O'REILLY"

ArgoCD

Up & Running

A Hands-On Guide to GitOps and Kubernetes

Andrew Block &
Christian Hernandez

Praise for Argo CD: Up and Running

This book from two leading Argo experts is clear and to the point.
You'll be up to speed quickly and well on your way to being an
advanced Argo practitioner.

—Michael Crenshaw, staff SWE and lead Argo CD
maintainer, Intuit

If you want a guide that masterfully demystifies the Argo CD and
GitOps world, look no further. Whether you're just beginning or
fine-tuning a production setup, the authors distill years of
practical experience condensed into this book that will serve as a
trusted reference long after the first read.

—Lipi Deepaakshi Patnaik, senior software
developer, Zeta Suite

I wish I had this book when I first started learning Argo CD—it
would have made implementation so much easier.

—Werner Dijkerman, Kubernetes and DevOps
engineer, Awesome Cloud

Andrew and Christian discuss several applicable examples in-
depth at an enjoyable reading pace—a practical reference!

—Nadir Doctor, architect

This book is a must-read for anyone adopting GitOps with
Kubernetes and Argo CD. It provides the practical guidance
needed to effectively get started with Argo CD and scale it for use
in multi-cluster environments.

—Manuel Dewald, lead software architect at
Codesphere and coauthor of Operating OpenShift

Working with Andy and Christian, you naturally learn by osmosis.
I'm thrilled theyve captured their deep knowledge of real-world
GitOps patterns and advanced Argo CD in this book, allowing
anyone to benefit from their proven experience and be inspired
by their passion.
—Natale Vinto, director of developer advocacy, Red
Hat

In my experience, GitOps and Argo CD are widely deployed but
commonly misunderstood. Andrew and Christian are working hard
to change this, covering both the theory and the execution. This
book is my go-to reference for everything from deploying
applications to operationalizing Argo CD.
—Daniel Bryant, platform engineer and PMM,
Syntasso

The authors have done an outstanding job curating a thoughtful
and thorough journey through Argo CD. Whether you're deploying
your first application or scaling GitOps in an enterprise setting,
this book equips you with the tools and mindset you need to
succeed. A standout resource in this ecosystem.

—Samyak Ahuja, software engineer, Uber

Argo CD: Up and Running

A Hands-On Guide to GitOps and Kubernetes

Andrew Block and Christian Hernandez

O'REILLY"

Argo CD: Up and Running
by Andrew Block and Christian Hernandez

Copyright © 2025 Andrew Block and Christian Hernandez. All rights
reserved.

Published by O'Reilly Media, Inc., 1005 Gravenstein Highway North,
Sebastopol, CA 95472.

O'Reilly books may be purchased for educational, business, or sales
promotional use. Online editions are also available for most titles
(http://oreilly.com). For more information, contact our
corporate/institutional sales department: 800-998-9938 or
corporate@oreilly.com.

Acquisitions Editor: Megan Laddusaw
Development Editor: Jill Leonard
Production Editor: Kristen Brown
Copyeditor: nSight, Inc.

Proofreader: Emily Wydeven
Indexer: Sue Klefstad

Cover Designer: Susan Thompson
Cover Illustrator: Karen Montgomery
Interior Designer: David Futato

Interior Illustrator: Kate Dullea

June 2025: First Edition

http://oreilly.com/

Revision History for the First Edition
e 2025-06-16: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781098142001 for
release details.

The O'Reilly logo is a registered trademark of O'Reilly Media, Inc.
Argo CD: Up and Running, the cover image, and related trade dress
are trademarks of O'Reilly Media, Inc.

The views expressed in this work are those of the authors and do
not represent the publisher’s views. While the publisher and the
authors have used good faith efforts to ensure that the information
and instructions contained in this work are accurate, the publisher
and the authors disclaim all responsibility for errors or omissions,
including without limitation responsibility for damages resulting
from the use of or reliance on this work. Use of the information and
instructions contained in this work is at your own risk. If any code
samples or other technology this work contains or describes is
subject to open source licenses or the intellectual property rights of
others, it is your responsibility to ensure that your use thereof
complies with such licenses and/or rights.

This work is part of a collaboration between O'Reilly and Akuity. See
our statement of editorial independence.

978-1-098-14200-1
[LSI]

http://oreilly.com/catalog/errata.csp?isbn=9781098142001
https://oreil.ly/editorial-independence

Preface

Cloud native technologies, regardless of where they reside (on the
public cloud or in a private datacenter) continue to proliferate. For
those running containerized applications, Kubernetes has become
the de facto solution for running and managing these applications at
scale and, as a result, several different architectural patterns have
emerged over time. GitOps is one such pattern that describes a set
of processes for managing infrastructure and applications within
source code stored within a Git repository. While GitOps is not
exclusive to Kubernetes, it has strong ties to Kubernetes, as the
practices and principles have become the cornerstone for managing
the platform.

While GitOps provides a framework that defines how to align
infrastructure as code (IaC) concepts for managing resources using
content stored within source code management tools, there is still a
need for a tool that can realize these goals and the declarative
nature of the content. In the world of Kubernetes, Argo CD has
become one of the most popular tools for implementing GitOps
paradigms. Given its broad adoption within the Kubernetes
community for use by both infrastructure and application teams,
having an understanding of how it can be used effectively is
essential.

Who Should Read This Book

This book is primarily written for Kubernetes administrators and
developers who want to utilize GitOps practices to improve the user
experience around cloud native technologies, along with those
looking to operationalize Argo CD using the full set of features
provided by the tool. However, since many development teams are

also leveraging Argo CD to deploy and manage their own
applications, these teams will also find most of the content
applicable for their use as well. Upon the completion of this book,
you will be better equipped to implement Argo CD within your
organization in a manner that supports production use.

Whether you just started your Argo CD journey or are a seasoned
power user, we wrote this book to be applicable for all levels of
experience. By including key topics and a set of relatable examples,
this book will become a reference that you can use from day one
and beyond.

Why We Wrote This Book

Argo CD is one of the most popular toolsets in the Cloud Native
Computing Foundation (CNCF) and is quickly becoming the de facto
standard in GitOps implementation. Even with its popularity, best
practices and getting-started guides are sparse and scattered
throughout the ecosystem. We wrote this book as a central place
for those looking into operationalizing Argo CD without having to
scour the internet for the information. Both of us have spent a large
amount of time in the open source community, as well as various
enterprise organizations, assisting in the implementation of Argo CD
in their own environment. We've collected our shared experiences
and seek to be able to share them broadly so that others, like
yourself, can become successful in your Argo CD journey.

Navigating This Book

The adoption of cloud native concepts is a journey. The following is
a glimpse of what you can expect as you make your way through
this book:

e Chapters 1-3 cover everything that you need for beginning
to be productive working with Argo CD, including the goals

the project seeks to achieve, the installation methods, and
common methods for interacting with the platform.

Chapters 4-5 place an emphasis on one of the most
important topics within Argo CD: Applications. As the
primary vehicle for managing resources in Kubernetes using
GitOps, an in-depth overview of Applications will be
provided, including the tools that can be used to define
Kubernetes manifests, the content source for these
manifests, and how and when they are applied to
Kubernetes clusters.

Chapters 69 cover a number of topics that focus on the
management of Argo CD, including authentication and
authorization, cluster management, multi-tenancy and
security.

Chapters 10—-11 go beyond the basics, including advanced
Application design and deployment patterns and extending
the base functionality of Argo CD to take GitOps to new
heights.

Chapters 12—13 discuss some of the key areas that are
applicable for using Argo CD within large organizations,
including how both the tool as well as GitOps in general can
be incorporated into continuous integration/continuous
delivery (CI/CD) workflows, as well as how to operationalize
the platform at scale.

Chapter 14 might appear to be the end of our journey with
Argo CD. However, it is just beginning, as this concluding
chapter provides a number of resources for how to keep the
conversation going with other members of the Argo CD
community, as well as areas for further exploration.

What This Book Will Not Cover

This book will focus on how to get up and running with Argo CD in a
Kubernetes environment. This book will not go over how to install
Kubernetes nor how to manage the lifecycle of a Kubernetes cluster.
Furthermore, there are many ways to do the same thing. We will be
focusing a lot on Helm in this book; however, that is not to say that
using other methods aren't valid. It is impossible to go over every
valid option. There are also many tools/projects that do similar
things. Beyond Argo CD, usage of a particular tool over another
doesn’t mean we are endorsing that tool or that we would use that
particular tool all the time in every scenario. A lot of the time, we
chose the tool for the sake of brevity. We will try and call out all
these exceptions as we go over them.

Prerequisites

Before getting started, we will go through some of the prerequisites
you might need in order to follow along in this book. We assume
that you have access to an operational Kubernetes cluster; we will
describe how to run an environment on your local machine using
kind. However, we recommend that you test these out on a test
system (and for that, we recommend kind).

kind

Although the steps outlined in this book should “just work” with
most Kubernetes implementations, the exercises will make use of
kind, a tool for running local Kubernetes clusters within container
“nodes.” You can get started with kind by visiting
https://kind.sigs.k8s.io.

https://kind.sigs.k8s.io/

The kind website includes instructions on how to install the kind

binary and any of the other prerequisites. Several providers are
available, which map to popular container runtimes, including
Docker, Podman, or nerdctl (containerd), which enables its use
among a greater set of end users.

Helm

We use Helm routinely throughout the course of this book, so it will
be necessary to have the Helm binary available in your SPATH. You

can visit Helm for installation guidelines.

Kubernetes Client

Since we will be interacting with Kubernetes clusters, it will be
important to have the kubectl client available. You can follow the
instructions on the official Kubernetes documentation site.

Argo CD CLI Client

Argo CD comes with the argocd CLI client that interacts with the

Argo CD API server. You can follow the instructions found on the
Argo CD website for installation of this client.

YAML/JSON Processing

To make things easier, we use a lot of g and yg to modify/update

JSON/YAML in place. You can find information about these tools by
visiting their respective websites: jg and yq.

If you're using Linux or a Mac, you might be able to find these
utilities using their respective package manager (for example; you
can run brew install jgona Mac).

https://oreil.ly/Iy8UF
https://oreil.ly/kfRhX
https://oreil.ly/KiJLu
https://oreil.ly/RIguC
https://oreil.ly/huq-E

Companion Git Repository

Throughout this book, you will work through a series of exercises
and examples as you expand your knowledge of Argo CD. These
resources are available within a Git repository.

Since Git is the source code management (SCM) tool for not only
interacting with the companion repository but also GitOps as a
whole as well as Argo CD, it is important that you also have Git
installed locally on your machine. Information related to Git,
including the supported installation options and platforms can be
found on the Git website.

Conventions Used in This Book
The following typographical conventions are used in this book:
Italic
Indicates new terms, URLs, email addresses, filenames, and file
extensions.

Constant width

Used for program listings, as well as within paragraphs to refer
to program elements such as variable or function names,
databases, data types, environment variables, statements, and
keywords.

Constant width bold

Shows commands or other text that should be typed literally by
the user.

Constant width italic

Shows text that should be replaced with user-supplied values or
by values determined by context.

https://oreil.ly/argoCD_UR_repo
https://git-scm.com/

TIP

This element signifies a tip or suggestion.

NOTE

This element signifies a general note.

This element indicates a warning or caution.

Using Code Examples

Supplemental material (code examples, exercises, etc.) is available
for download at https://oreil.ly/argoCD_UR_repo.

If you have a technical question or a problem using the code
examples, please send email to support@oreilly.com.

This book is here to help you get your job done. In general, if
example code is offered with this book, you may use it in your
programs and documentation. You do not need to contact us for
permission unless you're reproducing a significant portion of the
code. For example, writing a program that uses several chunks of
code from this book does not require permission. Selling or
distributing examples from O'Reilly books does require permission.
Answering a question by citing this book and quoting example code
does not require permission. Incorporating a significant amount of
example code from this book into your product’s documentation
does require permission.

https://oreil.ly/argoCD_UR_repo
mailto:support@oreilly.com

We appreciate, but generally do not require, attribution. An
attribution usually includes the title, author, publisher, and ISBN. For
example: “Argo CD: Up and Running by Andrew Block and Christian
Hernandez (O'Reilly). Copyright 2025 Andrew Block and Christian
Hernandez, 978-1-098-14200-1."

If you feel your use of code examples falls outside fair use or the
permission given above, feel free to contact us at
permissions@oreilly.com.

O’'Reilly Online Learning

NOTE

For more than 40 years, O'Reilly Media has provided technology and business
training, knowledge, and insight to help companies succeed.

Our unique network of experts and innovators share their
knowledge and expertise through books, articles, and our online
learning platform. O'Reilly’s online learning platform gives you on-
demand access to live training courses, in-depth learning paths,
interactive coding environments, and a vast collection of text and
video from O'Reilly and 200+ other publishers. For more
information, visit https.//oreilly.com.

How to Contact Us

Please address comments and questions concerning this book to the
publisher:

O'Reilly Media, Inc.

1005 Gravenstein Highway North

mailto:permissions@oreilly.com
https://oreilly.com/
https://oreilly.com/

Sebastopol, CA 95472

800-889-8969 (in the United States or Canada)
707-827-7019 (international or local)
707-829-0104 (fax)

support@oreilly.com

https://oreilly.com/about/contact.html

We have a web page for this book, where we list errata, examples,
and any additional information. You can access this page at
https://oreil.ly/argoCD_UR.

For news and information about our books and courses, visit
https://oreilly.com.

Find us on LinkedIn: https://linkedin.com/company/oreilly-media.
Watch us on YouTube: https://youtube.com/oreillymedia.

Acknowledgments
Andy Block:

They say that it takes a village to raise a child, and this
sentiment is certainly true for both the GitOps and Argo CD
communities. It would not be possible to produce a publication,
such as this book on Argo CD, without the continued support of
the open source community. In particular, I would like to thank
Dan Garfield, who has helped shed light into what it takes to
build a business that is focused primarily on GitOps. In addition,
I wanted to also thank Michael Crenshaw. whose unbelievably
deep knowledge of Argo CD has helped me time after time

mailto:support@oreilly.com
https://oreilly.com/about/contact.html
https://oreil.ly/argoCD_UR
https://oreilly.com/
https://linkedin.com/company/oreilly-media
https://youtube.com/oreillymedia

better understand all of the minute details of the project. These
insights directly translated into the ongoing support that I am
able to provide to community members along with material
within this book.

Of course, I could not forget my colleagues at Red Hat who have
helped and supported my endeavors within the GitOps space.
From Raffaele Spazzoli and our endless conversations on Helm,
Kustomize, and various GitOps patterns to Gerald Nunn and our
thoughts and designs for what it takes to properly architect and
operate GitOps as a platform service within some of the most
regulated organizations in the world. And, to the entire
OpenShift GitOps team. Thank you for making me feel like an
extended member of your team, where our ongoing
collaboration has enabled our customers to apply GitOps
principles at scale, using some of the most secure and trusted
software available.

Finally, Argo CD is just one of many GitOps tools in the industry.
There will never be a single GitOps tool, and we are all better
because of that fact. A big thank you goes out to those in the
GitOps community, including Scott Rigby, Alexis Richardson, and
Stacey Potter. Your continued partnership and collaboration is
truly appreciated!

Christian Hernandez:

The path to being a subject matter expert in a particular
technology—to the point where you write a book—isn't a path
you take alone. There have been many people in my career who
have helped me get where I am. I would like to take this
opportunity to give many thanks to those people.

My time at Red Hat was paramount to my development, and I
couldn’t have done it without the mentorship and leadership 1
received from Scott Cranton, Chris Morgan, and Erik Jacobs. Your
willingness to let me grow was pivotal in my success. I cannot

express my gratitude enough for everything. Also, to my “OG
OpenShift TigerTeam” coworkers. We were lucky enough to work
together during the best time of my career. Being able to work
with experts in the field propelled me to be the best I can be.
Also, a very special thanks to Chris Short, who always pushed
me to be the “Kelsey Hightower of GitOps.”

Lastly, I would like to thank Hong Wang, Jesse Suen, and
Alexander Matyushentsev. Creating the Argo Project was a bold
and brave thing to do (even if you all didnt know it at the time).
Growing with the Argo Project has been a privilege; and now
working with you all directly has elevated me to a level of
expertise that I wouldn't have imagined. I am proud to be a part
of your journey, and I wouldn’t be here without what you three
have created.

Both:

We are deeply grateful to the tech reviewers for their meticulous
attention to detail and technical expertise, which greatly
enhanced the accuracy and quality of this book. We would like to
thank the following:

e Vladislav Bilay

e Manuel Dewald

e Werner Dijkerman

Nadir Doctor

Predrag Knezevic

Jess Males

Benjamin Muschko

Gerald Nunn

Lipi Deepaakshi Patnaik

e Rick Rackow

Your invaluable feedback helped us refine complex concepts,
ensuring clarity and precision for readers. The insights and
suggestions you provided were instrumental in strengthening the
technical depth and real-world applicability of the content. We
sincerely appreciate the time and effort you dedicated to
reviewing, catching errors, and offering thoughtful
recommendations. This book is stronger because of your
contributions, and we are truly thankful for your commitment to
making it the best resource possible.

Chapter 1. Introduction to
Argo CD

Kubernetes caused a disruption within the tech industry. Its role as
the cornerstone of the entire cloud native ecosystem cannot be
overstated. The Cloud Native Computing Foundation (CNCF) was
started with Kubernetes as its foundation, and as a result, many
open source tools were developed around premises of leveraging
the immutable and declarative nature of Kubernetes. As popularity
and adoption grew for Kubernetes, so did the cloud native
ecosystem as a whole. The need for different use cases led to the
development of Kubernetes-native projects and tools (along with
various startups) that were needed to further springboard the ever-
growing adoption of Kubernetes and cloud native architecture.

One of the many challenges that came with Kubernetes adoption
was the issue of “cluster sprawl.” Cluster sprawl (not very much
different from VM sprawl back when virtualization hit the scene)
became apparent and the idea of “clusters as cattle” became
popular, replacing the old idea of a “central cluster for everything”
that was popularized by virtualization platforms. The need to be
able to manage the lifecycle of many clusters at scale became
something that was paramount to the success of Kubernetes and
cloud native deployments. This is something that early adopters of
Kubernetes ran into while they were operationalizing their cloud
native architecture.

Throughout this chapter, we will dive into these themes and also
walk through what Argo CD is and the role it plays in the
Kubernetes and cloud native ecosystem.

What Is Argo CD?

When Kubernetes came onto the scene in 2014, it quickly became
the way to manage containerized workloads at scale. Kubernetes'
declarative nature made it easy for end users and enterprises to
explicitly describe the end state of their application deployments—
while leaving the work up to Kubernetes. This new way of working
came a long way from the more traditional imperative methods that
had existed for years. Still, many users found themselves using
Kubernetes in an imperative fashion. End users and enterprises
were still managing Kubernetes configurations (i.e., YAML) manually
or via event-based triggers and scripts. For example, users replaced
their ssh commands with kubectl commands, and applied these
Kubernetes configurations manually, leaving them largely
untracked.

Argo CD is one of the many tools that came out of the need to
manage application deployments across multiple Kubernetes
clusters spanning various environments. Furthermore, it became
important to not just manage these deployments, but also keep
them tracked and versioned. Intuit was an early adopter of
Kubernetes and knew all too well the issues with adopting such a
fast-moving technology. This led Intuit to make a strategic move to
become more of a technology company, and it doubled down on this
strategic move by acquiring Applatix in 2018. This acquisition
provided the foundation needed to create the Argo Project. The
Argo Project became the home to various DevOps-based toolsets,
and their capabilities helped quickly onboard developers into
Kubernetes, microservices, and cloud native architecture as a
whole.

One of the main hurdles in adopting Kubernetes was the
user/developer experience. Kubernetes is a powerful platform, but it
was really built with the expectation that you are familiar with a lot
of system operation experience. The principal of the Argo Project
was to build toolsets from the ground up with not only GitOps in

https://oreil.ly/hPi57

mind, but also a developer experience mindset at the forefront—
which is where Argo CD comes into play.

Argo CD is one of the tools that lives in the Argo Project. It was
written with GitOps and developer experience in mind; it is
designed to deliver changes/updates to a Kubernetes cluster or to
many clusters at massive scale. Argo CD detects and prevents drift
within Kubernetes clusters by working with YAML, stored in a Git
repository and using native functionality found in Kubernetes. While
Argo CD is known for its ability to implement GitOps, it also has
been used as a generic DevOps tool for those who are using
Kubernetes to deploy and manage workflows in a hon-GitOps
environment. This flexibility has led Argo CD to be one of the most
popular toolsets in the CNCF ecosystem.

Argo CD works with Helm and Kustomize to further provide
flexibility and render the YAML produced by those tools before
applying them to the Kubernetes cluster. We will look at Helm and
Kustomize more closely in Chapters 3 and 4.

Why Argo CD?

There are many reasons why DevOps professionals have adopted
Argo CD. Part of the mass adoption of Kubernetes meant that many
of the imperative, event-driven ways of deploying applications
weren't taking advantage of the benefits of the declarative
approach Kubernetes had built in.

Unifying Application Definitions

Argo CD took the different pieces that made up an application
running on Kubernetes and turned them into a unified, deployable
unit of work. Typically, an application deployment is made up of
individual Kubernetes objects (for example a deployment, a service,
and a namespace), and they each were managed individually—

coupled loosely together. Argo CD brought these related objects
into an atomic unit of work known as an Argo CD Application. Here,
an end user can have these Application definitions, configurations,
and environments managed in a declarative and version-controlled
way. Application deployments and lifecycle management could now
be automated, auditable, and easy to understand. Argo CD
Application specifics will be covered in Chapters 4 and 5.

Configuration Drift

Configuration drift has been an issue in application deployments for
as long as we have been delivering applications. Still, this issue has
been plaguing us for quite some time, and many tools have been
developed to combat this issue. Infrastructure as code (IaC) tools
aimed to solve a lot of these issues, but it wasn’t until immutable
infrastructure (Kubernetes hand in hand with containers) came
about that allowed us to truly solve this issue of configuration drift.
Argo CD takes advantage of the reconciliation loop of Kubernetes
and keeps deployments from drifting from their source of truth—
whereas event-driven processes tend to have to wait for an event
to trigger a reconciliation. Many DevOps professionals rely on Argo
CD in order to prevent configuration drift at scale. Bringing clusters
under the control of Argo CD gives DevOps professionals a sense of
trust that the environment is as it should be.

Rollback and Disaster Recovery

Argo CD can be used to expedite the rollback/disaster recovery
process. Since Argo CD keeps your cluster in sync with its source of
truth, you only need to revert your source of truth (usually in Git) to
a working state. Argo CD will then work to set your cluster back to
its desired state. Similarly, disaster recovery works the same way.
DevOps professionals use Argo CD to recover by simply installing

Argo CD and pointing to a specific target state in Git (whatever
version that may be), and Argo CD handles the rest.

The GitOps Movement

It seems that GitOps has quickly become the tech industry’s latest
and greatest buzzword and marketing’s favorite term to throw
around. But when searching for the term GitOps, you will likely
come across a lot of concepts that seem to be unrelated to one
another. You are also likely to find a lot of concepts that you are
familiar with. So, is GitOps something that application
developers/software engineers use? Or is it designed more for
infrastructure teams or system administrators to use in managing
their environments? Maybe it is just a spin or a new term for
DevOps, or continuous integration/continuous deployment (CI/CD).

In actuality, GitOps takes different approaches to automation,
application delivery, infrastructure management, and security and
brings them under a single management umbrella.

The topic of GitOps almost always naturally starts with a discussion
around DevOps, a term on which GitOps is clearly based. The
DevOps movement was born out of the need to automate
application delivery. It allows the teams that wrote, delivered, and
supported the software to work together to support a common goal.
DevOps isn't necessarily a department but rather a culture in your
organization. So how does GitOps relate to DevOps? That's simple:
GitOps is DevOps. GitOps is the natural progression of DevOps, and
it implements the best of what DevOps practitioners were already
doing—they just didn't know it yet.

Origins of GitOps

Weaveworks is credited with the creation of the GitOps name. The
story can be summarized that back in 2017, Weaveworks was

https://github.com/weaveworks

operating as a software-as-a-service (SaaS) company that hosted
its customer’s applications on its platform using Kubernetes. There
was once an incident where a mistaken configuration change (a
case of “fat-fingering a config”) took down its entire platform, but
the DevOps engineers were able to bring back the system in a
relatively short time. When asked how they did it so quickly, they
described their process and procedures, which Weaveworks CEO
and cofounder Alexis Richardson, called GitOps.

OpenGitOps Principles

In October 2021, the GitOps Working Group released the
OpenGitOps Principles, a set of principles for managing software
systems. With this release, the working group aimed to define what
GitOps actually is and not let it succumb to being just another
buzzword. The current version, version 1.0, has four principles.

Principle 1: Declarative
The first OpenGitOps principle states:

A system managed by GitOps must have its desired state
expressed declaratively.

The reference to the desired state means that you represent the
way you want the system to work in an “end state,” which will be
the final state achieved by changes made by the GitOps
environment. This is the difference between imperative and
declarative; as you'll recall, Kubernetes operates in a declarative
mannetr.

Principle 2: Versioned and Immutable
The second OpenGitOps principle states:

Desired state is stored in a way that enforces immutability,
versioning, and retains a complete version history.

https://oreil.ly/UTE3V

The canonical example of the “versioned and immutable” principle
is Git, which is why GitOps picked up this term for its name. The
functionality of Git makes it versioned and immutable because each
change is tracked in a new version without altering previous
versions. The idea is that you can revert back to a previous version
while preserving an audit of all the changes that have been made.

Principle 3: Pulled Automatically
The third principle states:

Software agents automatically pull the desired state declarations
from the source.

This principle is where GitOps starts to differentiate itself from a
traditional event-driven CI/CD process.

Although triggering changes and updates via webhooks or other
events is a valid way to automate builds, it's not (by itself) GitOps.
GitOps software agents (or GitOps controllers) check the desired
state by pulling and checking declarations from Git at regular
intervals, which means polling as well as pulling. In GitOps, there is
no webhook that needs to be hit. Instead, there is a reconciliation
loop. This leads us into the final principle.

Principle 4: Continuously Reconciled

The final principle is another place where GitOps differentiates itself
from event-based workflows. It states:

Software agents continuously observe the actual system state
and attempt to apply the desired state.

This principle directly mirrors the functions of the Kubernetes
controllers, but GitOps applies it to a whole application or
infrastructure stack instead of just one object. We've seen that the
desired state is pulled from configuration information that is
versioned and stored in an immutable storage system. If there is a
difference between the desired and running states, they are

reconciled by changing the running state. This is happening
continuously at a regular interval. “Continuous” here is understood
in the industry to mean that reconciliation continues to happen at a
chosen interval of time. Reconciliation doesn't have to be
instantaneous.

Comparison of GitOps Tools in the Ecosystem

The need to have all your systems in sync has existed for quite
some time. This is where the paradigm of “infrastructure as code”
came about, along with many tools, such as Terraform, Ansible,
Puppet, and Chef (among others). Kubernetes was no different. As
it gained traction, the need to be able to manage deployments at
scale (and keep them in sync) was as big as ever. From that need
sprung two major, cloud native GitOps controllers: Flux and Argo
CD.

Flux

Flux originated from the engineers at Weaveworks. The tool was
developed as a means to “keep the lights on” for Weaveworks’
managed services. This tool was refined and then released as an
open source project in the CNCF. Its current iteration, Flux v2, is
built upon the idea of toolkits. It includes individual Golang libraries
that use the Unix philosophy of “do only one thing, but do it well.”
Technically speaking, Flux v2 is just software that is built using the
toolkit, and it is possible to build your own software around these
toolkits.

Argo CD

Argo CD, as explained earlier, was developed inside of Intuit. The
goal of Argo CD was to quickly on-ramp Intuit developers to their
Kubernetes-based platform. It can be seen as an early attempt at

https://fluxcd.io/

platform engineering, and Argo CD can be seen as Intuit’s internal
developer platform (IDP). The idea was to abstract away all the
nuances of deploying and managing applications onto Kubernetes.
Argo CD wasn't the first tool that was developed at Intuit, because
other complementary (DevOps-focused) tools were also needed.
Together, they were packaged as the Argo Project (described in
more detail later in this chapter) and donated to the CNCF.

Comparison of Flux and Argo CD

A deep comparison of these two tools is beyond the scope of this
book. The main differences are really in the philosophical approach
of how to manage a Kubernetes platform. Notably, Argo CD only
wants to work on raw YAML, and it wants to mimic the functionality
of kubectl as much as possible.

Take, for example, how each tool handles Helm. Flux uses the Helm
Golang library to deploy Helm charts, whereas Argo CD renders the
raw YAML (using the helm template command) in order to apply
it to the Kubernetes cluster. So, how does that impact Argo CD
users? It means that running helm 1s will not return anything
against a Kubernetes environment managed by Argo CD, whereas
one managed by Flux will. The trade-off is that in an Argo CD-
managed environment, diffing (the process of seeing what’s
different in the running state versus the desired state) is possible
with a Helm chart deployment, whereas in a Flux system, you
cannot see the diffs.

Another big difference is that, although you can get a UI via Weave
GitOps, there is no native UI for Flux because Flux is strictly a
CLI/API-based tool. Argo CD is built as a “complete” product, which
includes a rich UI, RBAC system, and other multi-tenant tooling.

Deciding which tool to use has many factors, and that level of
nuance is outside the scope of this book. From here forward, we'll

go on the assumption that you have chosen Argo CD as your GitOps
tool of choice. After all, why else would you be reading this book!

The Argo Ecosystem

Normally, when people say or think Argo, most folks who are
already well familiar with the cloud native ecosystem automatically
think Argo CD. However, Argo CD is just one of the subprojects that
are part of the overarching Argo Project. The Argo Project is a suite
of DevOps tools aimed at making the lives of SREs and developers
easier and at quickly onboarding those who aren't familiar with
Kubernetes. In fact, many are surprised to learn that Argo
Workflows is the most popular of the toolsets within the projects
(based on the number of GitHub stars). The tools within the Argo
Project are:

Argo Workflows

A cloud native workflow engine that is popular with the AI/ML
community and recently has seen an increase in users adopting
Workflows for CI

Argo CD

A recent hot topic in the cloud native world; Argo CD takes a
GitOps approach to managing and deploying applications on
Kubernetes at scale

Argo Rollouts

An advanced progressive delivery controller that works hand in
hand with Argo CD (it can also be used by itself, independent of
Argo CD) to help end users perform Canary and blue—green
deployments using their own Ingress/ServiceMesh controllers

Argo Events

A generic event bus with dependency management

There is also Argo Labs, an area within the Argo Project that acts as
an “incubation” area for tools that are related to the Argo Project
ecosystem. For example, Argo CD ApplicationSet (now included with
Argo CD), started out in Argo Labs before being included as a
general availability (GA) enhancement to Argo CD.

Summary

This chapter summarizes the challenges and solutions within the
Kubernetes and cloud native ecosystem, highlighting the rapid
adoption of Kubernetes and the resulting need for efficient cluster
management. A key issue that emerged with Kubernetes was
“cluster sprawl,” requiring better management tools for handling
multiple clusters at scale. Argo CD, a tool developed under the Argo
Project, addresses these challenges by enabling GitOps for
managing and deploying applications across Kubernetes clusters.
Argo CD integrates with Kubernetes’ declarative nature to track and
version application deployments, preventing configuration drift and
supporting rollback and disaster recovery processes. The chapter
also discusses GitOps principles, its evolution from DevOps, and the
benefits of using Argo CD compared to other tools like Flux. Finally,
the chapter introduces the broader Argo ecosystem, which includes
tools like Argo Workflows, Argo Rollouts, and Argo Events that
together offer a comprehensive suite for DevOps and Kubernetes
management. With this foundation, you should now have the
context and the why as we dive into implementation-specific
configurations for the rest of this book.

https://github.com/argoproj-labs

Chapter 2. Installing Argo CD

Like most cloud native applications, Argo CD features a
microservices architecture that comprises multiple components and
technologies. Each Argo CD component, working together, helps
support a fault-tolerant and robust system that helps enable the full
set of features and capabilities. Understanding how all of these
services work together in concert provides a greater awareness of
the architecture, their significance, and how they are incorporated
into the overall system as a whole. This chapter introduces the
architecture and design of Argo CD along with detailing the various
ways that it can be installed in a Kubernetes environment.

Argo CD Architecture

Since Argo CD is a GitOps-based solution designed for Kubernetes,
the architecture emphasizes the use of as many Kubernetes
primitives as possible, which will be described in detail in this
chapter. As introduced in Chapter 1, Argo CD sources content stored
in repositories and realizes those configurations within a Kubernetes
cluster. But what does that look like, and what are the components
involved?

Kubernetes Controller Pattern

One of the key benefits of using Argo CD, aside from the capability
to define Kubernetes resources within source repositories and apply
them automatically to a cluster, is that Argo CD can be configured
to enforce those configurations to stay in place, even if they are
modified. This is known as drift management. Argo CD
accomplishes this by implementing a Kubernetes concept called a
controller, which executes a nonterminating control loop for

managing and monitoring the desired state of at least one resource.
Based on a defined configuration, the controller will ensure that the
current state matches the desired state.

For example, Deployments are a common method for registering
workloads into Kubernetes, and as part of the creation of a
Deployment resource, a ReplicaSet is also created, which will
ensure that a specified number of pods are always running.
Kubernetes accomplishes this through one of the built-in Kubernetes
controllers, the ReplicaSet controller, which monitors all pods that
have been created for a given ReplicaSet and ensures that the
actual state of the resource(s) in the cluster matches the expected
and defined state. If the actual state does not match the expected
state, the controller will reconcile the difference until the current
state matches the defined state.

NOTE

Chapter 5 will cover divergence and diffing.

This controller pattern applies to not only the resources that end
users manage but is also foundational for Argo CD itself. The
properties that drive the core configurations of Argo CD are stored
within ConfigMaps and Secrets, which include:

e Baseline Argo CD server details
e Connectivity details to external source repositories
e Security

However, as one can imagine when designing a system for which
there may be a complex set of properties, there is a limitation of
the types of properties that can be stored within the simple
key/value constructs provided by not only these Kubernetes

resources, but also any of the API's resources that are included with
a standard Kubernetes installation.

Argo CD is not alone when it comes to solutions for adding new
ways of managing resources within a Kubernetes environment. This
need led to the creation of custom resources, which are
implemented through Custom Resource Definitions (CRDs) and
enable an end user to register a new resource type within
Kubernetes. By defining a new resource type, not only can the
properties of this resource be defined (so that consumers can
become aware of and comply with the acceptable fields and their
rules), but a new API endpoint in the Kubernetes API server is also
registered to facilitate the management of these resources.

A concept similar to a Kubernetes controller, known as an operator,
builds upon the primitives of a Kubernetes controller for managing
the current and desired state of resources in a Kubernetes cluster
and applies them to CRDs. Given that custom resources typically
have domain-specific values and meaning associated with them, an
operator is built with this domain-level knowledge of how to
interpret those values and ensure that the state of resources within
Kubernetes matches those defined values.

Argo CD makes use of several custom resources, and their
properties are the primary vehicle to enable end users to manage
their Kubernetes resources using GitOps-based principles. The use
of Kubernetes controllers and custom resources is fundamental to
the overall Argo CD architecture.

Argo CD Architecture Overview

Given that Argo CD implements a microservices-based architecture,
there is no single Argo CD component, but instead multiple
distributed systems that act in a coordinated fashion. Figure 2-1
depicts the overall Argo CD architecture, including the relationship
between each of the services and resources.

Ul

g Webapp CLl

rAppIicatinn

APl server

Core

Application
controller

ApplicationSet
controller

Infra

Kube API

Figure 2-1. Overall Argo CD architecture

Custom resources

Argo CD makes use of several custom resources to declaratively
define business logic and APIs to implement GitOps management
capabilities. Three custom resources are provided with each
installation of Argo CD:

o Applications

e AppProjects

e ApplicationSets

The purpose of each custom resource will be described in more
detail throughout the course of this book. However, it is important
to note that Argo CD interacts with the Kubernetes cluster using
these CRDs. This, effectively, makes these CRDs your interface for
managing your Kubernetes cluster/clusters.

The Application controller and ApplicationSet controller are both
Kubernetes Operators (and by definition, also controllers) that
continuously monitor the state of Application and
ApplicationSet resources, which represent an application
instance deployed to environments where the live state in the
Kubernetes clusters is compared against the desired state from
source repositories. In addition, they are also responsible for
performing lifecycle events associated with the content that they
are reconciling, such as the ordering of resources as they are being
applied. More details related to this feature are found in Chapter 5.

Repository Server

The Repository Server maintains a local cache of the remote
content source (either a Git or Helm repository) that will be
translated into Kubernetes manifests. It is responsible for
generating resources based on parameters, including:

e Repository type

e Repository source location

¢ Path within the repository

e Template tool-specific parameters

In addition, custom plugins (described in detail in Chapter 11) are
also executed within this component, as they can influence the
generation of the Kubernetes resources.

API server

The API server is a gRPC/REST-based server (the API server accepts
both) that exposes services for managing key configurations that
are integral to the platform, including:

¢ Application management and status reporting

¢ Invocation of application operations including syncing,
rollback, and additional user-defined actions

¢ Cluster and repository management

e RBAC enforcement

Several other components within the Argo CD ecosystem heavily
rely on this asset for their normal operation including the UI, CLI,
and external CI/CD systems.

In addition to acting as an API server, a web Ul is also exposed,
which provides a method for visualizing Application activity as well
as supporting the management and configuration of Argo CD.

Redis

Redis is an in-memory database and provides local caching
capabilities to reduce the dependency on external systems. While
its primary purpose is to cache the contents of remote repositories,
it also supports storing the state of the associated Kubernetes
resources that users are managing from within repositories as well
as the connection status of remote repositories and clusters. The
content of the cache is not persisted and is always rebuilt at
startup.

Command-line interface (CLI)

There is a command line—based utility for interacting with Argo CD.
Support is available to manage the configuration of the platform
itself as well as the lifecycle of applications. Communicates via the

Argo CD API and includes a superset of the capabilities that are
provided by the Argo CD user interface (UI).

Single Sign On (SSO)

Argo CD provides user management capabilities for interacting with
the platform. These users can be defined locally within Argo CD or
can be sourced from an external source. When integrating with an
external source, OpenID Connect (OIDC) authentication is
supported. For external identity providers that do not provide a
direct OIDC integration, an instance of the Dex identity server is
provided to act as a bridge between Argo CD and the remote
identity provider.

Notifications

Notifications are included as part of the standard installation of Argo
CD starting in version 2.3. This feature provides a mechanism for
monitoring and triggering notifications to external systems based on
the lifecycle of applications through the use of templating
capabilities and a catalog of included triggers. Argo CD Notifications
can be configured to send information to (but are not limited to)
Slack and email, and can also invoke other webhooks.
Understanding the current state of systems and environments is key
when running production systems, and Argo CD notifications will be
covered in greater detail in Chapter 13.

Argo CD Key Patterns

As may be evident by this point, now that the foundational
architecture has been introduced, Argo CD makes use of several key
patterns; their significance will become even more apparent as each
topic is described.

First, there is an emphasis on defining resources in a declarative
fashion, whether they be one of the provided custom resources or a
core configuration of the Argo CD server itself that is stored in a

ConfigMap or Secret. Not only does this trait implement one of the
most important concepts in GitOps, but it also enables the
configuration of Argo CD itself to be managed via GitOps and Argo
CD.

Building upon the first theme, where each resource is managed in a
declarative fashion, Argo CD also makes use of a stateless
architecture, meaning that configurations are the state of the
system that can be rebuilt at any time. This approach makes Argo
CD a stateless system from an architectural point of view. If there is
either a desire or need for state to be tracked against a particular
resource, the status field, a standard property and method found
on many Kubernetes resources, can be used to provide historical
context. In addition, while Redis is included as a caching mechanism
within the Argo CD architecture, it is used as a volatile cache
without any long-term persistence.

Finally, Argo CD enables extensibility. Not only are there multiple
repository types from which GitOps-related content can be sourced,
but there is also built-in support for templating resources using a
number of popular tools, including Kustomize, Helm, and Jsonnet.
Additional user-defined tools can also be added to not only
integrate with additional external resources but also enhance how
assets are rendered.

Now that we've covered the basics of the Argo CD architecture,
including the primary components, let’s shift gears to the methods
that are supported for installing Argo CD.

Installing Argo CD

Just as Argo CD supports the use of multiple methods and tools,
such as Kustomize and Helm, to generate resources that can be
applied to a Kubernetes cluster, many of these same tools and
approaches can be used to install Argo CD itself. The determination
of the particular approach depends largely on user preference as

well as if there are any specific requirements or constraints, such as
team or organizational guidance or restrictions. In addition to the
tool that is used to facilitate the execution of the installation, Argo
CD also supports several installation types, which influence the
resources that are included in the deployment as well as the
configuration of the deployed resources. Some of these topics will
be expanded upon in subsequent chapters.

Installation Types

Argo CD as a GitOps tool, similar to many other tools in this space,
is utilized by a variety of personas who each have their own set of
business domains and goals. Since there are a multitude of use
cases and requirements that may be desired, Argo CD supports
multiple installation configurations, and the determination of a
particular configuration depends on the answer to these key
decision points:

Who are the users and consumers of the platform?

What is the scope Argo CD should manage?

Is high availability a concern?

What are the security requirements?

What are the bootstrapping and automation needs?

These options are illustrated in Figure 2-2.

Argo CDinstallation options

HA
install

|
 EE—
Non-HA
Nan-HA install
e

Cluster Highly
available

5

Multi-tenant

Installation A
scope ¥
— namespaced
= Highl}f install
installation Nomespace available Non-HA
T namespaced

Core install
- . —
fore | installation

Figure 2-2. The options and considerations when installing Argo CD

The first decision point is the type of installation that Argo CD
should serve. In most cases, Argo CD will be consumed by multiple
individuals that may span across multiple teams within an
organization. Additionally, most organizations desire to make use of
the full set of features that are provided as part of a standard
deployment of Argo CD (we covered these in the previous section).
This is known as a multi-tenant type of installation, and it is most
commonly utilized as it provides the full set of capabilities provided
by Argo CD.

Alternatively, an option is available to perform an installation that
includes only the minimal set of components to support normal
operation—known as a core install. This approach does not include
the API server or UI, SSO, or notification features. In addition, each
component is also optimized to consume a minimum amount of
resources in a non-highly available configuration (more on the topic
of high availability later in this chapter). While a core deployment is
not intended to appease the masses, this approach is beneficial for
individual users who manage Argo CD from both an administrative
and end-user perspective where there is not a desire to leverage
the full multi-tenant feature set of Argo CD, but there is still a
desire to take advantage of the primary GitOps capabilities.

The next decision point that must be addressed is the scope that
Argo CD should manage. By default, Argo CD has the authority to
control resources across an entire Kubernetes cluster they are
deployed within as well as any external clusters under its
management. This broad range of access is the preferred option,
especially when Argo CD is being used by Kubernetes cluster
administrators, as it does not introduce any limitations on the
resources that can be managed. However, another approach, known
as namespaced mode, that is available is to deploy Argo CD within
a specific namespace and to allow Argo CD to only manage
resources within specific namespaces. This option is used in multi-
tenant environments where individual application teams are given
the autonomy to operate their own instance of Argo CD but are not
granted access to manage cluster-scoped resources. An in-depth
look into the use of a namespaced deployment of Argo CD and its
use case will be discussed in Chapter 8.

Finally, to support production environments, each of Argo CD’s
components can be configured in an optimized manner to ensure
greater resiliency and performance needs. This approach is
accomplished through a combination of increasing the replica count
as well as enabling tunable parameters within each component.
However, there are certain considerations that must be followed so
that Argo CD can operate in an optimized fashion, as merely
increasing the replica count of all components uniformly can actually
cause a performance degradation. Fortunately, Argo CD provides
manifests supporting both clustered and namespace-scoped
deployments that illustrate the types of configurations necessary to
enable a highly available deployment.

Now that both an overview of the Argo CD architecture and an
understanding of the deployment approaches have been addressed,
it's time to see Argo CD in action by working through the first
hands-on activity.

Deploying Argo CD

In due course throughout the remainder of this book, most of the
installation types and approaches will be realized. However, let’s
start off by performing a basic installation of Argo CD to our kind

environment.

Deploying Argo CD using YAML manifests

The simplest and most straightforward option is to use one of the
raw YAML-formatted manifests that include all of the resources and
configurations within a single document, and in particular, a non-
highly available, multi-tenant-based deployment of Argo CD.

NOTE
High availability is covered in Chapter 13.

First, ensure that a fresh kind cluster is running:

kind create cluster

NOTE

By default, the name of the cluster that the kind tool creates is called kind.

You are free to change the default behavior by specifying an alternate name
using the --name parameter of the kind create cluster command or by

setting the environment variable KIND CLUSTER NAME with the desired name.

Once the cluster has started, your kubectl1 context will be

automatically updated and ready to utilize the newly created
cluster. Execute the following commands using kubect1 to create a

new namespace called argocd and to deploy Argo CD in the
previously described configuration:

kubectl create namespace argocd

kubectl apply -n argocd \

-f https://raw.githubusercontent.com/argoproj/argo-
cd/stable/manifests/install.yaml

After a few moments (to allow for the associated images to be
downloaded to the kind cluster), the pods in the argocd

namespace can be queried with a result similar to the following:

kubectl get pods -n argocd

NAME READY
STATUS RESTARTS AGE

argocd-application-controller-0 1/1
Running 0 46s

argocd-applicationset-controller-74575b6959-8dc71 1/1
Running 0 46s

argocd-dex-server—-64897989£8-gg8pm 1/1
Running 0 46s
argocd-notifications-controller-566bc99494-7vj82 1/1
Running 0 46s
argocd-redis-79c755¢c747-867nk 1/1
Running 0 46s
argocd-repo-server-bc9c646dc-6sd86 1/1
Running 0 46s
argocd-server-757fddb4d7-xgdxh 1/1
Running 0 46s

The standard deployment of Argo CD depicted here contains each of
the primary components that are included with Argo CD, so it is an
ideal baseline to work from.

The Ul is one of the key features that sets Argo CD apart from other
GitOps solutions. By default, the set of resources that were applied
to the Kubernetes cluster did not include any configurations or

resources to expose access to Argo CD outside the cluster. While
there are several approaches that can be used to access Argo CD
externally, such as creating a LoadBalancer service type or using
an Ingress, to demonstrate baseline functionality, the port
forwarding capability of the kubect1 CLI can be used to connect to

Argo CD without any additional actions.

Before moving on, confirm the successful installation of Argo CD by
accessing the UI. To do this, execute the following command to
initiate the forwarding of port 8080 from the local machine to the
Argo CD server service, which will expose access to the UI:

kubectl port-forward svc/argocd-server -n argocd :443

The command will establish a tunnel to facilitate the connection and
block additional commands from being entered while the tunnel is
established. If additional commands need to be executed while
ports are forwarded, launch another terminal.

With access to the Argo CD UI available due to the port-forward
tunnel, navigate to https://localhost:8080.

NOTE

By default, Argo CD generates a self-signed TLS certificate to enable secure
transmission between itself and the browser. Since this certificate is not trusted
by the browser, a warning is displayed. Depending on the browser being used,
there will be an option to proceed even though the certificate is not trusted,
and then the Argo CD login page will be displayed.

To log in, admin is the username of the Argo CD administrator, and
the password is a secret with the name argocd-initial-admin-
secret. Obtain the password by executing the following command:

https://localhost:8080/

kubectl -n argocd get secret argocd-initial-admin-secret -o
\
jsonpath="{.data.password}" | base6d4 -d; echo

Log in using admin as the username and the password that was

obtained from the prior command. Upon successful login, the Argo
CD dashboard is displayed, as shown in Figure 2-3.

ADpECaTng APPLICATIONS TILES

'@ Argo CD

v2.5.4+86b2dde

£ Applications

No applications yet
Create new application to start managing resources in your cluster

CREATE APPLICATION

Figure 2-3. The Argo CD Applications page

The dashboard contains a list of the current applications that have
been registered to Argo CD and their current status. Since this
instance does not have any applications registered, the dashboard
is empty. Feel free to navigate around the UI as you see fit.
However, a more in-depth overview of the user interface will be
covered in Chapter 3.

High availability

The standard deployment of Argo CD is ideal for getting started but
is not suitable for production environments due to the fact that
there is only a single replica for each component. In case one of the
components fails (due to an error or issue with the underlying
infrastructure), it will cause a degradation of functionality as one or

more of the resources will become unavailable. To mitigate these
concerns, an alternate set of YAML definitions is available for both
cluster and namespaced modes of operation. The key difference
between these sets of resources and those that were deployed
previously is that not only have additional tuning options been
implemented, but multiple replicas of each service have also been
defined. This means that if a failure does occur to one of the
services, the remaining replica will be able to take on requests and
continue normal operation in a degraded state until the original
replica returns to normal operation.

Given that the topic of high availability is just one of the many traits
of a production system, this will be expounded upon in Chapter 13
as part of the discussion on the considerations for operating Argo
CD at scale.

Deploying Argo CD using Helm

Argo CD can also be installed using a Helm chart. A Helm-based
installation approach has advantages over YAML manifests, as the
resources that are installed can be customized using the dynamic
templating capabilities provided by Helm. For example, entire
components can be enabled or disabled, as well as specific
properties can be tailored, whereas these options would not be
possible using the YAML-based manifest approach.

To install Argo CD using Helm, first be sure that your kind cluster

does not have any previously created resources deployed. If Argo
CD is still running from the prior section, the kind cluster can be

deleted and re-created, or the contents from the prior section can
be removed.

To delete and re-create the kind cluster, use the following
commands:

kind delete cluster
kind create cluster

Alternatively, instead of needing to re-create the entire kind
cluster, the YAML-based manifest installation of Argo CD can be
uninstalled by removing the resources from the same manifest and
then deleting the argocd namespace:

kubectl delete -n argocd \

-f https://raw.githubusercontent.com/argoproj/argo-
cd/stable/manifests/install.yaml

kubectl delete namespace argocd

With a fresh kxind cluster available, proceed to deploy Argo CD
using Helm.

First, add the Argo CD Helm repository:

helm repo add argo https://argoproj.github.io/argo-helm

Install the Helm chart using the default configuration and create a
new namespace called argocd using the following command:

helm upgrade -i argo-cd argo/argo-cd -n argocd --create-
namespace

NOTE

Either the helm install or helm upgrade command can be used to install
the Argo CD chart. When the helm upgrade command is used with the -i

parameter, Helm will check if there is an existing release found. If a release is
not found, the chart will be installed instead of upgraded. The benefit of using
helm upgrade in this situation is that the same command can be issued

regardless of installing a chart for the first time or upgrading an existing
release. The helm install command can only be used when installing a

chart for the first time.

Another benefit of Helm is that chart creators can include additional
information that is displayed whenever a chart is installed or

upgraded, known as NOTES. After executing the helm upgrade
command previously, the contents of the NOTES document in the
chart was displayed, which provided a set of next steps, including
how to access the Argo CD UI and how to obtain the password for
the Argo CD admin user.

Query the running pods from the argocd namespace and take note
that the set of resources are available, as they were using the YAML
manifest approach (albeit with slightly different names, as the Helm
chart prefixes each resource with the name of the Helm release):

kubectl get pods -n argocd

If desired, the Argo CD UI can be accessed in a similar manner, as
described in the previous section, and the exact steps in this
instance can be found within the provided Helm NOTES output.

While only a basic deployment of Argo CD was described in this
section, the full set of tunable parameters provided by the Argo CD
Helm chart can be viewed by listing the available chart values:

helm show values argo/argo-cd

The use of Helm values within the Argo CD Helm chart enables a
greater level of customization and simplifies the initial configuration
when deploying Argo CD. These values will be explored in
subsequent chapters, especially in Chapter 13.

Argo CD Operator

Another method to install Argo CD is the Argo CD Operator, which
can be found on the OperatorHub.

Beyond installation, the Operator helps to automate the process of
upgrading, backing up, and restoring as needed, removing the
human as much as possible. In addition, the Operator aims to
provide deep insights into the Argo CD environment by configuring

https://oreil.ly/XAF4v

Prometheus and Grafana to aggregate, visualize, and expose the
metrics already exported by Argo CD.

The Operator aims to provide the following, and is a work in
progress:

e Easy configuration and installation of the Argo CD
components with sane defaults to get up and running
quickly

e Seamless upgrades provided for the Argo CD components

e The ability to back up and restore an Argo CD cluster from a
point in time or on a recurring schedule

e Aggregated and exposed metrics for Argo CD and the
Operator itself using Prometheus and Grafana

e Argo CD components that can autoscale as necessary to
handle variability in demand

In this book, we will focus on using Helm as the way to install and
manage Argo CD; however, it's good to get familiar with other
installation methods.

Summary

This chapter provided an overview of the architecture and
components that are included as part of a deployment of Argo CD.
In addition, two of the most common approaches for installing Argo
CD, YAML manifests and Helm charts, were introduced and used to
deploy Argo CD to a kind cluster. Finally, the Argo CD was accessed
using the UI to confirm a successful installation. The next chapter
expands upon the use of the UI and describes the various different
methods available that can be used to manage and interact with
Argo CD.

Chapter 3. Interacting with
Argo CD

Argo CD includes a fully declarative configuration model which
supports a hands-off approach to GitOps and the management of a
GitOps server. However, in some cases, more direct methods will be
needed for interacting with the Argo CD server. In the previous
chapter, we covered the Argo CD UI, which is one method for
interacting with the platform as it provides a visual approach to the
current state of GitOps. While the UI may be one of the most
common methods for utilizing Argo CD, there are additional
mechanisms to choose from, including a fully functional CLI and
RESTful API. This chapter builds on the foundational concepts
established in Chapter 2 for accessing and configuring Argo CD
along with introducing several additional approaches that can be
employed depending on the use case or preference.

The User Interface in Depth

In Chapter 2, the UI was used as a way to access Argo CD.
However, when deployed to the kind cluster, it required
establishing a connection to the server component using the
kubectl port-forward command. While this was acceptable for
initial testing and validation, it is by no means how one should
utilize a service long term. A more robust approach should be
undertaken to provide a more reliable exposure of services.

One of the most common methods for exposing services and
gaining access to resources within a Kubernetes cluster is to
leverage an Ingress resource. An Ingress provides a means for
exposing services outside of a cluster, and they are enabled by the

use of an Ingress controller, which will map the incoming request to
the backend service. There are many options as it relates to the
available ingress controllers, where some have additional features
and integrations with the operating environment, such as a cloud
provider.

NGINX is one such popular ingress controller and there is support for
deploying it to a kxind cluster. kind clusters can be customized to

include advanced configurations, such as setting options for
kubeadm, the tool for deploying Kubernetes clusters, and to deploy
multiple “"nodes” to support simulating high-availability scenarios.

Another available option is to forward local ports to the kind node

—a capability to enable Ingress into the Kubernetes cluster and, in
this case, the NGINX ingress controller.

Create a new kind cluster and pass an inline definition of a kind
configuration:

cat <<EOF | kind create cluster --config=-
kind: Cluster
apiVersion: kind.x-k8s.io/vlalphad
nodes:
- role: control-plane
kubeadmConfigPatches:
- |
kind: InitConfiguration
nodeRegistration:
kubeletExtraArgs:
node-labels: "ingress-ready=true"
extraPortMappings:
- containerPort: 80
hostPort: 80
protocol: TCP
- containerPort: 443
hostPort: 443
protocol: TCP
EOF

Alternatively, the configuration definition can be placed into a file
and referenced using the same --config parameter when creating
the cluster.

Once the cluster has started, deploy the NGINX ingress controller
using Helm.

First, add the NGINX ingress controller Helm repository and install
the NGINX ingress controller chart:

helm repo add ingress-nginx
https://kubernetes.github.io/ingress-nginx
helm repo update

Once the repository has been added, create a new file called
values-ingress-nginx.yam/ to contain customized Helm values for
the NGINX ingress controller with the following content:

controller:
service:
type: NodePort
hostPort:
enabled: true
updateStrategy:
type: Recreate

Install the Helm chart for the NGINX ingress controller using the
customized values created previously using the following command:

helm -n ingress—-nginx install ingress—-nginx ingress-
nginx/ingress-nginx —--create-namespace \
-f values-ingress—-nginx.yaml

Wait until the ingress controller is ready:

kubectl wait —--namespace ingress-nginx \
--for=condition=ready pod \
--selector=app.kubernetes.io/component=controller \
-—timeout=90s

Query the pods and services in the ingress-nginx namespace to
view the resources that were just deployed:

kubectl get pods -n ingress-nginx

NAME READY STATUS
RESTARTS AGE

ingress-nginx-controller-56£6595fc8-74t7s 1/1 Running
0 3m33s

kubectl get svc -n ingress—-nginx

NAME TYPE CLUSTER-IP
EXTERNAL-IP PORT (S)

ingress—-nginx-controller NodePort

10.96.33.103 <none> 80:30579
ingress—-nginx-controller-admission ClusterIP

10.96.168.33 <none> 443/TCP

Since the kind cluster was created binding port 80 and 443 of the
local machine to the kind node, invoking the curl command

against port 80 should verify communication to the ingress
controller:

curl http://127.0.0.1

<html>

<head><title>404 Not Found</title></head>
<body>

<center><hl1>404 Not Found</hl></center>
<hr><center>nginx</center>

</body>

</html>

While the 404 error may appear to be a failure, given that an
Ingress resource has yet to be created, the fact that a response was
provided and that it included nginx in the response body confirms
the ingress controller has been deployed and is operating correctly.

Now that access to the ingress controller has been confirmed, an
Ingress resource must be created so that access can be achieved
through the ingress controller. Fortunately, the Argo CD Helm chart
includes functionality for configuring this task. When utilizing an
Ingress resource, one of the first steps that must be completed is to
determine the hostname that is associated with the service.

Since NGINX is an Open Systems Interconnection (OSI) Layer 7 load
balancer, routing is performed using the host header in the request.
As requests are received, NGINX will inspect this header, determine
if any of the defined Ingress resource matches the request, and if
so, route the request to the associated backend service.

The hostname that will need to be specific for the Argo CD instance
will most likely not have an associated value in a publicly accessible
Domain Name System (DNS) server. To solve this challenge, two
options are available:

e Modify the contents of the /etc/hosts file on the local
machine.

e Use a hosted wildcard DNS service, such as nip.io.

While using the hosted service eliminates the need to make
modifications on the local machine, it potentially introduces an
unnecessary dependency on an external. As such, the manual
modification approach will be demonstrated here.

argocd.upandrunning.local is the hostname that will be used
to refer to the Argo CD instance deployed within the kind cluster.
Modify the /etc/hosts file to add the loopback address of the
local host and hostname so that queries are resolved and routed
appropriately.

Append the following to the end of the /etc/hosts file:

.0.0.1 argocd.upandrunning.local

With the ingress controller and hostname prerequisites complete,
the Argo CD Helm chart has the capabilities available to support
generating the necessary manifests to enable Argo CD to be
accessed via an Ingress resource.

Create a file called values-argocd-ingress.yaml with the following
content:

server:
ingress:
enabled: true
hostname: argocd.upandrunning.local
ingressClassName: nginx
extraArgs:
- ——-insecure

Deploy the Helm chart using the values file created previously:

helm upgrade -i argo-cd argo/argo-cd --namespace argocd --
create-namespace \
-f values-argocd-ingress.yaml

This Helm release will appear similar to the release that was
completed in Chapter 2. However, by specifying the appropriate
values, a new Ingress resource was created, which can be verified
by executing the following command:

kubectl get ingress -n argocd

NAME CLASS HOSTS

ADDRESS PORTS AGE

argo-cd-argocd-server nginx argocd.upandrunning.local
localhost 80 53s

Given that all of the pieces are in place in order to access Argo CD
using an Ingress resource, open a web browser and navigate to

http://argocd.upandrunning.local, which should display the Argo CD
UI login page.

Argo CD can also be accessed securely through the ingress
controller by using the analogous https:// address. Similar to when
the UI was accessed in Chapter 2, a warning will be displayed
signifying that a connection is attempting to be established to an
endpoint whose certificates are not trusted by the browser. One key
difference is that the untrusted certificates are related to the
ingress controller and not Argo CD. The default ingress
configuration the Helm chart establishes terminates TLS traffic at
the ingress controller instead of at Argo CD itself. The TLS options
that can be configured in Argo CD will be discussed in more depth in
Chapter 9.

Once again, obtain the password for the Argo CD admin user from
the argocd-initial-admin-secret secret and log in. Refer
back to Chapter 2 (see “"Deploying Argo CD using YAML manifests”)
for the command to retrieve the initial admin password.

Let’s take an opportunity to explore the various configuration
options that are available within the UI. The default landing page
upon login contains the list of applications that have been
registered to Argo CD. An Application is a source of GitOps content
that targets a particular destination environment and is the primary
focus for end users when using Argo CD. The UI enables the
creation, management, and synchronization of application resources
in a visual, user-friendly manner.

NOTE

Deploying an application will be reviewed in depth in Chapter 4.

Aside from managing applications, the other primary purpose of the
UI is to facilitate the management of the Argo CD server itself—

from within the Settings page (see Figure 3-1).

Settings SETTINGS

(91 Argo CD

_ Log out
v2.5.5+fc3eaec
Repositories 3
Configure connected repositories
Certificates >

Configure certificates for connecting Git repositories

GnuPG keys >

Configure GruPG public keys for commit verification

Clusters 3

Configure connected Kubemetes clusters

Projects 3
Configure Argo CD projects
Accounts >

Configure Accounts

Appearance >

Configure themes in Ul

Figure 3-1. Argo CD Settings page

Table 3-1 details the configurable options that are made available
from the Settings page of the UL

Table 3-1. Options available within the Argo CD Settings page

Setting Description

Repositories Configuration of remote locations containing
resources that will be translated into Kubernetes
manifests

Certificates Management of transport mechanisms to facilitate
secure connectivity to remote repositories

GnuPG keys Key management to enable the verification of
source control content

Clusters Kubernetes environments that have content from
source repositories applied

Projects Logical groupings of applications with common
configurations and permissions

Accounts Management of local accounts stored within the
Argo CD server

Appearance Configuration of the look and feel of the UI

In addition to being able to manage application and server settings,
information related to the current authenticated user is available
from the User Info page, which is helpful for associating identity
details to enable role-based access control (RBAC) permissions that
are used to manage access to Argo CD resources.

Even with all the parameters and settings that can be configured
within the Argo CD UI, there are still a large number of properties

that either cannot be managed using the UI or their values are
read-only. When those situations do arise, the solution can be
typically facilitated by using the Argo CD CLI. The next section
introduces the capabilities included with the Argo CD CLI along with
applying the appropriate settings to enable the management of the
kind Argo CD environment.

The Argo CD Command-Line Interface (CLI)

The Argo CD CLI (argocd) is a utility to control and manage the
Argo CD server. Similar to the UI, the CLI leverages the API to
facilitate the interaction with Argo CD. When certain options are not
available from within the UI, such as adding remote clusters, the
default option is to use the CLI, as it includes a more in-depth set of
options and capabilities as compared to the UL.

Installing the Argo CD CLI can be performed on most major
operating systems, as there are prebuilt binaries readily available.
Other installation options are also available depending on the target
operating system, and the CLI is also available in a number of
formats, including a container image with the CLI included. Consult
the Argo CD CLI installation documentation for the list of supported
platforms and necessary steps to complete the installation.

Once the CLI has been successfully installed, execute the argocd
command to see a list of functions that can be managed using the
tool. Since the majority of the options enabled from within the CLI
cannot be used unless a connection to an Argo CD environment is
established, you will need to connect the CLI to the kxind Argo CD
instance using the argocd login command as shown next:

argocd login --insecure —--grpc-web
argocd.upandrunning.local

https://oreil.ly/y5ro5

The --grpc-web parameter enables the use of the gRPC-Web
protocol, which enables communication through the ingress
controller. Additional configuration steps are needed to enable
native gRPC connectivity, which will not be covered in this book.

When prompted, enter the Argo CD admin username and password
to authenticate the CLI to the kind Argo CD instance.

As soon as successful authentication is achieved, a configuration file
containing details related to the user, the Kubernetes context, and
other connectivity data is created in a file located at
SHOMEDIR/.config/argocd/config. SHOMEDIR USES an
environment variable named ARGOCD CONFIG DIR, HOME, Of
XDG_CONFIG HOME (XDG Base Directory Specification), depending
on which value is resolved first.

