O'REILLY"

Q
(o)
%

0/’;}.

%

Certified Kubernetes
Application Developer

(CKAD) Study Guide

In-Depth Guidance and Practice

Benjamin Muschko
Foreword by Chris Aniszczyk

Praise for Certified Kubernetes Application Developer
(CKAD) Study Guide

Benjamin Muschko is a cloud native guru and has expanded and
sharpened this CKAD study guide. There is much to learn in
Kubernetes, yet Ben keeps his focus on the concepts that are
expected in the exam. Add this guide to ease your journey toward
certification or to simply be a well-informed cloud native
developer.

—Jonathan Johnson, Independent Software Architect

A direct, example-driven guide essential for CKAD exam
preparation.

—aBilgin Ibryam, Coauthor of Kubernetes Patterns,
Principal Product Manager at Diagrid

/,

As someone who oversaw the creation of the CKAD in CNCF, I'm
happy to see an updated study guide that covers the latest

version of the ever evolving certification.
—Chris Aniszczyk, CTO and Cofounder, CNCF

Certified Kubernetes
Application Developer (CKAD)
Study Guide

SECOND EDITION
In-Depth Guidance and Practice

Benjamin Muschko
Foreword by Chris Aniszczyk

OREILLY"

Certified Kubernetes Application Developer (CKAD) Study
Guide

by Benjamin Muschko
Copyright © 2024 Automated Ascent LLC. All rights reserved.
Printed in the United States of America.

Published by O'Reilly Media, Inc., 1005 Gravenstein Highway North,
Sebastopol, CA 95472.

O'Reilly books may be purchased for educational, business, or sales
promotional use. Online editions are also available for most titles
(http://oreilly.com). For more information, contact our
corporate/institutional sales department: 800-998-9938 or
corporate@oreilly.com.

Acquisitions Editor: John Devins
Development Editor: Virginia Wilson
Production Editor: Beth Kelly

Copyeditor: Piper Editorial Consulting, LLC
Proofreader: Helena Stirling

Interior Designer: David Futato

Cover Designer: Karen Montgomery

Illustrator: Kate Dullea

February 2021: First Edition
June 2024: Second Edition

http://oreilly.com/

Revision History for the Second Edition
o 2024-5-22: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781098152864 for
release details.

The O'Reilly logo is a registered trademark of O'Reilly Media, Inc.
Certified Kubernetes Application Developer (CKAD) Study Guide, the
cover image, and related trade dress are trademarks of O'Reilly
Media, Inc.

The views expressed in this work are those of the author and do not
represent the publisher’s views. While the publisher and the author
have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and
the author disclaim all responsibility for errors or omissions,
including without limitation responsibility for damages resulting
from the use of or reliance on this work. Use of the information and
instructions contained in this work is at your own risk. If any code
samples or other technology this work contains or describes is
subject to open source licenses or the intellectual property rights of
others, it is your responsibility to ensure that your use thereof
complies with such licenses and/or rights.

978-1-098-16949-7

http://oreilly.com/catalog/errata.csp?isbn=9781098152864

Foreword

The software development landscape is rapidly evolving, and cloud-
native technologies are at the forefront of this change. The Cloud
Native Computing Foundation (CNCF) is one of the largest open
source communities in the world with over 190 open source projects
and has 200,000+ contributors worldwide improving the state of
cloud native every day. From my experience as the cofounder and
CTO, it can be fairly tricky to understand where you should begin to
explore this vast cloud native landscape.

This study guide prepares you well for the Certified Kubernetes
Application Developer (CKAD), which covers Kubernetes skills from
the perspective of an application developer. In my opinion, having
detailed examples is critical in passing the CKAD and this book has
many of them. Ben covers all the topics required to successfully
pass the certification and even lays some groundwork for future
advanced certifications like the Certified Kubernetes Security
Specialist (CKS). What's more, reading this book will give you the
practice you need to become a more forward-thinking professional
who embraces modern and open source development practices.

Kubernetes is one project that is at the heart of the open source
cloud native movement, enabling developers to build, deploy, and
scale applications with agility. Kubernetes certifications are
incredibly popular with more than 100K+ registrations to date. We
designed the CKAD certification to be focused on the application
developer and provide a solid foundation for the fundamentals of
Kubernetes and cloud native open source skills. Earning it validates
your understanding of these critical technologies, and signifies your
commitment to continuous learning and staying ahead of the curve.
Furthermore, the knowledge you gain here will empower you to
effectively deploy and manage cloud native applications (a skill in
high demand across various industries), help open doors to exciting
career opportunities, and demonstrate your ability to thrive in the
constant dynamic world of cloud native.

https://landscape.cncf.io/

I wish you luck in your cloud native career journey; and once you
pass, come join us at the contribute.cncf.io community.

Chris Aniszczyk

CTO and Cofounder, CNCF
Austin, TX

March 12, 2024

Preface

Microservices architecture is one of the hottest areas of application
development today, particularly for cloud-based, enterprise-scale
applications. The benefits of building applications using small,
single-purpose services are well documented. But managing what
can be enormous numbers of containerized services is no easy task
and requires the addition of an “orchestrator” to keep it all together.
Kubernetes is among the most popular and broadly used tools for
this job, so it's no surprise that the ability to use, troubleshoot, and
monitor Kubernetes as an application developer is in high demand.
To provide job seekers and employers a standard means to
demonstrate and evaluate proficiency in developing with a
Kubernetes environment, the Cloud Native Computing Foundation
(CNCF) developed the Certified Kubernetes Application Developer
(CKAD) program. To achieve this certification, you need to pass an
exam.

The CKAD is not to be confused with the Certified Kubernetes
Administrator (CKA). While there is some topic overlap, the CKA
focuses mostly on Kubernetes cluster administration tasks rather
than developing applications operated in a cluster.

In this study guide, I will explore the topics covered in the CKAD
exam to fully prepare you to pass the certification exam. We'll look
at determining when and how you should apply the core concepts of
Kubernetes to manage an application. We'll also examine the
kubectl command-line tool, a mainstay of the Kubernetes
engineer. I will also offer tips to help you better prepare for the
exam and share my personal experience with getting ready for all
aspects of it.

https://www.cncf.io/training/certification/ckad/
https://www.cncf.io/training/certification/ckad/
https://www.cncf.io/training/certification/cka/
https://www.cncf.io/training/certification/cka/

The CKAD is different from the typical multiple-choice format of
other certifications. It's completely performance based and requires
you to demonstrate deep knowledge of the tasks at hand under

immense time pressure. Are you ready to pass the test on the first
go?

Who This Book Is For

This book is for developers who want to prepare for the CKAD
exam. The content covers all aspects of the exam curriculum,

though basic knowledge of the Kubernetes architecture and its
concepts is expected.

If you are completely new to Kubernetes, I recommend that you
first read Kubernetes: Up and Running by Brendan Burns, Joe Beda,
Kelsey Hightower, and Lachlan Evenson (O'Reilly) or Kubernetes in
Action by Marko LukSa (Manning Publications).

What You Will Learn

The content of the book condenses the most important aspects of
the CKAD exam. Given the plethora of configuration options
available in Kubernetes, it's impossible to cover all use cases and
scenarios without duplicating the official documentation. Test takers
are encouraged to reference the Kubernetes documentation as the
go-to compendium for broader exposure.

The outline of the book follows the CKAD curriculum. While there
might be a more natural, didactic structure for learning Kubernetes
in general, the curriculum outline will help test takers prepare for
the exam by focusing on specific topics. As a result, you will cross-
reference other chapters of the book depending on your existing
knowledge level. Be aware that this book covers only the concepts
relevant to the CKAD exam. Refer to the Kubernetes documentation
or other books if you want to dive deeper.

Practical experience with Kubernetes is key to passing the exam.
Each chapter contains a section named “"Sample Exercises” with
practice questions. Solutions to those questions can be found in

https://kubernetes.io/docs/home

Appendix A. You can get additional hands-on training by working
through the 40+ labs in the CKAD Exam Prep Labs playlist.

What's New in the Second Edition

The CNCF periodically updates all Kubernetes certifications to keep
up with the latest developments in the field. In September 2021,
the CKAD curriculum received a major overhaul. The organization of
existing topics has been changed, and new topics have been added,
making the certification more relevant and applicable to Kubernetes
practitioners in real-world scenarios.

Compared to the first edition of the book, about 80% of the content
hasn't changed. The new curriculum includes the following topics:

Deployment strategies

The coverage of deployment strategies goes beyond the ones
directly supported by the Deployment primitive. You will need to
understand how to implement and manage blue/green
deployments and canary deployments.

Helm

Helm is a tool that automates the bundling, configuration, and
deployment of Kubernetes applications by combining your
configuration files into a single reusable package. You will need
to understand how to use Helm for discovering and installing
existing Helm charts.

API deprecations

You need to be aware of Kubernetes' release process and what it
means to the usage of APIs that are deprecated and removed.
You will learn how to handle situations that require you to switch
to a newer or replaced API version.

https://learning.oreilly.com/playlists/2e9fe6dc-2a05-47fe-ae0a-34d6485287cc/
https://training.linuxfoundation.org/ckad-program-change-2021/

Custom Resource Definitions (CRDs)

CRDs allow for extending the Kubernetes API by creating your
own custom resource types. You need to aware of how to create
CRDs, as well as how to manage objects based on the CRD type.

Authentication, authorization, and admission control

Every call to the Kubernetes API needs to be authenticated. As
daily users of kubect1, application developers need to
understand how to manage and use their credentials. Once
authenticated, the request to the API also needs to pass the
authorization phase. You need a rough understanding of role-
based access control (RBAC), the concept that guards access to
Kubernetes resources. Admission control is a topic covered by
the CKA and Certified Kubernetes Security Specialist (CKS)
exams, and therefore I'll just scratch the surface of this aspect.

Ingress

You will want to expose your customer-facing applications
running in Kubernetes to outside consumers. The Ingress
primitive routes HTTPS traffic to one of many Service backends.
The Ingress is now part of the CKAD curriculum.

Additionally, I included an “Exam Review Guide” in Appendix B that
maps curriculum topics to the corresponding chapters in the book
plus coverage of the topic in the Kubernetes documentation.

The previous version of the CKAD curriculum included two topics
that have been removed: “Create and configure basic Pods” and
“Understand how to use Labels, Selectors, and Annotations.” This
book covers both topics, even though they haven't been mentioned
explicitly. Pods are essential for running workload in Kubernetes, so
you'll definitely need to know about them. Chapter 5 explains the
ins and outs. Given that labels and label selection are such

important concepts to understand for primitives like the
Deployment, Service, and Network Policies, I kept a dedicated
chapter named Labels and Annotations.

Conventions Used in This Book
The following typographical conventions are used in this book:
Italic
Indicates new terms, URLs, email addresses, filenames, and file
extensions.
Constant width

Used for program listings, as well as within paragraphs to refer
to program elements such as variable or function names,
databases, data types, environment variables, statements, and
keywords.

Constant width bold
Shows commands or other text that should be typed literally by
the user.

Constant width italic

Shows text that should be replaced with user-supplied values or
by values determined by context.

TIP

This element signifies a tip or suggestion.

NOTE

This element signifies a general note.

This element indicates a warning or caution.

Using Code Examples

The source code for all examples and exercises in this book is
available on GitHub. The repository is distributed under the Apache
License 2.0. The code is free to use in commercial and open source
projects. If you encounter an issue in the source code or if you have
a question, open an issue in the GitHub issue tracker. I'm happy to
have a conversation and fix any issues that might arise.

This book is here to help you get your job done. In general, if
example code is offered with this book, you may use it in your
programs and documentation. You do not need to contact us for
permission unless you're reproducing a significant portion of the
code. For example, writing a program that uses several chunks of
code from this book does not require permission. Selling or
distributing examples from O'Reilly books does require permission.
Answering a question by citing this book and quoting example code
does not require permission. Incorporating a significant amount of
example code from this book into your product’s documentation
does require permission.

We appreciate, but generally do not require, attribution. An
attribution usually includes the title, author, publisher, and ISBN. For
example: “Certified Kubernetes Application Developer (CKAD) Study
Guide, by Benjamin Muschko (O'Reilly). Copyright 2024 Automated
Ascent, LLC, 978-1-098-16949-7."

https://github.com/bmuschko/ckad-study-guide
https://github.com/bmuschko/ckad-study-guide/issues

If you feel your use of code examples falls outside fair use or the
permission given above, feel free to contact us at
permissions@oreilly.com.

O’Reilly Online Learning

NOTE

For more than 40 years, O’Reilly Media has provided technology and
business training, knowledge, and insight to help companies succeed.

Our unique network of experts and innovators share their
knowledge and expertise through books, articles, and our online
learning platform. OReilly’s online learning platform gives you on-
demand access to live training courses, in-depth learning paths,
interactive coding environments, and a vast collection of text and
video from O'Reilly and 200+ other publishers. For more
information, visit http://oreilly.com.

How to Contact Us

Please address comments and questions concerning this book to the
publisher:

O'Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)

mailto:permissions@oreilly.com
http://oreilly.com/
http://oreilly.com/

707-827-0515 (international or local)

707-829-0104 (fax)

We have a web page for this book, where we list errata, examples,
and any additional information. You can access this page at
https://oreil.ly/ckad-2ed.

Email bookquestions@oreilly.com to comment or ask technical
questions about this book.

For news and information about our books and courses, visit
http://oreilly.com.

Watch us on YouTube: http://youtube.com/oreillymedia

Find us on LinkedIn: https://linkedin.com/company/oreilly-media
Follow the author on Twitter: https://twitter.com/bmuschko
Follow the author on GitHub: https://github.com/bmuschko
Follow the author’s blog: https://bmuschko.com

Acknowledgments

Every book project is a long journey and would not be possible
without the help of the editorial staff and technical reviewers.
Special thanks go to Jonathon Johnson, Bilgin Ibryam, Vladislav
Bilay, Andrew Martin, and Michael Levan for their detailed technical
guidance and feedback. I would also like to thank the editors at
O'Reilly Media, John Devins and Virginia Wilson, for their continued
support and encouragement.

https://oreil.ly/ckad-2ed
mailto:bookquestions@oreilly.com
http://oreilly.com/
http://youtube.com/oreillymedia
https://linkedin.com/company/oreilly-media
https://twitter.com/bmuschko
https://github.com/bmuschko
https://bmuschko.com/

Part I. Introduction

The Introduction section of the book touches on the most important
aspects of the exam and orients beginners to Kubernetes to the lay
of the land without introducing too much complexity.

The following chapters cover these concepts:

e Chapter 1 discusses the exam objectives, curriculum, and
tips and tricks for passing the exam.

e Chapter 2 is a short and sweet overview on Kubernetes.
This chapter summarizes the purpose and benefits of
Kubernetes and provides an overview of its architecture and
components.

e Chapter 3 discusses how to interact with a Kubernetes
cluster using the command line tool kubectl. The tool is
going to be your only user interface during the exam. We'll
compare imperative and declarative commands, their pros
and cons, as well as time-saving techniques for the exam.

Chapter 1. Exam Details and
Resources

This chapter addresses the most frequently asked questions by
candidates preparing to successfully pass the Certified Kubernetes
Application Developer (CKAD) exam. Later chapters will give you a
summary of Kubernetes’ benefits and architecture and how to
interact with a Kubernetes cluster using kubectl.

Kubernetes Certification Learning Path

The CNCF offers four different Kubernetes certifications. Figure 1-1
categorizes each of them by target audience.

Kubernetes and .
C|ULIJ(l'ljJ ?lirtrilfetef;.ssggcd iate Cloud Native Associate
Security Associate

Certified Kubernetes

-~
\
'

\.

Application Developer Developer
Certified Kubernetes Certified Kubernetes -
[Administrator ’[Security Specialist] Administrator

Figure 1-1. Kubernetes certifications learning path

The target audience for associate-level certifications is beginners to
the cloud and Kubernetes. Associate-level certification exams use a
multiple-choice format. You will not have to interact with a
Kubernetes cluster in an interactive environment.

https://oreil.ly/sq-Po
https://oreil.ly/sq-Po

Practitioner-level certifications are meant for developers and
administrators with preexisting Kubernetes experience. Exams in
this category require you to solve problems in multiple Kubernetes
environments hands-on. You will find that the CKAD is geared to
application developers and does not require any other certification
as a prerequisite.

Let’s have a brief look at each certification to see if the CKAD is the
right fit for you.

Kubernetes and Cloud Native Associate
(KCNA)

KCNA is an entry-level certification program for anyone interested in
cloud-native application development, runtime environments, and
tooling. While the exam does cover Kubernetes, it does not expect
you to interact with a cluster hands-on. This exam consists of
multiple-choice questions and is suitable to candidates interested in
the topic with a broad exposure to the ecosystem.

Kubernetes and Cloud Native Security
Associate (KCSA)

This certification focuses on basic knowledge of security concepts
and their application in a Kubernetes cluster. The breadth, depth,
and format of the program is comparable to the KCNA.

Certified Kubernetes Application Developer
(CKAD)
The CKAD exam focuses on verifying your ability to build, configure,

and deploy a microservices-based application to Kubernetes. You
are not expected to actually implement an application; however, the

exam is suitable for developers familiar with topics like application
architecture, runtimes, and programming languages.

Certified Kubernetes Administrator (CKA)

The target audience for the CKA exam are DevOps practitioners,
system administrators, and site reliability engineers. This exam
tests your ability to perform in the role of a Kubernetes
administrator, which includes tasks like cluster, network, storage,
and beginner-level security management, with emphasis on
troubleshooting scenarios.

Certified Kubernetes Security Specialist (CKS)

The CKS exam expands on the topics verified by the CKA exam.
Passing the CKA is a prerequisite before you can sign up for the CKS
exam. For this certification, you are expected to have a deeper
knowledge of Kubernetes security. The curriculum covers topics like
applying best practices for building containerized applications and
ensuring a secure Kubernetes runtime environment.

Exam Objectives

This book focuses on getting you ready for the CKAD exam. I will
give a little bit of background on why Kubernetes is important to
application developers before dissecting the topics important to the
exam.

More and more application developers find themselves in projects
transitioning from a monolithic architectural model to bite-sized,
cohesive, and containerized microservices. There are pros and cons
to both approaches, but Kubernetes has become the de facto
runtime platform for deploying and operating applications without
needing to worry about the underlying physical infrastructure.

It is no longer the exclusive responsibility of an administrator or
release manager to deploy and monitor their applications in target
runtime environments. Application developers need to see their
applications through from development to operation. Some
organizations like Netflix live and breathe this culture, so you, the
application developer, are fully responsible for making design
decisions as well as fixing issues in production. It's more important
than ever to understand the capabilities of Kubernetes, how to
apply the relevant concepts properly, and how to interact with the
platform.

The exam is designed specifically for application developers who
need to design, build, configure, and manage cloud native
applications on Kubernetes.

KUBERNETES VERSION USED DURING THE
EXAM

At the time of writing, the exam is based on Kubernetes 1.28. All
content in this book will follow the features, APIs, and command-line
support for that version. It's possible that future versions will break
backward compatibility. While preparing for the certification, review the
Kubernetes release notes and practice with the Kubernetes version
used during the exam to avoid unpleasant surprises. The exam
environment will be aligned with the most recent Kubernetes minor
version within approximately four to eight weeks of the Kubernetes
release date.

Curriculum

The following overview lists the high-level sections, or domains, of
the exam and their scoring weights:

e 20%: Application Design and Build
e 20%: Application Deployment

https://kubernetes.io/releases/

e 15%: Application Observability and Maintenance
o 25%: Application Environment, Configuration, and Security

o 20%: Services and Networking

The next sections detail each domain.

Application Design and Build

The first domain of the curriculum covers designing and building a
containerized application and operating it in Kubernetes. You will
need to be familiar with basic container concepts and how to define
a container inside of a Pod. In addition, the domain covers more
advanced use cases and Kubernetes concepts: the use of storage in
Pods, the need for defining multiple containers inside of a Pod, and
how to define and execute batch and periodic workloads.

Application Deployment

This domain primarily focuses on the Kubernetes primitive
Deployment. A Deployment helps with scaling Pods with the same
definition, so-called replicas, and managing the configuration across
all replicas it controls. You need to understand managing
deployments including strategies helpful for rolling out new versions
of an application to replicas in a controlled fashion. Finally, you will
need to be familiar with Helm, an open source tool for managing a
set of manifests required to deploy and configure an application
stack.

Application Observability and Maintenance

Deploying an application to Kubernetes is only the first step. You
need to be able to monitor, inspect, and potentially debug
Kubernetes objects. Probes are an important concept covered by
this domain: they define health checks for applications running in a

Pod. Furthermore, you need to be confident with identifying runtime
issues for workload and how to fix them.

Application Environment, Configuration, and
Security

Kubernetes offers security and resource management features
configurable for a Pod. This includes the security context and
resource requirements/constraints covered in this domain.
Furthermore, you need to be able to demonstrate the use of
ConfigMaps and Secrets to inject configuration data into a Pod to
control its runtime behavior. The domain also touches on the
rudimentary concepts and functionality of role-based access control
(RBAC) and CustomResourceDefinitions (CRDs).

Services and Networking

The last domain of the curriculum deals with providing network
access to your application from within and outside of the cluster. For
that purpose, you'll need to demonstrate knowledge of Services and
Ingresses. Finally, you'll need a rough understanding of network
policies, which are essentially rules that deny or permit Pod-to-Pod
communication.

Involved Kubernetes Primitives

Some of the exam objectives can be covered by understanding the
relevant core Kubernetes primitives. Be aware that the exam
combines multiple concepts in a single problem. Refer to Figure 1-2
as a guide to the applicable Kubernetes resources and their
relationships.

Namespace

Reference Maps
Forwards biects
‘ - network - (Cluster) [roles /] (Cluster) | Sub/ec
Service waffic [NEtwﬂrkPﬂllr:y] [Role RoleBinding
Routes HTTP(S Controfs Controls
traffic network operations
traffic ResourceQuota
Ingress
LimitRange
ﬁ}refsourc;
——— aults an
ConfigMap - constraints
P Volume
Extends | Replicates Manages —
) Y Enforces resource constraints
. Persistent
[Secret [HEplIEEISE[] [Job] Volumedlaim| peferences
4 b r
Simases _— Binds StorageClass
HorizontalPod | Scales Persistent
[AutoScaler Deployment CronJob Volume

Figure 1-2. Kubernetes primitives relevant to the exam

Documentation

During the exam, you are permitted to open a well-defined list of
web pages as a reference. You can freely browse those pages and
copy-paste code to the exam terminal.

The official Kubernetes documentation includes the reference
manual, the GitHub site, and the blog. In addition, you can also
browse the Helm documentation.

e Reference manual: https://kubernetes.io/docs
e Blog: https://kubernetes.io/blog
e Helm: https://helm.sh/docs

https://kubernetes.io/docs
https://kubernetes.io/blog
https://helm.sh/docs

Having the Kubernetes documentation pages at hand is extremely
valuable, but make sure you know where to find the relevant
information within those pages. In preparation for the test, read all
the documentation pages from start to end at least once. Don't
forget the search functionality of the official documentation pages.
For reference, Appendix B maps the exam objectives to the book
chapters covering the topics and the relevant Kubernetes
documentation pages.

USING THE DOCUMENTATION EFFICIENTLY

Using a search term will likely lead you to the right documentation
pages quicker than navigating the menu items. Copying and pasting
code snippets from the documentation into the console of the exam
environment works reasonably well. You may have to adjust the YAML
indentation manually as the proper formatting can get lost in the
process.

Exam Environment and Tips

To take the exam, you must purchase a registration voucher, which
can be acquired on the CNCF training and certification web page. On
occasion, the CNCF offers discounts for the voucher (e.g., around
the US Thanksgiving holiday). Those discount offers are often
announced on the Linux Foundation LinkedIn page and the Twitter
account @LF_Training.

After you purchase the voucher, you can schedule a time for the
exam with PSI, the company conducting the test virtually. In-person
exams at a testing facility are not available. On the day of your
scheduled test, you'll be asked to log into the test platform with a
URL provided to you by email. You'll be asked to enable the audio
and video feed on your computer to discourage cheating. A proctor

https://www.cncf.io/certification/ckad/
https://www.linkedin.com/company/the-linux-foundation
https://oreil.ly/TDBVP
https://www.psiexams.com/

will oversee your actions via audio/video feed and terminate the
session if they think you are not following the rules.

EXAM ATTEMPTS

The voucher you purchased grants two attempts to pass the exam. I
recommend preparing reasonably well before taking the test on the
first attempt. It will give you a fair chance to pass the test and provide
a good impression of the exam environment and the complexity of the
questions. Don't sweat it if you do not pass the test on the first
attempt. You've got another free shot.

The CKAD has a time limit of two hours. During that time, you'll
need to solve hands-on problems on a real, predefined Kubernetes
cluster. Every question will state the cluster you need to work on.
This practical approach to gauge a candidate’s skill set is superior to
tests with multiple-choice questions, as you can translate the
knowledge directly on tasks performed on the job.

I highly recommend reading the FAQ for the exam. You will find
answers to most of your pressing questions there, including system
requirements for your machine, scoring, certification renewal, and
retake requirements.

Candidate Skills

The certification assumes that you have a basic understanding of
Kubernetes. You should be familiar with Kubernetes internals, its
core concepts, and the command-line tool kubectl. The CNCF
offers a free “Introduction to Kubernetes” course for beginners to
Kubernetes.

Your background is likely more on the end of an application
developer, although it doesn't really matter which programming
language you’re most accustomed to. Here’s a brief overview of the

https://oreil.ly/xJeV8
https://www.cncf.io/certification/training/#introduction

background knowledge you need to increase your likelihood of
passing the exam:

Kubernetes architecture and concepts

The exam won't ask you to install a Kubernetes cluster from
scratch. Read up on the basics of Kubernetes and its
architectural components. Reference Chapter 2 for a jump start
on Kubernetes’ architecture and concepts.

The kubectl CLI tool

The kubectl command-line tool is the central tool you will use
during the exam to interact with the Kubernetes cluster. Even if
you have only a little time to prepare for the exam, it’s essential
to practice how to operate kubect1l, as well as its commands
and their relevant options. You will have no access to the web
dashboard UI during the exam. Chapter 3 provides a short
summary of the most important ways of interacting with a
Kubernetes cluster.

Working knowledge of a container runtime engine

Kubernetes uses a container runtime engine for managing
images. A widely used container runtime engine is Docker
Engine. At a minimum, understand container files, container
images, containers, and relevant CLI commands. Chapter 4
explains all you need to know about containers for the exam.

Other relevant tools

Kubernetes objects are represented by YAML or JSON. The
content of this book will use examples in YAML, as it is more
commonly used than JSON in the Kubernetes world. You will
have to edit YAML during the exam to create a new object
declaratively or when modifying the configuration of a live
object. Ensure that you have a good handle on basic YAML

https://oreil.ly/2tZBk
https://oreil.ly/2tZBk

syntax, data types, and indentation conforming to the
specification. How do you edit the YAML definitions, you may
ask? From the terminal, of course. The exam terminal
environment comes with the tools vi and vim preinstalled.
Practice the keyboard shortcuts for common operations,
(especially how to exit the editor). The last tool I want to
mention is GNU Bash. It's imperative that you understand the
basic syntax and operators of the scripting language. It's
absolutely possible that you may have to read, modify, or even
extend a multiline Bash command running in a container.

Time Management

Candidates have two hours to complete the exam, and 66% of the
answers to the questions need to be correct to pass. Many
questions consist of multiple steps. Although the Linux Foundation
doesn't provide a scoring breakdown, I'd assume that partially
correct answers will score a portion of the points.

When taking the test, you will notice that the given time limit will
put you under a lot of pressure. That'’s intentional. The Linux
Foundation expects Kubernetes practitioners to be able to apply
their knowledge to real-world scenarios by finding solutions to
problems in a timely fashion.

The exam will present you with a mix of problems. Some are short
and easy to solve; others require more context and take more time.
Personally, I tried to tackle the easy problems first to score as many
points as possible without getting stuck on the harder questions. I
marked any questions I could not solve immediately in the notepad
functionality integrated in the exam environment. During the
second pass, revisit the questions you skipped and try to solve them
as well. Optimally, you will be able to work through all the problems
in the allotted time.

Command-Line Tips and Tricks

Given that the command line is your solitary interface to the
Kubernetes cluster, it's essential that you become extremely familiar
with the kubect1 tool and its available options. This section
provides tips and tricks for making their use more efficient and
productive.

Setting a Context and Namespace

The exam environment comes with multiple Kubernetes clusters
already set up for you. Take a look at the instructions for a high-
level, technical overview of those clusters. Each of the exam
exercises needs to be solved on a designated cluster, as outlined in
its description. Furthermore, the instructions will ask you to work in
a namespace other than default. Make sure to set the context
and namespace as the first course of action before working on a
question. The following command sets the context and the
namespace as a one-time action:

$ kubectl config set-context <context-of-question> \
--namespace=<namespace-of-question>
$ kubectl config use-context <context-of-question>

You can find a more detailed discussion of the context concept and
the corresponding kubect1l commands in “Authentication with

kubect!”.

Using the Alias for kubectl

In the course of the exam, you will have to execute the kubectl
command tens or even hundreds of times. You might be an
extremely fast typist; however, there’s no point in fully spelling out
the executable over and over again. The exam environment already
sets up the alias k for the kubectl command.

https://oreil.ly/SM8d6

In preparation for the exam, you can set up the same behavior on
your machine. The following alias command maps the letter k to

the full kubectl command:

$ alias k=kubectl
$ k version

Using kubectl Command Auto-Completion

Memorizing kubectl commands and command-line options takes a
lot of practice. The exam environment comes with auto-completion
enabled by default. You can find instructions for setting up auto-
completion for the shell on your machine in the Kubernetes
documentation.

Internalize Resource Short Names

Many of the kubectl commands can be quite lengthy. For

example, the command for managing Persistent volume claims is
persistentvolumeclaims. Spelling out the full command can be

error-prone and time-consuming. Thankfully, some of the longer
commands come with a short-form usage. The command api-

resources lists all available commands plus their short names:

$ kubectl api-resources

NAME SHORTNAMES APIGROUP NAMESPACED
KIND
persistentvolumeclaims pvc true

PersistentVolumeClaim

Using pvc instead of persistentvolumeclaims results in a
more concise and expressive command execution, as shown here:

https://kubernetes.io/docs/reference/kubectl/cheatsheet/#kubectl-autocomplete
https://kubernetes.io/docs/reference/kubectl/cheatsheet/#kubectl-autocomplete

$ kubectl describe pvc my-claim

Practicing and Practice Exams

Hands-on practice is extremely important when it comes to passing
the exam. For that purpose, you'll need a functioning Kubernetes
cluster environment. The following options stand out:

e I found it useful to run one or many virtual machines using
Vagrant and VirtualBox. Those tools help with creating an
isolated Kubernetes environment that is easy to bootstrap
and dispose on demand.

o It is relatively easy to install a simple Kubernetes cluster on
your developer machine. The Kubernetes documentation
provides various installation options, depending on your
operating system. Minikube is useful when it comes to
experimenting with more advanced features like Ingress or
storage classes, as it provides the necessary functionality as
add-ons that can be installed with a single command.
Alternatively, you can also give kind a try, another tool for
running local Kubernetes clusters.

o If you're a subscriber to the O'Reilly Learning Platform, you
have unlimited access to scenarios running a Kubernetes
sandbox environment. In addition, you can test your
knowledge with the help of the CKAD practice test in the
form of interactive labs.

You may also want to try one of the following commercial learning
and practice resources:

e Killer Shell is a simulator with sample exercises for all
Kubernetes certifications. If you purchase a voucher for the
exam, you will be allowed two free sessions.

https://oreil.ly/2jLJS
https://oreil.ly/3BhDj
https://oreil.ly/JrBUh
https://kind.sigs.k8s.io/
https://oreil.ly/OLP
https://oreil.ly/Uucxp
https://oreil.ly/Uucxp
https://learning.oreilly.com/playlists/2e9fe6dc-2a05-47fe-ae0a-34d6485287cc/
https://learning.oreilly.com/playlists/2e9fe6dc-2a05-47fe-ae0a-34d6485287cc/
https://killer.sh/

e Other online training providers offer video courses for the
exam, some of which include an integrated Kubernetes
practice environment. I would like to mention KodeKloud
and A Cloud Guru. You'll need to purchase a subscription to
access the content for each course individually.

Summary

The exam is a completely hands-on test that requires you to solve
problems in multiple Kubernetes clusters. You're expected to
understand, use, and configure the Kubernetes primitives relevant
to application developers. The exam curriculum subdivides those
focus areas and puts different weights on topics, which determines
their contributions to the overall score. Even though focus areas are
grouped meaningfully, the curriculum doesn't necessarily follow a
natural learning path, so it’s helpful to cross-reference chapters in
the book in preparation for the exam.

In this chapter, we discussed the exam environment and how to
navigate it. The key to acing the exam is intense practice of
kubectl to solve real-world scenarios. The next two chapters in
Part I will provide a jump start to Kubernetes.

All chapters that discuss domain details give you an opportunity to
practice hands-on. You will find sample exercises at the end of each
chapter.

https://oreil.ly/hHYyi
https://learn.acloud.guru/course/certified-kubernetes-application-developer/

Chapter 2. Kubernetes in a
Nutshell

It's helpful to get a quick rundown of what Kubernetes is and how it
works if you are new to the space. Many tutorials and 101 courses
are available on the web, but I would like to summarize the most
important background information and concepts in this chapter. In
the course of this book, we'll reference cluster node components, so
feel free to come back to this information at any time.

What Is Kubernetes?

To understand what Kubernetes is, first let’s define microservices
and containers.

Microservice architectures call for developing and executing pieces
of the application stack as individual services, and those services
have to communicate with one another. If you decide to operate
those services in containers, you will need to manage a lot of them
while at the same time thinking about cross-cutting concerns like
scalability, security, persistence, and load balancing.

Tools like buildkit and Podman package software artifacts into a
container image. Container runtime engines like Docker Engine and
containerd use the image to run a container. This works great on
developer machines for testing purposes or for ad-hoc executions,
e.g., as part of a Continuous Integration pipeline. For more
information on containers, refer to Chapter 4.

Kubernetes is a container orchestration tool that helps with
operating hundreds or even thousands of containers on physical
machines, virtual machines, or in the cloud. Kubernetes can also

https://github.com/moby/buildkit
https://podman.io/
https://docs.docker.com/engine/
https://containerd.io/

fulfill those cross-cutting concerns mentioned earlier. The container
runtime engine integrates with Kubernetes. Whenever a container

creation is triggered, Kubernetes will delegate life cycle aspects to

the container runtime engine.

The most essential primitive in a Kubernetes is a Pod. The Pod can
run one or many containers while at the same time adding cross-
cutting concerns like security requirements and resource
consumption expectations. Have a look at Chapter 5 to learn about
those aspects.

Features

The previous section touched on some features provided by
Kubernetes. Here, we are going to dive a little deeper by explaining
those features with more detail:

Declarative model

You do not have to write imperative code using a programming
language to tell Kubernetes how to operate an application. All
you need to do as an end user is to declare a desired state. The
desired state can be defined using a YAML or JSON manifest that
conforms to an API schema. Kubernetes then maintains the
state and recovers it in case of a failure.

Autoscaling

You will want to scale up resources when your application load
increases, and scale down when traffic to your application
decreases. This can be achieved in Kubernetes by manual or
automated scaling. The most practical, optimized option is to let
Kubernetes automatically scale resources needed by a
containerized application.

Application management

Changes to applications, e.g., new features and bug fixes, are
usually baked into a container image with a new tag. You can
easily roll out those changes across all containers running them
using Kubernetes’ convenient replication feature. If needed,
Kubernetes also allows for rolling back to a previous application
version in case of a blocking bug or if a security vulnerability is
detected.

Persistent storage

Containers offer only a temporary filesystem. Upon restart of the
container, all data written to the filesystem is lost. Depending on
the nature of your application, you may need to persist data for
longer, for example, if your application interacts with a
database. Kubernetes offers the ability to mount storage
required by application workloads.

Networking

To support a microservices architecture, the container
orchestrator needs to allow for communication between
containers, and from end users to containers from outside of the
cluster. Kubernetes employs internal and external load balancing
for routing network traffic.

High-Level Architecture

Architecturally, a Kubernetes cluster consists of control plane nodes
and worker nodes, as shown in Figure 2-1. Each node runs on
infrastructure provisioned on a physical or virtual machine, or in the
cloud. The number of nodes you want to add to the cluster and their
topology depends on the application resource needs.

Kubernetes cluster

~

Worker node 1

Pod 2

[Pod1

Pod 3

Container 2
, 1 Container runtime |
| Controlplane node
Dashboard | i | P Kube proxy]
P (1=)
£ i lbelet |
g! Scheduler || 5 {
S| b= Worker node 2
kubectl []S: Cuntmllermanager] —p ”u < ude”
=T E =13 Pod1 Pod 2 Pod 3
&=

[Container runtime

..

Figure 2-1. Kubernetes cluster nodes and components

Control plane nodes and worker nodes have specific responsibilities:
Control plane node

This node exposes the Kubernetes API through the API server
and manages the nodes that make up the cluster. It also
responds to cluster events, for example, when the end user
requested to scale up the number of Pods to distribute the load
for an application. Production clusters employ a highly available
(HA) architecture that usually involves three or more control
plane nodes.

https://kubernetes.io/docs/setup/production-environment/tools/kubeadm/ha-topology/
https://kubernetes.io/docs/setup/production-environment/tools/kubeadm/ha-topology/

Worker node

The worker node executes workload in containers managed by
Pods. Every worker node needs a container runtime engine
installed on the host machine to be able to manage containers.

In the next two sections, we'll talk about the essential components
embedded in those nodes to fulfill their tasks. Add-ons like cluster
DNS are not discussed explicitly here. See the Kubernetes
documentation for more details.

Control Plane Node Components

The control plane node requires a specific set of components to
perform its job. The following list of components will give you an
overview:

API server

The API server exposes the API endpoints clients use to
communicate with the Kubernetes cluster. For example, if you
execute the tool kubect1, a command-line based Kubernetes
client, you will make a RESTful API call to an endpoint exposed
by the API server as part of its implementation. The API
processing procedure inside of the API server will ensure aspects
like authentication, authorization, and admission control. For
more information on that topic, see Chapter 17.

Scheduler

The scheduler is a background process that watches for new
Kubernetes Pods with no assigned nodes and assigns them to a
worker node for execution.

Controller manager

https://kubernetes.io/docs/concepts/overview/components/
https://kubernetes.io/docs/concepts/overview/components/

The controller manager watches the state of your cluster and
implements changes where needed. For example, if you make a
configuration change to an existing object, the controller

manager will try to bring the object into the desired state.

Etcd

Cluster state data needs to be persisted over time so it can be
reconstructed upon a node or even a full cluster restart. That's
the responsibility of etcd, an open source software Kubernetes
integrates with. At its core, etcd is a key-value store used to
persist all data related to the Kubernetes cluster.

Common Node Components

Kubernetes employs components that are leveraged by all nodes
independent of their specialized responsibility:

Kubelet

The kubelet runs on every node in the cluster; however, it makes
the most sense to exist on a worker node. The reason is that the

control plane node usually doesn’t execute workload, and the
worker node’s primary responsibility is to run workload. The
kubelet is an agent that makes sure that the necessary
containers are running in a Pod. You could say that the kubelet is
the glue between Kubernetes and the container runtime engine
and ensures that containers are running and healthy. We'll have
a touch point with the kubelet in Chapter 14.

Kube proxy

The kube proxy is a network proxy that runs on each node in a
cluster to maintain network rules and enable network
communication. In part, this component is responsible for
implementing the Service concept covered in Chapter 21.

https://etcd.io/

Container runtime

As mentioned earlier, the container runtime is the software
responsible for managing containers. Kubernetes can be
configured to choose from a range of different container runtime
engines. While you can install a container runtime engine on a
control plane, it's not necessary as the control plane node
usually doesn't handle workload. We'll use a container runtime in
Chapter 4 to create a container image and run a container with
the produced image.

Advantages

This chapter points out a couple of advantages of Kubernetes,
which are summarized here:

Portability

A container runtime engine can manage a container independent
of its runtime environment. The container image bundles
everything it needs to work, including the application’s binary or
code, its dependencies, and its configuration. Kubernetes can
run applications in a container in on-premise and cloud
environments. As an administrator, you can choose the platform
you think is most suitable to your needs without having to
rewrite the application. Many cloud offerings provide product-
specific, opt-in features. While using product-specific features
helps with operational aspects, be aware that they will diminish
your ability to switch easily between platforms.

Resilience

Kubernetes is designed as a declarative state machine.

Controllers are reconciliation loops that watch the state of your
cluster, then make or request changes where needed. The goal
is to move the current cluster state closer to the desired state.

Scalability

Enterprises run applications at scale. Just imagine how many
software components retailers like Amazon, Walmart, or Target
need to operate to run their businesses. Kubernetes can scale
the number of Pods based on demand or automatically according
to resource consumption or historical trends.

API based

Kubernetes exposes its functionality through APIs. We learned
that every client needs to interact with the API server to manage
objects. It is easy to implement a new client that can make
RESTful API calls to exposed endpoints.

Extensibility

The API aspect stretches even further. Sometimes, the core
functionality of Kubernetes doesn't fulfill your custom needs, but
you can implement your own extensions to Kubernetes. With the
help of specific extension points, the Kubernetes community can
build custom functionality according to their requirements, e.g.,
monitoring or logging solutions.

Summary

Kubernetes is software for managing containerized applications at
scale. Every Kubernetes cluster consists of at least a single control
plane node and a worker node. The control plane node is
responsible for scheduling the workload and acts as the single
entrypoint to manage its functionality. Worker nodes handle the
workload assigned to them by the control plane node.

Kubernetes is a production-ready runtime environment for
companies wanting to operate microservice architectures while also

supporting nonfunctional requirements like scalability, security, load
balancing, and extensibility.

The next chapter will explain how to interact with a Kubernetes
cluster using the command-line tool kubect1. You will learn how

run it to manage objects, an essential skill for acing the exam.

Chapter 3. Interacting with
Kubernetes

As an application developer, you will want to interact with the
Kubernetes cluster to manage objects that operate your application.
Every call to the cluster is accepted and processed by the API server
component. There are various ways to perform a call to the API
server. For example, you can use a web-based dashboard, a
command-line tool like kubect1, or a direct HTTPS request to the

RESTful API endpoints.

The exam does not test the use of a visual user interface for
interacting with the Kubernetes cluster. Your only client for solving
exam questions is kubectl. This chapter will touch on the
Kubernetes API primitives and objects, as well as the different ways
to manage objects with kubectl.

API Primitives and Objects

Kubernetes primitives are the basic building blocks anchored in the
Kubernetes architecture for creating and operating an application on
the platform. Even as a beginner to Kubernetes, you might have
heard of the terms Pod, Deployment, and Service, all of which are
Kubernetes primitives. There are many more that serve a dedicated
purpose in the Kubernetes architecture.

To draw an analogy, think back to the concepts of object-oriented
programming. In object-oriented programming languages, a class
defines the blueprint of a real-world functionality: its properties and
behavior. A Kubernetes primitive is the equivalent of a class. The
instance of a class in object-oriented programming is an object,
managing its own state and having the ability to communicate with

https://kubernetes.io/docs/tasks/access-application-cluster/web-ui-dashboard/
https://kubernetes.io/docs/reference/kubectl/

other parts of the system. Whenever you create a Kubernetes
object, you produce such an instance.

For example, a Pod in Kubernetes is the class of which there can be
many instances with their own identity. Every Kubernetes object has
a system-generated unique identifier (also known as UID) to clearly
distinguish between the entities of a system. Later, we'll look at the
properties of a Kubernetes object. Figure 3-1 illustrates the
relationship between a Kubernetes primitive and an object.

r—] Primitive
» Pod |«
_J

‘ Frontend \ ‘ Backend \ Object

UID: 4ef7b090-37ed-4b33-8fb7-c5693a48eef5 UID: b674f2e0-f0bc-40be-af8e-7985442c21a2
Figure 3-1. Kubernetes object identity

Every Kubernetes primitive follows a general structure, which you
can observe if you look deeper at a manifest of an object, as shown
in Figure 3-2. The primary markup language used for a Kubernetes
manifest is YAML.

Kubernetes object
, API Version YAML manifest
vl, apps/vl, ...]]
pos! apiVersion: vi
Kind kind: Pod
Pod, Deployment, Quota, ... metadata:
______________________________ labels:
Metadata run: n?inx
Name, Namespace, Labels, ... name: nginx
______________________________ spec:
SDE[containers:
Desired state — image: nginx:1.25.1
.............................. name: nginx
Status status: {}
Actual state \ /

Figure 3-2. Kubernetes object structure

Let’s look at each section and its relevance within the Kubernetes
system:

API version

The Kubernetes API version defines the structure of a primitive
and uses it to validate the correctness of the data. The API
version serves a similar purpose as XML schemas to an XML
document or JSON schemas to a JSON document. The version
usually undergoes a maturity process—for example, from alpha
to beta to final. Sometimes you see different prefixes separated
by a slash (apps). You can list the API versions compatible with
your cluster version by running the command kubectl api-
versions.

Kind

The kind defines the type of primitive—e.g., a Pod or a Service.
It ultimately answers the question, "What kinds of resource are

we dealing with here?”

Metadata

Metadata describes higher-level information about the object—
e.g., its name, what namespace it lives in, or whether it defines
labels and annotations. This section also defines the UID.

Spec

The specification (“spec” for short) declares the desired state—
e.g., how should this object look after it has been created?
Which image should run in the container, or which environment
variables should be set?

Status

The status describes the actual state of an object. The
Kubernetes controllers and their reconciliation loops constantly
try to transition a Kubernetes object from the desired state into
the actual state. The object has not yet been materialized if the
YAML status shows the value {}.

With this basic structure in mind, let’s look at how to create a
Kubernetes object with the help of kubectl.

Using kubectl

kubectl is the primary tool for interacting with the Kubernetes

clusters from the command line. The exam is exclusively focused on
the use of kubectl. Therefore, it's paramount to understand its ins

and outs and practice its use heavily.

This section provides you with a brief overview of its typical usage
pattern. Let’s start by looking at the syntax for running commands.

A kubectl execution consists of a command, a resource type, a
resource name, and optional command line flags:

$ kubectl [command] [TYPE] [NAME] [flags]

The command specifies the operation you're planning to run. Typical
commands are verbs like create, get, describe, Or delete.
Next, you'll need to provide the resource type you're working on,
either as a full resource type or its short form. For example, you
could work on a service here or use the short form, svc.

The name of the resource identifies the user-facing object identifier,
effectively the value of metadata.name in the YAML

representation. Be aware that the object name is not the same as
the UID. The UID is an autogenerated, Kubernetes-internal object
reference that you usually don't have to interact with. The name of
an object has to be unique across all objects of the same resource
type within a namespace.

Finally, you can provide zero to many command line flags to
describe additional configuration behavior. A typical example of a
command-line flag is the --port flag, which exposes a Pod'’s
container port.

Figure 3-3 shows a full kubectl command in action.

kubectl [command] [TYPE] [NAME] [flags]
get pod app -0 yaml

Figure 3-3. Kubect1 usage pattern

Over the course of this book, we'll explore the kubectl commands
that will make you the most productive during the exam. There are
many more, however, and they usually go beyond the ones you’'d
use on a day-to-day basis as an application developer. Next up,

we'll have a deeper look at the create command, the imperative

way to create a Kubernetes object. We'll also compare the
imperative object creation approach with the declarative approach.

Managing Objects

You can create objects in a Kubernetes cluster in two ways:
imperatively or declaratively. The following sections describe each
approach, including their benefits, drawbacks, and use cases.

Imperative Object Management

Imperative object management does not require a manifest
definition. You'll use kubect1 to drive the creation, modification,

and deletion of objects with a single command and one or many
command-line options. See the Kubernetes documentation for a
more detailed description of imperative object management.

Creating objects

Use the run or create command to create an object on the fly.
Any configuration needed at runtime is provided by command-line
options. The benefit of this approach is the fast turnaround time
without the need to wrestle with YAML structures. The following
run command creates a Pod named frontend that executes the
container image nginx:1.24.0 in a container with the exposed
port 80:

$ kubectl run frontend --image=nginx:1.24.0 --port=80
pod/frontend created
Updating objects

The configuration of live objects can still be modified. kubectl
supports this use case by providing the edit or patch command.

https://kubernetes.io/docs/tasks/manage-kubernetes-objects/imperative-command/

The edit command opens an editor with the raw configuration of

the live object. Changes to the configuration will be applied to the
live object after exiting the editor. The command will open the
editor defined by the KUBE EDITOR, or EDITOR environment

variables, or fall back to i for Linux or notepad for Windows. This
command demonstrates the use of the edit command for the Pod
live object named frontend:

$ kubectl edit pod frontend

The patch command allows for fine-grained modification of a live
object on an attribute level using a JSON merge patch. The
following example illustrates the use of patch command to update
the container image tag assigned to the Pod created earlier. The -p
flag defines the JSON structure used to modify the live object:

$ kubectl patch pod frontend -p '{"spec":{"containers":
[{"name" :"frontend", \

"image":"nginx:1.25.1"}]}}"

pod/frontend patched

Deleting objects

You can delete a Kubernetes object at any time. During the exam,
the need may arise if you made a mistake while solving a problem
and want to start from scratch to ensure a clean slate. In a
production Kubernetes environment, you'll want to delete objects
that are no longer needed. The following delete command deletes

the Pod object by its name frontend:

$ kubectl delete pod frontend
pod "frontend" deleted

Upon execution of the delete command, Kubernetes tries to
delete the targeted object gracefully so that there’s minimal impact
on the end user. If the object cannot be deleted within the default
grace period (30 seconds), the kubelet attempts to forcefully kill the
object.

During the exam, end user impact is not a concern. The most
important goal is to complete all tasks in the time granted to the
candidate. Therefore, waiting on an object to be deleted gracefully
is @ waste of time. You can force an immediate deletion of an object
with the command-line option with the --now option. The following

command kills the Pod named nginx using a SIGKILL signal:

$ kubectl delete pod nginx --now

Declarative Object Management

Declarative object management requires one or several manifests
in the format of YAML or JSON describing the desired state of an
object. You create, update, and delete objects using this approach.

The benefit of using the declarative method is reproducibility and
improved maintenance, as the file is checked into version control in
most cases. The declarative approach is the recommended way to
create objects in production environments.

More information on declarative object management can be found
in the Kubernetes documentation.

Creating objects

The declarative approach creates objects from a manifest (in most
cases, a YAML file) using the apply command. The command
works by pointing to a file, a directory of files, or a file referenced
by an HTTP(S) URL using the - £ option. If one or more of the

https://kubernetes.io/docs/tasks/manage-kubernetes-objects/declarative-config/

objects already exist, the command will synchronize the changes
made to the configuration with the live object.

To demonstrate the functionality, we'll assume the following
directories and configuration files. The following commands create
objects from a single file, from all files within a directory, and from
all files in a directory recursively. Refer to files in the book’s GitHub
repository if you want to give it a try. Later chapters will explain the
purpose of the primitives used here:

—— app-stack

—— mysqgl-pod.yaml

—— mysgl-service.yaml
—— web-app-pod.yaml

—— web-app-service.yaml
—— nginx-deployment.yaml
—— web-app

—— config

—— db-configmap.yaml
—— db-secret.yaml
—— web-app-pod.yaml

Creating an object from a single file:

$ kubectl apply -f nginx-deployment.yaml
deployment.apps/nginx-deployment created

Creating objects from multiple files within a directory:

$ kubectl apply -f app-stack/
pod/mysgl-db created
service/mysgl-service created
pod/web-app created
service/web-app-service created

Creating objects from a recursive directory tree containing files:

$ kubectl apply -f web-app/ -R
configmap/db-config configured
secret/db-creds created
pod/web-app created

Creating objects from a file referenced by an HTTP(S) URL:

$ kubectl apply -f
https://raw.githubusercontent.com/bmuschko/\
ckad-study-guide/master/ch03/object-management/nginx-
deployment.yaml

deployment.apps/nginx-deployment created

The apply command keeps track of the changes by adding or
modifying the annotation with the key
kubectl.kubernetes.io/last-applied-configuration.
Here's an example of the annotation in the output of the get pod
command:

$ kubectl get pod web-app -o yaml
apiVersion: vl

kind: Pod
metadata:
annotations:
kubectl.kubernetes.io/last-applied-configuration: |
{"apiVersion":"v1", "kind":"Pod", "metadata":
{"annotations":{}, \

"labels": {"app":"web-app"}, "name" : "web-
app", "namespace":"default"}, \
"spec":{"containers": [{"envFrom": [{"configMapRef":
{"name" :"db-config"}}, \
{"secretRef":{"name" :"db-
creds"}}],"image" :"bmuschko/web-app:1.0.1", \
"name" : "web-app", "ports":
[{"containerPort":3000, "protocol":"TCP"}11}1, \
"restartPolicy":"Always"}}

Updating objects

Updating an existing object is done with the same apply
command. All you need to do is to change the configuration file and
then run the command against it. Example 3-1 modifies the existing
configuration of a Deployment in the file nginx-
deployment.yaml. We added a new label with the key team and
changed the number of replicas from 3 to 5.

Example 3-1. Modified configuration file for a Deployment

apiVersion: apps/vl
kind: Deployment
metadata:
name: nginx-deployment
labels:
app: nginx
team: red
spec:
replicas: 5

The following command applies the changed configuration file. As a
result, the number of Pods controlled by the underlying ReplicaSet is
5:

$ kubectl apply -f nginx-deployment.yaml
deployment.apps/nginx-deployment configured

The Deployment’s kubectl.kubernetes.io/last-applied-
configuration annotation reflects the latest change to the
configuration:

$ kubectl get deployment nginx-deployment -o yaml
apiVersion: apps/vl
kind: Deployment
metadata:
annotations:

kubectl.kubernetes.io/last-applied-configuration: |

{"apiVersion":"apps/v1l","kind" :"Deployment", "metadata":
{"annotations":{}, \
"labels":{"app":"nginx", "team" :"red"}, "name" : "nginx-
deployment", \
"namespace" :"default"}, "spec":
{"replicas":5,"selector":{"matchLabels": \

{"app":"nginx"}}, "template":{"metadata":{"labels":
("app":"nginx"}}, \

"spec":{"containers":
[{"image":"nginx:1.14.2", "name" :"nginx", \

"ports":[{"containerPort":80}]1}]1}}}}

Deleting objects

While you can delete objects using the apply command by
providing the options --prune -1 <labels>, it is recommended
to delete an object using the delete command and point it to the

configuration file. The following command deletes a Deployment
and the objects it controls (ReplicaSet and Pods):

$ kubectl delete -f nginx-deployment.yaml
deployment.apps "nginx-deployment" deleted

You can use the --now option to forcefully delete Pods, as
described in “Deleting objects”.

Hybrid Approach

Sometimes you may want to go with a hybrid approach. You can
start by using the imperative method to produce a manifest file
without actually creating an object. You do so by executing the run

or create command with the command-line options -o yaml and
--dry-run=client.

$ kubectl run frontend --image=nginx:1.25.1 --port=80 \
-o yaml --dry-run=client > pod.yaml

You can now use the generate YAML manifest as a starting point to
make further modifications before creating the object. Simply open
the file with an editor, change the content, and execute the
declarative apply command:

$ vim pod.yaml
$ kubectl apply -f pod.yaml
pod/frontend created

Which Approach to Use?

During the exam, using imperative commands is the most efficient
and quick way to manage objects. Not all configuration options are
exposed through command-line flags, which may force you into

using the declarative approach. The hybrid approach can help here.

GITOPS AND KUBERNETES

GitOps is a practice that leverages source code checked into Git
repositories to automate infrastructure management, specifically in
cloud-native environments powered by Kubernetes. Tools such as Argo
CD and Flux implement GitOps principles to deploy applications to
Kubernetes through a declarative approach. Teams responsible for
overseeing real-world Kubernetes clusters and the applications within
them are highly likely to adopt the declarative approach.

While creating objects imperatively can optimize the turnaround
time, in a real-world Kubernetes environment you'll most certainly
want to use the declarative approach. A YAML manifest file
represents the ultimate source of truth of a Kubernetes object.

https://argo-cd.readthedocs.io/en/stable/
https://argo-cd.readthedocs.io/en/stable/
https://fluxcd.io/

Version-controlled files can be audited and shared, and they store a
history of changes in case you need to revert to a previous revision.

Summary

Kubernetes represents its functionality for deploying and operating
a cloud-native application with the help of primitives. Each primitive
follows a general structure: the API version, the kind, the metadata,
and the desired state of the resources, also called the spec. Upon
creation or modification of the object, the Kubernetes scheduler
automatically tries to ensure that the actual state of the object
follows the defined specification. Every live object can be inspected,
edited, and deleted.

Kubectl acts as a CLI-based client to interact with the Kubernetes
cluster. You can use its commands and flags to manage Kubernetes
objects. The imperative approach provides a fast turnaround time
for managing objects with a single command, as long as you
memorize the available flags. More complex configuration calls for
the use of a YAML manifest to define a primitive. Use the
declarative command to instantiate objects from that definition. The
YAML manifest is usually checked into version control and offers a
way to track changes to the configuration.

Part I1. Application Design
and Build

The domain Application Design and Build summarizes all
foundational topics important to designing a process or an
application for the purpose of operating it in a Kubernetes Pod.

The following chapters cover these concepts:

e Chapter 4 explains basic container terminology. The content
uses Docker Engine to introduce commands for defining,
building, running, and modifying container images.

e Chapter 5 takes an existing container image and runs it in a
Pod, the essential primitive for running applications in
Kubernetes in a namespace.

e Chapter 6 touches on modeling batch workload and
periodically executed workload in Kubernetes.

e Chapter 7 explains how to share data between containers
running in a single Pod using ephemeral Volumes. The
chapter will also explain how to store long-lived data with
the help of persistent Volumes.

e Chapter 8 illustrates the use cases for wanting to run
multiple containers in a Pod and how to implement them
with well-established design patterns.

e Chapter 9 introduces how to assign labels and annotations
to objects. After reading the chapter, you will understand
the importance of labels to query, sort, and filter objects.

Compared to labels, annotations add human-readable-only
meta information to objects.

Chapter 4. Containers

Kubernetes is a container orchestrator that uses a container runtime
to instantiate containers inside of Pods. Many Kubernetes clusters
with version 1.24 or later use the container runtime containerd.

CONTAINER RUNTIME USED ON A KUBERNETES
NODE

You can fetch information about the container runtime used on any
node of a Kubernetes cluster. Simply look at the output of the
CONTAINER-RUNTIME column produced by running the command
kubectl get nodes -o wide. Check the Kubernetes
documentation to learn more about configuring a container runtime for
a cluster.

For the exam, you are expected to understand the practical aspects
of defining, building, and publishing container images, which this
chapter covers. We'll also touch on running a container image inside
of a container. For all of those operations, we'll use Docker Engine
as the example container runtime though similar functionality is
provided by other implementations.

COVERAGE OF CURRICULUM OBIJECTIVES
This chapter addresses the following curriculum objective:

e Define, build, and modify container images

The discussion on containers in this book only scratches the surface.
There’s a lot more information on this topic if you want to fully

https://containerd.io/
https://kubernetes.io/docs/setup/production-environment/container-runtimes/
https://kubernetes.io/docs/setup/production-environment/container-runtimes/

immerse yourself. I can recommend the book Docker: Up & Running
(O'Reilly) by Sean P. Kane and Karl Matthias for a detailed
explanation of Docker.

Container Terminology

A container packages an application into a single unit of software
including its runtime environment and configuration. This unit of
software usually includes the operating system, the application’s
source code or the binary, its dependencies, and other needed
system tools. The declared goal of a container is to decouple the
runtime environment from the application to avoid the “but it works
on my machine” problem.

The container runtime engine is the software component that can
run containers on a host operating system. Examples include Docker
Engine or containerd. A container orchestrator uses a container
runtime engine to instantiate a container while adding sophisticated
features like scalability and networking across the workload.
Kubernetes is an example of container orchestrators. Other tools
like Nomad are capable of scheduling various types of workload
including containers.

The process of bundling an application into a container is called
containerization. Containerization works based on instructions
defined in a container file. The Docker community calls this a
Dockerfile. The Dockerfile explicitly spells out what needs to happen
when the software is built. The result of the operation is a container
image.

The container image is usually published to a container registry for
consumption by other stakeholders. Docker Hub is the primary
registry for container images available for public use. Other public
registries like GCR and Quay are available. Figure 4-1 illustrates the
concepts in the context of containerizing an application.

https://learning.oreilly.com/library/view/docker-up/9781098131814/
https://docs.docker.com/engine/
https://docs.docker.com/engine/
https://containerd.io/
https://www.nomadproject.io/use-cases/simple-container-orchestration
https://hub.docker.com/

Blueprintsof | [Materialized | [Storageand
instructions software binary | distribution facility
Create Publish |
inerfi | |Containerima EJ]] i Remote container
Containerfile | L g A

Instantiate
[]

v ¥
[Cnntainer] [Cnntainer] [Enntainer)

Runtime instances

Figure 4-1. Containerization process

To summarize, the Dockerfile is a blueprint of how the software
should be packaged, the image is the artifact produced by the
process, and the container is a running instance of the image
serving the application. We'll look at a more concrete example next.

Containerizing a Java-Based Application

Let’s assume we want to containerize a web application written in
Java. The application doesn’t write core functionality from scratch
but uses the Spring Boot framework as an external library. In
addition, we want to control the runtime behavior with the help of
environment variables. For example, you may want to provide URLs
and credentials to connect to other services like a database. We'll
talk through the process step by step and execute the relevant
Docker commands from the terminal. If you want to follow along,
you can download a sample application from the project generator
Spring Initializr.

Writing a Dockerfile

Before we can create the image, we have to write a Dockerfile. The
Dockerfile can reside in any directory and is a plain-text file. The
instructions that follow use the Azul JRE distribution of Java 21 as

https://oreil.ly/Na9Vb
https://oreil.ly/bXSA4

the base image. A base image contains the operating system and
the necessary tooling, in this case Java.

Moreover, we include the binary file, an executable Java archive
(JAR), into the directory /app of the image. Finally, we define the
Java command that executes the program and expose the port
8080 to make the application accessible when run in a container.
Example 4-1 outlines a sample Dockerfile.

Example 4-1. Dockerfile for building a Java application

FROM azul/zulu-openjdk:21-Jre

1)
WORKDIR /app
a

COPY target/java-hello-world-0.0.1.jar java-hello-world.jar

ENTRYPOINT ["java", "-jar", "/app/java-hello-world.jar"]

(4

EXPOSE 8080

(5]

@ Defines the base image.

B sets the working directory of a container. Any RUN, CMD, ADD,
COPY, or ENTRYPOINT instruction will be executed in the
specified working directory.

3] Copies the JAR containing the compiled application code into the
working directory.

(4] Sets the default command that executes when a container starts
from an image.

@ Documents the network port(s) the container should listen on.

While writing Dockerfile looks straightforward to beginners,
optimizing the container image for a small footprint and security

aspects isn't. You can find a more detailed list of best practices for
writing Dockerfiles in the Docker documentation.

Building the Container Image

With the Dockerfile in place, we can create the image. The
following command provides the name of the image and the tag.
The last argument points to the context directory. A context
directory contains the Dockerfile as well as any directories and files
to be included in the image. Here, the context directory is the

w7,

current directory we reside in referenced by “.":

$ docker build -t java-hello-world:1.1.0

[+] Building 2.0s (9/9) FINISHED

=> [internal] load .dockerignore

=> => transferring context: 2B

=> [internal] load build definition from Dockerfile
=> => transferring dockerfile: 284B

=> [internal] load metadata for docker.io/azul/zulu-
openjdk:21-jre

=> [auth] azul/zulu-openjdk:pull token for registry-
1.docker.io

=> [1/3] FROM docker.io/azul/zulu-openjdk:21-
jre@sha256:dle675caclOe5. ..

=> => resolve docker.io/azul/zulu-openjdk:21-
jre@sha256:dle675caclOe5. ..

=> =>
sha256:d1e675cac0e5ce9604283df2a6600d3b46328d32d83927320757
cal...

=> =>
sha256:67aa3090031eac26c946908c33959721730e42£9195£4£70409%e
dce...

=> =>

sha?256:0a408da684370e4d8448bec68b36fadf15c38190b282729df3bc8
494 . ..

=> [internal] load build context

=> => transferring context: 19.71MB

=> [2/3] WORKDIR /app

=> [3/3] COPY target/java-hello-world-0.0.1.jar Jjava-

https://docs.docker.com/develop/develop-images/dockerfile_best-practices/

hello-world. jar

=> exporting to image

=> => exporting layers

=> => writing image
sha256:4b676060678b63del37536da24a889fc9d2d5felc. ..

=> => naming to docker.io/library/java-hello-world:1.1.0

What's Next?
View a summary of image vulnerabilities and
recommendations - ...

Listing Container Images

As indicated by the terminal output, the image has been created.
You might have noticed that the base image has been downloaded
as part of the process. The generated image can be found in your
local Docker Engine cache by running the following command:

$ docker images

REPOSITORY TAG IMAGE ID CREATED

SIZE

java-hello-world 1.1.0 4676060678b 49 seconds ago
342MB

Running the Container

It's time to run the application in a container. The run command
points to an image and executes its logic in a container:

$ docker run -d -p 8080:8080 java-hello-world:1.1.0
bOeel4daccf078ea7c73cfe3be0f9dlac6al99ac4e0e903773bcbbfo258a
cbb66

We told the command to forward the port 8080 accessible on
localhost to the container port 8080 using the -p CLI option. The -a
CLI option runs the container in the background, which means it will

detach from the container and return to the terminal prompt. This

means we should now be able to resolve the application’s endpoint
from the local machine. As the following command shows, a simple
curl to the root context path renders the message “Hello World!":

$ curl localhost:8080
Hello World!

Listing Containers

Any running containers can be listed to display their runtime
properties. The following command renders the container started
earlier. The output includes the container ID for later reference. Add
the flag -a to render terminated containers as well:

S docker container 1ls

CONTAINER ID IMAGE COMMAND
bOeelO4accf07 java-hello-world:1.1.0 "java -jar
/app/java.."

