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Foreword
When Craig, Joe, and I started Kubernetes nearly eight years ago, I
think we all recognized its power to transform the way the world
developed and delivered software. I don’t think we knew, or even
hoped to believe, how quickly this transformation would come.
Kubernetes is now the foundation for the development of portable,
reliable systems spanning the major public clouds, private clouds,
and bare-metal environments. However, even as Kubernetes has
become ubiquitous to the point where you can spin up a cluster in
the cloud in less than five minutes, it is still far less obvious to
determine where to go once you have created that cluster. It is
fantastic that we have seen such significant strides forward in the
operationalization of Kubernetes itself, but it is only a part of the
solution. It is the foundation on which applications will be built, and
it provides a large library of APIs and tools for building these
applications, but it does little to provide the application architect or
developer with any hints or guidance for how these various pieces
can be combined into a complete, reliable system that satisfies their
business needs and goals.
Although the necessary perspective and experience for what to do
with your Kubernetes cluster can be achieved through past
experience with similar systems, or via trial and error, this is
expensive both in terms of time and the quality of systems
delivered to our end users. When you are starting to deliver
mission-critical services on top of a system like Kubernetes, learning
your way via trial and error simply takes too much time and results
in very real problems of downtime and disruption.
This then is why Bilgin and Roland’s book is so valuable. Kubernetes
Patterns enables you to learn from the previous experience that we
have encoded into the APIs and tools that make up Kubernetes.
Kubernetes is the by-product of the community’s experience
building and delivering many different, reliable distributed systems
in a variety of different environments. Each object and capability



added to Kubernetes represents a foundational tool that has been
designed and purpose-built to solve a specific need for the software
designer. This book explains how the concepts in Kubernetes solve
real-world problems and how to adapt and use these concepts to
build the system that you are working on today.
In developing Kubernetes, we always said that our North Star was
making the development of distributed systems a CS 101 exercise.
If we have managed to achieve that goal successfully, it is books
like this one that are the textbooks for such a class. Bilgin and
Roland have captured the essential tools of the Kubernetes
developer and distilled them into segments that are easy to
approach and consume. As you finish this book, you will become
aware not just of the components available to you in Kubernetes
but also the “why” and “how” of building systems with those
components.

Brendan Burns
Cofounder, Kubernetes



Preface

With the mainstream adoption of microservices and containers in
recent years, the way we design, develop, and run software has
changed radically. Today’s applications are optimized for availability,
scalability, and speed-to-market. Driven by these new requirements,
today’s modern applications require a different set of patterns and
practices. This book aims to help developers discover and learn
about the most common patterns for creating cloud native
applications with Kubernetes. First, let’s take a brief look at the two
primary ingredients of this book: Kubernetes and design patterns.

Kubernetes
Kubernetes is a container orchestration platform. The origin of
Kubernetes lies somewhere in the Google data centers where
Google’s internal container orchestration platform, Borg, was born.
Google used Borg for many years to run its applications. In 2014,
Google decided to transfer its experience with Borg into a new open
source project called “Kubernetes” (Greek for “helmsman” or
“pilot”). In 2015, it became the first project donated to the newly
founded Cloud Native Computing Foundation (CNCF).
From the start, Kubernetes gained a whole community of users, and
the number of contributors grew incredibly fast. Today, Kubernetes
is considered one of the most popular projects on GitHub. It is fair
to claim that Kubernetes is the most commonly used and feature-
rich container orchestration platform. Kubernetes also forms the
foundation of other platforms built on top of it. The most prominent
of those Platform-as-a-Service systems is Red Hat OpenShift, which
provides various additional capabilities to Kubernetes. These are

https://oreil.ly/x12HH


only some reasons we chose Kubernetes as the reference platform
for the cloud native patterns in this book.
This book assumes you have some basic knowledge of Kubernetes.
In Chapter 1, we recapitulate the core Kubernetes concepts and lay
the foundation for the following patterns.

Design Patterns
The concept of design patterns dates back to the 1970s and is from
the field of architecture. Christopher Alexander, an architect and
system theorist, and his team published the groundbreaking A
Pattern Language (Oxford University Press) in 1977, which describes
architectural patterns for creating towns, buildings, and other
construction projects. Sometime later, this idea was adopted by the
newly formed software industry. The most famous book in this area
is Design Patterns—Elements of Reusable Object-Oriented Software
by Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides—
the Gang of Four (Addison-Wesley). When we talk about the famous
Singleton, Factories, or Delegation patterns, it’s because of this
defining work. Many other great pattern books have been written
since then for various fields with different levels of granularity, like
Enterprise Integration Patterns by Gregor Hohpe and Bobby Woolf
(Addison-Wesley) or Patterns of Enterprise Application Architecture
by Martin Fowler (Addison-Wesley).

In short, a pattern describes a repeatable solution to a problem.1
This definition works for the patterns we describe in this book,
except that we probably don’t have as much variability in our
solutions. A pattern is different from a recipe because instead of
giving step-by-step instructions to solve a problem, it provides a
blueprint for solving a whole class of similar problems. For example,
the Alexandrian pattern Beer Hall describes how public drinking
halls should be constructed where “strangers and friends are
drinking companions” and not “anchors of the lonely.” All halls built

https://oreil.ly/TKzwz
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after this pattern look different but share common characteristics,
such as open alcoves for groups of four to eight and a place where a
hundred people can meet to enjoy beverages, music, and other
activities.
However, a pattern does more than provide a solution. It is also
about forming a language. The patterns in this book form a dense,
noun-centric language in which each pattern carries a unique name.
When this language is established, these names automatically
evoke similar mental representations when people speak about
these patterns. For example, when we talk about a table, anyone
speaking English assumes we are talking about a piece of wood
with four legs and a top on which you can put things. The same
thing happens in software engineering when discussing a “factory.”
In an object-oriented programming language context, we
immediately associate with a “factory” an object that produces
other objects. Because we immediately know the solution behind
the pattern, we can move on to tackle yet-unsolved problems.
There are also other characteristics of a pattern language. For
example, patterns are interconnected and can overlap so that they
cover most of the problem space. Also, as already laid out in the
original A Pattern Language, patterns have a different level of
granularity and scope. More general patterns cover an extensive
problem space and provide rough guidance on how to solve the
problem. Granular patterns have a very concrete solution proposal
but are less widely applicable. This book contains all sorts of
patterns, and many patterns reference other patterns or may even
include other patterns as part of the solution.
Another feature of patterns is that they follow a rigid format.
However, each author defines a different form; unfortunately, there
is no common standard for how patterns should be laid out. Martin
Fowler gives an excellent overview of the formats used for pattern
languages at “Writing Software Patterns”.

https://oreil.ly/6IA6k




How This Book Is Structured
We chose a simple pattern format for this book. We do not follow
any particular pattern description language. For each pattern, we
use the following structure:
Name

Each pattern carries a name, which is also the chapter’s title.
The name is the center of the pattern’s language.

Problem
This section gives the broader context and describes the pattern
space in detail.

Solution
This section shows how the pattern solves the problem in a
Kubernetes-specific way. This section also contains cross-
references to other patterns that are either related or part of the
given pattern.

Discussion
This section includes a discussion about the advantages and
disadvantages of the solution for the given context.

More Information
This final section contains additional information sources related
to the pattern.

We organized the patterns in this book as follows:

Part I, “Foundational Patterns”, covers the core concepts of
Kubernetes. These are the underlying principles and practices



for building container-based cloud native applications.

Part II, “Behavioral Patterns”, describes patterns that build on
top of foundational patterns and add the runtime aspect
concepts of managing various types of containers.

Part III, “Structural Patterns”, contains patterns related to
organizing containers within a Pod, which is the atom of the
Kubernetes platform.

Part IV, “Configuration Patterns”, gives insight into the various
ways application configuration can be handled in Kubernetes.
These are granular patterns, including concrete recipes for
connecting applications to their configuration.

Part V, “Security Patterns”, addresses various security concerns
that arise when an application is containerized and deployed on
Kubernetes.

Part VI, “Advanced Patterns”, is a collection of advanced
concepts, such as how the platform itself can be extended or
how to build container images directly within the cluster.

Depending on the context, the same pattern might fit into several
categories. Every pattern chapter is self-contained; you can read
chapters in isolation and in any order.



Who This Book Is For
This book is for developers who want to design and develop cloud
native applications and use Kubernetes as the platform. It is most
suitable for readers who have some basic familiarity with containers
and Kubernetes concepts and want to take it to the next level.
However, you don’t need to know the low-level details of
Kubernetes to understand the use cases and patterns. Architects,
consultants, and other technical personnel will also benefit from the
repeatable patterns described here.
The book is based on use cases and lessons learned from real-world
projects. It is an accumulation of best practices and patterns after
years of working in this space. We want to help you understand the
Kubernetes-first mindset and create better cloud native applications
—not reinvent the wheel. It is written in a relaxed style and is
similar to a series of essays that can be read independently.
Let’s briefly look at what this book is not:

This book is not an introduction to Kubernetes, nor is it a
reference manual. We touch on many Kubernetes features and
explain them in some detail, but we are focusing on the
concepts behind those features. Chapter 1, “Introduction”,
offers a brief refresher on Kubernetes basics. If you are looking
for a comprehensive book on Kubernetes, we highly
recommend Kubernetes in Action by Marko Lukša (Manning
Publications).

This book is not a step-by-step guide on how to set up a
Kubernetes cluster itself. Every example assumes you have
Kubernetes up and running. You have several options for trying
out the examples. If you are interested in learning how to set
up a Kubernetes cluster, we recommend Kubernetes: Up and

https://learning.oreilly.com/library/view/kubernetes-up-and/9781098110192


Running by Brendan Burns, Joe Beda, Kelsey Hightower, and
Lachlan Evenson (O’Reilly).

This book is not about operating and governing a Kubernetes
cluster for other teams. We deliberately skipped administrative
and operational aspects of Kubernetes and took a developer-
first view into Kubernetes. This book can help operations teams
understand how a developer uses Kubernetes, but it is not
sufficient for administering and automating a Kubernetes
cluster. If you are interested in learning how to operate a
Kubernetes cluster, we recommend Kubernetes Best Practices
by Brendan Burns, Eddie Villalba, Dave Strebel, and Lachlan
Evenson (O’Reilly).

What You Will Learn
There’s a lot to discover in this book. Some patterns may read like
excerpts from a Kubernetes manual at first glance, but upon closer
look, you’ll see the patterns are presented from a conceptual angle
not found in other books on the topic. Other patterns are explained
with detailed steps to solve a concrete problem, as in Part IV,
“Configuration Patterns”. In some chapters, we explain Kubernetes
features that don’t fit nicely into a pattern definition. Don’t get hung
up on whether it is a pattern or a feature. In all chapters, we look at
the forces involved from the first principles and focus on the use
cases, lessons learned, and best practices. That is the valuable part.
Regardless of the pattern granularity, you will learn everything
Kubernetes offers for each particular pattern, with plenty of
examples to illustrate the concepts. All these examples have been
tested, and we tell you how to get the complete source code in
“Using Code Examples”.

https://learning.oreilly.com/library/view/kubernetes-up-and/9781098110192
https://learning.oreilly.com/library/view/kubernetes-best-practices/9781492056461/


What’s New in the Second Edition
The Kubernetes ecosystem has continued to grow since the first
edition came out four years ago. As a result, there have been many
Kubernetes releases, and more tools and patterns for using
Kubernetes have become de facto standards.
Fortunately, most of the patterns described in our book have stood
the test of time and remain valid. Therefore, we have updated
these patterns, added new features up to Kubernetes 1.26, and
removed obsolete and deprecated parts. For the most part, only
minor changes were necessary, except for Chapter 29, “Elastic
Scale”, and Chapter 30, “Image Builder”, which underwent
significant changes due to new developments in these areas.
Additionally, we have included five new patterns and introduced a
new category, Part V, “Security Patterns”, which addresses a gap in
the first edition and provides important security-related patterns for
developers.
Our GitHub examples have been updated and extended. And, lastly,
we added 50% more content for our readers to enjoy.

Conventions Used in This Book
The following typographical conventions are used in this book:
Italic

Indicates new terms, URLs, email addresses, filenames, and file
extensions.

Constant width

Used for program listings, as well as within paragraphs to refer
to program elements such as variable or function names,
databases, data types, environment variables, statements, and
keywords.

https://oreil.ly/kXGjC


As mentioned, patterns form a simple, interconnected language. To
emphasize this web of patterns, each pattern is capitalized and set
in italics, (e.g., Sidecar). When a pattern name is also a Kubernetes
core concept (such as Init Container or Controller), we use this
specific formatting only when we directly reference the pattern
itself. Where it makes sense, we also interlink pattern chapters for
ease of navigation.
We also use the following conventions:

Everything you can type in a shell or editor is rendered in
constant width font.

Kubernetes resource names are always rendered in uppercase
(e.g., Pod). If the resource is a combined name like ConfigMap,
we keep it like this in favor of the more natural “config map” for
clarity and to make it clear that it refers to a Kubernetes
concept.

Sometimes, a Kubernetes resource name is identical to a
common concept like “service” or “node.” In these cases, we
use the resource name format only when referring to the
resource itself.

TIP
This element signifies a tip or suggestion.

NOTE
This element signifies a general note.



WARNING
This element indicates a warning or caution.

Using Code Examples
Every pattern is backed with fully executable examples, which you
can find on the accompanying web page. You can find the link to
each pattern’s example in each chapter’s “More Information”
section.
The “More Information” section also contains links to further
information related to the pattern. We keep these lists updated in
the example repository.
The source code for all examples in this book is available on GitHub.
The repository and the website also have pointers and instructions
on how to get a Kubernetes cluster to try out the examples. Please
look at the provided resource files when you go through the
examples. They contain many valuable comments that will further
your understanding of the example code.
Many examples use a REST service called random-generator that
returns random numbers when called. It is uniquely crafted to play
well with the examples in this book. Its source can be found on
GitHub as well, and its container image k8spatterns/random-
generator is hosted on Docker Hub.

We use a JSON path notation to describe resource fields (e.g.,
.spec.replicas points to the replicas field of the resource’s
spec section).

If you find an issue in the example code or documentation or have a
question, don’t hesitate to open a ticket at the GitHub issue tracker.
We monitor these GitHub issues and are happy to answer any
questions.

https://k8spatterns.io/
https://oreil.ly/bmj-Y
https://oreil.ly/WuYSu
https://oreil.ly/N36MB
https://oreil.ly/hCnmn


All example code is distributed under the Creative Commons
Attribution 4.0 (CC BY 4.0) license. The code is free to use, and you
can share and adapt it for commercial and noncommercial projects.
However, you should give attribution back to this book if you copy
or redistribute the example code.
This attribution can be a reference to the book, including title,
author, publisher, and ISBN, as in “Kubernetes Patterns, 2nd Edition,
by Bilgin Ibryam and Roland Huß (O’Reilly). Copyright 2023 Bilgin
Ibryam and Roland Huß, 978-1-098-13168-5.” Alternatively, add a
link to the accompanying website along with a copyright notice and
link to the license.
We love code contributions too! If you think we can improve our
examples, we are happy to hear from you. Just open a GitHub issue
or create a pull request, and let’s start a conversation.

O’Reilly Online Learning

NOTE
For more than 40 years, O’Reilly Media has provided technology and
business training, knowledge, and insight to help companies succeed.

Our unique network of experts and innovators share their
knowledge and expertise through books, articles, and our online
learning platform. O’Reilly’s online learning platform gives you on-
demand access to live training courses, in-depth learning paths,
interactive coding environments, and a vast collection of text and
video from O’Reilly and 200+ other publishers. For more
information, please visit http://oreilly.com.

https://oreil.ly/QuiQc
https://oreil.ly/QuiQc
https://k8spatterns.io/
http://oreilly.com/
http://oreilly.com/


How to Contact Us
Please address comments and questions concerning this book to the
publisher:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-889-8969 (in the United States or Canada)

707-829-7019 (international or local)

707-829-0104 (fax)

support@oreilly.com

https://www.oreilly.com/about/contact.html

We have a web page for this book where we list errata, examples,
and additional information. You can access this page at
https://oreil.ly/kubernetes_patterns-2e.
For news and information about our books and courses, visit
https://oreilly.com.
Find us on LinkedIn: https://linkedin.com/company/oreilly-media
Follow us on Twitter: https://twitter.com/oreillymedia
Watch us on YouTube: https://youtube.com/oreillymedia
Follow the authors on Twitter: https://twitter.com/bibryam,
https://twitter.com/ro14nd
Follow the authors on Mastodon: https://fosstodon.org/@bilgin,
https://hachyderm.io/@ro14nd
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Find the authors on GitHub: https://github.com/bibryam,
https://github.com/rhuss
Follow their blogs: https://www.ofbizian.com, https://ro14nd.de
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Chapter 1. Introduction

In this introductory chapter, we set the scene for the rest of the
book by explaining a few of the core Kubernetes concepts used for
designing and implementing cloud native applications.
Understanding these new abstractions, and the related principles
and patterns from this book, is key to building distributed
applications that can be automatable by Kubernetes.
This chapter is not a prerequisite for understanding the patterns
described later. Readers familiar with Kubernetes concepts can skip
it and jump straight into the pattern category of interest.

The Path to Cloud Native
Microservices is among the most popular architectural styles for
creating cloud native applications. They tackle software complexity
through modularization of business capabilities and trading
development complexity for operational complexity. That is why a
key prerequisite for becoming successful with microservices is to
create applications that can be operated at scale through
Kubernetes.
As part of the microservices movement, there is a tremendous
amount of theory, techniques, and supplemental tools for creating
microservices from scratch or for splitting monoliths into
microservices. Most of these practices are based on Domain-Driven
Design by Eric Evans (Addison-Wesley) and the concepts of bounded
contexts and aggregates. Bounded contexts deal with large models
by dividing them into different components, and aggregates help to
further group bounded contexts into modules with defined
transaction boundaries. However, in addition to these business
domain considerations, for each distributed system—whether it is

https://oreil.ly/UoON5
https://oreil.ly/UoON5


based on microservices or not—there are also technical concerns
around its external structure, and runtime coupling. Containers and
container orchestrators such as Kubernetes bring in new primitives
and abstractions to address the concerns of distributed applications,
and here we discuss the various options to consider when putting a
distributed system into Kubernetes.
Throughout this book, we look at container and platform
interactions by treating the containers as black boxes. However, we
created this section to emphasize the importance of what goes into
containers. Containers and cloud native platforms bring tremendous
benefits to your distributed applications, but if all you put into
containers is rubbish, you will get distributed rubbish at scale.
Figure 1-1 shows the mixture of the skills required for creating good
cloud native applications and where Kubernetes patterns fit in.



Figure 1-1. The path to cloud native

At a high level, creating good cloud native applications requires
familiarity with multiple design techniques:



At the lowest code level, every variable you define, every
method you create, and every class you decide to instantiate
plays a role in the long-term maintenance of the application.
No matter what container technology and orchestration
platform you use, the development team and the artifacts they
create will have the most impact. It is important to grow
developers who strive to write clean code, have the right
number of automated tests, constantly refactor to improve
code quality, and are guided by Software Craftsmanship
principles at heart.

Domain-driven design is about approaching software design
from a business perspective with the intention of keeping the
architecture as close to the real world as possible. This
approach works best for object-oriented programming
languages, but there are also other good ways to model and
design software for real-world problems. A model with the right
business and transaction boundaries, easy-to-consume
interfaces, and rich APIs is the foundation for successful
containerization and automation later.

The hexagonal architecture and its variations, such as Onion
and Clean architectures, improve the flexibility and
maintainability of applications by decoupling the application
components and providing standardized interfaces for
interacting with them. By decoupling the core business logic of
a system from the surrounding infrastructure, hexagonal
architecture makes it easier to port the system to different
environments or platforms. These architectures complement
domain-driven design and help arrange application code with
distinct boundaries and externalized infrastructure
dependencies.

The microservices architectural style and the twelve-factor app
methodology very quickly evolved to become the norm for
creating distributed applications and they provide valuable

https://12factor.net/


principles and practices for designing changing distributed
applications. Applying these principles lets you create
implementations that are optimized for scale, resiliency, and
pace of change, which are common requirements for any
modern software today.