One of the first steps that is typically taken after logging in via the
CLI is to change the default admin password. Changing the admin
password is an important step, as it increases the security posture
of the Argo CD server. Kubernetes Secrets are not encrypted but are
base64 encoded, which enables entities with access to query
Secrets access to the default password.

Change the default admin password by executing the following
command:

argocd account update-password

Enter the current admin password and the value of the desired
password to reset the admin password.

Confirm the new password was applied properly by logging out of
the current session and logging in once again with the updated
password:

argocd logout <context>

The value of the <context> property refers to the argocd context
to target. The list of argocd contexts can be queried by executing
the argocd context command. After logging out, log in again
using the argocd login command to confirm the password reset
was successful.

Changing passwords for Argo CD users is just one action that cannot
be accomplished using the UI and is one of the benefits provided by
the CLI. The use of the CLI will become even more prevalent in
upcoming chapters as it provides capabilities for not only
administrators and users, but also its inclusion and integration into
other systems and workflows.

However, what if there was no reason at all to use either the UI or
the CLI but still get the benefits of being able to manage Argo CD?
The final section of this chapter explores two additional methods for
interacting with Argo CD.

Additional Methods for Managing Argo CD

The Argo CD UI and CLI simplify how users interact with Argo CD—
either through visualization and accessibility features from the
perspective of the UI or by enabling a command-line-level approach
with the CLI. One of the commonalities between these two
components is that they both make use of the REST-based API that
Argo CD exposes. End users can invoke the same APIs that Argo CD
exposes without being limited based on the features that are
included in either the UI or CLI.

The first question that may come to mind is: What type of
information does Argo CD make available via the API? One
approach could be to use the developer console included by the
web browser to inspect the requests that are being invoked from
the web console. But that would be somewhat tedious for being

able to determine the exact endpoint and parameters that need to
be included.

Fortunately, Argo CD provides an OpenAPI specification (sometimes
called Swagger), which describes all of the APIs, including the
acceptable inputs and provided outputs that are exposed, reducing
the burden on the end user.

The OpenAPI specification provided by Argo CD is located at the
endpoint /swagger. json.

NOTE

OpenAPI is an open standard that is both machine and human readable for
describing and visualizing web services. Additional information can be found at
OpenAPI's website.

Open a web browser and navigate to
https://argocd.upandrunning.local/swagger.json to view the
contents.

Upon loading the OpenAPI specification document, one quickly
realizes how verbose a specification can be. With a mature API,
such as Argo CD, the document is quite large.

One of the tools provided by the Swagger project is a visualization
component for OpenAPI specifications that avoids needing to
become familiar with the intricate details of the OpenAPI
specification. This utility is included with Argo CD and can be
accessed by navigating to
https://argocd.upandrunning.local/swagger-ui.

Now that there is an understanding of the API services to query,
what are the steps necessary to invoke them? First, a session token
must be generated by invoking the /api/v1/session endpoint
with a valid username and password.

https://www.openapis.org/

Execute the following command to obtain a session token,
substituting the username and password in the appropriate fields:

curl -H "Content-Type: application/json" \

-XPOST -k
https://argocd.upandrunning.local/api/vl/session \
-d '{"username":"<USERNAME>","password":"<TOKEN>"}"' | jq

-r

NOTE

The -k argument disables TLS validation, which would have thrown an error

similar to what was seen previously when navigating to the Argo CD UI from
the web browser.

A successful authentication attempt will result in a similar response
to the following:

{"token" : "<TOKEN>"}

With a valid session token, the available API endpoints can be
invoked.

One of the most important endpoints that is frequently queried,
especially during the initial configuration of Argo CD, is the settings
endpoint. This endpoint is exposed at /api/vl/settings and can
also be verified within the Swagger Ul interface by selecting
SettingsService and viewing the GET request listed in Figure 3-2.

By expanding the responses, it is a wealth of information, much
more than is provided by the CLI or the UI (see Figure 3-2).

Gat retums Argo CO seftings

.........

8.4 B o L L e

Figure 3-2. The properties of the SettingsService as shown in the Swagger UI
interface

To invoke this endpoint, execute the following command,
substituting the value of the bearer (session) token obtained
previously:

curl -k -H "Authorization: Bearer <TOKEN>" \
https://argocd.upandrunning.local/api/vl/settings | jq

A response similar to the following should be displayed:

"appLabelKey": "argocd.argoproj.io/instance",
"resourceOverrides™: {
"apiextensions.k8s.io/CustomResourceDefinition": ({
"ignoreDifferences": "jgPathExpressions:
null\njsonPointers:\n- /status\n-
}
Yo

"googleAnalytics": {

"anonymizeUsers": true

by

"kustomizeOptions": {
"BuildOptions": "",
"BinaryPath": ""

by

"help": {
"chatText": "Chat now!"

by

"passwordPattern": "*.{8,32}s",

"controllerNamespace": "argocd"

}

Viewing server settings is just one of the many API endpoints that
can be not only queried but also updated and adds an additional
weapon to the already robust arsenal of tools that are used to
manage Argo CD.

However, what if there was a desire to not leverage any of these
tools or any services provided by Argo CD whatsoever but still retain
the benefits and assurances of a well-maintained environment?

Recall back in Chapter 2 that Argo CD supports a declarative model
for managing GitOps and that Argo CD implements the controller
pattern to track the state of resources based on defined manifests.
While Argo CD responds to changes to custom resources, such as
applications and AppProjects, it also tracks additional resources,
such as ConfigMaps and Secrets which are used to influence the
configuration of the entire platform. So instead of using the UI, CLI,
or invoking the API, the configurations can be applied directly to the
Kubernetes cluster.

Each deployable in the Argo CD architecture makes use of
configuration properties stored within ConfigMaps and Secrets in the
same namespace that Argo CD is deployed within. Some of these
resources use a well-known and established name, like a ConfigMap
with the name argocd-cm, which contains the primary

configuration properties for Argo CD, while others use metadata
within each resource to signify their importance and intended
capabilities. Indeed, the server settings API endpoint that was
invoked previously queried the contents of this ConfigMap.

There are a number of Argo CD configurations that can be defined
within ConfigMaps, and they are detailed in Table 3-2.

Table 3-2. Common Argo CD configurations

Resource

name(s) Kind Description

argocd-cm ConfigMap General Argo CD
configuration

argocd-cmd-params ConfigMap Argo CD environment
variable configurations

argocd-rbac-cm ConﬁgMap RBAC Conﬁguration

argocd-ssh-known-ho ConﬁgMap SSH known-host

sts-cm configuration data

Additional resources that influence the configuration of Argo CD are
stored within Secrets and do not make use of a standardized
naming convention for the resource. Instead, a label with the key
argocd.argoproj.io/secret-type is placed on the Secret to
denote their significance.

For example, a secret with the label
argocd.argoproj.io/secret-type: repository contains
connection details to a remote content source repository. As Argo
CD can manage content from multiple remote repositories at a time
by using the label approach, similar content with distinct values for

each repository can be applied within separate Secret resources and
then correlated appropriately based on the content.

Table 3-3 provides an overview of the different Secret types and
their significance.

Table 3-3. Argo Secret types
Label Description

argocd.argoproj.io/secre The deﬁnition, conﬂguration, and
t-type: cluster credentials associated with a remote
cluster

argocd.argoproj.io/secre Consolidated Conﬁgurations and
t-type: repository credentials associated with a remote
repository

argocd.argoproj.io/secre Configurations associated to a remote
t-type: repo-config repository (not widely used)

argocd.argoproj.io/secre Credentials for Communicating with a
t-type: repo-creds remote repository

As topics are introduced throughout the course of this book, the way
in which these resources can be used will come into focus to enable
an entirely hands-off approach for managing Argo CD server
configuration.

Summary

This chapter introduced several methods to aid in the management
of Argo CD: a visual U, an interactive command-line utility, a
comprehensive API, and an entirely declarative model. These
options empower a freedom of choice for Argo CD administrators

and end users toward using a tool or approach they feel the most
comfortable using. Chapter 4 focuses on one of, if not the most,
foundational topics in the realm of Argo CD and how it is the center
point for facilitating GitOps practices.

Chapter 4. Managing
Applications

Argo CD manages the lifecycle of Kubernetes resources using a
construct called Applications. An Argo CD Application is a custom
resource that contains a logical collection of related Kubernetes
resources (i.e., a collection of YAML or JSON files). An Argo CD
Application is the smallest unit of work in Argo CD and is where
Argo CD interfaces with Kubernetes in order to deploy Kubernetes
objects.

NOTE

Application templating is possible with ApplicationSets, which will be discussed
in Chapter 10.

In this chapter, we will cover the basics of an Argo CD Application,
the different components (including an overview of the types of
sources Applications can connect to), and how to use different
Kubernetes templating tools that Argo CD natively supports. To
wrap up this chapter, we'll cover the lifecycle of an Argo CD
Application.

Application Overview

As previously mentioned, an Argo CD Application is the atomic
working unit in Argo CD. It defines the end state of the desired set
of resources within a Kubernetes cluster, more specifically, it defines
which objects need to be applied to the running Kubernetes cluster.
Let’s take a look at an example of an Argo CD Application:

apiVersion: argoproj.io/vlalphal
kind: Application
metadata:
name: guestbook
namespace: argocd
spec:
project: default
source:
repoURL: https://github.com/argoproj-labs/argocd-
example-apps/
targetRevision: main
path: guestbook/
destination:
server: https://kubernetes.default.svc
namespace: example

This is a minimal example of what is needed for an Argo CD
Application to be functional within a cluster. Things like adding
Kustomize post-rendering and sync options are also possible using
the Application CRD. For the time being, the two main pieces of
information that you should focus on are the . spec.source and
.spec.destination sections:

.Spec.source

This defines the location containing resources that Argo CD
should interface with. This property includes key options, such as
repoURL, Which defines where the Git repository or a Helm
chart repository that holds the manifests are located. The
targetRevision is where you can define what branch or tag
should be targeted, or in the case of a Helm chart, the version of
the Helm chart you want deployed. And finally, the path is
where you can find the Kubernetes manifests relative to the
repoURL.

.spec.destination

This specifies the target Kubernetes cluster to apply the
manifests defined under the . spec.source section. Here you'll
specify the Kubernetes API endpoint in the server section
(here, https://kubernetes.default.svc is used as a way
to indicate to Argo CD to deploy to the cluster Argo CD is
running on), and the namespace section indicates which
namespace to target on that cluster. Omitting the namespace
section will cause Argo CD to default to the default
namespace during deployment.

NOTE

The namespace in the Application YAML should match the namespace of
where your Argo CD instance is installed—this is typically the default argocd

namespace, and we show this in our example. Starting in Argo CD version 2.5,
support was added to enable sourcing Applications from namespaces other
than where Argo CD is deployed. Although this is a very useful feature, it will
not be used in the examples found within this publication.

The Argo CD Project Git repository provides a comprehensive view
of all of the options available to you.

Other sections of note that we will cover in detail in subsequent
chapters are the options for when Applications are synchronized
against cluster(s) within the syncpPolicy property as well as how
differences between the expected rendered state of resources and
the actual state within a cluster are handled. Understanding and
managing resources beyond their initial creation is related to a

https://oreil.ly/lfoSM

concept called drift management and is one of the key benefits
provided by Argo CD.

Application Sources

Argo CD takes the desired state defined in the Application Custom
Resource Definition (CRD) and attempts to modify the current
running state on the Kubernetes cluster based on the defined
content. Argo CD was built from the ground up with GitOps in mind,
and it therefore supports two sources as the source of truth: Git and
Helm.

NOTE

Drift detection happens out of the box with Argo CD, but self-heal needs to be
enabled. The examples in this book enable self-healing, but it's important to
note that it’s not the default.

The source field in an Argo CD Application has a 1:1 relationship

with the application specification. In other words, only one source
can be configured per application.

Starting with Argo CD v2.6, you can have a sources field now and

specify more than one source. An example of a multisource
application is as follows:

spec:
sources:
- repoURL: https://github.com/christianh814/gitops-
examples
path: applicationsets/rollingsync/apps/pricelist-
config
targetRevision: main
- chart: mysqgl
repoURL: https://charts.bitnami.com/bitnami
targetRevision: 9.2.0

helm:
releaseName: pricelist-db
parameters:
- name: serviceAccount.name
value: "pricelist-db"
- name: auth.database
value: "pricelist"
- name: auth.username
value: "pricelist"
- name: auth.password
value: "pricelist"
- name: secondary.replicaCount
- repoURL: https://github.com/christianh814/gitops-
examples
path: applicationsets/rollingsync/apps/pricelist-
frontend
targetRevision: main

NOTE

Using the sources field will cause Argo CD to ignore the source field.

A multisource Application takes, as the name suggests, multiple
sources of truth for an Application. Typically this is used when you
are deploying a Helm chart, but store the values file in a separate
Git repository. Although a great feature, we will not be deploying
any examples using this method.

Git

Using Git as a source is a natural starting point for Argo CD users,
as it's the focal point of where GitOps gets its name. Git is not only
the de facto source code management (SCM) system for
developers, but is also the place where site reliability engineers
(SREs) and platform engineers store their infrastructure as code
(IaC) configurations. Many users making the switch to Argo CD

and/or GitOps find that they are storing a lot of things on Git
already.

Storing resources in Git, as an Argo CD Application source, can be
as simple as having raw YAML stored containing Kubernetes
resources within a directory. However, it doesn’t have to be raw
YAML. The declarations can also be stored and managed via
templating tools, such as Kustomize (covered later in this chapter)
or Helm (covered next).

Helm

Helm has become the de facto package manager for Kubernetes
applications and deployments. At its core, Helm includes a
templating engine for use with Kubernetes manifests so that they
are reusable, reproducible, and stable. Many organizations have
adopted Helm, and it's a natural choice for developers and system
administrators alike because of its ease of use and flexibility.

Since many organizations have widely adopted Helm, it was a
natural fit for Argo CD. Argo CD can use Helm by directly consuming
the Helm chart stored in a standard Helm repository, OCI registry, or
embedded within a Git repository.

Destinations

In Argo CD, the destination refers to a Kubernetes cluster. This
destination cluster can either be the cluster that is running Argo CD
or another remote cluster (which can be thought of as “*hub and
spoke,” where there is a central control plane managing remote
systems).

The destination cluster is noted under . spec.destination in the
Argo CD Application manifest. Here is a snippet of the configuration:

spec:
destination:
server: https://kubernetes.default.svc
namespace: bgd

In this example, the server field is set to
https://kubernetes.default.svc, which refers to the cluster
that Argo CD is running on. You can also specify name instead of
server, Which is a reference to the name field in the cluster secret.
This will be discussed in depth in Chapter 7. The namespace field
indicates which namespace to target.

NOTE

The namespace field does not overwrite the .metadata.namespace field if
they are declared within your manifests.

Clusters can be added either declaratively or via the argocd CLI,

resulting in @ new Secret to be added to the namespace Argo CD is
deployed within.

For example, you can see any clusters that Argo CD is managing by
listing Secrets using the kubectl command:

S kubectl get secrets -n argocd -1
argocd.argoproj.io/secret-type=cluster

NAME TYPE DATA AGE
cluster-192.168.1.254-1289728133 Opaque 3 31ls

More information about adding and managing clusters within Argo
CD will be covered in depth in Chapter 7.

Tools

One of the main tenets of GitOps is that declarations/configurations
must exist in an immutate format (the second OpenGitOps
principle). In a Kubernetes environment, this means that YAML is
stored inside a Git repository. After a while, those who are just
starting out in their GitOps journey ask themselves: How do I
declaratively describe my resources in Git without copying and
pasting the same YAML all over the place?

It might seem like you'll have to duplicate a lot of the same YAML
after you take things like environments, clusters, regulatory
restrictions, and anything else in your organization that might force
you to create a lot of YAML with only slight variations between files
into consideration. After a while this simple YAML that should be
applicable "anywhere”...all of a sudden doesn't fit anywhere. Luckily,
there are tools that can help you mitigate the issue of having to
copy and paste the same YAML all over the place while making only
small modifications.

Helm

As mentioned previously, Helm has become the de facto package
manager and delivery mechanism for applications and controllers
alike in a Kubernetes-based environment. If you‘'ve ever worked on
a Kubernetes cluster, you have most likely used Helm at some point
to deploy software from an independent software vendor (ISV),
stacks, or even deliver your own application by leveraging its
automation benefits. Helm provides not only a method of packaging
an application and parameterizing YAML manifests, but also a
templating engine that can be used to deploy your application to
different environments.

Helm consists of different parts, as shown in Figure 4-1. Charts are
templatized versions of your application’s YAML manifests that are
parameterized so that you can inject values into the defined

templates. Helm combines the templatized manifests with
parameters, called values, to produce the resources to apply to the
Kubernetes cluster. The specific installation of a chart within a
cluster is known as a release. The end state representation of the
produced release manifests is stored as a Secret within the installed
namespace on the Kubernetes cluster.

T Kubernetes
l|||-| Namespace
Helm chart i r \(A
(templates) O
S
O Pod |
' ‘ Helm CLI Releases EEE
= | 7§ LSve
Values N -
(configs)
| ——

Figure 4-1. Helm architecture

NOTE

Secrets are the default backend storage (i.e., stores installation information) for
Helm 3. Consult the Helm documentation for more information.

Helm has a large ecosystem and many repositories that end users
can draw on to deploy prebuilt applications. If your organization
uses Helm heavily, you're in luck! Most GitOps tools support
deploying Helm charts.

Kustomize

Kustomize is a framework built within the Kubernetes community
that lets you patch Kubernetes manifests without needing to modify
the original Kubernetes manifests. While patching can be done via
JSON patches, the manifest that it modifies needs to be in YAML.

Kustomize is hierarchically organized using a directory structure
based on a concept of bases and overlays. While each of these
directories have their own purpose within Kustomize, they must
contain @ kustomization file (kustomization.yaml), which
defines how to process the contents within the current directory
along with importing content from other relative or remote sources.

The following is a simple example of @ kustomization.yaml:

apiVersion: kustomize.config.k8s.io/vlbetal
kind: Kustomization

namePrefix: kustomize-

resources:
- guestbook-ui-deployment.yaml
- guestbook-ui-svc.yaml

When using Kustomize against the prior example, two Kubernetes
resources will be produced with their names prefixed with
kustomize-, as defined in the namePrefix property.

Kustomize is a powerful tool, and since it is built within the
Kubernetes community, support is available within the kubect1l
CLI. Adding the -k flag when using kubectl create and
kubectl apply commands will activate Kustomize processing.
However, by using the kubectl kustomize subcommand instead,
the full feature set of the kustomize CLI can be achieved.

Kustomize truly is a powerful tool because it eliminates the
duplication of YAML and enables the ability to reuse by providing a

method of patching the YAML to fit the need of the deployment.
This means that you can store differences (for example, between
environments) as deltas instead of copying the YAML for each use.
The Kustomize structure provides flexibility by creating overlays
that can leverage other bases and other overlays, creating a
cascading sequence of files. Those overlays can refer to remote
repositories as well. Kustomize can even process Helm charts,
which can be achieved within Argo CD.

Beyond Helm and Kustomize

While Helm and Kustomize are the two primary tools that are used
in Argo CD to render resources within a Kubernetes cluster (aside
from raw YAML), other tools are also supported. Argo CD natively
supports the JSON templating language Jsonnet and will process
any file containing the * jsonnet extension. Nonnative tooling can
also be included through the use of a config management plugin
(like Cue, for example), eliminating restrictions to customizing how
Kubernetes resources are produced. More information on config
management plugins and their use can be found in Chapter 11.

Deploying Your First Application

Now that you're familiar with what an Argo CD Application is and its
basic functionality, it's time to deploy your first Argo CD Application!
Yes, we did walk through deploying an Application back in Chapter 2
when Argo CD was first installed, but by now, you have a better
understanding of the purpose of an Application and how they can be
used. Throughout the rest of this book, you'll be exploring many
ways of deploying an Application, but for this example, we'll be
going with deploying from a Helm chart.

For this example, create the following Argo CD Application YAML in
a file called quarkus-app. yaml.

Here, we are going to define the name of the Application to be
quarkus-app and we will be deploying the Application to the
same cluster as Argo CD is running (denoted by in-cluster in the
.spec.destination.name field). We are targeting the demo
namespace on the destination cluster (i.e., which namespace to
deploy the manifests to):

apiVersion: argoproj.io/vlalphal
kind: Application
metadata:

name: quarkus-app

namespace: argocd

spec:
project: default
destination:

namespace: demo
name: in-cluster

source:
helm:
parameters:
- name: build.enabled
value: "false"
- name: deploy.route.enabled
value: "false"

- name: image.name
value: quay.io/ablock/gitops-helm-quarkus
chart: quarkus
repoURL: https://redhat-developer.github.io/redhat-
helm-charts
targetRevision: 0.0.3
syncPolicy:

automated:

prune: true

selfHeal: true
syncOptions:
- CreateNamespace=true

NOTE

The keyword in-cluster is a special keyword that means “target the cluster
that the instance of Argo CD is running in.”

We are deploying the quarkus chart version 0.0 .3 from the repo
denoted in the repoURL field. We are also providing any
parameters in the .spec.source.helm.parameters field, which
represent Helm values being set against the chart. Also take note:
we are adding the CreateNamespace=true option in the
syncOptions field (in order to make sure the namespace exists
before deploying the manifests). This example deployment of a
Helm chart using an Argo CD Application is analogous to the
following command:

$ helm install quarkus-app --namespace demo --create-
namespace --version 0.0.3 \

--set build.enabled=false \

--set deploy.route.enabled=false \

--set image.name=quay.io/ablock/gitops-helm-quarkus \
redhat-helm-charts/quarkus

NOTE

To make use of the sample helm install command, the Helm chart
repository containing the quarkus chart must be added to the local machine
using the helm repo add <repo URL> command. If the chart is installed

using the Helm CLI, be sure that it is uninstalled prior to defining the chart
using Argo CD. Otherwise, errors will be produced.

To create this Argo CD Application within the Kubernetes cluster,
you can apply it using the following kubectl command:

kubectl apply -f quarkus-app.yaml

You should see the Application appear in the Argo CD UI, as shown
in Figure 4-2.

Hﬁ_:ja quarkus-app v
Project: default

Labels:

Status: ¥ Healthy @ Synced

Repository: https://redhat-developer github.io/redhat-helm-charts
Target Revisi... 0.0.3

Chart: quarkus

Destination: in-cluster

Wamespace: demo

Created At: 06/26/2023 16:06:09 (a few seconds ago)

=~ SYNC C' REFRESH © DELETE

Figure 4-2. Sample Helm chart application

NOTE

See Chapters 2 and 3 for more information about connecting to the Argo CD UL.

You should also be able to see the manifests deployed on the
cluster using the Kubernetes CLI client. For example:

$ kubectl get deploy,service,pods -n demo

NAME READY UP-TO-DATE AVATLABLE
AGE

deployment.apps/quarkus-app 1/1 1 1

9m24s

NAME TYPE CLUSTER-IP EXTERNAL-

IP PORT (S)

AGE

service/quarkus-app ClusterIP 10.106.53.207 <none>
8080/TCP 9m24s

NAME READY STATUS RESTARTS
AGE

pod/quarkus—-app-57cf4d4b5c-g57b8 1/1 Running 0
9m24s

One very important thing to note is the behavior in comparison to
using the Helm CLI directly. Running helm 1s -n demo against
the namespace that contains an Argo CD—managed Helm chart will
not return any results:

S helm 1ls -n demo
NAME NAMESPACE REVISION UPDATED STATUS
CHART APP VERSION

Why? Argo CD takes the philosophical approach of only working
with "RAW Kubernetes manifests” directly. This means that Argo CD
wants to “"own” the manifests and not have to rely on trying to
interface with another tool. Argo CD achieves this by doing the
equivalent of running: helm template <options> | kubectl

apply -f -.

NOTE

You may see other Helm releases running, but you won't see anything deployed
via Argo CD.

A release is only created whenever the install or upgrade
subcommands of the Helm CLI is used, which explains why a
release is not present for Helm charts maintained by Argo CD.

Deleting Applications

Regardless of the tool being used to produce Kubernetes resources
or the destination where these resources will be created, there may
be a need to remove the Application so that the generated
resources are no longer managed by Argo CD. Deleting an
Application, similar to creating an Application, can be facilitated by
using the kubectl command.

Execute the following command to delete the Application:

kubectl delete application quarkus-app -n argocd

Once the Application has been deleted, the tile representing the
Application will no longer be present in the Argo CD interface. You
should see something like in Figure 4-3.

No matching applications found

Change filter criteria or clear filters

Figure 4-3. Application deleted

It is important to note, and you may have discovered this already,
that even though the Application was deleted, the resources that
were managed by the Application still remain within the argocd

namespace.
“Why is that the case?” you may wonder.

Argo CD makes the assumption that even though there is no longer
a desire to manage these sets of resources, there will still be a
need for them to remain within the cluster after the Application is

deleted. This is mainly due to the motivation of avoiding data loss
of the resources and so that anything dependent on them remains
available. This approach is similar to how PersistentVolumes
are managed within statefulSets upon the removal of the
StatefulsSet itself or one of the replicas.

To remove the resources that are managed by an Application, the
resources-finalizer.argocd.argoproj.io finalizer can be
set on the Application:

apiVersion: argoproj.io/vlalphal
kind: Application
metadata:
name: quarkus-app
namespace: argocd
finalizers:
- resources-finalizer.argocd.argoproj.io

If an Application has this finalizer present (either by an
administrator or ApplicationSet), upon deletion, the Argo CD
controller will perform a cascading deletion of all of the resources
that it is managing.

Finalizers

Finalizers are a feature of Kubernetes associated with garbage
collection that controls when a resource is deleted. When a resource
is deleted, the .metadata.deletionTimestamp field is
populated, which triggers controllers to clean up any resource that
is owned by the resource being deleted. Once the cleanup process
completes, the associated controller will remove the finalizer from
the resource. Only when all finalizers have been removed will the
resource itself be deleted.

When deleting dependent resources, Argo CD makes use of the
foreground cascade deletion policy, which will delete the dependent

resources first and then delete the Application afterward. If there is
a desire to use the background cascade deletion policy, which will
delete the Application immediately while the controller deletes the
associated resources, the resources-
finalizer.argocd.argoproj.io/background finalizer can be
set on the Application:

apiVersion: argoproj.io/vlalphal
kind: Application
metadata:
name: quarkus-app
namespace: argocd
finalizers:
- resources-finalizer.argocd.argoproj.io
- resources-finalizer.argocd.argoproj.io/background

Summary

This chapter focused on managing Kubernetes resources through
Argo CD Applications, which are Custom Resource Definitions
(CRDs) representing a logical collection of related resources. These
Applications are the smallest unit of work in Argo CD, defining the
desired state of resources within a Kubernetes cluster. This chapter
covers the essential components of an Argo CD Application,
including the source and destination specifications, and introduces
the templating tools supported by Argo CD, such as Helm and
Kustomize.

An Argo CD Application specifies the source of resource manifests,
typically located in a Git repository or Helm chart repository. With
the introduction of multisource applications in Argo CD version 2.6,
users can now specify multiple sources for a single application.
Templating tools like Helm and Kustomize help manage and deploy
Kubernetes manifests efficiently, avoiding redundancy and
facilitating modifications.

This chapter also provided a guide for deploying applications using
Argo CD, focusing on Helm chart deployments. It explains the
synchronization policies and the importance of finalizers in
managing application deletions. Finalizers ensure that dependent
resources are cleaned up properly, preventing data loss and
maintaining resource availability. This chapter emphasizes Argo
CD’s approach to managing raw Kubernetes manifests, ensuring
consistency and control over the deployment process.

Chapter 5. Synchronizing
Applications

Argo CD’s synchronization process makes it easy to be able to take
Kubernetes resources stored within Git or Helm repositories and
apply them to a target cluster. Given that this capability is one of
the core features of Argo CD, there are a variety of options
available for determining when the synchronization process will be
triggered and how the Kubernetes resources will be applied. This
level of control is important, as there may be a need to guard
exactly how and when content is applied (for example, if certain
resources need to be applied in a specific order). In this chapter, we
will explore the options available when synchronizing Argo CD
Applications, their impact against the lifecycle of the application
itself, the Argo CD server, and ultimately the target Kubernetes
cluster.

Managing How Applications Are Synchronized

Given that the synchronization of content from source to target
Kubernetes cluster is a fundamental concept in Argo CD, it is
important to first understand the defaults that Argo CD applies and
the various levels of customizations that are available. If you recall
in Chapter 4, we briefly introduced synchronization and covered how
the configurations can be defined within the .spec.syncPolicy

property of an Application.

By default, when Applications are created, none of the rendered
resources are applied to the Kubernetes cluster. This may surprise
many new Argo CD users given that Argo CD is a tool that manages

assets that are destined for Kubernetes. However, there are a
number of reasons why this is Argo CD’s default behavior:

¢ As the configurations for an Application are refined, there
may be a need or desire to “preview” the changes that
would be applied without performing any change.

o It may be important to control when and how resources are
applied.

¢ Organizational policies may prohibit automating changes to
infrastructure.

The Argo CD UI and application resource provide a glimpse of the
resources that would be affected, but any synchronization against
the cluster needs to be performed in a manual fashion.
Synchronization of manifests can be achieved through the UI by
selecting the Sync button on the application or from the Argo CD
CLI using the argocd app sync command.

NOTE

Syncs can also be initiated by running the kubect1 patch command. More
information can be found in the Argo CD documentation.

Since most users would want to take advantage of an automated
synchronization of an application, let’s illustrate the ways that this
can be achieved:

¢ Specify the sync policy for the application using the argocd
CLI:

$ argocd app set <APPNAME> --sync-policy automated

¢ Select the Enable Auto-Sync button within the Argo CD UI.

https://oreil.ly/qXR9u

¢ Define the configuration explicitly within the Application
resource:

spec:
syncPolicy:

automated: {}

Regardless of the option chosen (either manual or automated), as
soon as the source content differs from the live state of the cluster,
the application will be synchronized.

Sync Options

Aside from the fundamental determination of whether an
application should be synchronized automatically or manually, Argo
CD can be configured to perform a customized operation of how it
synchronizes the desired state to the target cluster through the
.spec.syncPolicy.syncOptions property. These
customizations can, for the most part, be configured on the
application resource itself. However, others can be defined as
annotations within each individual resource that is associated with
an application. This is especially useful when you want a specific
action to occur against a set of resources, but not in all of the
manifests associated within an Argo CD Application.

Let's first take a look at how Sync Options can be used within an
Argo CD Application.

Application-Level Options

As mentioned previously, synchronization options are specified
under the .spec.syncPolicy.syncOptions in the application
manifest. These options will affect all resources that are associated
with the Argo CD Application. The following example Application

manifest goes through the sync options available:

apiVersion: argoproj.io/vlalphal
kind: Application
metadata:
name: sample-app
namespace: argocd
spec:
syncPolicy:
syncOptions:
- Validate=true
- ApplyOutOfSyncOnly=true
- CreateNamespace=true
- PrunePropagationPolicy=foreground
- Prunelast=true
- Replace=false
- ServerSideApply=true
- FailOnSharedResource=true
- RespectlIgnoreDifferences=true

Let’s dive a little deeper into the syncOptions configurations:

Validate=false

By default, Argo CD uses Kubernetes API validation and will fail
the sync operation if the manifest is not valid (equivalent to
running: kubectl apply —--validate=false). The default

value is: true.

ApplyOutOfSyncOnly=true

By default, Argo CD applies every object in an Argo CD
Application. This could pose a problem if you have thousands
and thousands of objects. This option only synchronizes/applies
to objects that are out of sync.

CreateNamespace=true

This option creates the namespace (in the
spec.destination.namespace section of the Argo CD

Application), if it does not already exist, before Argo CD
attempts to apply the objects in an application.

PrunePropagationPolicy=foreground

This option shapes how the application handles pruning/deleting
of resources (known as garbage collection). The default is
foreground, and other options available are background and

orphan.

Prunelast=true

This option allows the ability for resource pruning to happen as a
final part of a sync operation, after the other resources have
been deployed and become healthy, and after all other waves
are completed successfully.

Replace=false

By default, Argo CD does the equivalent of kubectl apply.

This sometimes poses an issue when the object is too big to fit
into kubectl.kubernetes.io/last-applied-

configuration annotation. Note, this option could be
dangerous if set to true, as a Replace operation effectively
does a Delete and the Recreate operation. Deleting things like
storage claims or CRDs can cause production outages.

ServerSideApply=true

This option enables Argo CD to use server-side apply when
running a sync operation. This is equivalent to running kubectl
apply —--server-side. Most of the time, since this option is
used to apply deltas of changes, the validate=false option is
frequently used in conjunction with this option.

FailOnSharedResource=true

With this option, Argo CD will mark the application as failed
whenever it finds a resource associated with the application that
has already been applied in the cluster via another application.

RespectIgnoreDifferences=true

By default, Argo CD uses the ignoreDifferences config,
found in .spec.ignoreDifferences, only for calculating the
difference between the live and desired state (but still applies
the object as it is defined in Git). This option also takes it into
consideration during the sync operation.

Resource-Level Options

Along with the sync options on the Argo CD Application level, users
can also apply these configurations/options at the object/individual
resource level. This means that you don't have to apply any of the
sync options against all resources contained within the entire Argo
CD Application, but to only specific objects. A subset of the
application sync options are available to individual objects, as well
as several other additional options.

These resource-level options can be set by annotating the resource
you want the option to apply to. You can do this by defining the

argocd.argoproj.io/sync-options annotation under
metadata.annotations on the resource you would like to apply

the option to. For example, to skip Kubernetes validation on a
specific object:

metadata:
annotations:
argocd.argoproj.io/sync-options: Validate=false

By implementing this approach, only the object with this annotation
will skip Kubernetes validation while the rest of the objects within
the Argo CD Application will be validated. The options available via
the argocd.argoproj.io/sync-options annotation are:

e Validate
e Prunel.ast
® Replace

¢ ServerSideApply

In addition, the following options are available for individual
resources using the argocd.argoproj.io/sync-options
annotation:

Prune=false
This prevents the annotated object from being pruned.
SkipDryRunOnMissingResource=true

Argo CD, by default, performs a “dry run” of applying the
manifests (equivalent to using the --dry-run option with
kubectl); this option skips the dry run step. This is especially
useful if you are deploying CRDs or Operators, as the associated

resource may not be available as a registered resource at the
specific validation time. This option is commonly paired with the
retry strategy, which will perform subsequent attempts to
synchronize the Application where a failure no longer occurs, as
the desired resource has become available.

Users can specify multiple options in the annotation by separating
the options with a comma (,) between each of the desired options.
For example, to disable validation and use server-side apply within
a resource, you can set the following in your object:

metadata:
annotations:
argocd.argoproj.io/sync-options:
Validate=false, ServerSideApply=true

Using this configuration, the object with this annotation will disable
validation and use server-side apply.

Sync Order and Hooks

Argo CD has the ability to customize the order in which the
manifests are applied. Furthermore, Argo CD incorporates different
sync phases so that users can further fine-tune how objects are
applied to the target cluster.

Hooks

Argo CD has the ability to set up different sync phases by allowing
the user to utilize hooks. These injection points within the
application lifecycle enable additional automation, such as running
scripts before, during, and/or after a sync has completed to
supplement applying the standard set of resources. You can also

use hooks in the event a sync has failed for whatever reason. While
hooks can be implemented as any Kubernetes object, they are
usually as Pods or Jobs.

There are four hooks that can be used in your Argo CD sync
process:

PreSync

This phase occurs prior to the sync phase. This is typically used
for actions that need to occur before the Application is synced. A
common use case is running a script that performs a schema
update against a database.

Sync
This is the standard (default) phase for Argo CD and is executed

once the presSync phase has finished. This is typically used to

aid the Argo CD Application deployment process in the event
more complex activities within the Application need to occur.

PostSync

This phase occurs after the sync phase has been completed.

This can be used to send a notification that the phase has been
completed or to trigger a CI progress or continue a CI/CD
workflow.

SyncFail

This is a special hook that is run only if a sync operation has
failed. This is normally used for alerting or performing cleanup
activities.

PostDelete

This is typically used for any cleanup tasks after all other
resources have been deleted.

When setting up an Argo CD Application, the resources that are in
your source of truth are applied to the destination cluster during the
Sync phase. The other phases are used to perform pre- or
posttasks before and/or after the objects are applied in the sync
phase.

It is important to note that each phase is dependent on the success
of the previous phase (with the exception of the syncFail phase).
For example, if an error occurs in the PreSync phase, the sync
phase will not run.

In order to indicate which resource in your Git repository belongs to
which phase, you will have to annotate the desired resource with
argocd.argoproj.io/hook with the value of the phase that it
should execute within (the absence of the hook annotation results
in the resource being applied during the sync phase). For example,
for a Job to be executed in the PostSync phase, the following
annotation is applied:

metadata:
annotations:
argocd.argoproj.io/hook: PostSync

Resources that make use of hooks can be deleted when a sync
operation is performed by using the
argocd.argoproj.io/hook-delete-policy annotation. The
following hook deletion policies are available:

HookSucceeded

The hook resource/object is deleted once it has successfully
completed.

HookFailed

The hook resource/object is deleted if the hook has failed.

BeforeHookCreation

Any hook resource/object will be deleted before the new one is
created. This is the default if no hook deletion policy is specified.

Here is an example of a PostSync hook with a deletion policy of
HookSucceeded.

metadata:
annotations:
argocd.argoproj.io/hook: PostSync
argocd.argoproj.io/hook-delete-policy: HookSucceeded

It is important to note that hooks that are named (i.e., ones with
.metadata.name defined) will be created/run only once. If you
want a hook to be re-created or re-run each time there is a sync
operation, either use the BeforeHookCreation deletion policy or
use .metadata.generateName in your resource/object.

NOTE

Note: As of the time of this writing, certain tools, such as Kustomize, have
limited support for the use of the generateName property.

Sync Waves

Argo CD applies manifests in a specific order. You can see this order
by inspecting the code. In most cases, the default order that Argo
CD applies resources should work. However, complex deployments
may inevitably require changes to this default order. This is where
Ssync waves come in.

NOTE

Sync waves work best if proper Application health checks are in place. This will
be reviewed in depth in Chapter 10.

The concept of sync waves is pretty straightforward. The desired
resource is annotated with the order in which you wish Argo CD to
apply your manifests using argocd.argoproj.io/sync-wave
key with an integer value denoted as a string:

metadata:
annotations:
argocd.argoproj.io/sync-wave: "5"

By default, every resource gets assigned “wave 0,” unless otherwise
specified via the annotation. Numbers can be negative as well. So,
for example, consider the following:

e Namespace as wave "—-1"
e Service Account as wave “0”
e Deployment as wave “1”

The Namespace would be applied first, then the Service Account,
and then finally the Deployment.

https://oreil.ly/QbCwy

A good use case for sync waves is to apply CRDs first before the
corresponding custom resource.

Sync waves can also be used within the confines of a hook. This
means that you can have resources within a PreSync hook phase

be applied in a specific order, within that phase, without affecting
other hook phases. In the following example, the Job will be applied
in wave “3” within the presync hook phase:

apiVersion: batch/vl
kind: Job
metadata:
name: create-tables
annotations:
argocd.argoproj.io/sync-wave: "3"
argocd.argoproj.io/hook: PreSync

Now, you can also have the following resource in a PostSync
hook:

apiVersion: batch/vl
kind: Job
metadata:
name: test-deployment
metadata:
annotations:
argocd.argoproj.io/sync-wave: "1"
argocd.argoproj.io/hook: PostSync

In these two examples, the create-tables will be applied before
the test-deployment even though test-deployment is a lower
wave. This is due to the fact that the create-tables resource is
in a different hook phase. The important thing to note when
considering sync waves with hooks is that sync waves are scoped
within each hook phase. This provides administrators with flexibility
in how manifests get applied to the destination.

Comparing Options

There might be cases where you will need to exclude resources
from the overall status of your application—for example, if you have
a resource created by another controller (this is common when
working with Kubernetes Operators). This can be achieved with the
following annotation:

metadata:
annotations:
argocd.argoproj.io/compare-options: IgnoreExtraneous

NOTE

This only affects the sync status. If the resource’s health is degraded, then the
application will also be degraded.

For example, the following Secret instructs the OpenShift OAuth
operator to create another Secret for the OpenShift OAuth controller
to consume. By doing so, Argo CD will mark your Argo CD
Application “out of sync.” To work around this issue, use the
aforementioned argocd.argoproj.io/compare-options:
IgnoreExtraneous annotation:

apiVersion: vl
kind: Secret
type: Opaque
metadata:

name: htpass-secret

namespace: openshift-config

annotations:

argocd.argoproj.io/compare-options: IgnoreExtraneous

data:

htpasswd: bm90VGhlRHIvaWRzWW9lcmVMb29raW5SnRmSy

This will mark your Application as “healthy” in Argo CD, but it's
important to note that it'll mark the created resource as “out of
sync.” However, the overall Application health is not affected.

Managing Resource Differences

Argo CD allows you to manage how you handle differences from
your source of truth and current state within Kubernetes by the way
of ignoring differences. There are several locations where ignoring
differences can be configured. This configuration can be applied on
a per—Argo CD Application basis or for the whole Argo CD system
(where all the Applications in an Argo CD installation are affected).

Application-Level Diffing

As the name suggests, application-level diffing allows you to ignore
differences within individual applications at a specific JSON path,
using RFC6902 JSON patches and jq path expressions. Using the
JSON path, you can specify paths referencing properties that Argo
CD should ignore when it compares the running state with the
desired state defined. Here is an example:

apiVersion: argoproj.io/vlalphal
kind: Application
metadata:
name: myapp
spec:
ignoreDifferences:
- group: apps
kind: Deployment
jsonPointers:
- /spec/replicas

The ignoreDifferences setting allows you to specify the name

of the resource and the namespace as well as the Group Version
Kind (GVK). For more complex manifests, you can use the jq path

https://oreil.ly/ncPGa
https://oreil.ly/Y-31-

expression to define specific items to ignore in @ more granular
fashion. For example:

apiVersion: argoproj.io/vlalphal
kind: Application
metadata:
name: myapp
spec:
ignoreDifferences:
- group: apps
kind: Deployment
jgPathExpressions:
- .spec.template.spec.initContainers|[] | select (.name
== "injected-init-container")

NOTE

Visit https://jqglang.org for more on the jq expression language and how to use
the jq path expression option.

You can also ignore fields owned by specific managers by using
managedFieldsManagers and listing the specific managers to

ignore.

An additional item to note: most users will use the
RespectIgnoreDifferences sync option in conjunction with this

ignoreDifferences setting.

System-Level Diffing

Argo CD can also be set up to ignore differences at a system level.
This allows administrators to be able to set global ignore settings
for the specific Argo CD installation. These configurations can be set
up for a specified group and kind by using the
resource.customizations key of argocd-cm ConfigMap using

the following format:

https://jqlang.org/

data:

resource.customizations.ignoreDifferences.apps Deployment:
|

JjsonPointers:
- /spec/replicas

Take note that the resource.customizations key also includes
the keyword ignoreDifferences with the GKV demarcated by an
underscore (_), using a flattened approach. For more information
about how to formulate these settings, please see the official Argo
CD documentation site on system-level diffing. There you can see
more specific examples of modifying how Argo CD handles diffs as a
global setting.

Use Case: Database Schema Setup

With an understanding of some of the ways to customize the
synchronization and the associating current state for applications,
let’s see it in action with one of the most common use cases: a
database schema setup.

We are going to be deploying an Application that is going to consist
of a backend database. The database will be set up at deploy time,
which means that the database schema will need to be loaded as a
part of the deployment. Furthermore, the database schema setup
needs to run after the database is up and running. For this specific
use case, we are going to be making use of sync waves and Argo
CD Application Sync Options.

Argo CD Application Overview

All the artifacts we will be using are in the aforementioned
companion repository—make sure you've cloned this repository if
you have not done so already, and ensure that you are in the root
directory of this repository.

https://oreil.ly/xp47q
https://github.com/sabre1041/argocd-up-and-running-book

Inspect the Argo CD Application for this use case, which is located in
the ch05 directory.

Execute cat ch05/pricelist-app.yaml from the root directory
of the repository and you will see the following manifest:

apiVersion: argoproj.io/vlalphal
kind: Application
metadata:
name: pricelist-app
namespace: argocd
finalizers:
- resources-finalizer.argocd.argoproj.io
spec:
project: default
source:
path: chO05/manifests/
repoURL: https://github.com/sabrel041/argocd-up-and-
running-book
targetRevision: main
destination:
namespace: pricelist
name: in-cluster
syncPolicy:
automated:
prune: true
selfHeal: true
syncOptions:
- CreateNamespace=true
retry:
limit: 5
backoff:
duration: 5s
factor: 2
maxDuration: 3m

This manifest should look familiar if you have already completed
Chapter 4. There are several items of note to point out:

e The .spec.syncPolicy has the automated options of
prune: true and selfHeal: true. This means that

Argo CD will synchronize this application automatically
whenever it’s out of sync. In addition, it will also delete
resources that it is not keeping track of.

e Under .spec.syncPolicy, the CreateNamespace=true
option under syncOptions is also defined, which specifies

that Argo CD will create the destination hamespace if it
doesn't already exist.

e Retries under that .spec.syncPolicy.retry property
have also been defined. This option specifies how many
times to retry the sync before Argo CD marks the sync
process as “Failed.”

One final item to note is that Argo CD will be deploying manifests
under the ch05/manifests/ directory from the repository as denoted
in the . spec.source.path section. This last item is what we will
cover in the next section.

Manifest Sync Wave Overview

If you take a look under the ch05/manifests/ directory, you will see
a kustomization.yaml file, which for the purposes of this

example, aggregates the manifests that need to be applied. It's a
simple list; basically, it is the resources that we want applied to the
cluster:

apiVersion: kustomize.config.k8s.io/vlbetal
kind: Kustomization

namespace: pricelist

resources:

- pricelist-db-pvc.yaml

- pricelist-db-svc.yaml

- pricelist-db.yaml

- pricelist-deploy.yaml

- pricelist-job.yaml

- pricelist-svc.yaml

NOTE

For more information about Kustomize, please see Chapter 4.

Normally, Argo CD would apply these manifests in the same order
as the output of kustomize build in this directory. However,
we've added a sync wave annotation to customize the order Argo
CD should apply these manifests.

Prior to any other resource in this Application being applied, we
want the database and any backend storage to be up and running
first. Therefore, we've annotated the pricelist-db-pvc.yaml
(PersistentVolumeClaim for the database) and pricelist-
db.yaml (database deployment) manifests with the
argocd.argoproj.io/sync-wave: "1" annotation to denote
that we want these two manifests to be applied first. They both
should have the following annotation:

metadata:
annotations:
argocd.argoproj.io/sync-wave: "1"

This will not only make Argo CD apply these manifests first, but the
annotation also causes Argo CD to wait until these manifests are in
a “ready” state before attempting to go on the next manifest. Once
all the manifests in wave 1 are applied and reporting a ready state,
the next wave is applied.

In our use case, the next wave is the pricelist-db-svc.yaml
file, which has the argocd.argoproj.io/sync-wave: "2"
annotation:

apiVersion: vl
kind: Service
metadata:

name: mysql
annotations:
argocd.argoproj.io/sync-wave: "2"

Since this is the only manifest with that sync wave annotation, this
pricelist-db-svc.yaml file will be applied after wave 1.

You can inspect the other manifests in the ch05/manifests/ directory
to inspect the order that they will be applied in:

e pricelist-db-pvc.yaml and pricelist-db.yaml as
sync wave 1

e pricelist-db-svc.yaml as sync wave 2
e pricelist-deploy.yaml as sync wave 3
e pricelist-svc.yaml as sync wave 4

e pricelist-job.yaml ina PostSync hook in sync wave
0

Before moving on, it's important to note that when you inspect the
pricelist-job.yaml manifest, this Job is responsible for setting
up the database schema. This Job also runs as a PostSync hook,
which means that it will be applied after all the manifests in the
sync phase have been applied. Also note that the Job has a sync
wave of 0. Although a sync wave of 0 is the default, the annotation
was added to illustrate that sync waves work within phases.

NOTE

It's good practice to make your hooks be idempotent, given that the hooks,
depending on the specific hook, will run multiple times.

Taking a look at the annotations in the pricelist-job.yaml
manifest:

apiVersion: batch/vl
kind: Job
metadata:
name: pricelist-postdeploy
annotations:
argocd.argoproj.io/sync-wave: "0"
argocd.argoproj.io/hook: PostSync
argocd.argoproj.io/hook-delete-policy:
BeforeHookCreation

Another important item to note is the use of a hook deletion policy.
This annotation ensures that this Job object should be deleted
before the hook phase starts in subsequent sync runs if it is present.
To learn more about hook deletion policies, please consult the
official Argo CD documentation on resource hooks.

Importance of Probes

Argo CD uses several different sources to determine the overall
health of the Application being deployed. One of the important
metrics used is health status from the Kubernetes API. In order for
this capability to be utilized, it's very important to have
readiness/liveness probes set up correctly for each object that
needs it. In Kubernetes, liveness probes determine when to restart
a container. Readiness probes determine when a container is ready
to start accepting traffic.

NOTE

For more information about how Argo CD handles Application health, please
consult the official documentation. We will also go over this in Chapter 10.

https://oreil.ly/YhDrF

In our particular use case, the resources that require probes to be
defined in order to achieve the desired goal are the database
deployment and the web app deployment. Taking a look at the
pricelist-db.yaml file, you'll see the following probes:

spec:
template:
spec:
containers:
- image: mysgl:8.0.41
name: mysql
livenessProbe:
tcpSocket:
port: 3306
initialDelaySeconds: 12
periodSeconds: 10
readinessProbe:
tcpSocket:
port: 3306
initialDelaySeconds: 12
periodSeconds: 10

In this instance, TCP port 3306 is waiting to become active before
considering the database deployment alive and ready to receive
requests. For the web app, which is the pricelist-deploy.yaml
file, you will see the following probes configured:

spec:
template:
spec:
containers:
- image: quay.io/redhatworkshops/pricelist:latest
readinessProbe:
httpGet:
path: /
port: 8080
initialDelaySeconds: 5
periodSeconds: 2
livenessProbe:
tcpSocket:

port: 8080
initialDelaySeconds: 5
periodSeconds: 2

In the web app Deployment, we are considering the web app alive
when TCP port 8080 is active. The app will not be considered ready
until an HTTP GET request returns a response code of 200 on port
8080.

In both cases (the database Deployment and web app
Deployment), both probes need to be successful before Argo CD
considers the Application “healthy” and “synced.”

NOTE

For more information on probes and how to set them up, please see the official
Kubernetes documentation on probes.

Seeing It in Action

Now that we've reviewed the use case in detail, let’s see it in action
by using these manifests in our kind instance. From the root

directory of the companion Git repository, apply the Application
manifest by running the following command:

kubectl apply -f chO5/pricelist-app.yaml

An Argo CD Application tile should appear in the Argo CD Ul as a
result. The tile will appear similar to what is depicted in Figure 5-1.

https://oreil.ly/patGK
https://oreil.ly/patGK

@ pricelist-app k¢

Project: default

Labels:

Status: @ Missing € 0utOfSync (O Syncing
Repository: https://github.com/sabre1041/argocd-up-a...
Target Re... main

Path: ch05/manifests/

Destinatio... in-cluster

Namespa... pricelist

Created At: 02/15/2024 17:37:04 (a few seconds ago)
Last Sync: 02/15/2024 17:37:08 (a few seconds ago)

C REFRESH © DELETE

Figure 5-1. Pricelist Application tile

The first thing Argo CD does is apply the first sync wave, which is
our storage and database Deployment. After clicking on the
Application tile, you should be able to see these resources enter the
syncing phase first while the other resources are in the “missing”
state. Take a look at Figure 5-2 for an example of how this is
displayed.

= B + - Q @ [100%
_____ p F=u2 pricelist-db-pve .
i '-—-' 90
| &

PersistentVolumeClaim was created a few seconds ago

: mysql
T TR :
|
E SVC
:
pricelist-app E _____ + _____ " &* pricelist E
a few seconds i =
I
|
2

----- Qi

! deploy

(a few seconds)| rev:1 |

,___
\ §
3 T
=
0
o
=
—
L

deploy

Figure 5-2. Pricelist sync wave 1

When the storage is provisioned and the MySQL database is
deployed, the next object that Argo CD will apply in our use case is
the MySQL service. The Application overview will appear similar to
Figure 5-3.

== pricelist-db-pvc

pricelist-app . pricelist
RO RO

SVC

mysq|
°0
El

Figure 5-3. Pricelist sync wave 2

After the service is healthy, Argo CD will apply the web app
Deployment, as seen in Figure 5-4.

=== pricelist-db-pvc

pricelist-app
RO

Figure 5-4. Pricelist sync wave 3

Once the web app is deployed, the service for the web app is
applied, as denoted in Figure 5-5.

100%

e
5
+
|
o
0

=== pricelist-db-pvc

------ > l‘---_'--I 'o :
pvc -
: mysql -
B 4 : [
| L 4
| SVC
|
i
I
I
i
S
: - pricelist .
yemms « —[EEE
: 0 . :
s i SVC :
@ pricelist-app ; :
v0 . :
| I
i‘ _____ > mysq e _
L] $

i depl
| o

Figure 5-5. Pricelist sync wave 4

Once the web app service is deployed and in a healthy state; the
Sync phase is considered complete, and Argo CD will enter the
PostSync phase. The final step that Argo CD performs is applying
the Job that facilitates the database schema setup. In the Argo CD
UI, this is indicated by an anchor (f;) symbol within the Job, as
seen in Figure 5-6.

g

1=

+
|

=N
Q @ [100% | | Yo ;

_____ = i pricelist . _1
: vo i :

o ' SV :
@ pricelist-app s i —
v0 * :
a minute :

i rmysgl .
Hecess | 0 # —fmsmm—meaaa [
i ' ﬂ L]

| deploy
|
|
_____ h O pricelist s ST
: *0 *
] deploy

[few seconds || rev:1 |

5 Pricelist-postdeploy «

------ p EHER -]
EEE *
b
12 a few seconds

Figure 5-6. Pricelist PostSync hook

Once the PostSync phase finishes, you should now see the Argo
CD Application tile for the Application show Healthy and Synced
status in the Application overview page. See Figure 5-7 for how this
appears.

@ pricelist-app w
Project: default

Labels:

Status: W Healthy @ Synced

Repository: https://github.com/sabre1041/argocd-up-a...
Target Re... main

Path: ch05/manifests/

Destinatio... in-cluster

Namespa... pricelist

Created At: 02/15/2024 17:37:04 (a minute ago)

Last Sync: 02/15/2024 17:38:04 (a few seconds ago)

Figure 5-7. Pricelist synced and healthy

Summary

In this chapter, we covered how Argo CD synchronizes applications
and how you can customize the method in which Argo CD performs
synchronizations on the individual application level and the system
as a whole. We also reviewed how to further refine your
synchronizations by implementing ordering with sync waves and
sync hooks. Finally, we reviewed in detail a use case where sync
waves and sync hooks were used to perform a database schema
setup during an Argo CD deployment of an application.

Chapter 6. Authentication and
Authorization

Included as part of the standard platform deployment, Argo CD
contains a default management user providing unrestricted access
to configure the platform using either the UI or via the API/CLI. By
providing this functionality out of the box, it simplifies the getting
started experience and enables end users to realize the capabilities
provided by Argo CD and the concepts embraced by GitOps
methodologies.

As adoption grows beyond a single individual managing and utilizing
Argo CD, there becomes a need to support additional users aside
from a single elevated management user along with integrating
with a centralized user management system, such as LDAP or a
compatible OIDC provider. While at the same time, when providing
the capability to support additional users, there must also be a way
to define and govern the level of access that each entity is entitled
to.

In this chapter, we will explore how users are managed in Argo CD,
including where and how they are defined, the ways that they can
perform actions against the tool, and the capabilities to define role-
based access control (RBAC) policies to govern their access.

Managing Users

While Argo CD supports the ability to define and leverage multiple
users, upon initial deployment, there is only a single user available
for use—"admin.” The admin user, as discussed previously, is
provided both as a convenience for quickly getting up to speed with
the capabilities provided by Argo CD and for allowing unrestricted

access to the entire set of features included by the tool. It can be
used as the sole entity when Argo CD is utilized by a single
individual, complement the incorporation of additional users once
they are introduced, or be disabled entirely. Let’s look into this
admin user and how it can be leveraged at various phases in Argo
CD, at initial deployment time and the use afterward.

The Admin User

When Argo CD is first deployed, a secret named argocd-
initial-admin-secret is created within the namespace for
which Argo CD has been deployed, containing the password for the
admin user. Assuming Argo CD has been deployed to the argocd

namespace, the password can be obtained by using the following
command:

kubectl -n argocd get secret argocd-initial-admin-secret \
-0 jsonpath="{.data.password}" | base6d -d

This method for obtaining the admin password was introduced in
earlier chapters as we explored the various ways to interact with
Argo CD. Let’s now explore how we can manage the admin user in
further detail.

Using the argocd CLI, log in to Argo CD deployed to the kind

cluster deployed earlier using the previous command to obtain the
admin password:

argocd login --insecure --grpc-web --username admin \
--password=$ (kubectl -n argocd get secret \
argocd-initial-admin-secret \

-0 Jsonpath="{.data.password}" | base64 -d)
argocd.upandrunning.local

NOTE

It is important that the kind cluster that is used for this chapter has an ingress
controller deployed. Steps to enable the required kind cluster environment can
be found at the beginning of Chapter 3.

Details relating to the user can be found by using the argocd
account get-user-info. Use this command to obtain
information about the admin user:

argocd account get-user-info

Logged In: true
Username: admin
Issuer: argocd
Groups:

This output confirms that we successfully authenticated and have
an active session as the admin user.

The initial password for the admin user should only be used for
initial access and should be changed to prevent unwanted use,
given that anyone with the ability to read secrets in the Argo CD
namespace can gain access to the password for a privileged user.

The argocd account update-password command can be used

to change the password for a user. Update the password for the
admin user, replacing <new password value> With the desired
password, by executing the following command:

argocd account update-password \

-—account=admin \

--current-password \

S (kubectl -n argocd get secret argocd-initial-admin-secret
\

-0 Jjsonpath="{.data.password}" | base64 -d) --new-password=
<new password value>

By default, the argocd account update-password command
will update the account of the current user, and in this case, could
have been omitted. However, the --account flag was included to
explicitly select the user for which the password would be updated
as well as to demonstrate how to target a different user, if desired.

With the account details updated, let’s confirm the updated
password works successfully by authenticating to the Argo CD web
interface. Launch a browser and enter admin in the username field
and the value of the updated password in the password field. If the
credentials were accepted, you have successfully updated the
admin password.

Now that the password for the admin user has been changed, the
secret containing the initial password can be safely removed, if you
choose to do so. Execute the following to delete the initial admin
secret:

kubectl delete secret argocd-initial-admin-secret -n argocd

Local Users

To give individuals the ability to access Argo CD without needing to
use the admin user, Argo CD includes the functionality to manage
users that are defined locally within the tool. Local users serve two
primary purposes:

e They provide a facility to generate authentication tokens for
use by tools integrating to perform management functions.
Examples include CI/CD, configuration management tooling,
and monitoring tools.

e The creation of additional users to support small teams or
environments where integrating an external user
management tool is not needed or desired.

Additional users are defined within the argocd-cm ConfigMap using
the format accounts.<username> as the key along with one of
the available capabilities that can be granted to a user.

The following is an example of how a new local user named alice
can be defined within the argocd-cm ConfigMap:

apiVersion: vl
kind: ConfigMap
metadata:
name: argocd-cm
namespace: argocd
labels:
app . kubernetes.io/name: argocd-cm
app.kubernetes.io/part-of: argocd
data:
accounts.alice: apiKey, login

Adding the user alice to the argocd-cm can also be achieved
using kubectl by patching the argocd-cm ConfigMap using the
following command:

kubectl patch -n argocd cm argocd-cm --type='merge' \
-p='{"data": {"accounts.alice": "apiKey, login"}}'

Once the ConfigMap has been updated with the new user, their
details can be displayed by using the argocd account list
command:

NAME ENABLED CAPABILITIES
admin true login
alice true apiKey, login

At the present time, only two capabilities can be associated with a
local user: 1ogin and apiKey:

login

Provides the ability to access the web UI
apiKey

Allows for authentication tokens to be generated to interact with
the Argo CD API

For the majority use cases when creating local users, login is the
only capability that will be needed, as it is typically associated with
a human actor. However, for the purposes of this exercise, we
provided both available capabilities to the user alice.

Similar to the admin user, the first step that should be taken when
creating new local users is to reset their password since no
password is initially defined and they would be unable to log in. Use
the argocd account update-password to update the
password of the user alice, as shown next. Replace

<new password> With the desired password that should be
associated with the user alice:

argocd account update-password —--account=alice --new-
password=<new password>

You will then be prompted to enter the password of the current
user, and once entered, the password will be changed.

Confirm that the new user Alice can authenticate successfully by
launching a web browser, navigating to the Argo CD web console,
and logging in with the username alice and the password

previously specified.

If the credentials are accepted, the new user has been created
successfully and is ready for use.

Alternatively, instead of using the Argo CD CLI to update the
password for a user, passwords can be defined in a declarative

fashion by setting the accounts.<username>.password and
accounts.<username>.passwordMtime properties within the
argocd-secret Secret. accounts.<username>.passwordisa
bcrypt hash containing the password, while accounts.
<username>.passwordMtime contains the date that the
password was last modified.

The Argo CD CLI includes the argocd account bcrypt helper

function for generating a bcrypt hash that can be used to specify the
desired password for a user.

Generate a password that will be used for the user alice to
authenticate using the following command:

argocd account bcrypt --password <new password>

Update the password by patching the argocd-secret with the
value generated previously, using the following command:

kubectl -n argocd patch secret argocd-secret \
-p '"{"stringData": {
"accounts.alice.password": "<BCRYPT PASSWORD>",
"accounts.alice.passwordMtime": "'$(date -u +"%Y-%m-
SdT3H:3M:%Sz2") ""
IS

Once again, authenticate as alice using the newly updated
password in the Argo CD UL.

Disabling users

Once users have been created in Argo CD, their access can be
disabled. By setting the accounts.<username>.enabled

property to false in the argocd-cm ConfigMap, their access to
both the UI and CLI can be disabled.

For example, to disable access for the user Alice previously created,
set accounts.alice.enabled to "false" inthe argocd-cm
ConfigMap as shown next:

apiVersion: vl
kind: ConfigMap
metadata:
name: argocd-cm
namespace: argocd
labels:
app . kubernetes.io/name: argocd-cm
app . kubernetes.io/part-of: argocd
data:
accounts.alice: apiKey, login
Disables Alice’s Local User Account
accounts.alice.enabled: "false"

The ConfigMap can also be updated directly using kubectl by
performing the following command:

kubectl patch -n argocd cm argocd-cm —--type='merge' \
-p='{"data": {"accounts.alice.enabled": "false"}}’

Confirm the user alice can no longer access Argo CD by launching
a web browser and attempting to authenticate using the alice

user. You will be greeted with a message indicating the user
account is disabled.

To reinstate the account, either set the
accounts.alice.enabled field to true or remove the field
entirely. The following is how to reenable the alice user account
by removing the property patching the argocd-cm ConfigMap using
kubectl:

kubectl patch -n argocd cm argocd-cm --type=json \
_p:| [{ "Op" : \AJ remove" , "path" :
"/data/accounts.alice.enabled"}]

Once the property has been removed from the argocd-cm
ConfigMap, the user alice will be able to authenticate once again.

In addition to being able to disable local user accounts, the Argo CD
admin account can also be disabled. Once local users have been
established and at least one of these accounts has been granted
access to perform elevated actions, it is recommended that the
admin account be disabled to enhance the overall security posture
of Argo CD. Comparable to disabling a local user, the admin user
can be disabled by setting the admin.enabled fieldto "false" in

the argocd-cm ConfigMap:

apiVersion: vl
kind: ConfigMap
metadata:
name: argocd-cm
namespace: argocd
labels:
app.kubernetes.io/name: argocd-cm
app . kubernetes.io/part-of: argocd
data:
Disables the admin account
admin.enabled: "false"

This action can also be performed using kubectl by executing the
following command:

kubectl patch -n argocd cm argocd-cm --type='merge' \
-p='{"data": {"admin.enabled": "false"}}

Auth tokens

Aside from being able to define additional users to access Argo CD,
local users serve another function—the ability to define and
generate authentication tokens, which can be leveraged by external
systems to perform automation actions. Examples of when auth
tokens can be used include CI/CD tools to control and monitor the
synchronization of Applications as part of an application release

pipeline or within an automation tool to perform actions against
Argo CD.

