing complex calculations and writing the

results to a shared array buffer. You would also have your main

thread, which is then mostly communicating via message passing and

doing event loop based work. It then might make sense to have

simple intermediary threads that call Atomics.wait() as they wait

for another thread to finish doing work, then call postMessage() to

send the resulting data back to the main thread to handle the result at

a much higher level.

To summarize the concepts in this section:

Don’t use Atomics.wait() in the main thread.

Designate which threads are CPU-heavy and use lots of Atomics

calls and which threads are evented.

Consider using simple “bridge” threads to wait and post messages

where appropriate.

These are some very high-level guidelines that you can follow when

designing your application. But sometimes some more concrete

patterns really help drive the point home. Chapter 6 contains some

such patterns you might find beneficial.

 Atomics.notify() was originally going to be called Atomics.wake() like its Linux futex

equivalent but was later renamed to prevent visual confusion between “wake” and “wait”

methods.

1

Chapter 6. Multithreaded Patterns

The JavaScript APIs that expose multithreading are, on their own,

really quite basic with the functionality they provide. As you saw in

Chapter 4, the purpose of the SharedArrayBuffer is to store a

raw, binary representation of data. Even Chapter 5 continued this

pattern with the Atomics object, exposing rather primitive methods

for coordinating or modifying a handful of bytes at a time.

Just looking at such abstract and low-level APIs can make it difficult

to see the big picture, or what these APIs can really be used for. It’s

admittedly difficult to take these concepts and convert them into

something that is genuinely useful for an application. That’s what this

chapter is for.

This chapter contains popular design patterns for implementing

multithreaded functionality inside an application. These design

patterns take inspiration from the past, as each of them existed long

before JavaScript was even invented. Though working demos of them

are likely available in many forms, such as C++ textbooks, translating

them for use with JavaScript isn’t always straightforward.

By examining these patterns you’ll get a much better feel for how the

applications you develop can benefit from multithreading.

Thread Pool

The thread pool is a very popular pattern that is used in most

multithreaded applications in some form or another. Essentially, a

thread pool is a collection of homogeneous worker threads that are

each capable of carrying out CPU-intensive tasks that the application

may depend on. This differs somewhat from the approach you’ve

been using so far where usually a single worker thread, or a finite

number of workers, has been used. As an example of this, the

libuv library that Node.js depends on provides a thread pool,

defaulting to four threads, for performing low-level I/O operations.

This pattern might feel similar to distributed systems that you may

have worked with in the past. For example, with a container

orchestration platform, there’s usually a collection of machines that

are each capable of running application containers. With such a

system each machine might have different capabilities, such as

running different operating systems or having different memory and

CPU resources. When this happens, the orchestrator may assign

points to each machine based on resources and applications, then

consume said points. On the other hand, a thread pool is much

simpler because each worker is capable of carrying out the same

work and each thread is just as capable as the other since they’re all

running on the same machine.

The first question when creating a thread pool is how many threads

should be in the pool?

Pool Size

There are essentially two types of programs: those that run in the

background, like a system daemon process, which ideally shouldn’t

consume that many resources, and programs that run in the

foreground that any given user is more likely to be aware of, like a

desktop application or a web server. Browser applications are usually

constrained to running as foreground applications, whereas Node.js

applications are free to run in the background—though Node.js is

most commonly used to build servers, frequently as the only process

inside a container. In either case, the intent with a JavaScript

application is often to be the main focus at a particular point in time,

and any computations necessary to achieve the purpose of the

program should ideally be executed as soon as possible.

To execute instructions as quickly as possible, it makes sense to

break them up and run them in parallel. To maximize CPU usage it

figures that each of the cores in a given CPU should be used, as

equally as possible, by the application. Thus, the number of CPU

cores available to the machine should be a determining factor for the

number of threads—aka workers—an application should use.

Typically, the size of a thread pool won’t need to dynamically change

throughout the lifetime of an application. Usually there’s a reason the

number of workers is chosen, and that reason doesn’t often change.

That’s why you’ll work with a thread pool with a fixed size,

dynamically chosen when the application launches.

Here is the idiomatic approach for getting the number of threads

available to the currently running JavaScript application, depending on

whether the code runs inside a browser or inside a Node.js process:

// browser

cores = navigator.hardwareConcurrency;

// Node.js

cores = require('os').cpus().length;

One thing to keep in mind is that with most operating systems there is

not a direct correlation between a thread and a CPU core. For

example, when running an application with four threads on a CPU with

four cores, it’s not like the first core is always handling the first

thread, the second core the second thread, and so forth. Instead, the

operating system constantly moves tasks around, occasionally

interrupting a running program to handle the work of another

application. In a modern operating system there are often hundreds

of background processes that need to be occasionally checked. This

often means that a single CPU core will be handling the work of more

than one thread.

Each time a CPU core switches focus between programs—or

threads of a program—a small context shift overhead comes into

play. Because of this, having too many threads compared to the

number of CPU cores can cause a loss of performance. The constant

context switching will actually make an application slower, so

applications should attempt to reduce the number of threads

clamoring for attention from the OS. However, having too few threads

can then mean that an application takes too long to do its thing,

resulting in a poor user experience or otherwise wasted hardware.

Another thing to keep in mind is that if an application makes a thread

pool with four workers, then the minimum number of threads that

application is using is five because the main thread of the application

also comes into play. There are also background threads to consider,

like the libuv thread pool, a garbage collection thread if the

JavaScript engine employs one, the thread used to render the

browser chrome, and so on. All of these will affect the performance

of the application.

TIP

The characteristics of the application itself will also affect the ideal size of a thread pool. Are

you writing a cryptocurrency miner that does 99.9% of the work in each thread and almost no

I/O and no work in the main thread? In that case using the number of available cores as the

size of the thread pool might be OK. Or are you writing a video streaming and transcoding

service that performs heavy CPU and heavy I/O? In that case, you may want to use the

number of available cores minus two. You’ll need to perform benchmarks with your application

to find the perfect number, but a reasonable starting point might be to use the number of

available cores minus one and then tweak when necessary.

Once you have determined the number of threads to use, you’re

ready to determine how to dispatch work to the workers.

Dispatch Strategies

Because the goal of a thread pool is to maximize the work that can

be done in parallel, it stands to reason that no single worker should

get too much work to handle and no threads should be sitting there

idle without work to do. A naive approach might be to just collect

tasks to be done, then pass them in once the number of tasks ready

to be performed meets the number of worker threads and continue

once they all complete. However, each task isn’t guaranteed to take

the same amount of time to complete. It could be that some are very

fast, taking milliseconds, and others may be slow, taking seconds or

longer. A more robust solution must therefore be built.

A few strategies are often employed by applications to dispatch

tasks to workers in a worker pool. These strategies draw parallels to

those used by reverse proxies for the purpose of sending requests to

backend services. Here’s a list of the most common strategies:

Round robin

Each task is given to the next worker in the pool, wrapping

around to the beginning once the end has been hit. So, with a

pool size of three, the first task goes to Worker 1, then Worker

2, then Worker 3, then back to Worker 1, and so on. The

benefit of this is that each thread gets the exact same number

of tasks to perform, but the drawback is that if the complexities

of each task is a multiple of the number of threads (like each

6th task takes a long time to perform), then there will be an

unfair distribution of work. The HAProxy reverse proxy refers to

this as roundrobin .

Random

Each task is assigned to a random worker in the pool. Although

this is the simplest to build, being entirely stateless, it can also

mean that some of the workers are sometimes given too much

work to perform, and others will sometimes be given too little

work to perform.

Least busy

A count of the number of tasks being performed by each

worker is maintained, and when a new task comes along it is

given to the least busy worker. This can even be extrapolated

so that each worker only has a single task to perform at a time.

When two workers have a tie for the least amount of work,

then one can be chosen randomly. This is perhaps the most

robust approach, especially if each task consumes the same

amount of CPU, but it does require the most effort to

implement. If some tasks use fewer resources, such as if a

task calls setTimeout() , then it can lead to skew in worker

workloads. HAProxy refers to this as leastconn .

Other strategies employed by reverse proxies might have a

nonobvious implementation that could be made in your applications as

well. For example, HAProxy has a strategy for load balancing called

source , which takes a hash of the client’s IP address and uses that

to consistently route requests to a single backend. An equivalent to

this might be useful in cases where worker threads maintain an in-

memory cache of data- and routing-related tasks to the same worker

could result in more cache hits, but such an approach is a little harder

to generalize.

TIP

Depending on the nature of your application, you may find that one of these strategies offers

much better performance than the others. Again, benchmarking is your friend when it comes

to measuring a given application’s performance.

Example Implementation

This example repurposes the existing files from ch2-patterns/ that you

created in “Putting It All Together”, but a lot of the error handling has

been removed for brevity, and the code has been made compatible

with Node.js. Create a new directory named ch6-thread-pool/ to

house the files that you’ll create in this section.

The first file you’ll create is main.js. This is the entrypoint into the

application. The previous version of this code just used a

Promise.allSettled() call to add tasks to the pool, but that’s not

all that interesting because it adds everything at the same time.

Instead, this application exposes a web server, and every request

then creates a new task for the thread pool. With this approach,

previous tasks might have been completed by the time the pool is

consulted, which then results in more interesting patterns like with a

real-world application.

Add the content from Example 6-1 to main.js to start off your

application.

Example 6-1. ch6-thread-pool/main.js

#!/usr/bin/env node

const http = require('http');

const RpcWorkerPool = require('./rpc-worker.js');

const worker = new RpcWorkerPool('./worker.js',

 Number(process.env.THREADS),

 process.env.STRATEGY);

const server = http.createServer(async (req, res) =>
 const value = Math.floor(Math.random() * 100_000_00
 const sum = await worker.exec('square_sum', value);
 res.end(JSON.stringify({ sum, value }));

});

server.listen(1337, (err) => {

 if (err) throw err;

 console.log('http://localhost:1337/');

});

The THREADS environment variable controls the pool size.

The STRATEGY environment variable sets the dispatch

strategy.

This application used two environment variables to make it easy to

experiment with. The first is named THREADS and will be used to set

the number of threads in the thread pool. The second environment

variable is STRATEGY , which can be used to set the thread pool

dispatch strategy. Otherwise, the server isn’t too exciting, as it just

uses the built-in http module. The server listens on port 1337, and

any request, regardless of path, triggers the handler. Each request

calls the square_sum command defined in the workers while

passing in a value between 0 and 100 million.

Next, create a file named worker.js, and add the content from

Example 6-2 to it.

Example 6-2. ch6-thread-pool/worker.js

const { parentPort } = require('worker_threads');

function asyncOnMessageWrap(fn) {

 return async function(msg) {

 parentPort.postMessage(await fn(msg));

 }

}

const commands = {

 async square_sum(max) {

 await new Promise((res) => setTimeout(res, 100));
 let sum = 0; for (let i = 0; i < max; i++) sum +=
 return sum;

 }

};

parentPort.on('message', asyncOnMessageWrap(async ({
 result: await commands[method](...params), id

})));

This file isn’t too interesting because it’s essentially a simplified

version of the worker.js file that you previously created. A lot of the

error handling was removed to make the code shorter (feel free to

add it back if you like), and the code has also been modified to be

compatible with the Node.js APIs. In this example only a single

command remains, namely square_sum .

Next, create a file named rpc-worker.js. This file is going to be quite

large and has been broken up into smaller sections. First, add the

content from Example 6-3 to it.

Example 6-3. ch6-thread-pool/rpc-worker.js (part 1)

const { Worker } = require('worker_threads');

const CORES = require('os').cpus().length;

const STRATEGIES = new Set(['roundrobin', 'random',

module.exports = class RpcWorkerPool {

 constructor(path, size = 0, strategy = 'roundrobin'
 if (size === 0) this.size = CORES;

 else if (size < 0) this.size = Math.max(CORES +
 else this.size = size;

 if (!STRATEGIES.has(strategy)) throw new TypeErro
 this.strategy = strategy;

 this.rr_index = -1;

 this.next_command_id = 0;

 this.workers = [];

 for (let i = 0; i < this.size; i++) {

 const worker = new Worker(path);

 this.workers.push({ worker, in_flight_commands:
 worker.on('message', (msg) => {

 this.onMessageHandler(msg, i);

 });

 }

 }

The thread pool size is highly configurable.

The strategy is validated and stored.

An array of workers is maintained instead of just one.

The in_flight_commands list is now maintained per worker.

https://calibre-pdf-anchor.a/#a975

This file starts off by requiring the worker_threads core module to

create workers, as well as the os module to get the number of

available CPU cores. After that the RpcWorkerPool class is defined

and exported. Next, the constructor for the class is provided. The

constructor takes three arguments, with the first being the path to the

worker file, the second being the size of the pool, and the third being

the strategy to use.

The pool size is highly configurable and allows the caller to provide a

number. If the number is positive, then it is used as the size of the

pool. The default value is zero, and if provided, the number of CPU

cores is used for the pool size. If a negative number is provided, then

that number is subtracted from the number of available cores and that

is used instead. So, on an 8 core machine, passing in a pool size of –

2 would result in a pool size of 6.

The strategy argument may be one of roundrobin (the default),

random , or leastbusy . The value is validated before being

assigned to the class. The rr_index value is used as the round

robin index and is a number that cycles through the next available

worker ID.

The next_command_id is still global across all threads, so the first

command will be 1 and the next will be 2 , regardless of whether

the commands are both handled by the same worker thread or not.

Finally, the workers class property is an array of workers instead of

the previous singular worker property. The code to handle it is

largely the same, but the in_flight_commands list is now local to

the individual workers, and the ID of the worker is passed as an

additional argument to the onMessageHandler() method. This is

because the individual worker will later need to be looked up when a

message is sent back to the main process.

Continue editing the file by adding the content from Example 6-4 to it.

Example 6-4. ch6-thread-pool/rpc-worker.js (part 2)

 onMessageHandler(msg, worker_id) {

 const worker = this.workers[worker_id];

 const { result, error, id } = msg;

 const { resolve, reject } = worker.in_flight_comm
 worker.in_flight_commands.delete(id);

 if (error) reject(error);

 else resolve(result);

 }

This part of the file defines the onMessageHandler() method that is

called when a worker sends a message back to the main thread. It’s

mostly the same as before, except this time it accepts an additional

argument, worker_id , which is used to look up the worker that sent

the message. Once it looks up the worker, it handles the promise

rejection/resolve and removes the entry from the list of pending

commands.

Continue editing the file by adding the content from Example 6-5 to it.

Example 6-5. ch6-thread-pool/rpc-worker.js (part 3)

 exec(method, ...args) {

 const id = ++this.next_command_id;

 let resolve, reject;

 const promise = new Promise((res, rej) => { resol
 const worker = this.getWorker();

 worker.in_flight_commands.set(id, { resolve, reje
 worker.worker.postMessage({ method, params: args,
 return promise;

 }

The applicable worker is looked up.

This chunk of the file defines the exec() method, which is what the

application calls when it wants to execute a command in one of the

workers. Again, it’s largely unchanged, but this time it calls the

getWorker() method to get the appropriate worker to handle the

next command, instead of working with a single default worker. That

method is defined in the next section.

Finish editing the file by adding the content from Example 6-6 to it.

Example 6-6. ch6-thread-pool/rpc-worker.js (part 4)

 getWorker() {

 let id;

 if (this.strategy === 'random') {

 id = Math.floor(Math.random() * this.size);

 } else if (this.strategy === 'roundrobin') {

 this.rr_index++;

 if (this.rr_index >= this.size) this.rr_index =
 id = this.rr_index;

 } else if (this.strategy === 'leastbusy') {

 let min = Infinity;

 for (let i = 0; i < this.size; i++) {

 let worker = this.workers[i];

 if (worker.in_flight_commands.size < min) {

 min = worker.in_flight_commands.size;

 id = i;

 }

 }

 }

 console.log('Selected Worker:', id);

 return this.workers[id];

 }

};

This final chunk of the file defines a final, new method named

getWorker() . This method considers the strategy that was defined

for the class instance when determining which worker to use next.

The bulk of the function is a large if statement where each branch

correlates to a strategy.

The first one, random , doesn’t require any additional state, making it

the simplest. All the function does is to randomly choose one of the

entries in the pool and then choose that as a candidate.

The second branch, for roundrobin , is slightly more complicated.

This one makes use of a class property named rr_index ,

incrementing the value and then returning the worker located at the

new index. Once the index exceeds the number of workers, it then

wraps back around to zero.

The final branch, for leastbusy , has the most complexity. It works

by looping through each one of the workers, noting the number of

commands that it currently has in progress by looking at the size of

the in_flight_commands map, and determining if it’s the smallest

value that has been encountered so far. If so, it then decides that

worker is the next to be used. Note that this implementation will stop

at the first matching worker with the lowest number of in-flight

commands; so the first time it runs it will always choose worker 0. A

more robust implementation might look at all of the candidates with

the lowest, equal commands, and choose one randomly. The chosen

worker ID is logged so that you can tell what’s happening.

Now that your application has been prepared, you’re ready to

execute it. Open up two terminal windows and navigate to the ch6-

thread-pool/ directory in the first one. In this terminal window execute

the following command:

$ THREADS=3 STRATEGY=leastbusy node main.js

This starts a process with a thread pool containing three workers

using the leastbusy strategy.

Next, run the following command in the second terminal window:

$ npx autocannon -c 5 -a 20 http://localhost:1337

This executes the autocannon command, which is an npm package

for performing benchmarks. In this case, though, you’re not actually

running a benchmark, but you’re instead just running a whole bunch of

queries. The command is configured to open five connections at a

time and send a total of 20 requests. Essentially, this will make 5

requests seemingly in parallel, then as the requests are closed the

remaining 15 requests will be made. This is akin to a production web

server you might build.

Since the application is using the leastbusy strategy, and because

the code is written to choose the first process with the fewest

commands, the first five requests should then essentially be treated

as round robin. With a pool size of three, when the application first

runs, each worker has zero tasks. So the code first elects to use

Worker 0. For the second request, the first worker has one task

while the second and third worker have zero, so the second is

chosen. Then the third. For the fourth, each of the three workers is

consulted, each having one task, and so the first is chosen again.