Containers were very quickly adopted as the standard way of
packaging and running distributed applications, whether these
are microservices or functions. Creating modular, reusable
containers that are good cloud native citizens is another
fundamental prerequisite. Cloud native is a term used to
describe principles, patterns, and tools to automate
containerized applications at scale. We use cloud native
interchangeably with Kubernetes, which is the most popular
open source cloud native platform available today.

In this book, we are not covering clean code, domain-driven design,
hexagonal architecture, or microservices. We are focusing only on
the patterns and practices addressing the concerns of the container
orchestration. But for these patterns to be effective, your
application needs to be designed well from the inside by using clean
code practices, domain-driven design, hexagonal architecture-like
isolation of external dependencies, microservices principles, and
other relevant design techniques.

Distributed Primitives
To explain what we mean by new abstractions and primitives, here
we compare them with the well-known object-oriented
programming (OOP), and Java specifically. In the OOP universe, we
have concepts such as class, object, package, inheritance,
encapsulation, and polymorphism. Then the Java runtime provides
specific features and guarantees on how it manages the lifecycle of
our objects and the application as a whole.



The Java language and the Java Virtual Machine (JVM) provide
local, in-process building blocks for creating applications.
Kubernetes adds an entirely new dimension to this well-known
mindset by offering a new set of distributed primitives and runtime
for building distributed systems that spread across multiple nodes
and processes. With Kubernetes at hand, we don’t rely only on the
local primitives to implement the whole application behavior.
We still need to use the object-oriented building blocks to create
the components of the distributed application, but we can also use
Kubernetes primitives for some of the application behaviors.
Table 1-1 shows how various development concepts are realized
differently with local and distributed primitives in the JVM and
Kubernetes, respectively.



Table 1-1. Local and distributed primitives

Concept Local primitive
Distributed
primitive

Behavior encapsulation Class Container image

Behavior instance Object Container

Unit of reuse .jar Container image

Composition Class A contains
Class B

Sidecar pattern

Inheritance Class A extends
Class B

A container’s FROM
parent image

Deployment unit .jar/.war/.ear Pod

Buildtime/Runtime
isolation

Module, package,
class

Namespace, Pod,
container

Initialization
preconditions

Constructor Init container

Postinitialization
trigger

Init-method postStart

Predestroy trigger Destroy-method preStop

Cleanup procedure finalize(), -



Concept Local primitive
Distributed
primitive

shutdown hook

Asynchronous and
parallel execution

ThreadPoolExecuto

r, ForkJoinPool
Job

Periodic task Timer, ScheduledEx
ecutorService

CronJob

Background task Daemon thread DaemonSet

Configuration
management

System.getenv(), P
roperties

ConfigMap, Secret

The in-process primitives and the distributed primitives have
commonalities, but they are not directly comparable and
replaceable. They operate at different abstraction levels and have
different preconditions and guarantees. Some primitives are
supposed to be used together. For example, we still have to use
classes to create objects and put them into container images.
However, some other primitives such as CronJob in Kubernetes can
completely replace the ExecutorService behavior in Java.

Next, let’s see a few distributed abstractions and primitives from
Kubernetes that are especially interesting for application
developers.

Containers
Containers are the building blocks for Kubernetes-based cloud
native applications. If we make a comparison with OOP and Java,



container images are like classes, and containers are like objects.
The same way we can extend classes to reuse and alter behavior,
we can have container images that extend other container images
to reuse and alter behavior. The same way we can do object
composition and use functionality, we can do container compositions
by putting containers into a Pod and using collaborating containers.
If we continue the comparison, Kubernetes would be like the JVM
but spread over multiple hosts, and it would be responsible for
running and managing the containers. Init containers would be
something like object constructors; DaemonSets would be similar to
daemon threads that run in the background (like the Java Garbage
Collector, for example). A Pod would be something similar to an
Inversion of Control (IoC) context (Spring Framework, for example),
where multiple running objects share a managed lifecycle and can
access one another directly.
The parallel doesn’t go much further, but the point is that containers
play a fundamental role in Kubernetes, and creating modularized,
reusable, single-purpose container images is fundamental to the
long-term success of any project and even the containers’
ecosystem as a whole. Apart from the technical characteristics of a
container image that provide packaging and isolation, what does a
container represent, and what is its purpose in the context of a
distributed application? Here are a few suggestions on how to look
at containers:

A container image is the unit of functionality that addresses a
single concern.

A container image is owned by one team and has its own
release cycle.

A container image is self-contained and defines and carries its
runtime dependencies.



A container image is immutable, and once it is built, it does not
change; it is configured.

A container image defines its resource requirements and
external dependencies.

A container image has well-defined APIs to expose its
functionality.

A container typically runs as a single Unix process.

A container is disposable and safe to scale up or down at any
moment.

In addition to all these characteristics, a proper container image is
modular. It is parameterized and created for reuse in the different
environments in which it is going to run. Having small, modular, and
reusable container images leads to the creation of more specialized
and stable container images in the long term, similar to a great
reusable library in the programming language world.

Pods
Looking at the characteristics of containers, we can see that they
are a perfect match for implementing the microservices principles. A
container image provides a single unit of functionality, belongs to a
single team, has an independent release cycle, and provides
deployment and runtime isolation. Most of the time, one
microservice corresponds to one container image.
However, most cloud native platforms offer another primitive for
managing the lifecycle of a group of containers—in Kubernetes, it is
called a Pod. A Pod is an atomic unit of scheduling, deployment, and
runtime isolation for a group of containers. All containers in a Pod
are always scheduled to the same host, are deployed and scaled
together, and can also share filesystem, networking, and process
namespaces. This joint lifecycle allows the containers in a Pod to



interact with one another over the filesystem or through networking
via localhost or host interprocess communication mechanisms if
desired (for performance reasons, for example). A Pod also
represents a security boundary for an application. While it is
possible to have containers with varying security parameters in the
same Pod, typically all containers would have the same access
level, network segmentation, and identity.
As you can see in Figure 1-2, at development and build time, a
microservice corresponds to a container image that one team
develops and releases. But at runtime, a microservice is
represented by a Pod, which is the unit of deployment, placement,
and scaling. The only way to run a container—whether for scale or
migration—is through the Pod abstraction. Sometimes a Pod
contains more than one container. In one such example, a
containerized microservice uses a helper container at runtime, as
Chapter 16, “Sidecar”, demonstrates.



Figure 1-2. A Pod as the deployment and management unit

Containers, Pods, and their unique characteristics offer a new set of
patterns and principles for designing microservices-based
applications. We saw some of the characteristics of well-designed
containers; now let’s look at some characteristics of a Pod:

A Pod is the atomic unit of scheduling. That means the
scheduler tries to find a host that satisfies the requirements of
all containers that belong to the Pod (we cover some specifics
around init containers in Chapter 15, “Init Container”). If you
create a Pod with many containers, the scheduler needs to find
a host that has enough resources to satisfy all container
demands combined. This scheduling process is described in
Chapter 6, “Automated Placement”.



A Pod ensures colocation of containers. Thanks to the
colocation, containers in the same Pod have additional means
to interact with one another. The most common ways of
communicating include using a shared local filesystem for
exchanging data, using the localhost network interface, or
using some host interprocess communication (IPC) mechanism
for high-performance interactions.

A Pod has an IP address, name, and port range that are shared
by all containers belonging to it. That means containers in the
same Pod have to be carefully configured to avoid port clashes,
in the same way that parallel, running Unix processes have to
take care when sharing the networking space on a host.

A Pod is the atom of Kubernetes where your application lives, but
you don’t access Pods directly—that is where Services enter the
scene.

Services
Pods are ephemeral. They come and go at any time for all sorts of
reasons (e.g., scaling up and down, failing container health checks,
node migrations). A Pod IP address is known only after it is
scheduled and started on a node. A Pod can be rescheduled to a
different node if the existing node it is running on is no longer
healthy. This means the Pod’s network address may change over
the life of an application, and there is a need for another primitive
for discovery and load balancing.
That’s where the Kubernetes Services come into play. The Service is
another simple but powerful Kubernetes abstraction that binds the
Service name to an IP address and port number permanently. So a
Service represents a named entry point for accessing an application.
In the most common scenario, the Service serves as the entry point
for a set of Pods, but that might not always be the case. The
Service is a generic primitive, and it may also point to functionality



provided outside the Kubernetes cluster. As such, the Service
primitive can be used for Service discovery and load balancing, and
it allows altering implementations and scaling without affecting
Service consumers. We explain Services in detail in Chapter 13,
“Service Discovery”.

Labels
We have seen that a microservice is a container image at build time
but is represented by a Pod at runtime. So what is an application
that consists of multiple microservices? Here, Kubernetes offers two
more primitives that can help you define the concept of an
application: labels and namespaces.
Before microservices, an application corresponded to a single
deployment unit with a single versioning scheme and release cycle.
There was a single file for an application in a .war, .ear, or some
other packaging format. But then, applications were split into
microservices, which are independently developed, released, run,
restarted, or scaled. With microservices, the notion of an application
diminishes, and there are no key artifacts or activities that we have
to perform at the application level. But if you still need a way to
indicate that some independent services belong to an application,
labels can be used. Let’s imagine that we have split one monolithic
application into three microservices and another one into two
microservices.
We now have five Pod definitions (and maybe many more Pod
instances) that are independent of the development and runtime
points of view. However, we may still need to indicate that the first
three Pods represent an application and the other two Pods
represent another application. Even the Pods may be independent,
to provide a business value, but they may depend on one another.
For example, one Pod may contain the containers responsible for
the frontend, and the other two Pods are responsible for providing



the backend functionality. If either of these Pods is down, the
application is useless from a business point of view. Using label
selectors gives us the ability to query and identify a set of Pods and
manage it as one logical unit. Figure 1-3 shows how you can use
labels to group the parts of a distributed application into specific
subsystems.

Figure 1-3. Labels used as an application identity for Pods

Here are a few examples where labels can be useful:

Labels are used by ReplicaSets to keep some instances of a
specific Pod running. That means every Pod definition needs to
have a unique combination of labels used for scheduling.

Labels are also heavily used by the scheduler. The scheduler
uses labels for colocating or spreading Pods to the nodes that
satisfy the Pods’ requirements.

A label can indicate a logical grouping of a set of Pods and give
an application identity to them.

In addition to the preceding typical use cases, labels can be
used to store metadata. It may be difficult to predict what a
label could be used for, but it is best to have enough labels to
describe all important aspects of the Pods. For example, having



labels to indicate the logical group of an application, the
business characteristics and criticality, the specific runtime
platform dependencies such as hardware architecture, or
location preferences are all useful.

Later, these labels can be used by the scheduler for more fine-
grained scheduling, or the same labels can be used from the
command line for managing the matching Pods at scale. However,
you should not go overboard and add too many labels in advance.
You can always add them later if needed. Removing labels is much
riskier as there is no straightforward way of finding out what a label
is used for and what unintended effect such an action may cause.

ANNOTATIONS
Another primitive very similar to labels is the annotation. Like
labels, annotations are organized as a map, but they are
intended for specifying nonsearchable metadata and for
machine usage rather than human.
The information on the annotations is not intended for querying
and matching objects. Instead, it is intended for attaching
additional metadata to objects from various tools and libraries
we want to use. Some examples of using annotations include
build IDs, release IDs, image information, timestamps, Git
branch names, pull request numbers, image hashes, registry
addresses, author names, tooling information, and more. So
while labels are used primarily for query matching and
performing actions on the matching resources, annotations are
used to attach metadata that can be consumed by a machine.

Namespaces
Another primitive that can also help manage a group of resources is
the Kubernetes namespace. As we have described, a namespace



may seem similar to a label, but in reality, it is a very different
primitive with different characteristics and purposes.
Kubernetes namespaces allow you to divide a Kubernetes cluster
(which is usually spread across multiple hosts) into a logical pool of
resources. Namespaces provide scopes for Kubernetes resources
and a mechanism to apply authorizations and other policies to a
subsection of the cluster. The most common use case of
namespaces is representing different software environments such
as development, testing, integration testing, or production.
Namespaces can also be used to achieve multitenancy and provide
isolation for team workspaces, projects, and even specific
applications. But ultimately, for a greater isolation of certain
environments, namespaces are not enough, and having separate
clusters is common. Typically, there is one nonproduction
Kubernetes cluster used for some environments (development,
testing, and integration testing) and another production Kubernetes
cluster to represent performance testing and production
environments.
Let’s look at some of the characteristics of namespaces and how
they can help us in different scenarios:

A namespace is managed as a Kubernetes resource.

A namespace provides scope for resources such as containers,
Pods, Services, or ReplicaSets. The names of resources need to
be unique within a namespace but not across them.

By default, namespaces provide scope for resources, but
nothing isolates those resources and prevents access from one
resource to another. For example, a Pod from a development
namespace can access another Pod from a production
namespace as long as the Pod IP address is known. “Network
isolation across namespaces for creating a lightweight
multitenancy solution is described in Chapter 24, “Network
Segmentation”.



Some other resources, such as namespaces, nodes, and
PersistentVolumes, do not belong to namespaces and should
have unique cluster-wide names.

Each Kubernetes Service belongs to a namespace and gets a
corresponding Domain Name Service (DNS) record that has the
namespace in the form of <service-name>.<namespace-
name>.svc.cluster.local. So the namespace name is in
the URL of every Service belonging to the given namespace.
That’s one reason it is vital to name namespaces wisely.

ResourceQuotas provide constraints that limit the aggregated
resource consumption per namespace. With ResourceQuotas, a
cluster administrator can control the number of objects per type
that are allowed in a namespace. For example, a developer
namespace may allow only five ConfigMaps, five Secrets, five
Services, five ReplicaSets, five PersistentVolumeClaims, and ten
Pods.

ResourceQuotas can also limit the total sum of computing
resources we can request in a given namespace. For example,
in a cluster with a capacity of 32 GB RAM and 16 cores, it is
possible to allocate 16 GB RAM and 8 cores for the production
namespace, 8 GB RAM and 4 cores for the staging environment,
4 GB RAM and 2 cores for development, and the same amount
for testing namespaces. The ability to impose resource
constraints decoupled from the shape and the limits of the
underlying infrastructure is invaluable.

Discussion
We’ve only briefly covered a few of the main Kubernetes concepts
we use in this book. However, there are more primitives used by
developers on a day-by-day basis. For example, if you create a
containerized service, there are plenty of Kubernetes abstractions



you can use to reap all the benefits of Kubernetes. Keep in mind,
these are only a few of the objects used by application developers
to integrate a containerized service into Kubernetes. There are
plenty of other concepts used primarily by cluster administrators for
managing Kubernetes. Figure 1-4 gives an overview of the main
Kubernetes resources that are useful for developers.





Figure 1-4. Kubernetes concepts for developers

With time, these new primitives give birth to new ways of solving
problems, and some of these repetitive solutions become patterns.
Throughout this book, rather than describing each Kubernetes
resource in detail, we will focus on concepts that are proven as
patterns.
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Part I. Foundational Patterns

Foundational patterns describe a number of fundamental principles
that containerized applications must comply with in order to
become good cloud-native citizens. Adhering to these principles will
help ensure that your applications are suitable for automation in
cloud-native platforms such as Kubernetes.
The patterns described in the following chapters represent the
foundational building blocks of distributed container-based
Kubernetes-native applications:

Chapter 2, “Predictable Demands”, explains why every
container should declare its resource requirements and stay
confined to the indicated resource boundaries.

Chapter 3, “Declarative Deployment”, describes the different
application deployment strategies that can be expressed in a
declarative way.

Chapter 4, “Health Probe”, dictates that every container should
implement specific APIs to help the platform observe and
maintain the application healthily.

Chapter 5, “Managed Lifecycle”, explains why a container
should have a way to read the events coming from the platform
and conform by reacting to those events.

Chapter 6, “Automated Placement”, introduces the Kubernetes
scheduling algorithm and the ways to influence the placement
decisions from the outside.



Chapter 2. Predictable
Demands

The foundation of successful application deployment, management,
and coexistence on a shared cloud environment is dependent on
identifying and declaring the application resource requirements and
runtime dependencies. This Predictable Demands pattern indicates
how you should declare application requirements, whether they are
hard runtime dependencies or resource requirements. Declaring
your requirements is essential for Kubernetes to find the right place
for your application within the cluster.

Problem
Kubernetes can manage applications written in different
programming languages as long as the application can be run in a
container. However, different languages have different resource
requirements. Typically, a compiled language runs faster and often
requires less memory compared to just-in-time runtimes or
interpreted languages. Considering that many modern programming
languages in the same category have similar resource
requirements, from a resource consumption point of view, more
important aspects are the domain, the business logic of an
application, and the actual implementation details.
Besides resource requirements, application runtimes also have
dependencies on platform-managed capabilities like data storage or
application configuration.



Solution
Knowing the runtime requirements for a container is important
mainly for two reasons. First, with all the runtime dependencies
defined and resource demands envisaged, Kubernetes can make
intelligent decisions about where to place a container on the cluster
for the most efficient hardware utilization. In an environment with
shared resources among a large number of processes with different
priorities, the only way to ensure a successful coexistence is to
know the demands of every process in advance. However,
intelligent placement is only one side of the coin.
Container resource profiles are also essential for capacity planning.
Based on the particular service demands and the total number of
services, we can do some capacity planning for different
environments and come up with the most cost-effective host
profiles to satisfy the entire cluster demand. Service resource
profiles and capacity planning go hand in hand for successful cluster
management in the long term.
Before diving into resource profiles, let’s look at declaring runtime
dependencies.

Runtime Dependencies
One of the most common runtime dependencies is file storage for
saving application state. Container filesystems are ephemeral and
are lost when a container is shut down. Kubernetes offers volume
as a Pod-level storage utility that survives container restarts.
The most straightforward type of volume is emptyDir, which lives
as long as the Pod lives. When the Pod is removed, its content is
also lost. The volume needs to be backed by another kind of
storage mechanism to survive Pod restarts. If your application
needs to read or write files to such long-lived storage, you must



declare that dependency explicitly in the container definition using
volumes, as shown in Example 2-1.
Example 2-1. Dependency on a PersistentVolume
apiVersion: v1
kind: Pod
metadata:
  name: random-generator
spec:
  containers:
  - image: k8spatterns/random-generator:1.0
    name: random-generator
    volumeMounts:
    - mountPath: "/logs"
      name: log-volume
  volumes:
  - name: log-volume
    persistentVolumeClaim:  
      claimName: random-generator-logDependency of a PersistentVolumeClaim (PVC) to be present

and bound.

The scheduler evaluates the kind of volume a Pod requires, which
affects where the Pod gets placed. If the Pod needs a volume that is
not provided by any node on the cluster, the Pod is not scheduled at
all. Volumes are an example of a runtime dependency that affects
what kind of infrastructure a Pod can run and whether the Pod can
be scheduled at all.
A similar dependency happens when you ask Kubernetes to expose
a container port on a specific port on the host system through
hostPort. The usage of a hostPort creates another runtime
dependency on the nodes and limits where a Pod can be scheduled.
hostPort reserves the port on each node in the cluster and is
limited to a maximum of one Pod scheduled per node. Because of
port conflicts, you can scale to as many Pods as there are nodes in
the Kubernetes cluster.



Configurations are another type of dependency. Almost every
application needs some configuration information, and the
recommended solution offered by Kubernetes is through
ConfigMaps. Your services need to have a strategy for consuming
settings—either through environment variables or the filesystem. In
either case, this introduces a runtime dependency of your container
to the named ConfigMaps. If not all of the expected ConfigMaps are
created, the containers are scheduled on a node, but they do not
start up.
Similar to ConfigMaps, Secrets offer a slightly more secure way of
distributing environment-specific configurations to a container. The
way to consume a Secret is the same as it is for ConfigMaps, and
using a Secret introduces the same kind of dependency from a
container to a namespace.
ConfigMaps and Secrets are explained in more detail in Chapter 20,
“Configuration Resource”, and Example 2-2 shows how these
resources are used as runtime dependencies.
Example 2-2. Dependency on a ConfigMap
apiVersion: v1
kind: Pod
metadata:
  name: random-generator
spec:
  containers:
  - image: k8spatterns/random-generator:1.0
    name: random-generator
    env:
    - name: PATTERN
      valueFrom:
        configMapKeyRef:  
          name: random-generator-config
          key: patternMandatory dependency on the ConfigMap random-generator-

config.



While the creation of ConfigMap and Secret objects are simple
deployment tasks we have to perform, cluster nodes provide
storage and port numbers. Some of these dependencies limit where
a Pod gets scheduled (if anywhere at all), and other dependencies
may prevent the Pod from starting up. When designing your
containerized applications with such dependencies, always consider
the runtime constraints they will create later.