You may have noticed that when users are defined, they have the
ability to have two associated capabilities: 1ogin and apiKey.
While we previously covered the use case for the 1ogin capability

where a user is granted the ability to access the Argo CD web
console, the apiKey capability allows for the generation of an auth
token that is associated with their account.

Let’s walk through how an auth token can be generated and used.

First, create a new local user called “automation,” which will be
used to demonstrate how auth tokens can be created, managed,
and utilized, by patching the argocd-cm ConfigMap with the
following command:

kubectl patch -n argocd cm argocd-cm —--type='merge' \
-p='{"data": {"accounts.automation": "apiKey"}}'

Auth tokens can be generated using the argocd account
generate-token command. Individual user accounts for which the
token will be generated can be targeted using the --account flag.
Otherwise, a token will be generated for the current logged-in user.

To generate an auth token for the newly created automation user,
execute the following command:

argocd account generate-token --account automation

An auth token consisting of a JSON Web Token (JWT) will be
displayed as the output of the command. This token can be used to
interact with the Argo CD CLI or API. Within the CLI, the --auth-

token parameter can be used when invoking any command. So, to
confirm that the user backing the token is being honored by the CLI,

execute the following command, which will display information
about the user invoking the command:

argocd account get-user-info --auth-token=<token>

Replace the value of <token> with the token value generated
previously. A response similar to the following should be displayed:

Logged In: true
Username: automation
Issuer: argocd
Groups:

Alternatively, the ARGOCD AUTH TOKEN environment variable

allows for the auth token to be defined once and avoids needing to
provide it as a parameter for each invocation of the CLI.

Specifying an auth token either through the flag or environment
variable has a higher precedence than any other previously
authenticated user.

Auth tokens, by default, have no expiration, which could be seen as
a security risk. To increase the security posture surrounding auth
tokens, it is recommended that they expire after a certain amount
of time. The --expires-in flag can be used to specify a duration
for which the token is valid (such as 1h, 90d, etc.).

Generate a timebound auth token of 90 days using the --
expires-in parameter using the following command:

argocd account generate-token --account automation --
expires-in 90d

Tokens associated with a user can be displayed using the argocd
account get command. Display details about the automation

user, including the two tokens previously generated using the
following command:

argocd account get --account automation

Name : automation

Enabled: true

Capabilities: apiKey

Tokens:

ID ISSUED AT

EXPIRING AT

89ec94b0-aff8-47c6-b59%9a-229c4b564688 -01-20T14:15:16-
06:00 -04-19T715:15:16-05:00
70cf36ea-b365-4f04-9fc0-56229cd41620 -01-20T12:39:16-

06:00 never

Notice how one token has an infinite lifespan, whereas the other
token will expire at a time relative to the time it was generated.

Tokens can be explicitly revoked whenever there is a desire to do
so. Examples of when one might want to revoke an auth token are
when it has been accidentally exposed or is being used by a
member of the team who no longer requires access. Tokens are
tracked within the argocd-secret Secret in a key called

accounts.<account>.tokens and while this property can be

modified manually, it is much more straightforward to use the Argo
CD CLI.

Delete one of the tokens previously generated by using argocd
account delete-token command and specifying the name of

the account the token is associated with and the ID of the token.
The ID of all auth tokens is shown when invoking the argocd

account get command and is a Universally Unique Identifier

(UUID) that is generated at token creation time. To use a more
friendly name, use the --id flag of the argocd account
generate-token command.

Revoke an auth token by executing the following command:

argocd account delete-token --account <account> <ID>

SSO

Local users are a great way to onboard a small team into Argo CD
or leverage an auth token to perform automation actions. As Argo
CD adoption grows, especially within a large organization, the
management of users within Argo CD through the use of the local
users feature can become untenable. Fortunately, Argo CD has the
capability to integrate with external user management tools to
offload the capability to an external system.

Two forms of SSO are available:

e Dex OIDC provider
e Direct OIDC integration

Either option uses the OpenID Connect (OIDC) authentication
protocol to facilitate how users authenticate and how their details
are consumed by Argo CD.

Dex

Dex is an identity service that is bundled with Argo CD and runs as
a separate pod, acting as a bridge between one or more identity
providers through the use of connectors. These connectors provide
advanced and provider-specific functionality that maps user details
into a format that Argo CD can understand in a standardized
manner. Supported connectors include Git-based services, like
GitHub and GitLab; enterprise integrations from Google and
Microsoft; and lightweight directory access protocol (LDAP) for
integrating more traditional user-management platforms. Multiple
connectors can be specified to account for one or more identity
services that contain users who would like to access and leverage
Argo CD.

Direct OIDC

If the desired user management tool exposes an OIDC interface (for
example, Microsoft, Google, Keycloak), Argo CD can delegate the
entire authentication process to the provider. By using this method,
many of the same configurations that have been used previously
when interacting with the OIDC provider by other tools can be
reused for Argo CD, enabling a more native and consistent method
for accessing identity details from the provider.

SSO in action

With an understanding of the options available when leveraging the
SSO capability within Argo CD, let’s look at the steps involved when
implementing SSO in our kind cluster. While there are a variety of
options available for integrating users that are managed externally,
we will utilize Keycloak, an open source identity and management
tool. As external users, we will describe how to integrate users
stored in Keycloak. Keycloak exposes a native OIDC-compatible
interface, which makes it ideal to demonstrate an SSO integration
with both Dex and the native OIDC options.

The first step is to deploy Keycloak to your kind cluster. Tooling is
available within the project Git repository to facilitate the
deployment and configuration of Keycloak.

Ensure that you have the project codebase cloned, then navigate to
the ch06 directory.

To simplify the deployment and configuration of Keycloak, the
Keycloak Operator will be used. Execute the following script to
deploy the operator to a new namespace called keycloak:

helm upgrade -i -n keycloak --create-namespace keycloak-
operator charts/keycloak-operator

https://github.com/sabre1041/argocd-up-and-running-book

Confirm the Keycloak Operator is running by listing the pods within
the keycloak namespace:

kubectl -n keycloak get pods

With the Operator running, let’s work on deploying Keycloak itself.
While the Operator provides the capabilities to manage the majority
of concerns related to the deployment and configuration of
Keycloak, it does not have the functionality to generate an SSL
certificate to secure Ingress communication.

Use the OpenSSL tool to generate a self-signed certificate for
Keycloak and place the generated certificates within the file folder
of the Keycloak Helm chart. These files will be leveraged afterward
when the chart is installed. Execute the following command to
generate the certificate:

openssl req -subj
"/CN=keycloak.upandrunning.local/0=0'Reilly Media/C=US" -
newkey \

rsa:2048 -nodes -keyout charts/keycloak/files/key.pem -x509
-days \

-out charts/keycloak/files/certificate.pem

As you might have noticed, the generated certificate uses the
hostname keycloak.upandrunning.local. Using a similar
process that was utilized in Chapter 3, add the following value to
the /etc/hosts file so that requests are made against the kind
environment:

.0.0.1 keycloak.upandrunning.local

Now, install the Helm chart to configure the supporting components,
including a PostgreSQL database backend, TLS certificates
previously generated, and the keycloak custom resource. The

Keycloak Operator in turn deploys and configures Keycloak:

helm upgrade -i -n keycloak keycloak charts/keycloak

In a few moments, an Argo CD pod will be created. This can be
seen by querying the pods in the keycloak hamespace:

kubectl get pods -n keycloak

Once the pod is up, navigate to the Keycloak interface at
https://keycloak.upandrunning.local. Accept the self-signed
certificate, and you will be presented with a dashboard, as shown in
Figure 6-1.

B«evcLoak

Welcome to Keycloak

& Administration Console » @ Documentation » {@ Keycloak Project »

Cerrally manage all aspects of the Keycloak User Guide, Admin REST AP and Javadocs
LBy

= Mailing List »

'ﬂ{’ Report an issue >

Figure 6-1. Keycloak dashboard

Of the available options to choose from, select Administration
Console. This will take you to the sign-in page (see Figure 6-2).

The password for the default administrator account is automatically
created in a secret called keycloak-initial-admin and stored

within the keycloak namespace by the Keycloak Operator.

Sign in to your account

Username ar email

|

Passwaord

Figure 6-2. Keycloak sign-in page

Extract the value by executing the following command:

kubectl get secret -n keycloak keycloak-initial-admin \
-0 Jjsonpath='{ .data.password }' | base64 -d

Use the retrieved password, and log in with the username “admin.”
Once authenticated, you will be presented with the Keycloak
dashboard within the argocd realm. A realm in Keycloak is where
you define and manage resources, including users, clients, and
other entities.

“master” is the name of the default realm in Keycloak, and to
emphasize a separation of duties, another realm called “argocd” will

be used to define the integration with Argo CD. The Helm chart that
we installed previously created a new realm called “argocd” and
populated the instance with a baseline set of resources for us to
start. Let’s explore the argocd realm to see what was created for
us.

First, ensure that you are using the argocd realm. The active realm
the Ul is displaying is located on the upper lefthand portion of the
page. A dropdown of available realms is also available if there is
more than the default master realm. If the dropdown does not
display “argocd” currently, go ahead and click the dropdown and
select “argocd” so that you are focusing on the appropriate realm
(see Figure 6-3).

= @MKEYCLO] admin = .'

master realm

Server infa Provider info

Wersicn Ensbied featuren @

2304 ACCOUNT_AP1 Supported ACCOUNTR | Suppanes ADMIN_AP | Supgsmed ADMBE Suppared
ALUTHORIZATION Supperted CIRA Seppered CLIENT_POLICIES Supparted DEVICE_FLOW Supparmed
IMPERSOMATION Sugpared JE5_ADAPTER Sogpadted KERBERCS Sepperied PAR Sepperted

STEP_UP_AUTHENTICATION Supperted WEB_AUTHN Suppcrted

Total memary Disabied feartures &

ACCOUNTI Preves ADMIN_FINE_GRAIMED_AUTHZ Predew CLIENT_SECRET_ROTATION Predew
DECLARATIVE_USER_PROFILE Preview DOCKER OPOP Preview CYMAMIC_SCOPES | Experdmentsl FIFS
[T LINKEDIN_OAUTH MAP_STORAGE | Experimentsl MULTLSITE Preview RECOVERY_CODES Porview

60MB SCRIPTS Pravies TOEEN_EXCHAMNGE Preview TRAMSIENT LISERS Experimental LUPDATE_EMAIL | Provies

Figure 6-3. Keycloak realm selection

Two users were also created: John, who represents an Argo CD
administrator and Mary, a senior software developer. They can be
seen by selecting the Users button on the lefthand navigation pane,
as shown in Figure 6-4.

= @IKEYCLO ® T .

argocd Users
Users are the users in the current realm, Learn more
Manage

) User list
Clients

Client scopes Y Defaultsearch + Q, Search user S Delete user 1-2 =

Realm roles

— Username Email Lastname First name Status
Users
-] john@upandrunning.lecal john@upandrunning local Smith John
Groups !
Sessions | mary@upandrunning.local mary@upandrunninglecal Sanchez Mary -
Events
1-2 =

Configure

Realm settings

Authentication
Identity providers

User federation
Figure 6-4. Keycloak Argo CD realm user page

Two Keycloak groups have also been defined: ArgoCDAdmins, which
represent Argo CD administrators, and Developers, which represent
members of the software development team. John is a member of
the admins group and Mary is a member of the developers group.
Group definition and the membership can be seen by selecting the
Groups button on the lefthand navigation pane, as shown in

Figure 6-5.

L

Groups
M Exmct seaech A greas i b el of attrkated and role mappingd that ¢an be spplied 19 0 uiet, You can éreate, odit, snd delole grougd snd mansge
Chents 1e3 their child-parert organization. Lesm mons B
Che oEHEY
' Filter groups 1-2 =
T Davedapins i
= i Pl
foroupa A gy Dbichrsines
Py 1-2 =
e Seeriopem 1
Event
-2
Cion
Real 1
Aart
lde

Figure 6-5. Keycloak Argo CD realm group page

Now, let’s complete the necessary configuration to enable Argo CD
to integrate with Keycloak. Create a new Keycloak client by
selecting the Clients button on the lefthand navigation pane and
then selecting the “Create client” button at the top, as shown in
Figure 6-6.

= @MEKEYCLC ® acmin| ~ .

Clients

Clients are applications and services that can request authentication of auser. Learn more “

Clierts list Initisl sccess token Chent registration

Chenit IO Masne Type Deseription Home URL

sotourt $ichent_pccourtf BpenlD - hitpsfbrypchask upardnnning lacalmalewlargocdaccount/
Cermact A

sccourd-console $ichent_scoount-consolaf CpaniD - httpeioryclosi upardrunning localrealefargocd/account
Connact e

adrin-cl Sichent_sdmin-cb] OpenlD - -
Connact

beroker Sichent_brokerf CpaniD = -
Connect

PO T e e T Sichent_realmemanageme_. OpenlD
Connect

SifLrily s admin -corrioke Sichent_securily=admih-g DpenlD = it iorpeloak upardnunnieg ool Sdern e gocd foordole’
Cornect &

User federation

Figure 6-6. Keycloak Argo CD client creation

Enter “argocd” as the Client ID and “Argo CD"” as the Client Name
(see Figure 6-7).

= @IKEYCLC ® e o .

Clients * Create client
argocd

Create client

Manage Clients are applications and services that can request authentication of a user.

Clients

Client scopes)
o General settings ejient type @ OpenlD Connect -

Realm roles

= 2 Capability config

Users _ _ ClientID * & argocd
3 Login settings

Groups
Name & Argo CD

Sessions

Events Description (@

Configure

Always display inUl @ 0 Off

Realm settings

Authentication

Identity providers

User federatio
er federation Back Cancel

Figure 6-7. Keycloak Argo CD client setup

After setting these, click Next.

Enable “Client authentication” by switching the toggle to the
enabled position and leaving the remaining values in their default
positions (see Figure 6-8).

= IKEYCLO ® T .

Chents » Create client
argocd

Create client

p— Clients are applications and services that can request authentication of a user,

Clients

Client scopes
1 General settings Client authentication @Gn

@
0 Capability config

Users —_—
3 Login settings Authorization @ Q Off

Realm roles

Groups
s Authentication flow Standard flow @ Direct access grants (@

Sessions - 1 :
[] Implicitflow@ [| Service accounts roles @

Evrits ["] OAuth 2.0 Device Authorization Grant ®

[] OIDC CIBA Grant®

I:l:lnfigurr

Realm settings
Authentication

Identity providers

User federation Back —

Figure 6-8. Keycloak Argo CD enable client authentication

After you set “Client authentication,” click Next.

Set the Root URL and “Web origins” to the URL of the Argo CD
instance: “https://argocd.upandrunning.local.”

Argo CD exposes callback URLs for requests to invoke once the
authentication process is successful for each of the SSO types at the
context paths /api/dex/callback for Dex and /auth/callback for direct
OIDC. As a result, enter the following values in the “Valid redirect
URIs” field. Click the “Add valid redirect URIs” link to add the second
value:

e https://argocd.upandrunning.local/auth/callback
o https://argocd.upandrunning.local/api/dex/callback

We can then set the default page within the console that a user is
directed to upon a successful authentication. Set the Home URL to
“/applications” so that they will be sent to the page displaying all of
the applications they are allowed to view.

Finally, enter https://argocd.upandrunning.local into the text
box next to “Valid post logout redirect URIs” (see Figure 6-9).

= IKEYCLO ® e = .

Clients * Create client
argocd

Create client

Manage Clients are applications and services that can request authentication of a user.

Clients

Client scopes \

1 General settings pos URL @ https:ffargocd upandrunning local
Realm roles

2 Capability config

Users

)) Home URL @ fapplications
o Login settings
Groups

Valid redirect URls (0 https;fargocd.upandrunning. local/auth/callback -]
Sessions

https;{fargecd.upandrunning local/apifdex/callback @

Event
TR © Add valid redirect URls

Configure Valid post logout https,ffargocd.upandrunning.local e
direct URI
Realm settings i D © Add valid post logout redirect URIs
Authentication
Web origins (@ https:,fargocd.upandrunning.local e

Identity providers

© Add web origins

User federation

Figure 6-9. Keycloak Argo CD client settings

Click Save to create the Keycloak client. This brings you to the
“Client details” page (see Figure 6-10).

= (MIKEYCLO @ admin - .

Clients » Chent details

argoed
argocd OpeniD Connect @ cnabled @ Action -

Manage Clients are applications and services that can request authentication of a user,

Clients
Settings Keys Credentials Roles Client scopes Sessions Advanced
Client scopes

Realm roles General settings Jump to section
Users .
Client ID * (3 argocd General setings
Name @ Argo CD Access settings
Description (2 Capability config
Configure Login settings

Aways displayinul @ (P ©Off

Realm settings

Logout settings

Authentication Access settings
Identity providers)
Root URL (& hittps:/fargocd upandrunning.local
User federation
Save Revert

Figure 6-10. Keycloak Argo CD “Client details” page

Since the “Client authentication” option was selected, the OIDC
confidential access type was enabled. As a result, a set of
credentials were generated so that Argo CD can use them to
facilitate user authentication via a browser. Obtain the client secret
by selecting the Credentials tab for the argocd client and select the
Copy button to capture the value to the clipboard. Feel free to
select the eyeball icon, which will display the value (see Figure 6-
11).

= @IKEYCLO ® admin =

Clients > Client detals
argocd

arggcd OpenlD Connect c Enabled @ Action
Manage Clients are applications and services that can request authentication of a user.

Clients —_—
Settings Keys Credentials Roles Client scopes Sessions Advanced

Client scopes

Realm roles

Users Client Authenticator Client |d and Secret -

Groups

Sessions Save

Events

Configure Client Secret RS E R @ L] Regenerate

Realm settings

Authentication

Identity providers —_—
Registration access] Regenerate

User federation token = =

Figure 6-11. Keycloak Argo CD client credentials

To enable the groups that a user is a member of to be included as
part of the JWT, create a new client scope by selecting “Client
scopes” on the lefthand navigation pane and then select “Create
client scope,” as shown in Figure 6-12.

Enter “groups” as the name of the client scope and then click Save,
as shown in Figure 6-13.

Client scopes

[T Hasigadd Type
i Dafwalt =
Ty Optional =
Duwfaci =

rrecrpprolie Optignl =

Ot Bl Optional =

Protedad

e Corvramt

Dpasil) Carvasit

Oyt L 1

Cprel Conrat

Qe Lo

Ol Corvum

Cpenil) Conraxct

Clent scoped M8 & Comman et of protscsl Mapeers nd soles that ane shared between multiple chents. Lears =ove B

Toiame - s 5 ([s s

Cobipaliey sl CHTIp

ipaprll} Ciwmpt] et i el iy | it i, il i s bimint] s
e ok

el Ciorwmbrt buslt-in soes: e

it} Ciwwnind | Pnall - o i vl

Miroprolie « AT bt g

D el bt it ek B0

el Cadwrel buall i iinpn

Crpendil) Convepct bt in soope: prolie

Figure 6-12. Keycloak Argo CD client scope creation

MIKEYCLC ©, admin
Create client scope
argocd
Manags Name * ® groups
Clients
Description &
Client scopes
Realm roles Type @ None v
Users
Protocol (@ OpenlD Connect v
Groups
_ Display on consent o On
Sessions scraan D
Events
Consent screen text
@ e
Configure ”
Realm settings lglu“ I seacaps Q On

Authentication

Display Order &

Identity providers

User federation

Figure 6-13. Keycloak Argo CD client scope groups creation

Click on the Mappers tab to enable the groups claim to be added to
the token (see Figure 6-14).

argocd

Manage
Clients

Client scopes
Realm roles
Users
Groups
Sessions

Events

Configure
Realm settings

Authentication

Identity providers

User federation

MIKEYCLC ©) admin ~

Clientscopes » Client scope details

Groups Action

/

Settings Mappers Scope

Name * @ groups

Description @

Type @ None

hd

Display on consent o On

screen (3

Consent screen text

©

Include in token scope o On
@

Display Order

Figure 6-14. Keycloak Argo CD group mappers

Select “Configure a new mapper” (see Figure 6-15).

= (MIKEYCLO ® S o .

Client scopes »* Client scope details
argocd

Grou PS Action =

Manage

Clients Settings Mappers Scope

Client scopes

Realm roles o

Users

Mo mappers

Groups

If you want to add mappers, please click the button below to add some predefined

(St :
=essions mappers or to configure a new mapper.

Events

Add predefined mapper Configure a new mapper

Configure

Realm settings

Authentication
Identity providers

User federation

Figure 6-15. Keycloak Argo CD configure mappers

Select Group Membership (see Figure 6-16).

Configure a new mapper

Choose any of the mappings from this table

M

Allewed Web Origing

Apdignog

Audienon Resohe

Authentication Context Class Reference (ACR)

Claims parameter Token

Claims parameter w:th:w
Group Membership

Hardcoded claim

Hardeoded Rale

Pairwise subject identifier

Drescription

Adds all allcwed web anging to the "slcwed-caignd claim
ifi thad tokion

Add specified audignce to the audience (aud) figld of
token

Adds all clien_ids of “allowed” chents 1o the audeence field
of the tokem Allowed chent means (he chent fos which uter

has at least ong chent role

Maps the schieved LoA (Level of Authentication) to the
“sor’ claim af the token

Clams specified by Clams parameter are put info tokens,

Claims specified by Claims parameter with value are put
into an 10 token

Map user group mambershsp

Hardeode & claim inbo the token

Hardcode & rode mils thi access loken

Calculates a pairwise subject identifier using a salted sha-
256 hash. See OpenlD Connect specification for more info

abaut pairwise subject identifiers.

Map an assignoed rolo §o & now namg or

Figure 6-16. Keycloak Argo CD Group Membership

Enter “groups” for the Name and Token Claim Name. Deselect “Full
group path” and leave the remaining options enabled (see Figure 6-
17).

— MIKEYCLO @ admin

Client scopes » Client scope details » Mapper details

argocs Add mapper

If you want more fine-grain contral, you can create protocol mapper on this client

Manage

Clients
Mapper type Group Membership

Client scopes

Realm roles Name * @ groups

Token Claim Name groups

Groups

Sessions Full group path @ @ Off

Events Add to ID token o On

Add to access token o On
Configure @

Realm settings

Add to userinfo @ o on

Add to token D on

Identity providers NIRRT

Authentication

User federation

Figure 6-17. Keycloak Argo CD Group Membership configuration

Click Save to apply the configuration.

Finally, add the new client scope to the argocd client by once again
selecting Clients on the lefthand menu and then “argocd.”

On the “argocd” client configuration page, select the “Client scopes”
tab (see Figure 6-18).

= @IKEYCLO ® i = .

Clients * Client details
argocd

argocd | OpenlD Connect @ cnabled @ Action ~

Manage Clients are applications and services that can request authentication of a user.

Clients
Settings Keys Credentials Roles Client scopes Sessions Advanced

Client scopes

Realm roles General settings Jump te section
) ClientID * @ d
* argoc 1
* 2 General settings

Groups
Sessians a0 Argo CD Access settings
Events)

Description @ Capability config

r

"'.:.-;n.ﬁgun: Login settin gs

I Aways displayinut @ () Off
ealm settings
Logout settings

Authentication Access settings

Identity providers

Reot URL & https:fargocd.upandrunning.local

Figure 6-18. Keycloak Argo CD “Client scopes” selection

User federation

Then select the “Add client scope” button.

Select the checkbox next to “groups.” Select the Add button, and
then from the options provided, select Default so that the groups
claim will always be included in the token without needing to be
explicitly requested (see Figure 6-19).

At this point, Keycloak has been configured to support the
integration with Argo CD. Before we can focus on the Argo CD
configuration itself, there needs to be an adjustment made within
our kind cluster. Recall that we updated the /etc/hosts file on

our machine with the URLs for both Argo CD and Keycloak so that
they would resolve and route appropriately to our kind cluster.

Add client scopes to argocd

Figure 6-19. Keycloak Argo CD adding client scopes

Since Argo CD will need to access Keycloak to complete the
authentication process, it too will need some assistance resolving
the Keycloak server. kind makes use of CoreDNS for intra-cluster

DNS resolution. We can perform a similar pattern where requests
made against any address with the * .upandrunning.local

domain (which includes the Keycloak endpoint) are rewritten to an
internal Kubernetes service for NGINX that was deployed previously.

Edit the CoreDNS configuration file stored in coredns ConfigMap
within the kube-system hamespace:

kubectl edit cm coredns -n kube-system

Add the following bolded content to the configuration file, which will
add in the rewrite rule:

apiVersion: vl
kind: ConfigMap
data:
Corefile: >-
.:53 {
rewrite name regex (.*)\.upandrunning\.local
ingress-nginx-controller.ingress-
nginx.svc.cluster.local.
answer auto
errors
health {
lameduck 5s

}

Delete the CoreDNS pods so that the changes are picked up:

kubectl delete pod -n kube-system -1=k8s-app=kube-dns

Verify that applications running within the kind cluster can resolve
Keycloak now that the rewrite rule has been configured in CoreDNS:

kubectl exec -n ingress-nginx \
svc/ingress—-nginx-controller -- curl -skLI
https://keycloak.upandrunning.local | head -1

If the response returned HTTP/2 200, DNS resolution is working
correctly.

Regardless of the type of SSO backend Argo CD communicates with
or the type of SSO integration that is selected, one property must
be set within the argocd-cm ConfigMap, the URL of the Argo CD
server as defined by the ur1l key. This is so that the callback
function works for SSO. Execute the following command to patch
the argocd-cm ConfigMap:

kubectl patch -n argocd cm argocd-cm \
-p '{"data":{"url": "https://argocd.upandrunning.local"}}"

Now let’s shift our attention to the necessary configurations within
Argo CD.

The Client ID and Secret need to be included within the SSO
configuration so that Argo CD can authenticate with Keycloak. Since
the client secret is a sensitive asset, instead of explicitly specifying
the value, it can be stored in a Secret and then referenced from the
configuration file. Secrets can be referenced from two locations:

e The global argocd-secret secret

e A separate secret in the same namespace where Argo CD is
deployed

To avoid mixing default Argo CD and user-provided content, create
a separate secret called keycloak-secret within the argo

namespace and specify the Client ID and Client Secret from the
argocd client previously defined using the following command:

kubectl create secret generic -n argocd keycloak-secret \
-—from-literal=clientSecret=<keycloak argocd clientSecret>

In order for Argo CD to make use of the secret for use, it must
include the label app . kubernetes.io/part-of: argocd.

Execute the following command to add the label to the keycloak-
secret secret:

kubectl label secret -n argocd keycloak-secret
app.kubernetes.io/part-of=argocd

Sensitive data stored within Secrets can then be referenced within
Argo CD configuration files. Values beginning with a $ look for keys
within a Secret matching the value. If the value takes the form
S<secret>:a.key.in.k8s.secret, Argo CD will look for the
value within the Secret <secret> and the key which follows the
colon (:).

For example, if the following was declared within a ConfigMap:

myProperty: $foo:bar

the referenced sensitive value would be sourced from a secret
called foo and the key bar.

Alternatively, sensitive values can also be stored within the global
argocd-secret secret instead of a dedicated Secret. The only

difference when referencing the value within a configuration is that
the name of the secret that the content would be placed within and
the colon (:) separator is omitted. So, when replicating the prior
example, the following would reference the bar key within the
argocd-secret global secret:

myProperty: S$bar

With an understanding of how sensitive resources can be accessed,
in the case of the client secret that was previously stored in the
keycloak-secret Secret, the value can be referenced within Argo

CD configurations using the form Skeycloak-secret:client
Secret.

Now that we have the insights and the necessary supporting
components to enable SSO in Argo CD complete, let’s walk through
how to configure Argo CD to leverage Keycloak using both Dex and
Direct OIDC integrations.

Either option is enabled by updating the content of the argocd-cm
ConfigMap. It is important to note that Dex and Direct OIDC
integration cannot be enabled at the same time.

S50 using Dex

SSO for Argo CD using Dex can be enabled by specifying the dex
.config property of the argocd-cm ConfigMap. This property is

an inline representation of the standard Dex configuration file that
would be used in standalone deployments of Dex. Argo CD
manages most of the boilerplate content, and the end user is
responsible for defining the connectors (the strategy to authenticate
against another identity provider) that will be leveraged. Since Dex
does not contain a connector specifically engineered for Keycloak,
we will leverage the generic OIDC connector.

Aside from the Client ID and Client Secret, the only other property
that we will need to provide within Dex is the location of the OIDC
issuer (the base URL for OIDC resources). This address can be
accessed from the "Realm settings” of the argocd realm in the
Keycloak UI.

Locate the OpenID Endpoint Configuration link under the endpoints
section on the “Realm settings” page. Clicking on this link brings up
the OIDC discovery document, which contains all of the OIDC
metadata required to understand how to interact with this endpoint.
Since the issuer URL is just the base URL, we can omit .well-

known/openid-configuration, leaving us with an issuer URL of
https://keycloak.upandrunning.local/realms/argocd.

Update the argocd-cm ConfigMap with the following content:

dex.config: |
connectors:
- type: oidc
id: keycloak
name: Keycloak Dex
config:
issuer:
https://keycloak.upandrunning.local/realms/argocd
clientID: argocd
clientSecret: Skeycloak-secret:clientSecret
insecureSkipVerify: true
insecureEnableGroups: true

The ConfigMap can be modified interactively by executing the
following command:

kubectl edit cm -n argocd argocd-cm

Several items of note from the configurations from the previous
dex.config property:

e The clientSecret property is making use of the Keycloak
client secret that was configured in the keycloak-secret
secret.

¢ Since Keycloak uses a self-signed certificate to enable TLS
communication, the insecureSkipVerify property
ignores verification errors.

e The insecureEnableGroups property allows Dex to
process groups defined within Keycloak from the groups
claim.

Once the configuration has been applied, launch the Argo CD UI. If
you were previously authenticated and still have an active session,
go ahead and log out.

On the login page itself, notice how there is a new button, Log In
Via Keycloak, in addition to the username and password option that
was used previously. Click on the Log In Via Keycloak button and
you will be transferred to the Keycloak instance in order to
authenticate.

NOTE

If the Log In Via Keycloak button does not appear (if it's not working), you may
need to forcibly trigger a reload of the configuration by deleting all of the pods
in the argo namespace using the command kubectl delete pods -n
argocd --all.

Recall two users were defined in Keycloak. Go ahead and
authenticate as the Argo CD Administrator John using the username
“john@upandrunning.local” and password “argocdAdmin123”. Upon
a successful authentication, you will be transferred back to the Argo
CD instance, and as defined within Keycloak, the Applications page.

Select the User Info link on the lefthand navigation pane to view
details related to the current user. Notice how the username
matches the user we authenticated as, and the issuer matches the
value we obtained from Keycloak and configured within the
dex.config property. Most importantly, the list of groups that John
is @ member of is also displayed, confirming that Dex was able to
retrieve the values from the groups claim (see Figure 6-20).

User Info USER INFO

Log out

Username: john@upandrunning.local
9 User Info Issuer: https://argocd.upandrunning.local/api/dex
[5] Documentatic Groups:

+« ArgoCDAdmins

Figure 6-20. Argo CD User Info

Now that we have validated SSO user authentication using Dex,
let’s see how we can enable Argo CD SSO integration to Keycloak
using the direct OIDC approach.

SS0 using direct OIDC

Configuring Argo CD to communicate directly with the OIDC
provider offers greater simplicity as well as eliminates a component
(Dex) from being deployed and managed. The process for enabling
direct OIDC integration mirrors the steps as described in the
previous section.

First, remove the dex.config property, as both Dex and direct

OIDC integration cannot be enabled concurrently. Direct OIDC
integration is defined within the oidc.config property within the

argocd-cm ConfigMap. Specify the following contents to enable
direct OIDC integration with the Keycloak instance:

oidc.config: |

name: Keycloak

issuer:
https://keycloak.upandrunning.local/realms/argocd

clientID: argocd

clientSecret: Skeycloak-secret:clientSecret

logoutURL:
"https://keycloak.upandrunning.local/realms/argocd/protocol
/openid-connect/logout?client id=argocd&id token hint=
{{token}}&post logout redirect uri={{logoutRedirectURL}}"

As you can see, the contents are almost identical. The final step is
to configure Argo CD to ignore verification errors to the OIDC
endpoint. Instead of this property being defined within the OIDC
config, it is instead a top-level property within the argocd-cm
ConfigMap. Add the following to the argocd-cm ConfigMap to
disable OIDC SSL verification:

oidc.tls.insecure.skip.verify: "true"

This property can also be set by executing the following command:

kubectl patch -n argocd cm argocd-cm --type='merge' \
-p='{"data": {"oidc.tls.insecure.skip.verify": "true"}}'

With the configurations for direct OIDC integration in place,
navigate to the Argo CD web console at
https.//argocd.upandrunning.local. You should be greeted once
again with the option to authenticate using a local account or using
Keycloak SSO. Log in as the Argo CD Administrator John using the
username “john@upandrunning.local” and password
“argocdAdmin123”, Select the User Info link on the lefthand
navigation pane and confirm all of the properties align to the
expected values, as well as those that were present previously
when Dex was enabled as the provider.

Indeed, from an end user point of view, there is no difference when
authenticating against Dex or direct OIDC integration for Argo CD
SSO. By offloading user management to an external, purpose-built
utility, Argo CD administrators and users can benefit from a
simplified experience while reducing the management overhead
within Argo CD itself.

5SSO using the Argo CD CLI

In addition to being able to access the Argo CD UI with an SSO user,
the same user can also leverage the Argo CD CLI to be able to take
advantage of the capabilities provided by the tool. To authenticate
as an SSO user from the Argo CD CLI, the --sso flag can be
specified, which will trigger the authentication process with the
configured SSO solution.

To enable SSO users to authenticate with the Argo CD CLI, several
additional configurations must be implemented within the SSO
solution. In our environment, this involves modifications within
Keycloak.

Navigate once again to the Keycloak administration console at
https://keycloak.upandrunning.local/admin and authenticate as the
admin user.

Two modifications need to be made within the argocd Keycloak
client:

e An additional callback URL

e Disable client authentication

When the CLI initiates the SSO authentication process, it starts a
small web server on port 8085. The primary function of this
component is to receive the callback after a user authenticates
successfully.

Within the Keycloak administration console, navigate to the argocd
realm, select Clients on the lefthand navigation, and select the
argocd client. Locate the “Valid redirect URIs” option and click “Add
valid redirect URIs” to make available an additional textbox entry.
Enter http://localhost:8085/auth/callback into the textbox to
allow Keycloak to trust the CLI endpoint, and click Save (see

Figure 6-21).

= @IKEYCLO

Always displayinul @ £

argoed = Jump to section
Access settings
Manage _ General settings
Root URL (& https://argocd.upandrunning local
Clients
Access settings
Client scopes Home URL (& Japplications
Realm roles Capability config
Valid redirect URIs (® Wﬂﬂcallback (-]
Users \ .
http:/localhost:8085/auth/callback & | Loginsettings
Groups :
iR hitpsyfergecdupandrunninglecatfsuth/callback @
T Logout settings
Sessions © Add valid redirect URIs
Events
Valid post logout + -]
redirect URls
Configure @ & Add valid pest logout redirect URIs
Realm settings .
Web origins (@ https:/fargocd.upandrunning.local (-]
Authentication © Add web ofiging
Identity providers
Admin URL @ https:{fargocd.upandrunning local

User federation

B -

Figure 6-21. Keycloak adding localhost callback

Since the CLI operates in a similar fashion to a client-side web
application, it is unable to manage the client credential associated
with the Keycloak client. As a result, the access type for the client
must be changed from “confidential” to “public,” which removes the
requirement to provide a client secret. Change the access type
within the argocd Keycloak client by locating the “Capability config”
section and deselecting “Client authentication.” Click Save to apply
the change (see Figure 6-22).

: {', KEYCLO @ admin =

Jump to section

argocd Capability config

Client authentication @ Off /
@

Needs to be “off"

Manage General settings
Clients

Authorization (& Off Access settings
Client scopes

Authentication flow Standard flow @ Direct access grants (@

Realm roles Capability config
[] Implicit flow & Service accounts roles

Users) Loai :
. o xttings
_] QAuth 2.0 Device Authorization Grant () Al
Groups

i OIDC CIBA Grant @ Logout settings
SEESHONG

Events

Configure L,l:lgil'l SettiﬁQS

Realm settings

Login theme (D Choose... =
Authentication

Identity providers Consentrequired O C' Off

Uiser federation Display client on Off
Save Rewvert

Figure 6-22. Keycloak disabling client authentication

One final modification needs to be made, and this change is specific
to the kind cluster we are operating within. The CLI sends a set of

HTTP headers as it authenticates. However, the content being
transmitted is larger than the defaults that are configured within the
NGINX ingress controller. Fortunately, this issue can be mitigated by
setting the proxy-buffer-size parameter within the NGINX
configuration, which is stored within a ConfigMap in the ingress-
nginx Namespace.

Update the NGINX configuration by setting the proxy-buffer-
size value to 100k using the following command:

kubectl patch -n ingress-nginx cm ingress—-nginx-controller
-—type='merge' \
-p='{"data": {"proxy-buffer-size": "100k"}}'

With the required changes applied, log in to the Argo CD CLI using
the SSO user John (johnRupandrunning.local) with the
following command:

argocd login --sso --insecure --grpc-web
argocd.upandrunning.local

Once authenticated, the same user details that are found within the
User Info page of the Argo CD UI can be seen within the CLI by
executing the following command:

argocd account get-user-info

Logged In: true

Username: john@upandrunning.local

Issuer: https://keycloak.upandrunning.local/realms/argocd
Groups: ArgoCDAdmins

Role-Based Access Control

Once a user has authenticated successfully to Argo CD—whether it
be via the CLI or the UI, they are not granted unrestricted access to
resources by default and must be granted permissions to perform
certain actions. These controls are managed by Argo CD’s included
RBAC capability, which governs the actions that entities can perform
against Argo CD resources. In the prior section, we not only
established John, the acting Argo CD administrator, within Keycloak,
our user management system, but also provided him the ability to
log in to Argo CD. However, even though he represents an Argo CD
administrator, without explicit permissions being granted to his user
account, his ability to perform certain actions is restricted.

See this in practice for yourself. Using the Argo CD CLI, which has
established an authenticated session for John, attempt to list all of
the registered certificates and known hosts by executing the
following command:

argocd cert list

Instead of returning the desired result, you will be presented with
an error message similar to the following:

FATA |] rpc error: code = PermissionDenied desc =
permission denied: certificates, ...

A similar message is displayed within the Argo CD UI when
performing the same operation and can be seen by clicking on
Settings on the lefthand navigation pane and selecting “Repository
certificates and known hosts.”

Since John is acting as an Argo CD administrator, he should be given
the ability to manage all aspects of the Argo CD server. Let’s work
toward providing him the access that he needs by first reviewing
the architecture of the Argo CD RBAC system.

Argo CD RBAC Basics

Argo CD makes use of the Casbin authentication system (which is a
library to manage authorization) to define and enforce RBAC rules.

NOTE

More information about Casbin can be found at https.//casbin.org.

Only two roles are included by default:

role:admin

https://casbin.org/

Unrestricted access to all resources

role:readonly

View, but not modify, all resources

These roles, and the rules behind them, take the form of comma-
separated values (CSV) and provide a way to define both policies,
which can then be applied to users and groups.

At a high level, there are two definition structures to define RBAC
within Argo CD:

¢ All resources except application-related permissions:

p, <role/user/group>, <resource>, <action>,

<object>, <effect>

o Applications, ApplicationSets, logs, and exec (which belong
to an AppProject):

p, <role/user/group>, <resource>, <action>,

<appproject>/<object>, <effect>

Resources represents the following:

clusters, projects, applications, applicationsets,
repositories, certificates, accounts,
gpgkeys, logs, exec, extensions

While an action includes:

get, create, update, delete, sync, override,
action/<group/kind/action-name>

Once a policy is created, it can then be assigned to a user, group, or
even another role using the following form:

g, <user/group/role>, <role>

Since the goal is to provide not only John but all users who are
members of the ArgoCDAdmins group the ability to manage Argo
CD fully, there is no need to create a new policy. Instead, the
existing role:admin role can be applied to the group. To do so,

the following role mapping policy can be specified:

g, ArgoCDAdmins, role:admin

RBAC definitions and configurations are specified within a
ConfigMap with the name argocd-rbac-cm within the namespace

Argo CD is deployed within. Policy definitions are contained, by
default, within the policy.csv key.

While we could modify the argocd-rbac-cm ConfigMap manually

or perform an inline patch of the resource, it is easier to manage
policy definitions in a separate CSV file.

Create a CSV file called policy.csv, which includes the following
content:

g, ArgoCDAdmins, role:admin

Since there is no policy.csv content defined initially within the
argocd-rbac-cm ConfigMap, there are no concerns as they relate

to overwriting any content that may have been defined.

Execute the following command, which will generate a ConfigMap
resource containing the policy.csv file and merge it with the

existing ConfigMap within the cluster:

kubectl create configmap \

-n argocd argocd-rbac-cm \
-—from-file=policy.csv=policy.csv —--dry-run=client \

-o yaml | kubectl patch configmap -n argocd argocd-rbac-cm

\
--type merge --patch-file /dev/stdin

If you inspect the contents of the argocd-rbac-cm ConfigMap,
you will see that the policy.csv within the ConfigMap matches
the content of our local policy.csv file.

Now that members of the ArgoCDAdmins group have been granted
the role:admin role, confirm that John now has the ability to
access and manage all Argo CD resources by once again attempting
to list all of the repository certificates and known hosts that have
been defined:

argocd cert list

This time, the full result list should be returned, confirming the
policy was configured and applied appropriately.

Custom Role Creation

Argo CD includes two roles, role:admin and role:readonly,
that can be designated to users and groups as necessary. However,
as more users and groups adopt Argo CD, there is need for a
separate role to be created that encompasses the specific
permissions desired. In the prior section, we covered the basic
structure of a role and how it can be applied. In this section, we will
define a new role that is targeted at developers and their use case
for deploying applications into Kubernetes using Argo CD.

If you recall the setup of Keycloak, two users and groups were
defined. We covered John in detail, who represents an Argo CD
administrator. Mary, the other user defined, is a software developer

and is looking to leverage Keycloak, but as a developer, needs to be
able to modify certain resources (so the role:readonly role does
not apply) but does not need full access to Argo CD (disqualifying
the role:admin role).

Developers require access to perform the following actions:

e Deploy and manage applications

e View a list of clusters for which they could deploy their
applications

* View and access repositories containing their source code

e View and access certificates and known hosts associated
with repositories

Based on the parameters that should be associated with this role,
the following policy can be constructed:

Define Policies for a new role called role:developers
p, role:developers, applications, *, */*, allow

p, role:developers, applicationsets, *, */*, allow

p, role:developers, clusters, get, *, allow

p, role:developers, repositories, get, *, allow

p, role:developers, certificates, get, *, allow

Apply the role:developers role to Developers group
g, Developers, role:developers

Breaking down the policies, we first allow developers unrestricted
access to Applications and ApplicationSets within all projects. Recall
that application-related permissions have a slightly different
scheme, which includes the name of the project and the resources
within them. To fulfill our requirements, the pattern */* is used,

which allows for access to all projects and their resources.

The other two policy permissions enable access to view all cluster
and repository definitions. Finally, the role is assigned to the

developers group that is defined within Keycloak.

This policy definition could be appended to the previous policy.csv
file, which was used in the prior section to grant administrator
access to the ArgoCDAdmins group. However, Argo CD does include
the functionality to separate policy definitions to allow them to be
composed (a common use case when using the Kustomize
templating tool).

Separate policy files must make use of the format policy.
<any string>.csv. With this in mind, create a new file called
policy.developers.csv with the policy content provided previously.

With the new policy file created, we could patch the contents to the
argocd-cm ConfigMap using a similar approach as the
policy.csv. However, creating policies can be a complex process,

and introducing a syntactical error is a common occurrence (such as
a missing comma). Applying a misconfigured policy could potentially
risk the stability of the Argo CD server.

To mitigate these concerns, options are available to perform
validation prior to the resource being included within the argocd-

cm ConfigMap by using the argocd admin settings rbac
validate command and specifying the desired policy file to
validate using the --policy-file parameter.

Execute the following command to validate the
policy.developers.csv policy file:

argocd admin settings rbac validate --policy-
file=policy.developers.csv

If the contents of the policy file do not contain any errors, the
message Policy is wvalid will be displayed. Otherwise, an error

will be thrown.

First, before applying the policy, authenticate to the Argo CD UI as
Mary, our resident software developer, using the username
“mary@upandrunning.local” and password “argocdDeveloper123”.

Once authenticated, navigate to the list of repository certificates by
selecting Settings on the lefthand navigation pane and then
selecting “"Repository certificates and known hosts.”

As expected, a permission error should be displayed.

Apply the policy.developers.csv policy by patching the
argocd-cm ConfigMap using the following command:

kubectl create configmap \

-n argocd argocd-rbac-cm \
-—from-file=policy.developers.csv=policy.developers.csv \
-—-dry-run=client \

-o yaml | kubectl patch configmap -n argocd argocd-rbac-cm

\
--type merge --patch-file /dev/stdin

Attempt to once again view the repository certificates and known
hosts page within the Argo CD settings, and since the
role:developers role has been associated with the developers
group, of which Mary is a member, she is now able to view all of the
defined certificates and known hosts.

Feel free to validate the remainder of the policies associated with
the role:developers role including creating, synchronizing, and
finally, deleting an application.

RBAC Defaults

The RBAC capability provides several different methods for
customizing the level of access that users and groups have against
Argo CD resources. These assets build upon the default role and
their associated policies employed by Argo CD as specified by the
policy.default property within the argocd-cm-rbac

ConfigMap. When Argo CD is installed, this property is empty—
meaning that no level of access will be granted against any
resource. While errors may not be returned when querying
resources, no values will be returned.

To enable a specific role to be used when authenticating against
Argo CD, the following command can be used to set the
policy.default property:

kubectl patch -n argocd cm argocd-cm-rbac --type='merge' \
-p="'{"data": {"policy.default": "role:<name of role>"}}'

Anonymous Access

Argo CD, by default, requires that a user authenticate before being
able to access the UI or make queries using the CLI. However, there
are capabilities available to enable anonymous access to any entity
to access Argo CD resources without needing to authenticate (for
example, if you're setting up a read-only account to view statuses in
the UI).

Anonymous access can be enabled by setting the
users.anonymous .enabled property within the argocd-cm
ConfigMap with a value of true. Once enabled, users are granted
the level of access as specified by the value in the
policy.default property.

Summary

This chapter provided an overview of how users and groups can be
defined and managed along with how RBAC policies can be defined
and configured in Argo CD, resulting in a more secure and
productive platform for all.

One of the biggest differentiators as it relates to GitOps tools that
Argo CD possesses is the included UI and the associated

integrations—whether it be the command line interface or API.
Understanding how these assets can be accessed using Argo CD's
included local users facility or integrating an external user
management system through the SSO functionality enables
productivity from day one.

In addition, by using the RBAC capabilities provided by Argo CD,
policies can be constructed into roles and applied to users and
groups to govern the level of access that these entities have when
interacting with the platform.

Chapter 7. Cluster
Management

Argo CD can deploy applications to the Kubernetes cluster that Argo
CD is installed to without further configuration from administrators.
This out-of-the-box default setting makes it easy for administrators
to get up and running and reap the benefits of Argo CD
immediately. Whether you are just starting off in your GitOps
journey or if you are a seasoned DevOps practitioner, this default
setting helps administrators implement their solutions.

The simplicity of the Argo CD deployment can accelerate adoption
beyond just a single team, to the point where management of
additional clusters is needed and desired. Although you can deploy
Argo CD instances to these additional clusters, Argo CD has the
ability to add, manage, and deploy resources to additional clusters
using a “hub-and-spoke” design. The “hub” is the instance of Argo
CD itself and is colloquially known as the “"Argo CD Control Plane” in
larger installations.

In this chapter, we will explore how clusters are managed in Argo
CD, including how and where they are defined in the control plane,
the ways in which they can be managed, and how we can set up
different role-based access control (RBAC) policies to control their
access in a multi-tenant situation.

Cluster Architecture

The cluster architecture of Argo CD is fairly straightforward; upon
initial deployment, Argo CD has access to the local Kubernetes
cluster (i.e., the Kubernetes cluster Argo CD was installed within).
This access, as discussed previously, is enabled by default and can

be referenced in an Argo CD Application deployment as
https://kubernetes.default.svc (if using the server key in
the configuration file) or in-cluster (if using the name key in the
configuration file). The creators of Argo CD realized that
administrators would like to manage more than just the local
Kubernetes clusters but also deploy to and manage other clusters
concurrently—most administrators would like a single pane of glass
view of all their clusters.

Let’s take a look at how clusters are defined and managed in Argo
CD.

Local Versus Remote Clusters

When it comes to clusters, Argo CD doesn't treat the local in-
cluster any differently than remote clusters. To Argo CD, it sees
the in-cluster as just another deployment target defined in the
Argo CD Application manifest. As we went over in Chapter 4, this is
denoted under . spec.destination in the Argo CD Application
manifest. The following is a snippet of how the target server is
defined with an Argo CD Application:

spec:
destination:
server: https://kubernetes.default.svc
Can also use the following instead of “server”
name: in-cluster
namespace: bgd

Remote clusters are referenced the same way. Again, Argo CD
treats every cluster the same way—so deploying to a remote cluster
is accomplished by merely changing the destination configuration to
the desired target cluster. For example:

spec:
destination:

server: https://clusterl.mydomain.tld:8443

Can also use the following instead of "server"
the following name comes from the cluster secret
name: clusterl

namespace: bgd

NOTE

The namespace in this section refers to the destination namespace where the
manifest will be applied to. It’s also worth noting that the namespace value will
only be set for namespace-scoped resources that have not set a value for the
.metadata.namespace field.

How are clusters defined? How does Argo CD know what certificate
authority (CA) to use to connect to that cluster’s Kubernetes API
endpoint? Or which endpoint to communicate with when specifying
name instead of server within the destination of an application?
What if you want to use a specific ServiceAccount when connecting
to the remote cluster? In the next section, we will go deeper into
how clusters are defined and how you can further refine how Argo
CD connects to these clusters.

Hub-and-Spoke Design

Before we get into how clusters are defined, it's important to
understand that when Argo CD manages clusters, it does so in a
hub-and-spoke design. See Figure 7-1 for a high-level view into
what this architecture entails.

[Kubernetes control plane cluster

[Kubernetes cluster 1][Kubernetes cluster 2][Kubernetes cluster 3]

Figure 7-1. Argo CD hub-and-spoke design

Argo CD “reaches out” in order to perform actions on the target
cluster. This is often referred to as the “push model.” This means
that configurations are obtained and cached on the control plane
cluster (where Argo CD is running), and they are “pushed” to the
desired destination cluster. It's important to keep this in mind when
architecting your installation as considerations, such as firewall
rules and accessing the managed cluster’s Kubernetes API endpoint
need to be taken into account.

How Clusters Are Defined

Now that we've established an understanding in how Argo CD sees
clusters (whether it is the local cluster or a remote cluster) as just
Kubernetes API endpoints (or “destinations”), where does Argo CD
retrieve the needed information for this API endpoint? Since the
Kubernetes API endpoint has already been established as a means
to a connection, Argo CD now needs the credentials for that
Kubernetes API endpoint.

NOTE

From a security point of view, ensure the credentials that Argo CD uses to
connect to your managed clusters are up to your organization’s security
standards. Security with Argo CD will be discussed in Chapter 9.

Cluster credentials are stored in a Kubernetes Secret in the same
namespace as Argo CD is installed within (in our case, this is the
argocd namespace). To that end, you can surmise that Argo CD
clusters are defined via a Kubernetes Secret. The Secret has the

following fields, shown in Table 7-1.

Table 7-1. Properties of an Argo CD cluster secret

Field

name

Description

The name given for the cluster. This value is what
is referenced when using the name property
within the destination section of the Argo CD
Application manifest.

server

The Kubernetes cluster’s API server URL. This
value is what is referenced when using the server
property in the destination section of the Argo CD
Application manifest.

namespaces

(Optional) A comma-separated list of
namespaces accessible in the cluster. Cluster-
level resources are ignored if this field is not
empty.

clusterResour

ces

(Optional) A boolean string (“true” or “false”)
that determines whether Argo CD can deploy
cluster-level resources on this cluster. Used only if
the namespace field is not empty.

project

(Optional) A string to designate this cluster as
available only to the specified Argo CD project
name.

config

Written in JSON; represents the connection
configuration.

NOTE

You can only have one secret per cluster, so it's imperative that you take into
consideration what resources Argo CD will be managing and what level of
access Argo CD needs.

Here is an example of a minimal configuration of the secret
representing a cluster:

apiVersion: vl
kind: Secret
metadata:
name: prod-cluster
namespace: argocd
labels:
argocd.argoproj.io/secret-type: cluster
type: Opaque
stringData:
name: prod-cluster
server: https://prod.k8s.example.com: 6443
config: |
{
"bearerToken": "<ServiceAccount token should NOT be
encoded>",
"tlsClientConfig": {
"insecure": false,
"caData": "<baset6t4 encoded certificate>"

NOTE

For a more in-depth explanation about all available options, please consult the
official documentation.

It's worth noting that the bearerToken section in the config field
should not be base64 encoded and is represented in plain text,

https://oreil.ly/8U95s

while the caData section in the config field should be encoded.

Also, the label defines that the content contained in this secret
contains cluster-related properties.

As mentioned earlier, the Argo CD control plane (typically referred
to as in-cluster) is the cluster that Argo CD is installed on. There is
no need to define this cluster. However, there are use cases where
you might need to further refine the settings. By default, this cluster
has no secret associated with it. You can confirm this assessment
with the following command:

$ kubectl get secrets -n argocd -1
argocd.argoproj.io/secret-type=cluster
No resources found in argocd namespace.

This is because Argo CD attempts to have working defaults for easy
deployment. The assumption that Argo CD makes is that it uses the
default Kubernetes Service address
(https://kubernetes.default.svc) for the API endpoint, the
default Kubernetes CA certificate for that endpoint, and the token
for the argocd-application-controller ServiceAccount. So, if
there is a desire to make updates to the in-cluster
configuration, how could that be accomplished? Fortunately, the
solution is simple.

Let’s take the use case where only users who have access to the
sysadmin Argo CD project should be able to deploy to the in-
cluster cluster. To facilitate this requirement, a new Secret that
defines the in-cluster configuration needs to be created, and within
that Secret, the project field must grant the sysadmin Argo CD
project access. First, create the Kubernetes Secret with the name
in-cluster along with the secret type label indicating that the
configuration contains an Argo CD cluster definition. Take note that
the values specified are the default values with the addition of the
project field.

The following example is a cluster Secret in a file called in-
cluster.yaml.

apiVersion: vl
kind: Secret
metadata:
name: in-cluster
namespace: argocd
labels:
argocd.argoproj.io/secret-type: cluster
type: Opaque
stringData:
name: in-cluster
server: https://kubernetes.default.svc
project: sysadmin # what we're adding
config: |
{
"tlsClientConfig": {
"insecure": false

}
Once the file has been created, you can apply it to your cluster by
running the following (see Figure 7-2):

$ kubectl apply -f in-cluster-secret.yaml

NOTE

You can also update cluster settings in the Argo CD UI under the Settings
section.

SETTINGS

Log out
Settings Repositories 5
Configure connected repositories
Repository certificates and known hosts 3

Configure repository certificates and known hosts for connecting Git repositories

GnuPG keys 3

Configure GnuPG public keys for commit verification

/

Clusters 3

Configure connected Kubemetes clusters

Projects 3
Configure Argo CD projects

Accounts 3
Configure Accounts

Figure 7-2. Argo CD Clusters Settings page

Not only are you able to now see the in-cluster configuration

listed as a Secret, but it also has been scoped to only be available
to users who have access to the sysadmin Argo CD Project:

$ kubectl get secrets -n argocd -1
argocd.argoproj.io/secret-type=cluster
NAME TYPE DATA AGE
in-cluster Opaque 4 74s

NOTE

You will need to also set the appropriate RBAC in order to scope the in-cluster
to only be available to the supplied project. See Chapter 8 for more information
about Argo CD RBAC and Projects.

You can also see the configuration using the argocd CLI:

$ argocd cluster get in-cluster -o json | jg -r .project
sysadmin

We've added a project in this configuration for demonstration
purposes. We will go over Projects in depth in Chapter 8.

Adding Remote Clusters

There are two methods to add remote clusters to Argo CD: using
the argocd CLI and declaratively within a Kubernetes Secret. We'll

explore each of these methods, but first, let’s go over the basics of
creating a cluster.

Creating a Cluster

In order to demonstrate how to add a remote cluster, we are going
to create another cluster using kind. In order for both argocd CLI

and Kubernetes Secret to work, we must expose the Kubernetes API
endpoint. For this to function properly, the environment variable of
the IP address of the host that kind is running on must be set.

Set an environment variable called REMOTE CLUSTER IP with the
IP address of the host kind is running on:

$ export REMOTE CLUSTER IP=192.168.4.134

NOTE

The IP address in your environment will differ.

Given that we are going to be creating a new kind cluster, we
should manage the kubeconfig file separately, export the
KUBECONFIG environment variable to reference a file located at
~/remote-cluster.config, which will be populated when the
cluster is created:

$ export KUBECONFIG=~/remote-cluster.config

Next, create the kind cluster using the name remote with the IP
address exported previously:

$ kind create cluster --name remote --config - <<EOF
kind: Cluster
apiVersion: kind.x-k8s.io/vlalpha4
networking:
apiServerAddress: "$S{REMOTE CLUSTER IP}"
EOF

WARNING

You should take caution when exposing your Kubernetes API endpoint on a
public network.

At this point, two kind clusters should be running: the one we've
been working with has Argo CD installed, and a new one called
remote that was created now:

S kind get clusters
kind
remote

NOTE

Your output may differ.

To return to being able to work with the Argo CD cluster, unset the
KUBECONFIG environment variable:

$ unset KUBECONFIG

At this point, we are ready to add the remote cluster to our Argo
CD instance.

Adding a Cluster with the CLI

As mentioned earlier, the argocd CLI utility can be used to interact
with the Argo CD instance—when accessing the Kubernetes API via
kubectl is not accessible or is not allowed. To that end, we can
use this Argo CD CLI tool to add a cluster using the kubeconfig
file that was just created. Before the cluster can be added, ensure
that you are logged in to your Argo CD instance. If you haven't
already, you can log in using the following command:

$ argocd login --insecure --grpc-web —--username admin \
--password \
$ (kubectl -n argocd get secret argocd-initial-admin-secret

\
-0 Jsonpath="{.data.password}" | base64 -d)
argocd.upandrunning.local

NOTE

If you changed your admin password, use that password instead of obtaining
the initial admin password.

Once authenticated, the list of currently registered clusters can be
listed:

$ argocd cluster list

SERVER NAME VERSION STATUS
MESSAGE PROJECT

https://kubernetes.default.svc in-cluster 1.29

Successful

Now, let’s add the kind remote cluster we just created with the
argocd cluster add subcommand, while providing the location
of the Kubeconfig path:

$ argocd cluster add kind-remote --yes \
--kubeconfig ~/remote-cluster.config --name remote

The output should look something like the following:

INFO[0000] ServiceAccount "argocd-manager" created in
namespace "kube-system"

INFO[0O0O0O] ClusterRole "argocd-manager-role'" created
INFO[0O000] ClusterRoleBinding "argocd-manager-role-binding"
created

INFO[0005] Created bearer token secret for ServiceAccount
"argocd-manager"

Cluster 'https://192.168.1.254:38187"' added

A few things to note about the options from this command:

e kind-remote is the name of the Kubernetes context inside
the kubeconfig. To find the name of the context, we ran
kubectl config get-contexts --kubeconfig
~/remote-cluster.configq.

e ——yes confirms adding the cluster (without prompting).

e —-name sets the name of the cluster in Argo CD.

NOTE

Argo CD uses the kubeconfig file to connect to the remote cluster and
creates a ServiceAccount called argocd-manager with a corresponding RBAC
in the kube-system namespace. This argocd-manager ServiceAccount is
used by Argo CD to manage the remote cluster.

Once the cluster has been added, it will be visible when executing
the argocd cluster 1list command once again:

$ argocd cluster list

SERVER NAME VERSION STATUS
MESSAGE

PROJECT

https://192.168.1.254:38187 remote

Unknown Cluster has no app...

https://kubernetes.default.svc in-cluster 1.29
Successful

NOTE

The state will be unknown until something is deployed to the cluster.

The remote cluster is now ready to be deployed to. You can
reference this cluster by the name, remote, or by the server
address, https://192.168.1.254:38187, as indicated in the
output from the prior command in the Argo CD Application manifest.
For example:

spec:
destination:
"name'" can be used instead of "server"
name: remote
server: https://kubernetes.default.svc
namespace: demo

Deleting a cluster with the CLI is fairly straightforward. Either the
name of the cluster or the server address should be specified.

NOTE

You should remove this cluster if you want to try out the declarative approach
in the next section. If you're not planning on trying it out declaratively, don't
delete the cluster. We'll be using this cluster later in this chapter.

Remove the cluster using the argocd cluster rm command:

$ argocd cluster rm --yes remote
Cluster 'remote' removed

Confirm the remote cluster is no longer displayed in the list of
registered clusters:

$ argocd cluster list

SERVER NAME VERSION STATUS
MESSAGE PROJECT

https://kubernetes.default.svc in-cluster .29

Successful

Adding a Cluster Declaratively

The Argo CD CLI utility is a great way to work with Argo CD, as it
lowers the barriers of entry. One of the big advantages is that the
Argo CD CLI falls under the governance of the Argo CD RBAC. So,
administrators can freely give CLI access to the platform without
having to give them access to the Kubernetes API (via CLI or other
methods).

Still, administrators following the GitOps principles would like a
more declarative way to define and manage clusters. To support

this approach, Argo CD administrators can opt to (as discussed
earlier in this chapter) define clusters via a Kubernetes Secret.

NOTE

Storing Kubernetes Secrets in plain text on source code is not recommended,
and it is a security risk! It is recommended that an appropriate Secrets
management solution should be utilized. Integrations with various Secrets
management solutions can be brokered with operators, like the External Secret
Operator that supports many Secret management backends.

Before creating the Secret representing an Argo CD cluster, make
sure you are using the correct Kubernetes context (the instance that
Argo CD is running within):

S kubectl config get-contexts

CURRENT NAME CLUSTER AUTHINFO
NAMESPACE
* kind-kind kind-kind kind-kind

The kubectl CLI will be used to create the Secret representing the
remote cluster. The Secret needs to be in the format that was
described earlier in this chapter, and the necessary information will
be extracted from the kubeconfig file using the kubectl
config command. Before we do that, we need to create a
ServiceAccount for Argo CD to use in the remote cluster. In
addition, RBAC-related resources need to be created and associated
with the newly created ServiceAccount in the remote cluster. These
steps parallel the process that is facilitated by the Argo CD CLI,
which we will emulate.

NOTE

If you are following along and you did the example using the Argo CD CLI, you
don't need to create the ServiceAccount or the ClusterRoleBinding. You can skip
to the creation of the token.

First, create a ServiceAccount called argocd-manager in the
kube-system on the remote cluster:

$ kubectl create --kubeconfig ~/remote-cluster.config sa -n
kube-system argocd-manager

Next, create a ClusterRoleBinding for that argocd-manager
ServiceAccount, assigning it the built-in cluster-admin role:

$ kubectl create --kubeconfig ~/remote-cluster.config \
clusterrolebinding argocd-manager-role-binding \
-—-clusterrole=cluster-admin --serviceaccount=kube-
system:argocd-manager

Now, generate a token that is associated with the argocd-
manager ServiceAccount for Argo CD to use. The token is obtained

after executing the command. As a result, we will store it in a
variable called TOKEN for later use:

$ kubectl apply --kubeconfig ~/remote-cluster.config -f -
<<EOF
apiVersion: vl
kind: Secret
metadata:

name: argocd-manager-token

namespace: kube-system

annotations:

kubernetes.io/service-account.name: argocd-manager

type: kubernetes.io/service-account-token
EOF

$ TOKEN=$ (kubectl get secret --kubeconfig ~/remote-
cluster.config -n \

kube-system argocd-manager-token -o
jsonpath='{.data.token}' | base6d4d -d)

Verify that the TOKEN variable is set:

S echo $TOKEN

Using this information, and information that will be extracted from
the kubectl config command, create the Secret for Argo CD to

use.