After the first five tasks are assigned, the remaining worker

assignments are essentially random, as each command takes

essentially a random amount of time to succeed.

Next, kill the server using Ctrl+C, and then run it again using the

roundrobin strategy:

$ THREADS=3 STRATEGY=roundrobin node main.js

Run the same autocannon command as before in the second

terminal. This time you should see that the tasks are always executed

in the order of 0, 1, 2, 0, and so on.

Finally, kill the server with Ctrl+C again, and run it again with the

random strategy:

$ THREADS=3 STRATEGY=random node main.js

Run the autocannon command a final time and note the results.

This time it should be entirely random. If you notice the same worker

getting chosen multiple times in a row, it likely means that worker is

overloaded.

Table 6-1 contains sample output from a previous run of this

experiment. Each column corresponds to a new request, and the

number in the table contains the ID of the worker that was chosen to

serve the request.

Table 6-1. Example thread pool strategy output

Strategy R1 R2 R3

Least busy 0 1 2

Round robin 0 1 2

Random 2 0 1

In this particular run the random approach hardly ever used the

worker with an ID of 2.

Mutex: A Basic Lock

A mutually exclusive lock, or mutex, is a mechanism for controlling

access to some shared data. It ensures that only one task may use

that resource at any given time. Here, a task can mean any sort of

concurrent task, but most often the concept is used when working

with multiple threads, to avoid race conditions. A task acquires the

lock in order to run code that accesses the shared data, and then

releases the lock once it’s done. The code between the acquisition

and the release is called the critical section. If a task attempts to

acquire the lock while another task has it, that task will be blocked

until the other task releases the lock.

It may not be obvious why you might want to use a mutex when we

have atomic operations at our disposal through the Atomics object.

Surely it’s more efficient to use atomic operations to modify and read

data, since we’re blocking other operations for shorter time periods,

right? It turns out that code often requires that data not be modified

externally across more than one operation. Put another way, the units

of atomicity provided by atomic operations are too small for many

algorithms’ critical sections. For example, two integers may be read

from several parts of shared memory, then summed up to be written

to another part. If values are changed in between the two retrievals,

the sum will reflect values from two different tasks, which can lead to

logic errors later on in the program.

Let’s look at an example program that initializes a buffer with a bunch

of numbers and performs some basic math on them in several

threads. We’ll have each thread grab a value at a unique index per

thread, then grab a value from a shared index, multiply those

together, and write them at the shared index. Then we’ll read from

that shared index and check that it’s equal to the product of the

previous two reads. In between the two reads, we’ll perform a busy

loop to simulate doing some other work that takes some time.

Make a directory called ch6-mutex and put the contents of

Example 6-7 into a file called thread_product.js.

Example 6-7. ch6-mutex/thread-product.js

const {

 Worker, isMainThread, workerData

} = require('worker_threads');

const assert = require('assert');

if (isMainThread) {

 const shared = new SharedArrayBuffer(4 * 4);

 const sharedInts = new Int32Array(shared);

 sharedInts.set([2, 3, 5, 7]);

 for (let i = 0; i < 3; i++) {

(; ;) {
 new Worker(__filename, { workerData: { i, shared
 }

} else {

 const { i, shared } = workerData;

 const sharedInts = new Int32Array(shared);

 const a = Atomics.load(sharedInts, i);

 for (let j = 0; j < 1_000_000; j++) {}

 const b = Atomics.load(sharedInts, 3);

 Atomics.store(sharedInts, 3, a * b);

 assert.strictEqual(Atomics.load(sharedInts, 3), a *
}

We’ll be using three threads and an Int32Array to hold the

data, so we need it big enough to hold three 32-bit integers,

plus a fourth to be the shared multiplier/result.

Here, we’re checking our work. In a real-world application,

there likely would be no check here, but this simulates

depending on the result to perform other actions, which may

happen later on in the program.

You can run this example as follows:

$ node thread-product.js

https://calibre-pdf-anchor.a/#a1009

You might find that on the first try, or even the first bunch of tries, this

works fine, but go ahead and keep running it. Alternatively you may

find that the assertion fails immediately. At some point, within the first

20 or so attempts, you should see that the assertion fails. While

we’re using atomic operations, we’re using four of them, and between

any of these, some change can occur in these values. This is a

classic example of a race condition. All the threads are reading and

writing concurrently (though not in parallel, since the operations

themselves are atomic), so the results aren’t deterministic for given

input values.

To solve this, we’ll implement a Mutex class using the primitives we

have in Atomics . We’ll be making use of Atomics.wait() to wait

until the lock can be acquired, and Atomics.notify() to notify

threads that the lock has been released. We’ll use

Atomics.compareExchange() to swap the locked/unlocked state

and determine whether we need to wait to get the lock. Create a file

in the same directory called mutex.js and add the contents of

Example 6-8 to get started on the Mutex class.

Example 6-8. ch6-mutex/mutex.js (part 1)

const UNLOCKED = 0;

const LOCKED = 1;

const {

 compareExchange, wait, notify

} = Atomics;

class Mutex {

 constructor(shared, index) {

 this.shared = shared;

 this.index = index;

 }

Here we’ve defined our LOCKED and UNLOCKED states as 1 and 0,

respectively. Really, they can be any values that fit in the

TypedArray we pass into the Mutex constructor, but sticking with

1 and 0 makes it easier to think about as a boolean value. We have

set up the constructor to take in two values that will be assigned to

properties: the TypedArray we’ll be operating on, and the index in

that array that we’ll use as the lock status. Now, we’re ready to start

using Atomics to add the acquire() method, which uses the

destructured Atomics . Add the acquire() method from

Example 6-9.

Example 6-9. ch6-mutex/mutex.js (part 2)

 acquire() {

if (E h (thi h d thi i d UNLO

 if (compareExchange(this.shared, this.index, UNLO
 return;

 }

 wait(this.shared, this.index, LOCKED);

 this.acquire();

 }

To acquire a lock, we make an attempt to swap the UNLOCKED state

for the LOCKED state at the mutex’s array index, using

Atomics.compareExchange() . If the swap is successful, then

there’s nothing left to do and we’ve acquired the lock, so we can just

return. Otherwise we need to wait for unlocking, which in this case

means waiting for notification that the value change from LOCKED to

anything else. Then we make another attempt to acquire the lock.

We’re doing this through recursion here to illustrate the “retry” nature

of the operation, but it could just as easily be a loop. It should work

on the second time through since we’ve specifically waited for it to

become unlocked, but in between the wait() and the

compareExchange() , the value may have changed, so we need to

check again. In a real-world implementation, you might want to both

add a timeout on the wait() and limit the number of attempts that

can be made.

NOTE

In many production mutex implementations, in addition to the “unlocked” and “locked” states,

you’ll often find a state meaning “locked and contended.” Contention arises when one thread

attempts to acquire a lock that’s already held by another thread. By keeping track of this state,

the mutex code can avoid using extra notify() calls, allowing for better performance.

SEMAPHORES

The element in the shared array that we use to represent the state of

being locked or unlocked is a trivial example of a semaphore.

Semaphores are variables used to convey state information between

threads. They indicate a count of a resource being used. In the case

of a mutex, we limit this to 1, but semaphores in other scenarios may

involve other limits for other purposes.

Now we’ll look at releasing a lock. Add the release() method

shown in Example 6-10.

Example 6-10. ch6-mutex/mutex.js (part 3)

 release() {

 if (compareExchange(this.shared, this.index, LOCK
 throw new Error('was not acquired');

 }

 notify(this.shared, this.index, 1);

 }

}

Here we’re using Atomics.compareExchange() to swap the locked

state again, much as we did to acquire the lock. This time, we want

to make sure that the original state was indeed LOCKED since we

don’t want to release the lock if we haven’t acquired it. The only thing

left to do at this point is to notify() , enabling a waiting thread (if

there is one) to acquire the lock. We set the count for notify() to

1, because there’s no need to wake more than one sleeping thread,

since only one can ever hold the lock at one time.

What we have now is enough to work as a serviceable mutex lock.

However, it’s relatively easy to acquire a lock and forget to release it,

or in some other way have an unexpected critical section. For many

use cases, the critical section is well-defined and knowable ahead of

time. In those cases, it makes sense to have a helper method on the

Mutex class to wrap critical sections with ease. Let’s do exactly that

by adding the exec() method in Example 6-11, which will also finish

off the class.

Example 6-11. ch6-mutex/mutex.js (part 4)

 exec(fn) {

 this.acquire();

 try {

 return fn();

 } finally {

 this.release();

 }

 }

}

module.exports = Mutex;

All we’re doing here is calling the passed-in function and returning its

value, but wrapping that with an acquire() beforehand and

release() afterward. This way the passed-in function contains all

the code of our critical section. Note that we call the passed-in

function inside a try block, with the release() happening in the

corresponding finally . Since the passed-in function could throw an

exception, we want to make sure that we release the lock even in

that scenario. This completes our Mutex class, so now we can move

on to using it in our example.

Make a copy of thread-product.js in the same directory, called

thread-product-mutex.js. In that file require the mutex.js file and

assign it to a const called Mutex . Add another 4 bytes to the

SharedArrayBuffer (e.g., new SharedArrayBuffer(4 * 5))

for our lock to use, then replace everything in the else block with

the contents of Example 6-12.

Example 6-12. ch6-mutex/thread-product-mutex.js

 const { i, shared } = workerData;

 const sharedInts = new Int32Array(shared);

 const mutex = new Mutex(sharedInts, 4);

 mutex.exec(() => {

 const a = sharedInts[i];

 for (let j = 0; j < 1_000_000; j++) {}

 const b = sharedInts[3];

 sharedInts[3] = a * b;

 assert.strictEqual(sharedInts[3], a * b);

 });

Before this line, everything’s the same as when we weren’t

using the mutex. Now, we’ll initialize one, using the fifth element

of our Int32Array as our lock data.

Inside the function passed to exec() , we’re in our critical

section, which is protected by the lock. This means we don’t

need atomic operations to read or manipulate the array.

Instead, we can just operate on it like any other TypedArray .

In addition to enabling ordinary array access techniques, the mutex

has allowed us to ensure that no other thread is able to modify these

pieces of data while we’re looking at them. Because of that, our

assertion would never fail. Give it a try! Run the following command

to run this example, and even run it tens, hundreds, or even

thousands of times. It will never fail the assertion like the version

using only atomics did:

$ node thread-product-mutex.js

NOTE

Mutexes are straightforward tools to lock access to a resource. They allow critical sections to

operate without interference from other threads. They are one example of how we can

leverage combinations of atomic operations to make new building blocks for multithreaded

programming. In the next section, “Streaming Data with Ring Buffers”, we’ll put this building

block to some practical use.

Streaming Data with Ring Buffers

Many applications involve streaming data. For example, HTTP

requests and responses are usually presented via HTTP APIs as

sequences of byte data coming in as chunks as they are received. In

network applications, data chunks are size-constrained by packet

sizes. In filesystem applications, data chunks can be size-constrained

by kernel buffer sizes. Even if we output data to these resources

without any regard for streaming, the kernel will break the data up

into chunks in order to send it to its destination in a buffered manner.

Streaming data also occurs in user applications and can be used as a

way to transfer larger amounts of data between computation units,

like processes or threads. Even without separate computation units,

you may want or need to hold data in some kind of buffer before

processing it. This is where ring buffers, also known as circular

buffers, come in handy.

A ring buffer is an implementation of a first-in-first-out (FIFO) queue,

implemented using a pair of indices into an array of data in memory.

Crucially, for efficiency, when data is inserted into the queue, it won’t

ever move to another spot in memory. Instead, we move the indices

around as data gets added to or removed from the queue. The array

is treated as if one end is connected to the other, creating a ring of

data. This means that if these indices are incremented past the end

of the array, they’ll go back to the beginning.

An analog in the physical world is the restaurant order wheel,

commonly found in North American diners. In restaurants using this

kind of system, the wheel is usually placed in a part of the restaurant

that divides the customer-facing area from the kitchen. Orders are

taken from the customers on note papers, which are then inserted

into the wheel in order. Then, on the kitchen side, the cooks can grab

orders off the wheel in the same order so that food is cooked in the

appropriate order, and no customer is left waiting too long for their

food. This is a bounded FIFO queue, just like our ring buffers.

Indeed, it’s also literally circular!

To implement a ring buffer, we’ll need the two indices, head and

tail . The head index refers to the next position to add data into

the queue, and the tail index refers to the next position to read

data out of the queue from. When data is written to or read from the

queue, we increase the head or tail index, respectively, by the

amount of data written or read, modulo the size of the buffer.

Figure 6-1 visualizes how a ring buffer works using a ring with a 16-

byte buffer. The first diagram contains 4 bytes of data, starting at

Byte 0 (where the tail is located) and ending at Byte 3 (with head one

byte ahead at Byte 4). Once four bytes of data are added to the

buffer, the head marker moves forward four bytes to Byte 8, shown

in the second diagram. In the final diagram, the first four bytes have

been read, so the tail moves to Byte 4.

1

Figure 6-1. Writing data moves the head forward, while reading data moves the tail forward

Let’s make an implementation of a ring buffer. We’ll start off not

worrying about threads, but to make our lives easier later on, we’ll

store head and tail as well as the current length of the queue

in a TypedArray . We could try just using the difference between

head and tail as the length, but that leaves us with an ambiguous

case, where we can’t tell if the queue is empty or full when the head

and tail are the same value, so we’ll have a separate value for

length . We’ll start by setting up the constructor and acessors, by

adding the contents of Example 6-13 to a file called ch6-ring-

buffer/ring-buffer.js.

Example 6-13. ch6-ring-buffer/ring-buffer.js (part 1)

class RingBuffer {

t t (t /* Ui t32A [3]*/ b ff /* Ui

 constructor(meta/*: Uint32Array[3]*/, buffer /*: Ui
 this.meta = meta;

 this.buffer = buffer;

 }

 get head() {

 return this.meta[0];

 }

 set head(n) {

 this.meta[0] = n;

 }

 get tail() {

 return this.meta[1];

 }

 set tail(n) {

 this.meta[1] = n;

 }

 get length() {

 return this.meta[2];

 }

 set length(n) {

 this.meta[2] = n;

 }

The constructor takes in a three-element Uint32Array called

meta , which we’ll use for our head , tail , and length . For

convenience, we’ve also added those properties as getters and

setters, which internally just access those array elements. It also

takes in a Uint8Array that will be the backing storage for our ring

buffer. Next, we’ll add the write() method. Add the method as

defined in Example 6-14.

Example 6-14. ch6-ring-buffer/ring-buffer.js (part 2)

 write(data /*: Uint8Array */) {

 let bytesWritten = data.length;

 if (bytesWritten > this.buffer.length - this.leng
 bytesWritten = this.buffer.length - this.length
 data = data.subarray(0, bytesWritten);

 }

 if (bytesWritten === 0) {

 return bytesWritten;

 }

 if (

 (this.head >= this.tail && this.buffer.length -
 (this.head < this.tail && bytesWritten <= this.
) {

 // Enough space after the head. Just write it i
 this.buffer.set(data, this.head);

 this.head += bytesWritten;

 } else {

} {
 // We need to split the chunk into two.

 const endSpaceAvailable = this.buffer.length -
 const endChunk = data.subarray(0, endSpaceAvail
 const beginChunk = data.subarray(endSpaceAvaila
 this.buffer.set(endChunk, this.head);

 this.buffer.set(beginChunk, 0);

 this.head = beginChunk.length;

 }

 this.length += bytesWritten;

 return bytesWritten;

 }

In order for this code to work correctly, data needs to be an

instance of the same TypedArray as this.buffer . This

can be checked via static type checking, or with an assertion,

or both.

If there’s not enough space in the buffer for all the data to be

written, we’ll write as many bytes as we can to fill the buffer

and return the number of bytes that were written. This notifies

whoever is writing the data that they’ll need to wait for some of

the data to be read out of it before continuing to write.

This conditional represents when we have enough contiguous

space to write the data. This happens when either the head is

after the tail in the array and the space after the head is bigger

https://calibre-pdf-anchor.a/#a1050
https://calibre-pdf-anchor.a/#a1051

than the data to write, or when the head is before the tail and

there’s enough space between the tail and the head. For either

of these conditions, we can just write the data to the array and

increase the head index by the length of the data.

On the other side of that if block, we need to write data until

the end of the array and then wrap it around to write at the

beginning of the array. This means splitting the data into a

chunk to write at the end and a chunk to write at the beginning,

and writing them accordingly. We’re using subarray() rather

than slice() to chop up the data to avoid unnecessary

secondary copy operations.

Writing turns out to be just a matter of copying the bytes over using

set() and changing the head index appropriately, with a special

case for when the data is split across the boundaries of the array.

Reading is very similar, as shown in the read() method in

Example 6-15.

Example 6-15. ch6-ring-buffer/ring-buffer.js (part 3)

 read(bytes) {

 if (bytes > this.length) {

 bytes = this.length;

 }

 if (bytes === 0) {

(y) {
 return new Uint8Array(0);

 }

 let readData;

 if (

 this.head > this.tail || this.buffer.length - t
) {

 // The data is in a contiguous chunk.

 readData = this.buffer.slice(this.tail, bytes)

 this.tail += bytes;

 } else {

 // Read from the end and the beginning.

 readData = new Uint8Array(bytes);

 const endBytesToRead = this.buffer.length - thi
 readData.set(this.buffer.subarray(this.tail, th
 readData.set(this.buffer.subarray(0, bytes - en
 this.tail = bytes - endBytesToRead;

 }

 this.length -= bytes;

 return readData;

 }

}

The input to read() is the number of bytes requested. If there

aren’t enough bytes in the queue, it will instead return all the

bytes currently in the queue.

https://calibre-pdf-anchor.a/#a1059

If the requested data is in a contiguous chunk reading from the

tail , we’ll just give that directly to the caller using slice()

to get a copy of those bytes. We’ll move the tail to the end of

the returned bytes.