Resource Profiles
Specifying container dependencies such as ConfigMap, Secret, and
volumes is straightforward. We need some more thinking and
experimentation for figuring out the resource requirements of a
container. Compute resources in the context of Kubernetes are
defined as something that can be requested by, allocated to, and
consumed from a container. The resources are categorized as
compressible (i.e., can be throttled, such as CPU or network
bandwidth) and incompressible (i.e., cannot be throttled, such as
memory).
Making the distinction between compressible and incompressible
resources is important. If your containers consume too many
compressible resources such as CPU, they are throttled, but if they
use too many incompressible resources (such as memory), they are
killed (as there is no other way to ask an application to release
allocated memory).
Based on the nature and the implementation details of your
application, you have to specify the minimum amount of resources
that are needed (called requests) and the maximum amount it
can grow up to (the limits). Every container definition can specify
the amount of CPU and memory it needs in the form of a request
and limit. At a high level, the concept of requests/limits is
similar to soft/hard limits. For example, similarly, we define heap



size for a Java application by using the -Xms and -Xmx command-
line options.
The requests amount (but not limits) is used by the scheduler
when placing Pods to nodes. For a given Pod, the scheduler
considers only nodes that still have enough capacity to
accommodate the Pod and all of its containers by summing up the
requested resource amounts. In that sense, the requests field of
each container affects where a Pod can be scheduled or not.
Example 2-3 shows how such limits are specified for a Pod.
Example 2-3. Resource limits
apiVersion: v1
kind: Pod
metadata:
  name: random-generator
spec:
  containers:
  - image: k8spatterns/random-generator:1.0
    name: random-generator
    resources:
      requests:        
        cpu: 100m
        memory: 200Mi
      limits:          
        memory: 200MiInitial resource request for CPU and memory.

Upper limit until we want our application to grow at max. We
don’t specify CPU limits by intention.

The following types of resources can be used as keys in the
requests and limits specification:

memory

This type is for the heap memory demands of your application,
including volumes of type emptyDir with the configuration
medium: Memory. Memory resources are incompressible, so
containers that exceed their configured memory limit will trigger



the Pod to be evicted; i.e., it gets deleted and recreated
potentially on a different node.

cpu

The cpu type is used to specify the range of needed CPU cycles
for your application. However, it is a compressible resource,
which means that in an overcommit situation for a node, all
assigned CPU slots of all running containers are throttled relative
to their specified requests. Therefore, it is highly recommended
that you set requests for the CPU resource but no limits so
that they can benefit from all excess CPU resources that
otherwise would be wasted.

ephemeral-storage

Every node has some filesystem space dedicated for ephemeral
storage that holds logs and writable container layers. emptyDir
volumes that are not stored in a memory filesystem also use
ephemeral storage. With this request and limit type, you can
specify the application’s minimal and maximal needs.
ephemeral-storage resources are not compressible and will
cause a Pod to be evicted from the node if it uses more storage
than specified in its limit.

hugepage-<size>

Huge pages are large, contiguous pre-allocated pages of
memory that can be mounted as volumes. Depending on your
Kubernetes node configuration, several sizes of huge pages are
available, like 2 MB and 1 GB pages. You can specify a request
and limit for how many of a certain type of huge pages you want
to consume (e.g., hugepages-1Gi: 2Gi for requesting two 1
GB huge pages). Huge pages can’t be overcommitted, so the
request and limit must be the same.



Depending on whether you specify the requests, the limits, or
both, the platform offers three types of Quality of Service (QoS):
Best-Effort

Pods that do not have any requests and limits set for its
containers have a QoS of Best-Effort. Such a Best-Effort Pod is
considered the lowest priority and is most likely killed first when
the node where the Pod is placed runs out of incompressible
resources.

Burstable
A Pod that defines an unequal amount for requests and
limits values (and limits is larger than requests, as
expected) are tagged as Burstable. Such a Pod has minimal
resource guarantees but is also willing to consume more
resources up to its limit when available. When the node is
under incompressible resource pressure, these Pods are likely to
be killed if no Best-Effort Pods remain.

Guaranteed
A Pod that has an equal amount of request and limit
resources belongs to the Guaranteed QoS category. These are
the highest-priority Pods and are guaranteed not to be killed
before Best-Effort and Burstable Pods. This QoS mode is the best
option for your application’s memory resources, as it entails the
least surprise and avoids out-of-memory triggered evictions.

So the resource characteristics you define or omit for the containers
have a direct impact on its QoS and define the relative importance
of the Pod in the event of resource starvation. Define your Pod
resource requirements with this consequence in mind.



RECOMMENDATIONS FOR CPU AND MEMORY
RESOURCES

While you have many options for declaring the memory and CPU
needs of your applications, we and others recommend the
following rules:

For memory, always set requests equal to limits.

For CPU, set requests but no limits.

See the blog post “For the Love of God, Stop Using CPU Limits
on Kubernetes” for a more in-depth explanation of why you
should not use limits for the CPU, and see the blog post
“What Everyone Should Know About Kubernetes Memory Limits”
for more details about the recommended memory settings.

Pod Priority
We explained how container resource declarations also define Pods’
QoS and affect the order in which the Kubelet kills the container in a
Pod in case of resource starvation. Two other related concepts are
Pod priority and preemption. Pod priority allows you to indicate the
importance of a Pod relative to other Pods, which affects the order
in which Pods are scheduled. Let’s see that in action in Example 2-4.
Example 2-4. Pod priority
apiVersion: scheduling.k8s.io/v1
kind: PriorityClass
metadata:
  name: high-priority  
value: 1000            
globalDefault: false   
description: This is a very high-priority Pod class
---
apiVersion: v1
kind: Pod
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metadata:
  name: random-generator
  labels:
    env: random-generator
spec:
  containers:
  - image: k8spatterns/random-generator:1.0
    name: random-generator
  priorityClassName: high-priority  The name of the priority class object.

The priority value of the object.
globalDefault set to true is used for Pods that do not
specify a priorityClassName. Only one PriorityClass can have
globalDefault set to true.
The priority class to use with this Pod, as defined in PriorityClass
resource.

We created a PriorityClass, a non-namespaced object for defining
an integer-based priority. Our PriorityClass is named high-
priority and has a priority of 1,000. Now we can assign this
priority to Pods by its name as priorityClassName: high-
priority. PriorityClass is a mechanism for indicating the
importance of Pods relative to one another, where the higher value
indicates more important Pods.
Pod priority affects the order in which the scheduler places Pods on
nodes. First, the priority admission controller uses the
priorityClassName field to populate the priority value for new
Pods. When multiple Pods are waiting to be placed, the scheduler
sorts the queue of pending Pods by highest priority first. Any
pending Pod is picked before any other pending Pod with lower
priority in the scheduling queue, and if there are no constraints
preventing it from scheduling, the Pod gets scheduled.
Here comes the critical part. If there are no nodes with enough
capacity to place a Pod, the scheduler can preempt (remove) lower-
priority Pods from nodes to free up resources and place Pods with
higher priority. As a result, the higher-priority Pod might be



scheduled sooner than Pods with a lower priority if all other
scheduling requirements are met. This algorithm effectively enables
cluster administrators to control which Pods are more critical
workloads and place them first by allowing the scheduler to evict
Pods with lower priority to make room on a worker node for higher-
priority Pods. If a Pod cannot be scheduled, the scheduler continues
with the placement of other lower-priority Pods.
Suppose you want your Pod to be scheduled with a particular
priority but don’t want to evict any existing Pods. In that case, you
can mark a PriorityClass with the field preemptionPolicy:
Never. Pods assigned to this priority class will not trigger any
eviction of running Pods but will still get scheduled according to
their priority value.
Pod QoS (discussed previously) and Pod priority are two orthogonal
features that are not connected and have only a little overlap. QoS
is used primarily by the Kubelet to preserve node stability when
available compute resources are low. The Kubelet first considers
QoS and then the PriorityClass of Pods before eviction. On the other
hand, the scheduler eviction logic ignores the QoS of Pods entirely
when choosing preemption targets. The scheduler attempts to pick
a set of Pods with the lowest priority possible that satisfies the
needs of higher-priority Pods waiting to be placed.
When Pods have a priority specified, it can have an undesired effect
on other Pods that are evicted. For example, while a Pod’s graceful
termination policies are respected, the PodDisruptionBudget as
discussed in Chapter 10, “Singleton Service”, is not guaranteed,
which could break a lower-priority clustered application that relies
on a quorum of Pods.
Another concern is a malicious or uninformed user who creates Pods
with the highest possible priority and evicts all other Pods. To
prevent that, ResourceQuota has been extended to support



PriorityClass, and higher-priority numbers are reserved for critical
system-Pods that should not usually be preempted or evicted.
In conclusion, Pod priorities should be used with caution because
user-specified numerical priorities that guide the scheduler and
Kubelet about which Pods to place or to kill are subject to gaming
by users. Any change could affect many Pods and could prevent the
platform from delivering predictable service-level agreements.

Project Resources
Kubernetes is a self-service platform that enables developers to run
applications as they see suitable on the designated isolated
environments. However, working in a shared multitenanted platform
also requires the presence of specific boundaries and control units
to prevent some users from consuming all the platform’s resources.
One such tool is ResourceQuota, which provides constraints for
limiting the aggregated resource consumption in a namespace. With
ResourceQuotas, the cluster administrators can limit the total sum
of computing resources (CPU, memory) and storage consumed. It
can also limit the total number of objects (such as ConfigMaps,
Secrets, Pods, or Services) created in a namespace. Example 2-5
shows an instance that limits the usage of certain resources. See
the official Kubernetes documentation on Resource Quotas for the
full list of supported resources for which you can restrict usage with
ResourceQuotas.
Example 2-5. Definition of resource constraints
apiVersion: v1
kind: ResourceQuota
metadata:
  name: object-counts
  namespace: default   
spec:
  hard:
    pods: 4            
    limits.memory: 5Gi 

Namespace to which resource constraints are applied
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Namespace to which resource constraints are applied.
Allow four active Pods in this namespace.
The sum of all memory limits of all Pods in this namespace must
not be more than 5 GB.

Another helpful tool in this area is LimitRange, which allows you to
set resource usage limits for each type of resource. In addition to
specifying the minimum and maximum permitted amounts for
different resource types and the default values for these resources,
it also allows you to control the ratio between the requests and
limits, also known as the overcommit level. Example 2-6 shows a
LimitRange and the possible configuration options.
Example 2-6. Definition of allowed and default resource usage limits
apiVersion: v1
kind: LimitRange
metadata:
  name: limits
  namespace: default
spec:
  limits:
  - min:                  
      memory: 250Mi
      cpu: 500m
    max:                  
      memory: 2Gi
      cpu: 2
    default:              
      memory: 500Mi
      cpu: 500m
    defaultRequest:       
      memory: 250Mi
      cpu: 250m
    maxLimitRequestRatio: 
      memory: 2
      cpu: 4
    type: Container       Minimum values for requests and limits.

Maximum values for requests and limits.
Default values for limits when no limits are specified.

Default values for requests when no requests are specified



Default values for requests when no requests are specified.
Maximum ratio limit/request, used to specify the allowed
overcommit level. Here, the memory limit must not be larger
than twice the memory request, and the CPU limit can be as
high as four times the CPU request.
Type can be Container, Pod, (for all containers combined), or
PersistentVolumeClaim (to specify the range for a request
persistent volume).

LimitRanges help control the container resource profiles so that no
containers require more resources than a cluster node can provide.
LimitRanges can also prevent cluster users from creating containers
that consume many resources, making the nodes not allocatable for
other containers. Considering that the requests (and not limits)
are the primary container characteristic the scheduler uses for
placing, LimitRequestRatio allows you to control the amount of
difference between the requests and limits of containers. A big
combined gap between requests and limits increases the
chances of overcommitting on the node and may degrade
application performance when many containers simultaneously
require more resources than initially requested.
Keep in mind that other shared node-level resources such as
process IDs (PIDs) can be exhausted before hitting any resource
limits. Kubernetes allows you to reserve a number of node PIDs for
the system use and ensure that they are never exhausted by user
workloads. Similarly, Pod PID limits allow a cluster administrator to
limit the number of processes running in a Pod. We are not
reviewing these in details here as they are set as Kubelet
configurations options by cluster administrators and are not used by
application developers.

Capacity Planning
Considering that containers may have different resource profiles in
different environments, and a varied number of instances, it is



evident that capacity planning for a multipurpose environment is
not straightforward. For example, for best hardware utilization, on a
nonproduction cluster, you may have mainly Best-Effort and
Burstable containers. In such a dynamic environment, many
containers are starting up and shutting down at the same time, and
even if a container gets killed by the platform during resource
starvation, it is not fatal. On the production cluster, where we want
things to be more stable and predictable, the containers may be
mainly of the Guaranteed type, and some may be Burstable. If a
container gets killed, that is most likely a sign that the capacity of
the cluster should be increased.
Table 2-1 presents a few services with CPU and memory demands.

Table 2-1. Capacity planning example

Pod
CPU
request

Memory
request

Memory
limit Inst

A 500 m 500 Mi 500 Mi 4

B 250 m 250 Mi 1000 Mi 2

C 500 m 1000 Mi 2000 Mi 2

D 500 m 500 Mi 500 Mi 1

Total 4000 m 5000 Mi 8500 Mi 9

Of course, in a real-life scenario, the more likely reason you are
using a platform such as Kubernetes is that there are many more
services to manage, some of which are about to retire, and some of
which are still in the design and development phase. Even if it is a



continually moving target, based on a similar approach as described
previously, we can calculate the total amount of resources needed
for all the services per environment.
Keep in mind that in the different environments, there are different
numbers of containers, and you may even need to leave some room
for autoscaling, build jobs, infrastructure containers, and more.
Based on this information and the infrastructure provider, you can
choose the most cost-effective compute instances that provide the
required resources.

Discussion
Containers are useful not only for process isolation and as a
packaging format. With identified resource profiles, they are also
the building blocks for successful capacity planning. Perform some
early tests to discover the resource needs for each container, and
use that information as a base for future capacity planning and
prediction.
Kubernetes can help you here with the Vertical Pod Autoscaler
(VPA), which monitors the resource consumption of your Pod over
time and gives a recommendation for requests and limits. The VPA
is described in detail in “Vertical Pod Autoscaling”.
However, more importantly, resource profiles are the way an
application communicates with Kubernetes to assist in scheduling
and managing decisions. If your application doesn’t provide any
requests or limits, all Kubernetes can do is treat your
containers as opaque boxes that are dropped when the cluster gets
full. So it is more or less mandatory for every application to think
about and provide these resource declarations.
Now that you know how to size our applications, in Chapter 3,
“Declarative Deployment”, you will learn multiple strategies to
install and update our applications on Kubernetes.
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Chapter 3. Declarative
Deployment

The heart of the Declarative Deployment pattern is the Kubernetes
Deployment resource. This abstraction encapsulates the upgrade
and rollback processes of a group of containers and makes its
execution a repeatable and automated activity.

Problem
We can provision isolated environments as namespaces in a self-
service manner and place the applications in these environments
with minimal human intervention through the scheduler. But with a
growing number of microservices, continually updating and
replacing them with newer versions becomes an increasing burden
too.
Upgrading a service to a next version involves activities such as
starting the new version of the Pod, stopping the old version of a
Pod gracefully, waiting and verifying that it has launched
successfully, and sometimes rolling it all back to the previous
version in the case of failure. These activities are performed either
by allowing some downtime but not running concurrent service
versions, or with no downtime but increased resource usage due to
both versions of the service running during the update process.
Performing these steps manually can lead to human errors, and
scripting properly can require a significant amount of effort, both of
which quickly turn the release process into a bottleneck.



Solution
Luckily, Kubernetes has automated application upgrades as well.
Using the concept of Deployment, we can describe how our
application should be updated, using different strategies and tuning
the various aspects of the update process. If you consider that you
do multiple Deployments for every microservice instance per
release cycle (which, depending on the team and project, can span
from minutes to several months), this is another effort-saving
automation by Kubernetes.
In Chapter 2, “Predictable Demands”, we saw that, to do its job
effectively, the scheduler requires sufficient resources on the host
system, appropriate placement policies, and containers with
adequately defined resource profiles. Similarly, for a Deployment to
do its job correctly, it expects the containers to be good cloud native
citizens. At the very core of a Deployment is the ability to start and
stop a set of Pods predictably. For this to work as expected, the
containers themselves usually listen and honor lifecycle events
(such as SIGTERM; see Chapter 5, “Managed Lifecycle”) and also
provide health-check endpoints as described in Chapter 4, “Health
Probe”, which indicate whether they started successfully.
If a container covers these two areas accurately, the platform can
cleanly shut down old containers and replace them by starting
updated instances. Then all the remaining aspects of an update
process can be defined in a declarative way and executed as one
atomic action with predefined steps and an expected outcome. Let’s
see the options for a container update behavior.



DEPLOYMENT UPDATES WITH KUBECTL ROLLOUT
In previous versions of Kubernetes, rolling updates were
implemented on the client side with the kubectl rolling-
update command. In Kubernetes 1.18, rolling-update was
removed in favor of a rollout command for kubectl. The
difference is that kubectl rollout manages an application
update on the server side by updating the Deployment
declaration and leaving it to Kubernetes to perform the update.
The kubectl rolling-update command, in contrast, was
imperative: the client kubectl told the server what to do for
each update step.
A Deployment can be fully managed by updating the Kubernetes
resources files. However, kubectl rollout comes in very
handy for everyday rollout tasks:
kubectl rollout status

Shows the current status of a Deployment’s rollout.

kubectl rollout pause

Pauses a rolling update so that multiple changes can be
applied to a Deployment without retriggering another rollout.

kubectl rollout resume

Resumes a previously paused rollout.

kubectl rollout undo

Performs a rollback to a prevision revision of a Deployment.
A rollback is helpful in case of an error during the update.

kubectl rollout history

Shows the available revisions of a Deployment.



kubectl rollout restart

Does not perform an update but restarts the current set of
Pods belonging to a Deployment using the configured rollout
strategy.

You can find usage examples for kubectl rollout commands
in the examples.

Rolling Deployment
The declarative way of updating applications in Kubernetes is
through the concept of Deployment. Behind the scenes, the
Deployment creates a ReplicaSet that supports set-based label
selectors. Also, the Deployment abstraction allows you to shape the
update process behavior with strategies such as RollingUpdate
(default) and Recreate. Example 3-1 shows the important bits for
configuring a Deployment for a rolling update strategy.
Example 3-1. Deployment for a rolling update
apiVersion: apps/v1
kind: Deployment
metadata:
  name: random-generator
spec:
  replicas: 3            
  strategy:
    type: RollingUpdate
    rollingUpdate:
      maxSurge: 1        
      maxUnavailable: 1  
  minReadySeconds: 60    
  selector:
    matchLabels:
      app: random-generator
  template:
    metadata:
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      labels:
        app: random-generator
    spec:
      containers:
      - image: k8spatterns/random-generator:1.0
        name: random-generator
        readinessProbe:  
          exec:
            command: [ "stat", "/tmp/random-generator-ready" 
] Declaration of three replicas. You need more than one replica for

a rolling update to make sense.
Number of Pods that can be run temporarily in addition to the
replicas specified during an update. In this example, it could be
a maximum of four replicas.
Number of Pods that may be unavailable during the update.
Here it could be that only two Pods are available at a time
during the update.
Duration in seconds of all readiness probes for a rolled-out Pod
needs to be healthy until the rollout continues.
Readiness probes that are very important for a rolling
deployment to ensure zero downtime—don’t forget them (see
Chapter 4, “Health Probe”).

RollingUpdate strategy behavior ensures there is no downtime
during the update process. Behind the scenes, the Deployment
implementation performs similar moves by creating new ReplicaSets
and replacing old containers with new ones. One enhancement here
is that with Deployment, it is possible to control the rate of a new
container rollout. The Deployment object allows you to control the
range of available and excess Pods through maxSurge and
maxUnavailable fields.

These two fields can be either absolute numbers of Pods or relative
percentages that are applied to the configured number of replicas
for the Deployment and are rounded up (maxSurge) or down
(maxUnavailable) to the next integer value. By default,
maxSurge and maxUnavailable are both set to 25%.