$ cat <<EOF | kubectl apply -n argocd -f -
apiVersion: vl
kind: Secret
metadata:
name: remote
labels:
argocd.argoproj.io/secret-type: cluster
type: Opaque
stringData:
name: remote
server: $(kubectl config view --kubeconfig ~/remote-
cluster.config \
-0 Jsonpath='{.clusters[? (@.name == "kind-
remote")] .cluster.server}')
config: |
{
"bearerToken": "${TOKEN}",
"tlsClientConfig": {
"insecure": false,
"caData": "$ (kubectl config view --raw \
--kubeconfig ~/remote-cluster.config \
-0 Jsonpath='{.clusters[? (@.name == "kind-
remote")] .cluster.certificate-authority-data}"')"
}

}
EOF

NOTE

For more information about the options available when using the kubect1
config command, consult the Kubernetes documentation.

This result from the prior command is a Secret in the argocd
namespace:

$ kubectl get secret remote -n argocd --show-labels

NAME TYPE DATA AGE LABELS

remote Opaque 3 2m argocd.argoproj.io/secret-
type=cluster

The newly added cluster can now be seen using the Argo CD CLI
tool:

$ argocd cluster list

SERVER NAME VERSION STATUS
MESSAGE

PROJECT

https://192.168.1.254:38187 remote

Unknown Cluster has no app...

https://kubernetes.default.svc in-cluster 1.29
Successful

Updating clusters managed by Argo CD can be done via the CLI (by
using argocd cluster set) or by updating the corresponding
Secret (by using kubectl patch or kubectl edit). Both
methods produce the same result and are useful when there is a
need to update cluster configurations, such as ServiceAccount
tokens or CA certificates.

Taking a look from a GitOps point of view, since managed clusters
are defined in Secrets, then it is recommended that you use a
Secret management system. The aforementioned External Secrets
Operator has support for a lot of backends to help in this case.

https://oreil.ly/ohnox
https://oreil.ly/ohnox

Deploying Applications to Multiple Clusters

As we're going through these steps, you can get the sense that Argo
CD has the capability to not only manage multiple clusters, but also
the ability to deploy resources to multiple clusters as well. However,
you may have noticed when going through the Argo CD Application
specification page on the official documentation, that only a single
cluster can be defined with an Argo CD Application manifest. In a
way, you can think of Argo CD Applications as having a 1:1
relationship with the cluster that application is being deployed to.
Effectively, an Argo CD Application can be seen as an instance of
your running application.

So, how can we effectively deploy our applications to multiple
cluster destinations? Fortunately, several patterns are available to
achieve this goal.

App-of-Apps Pattern

The App-of-Apps pattern first appeared as a method of
bootstrapping Argo CD instances and can also be used as a method
of recovery from a catastrophic failure or major outage. This
method is also flexible where organizations have a desire for
creating a logical deployment across many clusters. Another
advantage is that you can use other Argo CD features, like sync
waves and sync phases, to orchestrate (order) Argo CD Application
deployments.

As the name suggests, the App-of-Apps pattern is an Argo CD
Application that just contains other Argo CD Applications. Since Argo
CD Applications are just Kubernetes resources, the Argo CD
Application paradigm can be used with other Argo CD Applications.
Take a look at Figure 7-3 to see how this approach is depicted in
the Argo CD UL.

https://oreil.ly/KLtqG
https://oreil.ly/KLtqG

@ guestbook E
L >0 application
- ' » @ helm-dependency E
: - 2o
@ applications E
v0 :
. o @ helm-guestbook E
*e
@ kustomize-guestbook E
L)

Figure 7-3. App-of-Apps taken from the Argo CD documentation

The following example can be found in this book’s accompanying
repository. You can apply the “parent” Argo CD Application by
running the following:

$ kubectl apply -n argocd -f ch07/pricelist-app-of-
apps.yaml

This Argo CD Application manifest included multiple Application
manifests, which created several Argo CD Applications:

S kubectl get applications -n argocd

NAME SYNC STATUS HEALTH STATUS
pricelist-app Synced Healthy
pricelist-config Synced Healthy
pricelist-database Synced Healthy
pricelist-frontend Synced Healthy

Each of these Argo CD Applications represents the same application,
with the difference being they target a different destination cluster.

https://github.com/sabre1041/argocd-up-and-running-book

Using Helm

Several challenges are introduced when starting to consider Argo
CD Applications to multiple destination clusters. First, you may be
thinking, “"That's a lot of YAML to write just for one small delta
(changing the destination cluster). While on the other side, I have
to change a lot for my application to run successfully on each
cluster.” As a result, many Argo CD administrators have started
utilizing Helm to parameterize the deployment of Argo CD
Applications.

Let’s take a quick look at the example from the official Argo CD
documentation page for using Helm:

apiVersion: argoproj.io/vlalphal
kind: Application
metadata:

name: guestbook

namespace: argocd

finalizers:
- resources-finalizer.argocd.argoproj.io
spec:
destination:
namespace: argocd
server: {{ .Values.spec.destination.server }}

project: default
source:
path: guestbook
repoURL: https://github.com/argoproj/argocd-example-
apps
targetRevision: HEAD

As depicted in the previous manifest, certain properties from the
Argo CD Application can be parameterized and can be injected
using a Helm values file. Here's an example:

spec:
destination:
server: https://kubernetes.default.svc

https://oreil.ly/SxhKs
https://oreil.ly/SxhKs

While this is still a valid (and fully supported) way of deploying your
Argo CD Applications, this pattern of using Helm was first
implemented in a time before Argo CD Applications could natively
be templated. It is recommended that those who can, migrate to
ApplicationSets. That being said, the App-of-Apps pattern is still
valuable and, in a lot of cases, you will use both.

ApplicationSets

An Argo CD ApplicationSet is a Kubernetes CRD that can be seen as
a templating engine for Argo CD Applications. This templating
engine is fed parameters, known as generators, which produces N
number of Argo CD Applications based on those provided
configurations (which can also include business logic depending on
the generator selected). The original author of the Argo CD
ApplicationSet controller described ApplicationSets as a “factory that
produces Argo CD Applications.”

The aforementioned generators are a method for producing the
necessary information for an Argo CD Application. These generators
range from simple key/value pairs to structures based on your Git
repository organization layout. Here is a list of generators at the
time of this writing:

List generator
The List generator allows you to target Argo CD Applications to
clusters based on a fixed list of any chosen key/value element

pairs. This is normally where people start, since it's basic
key/value pairs.

Cluster generator

The Cluster generator allows you to target Argo CD Applications
to clusters, based on the list of clusters defined in Argo CD. This

https://oreil.ly/8hmsC

also includes the ability to automatically respond to cluster
addition/removal in Argo CD.

Git generator

The Git generator allows you to create Applications based on a
configuration file found within a Git repository or based on the
directory structure of a Git repository.

Matrix generator

The Matrix generator may be used to combine the generated
parameters of two separate generators. This is generally used if
you need to mix and match generators.

Merge generator

The Merge generator may be used to merge the generated
parameters of two or more generators. It basically “flattens” the
configuration of the generators used (in contrast to the Matrix
generator that combines). Additional generators can override
the values of the base generator.

SCM Provider generator

The SCM (source code management) Provider generator uses
the API of an SCM provider (for example, GitHub) to
automatically discover repositories within an organization. This
is normally used if you have many Applications in an
organization that you'd like to deploy.

Pull Request generator

The Pull Request generator is used to automatically discover
open pull requests within a repository. This is used typically for
previewing environments or changes.

Cluster Decision Resource generator

The Cluster Decision Resource generator is used to interface
with Kubernetes custom resources that use custom resource-
specific logic to decide which set of Argo CD clusters to deploy
to.

Plugin generator

The Plugin generator gives you the ability to create your own
generator where the other generators don't quite fit your
particular use case. Generally speaking, if none of the built-in
generators fits your use case, the Plugin generator is the way to

go.

For most organizations, starting off with the List generator, Cluster
generator, or one of the Git generators (there are two
subgenerators) is the easiest way to get started with Argo CD
ApplicationSets. Let’s take another example from the accompanying
repository, where an Application is deployed using different settings
to separate clusters based on the content originating in different
repositories:

$ kubectl apply -n argocd -f ch07/appset-bgd.yaml

With this one manifest, you can see that the ApplicationSet
generated Argo CD Applications based on the parameters of the List
generator:

$ kubectl get applicationsets -n argocd
NAME AGE
bgd 29s

$ kubectl get applications -n argocd

NAME SYNC STATUS HEALTH STATUS
bgd-blue Synced Healthy
bgd-green Synced Healthy

One thing to note about Argo CD ApplicationSets is that
functionality, such as sync waves and sync phases between
Applications, are not fully supported. If there is a need to leverage
such functionality, it is recommended that the standard App-of-Apps
pattern be used for the time being. That being said, there is an
alpha feature (i.e., not ready for production) called Progressive
Syncs that you can read about in the official documentation site. We
will go over Progressive Syncs in Chapter 10.

Summary

In this chapter, you learned how clusters are defined in Argo CD and
how Argo CD is architected in a hub-and-spoke design. You also
explored how to add, delete, and manage the lifecycle of the
managed cluster. Finally, several patterns for deploying Argo CD
Applications to different clusters were introduced. In the next
chapter, you will learn how to handle multi-tenant-based
deployments of Argo CD, including considerations that should be
taken under consideration when architecting for multi-tenancy,
along with several patterns and examples.

https://oreil.ly/7Dtv4

Chapter 8. Multi-Tenancy

Multi-tenancy in tech refers to an architecture where a single
instance of software (or infrastructure) serves multiple tenants. A
tenant is typically a group of users who share common access and
privileges within the software—for example, a company using a
SaaS app or a team using a shared Kubernetes cluster.

Argo CD extends multi-tenancy beyond just basic RBAC. It has the
ability to granularly set access controls based on the actor
performing the action (user, group, or automated service account),
which resource is being accessed, and what action is being
performed.

In Chapter 6, you learned about RBAC and its various uses. In this
chapter, we are going to extend that knowledge by introducing the
Argo CD AppProject concept and how to manage RBAC
configurations on a per-project basis. We'll start off by
demonstrating different Argo CD deployment models. Then, we will
explore, in detail, what Argo CD AppProjects are and how to
effectively use them in a multi-tenant system. Finally, we will
explore how to perform resource management using Projects.

Argo CD Installation Modes

There are two primary ways to install Argo CD, and each includes a
set of capabilities for achieving multi-tenancy. As one might expect,
there are advantages and disadvantages, depending on the chosen
deployment mode. Additional considerations as it relates to multi-
tenancy need to be taken into account depending on how your
organization is laid out, how your release process is handled, and/or
if you have to meet certain criteria for regulation purposes.

Cluster Scoped

The most common and default model for deploying Argo CD is the
cluster-scoped method.

NOTE

This is also the deployment method that we have been using thus far during
our exploration of Argo CD.

This method is used, specifically, for installations that require Argo
CD to act in a multi-tenant when a hub-and-spoke design is desired.
This provides all the tooling and features needed (like RBAC,
AppProjects [more on that later], and roles/groups) for Argo CD
administrators to create a GitOps platform that can support many
applications, users, teams, and groups within their organization.
From the point of view of Argo CD, it nhow becomes the interface on
how to interact with all managed Kubernetes clusters.

The biggest challenge of a cluster-scoped deployment of Argo CD is
that, by default, the service accounts associated with Argo CD,
effectively, have cluster-admin privileges on all managed
clusters. The elevated permissions might be excessive in some
scenarios, posing potential security risks. This was a design decision
to enable Argo CD to fully manage the cluster. The permissions,
however, can be scoped down using standard Kubernetes RBAC by
adjusting the ClusterRole/ClusterRoleBinding for the Argo
CD service account.

Namespace Scoped

The alternate method for deploying Argo CD as it relates to multi-
tenancy is the namespace-scoped method. This installation method
requires only privileges against a single namespace, allowing cluster

administrators the ability to install different instances of Argo CD on
the same cluster and then delegate the control over to individual
teams. Since these installations do not have privileges outside of
their own namespace, it is an attractive solution for security-
conscious Argo CD administrators to achieve multi-tenancy and an
increased security posture.

There are a few drawbacks to this type of installation. First, instead
of being able to use the in-cluster cluster (the default in a
cluster-scoped deployment of Argo CD), additional steps must be
taken to configure the local cluster for use by Argo CD, including
setting up the associated service accounts and RBAC policies.
Another drawback is that the installation assumes no privileges
outside the namespace, so tasks requiring elevated permissions
(e.g., installing CRDs) must be coordinated with cluster
administrators. It's also worth noting that there will be operational
overhead in managing multiple Argo CD instances.

Given the number of steps involved for deploying Argo CD using the
namespace method, this book will instead continue to focus on the
cluster-scoped method, and this chapter will show you how to utilize
the included tools and capabilities needed to set up a multi-tenant
system using this installation method.

Projects

Argo CD has a concept of a Project (which is controlled via the
AppProject CRD). An Argo CD Project provides a grouping of
applications, and it is a point of RBAC/demarcation for Argo CD.
This logical grouping of Argo CD components is paramount for Argo
CD administrators that are setting up their installation to support
multi-tenancy.

With an Argo CD Project, administrators can:

e Restrict the sources of content that can be used (Git, Helm,
etc.)

¢ Restrict where Argo CD Applications can be deployed to
(clusters and namespaces)

e Restrict which Kubernetes objects can be deployed
(Deployments, services, CRDs, NetworkPolicies, etc.)

e Restrict who has access to which resources based on
Group/User membership.

Argo CD includes a Project called default. This Project allows the
deployment of any resource to any cluster by anyone. While you
can’t delete the default Project, you can lock it down to the point
where no one can use it. When Argo CD is initially installed, it has
the following permissions for the default project, which are the
most permissive:

spec:
sourceRepos:
_ T x v

destinations:
- namespace: '*'

server: '*'
clusterResourceWhitelist:
- group: '*'

kind: '*'

It's important to note that an Argo CD Application can only ever
belong to one Project. When the AppProject isn't specified, the

default Project is used.

Resource Management

Resource management is at the heart of an Argo CD Project and it
is what allows Argo CD administrators to set up the platform to

support multi-tenancy. It follows the “allow/deny” model where the
first matching rule takes precedence. The following are some
examples of how this works.

Let’s review how you manage Git repositories within an Argo CD
Project under the .spec.sourceRepos of an AppProject
manifest:

spec:
sourceRepos:
- '"!ssh://git@github.com:argoproj/test’
- '"!https://gitlab.com/group/**"

_ T %

Note the use of the ! symbol to indicate an explicit “deny” against
the associated repositories. In the prior example, users would not
be allowed to deploy from the git@github.com:argoproj/test
repository in the argoproj GitHub organization; nor would users be
allowed to deploy any repository from GitLab that’s part of the
“group” organization. However, any other repository would be
allowed.

Similarly, you can accomplish the same goal for managing the
clusters and namespaces that can be deployed to under the
.spec.destinations property:

spec:

destinations:

- namespace: '!kube-system'
server: '*'

- namespace: '*'
server: '!'https://teaml-*'

- namespace: '*'
server: '*'

Again, note the use of the ! symbol to indicate an explicit “deny”

against those destinations. In this case, users will be able to deploy
to any namespace, except the namespace kube-system or any

cluster with the URL that matches teaml-*. Any other
namespace/server combination would be allowed.

NOTE

The first matching rule takes precedence, so deny rules must appear before the
allow rules to be effective.

You can also limit what Kubernetes objects may or may not be
created. This is for both namespaced and cluster-scoped objects.
For example, to allow all namespaced-scoped resources to be
created, except for ResourceQuota, LimitRange, and
NetworkPolicy; you can set the associated policy in the
.spec.namespaceResourceBlacklist property. For example:

spec:
namespaceResourceBlacklist:
- group: ''
kind: ResourceQuota
- group: ''
kind: LimitRange
- group: ''
kind: NetworkPolicy

Conversely, you can deny all namespaced-scoped resources from
being created, except for those specified within the
.spec.namespaceResourceWhitelist property. This has the
same format as namespaceResourceBlacklist shown
previously.

Cluster-scoped resources can be constrained in a similar fashion
using the .spec.clusterResourceWhitelist and
.spec.clusterResourceBlacklist properties as their
namespace-scoped counterpart. For example, the following example

can be used to deny all cluster-scoped resources from being
created, except for a Namespace:

spec:
clusterResourceWhitelist:
- group: ''
kind: Namespace

In Chapter 6, you learned the basics of RBAC and how it can be
configured at the Argo CD platform level. You can also configure
RBAC at the Argo CD Project level as well. For example, the
following configuration illustrates how to set a policy that only
enables those users with the role:dev permission the ability to

view and sync onthe pricelist Argo CD Project:

spec:
roles:
- description: Developers get view and sync
name: developer
policies:
- p, proj:myproj:role:dev, applications, get,
pricelist/*, allow
- p, proj:myproj:role:dev, applications, sync,
pricelist/*, allow
- p, proj:myproj:role:dev, projects, get, pricelist,
allow

As we've reviewed here, you can see how granular you can get with
resource management with Argo CD. While this example focuses on
applications and projects as resources, other resource types
(repositories, clusters, logs, exec) can also be controlled via RBAC.
You can even apply these policies to specific users and/or groups. In
the following section, we will go over a use case to see how
AppProjects can be used in your environment.

Use Case: GitOps Dashboard

When working through Chapter 6, you got some experience working
with RBAC. In this section we'll see the level of granularity that can
be achieved at the Project level. This enables Argo CD
administrators to grant permission ranging from “read only” to
delegating complete control to specific Argo CD Applications.

The most common pattern Argo CD administrators seem to start
with when implementing RBAC at a project level is to grant
groups/end users the ability to see Applications within a Project,
perform syncs on demand, but not modify or delete anything. This
provides a sort of “developer portal” where end users can see and
perform issue triage and also do on-demand syncs when needed.

NOTE

In order to complete this section, you must have set up SSO as described in
Chapter 6, as the users and groups will be reused.

Create Project

We will first create the project using the Argo CD CLI, which will
allow us to deploy an Application that is Project scoped. First, make
sure that you are logged in as the "admin™" user, which provides

the necessary permissions to create a Project:

S argocd account get-user-info -o json | Jjg .username
"admin"

Retrieve the list of currently defined Projects:

S argocd proj list -o name
default

Only a single Project, default, will be returned since this is our

first opportunity to manage Projects. Create a new Project called
golist using the following command:

$ argocd proj create golist \
--src '*' —--dest '*,*' —--allow-cluster-resource '*/*'

This new project should now be present when listing Projects:

S argocd proj list -o name
default
golist

With the golist Project created, it can be associated with newly

created Applications. We will configure more granular RBAC for this
Project in a later section.

Deploy Applications

Now that the Project golist has been created, review the

Application manifests in the repository accompanying this book
under the ch08/argocd/applications/ directory:

spec:
...omitted for brevity
project: golist

Note that each Application will be deployed into the golist Project
as denoted under the . spec.project section of each manifest.
Create each Application using either kubectl or the argocd CLI
(the following example shows use of the argocd CLI):

$ argocd app create --file ch08/argocd/applications/golist-
db.yaml

$ argocd app create --file ch08/argocd/applications/golist-
api.yaml

$ argocd app create --file ch08/argocd/applications/golist-
frontend.yaml

List the Applications, confirming that they were added to the
project:

$ argocd app list -o name --project=golist
argocd/golist-api

argocd/golist-db

argocd/golist-frontend

The Applications that were deployed are part of an application
stack, which includes a frontend service, a backend service, and a
database. At this point, the workloads managed by the Applications
should be running:

S kubectl get pods -n golist

NAME READY STATUS
RESTARTS AGE
golist-api-764879758b-bs57g 1/1 Running 5
(9m59s ago) 11lm
golist-db-mariadb-0 1/1 Running 0
10m
golist-frontend-7647cb44d4-g7kvx 1/1 Running 0
10m

NOTE

The database may take some time to become ready. During this time, you may
notice other Pods in a CrashLoopBackOf £ state. This is expected and should

correct itself after some time since the restarts occur due to the database not
being available.

Now that the Application has been deployed to the Project, the next
step is to configure RBAC policies within the Project to grant access
to a particular SSO group.

Configure Project

In the previous section, we created the Project imperatively using
the argocd CLI. While a completely valid way of configuring the
Project, the most effective way is to do it declaratively. This allows
us to take full advantage of the GitOps framework that Argo CD
provides.

Take a look in the ch08/argocd/projects/ directory and you will see
a golist.yaml Project file. Reviewing the file reveals the following
contents:

spec:
...omitted for brevity
roles:
- description: Developers get view and sync
name: golist-developer
policies:
- p, proj:golist:golist-developer, applications, get,
golist/*, allow
- p, proj:golist:golist-developer, applications, sync,
golist/*, allow
groups:
- Developers

In the polices section, notice that “get” and “sync” are allowed
for all Applications in the Project. All other actions are disallowed
since there is an implicit “"deny” associated with the RBAC model of
Argo CD. Under the groups section there is a list of SSO groups for

which the policies will be applied against. This group name
originates from the OIDC configuration that was completed in
Chapter 6.

TIP

For more information on RBAC and its use, please refer to Chapter 6.

Apply this Argo CD Project manifest in order to set these
configurations:

S argocd proj create --upsert --file
ch08/argocd/projects/golist.yaml

Test Setup

With the configuration of the golist Project complete, including
the deployment of Applications and policies to grant permissions for
a specific group, let’s confirm the expected results.

Log in to your Argo CD instance as mary@upandrunning.local (since
this user is part of the Developer group), and you should see the
aforementioned Applications in the Argo CD overview page, as
depicted in Figure 8-1.

Figure 8-1. Applications overview

On the overview page, click on SYNC APPS, select all Applications,
and click on SYNC. You should see all Applications sync, with the
status of Complete, which will appear similar to Figure 8-2.

Status: # Haalthy © Syneed L] s B [eseccnionons oiererences, [senves

Complete

e e
HNTEND IS 8

:

Figure 8-2. Sync complete

Now, click on the golist-db “card,” click on DELETE, and in the pop-
up prompt, type in golist-db (leaving the rest of the default
values), and click OK. An error similar to Figure 8-3 will be

displayed.

Unable to delete application:
permission denied: applications,
delete, golist/golist-db, sub:

o 79592b87-481d-4909-9d16-
0e513f4cc390, iat: 2024-05-
28T04:23:547Z

Figure 8-3. Error when deleting

The ability to delete this Application is disallowed since the
configuration of the golist Project doesn't allow users in the
Developers group to delete Applications.

Summary

In this chapter, you learned about the two models for how Argo CD
implements multi-tenancy and became familiar with Argo CD
AppProjects. You investigated how to manage resources using
Projects and how to have fine-grained permissions for not only
deploying resources but also the actions that users can perform
once they are deployed. Finally, you put this knowledge to use by
creating an Argo CD Project, configuring RBAC policies, and verifying
that certain actions could only be performed by members of the
specified group.

In the next chapter, we will deepen our understanding of how Argo
CD manages security. In particular, we will explore the different
methods that can be used to harden the security level of Argo CD
and how to communicate securely with target systems. In addition,
we will also discuss how sensitive content that is used at various
points within the Argo CD lifecycle can be handled to avoid being
discovered by others.

Chapter 9. Security

One of the top technology concerns, whether from the perspective
of an individual developer or enterprise organization, is security.
Ensuring that systems are protected in a manner that reduces
compromise while communicating using secure mechanisms are just
some of the steps that can be taken to increase the overall level of
security in an environment. Argo CD includes a number of native
capabilities that support conducting secure operations and enforces
certain requirements for use when operating and interacting with
the platform.

In this chapter, we will explore the different methods that can be
implemented to harden the security level of Argo CD and how to
communicate securely with target systems. In addition, we will also
discuss how sensitive content that is used at various points within
the Argo CD lifecycle can be handled to avoid being discovered by
individuals and systems that should not be granted access.

Securing Argo CD

One of the key areas where security hardening can be employed in
Argo CD is within the Argo CD server component, as it represents
the location where the REST API and Ul is exposed to end users.
Considerations should be made whenever there are any externally
facing resources, as there is an increased potential where attackers
could gain unauthorized access to Argo CD.

The admin user gives users the ability to simplify initial setup and
onboarding for Argo CD. However, this user also presents a
potential risk for the misuse by an attacker. First, whenever Argo CD
is deployed, a secret called argocd-initial-admin-secret is
created within the namespace where Argo CD is deployed.

One of the first steps that an Argo CD administrator should take is
to change the default password for the admin user. Otherwise,
anyone with access to read Secrets within the Argo CD namespace
can readily decode the password and gain elevated access to Argo
CD. Fortunately, Chapter 6 covered the steps in detail for changing
the admin password as well as deleting the Secret containing the
initial password, as the contents are no longer valid. Of course, if
the admin user is no longer being used or needed, the account can
be disabled entirely to completely eliminate the potential risk. Steps
to accomplish this task are also described in Chapter 6.

Beyond managing user access, securing communications with the
Argo CD server at the transport level is critical. This involves
ensuring that all interactions with the API and UI occur over
encrypted channels. When Argo CD was deployed, the --insecure
extra argument was added within the Helm values file. By
specifying this parameter, the Argo CD server starts without TLS
enabled, allowing the communication with the server to occur
without any form of encryption.

Encrypting network traffic using TLS certificates is almost a must
these days, as it guarantees that the communication with Argo CD
cannot be easily observed as it is being transferred. Implementing
TLS often involves creating, managing, and renewing certificates,
which can be a barrier for some users. We saw some of these steps
firsthand when configuring Keycloak as an OIDC server in Chapter 6.

Fortunately, Argo CD simplifies the process for enabling TLS by
automatically generating a set of self-signed certificates at server
startup, eliminating the need to communicate insecurely whenever
the —-insecure option is not enabled. Let’s update the
configuration of Argo CD by removing the use of the --insecure
extra argument.

While we could update the argo-cd-argocd-server deployment
manually, let’s use Helm to deploy a new release of the Argo CD

chart and remove the --insecure property from the Helm values
file.

The updated values file can be found in the ch09/helm/values
directory of the repository accompanying this book. Execute the
following command to enable TLS within the Argo CD server:

helm upgrade -i argo-cd argo/argo-cd --namespace argocd --
create-namespace \
-f ch09/helm/values/values-argocd-secure.yaml

You can wait for the rollout of the new settings by checking the
status of the Argo CD API server deployment by running the
following:

kubectl rollout status -n argocd deployment/argo-cd-argocd-
server

With the new release rolled out, launch a web browser and navigate
to the Argo CD UI at https://argocd.upandrunning.local.

What you quickly observed by attempting to navigate to the Argo
CD Ul is that something is not configured correctly. Your browser
most likely reported an error with too many redirects being the
cause (see Figure 9-1).

This page isn't working
argocd.upandrunning.local redirected you too many times.
Try deleting your cookies.

ERR_TOO_MANY_REDIRECTS

Figure 9-1. Too many redirects

So, what could be the issue?

By default, when the Argo CD Helm chart configures the Ingress
resource, it performs what is known as edge termination, resulting
in TLS traffic being terminated at the NGINX ingress controller.
Traffic is then sent to Argo CD unencrypted. When removing the --
insecure argument from the Argo CD server, we effectively closed
the method of communication that the NGINX was expecting to be
able to use. Argo CD responds to the request, redirecting to the
secure channel, but the subsequent request from NGINX still
attempts to connect insecurely. This cyclical loop continues until the
browser’s maximum redirect limit is reached, resulting in the error.

There are several ways that this issue can be solved, including
establishing a new TLS connection from NGINX to communicate

with Argo CD. However, the simplest method is to offload the
management of certificates entirely and pass through the
connection to the Argo CD backend without any form of TLS
termination within the NGINX controller. To accomplish this task,
two changes need to be made:

e Setthe nginx.ingress.kubernetes.io/ssl-
passthrough annotation on the Ingress resource; this

informs the NGINX ingress controller to forward encrypted
traffic directly to the backend.

e Enable SSL passthrough support within the NGINX ingress
controller by specifying the --enable-ssl-passthrough
CLI argument at startup, as this feature is disabled by
default.

CLI arguments for the NGINX controller can be defined within the
controller.extraArgs Helm value and by specifying
controller.extraArgs.enable-ssl-passthrough=true,

SSL passthrough support will be enabled.

Enable SSL passthrough support within the NGINX ingress controller
by updating the Helm chart using the values-ingress-nginx-
ssl-passthrough.yaml values file in the ch09/helm/values
directory by executing the following command:

helm upgrade -n ingress—-nginx ingress—-nginx ingress-
nginx/ingress—-nginx \

-f ch09/helm/values/values-ingress-nginx-ssl-
passthrough.yaml

Finally, specify both the nginx.ingress.kubernetes.io/ssl-
passthrough: "true" and
nginx.ingress.kubernetes.io/force-ssl-redirect:
"true" annotations on the Ingress resource of Argo CD within the
Helm values file to not only enable SSL passthrough support on

requests made against this Ingress resource but to automatically
redirect insecure connections (HTTP) to their secure counterparts
(HTTPS).

Upgrade the Argo CD Helm chart using the values-argocd-
secure.yaml values file within the ch09/helm/values directory by
specifying the following command:

helm upgrade -i argo-cd argo/argo-cd --namespace argocd --
create-namespace \
-f ch09/helm/values/values—-argocd-secure.yaml

With SSL passthrough support enabled on both the NGINX ingress
controller and within the Ingress resource for the Argo CD server,
once again navigate to http://argocd.upandrunning.local in a web
browser. Accept the self-signed certificate warning that is presented
within the browser from the automatically generated Argo CD
certificate to confirm the Argo CD server is once again accessible,
now with end-to-end TLS support.

Configuring TLS Certificates

The automatic generation of TLS certificates by Argo CD enables
the ability to securely communicate without any additional effort by
the Argo CD administrator. However, complications are introduced
when relying on this feature, as any external system that
communicates with the Argo CD server will struggle to fully trust the
certificate, as it is always generated when the instance starts up.
Instead of relying on the automatic certificate generation feature
within Argo CD, it is recommended that static certificates be
provided by the Argo CD administrator so that secure and reliable
communication can be achieved when communicating with Argo CD
components.

While TLS certificates can be configured within each Argo CD
component (including Dex and the repo server) to avoid the
automatic TLS certification generation feature, since end users will
directly communicate with the Argo CD server, we will limit our
discussion to only this component.

Generating Argo CD TLS Certificates

TLS certificates can be created for the purpose of securely
communicating with the Argo CD server. The process for generating
certificates was covered briefly in Chapter 6 when Keycloak was
deployed to support SSO-based authentication. The key difference
in this case is that two sets of certificates, a root certificate and
another for the Argo CD server, will be generated to enable the
creation of a certificate chain. By creating the Argo CD server TLS
certificate on top of a root certificate, only the root certificate will
be needed to trust an array of certificates that could be created in
the future to serve other purposes or components.

Generate the root certificate by executing the following command:

openssl req —-nodes -x509 -sha256 -newkey rsa:4096 \

-keyout root.key \

-out root.crt \

-days 365 \

-subj "/0=0'Reilly Media/CN=Argo CD: Up and Running Root
CA"™ \

-extensions v3 ca \

-config <(\

echo '[reqgl'; \

echo 'distinguished name=req'; \

echo 'extensions=v3 ca'; \

echo 'req extensions=v3 ca'; \

echo '"[v3 cal'; \

echo
'keyUsage=critical, keyCertSign,digitalSignature, keyEncipher
ment'; \

echo 'basicConstraints=CA:TRUE')

Next, generate the TLS certificate for Argo CD based on the root
certificate stored in the root.crt and root. key files:

openssl req -nodes -x509 -sha256 -newkey rsa:4096 \
-keyout argocd.key \

-out argocd.crt \

-days 365 \

-subj "/0=0'Reilly Media/CN=argocd.upandrunning.local" \
-extensions v3 ca \

-CA root.crt \

-CAkey root.key \

-config <(\

echo '[reqg]'; \

echo 'distinguished name=req'; \
echo 'extensions=v3 ca'; \

echo 'req extensions=v3 ca'; \
echo '"[v3 cal'; \

echo

'keyUsage=critical,digitalSignature, keyEncipherment'; \
echo 'subjectAltName=DNS:argocd.upandrunning.local'; \
echo 'extendedKeyUsage=serverAuth'; \
echo 'basicConstraints=CA:FALSE'")

TLS certificates for the Argo CD server are defined in a Secret called
argocd-server-tls within the namespace containing Argo CD.
Since a root certificate was also generated in addition to the
certificate for the Argo server, combine the two certificates into a
single file called argocd-fullchain.crt containing the entire

certificate chain:
cat argocd.crt root.crt > argocd-fullchain.crt
Now create the argocd-server-tls secret:

kubectl create -n argocd secret tls argocd-server-tls \
--cert=argocd-fullchain.crt \
-—-key=argocd. key

The Argo CD server automatically detects the creation of the
argocd-server-tls Secret and will load the newly provided
certificate. Navigate to the Argo CD UI and confirm that the newly
generated certificate chain is being used. You will once again be
greeted with a warning related to trusting the provided certificate.
By inspecting the certificate, you can confirm that it matches the
instance created previously, as shown in Figure 9-2.

A

Your connection is not private

Attackers might be trying to steal your information from argocd.upandrunning.local
(for example, passwords, messages, or credit cards). Learn more

NET::ERR_CERT_AUTHORITY_INVALID

Subject: argocd.upandrunning.local
Issuer: Argo CD: Up and Running Root CA
Expires on: Jun 13, 2025

Current date: Jun 13, 2024

PEM encoded chain:

Figure 9-2. Web browser displaying the contents of the provided TLS certificate

Accept the self-signed certificate to proceed to the Argo CD UL

NOTE

The root certificate can be configured at an operating system level to avoid the
warnings related to untrusted connections. Since the configurations are
operating system dependent, the steps will not be covered in detail.

The Argo CD server, including how external resources communicate
with the REST API and UI, is just one of the areas for which TLS
certificates can be configured. In the following sections, we will
explore some of other ways the TLS certificates play a role within
Argo CD.

Repository Access

Argo CD, as a tool that implements GitOps practices, interacts with
a variety of externally facing resources to source content that can
be applied to one or more Kubernetes clusters. These interactions
can be configured to communicate in a secure fashion, such as
requiring the use of TLS certificates.

Thus far, we have sourced all of the exercise content from the Git
repository that corresponds to this publication. This repository is
hosted in publicly hosted Git service, and while this service greatly
simplifies how anyone can easily access the content, it does limit
the type of configurations that can be applied to demonstrate the
capabilities of Argo CD. In order to avoid these limitations, we will
deploy a Git server of our own to demonstrate some of the ways
that Argo CD can be configured to securely communicate with Git
repositories.

Given the popularity of Git, there are a multitude of options
available when looking to operate a self-hosted Git server, ranging
from an instance that exposes just the Git protocol to fully
functional collaboration suites. Gitea is an open source Git platform
that offers a good middle ground as it includes a number of useful
features, such as source code and project management capabilities,
but is also lightweight compared to other options in the market.

Much like how Argo CD and the rest of the supplemental tools that
have been deployed throughout this book, Gitea will be installed
using a Helm chart. To simplify the interaction with the Gitea
instance, it will be initialized with a set of content that we will use

throughout this chapter and contained within a wrapper chart
located in the ch09/helm/charts/gitea directory.

Before the wrapper chart can be used, first, add the upstream Gitea
Helm repository:

helm repo add gitea-charts https://dl.gitea.com/charts/
helm repo update

A custom Helm values file is located in the ch09/helm/values
directory of the repository of this book. Take a moment and inspect
the values—-gitea.yaml file within this directory containing the
Helm values. Notice within the ingress property, details related to
t1s configuration are provided, including the name of a Secret

containing TLS certificates. Unlike how Argo CD was configured, TLS
termination will not occur at the Gitea instance and will instead take
place within the NGINX ingress controller. By including the reference
to the Secret containing TLS certificates, these assets will
automatically be picked by and configured by the NGINX ingress
controller.

The creation of the TLS Secret is an “out-of-band” action and occurs
before the installation of the Helm chart. Let’s now create a TLS
certificate using the same TLS root certificate that was used for
Argo CD. Execute the following command to generate a new
certificate pair for Gitea:

openssl req -nodes -x509 -sha256 -newkey rsa:4096 \
-keyout git.key \

-out git.crt \

-days \

-subj "/0=0'Reilly Media/CN=git.upandrunning.local" \
-extensions v3 ca \

-CA root.crt \

-CAkey root.key \

-config <(\

echo '"[reqgl'; \

echo 'distinguished name=req'; \

echo 'extensions=v3 ca'; \

echo 'reg extensions=v3 ca'; \
echo '"[v3 cal'; \
echo

'keyUsage=critical,digitalSignature, keyEncipherment'; \
echo 'subjectAltName=DNS:git.upandrunning.local'; \
echo 'extendedKeyUsage=serverAuth'; \
echo 'basicConstraints=CA:FALSE'")

Next, create a new namespace called gitea that will be used to
create the Secret containing the TLS certificates and the Gitea
instance:

kubectl create namespace gitea

Now, add the previously generated TLS certificate to the
namespace within a Secret called git-server-certificate.
Similar to the Argo CD server, the Gitea and root certificate must be
combined into a single file so that they can be added to the Secret:

cat git.crt root.crt > git-fullchain.crt

Create the Secret containing the combined certificate and private
key:

kubectl create secret tls -n gitea git-server-certificate \
--cert=git-fullchain.crt --key=git.key

Finally, deploy the Gitea instance by installing the wrapper Helm
chart with the corresponding values file. Prepare the wrapper chart
by updating the dependencies to pull down the upstream Gitea
chart and then install the wrapper chart:

helm dependency update ch09/helm/charts/gitea
helm upgrade -i --create-namespace -n gitea gitea
ch09/helm/charts/gitea \

-f ch09/helm/values/values-gitea.yaml

Once the chart has been deployed successfully, launch a web
browser and navigate to https://git.upandrunning.local. Accept the
use of the self-signed certificate, which will then direct you to the
Gitea home page, depicted in Figure 9-3.

XY Explore Help ARegister [#Sighn

Gitea: Git with a cup of tea

A painless, self-hosted Git service

9 =

Easy to install Cross-platform
Simply run the binary for your platform, ship it with Docker, or get Gitea runs ampwhene Go can complle for: Windows, macOS, Linux,
it packaged. ARM, atc. Choose the one you lovel
5 <>
Lightweight Open Source
Gitd has ko minimal requirements and can run on an inexpensve Go gt code. giteiiofaitea! Join us by contributing to make this
Raspberry Pi. Save your maching energy! project even better, Don't be shy to be & contributor!

Figure 9-3. The Gitea UI

On the top right corner of the page, click the Sign In link and use
the following credentials:

e Username: gitea_admin

e Password: Argocdupandrunningl1234@

Once logged in, you will be redirected to the Gitea landing page
(see Figure 9-4).

i (R Pl Fre s [LEFZSTEETY Esvpdota ful * =
', Dea_idemin =
iy e i kg Sap = e Dz = Fab [T Ap .
Regositony panization
[
W
- B hepositories “
Fri
B COMTa R i el LT T e et EHE RN s C Seweh reps =
3 - 3 F
¥ gtea_admin cregbed repositony Lpardnnnngichi-gog- sgnatunes 1 minue sgc q A Sourced Wi Mo
-
& upsndranningichlii-pog-iignabures
gitea_acmin pushed 1 =ain 8 upsndruneing/ch-credentials-ssh 1 minuie ago O & o) & aan
updrdinning —credaniali-
TeEIeY Ade rmandeitibeon] meg paml
[upandranninglch-ts
5 aitea_admin pushed by main ot upandrnning/chlE-gog-sgnatures T minue 590 O
& upandnamninglchlB-credentials-hiips
ITIOIRced Aad manifestsicontiamap yaml
¥ gitea_admin pushed 1o main 8t upandrunningichiri-credentiale-hizps. 1 minutle ago O
IR Add mandestricontigmapami
o _adkin chpabed Pepeditnny Lpdrdrnnngleh- 1l 1 minule 892 g
-
B ghea_admin cregbed repositony upardnanningichB-credentials-ssh | minule ago q
At =
gt _ ik purshid 1 =i 8 upsndnereingichii-th 1 minute sgo .ﬂ.
SATMecIlE Add manifestyconiigmag.yaml
o ptea_admin crnabed PEROSIN Lpardnanengichi-Credential-Taips | minDe ag0 q

Figure 9-4. The Gitea landing page

Let’s take a moment and review the content that has been
automatically populated within the Gitea instance. An organization
called upandrunning was created and contains a set of Git
repositories that will be used throughout this chapter as different
concepts are introduced.

On the right side of the page within the Repository box, locate and
select the “upandrunning/ch09-tls” repository (see Figure 9-5).

The repository includes a directory called manifests, which contains
the Kubernetes resources that will be synchronized by Argo CD.

To make use of this repository as a source of content in Argo CD, an
application called ch09-t1s is found within the ch09/argocd

directory in the accompanying book repository in a file called ch09-
tls—-application.yaml.

Sug Sop o1 Hew Dac ST Fab Ma Apt
Repositary Drganization
u Repositories | 4 +
T O} Search repos... =
All (8 Fi i
frunning/ch09-gog-signatures 2 minutes age q Soces. - (Rors Mo
n

B upandrnning/eh0-gpg-signatures

Inmnning/chl8-credentials-ssh 2 minutes ago 0=
& upandrunningjchO9-credentials-ssh

infigmap.yam|
S ——

Inanning/ch89-gpg-signatures 2 minutes ago a — == —
upandrunnina/chOS-cradentials-hitps

wnfigmap.yam|

Innning/chi8-credentials-hitps 2 minutes ago
nfigmagp.yami

frunningfeh08-ts 2 minutes ago

Irunning/chid-credentials-5s5h 2 minutes ago

MM ¢ o

Irunning/ehDo-tis 2 minutes sgo

Figure 9-5. The TLS repository

Apply the manifest to the Kubernetes cluster by executing the
following command:

kubectl apply -f ch09/argocd/ch09-tls-application.yaml

Check the status of the Application using the argocd CLI:

argocd app get ch09-tls

Upon inspecting the output, you will notice that the sync was not
successful, and the cause (which is also displayed) is noted:

Failed to load target state: failed to generate manifest
for source 1 of 1: rpc error:

Similar to the message that was presented when the Gitea instance
was accessed for the first time in a web browser, trust could not be

established between the Argo CD repository pod and Gitea. Since a
custom certificate authority (root certificate) was created for these
exercises, Argo CD is unaware of the authenticity and will, by
default, deny all communication.

Fortunately, Argo CD provides several options for managing trust
when communicating with remote repositories.

Configuring TLS Repository Certificates

TLS certificates can be configured within Argo CD to allow for the
secure communication with remote repositories. These
configurations can be applied using either the UI, CLI, or native
Kubernetes resources. Let’s use the Argo CD UI to add the
certificate associated with Gitea so that Argo CD will be able to
interact with the remote repository in a secure fashion.

Launch the Argo CD UI at https://argocd.upandrunning.local. Click
on Settings and then select “Repository certificates and known
hosts.” Click on Add TLS Certificate to launch the dialog for adding
the Gitea certificate.

In the Repository Server Name, enter git.upandrunning.local.
Copy the contents of the combined git-fullchain.crt file that was
created in the prior section when deploying the Gitea instance in
the TLS Certificate (PEM Format) text area. Click the Create button,
and the newly added certificates will be displayed in the list of
known and trusted TLS certificates, as shown in Figure 9-6.

Q} git.upandrunning.local hitpsrsa CM=git.upandrunning.local 0=0'Reilly Media

Q} git.upandrunning.local hitpsrsa CM=Argo CD: Up and Running Root CA,0=0'Reilly Media E

Figure 9-6. TLS repository certificates within the Argo CD UI

Now that the TLS certificates associated with Gitea have been
configured in Argo CD, display the configured applications by
clicking on the Applications button and then select the ch09-t1s

Application. Check the status of the application to determine if the
resources stored in the Git repository were applied to the
Kubernetes cluster now that Argo CD has been configured to trust
the Gitea instance. If the application is still in an errored state, click
the Refresh button to manually trigger Argo CD, which will allow the
application to attain a healthy and synchronized state.

TLS certificates associated with repositories can also be managed
using the Argo CD CLI using the argocd cert subcommand. List

the configured repository using the argocd cert 1ist command:

argocd cert list

What you may have noticed in both the results from the preceding
command and the page in the Argo CD Ul is that it contains more
than the list of TLS repository certificates. Also present is the list of
known SSH hosts, which will be covered in a later section.

TLS repository certificates can be removed using the argocd cert
rm command. To remove the previously added certificates
associated with the Gitea instance, execute the following command:

argocd cert rm git.upandrunning.local

To add the Gitea certificate back to Argo CD, use the argocd cert
add-t1ls command with the hosthame to associate with the
certificate and the location of the certificate using the --from
flag on the local machine:

argocd cert add-tls git.upandrunning.local --from git-
fullchain.crt

Of course, since Argo CD defines its configurations in a fully
declarative fashion, TLS repository configurations can be managed
directly within the argocd-tls-certs-cm ConfigMap, the same
resource that both the CLI and UI interact with.

The ConfigMap is structured in a straightforward manner, where the
key represents the hosthame associated with the certificate and the
value being the certificate itself:

apiVersion: vl

kind: ConfigMap

metadata:
name: argocd-tls-certs-cm
namespace: argocd

data:
<hostname>: |

<certificates>

Protected Repositories

Thus far, all interactions with remote repositories (whether they be
from a Git or Helm source) have been with resources that are
readily available and accessible and do not enforce any form of
access restrictions. Since the content that is managed by Argo CD
can contain either sensitive information or relate to the
configuration of the Kubernetes clusters or applications, it is
important that appropriate controls are applied to restrict access to
only the individuals and systems that require it.

Argo CD includes support for communicating with remote
repositories using either HTTPS- or SSH-based credentials. Both of
these credential types and their associated configuration will be
described in detail against resources stored within the Gitea
instance previously deployed.

HTTPS Credentials

The deployment of the Gitea instance automatically created a set of
repositories that require credentials be provided to access the
content. They are denoted within the Gitea UI with the word
“Private” next to the repository. Several options are available when
authenticating with Gitea using an HTTPS-based credential and
include a username and password combination or an access token.

The ch09-credentials-https repository within the Gitea instance and
in the upandrunning organization will be used to integrate Argo CD
using HTTPS-based credentials.

First, let’s explore how Argo CD reacts when it attempts to fetch
resources that it does not have access to. Apply the ch09-

credentials-https application located within the
ch09/argocd/ch09-credentials-https-
application.yaml file:

kubectl apply -f ch09/argocd/ch09-credentials-https-
application.yaml

Check the status of the ch09-credentials-https application
using the Argo CD CLI:

argocd app get ch09-credentials-https

As expected, the application is failing since the content cannot be
accessed, as authentication is required:

Failed to load target state: failed to generate manifest
for source of 1: rpc error:
code = Unknown desc = authentication required

Similar to TLS certificates, repository credentials can be managed
by either using the Argo CD UI or CLI, and the configurations that

are made using either of these tools are realized as a Kubernetes
Secret.

First, use the Argo CD UI to define the credentials to access the
ch09-credentials-https repository by navigating to the Settings page
and selecting Repositories in a web browser. Click the Connect Repo
button to begin the process for defining repository configuration.

Enter the following into the dialog:

e Connection method: https
e Project: default

e Repository URL:
https.//git.upandrunning.local/upandrunning/ch09-
credentials-https.git

e Username: gitea_admin
e Password: Argocdupandrunning1234@

Additional options are available for configuring TLS client
certificates to enable mutual authentication as well as ignoring TLS
verification when connecting to remote repositories.

Since mutual authentication was not configured, and the Argo CD
server has been configured to trust the certificates exposed by the
Gitea instance, those options will not be used.

Click the Connect button to create the repository configuration.

Confirm the connection status has a checkmark indicating that
verification of the connectivity between Argo CD and the remote
repository was successful, as shown in Figure 9-7.

TYPE MNAME REPOSITORY CONMECTION STATUS

» git https://git.upandrunning.local/upandrunning/ch0%-credentials-hitp @ Successful

Figure 9-7. Successful connection to the Git repository

With the repository configured and confirmed, navigate to the
Applications page, select the ch09-credentials-https
application, and click the Refresh button, which will make use of the
repository configuration created previously to enable the successful
synchronization of the application.

Configuring repository credentials can also be accomplished using
the Argo CD CLI with the argocd repo subcommand. Using a

similar flow that was accomplished in the previous section when
managing TLS certificates, first list the defined repository
configurations using argocd repo list:

argocd repo list

TYPE NAME REPO

git
https://git.upandrunning.local/upandrunning/ch09-
credentials-https.git

Remove the previously configured repository using the argocd
repo rm command and include the name associated with the
repository (https://git.upand
running.local/upandrunning/ch09-credentials-
https.git as in the previous example):

argocd repo rm
https://git.upandrunning.local/upandrunning/ch09-
credentials-https.git

Add the repository configuration back to Argo CD using the argocd
repo add command while specifying the Git repository URL,
username, and password:

argocd repo add
https://git.upandrunning.local/upandrunning/ch09-

credentials-https.git \
--username=gitea admin --password=Argocdupandrunningl234(@

One of the benefits of the CLI over the UI when adding repository
configurations is that connectivity against the remote repository is
validated in real time before it is added, and an appropriate error is
presented. The UI will add the repository regardless of whether the
connection to the remote repository was successful.

When a new repository configuration is added, a Secret is created
within the namespace Argo CD is deployed within containing the
provided properties. In Chapter 7, you saw how Argo CD clusters are
also defined as Kubernetes Secrets and use the
argocd.argoproj.io/secret-type=cluster label to denote
that the contents contain properties defining an Argo CD cluster.

An Argo CD repository configuration is defined in a similar fashion,
but utilizes the value of the argocd.argoproj.io/secret-type
label as repository. The following is how the ch09-credentials-
https repository configuration would be represented as a Secret:

apiVersion: vl
kind: Secret
metadata:
annotations:
managed-by: argocd.argoproj.io
labels:
argocd.argoproj.io/secret-type: repository
name: ch09-credentials-https
namespace: argocd
stringData:
password: Argocdupandrunningl234(@
type: git
url: https://git.upandrunning.local/upandrunning/ch09-
credentials-https.git
username: gitea admin
type: Opaque

Aside from a username and password, both Argo CD and Gitea
support the use of tokens as a form of authentication. A token can
be thought of as a password that typically has a separate lifecycle
than a standard user account password. Most Git-based solutions
include support for some form of token-based authentication.
Tokens also have the benefit of being scoped to specific resources
or functions, such as access to only certain repositories or the ability
to perform certain functions within those repositories (read versus
write).

Credentials associated with repositories can be updated using either
the Argo CD UI or using the argo repo add command. To update

an existing repository configuration, include the --upsert flag
when invoking the CLI to apply the desired changes.

SSH-Based Authentication

The other primary option for authenticating against remote
repositories is to use SSH keys. SSH-based authentication involves a
cryptographic keypair, a public key, and a private key. The public
key is broadly shared and used to determine whether trust should
be established, while the private key is proof of the user’s identity.
Let’s illustrate how Argo CD can authenticate with the remote Gitea
instance to retrieve manifests using SSH-based credentials.

The first step is to generate an SSH keypair using the ssh-keygen

command. Create a new keypair in the current directory using the
following command:

ssh-keygen -t ed25519 -f argocd ssh -C
"argocd@upandrunning.local" -g -N ""

A private key was generated in the file argocd ssh, while the
associated public key was generated in the file argocd ssh.pub.

It is important to note that SSH keys with passphrases are not
currently supported in Argo CD.

Next, add the public key to Gitea so that it will be able to trust the
Argo CD instance when it attempts to communicate using the
private key. Gitea supports associating SSH keys with either a user
or with individual repositories. To limit the level of access that Argo
CD has against the Gitea instance, the previously generated SSH
key will be associated with only a single repository within Gitea
using a facility called “"Deploy Keys.”

Navigate to the Gitea instance (https://git.upandrunning.local) and
locate the upandrunning/ch09-credentials-ssh link within the box
denoted by Repositories on the right-hand side of the page. Click on
Settings and then Deploy Keys. Select the Add Deploy Key to define
the key that should be trusted for the repository.

Enter argocd in the Title textbox and paste the contents of
argocd_ssh.pub file from the generated SSH keypair. Click the

Add Deploy Key to add the public SSH key to the repository.

Now that Gitea has been configured, the next step is to configure
Argo CD. Navigate to the Argo CD instance
(https://argocd.upandrunning.local) and once again revisit the
Repository configuration page by clicking on the Settings button and
then selecting Repositories.

Adding an SSH repository follows a very similar process that was
described previously using TLS certificates (https). Click the Connect
Repo button. Enter the following into the fields in the dialog:

e Connection method: ssh
¢ Project: default

e Repository URL: git@gitea-ssh.gitea:upandrunning/ch09-
credentials-ssh.git

In the “SSH private key data” field, enter the contents of the SSH
private key stored in the argocd_ssh file.

Click the Connect button to verify the connection.

NOTE

Argo CD is taking a slightly different path when communicating with the Gitea
instance over SSH. Traffic is leveraging the internal Kubernetes Service
network, as the NGINX ingress controller is only exposing HTTP/S-based traffic
(80/443). While this configuration does limit direct connectivity over SSH,
alternate methods, like kubectl port-forward, can be used to connect to

Gitea via SSH if needed.

Unfortunately, adding the repository will result in a failed connection
state. Even though the SSH key that is being used to communicate
with the Gitea has been configured at a repository level, an
additional step needs to take place for Argo CD to trust connecting
to the Gitea instance via SSH.

The SSH protocol includes a series of verification steps to enforce
that connections to remote sources are trusted prior to allowing the
connection being established. This process of requiring trust is
similar to how TLS-based connections require that certificates are
trusted and verified. SSH clients maintain a list of the public keys
that they trust and reference these entries at connection initiation.

To enable Argo CD to connect to Gitea, the public key exposed by
the Gitea instance needs to be added to the list of known SSH hosts
that Argo CD maintains within the argocd-ssh-known-hosts-cm
ConfigMap. These entries can be managed on the “Repository
certificates and known hosts” page within the Settings section of
the Argo CD UI or with the argocd cert add-ssh CLI

subcommand.

ssh-keyscan is one of the tools that can be used to obtain the
public key from remote servers. Since SSH access is not exposed
outside of the Kubernetes clusters, kubectl exec will be used to
execute the ssh-keyscan command to communicate with Gitea.
The output of the command will be redirected to the argocd cert
add-ssh command, which will add the public key to the list of
known hosts in Argo CD.

Execute the following command to obtain and add the public key to
Argo CD:

kubectl -n argocd exec -c repo-server \

$ (kubectl get pods \
-l=app.kubernetes.io/component=repo-server \

-n argocd \

-0 jsonpath='{ .items[*].metadata.name }') \

-- ssh-keyscan gitea-ssh.gitea | argocd cert add-ssh --
batch

Confirm the public key was added to Argo CD by navigating to the
“Repository certificates and known hosts” page within the Settings
section of the Argo CD UI, as shown in Figure 9-8.

Q} gitea-ssh.gitea ssh ssh-rsa SHAZ56:0AepChXTZHLKOFKZgN4QK3JxyMbo1yN2y3W+QVvgagE :

Figure 9-8. The SSH key present within the Argo CD UI

With the Gitea instance added to the list of known SSH hosts, return
to the Repositories page within the Settings section and confirm the
ch09-credentials-ssh repository is displaying a successful status. If
the status remains in a Failed state, disconnect the repository by
selecting the kabob menu icon and clicking Disconnect. The
repository can then be added once again using the values described
earlier in this chapter. Once again, confirm that the repository is
reporting a successful connection to Gitea.

With the connection to the repository established, create an
application that synchronizes the contents into the Kubernetes
cluster. Execute the following command from the ch09 directory of
the accompanying project repository:

kubectl apply -f ch09/argocd/ch09-credentials-ssh-
application.yaml

Confirm that the ch09-credentials-ssh application was not

only added successfully but was synchronized successfully, verifying
the integration between Argo CD and Gitea using SSH-based
communication.

Enabling Reuse Through Credential Templates

One item that might have come to mind when working through this
chapter and each of the steps necessary to configure the
connectivity to repositories from Argo CD is the long-term
management and scalability considerations. While ultimately only
two repositories were configured, time and effort were dedicated to
support the setup, configuration, and verification. Replicating for
each repository at a large organization scale, and it becomes a
nightmare to consider.

Fortunately, Argo CD includes a capability called credential
templates, which allows for a single repository configuration to be
defined that can then be reused across multiple repositories.
Credential templates make use of URL prefix matching when
selecting potential repositories for which the configuration should be
applied to.

For example, instead of defining a configuration for each individual
repository, a single credential template that utilized the URL prefix
https://git.upandrunning.local/upandrunning, it would
match all of the repositories that we have used thus far, as they are
all within the same Gitea organization. However, if a repository

configuration is defined at an individual repository level, it will take
precedence over a credential template.

To set up a credential template from the Argo CD UI, configure the
HTTPS or SSH repository configuration, as described throughout this
chapter, but instead of selecting “"Connect,” select "Save as
Credential Template.”

From an Argo CD CLI perspective, the argocd repocreds
subcommand enables the management of credential templates. The
content that is ultimately persisted as a Secret specifies the label
argocd.argoproj.io/secret-type=repoc-reds, which
differentiates itself from a standard repository configuration.

While the use of credential templates will not be covered in depth,
feel free to experiment by removing the existing repository
configurations and defining a single repository configuration that
would match all of the private repositories in the upandrunning
Gitea organization.

Enforcing Signature Verification

Argo CD plays a key role in the overall delivery of software. By
managing how and when applications are deployed, it is important
to ensure that nothing has unwillingly compromised the integrity of
the system. Recent attacks on the software supply chain have
caused both organizations and government entities to take a closer
look at how they deliver software. One method for ensuring that no
malicious activities have occurred during the normal course of how
software is built and delivered is to apply cryptographic signatures
at various steps throughout this process. By enabling the use of
signatures, not only is there a mechanism to understand the origin
of the content, but there is an assurance that no unwanted or
unexpected actions occurred after the signature was applied.

Support for signature verification is available in Argo CD, and, once
enabled, the synchronization of resources can be achieved when the
referenced Git repository has a revision that has a GNU Privacy
Guard (GnuPG or GPG) signature present, and the keys used to sign
the content have been trusted by Argo CD.

The enforcement that content be signed is applied at a Project level
and when configured, it applies to every application associated with
the project.

Signature verification is enabled by performing the following steps:
o Import the public key that was used to sign the content.

e Configure a project and associate one or more of the public
keys that Argo CD trusts.

Since signature verification applies against commits in a Git
repository, at the time of this publication, signature verification is
not supported for Helm repositories.

Enable Signature Verification

In order to begin enforcing signatures, a GnuPG-formatted public
key must be configured in Argo CD. An existing public key may be
used, or a new keypair can be generated. If your machine does not
have the GPG command-line tools installed, follow the steps on the
GnuPG website to download, install, and configure the tools on your
local machine.

Once the tools have been installed, generate a keypair:

gpg —-—-full-generate-key

When prompted, generate an RSA-formatted key with a key size of
your choosing. Selecting the default size that is suggested is
acceptable. When specifying your personal information, be sure to

https://oreil.ly/aizFO
https://oreil.ly/aizFO

use an email address that you will remember, as it is needed later
when referencing the generated key.

Once a keypair has been generated, obtain the ID of the key:

KEY ID=$(gpg --list-secret-keys --keyid-format=long \
| grep sec | cut -f2 -d '/' | awk '{ print S$1}")

Export the public key in armored format so that it can be added to
Argo CD. Be sure to replace the email that was used when
generating the key into the following command:

gpg --output public.pgp --armor --export <email>

GPG keys can be managed either within the GhuPG public keys page
within the Argo CD UI or the CLI using the argocd gpg

subcommand.

Add the exported public key using the argocd gpg add
command:

argocd gpg add public.pgp

Confirm the key was added successfully by viewing the list of keys
in the Argo CD UI or by using the argocd gpg 1ist command of

the CLI.

GPG public keys are stored in the argocd-gpg-keys-cm
ConfigMap, which enables the management of this content in a
declarative fashion.

Since signature verification is enforced at a Project level and to
avoid affecting any of the existing applications that have been
created previously, create a new Argo CD Project called ch09-gpg
by applying the AppProject manifest stored in the ch09-gpg-
appproject.yaml file from within the ch09/argocd directory of
the accompanying repository:

kubectl apply -f ch09/argocd/ch09-gpg-appproject.yaml

With the new Argo CD Project created, enable signature verification
by adding the ID of the GPG key that was created previously.
Navigate to the Projects page from within the Settings page of the
Argo CD UI.

Select the ch09-gpg Project and locate the GPG Signature Keys

section. Click Edit and then Add Key. Select the ID of the GPG key
from the dropdown and then click Save.

Signature Verification in Action

At this point, signature verification has been enabled against the
ch09-gpg project.

To illustrate just how Argo CD performs and enforces signature
verification, create an application that references content in the
ch09-gpg-signatures repository in the Gitea instance where commits
have not been signed:

kubectl apply -f ch09/argocd/ch09-gpg-signatures-
application.yaml

Inspecting the status of the application reveals a ComparisonError
with a message similar to the following:

Target revision a9%e4a971219b690e2d591605417f8cacbabablcft in
Git is not signed,
but a signature is required

Argo CD has blocked the Application from syncing because the
commit associated with the revision was not signed with the
configured GPG key.

To resolve the error and enable the application to synchronize
successfully, a signed commit must be made against the repository.

Since your machine has already been configured with a set of GPG
keys, and the public key has been installed in Argo CD as the
method for signature verification, let’s clone the repository locally,
enable your Git client to use the newly created GPG key, and add a
signed commit that can be pushed to the remote repository for Argo
CD to use.

First, clone the contents of the ch09-gpg-signatures repository to
your local machine and change into the repository directory:

git -c http.sslVerify=false clone \
https://git.upandrunning.local/upandrunning/ch09-gpg-
signatures.git

cd ch09-gpg-signatures

Enter the username and password for Gitea if prompted.

NOTE

The http.sslVerify=false config option was specified to ignore TLS
certificate errors when communicating with the self-signed certificate exposed
by the Gitea instance and will be used in each interaction with the Git server.

Next, associate the GPG key with the Git client so that it can be
used to sign commits by specifying the ID of the key that was
stored previously as the KEY_ID environment variable:

git config --global user.signingkey SKEY ID

Now, update the content of the README.md file in the ch09-gpg-
signatures repository so that a signed commit can be made:

echo "Now with signed commits!" >> README.md

Create a signed commit by specifying the -s flag to enable GPG
signing:

git commit -S -am "Updated README"

Confirm the commit was signed by running the following command:

git log --show-signature

A commit log message with a signature applied will appear similar
to the following:

gpg: Signature made Sun Jul 7 03:52:14 2024 UTC
gpg: using RSA key
5CG73B102FD36W88C6F522A1RB27298BS6A0E355B

gpg: Good signature from "John Doe
<jdoel@upandrunning.local>" [ultimate]

With a signed commit being present, the content can be pushed to
the remote Gitea instance:

git -c http.sslVerify=false push origin main

Return to the Argo CD UI and the ch09-gpg-signatures
application and click Sync to synchronize the application with the
content in the Git repository (see Figure 9-9).

£ ! €, chiri-pg- tiprtures APPLICATION DETAILS TREE

ST STATES A L.

W Healthy @ Synced o neap edeses) © Sync OK wbbdettn
it WP i ki S et 3 T b ol B Jul DT 2234 O 4 Gl LAY

B e e ey bl - Brvibin. iy st fagres Ly ey Bkl o gy e b g e (el et L Ry
amyrerd Add maniferia efigrpye Corret Uodeird MLACL

EN + - o @ [

N g aspalur e . | IS enfgpgaineine
vo i = e

13 it e s

Figure 9-9. The result of a successful app sync with signed commits

Since the HEAD revision is signed with the public key that is
configured for the Project the Application is associated with in Argo
CD, the synchronization was successful and the associated
manifests were added to the Kubernetes cluster, as shown in
Figure 9-9.