Interacting with the Container

Once the container has been started, you can interact with it. All
you need is the container ID. Use the 1o0gs command to inspect log
messages produced by the application. Inspecting logs can be
helpful for troubleshooting. The following command renders the log
messages produced by Spring Boot upon container startup:

$ docker logs bOeeO4accf07

2023-06-19 21:06:27.757 INFO 1 --- [nio-8080-exec-1] \
o.a.c.c.C.[Tomcat].[localhost].[/] : Initializing \
Spring DispatcherServlet 'dispatcherServlet'

2023-06-19 21:06:27.757 INFO 1 --- [nio-8080-exec-1] \

o.s.web.servlet.DispatcherServlet : Initializing \
Servlet 'dispatcherServlet'

2023-06-19 21:06:27.764 INFO 1 --- [nio-8080-exec-1] \
o0.s.web.servlet.DispatcherServlet : Completed \

initialization in 7 ms

You can dig deeper into the internals of running containers if the
container image is packaged with a command-line shell. For
example, you may want to inspect files consumed or produced by
the application. Use the exec command to run a command in the
container. The flag -1t allows for iterating with the container until
you are ready to exit out of it. The following command opens an
iterative bash shell to the running container:

$ docker exec -it bOeelO4accf07 bash
root@bOeel4daccf07:/app# pwd

/app
root@bOeel4daccf07:/app# exit
exit

To leave the interactive bash shell, run the exit command. You'll
return to the terminal prompt on your host machine.

Publishing the Container Image

To publish an image to a registry, you'll have to do some prework.
Most registries require you to provide a prefix that signifies the
username or hostname as part of the container image name, which
you can achieve with the tag command.

For example, Docker Hub requires you to provide the username. My
username is bmuschko and therefore I have to retag my image
before pushing it:

$ docker tag java-hello-world:1.1.0 bmuschko/java-hello-
world:1.1.0

The tag command does not create a copy of the container image.

It simply adds another identifier pointing to the existing container
image, as shown in the following output. The image ID and size of
the container image is the same for both entries:

$ docker images

REPOSITORY TAG IMAGE ID

CREATED SIZE

bmuschko/java-hello-world 1.1.0 4b676060678b 6
minutes ago 342MB

java-hello-world 1.1.0 4676060678b 6

minutes ago 342MB

If the registry is protected, you'll also have to provide the
credentials. For Docker Hub, we are logging in with username:

$ docker login --username=bmuschko
Password: ***x*
Login Succeeded

Finally, you can push the image to the registry using the push
command:

$ docker push bmuschko/java-hello-world:1.1.0

The push refers to repository [docker.io/bmuschko/Jjava-
hello-world]

a7b86a39983a: Pushed

dflb2befeb5f0: Pushed

ed4db97f0e9%ef: Mounted from azul/zulu-openjdk
8e87ff28f1b5: Mounted from azul/zulu-openjdk

1.1.0: digest:

sha256:6a5069pd9396a7ededl0bf8e24ab251d£f434c121£8£4293¢c2d3e
f...

You can discover the published container image through the Docker
Hub web page, as shown in Figure 4-2. The “Tags” tab lists all
available tags for the image including their details and quick
reference to the docker command for pulling the image.

eae M~ £ > [)] # hub.docker.com & M+ O

Wdocker Q, bmuschko/java-hello-world Explore Pricing Sign In

Explore bmuschko/java-hello-waorld

bmuschko/java-hello-world +* % pulls 22

By bmuschko « Updated 3 years ago

Image

Overview Tags

Sort by Mewest - Filter Tags Q

TAG

1.0.0

docker pull bmuschko/java-hello-_ I_i
Last pushed 3 years ago by bmuschko

DIGEST 05/ ARCH SCAMMNED COMPRESSED SIZE @
aafd?ab53ba3 linux/amde4 - 83.26 MB

Figure 4-2. Discovering container images on Docker Hub

Anyone with access to the registry can now consume the container
image using the pull command.

Saving and Loading a Container Image

Instead of publishing a container image to a container registry, you
may want to save it to a file. Files can be easily stored and backed
up on a shared drive and don't require a container registry. The
save command saves one or many images to a tar archive. The
resulting archive file contains all parent layers, and all tags +
versions. The following command saves the container image to the
file java-hello-world. tar:

$ docker save -o java-hello-world.tar java-hello-
world:1.1.0

To load a container image from a tar archive, use the 1oad

command. The command restores both images and tags. The
following command loads the container image from the file java-

hello-world. tar:

$ docker load --input java-hello-world.tar
Loaded image: java-hello-world:1.1.0

The image is now available in the cache, as shown by running the
images command:

$ docker images

REPOSITORY TAG IMAGE ID CREATED
STZE
java-hello-world 1.1.0 4b676060678b 7 minutes ago

342MB

Going Further

Thus far you have experienced the most common developer
workflows: containerizing an application and pushing the image to a
registry. There’s far more to learn about building and running
containers, but that is outside the scope of this book, and we won't
dive any deeper here. If you'd like to learn more, a good starting
point is the Docker documentation.

Summary

Application developers use containerization to bundle the
application code into a container image so that it can be deployed
to Kubernetes clusters as a single unit of runnable software. The
containerization process defines, builds, runs, and publishes a
container image using a container runtime engine. In this chapter,
we used Docker Engine to demonstrate the process for a Java-
based application; however, the steps involved would look similar
for applications written in a different programming language.

Exam Essentials

Gain practical experience with the containerization process

Pods run container images inside of a container. You need to
understand how to define, build, run, and publish a container
image apart from Kubernetes. Practice the use of the container
runtime engine’s command-line tool to fulfill the workflow.

Compare the functionality of different container runtime engines

You should get familiar with Docker Engine specifically for
understanding the containerization process. At the time of
writing, Docker Engine is still the most widely used container

https://docs.docker.com/

runtime engine. Branch out by playing around with other
container runtime engines like containerd or Podman.

Familiarize yourself with other workflows

As an application developer, you will deal with defining, building,
and modifying container images daily. Container runtime engine
support other, less-known features and workflows. It can't hurt
to read through the container runtime engine’s documentation to
gain broader exposure.

Sample Exercises
Solutions to these exercises are available in Appendix A.

1. Navigate to the directory app-a/ch04/containerized-java-
app of the checked-out GitHub repository bmuschko/ckad-
study-guide. Inspect the Dockerfile.

Build the container image from the Dockerfile with the tag
nodejs-hello-world:1.0.0.

Run a container with the container image. Make the
application available on port 80.

Execute a curl or wget command against the application’s
endpoint.

Retrieve the container logs.

2. Modify the Dockerfile from the previous exercise. Change
the base image to the tag 20.4-alpine and the working
directory to /node.

Build the container image from the Dockerfile with the tag
nodejs-hello-world:1.1.0.

Ensure that container image has been created by listing it.

https://github.com/bmuschko/ckad-study-guide
https://github.com/bmuschko/ckad-study-guide

3. Pull the container image alpine:3.18.2 available on
Docker Hub.

Save the container image to the file alpine-3.18.2.tar.

Delete the container image. Verify the container image is
not listable anymore.

Reinstate the container image from the file alpine-
3.18.2.tar.

Verify that the container image can be listed.

INTERACTIVE EXAM PRACTICE

Get more hands-on training and test your CKAD exam readiness
by working through our playlist of interactive CKAD labs. Each
step of the lab must be completed correctly before you can
move to the next step. If you get stuck, you can view the
solution and learn how to complete the step.

The following lab covers material from this chapter:

o Defining, Building, and Running a Container Image

https://hub.docker.com/layers/library/alpine/3.18.2/images/sha256-25fad2a32ad1f6f510e528448ae1ec69a28ef81916a004d3629874104f8a7f70?context=explore
https://hub.docker.com/layers/library/alpine/3.18.2/images/sha256-25fad2a32ad1f6f510e528448ae1ec69a28ef81916a004d3629874104f8a7f70?context=explore
https://learning.oreilly.com/playlists/2e9fe6dc-2a05-47fe-ae0a-34d6485287cc/
https://learning.oreilly.com/interactive-lab/defining-building-and/9781098163839/

Chapter 5. Pods and
Namespaces

The most important primitive in the Kubernetes API is the Pod. A
Pod lets you run a containerized application. In practice, you'll often
encounter a one-to-one mapping between a Pod and a container;
however, the use cases discussed in Chapter 8 benefit from
declaring more than one container in a single Pod.

In addition to running a container, a Pod can consume other
services like storage, configuration data, and much more.
Therefore, think of a Pod as a wrapper for running containers while
at the same time being able to mix in cross-cutting and specialized
Kubernetes features.

COVERAGE OF CURRICULUM OBJECTIVES

The curriculum doesn'’t explicitly mention coverage of Pods and
namespaces. However, you will definitely need to understand
those primitives as they are essential for running workload in
Kubernetes.

Working with Pods

In this chapter, we will look at working with a Pod running only a
single container. We'll discuss all important kubectl commands for
creating, modifying, interacting, and deleting using imperative and
declarative approaches.

Creating Pods

The Pod definition needs to state an image for every container.
Upon creating the Pod object, imperatively or declaratively, the
scheduler will assign the Pod to a node, and the container runtime
engine will check if the container image already exists on that node.
If the image doesn't exist yet, the engine will download it from a
container image registry. By default the registry is Docker Hub. As
soon as the image exists on the node, the container is instantiated
and will run. Figure 5-1 demonstrates the execution flow.

Remote container

Image registry

Download image

Container
runtime
engine

Pod Pod
(Container) || (Container)(Container)
&

Local node

container image .
registry & Use image(s)

Figure 5-1. Container Runtime Interface interaction with container images

The run command is the central entry point for creating Pods
imperatively. Let’s talk about its usage and the most important
command line options you should memorize and practice. Say you
wanted to run a Hazelcast instance inside of a Pod. The container
should use the latest Hazelcast image, expose port 5701, and
define an environment variable. In addition, we'll also want to
assign two labels to the Pod. The following imperative command

https://hazelcast.com/
https://oreil.ly/ChxPI

combines this information and does not require any further editing
of the live object:

$ kubectl run hazelcast --image=hazelcast/hazelcast:5.1.7 \
--port=5701 --env="DNS DOMAIN=cluster" --
labels="app=hazelcast,env=prod"

The run command offers a wealth of command line options.
Execute the kubectl run --help or refer to the Kubernetes

documentation for a broad overview. For the exam, you'll not need
to understand every command. Table 5-1 lists the most commonly
used options.

Table 5-1. Important xuvect1 run command line options

Example

Option value Description

——image nginx:1.25.1 The image for the container to
run.

——port 8080 The port that this container
exposes.

—-rm N/A Deletes the Pod after command
in the container finishes. See
“Creating a Temporary Pod” for
more information.

——env PROFILE=dev The environment variables to set
in the container.

—-labels app=frontend A comma-separated list of labels

to apply to the Pod. Chapter 9
explains labels in more detail.

Some developers are more used to creating Pods from a YAML
manifest. Probably you're already accustomed to the declarative
approach because you're using it at work. You can express the same
configuration for the Hazelcast Pod by opening the editor, copying a
Pod YAML code snippet from the Kubernetes online documentation,
and modifying it to your needs. Example 5-1 shows the Pod
manifest saved in the file pod. yaml:

Example 5-1. Pod YAML manifest

apiVersion: vl
kind: Pod
metadata:
name: hazelcast
labels:
app: hazelcast
env: prod
spec:
containers:
- name: hazelcast
image: hazelcast/hazelcast:5.1.7
env:
- name: DNS DOMAIN
value: cluster
ports:
- containerPort: 5701 L5

e

oD

L1 Assigns the name of hazelcast to the Pod.

e Specifies labels to the Pod.

® Declares the container image to be executed in the container of
the Pod.

4] Injects one or many environment variables to the container.
@ Number of port to expose on the Pod’s IP address.

Creating the Pod from the manifest is straightforward. Simply use
the create or apply command, as shown here and explained in

“Managing Objects™:

$ kubectl apply -f pod.yaml
pod/hazelcast created

Listing Pods

Now that you have created a Pod, you can further inspect its
runtime information. The kubectl command offers a command for
listing all Pods running in the cluster: get pods. The following
command renders the Pod named hazelcast:

$ kubectl get pods
NAME READY STATUS RESTARTS AGE
hazelcast 1/1 Running 0 17s

Real-world Kubernetes clusters can run hundreds of Pods at the
same time. If you know the name of the Pod of interest, it's often
easier to query by name. You would still see only a single Pod:

$ kubectl get pods hazelcast
NAME READY STATUS RESTARTS AGE
hazelcast 1/1 Running 0 17s

Pod Life Cycle Phases

Because Kubernetes is a state engine with asynchronous control
loops, it's possible that the status of the Pod doesn’t show a
Running status right away when listing the Pods. It usually takes a
couple of seconds to retrieve the image and start the container.
Upon Pod creation, the object goes through several life cycle
phases, as shown in Figure 5-2.

https://oreil.ly/Qk5Ob
https://oreil.ly/Qk5Ob

Pending i Unknown

I

Running

v . 4

Succeeded Failed

Figure 5-2. Pod life cycle phases

Understanding the implications of each phase is important as it
gives you an idea about the operational status of a Pod. For
example, during the exam you may be asked to identify a Pod with
an issue and further debug the object. Table 5-2 describes all Pod
life cycle phases.

Table 5-2. Pod life cycle phases

Option Description

Pending The Pod has been accepted by the Kubernetes
system, but one or more of the container images
has not been created.

Running At least one container is still running or is in the
process of starting or restarting.

Succeeded All containers in the Pod terminated successfully.

Failed Containers in the Pod terminated,; at least one
failed with an error.

Unknown The state of Pod could not be obtained.

The Pod life cycle phases should not be confused with container
states within a Pod. Containers can have one of the three possible
states: Waiting, Running, and Terminated. You can read more

about container states in the Kubernetes documentation.

Rendering Pod Details

The rendered table produced by the get command provides high-

level information about a Pod. But what if you needed a deeper look
at the details? The describe command can help:

$ kubectl describe pods hazelcast
Name : hazelcast
Namespace: default

https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle/#container-states

Priority: 0

PriorityClassName: <none>
Node: docker-desktop/192.168.65.3
Start Time: Wed, 20 May 2020 19:35:47 -0600
Labels: app=hazelcast
env=prod
Annotations: <none>
Status: Running
IP: 10.1.0.41
Containers:
Events:

The terminal output contains the metadata information of a Pod,
the containers it runs, and the event log, such as failures when the
Pod was scheduled. The example output has been condensed to
show just the metadata section. You can expect the output to be
very lengthy.

There’s a way to be more specific about the information you want
to render. You can combine the describe command with a Unix

grep command if you want to identify the image for running in the
container:

$ kubectl describe pods hazelcast | grep Image:
Image: hazelcast/hazelcast:5.1.7

Accessing Logs of a Pod

As application developers, we know very well what to expect in the
log files produced by the application we implemented. Runtime
failures may occur when operating an application in a container. The
logs command downloads the log output of a container. The
following output indicates that the Hazelcast server started up
successfully:

$ kubectl logs hazelcast

May 25, 2020 3:36:26 PM com.hazelcast.core.LifecycleService
INFO: [10.1.0.46]1:5701 [dev] [4.0.1] [10.1.0.46]:5701 1is
STARTED

It's very likely that more log entries will be produced as soon as the
container receives traffic from end users. You can stream the logs
with the command line option - £. This option is helpful if you want
to see logs in real time.

Kubernetes tries to restart a container under certain conditions,
such as if the image cannot be resolved on the first try. Upon a
container restart, you won't have access to the logs of the previous
container; the 1ogs command renders the logs only for the current
container. However, you can still get back to the logs of the previous
container by adding the -p command line option. You may want to
use the option to identify the root cause that triggered a container
restart.

Executing a Command in Container

Some situations require you to get the shell to a running container
and explore the filesystem. Maybe you want to inspect the

configuration of your application or debug its current state. You can
use the exec command to open a shell in the container to explore

it interactively, as follows:

$ kubectl exec -it hazelcast -- /bin/sh
¥ ...

Notice that you do not have to provide the resource type. This
command only works for a Pod. The two dashes (--) separate the

exec command and its options from the command you want to run
inside of the container.

It's also possible to execute a single command inside of a container.
Say you wanted to render the environment variables available to
containers without having to be logged in. Just remove the
interactive flag -it and provide the relevant command after the

two dashes:

$ kubectl exec hazelcast -- env

DNS DOMAIN=cluster

Creating a Temporary Pod

The command executed inside of a Pod—usually an application
implementing business logic—is meant to run infinitely. Once the
Pod has been created, it will stick around. Under certain conditions,
you want to execute a command in a Pod just for troubleshooting.
This use case doesn't require a Pod object to run beyond the
execution of the command. That's where temporary Pods come into

play.

The run command provides the flag --rm, which will automatically
delete the Pod after the command running inside of it finishes. Say
you want to render all environment variables using env to see
what’s available inside of the container. The following command
achieves exactly that:

$ kubectl run busybox --image=busybox:1.36.1 --rm -it --
restart=Never -- env

HOSTNAME=busybox
pod "busybox" deleted

The last message rendered in the output clearly states that the Pod
was deleted after command execution.

Using a Pod’s IP Address for Network
Communication

Every Pod is assigned an IP address upon creation. You can inspect
a Pod’s IP address by using the -o wide command-line option for
the get pod command or by describing the Pod. The IP address of
the Pod in the following console outputis 10.244.0.5:

$ kubectl run nginx --image=nginx:1.25.1 --port=80
pod/nginx created
$ kubectl get pod nginx -o wide

NAME READY STATUS RESTARTS AGE IP

NODE \

NOMINATED NODE READINESS GATES

nginx 1/1 Running 0 37s 10.244.0.5
minikube \

<none> <none>

$ kubectl get pod nginx -o yaml
status:
podIP: 10.244.0.5

The IP address assigned to a Pod is unique across all nodes and
namespaces. This is achieved by assigning a dedicated subnet to
each node when registering it. When creating a new Pod on a node,
the IP address is leased from the assigned subnet. This is handled
by the networking life cycle manager kube-proxy along with the
Domain Name Service (DNS) and the Container Network Interface
(CNI).

You can easily verify the behavior by creating a temporary Pod that
calls the IP address of another Pod using the command-line tool

curl Or wget:

$ kubectl run busybox --image=busybox:1.36.1 --rm -it --
restart=Never \
-- wget 172.17.0.4:80
Connecting to 172.17.0.4:80 (172.17.0.4:80)
saving to 'index.html'
index.html 100%

|******************************** 615 O:OO:OO ETA

'index.html' saved
pod "busybox" deleted

It's important to understand that the IP address is not considered
stable over time. A Pod restart leases a new IP address. Therefore,
this IP address is often referred to as virtual IP address. Building a
microservices architecture—where each of the applications runs in
its own Pod with the need to communicate between each other with
a stable network interface—requires a different concept: the
Service. Refer to Chapter 21 for more information.

Configuring Pods

The curriculum expects you to feel comfortable with editing YAML
manifests either as files or as live object representations. This
section shows you some typical configuration scenarios you may
face during the exam. Later chapters will deepen your knowledge
by touching on other configuration aspects.

Declaring environment variables

Applications need to expose a way to make their runtime behavior
configurable. For example, you may want to inject the URL to an
external web service or declare the username for a database
connection. Environment variables are a common option to provide
this runtime configuration.

It might be tempting to say, “Hey, let’s create a container image for any
target deployment environment we need, including its configuration.”
That’s a bad idea. One of the practices of continuous delivery and the
Twelve-Factor App principles is to build a deployable artifact for a
commit just once. In this case, the artifact is the container image.
Deviating configuration runtime behavior should be controllable by
injecting runtime information when instantiating the container. You can
use environment variables to control the behavior as needed.

Defining environment variables in a Pod YAML manifest is relatively
easy. Add or enhance the section env of a container. Every
environment variable consists of a key-value pair, represented by
the attributes name and value. Kubernetes does not enforce or
sanitize typical naming conventions for environment variable keys,
though it is recommended to follow the standard of using upper-
case letters and the underscore character (_) to separate words.

To illustrate a set of environment variables, look at Example 5-2.
The code snippet describes a Pod that runs a Java-based application
using the Spring Boot framework.

Example 5-2. YAML manifest for a Pod defining environment

variables
apiVersion: vl
kind: Pod
metadata:
name: spring-boot-app
spec:
containers:
- name: spring-boot-app
image: bmuschko/spring-boot-app:1.5.3
env:
- name: SPRING PROFILES ACTIVE
value: prod

https://oreil.ly/w4_2g
https://12factor.net/

- name: VERSION
value: '1.5.3'

The first environment variable named SPRING PROFILES ACTIVE
defines a pointer to a so-called profile. A profile contains
environment-specific properties. Here, we are pointing to the profile
that configures the production environment. The environment
variable VERSION specifies the application version. Its value

corresponds to the tag of the image and can be exposed by the
running application to display the value in the user interface.

Defining a command with arguments

Many container images already define an ENTRYPOINT Or CMD

instruction. The command assigned to the instruction is
automatically executed as part of the container startup. For
example, the Hazelcast image we used earlier defines the
instruction CMD ["/opt/hazelcast/start-hazelcast.sh"].

In a Pod definition, you can either redefine the image ENTRYPOINT
and cMD instructions or assign a command to execute for the
container if it hasn't been specified by the image. You can provide
this information with the help of the command and args attributes
for a container. The command attribute overrides the image’s
ENTRYPOINT instruction. The args attribute replaces the cMD
instruction of an image.

Imagine you wanted to provide a command to an image that
doesn't provide one yet. As usual, there are two different
approaches: imperative and declarative. We'll generate the YAML
manifest with the help of the run command. The Pod should use
the busybox:1.36.1 image and execute a shell command that
renders the current date every 10 seconds in an infinite loop:

$ kubectl run mypod --image=busybox:1.36.1 -o yaml --dry-
run=client \

> pod.yaml -- /bin/sh -c "while true; do date; sleep 10;
done"

You can see in the generated but condensed pod. yaml file shown
in Example 5-3 that the command has been turned into an args
attribute. Kubernetes specifies each argument on a single line.

Example 5-3. A YAML manifest containing an args attribute

apiVersion: vl
kind: Pod
metadata:
name: mypod
spec:
containers:
- name: mypod
image: busybox:1.36.1
args:
- /bin/sh
- -C
- while true; do date; sleep 10; done

You could have achieved the same by a combination of the
command and args attributes if you were to handcraft the YAML
manifest. Example 5-4 shows a different approach.

Example 5-4. A YAML manifest containing command and args
attributes

apiVersion: vl
kind: Pod
metadata:
name: mypod
spec:
containers:
- name: mypod
image: busybox:1.36.1
command: ["/bin/sh"]
args: ["-c", "while true; do date; sleep 10; done"]

You can quickly verify if the declared command actually does its job.
First, create the Pod instance, then tail the logs:

$ kubectl apply -f pod.yaml
pod/mypod created

$ kubectl logs mypod -f

Fri May 29 00:49:06 UTC 2020
Fri May 29 00:49:16 UTC 2020
Fri May 29 00:49:26 UTC 2020

Deleting a Pod

Sooner or later you'll want to delete a Pod. During the exam, you
may be asked to remove a Pod. Or possibly, you made a
configuration mistake and want to start the question from scratch:

$ kubectl delete pod hazelcast
pod "hazelcast" deleted

Keep in mind that Kubernetes tries to delete a Pod gracefully. This
means that the Pod will try to finish active requests to the Pod to
avoid unnecessary disruption to the end user. A graceful deletion
operation can take anywhere from 5 to 30 seconds, time you don't
want to waste during the exam. See Chapter 1 for more information
on how to speed up the process.

An alternative way to delete a Pod is to point the delete command
to the YAML manifest you used to create it. The behavior is the
same:

$ kubectl delete -f pod.yaml
pod "hazelcast" deleted

To save time during the exam, you can circumvent the grace period
by adding the --now option to the delete command. Avoid using
the -—-now flag in production Kubernetes environments.

Working with Namespaces

Namespaces are an API construct to avoid naming collisions, and
they represent a scope for object names. A good use case for
namespaces is to isolate the objects by team or responsibility.

NAMESPACES FOR OBJECTS

The content in this chapter demonstrates the use of namespaces for
Pod objects. Namespaces are not a concept applicable only to Pods
though. Most object types can be grouped by a hamespace.

Most questions in the exam will ask you to execute the command in
a specific namespace that has been set up for you. The following
sections briefly touch on the basic operations needed to deal with a
namespace.

Listing Namespaces

A Kubernetes cluster starts out with a couple of initial namespaces.
You can list them with the following command:

$ kubectl get namespaces

NAME STATUS AGE

default Active 157d
kube-node-lease Active 157d
kube-public Active 1574
kube-system Active 157d

The default namespace hosts objects that haven’t been assigned
to an explicit namespace. Namespaces starting with the prefix
kube- are not considered end user-namespaces. They have been
created by the Kubernetes system. You will not have to interact
with them as an application developer.

Creating and Using a Namespace

To create a new namespace, use the create namespace
command. The following command uses the hame code-red:

$ kubectl create namespace code-red
namespace/code-red created

$ kubectl get namespace code-red
NAME STATUS AGE

code-red Active 16s

Example 5-5 shows the corresponding representation as a YAML
manifest.

Example 5-5. Namespace YAML manifest

apiVersion: vl
kind: Namespace
metadata:

name: code-red

Once the namespace is in place, you can create objects within it.
You can do so with the command line option --namespace or its
short-form -n. The following commands create a new Pod in the
namespace code-red and then list the available Pods in the
namespace:

$ kubectl run pod --image=nginx:1.25.1 -n code-red
pod/pod created

$ kubectl get pods -n code-red

NAME READY STATUS RESTARTS AGE

pod 1/1 Running 0 13s

Setting a Namespace Preference

Providing the --namespace or -n command line option for every
command is tedious and error-prone. You can set a permanent

namespace preference if you know that you need to interact with a
specific namespace you are responsible for. The first command
shown sets the permanent namespace code-red. The second
command renders the currently set permanent namespace:

$ kubectl config set-context --current --namespace=code-red
Context "minikube" modified.
$ kubectl config view --minify | grep namespace:

namespace: hello

Subsequent kubectl executions do not have to spell out the
Namespace code-red.:

$ kubectl get pods
NAME READY STATUS RESTARTS AGE
pod 1/1 Running 0 13s

You can always switch back to the default namespace or another
custom namespace using the config set-context command:

$ kubectl config set-context --current --namespace=default
Context "minikube" modified.

Deleting a Namespace

Deleting a namespace has a cascading effect on the object existing
in it. Deleting a namespace will automatically delete its objects:

$ kubectl delete namespace code-red
namespace "code-red" deleted

$ kubectl get pods -n code-red

No resources found in code-red namespace.

Summary

The exam puts a strong emphasis on the concept of a Pod, a
Kubernetes primitive responsible for running an application in a
container. A Pod can define one or many containers that use a
container image. Upon its creation, the container image is resolved
and used to bootstrap the application. Every Pod can be further
customized with the relevant YAML configuration.

Exam Essentials

Know how to interact with Pods

A Pod runs an application inside of a container. You can check on
the status and the configuration of the Pod by inspecting the
object with the kubectl get or kubectl describe
commands. Get familiar with the life cycle phases of a Pod to be
able to quickly diagnose errors. The command kubectl logs
can be used to download the container log information without
having to shell into the container. Use the command kubectl
exec to further explore the container environment, e.g., to
check on processes or to examine files.

Understand advanced Pod configuration options

Sometimes you have to start with the YAML manifest of a Pod
and then create the Pod declaratively. This could be the case if
you wanted to provide environment variables to the container or
declare a custom command. Practice different configuration
options by copy-pasting relevant code snippets from the
Kubernetes documentation.

Practice using a custom namespace

Most questions in the exam will ask you to work within a given
namespace. You need to understand how to interact with that

namespace from kubectl using the options —--namespace and
-n. To avoid accidentally working on the wrong namespace,
know how to permanently set a namespace.

Sample Exercises

Solutions to these exercises are available in Appendix A.

1. Create a new Pod named nginx running the image
nginx:1.17.10. Expose the container port 80. The Pod
should live in the namespace named ckad.

Get the details of the Pod including its IP address.

Create a temporary Pod that uses the busybox:1.36.1
image to execute a wget command inside of the container.
The wget command should access the endpoint exposed by
the nginx container. You should see the HTML response
body rendered in the terminal.

Get the logs of the nginx container.

Add the environment variables
DB URL=postgresqgl://mydb:5432 and
DB USERNAME=admin to the container of the nginx Pod.

Open a shell for the nginx container and inspect the
contents of the current directory 1s -1. Exit out of the
container.

2. Create a YAML manifest for a Pod named 1oop that runs
the busybox:1.36.1 image in a container. The container
should run the following command: for i in {1..10};
do echo "Welcome $i times"; done. Create the Pod
from the YAML manifest. What's the status of the Pod?

Edit the Pod named 1oop. Change the command to run in
an endless loop. Each iteration should echo the current
date.

Inspect the events and the status of the Pod 1oop.

INTERACTIVE EXAM PRACTICE

Get more hands-on training and test your CKAD exam readiness
by working through our playlist of interactive CKAD labs. Each
step of the lab must be completed correctly before you can
move to the next step. If you get stuck, you can view the
solution and learn how to complete the step.

The following labs cover material from this chapter:
¢ Creating and Interacting with a Pod in a Namespace
¢ Creating a Pod that Uses a Custom Command

* Modifying the Configuration of an Existing Pod

https://learning.oreilly.com/playlists/2e9fe6dc-2a05-47fe-ae0a-34d6485287cc/
https://learning.oreilly.com/interactive-lab/creating-and-interacting/9781098163846/
https://learning.oreilly.com/interactive-lab/creating-a-pod/9781098163853/
https://learning.oreilly.com/interactive-lab/modifying-the-configuration/9781098163860/

Chapter 6. Jobs and CronJobs

A Job models a one-time process—for example, a batch operation.
The Pod and its encompassed containers stop running after the
work has been completed. CronJobs run periodically according to
their defined schedules. A good application for a CronJob is a task
that needs to occur periodically (for example, a process that exports
data). In this chapter you will learn how to configure, run, and
inspect a Job and a CronJob.

COVERAGE OF CURRICULUM OBJECTIVES
This chapter addresses the following curriculum objective:

e Understand Jobs and CronJobs

Working with Jobs

A Job is a Kubernetes primitive that runs functionality until a
specified number of completions has been reached, making it a
good fit for one-time operations like import/export data processes
or I/O-intensive processes with a finite end. The actual work
managed by a Job is still running inside of a Pod. Therefore, you can
think of a Job as a higher-level coordination instance for Pods
executing the workload. Figure 6-1 shows the parent-child
relationship between a Job and the Pod(s) it manages.

Upon completion of a Job and its Pods, Kubernetes does not
automatically delete the objects—they will stay until they're
explicitly deleted. Keeping those objects helps with debugging the

command run inside of the Pod and gives you a chance to inspect
the logs.

Job

Manages Manages

Executes
Pod 1 workload Pod 2

\ 7

Figure 6-1. Relationship between a Job and its Pods

AUTO-CLEANUP OF JOBS AND PODS

Kubernetes supports an auto-cleanup mechanism for Jobs and their
controlled Pods by specifying the YAML attribute spec.ttl

SecondsAfterFinished.

Creating and Inspecting Jobs

Let’s first create a Job and observe its behavior in practice before
delving into details. To create a Job imperatively, simply use the
create job command. If the provided image doesn't run any
commands, you may want to append a command to be executed in
the corresponding Pod.

https://kubernetes.io/docs/concepts/workloads/controllers/ttlafterfinished/

The following command creates a Job that runs an iteration
process. For each iteration of the loop, a variable named counter
is incremented. The command execution finishes after reaching the
counter value 3:

$ kubectl create job counter --image=nginx:1.25.1 \
-- /bin/sh -c¢ 'counter=0; while [$counter -1t 3]; do \
counter=$ ((counter+l)); echo "$counter"; sleep 3; done;'
job.batch/counter created

Example 6-1 shows the YAML manifest equivalent for the Job if you
prefer the declarative approach.

Example 6-1. A Job executing a loop command

apiVersion: batch/vl
kind: Job
metadata:
name: counter
spec:
template: 1)
spec:
containers:
- name: counter
image: nginx:1.25.1

command:
- /bin/sh
- -C
- counter=0; while [Scounter -1t 3]; do
counter=$ ((counter+1)); \
echo "S$counter"; sleep 3; done;

restartPolicy: Never

@ The Pod template uses the same attributes available in a Pod
definition.

The output of listing the Job shows the current number of
completions and the expected number of completions. The default
number of completions is 1. This means if the Pod executing the

command was successful, a Job is considered completed. As you
can see in the following terminal output, a Job uses a single Pod by
default to perform the work. The corresponding Pod can be
identified by name—it uses the Job name as a prefix in its own
name:

$ kubectl get jobs

NAME COMPLETIONS DURATION AGE

counter 0/1 13s 13s

$ kubectl get jobs

NAME COMPLETIONS DURATION AGE

counter 1/1 15s 19s

$ kubectl get pods

NAME READY STATUS RESTARTS AGE
counter-zokdj 0/1 Completed 0 51s

To verify the correct behavior of the Job, you can download its logs.
As expected, the output renders the counter for each iteration:

$ kubectl logs counter-z6kdj
1
2
3

You can further tweak the runtime behavior of a Job. The next two
sections discuss configuring the Job operation types and restart
behavior.

Job Operation Types

The default behavior of a Job is to run the workload in a single Pod
and expect one successful completion. That's what Kubernetes calls
a non-parallel Job. Internally, those parameters are tracked by the
attributes spec.completions and spec.parallelism, each

with the assigned value 1. The following command renders the
parameters of the Job we created earlier:

$ kubectl get jobs counter -o yaml | grep -C 1
"completions"

completions: 1
parallelism: 1

You can tweak any of those parameters to fit the needs of your use
case. For example, if you expected the workload to complete
successfully multiple times, then you'd increase the value of
spec.completions to at least 2. Sometimes, you'll want to
execute the workload by multiple pods in parallel. In those cases,
you’d bump up the value assigned to spec.parallelism. Thisis
referred to as a parallel job. Remember that you can use any
combination of assigned values for both attributes. Table 6-1
summarizes the different use cases.

Table 6-1. Configuration for different Job operation types

Type

Non-parallel
with one
completion
count

Parallel with
a fixed
completion
count

Parallel with
worker
queue

Restart Behavior

spec.completions spec.parallelism

1
>=1
unset

1
>=1
>=1

Descript

Complete
soon as it
Pod

terminate
successfu

Complete
when

specified
number o
tasks finis
successfu

Complete
when at
least one
Pod has
terminate
successfu
and all Pc
are
terminate

4

The spec.backoffLimit attribute determines the number of

retries a Job attempts to successfully complete the workload until
the executed command finishes with an exit code 0. The default is

6, which means it will execute the workload 6 times before the Job
is considered unsuccessful.

The Job manifest needs to explicitly declare the restart policy by
using spec.template.spec.restartPolicy. The default
restart policy of a Pod is Always, which tells the Kubernetes

scheduler to always restart the Pod even if the container exits with
a 0 exit code. The restart policy of a Job can be only OnFailure or
Never.

Restarting the container on failure

Figure 6-2 shows the behavior of a Job that uses the restart policy
OnFailure. Upon a container failure, this policy will simply rerun
the container.

Pod Pod Pod Pod
[counter—ztkvf J [cuu nter—ztkvf] o unter-ztkvf] [cuu nter-ztkva
QExit1 OExit1 O Exit1 v EXit0 >C)Time
Start Restart Restart Completed

Figure 6-2. Restart policy onFailure

Starting a new Pod on failure

Figure 6-3 shows the behavior of a Job that uses the restart policy
Never. This policy does not restart the container upon a failure. It

starts a new Pod instead.

Pod Pod Pod Pod
[counter—ztkva [munter-tgn lh] [cuunter-pszg] [counter-jj4lb J
OExit1 OExit] OExit1 Vv EXit 0 :
Start Start Start Completed ’0 kme

Figure 6-3. Restart policy Never

Working with CronJobs

A Job represents a finite operation. Once the operation can be
executed successfully, the work is done and the Job will create no
more Pods. A CronJob creates a new Job object periodically based a
schedule. The Pods controlled by the Job handle the actual
workload. Figure 6-4 illustrates the relationship between a CronJob,
the Job it manages, and the Pods that execute the workload.

Manages

Job

Manages Manages

Executes
Pod 1 workload Pod 2

g J
Figure 6-4. Relationship between a CronJob, Job, and its Pods

The schedule can be defined with a cron-expression you may
already know from Unix cron jobs. Figure 6-5 shows a CronJob that
executes every hour. For every execution, the CronJob creates a
new Pod that runs the task and finishes with a 0 or non-zero exit
code.

Pod Pod Pod
[counter-ztkvf] [counter-tgnlh] [counter-pszg]

OExit1 v Exit0 OExit1 .

12:00 13:00 00 O Time

Figure 6-5. Executing a Job based on a schedule

Creating and Inspecting CronJobs

You can use the imperative create cronjob command to create
a new CronJob. The following command schedules the CronJob to
run every minute. The Pod created for every execution renders the
current date to standard output using the Unix echo command:

$ kubectl create cronjob current-date --schedule="* * * *
* " \

--image=nginx:1.25.1 -- /bin/sh -c 'echo "Current date:
$ (date) "'
cronjob.batch/current-date created

To create a CronJob from the YAML manifest, use the definition
shown in Example 6-2.

Example 6-2. A CronJob printing the current date

apiVersion: batch/vl
kind: CronJob
metadata:

name: current-date
spec:

schedule: "* * * * xnU {l
jobTemplate: a
spec:
template:
spec:
containers:
- name: current-date
image: nginx:1.25.1
args:
- /bin/sh
- -C
- 'echo "Current date: S$(date)"'
restartPolicy: OnFailure

@ Defines the cron expression that determines when a new Job
object needs to be created.

@ The section that describes the Job template.

If you list the existing CronJob with the get cronjobs command,

you will see the schedule, the last scheduled execution, and
whether the CronJob is currently active:

$ kubectl get cronjobs

NAME SCHEDULE SUSPEND ACTIVE LAST SCHEDULE
AGE

current-date oxok oKk o% False 0 <none>

28s

$ kubectl get cronjobs

NAME SCHEDULE SUSPEND ACTIVE LAST SCHEDULE
AGE

current-date koKX koK False 1 14s

53s

It's easy to match Jobs and Pods created by a CronJob. You can
simply identify them by the name prefix. In this case, the prefix is
current-date-.

$ kubectl get jobs,pods

NAME COMPLETIONS DURATION
AGE

job.batch/current-date-28473049 1/1 3s
2m23s

job.batch/current-date-28473050 1/1 3s

83s

job.batch/current-date-28473051 1/1 3s

23s

NAME READY STATUS
RESTARTS AGE

pod/current-date-28473049-16hc7 0/1 Completed 0
2m23s

pod/current-date-28473050-csg7n 0/1 Completed 0
83s

pod/current-date-28473051-jg8st 0/1 Completed 0
23s

Configuring Retained Job History

Even after a task in a Pod controlled by a CronJob completes, it will
not be deleted automatically. Keeping a historical record of Pods
can be tremendously helpful for troubleshooting failed workloads or
inspecting the logs. By default, a CronJob retains the last three
successful Pods and the last failed Pod:

$ kubectl get cronjobs current-date -o yaml | grep
successfulJobsHistoryLimit:
successfulJobsHistoryLimit: 3
$ kubectl get cronjobs current-date -o yaml | grep
failedJobsHistoryLimit:
failedJobsHistoryLimit: 1

To reconfigure the job retention history limits, set new values for
the spec.successfulJobsHistoryLimit and

spec.failedJobsHistoryLimit attributes. Example 6-3 keeps

the last five successful executions and the last three failed
executions.

Example 6-3. A CronJob configuring retention history limits

apiVersion: batch/vl
kind: CronJdob
metadata:
name: current-date
spec:
successfulJobsHistoryLimit: 5 (1]
failedJdobsHistoryLimit: 3 (2]
schedule: "* * * *x xmU
jobTemplate:
spec:
template:
spec:

containers:

- name: current-date
image: nginx:1.25.1
args:

- /bin/sh

- -C

- 'echo "Current date: $(date)"'
restartPolicy: OnFailure

@ Defines the number of successful Jobs kept in the history.

@ Defines the number of failed Jobs kept in the history.

Summary

Jobs are well suited for implementing batch processes run in one or

many Pods as a finite operation. Both objects, the Job and the Pod,

will not be deleted after the work is completed to support inspection
and troubleshooting activities. A CronJob is very similar to a Job but
executes on a schedule, defined as a Unix cron expression.

Exam Essentials

Understand practical use cases of Jobs and CronJobs

Jobs and CronJobs manage Pods that should finish the work at
least once or periodically. You will need to understand the
creation of those objects and how to inspect them at runtime.
Make sure to play around with the different configuration options
and how they affect the runtime behavior.

Practice different Job operational modes

Jobs can operate in three modes: non-parallel with one
completion count, in parallel with a fixed completion count, and
in parallel with worker queue. The default behavior of a Job is to
run the workload in a single Pod and expect one successful
completion (non-parallel Job). The attribute
spec.completions controls the number of required successful
completions. The attribute spec.parallelism allows for
executing the workload by multiple Pods in parallel.

Sample Exercises
Solutions to these exercises are available in Appendix A.

1. Create a Job named random-hash using the container
image alpine:3.17. 3 that executes the shell command
echo SRANDOM | base64 | head -c 20. Configure the

Job to execute with two Pods in parallel. The humber of
completions should be set to 5.

Identify the Pods that executed the shell command. How
many Pods do you expect to exist?

Retrieve the generated hash from one of the Pods.

Delete the Job. Will the corresponding Pods continue to
exist?

. Create a new CronJob named google-ping. When
executed, the Job should run a curl command for
google.com. Pick an appropriate image. The execution
should occur every two minutes.

Watch the creation of the underlying Jobs managed by the
CronJob. Check the command-line options of the relevant
command or consult the Kubernetes documentation.

Reconfigure the CronJob to retain a history of seven
executions.

Reconfigure the CronJob to disallow a new execution if the
current execution is still running. Consult the Kubernetes
documentation for more information.

INTERACTIVE EXAM PRACTICE

Get more hands-on training and test your CKAD exam readiness
by working through our playlist of interactive CKAD labs. Each
step of the lab must be completed correctly before you can
move to the next step. If you get stuck, you can view the
solution and learn how to complete the step.

The following labs cover material from this chapter:

e Creating a Nonparallel Job
e Creating a Parallel Job

e Creating and Inspecting a Periodic Operation Using a
CronJob

https://kubernetes.io/docs/reference/kubectl
https://kubernetes.io/docs/reference/kubectl
https://kubernetes.io/docs/concepts/workloads/controllers/cron-jobs/#concurrency-policy
https://kubernetes.io/docs/concepts/workloads/controllers/cron-jobs/#concurrency-policy
https://learning.oreilly.com/playlists/2e9fe6dc-2a05-47fe-ae0a-34d6485287cc/
https://learning.oreilly.com/interactive-lab/creating-a-nonparallel/9781098163877/
https://learning.oreilly.com/interactive-lab/creating-a-parallel/9781098163884/
https://learning.oreilly.com/interactive-lab/creating-and-inspecting/9781098163891/
https://learning.oreilly.com/interactive-lab/creating-and-inspecting/9781098163891/

Chapter 7. Volumes

A container’s temporary filesystem is isolated from any other
container or Pod and is not persisted beyond a Pod restart. A Pod
can define a Volume and mount it to a container.

Ephemeral Volumes exist for the lifespan of a Pod. They are useful
if you want to share data between multiple containers running in
the Pod. Persistent Volumes preserve data beyond the lifespan of a
Pod. They are a good option for applications that require data to
exist longer, e.g., in the form of storage for a database-driven
application. In this chapter, we'll exercise the use of different
Volumes types in a Pod.

COVERAGE OF CURRICULUM OBIJECTIVES
This chapter addresses the following curriculum objective:

o Utilize persistent and ephemeral volumes

Working with Storage

Applications running in a container can use the temporary
filesystem to read and write files. In case of a container crash or a
cluster/node restart, the kubelet will restart the container. Any data
that had been written to the temporary filesystem is lost and cannot
be retrieved. The container effectively starts with a clean slate.

There are many uses cases for wanting to mount a Volume in a
container. We'll see one of the most prominent use cases in

Chapter 8: using an ephemeral Volume to exchange data between a
main application container and a sidecar. Figure 7-1 illustrates the

differences between the temporary filesystem of a container and
the use of a Volume.

Pod Pod
Container

Tmp filesystem- -} f====-=--- i %

Mount path--{ i /us rfﬁharefnginx;"html]

--4--Valume

[fuarﬂogs]

Container1

[;Varﬂggs {--Mount path

Container 2

Figure 7-1. A container using the temporary filesystem versus a Volume

Volume Types

Every Volume needs to define a type. The type determines the
medium that backs the Volume and its runtime behavior.

Ephemeral Volumes

These exist for the lifespan of a Pod. Ephemeral Volumes are
useful if you want to share data between multiple containers

running in the Pod or if you can easily reconstruct the data
stored on the Volume upon a Pod restart.

Persistent Volumes

These preserve data beyond the lifespan of a Pod. Persistent
Volumes are a good option for applications that require data to

exist longer, for example, in the form of storage for a database-
driven application.

The Kubernetes documentation offers a long list of Volume types.

Table 7-1 provides a select list of Volume types that I have found to
be most relevant to the exam.

Table 7-1. Volume types most relevant to exam

Type Description

emptyDir Empty directory in Pod with read/write access.
Only persisted for the lifespan of a Pod. A good
choice for cache implementations or data
exchange between containers of a Pod.

hostPath File or directory from the host node’s filesystem.
Supported only on single-node clusters and not
meant for production.

configMap, secr Provides a way to inject configuration data. For
et practical examples, see Chapter 19.

nfs An existing NFS (Network File System) share.
Preserves data after Pod restart.

persistentvolu Claims a Persistent Volume. For more
meClaim information, see “Creating
PersistentVolumeClaims”.

Ephemeral Volumes

Defining an ephemeral Volume for a Pod requires two steps. First,
you need to declare the Volume itself using the attribute
spec.volumes []. As part of the definition, you provide the name
and the type. Just declaring the Volume won't be sufficient. Second,
the Volume needs to be mounted to a path of the consuming
container via spec.containers[] .volumeMounts[]. The
mapping between the Volume and the Volume mount occurs
through the matching name.

Creating and mounting an ephemeral Volume

In Example 7-1, stored in the file pod-with-volume.yaml/ here, you
can see the definition of a Volume with type emptyDir. The

Volume has been mounted to the path /var/log/nginx inside the
container named nginx.

Example 7-1. A Pod defining and mounting a ephemeral Volume

apiVersion: vl
kind: Pod
metadata:

name: business-—app

spec:

volumes:

- name: logs-volume
emptyDir: {}

containers:

- image: nginx:1.25.1
name: nginx
volumeMounts:

- mountPath: /var/log/nginx
name: logs-volume

Interacting with the Volume

Let’s create the Pod and see if we can interact with the mounted
Volume. The following commands open an interactive shell after the
Pod’s creation, then navigate to the mount path. You can see that
the Volume type emptyDir initializes the mount path as an empty
directory. New files and directories can be created as needed
without limitations:

$ kubectl create -f pod-with-volume.yaml
pod/business—-app created
$ kubectl get pod business-app

NAME READY STATUS RESTARTS AGE
business-app 1/1 Running 0 43s
$ kubectl exec business-app -it -- /bin/sh

cd /var/log/nginx

pwd

/var/log/nginx

1ls

touch app-logs.txt
1ls

app-logs.txt

For an illustrative use case of the emptyDir Volume type mounted
by more than one container, see Chapter 8.

Persistent Volumes

Data stored on Volumes outlives a container restart. In many
applications, the data lives far beyond the life cycles of the
applications, container, Pod, nodes, and even the clusters
themselves. Data persistence ensures the life cycles of the data are
decoupled from the life cycles of the cluster resources. A typical
example would be data persisted by a database. That’s the
responsibility of a persistent Volume. Kubernetes models persist
data with the help of two primitives: the PersistentVolume and the
PersistentVolumeClaim.

The PersistentVolume is the primitive representing a piece of
storage in a Kubernetes cluster. It is completely decoupled from the
Pod and therefore has its own life cycle. The object captures the
source of the storage (e.g., storage made available by a cloud
provider). A PersistentVolume is either provided by a Kubernetes
administrator or assigned dynamically by mapping to a storage
class.

The PersistentVolumeClaim requests the resources of a
PersistentVolume—for example, the size of the storage and the
access type. In the Pod, you will use the type
persistentVolumeClaim to mount the abstracted

PersistentVolume by using the PersistentVolumeClaim.

Figure 7-2 shows the relationship between the Pod, the
PersistentVolumeClaim, and the PersistentVolume.

F N

Pod

Container PersistentVolumeClaim > et Ao T
[[var/data]

Figure 7-2. Claiming a PersistentVolume from a Pod

Static versus dynamic provisioning

A PersistentVolume can be created statically or dynamically. If you
go with the static approach, then you first need to create a storage
device and then reference it by explicitly creating an object of kind
PersistentVolume. The dynamic approach doesn’t require you to
create a PersistentVolume object. It will be automatically created
from the PersistentVolumeClaim by setting a storage class name
using the attribute spec.storageClassName.

A storage class is an abstraction concept that defines a class of
storage device (e.g., storage with slow or fast performance) used
for different application types. It's the job of a Kubernetes
administrator to set up storage classes. For a deeper discussion on
storage classes, see “Storage Classes”. For now, we'll focus on the
static provisioning of PersistentVolumes.

Creating PersistentVolumes

When you create a PersistentVolume object yourself, we refer to the
approach as static provisioning. A PersistentVolume can be created
only by using the manifest-first approach. At this time, kubectl
doesn't allow the creation of a PersistentVolume using the create
command. Every PersistentVolume needs to define the storage
capacity using spec.capacity and an access mode set via
spec.accessModes. See “Configuration options for a

PersistentVolume” for more information on the configuration options
available to a PersistentVolume.

Example 7-2 creates a PersistentVolume named db-pv with a
storage capacity of 1Gi and read/write access by a single node. The
attribute hostPath mounts the directory /data/db from the host
node’s filesystem. We'll store the YAML manifest in the file db-
pv.yaml.

Example 7-2. YAML manifest defining a PersistentVolume

apiVersion: vl
kind: PersistentVolume
metadata:
name: db-pv
spec:
capacity:
storage: 1Gi
accessModes:
- ReadWriteOnce
hostPath:
path: /data/db

When you inspect the created PersistentVolume, you'll find most of
the information you provided in the manifest. The status
Available indicates that the object is ready to be claimed. The

reclaim policy determines what should happen with the
PersistentVolume after it has been released from its claim. By
default, the object will be retained. The following example uses the
short-form command pv to avoid having to type

persistentvolume.

$ kubectl create -f db-pv.yaml
persistentvolume/db-pv created
$ kubectl get pv db-pv
NAME CAPACITY ACCESS MODES RECLAIM POLICY STATUS
\
CLAIM STORAGECLASS REASON AGE
db-pv 1G1i RWO Retain

Available \
10s

Configuration options for a PersistentVolume

A PersistentVolume offers a variety of configuration options that
determine their innate runtime behavior. For the exam, it’s
important to understand the volume mode, access mode, and
reclaim policy configuration options.

Volume mode

The volume mode handles the type of device. That's a device either
meant to be consumed from the filesystem or backed by a block
device. The most common case is a filesystem device. You can set
the volume mode using the attribute spec.volumeMode. Table 7-2

shows all available volume modes.

Table 7-2. PersistentVolume volume modes

Type Description

Filesystem Default. Mounts the volume into a directory of the
consuming Pod. Creates a filesystem first if the
volume is backed by a block device and the device
iIs empty.

Block Used for a volume as a raw block device without a
filesystem on it.

The volume mode is not rendered by default in the console output
of the get pv command. You will need to provide the -0 wide
command-line option to see the VOLUMEMODE column, as shown
here:

$ kubectl get pv -o wide

NAME CAPACITY ACCESS MODES RECLAIM POLICY STATUS
\

CLAIM STORAGECLASS REASON AGE VOLUMEMODE

db-pv 1Gi RWO Retain

Available \
19m Filesystem

Access mode

Each PersistentVolume can express how it can be accessed using
the attribute spec.accessModes. For example, you can define
that the volume can be mounted only by a single Pod in a read or
write mode or that a volume is read-only but accessible from
different nodes simultaneously. Table 7-3 provides an overview of
the available access modes. The short-form notation of the access
mode is usually rendered in outputs of specific commands, e.g., get
pv OF describe pv.

Table 7-3. PersistentVolume access modes

Type Short Form Description

ReadWriteOnce RWO Read/write access by a single
node

ReadOnlyMany ROX Read-only access by many nodes

ReadWriteMany RWX Read/write access by many
nodes

ReadWriteoncePo RWOP Read/write access mounted by a

d single Pod

The following command parses the access modes from the
PersistentVolume named db-pv. As you can see, the returned value
is an array underlining the fact that you can assign multiple access
modes at once:

$ kubectl get pv db-pv -o jsonpath='{.spec.accessModes}'
["ReadWriteOnce"]

Reclaim policy

Optionally, you can also define a reclaim policy for a
PersistentVolume. The reclaim policy specifies what should happen
to a PersistentVolume object when the bound
PersistentVolumeClaim is deleted (see Table 7-4). For dynamically
created PersistentVolumes, the reclaim policy can be set via the
attribute . reclaimPolicy in the storage class. For statically
created PersistentVolumes, use the attribute
spec.persistentVolumeReclaimPolicy in the
PersistentVolume definition.

Table 7-4. PersistentVolume reclaim policies

Type Description

Retain Default. When PersistentVolumeClaim is deleted,
the PersistentVolume is “released” and can be
reclaimed.

Delete Deletion removes PersistentVolume and its

associated storage.

Recycle This value is deprecated. You should use one of
the other values.

This command retrieves the assigned reclaim policy of the
PersistentVolume named db-pv:

$ kubectl get pv db-pv -o
jsonpath="'{.spec.persistentVolumeReclaimPolicy}"'
Retain

Creating PersistentVolumeClaims

The next object we'll need to create is the PersistentVolumeClaim.
Its purpose is to bind the PersistentVolume to the Pod. Let’s look at
the YAML manifest stored in the file db-pvc.yaml, shown in
Example 7-3.

Example 7-3. Definition of a PersistentVolumeClaim

kind: PersistentVolumeClaim
apiVersion: vl
metadata:
name: db-pvc
spec:
accessModes:

- ReadWriteOnce
storageClassName: ""
resources:

requests:

storage: 256Mi

What we're saying is: “Give me a PersistentVolume that can fulfill
the resource request of 256Mi and provides the access mode
ReadWriteOnce.” Static provisioning should use an empty string
for the attribute spec.storageClassName if you do not want it to
automatically assign the default storage class. The binding to an
appropriate PersistentVolume happens automatically based on
those criteria.

After creating the PersistentVolumeClaim, the status is set as
Bound, which means that the binding to the PersistentVolume was

successful. Once the associated binding occurs, nothing else can

bind to it. The binding relationship is one-to-one. Nothing else can
bind to the PersistentVolume once claimed. The following get

command uses the short-form pvc instead of

persistentvolumeclaim:

$ kubectl create -f db-pvc.yaml
persistentvolumeclaim/db-pvc created
$ kubectl get pvc db-pvc

NAME STATUS VOLUME CAPACITY ACCESS MODES
STORAGECLASS AGE

db-pvc Bound db-pv 1G1 RWO

111s

The PersistentVolume has not been mounted by a Pod yet.
Therefore, inspecting the details of the object shows <none>. Using

the describe command is a good way to verify if the
PersistentVolumeClaim was mounted properly:

$ kubectl describe pvc db-pvc

Used By: <none>

Mounting PersistentVolumeClaims in a Pod

All that’s left is to mount the PersistentVolumeClaim in the Pod that
wants to consume it. You already learned how to mount a volume in
a Pod. The big difference here, shown in Example 7-4, is using
spec.volumes[].persistentVolumeClaim and providing the

name of the PersistentVolumeClaim.
Example 7-4. A Pod referencing a PersistentVolumeClaim

apiVersion: vl
kind: Pod
metadata:
name: app-consuming-pvc
spec:
volumes:

- name: app-storage
persistentVolumeClaim:
claimName: db-pvc
containers:
- image: alpine:3.18.2
name: app

command: ["/bin/sh"]
args: ["-c", "while true; do sleep 60; done;"]
volumeMounts:

- mountPath: "/mnt/data"
name: app-storage

Let’s assume we stored the configuration in the file app-consuming-
pvc.yaml. After creating the Pod from the manifest, you should see
the Pod transitioning into the Ready state. The describe
command will provide additional information on the volume:

$ kubectl create -f app-consuming-pvc.yaml
pod/app-consuming-pvc created

$ kubectl get pods

NAME READY STATUS RESTARTS AGE

app-consuming-pvc 1/1 Running 0 3s
$ kubectl describe pod app-consuming-pvc
Volumes:
app-storage:
Type: PersistentVolumeClaim (a reference to a
PersistentVolumeClaim \
in the same namespace)

ClaimName: db-pvc
ReadOnly: false

The PersistentVolumeClaim now also shows the Pod that mounted
it:
$ kubectl describe pvc db-pvc

Used By: app-consuming-pvc

You can now go ahead and open an interactive shell to the Pod.
Navigating to the mount path at /mnt/data gives you access to the
underlying PersistentVolume:

$ kubectl exec app-consuming-pvc -it -- /bin/sh

/ # cd /mnt/data

/mnt/data # 1ls -1

total O

/mnt/data # touch test.db

/mnt/data # 1ls -1

total O

-rw-r—--r-- 1 root root 0 Sep 29 23:59
test.db

Storage Classes

A storage class is a Kubernetes primitive that defines a specific type
or “class” of storage. Typical storage characteristics can be the type
(e.g., fast SSD storage versus remote cloud storage or the backup
policy for storage). The storage class is used to provision a
PersistentVolume dynamically based on its criteria. In practice, this
means that you do not have to create the PersistentVolume object
yourself. The provisioner assigned to the storage class takes care of
it. Most Kubernetes cloud providers come with a list of existing
provisioners. Minikube already creates a default storage class
named standard, which you can query with the following
command:

$ kubectl get storageclass
NAME PROVISIONER
RECLAIMPOLICY \

VOLUMEBINDINGMODE ALLOWVOLUMEEXPANSION AGE
standard (default) k8s.io/minikube-hostpath Delete
\

Immediate false 108d

Creating storage classes

Storage classes can be created declaratively only with the help of a
YAML manifest. At a minimum, you need to declare the provisioner.
All other attributes are optional and use default values if not
provided upon creation. Most provisioners let you set parameters
specific to the storage type. Example 7-5 defines a storage class on
Google Compute Engine denoted by the provisioner
kubernetes.io/gce-pd.

Example 7-5. Definition of a storage class

apiVersion: storage.k8s.io/vl
kind: StorageClass
metadata:

name: fast
provisioner: kubernetes.io/gce-pd
parameters:

type: pd-ssd

replication-type: regional-pd

If you saved the YAML contents in the file fast-sc.yaml, then the
following command will create the object. The storage class can be
listed using the get storageclass command:

$ kubectl create -f fast-sc.yaml
storageclass.storage.k8s.io/fast created
$ kubectl get storageclass
NAME PROVISIONER
RECLAIMPOLICY \
VOLUMEBINDINGMODE ALLOWVOLUMEEXPANSION AGE
fast kubernetes.io/gce-pd Delete
\

Immediate false 4s

Using storage classes

Provisioning a PersistentVolume dynamically requires assigning of
the storage class when you create the PeristentVolumeClaim.
Example 7-6 shows the usage of the attribute

spec.storageClassName for assigning the storage class named
standard.

Example 7-6. Using a storage class in a PersistentVolumeClaim

kind: PersistentVolumeClaim
apiVersion: vl
metadata:
name: db-pvc
spec:
accessModes:
- ReadWriteOnce
resources:
requests:
storage: 512Mi
storageClassName: standard

The corresponding PersistentVolume object will be created only if
the storage class can provision a fitting PersistentVolume using its
provisioner. It's important to understand that Kubernetes does not
render an error or warning message if it isn't the case.

The following command renders the created PersistentVolumeClaim
and PersistentVolume. As you can see, the name of the dynamically
provisioned PersistentVolume uses a hash to ensure a unique
naming:

$ kubectl get pv,pvc
NAME
CAPACITY \

ACCESS MODES RECLAIM POLICY STATUS CLAIM
STORAGECLASS \

REASON AGE
persistentvolume/pvc-b8200919-f7f7-4c74-9212-e£259d421734
512M1 \

RWO Delete Bound default/db-pvc
standard \
2s

NAME STATUS VOLUME

\
CAPACITY ACCESS MODES STORAGECLASS AGE

persistentvolumeclaim/db-pvc Bound pvc-b820b919-£7f7-
4c74-9212-e£259d421734 \
512Mi RWO standard 2s

The steps for mounting the PersistentVolumeClaim from a Pod are
the same as for static and dynamic provisioning. Refer to “"Mounting
PersistentVolumeClaims in a Pod” for more information.

Summary

Kubernetes offers the concept of a Volume to implement the use
case. A Pod mounts a Volume to a path in the container. Kubernetes
offers a wide range of Volume types to fulfill different requirements.

PersistentVolumes store data beyond a Pod or cluster/node restart.
Those objects are decoupled from the Pod’s life cycle and are
therefore represented by a Kubernetes primitive. The
PersistentVolumeClaim abstracts the underlying implementation
details of a PersistentVolume and acts as an intermediary between
Pod and PersistentVolume.

Exam Essentials

Practice defining and consuming ephemeral Volumes

Volumes are a cross-cutting concept applied in different areas of
the exam. Know where to find the relevant documentation for
defining a Volume as well as the multitude of ways to consume
a Volume from a container. Definitely read Chapter 19 for a deep
dive on how to mount ConfigMaps and Secrets as a Volume, and
Chapter 8 for sharing a Volume between two containers.

Internalize the mechanics of defining and consuming a
PersistentVolume

Creating a PersistentVolume involves a couple of moving parts.
Understand the configuration options for PersistentVolumes and
PersistentVolumeClaims and how they play together. Try to
emulate situations that prevent a successful binding of a
PersistentVolumeClaim. Then fix the situation by taking
counteractions. Internalize the short-form commands pv and

pvc to save precious time during the exam.

Sample Exercises
Solutions to these exercises are available in Appendix A.

1. Create a Pod YAML manifest with two containers that use
the image alpine:3.12.0. Provide a command for both

containers that keep them running forever.

Define a Volume of type emptyDir for the Pod. Container 1

should mount the Volume to path /etc/a, and container 2
should mount the Volume to path /etc/b.

Open an interactive shell for container 1 and create the
directory data in the mount path. Navigate to the directory
and create the file hello.txt with the contents “Hello World.”
Exit out of the container.

Open an interactive shell for container 2 and navigate to the
directory /etc/b/data. Inspect the contents of file hello.txt.
Exit out of the container.

2. Create a PersistentVolume named 1ogs-pv that maps to
the hostPath /var/logs. The access mode should be
ReadWriteOnce and ReadOnlyMany. Provision a storage

capacity of 5Gi. Ensure that the status of the
PersistentVolume shows Available.

Create a PersistentVolumeClaim named logs-pvec. It uses
ReadWriteOnce access. Request a capacity of 2Gi. Ensure
that the status of the PersistentVolume shows Bound.

Mount the PersistentVolumeClaim in a Pod running the
image nginx at the mount path /var/log/nginx.

Open an interactive shell to the container and create a new
file named my-nginx.log in /var/log/nginx. Exit out of the
Pod.

Delete the Pod and re-create it with the same YAML
manifest. Open an interactive shell to the Pod, navigate to
the directory /var/log/nginx, and find the file you created
before.

INTERACTIVE EXAM PRACTICE

Get more hands-on training and test your CKAD exam readiness
by working through our playlist of interactive CKAD labs. Each
step of the lab must be completed correctly before you can
move to the next step. If you get stuck, you can view the
solution and learn how to complete the step.

The following labs cover material from this chapter:

e Creating a Pod with Volume of Type emptydir

e Creating and Using a PersistentVolume with Static
Provisioning

¢ Creating and Using a PersistentVolume with Dynamic
Provisioning

https://learning.oreilly.com/playlists/2e9fe6dc-2a05-47fe-ae0a-34d6485287cc/
https://learning.oreilly.com/interactive-lab/creating-a-pod/9781098163907/
https://learning.oreilly.com/interactive-lab/creating-and-using/9781098163914/
https://learning.oreilly.com/interactive-lab/creating-and-using/9781098163914/
https://learning.oreilly.com/interactive-lab/creating-and-using/9781098164485/
https://learning.oreilly.com/interactive-lab/creating-and-using/9781098164485/

Chapter 8. Multi-Container
Pods

Chapter 5 explained how to manage single-container Pods. That’s
the norm, as you'll want to run a microservice inside of a single Pod
to reinforce separation of concerns and increase cohesion.
Technically, a Pod allows you to configure and run multiple
containers.

In this chapter, we'll discuss the need for multi-container Pods, their
relevant use cases, and the design patterns that have emerged in
the Kubernetes community. The exam outline specifically mentions
prominent design patterns: the init container, the sidecar container,
and others. We'll get a good grasp of their application with the help
of representative examples.

COVERAGE OF CURRICULUM OBIJECTIVES
This chapter addresses the following curriculum objective:

¢ Understand multi-container Pod design patterns

Working with Multiple Containers in a Pod

Especially for Kubernetes beginners, how to appropriately design a
Pod isn't necessarily apparent. If you read the Kubernetes user
documentation and tutorials on the internet, you'll quickly discover
that you can create a Pod that runs multiple containers at the same
time. The question then arises: “Should I deploy my microservices
stack to a single Pod with multiple containers, or should I create
multiple Pods, each running a single microservice?” The short

answer is to operate a single microservice per Pod. This modus
operandi promotes a decentralized, decoupled, and distributed
architecture. Furthermore, it helps with rolling out new versions of a
microservice without necessarily interrupting other parts of the
system.

So, what's the point of running multiple containers in a Pod? There
are two common use cases. Sometimes, you'll want to initialize your
Pod by executing setup scripts, commands, or any other kind of
preconfiguration procedure before the application container should
start. This logic runs in an init container. Other times, you'll want to
provide helper functionality that runs alongside the application
container to avoid the need to bake the logic into application code.
For example, you may want to massage the log output produced by
the application. Containers running helper logic are called sidecars.