In the else case, the data is split across the boundaries of

the array, so we need to get both chunks and stitch them

together in reverse order. To do that, we’ll allocate a big

enough Uint8Array , then copy the data from the beginning

and end of the array. The new tail is set to the end of the chunk

at the beginning of the array.

When reading bytes out of the queue, it’s important to copy them out,

rather than just refer to the same memory. If we don’t, then other

data written to the queue might end up in these arrays at some time

in the future, which is something we don’t want. That’s why we use

slice() or a new Uint8Array for the returned data.

At this point, we have a working single-threaded bounded queue,

implemented as a ring buffer. If we wanted to use it with one thread

writing (the producer) and one thread reading (the consumer), we

could use a SharedArrayBuffer as the backing storage for the

inputs to constructor, pass that to another thread, and instantiate it

there as well. Unfortunately, we haven’t yet used any atomic

operations or identified and isolated critical sections using locks, so if

multiple threads use the buffer, we can end up with race conditions

and bad data. We’ll need to rectify this.

The read and write operations assume that none of the head ,

tail , or length are going to change by other threads throughout

the operation. We may be able to get more specific than that later

on, but being this general to start will at least give us the thread

safety we need to avoid race conditions. We can use the Mutex

class from “Mutex: A Basic Lock” to identify critical sections and

make sure they’re only executed one at a time.

Let’s require the Mutex class and add the wrapper class in

Example 6-16 to the file that will make use of our existing

RingBuffer class.

Example 6-16. ch6-ring-buffer/ring-buffer.js (part 4)

const Mutex = require('../ch6-mutex/mutex.js');

class SharedRingBuffer {

 constructor(shared/*: number | SharedArrayBuffer*/)
 this.shared = typeof shared === 'number' ?

 new SharedArrayBuffer(shared + 16) : shared;

 this.ringBuffer = new RingBuffer(

 new Uint32Array(this.shared, 4, 3),

 new Uint8Array(this.shared, 16)

);

);
 this.lock = new Mutex(new Int32Array(this.shared,
 }

 write(data) {

 return this.lock.exec(() => this.ringBuffer.write
 }

 read(bytes) {

 return this.lock.exec(() => this.ringBuffer.read(
 }

}

To start it off, the constructor accepts or creates the

SharedArrayBuffer . Notice that we add 16 bytes to the size of the

buffer to handle both the Mutex , which needs a one-element

Int32Array , and the RingBuffer metadata, which needs a three-

element Uint32Array . We’ll lay out the memory as in Table 6-2.

Table 6-2. SharedRingBuffer memory layout

Data Type[Size]
SharedArrayBuffer
Index

Mutex Int32Array[1] 0

RingBuffer

meta

Uint32Array[3] 4

RingBuffer

buffer

Uint32Array[size] 16

The read() and write() operations are wrapped with the

exec() method from the Mutex . Recall that this prevents any other

critical sections protected by the same mutex from running at the

same time. By wrapping them, we ensure that even if we have

multiple threads both reading from and writing to the same queue, we

won’t have any race conditions from head or tail being modified

externally in the middle of these critical sections.

To see this data structure in action, let’s create some producer and

consumer threads. We’ll set up a SharedRingBuffer with 100

bytes to work with. The producer threads will write the string

"Hello, World!\n" to the SharedRingBuffer , repeatedly, as

fast as they can acquire the lock. The consumer threads will attempt

to read 20 bytes at a time, and we’ll log how many bytes they were

able to read. The code to get this done is all in Example 6-17, which

you can add to the end of ch6-ring-buffer/ring-buffer.js.

Example 6-17. ch6-ring-buffer/ring-buffer.js (part 5)

const { isMainThread, Worker, workerData } = require(
const fs = require('fs');

if (isMainThread) {

 const shared = new SharedArrayBuffer(116);

 const threads = [

 new Worker(__filename, { workerData: { shared, is
 new Worker(__filename, { workerData: { shared, is
 new Worker(__filename, { workerData: { shared, is
 new Worker(__filename, { workerData: { shared, is
];

} else {

 const { shared, isProducer } = workerData;

 const ringBuffer = new SharedRingBuffer(shared);

 if (isProducer) {

 const buffer = Buffer.from('Hello, World!\n');

 while (true) {

 ringBuffer.write(buffer);

 }

 } else {

} {
 while (true) {

 const readBytes = ringBuffer.read(20);

 fs.writeSync(1, `Read ${readBytes.length} bytes
 }

 }

}

You might notice that we’re not using console.log() to write

our byte counts to stdout and instead using a synchronous

write to the file descriptor corresponding to stdout . This is

because we’re using an infinite loop without any await inside.

We’re starving the Node.js event loop, so with console.log

or any other asynchronous logger, we’d never actually see any

output.

You can run this example with Node.js as follows:

$ node ring-buffer.js

The output produced by this script will show the number of bytes read

in each iteration in each consumer thread. Because we’re asking for

20 bytes each time, you’ll see that as the maximum number read.

You’ll see all zeros sometimes when the queue is empty. You’ll see

other numbers when the queue is partially full.

https://calibre-pdf-anchor.a/#a1071

A number of things can be tweaked in our example. The size of the

SharedRingBuffer , the number of producer and consumer threads,

the size of the written message, and the number of bytes being

attempted to be read all contribute to the throughput of data. As with

anything else, it’s always worth measuring and tweaking the values to

find the optimal state for your application. Go ahead and try tweaking

some of these in the example code and see how the output changes.

LOCK-FREE QUEUES

Our implementation of a ring buffer may be functionally sound, but it

isn’t the most efficient. In order to perform any operation on the data,

all other threads are blocked from accessing the data. While this may

be the simplest approach, solutions without using locks do exist,

which instead take advantage of carefully used atomic operations for

synchronization. The trade-off here is complexity.

Actor Model

The actor model is a programming pattern for performing concurrent

computation that was first devised in the 1970s. With this model an

actor is a primitive container that allows for executing code. An actor

is capable of running logic, creating more actors, sending messages

to other actors, and receiving messages.

These actors communicate with the outside world by way of

message passing; otherwise, they have their own isolated access to

memory. An actor is a first-class citizen in the Erlang programming

language, but it can certainly be emulated using JavaScript.

The actor model is designed to allow computations to run in a highly

parallelized manner without necessarily having to worry about where

the code is running or even the protocol used to implement the

communication. Really, it should be transparent to program code

whether one actor communicates with another actor locally or

remotely. Figure 6-2 shows how actors can be spread out across

processes and machines.

2

Figure 6-2. Actors can be spread across processes and machines

Pattern Nuances

Actors are able to process each message, or task, that they receive

one at a time. When these messages are first received, they sit in a

message queue, sometimes referred to as a mailbox. Having a queue

is convenient because if two messages were received at once then

they both shouldn’t be processed at the same time. Without a queue,

one actor might need to check if another actor is ready before

sending a message, which would be a very tedious process.

Although no two actors are able to write to the same piece of shared

memory, they are free to mutate their own memory. This includes

maintaining state modifications over time. For example, an actor

could keep track of the number of messages that it has processed,

and then deliver that data in messages that it later outputs.

Because there’s no shared memory involved, the actor model is able

to avoid some of the multithreading pitfalls discussed earlier, such as

race conditions and deadlocks. In many ways, an actor is like a

function in a functional language, accepting inputs and avoiding

access to global state.

Since actors handle a single task at a time they can often be

implemented in a single-threaded fashion. And, while a single actor is

only able to process a single task at a time, different actors are free

to run code in parallel.

A system that uses actors shouldn’t expect that messages are

guaranteed to be ordered on a FIFO basis. Instead, it should be

resilient to delays and out-of-order delivery, especially since actors

can be spread across a network.

Individual actors can also have the concept of an address, which is a

way to uniquely refer to a single actor. One way to represent this

value could be to use a URI. For example,

tcp://127.0.0.1:1234/3 might refer to the third actor running in a

program on the local computer listening on port 1234. The

implementation covered here doesn’t use such addresses.

Relating to JavaScript

The actors that exist as first-class citizens in languages such as

Erlang can’t be perfectly reproduced using JavaScript, but we can

certainly try. There are likely dozens of ways to draw parallels and

implement actors, and this section exposes you to one of them.

One draw of the actor model is that actors don’t need to be limited to

a single machine. This means that processes can run on more than

one machine and communicate over the network. We can implement

this using Node.js processes, each communicating using JSON via

the TCP protocol.

Because individual actors should be able to run code in parallel with

other actors, and each actor processes only a single task at a time, it

then stands to reason that actors should probably run on different

threads to maximize system usage. One way to go about this is to

instantiate new worker threads. Another way would be to have

dedicated processes for each actor, but that would use more

resources.

Because there is no need to deal with shared memory between the

different actors, the SharedArrayBuffer and Atomics objects

can be largely ignored (though a more robust system might rely on

them for coordination purposes).

Actors require a message queue so that while one message is being

processed another message can wait until the actor is ready.

JavaScript workers sort of handle this for us using the

postMessage() method. Messages delivered in this manner wait

until the current JavaScript stack is complete before grabbing the

next message. If each actor is only running synchronous code, then

this built-in queue can be used. On the other hand, if actors can

perform asynchronous work, then a manual queue will need to be

built instead.

So far the actor model might sound familiar to the thread pool pattern

covered in “Thread Pool”. Indeed, there are a lot of similarities, and

you can almost think of the actor model as a pool of thread pools. But

there are enough differences that the two concepts are worth

differentiating. Really, the actor model promises a unique paradigm

for computing, truly a high-level programming pattern that can change

the way you approach writing code. In practice, the actor model

involves programs that often depend on thread pools.

Example Implementation

Create a new directory named ch6-actors/ for this implementation.

Inside this directory, copy and paste the existing ch6-thread-pool/rpc-

worker.js file from Example 6-3 and the ch6-thread-pool/worker.js file

from Example 6-2. Those files will be used as the basis of the thread

pool in this example and can remain unchanged.

Next, create a file named ch6-actors/server.js and add the content

from Example 6-18 to it.

Example 6-18. ch6-actors/server.js (part 1)

#!/usr/bin/env node

const http = require('http');

const net = require('net');

const [,, web_host, actor_host] = process.argv;

const [web_hostname, web_port] = web_host.split(':');
const [actor_hostname, actor_port] = actor_host.split

let message_id = 0;

let actors = new Set(); // collection of actor handle
let messages = new Map(); // message ID -> HTTP respo

This file creates two server instances. The first is a TCP server, a

rather basic protocol, while the second is an HTTP server, which is a

higher-level protocol based on TCP, though the two server instances

won’t depend on each other. The first part of this file contains

boilerplate for accepting command-line arguments to configure the

two servers.

The message_id variable contains a number that will increment as

each new HTTP request is made. The messages variable contains a

mapping of message IDs to response handlers that will be used to

reply to the messages. This is the same pattern that you used in

“Thread Pool”. Finally, the actors variable contains a collection of

handler functions that are used to send messages to external actor

processes.

Next, add the content from Example 6-19 to the file.

Example 6-19. ch6-actors/server.js (part 2)

net.createServer((client) => {

 const handler = data => client.write(JSON.stringify
 actors.add(handler);

 console.log('actor pool connected', actors.size);

 client.on('end', () => {

 actors.delete(handler);

 console.log('actor pool disconnected', actors.siz
 }).on('data', (raw_data) => {

 const chunks = String(raw_data).split('\0');

 chunks.pop();

 for (let chunk of chunks) {

 const data = JSON.parse(chunk);

p ();
 const res = messages.get(data.id);

 res.end(JSON.stringify(data) + '\0');

 messages.delete(data.id);

 }

 });

}).listen(actor_port, actor_hostname, () => {

 console.log(`actor: tcp://${actor_hostname}:${actor
});

A null byte '\0' is inserted between messages.

When a client connection is closed, it is removed from the

actors set.

The data events may contain multiple messages and are split

on null bytes.

The final byte is a null byte, so the last entry in chunks is an

empty string.

This file creates the TCP server. This is how dedicated actor

processes will connect to the main server process. The

net.createServer() callback is called each time an actor process

connects. The client argument represents a TCP client, essentially

a connection to the actor process. A message is logged each time a

https://calibre-pdf-anchor.a/#a1091

connection is made, and a handler function for conveniently

messaging the actor is added to the actors collection.

When a client disconnects from the server, that client’s handler

function is deleted from the actors collection. Actors communicate

with the server by sending messages over TCP, which triggers the

data event. The messages they send are JSON-encoded data.

This data contains an id field which correlates to the message ID.

When the callback is run, the correlating handler function is retrieved

from the messages map. Finally, the response message is sent back

to the HTTP request, the message is removed from the messages

map, and the server listens on the specified interface and port.

NOTE

The connection between the server and the actor pool client is a long-lived connection. That is

why event handlers are set up for things like the data and end events.

Notably missing from this file is an error handler for the client

connection. Since it’s missing, a connection error will cause the server

process to terminate. A more robust solution would delete the client

from the actors collection.

The '\0' null bytes are inserted between messages because when

one side emits a message it’s not guaranteed to arrive in a single

3

data event on the other side. Notably, when multiple messages are

sent in quick succession, they will arrive in a single data event. This

is a bug you won’t encounter while making single requests with

curl , but that you would encounter when making many requests

with autocannon . This results in multiple JSON documents

concatenated together, like so: {"id":1…}{"id":2…} . Passing that

value into JSON.parse() results in an error. The null bytes cause

the events to resemble this: {"id":1…}\0{"id":2…}\0 . The string

is then split on the null byte and each segment is parsed separately.

If a null byte were to appear in a JSON object, it would be escaped,

meaning it’s safe to use a null byte to separate JSON documents.

Next, add the content from Example 6-20 to the file.

Example 6-20. ch6-actors/server.js (part 3)

http.createServer(async (req, res) => {

 message_id++;

 if (actors.size === 0) return res.end('ERROR: EMPTY
 const actor = randomActor();

 messages.set(message_id, res);

 actor({

 id: message_id,

 method: 'square_sum',

 args: [Number(req.url.substr(1))]

 });

}).listen(web_port, web_hostname, () => {

}) (_p , _ , () {
 console.log(`web: http://${web_hostname}:${web_po
});

This part of the file creates an HTTP server. Unlike the TCP server,

each request represents a short-lived connection. The

http.createServer() callback is called once for each HTTP

request that is received.

Inside this callback the current message ID is incremented and the

list of actors is consulted. If it’s empty, which can happen when the

server starts but an actor hasn’t joined, an error message “ERROR:

EMPTY ACTOR POOL” is returned. Otherwise, if actors are present,

a random one is then chosen. This isn’t the best approach, though — 

a more robust solution is discussed at the end of this section.

Next, a JSON message is sent to the actor. The message contains

an id field which represents the message ID, a method field which

represents the function to be called (always square_sum in this

case), and finally the list of arguments. In this case the HTTP request

path contains a slash and a number, like /42, and the number is

extracted to be used as the argument. Finally, the server listens on

the provided interface and port.

Next, add the content from Example 6-21 to the file.

Example 6-21. ch6-actors/server.js (part 4)

function randomActor() {

 const pool = Array.from(actors);

 return pool[Math.floor(Math.random() * pool.length)
}

This part of the file just grabs a random actor handler from the

actors list.

With this file complete (for now), create a new file named ch6-

actors/actor.js. This file represents a process that doesn’t provide a

server, but instead will connect to the other server process. Start the

file off by adding the content from Example 6-22 to it.

Example 6-22. ch6-actors/actor.js (part 1)

#!/usr/bin/env node

const net = require('net');

const RpcWorkerPool = require('./rpc-worker.js');

const [,, host] = process.argv;

const [hostname, port] = host.split(':');

const worker = new RpcWorkerPool('./worker.js', 4, 'l

p (j , ,

Again, this file starts off with some boilerplate to extract the

hostname and port information for the server process. It also

initializes a thread pool using the RpcWorkerPool class. The pool

has a strict size of four threads, which can be thought of as four

actors, and uses the leastbusy algorithm.

Next, add the content from Example 6-23 to the file.

Example 6-23. ch6-actors/actor.js (part 2)

const upstream = net.connect(port, hostname, () => {

 console.log('connected to server');

}).on('data', async (raw_data) => {

 const chunks = String(raw_data).split('\0');

 chunks.pop();

 for (let chunk of chunks) {

 const data = JSON.parse(chunk);

 const value = await worker.exec(data.method, ...d
 upstream.write(JSON.stringify({

 id: data.id,

 value,

 pid: process.pid

 }) + '\0');

 }

}).on('end', () => {

 console.log('disconnect from server');

g();
});

The actor also needs to handle null byte chunk separation.

The net.connect() method creates a connection to the upstream

port and hostname, which represents the server process, logging a

message once the connection succeeds. When the server sends a

message to this actor, it triggers the data event, passing in a buffer

instance as the raw_data argument. This data, containing a JSON

payload, is then parsed.

The actor process then invokes one of its workers, calling the

requested method and passing in the arguments. Once the

worker/actor is finished, the data is then sent back to the server

instance. The same message ID is preserved using the id property.

This value must be provided because a given actor process can

receive multiple message requests at the same time and the main

server process needs to know which reply correlates with which

request. The returned value is also provided in the message. The

process ID is also provided as metadata in the response assigned to

pid so that you can visualize which program is calculating what

data.

Again, notably missing is proper error handling. If a connection error

were to happen, you would see the process terminate entirely.

Figure 6-3 is a visualization of the implementation you’ve just built.

Figure 6-3. A visualization of the actor model implementation in this section

Now that your files are complete, you’re ready to run your programs.

First, run the server, providing a hostname and port to use for the

HTTP server, followed by a hostname and port to use for the TCP

server. You can do this by running the following command:

$ node server.js 127.0.0.1:8000 127.0.0.1:9000

web: http://127.0.0.1:8000

actor: tcp://127.0.0.1:9000

In this case the process displays the two server addresses.