Signature verification of Git commits is just another way that
security can be applied within Argo CD. However, if there was a
desire to disable the capability entirely, the ARGOCD GPG ENABLED
environment variable can be added to the argocd-server,
argocd-repo-server, and argocd-application-
controller deployments.

Application Sync Impersonation

In Argo CD, the service account used for synchronizing Application
resources is the same as the one used for control plane operations.
This setup allows users to decouple the service account for
Application synchronization from the control plane service account.
While this is effective in most scenarios, particularly in large multi-
tenant environments, administrators often rely heavily on Argo CD’s
built-in RBAC system to manage permissions. However, there are
cases where additional restrictions are required to meet regulatory

requirements, adhere to organizational policies, or enhance security
by adding extra layers of protection beyond RBAC.

By default, Application Sync operations in Argo CD inherit the same
privileges as the control plane. In a multi-tenant environment, this
means that the control plane must be provisioned with the highest
level of privileges required by any application. For instance, if an
Argo CD instance manages ten applications and only one requires
elevated privileges, the control plane itself must be granted the
same level of access. This setup poses a security risk: malicious
tenants could potentially exploit these elevated privileges to gain
unauthorized access to resources in the cluster. While Argo CD’s
multi-tenancy model, through AppProjects, helps restrict what
individual applications can do, it is not sufficient to fully mitigate the
risk. If the Argo CD control plane were to be compromised,
attackers could still gain elevated, and even cluster-admin level
access.

Starting with Argo CD version 2.14, the Kubernetes Impersonation
feature can be used to mitigate these concerns. By integrating this
feature, Argo CD can now perform Application Sync operations using
a specific service account specified by the administrator, rather than
relying solely on the control plane’s service account, providing an
extra layer of security.

Enable Sync with Impersonation

To enable Application Sync impersonation, the
application.sync.impersonation.enabled option in the
data field in the argocd-cm ConfigMap must be set to "true":

apiVersion: vl
kind: ConfigMap
metadata:
name: argocd-cm
namespace: argocd

data:
application.sync.impersonation.enabled: "true"

You can patch the running argocd-cm ConfigMap by using the
provided patch file in the repository that accompanies this book.
Apply the patch by running the following command:

kubectl patch cm/argocd-cm -n argocd —--patch-file \
ch09/argocd/ch09-impersonation-cm-patch.yaml

Restart the Application controller StatefulSet by running the
following:

kubectl rollout restart statefulset -n argocd \
-1 app.kubernetes.io/component=application-controller

It's always good practice to wait for the application controller to
become ready after the restart. This can be achieved by running the
following:

kubectl rollout status statefulset -n argocd \
-1 app.kubernetes.io/component=application-controller

The impersonation feature in Argo CD can only be enabled/disabled
at the system level, meaning that once it is enabled or disabled, it
is applicable to al/l applications managed by Argo CD.

Define the Service Account to Use for
Impersonation

Destination service accounts to impersonate can be configured
within an AppProject under the
.spec.destinationServiceAccounts field. For each target

destination server and namespace, the corresponding service
account to be used during the sync operation should be specified

using the defaultServiceAccount field. Applications associated

with this AppProject will automatically utilize the designated service
account for their respective destinations.

During the Application Sync operation, the controller iterates
through the list of defined destinationServiceAccounts in the

AppProject. If multiple matches exist for a given destination server
and namespace combination, the first valid match is selected. If no
matching service account is found, the sync operation will report an
error. Some administrators add a “catchall” to mitigate this potential
issue. For example:

spec:
destinationServiceAccounts:
- server: in-cluster
namespace: '*' # Doing * targets every namespace 1in
the defined cluster
defaultServiceAccount: default

However, it is not necessary to define a catchall and many
administrators elect not to do so. This is on purpose to further lock
down the sync by purposely failing instead of using a defined
catchall service account. In our example scenario, we won't be
using a catchall, so you can see how Application Sync impersonation
works. Inspect the ch09/argocd/ch09-impersonation-

project.yaml file, and you'll see the following manifest:

apiVersion: argoproj.io/vlalphal
kind: AppProject
metadata:
name: chO9-impersonation
namespace: argocd
spec:
description: Impersonation Example Project
sourceRepos:
— "X
clusterResourceWhitelist:
- group: '*'

kind: '*'
destinations:

- name: '*'
namespace: '*
server: '*'

destinationServiceAccounts:

- server: https://kubernetes.default.svc
namespace: impersonation
defaultServiceAccount: nginx-deployer

Note in the .spec.destinationServiceAccounts we have the
namespace impersonation With the nginx-deployer service
account defined for syncs. Apply this manifest to create the project
with impersonation:

kubectl apply -f ch09/argocd/ch09-impersonation-
project.yaml

This creates the AppProject with Application Impersonation Sync set
up for the namespace impersonation. Any Application defining
this namespace will use the defined nginx-deployer service
account.

Deploying an Application with Impersonation

At this point, you can deploy the Application into the AppProject we
just created. Inspect the ch09/argocd/ch09-impersonation-

app .yaml file:

apiVersion: argoproj.io/vlalphal
kind: Application
metadata:
name: nginx
namespace: argocd
spec:
project: chO09-impersonation
source:
repoURL: https://github.com/sabrel041/argocd-up-and-

running-book
targetRevision: main
path: ch09/manifests/nginx
destination:
namespace: impersonation
server: https://kubernetes.default.svc
syncPolicy:
automated:
prune: true
selfHeal: true

Note, we defined ch09-impersonation under the
.spec.project field and also the corresponding destination under
the .spec.project.destination field that matches our

AppProject configuration. Apply this Application manifest using the
following command:

kubectl apply -f ch09/argocd/ch09-impersonation-app.yaml

By running kubectl get application nginx -n argocd -o
yaml, you Will notice the following message in the
.status.operationState.syncResult.resources field:

deployments.apps "nginx" is forbidden: User
"system:serviceaccount:impersonation:nginx...

In order for us to overcome this error, we need to set up not only
the namespace, but also the service account and any roles and
RoleBindings needed for the sync to be successful.

First, create the namespace:

kubectl create namespace impersonation

Next, create the service account in the newly created
impersonation Namespace:

kubectl create sa nginx-deployer -n impersonation

Create the role restricted in the impersonation namespace,
allowing for the management of Deployments:

kubectl create role restricted --verb=* --
resource=deployment -n impersonation

Next, create a rolebinding in the impersonation nhamespace,
specifying the nginx-deployer service account from the same
namespace:

kubectl create rolebinding restricted-binding --
role=restricted \
--serviceaccount=impersonation:nginx-deployer -n
impersonation

NOTE

The steps of creating the namespace, the service account, the role, and the
RoleBinding should be performed by the administrator first, as impersonation is
considered an administrative task. These resources could also be (and is
recommended) stored in Git and managed via GitOps workflows.

Now, initiate a sync using the argocd CLI. Upon completion, this

should result in a successful deployment of the Application to the
cluster:

argocd app sync --project=ch09-impersonation nginx

If you inspect the cluster by running kubectl get deploy, pods
-n impersonation, you will see that the resources were
successfully deployed:

NAME READY UP-TO-DATE AVAILABLE
AGE

deployment.apps/nginx /1

5m35s

NAME READY STATUS RESTARTS
AGE

pod/nginx-5869d7778c-6h4v8 /1 Running

5m35s

This AppProject is now set up to use the nginx-deployer service
account anytime an Application tries to deploy resources into the
impersonation hamespace. Since the nginx-deployer service
account is set up to only manage Deployments, any other resource
that is attempted to be deployed will fail. This provides the fine-
grained control many security teams are looking for when
implementing Argo CD.

Summary

Security will continue to remain an important area of consideration
for both Kubernetes developers and administrators. Users
interacting with Argo CD can feel confident knowing that the
platform includes several features specifically designed to enforce
common security practices.

In this chapter, you first learned how to serve custom TLS
certificates, enabling end-to-end encryption between the caller and
Argo CD. Then, you deployed an instance of Gitea to act as a Git
repository, thus allowing for more specialized configurations, which
are common in many enterprise organizations, to be explored.

Once the Gitea instance was established, you extended your
understanding of the benefits of operating securely with TLS
certificates and configured trust within Argo CD so that resources
stored in Gitea could be accessed securely.

We then transitioned to accessing content stored in protected Git
repositories and the various methods that Argo CD supports for
specifying credentials, including HTTPS with usernames/passwords
and tokens along with SSH keys.

Finally, the integrity of content from Git repositories was hardened
by enforcing that commits were signed using a GnuPG key, ensuring
that no malicious actions occurred from the time the commit took
place to when Argo CD accessed the content.

Also, we set up Application Sync Impersonation to provide finer-
grained access to Argo CD deployments, adding an additional level
of security for sync operations.

It is also important to note that while this chapter did cover quite a
number of capabilities related to security, it is not a comprehensive
list of features that Argo CD supports in this realm. However, the
topics covered are some of the most common that apply to Argo CD
administrators and users.

Chapter 10. Applications at
Scale

In Chapter 4, you were introduced to the Application Custom
Resource Definition (CRD) object, which facilitates the logical
grouping of your Kubernetes manifests. This Application object
serves as the atomic unit of work in Argo CD, allowing you to
manage a collection of Kubernetes objects as a single entity. Argo
CD uses the Application CRD to manage the entire lifecycle of this
collection of Kubernetes objects.

Argo CD Applications operate autonomously, meaning that one
Application does not have awareness of the status or health of
another. This autonomy can pose challenges, especially in
organizations employing a microservices architecture where each
component resides in its own Application custom resource. For
instance, certain Applications may need to be deployed sequentially
—such as a database before a backend service or a service mesh
before the main application. As infrastructure scales, managing
these dependencies and Argo CD Applications becomes increasingly
complex.

In this chapter, we will explore various deployment patterns
available in Argo CD. These include approaches like the App-of-Apps
with sync waves and ApplicationSets with Progressive Sync. These
patterns will assist in managing dependencies between Argo CD
Applications and facilitate the deployment and management of
these Applications at scale.

Argo CD Application Drawbacks

In Chapter 5, we explored the customization of the Argo CD sync
operation to accommodate the varying complexities of
deployments. While not explicitly stated, the chapter implicitly
conveyed the default behavior of an Argo CD Application, which
applies Kubernetes manifests as is. Although this approach is
effective in many scenarios, it can pose challenges when the
deployment sequence of workloads is critical. To address this issue,
the chapter introduced the concept of sync waves. Sync waves
provide a mechanism to orchestrate the deployment of Kubernetes
resources in a predetermined sequence, thereby ensuring the
correct order of operations. This feature is instrumental in
mitigating potential issues arising from unordered deployments,
thus enhancing the reliability and predictability of the deployment
process. For example, if you want to create a Namespace before a
Pod, set the value of the argocd.argoproj.io/sync-wave
annotation appropriately:

apiVersion: vl
kind: Namespace
metadata:
name: web
annotations:
argocd.argoproj.io/sync-wave: "1"

apiVersion: vl
kind: Pod
metadata:
labels:
run: nginx
annotations:
argocd.argoproj.io/sync-wave: "2"
name: nginx
namespace: web
spec:
containers:

- image: nginx
name: nginx

While sync waves are an effective method for ordering the
manifests within a single Argo CD Application, they are limited to
the resources contained within that specific application. They do not
apply to the Argo CD Application itself or facilitate ordering between
multiple Argo CD Applications. Additionally, Argo CD Applications
are designed to be autonomous, meaning there is no inherent
mechanism for establishing dependencies or relationships between
individual applications.

While sync waves effectively handle the ordering of resources within
a single Argo CD Application, they fall short in scenarios requiring
coordination between multiple Applications. This limitation arises
because of the autonomy of an Argo CD Application and the lack of
built-in inter-Application dependency management. Unfortunately,
there is no native feature within the Argo CD Application
specification to enforce such dependencies. However, it is still
possible to establish dependencies between Argo CD Applications
using various tools, methods, and deployment strategies available
within the Argo CD ecosystem.

To address this gap, the following strategies can be employed
within the Argo CD ecosystem:

e Eventual consistency
o App-of-Apps with sync waves
e ApplicationSets Progressive Sync

Before delving into these methods, there are several important
considerations to keep in mind: these will include things like
resource health, Argo CD Application health checks, and Argo CD
Application-specific health.

Consideration and Best Practices

There are some important considerations that must be taken into
account when implementing any of the approaches with respect to
scaling and orchestrating Argo CD Applications. With that in mind,
we will review these considerations before delving into any
implementation details.

So before diving into how to handle Argo CD Application at scale,
we'll go over some prerequisites and best practices. These include
readiness/liveness probes, Argo CD Application health checks, and
resource health checks.

Set Up Probes

It's generally good practice to configure readiness and liveness
probes within Kubernetes manifests. For those who aren’t familiar
with the concept, liveness probes assess whether a resource (like a
container in your Deployment) is up and running (aka “alive”);
readiness probes check to see if your resources are ready to accept
connections. For more information about readiness and liveness
probes, take a look at the official Kubernetes documentation on the
topic.

Setting up readiness and liveness probes is not only a best practice,
but also paramount to an Argo CD Application. Argo CD Application
health is based on the collective health of its resources being
deployed. Without proper readiness and liveness probes, Argo CD
might mark resources as “healthy” and “"synced” when, in fact, they
might still be deploying.

Let’s take the scenario of a MySQL database. If we deploy the
MySQL StatefulSet without any probes, Argo CD will mark the
MySQL StatefulSet as healthy, even though it might be going
through its startup process. Furthermore, it will also be marked as
healthy when the StatefulSet isn't even ready to start receiving

https://oreil.ly/HQ7cY

requests! To that end, you can see how adding probes can help
when deploying resources with Argo CD. Here is an example of
adding probes for MySQL.:

spec:
template:
spec:
containers:
- image: mysgl:5.6.51
name: mysqgl
livenessProbe:
tcpSocket:
port: 3306
initialDelaySeconds: 12 # How long to wait
before probe starts
periodSeconds: 10
readinessProbe:
exec:
command: ["mysgl", "-h", "127.0.0.1", "-e",
"SELECT 1"]
initialDelaySeconds: 12
periodSeconds: 10

In this example, Kubernetes considers the MySQL StatefulSet as
“alive” when port 3306 responds to requests, and it will consider it
“ready” when a query executes successfully.

Argo CD Health Checks

Argo CD doesn't only rely on the generic Kubernetes health status
for the objects it's managing, but it also provides built-in health
checks for a multitude of Kubernetes types, which are then surfaced
to the overall Application health status. Health checks are written in
Lua, and you can see the current built-in checks in the Argo CD
GitHub repo.

There are times where there’s a need to add or customize these
health checks. For example, if you're working with a Kubernetes

https://www.lua.org/
https://oreil.ly/R2xo9
https://oreil.ly/R2xo9

Operator (perhaps because you have either written one for your
organization or because you're using a relatively new one), you
might need to add these custom health checks in the
resource.customizations field in the argocd-cm ConfigMap.
The format looks like the following:

data:
resource.customizations: |
<group/kind>:
health.lua: |

For example, here is what the health check for the cert-
manager.io/Certificate object would look like in the argocd-cm
ConfigMap:

data:
resource.customizations: |
cert-manager.io/Certificate:

health.lua: |
hs = {}
if obj.status ~= nil then
if obj.status.conditions ~= nil then

for i, condition in
ipairs (obj.status.conditions) do

if condition.type == "Ready" and
condition.status == "False" then
hs.status = "Degraded"
hs.message = condition.message
return hs
end
if condition.type == "Ready" and
condition.status == "True" then
hs.status = "Healthy"
hs.message = condition.message
return hs
end
end

end
end

hs.status = "Progressing"
hs.message = "Waiting for certificate"
return hs

NOTE

Cert Manager is a popular addition to Kubernetes clusters, as it simplifies the
creation and rotation of TLS certificates. More information can be found at the
official website.

To read more about Argo CD health checks please refer to the
official documentation.

Application Health

Another important thing to note is that the health check for the
Argo CD Application CRD has been removed in Argo CD 1.8 (see the
related issue for more information). This is an important thing to
keep in mind, especially in the case of orchestrating Argo CD
Application deployments that rely on each other. Since some of the
patterns we're going to go through rely on the Argo CD Application
health check’s presence, we'll need to add it to the argocd-cm
ConfigMap. This is easily done. Here's an example:

data:
resource.customizations: |
argoproj.io/Application:

health.lua: |
hs = {}
hs.status = "Progressing"
hs.message = ""
if obj.status ~= nil then
if obj.status.health ~= nil then
hs.status = obj.status.health.status
if obj.status.health.message ~= nil then
hs.message = obj.status.health.message

end

https://cert-manager.io/
https://oreil.ly/9Ifyf
https://oreil.ly/9Ifyf
https://oreil.ly/lTWby

end
end
return hs

With all these considerations (not only are they general best
practices, but they're also prerequisites for the upcoming use cases)
in place, we can start exploring different patterns on how to create
Argo CD inter-Application dependencies.

Eventual Consistency

One of the patterns worth mentioning for Argo CD Application
orchestration is to rely on the fact that things will eventually be
consistent with retries, which is the philosophy that Kubernetes was
built on. This can easily be set up using the Argo CD Application
manifest itself and also by using Argo CD Sync Option annotation.
Here's an example Application manifest:

apiVersion: argoproj.io/vlalphal
kind: Application
metadata:
name: simple-go
spec:
destination:
name: in-cluster
namespace: demo
source:
path: deploy/overlays/default
repoURL: 'https://github.com/christianh814/simple-go’
targetRevision: main
project: default
syncPolicy:
automated:
prune: true
selfHeal: true
syncOptions:
- CreateNamespace=true
retry:
limit: 5

backoff: # how long to wait before the next retry
duration: 5s
maxDuration: 3mOs

factor: 2 # the factor in which the duration 1s
increased

Note that there are retries set in this example to tell Argo CD to try
again when an error occurs. You can (and probably should) also add
the following annotation to resources that are dependent on other
resources being present (like a custom resource of a CRD):

metadata:
annotations:
argocd.argoproj.io/sync-options:
SkipDryRunOnMissingResource=true

NOTE

In Kubernetes, a dry run is a simulation of an operation, like deploying a
resource, that doesn't actually change the cluster. It allows users to evaluate a
request through the typical stages without making persistent changes. It's
important to note that Argo CD will do a “dry run” if the dependent resource is
present.

These two settings, when configured together, will make Argo CD
“keep retrying until success or until the retries are exhausted”
(whichever comes first). In this way, Argo CD handles deployment
orchestration by not handling the specific details, but instead
attempting to apply resources and relying on the eventual
consistency nature of Kubernetes.

Use Case Setup

Before going through the use cases, we'll need to set up the
aforementioned prerequisites in order for orchestration to work

properly. This is a one-time setup that not only enables you to
perform the following use cases; they are also, as stated before,
best general practices when using Argo CD. We will be working out
of the root directory of the Git repository that accompanies this
book.

Inspecting Probes

The manifests we will be deploying are already set up with
readiness and liveness probes. You can verify these configurations
by using yqg to inspect these resources.

NOTE

You can find more information about yq at the project website.

From the root directory, run the following commands:

To view the liveness probe
$ yg .spec.template.spec.containers.0.livenessProbe \
chl0/apps/golist-api/golist-api-deployment.yaml

To view the readiness probe
$ yg .spec.template.spec.containers.0.readinessProbe \
chl0/apps/golist-api/golist-api-deployment.yaml

You can verify the other deployment manifest by running the same
command against the ch10/apps/golist-frontend/golist-
frontend-deployment.yaml file.

NOTE

Since we are also deploying a Helm chart, you'll need to run the Helm template
to the ch10/apps/golist-db directory to verify the presence of those probes.

https://oreil.ly/3oujc

Adding Argo CD Health Checks

As described previously in this chapter, Argo CD Applications health
checks are disabled by default. You will need to enable the health
checks in order to proceed with the use cases in the upcoming
sections. We have added a convenient patch file to enable this
configuration. From the root directory of the repository, run the
following:

$ kubectl patch cm/argocd-cm -n argocd --type=merge --
patch-file \
chl0/argocd-cm-patchfile.yaml

You can verify Argo CD has been updated:

$ kubectl get -n argocd cm/argocd-cm -o \
jsonpath="'{.data.resource\.customizations\.health\.argoproj
\.io Application}'

NOTE

The escapes on the period characters are necessary, as they’re in the element
name, not hierarchy indicators.

With the probes verified and Argo CD Application health check in
place, you can now start with the first use case.

Use Case: App-of-Apps with Sync Waves

Originally conceived as a method of bootstrapping Argo CD, the
App-of-Apps pattern is basically an Argo CD Application that consists
of other Argo CD Applications (since an Argo CD Application is
nothing but a Kubernetes CRD). In Chapter 7, you were introduced
to the App-of-Apps pattern and how it can be used to bootstrap

Argo CD, including how to deploy Argo CD Applications using Argo
CD itself.

Extending beyond just bootstrapping, users found other advantages
of using this pattern thanks to also having access to other features
that Argo CD provides natively (notably, Argo CD orchestration
features, like sync waves and sync phases). When setting up probes
and Argo CD Application health, you will now have everything you
need to set up Argo CD Application deployment orchestration using
App-of-Apps and sync waves.

Let’s take a look at a use case of deploying a three-tiered
application. We will have one Argo CD Application that deploys a
frontend app, a backend app, and also a database. We want to
have these managed by a “parent” Argo CD Application, and we
want to deploy these in the following order:

e Database
e Backend

¢ Frontend

NOTE

As you're going through examples, you might get some name collisions
(duplicate Application names). You may delete former samples from your setup
or run them on a different Kubernetes cluster.

In order to achieve this architecture, we’ll have to use sync waves
with our App-of-Apps. We first apply the
argocd.argoproj.io/sync-wave annotation to the Argo CD
Application that deploys the “database” application. Taking a look at
the annotations for the ch10/argocd/applications/golist-
db.yaml file, you should see the annotation setto "1":

apiVersion: argoproj.io/vlalphal
kind: Application
metadata:
annotations:
argocd.argoproj.io/sync-wave: "1"
name: database
namespace: argocd

NOTE

Keep in mind that lower numbers get higher priority when working with sync
waves, which include negative numbers.

Since we want the backend to become available afterward, we'll
annotate that Application with a higher number. In this case, taking
a look at the ch10/argocd/applications/golist-api.yaml
file, note the annotation value is set to "2":

apiVersion: argoproj.io/vlalphal
kind: Application
metadata:
annotations:
argocd.argoproj.io/sync-wave: "2"
name: backend
namespace: argocd

Finally, we can see in the
chl0/argocd/applications/golist-frontend.yaml file
that the annotation for the frontend Application is set with a higher
number than the database and backend so that it comes up last. In
our case, it's annotated with "3:

apiVersion: argoproj.io/vlalphal
kind: Application
metadata:
annotations:
argocd.argoproj.io/sync-wave: "3"

name: frontend
namespace: argocd

The parent Application, being just another Argo CD Application, will
create the resources in the specified order. Taking a look at the

chl0/argocd/applications/parent.yaml file, you'll see the
following:

apiVersion: argoproj.io/vlalphal
kind: Application
metadata:

name: parent

namespace: argocd

finalizers:

- resources-finalizer.argocd.argoproj.io
spec:

source:

path: argocd/applications

repoURL: 'https://github.com/sabrel041/argocd-up-and-
running-book'

targetRevision: main
destination:
namespace: argocd
name: in-cluster
project: default
syncPolicy:
automated:
prune: true
selfHeal: true
retry:
limit: 5
backoff:
duration: 5s
maxDuration: 3mOs
factor: 2
syncOptions:
- CreateNamespace=true

Once this parent Argo CD Application is applied, Argo CD will apply
the “child” Argo CD Applications in the order it was annotated with.

To start the process, apply the parent Argo CD Application by
running the following command:

$ kubectl apply -n argocd -f \
chl0/argocd/applications/parent.yaml

Walking through the process, you will notice some elements in the
Argo CD UI dashboard.

First, the parent Argo CD Application is created and begins the sync
process, which includes deploying the database Application (since
it's annotated with a “1”). You can see this in Figure 10-1.

@ database T é parent 7
Project default Project: default

Labels: argocd.argoproj.io/instance=parent Labals:

Status:) Progressing @ Synced Status:) Progressing © OutOfSyne 1) Syncing
Repasito... https:{github.comy"sabre1041 fargocd-u... Reposito... hutps:¥github.com/sabre1041 fargocd-u
Target R main Target R... main

Path chl0fapps/igolist-db Path: chll/argecdfapplications

Destinati.. inGhester Destinati inrcluster

Namesp... golist Hamesp argocd

Created 07/04/2024 16:02:00 (a few seconds a Criatid 07/04/2024 16:01:56 (a few seconds a
Last Syne 07/04/2024 16:02:10 (a few seconds a Last Syne 07/0472024 16:02:31 (a few seconds a

Figure 10-1. App-of-Apps sync wave 1

Once the database Application is synced and healthy, Argo CD will
apply the backend Application (as it is annotated with a “2”). You
can see this in Figure 10-2.

4 backend Ay) duabase i) 4 parent i+
Paggecn defaul Proget e gty Progest T

Latan SR MRRReH MVISIRInOE panend Lt MRS ARy IR e Labepiy

Srshuk L) Prigredding @ Syfed [T W Healthy @ Syned St 02 Peagieddaing O DunDiSyse L) Synding
Repoaiin hitps gt comy sabee | 4 fargond-u Repoin Bitps. ittt comaatee 104 1 agacd-w Rapabtn hizpa-igitheb comysabee 081 agoodu
Target AL maan Taeget e Taiget B rman

Path 1D B podn-apd Paih oV appa/golist-dh Fah Chil e pocd appl st

Dpatanati Inechuider Dertnah w-clunier Dertinati n-clygt

Harwartess olisl LT it Mamesp aigocd

Crvated QTS0 V025 (o few seconds a Created ST 1O (2 minate aga) Created CTIGARI004 160754 (o mirwte agal
Lt Symee AT VeSS (a few sboonds a Ll Syne AT TR TR [misue aga) Ladr Syee D7 AR 2004 180 B8 |n few secords &

Figure 10-2. App-of-Apps sync wave 2

Once the backend Application is synced and healthy, Argo CD will
finally apply the frontend Application (as it is annotated with a “3").
This is represented in Figure 10-3.

) beckend cl s & detabase) trontend [cl
Progect defaalt Prrosct default Prosect default

kel F e T R P S Lababyc S o R T e e (#7000 WIPOC BP0 oS BNOE RN
Slstus W e skt @ Symoed St W Healtty 8 Symced Slafus ! Progreasing B Smeed

Reposin itipagihel comysabne 1041 /egocd-u Reposin htipghul comyesbne 1041 faepocd-u Repotn Ptips gl comy satne 1041 iapaod-u
Taege it i Tasge it [T Taige i Frigan

Pah R appad galst-apd P I appa et Fa h1S apgegeat-ontng

Dot Erthorilid Duitiiiti vl Duriliriati -t

Hamsep [= Hamesp -] Mamesp -]

Created OTAM004 160254 (4 mirete spe] Created OT A28 160200 (2 mirunes 5o} Createsd T/ 160336 (b dew whconds &
Last Bymc QT4 180T 5% (o mineds sga] Last Symc DT 140210 (2 minutes agal Last Sync OF/D024 1600 X7 (o few mpconds &
 2s [crmam [oo OO ome [cunee [oot

€ et

Propect defaati

Lttt e e W B BT
sty Progrevsing @ Symced

Reproditi oripec gty codmu'ssbeg | 041 Saegond-u
Tepet R main

Path R0 o B At

Cewtnali inthate

Hamssp wepood

Cribated OB 160758 (3 minuted aga)
. ATEA RS A e

Figure 10-3. App-of-Apps sync wave 3

In the end, all three Applications that make up this workload, plus
the parent Application, are synced and healthy.

NOTE

The parent Application is now your control point of all other Applications. For
example, if you delete the parent Application, all of the children will be deleted
(in our example).

Figure 10-4 should represent the current state in your environment.

4} backend &0 4 detnbase T € trontend ¢
Pecject defwu Progee defai Proghct defauh
Lakals wrgacs argopiny Kiratarces panmt Lt wpacd wpprod dnancespanent Labuly wpacd apaprad kdinslancepanent

W tiealing B Syreed St W el 8 Syreed et W Healthy 8 Smeed
Repoaito hispaciigithagh comysakee VM Jargocdu Repoutio hittpaiigithub. comyeabng 1041 faegocd-u Repouin httpr A'githaby comy'eabme 104) faepocd-u
et R man Tawett B Tasg
Path ch1l/appe/golivt-apd Path chl 0/ appagolist-dh Fafh o0 appat polist-Trontend

it Dominiani ik Cuettinuati

iy gl K ol Mam [~
Cremed D720 T 58 (15 Ml B0) Creatid D704 16000 (5 minuted 5] Created QT4 60338 (4 msings 500
Laxt Syrc ONOR004 1607 55 (5 minctes aga] Last Sync X4 160310 (6 minutes aga) Last Sync OF/O 04 1600 37 (4 mimaften 3gc)

.& parent
Peqact el
Lt il BOpY pareml
wi o 8 Syre
R 7 gttty ¢ e 01, el
Targat A my
Path ch 1 st pocdfapploations
Heatinat =T
g [p s

Figure 10-4. App-of-Apps sync wave finished

As you can see, this approach provides a powerful method of setting
up Application dependencies, bootstrapping, and performing custom
Application deployment orchestration, and it’s currently the
recommended way of doing it. It’s worth reiterating that this is all
possible because all readiness/liveness probes were set up and
Argo CD was configured with the proper Lua health checks.

ApplicationSets

With all the power that Argo CD gives you with Argo CD
Applications and the App-of-Apps pattern, there was still a need to
templatize the creation of Argo CD Applications. Yes, we can

manage Argo CD Application deployments in a controlled manner.
But we still need to create those Application manifests.

In Chapter 7, we introduced Argo CD ApplicationSets, which can be
seen as an Application “factory.” The sole purpose of the Argo CD
ApplicationSet controller is to create Argo CD Applications. As you
saw in Chapter 7, this gives us the ability to not only create multiple
Applications at the same time using a single manifest, but it also
allows us to deploy many applications to many destination clusters.

Progressive Sync

One drawback of ApplicationSets is that it just generates
Applications. There had been no built-in mechanism to order or
have dependencies. That was until ApplicationSets Progressive Sync
was introduced.

The Progressive Sync feature aims to deploy the Applications in an
ApplicationSet in the specified order, while also taking Application
health into consideration (meaning it won't sync Applications unless
the previous one is synced and healthy). While using
ApplicationSets Progressive Sync is great, there are a few things to
keep in mind:

e Generated Applications will have autosync disabled.

e This is an alpha feature and will be subject to change. This
also means that the feature needs to be explicitly enabled.

o If an Application has been in a “pending” state for more
than the allotted progressing timeout (default 300 seconds),
the ApplicationSet controller will mark it as “healthy.”

Even with Progressive Sync enabled, you still need to set up your
readiness/liveness probes and Argo CD Application health. With all
these things in mind, let’s go over the same example as was
described previously, except with the Progressive Sync feature.

Use Case: Using Progressive Sync

We can have similar behavior of Application dependency
management using ApplicationSet Progressive Sync that you had
with the App-of-Apps use case. The biggest advantage of using
Progressive Sync over App-of-Apps is that you only need to manage
one manifest.

There are other advantages of using Progressive Sync. There are
features of being able to group many Applications in each
deployment phase but also include things like specifying
maxUpdate, which allows for the deployment of only a percentage
of Applications at a time in each phase. This is helpful in the
situation where you have thousands of applications and want to
prevent a “broadcast storm” of syncs happening.

NOTE

The term broadcast storm here is used generally to indicate many syncs
happening at the same time. It was originally coined as a networking term.

Let’s take a look at the same use case of deploying the same three-
tiered application. This time, we will use an Argo CD ApplicationSet
that uses a Progressive Sync to deploy that frontend app, along with
the backend app, and also that same database we used in the
previous use case.

Before anything else, you'll need to remove the existing
Applications related to the three-tier deployment. This can be easily
accomplished by deleting the parent application:

S kubectl delete application parent -n argocd

https://oreil.ly/iHQET

NOTE

Since the parent Application controls the other Applications (via a finalizer), it
will also delete the children Applications.

Next, you need to explicitly enable Progressive Sync in Argo CD. A
patch file is included to simplify this process:

$ kubectl patch cm/argocd-cmd-params-cm -n argocd --
type=json \
--patch-file chl0/argocd-cmd-params—-cm-patchfile.yaml

Next, the ApplicationSet controller deployment must be restarted to
pick up the updated configuration:

$ kubectl rollout restart deploy/argocd-applicationset-
controller -n argocd

Any ApplicationSet can use Progressive Sync. The only configuration
difference is the target labels that will be added and a new section
under .spec.strategy in the ApplicationSet YAML. If you take a

look at the ch10/argocd/appsets/progressivesync.yaml
file, you'll see a List generator used with the following strategy:

spec:
...omitted for brevity...
strategy:
type: RollingSync
rollingSync:
steps:
- matchExpressions:
- key: golist-component
operator: In
values:
- database
- matchExpressions:
- key: golist-component

operator: In
values:
- backend
- matchExpressions:
- key: golist-component
operator: In
values:
- frontend

Take note of the . spec.strategy section as it includes “steps.”
This is how ordering is accomplished, similar to the App-of-Apps
with sync waves method. This section allows you to group
Applications by the labels present on the generated Application
resources. When the ApplicationSet changes, the changes will be
propagated to each group of Application resources sequentially.
Progressive Sync uses the familiar matchExpressions that are
found in various standard Kubernetes resources. You can potentially
group together hundreds of Applications in each “step.”

The next section to notice is the
.spec.template.metadata.labels section in the same
ApplicationSet manifest:

spec:
...omitted for brevity...
template:
metadata:
name: '{{srv}}'
labels:

golist-component: '{{srv}}'

This section will apply the label to the corresponding Argo CD
Application that this ApplicationSet creates. Then the Progressive
Sync operation will use these labels to determine which Argo CD
Application gets synced in each step.

To start the process, apply the ApplicationSet in the
progressivesync.yaml file:

$ kubectl apply -n argocd -f
chl0/argocd/appsets/progressivesync.yaml

Once applied, it will create all three of the Argo CD Applications at
once (in contrast to App-of-Apps pattern where they are created as
they are synced); but they will remain “missing/out of sync.” Then it
will progress to syncing the first database Application. You can see
this in the Argo CD UlI, as depicted by Figure 10-5.

9 backersd 9 atabic . \@ Trontend
Toepel sty Ll Progeet U
Labals ol -companent shackend Lisals pakatcompanent atabate Lisbaly okt camponent s iromiend

Bepsnc Bttpa gl comysabng 1041 fargacdu Repoais herpagithub comy sabee 1 041 fasgacd-u Appadite g githby e b 04 1 fargocd

Created PSS T RAe SR Corated MOAIOTA VT4 5T (6 lew dbtondd & Created OFCRr2004 AT 1452 (i Tew seconds &
Lawt Sy OO VT 1S0T atew peconds &

Figure 10-5. Progressive Sync database

Once the database is synced, the backend Application will start
syncing. A similar representation appears in Figure 10-6.

When the backend Application becomes synced, the frontend
Application will begin to sync. A state similar to Figure 10-7 will be
present in the Argo CD UL

In the end, it should appear similar to that of the App-of-Apps
method, except there is no parent Application since we are using an
ApplicationSet to deploy this workload. You will see all Applications
synced and healthy in the Argo CD UI, as shown in Figure 10-8.

FOM: nama « Rems per page: 10+

4 backend 0 4 database fr € trontend o
Priges T Peaject L] Prigsit el

Lt polat-companntrbaciend Labels golintcomponentsdatsbads Lty poliat-componant«irontend

Sistug Qi Progressing B Synoed Sxatt W Haalthy @ Synoed Siatus 8 Mipging O DuA DSy

Repeais hempac it cormy sabee 1 041 fagocd-u Repesing Bt il oomy sabie 1041/ argecd e Foepertitn g ittt e sabe] 04 1 fargoed-u
Targef R riin Target R =] Targei B main

Path ch Y e ot apd! Path by | O mpast o -dh (2 ch 10/ appagole-fronoesd!

Destnati inechunter Dheatira® -chiter Deutinati irvchaiter

[T maE Y podiat Hemaap poligi Mameep [

Created OP/ORTIIRd VT4 5T (o e a0 Caeaned ST 1T REED [e B Craated OFFDArD00d V71452 [erinine sG]
Lant Sync OFORTT0T4 171538 o few peconds & L Sy OF M 1T [few neconds 2

Figure 10-6. Progressive Sync backend

Sort: nama = Hems par page: 10 =

4 backend © 1 & database s & trontend © 1
Progect defah Project defauh Progect detauh

Labals ol St s hachad Lbals ol Sormporienl sdalabade Labals] sarmponen s lrastema

Shabay W Healthy @ Syrced Shaten W Healihy @ Syrced St 21 Prosgressing @ Synced

[Potp oty Com e D41 ageacd e Pt ettty G B b 1 o] Foriped ettty G e b 04 1/ pgocdi
Target & main Target & rmain Target & e

Paih o1 B g -apk Path B B Pk o G B e rprends

s Ll iyt [1] et burif hedlindt Wyetburilbind

Hamesp GoliE Hamesp golist BMamesp goliet

Creaned TS 1T REED (2 menetes 80] Creaind TS TTEED (2 menetes wo) Created QT TSR (2 et 8000
Lt Syne R4 1T (8 mirete 8ge) Lt Syne T4 17500 (o mireite age) Lt Syne RO 1T1ETE (3 few seconds a

Figure 10-7. Progressive Sync frontend

Sor: name = [fems por page: 10+

4 backend R+ 49 database o 4 frontend i
Frogesct L] Progect chela Project del

Liskslc olian-compenent stachend Lisksty o L BT [ol reompanmatdimend

Hlabys W Hpakiny @ Sroed atus W iepaliny @ Smoed Matus W tigaktny @ Smoed

Rt hiripa dfgerhast coen saber e | S § o dHis Repoann hempeigthasb oo’ pabee 1 0l Y A oid-u Repaainn hempac i pivhasb cormy® pabee 10 i pooid-u-
Taiget it frain Tasget it man Tasget rran

Pash eh 1 app ole-apdf Path ch 1 sppe oot Path ch 10 asppegelnd-frontend!

Cusninati Erchean Cutinati kst Dttt chusier

Mamesp. golat Mamenp goldat hameuy golat

Creatid OTAr2004 V1452 (3 mirasies ao) Created OT/CLTI0R4 VEV45T (3 minanes a0} Crested DFGLTIORd VEVAST {3 evinasies 300}
Laat Syne OFSAr0od 1T858 (2 mirased ags) Laat Syne OFGRrDER4 AT A5G [T mivaned a9} Lt Syre DFRrD0T4 AT16:24 |0 St ag0)

Figure 10-8. Progressive Sync finished

The end result is the same, except that with ProgressiveSync, there
is only one manifest to create and manage.

It's important to note that it's not App-of-Apps versus Progressive
Sync. There are some situations where you could use both or a

combination of both, for example “App-of-ApplicationSets"—where
you use a parent Argo CD Application to bootstrap your
ApplicationSets.

Summary

In this chapter, we delved into the complexities and strategies of
managing large-scale deployments with Argo CD. We reviewed the
foundational concept of the Application Custom Resource Definition
(CRD) object, introduced in Chapter 4, which helps in logically
grouping Kubernetes manifests. Also in this chapter, we highlighted
the challenges that arise due to the autonomous nature of Argo CD
Applications, especially in microservices architectures where
sequential deployment dependencies exist.

We provided an in-depth look into various deployment patterns to
tackle these challenges, such as the App-of-Apps with sync waves
and ApplicationSets with Progressive Sync. These patterns are
designed to manage dependencies and orchestrate the deployment
of multiple Argo CD Applications effectively. Additionally, we also
went through the importance of readiness and liveness probes, Argo
CD Application health checks, and resource health checks as best
practices to ensure the reliable and predictable deployment of
Applications. All of these concepts came together to support the
deployment of a multitier application using these advanced
patterns, demonstrating how to set up and manage these
dependencies, and highlighting the nuances and benefits of each
method in a scalable deployment environment.

Chapter 11. Extending Argo
CD

Thus far, we have described many of the features that are included
within Argo CD to not only manage resources effectively using
GitOps patterns in Kubernetes, but also to provide a rich set of
options for end users to interact with the platform. By offering a
way to integrate tools and frameworks common to Kubernetes,
complex workflows can be developed to create a robust
management strategy for infrastructure and applications. However,
even with all of the supported set of capabilities, there may be a
need to integrate an additional set of components that are not
natively included within Argo CD or to customize the platform itself
to better serve the needs of end users.

In this chapter, we will introduce several different mechanisms that
can be used to extend the default configuration of Argo CD,
including the use of a pluggable framework to incorporate additional
tools to support how Kubernetes resources are created. These
options give end users the power to take Argo CD to the next level.

Config Management Plugins

Kubernetes resources in Argo CD can be created using a variety of
methods. They may be declared using standalone manifests or
incorporate one of the included set of config management tools,
such as Helm, Kustomize, or Jsonnet. While these tools represent
some of the most common options available for managing
Kubernetes resources, there became a need to provide a facility for
which additional options were available to customize the generation
of Kubernetes resources.

Kubernetes itself faced a similar challenge early on where it only
provided a finite list of resource types and APIs for users and
systems to interact with. This limitation could have reduced the
impact that Kubernetes would ultimately have on the IT industry.
However, it was the introduction of Custom Resource Definitions
(CRDs) that enabled the ability to extend the types of resources
served by Kubernetes and unleash an entirely new way to work with
the platform. Argo CD provides its own solution to the configuration
management tool challenge through the use of config management
plugins, which offers a flexible method for enabling additional
options for facilitating the creation of Kubernetes resources.

If you recall, the repo server is the component responsible for
building Kubernetes resources using one of the supported
configuration management tools. For alternate tools to be used, it is
within this location where tasks need to be executed.

A config management plugin consists of two parts:

e A ConfigManagementPlugin manifest describing how
and when the plugin should be used

e Tooling to enable the execution of the plugin

The use of alternate tools will typically require additional
dependencies, such as binaries associated with the tool and scripts
containing the logic employed by the plugin. While the repo server
image could be extended to include these custom assets, the
preferred approach is to package any of the necessary assets into a
separate container and run this container alongside the repo server.
This model is known as the sidecar pattern in Kubernetes, as it has
a number of benefits:

¢ Avoids conflicts between the plugin and the repo server

e Eliminates the need to manage the lifecycle of the repo
server

e Owns the entire lifecycle plugin and its components

With an understanding of the high-level set of components involved
when integrating config management plugins, let’s explore each of
these items in depth and how they can be used to implement a
plugin within Argo CD.

The ConfigManagementPlugin Manifest

The ConfigManagementPlugin manifest provides instructions to
the repo server so that it understands when the plugin should be
invoked and how it should be invoked. The following contains the
structure of the manifest:

apiVersion: argoproj.io/vlalphal
kind: ConfigManagementPlugin
metadata:
The name of the plugin must be unique within a given
Argo CD instance.
name: my-plugin
spec:
The version of your plugin. Optional. If specified, the
Application's
spec.source.plugin.name field must be <plugin name>-
<plugin version>.
version: v1.0
The init command runs in the Application source
directory at the beginning of each
manifest generation. The init command can output
anything.
A non-zero status code will fail manifest generation.
init:
Init always happens immediately before generate, but
its output
is not treated as manifests.
This is a good place to, for example, download chart
dependencies.
command: [sh]
args: [-c, 'echo "Initializing..."']
The generate command runs in the Application source

directory each time manifests
are generated. Standard output must be ONLY valid
Kubernetes Objects in either
YAML or JSON. A non-zero exit code will fail manifest
generation. To write log
messages from the command, write them to stderr, it
will always be displayed.
Error output will be sent to the UI, so avoid printing
sensitive information
(such as secrets).
generate:
command: [sh, -c]
args:
= |
echo "{\"kind\": \"ConfigMap\", \"apiVersion\":
\"vI\",
\"metadata\": { \"name\": \"SARGOCD APP NAME\",
\"namespace\": \"SARGOCD APP NAMESPACE\",
\"annotations\": {\"Foo\": \"SARGOCD ENV FOO\",
\"KubeVersion\": \"SKUBE VERSION\",
\"KubeApiVersion\": \"SKUBE API VERSIONS\",\"Bar\":
\"baz\"}}}"
The discovery config is applied to a repository. If
every configured discovery
tool matches, then the plugin may be used to generate
manifests for Applications
using the repository. If the discovery config 1is
omitted then the plugin will
not match any application but can still be invoked
explicitly by specifying the
plugin name in the app spec. Only one of fileName,
find.glob, or find.command
should be specified. If multiple are specified then
only the first (in that
order) is evaluated.
discover:
fileName is a glob pattern
(https://pkg.go.dev/path/filepath#Glob) that is
applied to the Application's source directory. If
there is a match, this plugin
may be used for the Application.
fileName: "./subdir/s*.yaml"
find:

This does the same thing as fileName, but it
supports double-start (nested
directory) glob patterns.
glob: "**/Chart.yaml"
The find command runs in the repository's root
directory. To match, it must
exit with status code 0 and produce non-empty
output to standard out.
command: [sh, -c, find . -name env.yaml]
The parameters config describes what parameters the UI
should display for an
Application. It is up to the user to actually set
parameters in the Application
manifest (in spec.source.plugin.parameters). The
announcements only inform the
"Parameters" tab in the App Details page of the UI.
parameters:
Static parameter announcements are sent to the UI for
_all Applications handled
by this plugin. Think of the ‘string’, “array , and
‘map’ values set here as
"defaults". It is up to the plugin author to make
sure that these default values
actually reflect the plugin's behavior if the user
doesn't explicitly set
different values for those parameters.
static:
- name: string-param
title: Description of the string param
tooltip: Tooltip shown when the user hovers over
field in the UI
If this field is set, the UI will indicate to the
user that they must set the
value.
required: false
itemType tells the UI how to present the
parameter's value (or, for arrays
and maps, values). Default is "string". Examples
of other types which may be
supported in the future are '"boolean" or
"number". Even 1f the itemType is not
"string", the parameter value from the
Application spec will be sent to the

plugin as a string. It's up to the plugin to do
the appropriate conversion.
itemType: ""
collectionType describes what type of value this
parameter accepts (string,
array, or map) and allows the UI to present a
form to match that type. Default
is "string". This field must be present for non-
string types. It will not be
inferred from the presence of an ‘array or map’
field.
collectionType: ""
This field communicates the parameter's default
value to the UI. Setting this
field is optional.
string: default-string-value
All the previous fields besides '"string" apply to
both the array and map type
parameter announcements.
- name: array-param
This field communicates the parameter's default
value to the UI. Setting this
field is optional
array: [default, items]
collectionType: array
- name: map-param
This field communicates the parameter's default
value to the UI. Setting this
field is optional.
map:
some: value
collectionType: map
Dynamic parameter announcements are announcements
specific to an Application handled
by this plugin. For example, the values for a Helm
chart's values.yaml file could
be sent as parameter announcements.
dynamic:
The command is run in an Application's source
directory. Standard output must
be JSON matching the schema of the static parameter
announcements 1ist.
command: [echo, '[{"name": "example-param", "string":

"default-string-value"}]"']

If set to "true then the plugin receives repository
files with original file

mode. Dangerous since the repository might have
executable files. Set to true only

1f you trust the CMP plugin authors.
preserveFileMode: false

As depicted, there are a wide range of options that a
ConfigManagementPlugin manifest supports. However, there
are only a few properties that you need to be concerned with
whenever developing and using a config management plugin, as
they dictate how the plugin will operate. A description of each of
these key properties are listed here:

init
This is an optional parameter that performs any preparation

steps that the plugin requires, such as downloading
dependencies.

generate

This performs the primary function of the plugin. This action runs
within the directory associated with the Argo CD Application and
can be implemented in a variety of ways, including executing a
script, binary, or printing arbitrary content. The one requirement
is that the only output that is produced from this stage be a set
of valid YAML- or JSON-formatted Kubernetes manifests.

discover

This is a set of rules that determines whether the Application is
applicable for execution. Common examples include searching

for the presence of a file in the application source or executing a
command to perform more complex capabilities. The exit code
determines whether the plugin is applicable for the content.

They each are located directly underneath the . spec property and
work hand in hand to determine the applicability of a plugin for the
source Application and the steps necessary to produce Kubernetes
manifests.

To determine whether a plugin should be executed for a given
Application, two methods are available. First, the discover
property within the ConfigManagementPlugin can either match
the name of a file, or file based on a glob pattern in the content
source, or return a 0 exit code as a result of the execution of a
command. Otherwise, the name of the plugin can be explicitly
defined on the Application manifest as shown here:

apiVersion: argoproj.io/vlalphal
kind: Application
metadata:

name: guestbook
spec:

source:

plugin:
name: my-plugin

In most cases, you will want to both abstract when a plugin is
executed as well as the need for the end user to define the plugin
within their Application. A common example for determining
whether a plugin should be executed using the auto-discovery
capability is the presence of a particular file within the application
source—such as a file called chart. yaml for a Helm-based
application. Here is an example of how the discover property can
be configured to support this use case using the £ileName option:

discover:
fileName: "Chart.yaml"

Once a match has been made using any of the methods previously
described, the next step is to perform any initialization steps that
are required by the plugin. This step is optional and only executed
when the init property has been defined. When working with
Helm-based applications within the context of a config management
plugin, a common initialization task may involve the need to
manage any of the dependencies that the chart relies on. This way,
when the chart is processed within the main logic as defined in the
generate property, all of the necessary resources will be available.
The following is an example of how Helm dependencies can be
handled within the init property:

init:
command: ["/bin/sh", "-c"]
args: ["helm dependency build || true"]

Finally, after defining any of the key optional properties, the primary
plugin logic as defined by the generate property can be specified.
Instead of providing a simple code example like we demonstrated
previously for the init and discovery properties, let’s use this as
an opportunity to look into how a config management plugin could
be used and implemented in practice.

Kustomize and Helm on their own provide a powerful set of
capabilities for templating Kubernetes manifests. But why choose
one tool over the other when you can utilize both at the same time?
Kustomize includes support for inflating Helm charts, and the two
tools, working hand in hand, provide a powerful combination that
provides a number of benefits, particularly when working with Argo
CD. For example, a common challenge when consuming Helm
charts from the community is that customizations are limited to only
the options that the chart creator provides. When used with

Kustomize, the rendered charts can be augmented using any of the
Kustomize features, including patching and transformation.

The challenge, where a config management plugin can be
beneficial, is that an additional flag (--enable-helm) must be
provided to the underlying kustomize command to enable support
for the Helm inflator. Argo CD does provide support for customizing
the Kustomize build options. However, these configurations are
enabled globally within the argo-cd ConfigMap, and there may be
either a desire to avoid setting configurations globally or the
inability to modify Argo CD configurations at a global level due to
access limitations.

To enable the Helm inflator feature within the context of a config
management plugin, the following can be specified in the
generate property:

generate:
command: ["/bin/sh", "-c"]
args: ["kustomize build --enable-helm"]

Registering the Plugin

With the generate property now defined, we have all the
necessary steps to be able to utilize a ConfigManagementPlugin
manifest. Now, while this resource may appear similar to a
Kubernetes custom resource, it is just a configuration file that Argo
CD understands. It is included within the plugin sidecar at a known
location so that it can be discovered by the Argo CD server. The
delivery of the file can be achieved using one of two methods:

¢ Inclusion within the image

¢ Injected at runtime as a ConfigMap

The injection method is preferred, as the values contained within
the configuration file may differ per environment, which avoids

having to build a new plugin image for each variation. This
approach also aligns with the principles of the twelve-factor app,
which emphasizes externalizing configurations within the operating
environment—and in Kubernetes, this implies storage as a
ConfigMap or Secret.

A ConfigMap containing the embedded
ConfigManagementPlugin resource can be found in the
kustomize-helm-plugin.yml file within the
ch11/configmanagementplugins directory of the repository
accompanying this book and also shown here:

apiVersion: vl
kind: ConfigMap
metadata:
name: kustomize-helm-plugin
namespace: argocd
data:
plugin.yaml: |
apiVersion: argoproj.io/vlalphal
kind: ConfigManagementPlugin
metadata:
name: kustomize-helm
spec:
generate:
command: ["/bin/sh", "-c"]
args: ["kustomize build --enable-helm"]

Now, apply the ConfigMap to the argocd namespace using the
following command from within the project repository directory:

$ kubectl apply -f chll/configmanagementplugins/kustomize-
helm-plugin.yml

Next, the plugin sidecar must be added to the deployment of the
Repository Server. The sidecar is represented by the following
configuration:

https://12factor.net/

containers:
- name: kustomize-helm
securityContext:
runAsNonRoot: true
runAsUser: 999 # User ID for the Argo CD service
account
image: registry.k8s.io/kustomize/kustomize:v4.5.7
imagePullPolicy: IfNotPresent # Only pull image if it’s
not there
command: [/var/run/argocd/argocd-cmp-server]
volumeMounts:
- mountPath: /var/run/argocd
name: var-files
- mountPath: /home/argocd/cmp-server/plugins
name: plugins
- mountPath: /home/argocd/cmp-
server/config/plugin.yaml
subPath: plugin.yaml
name: kustomize-helm-plugin
- mountPath: /tmp
name: cmp-tmp

volumes:
- name: kustomize-helm-plugin
configMap:

name: kustomize-helm-plugin
- emptyDir: {}
name: cmp-tmp

While the definition of a config management plugin sidecar can vary
between each implementation, particularly as it relates to the
associated image, there are certainly properties where their values
must align to a certain set of rules, as noted here:

e The sidecar must run as user 999 in order for the sidecar to
access the files from the Application.

e The plugin.yaml file must be located in the
/home/argocd/cmp-server/config directory.

e The Repository Server beployment includes a series of
volumes that should be mounted into the sidecar, including

/var/run/argocd, which contains the argocd-cmp-
server binary and /home/argocd/cmp-
server/plugins.

A patch file called argocd-repo-server-kustomize-helm-plugin-
patch.yaml containing the sidecar definition is also included in the
ch11/configmanagementplugins directory of the repository
accompanying this book.

Patch the repo-server Deployment by executing the following
command:

kubectl -n argocd patch deployments/argo-cd-argocd-repo-
server \

--patch-file chll/configmanagementplugins/argocd-repo-
server-kustomize-helm-plugin-patch.yaml

With the patch applied, confirm that the updated repo-server
Deployment NOw includes the kustomize-helm-plugin sidecar for a

total of two running containers in the pod:

S kubectl get pods -n argocd -
l=app.kubernetes.io/component=repo-server

NAME READY STATUS
RESTARTS AGE

argo-cd-argocd-repo-server-9d947b457-pxs81 /2

Running 121m

Included in the ch11/configmanagementplugins directory are an
additional set of assets that will be used to demonstrate the use of
the Helm inflator (to extract the raw Kubernetes manifests)
capability of Kustomize with an Argo CD config management plugin.
First, the charts directory contains a simple Helm chart called
kustomize-helm which produces a ConfigMap when rendered. And,
as with any Kustomize application, there is also a Kustomization

(kustomization.yaml) file present, which invokes the Helm
inflator using a set of properties prefixed with helm:

apiVersion: kustomize.config.k8s.io/vlbetal
kind: Kustomization

helmCharts:
- name: kustomize-helm
version: 0.1.0
releaseName: kustomize-helm

helmGlobals:
chartHome: charts

The helmCharts property within the Kustomization file includes
the majority of the configurations associated with the Helm inflator,
such as the name of the chart and the version. Since the desired
Helm chart is not in a location relative to the Kustomization file, the
chartHome property within the helmGlobals property specifies
where Helm charts should be sourced from. If a Helm chart is not
available locally, it can originate from either a remote repository or
an OCI registry.

To have Argo CD deploy the Kustomize-based application within the
Kubernetes cluster, create an Argo CD Application called kustomize-
helm that is defined in a file called kustomize-helm-app.yaml

within the chl11/configmanagementplugins directory:

kubectl apply -f chll/configmanagementplugins/kustomize-
helm-app.yaml

Using either the Argo CD CLI or the UI, check on the status of the
newly created Application.

Notice that the kustomize-helm Application is reporting an error
with a message similar to the following:

Failed to load target state: failed to generate manifest
for source of 1: rpc error: ...

The error message indicates that it is unable to render the
Kustomize application, as even though the Helm inflator capability
is being used, it is not being enabled by including the --enable-
helm flag.

Recall the two ways that an Argo CD config management plugin can
be triggered: either through dynamic activation or specified
explicitly within the Application itself. Since neither option was used,
the error being displayed is expected as the Helm inflator feature in
Kustomize is not enabled by default in Argo CD.

To enable the config management plugin that we configured
previously, update the kustomize-helm Application to specify the
name of the plugin within the . spec.source property using
kubectl, the Argo CD CLI, or the Argo CD UTI:

spec:
source:
plugin:
name: kustomize-helm

Once the configuration of the Application has been updated, the
previously seen error will be resolved and the Application will
synchronize successfully, as shown in Figure 11-1.

APPLICATION DETAILS TREE

Figure 11-1. The kustomize-helm application in the Argo CD UI

If you investigate the contents of the kustomize-helm configMap
that was created from the Application, two properties are present:

apiVersion: vl
kind: ConfigMap
metadata:
labels:
app.kubernetes.io/instance: kustomize-helm
app.kubernetes.io/managed-by: Helm
app.kubernetes.io/name: kustomize-helm
argocd.argoproj.io/instance: kustomize-helm
helm.sh/chart: kustomize-helm-0.1.0
name: kustomize-helm
namespace: kustomize-helm
data:
baseValue: Base Value
specialValue: Added by Kustomize

The basevalue property is included by default from the kustomize-
helm Helm chart. However, the specialvalue property was

added dynamically as a patch by Kustomize, as defined in the
kustomization.yaml:

patches:

- patch: |-
apiVersion: vl
kind: ConfigMap

metadata:
name: kustomize-helm
data:
specialValue: "Added by Kustomize"

The combination of Helm and Kustomize, which is enabled as an
opt-in capacity, illustrates the benefits that are provided from a
config management plugin.

Customizing Plugin Execution

The execution of config management plugins can be customized at
an Application level to curate their operation. They provide the
end user both the ability to specify additional configurations at an
Application level and also awareness that certain options might be
available to them. Two approaches of configuration are available:

e Environment variables

e Parameters

Both of these methods are then exposed to plugins, and it is the
responsibility of the plugin author to handle the inputs accordingly.

Environment Variables

Environment variables are the primary method from which config
management plugins glean information about the operating
environment and can originate from a variety of system and user-
defined sources. Much of the same information is also made
available and utilized by the standard build tools, like Helm and
Kustomize, and include the following:

¢ Operating system-level environment variables from within
the plugin sidecar

e Build environment variables, including ARGOCD APP NAME,
ARGOCD APP NAMESPACE, and KUBE VERSION, full list
found within the Argo CD documentation

In addition to the system-defined environment variables, end users
can explicitly specify their own set of environment variables within
the env property of the . spec.source.plugin field:

spec:
source:
plugin:
env:
- name: FOO
value: bar

User-defined environment variables are prefixed with
ARGOCD ENV . So, the value of the user-defined environment

variable here would be accessible within the plugin in the
environment variable ARGOCD ENV_FOO.

Parameters

Another method for customizing the execution of a config
management plugin is through the use of parameters. Parameters
are also defined in the . spec.source.plugin field of an
Application in the parameters property, and they have several
advantages when compared to environment variables:

e Support multiple data types aside from strings (string, array,
or map are the supported data types)

e “Announced” within the Parameters tab of the Application
within the UI

e “Announced” parameters either statically or dynamically
defined within the ConfigManagementPlugin manifest

https://oreil.ly/6D6aK

Parameters are also exposed to plugins as environment variables
and available in two formats:

e Individually with the prefix PARAM . A parameter with the
name example-param would be exposed as the
environment variable PARAM EXAMPLE PARAM.

e Asingle ARGOCD APP PARAMETERS environment variable

containing the content of the Application
.spec.source.plugin field in JSON format.

Complex parameter types, such as arrays or maps, have a slightly
different environment variable name format. For arrays, the
environment variable is suffixed with the index (PARAM NAME X,

where X is the index) of the parameter while maps are suffixed with

the key associated with the parameter (foo.bar becomes
PARAM NAME FOO BAR).

Aside from supporting more complex data types, another strength
of plugin parameters is that they can be “announced” within the
Argo CD UI, giving end users the awareness of specific parameters
as well as the ability for parameters to be defined. The following
schema defines how parameters can be exposed (announced):

Name of the parameter

name: string-param

Description of the parameter

title: "Description goes here"

Tooltip shown when the user hovers over the field in the
user interface

tooltip: "A helpful tip"

Indicator for whether a parameter i1s required

required: false

Indicator for how the user interface should present the
entry field (defaults to '"string")

itemType: ""

Data type for non-string values (map or array)
collectionType: ""

Optional default value
string: default-string-value

Parameters that are consistent (static) for each execution of a
particular plugin are announced in the
.spec.parameters.static property of the
ConfigManagementPlugin.

To illustrate how parameters are presented in the Argo CD U],
define a parameter called my-static-param within the kustomize-
helm-plugin ConfigMap containing the
ConfigManagementPlugin as shown here:

spec:
parameters:
static:
- name: my-static-param
title: Example static parameter

Once applied, restart the repo-server pod to enable Argo CD to pick
up on changes:

kubectl delete pod -n argocd -
l=app.kubernetes.io/name=argocd-repo-server

With the repo-server restarted, navigate to the Argo CD UI and
select the kustomize-helm Application. Click on the Details button
and then navigate to the Parameters tab, which will display any of
the configured parameters, as seen in Figure 11-2.

SUMMARY PARAMETERS MANIFEST EVENTS

PLUGIN

MAME
kustomize-helm

ENV

& Example static parameter
Value

Figure 11-2. Parameter exposed in the Argo CD UI

Notice that the my-static-param parameter with the title "Example
static parameter,” as configured in the kustomize-helm-plugin
ConfigMap, is now available on the page as a field to specify.

It is important to note that even though parameters are exposed to
the UI, they do not become defined as environment variables for
use by config management plugins until their values are specified
either in the UI or declaratively in the Application manifest.

Alternatively, instead of explicitly specifying parameters within the
ConfigManagementPlugin, they can be sourced dynamically
from the content within the Application source code. The use of
dynamic parameters offloads responsibility for defining plugin
parameters that are exposed within the Argo CD UI from the Argo
CD administrator as well as enabling parameters to be defined
based on the content source associated with each Application.
Dynamic parameters are defined within the
.spec.parameters.dynamic property of the

ConfigManagementPlugin Which specifies a command that
should be executed within the Application source, which generates
a structure representing the structure of static parameters in JSON
format.

User Interface Customization

One of the primary reasons why Argo CD has gained such popularity
in the Kubernetes community is due to its rich UI. Simplifying the
steps that a user needs to take to become productive, as well as
presenting an easy-to-understand visualization of the current state
of GitOps-based deployments and operations, accelerates adoption
and management concerns. In order to enable further productivity
with the UI, Argo CD provides several injection points for end users
to customize the look and feel, as well as to extend the baseline
feature set. This section will highlight several of the available
methods.

Banner Notifications

Proactive communication is one of the methods that can be used to
enhance the overall experience for end users. One way that Argo
CD supports this goal is through the use of banner notifications.
When enabled, these messages, defined at a global level by Argo
CD administrators, allow for important information to be presented
to end users, such as upcoming maintenance periods or new
features that are available on the platform. This feature is enabled
by setting the ui.bannercontent property of the argocd-cm
ConfigMap with the desired content. Additional options, such as
the location of where the banner should appear, are set by
specifying the ui.bannerposition to be either top or bottom, as
well as whether the banner should be permanently displayed using
the ui.bannerpermanent property. Finally, the text provided in
the ui.bannercontent property can also include a hyperlink to

another location, such as a maintenance page, when notifying users
of upcoming changes to the environment. This option is set by
specifying the ui.bannerurl property.