Init Containers

Init containers provide initialization logic concerns to be run before
the main application starts. To draw an analogy, let’s look at a
similar concept in programming languages. Many programming
languages, especially object-oriented ones like Java or C++, come
with a constructor or a static method block. Those language
constructs initialize fields, validate data, and set the stage before a
class can be created. Not all classes need a constructor, but they
are equipped with the capability.

In Kubernetes, this functionality can be achieved with the help of
init containers. Init containers are always started before the main
application containers, which means they have their own life cycle.
To split up the initialization logic, you can even distribute the work
into multiple init containers that are run in the order of definition in
the manifest. Of course, initialization logic can fail. If an init
container produces an error, the whole Pod is restarted, causing all
init containers to run again in sequential order. Thus, to prevent any

side effects, making init container logic idempotent is a good
practice. Figure 8-1 shows a Pod with two init containers and the
main application.

[Multi-Container Pod |
Init containers App container
(av) (V] [mainapp)
. r ;
Execution order

Figure 8-1. Sequential and atomic life cycle of init containers in a Pod

In the past couple of chapters, we've explored how to define a
container within a Pod: you simply specify its configuration under
spec.containers. For init containers, Kubernetes provides a
separate section: spec.initContainers. Init containers are
always executed before the main application containers, regardless
of the definition order in the manifest.

The manifest shown in Example 8-1 defines an init container and a
main application container. For the most part, init containers use
the same attributes as regular containers. There’s one big
difference, however. They cannot define probes, discussed in
Chapter 14. The init container sets up a configuration file in the
directory /usr/shared/app. This directory has been shared through a
Volume so that it can be referenced by a Node.js-based application
running in the main container.

Example 8-1. A Pod defining an init container

apiVersion: vl
kind: Pod
metadata:
name: business-app
spec:
initContainers:

- name: configurer
image: busybox:1.36.1
command: ['sh', '-c¢', 'echo Configuring application... &&

\

mkdir -p /usr/shared/app && echo -e "
{\"dbConfig\": \

{\"host\":\"localhost\",\"port\":5432,\"dbName\":\"customers\
"IN
> /usr/shared/app/config.json']
volumeMounts:
- name: configdir
mountPath: "/usr/shared/app"
containers:
- image: bmuschko/nodejs-read-config:1.0.0
name: web
ports:
- containerPort: 8080
volumeMounts:
- name: configdir
mountPath: "/usr/shared/app"
volumes:
- name: configdir
emptyDir: {}

When starting the Pod, you'll see that the status column of the get
command provides information on init containers as well. The prefix
Init: signifies that an init container is in the process of being
executed. The status portion after the colon character shows the

number of init containers completed versus the overall number of
init containers configured:

$ kubectl create -f init.yaml
pod/business-app created
$ kubectl get pod business-app

NAME READY STATUS RESTARTS AGE
business-app 0/1 Init:0/1 O 2s

$ kubectl get pod business-app

NAME READY STATUS RESTARTS AGE

business-app 1/1 Running 0 8s

Errors can occur during the execution of init containers. If any
container fails in the sequential initialization chain, then the whole
Pod will fail to start. You can always retrieve the logs of an init
container by using the --container command-line option (or -c
in its short form), as shown in Figure 8-2.

Multi-Container Pod
l Init container [App container
|

ot)

. --container=init
([>:kubectl l

--container=app

Figure 8-2. Targeting a specific container

The following command renders the logs of the configurer init
container, which equates to the echo command we configured in
the YAML manifest:

$ kubectl logs business-app -c configurer
Configuring application...

The Sidecar Pattern

The life cycle of an init container looks like this: it starts up, runs its
logic, then terminates once the work has been done. Init containers
are not meant to keep running over a longer period of time. But
some scenarios call for a different usage pattern. For example, you
may want to create a Pod that runs multiple containers continuously
alongside one another.

Future exams using Kubernetes 1.29 or higher may cover the
formalized sidecar container. Sidecar containers are secondary
containers that will start with the Pod and remain running during the
entire life of the Pod.

Typically, there are two different categories of containers: the
container that runs the application and another container that
provides helper functionality to the primary application. In the
Kubernetes space, the container providing helper functionality is
called a sidecar. The most commonly used capabilities of a sidecar
container include file synchronization, logging, and watcher
capabilities. The sidecars are not part of the main traffic or API of
the primary application. They usually operate asynchronously and
are not involved in the public API.

To illustrate the behavior of a sidecar, consider the following use
case. The main application container runs a web server—in this
case, NGINX. Once started, the web server produces two standard
logfiles. The file /var/log/nginx/access.log captures requests to the
web server’s endpoint. The other file, /var/log/nginx/error.log,
records failures while processing incoming requests.

As part of the Pod’s functionality, we want to implement a
monitoring service. The sidecar container polls the file's error./og
periodically and checks if any failures have been discovered. More
specifically, the service tries to find failures assigned to the error log
level, indicated by [error] in the log file. If an error is found, the
monitoring service will react to it. For example, it could send a
notification to the system administrators. We want to keep the
functionality as simple as possible. The monitoring service will
simply render an error message to standard output. The file

https://kubernetes.io/docs/concepts/workloads/pods/sidecar-containers/

exchange between the main application container and the sidecar
container happens through a Volume, as shown in Figure 8-3.

i '

Multi-Container Pod
[App container] [Sidecar container]
|)

» HTTP | | cat |

Accept requests

Send n::rtiﬁcatiog

Volume Read

error.log

Figure 8-3. The sidecar pattern in action

The YAML manifest shown in Example 8-2 sets up the described
scenario. The trickiest portion of the code is the lengthy bash
command. This command runs an infinite loop. As part of each
iteration, we inspect the contents of the file error.log, grep for an
error and potentially act on it. The loop executes every 10 seconds.

Example 8-2. An exemplary sidecar pattern implementation

apiVersion: vl
kind: Pod
metadata:
name: webserver
spec:
containers:
- name: nginx
image: nginx:1.25.1
volumeMounts:
- name: logs-vol
mountPath: /var/log/nginx
- name: sidecar
image: busybox:1.36.1

command: ["sh","-c","while true; do if [\"S$(cat
/var/log/nginx/error.log \
| grep 'error')\" != \"\"]; then echo 'Error
discovered!'; fi; \
sleep 10; done"]
volumeMounts:

- name: logs-vol

mountPath: /var/log/nginx
volumes:
- name: logs-vol
emptyDir: {}

When starting up the Pod, you'll notice that the overall number of
containers will show 2. After all containers can be started, the Pod
signals a Running status:

$ kubectl create -f sidecar.yaml
pod/webserver created
$ kubectl get pods webserver

NAME READY STATUS RESTARTS AGE
webserver 0/2 ContainerCreating 0 4s
$ kubectl get pods webserver

NAME READY STATUS RESTARTS AGE

webserver 2/2 Running 0 5s

You will find that error.log does not contain any failure to begin
with. It starts out as an empty file. With the following commands,
you'll provoke an error on purpose. After waiting for at least 10
seconds, you'll find the expected message on the terminal, which
you can query for with the 1ogs command:

$ kubectl logs webserver -c sidecar

$ kubectl exec webserver -it -c sidecar -- /bin/sh
/ # wget -0- localhost?unknown

Connecting to localhost (127.0.0.1:80)

wget: server returned error: HTTP/1.1 404 Not Found
/ # cat /var/log/nginx/error.log

2020/07/18 17:26:46 [error] 29#29: *2 open|()
"/usr/share/nginx/html/unknown" \

failed (2: No such file or directory), client: 127.0.0.1,
server: localhost, \

request: "GET /unknown HTTP/1.1", host: "localhost"
/ # exit

$ kubectl logs webserver -c sidecar

Error discovered!

The Adapter Pattern

As application developers, we want to focus on implementing
business logic. For example, as part of a two-week sprint, we're
tasked with adding a shopping cart feature. In addition to the
functional requirements, we also have to think about operational
aspects such as exposing administrative endpoints or crafting
meaningful and properly formatted log output. It's easy to fall into
the habit of rolling all aspects into the application code, which
makes it more complex and harder to maintain. Cross-cutting
concerns in particular need to be replicated across multiple
applications and are often copied and pasted from one code base to
another.

In Kubernetes, we can avoid bundling cross-cutting concerns into
the application code by running them in another container apart
from the main application container. The adapter pattern transforms
the output produced by the application to make it consumable in
the format needed by another part of the system. Figure 8-4
illustrates a concrete example of the adapter pattern.

[N

Multi-Container Pod
App container Adapter container] Third-party

Log monitoring services
[ISCESN J [normalizatinn]‘ J

Write Volume Read
disk-

space.txt

r

Figure 8-4. The adapter pattern in action

The business application running the main container produces
timestamped information—in this case, the available disk space—
and writes it to the file diskspace.txt. As part of the architecture, we
want to consume the file from a third-party monitoring application.

The problem is that the external application requires the
information to exclude the timestamp. Of course, we could change
the logging format to avoid writing the timestamp, but what if we
actually want to know when the log entry has been written? This is
where the adapter pattern can help. A sidecar container executes
transformation logic that turns the log entries into the format
needed by the external system without having to change
application logic.

The YAML manifest in Example 8-3 illustrates what this
implementation of the adapter pattern could look like. The app
container produces a new log entry every five seconds. The
transformer container consumes the contents of the file,

removes the timestamp, and writes it to a new file. Both containers
have access to the same mount path through a Volume.

Example 8-3. An exemplary adapter pattern implementation

apiVersion: vl
kind: Pod
metadata:
name: adapter
spec:
containers:
- args:
- /bin/sh
- -C
- 'while true; do echo "$(date) | $(du -sh ~)" >>
/var/logs/diskspace.txt; \
sleep 5; done;'
image: busybox:1.36.1
name: app
volumeMounts:
- name: config-volume
mountPath: /var/logs
- image: busybox:1.36.1
name: transformer
args:
- /bin/sh
- -C
- 'sleep 20; while true; do while read LINE; do echo

"SLINE" | cut -f2 -d"|" \
>> S (date +%Y-%m-%d-%H-%M-%S)-transformed.txt; done <
\
/var/logs/diskspace.txt; sleep 20; done;'
volumeMounts:
- name: config-volume
mountPath: /var/logs
volumes:
- name: config-volume
emptyDir: {}

After creating the Pod, we'll find two running containers. We should
be able to locate the original file, /var/logs/diskspace.txt, after
shelling into the transformer container. The transformed data
exists in a separate file in the user home directory:

$ kubectl create -f adapter.yaml

pod/adapter created

$ kubectl get pods adapter

NAME READY STATUS RESTARTS AGE

adapter 2/2 Running 0 10s

$ kubectl exec adapter --container=transformer -it --
/bin/sh

/ # cat /var/logs/diskspace.txt

Sun Jul 19 20:28:07 UTC 2020 | 4.0K /root

Sun Jul 19 20:28:12 UTC 2020 | 4.0K /root

/ # 1ls -1

total 40

-rw-r--r-—- 1 root root 60 Jul 19 20:28 2020-07-19-20-

28-28-transformed. txt

/ # cat 2020-07-19-20-28-28-transformed.txt
4.0K /root
4.0K /root

The Ambassador Pattern

Another important design pattern covered by the CKAD is the
ambassador pattern. The ambassador pattern provides a proxy for

communicating with external services.

Many use cases can justify the introduction of the ambassador
pattern. The overarching goal is to hide and/or abstract the
complexity of interacting with other parts of the system. Typical
responsibilities include retry logic upon a request failure, security
concerns such as providing authentication or authorization, and
monitoring latency or resource usage. Figure 8-5 illustrates this
pattern.

i .

Multi-Container Pod
App container Request Ambassador container

\ - Request
[Business logic | | Proxy |, b! Esiétririrggl I
J Response ___— J | Response

Figure 8-5. The ambassador pattern in action

In this example, we'll want to implement rate-limiting functionality
for HTTP(S) calls to an external service. For example, the
requirements for the rate limiter could say that an application can
make a maximum of 5 calls every 15 minutes. Instead of strongly
coupling the rate-limiting logic to the application code, it will be
provided by an ambassador container. Any calls made from the
business application need to be funneled through the ambassador
container. Example 8-4 shows a Node.js-based rate limiter
implementation that makes calls to the external service Postman.

Example 8-4. Node.js HTTP rate limiter implementation

const express = require('express');
const app = express|();
const ratelimit = require('express-rate-limit');

const https = require('https');

const ratelimiter = ratelLimit ({
windowMs: 15 * 60 * 1000,
max: 5,
message:

'Too many requests have been made from this IP, please
try again after an hour'

https://www.postman.com/

1) s

app.get ('/test', rateLimiter, function (req, res) {
console.log('Received request...');
var id = reqg.query.id;
var url = 'https://postman-echo.com/get?test=' + id;
console.log("Calling URL %s", url);

https.get (url, (resp) => {
let data = '';

resp.on('data', (chunk) => {
data += chunk;
}) s

resp.on('end', () => {
res.send (data) ;

1)

}).on("error", (err) => {
res.send (err.message) ;
}) g
})

var server = app.listen (8081, function () {
var port = server.address () .port
console.log ("Ambassador listening on port %s...", port)

H)

The corresponding Pod shown in Example 8-5 runs the main
application container on a different port than the ambassador
container. Every call to the HTTP endpoint of the container named
business-app would delegate to the HTTP endpoint of the
container named ambassador. It's important to mention that
containers running inside of the same Pod can communicate via
localhost. No additional networking configuration is required.

Example 8-5. An exemplary ambassador pattern implementation

apiVersion: vl
kind: Pod
metadata:

name: rate-limiter
spec:

containers:

- name: business-app
image: bmuschko/nodejs-business-app:1.0.0
ports:
- containerPort: 8080

- name: ambassador
image: bmuschko/nodejs-ambassador:1.0.0
ports:
- containerPort: 8081

Let’s test the functionality. First, we'll create the Pod, shell into the
container that runs the business application, and execute a series of
curl commands. The first five calls will be allowed to the external
service. On the sixth call, we'll receive an error message, as the
rate limit has been reached within the given time frame:

$ kubectl create -f ambassador.yaml
pod/rate-limiter created
$ kubectl get pods rate-limiter

NAME READY STATUS RESTARTS AGE
rate-limiter 2/2 Running 0 5s
$ kubectl exec rate-limiter -it -c business-app -- /bin/sh

curl localhost:8080/test
{"args":{"test":"123"}, "headers": {"x-forwarded-
proto":"https", \

"x-forwarded-port":"443","host" :"postman-echo.com", \
"x—amzn-trace-id" :"Root=1-5f177dba-
e736991e882d12fcffd23£f34"}, \
"url":"https://postman-echo.com/get?test=123"}

curl localhost:8080/test
Too many requests have been made from this IP, please try
again after an hour

Summary

Real-world scenarios call for running multiple containers inside of a
Pod. An init container helps with setting the stage for the main
application container by executing initializing logic. Once the
initialized logic has been processed, the container will be
terminated. The main application container starts only if the init
container ran through its functionality successfully.

Other design patterns that involve multiple containers per Pod are
the adapter pattern and the ambassador pattern. The adapter
pattern helps with “translating” data produced by the application so
that it becomes consumable by third-party services. The
ambassador pattern acts as a proxy for the application container
when communicating with external services by abstracting the
“how.”

Exam Essentials

Understand the need for running multiple containers in a Pod

Pods can run multiple containers. You will need to understand
the difference between init containers and sidecar containers
and their respective life cycles. Practice accessing a specific
container in a multi-container Pod with the help of the
command-line option --container or -c.

Know how to create an init container

Init containers see a lot of use in enterprise Kubernetes cluster
environments. Understand the need for using them in their
respective scenarios. Practice defining a Pod with one or even
more init containers and observe their linear execution when
creating the Pod. It's important to experience the behavior of a
Pod in failure situations that occur in an init container.

Understand multi-container design patterns and how to implement
them

Multi-container Pods are best understood by implementing a
scenario for one of the established patterns. Based on what
you've learned, come up with your own applicable use case and
create a multi-container Pod to solve it. It's helpful to be able to
identify sidecar patterns and understand why they are important
in practice and how to stand them up yourself. As you implement
your own sidecars, you may notice that you have to brush up on
your knowledge of bash.

Sample Exercises
Solutions to these exercises are available in Appendix A.

1. Create a YAML manifest for a Pod named complex-pod.
The main application container named app should use the
image nginx:1.25.1 and expose the container port 80.
Modify the YAML manifest so that the Pod defines an init
container named setup that uses the image
busybox:1.36.1. The init container runs the command
wget -0O- google.com.

Create the Pod from the YAML manifest.

Download the logs of the init container. You should see the
output of the wget command.

Open an interactive shell to the main application container
and run the 1s command. Exit out of the container.

Force-delete the Pod.

2. Create a YAML manifest for a Pod named data-exchange.
The main application container named main-app should

use the image busybox:1.36.1. The container runs a
command that writes a new file every 30 seconds in an
infinite loop in the directory /var/app/data. The filename
follows the pattern {counter++ }-data.txt. The variable
counter is incremented every interval and starts with the
value 1.

Modify the YAML manifest by adding a sidecar container
named sidecar. The sidecar container uses the image

busybox:1.36.1 and runs a command that counts the
number of files produced by the main-app container every
60 seconds in an infinite loop. The command writes the
number of files to standard output.

Define a Volume of type emptyDir. Mount the path
/var/app/data for both containers.

Create the Pod. Tail the logs of the sidecar container.
Delete the Pod.

INTERACTIVE EXAM PRACTICE

Get more hands-on training and test your CKAD exam readiness
by working through our playlist of interactive CKAD labs. Each
step of the lab must be completed correctly before you can
move to the next step. If you get stuck, you can view the
solution and learn how to complete the step.

The following labs cover material from this chapter:
¢ Adding an Init Container
e Creating a Sidecar Container

o Implementing the Ambassador Pattern

https://learning.oreilly.com/playlists/2e9fe6dc-2a05-47fe-ae0a-34d6485287cc/
https://learning.oreilly.com/interactive-lab/adding-an-init/9781098163921/
https://learning.oreilly.com/interactive-lab/creating-a-sidecar/9781098163938/
https://learning.oreilly.com/interactive-lab/implementing-the-ambassador/9781098163945/

Chapter 9. Labels and
Annotations

The exam curriculum doesn’t explicitly mention the concept of
labels; however, it's an important one for understanding how certain
Kubernetes primitives function internally. To avoid confusing labels
with annotations, we'll also discuss the commonalities and
differences among those concepts.

Labels are an essential tool for querying, filtering, and sorting
Kubernetes objects. Annotations represent descriptive metadata for
Kubernetes objects but can’t be used for queries. In this chapter,
you will learn how to assign and use both concepts.

COVERAGE OF CURRICULUM OBJECTIVES

The curriculum doesn'’t explicitly mention coverage of labels and
annotations. It's important to understand labels because
primitives like the Deployment, Service, and NetworkPolicy can't
function without them.

Working with Labels

Kubernetes lets you assign key-value pairs to objects so that you
can use them later within a search query. Those key-value pairs are
called /abels. To draw an analogy, you can think of labels as tags for
a blog post.

A label describes a Kubernetes object in distinct terms (e.g., a
category like “frontend” or “backend”), but it is not meant for
elaborate, multi-word descriptions of its functionality. As part of the

specification, Kubernetes limits the length of a label to a maximum
of 63 characters and a range of allowed alphanumeric and separator

characters.

Figure 9-1 shows the Pods named frontend, backend, and
database. Each of the Pods declares a unique set of labels.

%

frontend backend database
tier: frontend tier: backend env: staging
env: prod env: dev app: crawler
app: miracle app: crawler version: v2.1

Figure 9-1. Pods with labels

It's common practice to assign one or many labels to an object at
creation time; however, you can modify them as needed for a live
object. When you see labels for the first time, they might seem
insignificant—but their importance cannot be overstated. They're
essential for understanding the runtime behavior of more advanced
Kubernetes objects like a Deployment and a Service. Later in this
chapter, we'll see the significance of labels in practice when learning
about Deployments in more detail.

Declaring Labels

You can declare labels imperatively with the run command or
declaratively in the metadata.labels section in the YAML
manifest. The command-line option --1abels (or -1 in its short
form) defines a comma-separated list of labels when creating a Pod.

The following command creates a new Pod with two labels from the
command line:

$ kubectl run labeled-pod --image=nginx:1.25.1 \

--labels=tier=backend, env=dev
pod/labeled-pod created

Assigning labels to Kubernetes objects by editing the manifest
requires a change to the metadata section. Example 9-1 shows the

Pod definition from the previous command if we were to start with
the YAML manifest.

Example 9-1. A Pod defining two labels

apiVersion: vl
kind: Pod
metadata:
name: labeled-pod
labels:
env: dev
tier: backend
spec:
containers:
- image: nginx:1.25.1
name: nginx

Inspecting Labels

You can inspect the labels assigned to a Kubernetes object from
different angles. Here, we'll want to look at the most common ways
to identify the labels of a Pod. As with any other runtime
information, you can use the describe or get commands to
retrieve the labels:

$ kubectl describe pod labeled-pod | grep -C 2 Labels:

Labels: env=dev
tier=backend

$ kubectl get pod labeled-pod -o yaml | grep -C 1 labels:
metadata:
labels:
env: dev

tier: backend

If you want to list the labels for all object types or a specific object
type, use the —--show-1abels command-line option. This option is

convenient if you need to sift through a longer list of objects. The
output automatically adds a new column named LABELS:

$ kubectl get pods --show-labels

NAME READY STATUS RESTARTS AGE LABELS
labeled-pod 1/1 Running 0 38m

env=dev, tier=backend

Modifying Labels for a Live Object

You can add or remove a label from an existing Kubernetes object,
or simply modify an existing label at any time. One way to achieve
this is by editing the live object and changing the label definition in
the metadata.labels section. The other option, which offers a

slightly faster turnaround, is the 1abel command. The following

commands add a new label, change the value of the label, and then
remove the label with the minus character:

$ kubectl label pod labeled-pod region=eu
pod/labeled-pod labeled

$ kubectl get pod labeled-pod --show-labels

NAME READY STATUS RESTARTS AGE LABELS
labeled-pod 1/1 Running 0 22h

env=dev, region=eu, tier=backend

$ kubectl label pod labeled-pod region=us --overwrite
pod/labeled-pod labeled

$ kubectl get pod labeled-pod --show-labels

NAME READY STATUS RESTARTS AGE LABELS
labeled-pod 1/1 Running 0 22h

env=dev, region=us, tier=backend

$ kubectl label pod labeled-pod region-

pod/labeled-pod labeled

$ kubectl get pod labeled-pod --show-labels

NAME READY STATUS RESTARTS AGE LABRELS
labeled-pod 1/1 Running 0 22h

env=dev, tier=backend

Using Label Selectors

Labels become meaningful only when combined with the selection
feature. A label selector uses a set of criteria to query for
Kubernetes objects. For example, you could use a label selector to
express “select all Pods with the label assignment env=dev,
tier=frontend, and have a label with the key version
independent of the assigned value,” as shown in Figure 9-2.

frontend ~ backend | database
) | r
tier: frontend tier: backend : env: staging
/ I
o = | '
env: prod env: dev : app: crawler
N —— || ——————— ‘
app: miracle app: crawler i version: v2.1 J:J

Figure 9-2. Selecting Pods by label criteria

Kubernetes offers two ways to select objects by labels: from the
command line and within a manifest. Let’s talk about both options.

Label selection from the command line

On the command line, you can select objects by label using the --
selector option (-1 in its short-form notation). You can express a
filter by providing an equality-based requirement or a set-based
requirement. Both requirement types can be combined in a single
query.

An equality-based requirement can use the operators =, ==, or ! =.
You can separate multiple filter terms with a comma and then

combine them with a boolean AND. At this time, equality-based
label selection cannot express a boolean OR operation. A typical

expression could say, “select all Pods with the label assignment
env=prod.”

A set-based requirement can filter objects based on a set of values
using the operators in, notin, and exists. The in and notin

operators work based on a boolean OR. A typical expression could
say, “select all Pods with the label key env and the value prod or

n

dev.

To demonstrate the functionality, we'll start by setting up three
different Pods with labels. All kubectl commands use the

command-line option --show-1labels to compare the results with
our expectations. The —--show-1abels option is not needed for
label selection:

$ kubectl run frontend --image=nginx:1.25.1 --
labels=env=prod, team=shiny

pod/frontend created

$ kubectl run backend --image=nginx:1.25.1 --
labels=env=prod, team=legacy, \

app=vl1.2.4

pod/backend created

$ kubectl run database --image=nginx:1.25.1 --
labels=env=prod, team=storage

pod/database created

$ kubectl get pods --show-labels

NAME READY STATUS RESTARTS AGE LABELS
backend 1/1 Running 0 37s
app=vl.Z2.4,env=prod, team=legacy

database 1/1 Running 0 32s
env=prod, team=storage

frontend 1/1 Running 0 42s

env=prod, team=shiny

We'll start by filtering the Pods with an equality-based requirement.
Here, we are looking for all Pods with the label assignment
env=prod. The result returns all three Pods:

$ kubectl get pods -1 env=prod --show-labels

NAME READY STATUS RESTARTS AGE LABELS
backend 1/1 Running 0 37s
app=vl.Z2.4,env=prod, team=legacy

database 1/1 Running 0 32s
env=prod, team=storage

frontend 1/1 Running 0 42s

env=prod, team=shiny

The next filter operation uses a set-based requirement. We are
asking for all Pods that have the label key team with the values

storage or shiny. The result returns only the Pods named
backend and frontend:

$ kubectl get pods -1 'team in (shiny, legacy)' --show-
labels

NAME READY STATUS RESTARTS AGE LABELS
backend 1/1 Running 0 19m
app=vl.2.4,env=prod, team=legacy

frontend 1/1 Running 0 20m

env=prod, team=shiny

Finally, we'll combine an equality-based requirement with a set-
based requirement. The result returns only the backend Pod:

$ kubectl get pods -1 'team in (shiny, legacy)',app=vl1.2.4
--show-labels

NAME READY STATUS RESTARTS AGE LABELS
backend 1/1 Running 0 29m
app=vl.2.4,env=prod, team=legacy

Label selection in a manifest

Some advanced Kubernetes objects such as Deployments, Services,
or network policies act as configuration proxies for Pods. They

usually select a set of Pods by labels and then provide added value.
For example, a network policy controls network traffic from and to a
set of Pods. Only the Pods with matching labels will apply the

network rules. Example 9-2 applies the network policy to Pods with
the equality-based requirement tier=frontend. For more details

on network policies, see Chapter 23.
Example 9-2. Label selection as part of the network policy API

apiVersion: networking.k8s.io/vl
kind: NetworkPolicy
metadata:

name: frontend-network-policy
spec:

podSelector:

matchLabels:
tier: frontend

The way you define label selection in a manifest is based on the API
version of the Kubernetes resources and may differ between types.
The content that follows in later chapters will use label selection
heavily.

Recommended Labels

As you continue working with labels, you will likely find common
key-value pairs you want to assign to objects. Many of those labels
evolve around metadata for an application, for example, the name
of the component you are deploying with a Pod, or its version.

Kubernetes proposes a list of recommended labels, all of which start
with the key prefix app . kubernetes. io. Example 9-3 shows the

assignment of version and component labels in a Pod definition.

https://kubernetes.io/docs/concepts/overview/working-with-objects/common-labels/

Example 9-3. A Pod using recommended labels

apiVersion: vl
kind: Pod
metadata:
name: nginx
labels:
app.kubernetes.io/version: "1.25.1"
app.kubernetes.io/component: server
spec:
containers:
- name: nginx
image: nginx:1.25.1

Familiarize yourself with these recommended labels so you can use
them across all objects you are managing. This provides the benefit
of enabling tooling in the Kubernetes ecosystem to use the same
terminology and enabling developers to use the same “language”
when referring to application meta information.

Working with Annotations

Annotations are declared similarly to labels, but they serve a
different purpose. They represent key-value pairs for providing
descriptive metadata. The most important differentiator is that
annotations cannot be used for querying or selecting objects.
Typical examples of annotations may include SCM commit hash IDs,
release information, or contact details for teams operating the
object. Make sure to put the value of an annotation into single
quotes or double quotes if it contains special characters or spaces.
Figure 9-3 illustrates a Pod with three annotations.

frontend

commit: 866a8cd

author: Benjamin Muschko

branch: bm/bugfix

Figure 9-3. Pod with annotations

Kubernetes defines a list of reserved annotations that it will
evaluate at runtime to control the runtime behavior of the object.
You can find more information at "Reserved Annotations”.

Declaring Annotations

The kubectl run command does not provide a command-line

option for defining annotations that’s similar to the one for labels.
You will have to start by writing a YAML manifest and adding the
desired annotations under metadata.annotations, as shown in

Example 9-4.
Example 9-4. A Pod defining three annotations

apiVersion: vl

kind: Pod

metadata:
name: annotated-pod
annotations:

commit: 866a8dc

author: 'Benjamin Muschko'
branch: 'bm/bugfix'
spec:
containers:

- image: nginx:1.25.1
name: nginx

Inspecting Annotations

Similar to labels, you can use the describe or get commands to
retrieve the assigned annotations:

$ kubectl describe pod annotated-pod | grep -C 2
Annotations:

Annotations: author: Benjamin Muschko
branch: bm/bugfix
commit: 866a8dc

$ kubectl get pod annotated-pod -o yaml | grep -C 3
annotations:
metadata:
annotations:
author: Benjamin Muschko
branch: bm/bugfix
commit: 866a8dc

Modifying Annotations for a Live Object

The annotate command is the counterpart of the 1abels
command but used for annotations. As you can see in the following
examples, the usage pattern is the same:

$ kubectl annotate pod annotated-pod oncall='800-555-1212"

pod/annotated-pod annotated
$ kubectl annotate pod annotated-pod oncall='800-555-2000"

--overwrite

pod/annotated-pod annotated

$ kubectl annotate pod annotated-pod oncall-
pod/annotated-pod annotated

Reserved Annotations

Kubernetes itself and extensions to Kubernetes use the concept of
annotations to configure runtime behavior for an object. For
example, you can assign the reserved annotation pod-
security.kubernetes.io/enforce: "baseline" toa
namespace object to enforce security standards for all Pods that live
in the namespace. Example 9-5 shows a namespace definition that
assigns the annotation.

Example 9-5. A Pod using a reserved annotation

apiVersion: vl
kind: Namespace
metadata:
name: secured
annotations:
pod-security.kubernetes.io/enforce: "baseline"

See the Kubernetes documentation for a full list of reserved
annotations in Kubernetes.

Summary

Labels are a central concept for controlling the runtime behavior of
more advanced Kubernetes objects. For example, in the context of
a Deployment, Kubernetes requires you to use label selection to
select the Pods the Deployment manages. You can use labels to
select objects based on a query from the command line or within a
manifest if supported by the primitive’s API. Kubernetes suggests
label keys for commonly used application metadata.

https://kubernetes.io/docs/concepts/security/pod-security-standards/
https://kubernetes.io/docs/reference/labels-annotations-taints/

Annotations serve a different purpose; they provide human-
readable, informative metadata. You cannot use annotations for
querying objects. Kubernetes introduced reserved annotations as a
means of flagging objects for special runtime treatment.

Exam Essentials

Practice labels declaration and selection

Labels are an extremely important concept in Kubernetes, as
many other primitives work with label selection. Practice how to
declare labels for different objects, and use the -1 command-

line option to query for them based on equality-based and set-
based requirements. Label selection in a YAML manifest might
look slightly different depending on the API version of the spec.
Extensively practice label selection for primitives that use them
heavily.

Understand the difference between labels and annotations

All you need to know about annotations is their declaration from
the command line and in a YAML manifest. Be aware that
annotations are meant only for assigning metadata to objects
and they cannot be queried for.

Sample Exercises
Solutions to these exercises are available in Appendix A.

1. Create three Pods that use the image nginx:1.25.1. The
names of the Pods should be pod-1, pod-2, and pod-3.

Assign the label tier=frontend to pod-1 and the label
tier=backend to pod-2 and pod-3. All pods should also
assign the label team=artemidis.

Assign the annotation with the key deployer to pod-1
and pod-3. Use your own name as the value.

From the command line, use label selection to find all Pods
with the team artemidis or aircontrol and that are
considered a backend service.

2. Create a Pod with the image nginx:1.25.1 that assigns
two recommended labels: one for defining the application
name with the value F5-nginx, and one for defining the

tool used to manage the application named he1m.

Render the assigned labels of the Pod object.

INTERACTIVE EXAM PRACTICE

Get more hands-on training and test your CKAD exam readiness
by working through our playlist of interactive CKAD labs. Each
step of the lab must be completed correctly before you can
move to the next step. If you get stuck, you can view the
solution and learn how to complete the step.

The following labs cover material from this chapter:
¢ Assigning Labels to Pods Imperatively
o Assigning Labels to Pods Declaratively
¢ Assigning Annotations to Pods Imperatively

¢ Assigning Annotations to Pods Declaratively

https://learning.oreilly.com/playlists/2e9fe6dc-2a05-47fe-ae0a-34d6485287cc/
https://learning.oreilly.com/interactive-lab/assigning-labels-to/9781098163952/
https://learning.oreilly.com/interactive-lab/assigning-labels-to/9781098163969/
https://learning.oreilly.com/interactive-lab/assigning-annotations-to/9781098163976/
https://learning.oreilly.com/interactive-lab/assigning-annotations-to/9781098163983/

Part I11. Application
Deployment

Application deployment covers the Kubernetes concepts,
techniques, and primitives that evolve around the deployment of an
application in enterprise settings.

The following chapters cover these concepts:

e Chapter 10 explains the features of the Deployment
primitive by example. The chapter demonstrates how to
scale Pods running an application manually and
automatically. The chapter also shows the default
deployment process for a new application version.

e Chapter 11 expands on the lessons learned in the previous
chapter. You will learn different deployment strategies,
when they are suitable, and how to implement them with
Kubernetes.

e Chapter 12 discusses the use of the open source tool Helm
for deploying more complex application stacks. The chapter
focuses on the workflow of consuming an existing Helm
chart available through Artifact Hub.

Chapter 10. Deployments

A big selling point of Kubernetes is its scalability and replication. To
support those features, Kubernetes offers the Deployment primitive.
In this chapter we’ll show the creation of a Deployment scaled to
multiple replicas, how to roll out a revision of your application, how
to roll back to a previous revision, and how to use auto-scalers to
handle scaling concerns automatically based on the current
workload.

COVERAGE OF CURRICULUM OBJECTIVES
This chapter addresses the following curriculum objective:

¢ Understand Deployments and how to perform rolling
updates

Working with Deployments

The primitive for running an application in a container is the Pod.
Using a single instance of a Pod to operate an application has its
flaws—it represents a single point of failure because all traffic
targeting the application is funneled to this Pod. This behavior is
specifically problematic when the load increases due to higher
demand (e.g., during peak shopping season for an e-commerce
application or when an increasing number of microservices
communicate with a centralized microservice functionality, e.g. an
authentication provider).

Another important aspect of running an application in a Pod is
failure tolerance. The scheduler cluster component will not

reschedule a Pod in the case of a node failure, which can lead to a
system outage for end users. In this chapter, we'll talk about the
Kubernetes mechanics that support application scalability and
failure tolerance.

A ReplicaSet is a Kubernetes API resource that controls multiple,
identical instances of a Pod running the application, so-called
replicas. It has the capability of scaling the number of replicas up or
down on demand. Moreover, it knows how to roll out a new version
of the application across all replicas.

A Deployment abstracts the functionality of ReplicaSet and
manages it internally. In practice, this means you do not have to
create, modify, or delete ReplicaSet objects yourself. The
Deployment keeps a history of application versions and can roll
back to an older version to counteract a blocking or potentially
costly production issue. Furthermore, it offers the capability of
scaling the number of replicas.

Figure 10-1 illustrates the relationship between a Deployment, a
ReplicaSet, and its controlled replicas.

Deployment “Create 3 replicas”

[ReplicaSet] “Maintain stable set of 3 pods”

[Pod] [Pod] [Pod] "3 pods with the same definition”

Figure 10-1. Relationship between a Deployment and a ReplicaSet

The following sections explain how to manage Deployments,
including scaling and rollout features.

Creating Deployments

You can create a Deployment using the imperative command
create deployment. The command offers a range of options,
some of which are mandatory. At a minimum, you need to provide
the name of the Deployment and the container image. The
Deployment passes this information to the ReplicaSet, which uses it
to manage the replicas. The default number of replicas created is 1;
however, you can define a higher number of replicas using the
option --replicas.

Let’s observe the command in action. The following command
creates the Deployment named app-cache, which runs the object

cache Memcached inside the container on four replicas:

https://memcached.org/

$ kubectl create deployment app-cache --
image=memcached:1.6.8 --replicas=4
deployment.apps/app-cache created

The mapping between the Deployment and the replicas it controls
happens through label selection. When you run the imperative
command, kubectl sets up the mapping for you. Example 10-1
shows the label selection in the YAML manifest. This YAML manifest
can be used to create a Deployment declaratively or by inspecting
the live object created by the previous imperative command.

Example 10-1. A YAML manifest for a Deployment

apiVersion: apps/vl
kind: Deployment
metadata:
name: app-cache
labels:
app: app-cache
spec:
replicas: 4
selector:
matchLabels:
app: app-cache
template:
metadata:
labels:
app: app-cache
spec:
containers:
- name: memcached
image: memcached:1.6.8

When created by the imperative command, app is the label key the
Deployment uses by default. You can find this key in three different
places in the YAML output:

1. metadata.labels

2. spec.selector.matchLabels

3. spec.template.metadata.labels

For label selection to work properly, the assignment of
spec.selector.matchlLabels and spec.template.metadata

needs to match, as shown in Figure 10-2.

The values of metadata.labels is irrelevant for mapping the

Deployment to the Pod template. As you can see in the figure, the
label assignment to metadata.labels has been changed

deliberately to deploy: app-cache to underline that it is not
important for the Deployment to Pod template selection.

apiVersion: apps/vil
kind: Deployment
metadata:
name: app-cache
labels:
deploy: app-cache
spec:
replicas: 4
selector:
matchLabels:
template:
metadata:
labels:
app: memcached
spec:
containers:
- name: memcached
image: memcached:1.6.10

\ r

"Maps the Deployment to the
Pod template used for replicas”

Figure 10-2. Deployment label selection

Listing Deployments and Their Pods

You can inspect a Deployment after its creation by using the get
deployments command. The output of the command renders the
important details of its replicas, as shown here:

$ kubectl get deployments
NAME READY UP-TO-DATE AVATLABLE AGE
app-cache 4/4 4 4 125m

The column titles relevant to the replicas controlled by the
Deployment are shown in Table 10-1.

Table 10-1. Runtime replica information when listing deployments

Column
Title Description
READY Lists the number of replicas available to end users

in the format of <ready>/<desired>. The number
of desired replicas corresponds to the value of spe

c.replicas.

UP-TO-DATE Lists the number of replicas that have been
updated to achieve the desired state.

AVAILABLE Lists the number of replicas available to end
users.

You can identify the Pods controlled by the Deployment by their
naming prefix. In the case of the previously created Deployment,
the Pods’ names start with app-cache-. The hash following the

prefix is autogenerated and appended to the name upon creation:

$ kubectl get pods

NAME

AGE
app-cache-596bc5586d-84dkv
6hbm
app-cache-596bc5586d-8bzfs
6hbm
app-cache-596bc5586d-rc257
6hbm
app-cache-596bc5586d-tvm4dd
6hbm

READY

1/1

1/1

1/1

1/1

STATUS

Running
Running
Running

Running

Rendering Deployment Details

You can render the details of a Deployment. Those details include
the label selection criteria, which can be extremely valuable when
troubleshooting a misconfigured Deployment. The following output

provides the full gist:

$ kubectl describe deployment app-cache

RESTARTS

Name : app-cache
Namespace: default
CreationTimestamp: Sat, 07 Aug 2021 09:44:18 -0600
Labels: app=app-cache
Annotations: deployment.kubernetes.io/revision:
1
Selector: app=app-cache
Replicas: 4 desired | 4 updated | 4 total |
available | \
0 unavailable
StrategyType: RollingUpdate
MinReadySeconds: 0
RollingUpdateStrategy: 25% max unavailable, 25% max surge

Pod Template:
Labels: app=app-cache

Containers:

memcached:
Image: memcached:1.6.10
Port: <none>

Host Port: <none>

4

Environment: <none>

Mounts: <none>

Volumes: <none>
Conditions:

Type Status Reason

Progressing True NewReplicaSetAvailable

Available True MinimumReplicasAvailable
OldReplicaSets: <none>
NewReplicaSet: app-cache-596bc5586d (4/4 replicas
created)
Events: <none>

You might have noticed that the output contains a reference to a
ReplicaSet. The purpose of a ReplicaSet is to replicate a set of
identical Pods. You do not need to deeply understand the core
functionality of a ReplicaSet for the exam. Just be aware that the
Deployment automatically creates the ReplicaSet and uses the
Deployment’s name as a prefix for the ReplicaSet, similar to the
Pods it controls. In the case of the previous Deployment nhamed
app-cache, the name of the ReplicaSet is app-cache-

596bc5586d.

Deleting a Deployment

A Deployment takes full charge of the creation and deletion of the
objects it controls: Pods and ReplicaSets. When you delete a
Deployment, the corresponding objects are deleted as well. Say you
are dealing with the following set of objects shown in the output:

$ kubectl get deployments,pods,replicasets

NAME READY UP-TO-DATE AVATLABLE
AGE

deployment.apps/app-cache 4/4 4 4

6h47m

NAME READY STATUS RESTARTS

AGE
pod/app-cache-596bc5586d-84dkv
6h47m
pod/app-cache-596bc5586d-8bzfs
6h47m
pod/app-cache-596bc5586d-rc257
6h47m
pod/app-cache-596bc5586d-tvmédd
6h47m

NAME
READY AGE

1/1

1/1

1/1

1/1

replicaset.apps/app-cache-596bc5586d

4 6h47m

Running 0
Running 0
Running 0
Running 0

DESIRED CURRENT

4 4

Run the delete deployment command for a cascading deletion

of its managed objects:

$ kubectl delete deployment app-cache

deployment.apps "app-cache" deleted
$ kubectl get deployments,pods,replicasets
No resources found in default namespace.

Performing Rolling Updates and Rollbacks

A Deployment fully abstracts rollout and rollback capabilities by
delegating this responsibility to the ReplicaSet(s) it manages. Once
a user changes the definition of the Pod template in a Deployment,
it will create a new ReplicaSet that applies the changes to the
replicas it controls and then shut down the previous ReplicaSet. In
this section, we'll talk about both scenarios: deploying a new
version of an application and reverting to an old version of an

application.

Updating a Deployment’s Pod Template

You can choose from a range of options to update the definition of
replicas controlled by a Deployment. Any of those options is valid,
but they vary in ease of use and operational environment.

In real-world projects, you should check your manifest files into
version control. Changes to the definition would then be made by
directly editing the file. The kubectl apply can update a live

object by pointing to the changed manifest:

$ kubectl apply -f deployment.yaml

The kubectl edit command lets you change the Pod template
interactively by modifying the live object’s manifest in an editor. To
edit the Deployment live object named web-server, use the

following command:

$ kubectl edit deployment web-server

The imperative kubectl set image command changes only the

container image assigned to a Pod template by selecting the name
of the container. For example, you could use his command to assign
the image nginx:1.25.2 to the container named nginx in the

Deployment web-server:

$ kubectl set image deployment web-server
nginx=nginx:1.25.2

The kubectl replace command lets you replace the existing
Deployment with a new definition that contains your change to the
manifest. The optional --force flag first deletes the existing
object and then creates it from scratch. The following command

assumes that you changed the container image assignment in
deployment.yaml.

$ kubectl replace -f deployment.yaml

The command kubectl patch requires you to provide the merges
as a patch to update a Deployment. The following command shows
the operation in action. Here, you are sending the changes to be
made in the form of a JSON structure:

$ kubectl patch deployment web-server -p '{"spec":
{"template": {"spec":\

{"containers":

[{"name" :"nginx", "image" :"nginx:1.25.2"}]1}}}}"'

Rolling Out a New Revision

Deployments make it easy to roll out a new version of the
application to all replicas it controls. Say you want to upgrade the
version of Memcached from 1.6.8 to 1.6.10 to benefit from the
latest features and bug fixes. All you need to do is change the
desired state of the object by updating the Pod template. The
Deployment updates all replicas to the new version one by one.
This process is called the rolling update strategy.

The command set image offers a quick, convenient way to

change the image of a Deployment, as shown in the following
command:

$ kubectl set image deployment app-cache
memcached=memcached:1.6.10
deployment.apps/app-cache image updated

You can check the current status of a rollout that’s in progress using
the command rollout status. The output indicates the number
of replicas that have already been updated since emitting the
command:

$ kubectl rollout status deployment app-cache

Waiting for rollout to finish: 2 out of 4 new replicas have
been updated...

deployment "app-cache" successfully rolled out

Kubernetes keeps track of the changes you make to a Deployment
over time in the rollout history. Every change is represented by a
revision. When changing the Pod template of a Deployment—for
example, by updating the image—the Deployment triggers the
creation of a new ReplicaSet. The Deployment will gradually
migrate the Pods from the old ReplicaSet to the new one. You can
check the rollout history by running the following command. You will
see two revisions listed:

$ kubectl rollout history deployment app-cache
deployment.apps/app-cache

REVISION CHANGE-CAUSE

1 <none>

2 <none>

The first revision was recorded for the original state of the
Deployment when you created the object. The second revision was
added for changing the image tag.

NOTE

By default, a Deployment persists for a maximum of 10 revisions in its
history. You can change the limit by assigning a different value to
spec.revisionHistoryLimit.

To get a more detailed view of the revision, run the following
command. You can see that the image uses the value
memcached:1.6.10:

$ kubectl rollout history deployments app-cache --
revision=2

deployment.apps/app-cache with revision #2

Pod Template:

Labels: app=app-cache
pod-template-hash=596bc5586d
Containers:
memcached:
Image: memcached:1.6.10
Port: <none>
Host Port: <none>
Environment: <none>
Mounts: <none>
Volumes: <none>

The rolling update strategy ensures that the application is always
available to end users. This approach implies that two versions of
the same application are available during the update process. As an
application developer, you have to be aware that convenience
doesn’t come without potential side effects. If you happen to
introduce a breaking change to the public API of your application,
you might temporarily break consumers, as they could hit revision 1
or 2 of the application.

You can change the default update strategy of a Deployment by
providing a different value to the attribute spec.strategy.type;
however, consider the trade-offs. For example, the value Recreate
kills all Pods first, then creates new Pods with the latest revision,
causing potential downtime for consumers. See Chapter 11 for a
more detailed description of common deployment strategies.

Adding a Change Cause for a Revision

The rollout history renders the column CHANGE-CAUSE. You can
populate the information for a revision to document why you
introduced a new change or which kubect1l command you use to
make the change.

By default, changing the Pod template does not automatically
record a change cause. To add a change cause to the current
revision, add an annotation with the reserved key
kubernetes.io/change-cause to the Deployment object. The

following imperative annotate command assigns the change cause
“Image updated to 1.6.10":

$ kubectl annotate deployment app-cache
kubernetes.io/change-cause=\

"Image updated to 1.6.10"
deployment.apps/app-cache annotated

The rollout history now renders the change cause value for the
current revision:

$ kubectl rollout history deployment app-cache
deployment.apps/app-cache

REVISION CHANGE-CAUSE

1 <none>

2 Image updated to 1.6.10

Rolling Back to a Previous Revision

Problems can arise in production that require swift action. For
example, the container image you just rolled out contains a crucial
bug. Kubernetes gives you the option to roll back to one of the
previous revisions in the rollout history. You can achieve this by
using the rollout undo command. To pick a specific revision,
provide the command-line option --to-revision. The command

rolls back to the previous revision if you do not provide the option.
Here, we are rolling back to revision 1:

$ kubectl rollout undo deployment app-cache --to-revision=1
deployment.apps/app-cache rolled back

As a result, Kubernetes performs a rolling update to all replicas with
the revision 1.

ROLLBACKS AND PERSISTENT DATA

The rollout undo command does not restore any persistent data

associated with applications. Rather, it simply restores to a new
instance of the previous declared state of the ReplicaSet.

The rollout history now lists revision 3. Given that we rolled back to
revision 1, there’s no more need to keep that entry as a duplicate.
Kubernetes simply turns revision 1 into 3 and removes 1 from the
list:

$ kubectl rollout history deployment app-cache
deployment.apps/app-cache

REVISION CHANGE-CAUSE

2 Image updated to 1.16.10

3 <none>

Scaling Workloads

Scalability is one of Kubernetes’ built-in capabilities. We'll learn how
to manually scale the number of replicas as a reaction to increased
application load. Furthermore, we’ll talk about the API resource
Horizontal Pod Autoscaler, which allows you to automatically scale
the managed set of Pods based on resource thresholds such as CPU
and memory.

Manually Scaling a Deployment

Scaling (up or down) the number of replicas controlled by a
Deployment is a straightforward process. You can either manually
edit the live object using the edit deployment command and
change the value of the attribute spec.replicas, or you can use
the imperative scale deployment command. In real-world
production environments, you want to edit the Deployment YAML
manifest, check it into version control, and apply the changes. The
following command increases the number of replicas from four to
SiX:

$ kubectl scale deployment app-cache --replicas=6
deployment.apps/app-cache scaled

You can observe the creation of replicas in real time using the -w

command line flag. You'll see a change of status for the newly
created Pods turning from ContainerCreating to Running:

$ kubectl get pods -w

NAME READY STATUS

RESTARTS AGE

app-cache-5d6748d8b9%-6cc4d]j 1/1 ContainerCreating 0
11s

app-cache-5d6748d8b9%-6rml]j 1/1 Running 0
28m

app-cache-5d6748d8b9-6z7g5 1/1 ContainerCreating 0
11s

app-cache-5d6748d8b9-96dzf 1/1 Running 0
28m

app-cache-5d6748d8b9-jkjsv 1/1 Running 0
28m

app-cache-5d6748d8b9-svrxw 1/1 Running 0

28m

Manually scaling the number of replicas takes a bit of guesswork.
You will still have to monitor the load on your system to see if your
number of replicas is sufficient to handle the incoming traffic.

Autoscaling a Deployment

Another way to scale a Deployment is with the help of a Horizontal
Pod Autoscaler (HPA). The HPA is an API primitive that defines rules
for automatically scaling the number of replicas under certain
conditions. Common scaling conditions include a target value, an
average value, or an average utilization of a specific metric (e.g., for
CPU and/or memory). Refer to the MetricTarget API for more
information.

Let’s say you want to define average CPU utilization of CPU as the
scaling condition. At runtime, the HPA checks the metrics collected
by the metrics server to determine if the average maximum CPU or
memory usage across all replicas of a Deployment is less than or
greater than the defined threshold. Make sure that you have the
metrics server installed in the cluster. Collecting metrics may take a
couple of minutes initially after installing the component. See
“Inspecting Resource Metrics” for more information.

Figure 10-3 shows an overview architecture diagram involving an
HPA.

https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.28/#metrictarget-v2-autoscaling
https://oreil.ly/Lmamb

Metrics
server

Horizontal Scales
Pod
Autoscaler

Manages

Deployment ReplicaSet

i

Figure 10-3. Autoscaling a Deployment

Creating Horizontal Pod Autoscalers

Figure 10-4 shows the use of an HPA that will scale up the number
of replicas if an average of 80% CPU utilization is reached across all
available Pods controlled by the Deployment.

Maximum, average CPU utilization: 80%

Deployment Deployment Deployment
[3]%][12% H 14%] [88%” 82% I[??%] [42% EI%][72%][33%]

19% average 82.3% average 52% average

OTimeh

Figure 10-4. Autoscaling a Deployment horizontally

You can use the autoscale deployment command to create an
HPA for an existing Deployment. The option --cpu-percent
defines the average maximum CPU usage threshold. At the time of

writing, the imperative command doesn’t offer an option for defining
the average maximum memory utilization threshold. The options --
min and --max provide the minimum number of replicas to scale

down to and the maximum number of replicas the HPA can create
to handle the increased load, respectively:

$ kubectl autoscale deployment app-cache --cpu-percent=80 -
-min=3 --max=5
horizontalpodautoscaler.autoscaling/app-cache autoscaled

This command is a great shortcut for creating an HPA for a
Deployment. The YAML manifest representation of the HPA object
looks like Example 10-2.

Example 10-2. A YAML manifest for an HPA

apiVersion: autoscaling/v2
kind: HorizontalPodAutoscaler
metadata:
name: app-cache
spec:
scaleTargetRef:
apiVersion: apps/vl
kind: Deployment
name: app-cache
minReplicas: 3
maxReplicas: 5
metrics:
- resource:
name: cpu
target:
averageUtilization: 80
type: Utilization
type: Resource

Listing Horizontal Pod Autoscalers

The short-form command for a Horizontal Pod Autoscaler is hpa.
Listing all of the HPA objects transparently describes their current

state: the CPU utilization and the number of replicas at this time:

$ kubectl get hpa

NAME REFERENCE TARGETS MINPODS
MAXPODS REPLICAS \
AGE

app-cache Deployment/app-cache <unknown>/80% 3
5 4 \
58s

If the Pod template of the Deployment does not define CPU
resource requirements or if the CPU metrics cannot be retrieved
from the metrics server, the left-side value of the column TARGETS
says <unknown>. Example 10-3 sets the resource requirements for
the Pod template so that the HPA can work properly. You can learn
more about defining resource requirements in “Working with
Resource Requirements”.

Example 10-3. Setting CPU resource requirements for Pod template

#o...
spec:

...
template:

#o...

spec:

containers:

- name: memcached
#o...
resources:

requests:
cpu: 250m

limits:
cpu: 500m

Once traffic hits the replicas, the current CPU usage is shown as a
percentage. Here the average maximum CPU utilization is 15%:

$ kubectl get hpa
NAME REFERENCE TARGETS MINPODS
MAXPODS REPLICAS AGE

app-cache Deployment/app-cache 15%/80% 3 5
4 58s

Rendering Horizontal Pod Autoscaler Details

The event log of an HPA can provide additional insight into the
rescaling activities. Rendering the HPA details can be a great tool
for overseeing when the number of replicas was scaled up or down,
as well as their scaling conditions:

$ kubectl describe hpa app-cache

Name: app-
cache

Namespace:

default

Labels:

<none>

Annotations:

<none>

CreationTimestamp: Sun,
15 Aug 2021 \

15:54:11 -0600

Reference:
Deployment/app-cache
Metrics: (
current / target)
resource cpu on pods (as a percentage of request): 0%
(Im) / 80%
Min replicas: 3
Max replicas: 5
Deployment pods: 3
current / 3 desired
Conditions:
Type Status Reason Message
AbleToScale True ReadyForNewScale recommended
size matches current size
ScalingActive True ValidMetricFound the HPA was

able to successfully \
calculate a replica count from cpu resource utilization

(percentage of request)
ScalingLimited True TooFewReplicas the desired
replica count is less \
than the minimum replica count
Events:
Type Reason Age From
Message

Normal SuccessfulRescale 13m horizontal-pod-
autoscaler New size: 3; \
reason: All metrics below target

Defining Multiple Scaling Metrics

You can define more than a single resource type as a scaling metric.
As you can see in Example 10-4, we are inspecting CPU and
memory utilization to determine if the replicas of a Deployment
need to be scaled up or down.

Example 10-4. A YAML manifest for a HPA with multiple metrics

apiVersion: autoscaling/v2
kind: HorizontalPodAutoscaler
metadata:
name: app-cache
spec:
scaleTargetRef:
apiVersion: apps/vl
kind: Deployment
name: app-cache
minReplicas: 3
maxReplicas: 5
metrics:
- type: Resource
resource:
name: cpu
target:
type: Utilization
averageUtilization: 80
- type: Resource
resource:

name: memory

target:
type: AverageValue
averageValue: 500Mi

To ensure that the HPA determines the currently used resources,

we'll set the memory resource requirements for the Pod template as
well, as shown in Example 10-5.

Example 10-5. Setting memory resource requirements for Pod
template

spec:
template:
spec:

containers:
- name: memcached

resources:
requests:
cpu: 250m
memory: 100Mi
limits:
cpu: 500m

memory: 500Mi

Listing the HPA renders both metrics in the TARGETS column, as in
the output of the get command shown here:

$ kubectl get hpa
NAME REFERENCE TARGETS
MINPODS MAXPODS \
REPLICAS AGE
app-cache Deployment/app-cache 1994752/500Mi, 0%/80%
3 5 \
3 2mlds

Summary

The Deployment is an essential primitive for providing declarative
updates and life cycle management of Pods. The ReplicaSet
performs the heavy lifting of managing those Pods, commonly
referred to as replicas. Application developers do not have to
interact directly with the ReplicaSet; a Deployment manages the
ReplicaSet under the hood.

Deployments can easily roll out and roll back revisions of the
application represented by an image running in the container. In
this chapter you learned about the commands for controlling the
revision history and its operations. Scaling a Deployment manually
requires deep insight into the requirements and the load of an
application. A Horizontal Pod Autoscaler can automatically scale the
number of replicas based on CPU and memory thresholds observed
at runtime.

Exam Essentials

Know the ins and outs of a Deployment

Given that a Deployment is such a central primitive in
Kubernetes, you can expect that the exam will test you on it.
Know how to create a Deployment and learn how to scale to
multiple replicas. One of the superior features of a Deployment
is its rollout functionality for new revisions. Practice how to roll
out a new revision, inspect the rollout history, and roll back to a
previous revision.

Understand the implications of using a Horizontal Pod Autoscaler

The number of replicas controlled by a Deployment can be
scaled up or down using the Horizontal Pod Autoscaler (HPA). An
HPA defines thresholds for resources like CPU and memory that
will tell the object that a scaling event needs to happen. It's

important to understand that the HPA functions properly only if
you install the metrics server component and define resource
requests and limits for containers.

Sample Exercises
Solutions to these exercises are available in Appendix A.

1. Create a Deployment named nginx with 3 replicas. The
Pods should use the nginx:1.23.0 image and the name
nginx. The Deployment uses the label tier=backend.
The Pod template should use the label app=v1.

List the Deployment and ensure that the correct number of
replicas is running.

Update the image to nginx:1.23.4.
Verify that the change has been rolled out to all replicas.

Assign the change cause “Pick up patch version” to the
revision.

Scale the Deployment to 5 replicas.

Have a look at the Deployment rollout history. Revert the
Deployment to revision 1.

Ensure that the Pods use the image nginx:1.23.0.

2. Create a Deployment named nginx with 1 replica. The Pod

template of the Deployment should use container image
nginx:1.23.4; set the CPU resource request to 0.5 and

the memory resource request/limit to 500Mi.

Create a HorizontalPodAutoscaler for the Deployment
named nginx-hpa that scales to a minimum of 3 and a

maximum of 8 replicas. Scaling should happen based on an

average CPU utilization of 75% and an average memory
utilization of 60%.

Inspect the HorizontalPodAutoscaler object and identify the
currently-utilized resources. How many replicas do you
expect to exist?

INTERACTIVE EXAM PRACTICE

Get more hands-on training and test your CKAD exam readiness
by working through our playlist of interactive CKAD labs. Each
step of the lab must be completed correctly before you can
move to the next step. If you get stuck, you can view the
solution and learn how to complete the step.

The following labs cover material from this chapter:
¢ Creating and Manually Scaling a Deployment
e Rolling Out a New Revision for a Deployment

e Creating a Horizontal Pod Autoscaler

https://learning.oreilly.com/playlists/2e9fe6dc-2a05-47fe-ae0a-34d6485287cc/
https://learning.oreilly.com/interactive-lab/creating-and-manually/9781098164010/
https://learning.oreilly.com/interactive-lab/rolling-out-a/9781098164027/
https://learning.oreilly.com/interactive-lab/creating-a-horizontal/9781098164034/

Chapter 11. Deployment
Strategies

Deploying an application (bundled into a container image) to one or
many Pods is only the beginning of its life cycle within a Kubernetes
cluster. Periodically, developers will produce and publish new
container image tags to ship bug fixes and new features. Manually
updating Pods with a new container image tag one by one would be
extremely tedious. Kubernetes offers the Deployment primitive to
streamline the process.

Chapter 10 explained how to automatically roll out a new release
using the Deployment primitive. In this chapter, we will discuss the
built-in deployment strategies supported by the primitive. We'll also
talk about other deployment strategies that require deliberate
human decisions. Each deployment strategy is presented with an
example featuring their benefits and potential trade-offs. More
deployment strategies exist, but they will not be covered in this
book.

NOTE

Some deployment strategies require the use of concepts not yet
discussed. Jump to Chapter 14 for coverage of container probes.
Reference Chapter 21 for more information on the purpose of Services.

COVERAGE OF CURRICULUM OBIJECTIVES
This chapter addresses the following curriculum objective:

o Use Kubernetes primitives to implement common
deployment strategies (e.g., blue/green or canary)

Rolling Deployment Strategy

The Deployment primitive employs rolling deployment as the
default deployment strategy, also referred to as ramped
deployment. It's called “ramped” because the Deployment gradually
transitions replicas from the old version to a new version in batches.
The Deployment automatically creates a new ReplicaSet for the
desired change after the user updates the Pod template.

Figure 11-1 shows a snapshot in time during the rollout process.

i N

Pod
M v1.0.0
\ ReplicaSet
i old version

Service > 1P Oﬂd 0
WD Deployment

L

o

Y o

Pod ReplicaSet
> v2.0.0 new version

Figure 11-1. The rolling deployment strategy

In this scenario, the user initiated an update of the application
version from 1.0.0 to 2.0.0. As a result, the Deployment creates a
new ReplicaSet and starts up Pods running the new application

version while at the same time scaling down the old version. The
Service routes network traffic to either the old or new version of the
application.

Implementation

A Deployment uses the rolling deployment strategy by default. The
runtime value for the attribute spec.strategy.type is
RollingUpdate. Users can fine-tune this strategy. You can use the
attributes spec.strategy.rollingUpdate.maxUnavailable
and spec.strategy.rollingUpdate.maxSurge to change the
rollout rate. Both attributes can use a fixed integer (for example, 3)
or assign a percentage of the total required number of Pods (for
example, 33%). The default value for maxUnavailable and
maxSurge IS 25%.

The attribute maxUnavailable specifies the maximum number of
Pods that can be unavailable during the update process. For
example, if you set the value to 40%, then the old ReplicaSet can
scale down to 60% immediately when the rolling update starts.

The attribute maxSurge specifies the maximum number of Pods
that can be created over the desired number of Pods. For example,
if you set the value to 10%, the total number of new and old Pods
cannot exceed a total of 110% after the new ReplicaSet has been
created.

Independent of the values assigned to the attributes
maxUnavailable and maxSurge, all replicas controlled by the old
ReplicaSet will be ramped down to 0 over time until all replicas
controlled by the new ReplicaSet equals the value of
spec.replicas.

It's recommended to define a readiness probe for the Pod template
to ensure that a replica is ready to handle incoming requests. The
attribute spec.minReadySeconds specifies the number of

seconds a replica needs to be available for before it is made
available to incoming requests.

Example 11-1 shows the usage of those attributes in the context of
a full Deployment YAML manifest stored in the file deployment-
rolling-update.yam|.

Example 11-1. A Deployment configured with a rolling update
strategy

apiVersion: apps/vl
kind: Deployment
metadata:
name: web-server
spec:
replicas: 4
strategy:
type: RollingUpdate
rollingUpdate:

maxUnavailable: 40%

maxSurge: 10%

minReadySeconds: 60
selector:
matchLabels:

app: httpd

template:
metadata:

labels:
app: httpd

spec:

containers:

- name: httpd
image: httpd:2.4.23-alpine
ports:

- containerPort: 80
protocol: TCP
readinessProbe: 4]
httpGet:
path: /
port: 80

S0

The percentage of Pods that can be unavailable during the
update.

O The percentage of Pods that can temporarily exceed the total
number of replicas.

® The number of seconds for which the readiness probe in a Pod
needs to be healthy until the rollout process can continue.

@ The readiness probe for all replicas referred to by
spec.minReadySeconds.

The combination of assigned values to maxUnavailable and
maxSurge determines the runtime behavior and speed of a rollout.

You will adjust those parameters to find the most suitable
combination for your application.

Use Cases and Trade-Offs

The rolling deployment is a fitting deployment strategy for rolling
out a new application version with zero downtime. Depending on
the number of replicas the Deployment manages, this process can
be relatively slow, as old versions of the applications are ramped
down and new versions of the application are ramped up in batches.

It's important to mention that this deployment strategy comes with
a potential risk. Old and new versions of the application run in
parallel. Breaking changes introduced with the new version can lead
to unexpected and hard-to-debug errors for consumers if they
haven't adapted their client software to the latest changes. It's a
good idea to roll out a new application version in a backward-
compatible fashion, for example by using a versioned API, to avoid
running into this situation.

Fixed Deployment Strategy

The fixed deployment strategy will terminate replicas with the old
application version at once before creating another ReplicaSet that
controls replicas running the new application version.

Figure 11-2 illustrates the rollout process while updating the Pod
template from application version 1.0.0 to 2.0.0. All replicas of the
old ReplicaSet are shut down simultaneously. Then, the replicas
controlled by the new ReplicaSet are started. During this process,
the Service may not be able to reach any of the replicas, which can
lead to unnecessary downtime for consumers.

Pod
™ le 0.0
/ RepllcaSet
i Pod) old verslnn
0
™ @vl.@.ﬁl
) q Deployment
Pod
) v2.0.0
i J RepllcaSEt
) newversmn
Pod
g v2.0.0

Figure 11-2. The fixed deployment strategy

Implementation

To configure the fixed deployment strategy for a Deployment, set
the attribute spec.strategy. type to Recreate. Internally, this
strategy type will automatically assign the total number of replicas

to the attribute maxUnavailable. No other configuration options
need to be provided.

Example 11-2 shows the Recreate strategy type in the context of
a full Deployment YAML manifest stored in the file deployment-
fixed.yaml.