Next, send a request to the server in a new terminal window:

$ curl http://localhost:8000/9999

ERROR: EMPTY ACTOR POOL

Whoops! In this case the server replied with an error. Since there are

no running actor processes, there is nothing that can execute the

work.

Next, run an actor process and give it the hostname and port for the

server instance. You can do that by running the following command:

$ node actor.js 127.0.0.1:9000

You should see a message printed from both the server and the

worker process that a connection was established. Next, run the

curl command again in a separate terminal window:

$ curl http://localhost:8000/99999

{"id":4,"value":21081376.519967034,"pid":160004}

You should get back a similar value to the one printed earlier. With

the new actor process attached, the program went from having zero

actors available to perform work to having four actors. But you don’t

need to stop there. In another terminal window run another instance

of the worker using the same command, and issue another curl

command:

$ node actor.js 127.0.0.1:9000

$ curl http://localhost:8000/8888888

{"id":4,"value":21081376.519967034,"pid":160005}

As you run the command multiple times you should see that the pid

value changes in the response. Congratulations, you’ve now

dynamically increased the count of actors available to your

application. This was done at runtime, effectively increasing the

performance of your application without downtime.

Now, one of the benefits of the actor pattern is that it doesn’t really

matter where the code runs. In this case the actors live inside an

external process. This allowed the error to happen when the server

was first executed: an HTTP request was made, but an actor

process hadn’t yet connected. One way to fix this is to add some

actors to the server process as well.

Modify the first ch6-actors/server.js file and add the content from

Example 6-24 to it.

Example 6-24. ch6-actors/server.js (part 5, bonus)

const RpcWorkerPool = require('./rpc-worker.js');

const worker = new RpcWorkerPool('./worker.js', 4, 'l
actors.add(async (data) => {

 const value = await worker.exec(data.method, ...dat
 messages.get(data.id).end(JSON.stringify({

 id: data.id,

 value,

 pid: 'server'

 }) + '\0');

 messages.delete(data.id);

});

This addition to the file creates a worker thread pool in the server

process, effectively adding an additional four actors to the pool. Kill

the existing server and actor processes that you’ve created with

Ctrl+C. Then, run your new server code and send it a curl request:

$ node server.js 127.0.0.1:8000 127.0.0.1:9000

$ curl http://localhost:8000/8888888

{"id":8,"value":17667693458.923462,"pid":"server"}

In this case the pid value has been hardcoded to server to signify

that the process performing the calculation is the server process.

Much like before, you can run some more actor processes to have

them connect to the server and run more curl commands to send

requests to the server. When this happens you should see that

requests are handled either by dedicated actor processes or by the

server.

With the actor pattern, you shouldn’t think of the joined actors as

external APIs. Instead, think of them as an extension of the program

itself. This pattern can be powerful, and it comes with an interesting

use case. Hot code loading is when newer versions of application

code replaces old versions and is done while the application

continues to run. With the actor pattern you’ve built, you are able to

modify the actor.js / worker.js files, modify the existing

square_sum() method, or even add new methods. Then, you can

launch new actor programs and terminate old actor programs, and

the main server will then start using the new actors.

Also worth noting is that the version of the actor model covered in this

section does have several shortcomings that should be considered

before implementing something like this in production. The first is that,

although the individual actors within an actor process are chosen by

which is least busy, the actor process itself is chosen randomly. This

can lead to skewed workloads. To fix this you would need some sort

of coordination mechanism to keep track of which actors are free.

Another shortcoming is that individual actors aren’t addressable by

other actors; in fact, one actor cannot call code from another actor.

Architecturally, the processes resemble the star topology, where

actor processes strictly connect to the server process. Ideally, all

actors could connect with each other, and actors could individually

address each other.

A big benefit of this approach is that of resilience. With the approach

covered in this section there’s only a single HTTP server. If the server

process dies, then the whole application dies. A more resilient system

might have each process be both an HTTP server and a TCP server,

and have a reverse proxy route requests to all processes. Once

these changes are made, you are closer to the actor model

implementation provided by more robust platforms.

 In practice, restaurants can get much busier than what the order wheel can handle.

Restaurants will often solve this with such tricks as inserting more than one order paper in the

same slot on the wheel, with some agreed-upon ordering in each slot. In the case of our ring

buffers, we can’t shove more than one piece of data into an array slot, so we can’t use the

same hack. Instead, a more complete system should have a way of indicating that the queue

is full and can’t handle any more data right now. As you’ll see, we’re going to do exactly that.

 Another noteworthy implementation of the actor pattern is in the Scala language.

 Large messages, like if strings are being passed instead of a few small numbers, may get

split across TCP message boundaries and arrive in multiple data events. Keep this in mind if

adapting this code for production use.

1

2

3

Chapter 7. WebAssembly

While the title of this book is Multithreaded JavaScript, modern

JavaScript runtimes also support WebAssembly. For the unaware,

WebAssembly (often abbreviated as WASM) is a binary-encoded

instruction format that runs on a stack-based virtual machine. It’s

designed with security in mind and runs in a sandbox where the only

things it has access to are memory and functions provided by the

host environment. The main motivation behind having such a thing in

browsers and other JavaScript runtimes is to run the parts of your

program that are performance-sensitive in an environment where

execution can happen much faster than JavaScript. Another goal is to

provide a compile target for typically compiled languages like C, C++,

and Rust. This opens the door for developers of those languages to

develop for the web.

Generally, the memory used by WebAssembly modules is

represented by ArrayBuffers , but it can also be represented by

SharedArrayBuffers . In addition, there are WebAssembly

instructions for atomic operations, similar to the Atomics object we

have in JavaScript. With SharedArrayBuffers , atomic operations,

and web workers (or worker_threads in Node.js), we have enough

to do the full suite of multithreaded programming tasks using

WebAssembly.

Before we jump into multithreaded WebAssembly, let’s build a “Hello,

World!” example and execute it, to find the strengths and limitations

of WebAssembly.

Your First WebAssembly

While WebAssembly is a binary format, a plain text format exists to

represent it in human readable form. This is comparable to how

machine code can by represented in a human-readable assembly

language. The language for this WebAssembly text format is simply

called WebAssembly text format, but the file extension typically used

is .wat, so it’s common enough to refer to this language as WAT. It

uses S-expressions as its primary syntactic separator, which is

helpful for both parsing and readability. S-expressions, known

primarily from the Lisp family of languages, are nested lists delimited

by parentheses, with whitespace between each item in the list.

To get a feel for this format, let’s implement a simple addition function

in WAT. Create a file called ch7-wasm-add/add.wat and add the

contents of Example 7-1.

Example 7-1. ch7-wasm-add/add.wat

(module

($ ($) ($) (

 (func $add (param $a i32) (param $b i32) (result i3
 local.get $a

 local.get $b

 i32.add)

 (export "add" (func $add))

)

The first line declares a module. Every WAT file begins with

this.

We declare a function called $add , taking in two 32-bit

integers and returning another 32-bit integer.

This is the start of the function body, in which we have three

statements. The first two grab the function parameters and put

them on the stack one after another. Recall that WebAssembly

is stack-based. That means many operations will operate on

the first (if unary) or first two (if binary) items on the stack. The

third statement is a binary “add” operation on i32 values, so it

grabs the top two values from the stack and adds them

together, putting the result at the top of the stack. The return

value for a function is the value at the top of the stack once it

completes.

In order to use a function outside the module in the host

environment, it needs to be exported. Here we export the

https://calibre-pdf-anchor.a/#a1143

$add function, giving it the external name add .

We can convert this WAT file to WebAssembly binary by using the

wat2wasm tool from the WebAssembly Binary Toolkit (WABT). This

can be done with the following one-liner in the ch7-wasm-add

directory.

$ npx -p wabt wat2wasm add.wat -o add.wasm

Now we have our first WebAssembly file! These files aren’t useful

outside a host environment, so let’s write a bit of JavaScript to load

the WebAssembly and test the add function. Add the contents of

Example 7-2 to ch7-wasm-add/add.js.

Example 7-2. ch7-wasm-add/add.js

const fs = require('fs/promises'); // Needs Node.js v

(async () => {

 const wasm = await fs.readFile('./add.wasm');

 const { instance: { exports: { add } } } = await We
 console.log(add(2, 3));

})();

Provided you’ve created the .wasm file using the preceding

wat2wasm command, you should be able to run this in the ch7-

wasm-add directory.

$ node add.js

You can verify from the output that we are, in fact, adding via our

WebAssembly module.

Simple mathematical operations on the stack don’t make any use of

linear memory or of concepts that have no meaning in WebAssembly,

such as strings. Consider strings in C. Effectively, they’re nothing

more than a pointer to the start of an array of bytes, terminated by a

null byte. We can’t pass whole arrays by value to WebAssembly

functions or return them, but we can pass them by reference. This

means that to pass a string as an argument, we need to first allocate

the bytes in the linear memory and write to them, then pass the index

of the first byte to the WebAssembly function. This can get more

complex since we then need ways of managing the available space in

the linear memory. We basically need malloc() and free()

implementations operating on the linear memory.

Hand-writing WebAssembly in WAT, while clearly possible, isn’t

usually the easiest path to being productive and getting performance

gains with it. It was designed to be a compile target for higher-level

1

languages, and that’s where it really shines. “Compiling C Programs

to WebAssembly with Emscripten” explores that in more detail.

Atomic Operations in WebAssembly

Although a full treatment of every WebAssembly instruction would be

out of place in this book, it’s worth pointing out the instructions

specific to atomic operations on shared memory since they’re key to

multithreaded WebAssembly code, whether compiled from another

language or hand-written in WAT.

WebAssembly instructions often start with the type. In the case of

atomic operations, the type is always i32 or i64 , corresponding to

32-bit and 64-bit integers, respectively. All atomic operations have

.atomic. next in the instruction name. After that, you’ll find the

specific instruction name.

Let’s go over some of the atomic operation instructions. We won’t go

over exact syntax, but this should give you an idea of the kinds of

operations available at the instruction level:

[i32|i64].atomic.[load|load8_u|load16_u|load32_u]

The load family of instructions is equivalent to

Atomics.load() in JavaScript. Using one of the suffixed

https://oreil.ly/PfxJq

instructions allows you to load smaller numbers of bits,

extending the result with zeros.

[i32|i64].atomic.[store|store8|store16|store32]

The store family of instructions is equivalent to

Atomics.store() in JavaScript. Using one of the suffixed

instructions wraps the input value to that number of bits and

stores those at the index.

[i32|i64].atomic.[rmw|rmw8|rmw16|rmw32].

[add|sub|and|or|xor|xchg|cmpxchg][|_u]

The rmw family of instructions all perform read-modify-write

operations, equivalent to add() , sub() , and() , or() ,

xor() , exchange() , and compareExchange() from the

Atomics object in JavaScript, respectively. The operations

are suffixed with a _u when they zero-extend, and rmw can

have a suffix corresponding to the number of bits to be read.

The next two operations have a slightly different naming convention:

memory.atomic.[wait32|wait64]

These are equivalent to Atomics.wait() in JavaScript,

suffixed according to the number of bits they operate on.

memory.atomic.notify

This is equivalent to Atomics.notify() in JavaScript.

These instructions are enough to perform the same atomic operations

in WebAssembly as we can in JavaScript, but there is an additional

operation not available in JavaScript:

atomic.fence

This instruction takes no arguments and doesn’t return

anything. It’s intended to be used by higher-level languages that

have ways of guaranteeing ordering of nonatomic accesses to

shared memory.

All of these operations are used with the given WebAssembly

module’s linear memory, which is the sandbox in which it gets to read

and write values. When WebAssembly modules are initialized from

JavaScript, they can be initialized with a linear memory provided as

an option. This can be backed by a SharedArrayBuffer to enable

usage across threads.

Although it’s certainly possible to use these instructions in

WebAssembly, they suffer from the same drawback that the rest of

WebAssembly does: it’s incredibly tedious and painstaking to write.

Luckily, we can compile higher-level languages down to

WebAssembly.

Compiling C Programs to
WebAssembly with Emscripten

Since long before WebAssembly, Emscripten has been the go-to way

to compile C and C++ programs for use in JavaScript environments.

Today, it supports multithreaded C and C++ code using web workers

in browsers and worker_threads in Node.js.

In fact, a large corpus of existing multithreaded code in the wild can

be compiled with Emscripten without issue. In both Node.js and

browsers, Emscripten emulates the system calls used by native code

compiled to WebAssembly so that programs written in compiled

languages can run without many changes.

Indeed, the C code we wrote way back in Chapter 1 can be compiled

without any editing! Let’s give that a try now. We’ll use a Docker

image to simplify using Emscripten. For other compiler toolchains,

we’d want to make sure that the toolchain aligns with the system, but

since WebAssembly and JavaScript are both platform-agnostic, we

can just use the Docker image wherever Docker is supported.

First, make sure Docker is installed. Then, in your ch1-c-threads

directory, run the following command:

https://emscripten.org/
https://docker.com/

$ docker run --rm -v $(pwd):/src -u $(id -u):$(id -g)
 emscripten/emsdk emcc happycoin-threads.c -pthread
 -s PTHREAD_POOL_SIZE=4 -o happycoin-threads.js

There are a few things to discuss with this command. We’re running

the emscripten/emsdk image, with the current directory mounted,

running as the current user. Everything after and including emcc is

the command we’re running inside the container. For the most part,

this looks a lot like what we’d do when using cc to compile a C

program. The main difference is that the output file is a JavaScript file

rather than an executable binary. Don’t worry! A .wasm file is also

generated. The JS file is used as a bridge to any necessary system

calls and to set up the threads because those can’t be instantiated in

WebAssembly alone.

The other extra argument is -s PTHREAD_POOL_SIZE=4 . Since

happycoin-threads.c uses three threads, we allocate them ahead

of time here. There are a few ways to handle thread creation in

Emscripten, largely due to not blocking on main browser threads. It’s

easiest to preallocate here since we know how many threads we’ll

need.

Now we can run our WebAssembly version of multithreaded

Happycoin. We’ll run the JavaScript file with Node.js. At time of

writing, this requires Node.js v16 or higher, since that’s what the

output of Emscripten supports.

$ node happycoin-threads.js

The output should look a bit like the following:

120190845798210000 ... [106 more entries] ... 14356
count 108

Pthread 0x9017f8 exited.

Pthread 0x701500 exited.

Pthread 0xd01e08 exited.

Pthread 0xb01b10 exited.

The output looks the same as our other Happycoin examples from

previous chapters, but the wrapper provided by Emscripten also

informs us when the threads have exited. You’ll also need to Ctrl+C to

exit the program. For extra fun, see if you can figure out what needs

changing in order to make the process exit when done, and avoid

those Pthread messages.

One thing you may notice when comparing against the native or

JavaScript versions of Happycoin is timing. It’s clearly faster than the

multithreaded JavaScript version, but also a bit slower than the native

multithreaded C version. As always, it’s important to take

measurements of your application to ensure that you’re getting the

right benefits with the right trade-offs.

While the Happycoin example doesn’t make use of any atomic

operations, Emscripten supports the full suite of POSIX thread

functionality and GNU Compiler Collection (GCC) built-in atomic

operation functions. This means a great multitude of C and C++

programs can compile to WebAssembly using Emscripten.

Other WebAssembly Compilers

Emscripten isn’t the only way to compile code to WebAssembly.

Indeed, WebAssembly was designed primarily as a compile target,

rather than as a general-purpose language in its own right. There are

myriad tools for compiling well-known languages to WebAssembly,

and there are even some languages built with WebAssembly as the

main target in mind, rather than machine code. Some are listed here,

but it’s by no means exhaustive. You’ll notice a lot of “at time of

writing” here, because this space is relatively new and the best ways

of creating multithreaded WebAssembly code are still being

developed! At least, at time of writing.

Clang/Clang++

https://oreil.ly/wKfBe

The LLVM C-family compilers can target WebAssembly with

the -target wasm32-unknown-unknown or -target

wasm64-unknown-unknown options, respectively. This is

actually what Emscripten is now based on, in which POSIX

threads and atomic operations work as expected. At time of

writing, this is some of the best support for multithreaded

WebAssembly. While clang and clang++ support

WebAssembly output, the recommended approach is to use

Emscripten, to get the full suite of platform support in browsers

and Node.js.

Rust

The Rust programming language compiler rustc supports

WebAssembly output. The Rust website is a great starting

point on how to use rustc in this way. To make use of

threads, you can use the wasm-bindgen-rayon crate, which

provides a parallelism API implemented using web workers. At

time of writing, Rust’s standard library thread support won’t

work.

AssemblyScript

The AssemblyScript compiler takes a subset of TypeScript as

input, then generates WebAssembly output. While it does not

support spawning threads, it does support atomic operations

https://oreil.ly/ibOs3
https://oreil.ly/Pyuv4

and using SharedArrayBuffers , so as long as you handle

the threads themselves on the JavaScript side via web workers

or worker_threads , you can make full use of multithreaded

programming in AssemblyScript. We’ll cover it in more depth in

the next section.

There are, of course, many more options, with new ones arriving all

the time. It’s worth having a look around the web to see if your

compiled language of choice can target WebAssembly, and whether

or not it supports atomic operations in WebAssembly.

AssemblyScript

AssemblyScript is a subset of TypeScript that compiles to

WebAssembly. Rather than compiling an existing langauge and

providing implementations of existing system APIs, AssemblyScript

was designed as a way to produce WebAssembly code with a much

more familiar syntax than WAT. A major selling point of

AssemblyScript is that many projects use TypeScript already, so

adding some AssemblyScript code to take advantage of

WebAssembly doesn’t require as much of a context-switch or even

learning an entirely different programming language.

https://assemblyscript.org/
https://typescriptlang.org/

An AssemblyScript module looks a lot like a TypeScript module. If

you’re unfamiliar with TypeScript, it can be thought of as ordinary

JavaScript, but with some additional syntax to indicate type

information. Here is a basic TypeScript module that performs

addition:

export function add(a: number, b: number): number {

 return a + b

}

You’ll notice this looks almost exactly the same as a plain

ECMAScript module, with the exception of type information in the

form of : number after each of the function arguments and

identifying the return value’s type. The TypeScript compiler can use

these types to check that any code calling this function is passing in

the correct types and assuming the correct type on the return value.