Figure 11-3 illustrates how a banner notification appears within the
Argo CD UI.

Settings SETTINGS
Log out
Settings -
Repositories 3

Configure connected repositories

Repository certificates and known hosts
Configure repository certificates and known hosts for connecting Git repositories

GnuPG keys >

Configure GnuPG public keys for commit verification

Figure 11-3. Notification banner displayed in the Argo CD UI

Custom Styles

Integral to any user experience is how content is presented, and in
modern web applications, the look and feel is driven primarily by
Cascading Style Sheets (CSS). These resources are included as part
of the argo-ui project, and the Argo CD UI leverages many of these
elements when presenting content to the end user.

As Argo CD usage continues to expand to different environments
and in enterprise organizations, there may be a desire to customize
how some of the elements are presented. The Argo CD UI supports

https://github.com/argoproj/argo-ui

including custom CSS content in order to supplement the baseline
set of content provided by the argo-ui project. Examples of common
customizations include replacing the Argo CD logo with a custom
logo or setting the background of certain components to represent
the operating environment (e.g., development, staging, production)
that Argo CD is managing.

Custom stylesheets can be applied either by specifying the location
of resources from a remote URL or from a location within the
argocd-server container using the ui.cssurl property of the
argocd-cm ConfigMap. For example, to reference an externally
hosted CSS file from a remote resource, set the ui.cssurl
property using the following format:

ui.cssurl: "https://www.example.com/my-styles.css"

One of the common uses for customizing the Argo CD UI, as
described previously, is to change background elements to
represent the environment that Argo CD is managing. This small
enhancement gives end users an extra level of assurance,
particularly when multiple Argo CD instances have been deployed.

The argocd-server deployment that was installed using the Argo
CD Helm chart includes an optional volume mount leveraging a
ConfigMap called argocd-styles-cm containing custom CSS
styles to the location /shared/app/custom within the container.
This ConfigMap is not included in the set of resources when Argo CD
is deployed, and since the volume is marked as optional, the
container can start without any issue. If an alternate installation
method was chosen and the volume for setting up mounting custom
styles to the Argo CD server container was not configured, a
volume and associated volumeMount can be applied to the
argocd-server Deployment:

apiVersion: apps/vl
kind: Deployment
metadata:

name: argocd-server

spec:
template:
spec:
containers:
- command:

volumeMounts:

- mountPath: /shared/app/custom
name: styles

volumes:
- configMap:

name: argocd-styles-cm
name: styles

To implement the use case for changing the background element of
the Argo CD UI, we can embed the custom CSS content within the
argocd-styles—-cm ConfigMap to achieve the desired goal.

The following CSS properties can be used to update the top bar of
the Argo CD UI to be the color red, potentially indicating that the
Argo CD instance represents a production environment:

div.columns.small-9.top-bar left-side {
background: #fefefe;,
}
div.columns.top-bar left-side,
div.top-bar title.text-truncate.top-bar right-side {
background: #EE0000;,
color: #fff;
}
.top-bar breadcrumbs {
color: #fff !important;,

}
.top-bar title {

color: #fff !important;
}

The argocd-styles-cm. yaml file within the ch11/ui directory of

the project repository contains the updated ConfigMap with the CSS
classes previously illustrated already included.

Apply the changes to the ConfigMap by running the following
command from within the project directory:

kubectl apply -f chll/ui/argocd-styles-cm.yaml

Restart the argocd-server pod so that the changes to the
ConfigMap can be picked up:

kubectl delete pod -n argocd -
l=app.kubernetes.io/component=server

Once the pod is running and ready, reload the UI. Notice that the
toolbar is now red, confirming that the changes specified are being
used, as shown in Figure 11-4.

Settings SETTINGS

Log out
Settings Repositories 3
Configure connected repositories
= Repository certificates and known hosts 3

Configure repository certificates and known hosts for connecting Git repositories

GnuPG keys 5

Configure GnuPG public keys for commit verification

Clusters b

Configure connected Kubemetes clusters

Figure 11-4. Custom toolbar color applied within the Argo CD UI

While modifying the toolbar is just a minor change, it illustrates the
potential options available for customizing the style of the Argo CD
UL

UI Extensions

Not only can the look and feel of the Argo CD UI be customized, but
entirely new elements can be added through the use of UI
extensions. Since the Argo CD UI is React based, extensions are
delivered as React components within JavaScript files matching the
pattern extensions*.js from within the /tmp/extensions

directory of the argocd-server pod.
Three types of UI extensions are available:

Resource tab extensions

https://react.dev/

Provides an additional tab within the sliding panel on the Argo
CD Application details page

System-level extensions

Adds new items to the sidebar that displays a new page with
content when selected

Application status panel extensions

Adds new items to the status panel of an Application

Extensions are registered using the exposed extensions API global

variable. Each extension type provides its own registration method
along with a series of method parameters. For example, to register
a system-level extension, the following method is used:

registerSystemlLevelExtension (component: ExtensionComponent,
title: string, options: {icon?: string})

With a basic understanding of Argo CD UI extensions, including the
types that can be defined, let's walk through the steps it takes to
create and implement a system-level extension.

A system-level extension, once again, exposes a link on the sidebar
to a dedicated page with content. The following is the JavaScript
that is needed to create a minimal extension:

((window) => {
const component = () => {
return React.createElement (
"div'",

{ style: { padding: "10px" } 1},
"Argo CD Up and Running"
)
}i

window.extensionsAPI.registerSystemlLevelExtension (

component,
"Argo CD Book",
"/argocd-book",
"fa-book"

) ;

}) (window) ;

When added to Argo CD, the UI will contain a new link called Argo
CD Book with a book icon (using a book icon from the content
library https://fontawesome.com) that presents a page
(component) with a simple line of text. Notice how the extension is
registered to Argo using the registerSystemLevelExtension

method of the extensionsAPI.

There are two methods that UI extensions are typically delivered to
the argocd-server pod:

¢ Mounted as a volume

e Loaded dynamically using the Argo CD Extension Installer
Project

In our case, we will use the first strategy and inject the extension
within a ConfigMap as a volume. The ConfigMap containing the
extension can be found in a file called ui-extensions.yaml

within the chi11/ui directory of the project repository.

Create the ConfigMap by running the following command from the
project repository directory:

kubectl apply -f chll/ui/ui-extensions.yaml

Next, update the argocd-server deployment with the contents of
the argo-cd-server-ui-extensions.yaml file within the
ch11/ui directory that will include the ui-extensions ConfigMap that
will be mounted within the /tmp/extensions directory of the
container by executing the following command:

https://fontawesome.com/
https://oreil.ly/1VJgx
https://oreil.ly/1VJgx

kubectl apply -f chll/ui/argo-cd-argocd-server.yaml --
server-side=true

Wait until the server pod has restarted and becomes ready.
Navigate to the UI and verify that the new link exposed by the
extension is present on the sidebar, as shown in Figure 11-5.

Clicking on the Argo CD Book link will present the minimal amount
of content that was provided in the extension, but can easily be
expanded upon as desired.

While this walk-through provided a glimpse into the power provided
by Argo CD UI extensions, more fully featured extensions are
available. One such example from the Argo Labs project is the
ArgoCD Extension Metrics, which exposes Prometheus metrics on
the Resources tab of the UL. It is projects, like Argo CD Extension
Metrics, that illustrate just how extensible Argo CD UI has become.

ARGO CD BOOK

Argo CD Up and Running

Argo CD Book

Figure 11-5. System-level extension within the Argo CD UI

https://oreil.ly/qXlZy

Summary

In this chapter, we covered some of the ways that the base
capabilities provided by Argo CD can be extended by end users. We
first explored how config management plugins enable complete
control for how manifests are rendered by Argo CD, including how
they are configured using a config management plugin and
implemented as a sidecar to the Argo CD Repository Server. Then,
we looked at the Argo CD UI and how the look and feel can be
customized through the use of banner notifications and custom CSS
styles. Finally, we saw how UI extensions allow end users to add
elements, including custom components, at the resource, system, or
application status level, to extend the baseline set of capabilities
that the Argo CD UI provides.

Chapter 12. Integrating CI
with Argo CD

Continuous integration/continuous delivery (CI/CD) have long been
foundational practices for efficiently delivering applications to
various environments. Over the years, these methodologies have
shaped the development landscape, giving rise to a wide array of
tools and frameworks, with Jenkins being a notable example.
However, as CI/CD practices have evolved, they have often become
conflated, leading many users to merge CI/CD into a single,
indistinguishable process.

This produces an issue with GitOps and, by extension, Argo CD.

CI is a synchronous process with a finite runtime, typically triggered
by events like commits to a repository or branch, making it ideal for
builds, tests, and related pipelines. In contrast, GitOps (which
focuses on CD) operates asynchronously. Tools like Argo CD remain
independent of CI activities, focusing solely on the declared source
of truth (e.g., Git or Helm) and acting only when changes to the
desired state are detected.

In this chapter, we will focus on how to best integrate Argo CD with
a CI system to effectively make use of the strength of each process.

Reconciliation Response Time

Argo CD adheres to OpenGitOps' third principle, “Pulled
automatically,” by leveraging a reconciliation loop to continuously
monitor and synchronize with the source of truth (in this chapter, Git
will be the focus). This approach operates independently of event-
driven mechanisms, such as webhook-triggered deployments. By

default, Argo CD relies exclusively on the reconciliation loop to
detect changes in the source of truth.

However, webhooks provide a mechanism for “on-demand”
synchronization, enabling changes to be applied immediately
without waiting for the next reconciliation cycle. To support this use
case, Argo CD allows webhooks to work alongside the reconciliation
loop, offering seamless integration with Git workflows and enabling
prompt synchronization when necessary.

Modifying Reconciliation

By default, Argo CD’s reconciliation loop that is used to check for
updates within the source is set to 180 seconds (3 minutes). This
value can be adjusted by modifying the argocd-cm ConfigMap in
the argocd nhamespace. You can add (or update if it's already
there) the timeout.reconciliation section of the data field.

For example, the following configuration sets the reconciliation to
run every 2 minutes:

apiVersion: vl
kind: ConfigMap
metadata:
name: argocd-cm
namespace: argocd
data:
timeout.reconciliation: 120s

Once you update/add this field, you will need to restart the
argocd-repo-server Deployment and the argocd-
application-controller StatefulSet in order to pick up the

new setting. Run the following two commands to restart these
components:

$ kubectl rollout restart sts -n argocd \
-1 app.kubernetes.io/component=application-controller

$ kubectl rollout restart deployment -n argocd \
-1 app.kubernetes.io/component=repo-server

Reducing the reconciliation timeout interval allows changes to be
detected and applied more quickly. However, this comes with
potential trade-offs, including increased system load, which may
impact the overall performance of your Argo CD implementation.
Additionally, shorter intervals may lead to rate limiting from your Git
provider, particularly when using hosted services, like GitHub or
GitLab. Setting the reconciliation timeout to Os effectively disables
reconciliation.

In general, retaining the default reconciliation interval of 3 minutes
is considered best practice and is our recommended approach.
Rather than reducing the reconciliation timeout, we suggest
configuring webhooks for on-demand synchronization and to enable
better integration with CI systems. This allows the webhook-
triggered updates to complement the default reconciliation process,
providing a balanced and efficient workflow.

Setting Up Webhooks

Setting up webhooks requires configuration both on the Argo CD
side and on the Git provider side. It is considered best practice to
first set up a webhook secret, then move on to other required
configurations. Argo CD accepts unauthenticated webhook events
since the only action it performs is an on-demand refresh of the
Application (which potentially leads to reconciliation). However, the
potential exists for a distributed denial-of-service (DDoS) attack.
This is especially true if your Argo CD installation is public.

NOTE

For more information about DDoS attacks, the article from Cloudflare is a great
read.

Set the webhook secret by patching the argocd-secret Secret in
the argocd namespace. This can be accomplished by patching the
resource. Inspect the ch12/manifests/argocd-secret.yaml
file:

apiVersion: vl
kind: Secret
metadata:
name: argocd-secret
namespace: argocd
type: Opaque
stringData:
webhook.gogs.secret: supersecret

Apply this manifest by patching the existing argocd-secret
resource:

kubectl patch secret argocd-secret -n argocd \
--patch-file chl2/manifests/argocd-secret.yaml

After applying the manifest, the changes should take effect
immediately.

Next, we'll migrate a repository that we'll use to test the webhook.
Some of these steps were completed as part of the installation of
Gitea in Chapter 9. Using Gitea to migrate a repository is beyond
the scope of this book, so a script can be run to handle the
migration for you:

bash chl2/scripts/migrate repo.sh

https://oreil.ly/gNLPR
https://oreil.ly/gNLPR

Once the script runs successfully, you should be able to see the
simple-go repository
(https://git.upandrunning.local/upandrunning/simple-go). It should
appear similar to Figure 12-1.

@Y ssues Pull Requests Missiones Explore 8 +-
Q upandrunning | simple-go B Gumatch 1 frow 0 YRk O
¢»Code (Dissues |1 Pull Requests (B) Actions 1) Packages [FllProjects T Releases [Mwiki v Activity ¥ Settings
Manage Topics
2 Commits ¥ 1 Branch 0 Togs Biakie
P main - Il 3o o file A Filg = Sgarch code o] LR 55H Wupsig usning local) 4 ql bp-ga. it ? e
LY Christian Hemandez | 15237aTdEe adding manifests - laat vl
B deploy adding manifests lacsh Wi
[0 README.md adding manifests laat vl
Simple Go

Simple Go HTTP Application Deployment Repo

Figure 12-1. Simple-go on Gitea

Deploy the manifests contained in the simple-go repository by
applying the Argo CD Application manifest for this chapter.
Inspecting the ch12/applications/simple-go.yaml file, you
will see the reference to the Gitea repository:

apiVersion: argoproj.io/vlalphal
kind: Application
metadata:
name: simple-go
namespace: argocd
spec:
project: default
source:
repoURL:
https://git.upandrunning.local/upandrunning/simple-go
targetRevision: main
path: deploy/overlays/default
destination:

namespace: webhooks
name: in-cluster
syncPolicy:
automated:
prune: true
selfHeal: true
syncOptions:
- CreateNamespace=true

Apply this manifest by running:

kubectl apply -f chl2/applications/simple-go.yaml

Once added, the Application should appear similar to Figure 12-2.

O, wempie g APPLCATION BETAILE TREE

STATUS T MESTORY AND ROLLBACK

............ SYHE STATUS . W

LasT o
WHealthy @ Synced wmaspznT @ Sync OK w sz
B —— P
i ot s ot whi Bl
E N + o o s
SO, e
e
- s - e e
ak WO
— i T T
LT [P TTEEEey]
e P s T
R . e g B R B . e BRI B A,
r G w8 i Gl ™ i [i

Figure 12-2. Simple-go Application deployed

If you were to make a change in the repository, the change wouldn't
be applied until the 3-minute reconciliation loop runs. To shorten
this timeframe, we will add a webhook to perform an on-demand
reconciliation as soon as a change is made. Navigate to the simple-
go repository (https://qgit.upandrunning.local/upandrunning/simple-
go) and configure the webhook by completing the following steps:

1. Click Settings in the upper right corner.
2. Click Webhooks on the left navigation bar.

3.

Click Add Webhook on the righthand side and select Gitea.

Fill out the following in the form:

In the Target URL, enter
https.//argocd.upandrunning.local/api/webhook.

Leave HTTP Method as POST.

Leave POST Content Type as “application/json.”
In the Secret field, enter supersecret.

Make sure to leave Trigger On as Push Events.
Leave the “Branch filter” as ™ *."

Leave Authorization Header blank.

Make sure Active is checkmarked.

Once complete, the form should appear similar to Figure 12-3.

Add Webhook I Gitea -

Integrate Gitea into your repasitary.
Targat URL"

hittes: fargocd. upandrunning. locallaplwebhook

HTTP Maothod

POST

POST Contant Type

applcationfjson

Trigger On:

® Push Events
() Al Events
(7) Custom Events_.

Branch filter
Branch whitelist for push, branch creation and branch deletion events, specified ﬂﬂ-ﬁk}-b pattenn. I emply of * events for all branches are reporied.
Ses github.comigabwasiglab docurmentation for syntax. Examples: master, {aaster, relaases).

Authorization Header

Wil be included as autherization header for requests when present. Examples: Brarer tokenl23456, Basic YaxhIGRpbjpvolivucaVzvwil,

Active

Infarmaticn about triggered events will be sent to this webhook URL.

Figure 12-3. Webhook setup

Click on the Add Webhook button, and the page listing the
configured webhooks should be presented. You can test this
webhook by making a change in the repository, which will trigger a
reconciliation request to Argo CD. Test this by navigating to the
webhook repository
(https://git.upandrunning.local/upandrunning/simple-
go/src/branch/main/deploy/base/deploy.yaml) and click the pencil
icon to make an edit to the Deployment.

Change the value of the spec.replicas field from 1 to 2. Then,
scroll down and click on the Commit Changes button. Visiting your
Argo CD web UI, you will see the change immediately reflected
without having to wait for the reconciliation loop. The configured

webhook now will trigger the reconciliation any time there’s a
change to the repository.

Navigate to the simple-go repository webhook settings page
(https://git.upandrunning.local/upandrunning/simple-
go/settings/hooks), and you will see a green dot next to the
webhook you just created, indicating that the webhook was
successfully submitted. The status within the webhooks page should
appear similar to Figure 12-4.

I;] upandrunining | simple-go 3 @umwaich 1 fre @ 0 Yk @
Code (2) B Il Pull Reguasts (2} Actions @ Packages [Projects) Relesses [DWild # Activity % Sattings
Setting Wethook =]

Figure 12-4. Successful webhook

Webhooks are an important part of a CI/CD workflow using Argo CD
because they enable automated, real-time synchronization between
a Git repository and Kubernetes clusters. By triggering updates
whenever changes occur in Git, webhooks eliminate the need to
wait for the reconciliation loop and ensure immediate deployment
of new configurations.

CI/CD Integration via Tekton

Similar to an application that is managed by Argo CD, the lifecycle
of Argo CD Applications and their associated manifests can take
advantage of CI methodologies as well. Triggering synchronization
activities within Argo CD via webhooks are a great way to reduce
the time that it takes to realize changes within Kubernetes clusters.
However, by leveraging this approach, it bypasses being able to

leverage some of the benefits that are inherent to CI, including the
ability to perform static analysis of the code base and to facilitate
more thorough testing scenarios.

A variety of CI tools and systems are available for use and range
from those that are a software as a service (SaaS) solution to those
that are self-managed. Similar to the approach taken with source
code management (SCM) and the use of the Gitea instance that
was deployed previously, a self-managed solution will be used.

Tekton is a cloud native, Kubernetes-based system for building
CI/CD actions and offers platform engineers and developers the
ability to build robust solutions. Several subprojects are available
with Tekton, and its modular design allows consumers the ability to
enable only the components they need. Table 12-1 provides an
overview of the Tekton subprojects and their purpose.

Table 12-1. Tekton projects

Project Description

Tekton A set of Kubernetes CRDs for constructing CI/CD
Pipelines pipelines

Tekton Instantiate pipelines based on events

Triggers

Tekton Chains Tools to generate, store, and sign provenance for
artifacts that are built with Tekton Pipelines

Tekton Kubernetes-based operator to manage the
Operator lifecycle of Tekton projects

https://tekton.dev/

Building a Tekton Pipeline

Pipelines provide the foundation for Tekton, as it includes, as its
name suggests, the tools necessary for building CI/CD pipelines. We
can use it to build a pipeline that not only implements CI
methodologies, but also illustrates how Argo CD can be integrated
within CI systems.

In addition to triggering the synchronization of Argo CD
Applications, which emulates the webhook invocation that was used
previously, we will also add a step that performs syntactical analysis
of the manifests that will be produced to ensure that the manifests
not only produce valid YAML-formatted content, but also conform to
recommended practices.

So, in the end, our pipeline will consist of the following actions:
¢ Clone the Argo CD manifests from the Gitea instance.
o Verify the manifests meet conformance requirements.
e Synchronize the Argo CD Application.

Before focusing on the pipeline, the first step is to install Tekton
Pipelines to the kind cluster. The installation consists of applying a
single manifest file containing all of the necessary resources.
Execute the following command to install Tekton Pipelines to the
kind instance:

kubectl apply -f https://storage.googleapis.com/tekton-
releases/pipeline/latest/release.yaml

A new namespace called tekton-pipelines contains all of the
namespaced scoped assets associated with Tekton Pipelines:

NAME READY
STATUS RESTARTS AGE
tekton-events-controller-869dfbbb89-4p9sm /1

Running 9m45s

tekton-pipelines-controller-84f497b9dd-2g62v /1
Running 9m45s
tekton-pipelines-webhook-6449f66676-9vjz]j /1
Running 9m44s

Since Tekton is a Kubernetes-based CI/CD platform, each of the
components is implemented as a Custom Resource Definition
(CRD). Table 12-2 describes the key CRDs associated with Tekton
Pipelines.

Table 12-2. Tekton Pipelines entities
Entity Description

Task A series of steps that launches a specific activity.
Input parameters can be provided to customize
the execution, and outputs are produced
containing results.

TaskRun Instantiation of a raskx containing input, output,
and execution parameters.

Pipeline A series of Tasxs that accomplishes a desired goal.

PipelineRun Instantiation of a ripe1ine containing input,
output, and execution parameters.

As our pipeline consists of three distinct activities, each will have an
associated Task that defines the actions involved. The first Task
clones the repository from Git and includes a set of input
parameters, such as the URL and branch, that should be retrieved.
The second Task, which verifies the manifests themselves, is where
our pipeline provides real business value.

Kustomize is used within Argo CD as the tool to process the
manifests stored within the Git repository. Only after the manifests
have been rendered by Kustomize can they be verified. Linting is
one such approach for performing static code analysis and can be
used as a method for verifying the manifests that would be
produced by Argo CD. yamllint is one of the more popular YAML
linting tools and includes not only a wide range of features, but also
the ability to customize the execution to meet individual needs. The
linting Task contains two total steps: render the manifests provided
to a target directory using Kustomize and then execute yamllint
against the rendered manifests.

The final task in our Pipeline uses the Argo CD CLI to synchronize
an individual Application within the Argo CD instance.

Each of these tasks as well as the remainder of the components
needed to construct our pipeline are located in the
ch12/tekton/pipelines directory of the project repository.

Navigate to the project repository and add each of the Tasks to the
webhooks hamespace:

kubectl apply -n webhooks -f chl2/tekton/pipelines/git-
clone-task.yaml

kubectl apply -n webhooks -f
chl2/tekton/pipelines/kustomize-lint-task.yaml

kubectl apply -n webhooks -f chl2/tekton/pipelines/argocd-
app-sync-task.yaml

A TaskRun is one such way any of these Tasks could be executed.
However, we will instead create a Pipeline called lint-sync-argocd
that coordinates the invocation between each of these tasks to
produce the desired business goal. The Pipeline is included

within the project repository and is located at ch12/
tekton/pipelines/pipeline.yaml.

https://oreil.ly/HsvSr

Upon inspecting the pipeline from the pipeline.yaml manifest,
you will see not only how tasks are referenced, but also how input
parameters can be provided. The following are some of the primary
components of a Tekton Pipeline:

params

Parameters to customize the execution of a Pipeline or Task

workspaces

Allocates a Volume to @ Pipeline or Task; commonly used to

share content between multiple tasks

taskRef
Reference to an existing Task that should be executed by the
Pipeline

runAfter

Coordinates when a specific Task is executed only after the
completion of another Task

Add the pipeline to the webhooks namespace by executing the
following command:

kubectl apply -n webhooks -f
chl2/tekton/pipelines/pipeline.yaml

Now that the Tasks and Pipeline have been added to the
webhooks namespace, we are almost ready to run our Pipeline. A

few more steps still need to be completed, as they are
requirements of the individual Tasks.

Recall from when the yamllint tool was introduced previously that
the execution can be customized, depending on the desired use.
Any customization to the default execution can be made using a
configuration file. This approach mirrors how many other utilities
are configured. By inspecting the kustomize-1int task, you will
see a reference to a ConfigMap within the volumes section:

volumes:
- name: shared
emptyDir: {}
- name: yamllint-config
configMap:
name: '$ (params.yamllint-configmap)''

Variables starting with params reference a parameter that was
previously defined within the Task. For the yamllint-configmap
within the kustomize lint Task, the default value is yamllint-
config. However, like any parameter, this value can be overridden
as needed.

A ConfigMap manifest has been provided in the
chl2/tekton/pipelines/yamllint-configmap.yaml file
and includes an embedded yaml1lint.yaml file that customizes

the execution of yamllint. The default yamllint configuration needs
to be modified to comply with the content that is produced by the
invocation of Kustomize against the manifests. In particular, we
need to disable the check performed to verify that three dashes are
included at the beginning of each manifest (known as the document
start) as well as some of the rules associated with how content is
indented:

rules:
document-start: disable
indentation:
indent-sequences: false

Add the ConfigMap to the webhooks namespace by executing the
following command:

kubectl apply -n webhooks -f
chl2/tekton/pipelines/yamllint-configmap.yaml

The final preparatory step prior to triggering the Pipeline is to
provide the argocd-task-sync-and-wait task with the location of the
Argo CD server and the credentials that should be used to facilitate
the connection. By inspecting the task, you can see that the address
of the Argo CD server instance is stored as a ConfigMap and the
credentials are stored as a Secret:

stepTemplate:
envFrom:
- configMapRef:
name: argocd-env-configmap # used for server
address
- secretRef:
name: argocd-env-secret # used for auth
(username/password or auth token)
steps:
- name: sSync-app
image: quay.io/argoproj/argocd:$ (params.argocd-
version)
script: |
if [-z "SARGOCD AUTH TOKEN"]; then
yes | argocd login "SARGOCD SERVER" --
username="$ARGOCD USERNAME" \
—--password="$ARGOCD PASSWORD";
fi
argocd app sync "$ (params.application-name)" \
--revision "$ (params.revision)" $ (params.flags)
argocd app wait "$ (params.application-name)" --
health $ (params.flags)

The stepTemplate declaration exposes the properties of both the

ConfigMap and Secret as environment variables into any of the
steps included in the Task.

Create a ConfigMap named argocd-env-configmap Within the
webhooks hamespace with the location of the Argo CD server in a
property called ARGOCD SERVER using the following command:

kubectl create configmap argocd-env-configmap \
--from-literal="ARGOCD SERVER=argocd.upandrunning.local" \
-n webhooks --dry-run=client \

-0 yaml | kubectl apply -f-

Next, credentials must be provided so that commands can be
executed against the Argo CD server using the Argo CD CLI from
within the task. While we highlighted how Argo CD handles users
and RBAC in Chapter 9, one of the concepts that was not covered at
that time, which does provide an optimal solution for this use case,
is project roles.

Instead of creating and managing a full-fledged user for use by our
Pipeline, a project role can be used to perform a restricted set of
actions within a project using the CLI or API. Access to resources is
granted using the same syntax as the standard Argo CD
configuration. So, for this use case, we will want to create a project
role that has access to synchronize and retrieve the state of
Application resources.

Using the Argo CD CLI, since the simple-go Application is present
within the default project, create a new project role called tekton
using the argocd proj role subcommand by specifying the
name of the project that the project role should be created within
and the name of the role:

argocd proj role create default tekton

With the project role created, assign policies so that it can retrieve
and synchronize Application resources using the following
commands:

argocd proj role add-policy default tekton \
-—action get —--permission allow —--object "*"

argocd proj role add-policy default tekton \
—-—action sync --permission allow —--object "*"

Since project roles are included within the AppProject custom
resource, the configurations can be expressed declaratively. For the
tekton project role created previously, the following represents how
it is defined within the AppProject:

apiVersion: argoproj.io/vlalphal
kind: AppProject
metadata:
name: default
namespace: argocd
spec:
roles:
- name: tekton
policies:
- p, proj:default:tekton, applications, get, default/*,
allow
- p, proj:default:tekton, applications, sync,
default/*, allow

By default, applications are the resource for which project role
policies are applied. However, other resources, like repositories,
clusters, logs, and projects, can also be used. It is also important to
note that the target of a specific policy must follow the pro-:
<project-name>:<role-name> format; otherwise, the policy
will not take effect.

To use a project role, and in our case, within a Tekton pipeline, a
JWT token must be created. The argocd proj role create-
token command is used to generate a JWT token to a project role.
By default, the token has no expiration. However, an expiration
should be added by specifying the -e flag with the length of time
the token should become invalidated (such as 12h).

Create a JWT token for the token project role and set the resulting
value in the PROJECT ROLE JWT TOKEN variable:

PROJECT ROLE JWT TOKEN=$ (argocd proj role create-token
default tekton --token-only)

Finally, create a secret called argocd-env-secretin the webhooks

namespace, which will be used by the argocd-task-sync-and-wait
task by executing the following command:

kubectl create secret generic argocd-env-secret \
——from—literal=ARGOCD_AUTH_TOKEN=$PROJECT_ROLE_JWT_TOKEN
\

--namespace webhooks --dry-run=client -o yaml | kubectl
apply -f -

Now that all of the components of the /int-sync-argocd Pipeline,
including the Tasks that the Pipeline will invoke and the associated
ConfigMaps and Secrets that are used within the Tasks have been
added, the next step is to run the Pipeline. A Tekton Pipeline can be
started by either creating a PipelineRun custom resource or by
using the Tekton CLI (tkn).

The tkn CLI, similar to the Kubernetes (kubectl1) and Argo CD
(argocd) CLIs, helps simplify the interaction and user experience
working with Tekton. It can be obtained from multiple sources,
including as a Kubernetes plugin, and is supported on multiple
platforms, including Linux, Windows, and macOS. Download and
install the plugin from the Tekton website and follow the installation
steps for the associated platform.

Once the tkn CLI has been installed, the tkn pipeline start
subcommand can be used to start the lint-sync-argocd Pipeline. This
command is helpful for building a Tekton PipelineRun resource.
However, if a PipelineRun manifest is already available,
kubectl can be used instead to start an instance of a Pipeline.

https://oreil.ly/d_i10

The chiZ2/tekton/pipelines directory includes a PipelineRun
manifest in the pipelinerun.yaml file. Start the lint-sync-argocd
Pipeline by adding the PipelineRun manifest to the webhooks
namespace by executing the following command:

kubectl create -n webhooks -f
chl2/tekton/pipelines/pipelinerun.yaml

Once a PipelineRun has been created, list the status using the
tkn pipelinerun list command in the webhooks namespace:

tkn pipelinerun list -n webhooks

NAME STARTED DURATION STATUS
lint-sync-argocd-2ktht 7 seconds ago -——= Running

The best method for tracking the state of a PipelineRun as it
progresses is by viewing the execution logs using the tkn
pipelinerun logs subcommand. Monitor the status of the
PipelineRun created previously by executing the following
command:

tkn pipelinerun -n webhooks logs -L

The -1 flag will display the content of the most recent
PipelineRun, While the -£ flag follows the progress up to
completion.

Once the output completes, verify that the PipelineRun
completed successfully:

NAME STARTED DURATION STATUS
lint-sync-argocd-2ktht 2 minutes ago 24s
Succeeded

You can also verify that the Argo CD Application has synced
successfully by viewing the status using either the Argo CD CLI or
the web interface, as shown in Figure 12-5.

0 DETAILS B DIFF m " HISTORY AND ROLLBACK © DELETE ' REFRESH =

APP HEALTH SYNC STATUS LAST SYMNC

» Hea“hy a S!'rnced 1o miain (T920e48) c Sync OK to7920e48

Aufo syno is enabled Succeeded a minute ago (Tue Deo 17 2024 1001 5:43 GMT-0600)
Author: gitea_sdmin <gitsa@upandrunning. hecals « Aumhor: gitea_sdmin gitsa@upandrunning. locals
Comment: Update README md Commaent: Update README.md

Figure 12-5. Argo CD Application status after synchronization from the Tekton
Pipeline

The execution of the Tekton Pipeline provides the capability to
automate the verification of the manifests Argo CD will process,
including the synchronization of the Argo CD Application. The
missing piece, as it currently stands, is for Gitea to trigger a Tekton
Pipeline to begin whenever a change to the repository occurs. This
topic will be covered in the following section.

Triggering Tekton Pipelines

Tekton Pipelines provides the constructs for building CI/CD
pipelines, but it does not include the capacity to automatically start
a pipeline. This is where another Tekton subproject, Tekton
Triggers, can fill the void. Tekton Triggers enables the automated
triggering of Tekton Pipelines based on a variety of event sources
and conditions. One of the ways that a Pipeline can be activated is
from a webhook event whenever a change to a repository occurs.
By enabling this feature, not only will it emulate how the Gitea
instance is currently triggering the synchronization of the Argo CD
Application in an automated fashion, but it can also provide the
additional enhancements that we have built into the Tekton
Pipeline.

Since Tekton Triggers is a separate Tekton subproject, it is not
included when Tekton Pipelines was installed previously. However, it

can be installed to the kind cluster by adding the base set of

resources along with a set of supported interceptors, which provide
additional logic for specific types of events:

kubectl apply -f \
https://storage.googleapis.com/tekton-
releases/triggers/latest/release.yaml
kubectl apply -f \
https://storage.googleapis.com/tekton-
releases/triggers/latest/interceptors.yaml

Now that Tekton Triggers has been installed, let’s review the
installed set of components. Similar to Tekton Pipelines, Tekton
Triggers also contain a number of CRDs that are used to expose and
manage how Pipelines are triggered. Table 12-3 describes the
entities associated with Tekton Triggers.

Table 12-3. Tekton Triggers entities

Entity Description

eventListener Application listening for Events

Trigger Specifies what will occur when an Event is
reCEived; contains @ TriggerTemplate and TriggerB
inding and, optionally, an interceptor

TriggerTempla The blueprint for @ Taskrun O PipelineRun

te

Triggerbindin Fields in the Event payload that are injected into

g a TriggerTemplate, Which can in turn populate the
TaskRun OF PipelineRun FESOUICE

Interceptor “Catchall” event processor to perform additional

payload filtering, verification

The relationship between each of these entities and how a webhook
invocation results in the creation of @ PipelineRun is depicted in

Figure 12-6.

Pipeline
. Task Task
Instantiates >
H [Step][Step]
: v
: - E Ei_"anminers + Pods
PipelineRun " * implement * implement
E : steps ¥ tasks
: : Pod Pod
+ Manages \ J
[Container][Container]
EﬁﬁkSﬂﬁen

s use PVs to
E share a

I Persistent IRRASACL
volume

Figure 12-6. Tekton PipelineRun

The first step when transitioning from a standalone PipelineRun
resource to Tekton Triggers is how the PipelineRun will be
instantiated. A TriggerBinding resource provides the construct
for creating a PipelineRun whenever an event is produced.
Locate the tekton-triggers-argocd-
triggertemplate.yaml file within the chiZ2/tekton/triggers
directory and notice how the existing PipelineRun has been
included within the resourcetemplates property:

apiVersion: triggers.tekton.dev/vlbetal
kind: TriggerTemplate
metadata:

name: tekton-triggers-argocd
spec:

params:

- description: Git revision
name: revision
resourcetemplates:

- apiVersion: tekton.dev/vlbetal
kind: PipelineRun

metadata:
generateName: lint-sync-argocd-
spec:
pipelineRef:
name: lint-sync-argocd
podTemplate:
securityContext:
fsGroup: 65532
workspaces:

- name: shared-data
volumeClaimTemplate:
spec:
accessModes:
- ReadWriteOnce
resources:
requests:
storage: 1Gi
params:
- name: repo-url
value:
https://git.upandrunning.local/upandrunning/simple-go.git
- name: argocd-revision
value: $(tt.params.revision)
- name: manifests-dir
value: deploy/overlays/default
- name: app-name
value: simple-go
- name: argocd-flags
value: --insecure --grpc-web

One of the key constants that you will see throughout this
implementation of Tekton Triggers is the ability to pass along
information from the Gitea webhook invocation to the Tekton
Pipeline. In particular, we will reference the specific Git revision that
triggered the webhook invocation, which enables Argo CD to
synchronize a specific commit so that there is an assurance the only
content that has undergone the Tekton Pipeline is applied to the
cluster.

By reviewing the TriggerTemplate, You will see that the

. spec.params Section contains a parameter called revision.
This parameter is then used within the blueprint for the
PipelineRun resource through the $ (tt.params.revision)
property.

The glue between the content provided by the Gitea webhook and
how it is fed to the TriggerTemplate isa TriggerBinding:

apiVersion: triggers.tekton.dev/vlbetal
kind: TriggerBinding
metadata:

name: tekton-triggers-argocd
spec:

params:

- name: revision

value: $ (body.after)

By inspecting the content of the tekton-triggers-argocd-
triggerbinding.yaml within the chi2/tekton/triggers directory,
notice how the name within the . spec.params property includes a

reference to the name of the parameter from the
TriggerTemplate. The value can originate from either the

webhook body or header. In this case, the after property within
the body contains the specific revision.

Finally, an EventListener is used to not only expose an endpoint
for triggering Tekton Pipeline, but it also brings together the
TriggerTemplate and TriggerBinding. An EventListener
essentially starts a pod that has the responsibility of capturing the
input, extracting the relevant fields, and creating an associated
PipelineRun resource.

Since the pod associated with the EventListener performs

invocations against the Kubernetes API, appropriate RBAC
permissions must be assigned. To do so, a ServiceAccount and a

RoleBinding must also be created and associated with the
EventListener. Inspect the contents of the EventListener in
the file located at ch12/tekton/triggers/tekton-triggers-—
argocd-el.yaml of the project repository, where you will see how
each of these concepts is brought together. In addition, an
Ingress is also included to demonstrate how an EventListener
can be exposed to services running outside the cluster. Even though
the Gitea instance that triggers the webhook is running within the
cluster, it is important to illustrate how to expose CI/CD capabilities
for other services to use.

Execute the following commands to apply the remaining Tekton
Triggers—related resources to the webhooks namespace:

kubectl apply -n webhooks \
chl2/tekton/triggers/tekton-triggers-argocd-el-

clusterrolebinding.yaml

kubectl apply -n webhooks chl2/tekton/triggers/tekton-

triggers-argocd-el-serviceaccount.yaml

kubectl apply -n webhooks chl2/tekton/triggers/tekton-

triggers-argocd-triggerbinding.yaml

kubectl apply -n webhooks chl2/tekton/triggers/tekton-

triggers-argocd-triggertemplate.yaml

kubectl apply -n webhooks chl2/tekton/triggers/tekton-

triggers-argocd-el.yaml

kubectl apply -n webhooks chl2/tekton/triggers/tekton-

triggers—-argocd-ingress.yaml

The last step is to modify how the Argo CD Application synchronizes
content. Currently, as soon as modifications are detected or
triggered, content from the main branch of the Git repository is
applied to the Kubernetes cluster. To ensure that changes are only
applied via the Tekton Pipeline and at a specific revision, update the
Argo CD Application to remove the automated syncpPolicy and
the targetRevision properties using the following command:

kubectl patch application simple-go -n argocd —--type=json \

-p="[{'op': 'remove', 'path':
' /spec/source/targetRevision'},
{'op': 'remove', 'path': '/spec/syncPolicy/automated'}]"

Now, update the URL of the webhook configured within the simple-
go repository by navigating to the repository
(https://git.upandrunning.local/upandrunning/simple-go) and then
completing the following steps:

1. Click the Settings button.
2. Click the Webhooks button on the navigation bar.

3. Click the pencil icon next to the already configured webhook
currently pointing at Argo CD.

4. Update the Target URL with https://tekton-triggers-
argocd.upandrunning.local/webhook.

5. Click the Update Settings button to apply the changes.

Either make a change to the repository using the steps provided
previously or click the Test Delivery button within the Webhook
Update page. Regardless of the option chosen, as soon as either a
new commit is pushed to the repository or a test delivery is
triggered, verify that a new PipelineRun has started by executing

the following command:

tkn pipelinerun list -n webhooks

The manifests contained within the repository will once again
undergo linting, and the Argo CD Application will be synchronized.
However, one very important difference occurred compared to the
prior synchronizations. Instead of synchronizing the state of a target
branch, an individual revision was used associated with the
webhook. This can be confirmed by reviewing the current status of
the Argo CD Application:

argocd app get argocd/simple-go

Name : argocd/simple-go

Project: default

Server: in-cluster

Namespace: webhooks

URL:
https://argocd.example.com/applications/simple-go
Repo:
https://git.upandrunning.local/upandrunning/simple-go
Target:

Path: deploy/overlays/default
SyncWindow: Sync Allowed

Sync Policy: <none>

Sync Status: Synced to (7920e48)

Health Status: Healthy

Notice that the sync Status value contains the specific revision
instead of just the branch name. This confirms that not only did the
webhook trigger the Tekton Pipeline, but the revision was also
extracted properly from the payload and passed all the way to the
Argo CD Application.

Summary

In this chapter, we illustrated how to apply continuous integration
concepts with Argo CD. We first enabled Argo CD to accept
triggering Application synchronizations through webhook
innovations. Then, we set up a new repository within our Gitea
instance along with adding a webhook to target automatically
synchronizing an Argo CD Application whenever a new change
occurred. Afterward, we introduced Tekton as a Kubernetes-based
platform for implementing CI patterns. We explored how to not only
configure a CI pipeline using Tekton Pipelines to perform multiple
actions, including the linting of manifests and synchronization of an
Argo CD Application, but also how to automatically trigger the
pipeline when a change occurred within the Git repository using

Tekton Triggers. By demonstrating how to implement CI practices
with Argo CD, changes can be applied more rapidly with the
necessary safeguards in place to release more confidently.

Chapter 13. Operationalizing
Argo CD

As Argo CD becomes the interface for all your Kubernetes clusters,
it quickly becomes an important piece to your organization.
Integrating monitoring capabilities with Argo CD can provide
insights into deployment status and health, enabling teams to
swiftly detect and resolve issues beyond just Argo CD Application
triage. Coupled together with notifications, these features ensure
that the stakeholders in your organization are immediately informed
of any changes or problems with your infrastructure or applications,
allowing for prompt response and mitigating downtime. High
availability is another important aspect, as it ensures that the Argo
CD service remains resilient and accessible. Scalability is also
important and related to the topic of high availability, allowing Argo
CD to manage the increasing number of applications and clusters
seamlessly as the organization grows.

Operationalizing Argo CD not only enhances deployment reliability
and efficiency, but also supports the organization’s ability to scale
and adapt to evolving demands, ensuring sustained delivery of
business value. In this chapter, we'll dive into these important
factors and go over different methods that will help you to
operationalize Argo CD.

Monitoring

Using the Argo CD UI for application issue triage and observability
offers advantages in managing and troubleshooting Kubernetes
workload deployments. The web interface of Argo CD provides real-
time visibility into the state of your Argo CD Applications, enabling

quick identification of discrepancies between the desired and actual
states. This visual representation simplifies the detection of issues,
such as configuration drifts or failed deployments, allowing for
faster root cause analysis. Also, the UI facilitates easy navigation
through application histories, manifest changes, and deployment
logs, streamlining the debugging process.

The original intent of the Argo CD UI is to abstract Kubernetes
primitives and bubble up information that developers care about.
Argo CD UI can tell you when something goes wrong and give you
the tools to help you triage; however, it doesn't give you the “how”
or “why” something failed. Moreover, Argo CD UI only gives you
information about itself. It doesn’t know any information about
other Argo CD instances. This is why tools like Prometheus and
Grafana are needed for a complete picture.

Monitoring with Prometheus and Grafana on a Kubernetes system is
crucial for ensuring the health, performance, and reliability of not
only applications, but also infrastructure components as well.
Prometheus, an open source monitoring and alerting toolkit, excels
at collecting and storing time-series data, which is essential for
tracking metrics all across your organization’s environment. It
enables real-time monitoring of application performance, resource
usage, and cluster health. Grafana complements Prometheus by
providing powerful visualization capabilities, allowing operators to
create intuitive dashboards and alerts. Together, they enable
proactive issue detection, efficient troubleshooting, and informed
decision-making, thereby enhancing system stability and optimizing
resource utilization. This combination with Argo CD can provide
more visibility into your workload deployments.

Installing Prometheus Stack

The Prometheus Stack consists of Prometheus, which is used to
collect metrics, and Grafana, which is used to visualize those

metrics. Installing the Prometheus Stack is pretty straightforward
using Helm. In the accompanying Git repository, we've included a
Helm values file to use to install this stack. We are using the basic
installation, but applying some basic additional configurations. If
you inspect the ch13/helm/values/prometheus-values.yaml
file, observe that as part of the installation, we are installing the
recommended Grafana dashboard from the Argo CD Project
repository:

grafana:
snippet for brevity
dashboards:
default:
argocd:
url:
https://raw.githubusercontent.com/argoproj/argo-cd/ \
master/examples/dashboard.json

Using this baseline configuration is enough to not only get you
started with monitoring Argo CD, but it is also enough for you to see
the value right away. You'll be able to gain valuable insights,
including how much memory Argo CD is taking up or how long syncs
are lasting. To install the Prometheus Stack, follow these steps:

1. Add the Prometheus repository using Helm:

$ helm repo add \
prometheus-community https://prometheus-

community.github.io/helm-charts

2. Update the Helm repo data to get the most recent content:

S helm repo update

3. Install the Prometheus Stack (which includes Grafana),
using the provided values in the accompanying Git repo:

S helm upgrade -i kube-prometheus-stack -n
monitoring —--create-namespace \
--values chl3/helm/values/prometheus-values.yaml \

prometheus-community/kube-prometheus-stack

After installing the chart, you should see Pods running in the
monitoring hamespace, similar to the following:

$ kubectl get pods -n monitoring

NAME

READY STATUS RESTARTS AGE
alertmanager-kube-prometheus-stack-alertmanager-0

2/ 2 Running 0 34s
kube-prometheus-stack-grafana-5c77f67c66-zvnnr

3/3 Running 0 41s
kube-prometheus-stack-kube-state-metrics-c854dc876-zt7bs
1/1 Running 0 41s
kube-prometheus-stack-operator-5c68cddf55-khf97

1/1 Running 0 41s
kube-prometheus-stack-prometheus-node-exporter-1zqgpb
1/1 Running 0 41s
prometheus-kube-prometheus-stack-prometheus-0

2/ 2 Running 0 34s

Now that the Prometheus Stack is up and running, you can
configure Argo CD to enable Prometheus to scrape the metrics
provided by Argo CD.

Configuring Argo CD for Prometheus

Next, you will need to set up Argo CD to expose the metrics
endpoints. This can be accomplished by using the provided
ch13/helm/values/argocd-metrics-values.yaml values file. In the
file, you will notice that each component, Application,
ApplicationSet, repo server, and API server controller has a similar
setup configuration:

snipped for brevity
metrics:
enabled: true
serviceMonitor:
enabled: true
additionallabels:
release: kube-prometheus-stack

It's important to note that the

<controllerName>.metrics.serviceMonitor
.additionallLables.release section needs to be set to the

release name of your Prometheus Stack Helm install. In our case,
we named the release kube-prometheus-stack.

NOTE

You can retrieve the name by running helm 1s -n monitoring.

To set up Argo CD for Prometheus, you can use Helm directly.
Update the Argo CD installation using the provided values file in the
accompanying Git repository:

$ helm upgrade -i argo-cd -n argocd —--create-namespace \
--reuse-values --values chl3/helm/values/argocd-metrics-
values.yaml argo/argo-cd

NOTE

Using --reuse-values Will ensure you don’t overwrite the values you've
already used when installing and modifying your Argo CD installation.

The upgrade not only sets up Argo CD monitoring endpoints, but
also sets up the serviceMonitor needed to let Prometheus know

where these endpoints are. You can see which ServiceMonitors
got applied by running the following command:

S kubectl get ServiceMonitor -n argocd

NAME AGE
argocd-application-controller 86om
argocd-applicationset-controller gom
argocd-repo-server 86m
argocd-server gom

You can inspect these ServiceMonitors if you wish. For example,
inspect the argocd-server by running kubectl get

ServiceMonitor/argocd-server -n argocd -o yaml and
you should see a result similar to the following:

apiVersion: monitoring.coreos.com/vl
kind: ServiceMonitor
metadata:
labels:
release: kube-prometheus-stack
name: argocd-server
namespace: argocd
spec:
endpoints:
- interval: 30s
path: /metrics
port: http-metrics
namespaceSelector:
matchNames:
- argocd
selector:
matchLabels:
app.kubernetes.io/component: server
app.kubernetes.io/instance: argocd
app.kubernetes.io/name: argocd-server-metrics

Here, the endpoints, namespaceSelector, and selector that
Prometheus uses for metric scraping have been configured for you

by the Helm release we completed. For more information about
Prometheus, please see the official documentation.

Accessing Grafana

As previously mentioned, Grafana was installed as part of the
Prometheus Stack installation. Grafana is also integrated with
Prometheus to visualize the metrics being collected. You can view
the Grafana UI by running the following port-forwarding command
in a terminal window:

$ kubectl port-forward -n monitoring svc/kube-prometheus-
stack-grafana : 80

NOTE

Most likely, you’'ll want to add an Ingress instead of using port forwarding.
Consult the Prometheus Helm chart for more information on how to enable
Ingress.

Once the connection has been established, you can visit
http://localhost:8080 in a web browser and log in with “admin” as
the username and “prom-operator” as the password. Once
authenticated, you will be presented with the following page, as
seen in Figure 13-1.

https://prometheus.io/docs

(6)]

Grafana

@ &® o= 8o o0

Home

Bookmarks

Starred
Cashboands
Explare

Drilldown | € sl
Abarting
Connections

Administration

o

Home » Dashboards » Home Q Search of jun
Welcome to Grafana Need help?
Basic TUTORIAL {
The steps below will DATA SOURCE AND DASHBOARDS
]
gulae yau to quickly Grafana fundamentals]
finish satling up d
your Grafana Set up and undersiand Grafana If you have no pricr
inatallatian. expariance. This tutorial guides you through the entire process
and covers the “Data source® and “Dashboards® steps to the
right.
L
Dashboards Latest from the blog

Starred dashboards

Recantly viewad dashboards '\;@ ‘,J !
Figure 13-1. Grafana overview page

From here, you can click on Dashboards, which will take you to the
dashboard overview page, as seen in Figure 13-2.

Grafana

Home

Bookmarks

Starred
Dashboards a
Explore

Drilldown € New!
Alerting

Connections

eSO DOm0 Be OB 0

Administration

4

Home » Dashboards 1 Search of jump to...

Dashboards

Create and manage dashboards to visualize your data
1 Search for dashboards and folders
> Filter by tag v Starred

Name

88 Alertmanager [Overview

2 ArgeCD

88 CoreDNS

88 etcd

B8 Grafana Owverview

88 Kubernetes [APl server

88 Kubernetes | Compute Resources | Multi-Cluster

88 Kubernetes [Compute Resources [Cluster

88 Kubernetes [Compute Resources | Namespace [Pods)

88 Kubernetes [Compute Resources | Namespace [Workloads)

Figure 13-2. Dashboard overview

From here, select ArgoCD to be taken to the Argo CD metrics
dashboard. The dashboard will appear similar to the depiction in

Figure 13-3.

» Application Status (7 sassen)

s Sync Stats (2 pansh)

s Comroller SIMS 75 panel

v Controfer Telematry F pases)

* AppSat Controller Tebemetry @3 paneis)
* Chuster Stats 3 pansi

» Ropo Server Stals 0 secen)

Figure 13-3. Argo CD metrics page

Feel free to explore the available metrics. You will see things that
aren’t normally visible in the Argo CD UI; for example, system-
based metrics like Memory Usage, CPU Usage, and Goroutines.
These metrics go beyond just Argo CD Application—specific metrics
and also include the platform performance; as a whole.

Notifications

Argo CD Notifications is an essential extension for Argo CD. The
premise of Argo CD Notifications is that it continuously monitors
Argo CD Application events, including (but not limited to) successful
syncs, failed syncs, when an Application is deployed, or when an
Application enters a degraded stage. It also provides a flexible
mechanism to notify users about important changes in the
Application state. Leveraging a system of triggers and templates, it
allows users to configure when notifications should be sent and
customize the notification content to provide any relevant
information.

Argo CD Notifications includes a catalog of useful pre-built
notification triggers and templates, enabling teams to quickly set up

https://oreil.ly/uUOtp

notifications without the need to create new notifications from
scratch. These triggers and templates are stored in the argocd-

notifications-cm ConfigMap in the argocd namespace.

For example, the following template will send information about the
sync status of an Argo CD Application:

apiVersion: vl
kind: ConfigMap

metadata:
name: argocd-notifications-cm
data:
template.my-custom-template-slack-template: |
message: |

Application {{.app.metadata.name}} sync is
{{.app.status.sync.status}}.

Application details:
{{.context.argocdUrl}}/applications/{{.app.metadata.name}}.

While templates are used to generate the notification content,
triggers define the condition of when the notification needs to be
sent. The definition includes items like name, condition, and
notification template reference. For example, the following trigger
sends a notification when an Argo CD Application sync was
successful:

apiVersion: vl
kind: ConfigMap
metadata:
name: argocd-notifications-cm
data:
trigger.on-sync-succeeded: |
- description: Application syncing has succeeded
send:
- app-sync-succeeded
when: app.status.operationState.phase in
['Succeeded']

Note that it defines which template to use when sending the
notification. In the previous example, the app-sync-succeeded

template will be used.

Another component of Argo CD Notifications is the Notification
Services. These services include the receiving end of the notification
process—Slack, email, GitHub, and the catchall webhook, as it can
invoke arbitrary endpoints. Depending on your organization, you
may elect to only send notifications that are critical (like using the
email service to send an alert to PagerDuty) or just informational,
like sending a notification to a Slack channel.

In this section, we will be setting up Mattermost, an open source
chat platform, to receive notifications from Argo CD.

Installing Mattermost

We will be using Helm to install Mattermost, as well as several of its
dependencies. In order to install the Mattermost Helm chart, you
will need to add the repository and update the content. Run the
following command to add the repository:

$ helm repo add mattermost https://helm.mattermost.com

Next, run the following to update the repository definitions:

S helm repo update

Once complete, you can use the Helm chart and values provided in
the accompanying Git repository to install the Mattermost Operator
and the required PostgreSQL database:

$ helm upgrade -i --dependency-update mattermost-operator \
-n mattermost-operator —--create-namespace
chl3/helm/charts/mattermost/

https://helm.mattermost.com/

The Helm chart installs the Mattermost Operator and database, but
not Mattermost itself. To install Mattermost, you will need to apply
the Mattermost custom resource to instantiate the instance. The
custom resource is included within the Git repo. Execute the
following command to apply the configuration:

$ kubectl apply -f chl3/manifests/mattermost.yaml

After a few moments, the Mattermost stack should be running in the
mattermost-operator hamespace along with its dependencies:

$ kubectl get pods -n mattermost-operator

NAME READY STATUS
RESTARTS AGE

mattermost-b948dc97c-2khkk /1 Running
11l6s

mattermost-operator-679d85£859-wsrft /1 Running
13m

mattermost-operator-postgresqgl-0 /1 Running
13m

minio-868£8c994b-2cljs /1 Running
11l6s

Configuring Mattermost

Now that Mattermost and its dependencies are up and running, you
will need to perform the initial configuration of the stack in order for
it to receive notifications from Argo CD. Visit
https://mattermost.upandrunning.local and you should see a page
similar to Figure 13-4.

Mattermost

All team communication in one place,
searchable and accessible anywhere

Let's create your account

Already have an account? Click here to sign in.

What's your email address?

Valid email required for sign-up

Choose your username

You can use lowercase letters, numbers, periods, dashes, and
underscores.

Choose your password

Create Account

Figure 13-4. Mattermost setup

Here, you can enter an email address, a username, and a password.
Once complete, click on Create Account. This will take you to the
next page, where you can join a team. Since this is a new
installation, there will not be any team to join, as depicted in

Figure 13-5.

Mattermost

All team communication in one place, searchable ¢
Teams you can join:
No teams are available to join. Please create a new team or ask yol

Create a team

Go to System Console
Figure 13-5. Join a team page

Since no team has been previously created, create a new team by
clicking on the “Create a team” line and entering the name devops,
as in Figure 13-6.

Mattermost

All team communication in one place,
searchable and accessible anywhere

Team Name

‘ devops

Name your team in any language. Your team name shows in
menus and headings.

After clicking Next, a confirmation page will be displayed. Verify the
team URL name, as it should appear similar to Figure 13-7.

Figure 13-6. Create DevOps team

Mattermost

All team communication in one place,
searchable and accessible anywhere

Team URL

http://mattermost.7f0... | devops

Choose the web address of your new team:

e Short and memorable is best
e Use lowercase letters, numbers and dashes
e Must start with a letter and can't end in a dash

Back to previous step

Figure 13-7. Team confirmation page

Now, on the following page, click on the three-line hamburger menu
and select System Console, as shown in Figure 13-8.

A devops

@admin

Account Settings

Invite People

Add or invite people to the team

Team Settings

Manage Members

Create a Team

Leave Team

Integrations
Plugin Marketplace

Custom Emoji

System Console

Help
Keyboard Shortcuts

Report a Problem

Download Apps

About Mattermost

[
Figure 13-8. Selecting System Console

On the System Console page, scroll down on the left navigation bar
and select Bot Accounts under Integrations, as shown in Figure 13-
S.

ata INTEGRATIONS

Integration Management

Bot Accounts
GIF (Beta)

CORS

Figure 13-9. Integration Bot Account settings

In the Bot Accounts configuration page, select “true” next to the
Enable Bot Account Creation setting, as shown in Figure 13-10.

Bot Accounts

Enable Bot Account Creation: ® true O false

When true, System Admins can «
Accounts. Bot accounts are simil
See documentation to learn mor

Disable bot accounts when owner is ® true O false

deactivated:
When a user is deactivated, disal

bot accounts, go to Integrations

Figure 13-10. Enable Bot Account Creation

Click Save and then click on the hamburger menu button on the top
left and select “Switch to devops,” as shown in Figure 13-11.

System Console

@admin

Switch to devops

Administrator's Guide
Troubleshooting Forum

Commercial Support

About Mattermost

Log Out

Figure 13-11. Switching to DevOps

Back in the DevOps team page, select the hamburger menu on the
top left again and select Integrations, as shown in Figure 13-12.

A, devops

@admin

Account Settings

Invite People

Add or invite people to the team

Team Settings

Manage Members

Create a Team

Leave Team

Integrations

Plugin Marketplace
Figure 13-12. Selecting Integrations

On the left navigation menu, click on Bot Accounts, and then click
on the Add Bot Account button. This will take you to the Add Bot
Account page. Here, enter “argocd-notifications” as the username
for the bot account, leaving the rest as the defaults, and click on
Create Bot Account at the bottom of the page. Once the bot account
has been created, the resulting page will display your bot’s token,
as shown in Figure 13-13.

Bot Accounts > Add

Setup Successful

Your bot account argocd-notifications has been created successfully. Please use the following
further details).

Token: tm4j8djeybyw7pql1mfzi3zzaue]

Make sure to add this bot account to teams and channels you want it to interact in. See docun

Figure 13-13. Token page

NOTE

Your token will be different.

Make note of this token, as you won't be able to see it again (you
can always re-create the token if needed). Click on the Done button
on the bottom right to complete the bot account creation process.

Next, on the top left, click on “"Back to Mattermost.” There, you will
now need to invite the bot to your team. To complete this task, click
on the hamburger menu on the top left again and select Invite

People. On the “Invite Members to devops” page, add the @argocd-

notifications bot account, as shown in Figure 13-14.

— N

Invite Members to devops

Share This Link
http://mattermost.7f000001.nip.io/signup_user_complete/7id=maqla:

Share this link to invite people to this team.

Add or Invite People

#.a argocd-notifications &

Add existing members to this team.

&’ Copy Link

Invite Members

Figure 13-14. Inviting argocd-notifications

Click on Invite Members; on the following page, click on the Done
button to return to the DevOps team page. Add a channel by
clicking the “+" symbol next to the PUBLIC CHANNELS navigation on
the lefthand side of the page. This will bring up the New Channel
dialog box. Enter appstatus in the Name field, as shown in

Figure 13-15.

Mew Channel 4

Type ® @ Public - Anyone can join this channel

(O & Private - Only invited members can join this channel

Name appstatus

URL: fappstatus (Edit)

Purpose (optional) E.g.. " channel to file bugs and improvements”

Describe how this channel should be used.

Header (optional) E.g.: "[Link Title](http://example.com)"

Set text that will appear in the header of the channel beside the channel
name. For example, include frequently used links by typing [Link Title]
(http:/fexample.com).

Cance Create Channel

Figure 13-15. Setting up appstatus channel

Leaving the remaining fields at their default values, click on Create
Channel. Once the channel has been created, you will return to the
DevOps team page. Here, select the newly created “appstatus”
channel by clicking on it on the left navigation bar. Then, in the chat
input field, type /invite @argocd-notifications, as shown in
Figure 13-16.

NOTE

You might need to click on Skip Tutorial or go through the tutorial before you
can invite the bot to the “appstatus” channel you just created.

Beginning of appstatus

This is the start of the appstatus channel, created by admi

&+ Invite others to this channel #* Set a Header

(‘) System 9:01 PM

You joined the channel.

/invite @argocd-notifications

Figure 13-16. Invite argocd-notifications bot

Press Enter, and your bot should be added to the channel now.
Next, on the top left where it displays “appstatus,” you'll see a down
arrow. Click on it and select View Info, as shown in Figure 13-17.

~ devops g appstatus v
@ @admin Adc
View Info

PUBLIC CHANNELS Notification Preferences

Mute Channel

@ appstatus
@ Off-Topic

Add Members
@ Town Square

Manage Members

Figure 13-17. View Info selection

On the “About appstatus” page, make note of the channel ID, as it
will be needed later on. A depiction will appear similar to Figure 13-
18.

About & appstatus X

URL:
http://mattermost.7f000001.nip.io/devops/channels/appstatus

1D: gfeiddtho3ryBetqwbhejrbteh

Figure 13-18. About appstatus ID dialog

Note that we've outlined the ID in a red square, as it’s hard to see
on the pop-up. Also note that your ID will be different based on
your environment. Go ahead and close this pop-up by clicking on
the X in the upper right corner.

Now that you have set up Mattermost and you have made note of
your Token ID and your Channel ID, you can move on to integrating
Argo CD Notifications.

Setting Up Argo CD Notifications

We will be using Helm to upgrade the configuration of Argo CD to
send notifications. We will use the chart to add an Argo CD
Notifications template and a trigger as well. We will also use the
Helm chart to tell Argo CD about the Mattermost token that was
created in the previous section.

By inspecting the template we will be using found in the
ch13/helm/values/argocd-notification-values.yaml file, you will see
the following (code has been cut off for space reasons):

notifications:
templates:
template.app-sync-succeeded: |
message: |
Application {{.app.metadata.name}} has been

successfully synced at ...

Sync operation details are available at:
{{.context.argocdUrl}}...
mattermost:

attachments: "[{\n \"title\": \"{{
.app.metadata.name} }\",\n \"title link\"...

This is the template that will be used when sending a message to
the Mattermost channel we configured in the previous section. Take
note here where we define the name of service under the message

section, which is set to mattermost. The trigger for this template

can be seen in the same ch13/helm/values/argocd-notification-
values.yaml file:

notifications:
triggers:
trigger.on-sync-succeeded: |
- description: Application syncing has succeeded
send:
- app-sync-succeeded

when: app.status.operationState.phase in
['Succeeded']

Here, the trigger is configured to send the app-sync-succeeded
template (with the relevant data) when an Application has
successfully performed a sync. Using the token from the previous
step where you created the argocd-notifications bot account, set up
the Argo CD Notification integration with Mattermost using the
Helm chi3/helm/values/argocd-notification-values.yaml values file
provided, replacing <token> with your Mattermost bot token:

$ helm upgrade -i argocd -n argocd --create-namespace \
--reuse-values --values chl3/helm/values/argocd-
notification-values.yaml \

--set notifications.secret.items.mattermost-token=<token>
argo/argo-cd

You can verify that the configuration has been set properly by
running kubectl get cm argocd-notifications-cm -n
argocd -o yaml and kubectl get secret argocd-
notifications-secret -n argocd -o yaml. The output
should show the configuration update we provided in the Helm
values file.

The next step is to set up a subscription on an Argo CD Application,
which is how Argo CD knows when to set a notification. A
subscription on an Argo CD Application can be defined using the
notifications.argoproj.io/subscribe.<trigger>.
<service>: <recipient> annotation on the Application object
where <trigger> is the on-sync-succeeded trigger we added,
<service>ismattermost (which is configured in the template),
and <recipient> is the channel ID you copied from the previous
section.