Example 11-2. A Deployment configured with a fixed deployment
strategy

apiVersion: apps/vl
kind: Deployment
metadata:
name: web-server
spec:
replicas: 4
strategy:
type: Recreate {l
selector:
matchLabels:
app: httpd
template:
metadata:

labels:
app: httpd

spec:

containers:

- name: httpd
image: httpd:2.4.23-alpine
ports:

- containerPort: 80
protocol: TCP

D The strategy type for configuring fixed deployment.

Assigning a readiness probe to containers defined by the Pod
template isn't strictly necessary because all replicas with the old
application version will be shut down at once. Nevertheless, it still
makes sense to verify that the application is up and running by

defining a readiness probe before incoming traffic can reach the
container.

Use Cases and Trade-Offs

The fixed deployment strategy is suitable for situations where
application downtime is acceptable. For example, it’s great if you
want to roll out a new application to a developer environment for
testing purposes. For production environments, this deployment
strategy may work if you announce an outage time window to
customers.

Blue-Green Deployment Strategy

The blue-green deployment strategy (sometimes referred to as red-
black deployment strategy) figuratively uses blue as a
representation of the old application version and green as a
representation of the new application version. Both application
versions will be operated at the same time with an equal number of
replicas.

Kubernetes routes traffic to the blue deployment, while the
development or test team rolls out and tests the green deployment.
Traffic is switched over to the green deployment as soon as it is
considered production-ready. At that point, the team managing the
application can decommission the blue deployment.

Figure 11-3 shows two Deployments managing replicas with
different application versions. The Services can switch network
traffic from the old application version to the new application
version by changing the label selection.

Pod
Vvloﬁl 0

o

e

Pod
v1.0.0

.

S»
o I
_p.

-

Pod
v2.0.0

—

Pod
v2.0.0

. Deployment

* Deployment

Figure 11-3. The blue-green deployment strategy

Implementation

Blue-green deployment is not a built-in strategy you can configure
within the Deployment resource. You will have to create a
Deployment object for both application versions. The Service routes
traffic to replicas managed by either the blue or the green

Deployment.

Example 11-3 shows a blue Deployment YAML manifest stored in
the file deployment-blue.yaml/ specifying the container image
httpd:2.4.23-alpine in the Pod template.

Example 11-3. A blue Deployment

apiVersion:
kind: Deployment
metadata:

apps/vl

name: web-server-blue

spec:

replicas: 4
selector:

matchLabels:
type: blue
template:
metadata:
labels:

type: blue L1
spec:
containers:
- name: httpd
image: httpd:2.4.23-alpine (2]
ports:
- containerPort: 80
protocol: TCP

D Uses the label assignment type: blue to any replica managed
by the corresponding ReplicaSet.

O The old application version 2.4 .23-alpine.

To set up a green deployment that runs the newer container image
httpd:2.4.57-alpine, simply create another Deployment
object. Note that the label used for the Pod template is different
than for the blue deployment. Example 11-4 shows the green
Deployment definition in the file deployment-green.yaml.

Example 11-4. A green Deployment

apiVersion: apps/vl
kind: Deployment
metadata:
name: web-server—-green
spec:
replicas: 4
selector:
matchLabels:
type: green
template:
metadata:
labels:
type: green {l
spec:

containers:
- name: httpd
image: httpd:2.4.57-alpine @
ports:
- containerPort: 80
protocol: TCP

@ Uses the label assignment type: green to any replica
managed by the corresponding ReplicaSet.

® The new application version 2.4.57-alpine.

As mentioned earlier, the Service is the Kubernetes object
responsible for routing network traffic to the old or new application
version. Example 11-5 shows a Service object.

Example 11-5. The Service routing network traffic to a blue
deployment

apiVersion: vl

kind: Service

metadata:
name: web-server
spec:
selector:
type: blue 1]
ports:
- protocol: TCP
port: 80

targetPort: 80

@ The label selector pointing to replicas managed by the blue
deployment.

The resource declaration currently points to the blue deployment; to
switch to green, simply change the label selection from type:

blue to type: green. At that point, you can delete the blue
Deployment.

Use Cases and Trade-Offs

The blue-green deployment strategy is suitable for deployment
scenarios where complex upgrades need to be performed without
downtime to consumers. This situation may arise if a rollout
requires a data migration or if multiple, dependent software
components need to be changed at once. Should a rollback to the
old application version be required, a simple change of the label
selection in the Service will do.

On the downside, it's worth mentioning that you will need more
hardware resources than for other deployment strategies. If you
need five replicas to run the old application version, then you will
need the same amount of resources for the new application version,
assuming the resource requirements won't differ.

Canary Deployment Strategy

The canary deployment strategy is similar to the blue-green
deployment; however, you'd make the new application version
available to only a subset of consumers. With this approach, you
can implement A/B testing of new features or if you need to gather
metrics about consumer behavior. Based on the defined set of
success criteria, traffic to the new application version can be
increased gradually. The goal is to shut down the old application
version completely.

Figure 11-4 shows how the Service sends traffic to both application
versions.

> Pod

v1.0.0
. / . Deployment
- ReplicaSet

J

v1.0.0

Y o

Pod ‘ : Deployment
| v2.0.0 ReplicaSet

Figure 11-4. The canary deployment strategy

Deployment 1 controls application version v1.0.0. Deployment 2
controls application version v2.0.0. Deployments 1 and 2 use the
same label assignment in their Pod template. The Service selects
the label key-value pair(s) defined by both Deployments.

Implementation

In a Kubernetes cluster, you represent each application version with
the help of a Deployment object. You want to roll out the new
application version with fewer replicas than the current application
version by assigning a smaller value to the attribute
spec.replicas.

The following code snippet shows the truncated definition of the
Deployment controlling the old application version:

kind: Deployment
spec:
replicas: 4
selector:
matchLabels:
app: httpd

For the new application version, assign a smaller number of
replicas:

kind: Deployment
spec:
replicas: 1
selector:
matchLabels:
app: httpd

To ensure that replicas for old and new application versions receive
requests from consumers, the assigned Pod template label(s) in
both Deployment objects need to be the same. Ensure that the
Service selects those label(s), as shown in this truncated Service
definition:

kind: Service
spec:
selector:
app: httpd L1

D sclects the label assigned to both Deployments.

Use Cases and Trade-Offs

Organization typically use the canary deployment strategy to roll
out experimental features or changes with potential impact on
system performance. You can evaluate your success criteria while
making the new feature available to only a subset of consumers.
Implementing a canary deployment usually requires fewer hardware
resources than the blue-green deployment as the number of
replicas with the new application version is much lower.

Summary

A deployment is the process of making a software change available
to end users or programs. You need to consider two aspects: the
procedure of how to deploy a change and the routing of network
traffic to the application. Select an appropriate deployment strategy
based on use case, application type, and trade-offs.

With the Deployment primitive, Kubernetes natively supports two
deployment strategies: the rolling deployment and the fixed
deployment. The rolling deployment, specified by the
RollingUpdate strategy, rolls out a change gradually in batches.
The fixed deployment, configured by the Recreate strategy, first
shuts down the old application version and then brings up the new
application version.

The blue-green and canary deployment strategies can be set up by
creating a second Deployment object that manages the new
application version in parallel with the old one. The Service then
routes network traffic to replicas of both application versions (blue-
green) or transitions consumers to the new application version over
time (canary).

Exam Essentials

Understand how to configure strategies native to the Deployment

primitive
The exam may confront you with different deployment
strategies. You need to understand how to implement the most
common strategies and how to modify an existing deployment
scenario. Learn how to configure the built-in strategies in the
Deployment primitive and their options for fine-tuning the
runtime behavior.

Practice multi-phased deployment strategies

You can implement even more sophisticated deployment
scenarios with the help of the Deployment and Service
primitives. Examples are the blue-green and canary deployment
strategies, which require a multi-phased rollout process. Expose
yourself to implementation techniques and rollout procedures.
Operators provided by the Kubernetes community, e.g., Argo
Rollouts, offer higher-level abstractions for more sophisticated
deployment strategies. The exam does not require you to
understand external tooling to implement deployment
strategies.

Sample Exercises

Solutions to these exercises are available in Appendix A.

1. One of your teammates created a Deployment YAML
manifest to operate the container image
grafana/grafana:9.5. 9. Create the Deployment object
from the YAML manifest file deployment-grafana.yaml:

apiVersion: apps/vl
kind: Deployment
metadata:
name: grafana
spec:
replicas: 6
selector:
matchLabels:
app: grafana
template:
metadata:
labels:
app: grafana

spec:

https://argo-rollouts.readthedocs.io/en/stable/
https://argo-rollouts.readthedocs.io/en/stable/

containers:

- image: grafana/grafana:9.5.9
name: grafana
ports:

- containerPort: 3000

You need to update all replicas with the container image
grafana/grafana:10.1.2. Make sure that the rollout

happens in batches of two replicas at a time. Ensure that a
readiness probe is defined.

. In this exercise, you will set up a blue-green Deployment
scenario. You'll first create the initial (blue) Deployment and
expose it with a Service. Later, you will create a second
(green) Deployment and switch over traffic.

Create a Deployment named nginx-blue with 3 replicas.

The Pod template of the Deployment should use container
image nginx:1.23.0 and assign the label

version=blue.

Expose the Deployment with a Service of type ClusterIP
named nginx. Map the incoming and outgoing port to 80.
Select the Pod with label version=blue.

Run a temporary Pod with the container image
alpine/curl:3.14 to make a call against the Service

using curl.

Create a second Deployment named nginx-green with 3
replicas. The Pod template of the Deployment should use
container image nginx:1.23.4 and assign the label

version=green.

Change the Service's label selection so that traffic will be
routed to the Pods controlled by the Deployment nginx-

green.

Delete the Deployment named nginx-blue.

Run a temporary Pod with the container image
alpine/curl:3.14 to make a call against the Service.

INTERACTIVE EXAM PRACTICE

Get more hands-on training and test your CKAD exam readiness
by working through our playlist of interactive CKAD labs. Each
step of the lab must be completed correctly before you can
move to the next step. If you get stuck, you can view the
solution and learn how to complete the step.

The following labs cover material from this chapter:
o Implementing the Blue-Green Deployment Strategy

o Implementing the Canary Deployment Strategy

https://learning.oreilly.com/playlists/2e9fe6dc-2a05-47fe-ae0a-34d6485287cc/
https://learning.oreilly.com/interactive-lab/implementing-the-blue-green/9781098164041/
https://learning.oreilly.com/interactive-lab/implementing-the-canary/9781098164058/

Chapter 12. Helm

Helm is a templating engine and package manager for a set of
Kubernetes manifests. At runtime, it replaces placeholders in YAML
template files with actual, end-user-defined values. The artifact
produced by the Helm executable is a so-called chart file bundling
the manifests that comprise the API resources of an application. You
can upload the chart file to a chart repository so that other teams
can be use it to deploy the bundled manifests. The Helm ecosystem
offers a wide range of reusable charts for common use cases
searchable on Artifact Hub (for example, for running Grafana or
PostgreSQL).

Due to the wealth of functionality available to Helm, we'll discuss
only the basics. The exam does not expect you be a Helm expert;
rather, it wants you to be familiar with the workflow of installing
existing packages with Helm. Building and publishing your own
charts is outside the scope of the exam. For more detailed
information on Helm, see the user documentation. The version of
Helm used to describe the functionality here is 3.13.0.

COVERAGE OF CURRICULUM OBIJECTIVES
This chapter addresses the following curriculum objective:

o Use the Helm package manager to deploy existing
packages

https://helm.sh/
https://artifacthub.io/
https://helm.sh/docs

Managing an Existing Chart

As a developer, you want to reuse existing functionality instead of
putting in the work to define and configure it yourself. For example,
you may want to install the open source monitoring service
Prometheus on your cluster.

Prometheus requires the installation of multiple Kubernetes
primitives. Thankfully, the Kubernetes community provided a Helm
chart making it very easy to install and configure all the moving
parts in the form of a Kubernetes operator.

The following list shows the typical workflow for consuming and
managing a Helm chart. Most of those steps need to use the helm

executable:
1. Identifying the chart you'd like to install
2. Adding the repository containing the chart
3. Installing the chart from the repository

4. Verifying the Kubernetes objects that have been installed by
the chart

5. Rendering the list of installed charts
6. Upgrading an installed chart
7. Uninstalling a chart if its functionality is no longer needed

The following sections will explain each of the steps.

Identifying a Chart

Over the years, the Kubernetes community implemented and
published thousands of Helm charts. Artifact Hub provides a web-
based search capability for discovering charts by keyword.

https://kubernetes.io/docs/concepts/extend-kubernetes/operator/

Say you wanted to find a chart that installs the Continuous
Integration solution Jenkins. All you'd need to do is to enter the
term “jenkins” into the search box and press the enter key.
Figure 12-1 shows the list of results in Artifact Hub.

[
[
@‘ s
.J') S IT)
ok i 1 o v 3, gy
S a
carnery
v
feniorn
L i
Covaion Haien-Chart For e S O Jariion
::::: n

—

Figure 12-1. Searching for a Jenkins chart on Artifact Hub

At the time of writing, there are 141 matches for the search term.
You will be able to inspect details about the chart by clicking on one
of the search results, which includes a high-level description and the
repository that the chart file resides in. Moreover, you can inspect
the templates bundled with the chart file, indicating the objects that
will be created upon installation and their configuration options.
Figure 12-2 shows the page for the official Jenkins chart.

DOCE STATS SIOWUP SIOMIH (0F)-

[T BN = | -
B Jeiies) Jonkin
Jenkirn - Bulkd gresd thingn . any soale® The ading 208~ BowrDe BAGTEEON WYY, Jenking provides o 00 plugima e mepor buiding, deploying and stomating sny project

n E dmmacewroen dF Fwomooc: 3w esooucToy uses 4

*| Jenkins " 5 mita

Iy) T B Tmam.cw
SHEFALEY MALLEE
Jpk e b W e Oy MmO dslorrutiany far v, el Sredrvishet v TBO0 plugyr B taprt] bude), depinprg sl solieeative ey
F— [T
Fros Charl FALal B S L v et Al BT O D Tt WO ek ke B Ve Pl
Prigutin] Cry e drdialn¥od mele'h OF Ol S P d " ‘
; I

Get Repository Info %y m—

L g LT S T P e T
kale repe wplale

e rele rrgs for oommand documeniston MPLIHRCR Wi
i
Install Chart o voescen. BN
LRSS
AB e, B
W Bele install [RELEASE W] famkswfjrskiss [Flags] o
0 e o
S0# Configuruton Sk e
EEEEEEEEEEEE
S b ekt PO T RO = =y -

Figure 12-2. Jenkins chart details

You cannot install a chart directly from Artifact Hub. You must install
it from the repository hosting the chart file.

Adding a Chart Repository

The chart description may mention the repository that hosts the
chart file. Alternatively, you can click on the “Install” button to
render repository details and the command for adding it. Figure 12-
3 shows the contextual pop-up that appears after clicking the
“Install” button.

By default, a Helm installation defines no external repositories. The
following command shows how to list all registered repositories. No
repositories have been registered yet:

$ helm repo list
Error: no repositories to show

ses DO~ < - T - &+ @

@ s
=0

B]

BB P S TESELALTL BAREELS RGN, AR LA 1R

el rrart

n Eantall my-jeekion jeskiseciljenkisy —vevniea 4.4.3

Figure 12-3. Jenkins chart installation instructions

As you can see from the screenshot, the chart file lives in the
repository with the URL https://charts.jenkins.io. We will need to
add this repository. This is an one-time operation. You can install
other charts from that repository or you can update a chart that
originated from that repository with commands we’ll discuss in a
later section.

You need to provide a name for the repository when registering
one. Make the repository name as descriptive as possible. The
following command registers the repository with the name
Jenkinsci:

$ helm repo add jenkinsci https://charts.jenkins.io/
"jJenkinsci" has been added to your repositories

Listing the repositories now shows the mapping between name and
URL.:

https://charts.jenkins.io/

$ helm repo list
NAME URL
jenkinsci https://charts.jenkins.io/

You permanently added the repository to the Helm installation.

Searching for a Chart in a Repository

The “Install” pop-up window already provided the command to
install the chart. You can also search the repository for available
charts in case you do not know their names or latest versions. Add
the —--versions flag to list all available versions:

$ helm search repo jenkinsci

NAME CHART VERSION APP VERSION
DESCRIPTION
jenkinsci/jenkins 4.6.5 2.414.2

The latest version available is 4.6.5. This may be different if you run
the command on your machine, given that the Jenkins project may
have released a newer version.

Installing a Chart

Let’s assume that the latest version of the Helm chart contains a
security vulnerability. Therefore, we decide to install the Jenkins
chart with the previous version, 4.6.4. You need to assign a nhame to
be able to identify an installed chart. The name we'll use here is
my-Jjenkins:

$ helm install my-jenkins jenkinsci/jenkins --version 4.6.4
NAME: my-jenkins

LAST DEPLOYED: Thu Sep 28 09:47:21 2023

NAMESPACE: default

STATUS: deployed
REVISION: 1
NOTES:

The chart automatically created the Kubernetes objects in the
default namespace. You can use the following command to
discover the most important resource types:

$ kubectl get all
NAME READY
pod/my-jenkins-0 2/2

NAME

EXTERNAL-IP
service/my-jenkins
<none> e
service/my-jenkins-agent
<none>

NAME

statefulset.apps/my-jenkins

STATUS RESTARTS AGE
Running 0 12m
TYPE CLUSTER-IP
ClusterIP 10.99.166.189

ClusterIP 10.110.246.141

READY AGE
1/1 12m

The chart has been installed with the default configuration options.
You can inspect those default values by clicking on the “Default
Values” button on the chart page, as shown in Figure 12-4.

s @~ < m g

[£ g

Default values

Figure 12-4. Jenkins chart default values

You can also discover those configuration options using the
following command. The output shown renders only a subset of
values, the admin username and its password, represented by
controller.adminUser and controller.adminPassword:

$ helm show values jenkinsci/jenkins

controller:

When enabling LDAP or another non-Jenkins identity
source, the built-in \

admin account will no longer exist.

If you disable the non-Jenkins identity store and
instead use the Jenkins \

internal one,

you should revert controller.adminUser to your
preferred admin user:

adminUser: "admin"

adminPassword: <defaults to random>

You can customize any configuration value when installing the chart.
To pass configuration data during the install processing use one of
the following flags:

e —-values: Specifies the overrides in the form of a pointer
to a YAML manifest file.

e —-set: Specifies the overrides directly from the command
line.

For more information, see “Customizing the Chart Before Installing”
in the Helm documentation.

You can decide to install the chart into a custom namespace. Use
the -n flag to provide the name of an existing namespace. Add the
flag --create-namespace to automatically create the namespace
if it doesn't exist yet.

The following command shows how to customize some of the
values and the namespace used during the installation process:

$ helm install my-jenkins jenkinsci/jenkins --version 4.6.4

\

--set controller.adminUser=boss --set
controller.adminPassword=password \
-n jenkins --create-namespace

We specifically set the username and the password for the admin
user. Helm created the objects controlled by the chart into the
Jenkins Namespace.

Listing Installed Charts

Charts can live in the default namespace or a custom namespace.
You can inspect the list of installed charts using the helm 1list

https://helm.sh/docs/intro/using_helm/#customizing-the-chart-before-installing

command. If you do not know which namespace, simply add the —-
all-namespaces flag to the command:

$ helm list --all-namespaces

NAME NAMESPACE REVISION UPDATED STATUS
CHART
my-jenkins default 1 2023-09-28...

deployed Jjenkins-4.6.4

The output of the command includes the column NAMESPACE that
shows the namespace used by a particular chart. Similar to the use
of kubectl, the helm 1ist command provides the option -n for
spelling out a namespace. Providing no flag(s) with the command
will return the result for the default namespace.

Upgrading an Installed Chart

Upgrading an installed chart usually means moving to a new chart
version. You can poll for new versions available in the repository by
running this command:

$ helm repo update
Hang tight while we grab the latest from your chart
repositories...

...Successfully got an update from the "jenkinsci" chart
repository
Update Complete. #Happy Helming!

What if you want to upgrade your existing chart installation to a

newer chart version? Run the following command to upgrade the
chart to that specific version with the default configuration:

$ helm upgrade my-jenkins jenkinsci/jenkins --version 4.6.5

Release "my-jenkins" has been upgraded. Happy Helming!

As with the install command, you will have to provide custom

configuration values if you want to tweak the chart’s runtime
behavior when upgrading a chart.

Uninstalling a Chart

Sometimes you no longer need to run a chart. The command for
uninstalling a chart is straightforward, as shown here. It will delete
all objects controlled by the chart. Don't forgot to provide the -n
flag if you previously installed the chart into a namespace other
than default:

$ helm uninstall my-jenkins
release "my-jenkins" uninstalled

Executing the command may take up to 30 seconds, as Kubernetes
needs to wait for the workload grace period to end.

Summary

Helm has evolved to become a de facto tool for deploying
application stacks to Kubernetes. The artifact that contains the
manifest files, default configuration values, and metadata is called a
chart. A team or an individual can publish charts to a chart
repository. Users can discover a published chart through the Artifact
Hub user interface and install it to a Kubernetes cluster.

One of the primary developer workflows when using Helm consists
of finding, installing, and upgrading a chart with a specific version.
You start by registering the repository containing chart files you
want to consume. The helm install command downloads the

chart file and stores it in a local cache. It also creates the
Kubernetes objects described by the chart.

The installation process is configurable. A developer can provide
overrides for customizable configuration values. The helm
upgrade command lets you upgrade the version of an already
installed chart. To uninstall a chart and delete all Kubernetes
objects managed by the chart, run the helm uninstall
command.

Exam Essentials

Assume that the Helm executable is preinstalled

Unfortunately, the exam FAQ does not mention any details about
the Helm executable or the Helm version to expect. It's fair to
assume that it will be preinstalled for you and therefore you do
not need to memorize installation instructions. You will be able
to browse the Helm documentation pages.

Become familiar with Artifact Hub

Artifact Hub provides a web-based UI for Helm charts. It's
worthwhile to explore the search capabilities and the details
provided by individual charts, more specifically the repository the
chart file lives in, and its configurable values. During the exam,
you'll likely not be asked to navigate to Artifact Hub because its
URL hasn’t been listed as one of the permitted documentation
pages. You can assume that the exam question will provide you
with the repository URL.

Practice commands needed to consume existing Helm charts

The exam does not ask you to build and publish your own chart
file. All you need to understand is how to consume an existing
chart. You will need to be familiar with the helm repo add

https://docs.linuxfoundation.org/tc-docs/certification/faq-cka-ckad-cks
https://helm.sh/docs

command to register a repository, the helm search repo to
find available chart versions, and the helm install command

to install a chart. You should have a basic understanding of the
upgrade process for an already installed Helm chart using the
helm upgrade command.

Sample Exercises
Solutions to these exercises are available in Appendix A.

1. In this exercise, you will use Helm to install Kubernetes
objects needed for the open source monitoring solution
Prometheus. The easiest way to install Prometheus on top
of Kubernetes is with the help of the prometheus-operator
Helm chart.

You can search for the kube-prometheus-stack on Artifact
Hub. Add the repository to the list of known repositories
accessible by Helm with the name prometheus-

community.

Update to the latest information about charts from the
respective chart repository.

Run the Helm command for listing available Helm charts
and their versions. Identify the latest chart version for
kube-prometheus-stack.

Install the the chart kube-prometheus-stack. List the
installed Helm chart.

List the Service named prometheus-operated created by
the Helm chart. The object resides in the default
namespace.

Use the kubectl port-forward command to forward the
local port 8080 to the port 9090 of the Service. Open a

https://prometheus.io/
https://prometheus-operator.dev/
https://artifacthub.io/packages/helm/prometheus-community/kube-prometheus-stack

browser and bring up the Prometheus dashboard.
Stop port forwarding and uninstall the Helm chart.

INTERACTIVE EXAM PRACTICE

Get more hands-on training and test your CKAD exam readiness
by working through our playlist of interactive CKAD labs. Each
step of the lab must be completed correctly before you can
move to the next step. If you get stuck, you can view the
solution and learn how to complete the step.

The following labs cover material from this chapter:

¢ Installing an Existing Helm Chart from the Central Chart
Repository

o Implementing, Packaging, and Installing a Custom Helm
Chart

https://learning.oreilly.com/playlists/2e9fe6dc-2a05-47fe-ae0a-34d6485287cc/
https://learning.oreilly.com/interactive-lab/installing-an-existing/9781098164065/
https://learning.oreilly.com/interactive-lab/installing-an-existing/9781098164065/
https://learning.oreilly.com/interactive-lab/implementing-packaging-and/9781098164072/
https://learning.oreilly.com/interactive-lab/implementing-packaging-and/9781098164072/

Part IV. Application
Observability and
Maintenance

Application observability and maintenance entails concepts and
techniques for maintaining, monitoring, and troubleshooting
applications operated in a Kubernetes cluster.

The following chapters cover these concept:

e Chapter 13 walks you through scenarios that may arise
when using deprecated APIs to define objects. The chapter
explains the measures you need to take to ensure
operability of those objects with future Kubernetes versions.

e Chapter 14 discusses the probes you can define for
containers to automatically monitor applications to detect
potentially problematic runtime issues.

e Chapter 15 explains troubleshooting techniques for Pods
and containers. You will be able to use these techniques to
identify the root cause of application runtime issues and
learn how to fix them.

Chapter 13. API Deprecations

The Kubernetes project periodically releases new versions. Every
release adds new features and bug fixes but may also introduce
deprecations to existing APIs. An API is the interface that
application developers interact with when defining Kubernetes
objects.

Deprecations may come into effect if the Kubernetes team plans to
change, replace, or completely remove support for an API. You need
to understand how to handle API deprecations to avoid issues
before updating nodes to a newer Kubernetes version.

COVERAGE OF CURRICULUM OBIJECTIVES
This chapter addresses the following curriculum objective:

¢ Understand API deprecations

Understanding the Deprecation Policy

The Kubernetes project releases three versions per calendar year.
Optimally, the administrator of a Kubernetes cluster upgrades to the
latest version as early as possible to incorporate enhancements and
security fixes. However, upgrading a cluster doesn’t come without
potential cost and risk. You need to ensure that existing objects
running in the cluster will still be compatible with the version you
are upgrading to.

A Kubernetes release can deprecate an API, which means that it is
scheduled for removal or replacement. The rules for introducing a

https://kubernetes.io/blog/2021/07/20/new-kubernetes-release-cadence/

deprecation follow the deprecation policy explained in the
Kubernetes documentation.

The value you assign to the version attribute in a manifest
specifies the API version. The use of a deprecated API renders a
warning message when creating or updating the object. While you
can still create or modify the object, a warning message informs the
user about the action to take to ensure its future compatibility with
newer Kubernetes versions. The deprecated API migration guide
shows a list of deprecated APIs and the scheduled versions that will
remove support for the API.

Listing Available API Versions

Kubectl provides a command for discovering available API
versions. The api-versions command lists all API versions in the
format group/version:

$ kubectl api-versions
admissionregistration.k8s.io/vl
apiextensions.k8s.io/vl
apiregistration.k8s.io/vl

apps/vl

authentication.k8s.io/vl
authorization.k8s.io/vl
autoscaling/vl

autoscaling/v2

batch/v1

certificates.k8s.io/vl
coordination.k8s.io/vl
discovery.k8s.io/vl

events.k8s.io/vl
flowcontrol.apiserver.k8s.io/vlbeta?2
flowcontrol.apiserver.k8s.io/vlbeta3
networking.k8s.io/vl

node.k8s.io/vl

policy/vl

https://kubernetes.io/docs/reference/using-api/deprecation-policy/
https://kubernetes.io/docs/reference/using-api/deprecation-guide/

rbac.authorization.k8s.io/vl
scheduling.k8s.io/vl
storage.k8s.io/vl

vl

Certain APIs, like the API for the group autoscaling, exist with
different versions, v1 and 2. Generally speaking, you can make
your manifests more future-proof by choosing a higher major
version. At the time of writing, the deprecation status of any of
those APIs is not included in the output of the api-versions
command. You will need to look up the status in the Kubernetes
documentation.

Handling Deprecation Warnings

Let’s demonstrate the effects of using a deprecated API. The
following example assumes that you are running a Kubernetes
cluster with a version between 1.23 and 1.25. Example 13-1 shows
a manifest for a Horizontal Pod Autoscaler that uses a beta API
version for the group autoscalinag.

Example 13-1. A Horizontal Pod Autoscaler definition using a
deprecated API

apiVersion: autoscaling/v2beta?2
kind: HorizontalPodAutoscaler
metadata:
name: php-apache
spec:
scaleTargetRef:
apiVersion: apps/vl
kind: Deployment
name: php-apache
minReplicas: 1
maxReplicas: 10

Creating a new object from the YAML manifest will not result in an
error. Kubernetes will happily create the object, but the command

will let you know what will happen with the API in a future
Kubernetes version. As shown in the following output, it is
suggested that you replace the use of the API with
autoscaling/v2:

$ kubectl create -f hpa.yaml

Warning: autoscaling/v2beta2 HorizontalPodAutoscaler is
deprecated in v1.23+, \

unavailable in v1.26+; use autoscaling/v?2
HorizontalPodAutoscaler

In addition to the warning message, you may also want to look at
the deprecated API migration guide. An easy way to find
information about the deprecated API is to search the deprecation
guide for it. For example, you will find the following passage about
the API autoscaling/v2beta?2:

The autoscaling/v2beta2 API version of
HorizontalPodAutoscaler is no longer served as of v1.26.

e Migrate manifests and API clients to use the
autoscaling/v2 API version, available since v1.23.

o All existing persisted objects are accessible via the new
API

—Deprecated API Migration Guide

All you need to do to future-proof your manifest is to assign the new
API version.

Handling a Removed or Replaced API

The administrator of a Kubernetes cluster may decide to jump up
multiple minor versions at once when upgrading. It is possible that
you won't catch that an API you are currently using has already

https://kubernetes.io/docs/reference/using-api/deprecation-guide/#horizontalpodautoscaler-v126

been removed. It's important to verify the compatibility of existing
Kubernetes objects before upgrading the production cluster to avoid
any disruptions.

Say you have been using the definition of a ClusterRole shown in
Example 13-2. Managing the object worked fine with Kubernetes
1.8; however, the administrator upgraded the cluster nodes all the
way to 1.22.

Example 13-2. A ClusterRole using the API version
rbac.authorization.k8s.io/vibetal

apiVersion: rbac.authorization.k8s.io/vlbetal
kind: ClusterRole

metadata:
name: pod-reader
rules:
- apiGroups: [""]
resources: ["pods"]
verbs: ["get", "watch", "list"]

Trying to create the object from the ClusterRole manifest file will
not render a deprecation message. Instead, kubect1 will return an

error message. Consequently, the command did not create the
object:

$ kubectl apply -f clusterrole.yaml

error: resource mapping not found for name: "pod-reader"
namespace: "" from \
"clusterrole.yaml": no matches for kind "ClusterRole" in

version \
"rbac.authorization.k8s.io/vlbetal”

You will not have a clear idea why the command failed just looking
at the error message. It's a good idea to check with the deprecated
API migration guide. Searching the page for the API version
rbac.authorization.k8s.io/vlbetal will give you the

following information. The solution here is to assign the
replacement API rbac.authorization.k8s.io/v1 instead:

The rbac.authorization.k8s.io/vibetal API version of

ClusterRole, ClusterRoleBinding, Role, and RoleBinding is no
longer served as of v1.22.

e Migrate manifests and API clients to use the
rbac.authorization.k8s.10/v1 API version,

available since v1.8.

o All existing persisted objects are accessible via the new
APIs

e No notable changes

—Deprecated API Migration Guide

Under certain conditions, a Kubernetes primitive may not provide a
replacement API. As a representative use case I want to mention
the PodSecurityPolicy primitive here. The feature has been replaced
by a new Kubernetes-internal concept, the Pod Security Admission.
You should follow the release notes of upcoming Kubernetes
releases to stay aware of more radical changes.

Summary

Inevitably, you will run into API deprecations when using
Kubernetes long term. As a developer, you need to know how to
interpret deprecation warning messages. The Kubernetes
documentation provides all the information you need to identify an
alternative API or feature. It's advisable to test all available YAML
manifests for objects currently in use in production clusters before
upgrading nodes to a newer Kubernetes version.

https://kubernetes.io/docs/reference/using-api/deprecation-guide/#rbac-resources-v122
https://kubernetes.io/docs/reference/using-api/deprecation-guide/#psp-v125

Exam Essentials

Keep the API deprecation documentation handy

The exam will likely expose you to an object that uses a
deprecated API. You will need to keep the Deprecated API
Migration Guide documentation page handy to tackle such
scenarios. The page describes deprecated, removed, and
replaced APIs categorized by Kubernetes version. Use the
browser’s search capability to quickly find relevant information
about an API. The quick reference links on the right side of the
page let you quickly navigate to a specific Kubernetes version.

Sample Exercises

Solutions to these exercises are available in Appendix A.

1. The Kubernetes administrator in charge of the cluster is
planning to upgrade all nodes from Kubernetes 1.8 to 1.28.
You defined multiple Kubernetes YAML manifests that
operate an application stack. The administrator provided
you with a Kubernetes 1.28 test environment. Make sure
that all YAML manifests are compatible with Kubernetes
version 1.28.

Navigate to the directory app-a/ch13/deprecated of the
checked-out GitHub repository bmuschko/ckad-study-guide.
Inspect the files deployment.yaml and configmap.yaml in
the current directory.

Create the objects from the YAML manifests. Modify the
definitions as needed.

Verify that the objects can be instantiated with Kubernetes
1.28.

https://kubernetes.io/docs/reference/using-api/deprecation-guide/
https://kubernetes.io/docs/reference/using-api/deprecation-guide/
https://github.com/bmuschko/ckad-study-guide

INTERACTIVE EXAM PRACTICE

Get more hands-on training and test your CKAD exam readiness
by working through our playlist of interactive CKAD labs. Each
step of the lab must be completed correctly before you can
move to the next step. If you get stuck, you can view the
solution and learn how to complete the step.

The following lab covers material from this chapter:

¢ Identifying and Replacing a Deprecated API

https://learning.oreilly.com/playlists/2e9fe6dc-2a05-47fe-ae0a-34d6485287cc/
https://learning.oreilly.com/interactive-lab/identifying-and-replacing/9781098164096/

Chapter 14. Container Probes

Applications running in containers do not operate under the premise
of “fire and forget.” Once Kubernetes starts the container, you'll
want to know if the application is ready for consumption and is still
working as expected in an hour, a week, or a month. A health probe
is a periodically running mini-process that asks the application for
its status and takes action upon certain conditions.

In this chapter, we'll discuss container health probes—more
specifically, readiness, liveness, and startup probes. You'll learn
about the different health verification methods and how to define
them for the proper use cases.

COVERAGE OF CURRICULUM OBIJECTIVES
This chapter addresses the following curriculum objective:

o Implement probes and health checks

Working with Probes

Even with the best testing strategy, it's nearly impossible to find all
bugs before deploying software to a production environment. That's
especially true for failure situations that occur only after operating
the software for an extended period of time. It's not uncommon to
see memory leaks, deadlocks, infinite loops, and similar conditions
crop up once end users put the application under load.

Proper monitoring can help with identifying those issues; however,
you still need to act to mitigate the situation. First, you'll likely want
to restart the application to prevent further outages. Second, the

development team needs to identify the underlying root cause and
fix the application’s code.

Probe Types

Kubernetes provides a concept called health probing to automate
the detection and correction of such issues. You can configure a
container to execute a periodic mini-process that checks for certain
conditions. These processes are defined as follows:

Readiness probe

Even after an application has started up, it may still need to
execute configuration procedures—for example, connecting to a
database and preparing data. This probe checks if the
application is ready to serve incoming requests. Figure 14-1
shows the readiness probe.

| o | Pod | |
Incoming traffic— [Toatsiner]1

kubelet | Are you ready? No

\

-~

_ . Pod
Incoming traffic— [———

™) r ™)

kubelet | Are you ready? Yes

r %

Figure 14-1. A readiness probe checks if the application is ready to accept
traffic

Liveness probe

Once the application is running, you want to make sure that it
still works as expected without issues. This probe periodically
checks for the application’s responsiveness. Kubernetes restarts
the container automatically if the probe considers the application
be in an unhealthy state, as shown in Figure 14-2.

- ———

Pod
i ?
[Container]< v | kubelet | Do you still work? Yes
[Pod) ‘ _—
[Container © | kubelet | Do you still work? No
\ i) - J
Restart

Figure 14-2. A liveness probe checks if the application is healthy

Startup probe

Legacy applications in particular can take a long time to start up
—possibly several minutes. A startup probe can be instantiated
to wait for a predefined amount of time before a liveness probe
is allowed to start probing. By setting up a startup probe, you
can prevent the application process from being overwhelmed
with probing requests. Startup probes kill the container if the
application can't start within the set time frame. Figure 14-3
illustrates the behavior of a startup probe.

i r

Pod |
[Container kubelet | Are youstarted? No o Start liveness probe
Pod | | ? |
[Fo——— }‘ kubelet | Are youstarted? Yes v Start liveness probe

Figure 14-3. A startup probe holds off on starting the liveness probe

From an operational perspective, the most important probe to
implement is the readiness probe. Without defining liveness and
startup probes, the Kubernetes control plane components will
handle the majority of the default behavior.

Each probe offers distinct methods to verify the health of a
container, discussed in the next section.

Health Verification Methods

You can define one or many of the health verification methods for a
container. Table 14-1 describes the available health verification
methods, their corresponding YAML attribute, and their runtime
behavior.

Table 14-1. Available health verification methods

Method

Custom
command

HTTP GET
request

TCP socket
connection

gRPC

Option

exec.command

httpGet

tcpSocket

grpc

Description

Executes a command inside the
container (e.g., @ cat command)
and checks its exit code.
Kubernetes considers a zero exit
code to be successful. A non-zero
exit code indicates an error.

Sends an HTTP GET request to
an endpoint exposed by the
application. An HTTP response
code in the range of 200 to 399
indicates success. Any other
response code is regarded as an
error.

Tries to open a TCP socket
connection to a port. If the
connection could be established,
the probing attempt was
successful. The inability to
connect is accounted for as an
error.

The application implements the
GRPC Health Checking Protocol,
which verifies whether the server
is able to handle a Remote
Procedure Call (RPC).

https://github.com/grpc/grpc/blob/master/doc/health-checking.md

Remember that you can combine any probe with any health check
method. The health verification method you choose highly depends
on the type of application you are running in the container. For
example, the obvious choice for a web-based application is to use
the HTTP GET request verification method.

Health Check Attributes

Every probe offers a set of attributes that can further configure the
runtime behavior, as shown in Table 14-2. For more information, see
the API of the Probe v1 core object.

https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.28/#probe-v1-core

Table 14-2. Attributes for fine-tuning the health check runtime

behavior

Attribute

initialDelaySeco

nds

periodSeconds

timeoutSeconds

successThreshold

failureThreshold

terminationGrace

PeriodSeconds

Default
value

10

30

Description

Delay in seconds until first
check is executed.

Interval for executing a check
(e.g., every 20 seconds).

Maximum number of seconds
until check operation times
out.

Number of successful check
attempts until probe is
considered successful after a
failure.

Number of failures for check
attempts before probe is
marked failed and action
taken.

Grace period before forcing a
container to stop upon failure.

The following sections will demonstrate the usage of most
verification methods for different probe types.

The Readiness Probe

In this scenario, we'll want to define a readiness probe for a Node.js
application. The Node.js application exposes an HTTP endpoint on
the root context path and runs on port 3000. Dealing with a web-
based application makes an HTTP GET request a perfect fit for
probing its readiness. You can find the source code of the
application in the book’s GitHub repository.

In the YAML manifest shown in Example 14-1, the readiness probe
executes its first check after two seconds and repeats checking
every eight seconds thereafter. All other attributes use the default
values. A readiness probe will continue to periodically check, even
after the application has been successfully started.

Example 14-1. A readiness probe that uses an HTTP GET request
apiVersion: vl
kind: Pod
metadata:
name: readiness-pod
spec:
containers:
- image: bmuschko/nodejs-hello-world:1.0.0
name: hello-world
ports:
- name: nodejs-port (1)
containerPort: 3000
readinessProbe:
httpGet:
path: /
port: nodejs-port a
initialDelaySeconds: 2
periodSeconds: 8

D vou can assign a name to a port so that it can be referenced in a
probe.

O [nstead of assigning port 3000 again, we simply use the port
name.

Create a Pod by pointing the apply command to the YAML
manifest. During the Pod'’s startup process, it's possible that the
status shows Running but the container isn't ready to accept
incoming requests, as indicated by 0/1 in the READY column:

$ kubectl apply -f readiness-probe.yaml
pod/readiness-pod created
$ kubectl get pod readiness-pod

NAME READY STATUS RESTARTS AGE
pod/readiness-pod 0/1 Running 0 6s
$ kubectl get pod readiness-pod

NAME READY STATUS RESTARTS AGE
pod/readiness-pod 1/1 Running 0 68s

$ kubectl describe pod readiness-pod

Containers:
hello-world:

Readiness: http-get http://:nodejs-port/ delay=2s
timeout=1s \
period=8s #success=1 #failure=3

The Liveness Probe

A liveness probe checks if the application is still working as
expected. To demonstrate a liveness probe, we'll use a custom
command. A custom command is the most flexible way to verify the
health of a container, as it allows for calling any command available
to the container. This can be either a command-line tool that comes
with the base image or a tool that you install as part of the
containerization process.

In Example 14-2, we'll have the application create and update a file,
/tmp/heartbeat.txt, to show that it’s still alive. We'll do this by
making it run the Unix touch command every five seconds. The

probe will periodically check if the modification timestamp of the file

is older than one minute. If it is, then Kubernetes can assume that
the application isn't functioning as expected and will restart the
container.

Example 14-2. A liveness probe that uses a custom command
apiVersion: vl
kind: Pod
metadata:
name: liveness-pod
spec:
containers:
- image: busybox:1.36.1
name: app
args:
- /bin/sh
- -cC
- 'while true; do touch /tmp/heartbeat.txt; sleep 5;
done; '
livenessProbe:
exec:
command:
- test "find /tmp/heartbeat.txt -mmin -1°
initialDelaySeconds: 5
periodSeconds: 30

The next command uses the YAML manifest shown in Example 14-2,
stored in the file /iveness-probe.yaml, to create the Pod. Describing
the Pod renders information on the liveness probe. We can not only
inspect the custom command and its configuration, but also see
how many times the container has been restarted upon a probing
failure:

$ kubectl apply -f liveness-probe.yaml
pod/liveness-pod created

$ kubectl get pod liveness-pod

NAME READY STATUS RESTARTS AGE
pod/liveness-pod 1/1 Running 0 22s
$ kubectl describe pod liveness-pod

Containers:
app:

Restart Count: O
Liveness: exec [test "find /tmp/heartbeat.txt -
mmin -1°] delay=5s \
timeout=1s period=30s #success=1
#failure=3

The Startup Probe

The purpose of a startup probe is to figure out when an application
is fully started. Defining the probe is useful for an application that
takes a long time to start up. The kubelet puts the readiness and
liveness probes on hold while the startup probe is running. A startup
probe finishes its operation under one of the following conditions:

1. If it can verify that the application has been started
2. If the application doesn't respond within the timeout period

To demonstrate the functionality of the startup probe, Example 14-3
defines a Pod that runs the Apache HTTP server in a container. By
default, the image exposes the container port 80, and that’s what
we're probing for using a TCP socket connection.

Example 14-3. A startup probe that uses a TCP socket connection
apiVersion: vl
kind: Pod
metadata:
name: startup-pod
spec:

containers:

- image: httpd:2.4.46
name: http-server
startupProbe:

tcpSocket:
port: 80
initialDelaySeconds: 3

https://hub.docker.com/_/httpd

periodSeconds: 15
livenessProbe:

As you can see in the following terminal output, the describe
command can retrieve the configuration of a startup probe as well:

$ kubectl apply -f startup-probe.yaml
pod/startup-pod created

$ kubectl get pod startup-pod

NAME READY STATUS RESTARTS AGE
pod/startup-pod 1/1 Running 0 31s
$ kubectl describe pod startup-pod

Containers:
http-server:

Startup: tcp-socket :80 delay=3s timeout=ls
period=15s \
#success=1 #failure=3

Summary

In this chapter, we looked at all available health probe types you
can define for a Pod. A health probe is a periodically running mini-
process that asks the application running in a container for its
status. Think of it as taking the pulse of your system.

The readiness probe ensures that the container accepts incoming
traffic only if the application runs properly. The liveness probe
makes sure that the application is functioning as expected and will
restart the container if necessary. The startup probe pauses a
liveness probe until application startup has been completed. In
practice, you'll often find that a container defines all three probes.

Exam Essentials

Understand the purpose of all probes

To prepare for this section of the exam, focus on understanding
and using health probes. You should understand the purpose of
startup, readiness, and liveness probes and practice how to
configure them. In your Kubernetes cluster, try to emulate
success and failure conditions to see the effects of probes and
the actions they take.

Practice the use of different verification methods

You can choose from a variety of verification methods applicable
to probes. Gain a high-level understanding when to apply which
verification method, and how to configure each one of them.

Sample Exercises
Solutions to these exercises are available in Appendix A.

1. Define a new Pod named web-server with the image
nginx:1.23.0 in @ YAML manifest. Expose the container
port 80. Do not create the Pod yet.

For the container, declare a startup probe of type httpGet.
Verify that the kubelet can make a request to the root
context endpoint. Use the default configuration for the
probe.

For the container, declare a readiness probe of type
httpGet.Verify that the kubelet can make a request to the
root context endpoint. Wait five seconds before checking for
the first time.

For the container, declare a liveness probe of type
httpGet. Verify that the kubelet can make a request to the

root context endpoint. Wait 10 seconds before checking for
the first time. The probe should run the check every 30
seconds.

Create the Pod and follow the life cycle phases of the Pod
during the process.

Inspect the runtime details of the Pod’s probes.

INTERACTIVE EXAM PRACTICE

Get more hands-on training and test your CKAD exam readiness
by working through our playlist of interactive CKAD labs. Each
step of the lab must be completed correctly before you can
move to the next step. If you get stuck, you can view the
solution and learn how to complete the step.

The following labs cover material from this chapter:

e Creating a Pod with a Readiness Probe of Type HTTP
GET Request

e Creating a Pod with a Liveness Probe of Type Custom
Command

e Creating a Pod with a Startup Probe of Type TCP Socket

https://learning.oreilly.com/playlists/2e9fe6dc-2a05-47fe-ae0a-34d6485287cc/
https://learning.oreilly.com/interactive-lab/creating-a-pod/9781098164102/
https://learning.oreilly.com/interactive-lab/creating-a-pod/9781098164102/
https://learning.oreilly.com/interactive-lab/creating-a-pod/9781098164119/
https://learning.oreilly.com/interactive-lab/creating-a-pod/9781098164119/
https://learning.oreilly.com/interactive-lab/creating-a-pod/9781098164126/

Chapter 15. Troubleshooting
Pods and Containers

When operating an application in a production Kubernetes cluster,
failures are almost inevitable. You can’t completely leave this job up
to the Kubernetes administrator—it’s your responsibility as an
application developer to be able to troubleshoot issues for the
Kubernetes objects you designed and deployed.

In this chapter, we'll look at troubleshooting strategies that can help
with identifying the root cause of an issue so that you can take
action and correct the failure appropriately. The strategies discussed
here start with the high-level perspective of a Kubernetes object
and then drill into more detail as needed.

COVERAGE OF CURRICULUM OBIJECTIVES
This chapter addresses the following curriculum objectives:

e Use provided tools to monitor Kubernetes applications
o Utilize container logs

e Debugging in Kubernetes

Troubleshooting Pods

In most cases, creating a Pod is no issue. You simply emit the run,
create, Or apply commands to instantiate the Pod. If the YAML

manifest is formed properly, Kubernetes accepts your request, so
the assumption is that everything works as expected. To verify the

correct behavior, the first thing you'll want to do is to check the
Pod’s high-level runtime information. The operation could involve
other Kubernetes objects like a Deployment responsible for rolling
out multiple replicas of a Pod.

Retrieving High-Level Information

To retrieve the information, run either the kubectl get pods
command for just the Pods running in the namespace or the
kubectl get all command to retrieve the most prominent
object types in the namespace (which includes Deployments). You
will want to look at the columns READY, STATUS, and RESTARTS.
In the optimal case, the number of ready containers matches the
number of containers you defined in the spec. For a single-
container Pod, the READY column would say 1/1.

The status should say Running to indicate that the Pod entered the
proper life cycle state. Be aware that it’s totally possible that a Pod
renders a Running state, but the application isn't actually working
properly. If the number of restarts is greater than 0, then you might
want to check the logic of the liveness probe (if defined) and
identify the reason a restart was necessary.

The following Pod observes the status ErrImagePull and makes
0/1 containers available to incoming traffic. In short, this Pod has a
problem:

$ kubectl get pods
NAME READY STATUS RESTARTS AGE
misbehaving-pod 0/1 ErrImagePull 0 2s

After working with Kubernetes for a while, you'll automatically
recognize common error conditions. Table 15-1 lists some of those
error statuses and explains how to fix them.

Table 15-1. Common Pod error statuses

Status

ImagePullBackOf
f OF ErrImagePu
11

CrashLoopBackOf
f

CreateContainer

ConfigError

Root cause

Image could not
be pulled from
registry.

Application or
command run in

container crashes.

ConfigMap or
Secret referenced
by container
cannot be found.

Inspecting Events

You might not encounter any of those error statuses. But there’s still
a chance of the Pod having a configuration issue. You can retrieve
detailed information about the Pod using the kxubectl describe

pod command to inspect its events.

Potential fix

Check correct image name,
check that image name
exists in registry, verify
network access from node
to registry, ensure proper
authentication.

Check command executed
in container, ensure that
image can properly execute
(e.g. by creating a
container with Docker).

Check correct name of the
configuration object, verify
the existence of the
configuration object in the
namespace.

The following output belongs to a Pod that tries to mount a Secret
that doesn't exist. Instead of rendering a specific error message, the
Pod gets stuck with the status ContainerCreating:

$ kubectl get pods

NAME READY STATUS RESTARTS AGE
secret-pod 0/1 ContainerCreating 0 4m57s
$ kubectl describe pod secret-pod

Events:

Type Reason Age From
Message
Normal Scheduled <unknown> default-scheduler

Successfully \

assigned

default/secret-pod \

to minikube

Warning FailedMount 3ml5s kubelet, minikube
Unable to attach or \

mount volumes: \

unmounted \

volumes=[mysecret], \

unattached volumes= \

[default-token-bf8rh \

mysecret]: timed out \

waiting for the \

condition

Warning FailedMount 68s (x10 over 5ml8s) kubelet, minikube
MountVolume.SetUp \

failed for volume \

"mysecret" : secret \

"mysecret" not found

Warning FailedMount 61s kubelet, minikube
Unable to attach or \

mount volumes: \

unmounted volumes= \

[mysecret], \

unattached \

volumes=[mysecret \

default-token-bf8rh \

]: timed out \

waiting for the \

condition

Another helpful command is kubectl get events. The output of

the command lists the events across all Pods for a given
namespace. You can use additional command-line options to further
filter and sort events:

$ kubectl get events

LAST SEEN TYPE REASON OBJECT

MESSAGE

3mlé4s Warning BackOff pod/custom-cmd
Back-off \

restarting \

failed container
2s Warning FailedNeedsStart cronjob/google-ping
Cannot determine \

if job needs to \
be started: too \
many missed start \
time (> 100). Set \
or decrease \
.spec. \
startingDeadline \
Seconds or check \

clock skew

Sometimes troubleshooting won't be enough. You may have to dig
into the application runtime behavior and configuration in the
container.

Using Port Forwarding

In production environments, you'll operate an application in multiple
Pods controlled by a ReplicaSet. It's not unusual that one of those
replicas experiences a runtime issue. Instead of troubleshooting the
problematic Pod from a temporary Pod from within the cluster, you
can also forward the traffic to a Pod through a tunneled HTTP
connection. This is where the port-forward command comes into

play.

Let’s demonstrate the behavior. The following command creates a
new Deployment running nginx in three replicas:

$ kubectl create deployment nginx --image=nginx:1.24.0 --
replicas=3 --port=80
deployment.apps/nginx created

https://kubernetes.io/docs/reference/kubectl/generated/kubectl_port-forward/

The resulting Pod will have unique names derived from the name of
the Deployment. Say the Pod nginx-595df£4799-ph47s has an
issue you want to troubleshoot:

$ kubectl get pods

NAME READY STATUS RESTARTS AGE

nginx-595dff4799-pfgdg 1/1 Running 0 6m25s
nginx-595df£4799-ph4js 1/1 Running 0 6m25s
nginx-595dff4799-s76s8 1/1 Running 0 6m25s

The port-forward command forwards HTTP connections from a
local port to a port exposed by a Pod. This exemplary command
forwards port 2500 on your local machine to the container port 80
running in the Pod nginx-595df£4799-ph4s:

$ kubectl port-forward nginx-595df£f4799-ph4js 2500:80
Forwarding from 127.0.0.1:2500 -> 80
Forwarding from [::1]:2500 -> 80

The port-forward command does not return. You have to open
another terminal to perform calls to the Pod via port forwarding.
The following command simply checks if the Pod is accessible from
your local machine using curl:

curl -Is localhost:2500 | head -n 1
HTTP/1.1 200 OK

The HTTP response code 200 clearly shows that we can access the
Pod from outside of the cluster. The port-forward command is
not meant to run for a long time. Its primary purpose is for testing
or troubleshooting a Pod without having to expose it with the help
of a Service.

Troubleshooting Containers

You can interact with the container for a deep-dive into the
application’s runtime environment. The next sections will discuss
how to inspect logs, open an interactive shell to a container, and
debug containers that do not provide a shell.

NOTE

The commands described in the following sections apply to init and
sidecar containers as well. Use the -c or --container command line

flag to target a specific container if you are running more than a single
one. See Chapter 8 for more information on multi-container Pods.

Inspecting Logs

When troubleshooting a Pod, you can retrieve the next level of
details by downloading and inspecting its logs. You may or may not
find additional information that points to the root cause of a
misbehaving Pod, but it's definitely worth a look. The YAML
manifest shown in Example 15-1 defines a Pod running a shell
command.

Example 15-1. A Pod running a failing shell command

apiVersion: vl
kind: Pod
metadata:
name: incorrect-cmd-pod
spec:
containers:
- name: test-container
image: busybox:1.36.1
command: ["/bin/sh", "-c", "unknown"]

After creating the object, the Pod fails with the status
CrashLoopBackOff. Running the 1ogs command reveals that the

command run in the container has an issue:

$ kubectl create -f crash-loop-backoff.yaml
pod/incorrect-cmd-pod created
$ kubectl get pods incorrect-cmd-pod

NAME READY STATUS RESTARTS
AGE

incorrect-cmd-pod 0/1 CrashLoopBackOff 5

3m20s

$ kubectl logs incorrect-cmd-pod
/bin/sh: unknown: not found

The 1ogs command provides two helpful options. The option -£
streams the logs, meaning you'll see new log entries as they're
being produced in real time. The option --previous gets the logs
from the previous instantiation of a container, which is helpful if the
container has been restarted.

Opening an Interactive Shell

If any of the previous commands don't point you to the root cause
of the failing Pod, it's time to open an interactive shell to a
container. As an application developer, you'll know best what
behavior to expect from the application at runtime. Inspect the
running processes by using the Unix or Windows utility tools,
depending on the image run in the container.

Say you encounter a situation where a Pod seems to work properly
on the surface, as shown in Example 15-2.

Example 15-2. A Pod periodically writing the current date to a file

apiVersion: vl
kind: Pod
metadata:
name: failing-pod
spec:
containers:
- args:
- /bin/sh
- -C

- while true; do echo $(date) >> ~/tmp/curr-date.txt;
sleep \
5; done;
image: busybox:1.36.1
name: failing-pod

After creating the Pod, you check the status. It says Running;
however, when making a request to the application, the endpoint
reports an error. Next, you check the logs. The log output renders
an error message that points to a nonexistent directory. Apparently,
the directory that the application needs hasn’t been set up
correctly:

$ kubectl create -f failing-pod.yaml

pod/failing-pod created

$ kubectl get pods failing-pod

NAME READY STATUS RESTARTS AGE

failing-pod 1/1 Running 0 5s

$ kubectl logs failing-pod

/bin/sh: can't create /root/tmp/curr-date.txt: nonexistent
directory

The exec command opens an interactive shell to further investigate
the issue. In the following code, we're using the Unix tools mkdir,
cd, and 1s inside of the running container to fix the problem.

Obviously, the better mitigation strategy is to create the directory
from the application or provide an instruction in the Dockerfile:

$ kubectl exec failing-pod -it -- /bin/sh
mkdir -p ~/tmp

cd ~/tmp

1s -1

total 4

-rw-r--r—-- 1 root root 112 May 9 23:52 curr-date.txt

Interacting with a Distroless Container

Some images run in containers are designed to be very minimal for
security reasons. For example, the Google distroless images don't
have any Unix utility tools preinstalled. You can’t even open a shell
to a container, as it doesn’t come with a shell.

INCORPORATING SECURITY BEST PRACTICES
FOR CONTAINER IMAGES

Shipping container images with accessible shells and running with the
root user is commonly discouraged as these aspects can be used as

potential attack vectors. Check out the CKS certification to learn more
about security concerns in Kubernetes.

One of Google’s distroless images is k8s.gcr.io/pause:3.1,
shown in Example 15-3.

Example 15-3. Running a distroless image

apiVersion: vl
kind: Pod
metadata:
name: minimal-pod
spec:
containers:
- image: k8s.gcr.io/pause:3.1
name: pause

As you can see in the following exec command, the image doesn't
provide a shell:

$ kubectl create -f minimal-pod.yaml
pod/minimal-pod created

$ kubectl get pods minimal-pod

NAME READY STATUS RESTARTS AGE
minimal-pod 1/1 Running 0 8s

https://github.com/GoogleContainerTools/distroless
https://training.linuxfoundation.org/certification/certified-kubernetes-security-specialist/

$ kubectl exec minimal-pod -it -- /bin/sh

OCI runtime exec failed: exec failed:

container linux.go:349: starting \

container process caused "exec: \"/bin/sh\": stat /bin/sh:
no such file \

or directory": unknown

command terminated with exit code 126

Kubernetes offers the concept of ephemeral containers. Those
containers are meant to be disposable and have no resilience
features like probes. You can deploy an ephemeral container for
troubleshooting minimal containers that would usually not allow the
use of the exec command.

Kubernetes 1.18 introduced a new debug command that can inject
an ephemeral container to a running Pod for debugging purposes.
The following command adds the ephemeral container running the
image busybox to the Pod named minimal-pod and opens an
interactive shell for it:

$ kubectl alpha debug -it minimal-pod --image=busybox
Defaulting debug container name to debugger-37f98g.

If you don't see a command prompt, try pressing enter.

/ # pwd

/

/ # exit

Session ended, resume using 'kubectl alpha attach minimal-
pod -c \

debugger-jf98g -i -t' command when the pod is running

Inspecting Resource Metrics

Deploying software to a Kubernetes cluster is only the start of
operating an application long term. Developers need to understand
their applications’ resource consumption patterns and behaviors,
with the goal of providing a scalable and reliable service.

https://kubernetes.io/docs/concepts/workloads/pods/ephemeral-containers/

In the Kubernetes world, monitoring tools like Prometheus and
Datadog help with collecting, processing, and visualizing
information over time. The exam does not expect you to be familiar
with third-party monitoring, logging, tracing, and aggregation tools;
however, it is helpful to have a basic understanding of the
underlying Kubernetes infrastructure responsible for collecting
usage metrics. The following are examples of typical metrics:

e Number of nodes in the cluster

e Health status of nodes

¢ Node performance metrics such as CPU, memory, disk
space, network

e Pod-level performance metrics such as CPU and memory
consumption

This responsibility falls to the metrics server, a cluster-wide
aggregator of resource usage data. As shown in Figure 15-1,
kubelets running on nodes collect metrics and send them to the
metrics server.

https://prometheus.io/
https://www.datadoghq.com/
https://github.com/kubernetes-sigs/metrics-server

Metrics server

Send metrics

| kubelet | | kubelet I l kubelet |
[Pcrcﬂ] [Pudz] [Pod4] [Pﬂd5]

Nodel ‘ Node 2 Node3

Cluster

- o o o o o e e e e e e e e e e e e
T

Figure 15-1. Data collection for the metrics server

The metrics server stores data in memory and does not persist data
over time. If you are looking for a solution that keeps historical
data, then you need to look into commercial options. Refer to the
documentation for more information on its installation process.

If you're using Minikube as your practice environment, enabling the
metrics-server add-on is straightforward using the following
command:

$ minikube addons enable metrics-server
The 'metrics-server' addon is enabled

You can now query for metrics of cluster nodes and Pods with the
top command:

$ kubectl top nodes

NAME CPU (cores) CPU% MEMORY (bytes) MEMORY %
minikube 283m 14% 1262Mi 32%

$ kubectl top pod frontend

https://github.com/kubernetes-sigs/metrics-server?tab=readme-ov-file#installation
https://kubernetes.io/docs/tutorials/hello-minikube/#enable-addons
https://kubernetes.io/docs/tutorials/hello-minikube/#enable-addons

NAME CPU (cores) MEMORY (bytes)
frontend Om 2Mi

It takes a couple of minutes after the installation of the metrics
server before it has gathered information about resource
consumption. Rerun the kubectl top command if you receive an

€rror message.

Summary

We discussed strategies for approaching failed or misbehaving Pods.
The main goal is to diagnose the root cause of a failure and then fix
it by taking the right action. Troubleshooting Pods doesn’t have to
be hard. With the right kubectl commands in your tool belt, you
can rule out root causes one by one to get a clearer picture.

The Kubernetes ecosystem provides a lot of options for collecting
and processing metrics of your cluster over time. Among those
options are commercial monitoring tools like Prometheus and
Datadog. Many of those tools use the metrics server as the source
of truth for those metrics. We also briefly touched on the installation
process and the kubectl top command for retrieving metrics

from the command line.

Exam Essentials

Know how to debug Pod objects

In this chapter, we mainly focused on troubleshooting
problematic Pods and containers. Practice all relevant kubectl
commands that can help with diagnosing issues. Refer to the
Kubernetes documentation to learn more about debugging other
Kubernetes resource types.

Learn how to retrieve and interpret resource metrics

https://kubernetes.io/docs/tasks/debug/debug-application/

Monitoring a Kubernetes cluster is an important aspect of
successfully operating in a real-world environment. You should
read up on commercial monitoring products and which data the
metrics server can collect. You can assume that the exam
environment provides you with an installation of the metrics
server. Learn how to use the kubectl top command to render
Pod and node resource metrics and how to interpret them.

Sample Exercises
Solutions to these exercises are available in Appendix A.

1. In this exercise, you will practice your troubleshooting skills
by inspecting a misconfigured Pod. Navigate to the directory
app-a/chl15/troubleshooting of the checked-out GitHub
repository bmuschko/ckad-study-guide.

Create a new Pod from the YAML manifest in the file
pod.yaml. Check the Pod’s status. Do you see any issue?

Render the logs of the running container and identify an
issue. Shell into the container. Can you verify the issue
based on the rendered log message?

Suggest solutions that can fix the root cause of the issue.

2. You will inspect the metrics collected by the metrics server.
Navigate to the directory app-a/chi5/stress-test of the
checked-out GitHub repository bmuschko/ckad-study-guide.
The current directory contains the YAML manifests for three
Pods, stress-1-pod.yaml, stress-2-pod.yaml, and stress-3-
pod.yaml. Inspect those manifest files.

Create the namespace stress-test and the Pods inside
of the namespace.

Use the data available through the metrics server to identify
which of the Pods consumes the most memory.

https://github.com/bmuschko/ckad-study-guide
https://github.com/bmuschko/ckad-study-guide

Prerequisite: You will need to install the metrics server if
you want to be able to inspect actual resource metrics. You
can find installation instructions on the project’s GitHub

page.

INTERACTIVE EXAM PRACTICE

Get more hands-on training and test your CKAD exam readiness
by working through our playlist of interactive CKAD labs. Each
step of the lab must be completed correctly before you can
move to the next step. If you get stuck, you can view the
solution and learn how to complete the step.

The following labs cover material from this chapter:
e Determining Metrics for Pods

e Troubleshooting a Pod

https://github.com/kubernetes-sigs/metrics-server#installation
https://learning.oreilly.com/playlists/2e9fe6dc-2a05-47fe-ae0a-34d6485287cc/
https://learning.oreilly.com/interactive-lab/determining-metrics-for/9781098164133/
https://learning.oreilly.com/interactive-lab/troubleshooting-a-pod/9781098164140/

Part V. Application
Environment, Configuration,
and Security

The primary focus of the domain Application Environment,
Configuration, and Security is configuring an application with
security settings, defining and injecting configuration data, and
specifying resource requirements. Two other aspects relevant to this
domain are extending the Kubernetes API with custom resources,
and the inner workings of processing requests to the Kubernetes
API.

The following chapters cover these concepts:

e Chapter 16 touches on extending the Kubernetes API by
introducing your own primitives. You will learn how to
define, inspect, and create a CustomResourceDefinition
(CRD) as a schema for instantiating objects to implement
custom requirements not natively covered by Kubernetes.

e Chapter 17 describes the three phases that spring into
action whenever a client like kubect1 makes a call to the
API server. More specifically, we'll talk about the
authentication phase and the authorization phase (including
controlling permissions with RBAC). The chapter will also
take you on a short excursion into the admission phase.

o Chapter 18 is all about resource management relevant to
application developers. You will learn about container
resource requirements and their impact on Pod scheduling

and runtime behavior. This chapter will also cover enforcing
aggregate resource consumption of objects living in a
specific namespace with the help of resource quotas. Finally,
we'll dive into governing resource consumption for specific
resource types with limit ranges.

Chapter 19 shows how to centrally define configuration data
with ConfigMaps and Secrets and the different ways to
consume the configuration data from a Pod.

Chapter 20 discusses the security context concept, a way to
define security settings for containers.

Chapter 16.
CustomResourceDefinitions
(CRDs)

Kubernetes provides primitives that support the most common use
cases required by operators of an application stack. For custom use
cases, Kubernetes allows for implementing and installing extensions
to the platform.

A CustomResourceDefinition (CRD) is a Kubernetes extension
mechanism for introducing custom API primitives to fulfill
requirements not covered by built-in primitives. This chapter will
primarily focus on the implementation of and interaction with CRDs.