AssemblyScript looks much the same, except instead of using

JavaScript’s number type, there are built-in types for each of the

WebAssembly types. If we wanted to write the same addition module

in TypeScript, and assuming 32-bit integers everywhere for types, it

would look something like Example 7-3. Go ahead and add that to a

file called ch7-wasm-add/add.ts.

Example 7-3. ch7-wasm-add/add.ts

export function add(a: i32, b: i32): i32 {

 return a + b

}

Since AssemblyScript files are just TypeScript, they use the .ts

extension just the same. To compile a given AssemblyScript file to

WebAssembly, we can use the asc command from the

assemblyscript module. Try running the following command in the

ch7-wasm-add directory:

$ npx -p assemblyscript asc add.ts --binaryFile add.w

You can try running the WebAssembly code using the same add.js file

from Example 7-2. The output should be the same since the code is

the same.

If you omit the --binaryFile add.wasm you’ll get the module as

translated into WAT, as shown in Example 7-4. You’ll see it’s roughly

the same as Example 7-1.

Example 7-4. The WAT rendition of the AssemblyScript add
function

(module

 (type $i32_i32_=>_i32 (func (param i32 i32) (result

 (memory $0 0)

 (export "add" (func $add/add))

 (export "memory" (memory $0))

 (func $add/add (param $0 i32) (param $1 i32) (result
 local.get $0

 local.get $1

 i32.add

)

)

AssemblyScript doesn’t provide the ability to spawn threads, but

threads can be spawned in the JavaScript environment, and

SharedArrayBuffers can be used for the WebAssembly memory.

Most importantly, it supports atomic operations via a global atomics

object, not particularly different from regular JavaScript’s Atomics .

The main difference is that rather than operating on a TypedArray ,

these functions operate on the linear memory of the WebAssembly

module, with a pointer and an optional offset. See the AssemblyScript

documentation for details.

To see this in action, let’s create one more implementation of our

Happycoin example that we’ve been iterating on since Chapter 1.

Happycoin in AssemblyScript

https://oreil.ly/LhTkW

Much like previous versions of our Happycoin example, this approach

multiplexes the crunching of numbers over several threads and sends

the results back. It’s a glimpse of how multithreaded AssemblyScript

can work. In a real-world application, you’d want to take advantage

of shared memory and atomic operations, but to keep things simple,

we’ll stick with just fanning the work out to the threads.

Let’s begin by creating a directory called ch7-happycoin-as and

switch to that directory. We’ll initialize a new project and add some

necessary dependencies as follows:

$ npm init -y

$ npm install assemblyscript

$ npm install @assemblyscript/loader

The assemblyscript package includes the AssemblyScript

compiler, and the assemblyscript/loader package gives us

handy tools for interacting with the built module.

In the scripts object in the newly created package.json, we’ll add

"build" and "start" properties to simplify the compilation and

running of the program:

"build": "asc happycoin.ts --binaryFile happycoin.was
"start": "node --no-warnings --experimental-wasi-unst

The additional --exportRuntime parameter gives us some high-

level tools for interacting with values from AssemblyScript. We’ll get

into that a bit later.

When invoking Node.js in the "start" script, we pass the

experimental WASI flag. This enables the WebAssembly System

Interface (WASI) interface, giving WebAssembly access to system-

level functionality that would otherwise be inaccessible. We’ll use this

from AssemblyScript to generate random numbers. Because it’s

experimental at time of writing, we’ll add the --no-warnings flag

to suppress the warning we get for using WASI. The experimental

status also means the flag may change in the future, so always be

sure to consult the Node.js documentation for the version of Node.js

you’re running.

Now, let’s write some AssemblyScript! Example 7-5 contains an

AssemblyScript version of the Happycoin algorithm. Go ahead and

add it to a file called happycoin.ts.

Example 7-5. ch7-happycoin-as/happycoin.ts

import 'wasi';

const randArr64 = new Uint64Array(1);

const randArr8 = Uint8Array.wrap(randArr64.buffer, 0,

2

https://wasi.dev/

y p(, ,
function random64(): u64 {

 crypto.getRandomValues(randArr8);

 return randArr64[0];

}

function sumDigitsSquared(num: u64): u64 {

 let total: u64 = 0;

 while (num > 0) {

 const numModBase = num % 10;

 total += numModBase ** 2;

 num = num / 10;

 }

 return total;

}

function isHappy(num: u64): boolean {

 while (num != 1 && num != 4) {

 num = sumDigitsSquared(num);

 }

 return num === 1;

}

function isHappycoin(num: u64): boolean {

 return isHappy(num) && num % 10000 === 0;

}

export function getHappycoins(num: u32): Array<u64> {
 const result = new Array<u64>();

y ();
 for (let i: u32 = 1; i < num; i++) {

 const randomNum = random64();

 if (isHappycoin(randomNum)) {

 result.push(randomNum);

 }

 }

 return result;

}

The wasi module is imported here to ensure that the

appropriate WASI-enabled globals are loaded.

We initialized a Uint64Array for our random numbers, but

crypto.getRandomValues() only works with Uint8Array ,

so we’ll create one of those here as a view on the same buffer.

Also, the TypedArray constructors in AssemblyScript aren’t

overloaded, so instead there’s a static wrap() method

available to construct new TypedArray instances from

ArrayBuffer instances.

This method is the one we enabled WASI for.

If you’re familiar with TypeScript, you might be thinking this file looks

very close to just being a TypeScript port of “Happycoin: Revisited”.

You’d be correct! This is one of the major advantages of

AssemblyScript. We’re not writing in a brand-new language, and yet

https://calibre-pdf-anchor.a/#a1216

we’re writing code that maps very closely to WebAssembly. Note that

the return value of the exported function is of type Array<u64> .

Exported functions in WebAssembly can’t return arrays of any kind,

but they can return an index into the module’s memory (a pointer,

really), which is exactly what’s happening here. We could deal with

this manually, but as we’ll see, the AssemblyScript loader makes it

much easier.

Of course, since AssemblyScript doesn’t provide a way of spawning

threads on its own, we’ll need to do that from JavaScript. For this

example, we’ll use ECMAScript modules to take advantage of top-

level await , so go ahead and put the contents of Example 7-6 into a

file called happycoin.mjs.

Example 7-6. ch7-happycoin-as/happycoin.mjs

import { WASI } from 'wasi';

import fs from 'fs/promises';

import loader from '@assemblyscript/loader';

import { Worker, isMainThread, parentPort } from 'wor

const THREAD_COUNT = 4;

if (isMainThread) {

 let inFlight = THREAD_COUNT;

 let count = 0;

 for (let i = 0; i < THREAD_COUNT; i++) {

(; _ ;) {
 const worker = new Worker(new URL(import.meta.url
 worker.on('message', msg => {

 count += msg.length;

 process.stdout.write(msg.join(' ') + ' ');

 if (--inFlight === 0) {

 process.stdout.write('\ncount ' + count + '\n
 }

 });

 }

} else {

 const wasi = new WASI();

 const importObject = { wasi_snapshot_preview1: wasi
 const wasmFile = await fs.readFile('./happycoin.was
 const happycoinModule = await loader.instantiate(wa
 wasi.start(happycoinModule);

 const happycoinsWasmArray =

 happycoinModule.exports.getHappycoins(10_000_000/
 const happycoins = happycoinModule.exports.__getArr
 parentPort.postMessage(happycoins);

}

This can’t be done without the --experimental-wasi-

unstable-preview1 flag.

If you’re new to ESM, this might look strange. We don’t get the

__filename variable available to us like we do in CommonJS

https://calibre-pdf-anchor.a/#a1225

modules. Instead the import.meta.url property gives us the

full path as a file URL string. We need to pass that to the URL

constructor for it to be usable as an input to the Worker

constructor.

Adapted from “Happycoin: Revisited”, we’re again checking whether

we’re in the main thread or not, and spawning four worker threads

from the main thread. In the main thread, we’re expecting only one

message on the default MessagePort , containing an array of found

Happycoins. We simply log those and a count of all of them once all

the worker threads have sent the message.

On the else side, in the worker threads, we initialize a WASI

instance to pass to the WebAssembly module, and then instantiate

the module using @assemblyscript/loader , giving us what we

need to handle the array return value we get from the

getHappycoins function. We call the getHappycoins() method

exported by the module, which gives us a pointer to an array in the

WebAssembly linear memory. The __getArray function, provided

by the loader, converts that pointer into a JavaScript array, which we

can then use as normal. We pass that to the main thread for output.

To run this example, run the following two commands. The first will

compile the AssemblyScript to WebAssembly, and the second will run

it via the JavaScript we just put together:

$ npm run build

$ npm start

The output will look roughly the same as with previous Happycoin

examples. Here is the output from one local run:

7641056713284760000 ... [134 more entries] ... 1049
count 136

As with all of these solutions, it’s important to evaluate the trade-offs

made with proper benchmarks. As an exercise, try timing this

example against the other Happycoin implementations in this book. Is

it faster or slower? Can you figure out why? What improvements can

be made?

 In C and other languages without automatic memory management, memory must be

allocated for use with allocation functions like malloc() and then freed for later allocation with

functions like free() . Memory management techniques like garbage collection make it easier

to write programs in higher-level languages like JavaScript, but they aren’t a built-in feature of

WebAssembly.

 In general, this isn’t a flag you want to have enabled for a production application. Hopefully by

the time you read this, WASI support will no longer be experimental. If that’s the case, adjust

these arguments accordingly.

1

2

Chapter 8. Analysis

By now you should be pretty familiar with building multithreaded

applications using JavaScript, whether it be code that runs in a user’s

browser or your server, or even applications that employ both. And,

while this book provides a lot of use cases and reference material, at

no point did it say “you should add multithreading to your application,”

and there’s an important reason for this.

By and large the main reason to add workers to an application is to

increase performance. But this trade-off comes with a cost of added

complexity. The KISS principle, meaning “Keep It Simple, Stupid,”

suggests that your applications should be so stupidly simple that

anyone can quickly look at the code and get an understanding of it.

Being able to read code after it has been written is of paramount

importance and simply adding threads to a program without purpose

is an absolute violation of KISS.

There are absolutely good reasons to add threads to an application,

and as long as you’re measuring performance and confirming that

speed gains outweigh added maintenance costs, then you’ve found

yourself a situation deserving of threads. But how do you identify

situations where threads will or will not help without going through all

the work of implementing them? And how do you go about measuring

performance impact?

When Not to Use

Threading is not a magic bullet capable of solving an application’s

performance problems. It is usually not the lowest-hanging fruit when

it comes to performance, either, and should often be done as a final

effort. This is particularly true in JavaScript, where multithreading isn’t

as widely understood by the community as other languages. Adding

threading support may require heavy changes to an application, which

means your effort-to-performance gains will likely be higher if you first

hunt down other code inefficiencies first.

Once that’s done, and you’ve made your application performant in

other areas, you are then left with the question, “Is now a good time

to add multithreading?” The rest of this section contains some

situations where adding threads will most likely not provide any

performance benefits. This can help you avoid going through some of

the discovery work.

Low Memory Constraints

There is some additional memory overhead incurred when

instantiating multiple threads in JavaScript. This is because the

browser needs to allocate additional memory for the new JavaScript

environment—this includes things like globals and APIs available to

your code as well as under-the-hood memory used by the engine

itself. This overhead might prove to be minimal in a normal server

environment in the case of Node.js or a beefy laptop in the case of

browsers. But it could be a hindrance if you’re running code on an

embedded ARM device with 512 MB of RAM or donated netbooks in

a K–12 classroom.

What’s the memory impact of additional threads? It’s a little hard to

quantify, and it changes depending on the JavaScript engine and

platform. The safe answer is that, like most performance aspects,

you should measure it in a real-world environment. But we can

certainly try to get some concrete numbers.

First, let’s consider a dead simple Node.js program that just kicks off

a timer and doesn’t pull in any third-party modules. This program

looks like the following:

#!/usr/bin/env node

const { Worker } = require('worker_threads');

const count = Number(process.argv[2]) || 0;

for (let i = 0; i < count; i++) {

 new Worker(__dirname + '/worker.js');

}

}

console.log(`PID: ${process.pid}, ADD THREADS: ${coun
setTimeout(() => {}, 1 * 60 * 60 * 1000);

Running the program and measuring memory usage looks like this:

Terminal 1

$ node leader.js 0

PID 10000

Terminal 2

$ pstree 10000 -pa # Linux only

$ ps -p 10000 -o pid,vsz,rss,pmem,comm,args

The pstree command displays the threads used by the program. It

displays the main V8 JavaScript thread, as well as some of the

background threads covered in “Hidden Threads”. Here is an example

output from the command:

node,10000 ./leader.js

 ├─{node},10001

 ├─{node},10002

 ├─{node},10003

 ├─{node},10004

 ├─{node},10005

 └─{node},10006

The ps command displays information about the process, notably

the memory usage of the process. Here’s an example of the output

from the command:

 PID VSZ RSS %MEM COMMAND COMMAND

66766 1409260 48212 0.1 node node ./leader.js

There are two important variables here used to measure the memory

usage of a program, both of them measured in kilobytes. The first

here is VSZ , or virtual memory size, which is the memory the

process can access including swapped memory, allocated memory,

and even memory used by shared libraries (such as TLS),

approximately 1.4 GB. The next is RSS , or resident set size, which is

the amount of physical memory currently being used by the process,

approximately 48 MB.

Measuring memory can be a little hand wavy, and it’s tricky to

estimate how many processes can actually fit in memory. In this

case, we’ll mostly be looking at the RSS value.

Now, let’s consider a more complicated version of the program using

threads. Again, the same dead simple timer will be used, but in this

case there will be a total of four threads created. In this case a new

worker.js file is required:

console.log(`WPID: ${process.pid}`);

setTimeout(() => {}, 1 * 60 * 60 * 1000);

Running the leader.js program with a numerical argument greater

than 0 allows the program to create additional workers. Table 8-1 is a

listing of the memory usage output from ps for each of the different

iterations of additional threads.

Table 8-1. Thread memory overhead with Node.js v16.5

Add
Threads

VSZ RSS SIZE

0 318,124 KB 31,836 KB 47,876 KB

1 787,880 KB 38,372 KB 57,772 KB

2 990,884 KB 45,124 KB 68,228 KB

4 1,401,500

KB

56,160 KB 87,708 KB

8 2,222,732

KB

78,396 KB 126,672 KB

16 3,866,220

KB

122,992 KB 205,420 KB

Figure 8-1 displays the correlation between RSS memory and thread

count.

Figure 8-1. Memory usage increases with each additional thread

With this information it appears that the added RSS memory

overhead of instantiating each new thread, using Node.js 16.5 on an

x86 processor, is approximately 6 MB. Again, this number is a bit

hand wavy, and you’ll need to measure it in your particular situation.

Of course, the memory overhead is compounded when the threads

pull in more modules. If you were to instantiate heavy frameworks

and web servers in each thread you may end up adding hundreds of

megabytes of memory to your process.

WARNING

While it’s becoming increasingly rare to find them, programs running on a 32-bit computer or

smart phone have a maximum addressable memory space of 4 GB. This limit is shared

across any threads in the program.

Low Core Count

Your application will run slower in situations where it has fewer cores.

This is especially true if the machine has a single core, and it can also

be true if it has two cores. Even if you employ a thread pool in your

application and scale the pool based on the core count, the

application will be slower if it creates a single worker thread. When

creating an additional thread, the application now has at least two

threads (the main and the worker), and the two threads will compete

with each other for attention.

Another reason your application will slow down is that there is

additional overhead when it comes to communicating between

threads. With a single core and two threads, even if the two never

compete for resources, i.e., the main thread has no work to do while

the worker is running and vice versa, there is still an overhead when

performing message passing between the two threads.

This might not be a huge deal. For example, if you create a

distributable application that runs in many environments, often running

on multicore systems and infrequently on single-core systems, then

this overhead might be OK. But if you’re building an application that

almost entirely runs in a single-core environment, you would likely be

better off by not adding threading at all. That is, you probably

shouldn’t build an app that takes advantage of your beefy multicore

developer laptop and then ship it to production where a container

orchestrator limits the app to a single core.

How much of a performance loss are we talking? On the Linux

operating system it’s straightforward to tell the OS that a program,

and all of its threads, should only run on a subset of CPU cores. The

use of this command allows developers to test the effects of running

a multithreaded application in a low core environment. If you’re using

a Linux-based computer, then feel free to run these examples; if not,

a summary will be provided.

First, go back to the ch6-thread-pool/ example that you created in

“Thread Pool”. Execute the application so that it creates a worker

pool with two workers:

$ THREADS=2 STRATEGY=leastbusy node main.js

Note that with a thread pool of 2, the application has three JavaScript

environments available, and libuv should have a default pool of 5,

leading to a total of about eight threads as of Node.js v16. With the

program running and able to access all of the cores on your machine,

you’re ready to run a quick benchmark. Execute the following

command to send a barrage of requests to the server:

$ npx autocannon http://localhost:1337/

In this case we’re just interested in the average request rate,

identified in the last table of the output with the Req/Sec row and the

Avg column. In one sample run the value of 17.5 was returned.

Kill the server with Ctrl+C and run it again. But this time use the

taskset command to force the process (and all of its child threads)

to use the same CPU core:

Linux only command

$ THREADS=2 STRATEGY=leastbusy taskset -c 0 node main

In this case the two environment variables THREADS and STRATEGY

are set, then the taskset command is run. The -c 0 flag tells the

command to only allow the program to use the 0th CPU. The

arguments that follow are then treated as the command to run. Note

that the taskset command can also be used to modify an already

running process. When that happens the command displays some

useful output to tell you what happens. Here’s a copy of that output

when the command is used on a computer with 16 cores:

pid 211154's current affinity list: 0-15

pid 211154's new affinity list: 0

In this case it says that the program used to have access to all 16

cores (0–15), but now it only has access to one (0).