Another important parameter that influences the rollout behavior is
minReadySeconds. This field specifies the duration in seconds
that the readiness probes of a Pod need to be successful until the
Pod itself is considered to be available in a rollout. Increasing this
value guarantees that your application Pod is successfully running
for some time before continuing with the rollout. Also, a larger
minReadySeconds interval helps in debugging and exploring the
new version. A kubectl rollout pause might be easier to
leverage when the intervals between the update steps are larger.
Figure 3-1 shows the rolling update process.

Figure 3-1. Rolling deployment

To trigger a declarative update, you have three options:

Replace the whole Deployment with the new version’s
Deployment with kubectl replace.



Patch (kubectl patch) or interactively edit (kubectl
edit) the Deployment to set the new container image of the
new version.

Use kubectl set image to set the new image in the
Deployment.

See also the full example in our repository, which demonstrates the
usage of these commands and shows you how to monitor or roll
back an upgrade with kubectl rollout.

In addition to addressing the drawbacks of the imperative way of
deploying services, the Deployment has the following benefits:

Deployment is a Kubernetes resource object whose status is
entirely managed by Kubernetes internally. The whole update
process is performed on the server side without client
interaction.

The declarative nature of Deployment specifies how the
deployed state should look rather than the steps necessary to
get there.

The Deployment definition is an executable object and more
than just documentation. It can be tried and tested on multiple
environments before reaching production.

The update process is also wholly recorded and versioned with
options to pause, continue, and roll back to previous versions.

Fixed Deployment
A RollingUpdate strategy is useful for ensuring zero downtime
during the update process. However, the side effect of this approach
is that during the update process, two versions of the container are
running at the same time. That may cause issues for the service
consumers, especially when the update process has introduced
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backward-incompatible changes in the service APIs and the client is
not capable of dealing with them. For this kind of scenario, you can
use the Recreate strategy, which is illustrated in Figure 3-2.

Figure 3-2. Fixed deployment using a Recreate strategy

The Recreate strategy has the effect of setting maxUnavailable
to the number of declared replicas. This means it first kills all
containers from the current version and then starts all new
containers simultaneously when the old containers are evicted. The
result of this sequence is that downtime occurs while all containers
with old versions are stopped, and no new containers are ready to
handle incoming requests. On the positive side, two different
versions of the containers won’t be running at the same time, so
service consumers can connect only one version at a time.



Blue-Green Release
The Blue-Green deployment is a release strategy used for deploying
software in a production environment by minimizing downtime and
reducing risk. The Kubernetes Deployment abstraction is a
fundamental concept that lets you define how Kubernetes
transitions immutable containers from one version to another. We
can use the Deployment primitive as a building block, together with
other Kubernetes primitives, to implement this more advanced
release strategy.
A Blue-Green deployment needs to be done manually if no
extensions like a service mesh or Knative are used, though.
Technically, it works by creating a second Deployment, with the
latest version of the containers (let’s call it green) not serving any
requests yet. At this stage, the old Pod replicas from the original
Deployment (called blue) are still running and serving live requests.
Once we are confident that the new version of the Pods is healthy
and ready to handle live requests, we switch the traffic from old Pod
replicas to the new replicas. You can do this in Kubernetes by
updating the Service selector to match the new containers (labeled
with green). As demonstrated in Figure 3-3, once the green (v1.1)
containers handle all the traffic, the blue (v1.0) containers can be
deleted and the resources freed for future Blue-Green deployments.



Figure 3-3. Blue-Green release

A benefit of the Blue-Green approach is that only one version of the
application is serving requests at a time, which reduces the
complexity of handling multiple concurrent versions by the Service
consumers. The downside is that it requires twice the application
capacity while both blue and green containers are up and running.
Also, significant complications can occur with long-running
processes and database state drifts during the transitions.

Canary Release
Canary release is a way to softly deploy a new version of an
application into production by replacing only a small subset of old
instances with new ones. This technique reduces the risk of
introducing a new version into production by letting only some of
the consumers reach the updated version. When we’re happy with
the new version of our service and how it performed with a small



sample of users, we can replace all the old instances with the new
version in an additional step after this canary release. Figure 3-4
shows a canary release in action.
In Kubernetes, this technique can be implemented by creating a
new Deployment with a small replica count that can be used as the
canary instance. At this stage, the Service should direct some of the
consumers to the updated Pod instances. After the canary release
and once we are confident that everything with the new ReplicaSet
works as expected, we scale the new ReplicaSet up, and the old
ReplicaSet down to zero. In a way, we’re performing a controlled
and user-tested incremental rollout.

Figure 3-4. Canary release



Discussion
The Deployment primitive is an example of Kubernetes turning the
tedious process of manually updating applications into a declarative
activity that can be repeated and automated. The out-of-the-box
deployment strategies (rolling and recreate) control the
replacement of old containers by new ones, and the advanced
release strategies (Blue-Green and canary) control how the new
version becomes available to service consumers. The latter two
release strategies are based on a human decision for the transition
trigger and as a consequence are not fully automated by
Kubernetes but require human interaction. Figure 3-5 summarizes of
the deployment and release strategies, showing instance counts
during transitions.

Figure 3-5. Deployment and release strategies

All software is different, and deploying complex systems usually
requires additional steps and checks. The techniques discussed in
this chapter cover the Pod update process, but do not include



updating and rolling back other Pod dependencies such as
ConfigMaps, Secrets, or other dependent services.

PRE AND POST DEPLOYMENT HOOKS
In the past, there has been a proposal for Kubernetes to allow
hooks in the deployment process. Pre and Post hooks would
allow the execution of custom commands before and after
Kubernetes has executed a deployment strategy. Such
commands could perform additional actions while the
deployment is in progress and would additionally be able to
abort, retry, or continue a deployment. Those hooks are a good
step toward new automated deployment and release strategies.
Unfortunately, this effort has been stalled for some years (as of
2023), so it is unclear whether this feature will ever come to
Kubernetes.

One approach that works today is to create a script to manage the
update process of services and their dependencies using the
Deployment and other primitives discussed in this book. However,
this imperative approach that describes the individual update steps
does not match the declarative nature of Kubernetes.
As an alternative, higher-level declarative approaches have
emerged on top of Kubernetes. The most important platforms are
described in the sidebar that follows. Those techniques work with
operators (see Chapter 28, “Operator”) that take a declarative
description of the rollout process and perform the necessary actions
on the server side, some of them also including automatic rollbacks
in case of an update error. For advanced, production-ready rollout
scenarios, it is recommended to look at one of those extensions.
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HIGHER-LEVEL DEPLOYMENTS
The Deployment resource is a good abstraction over ReplicaSets
and Pods to allow a simple declarative rollout that a handful of
parameters can tune. However, as we have seen, Deployment
does not support more sophisticated strategies like canary or
Blue-Green deployments directly. There are higher-level
abstractions that enhance Kubernetes by introducing new
resource types, enabling the declaration of more flexible
deployment strategies. Those extensions all leverage the
Operator pattern described in Chapter 28 and introduce their
own custom resources for describing the desired rollout
behavior.
As of 2023, the most prominent platforms that support higher-
level Deployments include the following:
Flagger

Flagger implements several deployment strategies and is
part of the Flux CD GitOps tools. It supports canary and Blue-
Green deployments and integrates with many ingress
controllers and service meshes to provide the necessary
traffic split between your app’s old and new versions. It can
also monitor the status of the rollout process based on a
custom metric and detect if the rollout fails so that it can
trigger an automatic rollback.

Argo Rollouts
The focus on this part of the Argo family of tools is on
providing a comprehensive and opinionated continuous
delivery (CD) solution for Kubernetes. Argo Rollouts support
advanced deployment strategies, like Flagger, and integrate
into many ingress controllers and service meshes. It has very
similar capabilities to Flagger, so the decision about which



one to use should be based on which CD solution you prefer,
Argo or Flux.

Knative
Knative a serverless platform on top of Kubernetes. A core
feature of Knative is traffic-driven autoscaling support, which
is described in detail in Chapter 29, “Elastic Scale”. Knative
also provides a simplified deployment model and traffic
splitting, which is very helpful for supporting high-level
deployment rollouts. The support for rollout or rollbacks is
not as advanced as with Flagger or Argo Rollouts but is still a
substantial improvement over the rollout capabilities of
Kubernetes Deployments. If you are using Knative anyway,
the intuitive way of splitting traffic between two application
versions is a good alternative to Deployments.

Like Kubernetes, all of these projects are part of the Cloud
Native Computing Foundation (CNCF) project and have excellent
community support.

Regardless of the deployment strategy you are using, it is essential
for Kubernetes to know when your application Pods are up and
running to perform the required sequence of steps to reach the
defined target deployment state. The next pattern, Health Probe, in
Chapter 4 describes how your application can communicate its
health state to Kubernetes.

More Information
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Deployments
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Chapter 4. Health Probe

The Health Probe pattern indicates how an application can
communicate its health state to Kubernetes. To be fully
automatable, a cloud native application must be highly observable
by allowing its state to be inferred so that Kubernetes can detect
whether the application is up and whether it is ready to serve
requests. These observations influence the lifecycle management of
Pods and the way traffic is routed to the application.

Problem
Kubernetes regularly checks the container process status and
restarts it if issues are detected. However, from practice, we know
that checking the process status is not sufficient to determine the
health of an application. In many cases, an application hangs, but
its process is still up and running. For example, a Java application
may throw an OutOfMemoryError and still have the JVM process
running. Alternatively, an application may freeze because it runs
into an infinite loop, deadlock, or some thrashing (cache, heap,
process). To detect these kinds of situations, Kubernetes needs a
reliable way to check the health of applications—that is, not to
understand how an application works internally, but to check
whether the application is functioning as expected and capable of
serving consumers.

Solution
The software industry has accepted the fact that it is not possible to
write bug-free code. Moreover, the chances for failure increase even
more when working with distributed applications. As a result, the



focus for dealing with failures has shifted from avoiding them to
detecting faults and recovering. Detecting failure is not a simple
task that can be performed uniformly for all applications, as
everyone has different definitions of a failure. Also, various types of
failures require different corrective actions. Transient failures may
self-recover, given enough time, and some other failures may need
a restart of the application. Let’s look at the checks Kubernetes uses
to detect and correct failures.

Process Health Checks
A process health check is the simplest health check the Kubelet
constantly performs on the container processes. If the container
processes are not running, the container is restarted on the node to
which the Pod is assigned. So even without any other health checks,
the application becomes slightly more robust with this generic
check. If your application is capable of detecting any kind of failure
and shutting itself down, the process health check is all you need.
However, for most cases, that is not enough, and other types of
health checks are also necessary.

Liveness Probes
If your application runs into a deadlock, it is still considered healthy
from the process health check’s point of view. To detect this kind of
issue and any other types of failure according to your application
business logic, Kubernetes has liveness probes—regular checks
performed by the Kubelet agent that asks your container to confirm
it is still healthy. It is important to have the health check performed
from the outside rather than in the application itself, as some
failures may prevent the application watchdog from reporting its
failure. Regarding corrective action, this health check is similar to a
process health check, since if a failure is detected, the container is



restarted. However, it offers more flexibility regarding which
methods to use for checking the application health, as follows:
HTTP probe

Performs an HTTP GET request to the container IP address and
expects a successful HTTP response code between 200 and 399.

TCP Socket probe
Assumes a successful TCP connection.

Exec probe
Executes an arbitrary command in the container’s user and
kernel namespace and expects a successful exit code (0).

gRPC probe
Leverages gRPC’s intrinsic support for health checks.

In addition to the probe action, the health check behavior can be
influenced with the following parameters:
initialDelaySeconds

Specifies the number of seconds to wait until the first liveness
probe is checked.

periodSeconds

The interval in seconds between liveness probe checks.

timeoutSeconds

The maximum time allowed for a probe check to return before it
is considered to have failed.

failureThreshold



Specifies how many times a probe check needs to fail in a row
until the container is considered to be unhealthy and needs to
be restarted.

An example HTTP-based liveness probe is shown in Example 4-1.
Example 4-1. Container with a liveness probe
apiVersion: v1
kind: Pod
metadata:
  name: pod-with-liveness-check
spec:
  containers:
  - image: k8spatterns/random-generator:1.0
    name: random-generator
    env:
    - name: DELAY_STARTUP
      value: "20"
    ports:
    - containerPort: 8080
      protocol: TCP
    livenessProbe:
      httpGet:                  
        path: /actuator/health
        port: 8080
      initialDelaySeconds: 30   HTTP probe to a health-check endpoint.

Wait 30 seconds before doing the first liveness check to give the
application some time to warm up.

Depending on the nature of your application, you can choose the
method that is most suitable for you. It is up to your application to
decide whether it considers itself healthy or not. However, keep in
mind that the result of not passing a health check is that your
container will restart. If restarting your container does not help,
there is no benefit to having a failing health check as Kubernetes
restarts your container without fixing the underlying issue.



Readiness Probes
Liveness checks help keep applications healthy by killing unhealthy
containers and replacing them with new ones. But sometimes, when
a container is not healthy, restarting it may not help. A typical
example is a container that is still starting up and is not ready to
handle any requests. Another example is an application that is still
waiting for a dependency like a database to be available. Also, a
container can be overloaded, increasing its latency, so you want it
to shield itself from the additional load for a while and indicate that
it is not ready until the load decreases.
For this kind of scenario, Kubernetes has readiness probes. The
methods (HTTP, TCP, Exec, gRPC) and timing options for performing
readiness checks are the same as for liveness checks, but the
corrective action is different. Rather than restarting the container, a
failed readiness probe causes the container to be removed from the
service endpoint and not receive any new traffic. Readiness probes
signal when a container is ready so that it has some time to warm
up before getting hit with requests from the service. It is also useful
for shielding the container from traffic at later stages, as readiness
probes are performed regularly, similarly to liveness checks.
Example 4-2 shows how a readiness probe can be implemented by
probing the existence of a file the application creates when it is
ready for operations.
Example 4-2. Container with readiness probe
apiVersion: v1
kind: Pod
metadata:
  name: pod-with-readiness-check
spec:
  containers:
  - image: k8spatterns/random-generator:1.0
    name: random-generator
    readinessProbe:
      exec:  



        command: [ "stat", "/var/run/random-generator-ready" 
] Check for the existence of a file the application creates to

indicate it’s ready to serve requests. stat returns an error if the
file does not exist, letting the readiness check fail.

Again, it is up to your implementation of the health check to decide
when your application is ready to do its job and when it should be
left alone. While process health checks and liveness checks are
intended to recover from the failure by restarting the container, the
readiness check buys time for your application and expects it to
recover by itself. Keep in mind that Kubernetes tries to prevent your
container from receiving new requests (when it is shutting down, for
example), regardless of whether the readiness check still passes
after having received a SIGTERM signal.



CUSTOM POD READINESS GATES
Readiness probes work on a per-container level, and a Pod is
considered ready to serve requests when all containers pass
their readiness probes. In some situations, this is not good
enough—for example, when an external load balancer like the
AWS LoadBalancer needs to be reconfigured and ready too. In
this case, the readinessGates field of a Pod’s specification
can be used to specify extra conditions that need to be met for
the Pod to become ready. Example 4-3 shows a readiness gate
that will introduce an additional condition,
k8spatterns.io/load-balancer-ready, to the Pod’s
status sections.

Example 4-3. Readiness gate for indicating the status of
an external load balancer
apiVersion: v1
kind: Pod
...
spec:
  readinessGates:
  - conditionType: "k8spatterns.io/load-balancer-ready"
...
status:
  conditions:
  - type: "k8spatterns.io/load-balancer-ready" 
    status: "False"
    ...
  - type: Ready                                
    status: "False"
    ...New condition introduced by Kubernetes and set to False

by default. It needs to be switched to True externally, e.g.,
by a controller, as desribed in Chapter 27, “Controller”, when
the load balancer is ready to serve.
The Pod is “ready” when all containers’ readiness probes are
passing and the readiness gates’ conditions are True;
otherwise, as here, the Pod is marked as nonready.



Pod readiness gates are an advanced feature that are not
supposed to be used by the end user but by Kubernetes add-ons
to introduce additional dependencies on the readiness of a Pod.

In many cases, liveness and readiness probes are performing the
same checks. However, the presence of a readiness probe gives
your container time to start up. Only by passing the readiness check
is a Deployment considered to be successful, so that, for example,
Pods with an older version can be terminated as part of a rolling
update.
For applications that need a very long time to initialize, it’s likely
that failing liveness checks will cause your container to be restarted
before the startup is finished. To prevent these unwanted
shutdowns, you can use startup probes to indicate when the startup
is finished.

Startup Probes
Liveness probes can also be used exclusively to allow for long
startup times by stretching the check intervals, increasing the
number of retries, and adding a longer delay for the initial liveness
probe check. This strategy, however, is not optimal since these
timing parameters will also apply for the post-startup phase and will
prevent your application from quickly restarting when fatal errors
occur.
When applications take minutes to start (for example, Jakarta EE
application servers), Kubernetes provides startup probes.
Startup probes are configured with the same format as liveness
probes but allow for different values for the probe action and the
timing parameters. The periodSeconds and failureThreshold
parameters are configured with much larger values compared to the
corresponding liveness probes to factor in the longer application
startup. Liveness and readiness probes are called only after the



startup probe reports success. The container is restarted if the
startup probe is not successful within the configured failure
threshold.
While the same probe action can be used for liveness and startup
probes, a successful startup is often indicated by a marker file that
is checked for existence by the startup probe.
Example 4-4 is a typical example of a Jakarta EE application server
that takes a long time to start.
Example 4-4. Container with a startup and liveness probe
apiVersion: v1
kind: Pod
metadata:
  name: pod-with-startup-check
spec:
  containers:
  - image: quay.io/wildfly/wildfly 
    name: wildfly
    startupProbe:
      exec:
        command: [ "stat", 
"/opt/jboss/wildfly/standalone/tmp/startup-marker" ]  
      initialDelaySeconds: 60    
      periodSeconds: 60
      failureThreshold: 15
    livenessProbe:
      httpGet:
        path: /health
        port: 9990
        periodSeconds: 10          
        failureThreshold: 3JBoss WildFly Jakarta EE server that will take its time to start.

Marker file that is created by WildFly after a successful startup.
Timing parameters that specify that the container should be
restarted when it has not been passing the startup probe after
15 minutes (60-second pause until the first check, then maximal
15 checks with 60-second intervals).
Timing parameters for the liveness probes are much smaller,
resulting in a restart if subsequent liveness probes fail within 20



seconds (three retries with 10-second pauses between each).

The liveness, readiness, and startup probes are fundamental
building blocks of the automation of cloud native applications.
Application frameworks such as Quarkus SmallRye Health, Spring
Boot Actuator, WildFly Swarm health check, Apache Karaf health
check, or the MicroProfile spec for Java provide implementations for
offering health probes.

Discussion
To be fully automatable, cloud native applications must be highly
observable by providing a means for the managing platform to read
and interpret the application health, and if necessary, take
corrective actions. Health checks play a fundamental role in the
automation of activities such as deployment, self-healing, scaling,
and others. However, there are also other means through which
your application can provide more visibility about its health.
The obvious and old method for this purpose is through logging. It
is a good practice for containers to log any significant events to
system out and system error and have these logs collected to a
central location for further analysis. Logs are not typically used for
taking automated actions but rather to raise alerts and further
investigations. A more useful aspect of logs is the postmortem
analysis of failures and detection of unnoticeable errors.
Apart from logging to standard streams, it is also a good practice to
log the reason for exiting a container to /dev/termination-log. This
location is the place where the container can state its last will
before being permanently vanished.1 Figure 4-1 shows the possible
options for how a container can communicate with the runtime
platform.



Figure 4-1. Container observability options

Containers provide a unified way for packaging and running
applications by treating them like opaque systems. However, any
container that is aiming to become a cloud native citizen must
provide APIs for the runtime environment to observe the container
health and act accordingly. This support is a fundamental
prerequisite for automation of the container updates and lifecycle in
a unified way, which in turn improves the system’s resilience and
user experience. In practical terms, that means, as a very minimum,
your containerized application must provide APIs for the different
kinds of health checks (liveness and readiness).
Even-better-behaving applications must also provide other means
for the managing platform to observe the state of the containerized
application by integrating with tracing and metrics-gathering
libraries such as OpenTracing or Prometheus. Treat your application
as an opaque system, but implement all the necessary APIs to help
the platform observe and manage your application in the best way
possible.
The next pattern, Managed Lifecycle, is also about communication
between applications and the Kubernetes management layer, but
coming from the other direction. It’s about how your application
gets informed about important Pod lifecycle events.
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FallbackToLogsOnError, in which case the last line of the log is used for
the Pod’s status message when it terminates.