To demonstrate the use of Argo CD Notifications, we will first deploy
a sample Application included for this chapter and wait for it to
Sync:

$ argocd app create --file chl3/argocd/simple-go.yaml
$ argocd app sync argocd/chl3-simplego

Now that the Argo CD Application is applied and synced, we will
subscribe it to the notification engine by providing the proper
annotation, replacing <channel-id> with the channel ID you

copied in the previous section:

$ kubectl annotate application chl3-simplego -n argocd \
notifications.argoproj.io/subscribe.on-sync-
succeeded.mattermost=<channel-id>

Next, sync the Argo CD Application:

$ argocd app sync argocd/chl3-simplego

By executing this command, a notification will be sent to the
“appstatus” channel on your Mattermost installation. The received
notification should look similar to Figure 13-19.

@.ar argocd-notifications BOT 4:54 PM
™ Application chl3-simplego has been successfully synced at 2024-07-25T23:54:142,

ch13-simplego

Sync Status Repository
Synced hitps:/github.comdchristianhg14/simple-go

Figure 13-19. Notification sent

NOTE

You can send notifications to multiple channels by listing them in the annotation
separated by semicolons. For example, channel-idl; channel=1id2.

As demonstrated by this use case, integrating Argo CD Notifications
into your deployment process enhances observability, reliability, and
responsiveness, ensuring that teams are promptly informed about
the state of their applications and deployments, allowing them to
swiftly address any issues and maintain the desired state of their
applications.

High Availability

Argo CD operates in a stateless architecture, ensuring robustness
and reliability. All data used for Argo CD is persisted as Kubernetes
objects, which are subsequently stored in Kubernetes’ etcd
datastore. Redis is utilized within Argo CD solely as a transient
cache, meaning it serves to temporarily store data to improve
performance. Should Redis be lost or experience failure, it poses no
risk to the continuity of service, as the cache can be seamlessly
rebuilt without any data loss or service disruption when the cache
system returns online. This design choice puts the responsibility of
high availability onto Kubernetes to reschedule Pods and other
workloads to different nodes. This means that if Argo CD is running
on a highly available Kubernetes installation, Argo CD will be highly
available.

Still, more resiliency can still be achieved, even in a relatively
robust environment. To that end, Argo CD does provide a
mechanism for running Argo CD in a highly available configuration.
This mechanism can be accomplished using the Argo CD Helm
chart. There are two primary ways of deploying Argo CD in high
availability (HA) mode: using autoscaling of pods or setting a fixed
number of pods.

NOTE

If you're using the kind cluster, the following won't work. You will need a

multinode (minimum of three) Kubernetes cluster. You can view how to create
a multiple-node cluster in the kind documentation page.

To use HA mode, the following Helm values can be used:

redis-ha:
enabled: true

controller:
replicas: 1 # We will scale this controller in a
different section

server:
replicas: 2

repoServer:
replicas: 2

applicationSet:
replicas: 2

To use HA mode with autoscaling, the following Helm values can be
used:

redis-ha:
enabled: true

controller:
replicas: 1

server:
autoscaling:

enabled: true

minReplicas: 2

repoServer:

https://oreil.ly/ok4ro

autoscaling:
enabled: true
minReplicas: 2

applicationSet:
replicas: 2

NOTE

The controller.replicas section is set to 1 because setting it to anything
higher will enable sharding. Sharding will be covered in the next section.

Once you have set those values, you can use Helm to upgrade an
existing release to use the HA configuration. For example:

$ helm upgrade -i argocd -n argocd --reuse-values \
--values your-values-argocd-ha.yaml argo/argo-cd

Running Argo CD in an HA configuration assumes you are running at
least three worker nodes in your Kubernetes environment. The
reason for this is that Argo CD deploys Redis using a StatefulSet
with podantiAffinity rules that is configured to not schedule
two of the same Redis pods on the same node. The reason that
three is needed is that it's the minimum number of replicas required
for Redis to reach quorum. For more information about the
configuration needed to achieve HA with Redis, you can read its
documentation.

TIP

It's recommended to set affinity rules as well for the controllers you are scaling
to take advantage of the additional nodes.

https://oreil.ly/NImCm
https://oreil.ly/NImCm

Scalability

Scalability is another important topic that goes hand in hand with
high availability. While high availability helps with scalability, that is
not the main focus. Further configuration must be completed in
order to achieve scalability, beyond just setting up high availability.
While how you scale will depend on a humber of factors, the two
most common things to take into account are scaling up and scaling
out (sharding).

Scaling Up

The quickest way to get the most out of your Argo CD installation is
to add more resources to each component. Each component is
configured with sensible defaults with respect to resource limits and
requests. These defaults are satisfactory for most cases for the
majority of workloads. As your organization grows, and your Argo
CD implementation gets busier and busier, you may find the need to
adjust these limits. Table 13-1 summarizes each Argo CD
component, what they are used for, and some of the considerations
when scaling up your installation.

Table 13-1. Argo CD components summary
Controller When to scale

Redis When your installation is sending a lot of
requests to Kubernetes; also when you have a
lot of repositories or large repositories

Application When you have many Applications, where it
controller might take some time to get the statuses of
all Applications

API server A busy system in a multi-tenant setup where
UI and CLI are becoming slow

Repo server When you have many repos and/or when you
have a large mono-repo (a single repository
with most or all K8S resources)

ApplicationSet When you have many ApplicationSets or when
controller you have ApplicationSets that generate many
Applications

You can use the Argo CD Helm chart to set the resources for each
component. The following is an example set of values that can be
used as a baseline. Keep in mind that your settings will be different,
depending on a number of factors, like your specific
implementation, environment, and Kubernetes cluster settings:

redis:
resources:
limits:
cpu: 200m
memory: 128Mi
requests:
cpu: 100m

memory: 64Mi

controller:
resources:
limits:
cpu: 500m
memory: 512Mi
requests:
cpu: 250m
memory: 256Mi

server:
resources:
limits:
cpu: 100m
memory: 128Mi
requests:
cpu: 50m
memory: 64Mi

repoServer:
resources:
limits:
cpu: 50m
memory: 128Mi
requests:
cpu: 10m
memory: 64Mi

applicationSet:
resources:
limits:
cpu: 100m
memory: 128Mi
requests:
cpu: 100m
memory: 128Mi

Once you set your desired settings, you can use Helm to upgrade
your Argo CD installation with the values in the following command:

$ helm upgrade -i argo-cd -n argocd --reuse-values \
--values sample-argo-cd-resources-values.yaml argo/argo-cd

It's recommended to monitor your Argo CD consumption (using
Prometheus and Grafana, for example) and adjust these accordingly
once you have some historical data.

Sharding

In the previous section on high availability, it was noted that the
number of Application controller replicas was set to 1. This is
because scaling the Application controller not only gives you high
availability, but it also enables sharding for the Argo CD installation.
In this section, we will introduce sharding and how it can be
enabled in your Argo CD installation.

Sharding occurs at the Application controller level and focuses solely
on the managed clusters that you have added to Argo CD during a
sync operation. When your Argo CD installation is set up for
sharding, each managed cluster will use one of the shards to
perform the duties of the Application controller (syncing state is one
example). How Argo CD decides which managed cluster uses which
shard depends on which algorithm is being used. As of this writing,
there are two algorithms available, 1egacy and round-robin:

legacy
This is the default algorithm and uses a unique identifier (UID)-
based distribution of sync operations (which is nonuniform). This

means that you may not get an even distribution of shards to
managed clusters.

round-robin

This algorithm uses an equal distribution across all shards. As of
this writing, this method of sharding is considered “alpha.”

We are going to be using the 1egacy algorithm for this section,
since round-robin is still in its first phase of development at the
time of this writing. Also, practically speaking, round-robin is a

good use case for when you're adding/removing managed clusters
frequently. Generally speaking, 1egacy is recommended and will
work for most use cases.

The Argo CD Application controller runs in a StatefulSet and can be
viewed by executing the following command:

S kubectl get statefulset -n argocd
NAME READY AGE
argocd-application-controller /1 66m

View the pods associated with this StatefulSet:

S kubectl get pods -n argocd -1
app.kubernetes.io/component=application-controller

NAME READY STATUS
RESTARTS AGE

argocd-application-controller-0 /1 Running
bom

The 0 not only denotes the ID of this Pod for the StatefulSet, but it's
also used by Argo CD to identify shards. Currently, since there’s only
one Application controller pod, all Argo CD Application operations
are being handled by this one resource. And, if you recall, we added
a cluster in Chapter 7, so you can see which shard is being used for
these operations:

$ argocd admin cluster stats -n argocd
SERVER SHARD CONNECTION
NAMESPACES COUNT APPS COUNT ...

https://192.168.4.134:60183 0 1
0 ...

https://kubernetes.default.svc 0 4
0

NOTE

The IP of your cluster, and list above, may be different.

To add additional shards, you scale up the replicas and mirror that
configuration with the ARGOCD CONTROLLER REPLICAS
environment variable in the Application controller StatefulSet. This
can be accomplished easily with the Helm chart. Taking a look at
the values found in the chi3/helm/values/argocd-sharding-
values.yaml file in the accompanying Git repository, you should see
the following:

controller:
replicas: 2

That's it! Using Helm with the provided values file, you can enable
sharding with the following command:

$ helm upgrade -i argocd -n argocd --reuse-values \
--values chl3/helm/values/argocd-sharding-values.yaml
argo/argo-cd

This should have scaled the StatefulSet to two replicas:

S kubectl get sts -n argocd
NAME READY AGE
argocd-application-controller 2/2 129m

Checking the pods, you should have a pod with a 0 and another
with a 1:

$ kubectl get pods -n argocd -1
app.kubernetes.io/component=application-controller

NAME READY STATUS
RESTARTS AGE

argocd-application-controller-0 /1 Running
3m5s

argocd-application-controller-1 /1 Running
3ml5s

This corresponds to shard 0 and shard 1, respectively. Taking a look
at the clusters and shards, you will notice that both clusters are still
being managed by shard 0:

S argocd admin cluster stats -n argocd

SERVER SHARD CONNECTION
NAMESPACES COUNT APPS COUNT ...
https://192.168.4.134:60183

https://kubernetes.default.svc

Since we are using the 1egacy algorithm, the algorithm chooses
the shard based on a hash of the UID, which is then assigned based
on the modulo of that hash. As your implementation grows more
and more as you add clusters, you will notice that this method
creates an “imbalance,” and “hot spots” (where one shard is doing
more work than the others) can occur. To remedy this, it's
recommended to assign shards to clusters.

In Chapter 7, you learned that cluster definitions are stored as
Kubernetes Secrets. In order to assign a shard to a cluster, you
update the cluster secret with the shard ID by adding the
data.shard field in the secret with the corresponding shard ID.

Taking a look at the cluster that was added, we’ll need the name:

$ kubectl get secrets -n argocd -1
argocd.argoproj.io/secret-type=cluster

NAME TYPE DATA AGE
remote Opaqgue 154m

Add the data.shard field in the secret by patching the Secret
using stringData and the value of 1:

$ kubectl patch secret remote -n argocd --patch
'"{"stringData":{"shard":"1"}}"

You can verify this by again listing which shard is managing which
cluster. You will see that shard 1 is now managing the cluster:

$ argocd admin cluster stats -n argocd

SERVER SHARD CONNECTION
NAMESPACES COUNT APPS COUNT
https://192.168.4.134:60183

https://kubernetes.default.svc

The default behavior is that the defined shard will be used for Argo
CD Application operations unless the shard pod goes away. The
default timeout for checking the shard health is 10 seconds. Each
controller replica is trying to “claim” the shard (by updating the field
in a config map), “holds” it for 10 seconds, and must renew before
the hold expires. So, if one replica dies, then another replica will
pick up a shard at least 10 seconds later. To change the default 10-
second timeout, you can change the value of
controller.heartbeatTime to your desired timeout in your
values file.

It's recommended that you treat shard-to-cluster ratios ina 1:1
relationship on very busy systems. Another method is to have two
to three shards handling all your preprod environments and have
dedicated shards for each cluster in your prod environment. In the
end, you will have to use data collected from monitoring Argo CD to
determine which direction you ultimately head toward.

Summary

Operationalizing Argo CD in an enterprise environment is crucial for
ensuring robust and efficient deployments within a Kubernetes
ecosystem. Integrating monitoring capabilities with tools, like
Prometheus and Grafana, provides insights into deployment status
and health, enabling swift detection and resolution of issues. This
integration offers a comprehensive view beyond Argo CD’s native
interface, allowing for proactive issue detection, efficient
troubleshooting, and informed decision-making. Coupled with
notifications, stakeholders are immediately informed of changes or
problems, ensuring prompt responses and mitigating downtime.
High availability and scalability further enhance Argo CD’s reliability
and capacity to manage increasing applications and clusters as the
adoption grows.

Chapter 14. Future
Considerations

Throughout this book, we have focused on the general
operationalization of Argo CD, including deploying, configuring, and
managing the application. While we touched on several different
technologies and practices, the ecosystem surrounding Argo CD is
much broader, and other considerations will need to be taken into
account as you progress through your Argo CD journey. This
ecosystem is still evolving, and many patterns are emerging, so it is
important to know how to engage with the community and
investigate new practices, patterns, and common approaches.

This chapter will provide the context and resources you need to get
the most out of your Argo CD implementation—both now and in the
future.

GitOps Is Still Evolving

While operationalizing Argo CD is an important topic, it is
imperative to recognize that Argo CD was built with GitOps at its
core. This alignment necessitates that any effort to operationalize
Argo CD should inherently incorporate GitOps best practices and
strategic pattern planning to maximize the efficiency and
effectiveness of any Argo CD implementation. To achieve optimal
results, it is essential to consider the broader implications of GitOps
to better integrate it with DevOps. This will contribute significantly
to the robustness of your Argo CD implementation.

While the GitOps principles have reached v1.0, patterns and
implementations are still evolving; best practices are emerging as
adoption grows for not only Argo CD, but GitOps in general.

https://opengitops.dev/

Whether you are new to Argo CD and GitOps or are already running
it in production, it's always good to see what patterns organizations
are using to make the most of their approaches. In this section, we
will be highlighting some of the emerging patterns and best
practices, including what to consider when structuring your GitOps
directory, rendered manifest patterns, and GitOps workflows.
Understanding these can take your Argo CD and GitOps journey to
the next level.

GitOps Directory Structure Considerations

One of the initial hurdles organizations must face when adopting
GitOps is deciding how to best organize their Git directory structure.
Since Git has become the interface for how an organization interacts
with important application deployments and infrastructure
management concerns, it is imperative that these fundamental
design concerns are addressed upfront. With this in mind, there
isn't, unfortunately, a one-size-fits-all solution or universally
accepted repository layout. The central theme around the structure
of a GitOps directory has a lot to do with Conway’s law, which
states (adapted from the original wording):

Any organization that designs a system (defined broadly) will
produce a design whose structure is a copy of the organization’s
communication structure.

—Melvin E. Conway

In short, how your organization and/or team is structured will
dictate how your directory structure is implemented, and not the
other way around. Organizational boundaries and separation of
responsibilities will also have a large influence on your GitOps
directory structure implementation.

Keeping Conway’s law in mind, if you find your directory structure
isn't working for you, you either need to change your directory
structure or change your communication/interaction structure in

your organization (the former is typically much easier). Even though
there is no generic GitOps directory structure that works for all,
there are some general guidelines that you can follow to make the
most of your implementation.

The DRY approach

When structuring directories, you want to follow the same
programming principles as you do in the infrastructure-as-code
realm of GitOps. You should avoid applying redundant actions and
instead make use of the practice of DRY, which stands for "Don’t
repeat yourself.” Since the focus of this book has been centered on
Argo CD and Kubernetes, you can think of the “Y" in DRY as
standing for YAML.

It's possible that storing everything in Git can lead to the same
YAML being repeated because similar workloads are deployed
across multiple environments. However, you can avoid repeating a
lot of the same YAML by using configuration management tools.
This will keep your repository clean and easy to understand and
avoids any unnecessary duplication of manifests.

There are many to choose from, but we recommend using
Kustomize and/or Helm since Argo CD has native support for these
two tools. They will help you to keep the base configuration of your
deployment and then store the deltas as patched overlays (in the
case of Kustomize) or different values files (in the case of Helm).
Since Argo CD has support for config management plugins (as
covered in Chapter 11), the configuration management tool you use
does not matter as long as you follow the DRY principle.

Parameterize where you can

While Kustomize is a popular choice, and is also supported natively
with Argo CD, it is important to note that there are certain

situations where patching manifests with Kustomize does not make
sense. Although patching YAML is easy when you already know the

values beforehand, there are occasions when you will not know the
desired value that should be specified. In many cases, this is due to
details related to the destination of the manifests.

An example of this situation can be found with the host field in an
Ingress object, which specifies the fully qualified domain name
(FQDN) that can be used to access an application available within
the cluster. The challenge comes to a head when you're deploying
across a fleet of Kubernetes clusters with varying FQDNs that you
may not know until deployment time.

This is where parameterizing your configurations provides the
greatest benefit and where Helm truly shines. It is also the primary
reason why Helm was chosen as the tool of choice in this book.
Helm allows you to parameterize certain fields and abstracts away
a lot of nuances of Kubernetes manifests, which is attractive if
you're running a multi-tenant system where developers just want to
focus on getting their applications deployed. In reality, you will most
likely use a combination of Kustomize and Helm.

Utilizing the best of both tools, you should be able to limit the
amount of manifest duplication in your GitOps deployments.

How many repositories are needed?

The most common best practice is to separate your deployment
manifests away from the same repository that the source code of
your application lives in. There are many resources on this topic,
but generally speaking, this principle exists because application and
GitOps configurations typically have different lifecycles and are (in
many instances) managed completely differently by different teams.
So, as a general practice, it is recommended that each be kept
separate in their own management process and structure.

But how many repositories are the right amount?

Some organizations store everything in what we call a monolithic
repo (monorepo). A monorepo is where all Kubernetes manifests

reside in a single repository for an organization. This is usually
where organizations start, and there is typically a heavy emphasis
on Kustomize in these repositories. The advantage of using a
monorepo is that all the resources are managed centrally, and there
is a single point of governance and management interface.
However, there is a drawback, which is that Argo CD struggles, with
respect to performance, with large monorepos. This is a known limit
within Argo CD, which ultimately leads many organizations to favor
polyrepos, which will be covered next. Those that do leverage a
monorepo architecture for their GitOps manifests have to trade
simplicity with a need to scale and tune the performance of Argo CD
in order to achieve operational stability. Scaling and tuning Argo CD
was covered in Chapter 13.

Polyrepos, as the name indicates, is the use of more than one
repository to manage GitOps application deployment(s). Beyond
that, they have a singular or siloed responsibility, and components
from them can work with other repositories across the ecosystem.
The most common starting point for organizations adopting GitOps
with Argo CD is to have a control plane repository and an
application deployment repository. A control plane repository stores
resources needed to manage Argo CD itself. These include assets
like (but not limited to) Argo CD AppProjects, Applications, Argo
CD-specific Secrets, and ConfigMaps. In addition, the control plane
repository is also used to store other supporting tools needed for
organizational policies and governance—for example, manifests
related to tools, like Kyverno, Istio, and External Secrets (to name a
few). This repository is typically managed by a platform engineering
or DevOps team, whereas the application deployment repository, in
contrast, is used to store the actual application manifests used by
Kubernetes. Those normally contain resources such as
Deployments, Secrets, ConfigMaps, Ingress, and other related
manifests. While most organizations start at two repositories, your
case might be different and, in most cases, will include more than
two. The number of repositories will increase depending on the

separation of concerns and/or organizational boundaries that might
exist. The main drawback for using this pattern is that it creates a
large number of Git repositories, each having their own release
process that needs to be coordinated. Still, the use of polyrepos is a
popular approach, and it's the method used by Intuit (the creators
of the Argo Project).

Directory structure resources

As mentioned before, your Git repository structure will depend
heavily on how your organization runs, is governed, and how it
communicates with disparate teams. The repositories created will
be a reflection of that fact. Another thing to take into consideration
is how your current deployment + CI/CD workflow is implemented.
This all makes logical sense when you start thinking about who has
access to what resource. Developers will not need to modify
platform configurations, and operators, who work on platforms,
normally wont make changes in the source code of development
teams.

Since aspiring to a single, general template GitOps repository
structure is not feasible, and the answer will eventually result in “it
depends,” there are an assortment of examples that you can use to
influence your approach. These also include several getting-started
structures that provide a good foundation to build from:

Christian Hernandez’s (Akuity and coauthor of this book) GitOps 1:1
Repo
This repository outlines a 1:1, or repository to cluster, layout.
This example can be expanded to be used as a monorepo or as
a basis for a polyrepo.

Gerald Nunn’s (Red Hat) GitOps Standards

https://oreil.ly/-b9mt
https://oreil.ly/-b9mt
https://oreil.ly/_NRX-

This repository illustrates the use of Gerald’s GitOps standards,
which is designed from his experiences working with his clients.
It provides an example repository layout that includes how to
handle multiple clusters using a monorepo design architecture.

Johannes Schnatterer (Cloudogu GmbH), "GitOps Repository
Structures and Patterns”
This blog describes the pros and cons of implementing a repo
per team versus a repo for application approach and other
important, related considerations with examples.

The GitOps Bridge Project

This project aims to unify infrastructure management with
GitOps application deployment practices by providing a generic
framework for building cloud infrastructure and using cloud
metadata to enhance the GitOps controller (like Argo CD).

Flux, "Ways of Structuring Your Repositories”

Although this article is focused solely on Argo CD, Flux CD has
wide adoption and thus, a number of best practices of its own.
Many of these can be used generally, regardless of which tool is

being used, so it's worth taking a look at through the lens of
Argo CD.

With these examples, you'll get a better sense of a good starting-off
point for setting up your GitOps repositories.

https://oreil.ly/sJZAn
https://oreil.ly/sJZAn
https://oreil.ly/kl8id
https://oreil.ly/aDoHN

Rendered Manifests Pattern

Earlier in this section, we covered how to use the DRY method for
managing Kubernetes manifests in a GitOps repository. This
included suggestions around using configuration management tools
to aid in keeping your manifests DRY. While the choice of
configuration management tools has minimal impact on the
implementation of GitOps, there exists a challenge with having that
abstraction.

Argo CD (and other GitOps tools) typically reference these
abstractions, which keep your manifests DRY, directly in order to
determine the desired state of your system. As a result, any
modification made via your configuration management tool (like
Kustomize or Helm) gets altered by Argo CD itself, making the
actual impact on the manifests deployed across environments
ambiguous. Within the realm of Argo CD, the tool mutates the
desired state manifests prior to applying them onto the destination
cluster during deployment time. This process is depicted in

Figure 14-1.

Argo picks up the change and
renders the manifests

s
N | ¢ [Kubernetes
+[I ;' [cluster]
-

Figure 14-1. Argo CD rendering at deployment time

Push a change
to the Git repo Main hram:h

While this is a completely valid approach, some organizations found
challenges in having the source of truth being mutated by Argo CD
before being applied to the destination cluster. The primary
challenge is diffing and knowing the impact of a change before the
manifests are deployed onto the destination. Take, for example,

modifying a Helm configuration (like an umbrella chart) for
Prometheus:

S diff new-Chart.yaml Chart.yaml

8c8
< version: .6.1
> version: .9.0

Seeing this, you instinctively know that this is a major version
change that most likely has large implications. But, seeing this
difference (diff), either in the command line or in a pull request,
does not show the full extent that this change will cause. In
contrast, the full diff illustrates the major changes that this one line
change can cause. The diff is so large, that we had to create a Gist
to show it all.

Because of this challenge, a pattern arose in the GitOps community
called the rendered manifests pattern (sometimes called hydrated
manifests). The most important tenet of the rendered manifest
pattern is that the desired state, which in most cases is stored in
Git, should contain no ambiguity from what will be applied by Argo
CD. It should be thought of similarly to a container image, where
it's immutable and applied as is.

These rendered manifests are to be stored into environment-
specific branches. As updates are introduced in these branches, the
diff in the manifests between commits will be completely
transparent. Changes are visible, and they are clear along with
effects that will be made on each environment. Figure 14-2 depicts
the entire process.

https://oreil.ly/2Y-t4

+ The manifests are rendered in Cl :

. and stored on branches
| (‘ : E Argo applies
2 : % : manifasts as is
Pusha [—> 1 Lt "
change to Main |t Cl + |Environment-

_ i . . specific
theGitrepo| | b)i (engine : |__branch

Figure 14-2. Rendered manifests workflow

Kubernetes
cluster

The rendered manifests pattern offers several key advantages,
including enhanced visibility into the desired state by eliminating
the obfuscation typically introduced by configuration management
tools. It also reduces risk by establishing a truly immutable desired
state and greatly improves the performance of Argo CD by removing
the need for Argo CD to perform the rendering. Additionally, this
pattern allows for the setting of deployment and protection policies
tailored to specific environments since they will be stored in specific
branches. However, there are two notable drawbacks: shifting
manifest rendering to the CI engine introduces additional
complexity, and this approach is less effective with tools that render
plain-text secrets, such as sealed secrets.

There are tools that can help remove the complexity of introducing
the rendered manifests pattern into your CI system, and we'll
review them later in this chapter. It's worth mentioning that many
GitOps practitioners mistake the rendered manifests pattern with
GitOps workflows (which will be covered in the next section). It's
important to note that the rendered manifests pattern is a method
to create a deployment bundle in the branch. Branches are used as
a vehicle to store the resulting deployment bundle and do not
require merging between one another.

GitOps Workflow Best Practices

Git workflows (also called Git Flows) have long been integral to
application development and have become the de facto industry
standard for both development and deployment processes. With the
rise of GitOps and the growing popularity of infrastructure as code,
Git now serves not only as the source of truth but also as the
primary interface for managing environments. These workflows are
well-known in development, and operational teams are increasingly
adopting similar practices as well.

Naturally, many organizations are inclined to implement Git Flow,
given its long-standing role as the default process. However, there
are important distinctions between managing application code and
managing a GitOps repository.

Separation of concerns

One of the key challenges organizations encounter is how to
manage the code that powers their application separately from the
manifests that deploy them. The solution is quite simple: keep them
separate.

While many organizations utilize Git Flow for application
development, a growing number of DevOps engineers are adopting
trunk-based development for their GitOps repositories. These are
two fundamentally different workflows, which can lead to
complications. For example, a simple update, like adjusting the
replica count of a deployment—where the underlying code remains
unchanged—can unnecessarily trigger a rebuild and retesting of a
codebase that is already in production. Additionally, the approval
process for environment changes differs from that for code changes
and should not impede the continuous integration process for
developers.

This is a key reason for maintaining separation. Trunk-based
development is significantly better aligned with GitOps workflows

and repositories. Therefore, it is advisable to adopt trunk-based
development for GitOps, irrespective of the development process
used for the application itself.

Merging strategy

When implementing GitOps, it's essential to move away from
traditional Git Flow practices, especially for managing environment-
specific configurations. While Git Flow is well-suited for application
development, its approach favoring long-lived branches and
merging changes between branches doesn't align with the needs of
a GitOps workflow.

One of the critical shifts organizations must make is to avoid using
long-lived branches to manage environments. In a GitOps context,
you are handling the promotion of manifests, not source code.
Environment-specific configurations—like Secrets and ConfigMaps—
are often unique and shouldn’t be merged across environments.
Using Git Flow for this purpose can lead to significant complications,
such as the need to cherry-pick changes, which can become
cumbersome and error-prone. Instead, adopting trunk-based
development, combined with tools like Kustomize and Helm, allows
for a more streamlined and efficient GitOps workflow.

Keeping rendered manifests in mind, it's important to note that this
approach enables you to still maintain a single source of truth on
the main branch, with environment-specific configurations managed
through automated workflows. Although tendered manifests may
utilize branches, these are not used for promotion between
environments. Instead, they act as release artifacts, generated
automatically from the main branch and not directly modified by
contributors.

In essence, while the rendered manifests pattern may superficially
resemble Git Flow, it fundamentally differs in practice. By embracing
trunk-based development and leveraging templating tools, you can

simplify your GitOps processes and avoid the pitfalls of traditional
Git Flow in an infrastructure context.

Interacting with the Community

The landscape surrounding GitOps and Argo CD is continually
evolving, with new methods and practices emerging regularly. While
this book aims to cover the fundamental approaches necessary for
implementing these technologies, it cannot predict future
developments. Therefore, it is crucial to stay informed about
ongoing community activities and actively participate in these
groups in order to maximize the effectiveness of your
implementation.

Slack

The Argo Project is part of the larger Cloud Native Computing
Foundation (CNCF), and as such, the best place to get involved in
the project, ask questions, or share any information is the CNCF
Slack workspace. This Slack workspace is open to the general public
and is the recommended way to get started with contributions and
interactions. You can obtain an invitation by visiting the CNCF
website.

Once you have access to the Slack workspace, the following Argo
Project-specific channels are listed on the Argo Project website.

While the CNCF projects reside in the CNCF Slack workspace, the
Kubernetes community (and any related toolsets) can be found by
requesting access at https://slack.k8s.io. The channels that are
related to Argo CD and GitOps in general are:

o #kustomize
e #helm-users and #helm-dev

e #gitops

https://slack.cncf.io/
https://slack.cncf.io/
https://oreil.ly/cqR9t
https://slack.k8s.io/

e #kind

If you are interested in attending Argo Project meetings where you
can engage with engineers and solicit feedback, you can find
meeting times and information on how to join by visiting the Argo
Project meeting calendar.

GitHub

The Argo Project was donated as a suite of cloud native DevOps
tools and can therefore be thought of as more of an ecosystem. To
that end, the best place on GitHub to become familiar with this
ecosystem is the Argo Project GitHub organization.

The source code repository for Argo CD can be found in the Argo
Project organization, and it contains all of the contributions, issues,
and requests for enhancements.

The Argo Project CNCF status is officially in a “"graduated” state.
Graduated projects and tools are considered, by the CNCF, to be
stable and are used successfully in production environments. This
designation is significant because any of the toolsets in the Argo
Project are also considered graduated (currently, these include Argo
Workflows, Argo CD, Argo Rollouts, and Argo Events). The
ecosystem of the Argo Project goes beyond the four graduated
tools; therefore, the Argo Project Labs organization was created and
can be found by visiting the associated GitHub organization.

The Argo Project labs organization is managed by the Argo Project
maintainers, and not part of the CNCF Argo umbrella projects. New
repositories in this organization need to be sponsored and created
by one of the Argo project maintainers. Although not holding any
official standing in the CNCF, tools in the Argo Project labs
organization aren’t necessarily “unsupported.” The goal of the
organization is to have a place to collaborate with the community to

https://bit.ly/argoproj-calendar
https://bit.ly/argoproj-calendar
https://github.com/argoproj
https://github.com/argoproj-labs

quickly run experiments, proof of concepts (POCs), and possibly new
features to be later incorporated in one of the Argo Projects.

Next Steps

Outside of Argo CD and GitOps, there are other considerations to
take into account when implementing these tools and practices in
your CI/CD and IaC workflows. We've touched on a few throughout
this book; still, there are other considerations that are important for
the full success of your implementation.

Progressive Delivery

Progressive delivery refers to the controlled and incremental release
of product updates, aimed at minimizing the risks associated with
deployments. This approach typically leverages automation and
metric analysis to facilitate the programmatic promotion or rollback
of updates based on observed performance. While delving into the
finer details of progressive delivery is outside the scope of this
book, it's important to highlight the solutions available for Argo CD
users.

Often viewed as an advancement of continuous delivery,
progressive delivery builds upon the velocity achieved in CI/CD by
enhancing the deployment process. It achieves this by initially
limiting the exposure of the new version to a select group of users.
Through continuous observation and analysis, the new version is
gradually introduced to a broader audience, with ongoing
verification to ensure correct behavior at each stage.

There are two common strategies for implementing progressive
delivery, and all variations can be seen as a subset of the two. The
first strategy uses blue—green deployments, which involve deploying
both the new version in addition to the existing version of an
application. This allows tests to be conducted on the new version in

a controlled manner. The second strategy involves canary
deployments, which introduce the new version of an application to a
small subset of users while the majority of users continue to use the
existing version. This approach allows for monitoring the new
version to collect data. Once validated, the new version is
progressively rolled out to the entire user base, replacing the old
version.

Argo CD doesn't perform progressive delivery of any kind and relies
on the end user to use another tool or process to perform a
progressive delivery. This was briefly touched on in Chapter 1,
Introduction to Argo CD. The Argo Project has a complementary tool
called Argo Rollouts, which focuses on providing a common interface
to perform progressive delivery. It can be used as a standalone or
integrated directly with Argo CD. Argo Rollouts features methods for
declaratively performing progressive delivery, independent of your
traffic provider (Istio, NGINX, Traefik, etc.).

While Argo Rollouts is not required to achieve progressive delivery,
it is @ recommended tool for users looking for a progressive delivery
solution that complements Argo CD and that can still be used with
existing traffic managers. For more information, visit the Argo
Rollouts website.

GitOps Promotions

Initially, GitOps promotions (performing updates when a new
version is introduced) are seemingly inconsequential, but they can
provide a lot of value. Most workflows consist of using CI to
generate new manifests, writing those changes into a feature
branch, and creating a PR to the branch that is being tracked by
Argo CD. Eventually, as adoption of GitOps grows and as
microservices continue to gain in popularity, there comes an issue
with orchestrating independent services with their own GitOps
workflow into an application stack release. This leads many to fall

https://oreil.ly/A_Sz0
https://oreil.ly/A_Sz0

back to using CI scripts to try and orchestrate a release on these
systems and workflow in order to perform a release using GitOps
principles. While going further into the challenges of GitOps
promotions is beyond the scope of this book, it's important to know
what solutions are available to help you in your GitOps promotion
implementation.

The Argo Project labs organization has a tool called the Argo CD
Image Updater. The aim is to aid administrators in GitOps
promotion by detecting image updates and committing those
changes back to a GitOps Git repository automatically. This tool
focuses on detecting image updates only and can be seen as a spot
feature. More information can be found by visiting Argo CD Image
Updater.

A more holistic proposal for Argo CD GitOps promotions can be
found in the Argo CD repository, which focuses on detecting Git
commits as well. You can track the progress of this proposal by
visiting its GitHub page.

Kargo is an open source project started by the original creators of
the Argo Project, who are now at Akuity, and takes a more holistic
approach to GitOps promotions by focusing on tracking updates
from various GitOps-related repositories, like Git, Helm, and Image
repositories. A user can track one or more related supported
repositories and orchestrate related Git commits based on rulesets
(which are set by the user). Kargo aims to help, generically,
orchestrate and promote applications in a GitOps-friendly way. You
can find out more by visiting the Kargo website.

Telefonistka is an open source tool developed by Wayfair engineers
to enable safe and controlled GitOps promotions across multiple
environments. It ensures consistent deployments by securely
managing environment promotions through automation. By
establishing predefined directory structures, Telefonistka detects
changes in your Git repository and automatically creates pull

https://oreil.ly/qBcCh
https://oreil.ly/qBcCh
https://oreil.ly/xq7L4
https://akuity.io/
https://kargo.akuity.io/

requests to the relevant tracked branches. Once the user approves
these changes, synchronization occurs with the GitOps controller of
choice, minimizing deployment risks. You can find out more
information by visiting the Telefonistka GitHub repository.

Summary

This chapter has explored the deployment, configuration, and
management of Argo CD, emphasizing the importance of integrating
GitOps best practices to optimize implementation. As GitOps is still
evolving, new patterns and practices are continually emerging,
necessitating community engagement and exploration of these
advancements. Key areas include GitOps directory structures, where
organizational design influences repository layout; the DRY principle
for avoiding YAML duplication; and parameterization of
configurations, with tools like Kustomize and Helm. This chapter
also discussed repository management strategies, distinguishing
between monorepo and polyrepo approaches, and highlighted the
rendered manifests pattern for clearer, immutable deployment
states. Additionally, it contrasted GitOps workflows with traditional
Git Flow, recommending trunk-based development for GitOps
repositories. To stay updated with the latest practices and tools,
community involvement through channels like CNCF Slack and
GitHub is encouraged. Finally, the chapter touched on progressive
delivery strategies and tools for GitOps promotions, such as Argo
Rollouts and Kargo, to enhance deployment processes.

And with that, you've made it! There was a lot of information and
implementation details that went into writing this book, and the fact
that you've made it to the end makes us very grateful. We'd like to
thank you for taking the time to read this book, and we are happy
that you decided to take us on your journey in implementing GitOps
with Argo CD. While we strived to make this book work 80% of the
time for most organizations; there is no way to account for every

https://oreil.ly/d0nd4

single situation. Therefore, we recommend using this book as a
reference guide and less as an end-to-end implementation.

One final note: it's worth reiterating that the Argo and GitOps
communities are your best resources to not only gain feedback, find
validated patterns, and get advice, but also they are a place where
we urge you to share your successes and implementation
strategies. You may find that certain patterns work fantastically for
you while others do not. Or you may find some solutions/patterns
that work well for you that aren't talked about too often. In sharing
your journey, you can help those that may be just starting theirs.

With that, we'll leave you with a quote:

I often compare open source to science. To where science took
this whole notion of developing ideas in the open and improving
on other peoples’ ideas and making it into what science is today
and the incredible advances that we have had.

—Linus Torvalds, creator for the Linux Kernel

Index

Symbols

I for denying resources, Resource Management
$HOMEDIR, The Argo CD Command-Line Interface (CLI)
$PATH, Helm

A

admin role in role-based access control, Argo CD RBAC Basics
admin user, The Admin User

— about, Managing Users

— disabling account, Disabling users, Securing Argo CD

— login and password, Deploying Argo CD using YAML manifests,
The User Interface in Depth

— changing default password, The Argo CD Command-Line
Interface (CLI), The Admin User, Securing Argo CD

— obtaining admin password, The Admin User

anonymous access in RBAC, Anonymous Access

API (Argo CD)

— CLI leveraging, The Argo CD Command-Line Interface (CLI),
Additional Methods for Managing Argo CD

— managing Argo CD, Additional Methods for Managing Argo CD-
Additional Methods for Managing Argo CD

— OpenAPI specification, Additional Methods for Managing Argo
CD

— Swagger UI for visualizing, Additional Methods for
Managing Argo CD

— REST based, Additional Methods for Managing Argo CD
— UI, Additional Methods for Managing Argo CD

API (Kubernetes)
— exposing endpoint, Creating a Cluster

— health status metric, Importance of Probes

API server (Argo CD), API server
— gRPC/REST-based server, API server

App-of-Apps pattern, App-of-Apps Pattern, Use Case: App-of-Apps
with Sync Waves

— Progressive Sync using one manifest, Use Case: Using
Progressive Sync

— use case with sync waves, Use Case: App-of-Apps with Sync
Waves-Use Case: App-of-Apps with Sync Waves

— about setup, Use Case Setup

— Argo CD health check setup, Adding Argo CD Health
Checks

— probe setup, Inspecting Probes

Application controller (Argo CD), Custom resources

— restarting, Enable Sync with Impersonation

— sharding, Sharding-Sharding

— Application controller replicas setting, High Availability,
Sharding

application deployment repository, How many repositories are
needed?

application-level diffing, Application-Level Diffing
Applications (Argo CD)

— about, Unifying Application Definitions, Managing Applications,
Applications at Scale

— App-of-Apps pattern, App-of-Apps Pattern

— Progressive Sync using one manifest, Use Case: Using
Progressive Sync

— use case with sync waves, Use Case Setup-Use Case: App-
of-Apps with Sync Waves

— Application specification online, Deploying Applications to
Multiple Clusters

— autonomous and without dependencies, Argo CD Application
Drawbacks

— Progressive Sync for dependencies, Progressive Sync

— Progressive Sync use case, Use Case: Using Progressive
Sync-Use Case: Using Progressive Sync

— best practices
— Application health, Application Health
— Argo CD health checks, Argo CD Health Checks

— probes, Set Up Probes

— configuration drift management, Configuration Drift,
Kubernetes Controller Pattern

— as Custom Resource Definition objects, Managing Applications,
Application Sources, Applications at Scale, Use Case: App-of-
Apps with Sync Waves

— dashboard showing registered applications, Deploying Argo CD
using YAML manifests

— deleting, Deleting Applications-Finalizers, Use Case: Using
Progressive Sync

— finalizers, Deleting Applications, Use Case: Using
Progressive Sync

— deploying first Application, Deploying Your First Application-
Deploying Your First Application

— deploying to Argo CD install cluster, Cluster Management

— (see also deployments)

— deploying to multiple clusters, Deploying Applications to
Multiple Clusters-ApplicationSets

— about, Deploying Applications to Multiple Clusters
— App-of-Apps pattern, App-of-Apps Pattern
— ApplicationSets, ApplicationSets-ApplicationSets
— Helm, Using Helm
— destinations, Destinations
— in-cluster keyword, Deploying Your First Application

— .spec.destination, Application Overview, Destinations

— drawbacks, Argo CD Application Drawbacks-Argo CD Application
Drawbacks

— creation “factory” (see ApplicationSets (Argo CD))
— generators, ApplicationSets

— health checks, Application Health

— database schema setup use case, Seeing It in Action-
Seeing It in Action

— health status from Kubernetes API, Importance of Probes
— importance of probes, Importance of Probes, Set Up Probes
— removed from Argo CD, Application Health
— sync compare-options annotation, Comparing Options
— sync waves at their best, Sync Waves
— listing clusters managed by Argo CD, Destinations

— overview of an Application, Application Overview-Application
Overview

— namespace, Application Overview

— options available listed online, Application Overview

— .spec.destination, Application Overview, Destinations

— .spec.source, Application Overview, Application Sources

— restarting the Application controller, Enable Sync with
Impersonation

— retries for eventual consistency, Eventual Consistency

— sources, Application Sources

— Git as source, Application Sources, Git

— Helm as source, Application Sources, Helm

— more than one source, Application Sources

— .spec.source, Application Overview, Application Sources
— status check via argocd CLI, Repository Access

— synchronization

— automated synchronization, Managing How Applications
Are Synchronized

— compare-options annotation, Comparing Options

— hook deletion policies, Manifest Sync Wave Overview
— hooks, Hooks

— hooks idempotent, Manifest Sync Wave Overview

— hooks with sync waves, Sync Waves, Manifest Sync Wave
Overview

— ignoreDifferences annotation, Managing Resource
Differences

— ignoreDifferences on application level, Application-Level
Diffing
— ignoreDifferences on system level, System-Level Diffing

— initiating manually, Managing How Applications Are
Synchronized

— managing how Applications synchronized, Managing How
Applications Are Synchronized

— order of synchronization, Sync Order and Hooks, Sync
Waves-Sync Waves

— Progressive Sync, Progressive Sync, Use Case: Using
Progressive Sync

— Progressive Sync use case, Use Case: Using Progressive
Sync-Use Case: Using Progressive Sync

— sync waves, Sync Waves-Sync Waves, Argo CD Application
Drawbacks

— sync waves in database use case, Manifest Sync Wave
Overview-Manifest Sync Wave Overview

— syncOptions, Sync Options
— syncOptions at Application level, Application-Level Options
— syncOptions at resource level, Resource-Level Options

— syncOptions in first deployed Application, Deploying Your
First Application

— syncPolicy for automated synchronization, Managing How
Applications Are Synchronized

— syncPolicy in database schema use case, Argo CD
Application Overview

— syncPolicy in first deployed Application, Deploying Your
First Application

— use case of database schema setup, Use Case: Database
Schema Setup-Seeing It in Action

— synchronization impersonation, Application Sync Impersonation-
Deploying an Application with Impersonation

— about, Application Sync Impersonation

— deploying an Application with impersonation, Deploying an
Application with Impersonation

— enabling, Enable Sync with Impersonation

— service account, Define the Service Account to Use for
Impersonation

— tools for management, Tools-Beyond Helm and Kustomize

— about, Tools

— beyond Helm and Kustomize, Beyond Helm and Kustomize
— Helm, Helm

— Kustomize, Kustomize

ApplicationSets (Argo CD), ApplicationSets-ApplicationSets,
ApplicationSets

— ApplicationSet controller, Custom resources, ApplicationSets

— restarting, Use Case: Using Progressive Sync

— Progressive Synchronization, Progressive Sync-Use Case: Using
Progressive Sync

— alpha feature, Progressive Sync

— use case, Use Case: Using Progressive Sync-Use Case:
Using Progressive Sync

AppProject CRD controlling Projects, Namespace Scoped
AppProjects (Argo CD), Projects

architecture of Argo CD, Argo CD Architecture-Argo CD Key Patterns
— about, Installing Argo CD

— cluster credentials in Kubernetes Secret, How Clusters Are
Defined

— key patterns, Argo CD Key Patterns

— Kubernetes controller pattern, Kubernetes Controller Pattern-
Kubernetes Controller Pattern

— Custom Resource Definitions, Kubernetes Controller
Pattern, Custom resources

— Deployment example, Kubernetes Controller Pattern

— operators, Kubernetes Controller Pattern

— overview, Argo CD Architecture Overview-Notifications
— stateless, Argo CD Key Patterns

architecture of clusters, Cluster Architecture-How Clusters Are
Defined

— cluster definition options online, How Clusters Are Defined

— how clusters are defined, How Clusters Are Defined-How
Clusters Are Defined

— hub-and-spoke design, Hub-and-Spoke Design

— local versus remote clusters, Local Versus Remote Clusters
Argo CD

— about, Preface, Why We Wrote This Book, Argo CD Architecture

— adoption by DevOps professionals, Why Argo CD?

— Application as atomic working unit, Application Overview

— (see also Applications (Argo CD))

— Argo Project component, The Argo Ecosystem

—argocd CLI client, Argo CD CLI Client

— (see also argocd CLI client)

— community, Interacting with the Community
— GitHub, GitHub
— Slack, Slack

— configuration, Kubernetes Controller Pattern

— (see also configuration of Argo CD)

— declarative expression of GitOps desired state, Principle 1:
Declarative, Argo CD Architecture

— declarative configuration, Interacting with Argo CD,
Additional Methods for Managing Argo CD

— monitoring and synchronizing source of truth,
Reconciliation Response Time

— description of, What Is Argo CD?-Rollback and Disaster
Recovery

— documentation online

— CLI client installation instructions, The Argo CD Command-
Line Interface (CLI)

— cluster definition options, How Clusters Are Defined
— health checks by Argo CD, Argo CD Health Checks

— health checks by Argo CD that are built in, Argo CD Health
Checks

— health checks for Applications removed, Application Health

— Helm use, Using Helm

— hook deletion policy, Manifest Sync Wave Overview

— synchronizing Applications, Managing How Applications Are
Synchronized

— system-level diffing, System-Level Diffing
— extending (see extending Argo CD)
— Flux versus, Comparison of GitOps Tools in the Ecosystem

— health checks by, Argo CD Health Checks

— App-of-Apps with sync waves use case, Adding Argo CD
Health Checks

— current built-in checks online, Argo CD Health Checks
— customizing, Argo CD Health Checks

— documentation online, Argo CD Health Checks

— enabling, Adding Argo CD Health Checks

— written in Lua, Argo CD Health Checks

— installation modes, Installation Types, Argo CD Installation
Modes

— cluster scoped, Installation Types, Cluster Scoped

— installing Argo CD (see installing Argo CD)

— hamespace scoped, Installation Types, Namespace Scoped
— monorepo struggles, How many repositories are needed?
— operationalizing (see operationalizing Argo CD)
— React based, UI Extensions

— securing server, Securing Argo CD-Securing Argo CD

— (see also security)
— source code repository, GitHub
— UI, The User Interface in Depth-The User Interface in Depth
— (see also CLI via argocd client; UI (Argo CD))
— website, Argo CD CLI Client
Argo CD Applications (see Applications (Argo CD))
Argo CD Image Updater, GitOps Promotions
— information online, GitOps Promotions
Argo CD Operator, Argo CD Operator
Argo CD Project Git repository, Application Overview
Argo Events, The Argo Ecosystem
Argo Labs, The Argo Ecosystem

Argo Project, The Argo Ecosystem
— GitHub organization, GitHub

—“graduated” CNCF status, GitHub
— meeting calendar online, Slack
Argo Project Labs, GitHub
— Argo CD Image Updater, GitOps Promotions
Argo Rollouts, The Argo Ecosystem, Progressive Delivery

— website, Progressive Delivery

Argo Workflows, The Argo Ecosystem

— workflow best practices, GitOps Workflow Best Practices-
Merging strategy

argocd CLI client
— about, Argo CD CLI Client, Command-line interface (CLI)

— API leveraged, The Argo CD Command-Line Interface (CLI),
Additional Methods for Managing Argo CD

— Application status check, Repository Access

— Argo CD managed via, The Argo CD Command-Line Interface
(CLI)

—argocd login, The Argo CD Command-Line Interface (CLI)

— changing default admin password, The Argo CD Command-
Line Interface (CLI), The Admin User

— config file creation, The Argo CD Command-Line Interface
(CLI)

— --grpc-web parameter for ingress controller, The Argo CD
Command-Line Interface (CLI)

— logging out, The Argo CD Command-Line Interface (CLI)
— obtaining admin password, The Admin User
— authentication tokens, HTTPS Credentials
— deleting a token, Auth tokens
— displaying a user’s tokens, Auth tokens
— expiration, Auth tokens

— generating, Auth tokens

— cluster added, Adding a Cluster with the CLI-Adding a Cluster
with the CLI

— referencing cluster, Adding a Cluster with the CLI

— cluster removed, Adding a Cluster with the CLI
— clusters updated, Adding a Cluster Declaratively
— contexts listed, The Argo CD Command-Line Interface (CLI)

— credential template setup, Enabling Reuse Through Credential
Templates

— installation instructions online, Argo CD CLI Client, The Argo CD
Command-Line Interface (CLI)

— password changed, The Argo CD Command-Line Interface
(CLI), The Admin User, Local Users

— policy files validated, Custom Role Creation

— Projects listed, Create Project

— repository credentials, HTTPS Credentials, HTTPS Credentials
— UI versus CLI, HTTPS Credentials

— role-based access control governing, Adding a Cluster
Declaratively

— single sign-on using, SSO using the Argo CD CLI-SSO using the
Argo CD CLI

— synchronizing Applications
— automated, Managing How Applications Are Synchronized

— manual initiation, Managing How Applications Are
Synchronized

— TLS repository certificate management, Configuring TLS
Repository Certificates

— removing certificates, Configuring TLS Repository
Certificates

— restoring certificates, Configuring TLS Repository
Certificates

— user information retrieved, The Admin User
ArgoCD Extension Metrics for Prometheus metrics, UI Extensions

argocd-cm (ConfigMap)

— admin account disabled, Disabling users
— anonymous access, Anonymous Access

— Application sync impersonation enabled, Enable Sync with
Impersonation

— Argo CD managed via, Additional Methods for Managing Argo
CD

— authentication token management, Auth tokens

— ConfigMap named argocd-cm, Additional Methods for Managing
Argo CD

— configuring TLS repository certificates declaratively, Configuring
TLS Repository Certificates

— controller pattern, Kubernetes Controller Pattern
— health checks by Argo CD customized, Argo CD Health Checks
— health checks for Applications restored, Application Health

— local users, Local Users

— disabling, Disabling users
— new local user defined, Local Users
— viewing user information, Local Users

— reconciliation loop modifications, Modifying Reconciliation

— SSO implementation, SSO in action-SSO using direct OIDC

— system-level diffing, System-Level Diffing
ARGOCD_AUTH_TOKEN, Auth tokens
ARGOCD_GPG_ENABLED, Signature Verification in Action
argocd_ssh private key file, SSH-Based Authentication
argocd_ssh.pub public key file, SSH-Based Authentication

authentication

— anonymous access, Anonymous Access

— authentication tokens, Auth tokens-Auth tokens, HTTPS
Credentials

— apiKey capability for local users, Local Users, Auth tokens
— deleting, Auth tokens
— displaying a user’s tokens, Auth tokens
— expiration, Auth tokens
— revoking, Auth tokens
— Casbin system used by Argo CD, Argo CD RBAC Basics
— information online, Argo CD RBAC Basics
— Keycloak, SSO in action-SSO using the Argo CD CLI
— OpenID Connect, Single Sign On (SSO)

banner notifications, Banner Notifications

basics for getting started, Prerequisites

book exercises Git repository, Companion Git Repository
— App-of-Apps pattern, App-of-Apps Pattern

— Application sync with impersonation patch file, Enable Sync
with Impersonation

— config management plugin, Registering the Plugin
— database schema use case, Argo CD Application Overview
— Gitea installation Helm chart, Repository Access
— HTTPS-based credentials, HTTPS Credentials
— migrating a repository script, Setting Up Webhooks
— Prometheus Stack installation, Installing Prometheus Stack
— sidecar definition, Registering the Plugin
— SSO via Keycloak, SSO in action
book web page, How to Contact Us

broadcast storm, Use Case: Using Progressive Sync

— Progressive Sync avoiding, Use Case: Using Progressive Sync

C

caching by Redis, Argo CD Key Patterns, High Availability
Casbin authentication system, Argo CD RBAC Basics

— information online, Argo CD RBAC Basics
Cascading Style Sheets (CSS), Custom Styles-Custom Styles
Cert Manager, Argo CD Health Checks

CI/CD (see continuous integration/continuous deployment (CI/CD))

CLI via argocd client
— about, Argo CD CLI Client, Command-line interface (CLI)

— API leveraged, The Argo CD Command-Line Interface (CLI),
Additional Methods for Managing Argo CD

— Application status check, Repository Access

— Argo CD managed via, The Argo CD Command-Line Interface
(CLI)

—argocd login, The Argo CD Command-Line Interface (CLI)

— changing default admin password, The Argo CD Command-
Line Interface (CLI), The Admin User

— config file creation, The Argo CD Command-Line Interface
(CLI)

— --grpc-web parameter for ingress controller, The Argo CD
Command-Line Interface (CLI)

— logging out, The Argo CD Command-Line Interface (CLI)
— obtaining admin password, The Admin User
— authentication tokens, HTTPS Credentials
— deleting a token, Auth tokens
— displaying a user’s tokens, Auth tokens
— expiration, Auth tokens

— generating, Auth tokens

— cluster added, Adding a Cluster with the CLI-Adding a Cluster
with the CLI

— referencing cluster, Adding a Cluster with the CLI

— cluster removed, Adding a Cluster with the CLI
— clusters updated, Adding a Cluster Declaratively
— contexts listed, The Argo CD Command-Line Interface (CLI)

— credential template setup, Enabling Reuse Through Credential
Templates

— installation instructions online, Argo CD CLI Client, The Argo CD
Command-Line Interface (CLI)

— password changed, The Argo CD Command-Line Interface
(CLI), The Admin User, Local Users

— policy files validated, Custom Role Creation

— Projects listed, Create Project

— repository credentials, HTTPS Credentials, HTTPS Credentials
— UI versus CLI, HTTPS Credentials

— role-based access control governing, Adding a Cluster
Declaratively

— single sign-on using, SSO using the Argo CD CLI-SSO using the
Argo CD CLI

— synchronizing Applications
— automated, Managing How Applications Are Synchronized

— manual initiation, Managing How Applications Are
Synchronized

— TLS repository certificate management, Configuring TLS
Repository Certificates

— removing certificates, Configuring TLS Repository
Certificates

— restoring certificates, Configuring TLS Repository
Certificates

— user information retrieved, The Admin User
Cloud Native Computing Foundation (CNCF)
— Argo CD popularity, Why We Wrote This Book
— Argo Project a part of, Slack
— “graduated” CNCF status, GitHub
— Kubernetes as foundation, Introduction to Argo CD
— Slack for community interaction, Slack
— Argo-specific channels, Slack
— website for invitation, Slack

— website, Slack

Cloudflare article on distributed denial-of-service attacks, Setting Up
Webhooks

cluster sprawl, Introduction to Argo CD

cluster-scoped installation mode, Installation Types, Cluster Scoped

— resource management in Projects, Resource Management-
Resource Management

clusters

— adding clusters managed by Argo CD, Destinations, Adding
Remote Clusters-Adding a Cluster Declaratively

— adding a cluster declaratively, Adding a Cluster
Declaratively-Adding a Cluster Declaratively

— adding a cluster with CLI, Adding a Cluster with the CLI-
Adding a Cluster with the CLI

— creating a kind cluster, Deploying Argo CD using YAML
manifests

— creating an Argo CD cluster, Creating a Cluster
— referencing added cluster, Adding a Cluster with the CLI

— ServiceAccount created, Adding a Cluster with the CLI,
Adding a Cluster Declaratively

— architecture of clusters, Cluster Architecture-How Clusters Are
Defined

— cluster definition options online, How Clusters Are Defined
— credentials in Kubernetes Secret, How Clusters Are Defined

— how clusters are defined, How Clusters Are Defined-How
Clusters Are Defined

— hub-and-spoke design, Hub-and-Spoke Design

— local cluster reference, Cluster Architecture

— local versus remote clusters, Local Versus Remote Clusters
— deleting a cluster via CLI, Adding a Cluster with the CLI
— deleting a kind cluster, Deploying Argo CD using Helm

— deploying to multiple clusters, Deploying Applications to
Multiple Clusters-ApplicationSets

— about, Deploying Applications to Multiple Clusters
— App-of-Apps pattern, App-of-Apps Pattern
— ApplicationSets, ApplicationSets-ApplicationSets

— Helm, Using Helm

— kind create cluster, Deploying Argo CD using YAML manifests,
Creating a Cluster

— --name parameter, Deploying Argo CD using YAML
manifests

— kind delete cluster, Deploying Argo CD using Helm
— listing clusters managed by Argo CD, Destinations

— multinode cluster creation documentation online, High
Availability

— Project resource management, Resource Management

— updating clusters managed by Argo CD, Adding a Cluster
Declaratively

CNCF (see Cloud Native Computing Foundation (CNCF))
command-line interface (see CLI via argocd client)

community interactions, Interacting with the Community
— GitHub, GitHub

— Slack, Slack

— Argo-specific channels, Slack
— Kubernetes communities, Slack

config management plugins, Config Management Plugins-
Parameters

— about, Config Management Plugins

— ConfigManagementPlugin manifest, Config Management
Plugins-The ConfigManagementPlugin Manifest

— customizing plugin execution, Customizing Plugin Execution

— environment variables, Environment Variables
— parameters, Parameters-Parameters

— determining if plugin executes for given Application, The
ConfigManagementPlugin Manifest

— execution of plugin, The ConfigManagementPlugin Manifest
— implementing, The ConfigManagementPlugin Manifest

— registering the plugin, Registering the Plugin-Registering the
Plugin

— sidecar pattern, Config Management Plugins
— ConfigManagementPlugin manifest, Registering the Plugin

— externalizing configurations principle, Registering the
Plugin

— rules for property values, Registering the Plugin
— tooling for plugin execution, Config Management Plugins

ConfigManagementPlugin manifest, Config Management Plugins-The
ConfigManagementPlugin Manifest

ConfigMap (argocd-cm)
— admin account disabled, Disabling users
— anonymous access, Anonymous Access

— Application sync impersonation enabled, Enable Sync with
Impersonation

— Argo CD managed via, Additional Methods for Managing Argo
CD

— authentication token management, Auth tokens

— configuring TLS repository certificates declaratively, Configuring
TLS Repository Certificates

— controller pattern, Kubernetes Controller Pattern
— health checks by Argo CD customized, Argo CD Health Checks
— health checks for Applications restored, Application Health

— local users, Local Users

— disabling, Disabling users
— new local user defined, Local Users
— viewing user information, Local Users
— named argocd-cm, Additional Methods for Managing Argo CD
— reconciliation loop modifications, Modifying Reconciliation
— SSO implementation, SSO in action-SSO using direct OIDC
— system-level diffing, System-Level Diffing

configuration of Argo CD

— CLI for, Command-line interface (CLI), The Argo CD Command-
Line Interface (CLI)

— CLI login config file, The Argo CD Command-Line Interface
(CLI)

— declarative approach, Interacting with Argo CD, Additional
Methods for Managing Argo CD

— drift management, Configuration Drift, Kubernetes Controller
Pattern

— high availability, High Availability-High Availability

— standard deployment, High availability

— resource definitions as declarative, Argo CD Key Patterns

— declarative configuration, Interacting with Argo CD,
Additional Methods for Managing Argo CD

— RESTful API for, Additional Methods for Managing Argo CD-
Additional Methods for Managing Argo CD

— UI for, API server, The User Interface in Depth-The User
Interface in Depth

context

— adding a cluster declaratively, Adding a Cluster Declaratively
— adding a cluster via CLI, Adding a Cluster with the CLI
— argocd logout, The Argo CD Command-Line Interface (CLI)

— finding context name in kubeconfig via kubectl, Adding a
Cluster with the CLI

— kubectl context after kind create cluster, Deploying Argo CD
using YAML manifests

— Kubernetes context into login config file, The Argo CD
Command-Line Interface (CLI)

— list of contexts via argocd context, The Argo CD Command-Line
Interface (CLI)

continuous integration/continuous deployment (CI/CD)
— about CI, CD, GitOps, and Argo CD, Integrating CI with Argo CD
— authentication token use, Auth tokens

— Tekton for, CI/CD Integration via Tekton-Triggering Tekton
Pipelines

— about, CI/CD Integration via Tekton

— building a Tekton pipeline, Building a Tekton Pipeline-
Building a Tekton Pipeline

— triggering Tekton pipelines, Triggering Tekton Pipelines-
Triggering Tekton Pipelines

— webhooks

— importance of in CI/CD workflow, Setting Up Webhooks
— Notifications of Argo CD, Notifications

— reconciliation loop association, Reconciliation Response
Time

— setting up webhooks, Setting Up Webhooks-Setting Up
Webhooks

control plane cluster, Hub-and-Spoke Design

— Argo CD control plane, Cluster Management
control plane repository, How many repositories are needed?
Conway’s law, GitOps Directory Structure Considerations
core installation of Argo CD, Installation Types
CRD (see Custom Resource Definitions (CRDs))

cryptographic signature verification, Enforcing Signature
Verification-Signature Verification in Action

— about signature verification, Enforcing Signature Verification
— disabling, Signature Verification in Action
— enabling, Enforcing Signature Verification

— Git or Git-type repositories only, Enforcing Signature Verification

— GNU Privacy Guard on repository, Enforcing Signature
Verification

— GNU Privacy Guard—formatted public key, Enable Signature
Verification

— signature verification in action, Signature Verification in Action

— signed commit against repository, Signature Verification in
Action

CSS (Cascading Style Sheets), Custom Styles-Custom Styles

Custom Resource Definitions (CRDs), Kubernetes Controller Pattern

— Applications as, Managing Applications, Application Sources,
Applications at Scale, Use Case: App-of-Apps with Sync Waves

— ApplicationSets, ApplicationSets-ApplicationSets
— AppProject CRD controlling Projects, Namespace Scoped
— architecture of Argo CD, Custom resources
— extending the Kubernetes impact, Config Management Plugins
— operators managing, Kubernetes Controller Pattern
— Tekton components as, Building a Tekton Pipeline
custom resources
— architecture of Argo CD, Custom resources

— Custom Resource Definitions to implement, Kubernetes
Controller Pattern, Custom resources

customization of the UI, User Interface Customization-UI Extensions

— ArgoCD Extension Metrics for Prometheus metrics, UI
Extensions

— banner notifications, Banner Notifications
— Cascading Style Sheets, Custom Styles-Custom Styles

— UI extensions, UI Extensions-UI Extensions

D

dashboard for Argo CD, Deploying Argo CD using YAML manifests
— deploying Applications, Deploy Applications

dashboard for GitOps use case, Use Case: GitOps Dashboard-Test
Setup

— about, Use Case: GitOps Dashboard
— configuring Project, Configure Project
— creating Project, Create Project

— testing setup, Test Setup-Test Setup

database schema setup use case, Use Case: Database Schema
Setup-Seeing It in Action

— about, Use Case: Database Schema Setup
— importance of probes, Importance of Probes

— manifest sync wave, Manifest Sync Wave Overview-Manifest
Sync Wave Overview

— repository of artifacts, Argo CD Application Overview
—seeing it in action, Seeing It in Action-Seeing It in Action
— viewing manifest, Argo CD Application Overview

DDoS attacks (see distributed denial-of-service (DDoS) attacks)

declarative nature of Argo CD

— GitOps desired state, Principle 1: Declarative, Argo CD
Architecture

— monitoring and synchronizing source of truth,
Reconciliation Response Time

— resource definitions, Argo CD Key Patterns

— declarative configuration, Interacting with Argo CD,
Additional Methods for Managing Argo CD

— user password defined declaratively, Local Users
declarative nature of Kubernetes, What Is Argo CD?, Why Argo CD?
default Project, Projects

dependencies in Applications via Progressive Sync, Progressive Sync

— alpha feature, Progressive Sync

— use case, Use Case: Using Progressive Sync-Use Case: Using
Progressive Sync

deployments

— App-of-Apps with sync waves use case, Use Case Setup-Use
Case: App-of-Apps with Sync Waves

— Argo CD health check setup, Adding Argo CD Health
Checks

— probe setup, Inspecting Probes
— setup, Use Case Setup

— use case, Use Case: App-of-Apps with Sync Waves-Use
Case: App-of-Apps with Sync Waves

— Application, Deploying Your First Application-Deploying Your
First Application

— Application with impersonation, Deploying an Application with
Impersonation

— Applications in specified order via Progressive Sync, Progressive
Sync, Use Case: Using Progressive Sync

— alpha feature, Progressive Sync

— use case, Use Case: Using Progressive Sync-Use Case:
Using Progressive Sync

— Argo CD deployment, Deploying Argo CD-Argo CD Operator
— admin password obtained, The Admin User
— Argo CD control plane, Cluster Management
— Argo CD Operator, Argo CD Operator

— changing default admin password, The Argo CD Command-
Line Interface (CLI), The Admin User, Securing Argo CD

— cluster-scoped installation mode, Installation Types,
Cluster Scoped

— core installation, Installation Types
— high availability mode, High Availability-High Availability

— high availability mode in standard deployment, High
availability

— installation, Installing Argo CD-Installation Types

— installation modes, Installation Types, Argo CD Installation
Modes-Namespace Scoped

— installation options, Installation Types

— installation tested, Deploying Argo CD using YAML
manifests

— login username and password, Deploying Argo CD using
YAML manifests, The User Interface in Depth

— namespace-scoped installation mode, Installation Types,
Namespace Scoped

— securing the server, Securing Argo CD
— updated Helm chart with TLS enabled, Securing Argo CD

— YAML manifests, Deploying Argo CD using YAML manifests-
Deploying Argo CD using YAML manifests

— database Application deployment use case, Use Case:
Database Schema Setup-Seeing It in Action

— deploying to multiple clusters, Deploying Applications to
Multiple Clusters-ApplicationSets

— about, Deploying Applications to Multiple Clusters
— App-of-Apps pattern, App-of-Apps Pattern
— ApplicationSets, ApplicationSets-ApplicationSets
— Helm, Using Helm
— Kubernetes controller example, Kubernetes Controller Pattern
— progressive delivery, Progressive Delivery
developer custom role in RBAC, Custom Role Creation
DevOps, The GitOps Movement
Dex identity server, Single Sign On (SS0)

Dex OIDC, Dex
— callback URL, SSO in action

— SS0 using Dex, SSO using Dex-SSO using Dex

disaster recovery and rollback, Rollback and Disaster Recovery

distributed denial-of-service (DDo0S) attacks

— information online, Setting Up Webhooks
— on-demand refresh of Application, Setting Up Webhooks

drift management, Configuration Drift, Kubernetes Controller
Pattern, Application Overview

DRY approach to Git directory structure, The DRY approach

dry runs (Kubernetes), Eventual Consistency

— skipping on missing resource, Eventual Consistency

dynamic parameters, Parameters

environment variables
— ARGOCD_AUTH_TOKEN, Auth tokens

— ARGOCD_GPG_ENABLED, Signature Verification in Action
— customizing plugin execution, Environment Variables

— $HOMEDIR reading environment variable, The Argo CD
Command-Line Interface (CLI)

— KIND_CLUSTER_NAME, Deploying Argo CD using YAML
manifests

— KUBECONFIG, Creating a Cluster
— parameters exposed to plugins as, Parameters, Parameters
— REMOTE_CLUSTER_IP, Creating a Cluster

— unsetting, Creating a Cluster

Events (Argo Project), The Argo Ecosystem

extending Argo CD
— about, Argo CD Key Patterns, Extending Argo CD

— config management plugins, Config Management Plugins-
Parameters

— about, Config Management Plugins

— ConfigManagementPlugin manifest, Config Management
Plugins-The ConfigManagementPlugin Manifest

— customizing plugin execution, Customizing Plugin
Execution-Parameters

— determining if plugin executes for given Application, The
ConfigManagementPlugin Manifest

— environment variables, Environment Variables
— execution of plugin, The ConfigManagementPlugin Manifest

— implementing plugin, The ConfigManagementPlugin
Manifest

— parameters, Parameters-Parameters

— registering the plugin, Registering the Plugin-Registering
the Plugin

— sidecar pattern, Config Management Plugins, Registering
the Plugin, Registering the Plugin

— tooling for plugin execution, Config Management Plugins

— user interface customization, User Interface Customization-UI
Extensions

— ArgoCD Extension Metrics for Prometheus metrics, Ul
Extensions

— banner notifications, Banner Notifications
— Cascading Style Sheets, Custom Styles-Custom Styles
— UI extensions, UI Extensions-UI Extensions

extensibility of Argo CD, Argo CD Key Patterns

F

finalizers (Kubernetes), Deleting Applications

Flux

— Argo CD versus, Comparison of GitOps Tools in the Ecosystem

— “Ways of Structuring Your Repositories”, Directory structure
resources

G

garbage collection (Kubernetes)

— finalizers, Deleting Applications

— syncOption PrunelLast

— Application level, Application-Level Options
— resource level, Resource-Level Options
— syncOption PrunePropagationPolicy, Application-Level Options
generators for Applications, ApplicationSets
getting started, Prerequisites

Git

— about GitOps, Preface

— Argo CD
— Application source, Application Sources, Git
— Image Updater, GitOps Promotions

— Argo CD Project repository, Application Overview

— book exercises repository, Companion Git Repository
— App-of-Apps pattern, App-of-Apps Pattern

— Application sync with impersonation patch file, Enable Sync
with Impersonation

— config management plugin, Registering the Plugin
— database schema use case, Argo CD Application Overview
— Gitea installation Helm chart, Repository Access
— HTTPS-based credentials, HTTPS Credentials
— migrating a repository script, Setting Up Webhooks
— Prometheus Stack installation, Installing Prometheus Stack
— sidecar definition, Registering the Plugin
— SSO via Keycloak, SSO in action
— changes in repository detected, GitOps Promotions
— commits detected, GitOps Promotions

— directory structure considerations, GitOps Directory Structure
Considerations

— determining how many repositories, How many
repositories are needed?