With the program running and locked to a single CPU core to emulate

an environment with fewer cores available, run the same benchmark

command again:

$ npx autocannon http://localhost:1337/

In one such run the average requests per second has been reduced

to 8.32. This means that the throughput of this particular program,

when trying to use three JavaScript threads in a single-core

environment, leads to a performance of 48% when compared to

having access to all cores!

A natural question might be: in order to maximize the throughput of

the ch6-thread-pool application, how large should the thread pool be

and how many cores should be provided to the application? To find an

answer, 16 permutations of the benchmark were applied to the

application and the performance was measured. The length of the

test was doubled to two minutes to help reduce any outlying

requests. A tabular version of this data is provided in Table 8-2.

Table 8-2. Available cores versus thread pool size and how it affects throughput

1 core 2 cores 3 cores

1 thread 8.46 9.08 9.21

2 threads 8.69 9.60 17.61

3 threads 8.23 9.38 16.92

4 threads 8.47 9.57 17.44

A graph of the data has been reproduced in Figure 8-2.

In this case there is an obvious performance benefit when the number

of threads dedicated to the thread pool is at least two and the

number of cores available to the application is at least three. Other

than that, there isn’t anything too interesting about the data. When

measuring the effects of cores versus threads in a real-world

application, you will likely see more interesting performance trade-

offs.

One question posed by this data is: why doesn’t adding more than

two threads or three threads make the application any faster?

Answering questions like these will require hypotheses, experimenting

with application code, and trying to erase any bottlenecks. In this

case it may be that the main thread is so busy coordinating, handling

requests, and communicating with threads, that the worker threads

aren’t able to get much work done.

Figure 8-2. Available cores versus thread pool size and how it affects throughput

Containers Versus Threads

When it comes to writing server software, like with Node.js, the rule

of thumb is that processes should scale horizontally. This is a fancy

term meaning you should run multiple redundant versions of the

program in an isolated manner—such as within a Docker container.

Horizontal scaling benefits performance in a way that allows

developers to fine-tune the performance of the whole fleet of

applications. Such tuning can’t be performed as easily when the

scaling primitive happens within the program, in the form of a thread

pool.

Orchestrators, such as Kubernetes, are tools that run containers

across multiple servers. They make it easy to scale an application on

demand; during the holiday season an engineer can manually

increase the number of instances running. Orchestrators can also

dynamically change the scale depending on other heuristics like CPU

usage, traffic throughput, and even the size of a work queue.

How might this dynamic scaling look if it were performed within an

application at runtime? Well, certainly the available thread pool would

need to be resized. There would also need to be some sort of

communication in place, allowing an engineer to send messages to

the processes to resize the pool; perhaps an additional server needs

to listen on a port for such administrative commands. Such

functionality then requires additional complexity to be added to the

application code.

While adding additional processes instead of increasing thread count

increases overall resource consumption, not to mention the overhead

of wrapping processes in a container, larger companies usually prefer

the scaling flexibility of this approach.

When to Use

Sometimes you’ll get lucky and will end up with a problem that

benefits greatly from a multithreaded solution. Here are some of the

most straightforward characteristics of such a problem to keep an

eye out for:

Embarrassingly parallel

This is a class of problems where a large task can be broken

down into smaller tasks and very little or no sharing of state is

required. One such problem is the Game of Life simulation

covered in “Example Application: Conway’s Game of Life”. With

that problem, the game grid can be subdivided into smaller

grids, and each grid can be dedicated to an individual thread.

Heavy math

Another characteristic of problems that are a good fit for

threads are those that involve a heavy use of math, aka CPU-

intensive work. Sure, one might say that everything a computer

does is math, but the inverse of a math-heavy application is one

that is I/O heavy, or one that mostly deals with network

operations. Consider a password hash cracking tool that has a

weak SHA1 digest of a password. Such tools may work by

running the Secure Hash Algorithm 1 (SHA1) algorithm over

every possible combination of 10 character passwords, which

is a lot of number crunching indeed.

MapReduce-friendly problems

MapReduce is a programming model that is inspired by

functional programming. This model is often used for large-

scale data processing that has been spread across many

different machines. MapReduce is broken into two pieces. The

first is Map, which accepts a list of values and produces a list

of values. The second is Reduce, where the list of values are

iterated on again, and a singular value is produced. A single-

threaded version of this could be created in JavaScript using

Array#map() and Array#reduce() , but a multithreaded

version requires different threads processing subsets of the

lists of data. A search engine uses Map to scan millions of

documents for keywords, then Reduce to score and rank them,

providing a user with a page of relevant results. Database

systems like Hadoop and MongoDB benefit from MapReduce.

Graphics processing

A lot of graphics processing tasks also benefit from multiple

threads. Much like the Game of Life problem, which operates

on a grid of cells, images are represented as a grid of pixels. In

both cases the value at each coordinate can be represented as

a number, though Game of Life uses a single 1-bit number

while images are more likely to use 3 or 4 bytes (red, green,

blue, and optional alpha transparency). Image filtering then

becomes a problem of subdividing an image into smaller

images, having threads in a thread-pool process with the

smaller images in parallel, then updating the interface once the

change is complete.

This isn’t a complete list of all the situations in which you should use

multithreading; it’s just a list of some of the most obvious use cases.

One of the repeating themes is that problems that don’t require

shared data, or at least that don’t require coordinated reads and

writes to shared data, are easier to model using multiple threads.

Though it’s generally beneficial to write code that doesn’t have many

side effects, this benefit is compounded when writing multithreaded

code.

Another use case that’s particularly beneficial to JavaScript

applications is that of template rendering. Depending on the library

used, the rendering of a template might be done using a string that

represents the raw template and an object that contains variables to

modify the template. With such use cases there usually isn’t much

global state to consider, just the two inputs, while a single string

output is returned. This is the case with the popular template

rendering packages mustache and handlebars . Offloading

template rendering from the main thread of a Node.js application

seems like a reasonable place to gain performance.

Let’s test this assumption out. Create a new directory named ch8-

template-render/. Inside this directory, copy and paste the existing

ch6-thread-pool/rpc-worker.js file from Example 6-3. Although the file

will work fine unmodified, you should comment out the

console.log() statement so that it doesn’t slow down the

benchmark.

You’ll also want to initialize an npm project and install some basic

packages. You can do this by running the following commands:

$ npm init -y

$ npm install fastify@3 mustache@4

Next, create a file named server.js. This represents an HTTP

application that performs basic HTML rendering when it receives a

request. This benchmark is going to use some real-world packages

instead of loading built-in modules for everything. Start the file off with

the contents of Example 8-1.

Example 8-1. ch8-template-render/server.js (part 1)

#!/usr/bin/env node

// npm install fastify@3 mustache@4

const Fastify = require('fastify');

const RpcWorkerPool = require('./rpc-worker.js');

p q (p j);
const worker = new RpcWorkerPool('./worker.js', 4, 'l
const template = require('./template.js');

const server = Fastify();

The file starts off by instantiating the Fastify web framework, as well

as a worker pool with four workers. The application also loads a

module named template.js that will be used to render templates used

by the web application.

Now, you’re ready to declare some routes and to tell the server to

listen for requests. Keep editing the file by adding the content from

Example 8-2 to it.

Example 8-2. ch8-template-render/server.js (part 2)

server.get('/main', async (request, reply) =>

 template.renderLove({ me: 'Thomas', you: 'Katelyn'

server.get('/offload', async (request, reply) =>

 worker.exec('renderLove', { me: 'Thomas', you: 'Kat

server.listen(3000, (err, address) => {

 if (err) throw err;

 console.log(`listening on: ${address}`);

});

});

Two routes have been introduced to the application. The first is GET

/main and will perform the rendering of the request in the main

thread. This represents a single-threaded application. The second

route is GET /offload , where the rendering work will be offloaded

to a separate worker thread. Finally, the server is instructed to listen

on port 3000.

At this point the application is functionally complete. But as an added

bonus, it would be nice to be able to quantify the amount of work that

the server is busy doing. While it’s true that we can primarily test the

efficiency of this application by using an HTTP request benchmark,

sometimes it’s nice to look at other numbers as well. Add the content

from Example 8-3 to finish off the file.

Example 8-3. ch8-template-render/server.js (part 3)

const timer = process.hrtime.bigint;

setInterval(() => {

 const start = timer();

 setImmediate(() => {

 console.log(`delay: ${(timer() - start).toLocaleS
 });

}, 1000);

This code uses a setInterval call that runs every second. It wraps

a setImmediate() call, measuring current time in nanoseconds

before and after the call is made. It’s not perfect, but it is one way to

approximate how much load the process is currently receiving. As the

event loop for the process gets busier, the number that is reported

will get higher. Also, the busyness of the event loop affects the delay

of asynchronous operations throughout the process. Keeping this

number lower therefore correlates to a more performant application.

Next, create a file named worker.js. Add the content from Example 8-

4 to it.

Example 8-4. ch8-template-render/worker.js

const { parentPort } = require('worker_threads');

const template = require('./template.js');

function asyncOnMessageWrap(fn) {

 return async function(msg) {

 parentPort.postMessage(await fn(msg));

 }

}

const commands = {

 renderLove: (data) => template.renderLove(data)

};

parentPort.on('message', asyncOnMessageWrap(async ({
 result: await commands[method](...params), id

})));

This is a modified version of the worker file that you created before.

In this case a single command is used, renderLove() , which

accepts an object with key value pairs to be used by the template

rendering function.

Finally, create a file named template.js, and add the content from

Example 8-5 to it.

Example 8-5. ch8-template-render/template.js

const Mustache = require('mustache');

const love_template = "{{me}} loves {{you}}

module.exports.renderLove = (data) => {

 const result = Mustache.render(love_template, data)
 // Mustache.clearCache();

 return result;

};

In a real-world application, this file might be used for reading

template files from disk and substituting values, exposing a complete

list of templates. For this simple example just a single template

renderer is exported and a single hard-coded template is used. This

template uses two variables, me and you . The string is repeated

many times to approach the length of a template that a real

application might use. The longer the template, the longer it takes to

render.

Now that the files have been created, you’re ready to run the

application. Run the following commands to run the server and then to

launch a benchmark against it:

Terminal 1

$ node server.js

Terminal 2

$ npx autocannon -d 60 http://localhost:3000/main

$ npx autocannon -d 60 http://localhost:3000/offload

On a test run on a beefy 16-core laptop, when rendering templates

entirely in the main thread, the application had an average throughput

of 13,285 requests per second. However, when running the same test

while offloading template rendering to a worker thread, the average

throughput was 18,981 requests per second. In this particular

situation it means the throughput increased by about 43%.

The event loop latency also decreased significantly. Sampling the

time it takes to call setImmediate() while the process is idle gets

us about 87 μs on average. When performing template rendering in

the main thread, the latency averages 769 μs. The same samples

taken when offloading rendering to a worker thread are on average

232 μs. Subtracting out the idle state from both values means it’s

about a 4.7x improvement when using threads. Figure 8-3 compares

these samples over time during the 60-second benchmark.

Figure 8-3. Event loop delay when using single thread versus multiple threads

Does this mean you should run out and refactor your applications to

offload rendering to another thread? Not necessarily. With this

contrived example the application was made faster with the additional

threads, but this was done on a 16-core machine. It’s very likely that

your production applications have access to fewer cores.

That said, the biggest performance differentiator while testing this

was the size of the templates. When they’re a lot smaller, like without

repeating the string, it’s faster to render the templates in a single

thread. The reason it’s going to be slower is that the overhead of

passing the template data between threads is going to be much

larger than the time it takes to render a tiny template.

As with all benchmarks, take this one with a grain of salt. You’ll need

to test such changes with your application in a production environment

to know for sure if it benefits from additional threads or not.

Summary of Caveats

This is a combined list of the aforementioned caveats when working

with threads in JavaScript:

Complexity

Applications tend to be more complex when using shared

memory. This is especially true if you are hand-writing calls with

Atomics and manually working with SharedBufferArray

instances. Now, admittedly, a lot of this complexity can be

hidden from the application through the use of a third-party

module. In such a case it can be possible to represent your

workers in a clean manner, communicating with them from the

main thread, and having all the intercommunication and

coordination abstracted away.

Memory overhead

There is additional memory overhead with each thread that is

added to a program. This memory overhead is compounded if

a lot of modules are being loaded in each thread. Although the

overhead might not be a huge deal on modern computers, it is

worth testing on the end hardware the code will ultimately run

on just to be safe. One way to help alleviate this issue is to

audit the code that is being loaded in separate threads. Make

sure you’re not unnecessarily loading the kitchen sink!

No shared objects

The inability to share objects between threads can make it

difficult to easily convert a single-threaded application to a

multithreaded one. Instead, when it comes to mutating objects,

you’ll need to pass messages around that end up mutating an

object that lives in a single location.

No DOM access

Only the main thread of a browser-based application has

access to the DOM. This can make it difficult to offload UI

rendering tasks to another thread. That said, it’s entirely

possible for the main thread to be in charge of DOM mutation

while additional threads can do the heavy lifting and return data

changes to the main thread to update the UI.

Modified APIs

Along the same lines as the lack of DOM access, there are

slight changes to APIs available in threads. In the browser this

means no calls to alert() , and individual worker types have

even more rules, like disallowing blocking

XMLHttpRequest#open() requests, localStorage

restrictions, top-level await , etc. While some concerns are a

little fringe, it does mean that not all code can run unmodified in

every possible JavaScript context. Documentation is your friend

when dealing with this.

Structured clone algorithm constraints

There are some constraints on the structured clone algorithm

that may make it difficult to pass certain class instances

between different threads. Currently, even if two threads have

access to the same class definition, instances of the class

passed between threads become plain Object instances.

While it’s possible to rehydrate the data back into a class

instance, it does require manual effort.

Browsers require special headers

When working with shared memory in the browser via

SharedArrayBuffer , the server must supply two additional

headers in the request for the HTML document used by the

page. If you have complete control of the server, then these

headers may be easy to introduce. However, in certain hosting

environments, it might be difficult or impossible to supply such

headers. Even the package used in this book to host a local

server required modifications to enable the headers.

Thread preparedness detection

There is no built-in functionality to know when a spawned

thread is ready to work with shared memory. Instead, a

solution must first be built that essentially pings the thread and

then waits until a response has been received.

Appendix. Structured Clone
Algorithm

The structured clone algorithm is a mechanism that JavaScript

engines use when copying objects using certain APIs. Most notably,

it’s used when passing data between workers, though other APIs use

it as well. With this mechanism, data is serialized and then later

deserialized as an object inside another JavaScript realm.

When objects are cloned in this manner, such as from the main thread

to a worker thread or from one worker to another, modifying an

object on one side will not affect the object on the other side. There

are essentially two copies of the data now. The purpose of the

structured clone algorithm is to provide a friendlier mechanism for

developers than what JSON.stringify does, while imposing

reasonable limitations.

Browsers use the structured clone algorithm when copying data

between web workers. Node.js, similarly, uses it when copying data

between worker threads. Basically, when you see a

.postMessage() call, data being passed in is cloned in this way.

Browsers and Node.js follow the same rules, but they each support

additional object instances that can be copied.

As a quick rule of thumb, any data that can be cleanly represented as

JSON can be safely cloned in this manner. Sticking to data

represented in this manner will certainly lead to very few surprises.

That said, the structured clone algorithm supports several other types

of data as well.

First off, all of the primitive data types available in JavaScript, with

the exception of the Symbol type, can be represented. This includes

the Boolean , null , undefined , Number , BigInt , and String

types.

Instances of Array , Map , and Set , which are each used for

storing collections of data, can also be cloned in this manner. Even

ArrayBuffer , ArrayBufferView , and Blob instances, which

store binary data, can be passed along.

Instances of some more complex objects, as long as they are quite

universal and well understood, can also be passed through. This

includes objects created using the Boolean and String

constructor, Date , and even RegExp instances.

On the browser side, more complex and lesser-known object

instances like those for File , FileList , ImageBitmap , and

ImageData can be cloned.

1

On the Node.js side, special object instances that can be copied over

include WebAssembly.Module , CryptoKey , FileHandle ,

Histogram , KeyObject , MessagePort , net.BlockList ,

net.SocketAddress , and X509Certificate . Even instances of

R⁠e⁠a⁠d​a⁠b⁠l⁠e⁠S⁠t⁠r⁠e⁠a⁠m , WritableStream , and TransformStream can

be copied.

Another notable difference that works with the structured clone

algorithm, but doesn’t work with JSON objects, is that recursive

objects (those with nested properties that reference another

property) can also be cloned. The algorithm is smart enough to stop

serializing an object once it encounters a duplicate, nested object.

There are several shortcomings that may affect your

implementations. First, a function cannot be cloned in this manner.

Functions can be pretty complex things. For example, they have a

scope available and can access variables declared outside of them.

Passing something like that between realms wouldn’t make a whole

lot of sense.

Another missing feature, which will likely affect your implementations,

is that DOM elements in the browser cannot be passed along. Does

this mean that the work that a web worker performs can’t be

displayed to the user in the DOM? Absolutely not. Instead, you’ll need

to have a web worker return a value that the main JavaScript realm is

then able to transform and display to the user. For example, if you

were to calculate 1,000 iterations of fibonacci in a web worker,

the numeric value could be returned, and the calling JavaScript code

could then take that value and place it in the DOM.

Objects in JavaScript are fairly complex. Sometimes they can be

created using the object literal syntax. Other times they can be

created by instantiating a base class. And still other times they can

be modified by setting property descriptors and setters and getters.

When it comes to the structured clone algorithm, only the basic

values of objects are retained.

Most notably, this means that, when you define a class of your own

and pass an instance to be cloned, only the own properties of that

instance will be cloned, and the resulting object will be an instance of

Object . Properties defined in the prototype will not be cloned either.

Even if you define class Foo {} both on the calling side and inside

the web worker, the value will still be an instance of Object . This is

because there’s no real way to guarantee that both sides of the clone

are dealing with the exact same Foo class.