Chapter 5. Managed Lifecycle

Containerized applications managed by cloud native platforms have
no control over their lifecycle, and to be good cloud native citizens,
they have to listen to the events emitted by the managing platform
and adapt their lifecycles accordingly. The Managed Lifecycle
pattern describes how applications can and should react to these
lifecycle events.

Problem
In Chapter 4, “Health Probe”, we explained why containers have to
provide APIs for the different health checks. Health-check APIs are
read-only endpoints the platform is continually probing to get
application insight. It is a mechanism for the platform to extract
information from the application.
In addition to monitoring the state of a container, the platform
sometimes may issue commands and expect the application to
react to them. Driven by policies and external factors, a cloud
native platform may decide to start or stop the applications it is
managing at any moment. It is up to the containerized application
to determine which events are important to react to and how to
react. But in effect, this is an API that the platform is using to
communicate and send commands to the application. Also,
applications are free to either benefit from lifecycle management or
ignore it if they don’t need this service.

Solution
We saw that checking only the process status is not a good enough
indication of the health of an application. That is why there are



different APIs for monitoring the health of a container. Similarly,
using only the process model to run and stop a process is not good
enough. Real-world applications require more fine-grained
interactions and lifecycle management capabilities. Some
applications need help to warm up, and some applications need a
gentle and clean shutdown procedure. For this and other use cases,
some events, as shown in Figure 5-1, are emitted by the platform
that the container can listen to and react to if desired.

Figure 5-1. Managed container lifecycle

The deployment unit of an application is a Pod. As you already
know, a Pod is composed of one or more containers. At the Pod
level, there are other constructs such as init containers, which we
cover in Chapter 15, “Init Container”, that can help manage the
container lifecycle. The events and hooks we describe in this
chapter are all applied at an individual container level rather than
the Pod level.

SIGTERM Signal
Whenever Kubernetes decides to shut down a container, whether
that is because the Pod it belongs to is shutting down or simply
because a failed liveness probe causes the container to be
restarted, the container receives a SIGTERM signal. SIGTERM is a
gentle poke for the container to shut down cleanly before
Kubernetes sends a more abrupt SIGKILL signal. Once a SIGTERM
signal has been received, the application should shut down as
quickly as possible. For some applications, this might be a quick
termination, and some other applications may have to complete



their in-flight requests, release open connections, and clean up
temp files, which can take a slightly longer time. In all cases,
reacting to SIGTERM is the right moment to shut down a container
in a clean way.

SIGKILL Signal
If a container process has not shut down after a SIGTERM signal, it
is shut down forcefully by the following SIGKILL signal. Kubernetes
does not send the SIGKILL signal immediately but waits 30 seconds
by default after it has issued a SIGTERM signal. This grace period
can be defined per Pod via the .spec.terminationGrace​
Per⁠iodSeconds field, but it cannot be guaranteed as it can be
overridden while issuing commands to Kubernetes. The aim should
be to design and implement containerized applications to be
ephemeral with quick startup and shutdown processes.

PostStart Hook
Using only process signals for managing lifecycles is somewhat
limited. That is why additional lifecycle hooks such as postStart
and preStop are provided by Kubernetes. A Pod manifest
containing a postStart hook looks like the one in Example 5-1.

Example 5-1. A container with postStart hook
apiVersion: v1
kind: Pod
metadata:
  name: post-start-hook
spec:
  containers:
  - image: k8spatterns/random-generator:1.0
    name: random-generator
    lifecycle:
      postStart:
        exec:
          command:  



          - sh
          - -c
          - sleep 30 && echo "Wake up!" > /tmp/postStart_doneThe postStart command waits 30 seconds. sleep is just a

simulation for any lengthy startup code that might run at this
point. Also, it uses a trigger file to sync with the main
application, which starts in parallel.

The postStart command is executed after a container is created,
asynchronously with the primary container’s process. Even if much
of the application initialization and warm-up logic can be
implemented as part of the container startup steps, postStart
still covers some use cases. The postStart action is a blocking
call, and the container status remains Waiting until the postStart
handler completes, which in turn keeps the Pod status in the
Pending state. This nature of postStart can be used to delay the
startup state of the container while allowing time for the main
container process to initialize.
Another use of postStart is to prevent a container from starting
when the Pod does not fulfill certain preconditions. For example,
when the postStart hook indicates an error by returning a
nonzero exit code, Kubernetes kills the main container process.
The postStart and preStop hook invocation mechanisms are
similar to the health probes described in Chapter 4, “Health Probe”,
and support these handler types:
exec

Runs a command directly in the container

httpGet
Executes an HTTP GET request against a port opened by one
Pod container



You have to be very careful what critical logic you execute in the
postStart hook as there are no guarantees for its execution.
Since the hook is running in parallel with the container process, it is
possible that the hook may be executed before the container has
started. Also, the hook is intended to have at-least-once semantics,
so the implementation has to take care of duplicate executions.
Another aspect to keep in mind is that the platform does not
perform any retry attempts on failed HTTP requests that didn’t
reach the handler.

PreStop Hook
The preStop hook is a blocking call sent to a container before it is
terminated. It has the same semantics as the SIGTERM signal and
should be used to initiate a graceful shutdown of the container
when reacting to SIGTERM is not possible. The preStop action in
Example 5-2 must complete before the call to delete the container
is sent to the container runtime, which triggers the SIGTERM
notification.
Example 5-2. A container with a preStop hook
apiVersion: v1
kind: Pod
metadata:
  name: pre-stop-hook
spec:
  containers:
  - image: k8spatterns/random-generator:1.0
    name: random-generator
    lifecycle:
      preStop:
        httpGet:  
          path: /shutdown
          port: 8080Call out to a /shutdown endpoint running within the

application.



Even though preStop is blocking, holding on it or returning an
unsuccessful result does not prevent the container from being
deleted and the process killed. The preStop hook is only a
convenient alternative to a SIGTERM signal for graceful application
shutdown and nothing more. It also offers the same handler types
and guarantees as the postStart hook we covered previously.

Other Lifecycle Controls
In this chapter, so far we have focused on the hooks that allow you
to execute commands when a container lifecycle event occurs. But
another mechanism that is not at the container level but at the Pod
level allows you to execute initialization instructions.
We describe the Init Container pattern in Chapter 15 in depth, but
here we describe it briefly to compare it with lifecycle hooks. Unlike
regular application containers, init containers run sequentially, run
until completion, and run before any of the application containers in
a Pod start up. These guarantees allow you to use init containers
for Pod-level initialization tasks. Both lifecycle hooks and init
containers operate at a different granularity (at the container level
and Pod level, respectively) and can be used interchangeably in
some instances, or complement one another in other cases.
Table 5-1 summarizes the main differences between the two.



Table 5-1. Lifecycle hooks and init containers

Aspect Lifecycle hooks Init containers

Activates on Container lifecycle
phases.

Pod lifecycle phases.

Startup phase
action

A postStart command. A list of initContaine
rs to execute.

Shutdown
phase action

A preStop command. No equivalent feature.

Timing
guarantees

A postStart command
is executed at the same
time as the container’s E
NTRYPOINT.

All init containers
must be completed
successfully before
any application
container can start.

Use cases Perform noncritical
startup/shutdown
cleanups specific to a
container.

Perform workflow-like
sequential operations
using containers;
reuse containers for
task executions.

If even more control is required to manage the lifecycle of your
application containers, there is an advanced technique for rewriting
the container entrypoints, sometimes also referred to as the
Commandlet pattern. This pattern is especially useful when the
main containers within a Pod have to be started in a certain order
and need an extra level of control. Kubernetes-based pipeline
platforms like Tekton and Argo CD require the sequential execution
of containers that share data and support the inclusion of additional
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sidecar containers running in parallel (we talk more about sidecars
in Chapter 16, “Sidecar”).
For these scenarios, a sequence of init containers is not good
enough because init containers don’t allow sidecars. As an
alternative, an advanced technique called entrypoint rewriting can
be used to allow fine-grained lifecycle control for the Pod’s main
containers. Every container image defines a command that is
executed by default when the container starts. In a Pod
specification, you can also define this command directly in the Pod
spec. The idea of entrypoint rewriting is to replace this command
with a generic wrapper command that calls the original command
and takes care of lifecycle concerns. This generic command is
injected from another container image before the application
container starts.
This concept is best explained by an example. Example 5-3 shows a
typical Pod declaration that starts a single container with the given
arguments.
Example 5-3. Simple Pod starting an image with a command and
arguments
apiVersion: v1
kind: Pod
metadata:
  name: simple-random-generator
spec:
  restartPolicy: OnFailure
  containers:
  - image: k8spatterns/random-generator:1.0
    name: random-generator
    command:
    - "random-generator-runner"  
    args:                        
    - "--seed"
    - "42"The command executed when the container starts.

Additional arguments provided to the entrypoint command.



The trick is now to wrap the given command random-generator-
runner with a generic supervisor program that takes care of
lifecycle aspects, like reacting on SIGTERM or other external
signals. Example 5-4 demonstrates a Pod declaration that includes
an init container for installing a supervisor, which is then started to
monitor the main application.
Example 5-4. Pod that wraps the original entrypoint with a
supervisor
apiVersion: v1
kind: Pod
metadata:
  name: wrapped-random-generator
spec:
  restartPolicy: OnFailure
  volumes:
  - name: wrapper                   
    emptyDir: { }
  initContainers:
  - name: copy-supervisor           
    image: k8spatterns/supervisor
    volumeMounts:
    - mountPath: /var/run/wrapper
      name: wrapper
    command: [ cp ]
    args: [ supervisor, /var/run/wrapper/supervisor ]
  containers:
  - image: k8spatterns/random-generator:1.0
    name: random-generator
    volumeMounts:
    - mountPath: /var/run/wrapper
      name: wrapper
    command:
    - "/var/run/wrapper/supervisor" 
    args:                           
    - "random-generator-runner"
    - "--seed"
    - "42"A fresh emptyDir volume is created to share the supervisor

daemon.

Init container used for copying the supervisor daemon to the



Init container used for copying the supervisor daemon to the
application containers.
The original command randomGenerator as defined in
Example 5-3 is replaced with supervisor daemon from the shared
volume.
The original command specification becomes the arguments for
the supervisor commands.

This entrypoint rewriting is especially useful for Kubernetes-based
applications that create and manage Pods programmatically, like
Tekton, which creates Pods when running a continuous integration
(CI) pipeline. That way, they gain much better control of when to
start, stop, or chain containers within a Pod.
There are no strict rules about which mechanism to use except
when you require a specific timing guarantee. We could skip
lifecycle hooks and init containers entirely and use a bash script to
perform specific actions as part of a container’s startup or shutdown
commands. That is possible, but it would tightly couple the
container with the script and turn it into a maintenance nightmare.
We could also use Kubernetes lifecycle hooks to perform some
actions, as described in this chapter. Alternatively, we could go even
further and run containers that perform individual actions using init
containers or inject supervisor daemons for even more sophisticated
control. In this sequence, the options require increasingly more
effort, but at the same time offer stronger guarantees and enable
reuse.
Understanding the stages and available hooks of containers and Pod
lifecycles is crucial for creating applications that benefit from being
managed by Kubernetes.

Discussion
One of the main benefits the cloud native platform provides is the
ability to run and scale applications reliably and predictably on top



of potentially unreliable cloud infrastructure. These platforms
provide a set of constraints and contracts for an application running
on them. It is in the interest of the application to honor these
contracts to benefit from all of the capabilities offered by the cloud
native platform. Handling and reacting to these events ensures that
your application can gracefully start up and shut down with minimal
impact on the consuming services. At the moment, in its basic form,
that means the containers should behave as any well-designed
POSIX process should. In the future, there might be even more
events giving hints to the application when it is about to be scaled
up or asked to release resources to prevent being shut down. It is
essential to understand that the application lifecycle is no longer in
the control of a person but is fully automated by the platform.
Besides managing the application lifecycle, the other big duty of
orchestration platforms like Kubernetes is to distribute containers
over a fleet of nodes. The next pattern, Automated Placement,
explains the options to influence the scheduling decisions from the
outside.

More Information
Managed Lifecycle Example

Container Lifecycle Hooks

Attach Handlers to Container Lifecycle Events

Kubernetes Best Practices: Terminating with Grace

Graceful Shutdown of Pods with Kubernetes

Argo and Tekton: Pushing the Boundaries of the Possible on
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Chapter 6. Automated
Placement

Automated Placement is the core function of the Kubernetes
scheduler for assigning new Pods to nodes that match container
resource requests and honor scheduling policies. This pattern
describes the principles of the Kubernetes scheduling algorithm and
how to influence the placement decisions from the outside.

Problem
A reasonably sized microservices-based system consists of tens or
even hundreds of isolated processes. Containers and Pods do
provide nice abstractions for packaging and deployment but do not
solve the problem of placing these processes on suitable nodes.
With a large and ever-growing number of microservices, assigning
and placing them individually to nodes is not a manageable activity.
Containers have dependencies among themselves, dependencies to
nodes, and resource demands, and all of that changes over time
too. The resources available on a cluster also vary over time,
through shrinking or extending the cluster or by having it consumed
by already-placed containers. The way we place containers impacts
the availability, performance, and capacity of the distributed
systems as well. All of that makes scheduling containers to nodes a
moving target.

Solution
In Kubernetes, assigning Pods to nodes is done by the scheduler. It
is a part of Kubernetes that is highly configurable, and it is still



evolving and improving. In this chapter, we cover the main
scheduling control mechanisms, driving forces that affect the
placement, why to choose one or the other option, and the resulting
consequences. The Kubernetes scheduler is a potent and time-
saving tool. It plays a fundamental role in the Kubernetes platform
as a whole, but similar to other Kubernetes components (API
Server, Kubelet), it can be run in isolation or not used at all.
At a very high level, the main operation the Kubernetes scheduler
performs is to retrieve each newly created Pod definition from the
API Server and assign it to a node. It finds the most suitable node
for every Pod (as long as there is such a node), whether that is for
the initial application placement, scaling up, or when moving an
application from an unhealthy node to a healthier one. It does this
by considering runtime dependencies, resource requirements, and
guiding policies for high availability; by spreading Pods horizontally;
and also by colocating Pods nearby for performance and low-latency
interactions. However, for the scheduler to do its job correctly and
allow declarative placement, it needs nodes with available capacity
and containers with declared resource profiles and guiding policies
in place. Let’s look at each of these in more detail.

Available Node Resources
First of all, the Kubernetes cluster needs to have nodes with enough
resource capacity to run new Pods. Every node has capacity
available for running Pods, and the scheduler ensures that the sum
of the container resources requested for a Pod is less than the
available allocatable node capacity. Considering a node dedicated
only to Kubernetes, its capacity is calculated using the following
formula in Example 6-1.
Example 6-1. Node capacity

Allocatable [capacity for application pods] =
    Node Capacity [available capacity on a node]



        - Kube-Reserved [Kubernetes daemons like kubelet, 
container runtime]
        - System-Reserved [Operating System daemons like 
sshd, udev]
        - Eviction Thresholds [Reserved memory to prevent 
system OOMs]

If you don’t reserve resources for system daemons that power the
OS and Kubernetes itself, the Pods can be scheduled up to the full
capacity of the node, which may cause Pods and system daemons
to compete for resources, leading to resource starvation issues on
the node. Even then, memory pressure on the node can affect all
Pods running on it through OOMKilled errors or cause the node to go
temporarily offline. OOMKilled is an error message displayed when
the Linux kernel’s Out-of-Memory (OOM) killer terminates a process
because the system is out of memory. Eviction thresholds are the
last resort for the Kubelet to reserve memory on the node and
attempt to evict Pods when the available memory drops below the
reserved value.
Also keep in mind that if containers are running on a node that is
not managed by Kubernetes, the resources used by these
containers are not reflected in the node capacity calculations by
Kubernetes. A workaround is to run a placeholder Pod that doesn’t
do anything but has only resource requests for CPU and memory
corresponding to the untracked containers’ resource use amount.
Such a Pod is created only to represent and reserve the resource
consumption of the untracked containers and helps the scheduler
build a better resource model of the node.

Container Resource Demands
Another important requirement for an efficient Pod placement is to
define the containers’ runtime dependencies and resource demands.
We covered that in more detail in Chapter 2, “Predictable
Demands”. It boils down to having containers that declare their



resource profiles (with request and limit) and environment
dependencies such as storage or ports. Only then are Pods
optimally assigned to nodes and can run without affecting one
another and facing resource starvation during peak usage.

Scheduler Configurations
The next piece of the puzzle is having the right filtering or priority
configurations for your cluster needs. The scheduler has a default
set of predicate and priority policies configured that is good enough
for most use cases. In Kubernetes versions before v1.23, a
scheduling policy can be used to configure the predicates and
priorities of a scheduler. Newer versions of Kubernetes moved to
scheduling profiles to achieve the same effect. This new approach
exposes the different steps of the scheduling process as an
extension point and allows you to configure plugins that override
the default implementations of the steps. Example 6-2
demonstrates how to override the PodTopologySpread plugin
from the score step with custom plugins.

Example 6-2. A scheduler configuration
apiVersion: kubescheduler.config.k8s.io/v1
kind: KubeSchedulerConfiguration
profiles:
  - plugins:
      score:                          
        disabled:
        - name: PodTopologySpread     
        enabled:
        - name: MyCustomPlugin        
          weight: 2The plugins in this phase provide a score to each node that has

passed the filtering phase.
This plugin implements topology spread constraints that we will
see later in the chapter.
The disabled plugin in the previous step is replaced by a new
one.



CAUTION
Scheduler plugins and custom schedulers should be defined only by an
administrator as part of the cluster configuration. As a regular user
deploying applications on a cluster, you can just refer to predefined
schedulers.

By default, the scheduler uses the default-scheduler profile with
default plugins. It is also possible to run multiple schedulers on the
cluster, or multiple profiles on the scheduler, and allow Pods to
specify which profile to use. Each profile must have a unique name.
Then when defining a Pod, you can add the field
.spec.schedulerName with the name of your profile to the Pod
specification, and the Pod will be processed by the desired
scheduler profile.

Scheduling Process
Pods get assigned to nodes with certain capacities based on
placement policies. For completeness, Figure 6-1 visualizes at a
high level how these elements get together and the main steps a
Pod goes through when being scheduled.





Figure 6-1. A Pod-to-node assignment process

As soon as a Pod is created that is not assigned to a node yet, it
gets picked by the scheduler together with all the available nodes
and the set of filtering and priority policies. In the first stage, the
scheduler applies the filtering policies and removes all nodes that
do not qualify. Nodes that meet the Pod’s scheduling requirements
are called feasible nodes. In the second stage, the scheduler runs a
set of functions to score the remaining feasible nodes and orders
them by weight. In the last stage, the scheduler notifies the API
server about the assignment decision, which is the primary outcome
of the scheduling process. This whole process is also referred to as
scheduling, placement, node assignment, or binding.
In most cases, it is better to let the scheduler do the Pod-to-node
assignment and not micromanage the placement logic. However, on
some occasions, you may want to force the assignment of a Pod to
a specific node or group of nodes. This assignment can be done
using a node selector. The .spec.nodeSelector Pod field
specifies a map of key-value pairs that must be present as labels on
the node for the node to be eligible to run the Pod. For example,
let’s say you want to force a Pod to run on a specific node where
you have SSD storage or GPU acceleration hardware. With the Pod
definition in Example 6-3 that has nodeSelector matching
disktype: ssd, only nodes that are labeled with disktype=ssd
will be eligible to run the Pod.
Example 6-3. Node selector based on type of disk available
apiVersion: v1
kind: Pod
metadata:
  name: random-generator
spec:
  containers:
  - image: k8spatterns/random-generator:1.0
    name: random-generator



  nodeSelector:
    disktype: ssd      Set of node labels a node must match to be considered the node

of this Pod.

In addition to specifying custom labels to your nodes, you can use
some of the default labels that are present on every node. Every
node has a unique kubernetes.io/hostname label that can be
used to place a Pod on a node by its hostname. Other default labels
that indicate the OS, architecture, and instance type can be useful
for placement too.