COVERAGE OF CURRICULUM OBJECTIVES
This chapter addresses the following curriculum objective:

e Discover and use resources that extend Kubernetes
(CRD)

Working with CRDs

CRDs can be understood as the schema that defines the blueprint
for a custom object, and then the instantiation of those objects with
the newly introduced type. For a CRD to be useful, it has to be
backed by a controller. Controllers interact with the Kubernetes API
and implement the reconciliation logic that interacts with CRD
objects. The combination of CRDs and controllers is commonly
referred to as the operator pattern. The exam does not require you

to have an understanding of controllers; therefore, their
implementation won't be covered in this chapter. Figure 16-1 shows
the operator patterns with all its moving parts.

Define and create schema | ‘ \

CRD schema

Implement schema

‘| CRD- CRD- CRD- |:
. | typed object || typed object || typed object | :

Manage objects

AL e Kubernetes
API

Controller

Figure 16-1. The Kubernetes operator pattern

The Kubernetes community has implemented many useful operators
discoverable on OperatorHub.io. You can install many of those
operators with a single kubect1. A prominent operator is the
External Secrets Operator that helps with integrating external
Secret managers, like AWS Secrets Manager and HashiCorp Vault,
with Kubernetes. For the exam, you will need to understand how to
discover CRD schemas provided by external operators and how to
interact with objects that follow the CRD schema. We'll go a little
further in this chapter and talk about creating your own CRD
schemas.

Example CRD

The implementation of and interaction with a CRD is best explained
by example. We will implement and instantiate a CRD that

https://operatorhub.io/
https://external-secrets.io/

represents a smoke test for a Service object to be executed after an
application stack has been deployed to Kubernetes.

Technical baseline

Assume you are in charge of managing a web-based application.
The Kubernetes objects needed to manage the application
consist of a Deployment for running an application in Pods and
the Service object that routes the network traffic to the replicas.

Desired functionality

A smoke test should be triggered automatically after deploying
the Kubernetes objects responsible for operating the application.
At runtime, the smoke test executes HTTPS calls to an endpoint
of the application by targeting the Service’s DNS name. The
result of the smoke test (in the case of success or failure) will be
sent to an external service so it can be rendered as charts and
graphs in a dashboard.

Goal

To implement this functionality, you could decide to write a CRD
and controller. In this chapter, we are only going to cover the
CRD for a smoke test, not the controller that would do the heavy
lifting of executing the smoke test.

Implementing a CRD Schema

To make a CRD operational, you have to create two objects: the
custom resource schema and the custom resource object. The
custom resource schema specifies the CRD blueprint in the form of
an OpenAPI v3 specification. The custom resource object follows the
specification of the CRD schema and assigns values to properties
available to the schema.

USING KUBEBUILDER TO GENERATE CRDS

A CRD schema specification can become quite extensive. To avoid
writing those specification by hand, take a look at the Kubebuilder
project. One Kubebuilder functionality is the ability to generate CRD
schemas with minimal input provided by the user. Using the tool can
help save time getting a Kubernetes operator project started.

First, let’s look at the custom resource schema of the smoke test.
The schema uses the kind CustomResourceDefinition, as shown in
Example 16-1.

While I can't explain the meaning of every attribute of a
CustomResourceDefinition here, I want to point out some important
aspects. The CustomResourceDefinition specifies the group, version,
and names of the custom primitive. It also spells out all
configurable attributes, including their data types. For a more
detailed description of the CustomResourceDefinition see the
Kubernetes documentation.

Example 16-1. A custom resource schema to represent a smoke test

apiVersion: apiextensions.k8s.io/vl
kind: CustomResourceDefinition

metadata:
name: smoketests.stable.bmuschko.com i'
spec:
group: stable.bmuschko.com a
versions:
- name: vl E’

served: true
storage: true
schema:
openAPIV3Schema:
type: object
properties: (4]
spec:
type: object
properties:

https://github.com/kubernetes-sigs/kubebuilder
https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/

service:
type: string
path:
type: string
timeout:
type: integer
retries:
type: integer
scope: Namespaced
names: L5
plural: smoketests
singular: smoketest
kind: SmokeTest
shortNames:
- st

@ The combination of the identifiers <plural>.<group>.

O The API group to be used by CRD.

® The versions supported by the CRD. A version can define 0..n
attributes.

@ The attributes to be set by the custom type.

@ The identifiers for the custom type, e.g., the kind and the
singular/plural/short names.

The file smoketest-resource.yaml contains the YAML content shown
in the previous example. You can now create the object for the
schema with the typical kubectl commands:

$ kubectl apply -f smoketest-resource.yaml
customresourcedefinition.apiextensions.k8s.i0o/smoketests.st
able.bmuschko.com \

created

Instantiating an Object for the CRD

Once the schema object has been created, you can create objects
for the new custom type. The YAML manifest in Example 16-2
defines a primitive of type SmokeTest named backend-smoke-

test for the Service named backend. As you can see in the

manifest, additional attributes can be specified to fine-tune its
runtime behavior.

Example 16-2. Instantiation of CRD kind SmokeTest

apiVersion: stable.bmuschko.com/v1l (1]
kind: SmokeTest a
metadata:

name: backend-smoke-test
spec:

service: backend

path: /health

timeout: 600

retries: 3

cofeofeof e

Q The group and Version of the custom kind.
® The kind defined by CRD.

® The attributes and their values that make the custom kind
configurable.

Go ahead and create the SmokeTest object from the file
smoketest.yaml.

$ kubectl apply -f smoketest.yaml
smoketest.stable.bmuschko.com/backend-smoke-test created

You can interact with the backend-smoke-test like any other
object in Kubernetes. For example, to list the object use the get
command. To delete the object, use the delete command. The
following commands show those operations in action:

$ kubectl get smoketest backend-smoke-test

NAME AGE

backend-smoke-test 12s

$ kubectl delete smoketest backend-smoke-test
smoketest.stable.bmuschko.com "backend-smoke-test" deleted

You can create more objects of this type as needed to execute
smoke tests against other Services, although each of the objects
needs a unique name. We now have the CRD schema object in
place. In the next section, we'll interact with it.

Discovering CRDs

A CRD schema registers a new API resource. Every API resource can
be discovered. You can list custom API resources in the same way
as you would for built-in API resources. The following command lists
API resources by the API group stable.bmuschko.com:

$ kubectl api-resources --api-group=stable.bmuschko.com

NAME SHORTNAMES APIVERSION

NAMESPACED KIND

smoketests st stable.bmuschko.com/v1 true
SmokeTest

CRD objects can be interacted with like any other object using
kubectl. You can create, read, update, and delete them. The

following command lists all CRDs installed in the cluster:

$ kubectl get crds
NAME CREATED AT
smoketests.stable.bmuschko.com 2023-05-04T14:49:402

The CRD you see in the output is the one representing a smoke
test. If you see other CRDs in the output then they may have been

provided by the external operator installed in your cluster.

Implementing a Controller

The smoke test object just represents data and won't be useful by
itself. You need to add a controller implementation that does
something with those objects. In a nutshell, a controller acts as a
reconciliation process by inspecting the state of CRD objects via
calls to the Kubernetes API.

At runtime, a controller implementation needs to poll for new
SmokeTest objects and perform the HTTPS requests to the
configured Service endpoint. Finally, the controller inspects the
response from the request, evaluates the result, and sends it to an
external service to be recorded in a database. A dashboard can then
tap into historical results and render them as needed, e.g., as charts
and graphs.

Controllers can use one of the Kubernetes client libraries, written in
Go or Python, to access custom resources. Visit the relevant
documentation for more information and examples on how to
implement a controller.

Summary

A CRD schema defines the structure of a custom resource. The
schema includes the group, name, version, and its configurable
attributes. New objects of this kind can be created after registering
the schema. You can interact with a custom object using kubectl

with the same CRUD commands used by any other primitive.

CRDs realize their full potential when combined with a controller
implementation. The controller implementation inspects the state of
specific custom objects and reacts based on their discovered state.
Kubernetes refers to the CRD and the corresponding controller as
the operator pattern. The Kubernetes community has implemented

https://kubernetes.io/docs/reference/using-api/client-libraries/

many operators to fulfill custom requirements. You can install them
into your cluster to reuse the functionality.

Exam Essentials

Acquire a high-level understanding of configurable options for a CRD
schema

You are not expected to implement a CRD schema. All you need
to know is how to discover and use them with kubect1.

Controller implementations are definitely outside the scope of
the exam.

Practice the commands for installing and discovering CRDs

Learn how to use the kubectl get crds command to
discover installed CRDs, and how to create objects from a CRD
schema. If you want to explore further, install an open source
CRD, such as the Prometheus operator or the Jaeger operator,
and inspect its schema.

Sample Exercises
Solutions to these exercises are available in Appendix A.

1. You decide to manage a MongoDB installation in Kubernetes
with the help of the official community operator. This
operator provides a CRD. After installing the operator, you
will interact with the CRD.

Navigate to the directory app-a/ch16/mongodb-operator of
the checked-out GitHub repository bmuschko/ckad-study-
guide. Install the operator using the following command:
kubectl apply -f

https://github.com/prometheus-operator/prometheus-operator
https://github.com/jaegertracing/jaeger-operator
https://www.mongodb.com/
https://github.com/mongodb/mongodb-kubernetes-operator
https://github.com/bmuschko/ckad-study-guide
https://github.com/bmuschko/ckad-study-guide

mongodbcommunity.mongodb.com mongodb
community.yaml.

List all CRDs using the appropriate kubectl command. Can

you identify the CRD that was installed by the installation
procedure?

Inspect the schema of the CRD. What are the type and
property names of this CRD?

. As an application developer, you may want to install
Kubernetes functionality that extends the platform using the
Kubernetes operator pattern. The objective of this exercise
is to familiarize yourself with creating and managing CRDs.
You will not need to write a controller.

Create a CRD resource named backup.example.com With
the following specifications:

— Group: example.com
— Version: v1

— Kind: Backup

— Singular: backup

— Plural: backups

— Properties of type string: cronExpression,
podName, path

Retrieve the details for the Backup custom resource
created in the previous step.

Create a custom object named nginx-backup for the CRD.
Provide the following property values:

— cronExpression: 0 0 * * *

— podName: nginx
—path: /usr/local/nginx

Retrieve the details for the nginx-backup object created
in the previous step.

INTERACTIVE EXAM PRACTICE

Get more hands-on training and test your CKAD exam readiness
by working through our playlist of interactive CKAD labs. Each
step of the lab must be completed correctly before you can
move to the next step. If you get stuck, you can view the
solution and learn how to complete the step.

The following lab covers material from this chapter:

e Defining and Interacting with a CRD

https://learning.oreilly.com/playlists/2e9fe6dc-2a05-47fe-ae0a-34d6485287cc/
https://learning.oreilly.com/interactive-lab/defining-and-interacting/9781098164164/

Chapter 17. Authentication,
Authorization, and Admission
Control

The API server is the gateway to the Kubernetes cluster. Any human
user, client (e.g., kubectl), cluster component, or service account
will access the API server by making a RESTful API call via HTTPS.
It is the central point for performing operations like creating a Pod
or deleting a Service.

In this chapter, we'll focus on the security-specific aspects relevant
to the API server. For a detailed discussion on the inner workings of
the API server and use of the Kubernetes API, refer to Managing
Kubernetes by Brendan Burns and Craig Tracey (O'Reilly).

COVERAGE OF CURRICULUM OBIJECTIVES
This chapter addresses the following curriculum objectives:

e Understand authentication, authorization, and admission
control

e Understand SecurityContext

Processing a Request

Figure 17-1 illustrates the stages a request goes through when a
call is made to the API server. For reference, you can find more
information in the Kubernetes documentation.

https://learning.oreilly.com/library/view/managing-kubernetes/9781492033905
https://learning.oreilly.com/library/view/managing-kubernetes/9781492033905
https://kubernetes.io/docs/concepts/security/controlling-access/
https://kubernetes.io/docs/concepts/security/controlling-access/

APl server

~ - ~ = - - p——

Users i ?
—
— — — g

> Admission
Authentication Authorization control Process
% A % g . r 5 r

Service

Account
—

Figure 17-1. API server request processing

The first stage of request processing is authentication.
Authentication validates the identity of the caller by inspecting the
client certificates or bearer tokens. If the bearer token is associated
with a service account, then it will be verified here.

The second stage determines if the identity provided in the first
stage can access the verb and HTTP path request. Therefore, stage
two deals with authorization of the request, which is implemented
with the standard Kubernetes RBAC model. Here, we ensure that
the service account is allowed to list Pods or create a new Service
object if that has been requested.

The third stage of request processing deals with admission control.
Admission control verifies if the request is well formed or potentially
needs to be modified before the request is processed. An admission
control policy could, for example, ensure that the request for
creating a Pod includes the definition of a specific label. If the
request doesn't define the label, then it is rejected.

Authentication with kubectl

Developers interact with the Kubernetes API by running the
kubectl command line tool. Whenever you execute a command

with kubect1, the underlying HTTPS call to the API server needs to
authenticate.

The Kubeconfig

Credentials for the use of kubect1 are stored in the file
$HOME/.kube/config, also known as the kubeconfig file. The
kubeconfig file defines the API server endpoints of the clusters we
want to interact with, as well as a list of users registered with the
cluster, including their credentials in the form of client certificates.
The mapping between a cluster and user for a given nhamespace is
called a context. kubect1 uses the currently selected context to
know which cluster to talk to and which credentials to use.

NOTE

You can point the environment variable KUBECONFIG to a set of
kubeconfig files. At runtime, kubect1 will merge the contents of the
set of defined kubeconfig files and use them. By default, KUBECONFIG
is not set and falls back to $HOME/.kube/config.

Example 17-1 shows a kubeconfig file. Be aware that file paths
assigned in the example are user-specific and may differ in your
own environment. You can find a detailed description of all
configurable attributes in the Config resource type API
documentation.

Example 17-1. A kubeconfig file
apiVersion: vl
kind: Config

clusters: {l

- cluster:
certificate-authority: /Users/bmuschko/.minikube/ca.crt
extensions:

- extension:

https://kubernetes.io/docs/reference/config-api/kubeconfig.v1/

last-update: Mon, 09 Oct 2023 07:33:01 MDT
provider: minikube.sigs.k8s.1io
version: v1.30.1
name: cluster info
server: https://127.0.0.1:63709
name: minikube
contexts: E
- context:
cluster: minikube
user: bmuschko
name: bmuschko
- context:
cluster: minikube
extensions:
- extension:
last-update: Mon, 09 Oct 2023 07:33:01 MDT
provider: minikube.sigs.k8s.1i0
version: v1.30.1
name: context info
namespace: default
user: minikube
name: minikube
current-context: minikube (3]
preferences: {}
users: ﬂ’
- name: bmuschko
user:
client-key-data: <REDACTED>
- name: minikube
user:
client-certificate:
/Users/bmuschko/.minikube/profiles/minikube/client.crt
client-key:
/Users/bmuschko/.minikube/profiles/minikube/client.key

1 A list of referential names to clusters and their API server
endpoints.

@ A jist of referential names to contexts (a combination of cluster
and user).

© The currently selected context.

4 A list of referential names to users and their credentials.

User management is handled by the cluster administrator. The
administrator creates a user representing the developer and hands
the relevant information (username and credentials) to the human
wanting to interact with the cluster via kubect1. Alternatively, it is
also possible to integrate with external identity providers for
authentication purposes, e.g., via OpenID Connect.

Creating a new user manually consists of multiple steps, as
described in the Kubernetes documentation. The developer would
then add the user to the kubeconfig file on the machine intended to
interact with the cluster.

Managing Kubeconfig Using kubectl

You do not have to manually edit the kubeconfig file(s) to change or
add configuration. Kubect1 provides commands for reading and
modifying its contents. The following commands provide an
overview. You can find additional examples for commands in the
kubectl cheatsheet.

To view the merged contents of the kubeconfig file(s), run the
following command:

$ kubectl config view
apiVersion: vl

kind: Config
clusters:

To render the currently selected context, use the current-
context subcommand. The context named minikube is the active
one:

https://kubernetes.io/docs/reference/access-authn-authz/authentication/#openid-connect-tokens
https://kubernetes.io/docs/reference/access-authn-authz/certificate-signing-requests/#normal-user
https://kubernetes.io/docs/reference/kubectl/cheatsheet/#kubectl-context-and-configuration

$ kubectl config current-context
minikube

To change the context, provide the name with the use-context
subcommand. Here, we are switching to the context bmuschko:

$ kubectl config use-context bmuschko
Switched to context "bmuschko™.

To register a user with the kubeconfig file(s), use the set-
credentials subcommand. We are choosing to assign the
username myuser and point to the client certificate by providing
the corresponding CLI flags:

$ kubectl config set-credentials myuser \
--client-key=myuser.key --client-certificate=myuser.crt \
--embed-certs=true

For the exam, familiarize yourself with the kubectl config

command. Every task in the exam will require you to work with a
specific context and/or namespace.

Authorization with Role-Based Access Control

We've learned that the API server will try to authenticate any
request sent using kubect1 by verifying the provided credentials.
An authenticated request will then need be checked against the
permissions assigned to the requestor. The authorization phase of
the API processing workflow checks if the operation is permitted
against the requested API resource.

In Kubernetes, those permissions can be controlled using Role-
Based Access Control (RBAC). In a nutshell, RBAC defines policies

for users, groups, and service accounts by allowing or disallowing
access to manage API resources. Enabling and configuring RBAC is
mandatory for any organization with a strong emphasis on security.

Setting permissions is the responsibility of a cluster administrator. In
the following sections, we'll briefly talk about the effects of RBAC on
requests from users and service accounts.

RBAC Overview

RBAC helps with implementing a variety of use cases:

o Establishing a system for users with different roles to access
a set of Kubernetes resources

e Controlling processes (associated with a service account)
running in a Pod and performing operations against the
Kubernetes API

¢ Limiting the visibility of certain resources per namespace

RBAC consists of three key building blocks, as shown in Figure 17-2.
Together, they connect API primitives and their allowed operations
to the so-called subject, which is a user, a group, or a service
account.

Subject 1 APIresources FDperatinns (verbs) |
ConfigMap Create
Groups Pod List
Users Deployment Watch
ServiceAccounts Node Delete

% r \ "

Figure 17-2. RBAC key building blocks

Each block’s responsibilities are as follows:

Subject

The user or service account that wants to access a resource

Resource

The Kubernetes API resource type (e.g., a Deployment or node)

Verb

The operation that can be executed on the resource (e.g.,
creating a Pod or deleting a Service)

Understanding RBAC API Primitives

With these key concepts in mind, let’s look at the Kubernetes API
primitives that implement the RBAC functionality:

Role

The Role API primitive declares the API resources and their
operations this rule should operate on in a specific namespace.
For example, you may want to say “allow listing and deleting of
Pods,” or you may express “allow watching the logs of Pods,” or
even both with the same Role. Any operation that is not spelled
out explicitly is disallowed as soon as it is bound to the subject.

RoleBinding

The RoleBinding API primitive binds the Role object to the
subject(s) in a specific namespace. It is the glue for making the
rules active. For example, you may want to say “bind the Role
that permits updating Services to the user John Doe.”

Figure 17-3 shows the relationship between the involved API
primitives. Keep in mind that the image renders only a selected list
of API resource types and operations.

Service |d—

 S—

(Cluster)

Role

Pod |« [-][»] < Héﬂgﬁﬁri?]g

Service
Node ¢ Account

Figure 17-3. RBAC primitives

The following sections demonstrate the namespace-wide usage of
Roles and RoleBindings, but the same operations and attributes
apply to cluster-wide Roles and RoleBindings, discussed in
“Namespace-Wide and Cluster-Wide RBAC".

Default User-Facing Roles

Kubernetes defines a set of default Roles. You can assign them to a
subject via a RoleBinding or define your own, custom Roles
depending on your needs. Table 17-1 describes the default user-
facing Roles.

Table 17-1. Default user-facing Roles

Default
ClusterRole Description

cluster-admin Allows read and write access to resources
across all namespaces.

admin Allows read and write access to resources in
namespace including Roles and RoleBindings.

edit Allows read and write access to resources in
namespace except Roles and RoleBindings.
Provides access to Secrets.

view Allows read-only access to resources in
namespace except Roles, RoleBindings, and
Secrets.

To define new Roles and RoleBindings, you will have to use a
context that allows for creating or modifying them, that is, cluster-
admin or admin.

Creating Roles

Roles can be created imperatively with the create role
command. The most important options for the command are --
verb for defining the verbs, aka operations, and --resource for
declaring a list of API resources (core primitives as well as CRDs).
The following command creates a new Role for the resources Pod,
Deployment, and Service with the verbs 1ist, get, and watch:

$ kubectl create role read-only --verb=list,get,watch \
--resource=pods,deployments, services
role.rbac.authorization.k8s.io/read-only created

Declaring multiple verbs and resources for a single imperative
create role command can be declared as a comma-separated
list for the corresponding command-line option or as multiple
arguments. For example, --verb=1ist, get,watch and --
verb=1list --verb=get --verb=watch carry the same
instructions. You also can use the wildcard “*” to refer to all verbs
Or resources.

The command-line option —--resource-name spells out one or
many object names that the policy rules should apply to. A name of
a Pod could be nginx and listed here with its name. Providing a list
of resource names is optional. If no names have been provided,
then the provided rules apply to all objects of a resource type.

The declarative approach can become a little lengthy. As you can
see in Example 17-2, the section rules lists the resources and

verbs. Resources with an API group, like Deployments that use the
API version apps/v1, need to explicitly declare it under the
attribute apiGroups. All other resources (e.g., Pods and Services),
simply use an empty string, as their API version doesn’t contain a
group. Be aware that the imperative command for creating a Role
automatically determines the API group.

Example 17-2. A YAML manifest defining a Role

apiVersion: rbac.authorization.k8s.io/vl
kind: Role
metadata:
name: read-only
rules:
- apiGroups:

resources:
- pods

- services
verbs:
- list
- get
- watch

- apiGroups: L1
- apps
resources:
- deployments
verbs:
- list
- get
- watch

L1 Any resource that belongs to an API group need to be listed as
an explicit rule in addition to the API resources that do not
belong to an API group.

Listing Roles

Once the Role has been created, its object can be listed. The list of
Roles renders only the name and the creation timestamp. Each of
the listed roles does not give away any of its details:

$ kubectl get roles
NAME CREATED AT
read-only 2021-06-23T19:46:487%7

Rendering Role Details

You can inspect the details of a Role using the describe
command. The output renders a table that maps a resource to its
permitted verbs:

$ kubectl describe role read-only
Name: read-only
Labels: <none>

Annotations: <none>
PolicyRule:

Resources Non—-Resource URLs Resource Names
Verbs

pods [] []
[list get watch]

services [] []
[list get watch]

deployments.apps [] []
[list get watch]

This cluster has no resources created, so the list of resource names
in the following console output is currently empty.

Creating RoleBindings

The imperative command creating a RoleBinding object is create
rolebinding. To bind a Role to the RoleBinding, use the --role
command-line option. The subject type can be assigned by
declaring the options --user, --group, Or --serviceaccount.
The following command creates the RoleBinding with the name
read-only-binding to the user called bmuschko:

$ kubectl create rolebinding read-only-binding --role=read-
only --user=bmuschko
rolebinding.rbac.authorization.k8s.io/read-only-binding
created

Example 17-3 shows a YAML manifest representing the RoleBinding.
You can see from the structure that a role can be mapped to one or
many subjects. The data type is an array indicated by the dash
character under the attribute subjects. At this time, only the user
bmuschko has been assigned.

Example 17-3. A YAML manifest defining a RoleBinding

apiVersion: rbac.authorization.k8s.io/vl
kind: RoleBinding
metadata:
name: read-only-binding
roleRef:
apiGroup: rbac.authorization.k8s.io
kind: Role
name: read-only
subjects:
- apiGroup: rbac.authorization.k8s.io
kind: User
name: bmuschko

Listing RoleBindings

The most important information the list of RoleBindings displays is
the associated Role. The following command shows that the
RoleBinding read-only-binding has been mapped to the Role

read-only:

$ kubectl get rolebindings
NAME ROLE AGE
read-only-binding Role/read-only 24h

The output does not provide an indication of the subjects. You will
need to render the details of the object for more information, as
described in the next section.

Rendering RoleBinding Details

RoleBindings can be inspected using the describe command. The
output renders a table of subjects and the assigned role. The
following example renders the descriptive representation of the
RoleBinding named read-only-binding:

$ kubectl describe rolebinding read-only-binding

Name: read-only-binding
Labels: <none>
Annotations: <none>
Role:

Kind: Role

Name: read-only
Subjects:

Kind Name Namespace

User bmuschko

Seeing the RBAC Rules in Effect

Let’s see how Kubernetes enforces the RBAC rules for the scenario
we set up so far. First, we'll create a new Deployment with the
cluster-admin permissions. In Minikube, those permissions are

available to the context minikube by default:

$ kubectl config current-context

minikube

$ kubectl create deployment myapp --image=:1.25.2 --port=80
--replicas=2

deployment.apps/myapp created

Now, we'll switch the context for the user bmuschko:

$ kubectl config use-context bmuschko-context
Switched to context "bmuschko-context".

Remember that the user bmuschko is permitted to list
Deployments. We'll verify that by using the get deployments
command:

$ kubectl get deployments
NAME READY UP-TO-DATE AVATLABLE AGE
myapp 2/2 2 2 8s

The RBAC rules allow listing Deployments, Pods, and Services only.
The following command tries to list the ReplicaSets, which results in
an error:

$ kubectl get replicasets

Error from server (Forbidden): replicasets.apps is
forbidden: User "bmuschko" \

cannot list resource "replicasets" in API group "apps" in
the namespace "default"

A similar behavior can be observed when trying to use verbs other
than 1ist, get, or watch. The following command tries to delete

a Deployment:

$ kubectl delete deployment myapp

Error from server (Forbidden): deployments.apps "myapp" is
forbidden: User \

"bmuschko" cannot delete resource "deployments" in API
group "apps" in the \

namespace "default"

At any given time, you can check a user’s permissions with the
auth can-i command. The command gives you the option to list

all permissions or check a specific permission:

$ kubectl auth can-i --list --as bmuschko

Resources Non—-Resource URLs Resource Names
Verbs

pods [] []

[list get watch]

services [] []
[list get watch]

deployments.apps [] []
[list get watch]

$ kubectl auth can-i list pods --as bmuschko
yes

Namespace-Wide and Cluster-Wide RBAC

Roles and RoleBindings apply to a particular namespace. You will
have to specify the namespace when creating both objects.
Sometimes, a set of Roles and RoleBindings needs to apply to
multiple namespaces or even to the whole cluster. For a cluster-
wide definition, Kubernetes offers the API resource types
ClusterRole and ClusterRoleBinding. The configuration elements are
effectively the same. The only difference is the value of the xind

attribute:

¢ To define a cluster-wide Role, use the imperative
subcommand clusterrole or the kind ClusterRole in

the YAML manifest.

e To define a cluster-wide RoleBinding, use the imperative
subcommand clusterrolebinding or the kind
ClusterRoleBinding in the YAML manifest.

ClusterRoles and ClusterRoleBindings not only set up cluster-wide
permissions to a namespaced resource, but they can also be used
to set up permissions for non-namespaced resources like CRDs and
nodes.

Working with Service Accounts

We've been using the kubect1 executable to run operations

against a Kubernetes cluster. Under the hood, its implementation
calls the API server by making an HTTP call to the exposed

endpoints. Some applications running inside of a Pod may have to
communicate with the API server as well. For example, the
application may ask for specific cluster node information or
available namespaces.

Pods can use a service account to authenticate with the API server
through an authentication token. A Kubernetes administrator
assigns rules to a service account via RBAC to authorize access to
specific resources and actions as illustrated in Figure 17-4.

RBAC Sorvice Pod

[Role HRDIebinding]

Figure 17-4. Using a service account to communicate with an API server

A Pod doesn't necessarily need to be involved in the process. Other
use cases call for leveraging a service account outside of a
Kubernetes cluster. For example, you may want to communicate
with the API server as part of CI/CD pipeline automation step. The
service account can provide the credentials to authenticate with the
API server.

The Default Service Account

So far, we haven't defined a service account for a Pod. If not
assigned explicitly, a Pod uses the default service account, which

has the same permissions as an unauthenticated user. This means
that the Pod cannot view or modify the cluster state or list or modify
any of its resources. The default service account can however

request basic cluster information via the assigned
system:discovery Role.

You can query for the available service accounts with the
subcommand serviceaccounts. You should see only the
default service account listed in the output:

https://kubernetes.io/docs/concepts/security/service-accounts/#default-service-accounts

$ kubectl get serviceaccounts
NAME SECRETS AGE
default 0 4d

While you can execute the kubect1 operation to delete the
default service account, Kubernetes will reinstantiate the service
account immediately.

Creating a Service Account

You can create a custom service account object using the
imperative and declarative approach. This command creates a
service account object with the name cicd-bot. The assumption
here is to use the service account for calls to the API server made
by a CI/CD pipeline:

$ kubectl create serviceaccount cicd-bot
serviceaccount/cicd-bot created

You can also represent the service account in the form of a
manifest. In its simplest form, the definition assigns the kind
ServiceAccount and a name, as shown in Example 17-4.

Example 17-4. YAML manifest for a service account

apiVersion: vl
kind: ServiceAccount
metadata:

name: cicd-bot

You can set a couple of configuration options for a service account.
For example, you may want to disable automounting of the
authentication token when assigning the service account to a Pod.
Although you will not need to understand those configuration
options for the exam, it makes sense to dive deeper into security

https://kubernetes.io/docs/tasks/configure-pod-container/configure-service-account/

best practices by reading up on them in the Kubernetes
documentation.

Setting Permissions for a Service Account

It's important to limit the permissions to only the service accounts
that are necessary for the application to function. The next sections
will explain how to achieve this to minimize the potential attack
surface.

For this scenario to work, you'll need to create a ServiceAccount
object and assign it to the Pod. Service accounts can be tied in with
RBAC and assigned a Role and RoleBinding to define which
operations they should be allowed to perform.

Binding the service account to a Pod

As a starting point, we will set up a Pod that lists all Pods and
Deployments in the namespace k97 by calling the Kubernetes API.
The call is made as part of an infinite loop every ten seconds. The
response from the API call will be written to standard output
accessible via the Pod’s logs.

ACCESSING THE API SERVER ENDPOINT

Accessing the Kubernetes API from a Pod is straightforward. Instead of
using the IP address and port for the API server Pod, you can simply
refer to a Service named kubernetes.default.svc instead. This
special Service lives in the default namespace and is stood up by the
cluster automatically.

To authenticate against the API server, we'll send a bearer token
associated with the service account used by the Pod. The default
behavior of a service account is to auto-mount API credentials on
the path /var/run/secrets/kubernetes.io/serviceaccount/token. We'll

simply get the contents of the file using the cat command-line tool
and send them along as a header for the HTTP request.

Example 17-5 defines the namespace, the service account, and the
Pod in a single YAML manifest file: setup.yaml.

Example 17-5. YAML manifest for assigning a service account to a
Pod

apiVersion: vl
kind: Namespace
metadata:

name: k97

apiVersion: vl
kind: ServiceAccount
metadata:
name: sa-api
namespace: k97

apiVersion: vl
kind: Pod
metadata:
name: list-objects
namespace: k97
spec:
serviceAccountName: sa-api (1)
containers:
- name: pods
image: alpine/curl:3.14
command: ['sh', '-c¢', 'while true; do curl -s -k -m 5 -H
\
"Authorization: Bearer $(cat
/var/run/secrets/kubernetes.io/ \
serviceaccount/token)"
https://kubernetes.default.svc.cluster. \
local/api/vl/namespaces/k97/pods; sleep 10;
done'] a
- name: deployments
image: alpine/curl:3.14
command: ['sh', '-c¢', 'while true; do curl -s -k -m 5 -H

"Authorization: Bearer $(cat

/var/run/secrets/kubernetes.io/ \
serviceaccount/token)"
https://kubernetes.default.svc.cluster. \
local/apis/apps/vl/namespaces/k97/deployments;
sleep 10; done']

3]

@ The service account referenced by name used for communicating
with the Kubernetes API.

® performs an API call to retrieve the list of Pods in the namespace
k97.

© performs an API call to retrieve the list of Deployments in the
namespace k97.

Create the objects from the YAML manifest with the following
command:

$ kubectl apply -f setup.yaml
namespace/k97 created
serviceaccount/sa-api created
pod/list-objects created

Verifying the default permissions

The Pod named 1ist-objects makes a call to the API server to

retrieve the list of Pods and Deployments in dedicated containers.
The container pods performs the call to list Pods. The container

deployments sends a request to the API server to list
Deployments.

As explained in the Kubernetes documentation, the default RBAC
policies do not grant any permissions to service accounts outside of
the kube-system namespace. The logs of the containers pods

and deployments return an error message indicating that the
service account sa-api is not authorized to list the resources:

https://oreil.ly/gBp30

$ kubectl logs list-objects -c pods -n k97
{
"kind": "Status",
"apiVersion": "v1",
"metadata": {},
"status": "Failure",
"message": "pods is forbidden: User
\"system:serviceaccount:k97:sa-api\" \
cannot list resource \"pods\" in API group
\"\" in the \
namespace \"k97\"",
"reason": "Forbidden",
"details": {
"kind": "pods"
}I
"code": 403
}
$ kubectl logs list-objects -c deployments -n k97
{
"kind": "Status",
"apiVersion": "v1",
"metadata": {},
"status": "Failure",
"message": "deployments.apps is forbidden: User \
\"system:serviceaccount:k97:sa-api\" cannot
list resource \
\"deployments\" in API group \"apps\" in the
namespace \
\"k97\"",
"reason": "Forbidden",
"details": {
"group": "apps",
"kind": "deployments"
}I
"code": 403

Next up, we'll stand up a Role and RoleBinding object with the
required API permissions to perform the necessary calls.

Creating the Role

Start by defining the Role named 1ist-pods-role shown in
Example 17-6 in the file role.yaml. The set of the rules adds only
the Pod resource and the verb 1ist.

Example 17-6. YAML manifest for a Role that allows listing Pods

apiVersion: rbac.authorization.k8s.io/vl
kind: Role
metadata:
name: list-pods-role
namespace: k97
rules:
- apiGroups: [""]
resources: ['"pods"]
verbs: ["list"]

Create the object by pointing to its corresponding YAML manifest
file:

$ kubectl apply -f role.yaml
role.rbac.authorization.k8s.io/list-pods-role created

Creating the RoleBinding

Example 17-7 defines the YAML manifest for the RoleBinding in the
file rolebinding.yaml. The RoleBinding maps the Role 1ist-
pods-role to the service account named sa-pod-api and
applies it only to the namespace k97.

Example 17-7. YAML manifest for a RoleBinding attached to a
service account

apiVersion: rbac.authorization.k8s.io/vl
kind: RoleBinding
metadata:
name: serviceaccount-pod-rolebinding
namespace: k97
subjects:
- kind: ServiceAccount

name: sa-api
roleRef:
kind: Role
name: list-pods-role
apiGroup: rbac.authorization.k8s.1io

Create both RoleBinding objects using the apply command:

$ kubectl apply -f rolebinding.yaml
rolebinding.rbac.authorization.k8s.io/serviceaccount-pod-
rolebinding created

Verifying the granted permissions

With the granted 11ist permissions, the service account can now
properly retrieve all the Pods in the k97 namespace. The curl
command in the pods container succeeds, as shown in the
following output:

$ kubectl logs list-objects -c pods -n k97
{

"kind": "PodList",
"apiVersion": "v1",
"metadata": {
"resourceVersion": "628"
}I
"items": [
{
"metadata": {
"name": "list-objects",
"namespace": "k97",

We did not grant any permissions to the service account for other
resources. Listing the Deployments in the k97 namespace still fails.

The following output shows the response from the curl command
in the deployments hamespace:

$ kubectl logs list-objects -c deployments -n k97

"kind": "Status",
"apiVersion": "v1",
"metadata": {},
"status": "Failure",
"message": "deployments.apps is forbidden: User \
\"system:serviceaccount:k97:sa-api\" cannot
list resource \
\"deployments\" in API group \"apps\" in the
namespace \

\"k97\"",
"reason": "Forbidden",
"details": {
"group": "apps",
"kind": "deployments"
}I
"code": 403

Feel free to modify the Role object to allow listing Deployment
objects as well.

Admission Control

The last phase of processing a request to the API server is
admission control. Admission control is implemented by admission
controllers. An admission controller provides a way to approve,
deny, or mutate a request before it takes effect.

Admission controllers can be registered with the configuration of the
API server. By default, the configuration file can be found at
/etc/kubernetes/manifests/kube-apiserver.yaml. 1t is the cluster
administrator’s job to manage the API server configuration. The

following command-line invocation of the API server enables the
admission control plugins named NamespaceLifecycle,

PodSecurity and LimitRanger:

$ kube-apiserver --enable-admission-
plugins=NamespacelLifecycle,PodSecurity, \
LimitRanger

As a developer, you are inadvertently using admission control
plugins that have been configured for you. One example is the
LimitRanger and the ResourceQuota, we'll discuss in "Working with
Limit Ranges” and “"Working with Resource Quotas”.

Summary

The API server processes requests to the Kubernetes API. Every
request has to go through three phases: authentication,
authorization, and admission control. Every phase can short-circuit
the processing. For example, if the credentials sent with the request
cannot be authenticated, then the request will be dropped
immediately.

We looked at examples of all phases. The authentication phase
covered kubectl as the client making a call to the Kubernetes API.
The kubeconfig file serves as configuration source for named cluster,
users, and their credentials. In Kubernetes, authorization is handled
by RBAC. We learned the Kubernetes primitives that let you
configure permissions for API resources tied to one or many
subjects. Finally, we briefly covered the purpose of admission
control and listed some plugins that act as controllers for validating
or mutating a request to the Kubernetes API.

https://kubernetes.io/docs/reference/access-authn-authz/admission-controllers/#what-does-each-admission-controller-do
https://kubernetes.io/docs/reference/access-authn-authz/admission-controllers/#limitranger
https://kubernetes.io/docs/reference/access-authn-authz/admission-controllers/#resourcequota

Exam Essentials

Practice interacting with the Kubernetes API

This chapter demonstrated some ways to communicate with the
Kubernetes API. We performed API requests by switching to a
user context and with the help of a RESTful API call using curl.
Explore the Kubernetes API and its endpoints on your own for
broader exposure.

Understand the implications of defining RBAC rules for users and
service accounts

Anonymous user requests to the Kubernetes API will not allow
any substantial operations. For requests coming from a user or a
service account, you will need to carefully analyze permissions
granted to the subject. Learn the ins and outs of defining RBAC
rules by creating the relevant objects to control permissions.
Service accounts automount a token when used in a Pod. Expose
the token as a volume only if you are intending to make API
calls from the Pod.

Learn about the basic need for admission control

For the exam you will not need to understand how to configure
admission control plugins in the API server. Developers interact
with them, but configuration tasks are up to the cluster
administrator. Read up on different plugins to gain a better
understanding of the admission control landscape.

Sample Exercises

Solutions to these exercises are available in Appendix A.

1. The premise of this exercise is to create a new user and add
her to the kubeconfig file. You will then define a context

https://kubernetes.io/docs/concepts/overview/kubernetes-api/

that uses the user, switch to the context, and execute a
kubectl command.

Create a certificate for a user named mary. Do not provide
any permissions to the user.

Add the user to the kubeconfig file. Define the context
named mary-context that assigns the user to a cluster

already available in the kubeconfig file.

Set the currently selected context to mary-context.
Create a Pod using kubectl. What result do you expect to
see?

. You will use RBAC to grant permissions to a service account.
The permissions should apply only to certain API resources
and operations.

Create a new namespace named t23. Create a Pod named
service-list in the namespace t23. The container uses the
image alpine/curl:3.14 and makes a curl call to the

Kubernetes API that lists Service objects in the default
namespace in an infinite loop.

Create and attach the service account api-call to the
Pod.

Inspect the container logs after the Pod has been started.
What response do you expect to see from the curl

command?

Assign a ClusterRole and RoleBinding to the service account
that allows only the operation needed by the Pod. Note the
response from the curl command.

. Identify the admission controller plugins that have been
configured for the API server.

Locate the configuration file of the API server.

Inspect the command-line flag that defines the admission
controller plugins. Capture the value.

INTERACTIVE EXAM PRACTICE

Get more hands-on training and test your CKAD exam readiness
by working through our playlist of interactive CKAD labs. Each
step of the lab must be completed correctly before you can
move to the next step. If you get stuck, you can view the
solution and learn how to complete the step.

The following lab covers material from this chapter:

e Regulating Access to API Resources with RBAC

https://learning.oreilly.com/playlists/2e9fe6dc-2a05-47fe-ae0a-34d6485287cc/
https://learning.oreilly.com/interactive-lab/regulating-access-to/9781098164171/

Chapter 18. Resource
Requirements, Limits, and
Quotas

Workload executed in Pods will consume a certain amount of
resources (e.g., CPU and memory). You should define resource
requirements for those applications. On a container level, you can
define a minimum amount of resources needed to run the
application, as well as the maximum amount of resources the
application is allowed to consume. Application developers should
determine the right-sizing with load tests or at runtime by
monitoring the resource consumption.

NOTE

Kubernetes measures CPU resources in millicores and memory
resources in bytes. That’s why you might see resources defined as
600m or 100Mi. For a deep dive on those resource units, it's worth
cross-referencing the section "Resource units in Kubernetes” in the
official documentation.

Kubernetes administrators can put measures in place to enforce
the use of available resource capacity. We'll discuss two Kubernetes
primitives in this realm, the ResourceQuota and the LimitRange.
The ResourceQuota defines aggregate resource constraints on a
namespace level. A LimitRange is a policy that constrains or
defaults the resource allocations for a single object of a specific
type (such as for a Pod or a PersistentVolumeClaim).

https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/#resource-units-in-kubernetes

COVERAGE OF CURRICULUM OBIJECTIVES
This chapter addresses the following curriculum objective:

¢ Understand and define resource requirements, limits,
and quotas

Working with Resource Requirements

It's recommended practice that you specify resource requests and
limits for every container. Determining those resource expectations
is not always easy, specifically for applications that haven't been
exercised in a production environment yet. Load testing the
application early during the development cycle can help with
analyzing the resource needs. Further adjustments can be made by
monitoring the application’s resource consumption after deploying it
to the cluster.

Defining Container Resource Requests

One metric that comes into play for workload scheduling is the
resource request defined by the containers in a Pod. Commonly
used resources that can be specified are CPU and memory. The
scheduler ensures that the node’s resource capacity can fulfill the
resource requirements of the Pod. More specifically, the scheduler
determines the sum of resource requests per resource type across
all containers defined in the Pod and compares them with the
node’s available resources.

Each container in a Pod can define its own resource requests.
Table 18-1 describes the available options including an example
value.

Table 18-1. Options for resource requests

YAML attribute

spec.containers|[].resourc

es.requests.cpu

spec.containers|[].resourc

es.requests.memory

spec.containers|[].resourc
es.requests.hugepages-<si

ze>

spec.containers|[].resourc
es.requests.ephemeral-sto

rage

Description

CPU resource type

Memory resource
type

Huge page
resource type

Ephemeral storage

resource type

Example value

soom (five
hundred millicpu)

6ami (2726
bytes)

hugepages-2Mi: 60
Mi

4G1i

To clarify the uses of these resource requests, we'll look at an
example definition. The Pod YAML manifest shown in Example 18-1
defines two containers, each with its own resource requests. Any
node that is allowed to run the Pod needs to be able to support a
minimum memory capacity of 320Mi and 1250m CPU, the sum of
resources across both containers.

Example 18-1. Setting container resource requests

apiVersion: vl
kind: Pod
metadata:
name: rate-limiter
spec:
containers:
- name: business-app

image: bmuschko/nodejs-business-app:1.0.0

ports:

- containerPort: 8080
resources:
requests:
memory: "256Mi1"
cpu: "1"
- name: ambassador
image: bmuschko/nodejs-ambassador:1.0.0
ports:
- containerPort: 8081
resources:

requests:
memory: "64Mi"
cpu: "250m"

It's certainly possible that a Pod cannot be scheduled due to
insufficient resources available on the nodes. In those cases, the
event log of the Pod will indicate this situation with the reasons
PodExceedsFreeCPU Or PodExceedsFreeMemory. FOr more
information on how to troubleshoot and resolve this situation, see
the relevant section in the documentation.

Defining Container Resource Limits

Another metric you can set for a container is the resource limits.
Resource limits ensure that the container cannot consume more
than the allotted resource amounts. For example, you could express
that the application running in the container should be constrained
to 1000m of CPU and 512Mi of memory.

Depending on the container runtime used by the cluster, exceeding
any of the allowed resource limits results in a termination of the
application process running in the container or results in the system
preventing the allocation of resources beyond the limits. For an in-
depth discussion on how resource limits are treated by the
container runtime Docker Engine, see the documentation.

Table 18-2 describes the available options including an example
value.

https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/#troubleshooting
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/#how-pods-with-resource-limits-are-run

Table 18-2. Options for resource limits

Example
YAML attribute Description value

spec.containers[].resource CPU resource type soom (500

s.limits.cpu m||||CpU)
spec.containers[].resource Memory resource 64M1i (2/\26
s.limits.memory type bytes)
spec.containers[].resource Huge page hugepages—-2Mi :
s.limits.hugepages-<size> resource type 60Mi

spec.containers[].resource Ephemeral storage 4Gi
s.limits.ephemeral-storage [€SOUrce type

Example 18-2 shows the definition of limits in action. Here, the
container named business-app cannot use more than 512Mi of

memory. The container named ambassador defines a limit of
128Mi of memory.

Example 18-2. Setting container resource limits

apiVersion: vl
kind: Pod
metadata:

name: rate-limiter

spec:

containers:

- name: business-app
image: bmuschko/nodejs-business-app:1.0.0
ports:

- containerPort: 8080
resources:
limits:

memory: "256Mi1i"
- name: ambassador
image: bmuschko/nodejs-ambassador:1.0.0

ports:
- containerPort: 8081
resources:
limits:
memory: "64Mi"

Defining Container Resource Requests and
Limits

To provide Kubernetes with the full picture of your application’s
resource expectations, you must specify resource requests and

limits for every container. Example 18-3 combines resource requests
and limits in a single YAML manifest.

Example 18-3. Setting container resource requests and limits

apiVersion: vl
kind: Pod
metadata:

name: rate-limiter

spec:

containers:

- name: business-app
image: bmuschko/nodejs-business-app:1.0.0
ports:

- containerPort: 8080
resources:
requests:
memory: "256Mi"
cpu: "1"
limits:
memory: "256Mi"

- name: ambassador
image: bmuschko/nodejs-ambassador:1.0.0
ports:

- containerPort: 8081
resources:
requests:
memory: "64Mi"

cpu: "250m"
limits:
memory: "64Mi"

Assigning static container resource requirements is an
approximation process. You want maximizing an efficient utilization
of resources in your Kubernetes cluster. Unfortunately, the
Kubernetes documentation does not offer a lot of guidance on best
practices. The blog post “For the Love of God, Stop Using CPU Limits
on Kubernetes” provides the following guidance:

Always define memory requests.

Always define memory limits.

Always set your memory requests equal to your limit.

Always define CPU requests.

¢ Do not use CPU limits.

After launching your application to production, you still need to
monitor your application resource consumption patterns. Review
resource consumption at runtime and keep track of actual
scheduling behavior and potential undesired behaviors once the
application receives load. Finding a happy medium can be
frustrating. Projects like Goldilocks and KRR emerged to provide
recommendations and guidance on appropriately determining
resource requests. Other options, like the container resize policies
introduced in Kubernetes 1.27, allow for more fine-grained control
over how containers’ CPU and memory resources are resized
automatically at runtime.

Working with Resource Quotas

The Kubernetes primitive ResourceQuota establishes the usable,
maximum amount of resources per namespace. Once put in place,
the Kubernetes scheduler will take care of enforcing those rules.

https://home.robusta.dev/blog/stop-using-cpu-limits
https://home.robusta.dev/blog/stop-using-cpu-limits
https://www.fairwinds.com/blog/introducing-goldilocks-a-tool-for-recommending-resource-requests
https://github.com/robusta-dev/krr
https://kubernetes.io/docs/tasks/configure-pod-container/resize-container-resources/#container-resize-policies

The following list should give you an idea of the rules that can be
defined:

e Setting an upper limit for the number of objects that can be
created for a specific type (e.g., a maximum of three Pods).

¢ Limiting the total sum of compute resources (e.g., 3Gi of
RAM).

e Expecting a Quality of Service (QoS) class for a Pod (e.g.,
BestEffort to indicate that the Pod must not make any

memory or CPU limits or requests).

Creating ResourceQuotas

Creating a ResourceQuota object is usually a task that a Kubernetes
administrator would take on, but it’s relatively easy to define and
create such an object. First, create the namespace the quota should

apply to:

$ kubectl create namespace team-awesome
namespace/team-awesome created

Next, define the ResourceQuota in YAML. To demonstrate the
functionality of a ResourceQuota, add constraints to the namespace,
as shown in Example 18-4.

Example 18-4. Defining hard resource limits with a ResourceQuota
apiVersion: vl
kind: ResourceQuota
metadata:
name: awesome-gquota
namespace: team-awesome
spec:
hard:
pods: 2
requests.cpu: "1"

®e

requests.memory: 1024Mi a
limits.cpu: "4" (3]
limits.memory: 4096Mi (3]

L1 Limit the number of Pods to 2.

@ Define the minimum resources requested across all Pods in a
non-terminal state to 1 CPU and 1024Mi of RAM.

® Define the maximum resources used by all Pods in a non-
terminal state to 4 CPUs and 4096Mi of RAM.

You're ready to create a ResourceQuota for the hamespace:

$ kubectl create -f awesome-quota.yaml
resourcequota/awesome-quota created

Rendering ResourceQuota Details

You can render a table overview of used resources vs. hard limits
using the kubectl describe command:

$ kubectl describe resourcequota awesome-quota -n team-
awesome

Name: awesome—-quota
Namespace: team-awesome
Resource Used Hard

limits.cpu 0 4
limits.memory 0 4Gi
pods 0 2
requests.cpu 0 1
requests.memory O 1Gi

The Hard column lists the same values you provided with the
ResourceQuota definition. Those values won't change also long as
you don’t modify the object’s specification. Under the Used column,

you can find the actual aggregate resource consumption within the
namespace. At this time, all values are 0 given that no Pods have
been created yet.

Exploring a ResourceQuota’s Runtime
Behavior

With the quota rules in place for the namespace team-awesome,

we'll want to see its enforcement in action. We'll start by creating
more than the maximum number of Pods, which is two. To test this,
we can create Pods with any definition we like. For example, we use
a bare-bones definition that runs the image nginx:1.25.3 in the

container, as shown in Example 18-5.

Example 18-5. A Pod without resource requirements

apiVersion: vl
kind: Pod
metadata:
name: nginx
namespace: team-awesome
spec:
containers:
- image: nginx:1.25.3
name: nginx

From that YAML definition stored in nginx-pod.yaml, let’s create a
Pod and see what happens. In fact, Kubernetes will reject the
creation of the object with the following error message:

$ kubectl apply -f nginx-pod.yaml

Error from server (Forbidden): error when creating "nginx-
pod.yaml": \

pods "nginx" is forbidden: failed quota: awesome-quota:
must specify \

limits.cpu for: nginx; limits.memory for: nginx;
requests.cpu for: \

nginx; requests.memory for: nginx

Because we defined minimum and maximum resource quotas for
objects in the namespace, we have to ensure that Pod objects
actually define resource requests and limits. Modify the initial
definition by updating the instruction under resources, as shown
in Example 18-6.

Example 18-6. A Pod with resource requirements

apiVersion: vl
kind: Pod
metadata:

name: nginx

namespace: team-awesome

spec:

containers:

- image: nginx:1.25.3
name: nginx
resources:

requests:
cpu: "0.5"
memory: "512Mi"
limits:
cpu: "1"
memory: "1024Mi"

We should be able to create two uniquely named Pods—nginx1
and nginx2—with that manifest; the combined resource

requirements still fit with the boundaries defined in the
ResourceQuota:

$ kubectl apply -f nginx-podl.yaml

pod/nginxl created

$ kubectl apply -f nginx-pod2.yaml

pod/nginx?2 created

$ kubectl describe resourcequota awesome-quota -n team-
awesome

Name: awesome—-quota

Namespace: team-awesome

Resource Used Hard

limits.cpu 2 4

limits.memory 2G1i 4Gi
pods 2 2
requests.cpu 1 1
requests.memory 1Gi 1Gi

You may be able to imagine what would happen if we tried to
create another Pod with the definition of nginx1 and nginx2. It
will fail for two reasons. The first reason is that we're not allowed to
create a third Pod in the namespace, as the maximum number is
set to two. The second reason is that we'd exceed the allotted
maximum for requests.cpu and requests.memory. The
following error message provides us with this information:

$ kubectl apply -f nginx-pod3.yaml

Error from server (Forbidden): error when creating "nginx-
pod3.yaml"™: \

pods "nginx3" is forbidden: exceeded quota: awesome-quota,
requested: \

pods=1, requests.cpu=500m, requests.memory=512Mi, used:
pods=2, requests.cpu=1, \

requests.memory=1Gi, limited:

pods=2, requests.cpu=1l, requests.memory=1Gi

Working with Limit Ranges

In the previous section, you learned how a resource quota can
restrict the consumption of resources within a specific namespace in
aggregate. For individual Pod objects, the resource quota cannot set
any constraints. That’s where the limit range comes in. The
enforcement of LimitRange rules happens during the admission
control phase when processing an API request.

The LimitRange is a Kubernetes primitive that constrains or defaults
the resource allocations for specific object types:

e Enforces minimum and maximum compute resources usage
per Pod or container in @ namespace

e Enforces minimum and maximum storage request per
PersistentVolumeClaim in a namespace

o Enforces a ratio between request and limit for a resource in
a namespace

e Sets default requests/limits for compute resources in a
namespace and automatically injects them into containers
at runtime

It is best to create only a single LimitRange object per namespace.
Default resource requests and limits specified by multiple LimitRange
objects in the same namespace causes non-deterministic selection of
those rules. Only one of the default definitions will win, but you can't
predict which one.

Creating LimitRanges

The LimitRange offers a list of configurable constraint attributes. All
are described in great detail in the Kubernetes API documentation
for a LimitRangeSpec. Example 18-7 shows a YAML manifest for a
LimitRange that uses some of the constraint attributes.

Example 18-7. A limit range defining multiple constraint criteria

apiVersion: vl
kind: LimitRange
metadata:
name: cpu-resource-constraint
spec:
limits:
- type: Container (1]

https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.28/#limitrangeitem-v1-core

defaultRequest:

cpu: 200m
default:

cpu: 200m
min:

cpu: 100m
max:

cpu: "2"

c © & ®

@ The context to apply the constraints to. In this case, to a
container running in a Pod.

® The default CPU resource request value assigned to a container
if not provided.

® The default CPU resource limit value assigned to a container if
not provided.

@ The minimum and maximum CPU resource request and limit
value assignable to a container.

As usual, we can create an object from the manifest with the
kubectl create Or kubectl apply command. The definition of
the LimitRange has been stored in the file cpu-resource-constraint-
limitrange.yaml.

$ kubectl apply -f cpu-resource-constraint.yaml
limitrange/cpu-resource-constraint created

The constraints will be applied automatically when creating new
objects. Changing the constraints for an existing LimitRange object
won't have any effect on already running Pods.

Rendering LimitRange Details

Live LimitRange objects can be inspected using the kubectl
describe command. The following command renders the details of
the LimitRange object named cpu-resource-constraint:

$ kubectl describe limitrange cpu-resource-constraint

Name: cpu-resource-constraint

Namespace: default

Type Resource Min Max Default Request Default
Limit

Container cpu 100m 2 200m 200m

The output of the command renders each limit constraint on a
single line. Any constraint attribute that has not been set explicitly
by the object will show a dash character (-) as the assigned value.

Exploring a LimitRange’s Runtime Behavior

Let’s demonstrate what effect the LimitRange has on the creation of
Pods. We will walk through two different use cases:

1. Automatically setting resource requirements if they have not
been provided by the Pod definition.

2. Preventing the creation of a Pod if the declared resource
requirements are forbidden by the LimitRange.

Setting default resource requirements

The LimitRange defines a default CPU resource request of 200m and
a default CPU resource limit of 200m. That means if a Pod is about
to be created, and it doesn't define a CPU resource request and
limit, the LimitRange will automatically assign the default values.

Example 18-8 shows a Pod definition without resource
requirements.

Example 18-8. A Pod defining no resource requirements
apiVersion: vl
kind: Pod
metadata:

name: nginx-without-resource-requirements
spec:

containers:

- image: nginx:1.25.3

name: nginx

Creating the object from the contents stored in the file nginx-
without-resource-requirements.yaml will work as expected:

$ kubectl apply -f nginx-without-resource-requirements.yaml
pod/nginx-without-resource-requirements created

The Pod object will be mutated in two ways. First, the default
resource requirements set by the LimitRange are applied. Second,
an annotation with the key kubernetes.io/limit-ranger will
be added that provides meta information on what has been
changed. You can find both pieces of information in the output of
the describe command:

$ kubectl describe pod nginx-without-resource-requirements

Annotations: kubernetes.io/limit-ranger: LimitRanger
plugin set: cpu \
request for container nginx; cpu limit for container nginx

Containers:
nginx:

Limits:
cpu: 200m
Requests:

cpu: 200m

Enforcing resource requirements

The LimitRange can enforce resource limits as well. For the
LimitRange object we created earlier, the minimum amount of CPU
was set to 100m, and the maximum amount of CPU was set to 2. To
see the enforcement behavior in action, we'll create a new Pod as
shown in Example 18-9.

Example 18-9. A Pod defining CPU resource requests and limits

apiVersion: vl
kind: Pod
metadata:

name: nginx-with-resource-requirements

spec:

containers:

- image: nginx:1.25.3
name: nginx
resources:

requests:
cpu: "50m"
limits:
cpu: "3"

The resource requirements of this Pod do not follow the constraints
expected by the LimitRange object. The CPU resource request is
less than 100m, and the CPU resource limit is higher than 2. As a
result, the object won't be created and an appropriate error
message will be rendered:

$ kubectl apply -f nginx-with-resource-requirements.yaml

Error from server (Forbidden): error when creating "nginx-
with-resource-\
requirements.yaml": pods "nginx-with-resource-requirements"

is forbidden: \

[minimum cpu usage per Container is 100 m, but request is
50 m, maximum cpu \

usage per Container is 2, but limit is 3]

The error message provides some guidance on expected resource
definitions. Unfortunately, the message doesn’t point to the name of
the LimitRange object enforcing those expectations. Proactively
check if a LimitRange object has been created for the namespace
and what parameters have been set using kubectl get

limitranges.

Summary

Resource requests are one of the many factors that the kube-
scheduler algorithm considers when making decisions on which
node a Pod can be scheduled. A container can specify requests
uﬁngspec.containers[].resources.requests.The
scheduler chooses a node based on its available hardware capacity.
The resource limits ensure that the container cannot consume more
than the allotted resource amounts. Limits can be defined for a
container using the attribute spec.containers
[].resources.limits. Should an application consume more
than the allowed amount of resources (e.g., due to a memory leak
in the implementation), the container runtime will likely terminate
the application process.

A resource quota defines the computing resources (e.g., CPU, RAM,
and ephemeral storage) available to a namespace to prevent
unbounded consumption by Pods running it. Accordingly, Pods have
to work within those resource boundaries by declaring their
minimum and maximum resource expectations. You can also limit
the number of resource types (like Pods, Secrets, or ConfigMaps)
that are allowed to be created. The Kubernetes scheduler will
enforce those boundaries upon a request for object creation.

The limit range is different from the ResourceQuota in that it
defines resource constraints for a single object of a specific type. It
can also help with governance for objects by specifying resource

default values that should be applied automatically should the API
create request not provide the information.

Exam Essentials

Experience the effects of resource requirements on scheduling and
autoscaling

A container defined by a Pod can specify resource requests and
limits. Work through scenarios where you define those
requirements individually and together for single- and multi-
container Pods. Upon creation of the Pod, you should be able to
see the effects on scheduling the object on a node. Furthermore,
practice how to identify the available resource capacity of a
node.

Understand the purpose and runtime effects of resource quotas

A ResourceQuota defines the resource boundaries for objects
living within a namespace. The most commonly used boundaries
apply to computing resources. Practice defining them and
understand their effect on the creation of Pods. It's important to
know the command for listing the hard requirements of a
ResourceQuota and the resources currently in use. You will find
that a ResourceQuota offers other options. Discover them in
more detail for a broader exposure to the topic.

Understand the purpose and runtime effects of limit ranges

A LimitRange can specify resource constraints and defaults of
specific primitives. Should you run into a situation where you
receive an error message upon creation of an object, check if a
limit range object enforces those constraints. Unfortunately, the
error message does not point out the object that enforces it so
you may have to proactively list LimitRange objects to identify
the constraints.

Sample Exercises

Solutions to these exercises are available in Appendix A.

1. You have been tasked with creating a Pod for running an
application in a container. During application development,
you ran a load test for figuring out the minimum amount of
resources needed and the maximum amount of resources
the application is allowed to grow to. Define those resource
requests and limits for the Pod.

Define a Pod named hello-world running the container
image bmuschko/nodejs-hello-world:1.0.0. The
container exposes the port 3000.

Add a Volume of type emptyDir and mount it in the
container path /var/log.

For the container, specify the following minimum number of
resources:

— CPU: 100m
— Memory: 500Mi
— Ephemeral storage: 1Gi

For the container, specify the following maximum number of
resources:

— Memory: 500Mi
— Ephemeral storage: 2Gi

Create the Pod from the YAML manifest. Inspect the Pod
details. Which node does the Pod run on?

2. In this exercise, you will create a resource quota with
specific CPU and memory limits for a new namespace. Pods

created in the namespace will have to adhere to those
limits.

Create a ResourceQuota named app under the namespace
rg-demo using the following YAML definition in the file
resourcequota.yami.

apiVersion: vl
kind: ResourceQuota
metadata:
name: app
spec:
hard:
pods: "2"
requests.cpu: "2"

requests.memory: 500Mi

Create a new Pod that exceeds the limits of the resource
quota requirements, e.g., by defining 1Gi of memory but
stays below the CPU, e.g., 0.5. Write down the error
message.

Change the request limits to fulfill the requirements to
ensure that the Pod can be created successfully. Write down
the output of the command that renders the used amount of
resources for the namespace.

3. A LimitRange can restrict resource consumption for Pods in
a namespace, and assign default computing resources if no
resource requirements have been defined. You will practice
the effects of a LimitRange on the creation of a Pod in
different scenarios.

Navigate to the directory app-a/ch18/limitrange of the
checked-out GitHub repository bmuschko/ckad-study-guide.

https://github.com/bmuschko/ckad-study-guide

Inspect the YAML manifest definition in the file setup.yaml.
Create the objects from the YAML manifest file.

Create a new Pod named pod-without-resource-
requirements in the namespace 492 that uses the
container image nginx:1.23.4-alpine without any
resource requirements. Inspect the Pod details. What
resource definitions do you expect to be assigned?

Create a new Pod named pod-with-more-cpu-
resource-requirements in the namespace 492 that
uses the container image nginx:1.23.4-alpine with a

CPU resource request of 400m and limits of 1.5. What
runtime behavior do you expect to see?

Create a new Pod named pod-with-less-cpu-
resource-requirements in the namespace 492 that
uses the container image nginx:1.23.4-alpine with a

CPU resource request of 350m and limits of 400m. What
runtime behavior do you expect to see?

INTERACTIVE EXAM PRACTICE

Get more hands-on training and test your CKAD exam readiness
by working through our playlist of interactive CKAD labs. Each
step of the lab must be completed correctly before you can
move to the next step. If you get stuck, you can view the
solution and learn how to complete the step.

The following labs cover material from this chapter:
e Defining Container Resource Requests and Limits
e Defining a Resource Quota for a Namespace

e Creating a Pod Conforming with LimitRange in a
Namespace

https://learning.oreilly.com/playlists/2e9fe6dc-2a05-47fe-ae0a-34d6485287cc/
https://learning.oreilly.com/interactive-lab/defining-container-resource/9781098164188/
https://learning.oreilly.com/interactive-lab/defining-a-resource/9781098164195/
https://learning.oreilly.com/interactive-lab/creating-a-pod/9781098164201/
https://learning.oreilly.com/interactive-lab/creating-a-pod/9781098164201/

Chapter 19. ConfigMaps and
Secrets

Kubernetes dedicates two primitives to defining configuration data:
the ConfigMap and the Secret. Both primitives are completely
decoupled from the life cycle of a Pod, which enables you to change
their configuration data values without necessarily having to
redeploy the Pod.

In essence, ConfigMaps and Secrets store a set of key-value pairs.
Those key-value pairs can be injected into a container as
environment variables, or they can be mounted as a Volume.
Figure 19-1 illustrates the options.

Mounted as volume

to file system path , ConfigMap Secret 1
[Key-value
L pairs
. . , ConfigMap Secret 1
Injected as environment variables l pairs

Figure 19-1. Consuming configuration data

The ConfigMap and Secret may look almost identical in purpose and
structure on the surface; however, there is a slight but significant
difference. A ConfigMap stores plain-text data, for example
connection URLs, runtime flags, or even structured data like a JSON
or YAML content. Secrets are better suited for representing sensitive
data like passwords, API keys, or SSL certificates and store the data
in base64-encoded form.

ENCRYPTION OF CONFIGMAP AND SECRET DATA

The cluster component that stores data of a ConfigMap and Secret
object is etcd. Etcd manages this data in unencrypted form by default.
You can configure encryption of data in etcd, as described in the
Kubernetes documentation. Etcd encryption is not within the scope of

the exam.

This chapter references the concept of Volumes heavily. Refer to
Chapter 7 to refresh your memory on the mechanics of consuming a
Volume in a Pod.

COVERAGE OF CURRICULUM OBJECTIVES
This chapter addresses the following curriculum objectives:
e Understand ConfigMaps

¢ Create and consume Secrets

Working with ConfigMaps

Applications often implement logic that uses configuration data to
control runtime behavior. Examples for configuration data include a
connection URL and network communication options (like the

https://kubernetes.io/docs/tasks/administer-cluster/encrypt-data/

number of retries or timeouts) to third-party services that differ
between target deployment environments.