Certain objects will entirely refuse to be cloned. For example, if you

try to pass window from the main thread to a worker thread, or if

you try to return self in the opposite direction, you may receive one

of the following errors, depending on the browser:

2

Uncaught DOMException: The object could not be cloned
DataCloneError: The object could not be cloned.

There are some inconsistencies across JavaScript engines, so it’s

best to test your code in multiple browsers. For example, Chrome

and Node.js support cloning Error instances, but Firefox currently

does not. The general rule of thumb is that JSON-compatible objects

should never be a problem, but more complex data might be. For that

reason, passing around simpler data is usually best.

 There is a small caveat with RegExp instances. They contain a .lastIndex property,

which is used when running a regular expression multiple times over the same string to know

where the expression last ended. This property is not passed along.

 There are proposals to allow serializing and deserializing class instances, such as “User-

defined structured clone for JavaScript objects”, so this restriction might not be permanent.

 Firefox is planning on supporting this eventually. See “Allow structured cloning of native error

types”.

3

1

2

3

https://oreil.ly/HZUyz
https://oreil.ly/wT4NG

Index

A

ACID (atomicity, consistency, isolation, durability), Atomic Methods

for Data Manipulation

acquire() method, Mutex: A Basic Lock

activate event, Service Worker Hello World

handler function, Service Worker Hello World

actor models, Actor Model

actors variable, Example Implementation

client argument, Example Implementation

example implementation, Example Implementation-Example

Implementation

hot code loading, Example Implementation

JavaScript and, Relating to JavaScript

main server process, Example Implementation

message_id variable, Example Implementation

patterns, Pattern Nuances

alert() function, Atomics.wait()

API (application programming interface)

fetch(), Advanced Dedicated Worker Usage

indexedDB, Advanced Dedicated Worker Usage, Advanced

Service Worker Concepts

localStorage, Advanced Dedicated Worker Usage

location, Advanced Dedicated Worker Usage

modified, Summary of Caveats

Node.js, The worker_threads Module

service workers, Service Workers

WebSocket, Advanced Dedicated Worker Usage

XMLHttpRequest, Advanced Dedicated Worker Usage

ArrayBuffer

contents display, SharedArrayBuffer and TypedArrays

Grid class, Single-Threaded Game of Life

Object, inheriting from, SharedArrayBuffer and TypedArrays

strings and, Strings

views and, SharedArrayBuffer and TypedArrays

WebAssembly, WebAssembly

arrays

BigUint64Array, With Only the Main Thread

threads, declaring, With Four Worker Threads

TypedArray, With Only the Main Thread

AssemblyScript, Other WebAssembly Compilers

assemblyscript package, Happycoin in AssemblyScript

Happycoin, Happycoin in AssemblyScript-Happycoin in

AssemblyScript

module, AssemblyScript

spawning threads, AssemblyScript

.ts file extension, AssemblyScript

wasi module, Happycoin in AssemblyScript

asynchronous code, Introduction

atomicity, Atomic Methods for Data Manipulation

atomic operations, Atomic Methods for Data Manipulation

concerns, Atomicity Concerns-Atomicity Concerns

WebAssembly, WebAssembly, Atomic Operations in

WebAssembly-Atomic Operations in WebAssembly

Atomics object, Shared Memory, Atomic Methods for Data

Manipulation

Atomics.and() method, Atomics.and()

Atomics.compareExchange() method,

Atomics.compareExchange()

Atomics.exchange() method, Atomics.exchange()

Atomics.isLockFree() method, Atomics.isLockFree()

Atomics.load() method, Atomics.load()

Atomics.notify() method, Atomics.wait(), Atomics.notify(),

Timing and Nondeterminism, Detecting Thread Preparedness

Atomics.or() method, Atomics.or()

Atomics.store() method, Atomics.store(), Atomicity Concerns

Atomics.sub() method, Atomics.sub()

Atomics.wait() method, Atomics.wait(), Detecting Thread

Preparedness

Atomics.waitAsync() method, Atomics.waitAsync()

Atomics.xor() method, Atomics.xor()

buffers, direct array access, Atomicity Concerns

coordination and, Atomic Methods for Coordination-

Atomics.waitAsync()

events and, Atomics and Events-Atomics and Events

nondeterminism, Timing and Nondeterminism-Detecting Thread

Preparedness

return values, conversion and, Atomicity Concerns

TypedArray instance, Atomic Methods for Data Manipulation

B

beforeunload event, Advanced Shared Worker Usage

bigint type, With Only the Main Thread

BigInt64Array, SharedArrayBuffer and TypedArrays

BigUint64Array, With Only the Main Thread, SharedArrayBuffer

and TypedArrays

binary, SharedArrayBuffer and TypedArrays

BitInt type, SharedArrayBuffer and TypedArrays

bits, SharedArrayBuffer and TypedArrays

bytes, SharedArrayBuffer and TypedArrays

blocks, if block, Before We Had Threads, With Four Worker

Threads

booleans, data serialization and, Booleans

buffers, Booleans

getBool() function, Booleans

setBool() function, Booleans

browser

shared memory and, Shared Memory in the Browser-Shared

Memory in the Browser, Summary of Caveats

structured clone algorithm, Structured Clone Algorithm

Buffer, Node.js, SharedArrayBuffer and TypedArrays

buffers

4-byte, Example of Nondeterminism

booleans, Booleans

passing to worker, Shared Memory in the Browser

ring buffers, Streaming Data with Ring Buffers

implementing, Streaming Data with Ring Buffers

single-threaded bounded queue, Streaming Data with Ring

Buffers

value, printing, Shared Memory in the Browser

views, Shared Memory in the Browser

bytes, SharedArrayBuffer and TypedArrays

hexadecimal characters, SharedArrayBuffer and TypedArrays

C

C, threads, Threads in C: Get Rich with Happycoin

cache management, service workers, Service Workers

callbacks, Single-Threaded JavaScript

asynchronous code, Introduction

message events, Shared Memory in Node.js

Chrome v87, shared worker logs, Shared Workers

circular buffers, Streaming Data with Ring Buffers

Clang compiler, Other WebAssembly Compilers

classes

Grid, Single-Threaded Game of Life-Single-Threaded Game of

Life

MessagePort, Shared Worker Hello World

Mutex, Mutex: A Basic Lock

RpcWorker, Putting It All Together

RpcWorkerPool, Example Implementation, Example

Implementation

SharedWorker, Advanced Shared Worker Usage

TypedArray, SharedArrayBuffer and TypedArrays

U prefix, SharedArrayBuffer and TypedArrays

view classes, SharedArrayBuffer and TypedArrays

Worker, Advanced Dedicated Worker Usage

clones (see structured clone algorithm)

cluster module

if block, Before We Had Threads

isMaster property, Before We Had Threads

isPrimary property, Before We Had Threads

cluster process, Before We Had Threads

code

asynchronous, Introduction

loading, Advanced Dedicated Worker Usage

code samples

ch1-c-threads, With Only the Main Thread

ch2-patterns, Putting It All Together

ch2-service-workers, Service Worker Hello World

ch2-web-workers, Dedicated Worker Hello World

ch3-happycoin, With Only the Main Thread

ch4-web-workers, Shared Memory in the Browser

ch4-web-workers directory, Shared Memory in Node.js

ch6-mutex, Mutex: A Basic Lock

ch6-thread-pool directory, Example Implementation

ch7-happycoin-as, Happycoin in AssemblyScript

ch8-template-render, When to Use

command dispatcher pattern, The Command Dispatcher Pattern-

The Command Dispatcher Pattern

concurrency, Concurrency Versus Parallelism-Concurrency Versus

Parallelism

connect event

listeners, Shared Worker Hello World

properties, Shared Worker Hello World

shared workers, Advanced Shared Worker Usage

console.log(), With Only the Main Thread

constructors

Boolean, Structured Clone Algorithm

MessageChannel, MessagePort

Mutex, Mutex: A Basic Lock

SharedWorker class, Advanced Shared Worker Usage

String, Structured Clone Algorithm

TypedArray, Happycoin in AssemblyScript

Worker, The worker_threads Module

containers versus threads, Containers Versus Threads

Content-Type header, Service Worker Hello World

Contexts, Single-Threaded JavaScript

Conway's Game of Life, Example Application: Conway’s Game of

Life

multithreaded, Multithreaded Game of Life-Multithreaded Game

of Life

single-threaded, Single-Threaded Game of Life-Single-

Threaded Game of Life

cooperative multitasking, Introduction

cores, number of, Low Core Count-Low Core Count

counter variable, Service Worker Hello World

CPU core, threads, Pool Size

CPU, parallelism, Concurrency Versus Parallelism

crossOriginIsolated, Shared Memory in the Browser

crypto module, With Only the Main Thread

randomFillSync, With Only the Main Thread

D

data processing, Node.js, Node.js

data serialization, Data Serialization

booleans and, Booleans

buffers, Booleans

getBool() function, Booleans

setBool() function, Booleans

objects, Objects

data streams

MessagePort, MessagePort-MessagePort

ReadableStream, MessagePort

WritableStream, MessagePort

debugging

service workers, Service Workers

shared workers, Shared Workers

decimal system, SharedArrayBuffer and TypedArrays

dedicated workers

advanced use, Advanced Dedicated Worker Usage-Advanced

Dedicated Worker Usage

Hello World, Dedicated Worker Hello World-Dedicated Worker

Hello World

instantiation, Dedicated Worker Hello World

worker property, Putting It All Together

dispatch() function, The Command Dispatcher Pattern

dispatching tasks, Dispatch Strategies

least busy, Dispatch Strategies

random, Dispatch Strategies

round robin, Dispatch Strategies

DOM (Document Object Model), Hidden Threads

access, Summary of Caveats

E

ECMAScript module, AssemblyScript

Emscripten, Compiling C Programs to WebAssembly with

Emscripten-Compiling C Programs to WebAssembly with

Emscripten

environment variables

STRATEGY, Example Implementation

THREADS, Example Implementation

environments, Single-Threaded JavaScript

Erlang, Actor Model

eval() function, Advanced Dedicated Worker Usage

event loops, latency, When to Use

events

activate, Service Worker Hello World

Atomics object, Atomics and Events-Atomics and Events

beforeunload, Advanced Shared Worker Usage

connect event, Shared Worker Hello World

message, Shared Worker Hello World

exec() method, Putting It All Together, Example Implementation

F

fetch() function, Advanced Dedicated Worker Usage, Service

Worker Hello World

Firefox v85, shared worker logs, Shared Workers

Float32Array, SharedArrayBuffer and TypedArrays

Float64Array, SharedArrayBuffer and TypedArrays

foo property, Shared Memory in the Browser

free() function, Your First WebAssembly

functions

alert(), Atomics.wait()

dispatch(), The Command Dispatcher Pattern

eval(), Advanced Dedicated Worker Usage

fetch(), Service Worker Hello World

free(), Your First WebAssembly

getBool(), Booleans

importScripts(), Advanced Dedicated Worker Usage, Advanced

Service Worker Concepts

isHappy, With Only the Main Thread

isHappycoin, With Only the Main Thread

listen(), Before We Had Threads

makeRequest(), Service Worker Hello World, Service Worker

Hello World

malloc(), Your First WebAssembly

newSharedWorker(), Shared Worker Hello World

onmessage, Dedicated Worker Hello World

pthread family, With Four Worker Threads

pthread_create(), With Four Worker Threads

pthread_join(), With Four Worker Threads

random64(), With Only the Main Thread

randomFillSync, With Only the Main Thread

self.oninstall(), Service Worker Hello World

setBool(), Booleans

setTimeout(), Example of Nondeterminism

sleep(), Putting It All Together

sumDigitsSquared, With Only the Main Thread

vm.createContext(), Single-Threaded JavaScript

futex (Linux), Atomic Methods for Coordination

G

getBool() function, Booleans

getWorker() method, Example Implementation

GIL (global interpreter lock), Introduction

global functions, Dedicated Worker Hello World

global objects, Single-Threaded JavaScript

graphics processing, When to Use

Grid class, Single-Threaded Game of Life-Single-Threaded Game

of Life

H

Happycoin, Happycoin: Revisited

AssemblyScript, Happycoin in AssemblyScript-Happycoin in

AssemblyScript

mining loop, With Only the Main Thread

output, With Four Worker Threads

Piscina, A Pool Full of Happycoins-A Pool Full of Happycoins

random number generation, With Only the Main Thread

worker threads, adding, With Four Worker Threads

happycoin-piscina.js file, A Pool Full of Happycoins

happycoin.js, With Only the Main Thread

head index, Streaming Data with Ring Buffers

hexadecimal characters, SharedArrayBuffer and TypedArrays

hidden threads, Hidden Threads-Hidden Threads

hot code loading, Example Implementation

hotpaths, Atomics.wait()

HTML, loading JavaScript files, Shared Worker Hello World

HTTP requests, What Are Threads?

I

i32 type, Atomic Operations in WebAssembly

i64 type, Atomic Operations in WebAssembly

if block, Before We Had Threads, With Four Worker Threads

ImageData, Single-Threaded Game of Life

importScripts() function, Advanced Dedicated Worker Usage,

Advanced Service Worker Concepts

includes, With Only the Main Thread

indexedDB API, Advanced Dedicated Worker Usage, Advanced

Service Worker Concepts

inheritance

ArrayBuffer, SharedArrayBuffer and TypedArrays

SharedArrayBuffer, SharedArrayBuffer and TypedArrays

instructions, executing, What Are Threads?

integers, SharedArrayBuffer and TypedArrays

bigint, With Only the Main Thread

BigInt type, SharedArrayBuffer and TypedArrays

converting from numbers, SharedArrayBuffer and TypedArrays

IPC (Inter-Process Communication), With Four Worker Threads

isHappy function, With Only the Main Thread

isHappycoin function, With Only the Main Thread

isWorkerThread property, A Pool Full of Happycoins

iterate() method, Single-Threaded Game of Life

J

JavaScript

actor models and, Relating to JavaScript

event orientation, Single-Threaded JavaScript

files

injecting, Advanced Dedicated Worker Usage

loaded by HTML file, Shared Worker Hello World

multitasking, Introduction

Number type, SharedArrayBuffer and TypedArrays

single-threading, Single-Threaded JavaScript-Single-Threaded

JavaScript

WebAssembly files, Your First WebAssembly

K

KISS (Keep It Simple Stupid), Analysis

L

libraries

libuv, Hidden Threads, Thread Pool

template rendering and, When to Use

libuv library, Hidden Threads, Thread Pool

libuv worker pool, The worker_threads Module

Linux

futex, Atomic Methods for Coordination

mutex, Atomic Methods for Coordination, Mutex: A Basic Lock-

Mutex: A Basic Lock

Lisp, S-expressions, Your First WebAssembly

listen() function, Before We Had Threads

LLVM C-family compilers, Other WebAssembly Compilers

localStorage API, Advanced Dedicated Worker Usage

location API, Advanced Dedicated Worker Usage

locked and contended state, mutex, Mutex: A Basic Lock

locks, Mutex: A Basic Lock

(see also mutex (Linux))

acquiring, Mutex: A Basic Lock

mutex, Atomic Methods for Coordination

releasing, Mutex: A Basic Lock

low memory constraints, Low Memory Constraints-Low Memory

Constraints

M

main.js file, Shared Memory in the Browser

makeRequest() function, Service Worker Hello World, Service

Worker Hello World

malloc() function, Your First WebAssembly

MapReduce, When to Use

math, heavy use, When to Use

Math.trunc(), SharedArrayBuffer and TypedArrays

measuring, trade-offs and, A Pool Full of Happycoins

memory

allocation, Your First WebAssembly

application complexity, Summary of Caveats

browsers, headers, Summary of Caveats

low memory constraints, Low Memory Constraints-Low Memory

Constraints

overhead, Summary of Caveats

processes, What Are Threads?

resident set size, Low Memory Constraints

shared memory, With Four Worker Threads

virtual memory, With Four Worker Threads

size, Low Memory Constraints

WebAssembly, WebAssembly

message events

callback functions, Shared Memory in Node.js

listeners, Shared Worker Hello World

message passing, Dedicated Workers, Message Passing

Abstractions

command dispatcher pattern, The Command Dispatcher

Pattern-The Command Dispatcher Pattern

RPC pattern, The RPC Pattern-The RPC Pattern

message serialization, The RPC Pattern

MessageChannel constructor, MessagePort

MessagePort, MessagePort-MessagePort

instances, MessagePort

MessageChannel constructor, MessagePort

postMessage(), MessagePort

MessagePort class, Shared Worker Hello World

methods

acquire(), Mutex: A Basic Lock

exec(), Putting It All Together

getWorker(), Example Implementation

iterate(), Single-Threaded Game of Life

net.connect(), Example Implementation

onMessageHandler(), Putting It All Together, Example

Implementation

postMessage(), Dedicated Worker Hello World, The RPC

Pattern, MessagePort

reject(), Putting It All Together

resolve(), Putting It All Together

self.clients.claim(), Service Worker Hello World

modules

crypto, With Only the Main Thread

os module, Example Implementation

WebAssembly, declaring, Your First WebAssembly

worker_threads, The worker_threads Module-MessagePort,

With Four Worker Threads, Example Implementation

msgpack5 npm package, Objects

multitasking

cooperative multitasking, Introduction

JavaScript and, Introduction

preemptive multitasking, Introduction

processes, Introduction

mutex (Linux), Atomic Methods for Coordination, Mutex: A Basic

Lock-Mutex: A Basic Lock

exec() method, Streaming Data with Ring Buffers

Mutex class, Mutex: A Basic Lock

N

navigator.serviceWorker object, Service Worker Hello World

net.connect() method, Example Implementation

newSharedWorker() function, Shared Worker Hello World

nextCells array, Single-Threaded Game of Life

Node.js

Atomics.wait() method, Atomics.wait()