Node Affinity
Kubernetes supports many more flexible ways to configure the
scheduling processes. One such feature is node affinity, which is a
more expressive way of the node selector approach described
previously that allows specifying rules as either required or
preferred. Required rules must be met for a Pod to be scheduled to
a node, whereas preferred rules only imply preference by increasing
the weight for the matching nodes without making them mandatory.
In addition, the node affinity feature greatly expands the types of
constraints you can express by making the language more
expressive with operators such as In, NotIn, Exists,
DoesNotExist, Gt, or Lt. Example 6-4 demonstrates how node
affinity is declared.
Example 6-4. Pod with node affinity
apiVersion: v1
kind: Pod
metadata:
  name: random-generator
spec:
  affinity:
    nodeAffinity:
      requiredDuringSchedulingIgnoredDuringExecution:   
        nodeSelectorTerms:
        - matchExpressions:                             



          - key: numberCores
            operator: Gt
            values: [ "3" ]
      preferredDuringSchedulingIgnoredDuringExecution:  
      - weight: 1
        preference:
          matchFields:
          - key: metadata.name
            operator: NotIn
            values: [ "control-plane-node" ]
  containers:
  - image: k8spatterns/random-generator:1.0
    name: random-generatorHard requirement that the node must have more than three

cores (indicated by a node label) to be considered in the
scheduling process. The rule is not reevaluated during execution
if the conditions on the node change.
Match on labels. In this example, all nodes are matched that
have a label numberCores with a value greater than 3.
Soft requirements, which is a list of selectors with weights. For
every node, the sum of all weights for matching selectors is
calculated, and the highest-valued node is chosen, as long as it
matches the hard requirement.

Pod Affinity and Anti-Affinity
Pod affinity is a more powerful way of scheduling and should be
used when nodeSelector is not enough. This mechanism allows
you to constrain which nodes a Pod can run based on label or field
matching. It doesn’t allow you to express dependencies among Pods
to dictate where a Pod should be placed relative to other Pods. To
express how Pods should be spread to achieve high availability, or
be packed and colocated together to improve latency, you can use
Pod affinity and anti-affinity.
Node affinity works at node granularity, but Pod affinity is not
limited to nodes and can express rules at various topology levels
based on the Pods already running on a node. Using the



topologyKey field, and the matching labels, it is possible to
enforce more fine-grained rules, which combine rules on domains
like node, rack, cloud provider zone, and region, as demonstrated in
Example 6-5.
Example 6-5. Pod with Pod affinity
apiVersion: v1
kind: Pod
metadata:
  name: random-generator
spec:
  affinity:
    podAffinity:
      requiredDuringSchedulingIgnoredDuringExecution:  
      - labelSelector:                                 
          matchLabels:
            confidential: high
        topologyKey: security-zone                     
    podAntiAffinity:                                   
      preferredDuringSchedulingIgnoredDuringExecution: 
      - weight: 100
        podAffinityTerm:
          labelSelector:
            matchLabels:
              confidential: none
          topologyKey: kubernetes.io/hostname
  containers:
  - image: k8spatterns/random-generator:1.0
    name: random-generatorRequired rules for the Pod placement concerning other Pods

running on the target node.
Label selector to find the Pods to be colocated with.
The nodes on which Pods with labels confidential=high are
running are supposed to carry a security-zone label. The Pod
defined here is scheduled to a node with the same label and
value.
Anti-affinity rules to find nodes where a Pod would not be
placed.
Rule describing that the Pod should not (but could) be placed on
any node where a Pod with the label confidential=none is



running.

Similar to node affinity, there are hard and soft requirements for
Pod affinity and anti-affinity, called
requiredDuringSchedulingIgnoredDuringExecution and
preferredDuringSchedulingIgnoredDuringExecution,
respectively. Again, as with node affinity, the
IgnoredDuringExecution suffix is in the field name, which
exists for future extensibility reasons. At the moment, if the labels
on the node change and affinity rules are no longer valid, the Pods
continue running,1 but in the future, runtime changes may also be
taken into account.

Topology Spread Constraints
Pod affinity rules allow the placement of unlimited Pods to a single
topology, whereas Pod anti-affinity disallows Pods to colocate in the
same topology. Topology spread constraints give you more fine-
grained control to evenly distribute Pods on your cluster and
achieve better cluster utilization or high availability of applications.
Let’s look at an example to understand how topology spread
constraints can help. Let’s suppose we have an application with two
replicas and a two-node cluster. To avoid downtime and a single
point of failure, we can use Pod anti-affinity rules to prevent the
coexistence of the Pods on the same node and spread them into
both nodes. While this setup makes sense, it will prevent you from
performing rolling upgrades because the third replacement Pod
cannot be placed on the existing nodes because of the Pod anti-
affinity constraints. We will have to either add another node or
change the Deployment strategy from rolling to recreate. Topology
spread constraints would be a better solution in this situation as
they allow you to tolerate some degree of uneven Pod distribution
when the cluster is running out of resources. Example 6-6 allows the



placement of the third rolling deployment Pod on one of the two
nodes because it allows imbalances—i.e., a skew of one Pod.
Example 6-6. Pod with topology spread constraints
apiVersion: v1
kind: Pod
metadata:
  name: random-generator
  labels:
    app: bar
spec:
  topologySpreadConstraints:                  
  - maxSkew: 1                                
    topologyKey: topology.kubernetes.io/zone  
    whenUnsatisfiable: DoNotSchedule          
    labelSelector:                            
      matchLabels:
        app: bar
  containers:
  - image: k8spatterns/random-generator:1.0
    name: random-generatorTopology spread constraints are defined in the

topologySpreadConstraints field of the Pod spec.
maxSkew defines the maximum degree to which Pods can be
unevenly distributed in the topology.
A topology domain is a logical unit of your infrastructure. And a
topologyKey is the key of the Node label where identical
values are considered to be in the same topology.
The whenUnsatisfiable field defines what action should be
taken when maxSkew can’t be satisfied. DoNotSchedule is a
hard constraint preventing the scheduling of Pods, whereas
ScheduleAnyway is a soft constraint that gives scheduling
priority to nodes that reduce cluster imbalance.
labelSelector Pods that match this selector are grouped
together and counted when spreading them to satisfy the
constraint.



Topology spread constraints is a feature that is still evolving at the
time of this writing. Built-in cluster-level topology spread constraints
allow certain imbalances based on default Kubernetes labels and
give you the ability to honor or ignore node affinity and taint
policies.

Taints and Tolerations
A more advanced feature that controls where Pods can be
scheduled and allowed to run is based on taints and tolerations.
While node affinity is a property of Pods that allows them to choose
nodes, taints and tolerations are the opposite. They allow the nodes
to control which Pods should or should not be scheduled on them. A
taint is a characteristic of the node, and when it is present, it
prevents Pods from scheduling onto the node unless the Pod has
toleration for the taint. In that sense, taints and tolerations can be
considered an opt-in to allow scheduling on nodes that by default
are not available for scheduling, whereas affinity rules are an opt-
out by explicitly selecting on which nodes to run and thus exclude
all the nonselected nodes.
A taint is added to a node by using kubectl: kubectl taint
nodes control-plane-node node-
role.kubernetes.io/control-plane="true":NoSchedule,
which has the effect shown in Example 6-7. A matching toleration is
added to a Pod as shown in Example 6-8. Notice that the values for
key and effect in the taints section of Example 6-7 and the
tolerations section in Example 6-8 are the same.

Example 6-7. Tainted node
apiVersion: v1
kind: Node
metadata:
  name: control-plane-node
spec:
  taints:                                   



  - effect: NoSchedule
    key: node-role.kubernetes.io/control-plane
    value: "true"Mark this node as unschedulable except when a Pod tolerates

this taint.

Example 6-8. Pod tolerating node taints
apiVersion: v1
kind: Pod
metadata:
  name: random-generator
spec:
  containers:
  - image: k8spatterns/random-generator:1.0
    name: random-generator
  tolerations:
  - key: node-role.kubernetes.io/control-plane 
    operator: Exists
    effect: NoSchedule                         Tolerate (i.e., consider for scheduling) nodes, which have a taint

with key node-role.kubernetes.io/control-plane. On
production clusters, this taint is set on the control plane node to
prevent scheduling of Pods on this node. A toleration like this
allows this Pod to be installed on the control plane node
nevertheless.
Tolerate only when the taint specifies a NoSchedule effect.
This field can be empty here, in which case the toleration
applies to every effect.

There are hard taints that prevent scheduling on a node
(effect=NoSchedule), soft taints that try to avoid scheduling on
a node (effect=PreferNoSchedule), and taints that can evict
already-running Pods from a node (effect=NoExecute).

Taints and tolerations allow for complex use cases like having
dedicated nodes for an exclusive set of Pods, or force eviction of
Pods from problematic nodes by tainting those nodes.



You can influence the placement based on the application’s high
availability and performance needs, but try not to limit the
scheduler too much and back yourself into a corner where no more
Pods can be scheduled and there are too many stranded resources.
For example, if your containers’ resource requirements are too
coarse-grained, or nodes are too small, you may end up with
stranded resources in nodes that are not utilized.
In Figure 6-2, we can see node A has 4 GB of memory that cannot
be utilized as there is no CPU left to place other containers.
Creating containers with smaller resource requirements may help
improve this situation. Another solution is to use the Kubernetes
descheduler, which helps defragment nodes and improve their
utilization.



Figure 6-2. Processes scheduled to nodes and stranded resources

Once a Pod is assigned to a node, the job of the scheduler is done,
and it does not change the placement of the Pod unless the Pod is
deleted and recreated without a node assignment. As you have
seen, with time, this can lead to resource fragmentation and poor
utilization of cluster resources. Another potential issue is that the
scheduler decisions are based on its cluster view at the point in
time when a new Pod is scheduled. If a cluster is dynamic and the
resource profile of the nodes changes or new nodes are added, the
scheduler will not rectify its previous Pod placements. Apart from



changing the node capacity, you may also alter the labels on the
nodes that affect placement, but past placements are not rectified.
All of these scenarios can be addressed by the descheduler. The
Kubernetes descheduler is an optional feature that is typically run
as a Job whenever a cluster administrator decides it is a good time
to tidy up and defragment a cluster by rescheduling the Pods. The
descheduler comes with some predefined policies that can be
enabled and tuned or disabled.
Regardless of the policy used, the descheduler avoids evicting the
following:

Node- or cluster-critical Pods

Pods not managed by a ReplicaSet, Deployment, or Job, as
these Pods cannot be recreated

Pods managed by a DaemonSet

Pods that have local storage

Pods with PodDisruptionBudget, where eviction would violate
its rules

Pods that have a non-nil DeletionTimestamp field set

Deschedule Pod itself (achieved by marking itself as a critical
Pod)

Of course, all evictions respect Pods’ QoS levels by choosing Best-
Efforts Pods first, then Burstable Pods, and finally Guaranteed Pods
as candidates for eviction. See Chapter 2, “Predictable Demands”,
for a detailed explanation of these QoS levels.

Discussion
Placement is the art of assigning Pods to nodes. You want to have
as minimal intervention as possible, as the combination of multiple



configurations can be hard to predict. In simpler scenarios,
scheduling Pods based on resource constraints should be sufficient.
If you follow the guidelines from Chapter 2, “Predictable Demands”,
and declare all the resource needs of a container, the scheduler will
do its job and place the Pod on the most feasible node possible.
However, in more realistic scenarios, you may want to schedule
Pods to specific nodes according to other constraints such as data
locality, Pod colocality, application high availability, and efficient
cluster resource utilization. In these cases, there are multiple ways
to steer the scheduler toward the desired deployment topology.
Figure 6-3 shows one approach to thinking and making sense of the
different scheduling techniques in Kubernetes.



Figure 6-3. Pod-to-Pod and Pod-to-Node and dependencies

Start by identifying the forces and dependencies between the Pod
and the nodes (for example, based on dedicated hardware
capabilities or efficient resource utilization). Use the following node
affinity techniques to direct the Pod to the desired nodes, or use



anti-affinity techniques to steer the Pod away from the undesired
nodes:
nodeName

This field provides the simplest form of hard wiring a Pod to a
node. This field should ideally be populated by the scheduler,
which is driven by policies rather than manual node assignment.
Assigning a Pod to a node through this approach prevents the
scheduling of the Pod to any other node. If the named node has
no capacity, or the node doesn’t exist, the Pod will never run.
This throws us back into the pre-Kubernetes era, when we
explicitly needed to specify the nodes to run our applications.
Setting this field manually is not a Kubernetes best practice and
should be used only as an exception.

nodeSelector
A node selector is a label map. For the Pod to be eligible to run
on a node, the Pod must have the indicated key-value pairs as
the label on the node. Having put some meaningful labels on the
Pod and the node (which you should do anyway), a node
selector is one of the simplest recommended mechanisms for
controlling the scheduler choices.

Node affinity
This rule improves the manual node assignment approaches and
allows a Pod to express dependency toward nodes using logical
operators and constraints that provides fine-grained control. It
also offers soft and hard scheduling requirements that control
the strictness of node affinity constraints.

Taints and tolerations
Taints and tolerations allow the node to control which Pods
should or should not be scheduled on them without modifying
existing Pods. By default, Pods that don’t have tolerations for the



node taint will be rejected or evicted from the node. Another
advantage of taints and tolerations is that if you expand the
Kubernetes cluster by adding new nodes with new labels, you
don’t need to add the new labels on all Pods but only on those
that should be placed on the new nodes.

Once the desired correlation between a Pod and the nodes is
expressed in Kubernetes terms, identify the dependencies between
different Pods. Use Pod affinity techniques for Pod colocation for
tightly coupled applications, and use Pod anti-affinity techniques to
spread Pods on nodes and avoid a single point of failure:
Pod affinity and anti-affinity

These rules allow scheduling based on Pods’ dependencies on
other Pods rather than nodes. Affinity rules help for colocating
tightly coupled application stacks composed of multiple Pods on
the same topology for low-latency and data locality
requirements. The anti-affinity rule, on the other hand, can
spread Pods across your cluster among failure domains to avoid
a single point of failure, or prevent resource-intensive Pods from
competing for resources by avoiding placing them on the same
node.

Topology spread constraints
To use these features, platform administrators have to label
nodes and provide topology information such as regions, zones,
or other user-defined domains. Then, a workload author creating
the Pod configurations must be aware of the underlying cluster
topology and specify the topology spread constraints. You can
also specify multiple topology spread constraints, but all of them
must be satisfied for a Pod to be placed. You must ensure that
they do not conflict with one another. You can also combine this
feature with NodeAffinity and NodeSelector to filter nodes where
evenness should be applied. In that case, be sure to understand



the difference: multiple topology spread constraints are about
calculating the result set independently and producing an AND-
joined result, while combining it with NodeAffinity and
NodeSelector, on the other hand, filters results of node
constraints.

In some scenarios, all of these scheduling configurations might not
be flexible enough to express bespoke scheduling requirements. In
that case, you may have to customize and tune the scheduler
configuration or even provide a custom scheduler implementation
that can understand your custom needs:
Scheduler tuning

The default scheduler is responsible for the placement of new
Pods onto nodes within the cluster, and it does it well. However,
it is possible to alter one or more stages in the filtering and
prioritization phases. This mechanism with extension points and
plugins is specifically designed to allow small alterations without
the need for a completely new scheduler implementation.

Custom scheduler
If none of the preceding approaches is good enough, or if you
have complex scheduling requirements, you can also write your
own custom scheduler. A custom scheduler can run instead of, or
alongside, the standard Kubernetes scheduler. A hybrid approach
is to have a “scheduler extender” process that the standard
Kubernetes scheduler calls out to as a final pass when making
scheduling decisions. This way, you don’t have to implement a
full scheduler but only provide HTTP APIs to filter and prioritize
nodes. The advantage of having your scheduler is that you can
consider factors outside of the Kubernetes cluster like hardware
cost, network latency, and better utilization while assigning Pods
to nodes. You can also use multiple custom schedulers alongside
the default scheduler and configure which scheduler to use for



each Pod. Each scheduler could have a different set of policies
dedicated to a subset of the Pods.

To sum up, there are lots of ways to control the Pod placement, and
choosing the right approach or combining multiple approaches can
be overwhelming. The takeaway from this chapter is this: size and
declare container resource profiles, and label Pods and nodes for
the best resource-consumption-driven scheduling results. If that
doesn’t deliver the desired scheduling outcome, start with small and
iterative changes. Strive for a minimal policy-based influence on the
Kubernetes scheduler to express node dependencies and then inter-
Pod dependencies.

More Information
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Assigning Pods to Nodes

Scheduler Configuration

Pod Topology Spread Constraints

Configure Multiple Schedulers

Descheduler for Kubernetes

Disruptions

Guaranteed Scheduling for Critical Add-On Pods

Keep Your Kubernetes Cluster Balanced: The Secret to High
Availability

Advanced Kubernetes Pod to Node Scheduling
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INTERACTIVE PRACTICE
This book features a dedicated playlist of interactive Katacoda
labs. You can practice the concepts covered in this chapter by
completing the associated labs:

Node Selector Based on Type of Disk Available

Pod with Node Affinity

Pod with Pod Affinity

Pod with Topology Spread Constraints

Pod Tolerating Node Taints
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Part II. Behavioral Patterns

The patterns in this category are focused on the communications
and interactions between the Pods and the managing platform.
Depending on the type of managing controller used, a Pod may run
until completion or be scheduled to run periodically. It can run as a
daemon or ensure uniqueness guarantees to its replicas. There are
different ways to run a Pod on Kubernetes, and picking the right
Pod-management primitives requires understanding their behavior.
In the following chapters, we explore the patterns:

Chapter 7, “Batch Job”, describes how to isolate an atomic unit
of work and run it until completion.

Chapter 8, “Periodic Job”, allows the execution of a unit of work
to be triggered by a temporal event.

Chapter 9, “Daemon Service”, allows you to run infrastructure-
focused Pods on specific nodes, before application Pods are
placed.

Chapter 10, “Singleton Service”, ensures that only one instance
of a service is active at a time and still remains highly
available.

Chapter 11, “Stateless Service”, describes the building blocks
used for managing identical application instances.

Chapter 12, “Stateful Service”, is all about how to create and
manage distributed stateful applications with Kubernetes.

Chapter 13, “Service Discovery”, explains how client services
can discover and consume the instances of providing services.



Chapter 14, “Self Awareness”, describes mechanisms for
introspection and metadata injection into applications.



Chapter 7. Batch Job

The Batch Job pattern is suited for managing isolated atomic units
of work. It is based on the Job resource, which runs short-lived Pods
reliably until completion on a distributed environment.

Problem
The main primitive in Kubernetes for managing and running
containers is the Pod. There are different ways of creating Pods with
varying characteristics:
Bare Pod

It is possible to create a Pod manually to run containers.
However, when the node such a Pod is running on fails, the Pod
is not restarted. Running Pods this way is discouraged except for
development or testing purposes. This mechanism is also known
as unmanaged or naked Pods.

ReplicaSet
This controller is used for creating and managing the lifecycle of
Pods expected to run continuously (e.g., to run a web server
container). It maintains a stable set of replica Pods running at
any given time and guarantees the availability of a specified
number of identical Pods. ReplicaSets are described in detail in
Chapter 11, “Stateless Service”.

DaemonSet
This controller runs a single Pod on every node and is used for
managing platform capabilities such as monitoring, log



aggregation, storage containers, and others. See Chapter 9,
“Daemon Service”, for a more detailed discussion.

A common aspect of these Pods is that they represent long-running
processes that are not meant to stop after a certain time. However,
in some cases there is a need to perform a predefined finite unit of
work reliably and then shut down the container. For this task,
Kubernetes provides the Job resource.

Solution
A Kubernetes Job is similar to a ReplicaSet as it creates one or more
Pods and ensures they run successfully. However, the difference is
that, once the expected number of Pods terminate successfully, the
Job is considered complete, and no additional Pods are started. A
Job definition looks like Example 7-1.
Example 7-1. A Job specification
apiVersion: batch/v1
kind: Job
metadata:
  name: random-generator
spec:
  completions: 5                 
  parallelism: 2                 
  ttlSecondsAfterFinished: 300   
  template:
    metadata:
      name: random-generator
    spec:
      restartPolicy: OnFailure   
      containers:
      - image: k8spatterns/random-generator:1.0
        name: random-generator
        command: [ "java", "RandomRunner", "/numbers.txt", 
"10000" ]Job should run five Pods to completion, which all must succeed.