It's not unusual that the same configuration data needs to be made
available to multiple Pods. Instead of copy-pasting the same key-
value pairs across multiple Pod definitions, you can choose to
centralize the information in a ConfigMap object. The ConfigMap
object holds configuration data and can be consumed by as many
Pods as you want. Therefore, you will need to modify the data in
only one location should you need to change it.

Creating a ConfigMap

You can create a ConfigMap by emitting the imperative create
configmap command. This command requires you to provide the

source of the data as an option. Kubernetes distinguishes the four
different options shown in Table 19-1.

Table 19-1. Source options for data parsed by a ConfigMap

Option Example Description

--from-litera --from-literal=1l Literal ValueS, which are kGY'
1 ocale=en US value pairs as plain text
--from-env-fi -—from-env-file= A file that contains kGY'Value
le config.env pairs and expects them to be

environment variables

-—-from-file ——from-file=app- A file with arbitrary contents

config.json

--from-file -—-from-file=conf A directory with one or many
ig-dir files

It's easy to confuse the options --from-env-file and —--from-
file. The option --from-env-file expects a file that contains
environment variables in the format KEy=value separated by a
new line. The key-value pairs follow typical naming conventions for
environment variables (e.g., the key is uppercase, and individual
words are separated by an underscore character). Historically, this
option has been used to process Docker Compose . env file, though
you can use it for any other file containing environment variables.

The --from-env-£file option does not enforce or normalize the
typical naming conventions for environment variables. The option -
-from-file points to a file or directory containing any arbitrary
content. It's an appropriate option for files with structured
configuration data to be read by an application (e.g., a properties
file, a JSON file, or an XML file).

https://docs.docker.com/compose/environment-variables/env-file/

The following command shows the creation of a ConfigMap in
action. We are simply providing the key-value pairs as literals:

$ kubectl create configmap db-config --from-

literal=DB HOST=mysql-service \
--from-literal=DB_USER=backend

configmap/db-config created

The resulting YAML object looks like the one shown in Example 19-
1. As you can see, the object defines the key-value pairs in a
section named data. A ConfigMap does not have a spec section.

Example 19-1. ConfigMap YAML manifest

apiVersion: vl
kind: ConfigMap
metadata:
name: db-config
data:
DB HOST: mysgl-service
DB_USER: backend

You may have noticed that the key assigned to the ConfigMap data
follows the typical naming conventions used by environment
variables. The intention is to consume them as such in a container.

Consuming a ConfigMap as Environment
Variables
With the ConfigMap created, you can now inject its key-value pairs

as environment variables into a container. Example 19-2 shows the
use of spec.containers|[] .envFrom[] .configMapRef to

reference the ConfigMap by name.

Example 19-2. Injecting ConfigMap key-value pairs into the
container

apiVersion: vl
kind: Pod
metadata:

name: backend
spec:

containers:

- image: bmuschko/web-app:1.0.1
name: backend
envFrom:
- configMapRef:

name: db-config

After creating the Pod from the YAML manifest, you can inspect the
environment variables available in the container by running the env
Unix command:

$ kubectl exec backend -- env

DB HOST=mysqgl-service
DB USER=backend

The injected configuration data will be listed among environment
variables available to the container.

Mounting a ConfigMap as a Volume

Another way to configure applications at runtime is by processing a
machine-readable configuration file. Say we have decided to store
the database configuration in a JSON file named db.json with the
structure shown in Example 19-3.

Example 19-3. A JSON file used for configuring database information
{

"db": {
"host": "mysgl-service",
"user": "backend"
}
}

Given that we are not dealing with literal key-value pairs, we need
to provide the option --from-file when creating the ConfigMap

object:

$ kubectl create configmap db-config --from-file=db.json
configmap/db-config created

Example 19-4 shows the corresponding YAML manifest of the
ConfigMap. You can see that the file name becomes the key; the
contents of the file has used a multiline value.

Example 19-4. ConfigMap YAML manifest defining structured data

apiVersion: vl
kind: ConfigMap

metadata:
name: db-config
data:
db.json: |- 0
{
"db": {
"host": "mysgl-service",
"user": "backend"

}

@ The multiline string syntax (| -) used in this YAML structure

removes the line feed and removes the trailing blank lines. For
more information, see the YAML syntax for multiline string.

The Pod mounts the ConfigMap as a volume to a specific path inside
of the container with read-only permissions. The assumption is that
the application will read the configuration file when starting up.
Example 19-5 demonstrates the YAML definition.

Example 19-5. Mounting a ConfigMap as a volume

apiVersion: vl
kind: Pod
metadata:
name: backend
spec:
containers:

https://yaml-multiline.info/

- image: bmuschko/web-app:1.0.1
name: backend
volumeMounts:
- name: db-config-volume
mountPath: /etc/config
volumes:
- name: db-config-volume
configMap: L1
name: db-config

L1 Assign the volume type for referencing a ConfigMap object by
name.

To verify the correct behavior, open an interactive shell to the
container. As you can see in the following commands, the directory
/etc/config contains a file with the key we used in the ConfigMap.
The content represents the JSON configuration:

$ kubectl exec -it backend -- /bin/sh
1ls -1 /etc/config

db.json

cat /etc/config/db.json

{

"db" : {
"host": "mysgl-service",
"user": "backend"

}
}

The application code can now read the file from the mount path and
configure the runtime behavior as needed.

Working with Secrets

Data stored in ConfigMaps represent arbitrary plain-text key-value
pairs. In comparison to the ConfigMap, the Secret primitive is meant
to represent sensitive configuration data. A typical example for
Secret data is a password or an API key for authentication.

VALUES STORED IN A SECRET ARE ONLY
ENCODED, NOT ENCRYPTED

Secrets expect the value of each entry to be Base64-encoded. Base64
encodes only a value, but it doesn’t encrypt it. Therefore, anyone with
access to its value can decode it without problems. Therefore, storing
Secret manifests in the source code repository alongside other resource
files should be avoided.

It's somewhat unfortunate that the Kubernetes project decided to
choose the term “Secret” to represent sensitive data. The
nomenclature implies that data is actually secret and therefore
encrypted. You can select from a range of options to keep sensitive
data secure in real-world projects.

Bitnami Sealed Secrets is an production-ready and proven
Kubernetes operator that uses asymmetric crypto encryption for
data. The manifest representation of the data, the CRD
SealedSecret, is safe to be stored in a public source code repository.
You cannot decrypt this data yourself. The controller installed with
the operator is the only entity that can decrypt the data. Another
option is to store sensitive data in external secrets managers, e.g.,
HashiCorp Vault or AWS Secrets Manager, and integrate them with
Kubernetes. The External Secrets Operator synchronizes secrets
from external APIs into Kubernetes. The exam only expects you to
understand the built-in Secret primitive, covered in the following
sections.

Creating a Secret

You can create a Secret with the imperative command create
secret. In addition, a mandatory subcommand needs to be

provided that determines the type of Secret. Table 19-2 lists the
different types. Kubernetes assigns the value in the Internal Type

https://github.com/bitnami-labs/sealed-secrets
https://external-secrets.io/

column to the type attribute in the live object. “Specialized Secret
types” discusses other Secret types and their use cases.

Table 19-2. Options for creating a Secret

CLI option Description

generic Creates a secret from a file,
directory, or literal value

docker-regist Creates a secret for use with a

ry Docker registry, e.g., to pull
images from a private registry
when requested by a Pod

tls Creates a TLS secret

Internal
Type

Opaque

kubernetes.io/d

ockercfqg

kubernetes.io/t

1s

The most commonly used Secret type is generic. The options for a
generic Secret are exactly the same as for a ConfigMap, as shown in

Table 19-3.

Table 19-3. Source options for data parsed by a Secret

Option Example Description

——from-litera --from-literal-pa Literal values, which are key-
1 ssword=secret value pairs as plain text
——from-env-fi --from-env-file=c A file that contains kQY'Value
le onfig.env pairs and expects them to be

environment variables

-—-from-file --from-file=id rs A file with arbitrary contents

a=~/.ssh/id rsa

--from-file --from-file=confi A directory with one or many
g-dir files

To demonstrate the functionality, let’s create a Secret of type
generic. The command sources the key-value pairs from the

literals provided as a command-line option:

$ kubectl create secret generic db-creds --from-
literal=pwd=s3cre!
secret/db-creds created

When created using the imperative command, a Secret will
automatically Base64-encode the provided value. This can be
observed by looking at the produced YAML manifest. You can see in
Example 19-6 that the value s3cre! has been turned into

czN-jcmUh, the Base64-encoded equivalent.

Example 19-6. A Secret with Baseb64-encoded values

apiVersion: vl
kind: Secret

metadata:

name: db-creds
type: Opaque {l
data:

pwd: czNjcmUh (2

D The value Opaque for the type has been assigned to represent
generic sensitive data.

O The plain-text value has been Base64-encoded automatically if
the object has been created imperatively.

If you start with the YAML manifest to create the Secret object, you
will need to create the Base64-encoded value if you want to assign
it to the data attribute. A Unix tool that does the job is base64.
The following command achieves exactly that:

$ echo -n 's3cre!' | base64
czNjcmUh

As a reminder, if you have access to a Secret object or its YAML
manifest then you can decode the Base64-encoded value at any
time with the base64 Unix tool. Therefore, you may as well specify

the value in plain-text when defining the manifest, which we'll
discuss in the next section.

Defining Secret data with plain-text values

Having to generate and assign Base64-encoded values to Secret
manifests can become cumbersome. The Secret primitive offers the
stringData attribute as a replacement for the data attribute.
With stringData, you can assign plain-text values in the manifest
file, as shown in Example 19-7.

Example 19-7. A Secret with plain-text values

apiVersion: vl
kind: Secret
metadata:
name: db-creds
type: Opaque
stringData: 0
pwd: s3cre! a

Q The stringData attribute allows assigning plain-text key-value
pairs.

® The value referenced by the pwd key was provided in plain-text
format.

Kubernetes will automatically Base64-encode the s3cre! value
upon creation of the object from the manifest. The result is the live
object representation shown in Example 19-8, which you can
retrieve with the command kubectl get secret db-creds -o

yaml.
Example 19-8. A Secret live object

apiVersion: vl
kind: Secret
metadata:
name: db-creds
type: Opaque
data: {l
pwd: czNjcmUh! (2]

D The live object of a Secret always uses the data attribute even
though you may have used stringData in the manifest.

@ The value has been Base64-encoded upon creation.

You can represent arbitrary Secret data using the Opaque type.
Kubernetes offers specialized Secret types you can choose from

should the data fit specific uses cases. We'll discuss those
specialized Secret types in the next section.

Specialized Secret types

Instead of using the Opaque Secret type, you can also use one of

the specialized types to represent configuration data for particular
use cases. The type kubernetes.io/basic-auth is meant for

basic authentication and expects the keys username and
password. At the time of writing, Kubernetes does not validate the
correctness of the assigned keys.

The created object from this definition automatically Base64-
encodes the values for both keys. Example 19-9 illustrates a YAML
manifest for a Secret with type kubernetes.io/basic-auth.

Example 19-9. Usage of the Secret type kubernetes.io/basic-auth

apiVersion: vl
kind: Secret
metadata:
name: secret-basic-auth
type: kubernetes.io/basic-auth

stringData: 1]
username: bmuschko (2]
password: secret 2]

D Uses the stringData attribute to allow for assigning plain-text
values.

2] Specifies the mandatory keys required by the
kubernetes.io/basic-auth Secret type.

Consuming a Secret as Environment Variables

Consuming a Secret as environment variables works similar to the
way you'd do it for ConfigMaps. Here, you'd use the YAML
expression spec.containers|[].envFrom[].secretRef to
reference the name of the Secret. Example 19-10 injects the Secret

https://kubernetes.io/docs/concepts/configuration/secret/#secret-types

named secret-basic-auth as environment variables into the
container named backend.

Example 19-10. Injecting Secret key-value pairs into the container

apiVersion: vl
kind: Pod
metadata:
name: backend
spec:
containers:
- image: bmuschko/web-app:1.0.1
name: backend
envFrom:
- secretRef:
name: secret-basic-auth

Inspecting the environment variables in the container reveals that
the Secret values do not have to be decoded. That's something
Kubernetes does automatically. Therefore, the running application
doesn’t need to implement custom logic to decode the value. Note
that Kubernetes does not verify or normalize the typical nhaming
conventions of environment variables, as you can see in the
following output:

$ kubectl exec backend -- env

username=bmuschko
password=secret

Remapping environment variable keys

Sometimes, key-value pairs stored in a Secret do not conform to
typical naming conventions for environment variables or can't be
changed without impacting running services. You can redefine the
keys used to inject an environment variable into a Pod with the
spec.containers[].env[].valueFrom attribute. Example 19-

11 turns the key username into USER and the key password into
PWD.

Example 19-11. Remapping environment variable keys for Secret
entries

apiVersion: vl
kind: Pod
metadata:
name: backend
spec:
containers:
- image: bmuschko/web-app:1.0.1
name: backend
env:
- name: USER
valueFrom:
secretKeyRef:
name: secret-basic-auth
key: username
- name: PWD
valueFrom:
secretKeyRef:
name: secret-basic-auth
key: password

The resulting environment variables available to the container now
follow the typical conventions for environment variables, and we
changed how their are consumed by the application code:

$ kubectl exec backend -- env

USER=bmuschko
PWD=secret

The same mechanism of reassigning environment variables works
for ConfigMaps. You'd use the attribute
spec.containers([] .env([].valueFrom.configMapRef

instead.

Mounting a Secret as a Volume

To demonstrate mounting a Secret as a volume, we'll create a new
Secret of type kubernetes.io/ssh-auth. This Secret type
captures the value of an SSH private key that you can view using
the command cat ~/.ssh/id rsa. To process the SSH private
key file with the create secret command, it needs to be
available as a file with the name ssh-privatekey:

$ cp ~/.ssh/id_rsa ssh-privatekey
$ kubectl create secret generic secret-ssh-auth --from-
file=ssh-privatekey \
--type=kubernetes.io/ssh-auth
secret/secret-ssh-auth created

Mounting the Secret as a volume follows the two-step approach:
define the volume first and then reference it as a mount path for
one or many containers. The volume type is called secret as used

in Example 19-12.
Example 19-12. Mounting a Secret as a volume

apiVersion: vl
kind: Pod
metadata:

name: backend

spec:

containers:

- image: bmuschko/web-app:1.0.1
name: backend
volumeMounts:

- name: ssh-volume
mountPath: /var/app

readOnly: true 1]
volumes:
- name: ssh-volume
secret:

secretName: secret-ssh-auth E;

L1

Files provided by the Secret mounted as volume cannot be
modified.

® Note that the attribute secretName that points to the Secret
name is not the same as for the ConfigMap (which is name).

You will find the file named ssh-privatekey in the mount path

/var/app. To verify, open an interactive shell and render the file
contents. The contents of the file are not Base64-encoded:

$ kubectl exec -it backend -- /bin/sh
1s -1 /var/app

ssh-privatekey

cat /var/app/ssh-privatekey

Proc-Type: 4,ENCRYPTED
DEK-Info: AES-128-CBC,8734C9153079F2E8497C8075289EBBF1

Summary

Application runtime behavior can be controlled either by injecting
configuration data as environment variables or by mounting a
volume to a path. In Kubernetes, this configuration data is
represented by the API resources ConfigMap and Secret in the form
of key-value pairs. A ConfigMap is meant for plain-text data, and a
Secret encodes the values in Base64 to obfuscate the values.
Secrets are a better fit for sensitive information like credentials and
SSH private keys.

Exam Essentials

Practice creating ConfigMap objects with the imperative and
declarative approach

The quickest ways to create those objects are the imperative
kubectl create configmap commands. Understand how to
provide the data with the help of different command line flags.
The ConfigMap specifies plain-text key-value pairs in the data
section of YAML manifest.

Practice creating Secret objects with the imperative and declarative
approach

Creating a Secret using the imperative command kubectl
create secret does not require you to Base64-encode the
provided values. kubectl performs the encoding operation
automatically. The declarative approach requires the Secret
YAML manifest to specify a Base64-encoded value with the data
section. You can use the stringData convenience attribute in
place of the data attribute if you prefer providing a plain-text
value. The live object will use a Base64-encoded value.

Functionally, there’s no difference at runtime between the use of
data and stringData.

Understand the purpose of specialized Secret types

Secrets offer specialized types, e.g., kubernetes.io/basic-
auth Or kubernetes.io/service-account-token, to

represent data for specific use cases. Read up on the different
types in the Kubernetes documentation and understand their
purpose.

Know how to inspect ConfigMap and Secret data

The exam may confront you with existing ConfigMap and Secret
objects. You need to understand how to use the kubectl get

or the kubectl describe command to inspect the data of

those objects. The live object of a Secret will always represent
the value in a Base64-encoded format.

Exercise the consumption of ConfigMaps and Secrets in Pods

The primary use case for ConfigMaps and Secrets is the
consumption of the data from a Pod. Pods can inject
configuration data into a container as environment variables or
mount the configuration data as Volumes. For the exam, you
need to be familiar with both consumption methods.

Sample Exercises
Solutions to these exercises are available in Appendix A.

1. In this exercise, you will first create a ConfigMap from a
YAML configuration file as a source. Later, you'll create a
Pod, consume the ConfigMap as Volume, and inspect the
key-value pairs as files.

Navigate to the directory app-a/ch19/configmap of the
checked-out GitHub repository brmuschko/ckad-study-guide.
Inspect the YAML configuration file named application.yaml.

Create a new ConfigMap named app-config from that file.

Create a Pod named backend that consumes the

ConfigMap as Volume at the mount path /etc/config. The
container runs the image nginx:1.23.4-alpine.

Shell into the Pod and inspect the file at the mounted
Volume path.

2. You will first create a Secret from literal values in this
exercise. Next, you'll create a Pod and consume the Secret
as environment variables. Finally, you'll print out its values
from within the container.

Create a new Secret named db-credentials with the
key/value pair db-password=passwd.

https://github.com/bmuschko/ckad-study-guide

Create a Pod named backend that uses the Secret as an
environment variable named DB PASSWORD and runs the
container with the image nginx:1.23.4-alpine.

Shell into the Pod and print out the created environment
variables. You should be able to find the DB PASSWORD

variable.

INTERACTIVE EXAM PRACTICE

Get more hands-on training and test your CKAD exam readiness
by working through our playlist of interactive CKAD labs. Each
step of the lab must be completed correctly before you can
move to the next step. If you get stuck, you can view the
solution and learn how to complete the step.

The following labs cover material from this chapter:

e Creating a ConfigMap and Consuming It as Environment
Variables

¢ Creating a ConfigMap and Consuming It as Volume

e Creating a Secret and Consuming It as Environment
Variables

e Creating a Secret and Consuming It as Volume

https://learning.oreilly.com/playlists/2e9fe6dc-2a05-47fe-ae0a-34d6485287cc/
https://learning.oreilly.com/interactive-lab/creating-a-configmap/9781098164218/
https://learning.oreilly.com/interactive-lab/creating-a-configmap/9781098164218/
https://learning.oreilly.com/interactive-lab/creating-a-configmap/9781098164225/
https://learning.oreilly.com/interactive-lab/creating-a-secret/9781098164232/
https://learning.oreilly.com/interactive-lab/creating-a-secret/9781098164232/
https://learning.oreilly.com/interactive-lab/creating-a-secret/9781098164256/

Chapter 20. Security Contexts

Running a Pod in Kubernetes without implementing more restrictive
security measures can pose a security risk. Without these measures,
an attacker can potentially gain access to the host system or
perform malicious activities, such as accessing files containing
sensitive data. A security context defines privilege and access
control settings for containers as part of a Pod specification. The
following list provides some examples for security-related
parameters:

e The user ID that should be used to run the Pod and/or
container

e The group ID that should be used for filesystem access

e Granting a running process inside the container some
privileges of the root user but not all of them

This chapter will give you an overview of defining security contexts
and seeing their runtime effects in practice. Given the wide range of
security settings, we won't be able to discuss all of them. You will
find additional use cases and configuration options in the
Kubernetes documentation.

COVERAGE OF CURRICULUM OBJECTIVES
This chapter addresses the following curriculum objective:

¢ Understand SecurityContext

https://kubernetes.io/docs/tasks/configure-pod-container/security-context/

Working with Security Contexts

The security context is not a Kubernetes primitive. It is modeled as
a set of attributes under the directive securityContext within
the Pod specification. Security settings defined on the Pod level
apply to all containers running in the Pod. When applied to a single
container, it will have no effects on other containers running in the
same Pod.

e You can apply security settings to all containers of a Pod
with the attribute spec.securityContext.

e For individual containers, you can apply security settings
with the attribute

spec.containers([] .securityContext.

Figure 20-1 shows the use of security settings runAsUser and
fsGroup applied on the Pod and container level. A later section will
describe the runtime effect of those settings by example.

Pod-level security context Container-level security context
pod.yaml pod.yaml
I B r 3
apiVersion: vl apiVersion: vl
kind: Pod kind: Pod
metadata: metadata:
name: sample-pod name: sample-pod
spec: spec:
securityContext: containers:
runAsUser: 1000 Applies - name: nginx <
fsGroup: 4000 security image: nginx:1.25.3 Applies
containers: settings securityContext: security
- name: nginx < toall runAsUser: 1000 settings to
image: nginx:1.25.3 containers - name: bu5ybox{ fndr'vhlriuaﬂ
- name: busybox { image: busybox:1.36.1 FREACS
image: busybox:1.36.1 securityContext:
L ’ runAsUser: 4000
\ .

Figure 20-1. Applying security settings on the Pod and container level

Some security context attributes are available on the Pod and the
container level. If you define the same security context on both
levels then the value assigned on the container level will take
precedence. Figure 20-2 shows an override of a container-level
security context value for the container named nginx. For that

container, the value 2000 will apply.

Pod and container security context

i 3

pod.yaml

apiVersion: vl

kind: Pod

metadata:
name: sample-pod

spec:

petetes S@cUrityContext:
runAsUser: 1000

containers:

- name: nginx 4
image: nginx: 1.25.3
securityContext:

runAsUser: 2000

== - name: busybox

image: busybox: 1.36.1

e >
\ r

Figure 20-2. Overriding a security context attribute on the container level

Container-level
settings apply

Pod-level
settings apply

For more information on the specifics of Pod-level security
attributes, see the PodSecurityContext API. Container-level security
attributes can be found in the SecurityContext API.

https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.28/#podsecuritycontext-v1-core
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.28/#securitycontext-v1-core

APPLYING A SECURITY CONTEXT TO A
DEPLOYMENT’S POD TEMPLATE

The definition of a Deployment applies security context attributes in the
same way as a vanilla Pod definition. You'd use the same Pod- and
container-level attributes in the Pod template section of the
Deployment.

Defining security-related parameters with the security context is
always limited to a container. The Kubernetes ecosystem offers
other ways to improve or govern security for applications, some of
which directly tie in with the security context concept. For example,
you can use the Pod Security Admission to enforce desired security
settings for all Pods within a namespace.

Defining a Security Context on the Pod Level

Container images can define security-relevant instructions to reduce
the attack vector for the running container. By default, containers
run with root privileges, which provide supreme access to all
processes and the container’s filesystem. As a best practice, you
should craft the corresponding Dockerfile in a such a way that
the container will be run with a user ID other than 0 with the help
of the USER instruction. There are many other ways to secure a
container on the container level, but we won't go into any more
detail here. Refer to Container Security by Liz Rice (O'Reilly) for
more information.

To make the functionality of a security-context more transparent,
let’s look at a use case. Some images, like the one for the open
source reverse-proxy server NGINX, must be run with the root user.
Say you wanted to enforce that containers cannot be run as a root
user as a sensible security strategy. The YAML manifest shown in
Example 20-1 defines the security configuration on the Pod level as

https://kubernetes.io/docs/concepts/security/pod-security-admission/
https://learning.oreilly.com/library/view/container-security/9781492056690/
https://hub.docker.com/_/nginx

a direct child of the spec attribute. If you were to run other
containers inside the Pod, then the runAsNonRoot setting apply to
them as well.

Example 20-1. Setting a security context on the container level for
the NGINX image

apiVersion: vl
kind: Pod
metadata:
name: nginx-non-root
spec:
securityContext:
runAsNonRoot: true L1
containers:
- image: nginx:1.25.3
name: secured-container

L1 Enforces the use of a non-root user to run the container.

Creating the Pod from this manifest will work as expected:

$ kubectl apply -f container-nginx-root-user.yaml
pod/nginx-non-root created

Unfortunately, the image is not compatible. The container fails

during the startup process with the status
CreateContainerConfigError:

$ kubectl get pod nginx-non-root

NAME READY STATUS

RESTARTS AGE

nginx-non-root 0/1 CreateContainerConfigError 0
7s

You will find the root cause for this issue in the event logs:

$ kubectl describe pod nginx-non-root

Events:

Type Reason Age From

Message

Normal Scheduled <unknown> default-scheduler

Successfully assigned \
default/non-root to \

minikube
Normal Pulling 18s kubelet, minikube
Pulling image \

"nginx:1.25.3"
Normal Pulled 14s kubelet, minikube
Successfully pulled \

image "nginx:1.25.3"
Warning Failed Os (x3 over 14s) kubelet, minikube
Error: container has \

runAsNonRoot and image \

will run as root

There are alternative NGINX images available that are not required
to run with the root user. One example is bitnami/nginx. Upon a
closer look at the Dockerfile that produced the image, you will
see that the container runs with the user ID 1001. Example 20-2
shows the use of the Bitnami image.

Example 20-2. Setting a security context on the container level for
the Bitnami NGIX image

apiVersion: vl
kind: Pod
metadata:
name: bitnami-ngnix-non-root

https://hub.docker.com/r/bitnami/nginx

spec:
securityContext:
runAsNonRoot: true
containers:
- image: bitnami/nginx:1.25.3
name: secured-container

Starting the container with the runAsNonRoot directive will work
just fine:

$ kubectl apply -f container-bitnami-nginx-root-user.yaml
pod/bitnami-ngnix-non-root created

The container will indicate the “Running” status:

$ kubectl get pod nginx-non-root
NAME READY STATUS RESTARTS AGE
bitnami-ngnix-non-root 1/1 Running 0 s

The container could be executed with the user ID set by the
container image that you easily surface by running the following
command inside the container:

$ kubectl exec -it bitnami-ngnix-non-root -- id -u
1001

The output of the command renders the user ID 1001, a non-root
user ID.

Defining a Security Context on the Container
Level
You can impose many other security restrictions on a container

running in Kubernetes. For example, you may want to set the
access control for files and directories. Say that, whenever a file is

created on the filesystem, the owner of the file should be the
arbitrary group ID 3500. The YAML manifest shown in Example 20-3
assigns the security context settings on the container level.

Example 20-3. Setting a security context on the container level

apiVersion: vl
kind: Pod
metadata:

name: fs-secured

spec:

containers:

- image: nginx:1.25.3
name: secured-container
securityContext:

fsGroup: 3500
volumeMounts:
- name: data-volume
mountPath: /data/app
volumes:

- name: data-volume

emptyDir: {}

Create the Pod object from the manifest file and inspect the status.
The Pod should transition into the “Running” status:

$ kubectl apply -f pod-file-system-group.yaml
pod/fs-secured created

$ kubectl get pods

NAME READY STATUS RESTARTS AGE
fs-secured 1/1 Running 0 24s

You can easily verify the effect of setting the filesystem group ID.
Open an interactive shell to the container, navigate to the mounted
volume, and create a new file:

$ kubectl exec -it fs-secured -- /bin/sh
cd /data/app
touch logs.txt

1s -1
-rw-r—--r—-—- 1 root 3500 0 Jul 9 01:41 logs.txt

Inspecting the ownership of the file will show the group ID 3500
automatically assigned to it.

Defining a Security Context on the Pod and
Container Level
Finally, let's demonstrate the override behavior on the container

level if you already defined the same attribute on the Pod level.
Example 20-4 shows the definition of the runAsNonRoot on both

levels.

Example 20-4. Setting a security context on the Pod and container
level

apiVersion: vl
kind: Pod
metadata:
name: non-root-user-override
spec:
securityContext:
runAsNonRoot: true {l
containers:
- image: nginx:1.25.3
name: root
securityContext:
runAsNonRoot: false o
- image: bitnami/nginx:1.25.3
name: non-root

L1 Assign the default value true to all containers of the Pod.

O The value ralse will take precedence even though true has
been assigned on the Pod level.

Create the Pod object from the manifest file:

$ kubectl apply -f pod-non-root-user-override.yaml
pod/non-root-user-override created

Open an interactive shell to the container and execute the
command for rendering the user ID that runs the container:

$ kubectl exec -it -c root non-root-user-override -- id -u
0

$ kubectl exec -it -c non-root non-root-user-override -- id
-u

1001

The container root returns the value 0, which is the user ID for the
root user. The container non-root returns the user ID 1001, the ID
set by the container image itself.

Summary

It's important to enforce security best practices for Pods. This
chapter covered the security context concept. With the help of a
security context, you can control container permissions to access
objects such as files, run a container in privileged and unprivileged
mode, specify Linux capabilities, and much more.

The security context can be declared on a Pod level and container
level. The Pod level applies the provided security settings to all
containers in the Pod. The container level applies only to individual
containers. The container-level security settings override the Pod-
level security settings if the same attribute value is specified on
both levels.

Exam Essentials

Experiment with options available to security contexts

The Kubernetes user documentation and API documentation is a
good starting point for exploring security context options. You
will find that there’s an overlap in the options available via the
PodSecurityContext and a SecurityContext APIs. While working
through the different use cases solved by a security context
option, verify their outcome by running an operation that should
either be permitted or disallowed.

Understand the implications of defining a security context on the
Pod and container level

You can define a security context on the Pod level with
spec.securityContext, and on the container level with
spec.containers[].securityContext. If defined on the
Pod level, settings can be overridden by specifying them with a
different value on the container level. The exam may confront
you with existing Pods that set a security context on both levels.
Understand which value will take effect.

Sample Exercises
Solutions to these exercises are available in Appendix A.

1. Define a Pod named busybox-security-context that
uses the image busybox:1.36.1 for a single container
running the command sh -c sleep 1h.

Add an ephemeral Volume of type emptyDir. Mount the
Volume to the container at /data/test.

Define a security context that runs the container with user
ID 1000, with group ID 3000, and the filesystem group ID
2000. Ensure that the container should not allow privilege
escalation.

Create the Pod object and ensure that it transitions into the
“Running” status.

Open a shell to the running container and create a new file
named /ogs.txt in the directory /data/test. What's the file’s
user ID and group ID?

. Create a Deployment named nginx in the hamespace h20
with the 3 replicas. The Pod template should use the the
image nginx:1.25.3-alpine.

Using the security context, assign the drop Linux capability
for that Pod template. The attribute for the drop
capabilities should use the value al1l.

Create the Deployment object and inspect its replicas. Does
NGINX work as expected?

INTERACTIVE EXAM PRACTICE

Get more hands-on training and test your CKAD exam readiness
by working through our playlist of interactive CKAD labs. Each
step of the lab must be completed correctly before you can
move to the next step. If you get stuck, you can view the
solution and learn how to complete the step.

The following lab covers material from this chapter:

o Defining a Security Context for a Container

https://learning.oreilly.com/playlists/2e9fe6dc-2a05-47fe-ae0a-34d6485287cc/
https://learning.oreilly.com/interactive-lab/defining-a-security/9781098164263/

Part VI. Services and
Networking

The last domain in the exam is named Services and Networking. It
covers the Kubernetes primitives important for establishing and
restricting communication between microservices running in the
cluster, or outside consumers. More specifically, this domain covers
the primitives Services and Ingresses, as well as network policies.

The following chapters cover these concepts:

e Chapter 21 introduces the Services resource type. You will
learn how to expose a microservice inside of the cluster to
other portions of the system. Services also allows for
making an application accessible to end users outside of the
cluster. This chapter doesn't stop there. It also provides
techniques for troubleshooting misconfigured Service
objects.

e Chapter 22 starts by explaining why a Service is often not
good enough for exposing an application to outside
consumers. The Ingress primitive can expose a load-
balanced endpoint to consumers accessible via HTTP(S).

e Chapter 23 explains the need for network policies from a
security perspective. By default, Kubernetes’ Pod-to-Pod
communication is unrestricted; however, you want to
implement the principle of least privilege to ensure that only
those Pods can talk to other Pods required by your
architectural needs. Limiting network communication
between Pods will decrease the potential attack surface.

Chapter 21. Services

In “Using a Pod’s IP Address for Network Communication”, we
learned that you can communicate with a Pod by its IP address. A
restart of a Pod will automatically assign a new virtual cluster IP
address. Therefore, other parts of your system cannot rely on the
Pod’s IP address if they need to talk to one another.

Building a microservices architecture, where each of the
components runs in its own Pod with the need to communicate with
each other through a stable network interface, requires a different
primitive, the Service.

The Service implements an abstraction layer on top of Pods,
assigning a fixed virtual IP fronting all the Pods with matching
labels, and that virtual IP is called Cluster IP. This chapter will focus
on the ins and outs of Services, and most importantly the exposure
of Pods inside and outside of the cluster based on their declared

type.

Accessing Services of type NodePort and LoadBalancer in minikube

requires special handling. Refer to the documentation for detailed
instructions.

https://minikube.sigs.k8s.io/docs/handbook/accessing/#getting-the-nodeport-using-the-service-command

COVERAGE OF CURRICULUM OBIJECTIVES
This chapter addresses the following curriculum objective:

¢ Provide and troubleshoot access to applications via
Services

Working with Services

In a nutshell, Services provide discoverable names and load
balancing to a set of Pods. The Service remains agnostic from IP
addresses with the help of the Kubernetes DNS control-plane
component, an aspect we'll discuss in “Discovering the Service by
DNS lookup”. Similar to a Deployment, the Service determines the
Pods it works on with the help of label selection.

Figure 21-1 illustrates the functionality. Pod 1 receives traffic as its
assigned label matches with the label selection defined in the
Service. Pod 2 does not receive traffic as it defines a nonmatching
label.

Incoming traffic

Service

spec.selector:
tier: frontend

“Forward to pods by label selection”

Pod1 Pod 2) " , |) -
metadata.labels: metadata.labels: Pods with matching labels receive traffic
tier: frontend tier: backend

Figure 21-1. Service traffic routing based on label selection

Note that it is possible to create a Service without a label selector
to support other scenarios. Refer to the relevant Kubernetes
documentation for more information.

SERVICES AND DEPLOYMENTS

Services are a complementary concept to Deployments. Services route
network traffic to a set of Pods, and Deployments manage a set of
Pods, the replicas. While you can use both concepts in isolation, it is
recommended to use Deployments and Services together. The primary
reason is the ability to scale the number of replicas and at the same
time being able to expose an endpoint to funnel network traffic to those
Pods.

Service Types

Every Service defines a type. The type is responsible for exposing
the Service inside and/or outside of the cluster. Table 21-1 lists the
Service types relevant to the exam.

https://kubernetes.io/docs/concepts/services-networking/service/#services-without-selectors
https://kubernetes.io/docs/concepts/services-networking/service/#services-without-selectors

Table 21-1. Service types

Type Description

ClusterIP Exposes the Service on a cluster-internal IP.
Reachable only from within the cluster.
Kubernetes uses a round-robin algorithm to
distribute traffic evenly among the targeted Pods.

NodePort Exposes the Service on each node’s IP address at
a static port. Accessible from outside of the
cluster. The Service type does not provide any
load balancing across multiple nodes.

Load Balancer EXposes the Service externally using a cloud
provider’s load balancer.

Other Service types, e.g. ExternalName or the headless Service,

can be defined; however, we'll not address them in this book as
they are not within the scope of the exam. For more information,
refer to the Kubernetes documentation.

Service type inheritance

The Service types just mentioned, ClusterIP, NodePort, and
LoadBalancer, make a Service accessible with different levels of
exposure. It's imperative to understand that those Service types
also build on top of each other. Figure 21-2 shows the relationship
between different Service types.

https://kubernetes.io/docs/concepts/services-networking/service/

LoadBalancer
Accessible from outside of the cluster
using an external load balancer

NodePort

Accessible from outside of the cluster

Only reachable from within the cluster

Figure 21-2. Network accessibility characteristics for Service types

For example, creating a Service of type NodePort means that the
Service will bear the network accessibility characteristics of a
ClusterIP Service type as well. In turn, @a NodePort Service is
accessible from within and from outside of the cluster. This chapter
demonstrates each Service type by example. You will find
references to the inherited exposure behavior in the following
sections.

When to use which Service type?

When building a microservices architecture, the question arises
which Service type to choose to implement certain use cases. We
briefly discuss this question here.

The clusterIP Service type is suitable for use cases that call for
exposing a microservice to other Pods within the cluster. Say you
have a frontend microservice that needs to connect to one or many
backend microservices. To properly implement the scenario, you'd
stand up a clusterIP Service that routes traffic to the backend
Pods. The frontend Pods would then talk to that Service.

The NodePort Service type is often mentioned as a way to expose
an application to consumers external to the cluster. Consumers will
have to know the node’s IP address and the statically assigned port
to connect to the Service. That's problematic for multiple reasons.
First, the node port is usually allocated dynamically. Therefore, you
won't typically know it in advance. Second, providing the node’s IP
address will funnel the network traffic only through a single node so
you will not have load balancing at your disposal. Finally, by
opening a publicly available node port, you are at risk of increasing
the attack surface of your cluster. For all these reasons, a
NodePort Service is primarily used for development or testing
purposes, and less so in production environments.

The LoadBalancer Service type makes the application available
to outside consumers through an external IP address provided by an
external load balancer. Network traffic will be distributed across
multiple nodes in the cluster. This solution works great for
production environments, but keep in mind that every provisioned
load balancer will accrue costs and can lead to an expensive
infrastructure bill. A more cost-effective solution is the use of an
Ingress, discussed in Chapter 22.

Port Mapping

A Service uses label selection to determine the set of Pods to
forward traffic to. Successful routing of network traffic depends on
the port mapping.

Figure 21-3 shows a Service that accepts incoming traffic on port
80. That's the port defined by the attribute spec.ports[].port
in the manifest. Any incoming traffic is then routed toward the
target port, represented by spec.ports[].targetPort.

Incoming traffic

Service

spec.ports[].port

spec.ports[].targetPort

8080 8080 3080 spec.containers[].ports[].containerPort
Pod Pod Pod

Figure 21-3. Service port mapping

The target port is the same port as defined by the container with
spec.containers[] .ports[].containerPort running inside
the label-selected Pod. In this example, that’s port 8080. The
selected Pod(s) will receive traffic only if the Service's target port
and the container port match.

Creating Services

You can create Services in a variety of ways, some of which are
more appropriate for the exam as they provide a fast turnaround.
Let’s discuss the imperative approach first.

A Service needs to select a Pod by a matching label. The Pod
created by the following run command is called echoserver,
which exposes the application on the container port 8080.
Internally, it automatically assigns the label key-value pair
run=echoserver to the object:

$ kubectl run echoserver --image=k8s.gcr.io/echoserver:1.10
--restart=Never \

--port=8080
pod/echoserver created

You can create a Service object using the create service
command. Make sure to provide the Service type as a mandatory
argument. Here we are using the type clusterip. The command-
line option --tcp specifies the port mapping. Port 80 exposes the

Service to incoming network traffic. Port 8080 targets the container
port exposed by the Pod:

$ kubectl create service clusterip echoserver --tcp=80:8080
service/echoserver created

An even faster workflow of creating a Pod and Service together can
be achieved with a run command and the --expose option. The
following command creates both objects in one swoop while
establishing the proper label selection. This command-line option is
a good choice during the exam to save time if you are asked to
create a Pod and a Service:

$ kubectl run echoserver --image=k8s.gcr.io/echoserver:1.10
--restart=Never \
--port=8080 --expose
service/echoserver created
pod/echoserver created

It's actually more common to use a Deployment and Service that
work together. The following set of commands creates a
Deployment with five replicas and then uses the expose
deployment command to instantiate the Service object. The port
mapping can be provided with the options --port and --target-
port.

$ kubectl create deployment echoserver --
image=k8s.gcr.io/echoserver:1.10 \
--replicas=5

deployment.apps/echoserver created
$ kubectl expose deployment echoserver --port=80 --target-
port=8080

service/echoserver exposed

Example 21-1 shows the representation of a Service in the form of a
YAML manifest. The Service declares the key-value
app=echoserver for label selection and defines the port mapping

from 80 to 8080.
Example 21-1. A Service defined by a YAML manifest

apiVersion: vl
kind: Service
metadata:
name: echoserver
spec:
selector:
run: echoserver {l
ports: e
- port: 80
targetPort: 8080

@ sclects all Pods with the given label assignment.

O Defines incoming and outgoing ports of the Service. The
outgoing port needs to match the container port of the selected
Pods.

The Service YAML manifest shown does not assign an explicit type.
A Service object that does not specify a value for the attribute
spec. type Will default to cClusterIP upon creation.

Listing Services

Listing all Services presents a table view that includes the Service
type, the cluster IP address, an optional external IP address, and
the incoming port(s). Here, you can see the output for the
echoserver Pod we created earlier:

$ kubectl get services

NAME TYPE CLUSTER-IP EXTERNAL-IP
PORT (S) AGE

echoserver ClusterIP 10.109.241.68 <none>
80/TCP 6s

Kubernetes assigns a cluster IP address given that the Service type
is ClusterIP. An external IP address is not available for this

Service type. The Service is accessible on port 80.

Rendering Service Details

You may want to drill into the details of a Service for
troubleshooting purposes. That might be the case if the incoming
traffic to a Service isn't routed properly to the set of Pods you
expect to handle the request.

The describe service command renders valuable information

about the configuration of a Service. The configuration relevant to
troubleshooting a Service is the value of the fields Selector, IP, Port,
TargetPort, and Endpoints. A common source of misconfiguration is
incorrect label selection and port assignment. Make sure that the
selected labels are actually available in the Pods intended to route
traffic to and that the target port of the Service matches the
exposed container port of the Pods.

Take a look at the output of the following describe command. It's

the details for a Service created for five Pods controlled by a
Deployment. The Endpoints attribute lists a range of endpoints, one
for each of the Pods:

$ kubectl describe service echoserver

Name: echoserver
Namespace: default
Labels: app=echoserver
Annotations: <none>
Selector: app=echoserver

Type: ClusterIP

IP Family Policy: SingleStack

IP Families: IPv4

IP: 10.109.241.68
IPs: 10.109.241.68
Port: <unset> 80/TCP
TargetPort: 8080/TCP
Endpoints:

172.17.0.4:8080,172.17.0.5:8080,172.17.0.7:8080 + 2 more...
Session Affinity: None
Events: <none>

An endpoint is a resolvable network endpoint, which serves as the
virtual IP address and container port of a Pod. If a Service does not
render any endpoints then you are likely dealing with a
misconfiguration.

Kubernetes represents endpoints by a dedicated primitive that you
can query for. The Endpoint object is created at the same time you
instantiate the Service object. The following command lists the
endpoints for the Service named echoserver:

$ kubectl get endpoints echoserver
NAME ENDPOINTS

AGE

echoserver
172.17.0.4:8080,172.17.0.5:8080,172.17.0.7:8080 + 2 more...
8mb5s

The details of the endpoints give away the full list of IP addresses
and ports combinations:

$ kubectl describe endpoints echoserver

Name: echoserver

Namespace: default

Labels: app=echoserver

Annotations: endpoints.kubernetes.io/last-change-trigger-
time: \

2021-11-15T19:09:047
Subsets:
Addresses:

172.17.0.4,172.17.0.5,172.17.0.7,172.17.0.8,172.17.0.9
NotReadyAddresses: <none>
Ports:
Name Port Protocol

<unset> 8080 TCP

Events: <none>

The ClusterIP Service Type

ClusterIP is the default Service type. It exposes the Service on a
cluster-internal IP address. That means the Service can be accessed
only from a Pod running inside of the cluster and not from outside of
the cluster (e.g., if you were to make a call to the Service from your
local machine). Figure 21-4 illustrates the accessibility of a Service
with type ClusterIP.

Clients

Cluster IP
Service

) (o))

Kubernetes cluster |

Figure 21-4. Accessibility of a Service with the type ClusterIP

Creating and Inspecting the Service

We will create a Pod and a corresponding Service to demonstrate
the runtime behavior of the cClusterIP Service type. The Pod

named echoserver exposes the container port 8080 and specifies
the label app=echoserver. The Service defines port 5005 for

incoming traffic, which is forwarded to outgoing port 8080. The
label selection matches the Pod we set up:

$ kubectl run echoserver --image=k8s.gcr.io/echoserver:1.10
--restart=Never \

--port=8080 -1 app=echoserver
pod/echoserver created
$ kubectl create service clusterip echoserver --
tcp=5005:8080
service/echoserver created

Inspecting the live object with the command kubectl get
service echoserver -o yaml Will the render the assigned

cluster IP address. Example 21-2 shows a abbreviated version of the
Service runtime representation.

Example 21-2. A ClusterIP Service object at runtime
apiVersion: vl
kind: Service
metadata:
name: echoserver
spec:
type: ClusterIP (1]
clusterIP: 10.96.254.0 @
selector:
app: echoserver
ports:
- port: 5005
targetPort: 8080
protocol: TCP

@ The Service type set to ClusterIP.

® The cluster IP address assigned to the Service at runtime.

The cluster IP address that makes the Service available in this
example is 10.96.254. 0. Listing the Service object is an

alternative way to render the information we need to make a call to
the Service:

$ kubectl get service echoserver
NAME TYPE CLUSTER-IP EXTERNAL-TIP

PORT (S) AGE
echoserver ClusterIP 10.96.254.0 <none>
5005/TCP 8s

Next up, we'll try to make a call to the Service.

Accessing the Service

You can access the Service using a combination of the cluster IP
address and the incoming port: 10.96.254.0:5005. Making a request
from any other machine residing outside of the cluster will fail, as
illustrated by the following wget command:

$ wget 10.96.254.0:5005 --timeout=5 --tries=1l

--2021-11-15 15:45:36-- http://10.96.254.0:5005/
Connecting to 10.96.254.0:5005...]failed: Operation timed
out.

Giving up.

Accessing the Service from a Pod from within the cluster properly
routes the request to the Pod matching the label selection:

$ kubectl run tmp --image=busybox:1.36.1 --restart=Never -
it --rm \

-- wget 10.96.254.0:5005
Connecting to 10.96.254.0:5005 (10.96.254.0:5005)
saving to 'index.html'
index.html 100%
|********************************| 408 O:OO:OO ETA
'index.html' saved
pod "tmp" deleted

Apart from using the cluster IP address and the port, you can also
discover a Service by DNS name and environment variables
available to containers.

Discovering the Service by DNS lookup

Kubernetes registers every Service by its name with the help of its
DNS service named CoreDNS. Internally, CoreDNS will store the
Service name as a hostname and maps it to the cluster IP address.
Accessing a Service by its DNS name instead of an IP address is
much more convenient and expressive when building microservice
architectures.

You can verify the correct service discovery by running a Pod in the
same namespace that makes a call to the Service by using its
hostname and incoming port:

$ kubectl run tmp --image=busybox:1.36.1 --restart=Never -
it --rm \

-- wget echoserver:5005
Connecting to echoserver:5005 (10.96.254.0:5005)
saving to 'index.html'
index.html 100%
|**k******************************| 408 O:OO:OO ETA
'index.html' saved
pod "tmp" deleted

It's not uncommon to make a call from a Pod to a Service that lives
in a different namespace. Referencing just the hostname of the
Service does not work across namespaces. You need to append the
namespace as well. The following makes a call from a Pod in the
other namespace to the Service in the default namespace:

$ kubectl run tmp --image=busybox:1.36.1 --restart=Never -
it --rm \

-n other -- wget echoserver.default:5005
Connecting to echoserver.default:5005 (10.96.254.0:5005)
saving to 'index.html'
index.html 100%

|**k*k*****************************| 408 O:OO:OO ETA

'index.html' saved
pod "tmp" deleted

The full hostname for a Service is
echoserver.default.svc.cluster.local. The string svc
describes the type of resource we are communicating with.
CoreDNS uses the default value cluster.local as a domain
name (which is configurable if you want to change it). You do not
have to spell out the full hostname when communicating with a
Service.

Discovering the Service by environment variables

You may find it easier to use the Service connection information
directly from the application running in a Pod. The kubelet makes
the cluster IP address and port for every active Service available as
environment variables. The naming convention for Service-related
environments variable are <SERVICE NAME> SERVICE HOST and

<SERVICE NAME> SERVICE PORT.

AVAILABILITY OF SERVICE ENVIRONMENT
VARIABLES

Make sure you create the Service before instantiating the Pod.
Otherwise, those environment variables won't be populated.

You can check on the actual key-value pairs by listing the
environment variables of the container, as follows:

$ kubectl exec -it echoserver -- env
ECHOSERVER_SERVICE_HOST=1O .96.254.0
ECHOSERVER_SERVICE_PORT=8080

The name of the Service, echoserver, does not include any
special characters. That’s why the conversion to the environment
variable key is easy; the Service name was simply upper-cased to
conform to environment variable naming conventions. Any special
characters (such as dashes) in the Service name will be replaced by
underscore characters. You need to make sure that the Service has
been created before starting a Pod if you want those environment
variables populated.

The NodePort Service Type

Declaring a Service with type NodePort exposes access through
the node’s IP address and can be resolved from outside of the
Kubernetes cluster. The node’s IP address can be reached in
combination with a port number in the range of 30000 and 32767
(also called the node port), assigned automatically upon the
creation of the Service. Figure 21-5 illustrates the routing of traffic
to Pods via a NodePort-type Service.

Clients

Service

Figure 21-5. Accessibility of a Service with the type NodePort

The node port is opened on every node in the cluster, and its value
is global and unique at the cluster-scope level. To avoid port
conflicts, it’s best to not define the exact node port and to let
Kubernetes find an available port.

Creating and Inspecting the Service

The next two commands create a Pod and a Service of type
NodePort. The only difference here is that nodeport is provided
instead of clusterip as a command-line option:

$ kubectl run echoserver --image=k8s.gcr.io/echoserver:1.10
--restart=Never \

--port=8080 -1 app=echoserver
pod/echoserver created

$ kubectl create service nodeport echoserver --
tcp=5005:8080

service/echoserver created

The runtime representation of the Service object is shown in
Example 21-3. It's important to point out that the node port will be
assigned automatically. Keep in mind NodePort (capital N) is the

Service type, whereas nodePort (lowercase n) is the key for the
value.

Example 21-3. A NodePort Service object at runtime
apiVersion: vl
kind: Service
metadata:
name: echoserver
spec:
type: NodePort (1]
clusterIP: 10.96.254.0
selector:
app: echoserver
ports:
- port: 5005
nodePort: 30158 (2]
targetPort: 8080
protocol: TCP

D The Service type set to NodePort.

O The statically-assigned node port that makes the Service
accessible from outside of the cluster.

Once the Service is created, you can list it. You will find that the

port representation contains the statically assigned port that makes
the Service accessible:

$ kubectl get service echoserver

NAME TYPE CLUSTER-IP EXTERNAL-IP
PORT (S) AGE
echoserver NodePort 10.101.184.152 <none>

5005:30158/TCP 5s

In this output, the node port is 30158 (identifiable by the separating
colon). The incoming port 5005 is still available for the purpose of
resolving the Service from within the cluster.

Accessing the Service

From within the cluster, you can still access the Service using the
cluster IP address and port number. This Service displays exactly
the same behavior as if it were of type ClusterIp:

$ kubectl run tmp --image=busybox:1.36.1 --restart=Never -
it --rm \

-- wget 10.101.184.152:5005
Connecting to 10.101.184.152:5005 (10.101.184.152:5005)
saving to 'index.html'
index.html 100%

|********************************| 414 O:OO:OO ETA

'index.html' saved
pod "tmp" deleted

From outside of the cluster, you need to use the IP address of any
worker node in the cluster and the statically assigned port. One way
to determine the worker node’s IP address is by rendering the node
details. Another option is to use the status.hostIP attribute
value of a Pod, which is the IP address of the worker node the Pod
runs on.

The node IP address here is 192.168.64.15. It can be used to call
the Service from outside of the cluster:

$ kubectl get nodes -o \

jsonpath='{ $.items[*].status.addresses[?
(Q.type=="InternalIP")].address }'
192.168.64.15
$ wget 192.168.64.15:30158
--2021-11-16 14:10:16-- http://192.168.64.15:30158/
Connecting to 192.168.64.15:30158... connected.
HTTP request sent, awaiting response... 200 OK
Length: unspecified [text/plain]
Saving to: ‘index.html’

The LoadBalancer Service Type

The last Service type to discuss in this book is the LoadBalancer.
This Service type provisions an external load balancer, primarily
available to Kubernetes cloud providers, which exposes a single IP
address to distribute incoming requests to the cluster nodes. The
implementation of the load balancing strategy (e.g., round robin) is
up to the cloud provider.

LOAD BALANCERS FOR ON-PREMISES
KUBERNETES CLUSTERS

Kubernetes does not offer a native load balancer solution for on-
premises clusters. Cloud providers are in charge of providing an
appropriate implementation. The MetalLB project aims to fill the gap.

Figure 21-6 shows an architectural overview of the LoadBalancer
Service type.

https://metallb.universe.tf/

Clients

Cloud provider

external load
balancer

Service

\ . r

Kubernetes cluster

Figure 21-6. Accessibility of a Service with the type LoadBalancer

As you can see from the illustration, the load balancer routes traffic
between different nodes, as long as the targeted Pods fulfill the

requested label selection.

Creating and Inspecting the Service

To create a Service as a load balancer, set the type to
LoadBalancer in the manifest or by using the create service

loadbalancer command:

$ kubectl run echoserver --image=k8s.gcr.io/echoserver:1.10
--restart=Never \
--port=8080 -1 app=echoserver
pod/echoserver created
$ kubectl create service loadbalancer echoserver --
tcp=5005:8080
service/echoserver created

The runtime characteristics of a LoadBalancer Service type look
similar to the ones provided by the NodePort Service type. The main
difference is that the external IP address column has a value, as
shown in Example 21-4.

Example 21-4. A LoadBalancer Service object at runtime
apiVersion: vl
kind: Service
metadata:
name: echoserver
spec:
type: LoadBalancer {l
clusterIP: 10.96.254.0
loadBalancer: 10.109.76.157 (2]
selector:
app: echoserver
ports:
- port: 5005
targetPort: 8080
nodePort: 30158
protocol: TCP

@ The Service type set to LoadBalancer.

® The external IP address assigned to the Service at runtime.

Listing the Service renders the external IP address, which is
10.109.76.157, as demonstrated by this command:

$ kubectl get service echoserver

NAME TYPE CLUSTER-IP EXTERNAL-IP
PORT (S) AGE

echoserver LoadBalancer 10.109.76.157 10.109.76.157
5005:30642/TCP 5s

Given that the external load balancer needs to be provisioned by
the cloud provider, it may take a little time until the external IP
address becomes available.

Accessing the Service

To call the Service from outside of the cluster, use the external IP
address and its incoming port:

$ wget 10.109.76.157:5005

--2021-11-17 11:30:44-- http://10.109.76.157:5005/
Connecting to 10.109.76.157:5005... connected.

HTTP request sent, awaiting response... 200 OK
Length: unspecified [text/plain]

Saving to: ‘index.html’

As discussed, a LoadBalancer Service is also accessible in the

same way as you would access a ClusterIP Or NodePort Service.

Summary

Kubernetes assigns a unique IP address for every Pod in the cluster.
Pods can communicate with each other using that IP address;

however, you cannot rely on the IP address to be stable over time.
That's why Kubernetes provides the Service resource type.

A Service forwards network traffic to a set of Pods based on label
selection and port mappings. Every Service needs to assign a type
that determines how the Service becomes accessible from within or
outside of the cluster. The Service types relevant to the exam are
ClusterIP, NodePort, and LoadBalancer. CoreDNS, the DNS
server for Kubernetes, allows Pods to access the Service by
hostname from the same and other namespaces.

Exam Essentials

Understand the purpose of a Service

Pod-to-Pod communication via their IP addresses doesn't
guarantee a stable network interface over time. A restart of the
Pod will lease a new virtual IP address. The purpose of a Service
is to provide that stable network interface so that you can
operate complex microservice architecture that runs in a
Kubernetes cluster. In most cases, Pods call a Service by
hostname. The hosthame is provided by the DNS server named
CoreDNS running as a Pod in the kube-system namespace.

Practice how to access a Service for each type

The exam expects you to understand the differences between
the Service types ClusterIP, NodePort, and LoadBalancer.
Depending on the assigned type, a Service becomes accessible
from inside the cluster or from outside the cluster.

Work through Service troubleshooting scenarios

It's easy to get the configuration of a Service wrong. Any
misconfiguration won't allow network traffic to reach the set of
Pod it was intended for. Common misconfigurations include

incorrect label selection and port assignments. The kubectl
get endpoints command will give you an idea which Pods a
Service can route traffic to.

Sample Exercises

Solutions to these exercises are available in Appendix A.

1. Create a Service named myapp of type ClusterIP that
exposes port 80 and maps to the target port 80.

Create a Deployment named myapp that creates 1 replica
running the image nginx:1.23.4-alpine. Expose the
container port 80. Scale the Deployment to 2 replicas.

Create a temporary Pod using the image busybox:1.36.1
and execute a wget command against the IP of the service.

Change the service type to NodePort so that the Pods can
be reached from outside of the cluster. Execute a wget
command against the service from outside of the cluster.

2. Kate is a developer in charge of implementing a web-based
application stack. She is not familiar with Kubernetes, and
asked if you could help out. The relevant objects have been
created; however, connection to the application cannot be
established from within the cluster. Help Kate with fixing the
configuration of her YAML manifests.

Navigate to the directory app-a/ch21/troubleshooting of the
checked-out GitHub repository bmuschko/ckad-study-guide.
Create the objects from the YAML manifest setup.yaml.
Inspect the objects in the namespace y72.

Create a temporary Pod using the image busybox:1.36.1
in the namespace y72. The container command should
make a wget call to the Service web-app. The wget call

https://github.com/bmuschko/ckad-study-guide

will not be able to establish a successful connection to the
Service.

Identify the root cause for the connection issue and fix it.
Verify the correct behavior by repeating the previous step.
The wget call should return a successful response.

INTERACTIVE EXAM PRACTICE

Get more hands-on training and test your CKAD exam readiness
by working through our playlist of interactive CKAD labs. Each
step of the lab must be completed correctly before you can
move to the next step. If you get stuck, you can view the
solution and learn how to complete the step.

The following labs cover material from this chapter:
e Creating a Service of Type ClusterIP
¢ Creating a Service of Type NodePort

e Troubleshooting a Service

https://learning.oreilly.com/playlists/2e9fe6dc-2a05-47fe-ae0a-34d6485287cc/
https://learning.oreilly.com/interactive-lab/creating-a-service/9781098164287/
https://learning.oreilly.com/interactive-lab/creating-a-service/9781098164294/
https://learning.oreilly.com/interactive-lab/troubleshooting-a-service/9781098164300/

Chapter 22. Ingresses

Chapter 21 delved into the purpose and creation of the Service
primitive. Once there’s a need to expose the application to external
consumers, selecting an appropriate Service type becomes crucial.
The most practical choice often involves creating a Service of type
LoadBalancer. Such a Service offers load balancing capabilities by
assigning an external IP address accessible to consumers outside
the Kubernetes cluster.

However, opting for a LoadBalancer Service for each externally
reachable application has drawbacks. In a cloud provider
environment, each Service triggers the provisioning of an external
load balancer, resulting in increased costs. Additionally, managing a
collection of LoadBalancer Service objects can lead to
administrative challenges, as a new object must be established for
each externally accessible microservice.

To mitigate these issues, the Ingress primitive comes into play,
offering a singular, load-balanced entry point to an application
stack. An Ingress possesses the ability to route external HTTP(S)
requests to one or more Services within the cluster based on an
optional, DNS-resolvable host name and URL context path. This
chapter will guide you through the creation and access of an
Ingress.

COVERAGE OF CURRICULUM OBJECTIVES
This chapter addresses the following curriculum objective:

e Use Ingress rules to expose applications

ACCESSING AN INGRESS IN MINIKUBE

Accessing an Ingress in minikube requires special handling. Refer to
the Kubernetes tutorial “Set up Ingress on Minikube with the NGINX
Ingress Controller” for detailed instructions.

Working with Ingresses

The Ingress exposes HTTP (and optionally HTTPS) routes to clients
outside of the cluster through an externally-reachable URL. The
routing rules configured with the Ingress determine how the traffic
should be routed. Cloud provider Kubernetes environments will
often deploy an external load balancer. The Ingress receives a
public IP address from the load balancer. You can configure rules for
routing traffic to multiple Services based on specific URL context
paths, as shown in Figure 22-1.

|
: e, Pod1
http(s)://next.example.com i fapp App service —
|
I
I
|
|
|
|
|
|
|

e —
External load Pod2

Ingress
balancer €

Clients

Metrics service =

[metrics

Kubernetes cluster

Figure 22-1. Managing external access to the Services via HTTP(S)

The scenario depicted in Figure 22-1 instantiates an Ingress as the
sole entry point for HTTP(S) calls to the domain name
“next.example.com.” Based on the provided URL context, the
Ingress directs the traffic to either of the fictional Services: one
designed for a business application and the other for fetching
metrics related to the application.

https://kubernetes.io/docs/tasks/access-application-cluster/ingress-minikube/
https://kubernetes.io/docs/tasks/access-application-cluster/ingress-minikube/

Specifically, the URL context path /app is routed to the App Service
responsible for managing the business application. Conversely,
sending a request to the URL context /metrics results in the call
being forwarded to the Metrics Service, which is capable of
returning relevant metrics.

Installing an Ingress Controller

For Ingress to function, an Ingress controller is essential. This
controller assesses the set of rules outlined by an Ingress, dictating
the routing of traffic. The choice of Ingress controller often depends
on the specific use cases, requirements, and preferences of the
Kubernetes cluster administrator. Noteworthy examples of
production-grade Ingress controllers include the F5 NGINX Ingress
Controller or the AKS Application Gateway Ingress Controller.
Additional options can be explored in the Kubernetes
documentation.

You should find at least one Pod that runs the Ingress controller
after installing it. This output renders the Pod created by the NGINX
Ingress controller residing in the namespace ingress—-nginx:

$ kubectl get pods -n ingress-nginx

NAME READY STATUS
RESTARTS AGE

ingress—-nginx-admission-create-qghrp 0/1

Completed 0 60s
ingress-nginx-admission-patch-56z26 0/1

Completed 1 60s
ingress—-nginx-controller-7c6974c4d8-2gg8c 1/1 Running
0 60s

Once the Ingress controller Pod transitions into the "Running”
status, you can assume that the rules defined by Ingress objects
will be evaluated.

https://www.nginx.com/products/nginx-ingress-controller/
https://www.nginx.com/products/nginx-ingress-controller/
https://azure.github.io/application-gateway-kubernetes-ingress/
https://kubernetes.io/docs/concepts/services-networking/ingress-controllers/
https://kubernetes.io/docs/concepts/services-networking/ingress-controllers/

Deploying Multiple Ingress Controllers

Certainly, deploying multiple Ingress controllers within a single
cluster is a feasible option, especially if a cloud provider has
preconfigured an Ingress controller in the Kubernetes cluster. The
Ingress API introduces the attribute spec.ingressClassName to
facilitate the selection of a specific controller implementation by
name. To identify all installed Ingress classes, you can use the
following command:

$ kubectl get ingressclasses
NAME CONTROLLER PARAMETERS AGE
nginx k8s.io/ingress-nginx <none> 14m

Kubernetes determines the default Ingress class by scanning for the
annotation ingressclass.kubernetes.io/is-default-
class: "true" within all Ingress class objects. In scenarios
where Ingress objects do not explicitly specify an Ingress class
using the attribute spec.ingressClassName, they automatically
default to the Ingress class marked as the default through this
annotation. This mechanism provides flexibility in managing Ingress
classes and allows for a default behavior when no specific class is
specified in individual Ingress objects.

Configuring Ingress Rules

When creating an Ingress, you have the flexibility to define one or
multiple rules. Each rule encompasses the specification of an
optional host, a set of URL context paths, and the backend
responsible for routing the incoming traffic. This structure allows for
fine-grained control over how external HTTP(S) requests are
directed within the Kubernetes cluster, catering to different services
based on specified conditions. Table 22-1 describes the three rules.

Table 22-1. Ingress rules

Type Example Description
An optional next.example. If provided, the rules apply to
host com that host. If no host is defined, all

inbound HTTP(S) traffic is
handled (e.g., if made through
the IP address of the Ingress).

A list of paths /app Incoming traffic must match the
host and path to correctly forward
the traffic to a Service.

The backend app-service:s A combination of a Service name
080 and port.

An Ingress controller can optionally define a default backend that is
used as a fallback route should none of the configured Ingress rules
match. You can learn more about it in the documentation of the
Ingress primitive.

Creating Ingresses

You can create an Ingress with the imperative create ingress
command. The main command-line option you need to provide is -
-rule, which defines the rules in a comma-separated fashion. The
notation for each key-value pair is <host>/<path>=<service>:
<port>. Let’s create an Ingress object with two rules:

$ kubectl create ingress next-app \
--rule="next.example.com/app=app-service:8080" \

https://kubernetes.io/docs/concepts/services-networking/ingress/#default-backend
https://kubernetes.io/docs/concepts/services-networking/ingress/#default-backend

--rule="next.example.com/metrics=metrics-service:9090"
ingress.networking.k8s.io/next-app created

If you look at the output of the create ingress --help
command, more fine-grained rules can be specified.

SUPPORT FOR TLS TERMINATION

Port 80 for HTTP traffic is implied, as we didn't specify a reference to a
TLS Secret object. If you have specified t1s=mysecret in the rule

definition, then the port 443 would be listed here as well. For more
information on enabling HTTPS traffic, see the Kubernetes
documentation. The exam does not cover configuring TLS termination
for an Ingress.

Using a YAML manifest to define Ingress is often more intuitive and
preferred by many. It provides a clearer and more structured way to
express the desired configuration. The Ingress defined as a YAML
manifest is shown in Example 22-1.