— DRY approach, The DRY approach
— information online, Directory structure resources

— parameterizing where possible, Parameterize where you
can

— Gitea Git platform, Repository Access-Repository Access

— protected repositories, Protected Repositories-Enabling Reuse
Through Credential Templates

— about, Protected Repositories

— credential templates, Enabling Reuse Through Credential
Templates

— HTTPS credentials, HTTPS Credentials-HTTPS Credentials

— SSH-based authentication, SSH-Based Authentication-SSH-
Based Authentication

— repository management in Argo CD Projects, Resource
Management

— signature verification needing GNU Privacy Guard, Enforcing
Signature Verification

— TLS repository certificates, Repository Access-Repository Access

— configuring, Configuring TLS Repository Certificates

— configuring declaratively, Configuring TLS Repository
Certificates

— removing, Configuring TLS Repository Certificates
— restoring, Configuring TLS Repository Certificates

— versioned and immutable, Principle 2: Versioned and
Immutable

— website for information and installation, Companion Git
Repository

— workflow best practices, GitOps Workflow Best Practices-
Merging strategy

— merging strategy, Merging strategy
— separation of concerns, Separation of concerns

Git Flow considerations, GitOps Workflow Best Practices-Merging
strategy

— merging strategy, Merging strategy
— separation of concerns, Separation of concerns
Gitea Git platform, Repository Access-Repository Access
— Helm installation, Repository Access-Repository Access
— landing page, Repository Access

— protected repositories, Protected Repositories-Enabling Reuse
Through Credential Templates

— about, Protected Repositories

— credential templates, Enabling Reuse Through Credential
Templates

— HTTPS credentials, HTTPS Credentials-HTTPS Credentials

— SSH-based authentication, SSH-Based Authentication-SSH-
Based Authentication

— repository management in Argo CD Projects, Resource
Management

— signature verification needing GNU Privacy Guard, Enforcing
Signature Verification

— signing in, Repository Access
— TLS repository certificates, Repository Access-Repository Access
— configuring, Configuring TLS Repository Certificates

— configuring declaratively, Configuring TLS Repository
Certificates

— removing, Configuring TLS Repository Certificates
— restoring, Configuring TLS Repository Certificates
— UI, Repository Access
— Private repositories, HTTPS Credentials
GitHub Argo Project organization and community, GitHub
GitOps
— about, Preface, The GitOps Movement
— about Argo CD, Preface
— about DevOps, The GitOps Movement

— Argo CD versus Flux, Comparison of GitOps Tools in the
Ecosystem

— community, Interacting with the Community
— Slack, Slack

— controllers

— Argo CD versus Flux, Comparison of GitOps Tools in the
Ecosystem

— pulling and polling desired state, Principle 3: Pulled
Automatically

— reconciling running state, Principle 4: Continuously
Reconciled

— dashboard use case, Use Case: GitOps Dashboard-Test Setup
— about, Use Case: GitOps Dashboard

— configuring Project, Configure Project
— creating Project, Create Project
— deploying Applications, Deploy Applications
— testing setup, Test Setup-Test Setup
— declarative expression of desired state, Argo CD Architecture

— directory structure considerations, GitOps Directory Structure
Considerations

— communication structure of organization, GitOps Directory
Structure Considerations

— determining how many repositories, How many
repositories are needed?

— DRY approach, The DRY approach
— information online, Directory structure resources

— parameterizing where possible, Parameterize where you
can

— evolving, GitOps Is Still Evolving-Merging strategy

— immutability and tools that preserve, Tools-Beyond Helm and
Kustomize

— about, Tools

— Helm, Helm

— Kustomize, Kustomize
— origins of, Origins of GitOps

— principles of, OpenGitOps Principles-Principle 4: Continuously
Reconciled

— controllers pulling desired state, Principle 3: Pulled
Automatically

— controllers reconciling running state, Principle 4:
Continuously Reconciled

— declarative, Principle 1: Declarative
—online, GitOps Is Still Evolving
— pulled automatically, Reconciliation Response Time

— versioned and immutable, Principle 2: Versioned and
Immutable

— promotions, GitOps Promotions

— workflow best practices, GitOps Workflow Best Practices-
Merging strategy

— merging strategy, Merging strategy

— separation of concerns, Separation of concerns
GitOps 1:1 Repo (Hernandez), Directory structure resources
The GitOps Bridge Project, Directory structure resources

“GitOps Repository Structures and Patterns” (Schnatterer), Directory
structure resources

GitOps Standards (Nunn), Directory structure resources

GNU Privacy Guard (GnuPG or GPG), Enforcing Signature Verification

— ARGOCD_GPG_ENABLED, Signature Verification in Action
— command line tools for download, Enable Signature Verification

— public key for signature verification, Enable Signature
Verification

— argocd-gpg-keys-cm ConfigMap file, Enable Signature
Verification

Grafana, Accessing Grafana-Accessing Grafana

— about, Monitoring

— Argo CD metrics dashboard, Accessing Grafana
Group Version Kind (GVK) ignoreDifferences annotation

— application level, Application-Level Diffing

— system level, System-Level Diffing

H

health checks by Argo CD, Argo CD Health Checks

— App-of-Apps with sync waves use case, Adding Argo CD Health
Checks

— current built-in checks online, Argo CD Health Checks
— customizing, Argo CD Health Checks
— documentation online, Argo CD Health Checks
— enabling, Adding Argo CD Health Checks
— written in Lua, Argo CD Health Checks
health checks for Applications, Application Health

— database schema setup, Seeing It in Action-Seeing It in Action

— importance of probes, Importance of Probes, Set Up Probes
— health status from Kubernetes API, Importance of Probes
— Progressive Sync considering health, Progressive Sync

— removed from Argo CD, Application Health

— information online, Application Health
— restoring to ConfigMap, Application Health
— sync compare-options annotation, Comparing Options
Helm
— about, Helm, Helm
— App-of-Apps use case, Inspecting Probes

— Application management tool, Helm

— deploying first Application, Deploying Your First
Application-Deploying Your First Application

— Argo CD Application source, Application Sources, Helm

— Argo CD documentation page for using Helm, Using Helm
— Argo CD resources per component, Scaling Up

— Argo CD versus Flux, Comparison of Flux and Argo CD

— ConfigManagementPlugin manifest with Kustomize, The
ConfigManagementPlugin Manifest

— ambiguity after applying, Rendered Manifests Pattern
— deploying Applications to multiple clusters, Using Helm
— deploying Argo CD, Deploying Argo CD using Helm

— book focusing on Helm, Argo CD Operator

— dynamic templating for resources, Deploying Argo CD using
Helm

— NOTES, Deploying Argo CD using Helm
— showing chart values, Deploying Argo CD using Helm

— updated chart with SSL passthrough enabled, Securing
Argo CD

— updated chart with TLS enabled, Securing Argo CD
— Gitea installation, Repository Access-Repository Access
— high availability mode for Argo CD, High Availability

— sharding and, High Availability
— installation instructions online, Helm
— Kustomize processing Helm charts, Kustomize
— Mattermost installation, Installing Mattermost

— Notifications setup, Setting Up Argo CD Notifications-Setting Up
Argo CD Notifications

— Prometheus Stack installed, Installing Prometheus Stack-
Installing Prometheus Stack

— retrieving name of installed Stack, Configuring Argo CD for
Prometheus

— updating Argo CD installation, Configuring Argo CD for
Prometheus

— protected repositories, Protected Repositories-Enabling Reuse
Through Credential Templates

— about, Protected Repositories

— credential templates, Enabling Reuse Through Credential
Templates

— HTTPS credentials, HTTPS Credentials-HTTPS Credentials

— SSH-based authentication, SSH-Based Authentication-SSH-
Based Authentication

— repository management in Argo CD Projects, Resource
Management

— signature verification not supported, Enforcing Signature
Verification

— TLS repository certificates, Repository Access-Repository Access

— configuring, Configuring TLS Repository Certificates

— configuring declaratively, Configuring TLS Repository
Certificates

Hernandez, Christian, Directory structure resources

high availability for Argo CD, High Availability-High Availability

— multinode cluster needed for HA mode, High Availability
— standard deployment, High availability

— worker nodes in Kubernetes, High Availability

$HOMEDIR, The Argo CD Command-Line Interface (CLI)
HTTP connections redirected to HTTPS, Securing Argo CD

HTTPS credentials for protected repository, HTTPS Credentials-
HTTPS Credentials

hub-and-spoke design of clusters, Hub-and-Spoke Design

— cluster-scoped installation mode, Cluster Scoped

— push model, Hub-and-Spoke Design

hydrated manifests (see rendered manifests for no ambiguity)

I

IaC (see infrastructure as code (IaC))

identity services

— connectors, Dex

— Dex, Single Sign On (SSO)

— Dex OIDC, Dex

— Keycloak, SSO in action-SSO using the Argo CD CLI
IDP (internal developer platform), Argo CD
Image Updater (Argo CD), GitOps Promotions

— information online, GitOps Promotions

Impersonation (Kubernetes), Application Sync Impersonation

— Application synchronization (Argo CD), Application Sync
Impersonation-Deploying an Application with Impersonation

— about, Application Sync Impersonation
— enabling, Enable Sync with Impersonation

— service account, Define the Service Account to Use for
Impersonation

in-cluster
— keyword for destination, Deploying Your First Application

— local in-cluster, Cluster Architecture-Local Versus Remote
Clusters

— no need to define this cluster, How Clusters Are Defined

— updating configuration, How Clusters Are Defined-How
Clusters Are Defined

— namespace-scoped installation of Argo CD, Namespace Scoped

infrastructure as code (IaC)

— about GitOps, Preface

— configuration drift management, Configuration Drift,
Kubernetes Controller Pattern

— systems in sync, Comparison of GitOps Tools in the Ecosystem
ingress controller
— accessing Argo CD, The User Interface in Depth

— argocd login --grpc-web parameter, The Argo CD Command-
Line Interface (CLI)

installing Argo CD

— architecture of Argo CD, Argo CD Architecture-Argo CD Key
Patterns

— about, Installing Argo CD

— cluster credentials in Kubernetes Secret, How Clusters Are
Defined

— key patterns, Argo CD Key Patterns

— Kubernetes controller pattern, Kubernetes Controller
Pattern-Kubernetes Controller Pattern

— overview, Argo CD Architecture Overview-Notifications

— stateless architecture, Argo CD Key Patterns

— deploying Argo CD, Deploying Argo CD-Argo CD Operator
— admin password obtained, The Admin User
— Argo CD control plane, Cluster Management

— Argo CD Operator, Argo CD Operator

— changing default admin password, The Argo CD Command-

Line Interface (CLI), The Admin User, Securing Argo CD
— Helm charts, Deploying Argo CD using Helm
— Helm charts as book focus, Argo CD Operator
— high availability mode, High Availability-High Availability

— high availability mode in standard deployment, High
availability

— login username and password, Deploying Argo CD using
YAML manifests, The User Interface in Depth

— YAML manifests, Deploying Argo CD using YAML manifests-

Deploying Argo CD using YAML manifests
— installation, Installing Argo CD-Installation Types
— core installation, Installation Types
— installation options, Installation Types
— securing the server, Securing Argo CD
— testing, Deploying Argo CD using YAML manifests
— updated Helm chart with TLS enabled, Securing Argo CD

— installation modes, Installation Types, Argo CD Installation
Modes

— cluster scoped, Installation Types, Cluster Scoped

— namespace scoped, Installation Types, Namespace Scoped
internal developer platform (IDP), Argo CD
Intuit Argo Project, What Is Argo CD?, Argo CD
IP address via REMOTE_CLUSTER_IP, Creating a Cluster

J

Jobs (Kubernetes) in use case, Manifest Sync Wave Overview,
Seeing It in Action

jq tool, YAML/JSON Processing

— information online, Application-Level Diffing

— path for application-level diffing, Application-Level Diffing
JSON

— about jq and yq tools, YAML/JSON Processing

— path for application-level diffing, Application-Level Diffing
JSON Web Tokens (JWT), Auth tokens
Jsonnet supported by Argo CD, Beyond Helm and Kustomize
jsonpath period characters escaped, Adding Argo CD Health Checks

K
Kargo, GitOps Promotions
— website, GitOps Promotions

Keycloak, SSO in action-SSO using the Argo CD CLI

— admin login, SSO in action

— Argo CD configuration via ConfigMap, SSO in action-SSO using
direct OIDC

— Client ID and Secret in SSO configuration, SSO in action

— clients such as Argo CD, SSO in action-SSO in action
— Argo CD callback URLs, SSO in action

— groups via client scope, SSO in action-SSO in action
— dashboard, SSO in action
— exposing OIDC-compatible interface, SSO in action
— groups, SSO in action

— implementing SSO, SSO in action-SSO using the Argo CD CLI

— SSO using Argo CD CLI, SSO using the Argo CD CLI-SSO
using the Argo CD CLI

— SS0 using Dex, SSO using Dex-SSO using Dex
— SSO using direct OIDC, SSO using direct OIDC
— kind CoreDNS edited, SSO in action
— OpenSSL for SSL certificate, SSO in action
— realms, SSO in action
— users, SSO in action
kind
— about, kind
— CoreDNS edited, SSO in action
— create cluster, Deploying Argo CD using YAML manifests

— --name parameter, Deploying Argo CD using YAML
manifests

— database schema setup, Seeing It in Action-Seeing It in Action

— delete cluster, Deploying Argo CD using Helm

— installation instructions online, kind

— multiple-node cluster documentation online, High Availability
KIND_CLUSTER_NAME, Deploying Argo CD using YAML manifests
KUBECONFIG, Creating a Cluster

— unsetting, Creating a Cluster
kubeconfig file in creating a cluster, Creating a Cluster

kubectl

— about, Kubernetes Client
— admin account disabled, Disabling users

— Application controller restarted, Enable Sync with
Impersonation

— Application deleted, Deleting Applications
— authentication token management, Auth tokens

— ServiceAccount token, Adding a Cluster Declaratively
— clusters managed by Argo CD listed, Destinations

— clusters managed by Argo CD updated, Adding a Cluster
Declaratively

— config command options information online, Adding a Cluster
Declaratively

— context for newly created cluster, Deploying Argo CD using
YAML manifests

— create namespace, Deploying Argo CD using YAML manifests
— deploying Argo CD, Deploying Argo CD using YAML manifests
— get pods

— Helm deployment of Argo CD, Deploying Argo CD using
Helm

— YAML manifest deployment of Argo CD, Deploying Argo CD
using YAML manifests

— Grafana UI in terminal window, Accessing Grafana
— Keycloak Operator pods listed, SSO in action
— Kustomize support, Kustomize

— local user added, Local Users

— disabling user, Disabling users
— reinstating disabled user, Disabling users

— manifests deployed on a cluster listed, Deploying Your First
Application

— password secret for admin login, Deploying Argo CD using
YAML manifests, The User Interface in Depth, The Admin User

— deleting secret, The Admin User
— patching a running ConfigMap, Enable Sync with Impersonation

— port forwarding to connect to Argo CD, Deploying Argo CD
using YAML manifests

— ServiceAccount for remote cluster creation, Adding a Cluster
Declaratively

— synchronizing Applications, Managing How Applications Are
Synchronized

Kubernetes

— about, Preface, Introduction to Argo CD

— about Argo CD, What Is Argo CD?, Argo CD Architecture
— about GitOps, Preface

— about kind, Prerequisites

— about kubectl client, Kubernetes Client

— cluster sprawl challenge, Introduction to Argo CD

— controller pattern of Argo CD, Kubernetes Controller Pattern-
Kubernetes Controller Pattern

— Custom Resource Definitions, Kubernetes Controller
Pattern, Custom resources

— Deployment example, Kubernetes Controller Pattern
— operators, Kubernetes Controller Pattern
— declarative nature of, What Is Argo CD?, Why Argo CD?
— documentation site, Kubernetes Client
— retries for eventual consistency, Eventual Consistency
Kubernetes Impersonation (see Impersonation (Kubernetes))

Kustomize manifest tool, Kustomize

— ConfigManagementPlugin manifest with Helm, The
ConfigManagementPlugin Manifest

— Helm chart processing by, Kustomize
— kubectl support, Kustomize

— sync wave annotation, Manifest Sync Wave Overview-Manifest
Sync Wave Overview

L

liveness probes (Kubernetes), Importance of Probes

— as best practice for Applications, Set Up Probes

— Kubernetes documentation online, Importance of Probes, Set
Up Probes

local users, Local Users
— adding a local user, Local Users
— resetting password on creation, Local Users
— authentication tokens, Auth tokens-Auth tokens
— disabling, Disabling users
— reinstating disabled user, Disabling users
— password changed via argocd, Local Users
— password defined declaratively, Local Users

— viewing user information, Local Users

login username and password, Deploying Argo CD using YAML
manifests, The User Interface in Depth

— admin password obtained, The Admin User

— anonymous access, Anonymous Access

— changing default admin password, The Argo CD Command-Line
Interface (CLI), The Admin User, Securing Argo CD

— changing new local user password, Local Users
— password defined declaratively, Local Users

Lua, Argo CD Health Checks

managing Argo CD (see configuration of Argo CD)

manifests

— App-of-Apps versus Progressive Sync, Use Case: Using
Progressive Sync

— applying to kind instance, Seeing It in Action

— ConfigManagementPlugin manifest, Config Management
Plugins-The ConfigManagementPlugin Manifest

— configuration management avoiding duplication, The DRY
approach

— database schema setup use case, Argo CD Application
Overview

— sync waves, Manifest Sync Wave Overview-Manifest Sync
Wave Overview

— deploying Argo CD, Deploying Argo CD using YAML manifests-
Deploying Argo CD using YAML manifests

— Helm resource dynamic templating versus, Deploying Argo
CD using Helm

— deploying first Application, Deploying Your First Application

— Gitea repository as source, Repository Access

— listing manifests deployed on a cluster, Deploying Your First
Application

— rendered manifests for no ambiguity, Rendered Manifests
Pattern-Rendered Manifests Pattern

— efficient GitOps workflow, Merging strategy
— repository server (Argo CD), Repository Server
— retries, Eventual Consistency
— .spec.destination, Application Overview
— resource management, Resource Management
— .spec.source, Application Overview

— synchronization initiated manually, Managing How Applications
Are Synchronized

— yq to inspect for probes, Inspecting Probes

Mattermost, Notifications-Configuring Mattermost
— configuration, Configuring Mattermost-Configuring Mattermost

— bot token, Configuring Mattermost
— channel ID, Configuring Mattermost
— installation, Installing Mattermost
— Mattermost Operator, Installing Mattermost

microservices-based architecture of Argo CD, Installing Argo CD

— overview of architecture, Argo CD Architecture Overview-
Notifications

migrating a repository script, Setting Up Webhooks
monitoring, Monitoring-Accessing Grafana
— about, Monitoring

— Prometheus and Grafana for, Monitoring

— Argo CD metrics dashboard, Accessing Grafana
— configuring Argo CD, Configuring Argo CD for Prometheus
— Grafana, Accessing Grafana-Accessing Grafana

— Prometheus Stack installation, Installing Prometheus Stack-
Installing Prometheus Stack

— UI for monitoring, Monitoring
monorepo, How many repositories are needed?

multi-tenant installation of Argo CD

— about multi-tenancy, Multi-Tenancy
— core install versus multi-tenant, Installation Types

— dashboard for GitOps use case, Use Case: GitOps Dashboard-
Test Setup

— about, Use Case: GitOps Dashboard

— configuring Project, Configure Project

— creating Project, Create Project

— deploying Applications, Deploy Applications
— testing setup, Test Setup-Test Setup

— deploying via YAML manifests, Deploying Argo CD using YAML
manifests-Deploying Argo CD using YAML manifests

— installation modes of Argo CD, Installation Types, Argo CD
Installation Modes

— cluster scoped, Installation Types, Cluster Scoped

— namespace scoped, Installation Types, Namespace Scoped
— Projects, Projects

— default, Projects

— resource management, Resource Management-Resource
Management

namespace for deployment, Application Overview, Destinations

— syncOption CreateNamespace, Application-Level Options

namespace-scoped installation mode, Installation Types,
Namespace Scoped

— deleting namespace, Deploying Argo CD using Helm

— resource management in Projects, Resource Management-
Resource Management

namespaces denied in resource management, Resource
Management

NGINX, The User Interface in Depth

— about Ingress controllers, The User Interface in Depth
— proxy-buffer-size parameter, SSO using the Argo CD CLI
— TLS and too many redirects, Securing Argo CD

— TLS termination for Gitea, Repository Access

Notifications (Argo CD), Notifications-Setting Up Argo CD
Notifications

— about, Notifications, Notifications
— demonstrating use, Setting Up Argo CD Notifications

— Mattermost, Notifications-Configuring Mattermost

— bot token, Configuring Mattermost
— channel ID, Configuring Mattermost

— configuration, Configuring Mattermost-Configuring
Mattermost

— installation, Installing Mattermost
— Notification Services, Notifications

— setting up Notifications, Setting Up Argo CD Notifications-
Setting Up Argo CD Notifications

— triggers and templates pre-built, Notifications

— Helm chart to add, Setting Up Argo CD Notifications

Nunn, Gerald, Directory structure resources

o
OIDC (OpenID Connect) authentication, Single Sign On (SSO), SSO

online resources
— Argo CD
— Application options available, Application Overview

— Application specification, Deploying Applications to Multiple
Clusters

— Application sync with impersonation patch file, Enable Sync
with Impersonation

— Argo CD Project Git repository, Application Overview

— CLI client installation instructions, Argo CD CLI Client, The
Argo CD Command-Line Interface (CLI)

— cluster definition options, How Clusters Are Defined

— health checks by Argo CD documentation, Argo CD Health
Checks

— health checks by Argo CD that are built in, Argo CD Health
Checks

— health checks for Applications removed, Application Health
— Helm use documentation, Using Helm

— hook deletion policy documentation, Manifest Sync Wave
Overview

— source code, GitHub

— synchronizing Applications documentation, Managing How
Applications Are Synchronized

— system-level diffing documentation, System-Level Diffing
— UI login page, The User Interface in Depth
— website, Argo CD CLI Client
— Argo CD Image Updater information, GitOps Promotions
— Argo Project
— calendar of meetings about, Slack

— GitHub organization, GitHub

— Argo Rollouts website, Progressive Delivery

— argocd CLI client installation instructions, The Argo CD
Command-Line Interface (CLI)

— book exercises Git repository, Companion Git Repository
— App-of-Apps pattern, App-of-Apps Pattern

— Application sync with impersonation patch file, Enable Sync
with Impersonation

— config management plugin, Registering the Plugin
— database schema use case, Argo CD Application Overview
— Gitea installation Helm chart, Repository Access
— HTTPS-based credentials, HTTPS Credentials
— migrating a repository script, Setting Up Webhooks
— Prometheus Stack installation, Installing Prometheus Stack
— sidecar definition, Registering the Plugin
— SSO via Keycloak, SSO in action
— book web page, How to Contact Us
— Casbin authentication system, Argo CD RBAC Basics
— Cloud Native Computing Foundation website, Slack

— distributed denial-of-service attacks article, Setting Up
Webhooks

- Git
— book exercises repository, Companion Git Repository

— (see also book exercises Git repository)

— directory structure resources, Directory structure resources

— website for information and installation, Companion Git
Repository

— GitOps
— directory structure resources, Directory structure resources

— principles, GitOps Is Still Evolving

— GNU Privacy Guard command line tools, Enable Signature
Verification

— Helm

— Argo documentation for using Helm, Using Helm
— installation instructions, Helm

— jq expression language, Application-Level Diffing

— Kargo website, GitOps Promotions

— kind, kind
— installation instructions, kind

— multiple-node cluster documentation, High Availability

— kubectl config options information, Adding a Cluster
Declaratively

— Kubernetes

— documentation site, Kubernetes Client

— probe documentation, Importance of Probes, Set Up Probes

— OpenAPI information, Additional Methods for Managing Argo CD

— Prometheus Stack installation yaml file, Installing Prometheus
Stack

— Redis high availability documentation, High Availability
— Tekton website, CI/CD Integration via Tekton
— Telefonistka GitHub repository, GitOps Promotions
— twelve-factor app, Registering the Plugin
—yq information, Inspecting Probes
open source quote by Torvalds, Summary

OpenAPI specification for APIs, Additional Methods for Managing
Argo CD

— more information on OpenAPI online, Additional Methods for
Managing Argo CD

— Swagger UI for visualizing, Additional Methods for Managing
Argo CD

OpenID Connect (OIDC) authentication, Single Sign On (SSO), SSO
OpenSSL certificate for Keycloak, SSO in action
operationalizing Argo CD
— about, Operationalizing Argo CD
— high availability, High Availability-High Availability
— multinode cluster needed, High Availability
— standard deployment, High availability
— worker nodes in Kubernetes, High Availability

— monitoring, Monitoring-Accessing Grafana

— about, Monitoring

— Argo CD metrics dashboard, Accessing Grafana

— configuring Argo CD, Configuring Argo CD for Prometheus
— Grafana, Accessing Grafana-Accessing Grafana

— Prometheus and Grafana for monitoring, Monitoring

— Prometheus Stack installation, Installing Prometheus Stack-
Installing Prometheus Stack

— UI for monitoring, Monitoring

— Notifications, Notifications-Setting Up Argo CD Notifications

— about, Notifications, Notifications
— demonstrating use, Setting Up Argo CD Notifications
— Mattermost, Notifications-Configuring Mattermost

— Mattermost configuration, Configuring Mattermost-
Configuring Mattermost

— Mattermost installation, Installing Mattermost
— Notification Services, Notifications

— setting up, Setting Up Argo CD Notifications-Setting Up
Argo CD Notifications

— triggers and templates pre-built, Notifications

— triggers and templates via Helm, Setting Up Argo CD
Notifications

— scalability, Scalability-Sharding
— high availability with autoscaling, High Availability
— monitoring Argo CD consumption, Scaling Up

— (see also monitoring)

— scaling up, Scaling Up-Scaling Up

— sharding, Sharding-Sharding
Operator (Argo CD), Argo CD Operator
operators, Kubernetes Controller Pattern

Operators (Kubernetes), Custom resources, Comparing Options

P

parameters for customizing plugin execution, Parameters-
Parameters

— dynamic parameters, Parameters

— exposed to plugins as environment variables, Parameters,
Parameters

— static parameters, Parameters

password for admin login, Deploying Argo CD using YAML manifests,
The User Interface in Depth, The Admin User

— changing default admin password, The Argo CD Command-Line
Interface (CLI), The Admin User, Securing Argo CD

password for new local user, Local Users
— password defined declaratively, Local Users
$PATH, Helm

period character escaped in path string, Adding Argo CD Health
Checks

platform engineering, Argo CD

policies in RBAC

— about role-based access control, Argo CD RBAC Basics

— defaults, RBAC Defaults

— developer custom role, Custom Role Creation

— managing via CSV file, Argo CD RBAC Basics

— separate CSV files, Custom Role Creation

— Project-level configuration, Resource Management

— validating policy files, Custom Role Creation
polyrepo, How many repositories are needed?
prerequisites needed to get started, Prerequisites

probes

— App-of-Apps with sync waves use case, Inspecting Probes
— as best practice for Applications, Set Up Probes
— database schema setup use case, Importance of Probes

— Kubernetes documentation online, Importance of Probes, Set
Up Probes

production context for Argo CD, Installation Types
— high availability, High availability
— (see also high availability for Argo CD)
progressive delivery, Progressive Delivery

Progressive Synchronization (Argo CD), Progressive Sync, Use Case:
Using Progressive Sync

— alpha feature, Progressive Sync

— use case, Use Case: Using Progressive Sync-Use Case: Using
Progressive Sync

Projects (Argo CD), Projects

— creating Project, Create Project

— dashboard for GitOps use case, Use Case: GitOps Dashboard-
Test Setup

— about, Use Case: GitOps Dashboard
— configuring Project, Configure Project
— creating Project, Create Project
— deploying Applications, Deploy Applications
— testing setup, Test Setup-Test Setup
— default, Projects
— listing currently defined Projects, Create Project

— resource management, Resource Management-Resource
Management

— signature verification at Project level, Enforcing Signature
Verification

Prometheus
— about, Monitoring
— configuring Argo CD for, Configuring Argo CD for Prometheus
— Grafana, Accessing Grafana-Accessing Grafana
— metrics via ArgoCD Extension Metrics, UI Extensions

— Stack installation, Installing Prometheus Stack-Installing
Prometheus Stack

— about the Stack, Installing Prometheus Stack

— retrieving name of installed Stack, Configuring Argo CD for
Prometheus

push model of cluster hub-and-spoke design, Hub-and-Spoke Design

R

RBAC (see role-based access control (RBAC))
React basis of Argo CD, UI Extensions

readiness probes (Kubernetes), Importance of Probes

— as best practice for Applications, Set Up Probes

— Kubernetes documentation online, Importance of Probes, Set
Up Probes

readonly role in role-based access control, Argo CD RBAC Basics

reconciliation response time, Reconciliation Response Time-Setting
Up Webhooks

— modifying reconciliation, Modifying Reconciliation
— reconciliation loop, Reconciliation Response Time
— webhooks alongside, Reconciliation Response Time

— webhooks setup, Setting Up Webhooks-Setting Up
Webhooks

Redis, Redis
— high availability documentation online, High Availability

— volatile cache without long-term persistence, Argo CD Key
Patterns, High Availability

— worker nodes in Kubernetes, High Availability
REMOTE_CLUSTER_IP, Creating a Cluster

rendered manifests for no ambiguity, Rendered Manifests Pattern-
Rendered Manifests Pattern

— efficient GitOps workflow, Merging strategy
ReplicaSet (Argo CD), Kubernetes Controller Pattern

repo server (Argo CD), Repository Server

— config management tools, Config Management Plugins

— ConfigManagementPlugin manifest, Config Management
Plugins-The ConfigManagementPlugin Manifest

repositories needed, number of, How many repositories are needed?
— (see also Git; Gitea Git platform; Helm)
resource definitions as declarative, Argo CD Key Patterns

resource differences ignored

— application level, Application-Level Diffing
— system level, System-Level Diffing
resource generation by repository server, Repository Server

resource management in Projects, Resource Management-Resource
Management

— | for denying, Resource Management
— deny rules before allow rules, Resource Management
resource scaling per Argo CD component, Scaling Up

resources online (see online resources)

RESTful API, Additional Methods for Managing Argo CD
retries in manifest, Eventual Consistency
Richardson, Alexis, Origins of GitOps

role-based access control (RBAC), Role-Based Access Control-
Anonymous Access

— about RBAC in practice, Role-Based Access Control
— anonymous access, Anonymous Access

— AppProject or not-AppProject definition structures, Argo CD
RBAC Basics

— Argo CD CLI under governance of, Adding a Cluster
Declaratively

— basics of, Argo CD RBAC Basics-Argo CD RBAC Basics

— admin and readonly roles, Argo CD RBAC Basics, Custom
Role Creation

— custom role creation, Custom Role Creation

— policies
— about role-based access control, Argo CD RBAC Basics
— defaults, RBAC Defaults
— developer custom role, Custom Role Creation
— managing via CSV file, Argo CD RBAC Basics
— managing via separate CSV files, Custom Role Creation
— validating policy files, Custom Role Creation

— Project-level configuration, Resource Management

— dashboard for GitOps use case, Use Case: GitOps
Dashboard-Test Setup

— ServiceAccount for remote clusters, Adding a Cluster with the
CLI, Adding a Cluster Declaratively

— cluster-admin role built in, Adding a Cluster Declaratively
— User Info page in Argo CD Settings, The User Interface in Depth

rollback and disaster recovery, Rollback and Disaster Recovery

S

scalability, Scalability-Sharding

— determining how many repositories, How many repositories are
needed?

— high availability mode with autoscaling, High Availability
— monitoring Argo CD consumption, Scaling Up
— (see also monitoring)
— scaling up, Scaling Up-Scaling Up
— Argo CD components and, Scaling Up
— sharding, Sharding-Sharding
— about, Sharding

— Application controller replicas setting, High Availability,
Sharding

— assigning shards to clusters, Sharding
— default 10-second timeout, Sharding

— enabling, Sharding

— legacy versus round-robin algorithm, Sharding
— shard-to-cluster ratios, Sharding
Schnatterer, Johannes, Directory structure resources

Secrets (Argo CD)

— Argo CD server certificates defined, Generating Argo CD TLS
Certificates

— controller pattern, Kubernetes Controller Pattern

— managing Argo CD via, Additional Methods for Managing Argo
CD

Secrets (Kubernetes)
— cluster credentials, How Clusters Are Defined

— updating clusters, Adding a Cluster Declaratively

— clusters defined by, Adding a Cluster Declaratively-Adding a
Cluster Declaratively

— repository credentials, HTTPS Credentials, HTTPS Credentials

— security risk of storing in source code plain text, Adding a
Cluster Declaratively

security
— admin account disabled, Disabling users, Securing Argo CD

— Application sync impersonation, Application Sync
Impersonation-Deploying an Application with Impersonation

— about, Application Sync Impersonation

— enabling, Enable Sync with Impersonation

— service account, Define the Service Account to Use for
Impersonation

— Argo CD server secured, Securing Argo CD-Securing Argo CD
— authentication token expiration, Auth tokens

— authentication token scope, HTTPS Credentials

— Kubernetes API endpoint exposed, Creating a Cluster

— Kubernetes Secrets in source code plain text, Adding a Cluster
Declaratively

— passwords

— admin default changed, The Argo CD Command-Line
Interface (CLI), The Admin User, Securing Argo CD

— new local user changed, Local Users

— protected repositories, Protected Repositories-Enabling Reuse
Through Credential Templates

— about, Protected Repositories

— credential templates, Enabling Reuse Through Credential
Templates

— HTTPS credentials, HTTPS Credentials-HTTPS Credentials

— SSH-based authentication, SSH-Based Authentication-SSH-
Based Authentication

— signature verification enforced, Enforcing Signature Verification-
Signature Verification in Action

— about signature verification, Enforcing Signature
Verification

— disabling, Signature Verification in Action

— enabling, Enforcing Signature Verification

— Git or Git-type repositories only, Enforcing Signature
Verification

— GNU Privacy Guard on repository, Enforcing Signature
Verification

— GNU Privacy Guard—formatted public key, Enable Signature
Verification

— signature verification in action, Signature Verification in
Action-Signature Verification in Action

— signed commit against repository, Signature Verification in
Action

— TLS certificate configuration, Configuring TLS Certificates-
Configuring TLS Repository Certificates

— about trusting certificates, Configuring TLS Certificates

— generating Argo CD TLS certificates, Generating Argo CD
TLS Certificates-Generating Argo CD TLS Certificates

— TLS certificates via Cert Manager, Argo CD Health Checks

— TLS repository certificates, Repository Access-Repository Access

— configuring, Configuring TLS Repository Certificates

— configuring declaratively, Configuring TLS Repository
Certificates

— removing, Configuring TLS Repository Certificates
— restoring, Configuring TLS Repository Certificates
self-healing needing to be enabled, Application Sources

service accounts

— Application sync impersonation, Define the Service Account to
Use for Impersonation

— cluster-scoped deployment of Argo CD, Cluster Scoped

ServiceAccount created for remote clusters, Adding a Cluster with
the CLI, Adding a Cluster Declaratively

Settings page of UI (Argo CD), The User Interface in Depth

sharding, Sharding-Sharding
— about, Sharding

— Application controller replicas setting, High Availability,
Sharding

— assigning shards to clusters, Sharding
— default 10-second timeout, Sharding
— enabling, Sharding
— legacy versus round-robin algorithm, Sharding
— shard-to-cluster ratios, Sharding
sidecar pattern, Config Management Plugins, Registering the Plugin
— externalizing configurations principle, Registering the Plugin
— rules for property values, Registering the Plugin

signature verification enforced, Enforcing Signature Verification-
Signature Verification in Action

— about signature verification, Enforcing Signature Verification
— disabling, Signature Verification in Action

— enabling, Enforcing Signature Verification

— Git or Git-type repositories only, Enforcing Signature Verification

— GNU Privacy Guard on repository, Enforcing Signature
Verification

— GNU Privacy Guard—formatted public key, Enable Signature
Verification

— signature verification in action, Signature Verification in Action

— signed commit against repository, Signature Verification in
Action

single sign-on (SS0)
— about, Single Sign On (SS0), SSO
— Dex OIDC, Dex
— direct OIDC, Direct OIDC

— implementing SSO, SSO in action-SSO using the Argo CD CLI
— Keycloak setup, SSO in action-SSO in action

— SSO using Argo CD CLI, SSO using the Argo CD CLI-SSO
using the Argo CD CLI

— SS0 using Dex, SSO using Dex-SSO using Dex
— SSO using direct OIDC, SSO using direct OIDC
Slack for community interactions, Slack
— Argo-specific channels, Slack
— Kubernetes communities, Slack
source code repository for Argo CD, GitHub

.spec.destination, Application Overview

— resource management, Resource Management

— service accounts to impersonate, Define the Service Account to
Use for Impersonation

.spec.source, Application Overview

.spec.strategy for Progressive Sync, Use Case: Using Progressive
Sync

SSH-based authentication, SSH-Based Authentication-SSH-Based
Authentication

— about SSH, SSH-Based Authentication

— keys with passphrases not supported, SSH-Based
Authentication

— private and public key files, SSH-Based Authentication
— SSH hosts, Configuring TLS Repository Certificates
— ssh-keygen command, SSH-Based Authentication
— verification steps, SSH-Based Authentication
SSL certificate via OpenSSL, SSO in action
SSL passthrough support enabled, Securing Argo CD
SSO (see single sign-on (SS0))
starting up, Prerequisites
state of Kubernetes resource stored via Redis, Redis
stateless architecture of Argo CD, Argo CD Key Patterns

— status field for historical context, Argo CD Key Patterns

Swagger OpenAPI specification, Additional Methods for Managing
Argo CD

— Swagger UI for visualizing, Additional Methods for Managing
Argo CD

sync waves, Sync Waves-Sync Waves, Argo CD Application
Drawbacks

— App-of-Apps with sync waves use case, Use Case Setup-Use
Case: App-of-Apps with Sync Waves

— about setup, Use Case Setup

— Argo CD health check setup, Adding Argo CD Health
Checks

— probe setup, Inspecting Probes

— use case, Use Case: App-of-Apps with Sync Waves-Use
Case: App-of-Apps with Sync Waves

synchronization of Applications (Argo CD)

— Application sync impersonation, Application Sync
Impersonation-Deploying an Application with Impersonation

— about, Application Sync Impersonation

— deploying an Application with impersonation, Deploying an
Application with Impersonation

— enabling, Enable Sync with Impersonation

— service account, Define the Service Account to Use for
Impersonation

— automated synchronization, Managing How Applications Are
Synchronized

— compare-options annotation, Comparing Options

— hooks, Hooks

— deletion policies, Manifest Sync Wave Overview
— idempotent, Manifest Sync Wave Overview

— sync waves within, Sync Waves, Manifest Sync Wave
Overview

— ignoreDifferences annotation, Managing Resource Differences

— application level, Application-Level Diffing
— system level, System-Level Diffing

— initiating manually, Managing How Applications Are
Synchronized

— managing how Applications synchronized, Managing How
Applications Are Synchronized

— order of synchronization, Sync Order and Hooks

— Progressive Sync, Progressive Sync, Use Case: Using
Progressive Sync

— Progressive Sync as alpha feature, Progressive Sync

— Progressive Sync use case, Use Case: Using Progressive
Sync-Use Case: Using Progressive Sync

— sync waves, Sync Waves-Sync Waves, Argo CD Application
Drawbacks

— sync waves in database use case, Manifest Sync Wave
Overview-Manifest Sync Wave Overview

— syncOptions, Sync Options
— Application level, Application-Level Options

— first deployed Application, Deploying Your First Application

— resource level, Resource-Level Options
— syncPolicy

— automated synchronization, Managing How Applications
Are Synchronized

— database schema use case, Argo CD Application Overview
— first deployed Application, Deploying Your First Application

— use case of database schema setup, Use Case: Database
Schema Setup-Seeing It in Action

— about, Use Case: Database Schema Setup
— importance of probes, Importance of Probes

— manifest sync wave, Manifest Sync Wave Overview-
Manifest Sync Wave Overview

— repository of artifacts, Argo CD Application Overview
— seeing it in action, Seeing It in Action-Seeing It in Action
— viewing manifest, Argo CD Application Overview

system-level diffing, System-Level Diffing

T

Tekton, CI/CD Integration via Tekton-Triggering Tekton Pipelines
— about, CI/CD Integration via Tekton

— building a Tekton pipeline, Building a Tekton Pipeline-Building a
Tekton Pipeline

— about pipelines, Building a Tekton Pipeline

— actions of pipeline, Building a Tekton Pipeline

— components, Building a Tekton Pipeline
— Custom Resource Definitions, Building a Tekton Pipeline
— projects, CI/CD Integration via Tekton

— triggering Tekton pipelines, Triggering Tekton Pipelines-
Triggering Tekton Pipelines

— trigger entities, Triggering Tekton Pipelines
— website, CI/CD Integration via Tekton
Telefonistka (Wayfair), GitOps Promotions
— GitHub repository, GitOps Promotions

templating engine for Applications, ApplicationSets

— generators as parameters fed to, ApplicationSets
tenants, Multi-Tenancy
TLS

— Cert Manager, Argo CD Health Checks

— certificate chain, Generating Argo CD TLS Certificates-
Generating Argo CD TLS Certificates

— root certificate, Generating Argo CD TLS Certificates-
Generating Argo CD TLS Certificates

— TLS certificate added for Gitea, Configuring TLS Repository
Certificates

— certificate self-signed by Argo CD, Deploying Argo CD using
YAML manifests, Securing Argo CD

— certificate via ingress controller, The User Interface in Depth

— certificates and repository access, Repository Access-Repository
Access

— configuring certificates, Configuring TLS Certificates-Configuring
TLS Repository Certificates

— about trusting certificates, Configuring TLS Certificates

— generating Argo CD TLS certificates, Generating Argo CD
TLS Certificates-Generating Argo CD TLS Certificates

— enabled in Argo CD server, Securing Argo CD-Securing Argo CD
— Gitea configuration, Repository Access

— HTTPS credentials for protected repository, HTTPS Credentials-
HTTPS Credentials

— Secret Argo CD server certificates defined in, Generating Argo
CD TLS Certificates

— TLS repository certificates
— configuring, Configuring TLS Repository Certificates

— configuring declaratively, Configuring TLS Repository
Certificates

— removing, Configuring TLS Repository Certificates
— restoring, Configuring TLS Repository Certificates
Torvalds, Linus, Summary

twelve-factor app, Registering the Plugin

U

UI (Argo CD)

— API server for, API server

— App-of-Apps with sync waves use case, Use Case: App-of-Apps
with Sync Waves-Use Case: App-of-Apps with Sync Waves

— Application synchronization

— database schema setup use case, Seeing It in Action-
Seeing It in Action

— Enable Auto-Sync button for automated, Managing How
Applications Are Synchronized

— Sync button for manual initiation, Managing How
Applications Are Synchronized

— Argo CD configuration options, API server, The User Interface in
Depth-The User Interface in Depth

— Argo CD key feature, Deploying Argo CD using YAML manifests
— CLI for other properties, The User Interface in Depth

— credential template setup, Enabling Reuse Through Credential
Templates

— customization, User Interface Customization-UI Extensions

— ArgoCD Extension Metrics for Prometheus metrics, Ul
Extensions

— banner notifications, Banner Notifications
— Cascading Style Sheets, Custom Styles-Custom Styles
— UI extensions, UI Extensions-UI Extensions

— dashboard, Deploying Argo CD using YAML manifests

— explanation in depth, The User Interface in Depth-The User
Interface in Depth

— NGINX Ingress resources, The User Interface in Depth-The
User Interface in Depth

— Flux versus Argo CD, Comparison of Flux and Argo CD
— local user login access, Local Users
— monitoring Argo CD, Monitoring

— port-forward tunnel to access, Deploying Argo CD using YAML
manifests

— Ingress controller instead, The User Interface in Depth

— NGINX Ingress resources instead, The User Interface in
Depth-The User Interface in Depth

— self-signed TLS certificate, Deploying Argo CD using YAML
manifests

— repository credentials, HTTPS Credentials, HTTPS Credentials
— CLI versus UI, HTTPS Credentials

— Settings page, The User Interface in Depth

— TLS certificate added for Gitea, Configuring TLS Repository
Certificates

— User Info page, The User Interface in Depth

use cases

— App-of-Apps with sync waves, Use Case Setup-Use Case: App-
of-Apps with Sync Waves

— about setup, Use Case Setup

— Argo CD health check setup, Adding Argo CD Health
Checks

— probe setup, Inspecting Probes

— dashboard for GitOps, Use Case: GitOps Dashboard-Test Setup
— about, Use Case: GitOps Dashboard

— configuring Project, Configure Project

— creating Project, Create Project

— deploying Applications, Deploy Applications
— testing setup, Test Setup-Test Setup

— database schema setup, Use Case: Database Schema Setup-
Seeing It in Action

— about, Use Case: Database Schema Setup
— importance of probes, Importance of Probes

— manifest sync wave, Manifest Sync Wave Overview-
Manifest Sync Wave Overview

— repository of artifacts, Argo CD Application Overview
— seeing it in action, Seeing It in Action-Seeing It in Action
— viewing manifest, Argo CD Application Overview

— Progressive Synchronization, Use Case: Using Progressive Sync-
Use Case: Using Progressive Sync

User Info page of UI (Argo CD), The User Interface in Depth
user interface (see CLI via argocd client; UI (Argo CD))
user management

— about, Authentication and Authorization

—admin, The Admin User

— about, Managing Users

— changing default password, The Argo CD Command-Line
Interface (CLI), The Admin User, Securing Argo CD

— disabling account, Disabling users, Securing Argo CD

— login and password, Deploying Argo CD using YAML
manifests, The User Interface in Depth

— obtaining admin password, The Admin User
— anonymous access, Anonymous Access
— getting user information, The Admin User, Local Users

— local users, Local Users-Auth tokens

— apiKey for authentication tokens, Local Users, Auth tokens
— authentication tokens, Auth tokens-Auth tokens

— authentication tokens per user displayed, Auth tokens
— disabling, Disabling users

— login access to web UI, Local Users

— new local user defined, Local Users

— new local user password reset, Local Users

— password changed via argocd, Local Users

— password defined declaratively, Local Users

— reinstating disabled user, Disabling users

— viewing user information, The Admin User, Local Users

— role-based access control, Role-Based Access Control-
Anonymous Access

— about RBAC in practice, Role-Based Access Control

— admin and readonly roles, Argo CD RBAC Basics, Custom
Role Creation

— AppProject or not-AppProject definition structures, Argo CD
RBAC Basics

— basics of, Argo CD RBAC Basics-Argo CD RBAC Basics

— custom role creation, Custom Role Creation

— default policies, RBAC Defaults

— policies, Argo CD RBAC Basics

— policies for developer custom role, Custom Role Creation
— policies managed via CSV file, Argo CD RBAC Basics

— policies managed via separate CSV files, Custom Role
Creation

— policy files validated, Custom Role Creation

— User Info page in Argo CD Settings, The User Interface in
Depth

— single sign-on to external tools, SSO-SSO using the Argo CD CLI
— about, Single Sign On (SS0), SSO
— Dex OIDC, Dex
— direct OIDC, Direct OIDC

— implementing SSO, SSO in action-SSO using the Argo CD
CLI

— Keycloak setup, SSO in action-SSO in action

— SSO using Argo CD CLI, SSO using the Argo CD CLI-SSO
using the Argo CD CLI

— SSO using Dex, SSO using Dex-SSO using Dex
— SSO using direct OIDC, SSO using direct OIDC

W

Wayfair Telefonistka, GitOps Promotions
Weaveworks, Origins of GitOps
— Flux, Comparison of GitOps Tools in the Ecosystem
web app deployment, Seeing It in Action
— probes, Importance of Probes
web UI (Argo CD)
— API server for, API server

— App-of-Apps with sync waves use case, Use Case: App-of-Apps
with Sync Waves-Use Case: App-of-Apps with Sync Waves

— Application synchronization

— database schema setup use case, Seeing It in Action-
Seeing It in Action

— Enable Auto-Sync button for automated, Managing How
Applications Are Synchronized

— Sync button for manual initiation, Managing How
Applications Are Synchronized

— Argo CD configuration options, API server, The User Interface in
Depth-The User Interface in Depth

— Argo CD key feature, Deploying Argo CD using YAML manifests
— CLI for other properties, The User Interface in Depth

— credential template setup, Enabling Reuse Through Credential
Templates

— customization, User Interface Customization-UI Extensions

— ArgoCD Extension Metrics for Prometheus metrics, Ul
Extensions

— banner notifications, Banner Notifications
— Cascading Style Sheets, Custom Styles-Custom Styles
— UI extensions, UI Extensions-UI Extensions

— dashboard, Deploying Argo CD using YAML manifests

— explanation in depth, The User Interface in Depth-The User
Interface in Depth

— NGINX Ingress resources, The User Interface in Depth-The
User Interface in Depth

— Flux versus Argo CD, Comparison of Flux and Argo CD
— local user login access, Local Users
— monitoring Argo CD, Monitoring

— port-forward tunnel to access, Deploying Argo CD using YAML
manifests

— Ingress controller instead, The User Interface in Depth

— login username and password, Deploying Argo CD using
YAML manifests

— NGINX Ingress resources instead, The User Interface in
Depth-The User Interface in Depth

— self-signed TLS certificate, Deploying Argo CD using YAML
manifests

— repository credentials, HTTPS Credentials, HTTPS Credentials
— CLI versus UI, HTTPS Credentials
— Settings page, The User Interface in Depth

— TLS certificate added for Gitea, Configuring TLS Repository
Certificates

— User Info page, The User Interface in Depth

webhooks

— importance of in CI/CD workflow, Setting Up Webhooks
— Notifications of Argo CD, Notifications
— reconciliation loop association, Reconciliation Response Time

— setting up webhooks, Setting Up Webhooks-Setting Up
Webhooks

workflow best practices, GitOps Workflow Best Practices-Merging
strategy

— about Argo Workflows, The Argo Ecosystem

workloads

— registering into Kubernetes via Deployments, Kubernetes
Controller Pattern

Y

YAML
— about jg and yq tools, YAML/JSON Processing

— configuration management avoiding duplication, The DRY
approach

— manifests for deploying Argo CD, Deploying Argo CD using
YAML manifests-Deploying Argo CD using YAML manifests

— Helm resource dynamic templating versus, Deploying Argo
CD using Helm

yq tool, YAML/JSON Processing

— information online, Inspecting Probes

— inspecting manifests for probes, Inspecting Probes

About the Authors

Andrew Block is a distinguished architect at Red Hat who works
with organizations throughout the world to design and implement
solutions leveraging cloud native and emerging technologies. He
specializes in embracing security at every phase of the software
development lifecycle and delivering software in a repeatable and
consistent manner. Andrew has authored several publications
related to the cloud native ecosystem including Managing
Kubernetes Resources Using Helm and Kubernetes Secrets
Management in order to share his knowledge with others. He holds
several roles in the open source community and is a core maintainer
of Helm, a package manager for Kubernetes.

Christian Hernandez is a well-rounded technologist with
experience in infrastructure engineering, systems administration,
enterprise architecture, tech support, advocacy, and product
management. Passionate about open source and containerizing the
world one application at a time, he is currently a maintainer of the
OpenGitOps project, a member of the Argo Project, and the head of
community at Akuity. He focuses on GitOps practices, DevOps,
Kubernetes, and Containers.

Colophon

The animal on the cover of Argo CD: Up and Running is a starry
night octopus (Callistoctopus luteus). This animal’s skin is reddish-
brown and adorned with small white iridescent spots that give the
species its evocative common name. It is found in warm tropical
and subtropical oceans in the Indo-Pacific region, including near the
countries of Indonesia, Australia, and the Philippines.

The starry night octopus has long, slender arms that are often up to
three times the length of its body. It is nocturnal and lives near
coral reefs or rubble-strewn areas, which provide plenty of crevices
in which to hide as well as ample prey. This octopus primarily eats
small crustaceans, mollusks, and fish—it is an exceptional hunter
with high intelligence, problem-solving skills, and the ability to
camouflage itself.

This octopus species is still relatively understudied by scientists,
though it is believed to be mostly solitary and have a lifespan of
only a few years (which is common for octopi). Despite its striking
“star-studded” appearance, it is not often seen by divers or marine
biologists due to its nocturnal lifestyle and highly effective
camouflage.

Many of the animals on O'Reilly covers are endangered; all of them
are important to the world.

The cover illustration is by Karen Montgomery, based on an antique
engraving from Oceanworld. The cover fonts are Gilroy Semibold
and Guardian Sans. The text font is Adobe Minion Pro; the heading
font is Adobe Myriad Condensed; and the code font is Dalton Maag’s
Ubuntu Mono.

	Preface
	Who Should Read This Book
	Why We Wrote This Book
	Navigating This Book
	What This Book Will Not Cover
	Prerequisites
	kind
	Helm
	Kubernetes Client
	Argo CD CLI Client
	YAML/JSON Processing
	Companion Git Repository

	Conventions Used in This Book
	Using Code Examples
	O’Reilly Online Learning
	How to Contact Us
	Acknowledgments

	1. Introduction to Argo CD
	What Is Argo CD?
	Why Argo CD?
	Unifying Application Definitions
	Configuration Drift
	Rollback and Disaster Recovery

	The GitOps Movement
	Origins of GitOps
	OpenGitOps Principles

	Comparison of GitOps Tools in the Ecosystem
	Flux
	Argo CD
	Comparison of Flux and Argo CD

	The Argo Ecosystem
	Summary

	2. Installing Argo CD
	Argo CD Architecture
	Kubernetes Controller Pattern
	Argo CD Architecture Overview
	Argo CD Key Patterns

	Installing Argo CD
	Installation Types
	Deploying Argo CD

	Summary

	3. Interacting with Argo CD
	The User Interface in Depth
	The Argo CD Command-Line Interface (CLI)
	Additional Methods for Managing Argo CD
	Summary

	4. Managing Applications
	Application Overview
	Application Sources
	Git
	Helm

	Destinations
	Tools
	Helm
	Kustomize
	Beyond Helm and Kustomize

	Deploying Your First Application
	Deleting Applications
	Finalizers

	Summary

	5. Synchronizing Applications
	Managing How Applications Are Synchronized
	Sync Options
	Application-Level Options
	Resource-Level Options

	Sync Order and Hooks
	Hooks
	Sync Waves

	Comparing Options
	Managing Resource Differences
	Application-Level Diffing
	System-Level Diffing

	Use Case: Database Schema Setup
	Argo CD Application Overview
	Manifest Sync Wave Overview
	Importance of Probes
	Seeing It in Action

	Summary

	6. Authentication and Authorization
	Managing Users
	The Admin User
	Local Users
	SSO

	Role-Based Access Control
	Argo CD RBAC Basics
	Custom Role Creation
	RBAC Defaults
	Anonymous Access

	Summary

	7. Cluster Management
	Cluster Architecture
	Local Versus Remote Clusters
	Hub-and-Spoke Design
	How Clusters Are Defined

	Adding Remote Clusters
	Creating a Cluster
	Adding a Cluster with the CLI
	Adding a Cluster Declaratively

	Deploying Applications to Multiple Clusters
	App-of-Apps Pattern
	Using Helm
	ApplicationSets

	Summary

	8. Multi-Tenancy
	Argo CD Installation Modes
	Cluster Scoped
	Namespace Scoped

	Projects
	Resource Management
	Use Case: GitOps Dashboard
	Create Project
	Deploy Applications
	Configure Project
	Test Setup

	Summary

	9. Security
	Securing Argo CD
	Configuring TLS Certificates
	Generating Argo CD TLS Certificates
	Repository Access
	Configuring TLS Repository Certificates

	Protected Repositories
	HTTPS Credentials
	SSH-Based Authentication
	Enabling Reuse Through Credential Templates

	Enforcing Signature Verification
	Enable Signature Verification
	Signature Verification in Action

	Application Sync Impersonation
	Enable Sync with Impersonation
	Define the Service Account to Use for Impersonation
	Deploying an Application with Impersonation

	Summary

	10. Applications at Scale
	Argo CD Application Drawbacks
	Consideration and Best Practices
	Set Up Probes
	Argo CD Health Checks
	Application Health

	Eventual Consistency
	Use Case Setup
	Inspecting Probes
	Adding Argo CD Health Checks

	Use Case: App-of-Apps with Sync Waves
	ApplicationSets
	Progressive Sync

	Use Case: Using Progressive Sync
	Summary

	11. Extending Argo CD
	Config Management Plugins
	The ConfigManagementPlugin Manifest
	Registering the Plugin
	Customizing Plugin Execution
	Environment Variables
	Parameters

	User Interface Customization
	Banner Notifications
	Custom Styles
	UI Extensions

	Summary

	12. Integrating CI with Argo CD
	Reconciliation Response Time
	Modifying Reconciliation
	Setting Up Webhooks

	CI/CD Integration via Tekton
	Building a Tekton Pipeline
	Triggering Tekton Pipelines

	Summary

	13. Operationalizing Argo CD
	Monitoring
	Installing Prometheus Stack
	Configuring Argo CD for Prometheus
	Accessing Grafana

	Notifications
	Installing Mattermost
	Configuring Mattermost
	Setting Up Argo CD Notifications

	High Availability
	Scalability
	Scaling Up
	Sharding

	Summary

	14. Future Considerations
	GitOps Is Still Evolving
	GitOps Directory Structure Considerations
	Rendered Manifests Pattern
	GitOps Workflow Best Practices

	Interacting with the Community
	Slack
	GitHub

	Next Steps
	Progressive Delivery
	GitOps Promotions

	Summary

	Index
	About the Authors