Two Pods can run in parallel.
Keep Pods for five minutes (300 seconds) before garbage-



Keep Pods for five minutes (300 seconds) before garbage-
collecting them.
Specifying the restartPolicy is mandatory for a Job. The
possible values are OnFailure or Never.

One crucial difference between the Job and the ReplicaSet definition
is the .spec.template.spec.restartPolicy. The default
value for a ReplicaSet is Always, which makes sense for long-
running processes that must always be kept running. The value
Always is not allowed for a Job, and the only possible options are
OnFailure or Never.

So why bother creating a Job to run a Pod only once instead of
using bare Pods? Using Jobs provides many reliability and scalability
benefits that make them the preferred option:

A Job is not an ephemeral in-memory task but a persisted one
that survives cluster restarts.

When a Job is completed, it is not deleted but is kept for
tracking purposes. The Pods that are created as part of the Job
are also not deleted but are available for examination (e.g., to
check the container logs). This is also true for bare Pods but
only for restartPolicy: OnFailure. You can still remove
the Pods of a Job after a certain time by specifying
.spec.ttlSecondsAfterFinished.

A Job may need to be performed multiple times. Using the
.spec.completions field, it is possible to specify how many
times a Pod should complete successfully before the Job itself is
done.

When a Job has to be completed multiple times, it can also be
scaled and executed by starting multiple Pods at the same
time. That can be done by specifying the
.spec.parallelism field.



A Job can be suspended by setting the field .spec.suspend
to true. In this case, all active Pods are deleted and restarted
if the Job is resumed (i.e., .spec.suspend set to false by
the user).

If the node fails or when the Pod is evicted for some reason
while still running, the scheduler places the Pod on a new
healthy node and reruns it. Bare Pods would remain in a failed
state as existing Pods are never moved to other nodes.

All of this makes the Job primitive attractive for scenarios requiring
some guarantees for the completion of a unit of work.
The following two fields play major roles in the behavior of a Job:
.spec.completions

Specifies how many Pods should run to complete a Job.

.spec.parallelism

Specifies how many Pod replicas could run in parallel. Setting a
high number does not guarantee a high level of parallelism, and
the actual number of Pods may still be fewer (and in some
corner cases, more) than the desired number (e.g., because of
throttling, resource quotas, not enough completions left, and
other reasons). Setting this field to 0 effectively pauses the Job.

Figure 7-1 shows how the Job defined in Example 7-1 with a
completion count of 5 and a parallelism of 2 is processed.



Figure 7-1. Parallel Batch Job with a fixed completion count

Based on these two parameters, there are the following types of
Jobs:
Single Pod Jobs

This type is selected when you leave out both
.spec.completions and .spec.parallelism or set them
to their default values of 1. Such a Job starts only one Pod and is
completed as soon as the single Pod terminates successfully
(with exit code 0).

Fixed completion count Jobs
For a fixed completion count Job, you should set
.spec.completions to the number of completions needed.
You can set .spec.parallelism, or leave it unset and it will
default to 1. Such a Job is considered completed after the
.spec.completions number of Pods has completed
successfully. Example 7-1 shows this mode in action and is the
best choice when we know the number of work items in advance
and the processing cost of a single work item justifies the use of
a dedicated Pod.

Work queue Jobs
For a work queue Job, you need to leave .spec.completions
unset, and set .spec.parallelism to a number greater than



one. A work queue Job is considered completed when at least
one Pod has terminated successfully and all other Pods have
terminated too. This setup requires the Pods to coordinate
among themselves and determine what each one is working on
so that they can finish in a coordinated fashion. For example,
when a fixed but unknown number of work items is stored in a
queue, parallel Pods can pick these up one by one to work on
them. The first Pod that detects that the queue is empty and
exits with success indicates the completion of the Job. The Job
controller waits for all other Pods to terminate too. Since one
Pod processes multiple work items, this Job type is an excellent
choice for granular work items—when the overhead for one Pod
per work item is not justified.

Indexed Jobs
Similar to Work queue Jobs, you can distribute work items to
individual Jobs without needing an external work queue. When
using a fixed completion count and setting the completion mode
.spec.completionMode to Indexed, every Pod of the Job
gets an associated index ranging from 0 to
.spec.completions - 1. The assigned index is available to
the containers through the Pod annotation
batch.kubernetes.io/job-completion-index (see
Chapter 14, “Self Awareness”, to learn how this annotation can
be accessed from your code) or directly via the environment
variable JOB_COMPLETION_INDEX that is set to the index
associated with this Pod. With this index at hand, the application
can pick the associated work item without any external
synchronization. Example 7-2 shows a Job that processes the
lines of a single file individually by separate Pods. A more
realistic example would be an indexed Job used for video
processing, where parallel Pods are processing a certain frame
range calculated from the index.



Example 7-2. An indexed Job selecting its work items based on a
job index
apiVersion: batch/v1
kind: Job
metadata:
  name: file-split
spec:
  completionMode: Indexed     
  completions: 5              
  parallelism: 5
  template:
    metadata:
      name: file-split
    spec:
      containers:
      - image: alpine
        name: split
        command:              
        - "sh"
        - "-c"
        - |
          start=$(expr $JOB_COMPLETION_INDEX \* 10000)      

          end=$(expr $JOB_COMPLETION_INDEX \* 10000 + 10000)
          awk "NR>=$start && NR<$end" /logs/random.log \    

              > /logs/random-$JOB_COMPLETION_INDEX.txt
        volumeMounts:
        - mountPath: /logs    
          name: log-volume
      restartPolicy: OnFailureEnable an indexed completion mode.

Run five Pods in parallel to completion.
Execute a shell script that prints out a range of lines from a
given file /logs/random.log. This file is expected to have 50,000
lines of data.
Calculate start and end line numbers.
Use awk to print out a range of line numbers (NR is the awk-
internal line number when iterating over the file).
Mount the input data from an external volume. The volume is
not shown here; you can find the full working definition in the



example repository.
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PARTITIONING THE WORK
As you have seen, we have multiple options for processing many
work items by fewer worker Pods. While Work queue Jobs can
operate on an unknown but finite set of work items, they need
support from an external system that provides the work items.
In that case, the external system has already divided the work
into appropriately sized work items, so the worker Pods have to
process those and stop when there is nothing left to do. The
alternative is to use Indexed Jobs, which do not rely on an
external work queue but have to split up the work on their own
so that each Pod can separately work on a portion of the overall
task. Each Pod needs to know its own identity (provided by the
environment variable JOB_COMPLETION_INDEX), the total
number of workers, and maybe the overall size of the work (like
the size of a movie file to process). Unfortunately, the Job’s
application code cannot discover the total number of workers
(i.e., the value specified in .spec.completions) for an
Indexed Job. Therefore, something like a
JOB_COMPLETION_TOTAL environment variable would be
helpful to partition the work dynamically, but this is not
supported as of 2023. However, there are two solutions to
overcome this:

Hardcode the knowledge of the total number of Pods
working on a Job into the application code. While this might
work for simple examples like Example 7-2, it’s generally an
imperfect solution as it couples the code in your container
to the Kubernetes declaration. That is, if you want to
change the number of completions in your Job definition,
you would also have to create a new container image for
your Job logic with an updated value.



To access the value of .spec.completions in your
application code, you can copy it to an environment variable
or pass it as an argument to the container command in the
Job’s template specification. But if you plan to change the
number of completions, you will need to update two places
in the Job declaration.

There has been some discussion within the Kubernetes
community about whether Kubernetes should provide the value
of the .spec.completions field as an environment variable
by default. The main concern with this approach is that
environment variables cannot be modified at runtime, which
could complicate support for resizable Jobs in the future. As a
result, a JOB_COMPLETION_TOTAL environment variable is not
provided by Kubernetes as of version 1.26.

If you have an unlimited stream of work items to process, other
controllers like ReplicaSet are the better choice for managing the
Pods processing these work items.

Discussion
The Job abstraction is a pretty basic but also fundamental primitive
that other primitives such as CronJobs are based on. Jobs help turn
isolated work units into a reliable and scalable unit of execution.
However, a Job doesn’t dictate how you should map individually
processable work items into Jobs or Pods. That is something you
have to determine after considering the pros and cons of each
option:
One Job per work item

This option has the overhead of creating Kubernetes Jobs and
also means the platform has to manage a large number of Jobs
that are consuming resources. This option is useful when each

https://oreil.ly/z7XV7
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work item is a complex task that has to be recorded, tracked, or
scaled independently.

One Job for all work items
This option is right for a large number of work items that do not
have to be independently tracked and managed by the platform.
In this scenario, the work items have to be managed from within
the application via a batch framework.

The Job primitive provides only the very minimum basics for
scheduling work items. Any complex implementation has to
combine the Job primitive with a batch application framework (e.g.,
in the Java ecosystem, we have Spring Batch and JBeret as
standard implementations) to achieve the desired outcome.
Not all services must run all the time. Some services must run on
demand, some at a specific time, and some periodically. Using Jobs
can run Pods only when needed and only for the duration of the
task execution. Jobs are scheduled on nodes that have the required
capacity, satisfy Pod placement policies, and take into account other
container dependency considerations. Using Jobs for short-lived
tasks rather than using long-running abstractions (such as
ReplicaSet) saves resources for other workloads on the platform. All
of that makes Jobs a unique primitive, and Kubernetes a platform
supporting diverse workloads.

More Information
Batch Job Example

Jobs

Parallel Processing Using Expansions

Coarse Parallel Processing Using a Work Queue

https://oreil.ly/PkVF0
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https://oreil.ly/mNmhN
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Fine Parallel Processing Using a Work Queue

Indexed Job for Parallel Processing with Static Work
Assignment

Spring Batch on Kubernetes: Efficient Batch Processing at Scale

JBeret Introduction

https://oreil.ly/-8FBt
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https://oreil.ly/8dLDo
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Chapter 8. Periodic Job

The Periodic Job pattern extends the Batch Job pattern by adding a
time dimension and allowing the execution of a unit of work to be
triggered by a temporal event.

Problem
In the world of distributed systems and microservices, there is a
clear tendency toward real-time and event-driven application
interactions using HTTP and lightweight messaging. However,
regardless of the latest trends in software development, job
scheduling has a long history, and it is still relevant. Periodic jobs
are commonly used for automating system maintenance or
administrative tasks. They are also relevant to business applications
requiring specific tasks to be performed periodically. Typical
examples here are business-to-business integration through file
transfer, application integration through database polling, sending
newsletter emails, and cleaning up and archiving old files.
The traditional way of handling periodic jobs for system
maintenance purposes has been to use specialized scheduling
software or cron. However, specialized software can be expensive
for simple use cases, and cron jobs running on a single server are
difficult to maintain and represent a single point of failure. That is
why, very often, developers tend to implement solutions that can
handle both the scheduling aspect and the business logic that needs
to be performed. For example, in the Java world, libraries such as
Quartz, Spring Batch, and custom implementations with the
ScheduledThreadPoolExecutor class can run temporal tasks.
But similar to cron, the main difficulty with this approach is making
the scheduling capability resilient and highly available, which leads



to high resource consumption. Also, with this approach, the time-
based job scheduler is part of the application, and to make the
scheduler highly available, the whole application must be highly
available. Typically, that involves running multiple instances of the
application and at the same time ensuring that only a single
instance is active and schedules jobs—which involves leader
election and other distributed systems challenges.
In the end, a simple service that has to copy a few files once a day
may end up requiring multiple nodes, a distributed leader election
mechanism, and more. Kubernetes CronJob implementation solves
all that by allowing scheduling of Job resources using the well-
known cron format and letting developers focus only on
implementing the work to be performed rather than the temporal
scheduling aspect.

Solution
In Chapter 7, “Batch Job”, we saw the use cases and the capabilities
of Kubernetes Jobs. All of that applies to this chapter as well since
the CronJob primitive builds on top of a Job. A CronJob instance is
similar to one line of a Unix crontab (cron table) and manages the
temporal aspects of a Job. It allows the execution of a Job
periodically at a specified point in time. See Example 8-1 for a
sample definition.
Example 8-1. A CronJob resource
apiVersion: batch/v1
kind: CronJob
metadata:
  name: random-generator
spec:
  schedule: "*/3 * * * *"  
  jobTemplate:
    spec:
      template:            
        spec:



          containers:
          - image: k8spatterns/random-generator:1.0
            name: random-generator
            command: [ "java", "RandomRunner", 
"/numbers.txt", "10000" ]
          restartPolicy: OnFailureCron specification for running every three minutes.

Job template that uses the same specification as a regular Job.

Apart from the Job spec, a CronJob has additional fields to define its
temporal aspects:
.spec.schedule

Crontab entry for specifying the Job’s schedule (e.g., 0 * * * *
for running every hour). You can also use shortcuts like @daily
or @hourly. Please refer to the CronJob documentation for all
available options.

.spec.startingDeadlineSeconds

Deadline (in seconds) for starting the Job if it misses its
scheduled time. In some use cases, a task is valid only if it
executed within a certain timeframe, and it is useless when
executed late. For example, if a Job is not executed in the
desired time because of a lack of compute resources or other
missing dependencies, it might be better to skip an execution
because the data it is supposed to process is already obsolete.
Don’t use a deadline fewer than 10 seconds since Kubernetes
will check the Job status only every 10 seconds.

.spec.concurrencyPolicy

Specifies how to manage concurrent executions of Jobs created
by the same CronJob. The default behavior Allow creates new
Job instances even if the previous Jobs have not completed yet.
If that is not the desired behavior, it is possible to skip the next
run if the current one has not completed yet with Forbid or to
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cancel the currently running Job and start a new one with
Replace.

.spec.suspend

Field suspending all subsequent executions without affecting
already-started executions. Note that this is different from a
Job’s .spec.suspend as the start of new Jobs will be
suspended, not the Jobs themselves.

.spec.successfulJobsHistoryLimit and

.spec.failedJobsHistoryLimit

Fields specifying how many completed and failed Jobs should be
kept for auditing purposes.

CronJob is a very specialized primitive, and it applies only when a
unit of work has a temporal dimension. Even if CronJob is not a
general-purpose primitive, it is an excellent example of how
Kubernetes capabilities build on top of one another and support
noncloud native use cases as well.

Discussion
As you can see, a CronJob is a pretty simple primitive that adds
clustered, cron-like behavior to the existing Job definition. But when
it is combined with other primitives such as Pods, container
resource isolation, and other Kubernetes features such as those
described in Chapter 6, “Automated Placement”, or Chapter 4,
“Health Probe”, it ends up being a very powerful job-scheduling
system. This enables developers to focus solely on the problem
domain and implement a containerized application that is
responsible only for the business logic to be performed. The
scheduling is performed outside the application, as part of the
platform with all of its added benefits, such as high availability,



resiliency, capacity, and policy-driven Pod placement. Of course,
similar to the Job implementation, when implementing a CronJob
container, your application has to consider all corner and failure
cases of duplicate runs, no runs, parallel runs, or cancellations.

More Information
Periodic Job Example

CronJob

Cron

Crontab Specification

Cron Expression Generator
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Chapter 9. Daemon Service

The Daemon Service pattern allows you to place and run prioritized,
infrastructure-focused Pods on targeted nodes. It is used primarily
by administrators to run node-specific Pods to enhance the
Kubernetes platform capabilities.

Problem
The concept of a daemon in software systems exists at many levels.
At an operating system level, a daemon is a long-running, self-
recovering computer program that runs as a background process. In
Unix, the names of daemons end in d, such as httpd, named, and
sshd. In other operating systems, alternative terms such as
services-started tasks and ghost jobs are used.
Regardless of what these programs are called, the common
characteristics among them are that they run as processes and
usually do not interact with the monitor, keyboard, and mouse and
are launched at system boot time. A similar concept also exists at
the application level. For example, in the Java Virtual Machine,
daemon threads run in the background and provide supporting
services to the user threads. These daemon threads have a low
priority, run in the background without a say in the life of the
application, and perform tasks such as garbage collection or
finalization.
Similarly, Kubernetes also has the concept of a DaemonSet.
Considering that Kubernetes is a distributed platform spread across
multiple nodes and with the primary goal of managing application
Pods, a DaemonSet is represented by Pods that run on the cluster
nodes and provide some background capabilities for the rest of the
cluster.



Solution
ReplicaSet and its predecessor ReplicationController are control
structures responsible for making sure a specific number of Pods are
running. These controllers constantly monitor the list of running
Pods and make sure the actual number of Pods always matches the
desired number. In that regard, a DaemonSet is a similar construct
and is responsible for ensuring that a certain number of Pods are
always running. The difference is that the first two run a specific
number of Pods, usually driven by the application requirements of
high availability and user load, irrespective of the node count.
On the other hand, a DaemonSet is not driven by consumer load in
deciding how many Pod instances to run and where to run. Its main
purpose is to keep running a single Pod on every node or specific
nodes. Let’s see such a DaemonSet definition next in Example 9-1.
Example 9-1. DaemonSet resource
apiVersion: apps/v1
kind: DaemonSet
metadata:
  name: random-refresher
spec:
  selector:
    matchLabels:
      app: random-refresher
  template:
    metadata:
      labels:
        app: random-refresher
    spec:
      nodeSelector:            
        feature: hw-rng
      containers:
      - image: k8spatterns/random-generator:1.0
        name: random-generator
        command: [ "java", "RandomRunner", "/numbers.txt", 
"10000", "30" ]
        volumeMounts:          
        - mountPath: /host_dev



          name: devices
      volumes:
      - name: devices
        hostPath:              
          path: /devUse only nodes with the label feature set to value hw-rng.

DaemonSets often mount a portion of a node’s filesystem to
perform maintenance actions.
hostPath for accessing the node directories directly.

Given this behavior, the primary candidates for a DaemonSet are
usually infrastructure-related processes, such as cluster storage
providers, log collectors, metric exporters, and even kube-proxy,
that perform cluster-wide operations. There are many differences in
how DaemonSet and ReplicaSet are managed, but the main ones
are the following:

By default, a DaemonSet places one Pod instance on every
node. That can be controlled and limited to a subset of nodes
by using the nodeSelector or affinity fields.

A Pod created by a DaemonSet already has nodeName
specified. As a result, the DaemonSet doesn’t require the
existence of the Kubernetes scheduler to run containers. That
also allows you to use a DaemonSet for running and managing
the Kubernetes components.

Pods created by a DaemonSet can run before the scheduler has
started, which allows them to run before any other Pod is
placed on a node.

Since the scheduler is not used, the unschedulable field of a
node is not respected by the DaemonSet controller.

Pods created by a DaemonSet can have a RestartPolicy
only set to Always or left unspecified, which defaults to
Always. This is to ensure that when a liveness probe fails, the
container will be killed and always restarted.



Pods managed by a DaemonSet are supposed to run only on
targeted nodes and, as a result, are treated with higher priority
by many controllers. For example, the descheduler will avoid
evicting such Pods, the cluster autoscaler will manage them
separately, etc.

The main use case for DaemonSets is to run system-critical Pods on
certain nodes in the cluster. The DaemonSet controller ensures that
all eligible nodes run a copy of a Pod by assigning the Pod directly
to the node by setting the nodeName field of the Pod specification.
This allows DaemonSet Pods to be scheduled even before the
default scheduler starts and keeps it immune to any scheduler
customizations configured by the user. This approach works as long
as there are enough resources on the nodes and it is done before
other Pods are placed. When a node does not have enough
resources, the DaemonSet controller cannot create a Pod for the
node, and it cannot do anything such as preemption to release
resources on the nodes. This duplication of scheduling logic in the
DaemonSet controller and the scheduler creates maintenance
challenges. The DaemonSet implementation also does not benefit
from new scheduler features such as affinity, anti-affinity, and
preemption. As a result, with Kubernetes v1.17 and newer versions,
DaemonSet uses the default scheduler for scheduling by setting the
nodeAffinity field instead of the nodeName field to the
DaemonSet Pods. This change makes the default scheduler a
mandatory dependency for running DaemonSets, but at the same
time it brings taints, tolerations, Pod priority, and preemption to
DaemonSets and improves the overall experience of running
DaemonSet Pods on the desired nodes even when there is resource
starvation.
Typically, a DaemonSet creates a single Pod on every node or
subset of nodes. Given that, there are several ways to reach Pods
managed by DaemonSets:
Service



Create a Service with the same Pod selector as a DaemonSet,
and use the Service to reach a daemon Pod load-balanced to a
random node.