Buffer, SharedArrayBuffer and TypedArrays

callbacks, Introduction

Contexts, Single-Threaded JavaScript

data processing, Node.js

Emscripten, Compiling C Programs to WebAssembly with

Emscripten

global object, Single-Threaded JavaScript

libuv, Hidden Threads

msgpack5, Objects

parallelism, Node.js

reading from files, Single-Threaded JavaScript

realms, Single-Threaded JavaScript

server side rendering, Node.js

shared memory, Shared Memory in Node.js-Shared Memory in

Node.js

timer, Low Memory Constraints

WASI flag, Happycoin in AssemblyScript

web server, starting localling, Dedicated Worker Hello World

WebSockets, Shared Worker Hello World

worker_node.js file, Shared Memory in Node.js

Node.js API, The worker_threads Module

nondeterminism, Timing and Nondeterminism-Example of

Nondeterminism

npm packages

autocannon, Example Implementation

msgpack5, Objects

Number type, SharedArrayBuffer and TypedArrays

numbers, SharedArrayBuffer and TypedArrays

(see also integers)

binary, SharedArrayBuffer and TypedArrays

bits, SharedArrayBuffer and TypedArrays

converting to integers, SharedArrayBuffer and TypedArrays

decimal system, SharedArrayBuffer and TypedArrays

range limitations, SharedArrayBuffer and TypedArrays

O

objects

Atomics, Atomic Methods for Data Manipulation

data serialization and, Objects

global, Single-Threaded JavaScript

navigator.serviceWorker, Service Worker Hello World

shared, Summary of Caveats

onfetch function, Service Worker Hello World

onmessage event, Shared Memory in the Browser, Detecting

Thread Preparedness

onmessage function, Dedicated Worker Hello World

onMessageHandler() method, Putting It All Together, Example

Implementation

os module, Example Implementation

P

parallelism, Concurrency Versus Parallelism-Concurrency Versus

Parallelism, When to Use

Node.js and, Node.js

worker threads, Node.js

parentPort property, onmessage handler, Shared Memory in

Node.js

patterns

actor models, Pattern Nuances

thread pool, Thread Pool

dispatch methods, Dispatch Strategies-Dispatch Strategies

implementation example, Example Implementation-Example

Implementation

pool size, Pool Size-Pool Size

physical memory, resident set size, Low Memory Constraints

Piscina, Worker Pools with Piscina

Happycoins, producing, A Pool Full of Happycoins-A Pool Full of

Happycoins

installation, A Pool Full of Happycoins

instantiation, Worker Pools with Piscina

queue size, Worker Pools with Piscina

tasks, multiple, Worker Pools with Piscina

pointers, With Only the Main Thread

pooled resources, Worker Pools with Piscina

port instances, Advanced Shared Worker Usage

ports, listening on, Before We Had Threads

POSIX (Portable Operating System Interface)

threads, Threads in C: Get Rich with Happycoin

postMessage() method, Dedicated Worker Hello World, Shared

Worker Hello World, The RPC Pattern, MessagePort

preemptive multitasking, Introduction

processes, Introduction, Before We Had Threads

cluster, Before We Had Threads

cluster module, if block, Before We Had Threads

initiating, What Are Threads?

memory, What Are Threads?

threads, What Are Threads?

property cloning, workerData

ps command, Low Memory Constraints

pstree command, Low Memory Constraints

pthread functions, With Four Worker Threads

pthread_create() function, With Four Worker Threads

pthread_join() function, With Four Worker Threads

R

race condition, Atomicity Concerns, Mutex: A Basic Lock

random number generator

Happycoin, With Only the Main Thread

seeds, With Only the Main Thread

random64() function, With Only the Main Thread

randomFillSync function, With Only the Main Thread

ReadableStream, MessagePort

realms, Single-Threaded JavaScript

Node.js, Single-Threaded JavaScript

objects

global, Single-Threaded JavaScript

reject() function, Putting It All Together

resolve() method, Putting It All Together

ring buffers, Streaming Data with Ring Buffers

(see also circular buffers)

implementing, Streaming Data with Ring Buffers

single-threaded bounded queue, Streaming Data with Ring

Buffers

RPC (Remote Procedure Call)

bad method, Putting It All Together

exec method, Putting It All Together

fake_method method, Putting It All Together

fibonacci method, Putting It All Together

message passing, The RPC Pattern-The RPC Pattern

Promise.allSettled() call, Putting It All Together

square_sum method, Putting It All Together

rpc-worker.js file, Example Implementation

RpcWorker class, Putting It All Together

RpcWorkerPool class, Example Implementation, Example

Implementation

Rust, Other WebAssembly Compilers

S

S-expressions, WebAssembly, Your First WebAssembly

script tag, Advanced Dedicated Worker Usage

scroll jank, Atomics.wait()

self.clients.claim() method, Service Worker Hello World

self.oninstall() function, Service Worker Hello World

semaphores, Mutex: A Basic Lock

serializing messages, The RPC Pattern

serve package, Shared Worker Hello World

service workers, Service Workers

advanced use, Advanced Service Worker Concepts-Advanced

Service Worker Concepts

APIs, Service Workers

cache management, Service Workers

debugging, Advanced Service Worker Concepts

Hello World, Service Worker Hello World-Service Worker Hello

World

progressive enhancement and, Advanced Service Worker

Concepts

script caching, Advanced Service Worker Concepts

state, stages, Advanced Service Worker Concepts

setBool() function, Booleans

setTimeout() function, Example of Nondeterminism

shared memory, With Four Worker Threads

ArrayBuffer object, SharedArrayBuffer and TypedArrays-

SharedArrayBuffer and TypedArrays

Atomics object, Shared Memory

browser and, Shared Memory in the Browser-Shared Memory

in the Browser

Node.js, Shared Memory in Node.js-Shared Memory in Node.js

onmessage and, Intro to Shared Memory

postMessage() and, Intro to Shared Memory

SharedArrayBuffer, Shared Memory, SharedArrayBuffer and

TypedArrays-SharedArrayBuffer and TypedArrays

shared workers, Shared Workers-Shared Workers

advanced use, Advanced Shared Worker Usage-Advanced

Shared Worker Usage

debugging, Shared Workers

file caching, Shared Workers

Hello World, Shared Worker Hello World-Shared Worker Hello

World

instances, Shared Worker Hello World

instantiation, Shared Worker Hello World

keys, Advanced Shared Worker Usage

messages, Shared Worker Hello World

pinging environments, Advanced Shared Worker Usage

state, Shared Workers

windows, Shared Workers

shared-worker.js file, Shared Worker Hello World

SharedArrayBuffer, Shared Memory

grid and, Multithreaded Game of Life

instantiation, Shared Memory in the Browser

Object, inheriting from, SharedArrayBuffer and TypedArrays

WebAssembly, WebAssembly

SharedWorker class, Advanced Shared Worker Usage

single-threaded JavaScript, Single-Threaded JavaScript-Single-

Threaded JavaScript

sleep() function, Putting It All Together

SSR (server side rendering), Node.js

state, shared workers, Shared Workers

STRATEGY variable, Example Implementation, Low Core Count

streaming data

ring buffers and, Streaming Data with Ring Buffers

implementing, Streaming Data with Ring Buffers

single-threaded bounded queue, Streaming Data with Ring

Buffers

strings

ArrayBuffer, Strings

TextEncoder, Strings

structured clone algorithm, Summary of Caveats, Structured Clone

Algorithm-Structured Clone Algorithm

sumDigitsSquared function, With Only the Main Thread

sw.js file, Service Worker Hello World

synchronization, With Four Worker Threads

T

tail index, Streaming Data with Ring Buffers

task dispatch, thread pools, Dispatch Strategies

least busy, Dispatch Strategies

random, Dispatch Strategies

round robin, Dispatch Strategies

taskset command, Low Core Count

template rendering, When to Use-When to Use

TextDecoder, strings, Strings

thread pool, Thread Pool

dispatch and, Dispatch Strategies

least busy, Dispatch Strategies

random, Dispatch Strategies

round robin, Dispatch Strategies

implementing, Example Implementation-Example Implementation

size, Pool Size-Pool Size

worker threads, Thread Pool

thread-product-mutex.js file, Mutex: A Basic Lock

threads

arrays, declaring as, With Four Worker Threads

C, Threads in C: Get Rich with Happycoin

Happycoin example, Threads in C: Get Rich with Happycoin

CPU core and, Pool Size

hidden, Hidden Threads-Hidden Threads

HTTP requests, What Are Threads?

objects, ownership transfer, MessagePort

preparedness, Detecting Thread Preparedness-Example

Application: Conway’s Game of Life

detection, Summary of Caveats

race condition, Atomicity Concerns

waking up, Example of Nondeterminism

worker threads, With Four Worker Threads-With Four Worker

Threads

THREADS variable, Example Implementation, Low Core Count

trade-offs, A Pool Full of Happycoins

ts file extension, AssemblyScript

TypedArray class, With Only the Main Thread, SharedArrayBuffer

and TypedArrays

Atomics object, Atomic Methods for Data Manipulation

TypeScript module, AssemblyScript

U

U prefix, classes, SharedArrayBuffer and TypedArrays

Uint8Array, SharedArrayBuffer and TypedArrays

Uint8ClampedArray, SharedArrayBuffer and TypedArrays

V

V8, Hidden Threads

Node.js, Browsers

variable counter, Service Worker Hello World

view classes, SharedArrayBuffer and TypedArrays

views, SharedArrayBuffer and TypedArrays

ArrayBuffer object, SharedArrayBuffer and TypedArrays

buffers, Shared Memory in the Browser

virtual memory, With Four Worker Threads

size, Low Memory Constraints

vm.createContext() function, Single-Threaded JavaScript

W

WABT (WebAssembly Binary Toolkit), Your First WebAssembly

WASM (see WebAssembly)

.wasm files, Your First WebAssembly

.wat file extension, Your First WebAssembly

WAT files, WebAssembly binary, Your First WebAssembly

web workers, Dedicated Workers

dedicated

advanced use, Advanced Dedicated Worker Usage-

Advanced Dedicated Worker Usage

Hello World, Dedicated Worker Hello World-Dedicated

Worker Hello World

instantiation, Dedicated Worker Hello World

service workers, Service Workers

advanced use, Advanced Service Worker Concepts-

Advanced Service Worker Concepts

APIs, Service Workers

cache management, Service Workers

Hello World, Service Worker Hello World-Service Worker

Hello World

shared workers, Shared Workers-Shared Workers

advanced use, Advanced Shared Worker Usage-Advanced

Shared Worker Usage

Hello World, Shared Worker Hello World-Shared Worker

Hello World

instances, Shared Worker Hello World

windows, Shared Workers

WebAssembly, WebAssembly

ArrayBuffer, WebAssembly

atomic operations, WebAssembly, Atomic Operations in

WebAssembly-Atomic Operations in WebAssembly

atomic.fence, Atomic Operations in WebAssembly

compilers

AssemblyScript, Other WebAssembly Compilers-Happycoin

in AssemblyScript

Clang family, Other WebAssembly Compilers

Emscripten, Compiling C Programs to WebAssembly with

Emscripten-Compiling C Programs to WebAssembly with

Emscripten

Rust, Other WebAssembly Compilers

file loading, JavaScript and, Your First WebAssembly

Hello World, Your First WebAssembly-Atomic Operations in

WebAssembly

memory, WebAssembly

memory allocation, Your First WebAssembly

memory.atomic, Atomic Operations in WebAssembly

memory.atomic.notify, Atomic Operations in WebAssembly

modules

declaring, Your First WebAssembly

initializing, Atomic Operations in WebAssembly

linear memory, Atomic Operations in WebAssembly

naming conventions, Atomic Operations in WebAssembly

read-modify-write operations, Atomic Operations in

WebAssembly

rmw instructions, Atomic Operations in WebAssembly

S-expressions, Your First WebAssembly

SharedArrayBuffers, WebAssembly

text format, Your First WebAssembly

types, Atomic Operations in WebAssembly

WAT files, converting to binary, Your First WebAssembly

wat2wasm command, Your First WebAssembly

WebSocket API, Advanced Dedicated Worker Usage

WHATWG (Web Hypertext Application Technology Working

Group), MessagePort

Worker class, Advanced Dedicated Worker Usage

worker.onerror method, Advanced Dedicated Worker Usage

worker.onmessage method, Advanced Dedicated Worker

Usage

worker.onmessageerror method, Advanced Dedicated Worker

Usage

worker.postMessage() method, Advanced Dedicated Worker

Usage

worker.terminate method, Advanced Dedicated Worker Usage

Worker constructor, The worker_threads Module

transferList option, MessagePort

workerData object, workerData

properties, workerData

worker pools, Piscina, Worker Pools with Piscina

instantiaion, Worker Pools with Piscina

queue size, Worker Pools with Piscina

tasks, multiple, Worker Pools with Piscina

worker threads, With Four Worker Threads-With Four Worker

Threads

buffers, passing, Shared Memory in the Browser

Happycoin, With Four Worker Threads

libuv worker pool, The worker_threads Module

parallelism and, Node.js

thread pool, Thread Pool

worker.js file, Putting It All Together, Shared Memory in the

Browser

worker.unref(), Shared Memory in Node.js

WorkerGlobalScope, Advanced Dedicated Worker Usage

workers class property, Example Implementation

worker_node.js file, Shared Memory in Node.js

worker_threads module, The worker_threads Module, With Four

Worker Threads, Example Implementation

libuv worker pool, The worker_threads Module

parentPort property, Shared Memory in Node.js

Worker constructor, workerData

Writeable Stream, MessagePort

X

XMLHttpRequest API, Advanced Dedicated Worker Usage

About the Authors

Thomas Hunter II has contributed to dozens of enterprise Node.js

services and has worked for a company dedicated to securing

Node.js. He has spoken at several conferences on Node.js and

JavaScript, is JSNSD/JSNAD certified, and is an organizer of

NodeSchool SF.

Bryan English is an open source JavaScript and Rust programmer

and enthusiast and has worked on large enterprise systems,

instrumentation, and application security. Currently he’s a senior open

source software engineer at Datadog. He’s used Node.js both

professionally and in personal projects since not long after its

inception. He is also a Node.js core collaborator and has contributed

to Node.js in many ways through several of its various working

groups.

Colophon

The bird on the cover of Multithreaded JavaScript is a green-winged

teal (Anas crecca). This duck is commonly found in northerly

Canadian wetlands and boreal forests, though it will migrate much

farther south throughout much of the rest of North America in the

winter.

Breeding males have gray flanks and backs with yellow rear ends

and green patches on their chestnut heads. Their name comes from

the distinctive white-edged green speculum feathers. Female green-

winged teals are light brown and look very similar to female mallards.

The green-winged teal is the smallest dabbling duck in North America.

They prefer shallow water and are often found resting on stumps or

mudbanks.

A rather noisy species, male green-winged teals have clear whistles,

while female birds have notable “quacks.” They seek their food

primarily on mudflats or shallow marshes, and eat seeds, stems, and

leaves of aquatic and emergent vegetation. They are preyed upon by

humans, skunks, red foxes, raccoons, crows, and magpies.

The green-winged teal’s current conservation status is “Least

Concern.” Many of the animals on O’Reilly covers are endangered; all

of them are important to the world.

The cover illustration is by Karen Montgomery, based on a black and

white engraving from British Birds. The cover fonts are Gilroy

Semibold and Guardian Sans. The text font is Adobe Minion Pro; the

heading font is Adobe Myriad Condensed; and the code font is Dalton

Maag’s Ubuntu Mono.

	﻿Foreword
	Preface
	Target Audience
	Goals
	Conventions Used in This Book
	Using Code Examples
	O’Reilly Online Learning
	How to Contact Us
	Acknowledgments

	1. Introduction
	What Are Threads?
	Concurrency Versus Parallelism
	Single-Threaded JavaScript
	Hidden Threads
	Threads in C: Get Rich with Happycoin
	With Only the Main Thread
	With Four Worker Threads

	2. Browsers
	Dedicated Workers
	Dedicated Worker Hello World
	Advanced Dedicated Worker Usage

	Shared Workers
	Shared Worker Hello World
	Advanced Shared Worker Usage

	Service Workers
	Service Worker Hello World
	Advanced Service Worker Concepts

	Message Passing Abstractions
	The RPC Pattern
	The Command Dispatcher Pattern
	Putting It All Together

	3. Node.js
	Before We Had Threads
	The worker_threads Module
	workerData
	MessagePort

	Happycoin: Revisited
	With Only the Main Thread
	With Four Worker Threads

	Worker Pools with Piscina
	A Pool Full of Happycoins

	4. Shared Memory
	Intro to Shared Memory
	Shared Memory in the Browser
	Shared Memory in Node.js

	SharedArrayBuffer and TypedArrays
	Atomic Methods for Data Manipulation
	Atomics.add()
	Atomics.and()
	Atomics.compareExchange()
	Atomics.exchange()
	Atomics.isLockFree()
	Atomics.load()
	Atomics.or()
	Atomics.store()
	Atomics.sub()
	Atomics.xor()

	Atomicity Concerns
	Data Serialization
	Booleans
	Strings
	Objects

	5. Advanced Shared Memory
	Atomic Methods for Coordination
	Atomics.wait()
	Atomics.notify()
	Atomics.waitAsync()

	Timing and Nondeterminism
	Example of Nondeterminism
	Detecting Thread Preparedness

	Example Application: Conway’s Game of Life
	Single-Threaded Game of Life
	Multithreaded Game of Life

	Atomics and Events

	6. Multithreaded Patterns
	Thread Pool
	Pool Size
	Dispatch Strategies
	Example Implementation

	Mutex: A Basic Lock
	Streaming Data with Ring Buffers
	Actor Model
	Pattern Nuances
	Relating to JavaScript
	Example Implementation

	7. WebAssembly
	Your First WebAssembly
	Atomic Operations in WebAssembly
	Compiling C Programs to WebAssembly with Emscripten
	Other WebAssembly Compilers
	AssemblyScript
	Happycoin in AssemblyScript

	8. Analysis
	When Not to Use
	Low Memory Constraints
	Low Core Count
	Containers Versus Threads

	When to Use
	Summary of Caveats

	A. Structured Clone Algorithm
	Index