Example 22-1. An Ingress defined by a YAML manifest

apiVersion: networking.k8s.io/vl
kind: Ingress
metadata:
name: next-app
annotations:
nginx.ingress.kubernetes.io/rewrite-target: /S$1 (1]

spec:
rules:
- host: next.example.com (2]
http:
paths:
- backend:
service:
name: app-service
port:

number: 8080
path: /app

https://kubernetes.io/docs/concepts/services-networking/ingress/#tls
https://kubernetes.io/docs/concepts/services-networking/ingress/#tls

pathType: Exact
- host: next.example.com iﬂ
http:
paths:
- backend:
service:
name: metrics-service
port:
number: 9090
path: /metrics
pathType: Exact

L1 Assigns a NGNIX ingress-specific annotation for rewriting the
URL.

@ Defines the rule that maps the app-service backend to the
URL next.example.com/app.

® Defines the rule that maps the metrics-service backend to
the URL next.example.com/metrics.

The Ingress YAML manifest contains one major difference from the
live object representation created by the imperative command: the
assignment of an Ingress controller annotation. Some Ingress
controller implementations provide annotations to customize their
behavior. You can find the full list of annotations that come with the
NGINX Ingress controller in the corresponding documentation.

Defining Path Types

The previous YAML manifest demonstrates one of the options for
specifying a path type via the attribute
spec.rules[].http.paths[].pathType. The path type
defines how an incoming request is evaluated against the declared
path. Table 22-2 indicates the evaluation for incoming requests and
their paths. See the Kubernetes documentation for a more
comprehensive list.

https://github.com/kubernetes/ingress-nginx/blob/main/docs/user-guide/nginx-configuration/annotations.md
https://kubernetes.io/docs/concepts/services-networking/ingress/#path-types

Table 22-2. Ingress path types

Path Type Rule Incoming Request

Exact / app Matches /app but does not match /
app/test OF /app/

Prefix /app Matches /app and /app/ but does
not match /app/test

The key distinction between the Exact and prefix path types lies
in their treatment of trailing slashes. The prefix path type focuses
solely on the provided prefix of a URL context path, allowing it to
accommodate requests with URLs that include a trailing slash. In
contrast, the Exact path type is more stringent, requiring an exact
match of the specified URL context path without considering a
trailing slash.

Listing Ingresses

Listing Ingresses can be achieved with the get ingress
command. You will see some of the information you specified when
creating the Ingress (e.g., the hosts):

$ kubectl get ingress
NAME CLASS HOSTS ADDRESS PORTS
AGE

next-app nginx next.example.com 192.168.66.4 80
5m38s

The Ingress automatically selected the default Ingress class nginx
configured by the Ingress controller. You can find the information

under the cLASS column. The value listed under the ADDRESS
columns is the IP address provided by the external load balancer.

Rendering Ingress Details

The describe ingress command is a valuable tool for obtaining
detailed information about an Ingress resource. It presents the rules
in a clear table format, which aids in understanding the routing
configurations. Additionally, when troubleshooting, it's essential to
pay attention to any additional messages or events.

In the provided output, it's evident that there might be an issue
with the Services named app-service and metrics-service that are
mapped in the Ingress rules. This discrepancy between the specified
services and their existence can lead to routing errors:

$ kubectl describe ingress next-app

Name: next-app
Labels: <none>
Namespace: default
Address: 192.168.66.4
Ingress Class: nginx
Default backend: <default>
Rules:
Host Path Backends

next.example.com
/app app-service:8080 (<error:
endpoints \
"app-service" not found>)
/metrics metrics-service:9090
(<error: endpoints \
"metrics-service" not found>)
Annotations: <none>
Events:
Type Reason Age From

Normal Sync 6m45s (x2 over 7/m3s) nginx-ingress-
controller

Furthermore, observing the event log that shows syncing activity by
the Ingress controller is crucial. Any warnings or errors in this log
can provide insights into potential issues during the synchronization
process.

To address the problem, ensure that the specified Services in the
Ingress rules actually exist and are accessible within the Kubernetes
cluster. Additionally, review the event log for any relevant messages
that might indicate the cause of the discrepancy.

Let’s resolve the issue of not being able to route to the backends
configured in the Ingress object. The following commands create
the Pods and Services:

$ kubectl run app --image=k8s.gcr.io/echoserver:1.10 --
port=8080 \

-1 app=app-service
pod/app created
$ kubectl run metrics --image=k8s.gcr.io/echoserver:1.10 --
port=8080 \

-1 app=metrics-service
pod/metrics created
$ kubectl create service clusterip app-service --
tcp=8080:8080
service/app-service created
$ kubectl create service clusterip metrics-service --
tcp=9090:8080
service/metrics-service created

Inspecting the Ingress object doesn’t show any errors for the
configured rules. If you're now able to see a list of resolvable
backends along with the corresponding Pod virtual IP addresses and
ports, the Ingress object is correctly configured, and the backends
are recognized and accessible:

$ kubectl describe ingress next-app

Name: next-app
Labels: <none>
Namespace: default
Address: 192.168.66.4
Ingress Class: nginx
Default backend: <default>
Rules:
Host Path Backends

next.example.com

/app app-service:8080
(10.244.0.6:8080)
/metrics metrics-service:9090
(10.244.0.7:8080)
Annotations: <none>
Events:
Type Reason Age From
Message
Normal Sync 13m (x2 over 13m) nginx-ingress-

controller Scheduled for sync

It's worth coming back to the Ingress details if you experience any
issues with routing traffic through an Ingress endpoint.

Accessing an Ingress

To enable the routing of incoming HTTP(S) traffic through the
Ingress and subsequently to the configured Service, it's crucial to
set up a DNS entry mapping to the external address. This typically
involves configuring either an A record or a CNAME record. The
ExternalDNS project is a valuable tool that can assist in managing
these DNS records automatically.

For local testing on a Kubernetes cluster on your machine, follow
these steps:

https://github.com/kubernetes-sigs/external-dns

1. Find the IP address of the load balancer used by the
Ingress.

2. Add the IP address to hosthame mapping to your /etc/hosts
file.

By adding the IP address to your local /etc/hosts file, you simulate
the DNS resolution locally, allowing you to test the behavior of the
Ingress without relying on actual DNS records:

$ kubectl get ingress next-app \
--output=jsonpath="{.status.loadBalancer.ingress[0]

['ip']}"

192.168.66.4

$ sudo vim /etc/hosts

192.168.66.4 next-app

You can now send HTTP requests to the backend. This call matches
the Exact path rule and therefore returns a HTTP 200 response

code from the application:

$ wget next.example.com/app --timeout=5 --tries=1
--2021-11-30 19:34:57-- http://next.example.com/app
Resolving next.example.com (next.example.com)...
192.168.66.4

Connecting to next.example.com

(next.example.com) [192.168.66.4|:80... \
connected.
HTTP request sent, awaiting response... 200 OK

This next call uses a URL with a trailing slash. The Ingress path rule
doesn't support this case, and therefore the call doesn't go through.
You will receive a HTTP 404 response code. For the second call to
work, you'd have to change the path rule to Prefix:

$ wget next.example.com/app/ --timeout=5 --tries=1
--2021-11-30 15:36:26-- http://next.example.com/app/
Resolving next.example.com (next.example.com)...
192.168.66.4

Connecting to next.example.com

(next.example.com) |[192.168.66.4|:80... \
connected.
HTTP request sent, awaiting response... 404 Not Found

2021-11-30 15:36:26 ERROR 404: Not Found.

You can observe the same behavior for the Metrics Service
configured with the URL context path metrics. Feel free to try that
out as well.

Summary

The resource type Ingress defines rules for routing cluster-external
HTTP(S) traffic to one or many Services. Each rule defines a URL
context path to target a Service. For an Ingress to work, you first
need to install an Ingress controller. An Ingress controller
periodically evaluates those rules and ensures that they apply to
the cluster. To expose the Ingress, a cloud provider usually stands
up an external load balancer that lends an external IP address to
the Ingress.

Exam Essentials

Know the difference between a Service and an Ingress

An Ingress is not to be confused with a Service. The Ingress is
meant for routing cluster-external HTTP(S) traffic to one or
many Services based on an optional hosthname and mandatory
path. A Service routes traffic to a set of Pods.

Understand the role of an Ingress controller

An Ingress controller needs to be installed before an Ingress can
function properly. Without installing an Ingress controller, Ingress
rules will have no effect. You can choose from a range of Ingress
controller implementations, all documented on the Kubernetes
documentation page. Assume that an Ingress controller will be
preinstalled for you in the exam environment.

Practice the definition of Ingress rules

You can define one or many rules in an Ingress. Every rule
consists of an optional host, the URL context path, and the
Service DNS name and port. Try defining more than a single rule
and how to access the endpoint. You will not have to understand
the process for configuring TLS termination for an Ingress—this
aspect is covered by the CKS exam.

Sample Exercises
Solutions to these exercises are available in Appendix A.

1. Create a new Deployment named web that controls a single
replica running the image bmuschko/nodejs-hello-
world:1.0.0 on port 3000. Expose the Deployment with a
Service named web of type ClusterIP. The Service routes
traffic to the Pods controlled by the Deployment web. Make

a request to the endpoint of the application on the context
path /. You should see the message “Hello World.”

Create an Ingress that exposes the path / for the host hello-
world.exposed. The traffic should be routed to the Service
created earlier. List the Ingress object.

Add an entry in /etc/hosts that maps the load balancer IP
address to the host hello-world.exposed. Make a request to
http://hello-world.exposed. You should see the message
“Hello World.”

http://hello-world.exposed/

2. Any application has been exposed by an Ingress. Some of
your end users report an issue with connecting to the
application from outside of the cluster. Inspect the existing
setup and fix the problem for your end users.

Navigate to the directory app-a/ch22/troubleshooting of the
checked-out GitHub repository bmuschko/ckad-study-guide.
Create the objects from the YAML manifest setup.yami.

Inspect the objects in the namespace s96. Create an entry

in /etc/hosts for the hostname faulty.ingress.com.

Perform a HTTP call to faulty.ingress.com/ using wget or
curl. Inspect the connection error.

Change the configuration to ensure that end users can
connect to the Ingress. Verify proper connectivity by
performing another HTTP call.

INTERACTIVE EXAM PRACTICE

Get more hands-on training and test your CKAD exam readiness
by working through our playlist of interactive CKAD labs. Each
step of the lab must be completed correctly before you can
move to the next step. If you get stuck, you can view the
solution and learn how to complete the step.

The following lab covers material from this chapter:

e Defining and Using an Ingress

https://github.com/bmuschko/ckad-study-guide
https://learning.oreilly.com/playlists/2e9fe6dc-2a05-47fe-ae0a-34d6485287cc/
https://learning.oreilly.com/interactive-lab/defining-and-using/9781098164317/

Chapter 23. Network Policies

The uniqueness of the IP address assigned to a Pod is maintained
across all nodes and namespaces. This is accomplished by
allocating a dedicated subnet to each registered node during its
creation. The Container Network Interface (CNI) plugin handles the
leasing of IP addresses from the assigned subnet when a new Pod is
created on a node. Consequently, Pods on a node can seamlessly
communicate with all other Pods running on any node within the
cluster.

Network policies in Kubernetes function similarly to firewall rules,
specifically designed for governing Pod-to-Pod communication.
These policies include rules specifying the direction of network
traffic (ingress and/or egress) for one or multiple Pods within a
namespace or across different namespaces. Additionally, these rules
define the targeted ports for communication. This fine-grained
control enhances security and governs the flow of traffic within the
Kubernetes cluster.

COVERAGE OF CURRICULUM OBJECTIVES
This chapter addresses the following curriculum objective:

e Demonstrate basic understanding of Network Policies

Working with Network Policies

Within a Kubernetes cluster, any Pod can talk to any other Pod
without restrictions using its IP address or DNS name, even across
namespaces. Not only does unrestricted inter-Pod communication

https://kubernetes.io/docs/concepts/services-networking/dns-pod-service/#pods

pose a potential security risk, it also makes it harder to understand
the mental communication model of your architecture. A network
policy defines the rules that control traffic from and to a Pod, as
illustrated in Figure 23-1.

v O
Pod 1]:[Pod 2]:[Pod 3
o o

10.244.0.136 10.244.0.137 10.244.0.70

Figure 23-1. Network policies define traffic from and to a Pod

For example, there’s no good reason to allow a backend application
running in a Pod to talk directly to the frontend application running
in another Pod. The communication should be directed from the
frontend Pod to the backend Pod.

Installing an Network Policy Controller

A network policy cannot work without a network policy controller.
The network policy controller evaluates the collection of rules
defined by a network policy. You can find instructions for a wide
range of network policy controllers in the Kubernetes
documentation.

Cilium is a CNI that implements a network policy controller. You can
install Cilium on cloud provider and on-prem Kubernetes clusters.
Refer to the installation instructions for detailed information. Once it
is installed, you should find at least two Pods running Cilium and the
Cilium Operator in the kube-system namespace:

$ kubectl get pods -n kube-system

NAME READY STATUS
RESTARTS AGE

cilium-k5td6 1/1 Running 0

https://kubernetes.io/docs/tasks/administer-cluster/network-policy-provider/
https://kubernetes.io/docs/tasks/administer-cluster/network-policy-provider/
https://cilium.io/
https://docs.cilium.io/en/stable/gettingstarted/k8s-install-default/

110s
cilium-operator-f5dcdcc8d-njfbk 1/1 Running 0
110s

You can now assume that the rules defined by network policy
objects will be evaluated. Additionally, you can use the Cilium
command line tool to validate the proper installation.

Creating a Network Policy

Label selection plays a crucial role in defining which Pods a network
policy applies to. We already saw the concept in action in other
contexts (e.g., the Deployment and the Service). Furthermore, a
network policy defines the direction of the traffic, to allow or
disallow. In the context of a network policy, incoming traffic is called
ingress, and outgoing traffic is called egress. For ingress and egress,
you can whitelist the sources of traffic like Pods, IP addresses, or
ports.

NETWORK POLICIES DO NOT APPLY TO
SERVICES

In most cases, you'd set up Service objects to funnel network traffic to
Pods based on label and port selection. Network policies do not involve
Services at all. All rules are namespace- and Pod-specific.

The creation of network policies is best explained by example. Let’s
say you're dealing with the following scenario: you're running a Pod
that exposes an API to other consumers. For example, a Pod that
processes payments for other applications. The company you're
working for is migrating applications from a legacy payment
processor to a new one. Therefore, you'll want to allow access only
from the applications that are capable of properly communicating
with it. Right now, you have two consumers—a grocery store and a

coffee shop—each running their application in a separate Pod. The
coffee shop is ready to consume the API of the payment processor,
but the grocery store isn't. Figure 23-2 shows the Pods and their
assigned labels.

Grocery store Payment processor Coffee shop
metadata: o metadata: v metadata:
labels: labels: [labels:
app: grocery-stere|l &) app: payment-processor || app: coffee-shop
role; backend roele: api role: backend
16.244.0.77 19.244.9.136 19.244.8.93

Figure 23-2. Limiting traffic to and from a Pod

Before creating a network policy, we'll stand up the Pods to
represent the scenario:

$ kubectl run grocery-store --image=nginx:1.25.3-alpine \
-1 app=grocery-store,role=backend --port 80
pod/grocery-store created
$ kubectl run payment-processor --image=nginx:1.25.3-alpine
\
-1 app=payment-processor,role=api --port 80
pod/payment-processor created
$ kubectl run coffee-shop --image=nginx:1.25.3-alpine \
-1 app=coffee-shop,role=backend --port 80

Given Kubernetes’ default behavior of allowing unrestricted Pod-to-
Pod communication, the three Pods will be able to talk to one
another. The following commands verify the behavior. The grocery
store and coffee shop Pods perform a wget call to the payment
processor Pod’s IP address:

$ kubectl get pod payment-processor --template
'{{.status.podIP}}'

10.244.0.136

$ kubectl exec grocery-store -it -- wget --spider --
timeout=1 10.244.0.136

Connecting to 10.244.0.136 (10.244.0.136:80)

remote file exists

$ kubectl exec coffee-shop -it -- wget --spider --timeout=1l
10.244.0.136

Connecting to 10.244.0.136 (10.244.0.136:80)

remote file exists

You cannot create a new network policy with the imperative
create command. Instead, you will have to use the declarative

approach. The YAML manifest in Example 23-1, stored in the file
networkpolicy-api-allow.yaml, shows a network policy for the
scenario described previously.

Example 23-1. Declaring a NetworkPolicy with YAML

apiVersion: networking.k8s.io/vl
kind: NetworkPolicy
metadata:
name: api-allow
spec:
podSelector: {l
matchLabels:
app: payment-processor
role: api
ingress: (2
- from:
- podSelector:
matchLabels:
app: coffee-shop

@ selects the Pod the policy should apply to by label selection.

O Allows incoming traffic from the Pod with matching labels within
the same namespace.

A network policy defines a couple of important attributes, which
together form its set of rules. Table 23-1 shows the attributes on
the spec level.

Table 23-1. Spec attributes of a network policy

Attribute Description

podSelector Selects the Pods in the namespace to apply the
network policy to.

policyTypes Defines the type of traffic (i.e., ingress and/or
egress) the network policy applies to.

ingress Lists the rules for incoming traffic. Each rule can
define from and ports sections.

egress Lists the rules for outgoing traffic. Each rule can
define to and ports sections.

You can specify ingress and egress rules independently using
spec.ingress.from[] and spec.egress.to[]. Each rule
consists of a Pod selector, an optional namespace selector, or a
combination of both. Table 23-2 lists the relevant attributes for the
to and from selectors.

Table 23-2. Attributes of a network policy to and rrom Selectors

Attribute

podSelector

namespaceSelector

namespaceSelector

and podSelector

Description

Selects Pods by label(s) in the same
namespace as the network policy that should
be allowed as ingress sources or egress
destinations.

Selects namespaces by label(s) for which all
Pods should be allowed as ingress sources or
egress destinations.

Selects Pods by label(s) within namespaces
by label(s).

Let’s see the effect of the network policy in action. Create the
network policy object from the manifest:

$ kubectl apply -f networkpolicy-api-allow.yaml
networkpolicy.networking.k8s.io/api-allow created

The network policy prevents calling the payment processor from the
grocery store Pod. Accessing the payment processor from the coffee
shop Pod works perfectly, as the network policy’s Pod selector
matches the Pod’s assigned label app=coffee-shop:

kubectl exec grocery-store -it -- wget --spider --timeout=1l

10.244.0.136

Connecting to 10.244.0.136 (10.244.0.136:80)

wget: download timed out

command terminated with exit code 1

$ kubectl exec coffee-shop -it -- wget --spider --timeout=1l

10.244.0.136
Connecting to 10.244.0.136 (10.244.0.136:80)
remote file exists

As a developer, you may be dealing with network policies that have
been set up for you by other team members or administrators. You
need to know about the kubect1l commands for listing and
inspecting network policy objects to understand their effects on the
directional network traffic between microservices.

Listing Network Policies

Listing network policies works the same as any other Kubernetes
primitive. Use the get command in combination with the resource
type networkpolicy, or its short-form, netpo1l. For the previous
network policy, you see a table that renders the name and Pod
selector:

$ kubectl get networkpolicy api-allow
NAME POD-SELECTOR AGE
api-allow app=payment-processor, role=api 83m

It's unfortunate that the output of the command doesn't give a lot
of information about the ingress and egress rules. To retrieve more
information, you have to dig into the details.

Rendering Network Policy Details

You can inspect the details of a network policy using the describe
command. The output renders all the important information: Pod
selector, and ingress and egress rules:

$ kubectl describe networkpolicy api-allow
Name: api-allow

Namespace: default
Created on: 2024-01-10 09:06:59 -0700 MST

Labels: <none>
Annotations: <none>
Spec:
PodSelector: app=payment-processor, role=api

Allowing ingress traffic:
To Port: <any> (traffic allowed to all ports)
From:
PodSelector: app=coffee-shop
Not affecting egress traffic
Policy Types: Ingress

The network policy details don’t draw a clear picture of the Pods
that have been selected based on its rules. You can create Pods
that match the rules and do not match the rules to verify the
network policy’s desired behavior.

VISUALIZING NETWORK POLICIES

Defining the rules of network policies correctly can be challenging. The
page networkpolicy.io provides a visual editor for network policies that
renders a graphical representation in the browser.

As explained earlier, every Pod can talk to other Pods running on
any node of the cluster, which exposes a potential security risk. An
attacker able to gain access to a Pod theoretically can try to
compromise another Pod by communicating with it by its virtual IP
address.

Applying Default Network Policies

The principle of least privilege is a fundamental security concept,
and it’s highly recommended when it comes to restricting Pod-to-
Pod network traffic in Kubernetes. The idea is to initially disallow all
traffic and then selectively open up only the necessary connections

https://networkpolicy.io/

based on the application’s architecture and communication
requirements.

You can lock down Pod-to-Pod communication with the help of a
default network policy. Default network policies are custom policies
set up by administrators to enforce restrictive communication
patterns by default.

To demonstrate the functionality of such a default network policy,
we'll set up two Pods in the namespace internal-tools. Within
the namespace, all Pods will be able to communicate with each
other:

$ kubectl create namespace internal-tools
namespace/internal-tools created
$ kubectl run metrics-api --image=nginx:1.25.3-alpine --
port=80 \

-1 app=api -n internal-tools
pod/metrics—-api created
$ kubectl run metrics-consumer --image=nginx:1.25.3-alpine
--port=80 \

-1 app=consumer -n internal-tools
pod/metrics—-consumer created

Let’s create a default network policy that denies all ingress and
egress network traffic in the namespace. We'll store the network
policy in the file networkpolicy-deny-all.yaml|.

Example 23-2. Disallowing all traffic with the default policy

apiVersion: networking.k8s.io/vl
kind: NetworkPolicy
metadata:

name: default-deny-all

namespace: internal-tools
spec:

podSelector: {}

policyTypes:

- Ingress

- Egress

OO0

https://kubernetes.io/docs/concepts/services-networking/network-policies/#default-policies

D The curly braces for spec.podSelector mean “apply to all
Pods in the namespace.”

® Defines the types of traffic the rule should apply to, in this case
ingress and egress traffic.

Create the network policy from the manifest:

$ kubectl apply -f networkpolicy-deny-all.yaml
networkpolicy.networking.k8s.io/default-deny-all created

The network policy prevents any network communication between
the Pods in the internal-tools namespace will, as shown here:

$ kubectl get pod metrics-api --template

'"{{.status.podIP}}' -n internal-tools

10.244.0.182

$ kubectl exec metrics-consumer -it -n internal-tools \
-- wget --spider --timeout=1 10.244.0.182

Connecting to 10.244.0.182 (10.244.0.182:80)

wget: download timed out

command terminated with exit code 1

$ kubectl get pod metrics-consumer --template

'{{.status.podIP}}"' \
-n internal-tools

10.244.0.70

$ kubectl exec metrics-api -it -n internal-tools \
-- wget --spider --timeout=1 10.244.0.70

Connecting to 10.244.0.70 (10.244.0.70:80)

wget: download timed out

command terminated with exit code 1

With those default deny constraints in place, you can define more
detailed rules and loosen restrictions gradually. Network policies are
additive. It's common practice to now set up additional network

policies that will open up directional traffic, but only the ones that
are really required.

Restricting Access to Specific Ports

Controlling access at the port level is a critical aspect of network
security in Kubernetes. If not explicitly defined by a network policy,
all ports are accessible, which can pose security risks. For instance,
if you have an application running in a Pod that exposes port 80 to
the outside world, leaving all other ports open widens the attack
vector unnecessarily. Port rules can be specified for ingress and
egress as part of a network policy. The definition of a network policy
in Example 23-3 allows access on port 80.

Example 23-3. Definition of a network policy allowing ingress access
on port 8080

apiVersion: networking.k8s.io/vl
kind: NetworkPolicy
metadata:
name: port-allow
namespace: internal-tools
spec:
podSelector:
matchLabels:
app: api
ingress:
- from:
- podSelector:
matchLabels:
app: consumer
ports:
- protocol: TCP
port: 80

e

(0]

L1 Only allows incoming traffic on port 80.

When defining network policies, only allow those ports that are
required for implementing your architectural needs. All other ports

should be locked down.

Summary

Intra-Pod communication or communication between two containers
of the same Pod is completely unrestricted in Kubernetes. Network
policies instate rules to control the network traffic either from or to
a Pod. You can think of network policies as firewall rules for Pods.
It's best practice to start with a “deny all traffic” rule to minimize
the attack vector.

From there, you can open access as needed. Learning about the
intricacies of network policies requires a bit of hands-on practice, as
it is not directly apparent if the rules work as expected.

Exam Essentials

Understand the purpose and effects of network policies

By default, Pod-to-Pod communication is unrestricted.
Instantiate a default deny rule to restrict Pod-to-Pod network
traffic with the principle of least privilege. The attribute
spec.podSelector of a network policy selects the target Pod
the rules apply to based on label selection. The ingress and
egress rules define Pods, namespaces, IP addresses, and ports
for allowing incoming and outgoing traffic.

Know how to implement the principle of least privilege

Network policies can be aggregated. A default deny rule can
disallow ingress and/or egress traffic. An additional network
policy can open up those rules with a more fine-grained
definition.

Explore common network policy scenarios

To explore common scenarios, look at the GitHub repository
named "“Kubernetes Network Policy Recipes”. The repository
comes with a visual representation for each scenario and walks
you through the steps to set up the network policy and the
involved Pods. This is a great practice resource.

Sample Exercises
Solutions to these exercises are available in Appendix A.

1. You have been tasked with setting up a network policy for
an existing application stack that consists of a frontend

Pod in the namespace end-user and a backend Pod in
the namespace internal.

Navigate to the directory app-a/ch23/app-stack of the
checked-out GitHub repository brmuschko/ckad-study-guide.
Create the objects from the YAML manifest setup.yaml.
Inspect the objects in both namespaces.

Create a network policy named app-stack in the end-
user namespace. Allow egress traffic only from the
frontend Pod to the backend Pod. The backend Pod
should be reachable only on port 80.

2. Navigate to the directory app-a/ch23/troubleshooting of the
checked-out GitHub repository bmuschko/ckad-study-guide.
Create the objects from the YAML manifest setup.yaml.
Inspect the objects in the namespace k1 and k2.

Determine the virtual IP address of Pod nginx in
namespace k2. Try to make a wget call on port 80 from the
Pod busybox in namespace k1 to the Pod nginx in
namespace k2. The call will fail with the current setup.

https://github.com/ahmetb/kubernetes-network-policy-recipes
https://github.com/bmuschko/ckad-study-guide
https://github.com/bmuschko/ckad-study-guide

Create a network policy that allows performing ingress calls
for all Pods in namespace k1 to the Pod nginx in

namespace k2. Pods in all other namespaces should be
denied to make ingress calls to Pods in namespace k2.

Verify that a network connection can be established.

INTERACTIVE EXAM PRACTICE

Get more hands-on training and test your CKAD exam readiness
by working through our playlist of interactive CKAD labs. Each
step of the lab must be completed correctly before you can
move to the next step. If you get stuck, you can view the
solution and learn how to complete the step.

The following lab covers material from this chapter:

e Restricting Access to and from a Pod with Network
Policies

https://learning.oreilly.com/playlists/2e9fe6dc-2a05-47fe-ae0a-34d6485287cc/
https://learning.oreilly.com/interactive-lab/restricting-access-to/9781098164324/
https://learning.oreilly.com/interactive-lab/restricting-access-to/9781098164324/

Appendix A. Answers to
Review Questions

Chapter 4, Containers

1. The given Dockerfile builds a nodejs-based application. All
files necessary to run the application are available in the
same directory. Upon further inspection, you will find that
the Dockerfile exposes port 3000.

Build the container image with the following command:

$ docker build -t nodejs-hello-world:1.0.0 .

You will be able to find the container image by listing it:

$ docker images

REPOSITORY TAG IMAGE ID CREATED
SIZE

nodejs-hello-world 1.0.0 Occ723ca8b06 15
seconds ago 180MB

Run the container in detached mode with the following
command. Make sure to map port 80 to the exposed
container port 3000:

$ docker run -d -p 80:3000 nodejs-hello-world:1.0.0
9e0flabcefd15e902422117de7644544cdd08ael58alcd0b2a2d
182fcf056cab

You can discover details about the container by listing them:

$ docker container 1ls
CONTAINER ID IMAGE COMMAND

9e0flabcefdl nodejs-hello-world:1.0.0 "docker-

entrypoint.s.."

You can now access the application on port 80 with either
curl or wget:

$ curl localhost
Hello World
$ wget localhost

--2023-05-09 08:38:30-- http://localhost/

Resolving localhost (localhost)... ::1, 127.0.0.1
Connecting to localhost (localhost) |::1]:80...
connected.

HTTP request sent, awaiting response... 200 OK
2023-05-09 08:38:30 (2.29 MB/s) - ‘index.html’ saved
[12/12]

You can retrieve logs written by the application with the
following command:

$ docker logs 9e0Oflabcef4l
Magic happens on port 3000

2. Change the first two lines of the Dockerfile as follows:

FROM node:20.4-alpine
WORKDIR /node

Build the container image with the following command:

$ docker build -t nodejs-hello-world:1.1.0

You will be able to find the container image by listing it. The
size of the container image slightly increased by 1 MB:

$ docker images

REPOSITORY TAG IMAGE ID
CREATED SIZE
nodejs-hello-world 1.1.0 d332031cb5bb 4

seconds ago 181MB

3. Download the container image using the docker pull
command:

$ docker pull alpine:3.18.2

The container image will now be available:

$ docker images alpine

REPOSITORY TAG IMAGE ID CREATED
STIZE

alpine 3.18.2 claabb73d233 4 weeks ago
7.33MB

To save the container image to a file, run the following
command:

$ docker save -o alpine-3.18.2.tar alpine:3.18.2
$ 1s
alpine-3.18.2.tar

Remove the container image locally:

$ docker image rm alpine:3.18.2

Untagged: alpine:3.18.2

Untagged:
alpine@sha256:82d1e9d7ed48a7523bdebcl8cf6290bdb97b82
302a8a9 \

c27d4£e885949%9ea94d1

Deleted:
sha256:claabb73d2339c5ebaa3681de2e9d9c18d57485045a4e
311d9f80 \

04bec208d67

Deleted:
sha256:78a822fe2a2d2c84£f3de4a403188c45£623017d6a4521
d23047c9 \

fbb0801794c

The container image cannot be listed anymore:

$ docker images alpine
REPOSITORY TAG IMAGE ID CREATED SIZE

Loading a container image from a file can be achieved with
the following command:

$ docker load --input alpine-3.18.2.tar

78a822fe2a2d: Loading layer

==========>] 7.622MB/7.622MB
Loaded image: alpine:3.18.2

The container image has been reinstated from the TAR file:

$ docker images alpine

REPOSITORY TAG IMAGE ID CREATED
STIZE
alpine 3.18.2 claabb73d233 4 weeks ago

7.33MB

Chapter 5, Pods and Namespaces

1. You can either use the imperative approach or the
declarative approach. First, we'll look at creating the
namespace with the imperative approach:

$ kubectl create namespace ckad

Create the Pod:

$ kubectl run nginx --image=nginx:1.17.10 --port=80

--namespace=ckad

Alternatively, you can use the declarative approach. Create

a new YAML manifest in the file called ckad-
namespace.yaml with the following contents:

apiVersion: vl
kind: Namespace

metadata:

name: ckad

Create the namespace from the YAML manifest:

$ kubectl apply -f ckad-namespace.yaml

Create a new YAML manifest in the file nginx-pod.yam/ with

the following contents:

apiVersion: vl
kind: Pod
metadata:
name: nginx
spec:
containers:
- name: nginx
image: nginx:1.17.10
ports:

- containerPort: 80

Create the Pod from the YAML manifest:

$ kubectl apply -f nginx-pod.yaml --namespace=ckad

You can use the command-line option -0 wide to retrieve
the IP address of the Pod:

$ kubectl get pod nginx --namespace=ckad -o wide

The same information is available if you query for the Pod
details:

$ kubectl describe pod nginx --namespace=ckad | grep
IP:

You can use the command-line options —-rm and -it to

start a temporary Pod. The following command assumes
that the IP address of the Pod hamed nginx is 10.1.0.66:

$ kubectl run busybox --image=busybox:1.36.1 --
restart=Never --rm -it \

-n ckad -- wget -O- 10.1.0.66:80

To download the logs, use a simple 1o0gs command:

$ kubectl logs nginx --namespace=ckad

Editing the live object is forbidden. You will receive an error
message if you try to add the environment variables:

$ kubectl edit pod nginx --namespace=ckad

You will have to re-create the object with a modified YAML
manifest, but first you'll have to delete the existing object:

$ kubectl delete pod nginx --namespace=ckad

Edit the existing YAML manifest in the file nginx-pod.yam/.

apiVersion: vl
kind: Pod
metadata:
name: nginx
spec:
containers:
- name: nginx
image: nginx:1.17.10
ports:

- containerPort: 80

env:
- name: DB _URL

value: postgresqgl://mydb:5432
- name: DB USERNAME

value: admin

Apply the changes:

$ kubectl apply -f nginx-pod.yaml --namespace=ckad

Use the exec command to open an interactive shell to the
container:

$ kubectl exec -it nginx --namespace=ckad --
/bin/sh
1s -1

. Combine the command-line options -o yaml and --dry-
run=client to write the generated YAML to a file. Make

sure to escape the double-quote characters of the string
rendered by the echo command:

$ kubectl run loop --image=busybox:1.36.1 -o yaml --
dry-run=client \

--restart=Never -- /bin/sh -c 'for i in 1 2 3 4 5
6 78 9 10; \

do echo "Welcome $i times"; done' \

> pod.yaml

Create the Pod from the YAML manifest:

$ kubectl apply -f pod.yaml --namespace=ckad

The status of the Pod will say Completed, as the executed
command in the container does not run in an infinite loop:

$ kubectl get pod loop --namespace=ckad

The container command cannot be changed for existing
Pods. Delete the Pod so you can modify the manifest file
and re-create the object:

$ kubectl delete pod loop --namespace=ckad

Change the YAML manifest content:

apiVersion: vl
kind: Pod
metadata:
creationTimestamp: null
labels:
run: loop
name: loop
spec:
containers:
- args:
- /bin/sh
- -C
- while true; do date; sleep 10; done
image: busybox:1.36.1
name: loop

resources: {}

dnsPolicy: ClusterFirst
restartPolicy: Never

status: {}

Create the Pod from the YAML manifest:

$ kubectl apply -f pod.yaml --namespace=ckad

You can describe the Pod events by grepping for the term:

$ kubectl describe pod loop --namespace=ckad | grep
-C 10 Events:

You can simply delete the namespace, which will delete all
objects within the namespace:

$ kubectl delete namespace ckad

Chapter 6, Jobs and CronJobs

1. Start by creating a YAML manifest file named random-

hash-job.yaml. The contents of the file could look like
this:

apiVersion: batch/vl
kind: Job
metadata:
name: random-hash
spec:
parallelism: 2
completions: 5
backoffLimit: 4
template:
spec:

containers:

- name: random-hash
image: alpine:3.17.3
command: ["/bin/sh", "-c¢", "echo SRANDOM |

base6d4d | head -c 20"]

restartPolicy: Never

Create the Job from the YAML manifest:

$ kubectl apply -f random-hash-job.yaml
job.batch/random-hash created

The result will be five Pods that correspond to the number
of completions. You can combine the kubectl command

with the grep command to easily find the Pods that are
controlled by the job named random-hash:

$ kubectl get pods | grep "random-hash-"

NAME READY STATUS RESTARTS
AGE

random-hash-4gk96 0/1 Completed 0
46s

random-hash-1d2s1l 0/1 Completed 0
39s

random-hash-xcmts 0/1 Completed 0
35s

random-hash-xxlhk 0/1 Completed 0
46s

random-hash-z9xc4 0/1 Completed 0
39s

You can pick one of the Pods by name and get its logs. The
downloaded logs will contain the generated hash:

$ kubectl logs random-hash-4qgk96
MTgxMTIK

Deleting the Job will also delete the Pods controlled by the
Job:

$ kubectl delete job random-hash

job.batch "random-hash" deleted

$ kubectl get pods | grep -E "random-hash-" -c
0

2. You can use the image nginx:1.25.1, which has the
command-line tool curl installed. The Unix cron expression
forthisjobis x/2 * * * *;

$ kubectl create cronjob google-ping --schedule="*/2
****"\

--image=nginx:1.25.1 -- /bin/sh -c 'curl
google.com'

cronjob.batch/google-ping created

You can inspect when a CronJob is executed using the -w
command-line option:

$ kubectl get cronjob -w
NAME SCHEDULE SUSPEND ACTIVE LAST
SCHEDULE AGE

google-ping */2 * * * % False 0 115s
2ml0s

google-ping */2 x K Kok False 1 6s
2m21s

google-ping X/2 K kKX False 0 16s
2m31ls

google-ping X/2 K ok k% False 1 6s
dm21s

google-ping */2 * * * % False 0 16s
4m31s

Explicitly assign the value 7 to the
spec.successfulJobsHistoryLimit attribute of the
live object. The resulting YAML manifest should have the
following configuration:

spec:

successfulJobsHistoryLimit: 7

Edit the default value of spec.concurrencyPolicy of

the live object. The resulting YAML manifest should have
the following configuration:

spec:

concurrencyPolicy: Forbid

Chapter 7, Volumes

1. Start by generating the YAML manifest using the run
command in combination with the --dry-run option:

$ kubectl run alpine --image=alpine:3.12.0 --dry-
run=client \

--restart=Never -o yaml -- /bin/sh -c "while true;
do sleep 60; \

done;" > multi-container-alpine.yaml

$ vim multi-container-alpine.yaml

After editing the Pod, the manifest could look like the
following. The container names here are containerl and
container?2:

apiVersion: vl
kind: Pod
metadata:
creationTimestamp: null
labels:
run: alpine
name: alpine
spec:
containers:
- args:
- /bin/sh
- -C
- while true; do sleep 60; done;
image: alpine:3.12.0

name: containerl

resources: {}
- args:
- /bin/sh
- -c
- while true; do sleep 60; done;
image: alpine:3.12.0
name: container?
resources: {}
dnsPolicy: ClusterFirst
restartPolicy: Always

status: {}

Edit the YAML manifest further by adding the Volume and
the mount paths for both containers.

In the end, the Pod definition could look like this:

apiVersion: vl
kind: Pod
metadata:
creationTimestamp: null
labels:
run: alpine
name: alpine
spec:
volumes:
- name: shared-vol
emptyDir: {}
containers:
- args:
- /bin/sh
- -C
- while true; do sleep 60; done;
image: alpine:3.12.0

name: containerl

volumeMounts:
- name: shared-vol
mountPath: /etc/a
resources: {}
- args:
- /bin/sh
- -C
- while true; do sleep 60; done;
image: alpine:3.12.0
name: container?
volumeMounts:
- name: shared-vol
mountPath: /etc/b
resources: {}
dnsPolicy: ClusterFirst
restartPolicy: Always

status: {}

Create the Pod and check if it has been created properly.
You should see the Pod in Running status with two
containers ready:

$ kubectl apply -f multi-container-alpine.yaml
pod/alpine created

$ kubectl get pods

NAME READY STATUS RESTARTS AGE
alpine 2/2 Running 0 18s

Use the exec command to shell into the container named
containerl. Create the file /etc/a/data/hello.txt with the
relevant content:

$ kubectl exec alpine -c containerl -it -- /bin/sh
/ # cd /etc/a

/etc/a # 1ls -1

total O

/etc/a # mkdir data

/etc/a # cd data/

/etc/a/data # echo "Hello World" > hello.txt
/etc/a/data # cat hello.txt

Hello World

/etc/a/data # exit

Use the exec command to shell into the container named
container2. The contents of the file /etc/b/data/hello.txt
should say “Hello World”:

$ kubectl exec alpine -c container2 -it -- /bin/sh
/ # cat /etc/b/data/hello.txt

Hello World

/ # exit

2. Start by creating a new file named logs-pv.yaml. The
contents could look as follows:

kind: PersistentVolume
apiVersion: vl
metadata:

name: logs-pv
spec:

capacity:

storage: 5Gi
accessModes:

- ReadWriteOnce

- ReadOnlyMany
hostPath:
path: /var/logs

Create the PersistentVolume object and check its status:

$ kubectl create -f logs-pv.yaml
persistentvolume/logs-pv created
$ kubectl get pv

NAME CAPACITY ACCESS MODES RECLAIM POLICY
STATUS CLAIM \

STORAGECLASS REASON AGE
logs-pv 5Gi RWO, ROX Retain

Available \
18s

Create the file logs-pvc.yaml to define the
PersistentVolumeClaim. The following YAML manifest shows

its contents:

kind: PersistentVolumeClaim
apiVersion: vl
metadata:

name: logs-pvcC

spec:
accessModes:
- ReadWriteOnce
resources:
requests:
storage: 2Gi
storageClassName: ""

Create the PersistentVolume object and check on its status:

$ kubectl create -f logs-pvc.yaml
persistentvolumeclaim/logs—-pvc created
$ kubectl get pvc
NAME STATUS VOLUME
CAPACITY \
ACCESS MODES STORAGECLASS AGE
logs-pvc Bound pvc-47ac2593-2cd2-4213-9e31-
450bc98bb43f 2Gi \
RWO standard 11s

Create the basic YAML manifest using the --dry-run
command-line option:

$ kubectl run nginx --image=nginx:1.25.1 --dry-
run=client \

-o yaml > nginx-pod.yaml

Now, edit the file nginx-pod.yam/ and bind the
PersistentVolumeClaim to it:

apiVersion: vl
kind: Pod
metadata:
creationTimestamp: null
labels:
run: nginx
name: nginx
spec:
volumes:
- name: logs-volume
persistentVolumeClaim:

claimName: logs-pvc

containers:
- image: nginx:1.25.1
name: nginx
volumeMounts:
- mountPath: "/var/log/nginx"
name: logs-volume
resources: {}
dnsPolicy: ClusterFirst
restartPolicy: Never

status: {}

Create the Pod using the following command and check its
status:

$ kubectl apply -f nginx-pod.yaml
pod/nginx created

$ kubectl get pods

NAME READY STATUS RESTARTS AGE
nginx 1/1 Running 0 8s

Use the exec command to open an interactive shell to the
Pod and create a file in the mounted directory:

$ kubectl exec nginx -it -- /bin/sh
cd /var/log/nginx

touch my-nginx.log

1s

access.log error.log my-nginx.log

exit

After you re-create the Pod, the file stored on the
PersistentVolume should still exist:

$ kubectl delete pod nginx

$ kubectl apply -f nginx-pod.yaml
pod/nginx created

$ kubectl exec nginx -it -- /bin/sh
cd /var/log/nginx

1ls

access.log error.log my-nginx.log

exit

Chapter 8, Multi-Container Pods

1. You can start by generating the YAML manifest in dry-run
mode. The resulting manifest will set up the main
application container:

$ kubectl run complex-pod --image=nginx:1.25.1 --
port=80 \

--restart=Never -o yaml --dry-run=client >
complex-pod.yaml

Edit the manifest file by adding the init container and
changing some of the default settings that have been
generated. The finalized manifest could look like this:

apiVersion: vl
kind: Pod
metadata:
name: complex-pod
spec:
initContainers:
- image: busybox:1.36.1
name: setup
command: ['sh', '-c¢', 'wget -0- google.com']
containers:
- image: nginx:1.25.1
name: app
ports:
- containerPort: 80
resources: {}

dnsPolicy: ClusterFirst

restartPolicy: Never

status: {}

Run the create command to instantiate the Pod. Verify
that the Pod is running without issues:

$ kubectl apply -f complex-pod.yaml
pod/complex-pod created

$ kubectl get pod complex-pod

NAME READY STATUS RESTARTS AGE

complex-pod 1/1 Running 0 27s

Use the 10gs command and point it to the init container to
download the log output:

$ kubectl logs complex-pod -c setup
Connecting to google.com (172.217.1.206:80)
Connecting to www.google.com (172.217.2.4:80)

writing to stdout

You can target the main application as well. Here you'll
open an interactive shell and run the 1s command:

$ kubectl exec complex-pod -it -c app -- /bin/sh

1s
bin dev docker-entrypoint.sh home 1ib64 mnt

proc run \
srv tmp var boot docker-entrypoint.d etclib

media opt \

root sbin sys usr

exit

Avoid graceful deletion of the Pod by adding the options --

grace-period=0 and --force:

$ kubectl delete pod complex-pod --grace-period=0 --
force

warning: Immediate deletion does not wait for
confirmation that the \

running resource has been terminated. The resource
may continue to run \

on the cluster indefinitely.

pod "complex-pod" force deleted

2. You can start by generating the YAML manifest in dry-run
mode. The resulting manifest will set up the main
application container:

$ kubectl run data-exchange --image=busybox:1.36.1 -
-restart=Never \
-o yaml --dry-run=client > data-exchange.yaml

Edit the manifest file by adding the sidecar container and
changing some of the default settings that have been
generated. The finalized manifest could look like the
following:

apiVersion: vl
kind: Pod
metadata:

name: data-exchange

spec:
containers:
- image: busybox:1.36.1
name: main-app
command: ['sh', '-c¢', 'counter=1l; while true; do
touch \
"/var/app/data/$counter-data.txt";
counter=$ ((counter+1)); \
sleep 30; done']
resources: {}
dnsPolicy: ClusterFirst
restartPolicy: Never

status: {}

Simply add the sidecar container alongside the main
application container with the proper command. Add to the
existing YAML manifest:

apiVersion: vl
kind: Pod
metadata:
name: data-exchange
spec:
containers:
- image: busybox:1.36.1
name: main-app
command: ['sh', '-c¢', 'counter=1l; while true; do
touch \
"/var/app/data/$counter-data.txt";
counter=$ ((counter+1)); \
sleep 30; done']
resources: {}
- image: busybox:1.36.1

name: sidecar

command: ['sh', '-c', 'while true; do 1ls -dg
/var/app/data/*-data.txt \
| wc -1; sleep 30; done']
dnsPolicy: ClusterFirst
restartPolicy: Never
status: {}

Modify the manifest so that a Volume is used to exchange
the files between the main application container and sidecar
container:

apiVersion: vl
kind: Pod
metadata:
name: data-exchange
spec:
containers:
- image: busybox:1.36.1
name: main-app
command: ['sh', '-c¢', 'counter=1l; while true; do
touch \
"/var/app/data/$counter-data.txt";
counter=$ ((counter+1l)); \
sleep 30; done']
volumeMounts:
- name: data-dir
mountPath: "/var/app/data"
resources: {}
- image: busybox:1.36.1
name: sidecar
command: ['sh', '-c¢', 'while true; do ls -d
/var/app/data/*-data.txt \
| wc -1; sleep 30; done']

volumeMounts:

- name: data-dir
mountPath: "/var/app/data"
volumes:
- name: data-dir
emptyDir: {}
dnsPolicy: ClusterFirst
restartPolicy: Never

status: {}

Create the Pod, check for its existence, and tail the logs of
the sidecar container. The number of files will increment
over time:

$ kubectl apply -f data-exchange.yaml
pod/data-exchange created

$ kubectl get pod data-exchange

NAME READY STATUS RESTARTS AGE
data-exchange 2/2 Running 0 31s
$ kubectl logs data-exchange -c sidecar -f

1

2

Delete the Pod:

$ kubectl delete pod data-exchange
pod "data-exchange" deleted

Chapter 9, Labels and Annotations

1. Start by creating the Pods. You can assign labels at the time
of creation:

$ kubectl run pod-1 --image=nginx:1.25.1 \
--labels=tier=frontend, team=artemidis

pod/pod-1 created

$ kubectl run pod-2 --image=nginx:1.25.1 \
--labels=tier=backend, team=artemidis

pod/pod-2 created

$ kubectl run pod-3 --image=nginx:1.25.1 \
--labels=tier=backend, team=artemidis

pod/pod-3 created

$ kubectl get pods --show-labels

NAME READY STATUS RESTARTS AGE LABELS

pod-1 1/1 Running 0 30s

team=artemidis, tier=frontend

pod-2 1/1 Running 0 24s

team=artemidis, tier=backend

pod-3 1/1 Running 0 16s

team=artemidis, tier=backend

You can either edit the live objects to add an annotation or
use the annotate command. We'll use the imperative

command here:

$ kubectl annotate pod pod-1 pod-3
deployer='Benjamin Muschko'
pod/pod-1 annotated

pod/pod-3 annotated

$ kubectl describe pod pod-1 pod-3 | grep

Annotations:
Annotations: deployer: Benjamin Muschko
Annotations: deployer: Benjamin Muschko

The label selection requires you to combine equality- and
set-based criteria to find the Pods:

$ kubectl get pods -1 tier=backend, 'team in
(artemidis,aircontrol) ' \

--show-labels

NAME READY STATUS RESTARTS AGE LABELS
pod-2 1/1 Running 0 6m38s
team=artemidis, tier=backend

pod-3 1/1 Running 0 om30s

team=artemidis, tier=backend

2. Define a Pod in the file pod-well-known.yaml. Add the
reserved labels app . kubernetes.io/name and
app . kubernetes.io/managed-by. The resulting YAML
manifest could look like the following:

apiVersion: vl
kind: Pod
metadata:
name: nginx
labels:
app.kubernetes.io/name: F5-nginx
app.kubernetes.io/managed-by: helm
spec:
containers:
- image: nginx:1.25.1

name: nginx

Create the object from the YAML manifest:

$ kubectl apply -f pod-well-known.yaml

pod/nginx created

To look at the assigned labels, use the describe command
or the get command in combination with the --show-
labels option:

$ kubectl describe pod nginx

Labels: app.kubernetes.io/managed-by=helm

app.kubernetes.io/name=F5-nginx

$ kubectl get pod nginx --show-labels

NAME READY STATUS RESTARTS AGE LABELS
nginx 1/1 Running 0 18s
app.kubernetes.io/\

managed-by=helm, app.kubernetes.io/name=F5-nginx

Chapter 10, Deployments

1. Create the YAML manifest for a Deployment in the file
nginx-deployment.yaml. The label selector should match the
labels assigned to the Pod template. The following code
snippet shows the contents of the YAML manifest file:

apiVersion: apps/vl
kind: Deployment
metadata:
name: nginx
labels:
tier: backend
spec:
replicas: 3
selector:
matchLabels:
app: vl
template:
metadata:
labels:
app: vl
spec:
containers:
- image: nginx:1.23.0

name: nginx

Create the deployment by pointing it to the YAML manifest.
Check on the Deployment status:

$ kubectl apply -f nginx-deployment.yaml

deployment.apps/nginx created

$ kubectl get deployment nginx
NAME READY UP-TO-DATE AVAILABLE AGE
nginx 3/3 3 3 10s

Set the new image and check the revision history:

$ kubectl set image deployment/nginx
nginx=nginx:1.23.4

deployment.apps/nginx image updated

$ kubectl rollout history deployment nginx
deployment.apps/nginx

REVISION CHANGE-CAUSE

1 <none>

2 <none>

$ kubectl rollout history deployment nginx --
revision=2

deployment.apps/nginx with revision #2

Pod Template:

Labels: app=vl
pod-template-hash=5bd9%5c598
Containers:
nginx:
Image: nginx:1.23.4
Port: <none>

Host Port: <none>

Environment: <none>
Mounts: <none>
Volumes: <none>

Add the change cause to the current revision by annotating
the Deployment object:

$ kubectl annotate deployment nginx
kubernetes.io/change-cause=\
"Pick up patch version"

deployment.apps/nginx annotated

The revision change cause can be inspected by rendering
the rollout history:

$ kubectl rollout history deployment nginx
deployment.apps/nginx

REVISION CHANGE-CAUSE

1 <none>

2 Pick up patch version

Now, scale the Deployment to 5 replicas. You should find 5
Pods controlled by the Deployment:

$ kubectl scale deployment nginx --replicas=5
deployment.apps/nginx scaled
$ kubectl get pod -1 app=vl

NAME READY STATUS RESTARTS
AGE

nginx-5bd95c598-25z47 1/1 Running 0

3m39s

nginx-5bd95c598-46mlt 1/1 Running 0

3m38s

nginx-5bd95c598-bszvp 1/1 Running 0

48s

nginx-5bd95c598-dwr8r 1/1 Running 0

48s

nginx-5bd95c598-kjrvf 1/1 Running 0
3m37s

Roll back to revision 1. You will see the new revision.
Inspecting the revision should show the image
nginx:1.23.0:

$ kubectl rollout undo deployment/nginx --to-
revision=1

deployment.apps/nginx rolled back

$ kubectl rollout history deployment nginx
deployment.apps/nginx

REVISION CHANGE-CAUSE

2 Pick up patch version

3 <none>

$ kubectl rollout history deployment nginx --
revision=3

deployment.apps/nginx with revision #3

Pod Template:

Labels: app=vl
pod-template-hash=£48dc88cd
Containers:
nginx:
Image: nginx:1.23.0
Port: <none>
Host Port: <none>
Environment: <none>
Mounts: <none>
Volumes: <none>

2. Define the Deployment in the file nginx-deployment.yaml,
as shown:

apiVersion: apps/vl
kind: Deployment
metadata:
name: nginx
spec:
replicas: 1
selector:
matchLabels:
app: nginx
template:
metadata:

labels:
app: nginx

spec:

containers:

- image: nginx:1.23.4
name: nginx
resources:

requests:
cpu: "0.5"
memory: "500Mi"
limits:

memory: "500Mi"

Create the Deployment object from the manifest file:

$ kubectl apply -f nginx-deployment.yaml

deployment.apps/nginx created

Ensure that all Pods controlled by the Deployment transition
into “"Running” status:

$ kubectl get deploy

NAME READY UP-TO-DATE AVAILABLE AGE

nginx 1/1 1 1 49s

$ kubectl get pods

NAME READY STATUS RESTARTS
AGE

nginx-5bbd9746c-9b4np 1/1 Running 0

24s

Next, define the HorizontalPodAutoscaler with the given
resource thresholds in the file nginx-hpa.yaml. The final

manifest is shown here:

apiVersion:

autoscaling/v?2

kind: HorizontalPodAutoscaler

metadata:
name: nginx-hpa
spec:
scaleTargetRef:
apiVersion: apps/vl
kind: Deployment
name: nginx
minReplicas: 3
maxReplicas: 8
metrics:
- type:
resource:

Resource

name: cpu
target:

type:

Utilization

averageUtilization:

- type: Resource

resource:

75

name: memory
target:
type: Utilization

averageUtilization: 60

Create the HorizontalPodAutoscaler object from the
manifest file:

$ kubectl apply -f nginx-hpa.yaml
horizontalpodautoscaler.autoscaling/nginx-hpa

created

When you inspect the HorizontalPodAutoscaler object, you
will find that the number of replicas will be scaled up to the
minimum number 3 even though the Deployment defines
only a single replica. At the time of running this command,
Pods are not using a significant amount of CPU and memory.
That’s why the current metrics show 0%:

$ kubectl get hpa nginx-hpa
NAME REFERENCE TARGETS
MINPODS MAXPODS \
REPLICAS AGE
nginx-hpa Deployment/nginx 0%/60%, 0%/75% 3
8 \
3 2ml9s

Chapter 11, Deployment Strategies
1. Create the Deployment object from the YAML manifest:

$ kubectl apply -f deployment-grafana.yaml
deployment.apps/grafana created

Inspect the created Deployment object and replicas. You
should find six replicas:

$ kubectl get deployments,pods
NAME READY UP-TO-DATE
AVATILABLE AGE

deployment.apps/grafana 6/6 6 6
39s

NAME READY STATUS
RESTARTS AGE

pod/grafana-5f6b77b687-4h7bqg 1/1 Running
39s

pod/grafana-5f6b77b687-88bnb 1/1 Running
39s

pod/grafana-5f6b77b687-97d6g 1/1 Running
39s

pod/grafana-5f6b77b687-h8mhqg 1/1 Running
39s

pod/grafana-5f6b77b687-1fgct 1/1 Running
39s

pod/grafana-5f6b77b687-v9nkqg 1/1 Running

39s

Multiple changes need to be made to the live object of the
Deployment. One of the easiest options is to open an editor
and make changes interactively using the command
kubectl edit deployment grafana. Alternatively, you
can edit the Deployment YAML manifest directly and then
run the command kubectl apply -f deployment-—
grafana.yaml. The modified YAML manifest could look
like this:

apiVersion: apps/vl
kind: Deployment
metadata:

name: grafana
spec:

replicas: 6

strategy:

rollingUpdate:

maxSurge: 2

maxUnavailable: 2

type: RollingUpdate
minReadySeconds: 20
selector:

matchLabels:

app: grafana

template:
metadata:

labels:
app: grafana

spec:

containers:

- image: grafana/grafana:10.1.2
name: grafana
ports:

- containerPort: 3000

readinessProbe:

httpGet:
path: /
port: 3000

The RollingUpdate strategy will transition all replicas to
the new container image tag. This process may take a little
time. To watch the changes play out, run the command
kubectl get deployment grafana —--watch.

2. Define the initial Deployment in the file blue-
deployment.yaml, as shown here:

apiVersion: apps/vl
kind: Deployment
metadata:
name: nginx-blue
spec:
replicas: 3
selector:
matchLabels:
version: blue
template:
metadata:
labels:
version: blue
spec:
containers:
- image: nginx:1.23.0
name: nginx
ports:

- containerPort: 80

Create the Deployment object using the following
command. Wait until all replicas transition into the
“Running” status:

$ kubectl apply -f blue-deployment.yaml
deployment.apps/nginx-blue created
$ kubectl get pods -1 version=blue

NAME READY STATUS
RESTARTS AGE

nginx-blue-99f499479-h9wg4 1/1 Running 0
9s

nginx-blue-99£499479-trsjf 1/1 Running 0
9s

nginx-blue-99£499479-wndkg 1/1 Running 0
9s

Define the Service in the file service.yaml, as shown:

apiVersion: vl
kind: Service
metadata:
name: nginx
spec:
selector:
version: blue
ports:
- protocol: TCP
port: 80
targetPort: 80

Create the Service object using the following command.
Wait until all replicas transition into “"Running” status:

$ kubectl apply -f service.yaml

service/nginx created

Now, check to ensure that the Pods can be reached using a
curl command from a temporary Pod. The returned

headers will include the nginx server version:

$ kubectl run tmp --image=alpine/curl:3.14 --
restart=Never -it \

--rm -- curl -sI nginx.default.svc.cluster.local |
grep Server

Server: nginx/1.23.0

Create a second Deployment in the file green-
deployment.yaml. Make sure to change the labels and the
container image tag. The manifest is shown here:

apiVersion: apps/vl
kind: Deployment
metadata:
name: nginx-green
spec:
replicas: 3
selector:
matchLabels:
version: green
template:
metadata:
labels:
version: green
spec:

containers:

- image: nginx:1.23.4
name: nginx
ports:

- containerPort: 80

Create the Deployment object using the following

command. Wait until all replicas transition into “Running”

status:

$ kubectl apply -f green-deployment.yaml

deployment.apps/nginx-green created

$ kubectl get pods -1 version=green

NAME

RESTARTS AGE
nginx-green-658cfdc9c6-8pvpp
11s
nginx-green-658cfdc9c6-fdgmé
11s
nginx-green-658cfdc9c6-zgbgl
11s

Change the existing service.yaml file by changing the label

READY

1/1

1/1

1/1

STATUS

Running

Running

Running

value with the key version from blue to green:

apiVersion: vl
kind: Service
metadata:

name: nginx
spec:

selector:

version: green
ports:

- protocol: TCP

port: 80
targetPort: 80

Apply the changes to the Service object:

$ kubectl apply -f service.yaml

service/nginx configured

Delete the initial Deployment using the following command:

$ kubectl delete deployment nginx-blue
deployment.apps "nginx-blue" deleted

Incoming traffic to the Service endpoint should now be
switched over to the Pods controlled by the green
Deployment:

$ kubectl run tmp --image=alpine/curl:3.14 --
restart=Never -it --rm \

-- curl -sI nginx.default.svc.cluster.local | grep
Server

Server: nginx/1.23.4

Chapter 12, Helm

1. Add the Helm chart repository using the provided URL. The
name assigned to the URL is prometheus-community:

$ helm repo add prometheus-community
https://prometheus-community. \
github.io/helm-charts

"prometheus-community" has been added to your

repositories

Update the chart information with the following command:

$ helm repo update prometheus-community

Hang tight while we grab the latest from your chart
repositories...

...Successfully got an update from the "prometheus-
community" \

chart repository

Update Complete. #Happy Helming!#

You can search published chart versions in the the
repository named prometheus-community:

$ helm search hub prometheus-community

URL

CHART VERSION ...
https://artifacthub.io/packages/helm/prometheus. ..
45.28.1

Install the latest version of the chart kube-prometheus-
stack.:

$ helm install prometheus prometheus-community/kube-
prometheus-stack

NAME: prometheus

LAST DEPLOYED: Thu May 18 11:32:31 2023

NAMESPACE: default

STATUS: deployed

REVISION: 1

The installed charts can be listed with the following
command:

$ helm list
NAME NAMESPACE REVISION UPDATED
prometheus default 1 2023-05-18

One of the objects created by the chart is the Service
named prometheus-operated. This Service exposes the
Prometheus dashboard on port 9090:

$ kubectl get service prometheus-operated
NAME TYPE CLUSTER-TIP
EXTERNAL-IP

prometheus-operated ClusterIP None

<none>

Set up port forwarding from port 8080 to port 9090:

$ kubectl port-forward service/prometheus-operated

8080:9090
Forwarding from 127.0.0.1:8080 -> 9090
Forwarding from [::1]:8080 -> 9090

Open a browser and enter the URL http://localhost:8080/.
You will be presented with the Prometheus dashboard.

eee M+ ¢ > © localhost ¢ h + O

g Prometheus

Use local time Enable query history Enable autocomplete Enable highlighting Enable linter
Q kxpressinn (press Shift+Enter for newlines) =R 2l Execute
Table Graph

Evaluation time

Mo data queried yet

Remaove Panel

Add Panel

Uninstall the chart with the following command:

$ helm uninstall prometheus

release "prometheus" uninstalled

http://localhost:8080/

Chapter 13, API Deprecations

1. This exercise verifies your comfort level with handling API
deprecations. You will find that the API version
apps/vlbeta?2 assigned to the Deployment definition
cannot be found when trying to create the objects:

$ kubectl apply -f ./

configmap/data-config created

error: resource mapping not found for name: "nginx"
namespace: "" \
from "deployment.yaml": no matches for kind

"Deployment" in version \
"apps/vlibeta2"

ensure CRDs are installed first

Don't let the error message mislead you. A Deployment is a
built-in API primitive and therefore doesn't require you to
install a CRD for it. Checking on the available API version
confirms that apps/vilbeta2 indeed does not exist:

$ kubectl api-versions
admissionregistration.k8s.io/vl
apiextensions.k8s.io/vl
apiregistration.k8s.io/vl
apps/vl
authentication.k8s.io/vl
authorization.k8s.io/vl
autoscaling/vl

autoscaling/v?2

batch/vl

certificates.k8s.io/vl
coordination.k8s.io/vl
discovery.k8s.io/vl

events.k8s.io/vl
flowcontrol.apiserver.k8s.io/vlbeta?2
flowcontrol.apiserver.k8s.io/vlbeta3
networking.k8s.io/vl

node.k8s.io/vl

policy/vl
rbac.authorization.k8s.io/vl
scheduling.k8s.io/v1
storage.k8s.io/vl

vl

Checking on the Kubernetes Blog, you will find that the API
version apps/vlbeta2 has been removed with Kubernetes
1.16. The replacement API, apps/v1, has been introduced
in Kubernetes 1.9:

Migrate to use the apps/v1 API version, available since

v1.9. Existing persisted data can be retrieved/updated via
the new version.

—Deprecated API Migration Guide

Modify the Deployment manifest file by replacing the API
version:

apiVersion: apps/vl
kind: Deployment
metadata:

name: nginx
spec:

replicas: 2

template:

https://oreil.ly/YBpeD

metadata:
labels:
run: app
spec:
containers:
- image: nginx:1.23.4
name: nginx
ports:
- containerPort: 80
envFrom:
- configMapRef:

name: data-config

Trying to create the Deployment object reveals that you
need to define a label selector with API version apps/v1:

$ kubectl apply -f ./

configmap/data-config unchanged

The Deployment "nginx" is invalid:

* spec.selector: Required wvalue

* gspec.template.metadata.labels: Invalid value: \
map[string]string{"run":"app"}: “selector does \

not match template "labels’

Change the Deployment definition so that it selects the
label of the Pod template:

apiVersion: apps/vl
kind: Deployment
metadata:

name: nginx
spec:

replicas: 2

selector:
matchLabels:
run: app
template:
metadata:
labels:
run: app
spec:

containers:

- image: nginx:1.23.4

name: nginx

ports:

- containerPort:

envFrom:

- configMapRef:

80

name: data-config

Both objects can now be created:

$ kubectl apply -f ./

configmap/data-config unchanged

deployment.apps/nginx created

$ kubectl get deployments,configmaps

NAME

AVATLABLE AGE
deployment.apps/nginx
45s

NAME

configmap/data-config

READY UP-TO-DATE
2/2 2

DATA AGE

2 19m

Chapter 14, Container Probes

1. You can start by generating the YAML manifest in dry-run
mode. The resulting manifest will create the container with
the proper image:

$ kubectl run web-server --image=nginx:1.23.0 --
port=80 -o yaml \
--dry-run=client > probed-pod.yaml

Edit the manifest by defining a startup probe. The finalized
manifest could look as follows:

apiVersion: vl
kind: Pod
metadata:

name: web-server

spec:

containers:

- image: nginx:1.23.0
name: web-server
ports:

- containerPort: 80
name: nginx-port
startupProbe:
httpGet:
path: /
port: nginx-port

Further edit the manifest by defining a readiness probe. The
finalized manifest could look as follows:

apiVersion: vl
kind: Pod
metadata:

name: web-server

spec:

containers:

- image: nginx:1.23.0
name: web-server
ports:

- containerPort: 80
name: nginx-port
startupProbe:
httpGet:
path: /
port: nginx-port
readinessProbe:
httpGet:
path: /
port: nginx-port

initialDelaySeconds: 5

Further edit the manifest by defining a liveness probe. The
finalized manifest could look as follows:

apiVersion: vl
kind: Pod
metadata:
name: web-server
spec:
containers:
- image: nginx:1.23.0
name: web-server
ports:

- containerPort: 80

name: nginx-port
startupProbe:
httpGet:
path: /
port: nginx-port
readinessProbe:
httpGet:
path: /
port: nginx-port
initialDelaySeconds: 5
livenessProbe:
httpGet:
path: /
port: nginx-port
initialDelaySeconds: 10

periodSeconds: 30

Create the Pod, then check its READY and STATUS columns.
The container will transition from ContainerCreating to
Running. At some point, a 1/1 container will be available:

$ kubectl create -f probed-pod.yaml
pod/probed-pod created
$ kubectl get pod web-server

NAME READY STATUS RESTARTS
AGE

web-server 0/1 ContainerCreating 0

7s

$ kubectl get pod web-server

NAME READY STATUS RESTARTS AGE
web-server 0/1 Running 0 8s

$ kubectl get pod web-server

NAME READY STATUS RESTARTS AGE

web-server 1/1 Running 0 38s

You should find the configuration of the probes when
executing the describe command:

$ kubectl describe pod web-server

Containers:

web-server:

Ready: True
Restart Count: O
Liveness: http-get http://:nginx-port/
delay=10s timeout=1s \
period=30s #success=1 #failure=3
Readiness: http-get http://:nginx-port/
delay=5s timeout=1ls \
period=10s #success=1 #failure=3
Startup: http-get http://:nginx-port/
delay=0s timeout=1s \

period=10s #success=1 #failure=3

Chapter 15, Troubleshooting Pods and
Containers

1. First, create the Pod using the given YAML content:

$ kubectl apply -f pod.yaml

pod/date-recorder created

Inspecting the Pod’s status exposes no obvious issues. The
status is “"Running”:

$ kubectl get pods
NAME READY STATUS RESTARTS AGE

date-recorder 1/1 Running 0 5s

Render the logs of the container. The returned error
message indicates that the file or directory
/root/tmp/startup-marker.txt does not exist:

$ kubectl logs date-recorder
[Error: ENOENT: no such file or directory, open \
'/root/tmp/startup-marker.txt'] {

errno: -2,

code: 'ENOENT',

syscall: 'open',

path: '/root/tmp/curr-date.txt'

We could try to open a shell to the container; however, the
container image does not provide a shell:

$ kubectl exec -it date-recorder -- /bin/sh

OCI runtime exec failed: exec failed: unable to
start container \

process: exec: "/bin/sh": stat /bin/sh: no such file
or \

directory: unknown

command terminated with exit code 126

We can use the debug command to create a debugging
container for troubleshooting. The --share-processes
flag lets use share the running nodejs process:

$ kubectl debug -it date-recorder --image=busybox --
target=debian \

--share-processes
Targeting container "debian". If you don't see
processes from this \
container it may be because the container runtime
doesn't support \
this feature.
Defaulting debug container name to debugger-rns89.

If you don't see a command prompt, try pressing

enter.
/ # ps
PID USER TIME COMMAND
1 root 4:21 /nodejs/bin/node -e const fs =
require('fs'); \
let timestamp = Date.now();

fs.writeFile ('/root/tmp/startup-m

35 root 0:00 sh
41 root 0:00 ps

Apparently, the directory we want to write to does indeed
not exist:

$ kubectl exec failing-pod -it -- /bin/sh
/ # 1ls /root/tmp

ls: /root/tmp: No such file or directory

We'll likely want to change the command running the
original container to point to the directory that does exist
upon container start. Alternatively, it may make sense to

mount an ephemeral Volume to provide the directory, as
shown here:

apiVersion: vl
kind: Pod
metadata:
name: date-recorder
spec:
containers:
- name: debian
image: gcr.io/distroless/nodejs20-debianll
command: ["/nodejs/bin/node", "-e", "const fs =
require('fs'); \
let timestamp = Date.now();
fs.writeFile ('/var/startup/\
startup-marker.txt', timestamp.toString(), err
=> { 1if (err) { \
console.error (err); } while(true) {} });"]
volumeMounts:

- mountPath: /var/startup

name: init-volume
volumes:
- name: init-volume

emptyDir: {}

2. Create the namespace with the imperative command:

$ kubectl create ns stress-test

namespace/stress-test created

Create all Pods by pointing the apply command to the
current directory:

$ kubectl apply -f ./
pod/stress-1 created
pod/stress-2 created

pod/stress-3 created

Retrieve the metrics for the Pods from the metrics server
using the top command:

$ kubectl top pods -n stress-test

NAME CPU (cores) MEMORY (bytes)
stress-1 50m 77Mi
stress-2 74m 138Mi
stress-3 58m 94Mi

The Pod with the highest amount of memory consumption is
the Pod named stress-2. The metrics will look different

on your machine given that the amount of consumed

memory is randomized by the command executed per
container.

Chapter 16, Custom Resource Definitions
(CRDs)

1. Create the CRD from the provided URL:

$ kubectl apply -f
https://raw.githubusercontent.com/mongodb/\
mongodb-kubernetes-
operator/master/config/crd/bases/mongodbcommunity. \
mongodb . com mongodbcommunity.yaml
customresourcedefinition.apiextensions.k8s.io/mongod
bcommunity.\

mongodbcommunity.mongodb.com created

You can find the installed CRD named
mongodbcommunity.mongodbcommunity.mongodb.com

with the following command:

$ kubectl get crds

NAME

CREATED AT
mongodbcommunity.mongodbcommunity.mongodb.com

2023-12-18T23:44:047

One way to inspect the schema of the CRD is to use the
kubectl describe command:

$ kubectl describe crds

mongodbcommunity .mongodbcommunity.mongodb.com

You will find that the output of the command is very lengthy.
Looking through the details, you will see that the type is
called MongoDBCommunity. The CRD offers a lot of
properties that can be set when instantiating an object of
this type. See the documentation of the operator for more
information.

. Create the definition of the CRD. The resulting YAML

manifest stored in the file backup-resource.yamllooks like
this:

apiVersion: apiextensions.k8s.io/vl
kind: CustomResourceDefinition
metadata:
name: backups.example.com
spec:
group: example.com
versions:
- name: vl
served: true
storage: true
schema:
openAPIV3Schema:
type: object
properties:
spec:
type: object
properties:
cronExpression:
type: string
podName :
type: string
path:
type: string

scope: Namespaced

names:
kind: Backup
singular: backup
plural: backups
shortNames:
- bu

Create the object from the YAML manifest file:

$ kubectl apply -f backup-resource.yaml
customresourcedefinition.apiextensions.k8s.io/backup

s.example.com created

You can interact with CRD using the following command.
Make sure to spell out the full name of the CRD,
backups.example.com:

$ kubectl get crd backups.example.com
NAME CREATED AT
backups.example.com 2023-05-24T15:11:157%7

$ kubectl describe crd backups.example.com

Create the YAML manifest in file backup.yaml that uses the
CRD kind Backup:

apiVersion: example.com/vl
kind: Backup
metadata:
name: nginx-backup
spec:

cronExpression: "0 0 * * *"

podName: nginx

path: /usr/local/nginx

Create the object from the YAML manifest file:

$ kubectl apply -f backup.yaml

backup.example.com/nginx-backup created

You can interact with the object using the built-in kubectl
commands for any other Kubernetes API primitive:

$ kubectl get backups

NAME AGE

nginx-backup 24s

$ kubectl describe backup nginx-backup

Chapter 17, Authentication, Authorization,
and Admission Control

1. Follow the instructions "How to issue a certificate for a user
"in the Kubernetes documentation to create a certificate for
the user mary. You can find a list of executable commands
in the file app-a/ch17/mary-context/create-user-context.sh.
Avoid creating the corresponding Role and RoleBinding, as
described in “Create Role and RoleBinding”.

Say you generated the client key file mary.key and the client
certificate file mary.crt in the previous step. Use the
following command to add the credentials to the kubeconfig
file referenced by the username mary:

$ kubectl config set-credentials mary --client-
key=mary.key \

--client-certificate=mary.crt --embed-certs=true

Next, add the content for the user mary. This command
uses the context name mary-context that binds the
cluster kubernetes to the user mary. You may want to
check the kubeconfig file to see all available cluster names:

$ kubectl config set-context mary-context --
cluster=kubernetes \

--user=mary

Change the context to mary-context with the following
command:

https://kubernetes.io/docs/reference/access-authn-authz/certificate-signing-requests/#normal-user
https://kubernetes.io/docs/reference/access-authn-authz/certificate-signing-requests/#normal-user
https://oreil.ly/7QIxU

$ kubectl config use-context mary-context

Trying to create a new Pod with the selected context won't
be allowed as the user doesn't have the appropriate
permissions to perform the action:

$ kubectl run nginx --image=nginx:1.25.2 --port=80
Error from server (Forbidden): pods is forbidden:
User "mary" cannot \

create resource "pods" in API group "" in the

namespace "default"

2. Create the namespace t23:

$ kubectl create namespace t23

Create the service account api-call in the namespace:

$ kubectl create serviceaccount api-call -n t23

Define a YAML manifest file with the name pod.yaml. The
contents of a file define a Pod that makes a HTTPS GET call
to the API server to retrieve the list of Services in the
default hamespace:

apiVersion: vl
kind: Pod
metadata:
name: service-list

namespace: t23

spec:
serviceAccountName: api-call
containers:
- name: service-list
image: alpine/curl:3.14
command: ['sh', '-c¢', 'while true; do curl -s -k
-m 5 -H \
"Authorization: Bearer $(cat
/var/run/secrets/kubernetes.io/\
serviceaccount/token)"
https://kubernetes.default.svc.cluster.\
local/api/vl/namespaces/default/services; sleep
10; done']

Create the Pod with the following command:

$ kubectl apply -f pod.yaml

Check the logs of the Pod. The API call is not authorized, as
shown in the log output here:

$ kubectl logs service-list -n t23

"kind": "Status",

"apiVersion": "v1",

"metadata": {},

"status": "Failure",

"message": "services 1s forbidden: User
\"system:serviceaccount:t23 \

:api-call\" cannot list resource

\"services\" in API \

group \"\" in the namespace

\"default\"",
"reason": "Forbidden",
"details": {
"kind": "services"

b
"code": 403

Create the YAML manifest in the file clusterrole.yaml, as
shown here:

apiVersion: rbac.authorization.k8s.io/vl
kind: ClusterRole
metadata:
name: list-services-clusterrole
rules:
- apiGroups: [""]
resources: ["services"]

verbs: ["list"]

Reference the ClusterRole in a RoleBinding defined in the
file rolebinding.yaml. The subject should list the service
account api-call in the namespace t23:

apiVersion: rbac.authorization.k8s.io/vl
kind: RoleBinding
metadata:

name: serviceaccount-service-rolebinding
subjects:
- kind: ServiceAccount

name: api-call

namespace: t23
roleRef:

kind: ClusterRole

name: list-services-clusterrole

apiGroup: rbac.authorization.k8s.io

Create both objects from the YAML manifests:

$ kubectl apply -f clusterrole.yaml
$ kubectl apply -f rolebinding.yaml

The API call running inside of the container should now be
authorized and allowed to list the Service objects in the
default hamespace. As shown in the following output, the

namespace currently hosts at least one Service object, the
kubernetes.default Service:

$ kubectl logs service-list -n t23
{
"kind": "ServicelList",
"apiVersion": "v1",
"metadata": {
"resourceVersion": "1108"
by
"items": [
{
"metadata": |
"name": "kubernetes",
"namespace": "default",

"uid": "30eb5425-8£f60-4bb7-8331-
£91£fe0999e20",

"resourceVersion": "199",

"creationTimestamp": "2022-09-
08T18:06:522",

"labels": {

"component": "apiserver",
"provider": "kubernetes"

by

}

3. You can find the API server configuration file at
/etc/kubernetes/manifests/kube-apiserver.yaml on the
control plane node. If you are using minikube, then you will
have to log into the minikube environment with minikube
ssh.

The attribute spec.containers[0] .command runs the
kube-apiserver executable. The command line flag --
enable-admission-plugins used by the command lists
the enabled admission controller plugins.

For minikube, the default plugin configuration looks like the
following:

spec:
containers:
- command:
- kube-apiserver
- ——-enable-admission-

plugins=NamespacelLifecycle, LimitRanger, \

ServiceAccount,DefaultStorageClass,DefaultToleration

Seconds, \

NodeRestriction,MutatingAdmissionWebhook,ValidatingA
dmissionWebhook, \

ResourceQuota

https://oreil.ly/fy2XD

Overall nine plugins have been enabled in a comma-
separated form. You can read about their functionality in the
Kubernetes documentation. The list of enabled plugins in
your cluster may differ.

https://oreil.ly/rYyX0

Chapter 18, Resource Requirements, Limits,
and Quotas

1. Start by creating a basic definition of a Pod. The following
YAML manifest defines the Pod nhamed hel1lo with a single
container running the image bmuschko/nodejs-hello-
world:1.0.0. Add a Volume of type emptyDir to the Pod
and mount it in the container. Finally, define the resource
requirements for the container:

apiVersion: vl
kind: Pod
metadata:
name: hello
spec:
containers:
- image: bmuschko/nodejs-hello-world:1.0.0
name: hello
ports:
- name: nodejs-port
containerPort: 3000
volumeMounts:
- name: log-volume
mountPath: "/var/log"
resources:
requests:
cpu: 100m
memory: 500Mi
ephemeral-storage: 1Gi
limits:
memory: 500Mi

ephemeral-storage: 2Gi

volumes:
- name: log-volume

emptyDir: {}

Create the Pod object with the following command:

$ kubectl apply -f pod.yaml
pod/hello created

The cluster in this scenario consists of three nodes: one
control plane node and two worker nodes. Be aware that
your setup will likely look different:

$ kubectl get nodes

NAME STATUS ROLES AGE
VERSION
minikube Ready control-plane 65s
v1.28.2
minikube-m02 Ready <none> 44s
v1.28.2
minikube-m03 Ready <none> 26s
v1.28.2

The -o wide flag renders the node that the Pod is running
on, in this case the node named minikube-m03:

$ kubectl get pod hello -o wide

NAME READY STATUS RESTARTS AGE 1P
NODE
hello 1/1 Running 0 25s

10.244.2.2 minikube-m03

The details of the Pod provide information about the
container’s resource requirements:

$ kubectl describe pod hello

Containers:
hello:

Limits:
ephemeral-storage: 2Gi
memory: 500Mi

Requests:
cpu: 100m
ephemeral-storage: 1Gi
memory: 500M

2. First, create the namespace and the resource quota in the
namespace:

$ kubectl create namespace rg-demo
namespace/rg-demo created

$ kubectl apply -f resourcequota.yaml --
namespace=rqg-demo

resourcequota/app created

Inspect the details of the resource quota:

$ kubectl describe quota app --namespace=rg-demo
Name: app
Namespace: rg-demo

Resource Used Hard

pods 0 2
requests.cpu 0 2

requests.memory O 500Mi

Next, create the YAML manifest in the file pod.yam/ with
more requested memory than available in the quota. Start
by running the command kubectl run mypod --
image=nginx —-o yaml —--dry-run=client —-
restart=Never > pod.yaml, and then edit the produced
file. Remember to replace the resources attribute that
has been created automatically:

apiVersion: vl
kind: Pod
metadata:

name: mypod

spec:

containers:

- image: nginx
name: mypod
resources:

requests:
cpu: "0.5"
memory: "1Gi"

restartPolicy: Never

Create the Pod and observe the error message:

$ kubectl apply -f pod.yaml --namespace=rg-demo
Error from server (Forbidden): error when creating
"pod.yaml": pods \

"mypod" is forbidden: exceeded quota: app,

requested: \
requests.memory=1Gi, used: requests.memory=0,
limited: \

requests.memory=500Mi

Lower the memory settings to less than 500Mi (e.g., 255Mi)
and create the Pod:

$ kubectl apply -f pod.yaml --namespace=rg-demo
pod/mypod created

The consumed resources of the Pod can be viewed in
column Used:

$ kubectl describe quota --namespace=rg-demo

Name: app
Namespace: rg-demo
Resource Used Hard
pods 1 2
requests.cpu 500m 2

requests.memory 255Mi 500Mi

3. Create the objects from the given YAML manifest. The file
defines a namespace and a LimitRange object:

$ kubectl apply -f setup.yaml
namespace/d92 created

limitrange/cpu-limit-range created

Describing the LimitRange object gives away its container
configuration details:

$ kubectl describe limitrange cpu-limit-range -n d92

Name: cpu-limit-range
Namespace: d92
Type Resource Min Max Default Request

Default Limit

Container cpu 200m 500m 500m
500m

Define a Pod in the file pod-without-resource-
requirements.yaml/ without any resource requirements:

apiVersion: vl
kind: Pod
metadata:
name: pod-without-resource-requirements
namespace: d92
spec:
containers:
- image: nginx:1.23.4-alpine

name: nginx

Create the Pod object using the apply command:
$ kubectl apply -f pod-without-resource-

requirements.yaml

pod/pod-without-resource-requirements created

A Pod without specified resource requirements will use the
default request and limit defined by LimitRange, in this case
500m:

$ kubectl describe pod pod-without-resource-
requirements -n d92

Containers:
nginx:
Limits:
cpu: 500m
Requests:

cpu: 500m

The Pod defined in the file pod-with-more-cpu-resource-
requirements.yaml/ specifies a higher CPU resource limit
than allowed by the LimitRange:

apiVersion: vl
kind: Pod
metadata:
name: pod-with-more-cpu-resource-requirements
namespace: d92
spec:
containers:
- image: nginx:1.23.4-alpine
name: nginx
resources:
requests:
cpu: 400m
limits:

cpu: 1.5

As a result, the Pod will not be allowed to be scheduled:

$ kubectl apply -f pod-with-more-cpu-resource-
requirements.yaml

Error from server (Forbidden): error when creating \
"pod-with-more-cpu-resource-requirements.yaml": pods
\

"pod-with-more-cpu-resource-requirements" is
forbidden: \

maximum cpu usage per Container is 500m, but limit
is 1500m

Finally, define a Pod in the file pod-with-less-cpu-resource-
requirements.yaml. The CPU resource request and limit fits
within the boundaries of the LimitRange:

apiVersion: vl
kind: Pod
metadata:
name: pod-with-less-cpu-resource-requirements
namespace: d92
spec:
containers:
- image: nginx:1.23.4-alpine
name: nginx
resources:
requests:
cpu: 350m
limits:

cpu: 400m

Create the Pod object using the apply command:

$ kubectl apply -f pod-with-less-cpu-resource-
requirements.yaml

pod/pod-with-less-cpu-resource-requirements created

The Pod uses the provided CPU resource request and limit:

$ kubectl describe pod pod-with-less-cpu-resource-

requirements -n d92

Containers:
nginx:
Limits:
cpu: 400m
Requests:

cpu: 350m

Chapter 19, ConfigMaps and Secrets

1. Create the ConfigMap and point to the text file upon
creation:

$ kubectl create configmap app-config --from-
file=application.yaml

configmap/app-config created

The ConfigMap defines a single key-value pair. The key is
the name of the YAML file, and the value is the contents of
application.yaml:

$ kubectl get configmap app-config -o yaml
apiVersion: vl
data:
application.yaml: |-
dev:
url: http://dev.bar.com
name: Developer Setup
prod:
url: http://foo.bar.com
name: My Cool App
kind: ConfigMap
metadata:
creationTimestamp: "2023-05-22T17:47:522"
name: app-config
namespace: default
resourceVersion: "7971"
uid: 00cfd4ce2-ebec-48b5-a721-elbde2aabd84

Execute the run command in combination with the --dry-
run flag to generate the file for the Pod:

$ kubectl run backend --image=nginx:1.23.4-alpine -o
yaml \

--dry-run=client --restart=Never > pod.yaml

The final YAML manifest should look similar to the following
code snippet:

apiVersion: vl
kind: Pod
metadata:

labels:
run: backend

name: backend

spec:

containers:

- image: nginx:1.23.4-alpine
name: backend
volumeMounts:

- name: config-volume
mountPath: /etc/config
volumes:

- name: config-volume
configMap:

name: app-config

Create the Pod by pointing the apply command to the
YAML manifest:

$ kubectl apply -f pod.yaml

pod/backend created

Log into the Pod and navigate to the directory /etc/config.
You will find the file application.yaml with the expected
YAML content:

$ kubectl exec backend -it -- /bin/sh
/ # cd /etc/config
/etc/config # 1s
application.yaml
/etc/config # cat application.yaml
dev:
url: http://dev.bar.com
name: Developer Setup
prod:
url: http://foo.bar.com
name: My Cool App
/etc/config # exit

2. It's easy to create the Secret from the command line:

$ kubectl create secret generic db-credentials --
from-literal=\
db-password=passwd

secret/db-credentials created

The imperative command automatically Base64-encodes the
provided value of the literal. You can render the details of
the Secret object from the command line. The assigned
value to the key db-password is cGFzc3dk:

$ kubectl get secret db-credentials -o yaml
apiVersion: vl
data:
db-password: cGFzc3dk
kind: Secret
metadata:
creationTimestamp: "2023-05-22T16:47:332"
name: db-credentials
namespace: default
resourceVersion: "7557"
uid: 2daf580a-b672-40dd-8c37-ad4adb57a8cb6e
type: Opaque

Execute the run command in combination with the --dry-
run flag to generate the file for the Pod:

$ kubectl run backend --image=nginx:1.23.4-alpine -o
yaml \
--dry-run=client --restart=Never > pod.yaml

Edit the YAML manifest and create an environment that
reads the key from the Secret while assigning a new name
for it.

apiVersion: vl
kind: Pod
metadata:
labels:
run: backend
name: backend
spec:

containers:

- image: nginx:1.23.4-alpine
name: backend
env:
- name: DB PASSWORD
valueFrom:
secretKeyRef:
name: db-credentials

key: db-password

Create the Pod by pointing the apply command to the
YAML manifest:

$ kubectl apply -f pod.yaml
pod/backend created

You can find the environment variable in Base64-decoded
form by shelling into the container and running the env

command:

$ kubectl exec -it backend -- env
DB PASSWORD=passwd

Chapter 20, Security Contexts

1. Start by creating the Pod definition as a YAML manifest in

the file pod.yaml. Initially, you will only define the container
with its command:

apiVersion: vl
kind: Pod
metadata:

name: busybox-security-context
spec:

containers:

- name: busybox

image: busybox:1.28

command: ["sh", "-c", "sleep 1h"]

Enhance the Pod definition by adding the volume:

apiVersion: vl
kind: Pod
metadata:
name: busybox-security-context
spec:
containers:
- name: busybox
image: busybox:1.36.1
command: ["sh", "-c", "sleep 1h"]
volumeMounts:
- name: vol
mountPath: /data/test
volumes:
- name: vol

emptyDir: {}

Finally, define the security context. Some of the security
context attributes can be set only on the Pod level, while
some others can only be defined on the container level:

apiVersion: vl
kind: Pod
metadata:
name: busybox-security-context
spec:
securityContext:
runAsUser: 1000
runAsGroup: 3000
fsGroup: 2000
containers:
- name: busybox
image: busybox:1.36.1
command: ["sh", "-c", "sleep 1h"]
volumeMounts:
- name: vol
mountPath: /data/test
securityContext:
allowPrivilegeEscalation: false
volumes:
- name: vol

emptyDir: {}

Create the Pod with the following command:

$ kubectl apply -f pod.yaml

pod/busybox-security-context created

Open an interactive shell to the container. Create the file in
the directory of the volume mount. The file user ID should

be 1000 and the group ID should be 2000, as defined by the
security context:

$ kubectl exec -it busybox-security-context -- sh
/ $ cd /data/test

/data/test $ touch logs.txt

/data/test $ 1ls -1

total O

-rw-r—--r-- 1 1000 2000 0 May 23
01:10 logs.txt

/data/test $ exit

command terminated with exit code 1

2. Define a starting point for the Deployment by creating a
new YAML manifest named
deployment_security_context.yaml. Populate the file with
an example from the Kubernetes document. The initial
Deployment manifest may look like this:

apiVersion: apps/vl
kind: Deployment
metadata:
name: nginx
namespace: h20
spec:
replicas: 3
selector:
matchLabels:
app: nginx
template:
metadata:
labels:
app: nginx
spec:

containers:
- name: nginx

image: nginx:1.25.3-alpine

Keep editing the YAML manifest file. Next, add the security
context. Linux capabilities can only be added on the
container level. You can find out by checking the API
documentation:

apiVersion: apps/vl
kind: Deployment
metadata:
name: nginx
namespace: h20
spec:
replicas: 3
selector:
matchLabels:
app: nginx
template:
metadata:

labels:
app: nginx

spec:

containers:

- name: nginx
image: nginx:1.25.3-alpine
securityContext:

capabilities:
drop:
- all

Make sure to create the namespace first if you haven’t done
so yet. Create the Deployment with the following command:

$ kubectl apply -f deployment-security-context.yaml
deployment.apps/nginx created

You will find that all Pods controlled by the Deployment will
end up in a failure status:

$ kubectl get pods -n h20

NAME READY STATUS

RESTARTS AGE

nginx-674df44dfc-51771 0/1 CrashLoopBackOff
4 (18s ago) 111s

nginx-674df44dfc-fmlrh 0/1 CrashLoopBackOff
4 (27s ago) 111s

nginx-674df44dfc-rqgdkp 0/1 CrashLoopBackOff
4 (22s ago) 111s

The reason is that some of the operations required by
NGINX are no longer permitted:

$ kubectl logs nginx-674df44dfc-rqdkp -n h20

2023/12/15 23:59:56 [emerg] 1#1:

chown ("/var/cache/nginx/client temp", \

101) failed (1: Operation not permitted) \

nginx: [emerg] chown ("/var/cache/nginx/client temp",
101) failed \

(1: Operation not permitted)

Chapter 21, Services

1. Expose the service with the type clusterIP on port 80:

$ kubectl create service clusterip myapp --tcp=80:80

service/myapp created

kubectl get services

NAME TYPE CLUSTER-IP EXTERNAL-TIP
PORT (S) AGE

myapp ClusterIP 10.109.149.59 <none>
80/TCP 4s

Create a Deployment with a single Pod:

$ kubectl create deployment myapp --
image=nginx:1.23.4-alpine --port=80
deployment.apps/myapp created

$ kubectl get deployments,pods
NAME READY UP-TO-DATE
AVATILABLE AGE

deployment.apps/myapp 1/1 1 1
79s

NAME READY STATUS
RESTARTS AGE

pod/myapp-7d6cd46d6e5-jrc2qg 1/1 Running 0
78s

Scale the Deployment to 2 replicas:

$ kubectl scale deployment myapp --replicas=2

deployment.extensions/myapp scaled

$ kubectl get deployments,pods
NAME READY UP-TO-DATE
AVATLABLE AGE

deployment.apps/myapp 2/2 2 2
107s

NAME READY STATUS
RESTARTS AGE

pod/myapp-7d6cd46d65-8vr8t 1/1 Running 0
5s

pod/myapp-7docd46d6e5-jrc2qg 1/1 Running 0
106s

Determine the cluster IP and the port for the Service. In this
case, it's 10.109.149.59:80. Alternatively, you can use
the DNS name myapp. Use the information with the wget
command:

$ kubectl run tmp --image=busybox:1.36.1 --
restart=Never -it --rm \

-- wget -O- 10.109.149.59:80
Connecting to 10.109.149.59:80 (10.109.149.59:80)

writing to stdout

written to stdout
pod "tmp" deleted

Turn the type of the service into NodePort to expose it
outside of the cluster. Now, the service should expose a port

in the 30000 range:
$ kubectl edit service myapp
spec:

type: NodePort

$ kubectl get services

NAME TYPE CLUSTER-IP EXTERNAL-IP
PORT (S) AGE
myapp NodePort 10.109.149.59 <none>

80:31205/TCP 6méds

Get the internal IP address of one of the nodes of the
cluster. That's 192.168.49. 2 in this case:

$ kubectl get nodes -o wide

NAME STATUS ROLES AGE VERSION
INTERNAL-TIP
minikube Ready control-plane 11s v1.28.3

192.168.49.2

Run a wget or curl command against the service by using
the node’s internal IP address and the node port. For the
setup explained in the previous section, it's
192.168.49.2:31205:

$ wget -O- 192.168.49.2:31205
--2019-05-10 16:32:35-- http://192.168.49.2:31205/
Resolving localhost (localhost)... ::1, 127.0.0.1

Connecting to localhost (localhost) |::1]1:31205...
connected.

HTTP request sent, awaiting response... 200 OK
Length: 612 [text/html]

2019-05-10 16:32:35 (24.3 MB/s) - written to stdout
[612/612]

2. Create the objects from the setup.yaml file. You will see

from the output that at least three objects have been
created: a namespace, a Deployment, and a Service:

$ kubectl apply -f setup.yaml
namespace/y72 created
deployment.apps/web-app created

service/web-app created

You can list all objects relevant to the scenario using the
following command:

$ kubectl get all -n y72

NAME READY STATUS
RESTARTS AGE

pod/web-app-5£f77£f59¢c78-8svdm 1/1 Running 0
10m

pod/web-app-5f77£59c78-mhvijz 1/1 Running 0
10m

NAME TYPE CLUSTER-IP

EXTERNAL-IP PORT (S)
service/web-app ClusterIP 10.106.215.153
<none> 80/TCP

NAME READY UP-TO-DATE
AVATILABLE AGE

deployment .apps/web-app 2/2 2 2
10m

NAME DESIRED
CURRENT READY AGE
replicaset.apps/web-app-5£77£59c78 2 2
2 10m

The Service named web-app is of type ClusterIP. You
can access the Service only from within the cluster. Trying to
connect to the Service by its DNS name from a temporary
Pod in the same namespace won't be allowed:

$ kubectl run tmp --image=busybox --restart=Never -
it --rm -n y72 \
-- wget web-app
Connecting to web-app (10.106.215.153:80)
wget: can't connect to remote host (10.106.215.153):
Connection refused
pod "tmp" deleted
pod y72/tmp terminated (Error)

The endpoint for the Service web-app cannot be resolved,
as shown by the following command:

$ kubectl get endpoints -n y72
NAME ENDPOINTS AGE

web—-app <none> 15m

Describing the Service object provides you will additional
information, e.g., the label selector and the target port:

$ kubectl describe service web-app -n y72

Name: web-app
Namespace: y72

Labels: <none>
Annotations: <none>
Selector: run=myapp
Type: ClusterIP

IP Family Policy: SingleStack

IP Families: IPv4

IP: 10.106.215.153
IPs: 10.106.215.153
Port: <unset> 80/TCP
TargetPort: 3001/TCP
Endpoints: <none>

Session Affinity: None

Events: <none>

Upon inspecting the Deployment, you will find that the Pod
template uses the label assignment app=webapp. The
container port is set to 3000. This information doesn’t match
the configuration of the Service. The endpoints of the web-
app Service now point to the IP address and container port
of the replicas controlled by the Deployment:

$ kubectl get endpoints -n y72
NAME ENDPOINTS AGE
web-app 10.244.0.3:3000,10.244.0.4:3000 24m

Edit the live object of the Service. Change the label selector
from run=myapp to app=webapp, and the target port from
3001 to 3000:

$ kubectl edit service web-app -n y72

service/web-app edited

After changing the Service configuration, you will find that
you can open a connection to the Pod running the
application:

$ kubectl run tmp --image=busybox:1.36.1 --
restart=Never -it --rm -n y72 \

-- wget web-app
Connecting to web-app (10.106.215.153:80)
saving to 'index.html'
index.html 100%
| ok ok ok KKK KKK KKK KKK Rk ok ok ok ok kK
'index.html' saved
pod "tmp" deleted

Chapter 22, Ingresses

1. Create the Deployment with the following command:

$ kubectl create deployment web --
image=bmuschko/nodejs-hello-world:1.0.0
deployment.apps/web created

$ kubectl get deployment web

NAME READY UP-TO-DATE AVATILABLE AGE
web 1/1 1 1 6s

Afterward, expose the application with a Service:

$ kubectl expose deployment web --type=ClusterIP --
port=3000

service/web exposed

$ kubectl get service web

NAME TYPE CLUSTER-IP EXTERNAL-IP
PORT (S) AGE
web ClusterIP 10.100.86.59 <none>

3000/TCP 6s

Determine the cluster IP and the port for the Service. In this
case, it's 10.109.149.59:3000. Alternatively, you can use

the DNS name web. Use the information to execute a wget
command from another Pod:

$ kubectl run tmp --image=busybox:1.36.1 --
restart=Never -it --rm \

-- wget -O- web:3000
Connecting to web:3000 (10.100.86.59:3000)
writing to stdout
Hello World

pod "tmp" deleted

Create an Ingress using the following manifest in the file
ingress.yaml. The following content assumes that you use

the NGINX Ingress controller:

apiVersion: networking.k8s.io/vl
kind: Ingress
metadata:

name: hello-world-ingress

annotations:

nginx.ingress.kubernetes.io/rewrite-target:

spec:
rules:
- host: hello-world.exposed
http:
paths:
- path: /
pathType: Prefix
backend:
service:
name: web
port:
number: 3000

Create the Ingress object from the YAML manifest:

/81

$ kubectl apply -f ingress.yaml
ingress.networking.k8s.io/hello-world-ingress

created

List the Ingress object. The value for the IP address will
populate after a little while. You may have to run the
command multiple times:

$ kubectl get ingress hello-world-ingress

NAME CLASS HOSTS
ADDRESS
hello-world-ingress nginx hello-world.exposed

192.168.64.38

Edit the file /etc/hosts via sudo vim /etc/hosts. Add
the following entry to map the host name hello-
world.exposed to the load balancer’s IP address:

192.168.64.38 hello-world.exposed

Make a curl call to the host name mapped by the Ingress.
The call should be routed toward the backend and respond
with the message “Hello World":

$ curl hello-world.exposed
Hello World

. Start by creating the objects in the manifest file setup.yaml.
The manifest defines a Deployment, Service, and an Ingress
in the namespace s96:

$ kubectl apply -f setup.yaml
namespace/s96 created
deployment.apps/nginx created
service/nginx created

ingress.networking.k8s.io/nginx created

Sending a HTTP request to the hostname faulty.ingress.com
will result in an error. The call responds with a HTTP 503
code:

$ wget faulty.ingress.com/

--2024-01-04 09:45:44-- http://faulty.ingress.com/
Resolving faulty.ingress.com (faulty.ingress.com)...
127.0.0.1

Connecting to faulty.ingress.com
(faulty.ingress.com) [127.0.0.11:80...

HTTP request sent, awaiting response... 503 Service
Temporarily \

Unavailable

2024-01-04 09:45:44 ERROR 503: Service Temporarily

Unavailable.

The Ingress defines a single rule for the root URL context
path, which targets the backend with the Service name
nginx and port 3333. The Service does not expose port
3333. It uses port 9999. You can fix the issue by changing
the backend port in the Ingress manifest to 9999. Make the
change in the setup.yaml file and apply the changes to the
live object:

$ kubectl apply -f setup.yaml

namespace/s96 unchanged
deployment.apps/nginx unchanged
service/nginx unchanged

ingress.networking.k8s.io/nginx configured

The call to to the domain main will now properly forward
the traffic to the Service. You will receive a HTTP 200
response code:

$ wget faulty.ingress.com/

--2024-01-04 09:43:03-- http://faulty.ingress.com/
Resolving faulty.ingress.com (faulty.ingress.com)...
127.0.0.1

Connecting to faulty.ingress.com
(faulty.ingress.com) [127.0.0.11:80...

HTTP request sent, awaiting response... 200 OK

Chapter 23, Network Policies

1. Create the objects from the setup.yaml file. The manifest
creates two Pods in different namespaces:

$ kubectl apply -f setup.yaml
namespace/end-user created
namespace/internal created
pod/frontend created
pod/backend created

Ensure that the frontend Pod can reach the backend Pod
before establishing the network policy:

$ kubectl get pod backend --template

'{{.status.podIP}}' -n internal

10.244.0.49

$ kubectl exec frontend -it -n end-user \
-- wget --spider --timeout=1 10.244.0.49

Connecting to 10.244.0.49 (10.244.0.49:80)

remote file exists

Define a network policy in the namespace end-user using
the file app-stack-networkpolicy.yaml. The Pod selector
should use the label assigned to the frontend Pod. The
egress rule needs to select the Pod by assigned label and
the corresponding namespace it runs in. Ensure that you list
the allowed ports.

apiVersion: networking.k8s.io/vl
kind: NetworkPolicy
metadata:
name: app-stack
namespace: end-user
spec:
podSelector:
matchLabels:
app: frontend
policyTypes:
- Egress
egress:
- to:
- podSelector:
matchLabels:
app: backend
namespaceSelector:
matchLabels:
access: inside
ports:
- protocol: TCP
port: 80

Create the object from the YAML manifest:

$ kubectl apply -f allow-egress-networkpolicy.yaml
networkpolicy.networking.k8s.io/allow-egress-

networkpolicy created

The frontend Pod should still be able to reach the
backend Pod if you define the network policy correctly:

$ kubectl exec frontend -it -n end-user \
-- wget --spider --timeout=1 10.244.0.49
Connecting to 10.244.0.49 (10.244.0.49:80)

remote file exists

2. Create the objects from the setup.yaml file. The manifest
creates two Pods and a network policy:

$ kubectl apply -f setup.yaml

namespace/kl created

namespace/k2 created

pod/busybox created

pod/nginx created
networkpolicy.networking.k8s.io/default-deny-ingress

created

Check on the Pods in namespace k1 and k2:

$ kubectl get pod -n k1l
NAME READY STATUS RESTARTS AGE
busybox 1/1 Running 0 3s

$ kubectl get pod nginx --template

'{{.status.podIP}}' -n k2
10.0.0.101

Opening a connection to the Pod nginx won't be allowed
and it will time out:

$ kubectl exec -it busybox -n k1l -- wget --timeout=5

10.0.0.101:80
Connecting to 10.0.0.101:80 (10.0.0.101:80)
wget: download timed out

command terminated with exit code 1

Define a network policy in allow-ingress-networkpolicy.yam/
that will allow ingress access from the namespace k1 to k2:

apiVersion: networking.k8s.io/vl
kind: NetworkPolicy
metadata:
name: allow-ingress-networkpolicy
namespace: k2
spec:
podSelector:
matchLabels:
app: backend
policyTypes:
- Ingress
ingress:
- from:
- namespaceSelector:
matchLabels:
role: consumer
ports:
- protocol: TCP
port: 80

Create the object from the YAML manifest:

$ kubectl apply -f allow-ingress-networkpolicy.yaml
networkpolicy.networking.k8s.io/allow-ingress-

networkpolicy created

You can now make a call from any Pod in namespace k1 to
the Pod nginx in namespace k2:

$ kubectl exec -it busybox -n k1l -- wget --timeout=5
10.0.0.101:80
Connecting to 10.0.0.101:80 (10.0.0.101:80)

saving to 'index.html'

Appendix B. Exam Review
Guide

This book covers all objectives relevant to the exam and more. The
tables in this appendix map the exam objective to the
corresponding book chapter. Furthermore, you will also find a
reference to the Kubernetes documentation. Some foundational
objectives important to the exam, such as Pods and namespaces,
have not been listed explicitly in the curriculum; however, the book
does cover them. You can use the mapping as a reference to review
specific objectives in more detail.

Application Design and Build

Exam Reference

Objective Chapter Documentation Tutorial

Define, build, Chapter 4 Containers N/A

and modify

container

images

Understand Chapter 6 Job, CronJob Indexed Job

Jobs and for Parallel

CronJobs Processing
with Static
Work
Assignment,
Automatic
Cleanup for
Finished Jobs,
Running
Automated
Tasks with a
CronJob

Understand Chapter 8 Init Containers, N/A

multi- How Pods

container Pod manage multiple
design containers

patterns

Utilize Chapter 7 Ephemeral N/A
persistent Volumes,

and Persistent

https://oreil.ly/vXUWo
https://oreil.ly/fIKQc
https://oreil.ly/IIL2R
https://oreil.ly/ytd_X
https://oreil.ly/ytd_X
https://oreil.ly/ytd_X
https://oreil.ly/ytd_X
https://oreil.ly/ytd_X
https://oreil.ly/ytd_X
https://kubernetes.io/docs/concepts/workloads/controllers/ttlafterfinished/
https://kubernetes.io/docs/concepts/workloads/controllers/ttlafterfinished/
https://kubernetes.io/docs/concepts/workloads/controllers/ttlafterfinished/
https://kubernetes.io/docs/tasks/job/automated-tasks-with-cron-jobs/
https://kubernetes.io/docs/tasks/job/automated-tasks-with-cron-jobs/
https://kubernetes.io/docs/tasks/job/automated-tasks-with-cron-jobs/
https://kubernetes.io/docs/tasks/job/automated-tasks-with-cron-jobs/
https://kubernetes.io/docs/concepts/workloads/pods/init-containers/
https://kubernetes.io/docs/concepts/workloads/pods/#how-pods-manage-multiple-containers
https://kubernetes.io/docs/concepts/workloads/pods/#how-pods-manage-multiple-containers
https://kubernetes.io/docs/concepts/workloads/pods/#how-pods-manage-multiple-containers
https://kubernetes.io/docs/concepts/storage/ephemeral-volumes/
https://kubernetes.io/docs/concepts/storage/ephemeral-volumes/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/

Exam Reference
Objective Chapter Documentation Tutorial

ephemeral Volumes, Storage
volumes Classes

https://kubernetes.io/docs/concepts/storage/ephemeral-volumes/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://kubernetes.io/docs/concepts/storage/storage-classes/
https://kubernetes.io/docs/concepts/storage/storage-classes/

Application Deployment

Exam

Objective Chapter

Use Chapter 11
Kubernetes

primitives to

implement

common

deployment

strategies

Understand
Deployments
and how to
perform
rolling
updates

Chapter 10

Use the Helm Chapter 12
package

manager to

deploy

existing

packages

Reference

Documentation

Deployment Spec
Strategy, Canary

Deployment

Deployments

Helm Project

Tutorial

Zero-
downtime
Deployment
in Kubernetes
with Jenkins

Using kubectl
to Create a
Deployment,
Performing a
Rolling
Update,
Running
Multiple
Instances of
Your App

Helm Charts:
making it
simple to
package and
deploy
common
applications
on
Kubernetes

https://kubernetes.io/docs/concepts/workloads/controllers/deployment/#strategy
https://kubernetes.io/docs/concepts/workloads/controllers/deployment/#strategy
https://kubernetes.io/docs/concepts/cluster-administration/manage-deployment/#canary-deployments
https://kubernetes.io/docs/concepts/cluster-administration/manage-deployment/#canary-deployments
https://kubernetes.io/blog/2018/04/30/zero-downtime-deployment-kubernetes-jenkins/
https://kubernetes.io/blog/2018/04/30/zero-downtime-deployment-kubernetes-jenkins/
https://kubernetes.io/blog/2018/04/30/zero-downtime-deployment-kubernetes-jenkins/
https://kubernetes.io/blog/2018/04/30/zero-downtime-deployment-kubernetes-jenkins/
https://kubernetes.io/blog/2018/04/30/zero-downtime-deployment-kubernetes-jenkins/
https://kubernetes.io/docs/concepts/workloads/controllers/deployment/
https://kubernetes.io/docs/tutorials/kubernetes-basics/deploy-app/deploy-intro/
https://kubernetes.io/docs/tutorials/kubernetes-basics/deploy-app/deploy-intro/
https://kubernetes.io/docs/tutorials/kubernetes-basics/deploy-app/deploy-intro/
https://kubernetes.io/docs/tutorials/kubernetes-basics/update/update-intro/
https://kubernetes.io/docs/tutorials/kubernetes-basics/update/update-intro/
https://kubernetes.io/docs/tutorials/kubernetes-basics/update/update-intro/
https://kubernetes.io/docs/tutorials/kubernetes-basics/scale/scale-intro/
https://kubernetes.io/docs/tutorials/kubernetes-basics/scale/scale-intro/
https://kubernetes.io/docs/tutorials/kubernetes-basics/scale/scale-intro/
https://kubernetes.io/docs/tutorials/kubernetes-basics/scale/scale-intro/
https://helm.sh/docs/
https://kubernetes.io/blog/2016/10/helm-charts-making-it-simple-to-package-and-deploy-apps-on-kubernetes/
https://kubernetes.io/blog/2016/10/helm-charts-making-it-simple-to-package-and-deploy-apps-on-kubernetes/
https://kubernetes.io/blog/2016/10/helm-charts-making-it-simple-to-package-and-deploy-apps-on-kubernetes/
https://kubernetes.io/blog/2016/10/helm-charts-making-it-simple-to-package-and-deploy-apps-on-kubernetes/
https://kubernetes.io/blog/2016/10/helm-charts-making-it-simple-to-package-and-deploy-apps-on-kubernetes/
https://kubernetes.io/blog/2016/10/helm-charts-making-it-simple-to-package-and-deploy-apps-on-kubernetes/
https://kubernetes.io/blog/2016/10/helm-charts-making-it-simple-to-package-and-deploy-apps-on-kubernetes/
https://kubernetes.io/blog/2016/10/helm-charts-making-it-simple-to-package-and-deploy-apps-on-kubernetes/
https://kubernetes.io/blog/2016/10/helm-charts-making-it-simple-to-package-and-deploy-apps-on-kubernetes/

Application Observability and Maintenance

Exam
Objective

Understand
API
deprecations

Implement
probes and
health
checks

Use provided
tools to
monitor
Kubernetes
applications

Utilize
container
logs

Debugging in
Kubernetes

Chapter

Chapter 13

Chapter 14

Chapter 15

Chapter 15

Chapter 15

Reference

Documentation Tutorial

Kubernetes
Deprecation
Policy,
Deprecated API
Migration Guide

Container probes

Metrics Server
Project

Interacting with
running Pods

N/A

N/A

Configure
Liveness,
Readiness and
Startup Probes

Metrics Server

Examining Pod
Logs

Troubleshooting
Applications,
Debug Running
Pods, Debug
Pods, Use Port
Forwarding to
Access

https://kubernetes.io/docs/reference/using-api/deprecation-policy/
https://kubernetes.io/docs/reference/using-api/deprecation-policy/
https://kubernetes.io/docs/reference/using-api/deprecation-policy/
https://kubernetes.io/docs/reference/using-api/deprecation-guide/
https://kubernetes.io/docs/reference/using-api/deprecation-guide/
https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle/#container-probes
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/
https://github.com/kubernetes-sigs/metrics-server
https://github.com/kubernetes-sigs/metrics-server
https://kubernetes.io/docs/tasks/debug/debug-cluster/resource-metrics-pipeline/#metrics-server
https://kubernetes.io/docs/reference/kubectl/cheatsheet/#interacting-with-running-pods
https://kubernetes.io/docs/reference/kubectl/cheatsheet/#interacting-with-running-pods
https://kubernetes.io/docs/tasks/debug/debug-application/debug-running-pod/#examine-pod-logs
https://kubernetes.io/docs/tasks/debug/debug-application/debug-running-pod/#examine-pod-logs
https://kubernetes.io/docs/tasks/debug/debug-application/
https://kubernetes.io/docs/tasks/debug/debug-application/
https://kubernetes.io/docs/tasks/debug/debug-application/debug-running-pod/
https://kubernetes.io/docs/tasks/debug/debug-application/debug-running-pod/
https://kubernetes.io/docs/tasks/debug/debug-application/debug-pods/
https://kubernetes.io/docs/tasks/debug/debug-application/debug-pods/
https://kubernetes.io/docs/tasks/access-application-cluster/port-forward-access-application-cluster/
https://kubernetes.io/docs/tasks/access-application-cluster/port-forward-access-application-cluster/
https://kubernetes.io/docs/tasks/access-application-cluster/port-forward-access-application-cluster/

Exam Reference
Objective Chapter Documentation Tutorial

Applications in
a Cluster

Application Environment, Configuration, and

https://kubernetes.io/docs/tasks/access-application-cluster/port-forward-access-application-cluster/
https://kubernetes.io/docs/tasks/access-application-cluster/port-forward-access-application-cluster/
https://kubernetes.io/docs/tasks/access-application-cluster/port-forward-access-application-cluster/
https://kubernetes.io/docs/tasks/access-application-cluster/port-forward-access-application-cluster/

Security

Exam

Objective Chapter

Discover and
use resources
that extend
Kubernetes
(CRD)

Chapter 16

Understand
authentication,
authorization
and admission
control

Chapter 17

Understand and Chapter 18
defining

resource

requirements,

limits and

quotas

Understand
ConfigMaps

Chapter 19

Create and
consume

Chapter 19

Reference
Documentation

Custom
Resources

Controlling
Access to the
Kubernetes API,
Authenticating,
Using RBAC
Authorization,
Admission
Controllers
Reference

Resource
Management for
Pods and
Containers, Limit
Ranges,
Resource Quotas

ConfigMaps

Secrets

Tutorial

Use Custom
Resources

N/A

N/A

Configure a
Pod to Use a
ConfigMap

Managing
Secrets using

https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/
https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/
https://kubernetes.io/docs/tasks/extend-kubernetes/custom-resources/
https://kubernetes.io/docs/tasks/extend-kubernetes/custom-resources/
https://kubernetes.io/docs/concepts/security/controlling-access/
https://kubernetes.io/docs/concepts/security/controlling-access/
https://kubernetes.io/docs/concepts/security/controlling-access/
https://kubernetes.io/docs/reference/access-authn-authz/authentication/
https://kubernetes.io/docs/reference/access-authn-authz/rbac/
https://kubernetes.io/docs/reference/access-authn-authz/rbac/
https://kubernetes.io/docs/reference/access-authn-authz/admission-controllers/
https://kubernetes.io/docs/reference/access-authn-authz/admission-controllers/
https://kubernetes.io/docs/reference/access-authn-authz/admission-controllers/
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
https://kubernetes.io/docs/concepts/policy/limit-range/
https://kubernetes.io/docs/concepts/policy/limit-range/
https://kubernetes.io/docs/concepts/policy/resource-quotas/
https://kubernetes.io/docs/concepts/configuration/configmap/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-pod-configmap/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-pod-configmap/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-pod-configmap/
https://kubernetes.io/docs/concepts/configuration/secret/
https://kubernetes.io/docs/tasks/configmap-secret/managing-secret-using-kubectl/
https://kubernetes.io/docs/tasks/configmap-secret/managing-secret-using-kubectl/

Exam
Objective

Secrets

Understand
ServiceAccounts

Understand
SecurityContext

Chapter

Chapter 17

Chapter 20

Reference
Documentation

Service
Accounts,
ServiceAccount
permissions

N/A

Tutorial

kubectl,
Managing
Secrets using
Configuration
File

Configure
Service
Accounts for
Pods

Configure a
Security
Context for a
Pod or
Container

https://kubernetes.io/docs/tasks/configmap-secret/managing-secret-using-kubectl/
https://kubernetes.io/docs/tasks/configmap-secret/managing-secret-using-kubectl/
https://kubernetes.io/docs/tasks/configmap-secret/managing-secret-using-kubectl/
https://kubernetes.io/docs/tasks/configmap-secret/managing-secret-using-config-file/
https://kubernetes.io/docs/tasks/configmap-secret/managing-secret-using-config-file/
https://kubernetes.io/docs/tasks/configmap-secret/managing-secret-using-config-file/
https://kubernetes.io/docs/tasks/configmap-secret/managing-secret-using-config-file/
https://kubernetes.io/docs/concepts/security/service-accounts/
https://kubernetes.io/docs/concepts/security/service-accounts/
https://kubernetes.io/docs/reference/access-authn-authz/rbac/#service-account-permissions
https://kubernetes.io/docs/reference/access-authn-authz/rbac/#service-account-permissions
https://kubernetes.io/docs/tasks/configure-pod-container/configure-service-account/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-service-account/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-service-account/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-service-account/
https://kubernetes.io/docs/tasks/configure-pod-container/security-context/
https://kubernetes.io/docs/tasks/configure-pod-container/security-context/
https://kubernetes.io/docs/tasks/configure-pod-container/security-context/
https://kubernetes.io/docs/tasks/configure-pod-container/security-context/
https://kubernetes.io/docs/tasks/configure-pod-container/security-context/

Services and Networking

Exam Reference
Objective Chapter Documentation Tutorial

Demonstrate Chapter 23 Network Policies Declare

basic Network
understanding Policy
of

NetworkPolicies

Provide and Chapter 21 Service, DNS for Connecting
troubleshoot Services and Applications
access to Pods with
applications via Services,
services Debug
Services
Use Ingress Chapter 22 Ingress, Ingress Set up
rules to expose Controllers Ingress on
applications Minikube
with the
NGINX
Ingress

Controller

https://kubernetes.io/docs/concepts/services-networking/network-policies/
https://kubernetes.io/docs/tasks/administer-cluster/declare-network-policy/
https://kubernetes.io/docs/tasks/administer-cluster/declare-network-policy/
https://kubernetes.io/docs/tasks/administer-cluster/declare-network-policy/
https://kubernetes.io/docs/concepts/services-networking/service/
https://kubernetes.io/docs/concepts/services-networking/dns-pod-service/
https://kubernetes.io/docs/concepts/services-networking/dns-pod-service/
https://kubernetes.io/docs/concepts/services-networking/dns-pod-service/
https://kubernetes.io/docs/tutorials/services/connect-applications-service/
https://kubernetes.io/docs/tutorials/services/connect-applications-service/
https://kubernetes.io/docs/tutorials/services/connect-applications-service/
https://kubernetes.io/docs/tutorials/services/connect-applications-service/
https://kubernetes.io/docs/tasks/debug/debug-application/debug-service/
https://kubernetes.io/docs/tasks/debug/debug-application/debug-service/
https://kubernetes.io/docs/concepts/services-networking/ingress/
https://kubernetes.io/docs/concepts/services-networking/ingress-controllers/
https://kubernetes.io/docs/concepts/services-networking/ingress-controllers/
https://kubernetes.io/docs/tasks/access-application-cluster/ingress-minikube/
https://kubernetes.io/docs/tasks/access-application-cluster/ingress-minikube/
https://kubernetes.io/docs/tasks/access-application-cluster/ingress-minikube/
https://kubernetes.io/docs/tasks/access-application-cluster/ingress-minikube/
https://kubernetes.io/docs/tasks/access-application-cluster/ingress-minikube/
https://kubernetes.io/docs/tasks/access-application-cluster/ingress-minikube/
https://kubernetes.io/docs/tasks/access-application-cluster/ingress-minikube/

About the Author

Benjamin Muschko is a software engineer, consultant, and trainer
with more than 20 years of experience in the industry. He’s
passionate about project automation, testing, and continuous
delivery. Ben is an author, a frequent speaker at conferences, and
an avid open source advocate. He holds the CKAD, CKA, and CKS
certifications and is a CNCF Ambassador.

Software projects sometimes feel like climbing a mountain. In his
free time, Ben loves hiking Colorado’s 14ers and enjoys conquering
long-distance trails.

https://www.14ers.com/

Colophon

The animal on the cover of Certified Kubernetes Application
Developer (CKAD) Study Guide is a common porpoise (Phocoena
phocoena). 1t is the smallest of the seven species of porpoise and
one of the smallest marine mammals. Adults are 4.5 to 6 feet long
and weigh between 130 and 170 pounds. They are dark gray with
lightly speckled sides and white undersides. Females are larger than
males.

The common porpoise lives in the coastal waters of the North
Atlantic, North Pacific, and Black Sea. They are also known as
harbor porpoises since they inhabit fjords, bays, estuaries, and
harbors. These marine mammals eat very small schooling fish and
will hunt several hundred fish per hour throughout the day. They are
usually solitary hunters but will occasionally form small packs.

Porpoises use ultrasonic clicks for echolocation (for both navigation
and hunting) and social communication. A mass of adipose tissue in
the skull, known as a melon, focuses and modulates their
vocalizations.

Porpoises are conscious breathers; if they are unconscious for a long
time, they may drown. In captivity, they have been known to sleep
with one side of their brain at a time so that they can still swim and
breathe consciously.

The conservation status of the common porpoise is of least concern.
Many of the animals on O'Reilly covers are endangered; all of them
are important to the world.

The cover illustration is by Karen Montgomery, based on a black and
white engraving from British Quadrupeds. The series design is by
Edie Freedman, Ellie Volckhausen, and Karen Montgomery. The
cover fonts are Gilroy Semibold and Guardian Sans. The text font is
Adobe Minion Pro; the heading font is Adobe Myriad Condensed;
and the code font is Dalton Maag’s Ubuntu Mono.

	Foreword
	Preface
	Who This Book Is For
	What You Will Learn
	What’s New in the Second Edition
	Conventions Used in This Book
	Using Code Examples
	O’Reilly Online Learning
	How to Contact Us
	Acknowledgments

	I. Introduction
	1. Exam Details and Resources
	Kubernetes Certification Learning Path
	Kubernetes and Cloud Native Associate (KCNA)
	Kubernetes and Cloud Native Security Associate (KCSA)
	Certified Kubernetes Application Developer (CKAD)
	Certified Kubernetes Administrator (CKA)
	Certified Kubernetes Security Specialist (CKS)

	Exam Objectives
	Curriculum
	Application Design and Build
	Application Deployment
	Application Observability and Maintenance
	Application Environment, Configuration, and Security
	Services and Networking

	Involved Kubernetes Primitives
	Documentation
	Exam Environment and Tips
	Candidate Skills
	Time Management
	Command-Line Tips and Tricks
	Setting a Context and Namespace
	Using the Alias for kubectl
	Using kubectl Command Auto-Completion
	Internalize Resource Short Names

	Practicing and Practice Exams
	Summary

	2. Kubernetes in a Nutshell
	What Is Kubernetes?
	Features
	High-Level Architecture
	Control Plane Node Components
	Common Node Components

	Advantages
	Summary

	3. Interacting with Kubernetes
	API Primitives and Objects
	Using kubectl
	Managing Objects
	Imperative Object Management
	Declarative Object Management
	Hybrid Approach
	Which Approach to Use?

	Summary

	II. Application Design and Build
	4. Containers
	Container Terminology
	Containerizing a Java-Based Application
	Writing a Dockerfile
	Building the Container Image
	Listing Container Images
	Running the Container
	Listing Containers
	Interacting with the Container
	Publishing the Container Image
	Saving and Loading a Container Image

	Going Further
	Summary
	Exam Essentials
	Sample Exercises

	5. Pods and Namespaces
	Working with Pods
	Creating Pods
	Listing Pods
	Pod Life Cycle Phases
	Rendering Pod Details
	Accessing Logs of a Pod
	Executing a Command in Container
	Creating a Temporary Pod
	Using a Pod’s IP Address for Network Communication
	Configuring Pods
	Deleting a Pod

	Working with Namespaces
	Listing Namespaces
	Creating and Using a Namespace
	Setting a Namespace Preference
	Deleting a Namespace

	Summary
	Exam Essentials
	Sample Exercises

	6. Jobs and CronJobs
	Working with Jobs
	Creating and Inspecting Jobs
	Job Operation Types
	Restart Behavior

	Working with CronJobs
	Creating and Inspecting CronJobs
	Configuring Retained Job History

	Summary
	Exam Essentials
	Sample Exercises

	7. Volumes
	Working with Storage
	Volume Types
	Ephemeral Volumes
	Persistent Volumes
	Storage Classes

	Summary
	Exam Essentials
	Sample Exercises

	8. Multi-Container Pods
	Working with Multiple Containers in a Pod
	Init Containers
	The Sidecar Pattern
	The Adapter Pattern
	The Ambassador Pattern

	Summary
	Exam Essentials
	Sample Exercises

	9. Labels and Annotations
	Working with Labels
	Declaring Labels
	Inspecting Labels
	Modifying Labels for a Live Object
	Using Label Selectors
	Recommended Labels

	Working with Annotations
	Declaring Annotations
	Inspecting Annotations
	Modifying Annotations for a Live Object
	Reserved Annotations

	Summary
	Exam Essentials
	Sample Exercises

	III. Application Deployment
	10. Deployments
	Working with Deployments
	Creating Deployments
	Listing Deployments and Their Pods
	Rendering Deployment Details
	Deleting a Deployment

	Performing Rolling Updates and Rollbacks
	Updating a Deployment’s Pod Template
	Rolling Out a New Revision
	Adding a Change Cause for a Revision
	Rolling Back to a Previous Revision

	Scaling Workloads
	Manually Scaling a Deployment
	Autoscaling a Deployment
	Creating Horizontal Pod Autoscalers
	Listing Horizontal Pod Autoscalers
	Rendering Horizontal Pod Autoscaler Details
	Defining Multiple Scaling Metrics

	Summary
	Exam Essentials
	Sample Exercises

	11. Deployment Strategies
	Rolling Deployment Strategy
	Implementation
	Use Cases and Trade-Offs

	Fixed Deployment Strategy
	Implementation
	Use Cases and Trade-Offs

	Blue-Green Deployment Strategy
	Implementation
	Use Cases and Trade-Offs

	Canary Deployment Strategy
	Implementation
	Use Cases and Trade-Offs

	Summary
	Exam Essentials
	Sample Exercises

	12. Helm
	Managing an Existing Chart
	Identifying a Chart
	Adding a Chart Repository
	Searching for a Chart in a Repository
	Installing a Chart
	Listing Installed Charts
	Upgrading an Installed Chart
	Uninstalling a Chart

	Summary
	Exam Essentials
	Sample Exercises

	IV. Application Observability and Maintenance
	13. API Deprecations
	Understanding the Deprecation Policy
	Listing Available API Versions
	Handling Deprecation Warnings
	Handling a Removed or Replaced API
	Summary
	Exam Essentials
	Sample Exercises

	14. Container Probes
	Working with Probes
	Probe Types
	Health Verification Methods
	Health Check Attributes

	The Readiness Probe
	The Liveness Probe
	The Startup Probe
	Summary
	Exam Essentials
	Sample Exercises

	15. Troubleshooting Pods and Containers
	Troubleshooting Pods
	Retrieving High-Level Information
	Inspecting Events
	Using Port Forwarding

	Troubleshooting Containers
	Inspecting Logs
	Opening an Interactive Shell
	Interacting with a Distroless Container

	Inspecting Resource Metrics
	Summary
	Exam Essentials
	Sample Exercises

	V. Application Environment, Configuration, and Security
	16. CustomResourceDefinitions (CRDs)
	Working with CRDs
	Example CRD
	Implementing a CRD Schema
	Instantiating an Object for the CRD
	Discovering CRDs
	Implementing a Controller

	Summary
	Exam Essentials
	Sample Exercises

	17. Authentication, Authorization, and Admission Control
	Processing a Request
	Authentication with kubectl
	The Kubeconfig
	Managing Kubeconfig Using kubectl

	Authorization with Role-Based Access Control
	RBAC Overview
	Understanding RBAC API Primitives
	Default User-Facing Roles
	Creating Roles
	Listing Roles
	Rendering Role Details
	Creating RoleBindings
	Listing RoleBindings
	Rendering RoleBinding Details
	Seeing the RBAC Rules in Effect
	Namespace-Wide and Cluster-Wide RBAC

	Working with Service Accounts
	The Default Service Account
	Creating a Service Account
	Setting Permissions for a Service Account

	Admission Control
	Summary
	Exam Essentials
	Sample Exercises

	18. Resource Requirements, Limits, and Quotas
	Working with Resource Requirements
	Defining Container Resource Requests
	Defining Container Resource Limits
	Defining Container Resource Requests and Limits

	Working with Resource Quotas
	Creating ResourceQuotas
	Rendering ResourceQuota Details
	Exploring a ResourceQuota’s Runtime Behavior

	Working with Limit Ranges
	Creating LimitRanges
	Rendering LimitRange Details
	Exploring a LimitRange’s Runtime Behavior

	Summary
	Exam Essentials
	Sample Exercises

	19. ConfigMaps and Secrets
	Working with ConfigMaps
	Creating a ConfigMap
	Consuming a ConfigMap as Environment Variables
	Mounting a ConfigMap as a Volume

	Working with Secrets
	Creating a Secret
	Consuming a Secret as Environment Variables
	Mounting a Secret as a Volume

	Summary
	Exam Essentials
	Sample Exercises

	20. Security Contexts
	Working with Security Contexts
	Defining a Security Context on the Pod Level
	Defining a Security Context on the Container Level
	Defining a Security Context on the Pod and Container Level

	Summary
	Exam Essentials
	Sample Exercises

	VI. Services and Networking
	21. Services
	Working with Services
	Service Types
	Port Mapping
	Creating Services
	Listing Services
	Rendering Service Details

	The ClusterIP Service Type
	Creating and Inspecting the Service
	Accessing the Service

	The NodePort Service Type
	Creating and Inspecting the Service
	Accessing the Service

	The LoadBalancer Service Type
	Creating and Inspecting the Service
	Accessing the Service

	Summary
	Exam Essentials
	Sample Exercises

	22. Ingresses
	Working with Ingresses
	Installing an Ingress Controller
	Deploying Multiple Ingress Controllers
	Configuring Ingress Rules
	Creating Ingresses
	Defining Path Types
	Listing Ingresses
	Rendering Ingress Details
	Accessing an Ingress

	Summary
	Exam Essentials
	Sample Exercises

	23. Network Policies
	Working with Network Policies
	Installing an Network Policy Controller
	Creating a Network Policy
	Listing Network Policies
	Rendering Network Policy Details
	Applying Default Network Policies
	Restricting Access to Specific Ports

	Summary
	Exam Essentials
	Sample Exercises

	A. Answers to Review Questions
	Chapter 4, Containers
	Chapter 5, Pods and Namespaces
	Chapter 6, Jobs and CronJobs
	Chapter 7, Volumes
	Chapter 8, Multi-Container Pods
	Chapter 9, Labels and Annotations
	Chapter 10, Deployments
	Chapter 11, Deployment Strategies
	Chapter 12, Helm
	Chapter 13, API Deprecations
	Chapter 14, Container Probes
	Chapter 15, Troubleshooting Pods and Containers
	Chapter 16, Custom Resource Definitions (CRDs)
	Chapter 17, Authentication, Authorization, and Admission Control
	Chapter 18, Resource Requirements, Limits, and Quotas
	Chapter 19, ConfigMaps and Secrets
	Chapter 20, Security Contexts
	Chapter 21, Services
	Chapter 22, Ingresses
	Chapter 23, Network Policies

	B. Exam Review Guide
	Application Design and Build
	Application Deployment
	Application Observability and Maintenance
	Application Environment, Configuration, and Security
	Services and Networking

	About the Author