DNS
Create a headless Service with the same Pod selector as a
DaemonSet that can be used to retrieve multiple A records from
DNS containing all Pod IPs and ports.

Node IP with hostPort
Pods in the DaemonSet can specify a hostPort and become
reachable via the node IP addresses and the specified port.
Since the combination of node IP and hostPort and protocol
must be unique, the number of places where a Pod can be
scheduled is limited.

Also, the application in the DaemonSets Pods can push data to a
well-known location or service that’s external to the Pod. No
consumer needs to reach the DaemonSets Pods in this case.

STATIC PODS
Another way to run containers similar to the way a DaemonSet
does is through the static Pods mechanism. The Kubelet, in
addition to talking to the Kubernetes API Server and getting Pod
manifests, can get the resource definitions from a local directory.
Pods defined this way are managed by the Kubelet only and run
on one node only. The API service is not observing these Pods,
and no controller and no health checks are performed on them.
The Kubelet watches such Pods and restarts them when they
crash. Similarly, the Kubelet also periodically scans the
configured directory for Pod definition changes and adds or
removes Pods accordingly.



Static Pods can be used to spin off a containerized version of
Kubernetes system processes or other containers. However,
DaemonSets are better integrated with the rest of the platform and
are recommended over static Pods.

Discussion
There are other ways to run daemon processes on every node, but
they all have limitations. Static Pods are managed by the Kubelet
but cannot be managed through Kubernetes APIs. Bare Pods (Pods
without a controller) cannot survive if they are accidentally deleted
or terminated, nor can they survive a node failure or disruptive node
maintenance. Init scripts such as upstartd or systemd require
different toolchains for monitoring and management and cannot
benefit from the Kubernetes tools used for application workloads.
All that makes Kubernetes and DaemonSet an attractive option for
running daemon processes too.
In this book, we describe patterns and Kubernetes features
primarily used by developers rather than platform administrators. A
DaemonSet is somewhere in the middle, inclining more toward the
administrator toolbox, but we include it here because it also has
relevance to application developers. DaemonSets and CronJobs are
also perfect examples of how Kubernetes turns single-node
concepts such as crontab and daemon scripts into multinode
clustered primitives for managing distributed systems. These are
new distributed concepts developers must also be familiar with.

More Information
Daemon Service Example

DaemonSet

Perform a Rolling Update on a DaemonSet
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DaemonSets and Jobs

Create Static Pods
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Chapter 10. Singleton Service

The Singleton Service pattern ensures that only one instance o an
application is active at a time and yet is highly available. This
pattern can be implemented from within the application or
delegated fully to Kubernetes.

Problem
One of the main capabilities provided by Kubernetes is the ability to
easily and transparently scale applications. Pods can scale
imperatively with a single command such as kubectl scale, or
declaratively through a controller definition such as ReplicaSet, or
even dynamically based on the application load, as we describe in
Chapter 29, “Elastic Scale”. By running multiple instances of the
same service (not a Kubernetes Service but a component of a
distributed application represented by a Pod), the system usually
increases throughput and availability. The availability increases
because if one instance of a service becomes unhealthy, the request
dispatcher forwards future requests to other healthy instances. In
Kubernetes, multiple instances are the replicas of a Pod, and the
Service resource is responsible for the request distribution and load
balancing.
However, in some cases, only one instance of a service is allowed to
run at a time. For example, if there is a periodically executed task in
a service and multiple instances of the same service, every instance
will trigger the task at the scheduled intervals, leading to duplicates
rather than having only one task fired as expected. Another
example is a service that performs polling on specific resources (a
filesystem or database) and we want to ensure that only a single
instance and maybe even a single thread performs the polling and



processing. A third case occurs when we have to consume
messages from a messages broker in an order-preserving manner
with a single-threaded consumer that is also a singleton service.
In all these and similar situations, we need some control over how
many instances \ of a service are active at a time (usually only one
is required), while still ensuring high availability, regardless of how
many instances have been started and kept running.

Solution
Running multiple replicas of the same Pod creates an active-active
topology, where all instances of a service are active. What we need
is an active-passive topology, where only one instance is active and
all the other instances are passive. Fundamentally, this can be
achieved at two possible levels: out-of-application and in-
application locking.

Out-of-Application Locking
As the name suggests, this mechanism relies on a managing
process that is outside of the application to ensure that only a
single instance of the application is running. The application
implementation itself is not aware of this constraint and is run as a
singleton instance. From this perspective, it is similar to having a
Java class that is instantiated only once by the managing runtime
(such as the Spring Framework). The class implementation is not
aware that it is run as a singleton, nor that it contains any code
constructs to prevent instantiating multiple instances.
Figure 10-1 shows how to implement out-of-application locking with
the help of a StatefulSet or ReplicaSet controller with one replica.



Figure 10-1. Out-of-application locking mechanism

The way to achieve this in Kubernetes is to start a single Pod. This
activity alone does not ensure the singleton Pod is highly available.
What we have to do is also back the Pod with a controller such as a
ReplicaSet that turns the singleton Pod into a highly available
singleton. This topology is not exactly active-passive (there is no
passive instance), but it has the same effect, as Kubernetes ensures
that one instance of the Pod is running at all times. In addition, the
single Pod instance is highly available, thanks to the controller
performing health checks as described in Chapter 4, “Health Probe”,
and healing the Pod in case of failures.
The main thing to keep an eye on with this approach is the replica
count, which should not be changed accidentally. In this section, you
will see how we can voluntarily decrease the replica count through
PodDisruptionBudget, but there is no platform-level mechanism to
prevent an increase of the replica count.
It’s not entirely true that only one instance is running at all times,
especially when things go wrong. Kubernetes primitives such as
ReplicaSet favor availability over consistency—a deliberate decision
for achieving highly available and scalable distributed systems. That
means a ReplicaSet applies “at least” rather than “at most”
semantics for its replicas. If we configure a ReplicaSet to be a
singleton with replicas: 1, the controller makes sure at least



one instance is always running, but occasionally it can be more
instances.
The most popular corner case here occurs when a node with a
controller-managed Pod becomes unhealthy and disconnects from
the rest of the Kubernetes cluster. In this scenario, a ReplicaSet
controller starts another Pod instance on a healthy node (assuming
there is enough capacity), without ensuring the Pod on the
disconnected node is shut down. Similarly, when changing the
number of replicas or relocating Pods to different nodes, the number
of Pods can temporarily go above the desired number. That
temporary increase is done with the intention of ensuring high
availability and avoiding disruption, as needed for stateless and
scalable applications.
Singletons can be resilient and recover, but by definition, they are
not highly available. Singletons typically favor consistency over
availability. The Kubernetes resource that also favors consistency
over availability and provides the desired strict singleton guarantees
is the StatefulSet. If ReplicaSets do not provide the desired
guarantees for your application, and you have strict singleton
requirements, StatefulSets might be the answer. StatefulSets are
intended for stateful applications and offer many features, including
stronger singleton guarantees, but they come with increased
complexity as well. We discuss concerns around singletons and
cover StatefulSets in more detail in Chapter 12, “Stateful Service”.
Typically, singleton applications running in Pods on Kubernetes open
outgoing connections to message brokers, relational databases, file
servers, or other systems running on other Pods or external
systems. However, occasionally, your singleton Pod may need to
accept incoming connections, and the way to enable that on
Kubernetes is through the Service resource.
We cover Kubernetes Services in depth in Chapter 13, “Service
Discovery”, but let’s discuss briefly the part that applies to



singletons here. A regular Service (with type: ClusterIP)
creates a virtual IP and performs load balancing among all the Pod
instances that its selector matches. However, a singleton Pod
managed through a StatefulSet has only one Pod and a stable
network identity. In such a case, it is better to create a headless
Service (by setting both type: ClusterIP and clusterIP:
None). It is called headless because such a Service doesn’t have a
virtual IP address, kube-proxy doesn’t handle these Services, and
the platform performs no proxying.
However, such a Service is still useful because a headless Service
with selectors creates endpoint records in the API Server and
generates DNS A records for the matching Pod(s). With that, a DNS
lookup for the Service does not return its virtual IP but instead the
IP address(es) of the backing Pod(s). That enables direct access to
the singleton Pod via the Service DNS record, and without going
through the Service virtual IP. For example, if we create a headless
Service with the name my-singleton, we can use it as my-
singleton.default.svc.cluster.local to access the Pod’s
IP address directly.
To sum up, for nonstrict singletons with at least one instance
requirement, defining a ReplicaSet with one replica would suffice.
This configuration favors availability and ensures there is at least
one available instance, and possibly more in some corner cases. For
a strict singleton with an At-Most-One requirement and better
performant service discovery, a StatefulSet and a headless Service
would be preferred. Using StatefulSet will favor consistency and
ensure there is an At-Most-One instance and occasionally none in
some corner cases. You can find a complete example of this in
Chapter 12, “Stateful Service”, where you have to change the
number of replicas to one to make it a singleton.



In-Application Locking
In a distributed environment, one way to control the service
instance count is through a distributed lock, as shown in Figure 10-
2. Whenever a service instance or a component inside the instance
is activated, it can try to acquire a lock, and if it succeeds, the
service becomes active. Any subsequent service instance that fails
to acquire the lock waits and continuously tries to get the lock in
case the currently active service releases it.
Many existing distributed frameworks use this mechanism for
achieving high availability and resiliency. For example, the message
broker Apache ActiveMQ can run in a highly available active-passive
topology, where the data source provides the shared lock. The first
broker instance that starts up acquires the lock and becomes active,
and any other subsequently started instances become passive and
wait for the lock to be released. This strategy ensures there is a
single active broker instance that is also resilient to failures.





Figure 10-2. In-application locking mechanism

We can compare this strategy to a classic Singleton, as it is known
in the object-oriented world: a Singleton is an object instance
stored in a static class variable. In this instance, the class is aware
of being a singleton, and it is written in a way that does not allow
instantiation of multiple instances for the same process. In
distributed systems, this would mean the containerized application
itself has to be written in a way that does not allow more than one
active instance at a time, regardless of the number of Pod instances
that are started. To achieve this in a distributed environment, first
we need a distributed lock implementation such as the one provided
by Apache ZooKeeper, HashiCorp’s Consul, Redis, or etcd.
The typical implementation with ZooKeeper uses ephemeral nodes,
which exist as long as there is a client session and are deleted as
soon as the session ends. The first service instance that starts up
initiates a session in the ZooKeeper server and creates an
ephemeral node to become active. All other service instances from
the same cluster become passive and have to wait for the
ephemeral node to be released. This is how a ZooKeeper-based
implementation makes sure there is only one active service instance
in the whole cluster, ensuring an active-passive failover behavior.
In the Kubernetes world, instead of managing a ZooKeeper cluster
only for the locking feature, a better option would be to use etcd
capabilities exposed through the Kubernetes API and running on the
main nodes. etcd is a distributed key-value store that uses the Raft
protocol to maintain its replicated state and provides the necessary
building blocks for implementing leader election. For example,
Kubernetes offers the Lease object, which is used for node
heartbeats and component-level leader election. For every node,
there is a Lease object with a matching name, and the Kubelet on
every node keeps running a heart beat by updating the Lease
object’s renewTime field. This information is used by the



Kubernetes control plane to determine the availability of the nodes.
Kubernetes Leases are also used in highly available cluster
deployment scenarios for ensuring only single control plane
components such as kube-controller-manager and kube-scheduler
are active at a time and other instances remain on standby.
Another example is in Apache Camel, which has a Kubernetes
connector that also provides leader election and singleton
capabilities. This connector goes a step further, and rather than
accessing the etcd API directly, it uses Kubernetes APIs to leverage
ConfigMaps as a distributed lock. It relies on Kubernetes optimistic
locking guarantees for editing resources such as ConfigMaps, where
only one Pod can update a ConfigMap at a time. The Camel
implementation uses this guarantee to ensure only one Camel route
instance is active, and any other instance has to wait and acquire
the lock before activating. It is a custom implementation of a lock
but achieves the same goal: when there are multiple Pods with the
same Camel application, only one of them becomes the active
singleton, and the others wait in passive mode.
A more generic implementation of the Singleton Service pattern is
provided by the Dapr project. Dapr’s Distributed Lock building block
provides APIs (HTTP and gRPC) with swappable implementations
for mutually exclusive access to shared resources. The idea is that
each application determines the resources the lock grants access to.
Then, multiple instances of the same application use a named lock
to exclusively access the shared resource. At any given moment,
only one instance of an application can hold a named lock. All other
instances of the application are unable to acquire the lock and
therefore are not allowed to access the shared resource until the
lock is released through unlock or the lock times out. Thanks to its
lease-based locking mechanism, if an application acquires a lock,
encounters an exception, and cannot free the lock, the lock is
automatically released after a period of time using a lease. This
prevents resource deadlocks in the event of application failures.



Behind this generic distributed lock API, Dapr will be configured to
use some kind of storage and lock implementation. This API can be
used by applications to implement access to shared resources or in-
application singletons.
An implementation with Dapr, ZooKeeper, etcd, or any other
distributed lock implementation would be similar to the one
described: only one instance of the application becomes the leader
and activates itself, and other instances are passive and wait for the
lock. This ensures that even if multiple Pod replicas are started and
all are healthy, up, and running, only one service is active and
performs the business functionality as a singleton, and other
instances wait to acquire the lock in case the leader fails or shuts
down.

Pod Disruption Budget
While singleton service and leader election try to limit the maximum
number of instances a service is running at a time, the
PodDisruptionBudget functionality of Kubernetes provides a
complementary and somewhat opposite functionality—limiting the
number of instances that are simultaneously down for maintenance.
At its core, PodDisruptionBudget ensures a certain number or
percentage of Pods will not voluntarily be evicted from a node at
any one point in time. Voluntarily here means an eviction that can
be delayed for a particular time—for example, when it is triggered
by draining a node for maintenance or upgrade (kubectl drain),
or a cluster scaling down, rather than a node becoming unhealthy,
which cannot be predicted or controlled.
The PodDisruptionBudget in Example 10-1 applies to Pods that
match its selector and ensures two Pods must be available all the
time.



Example 10-1. PodDisruptionBudget
apiVersion: policy/v1
kind: PodDisruptionBudget
metadata:
  name: random-generator-pdb
spec:
  selector:
    matchLabels:             
      app: random-generator
  minAvailable: 2            Selector to count available Pods.

At least two Pods have to be available. You can also specify a
percentage, like 80%, to configure that only 20% of the
matching Pods might be evicted.

In addition to .spec.minAvailable, there is also the option to
use .spec.maxUnavailable, which specifies the number of Pods
from that set that can be unavailable after the eviction. Similar to
.spec.minAvailable, it can be either an absolute number or a
percentage, but it has a few additional limitations. You can specify
only either .spec.minAvailable or .spec.maxUnavailable in
a single PodDisruptionBudget, and then it can be used only to
control the eviction of Pods that have an associated controller such
as ReplicaSet or StatefulSet. For Pods not managed by a controller
(also referred to as bare or naked Pods), other limitations around
PodDisruptionBudget should be considered.
PodDisruptionBudget is useful for quorum-based applications that
require a minimum number of replicas running at all times to ensure
a quorum. Or maybe when an application is serving critical traffic
that should never go below a certain percentage of the total
number of instances.
PodDisruptionBudget is useful in the context of singletons too. For
example, setting maxUnavailable to 0 or setting minAvailable
to 100% will prevent any voluntary eviction. Setting voluntary
eviction to zero for a workload will turn it into an unevictable Pod



and will prevent draining the node forever. This can be used as a
step in the process where a cluster operator has to contact the
singleton workload owner for downtime before accidentally evicting
a not highly available Pod. StatefulSet, combined with
PodDisruptionBudget, and headless Service are Kubernetes
primitives that control and help with the instance count at runtime
and are worth mentioning in this chapter.

Discussion
If your use case requires strong singleton guarantees, you cannot
rely on the out-of-application locking mechanisms of ReplicaSets.
Kubernetes ReplicaSets are designed to preserve the availability of
their Pods rather than to ensure At-Most-One semantics for Pods. As
a consequence, there are many failure scenarios that have two
copies of a Pod running concurrently for a short period (efor
example, when a node that runs the singleton Pod is partitioned
from the rest of the cluster—such as when replacing a deleted Pod
instance with a new one). If that is not acceptable, use StatefulSets
or investigate the in-application locking options that provide you
more control over the leader election process with stronger
guarantees. The latter also mitigates the risk of accidentally scaling
Pods by changing the number of replicas. You can combine this with
PodDisruptionBudget and prevent voluntary eviction and disruption
of your singleton workloads.
In other scenarios, only a part of a containerized application should
be a singleton. For example, there might be a containerized
application that provides an HTTP endpoint that is safe to scale to
multiple instances, but also a polling component that must be a
singleton. Using the out-of-application locking approach would
prevent scaling the whole service. In such a situation, we either
have to split the singleton component in its deployment unit to keep
it a singleton (good in theory but not always practical or worth the



overhead) or use the in-application locking mechanism and lock
only the component that has to be a singleton. This would allow us
to scale the whole application transparently, have HTTP endpoints
scaled, and have other parts as active-passive singletons.

More Information
Singleton Service Example

Leases

Specifying a Disruption Budget for Your Application

Leader Election in Go Client

Dapr: Distributed Lock Overview

Creating Clustered Singleton Services on Kubernetes

Akka: Kubernetes Lease
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Chapter 11. Stateless Service

The Stateless Service pattern describes how to create and operate
applications that are composed of identical ephemeral replicas.
These applications are best suited for dynamic cloud environments
where they can be rapidly scaled and made highly available.

Problem
The microservices architecture style is the dominant choice for
implementing new greenfield cloud native applications. Among the
driving principles of this architecture are things such as how it
addresses a single concern, how it owns its data, how it has a well-
encapsulated deployment boundary, and others. Typically, such
applications also follow the twelve-factor app principles, which
makes them easy to operate with Kubernetes on dynamic cloud
environments.
Applying some of these principles requires understanding the
business domain, identifying the service boundary, or applying
domain-driven design or a similar methodology during the service
implementation. Implementing some of the other principles may
involve making the services ephemeral, which means the service
can be created, scaled, and destroyed with no side effects. These
latter concerns are easier to address when a service is stateless
rather than stateful.
A stateless service does not maintain any state internally within the
instance across service interactions. In our context, it means a
container is stateless if it does not hold any information from
requests in its internal storage (memory or temporary filesystem)
that is critical for serving future requests. A stateless process has no
stored knowledge of or reference to past requests, so each request

https://12factor.net/


is made as if from scratch. Instead, if the process needs to store
such information, it should store it in an external storage such as a
database, message queue, mounted filesystem, or some other data
store that can be accessed by other instances. A good thought
experiment is to imagine the instances of your services deployed on
different nodes and a load-balancer that randomly distributes the
requests to the instances without any sticky session (i.e., without an
affinity between a client and a specific service instance). If the
service can fulfill its purpose in this setup, it is likely a stateless
service (or it has a mechanism for state distribution among the
instances, such as a data grid).
Stateless services are made of identical, replaceable instances that
often offload state to external permanent storage systems and use
load-balancers for distributing incoming requests among
themselves. In this chapter, we will see specifically which
Kubernetes abstractions can help operate such stateless
applications.

Solution
In Chapter 3, “Declarative Deployment”, you learned how to use the
concept of Deployment to control how an application should be
updated to the next version, using the RollingUpdate and
Recreate strategies. But this is only the upgrading aspect of
Deployment. At a broader level, a Deployment represents an
application deployed in the cluster. Kubernetes doesn’t have the
notion of an Application or a Container as top-level entities.
Instead, an application is typically composed of a collection of Pods
managed by a controller such as ReplicaSet, Deployment, or
StatefulSet, combined with ConfigMap, Secret, Service,
PersistentVolumeClaim, etc. The controller that is used for
managing stateless Pods is ReplicaSet, but that is a lower-level
internal control structure used by a Deployment. Deployment is the



recommended user-facing abstraction for creating and updating
stateless applications, which creates and manages the ReplicaSets
behind the scene. A ReplicaSet should be used when the update
strategies provided by Deployment are not suitable, or a custom
mechanism is required, or no control over the update process is
needed at all.

Instances
The primary purpose of a ReplicaSet is to ensure a specified number
of identical Pod replicas running at any given time. The main
sections of a ReplicaSet definition include the number of replicas
indicating how many Pods it should maintain, a selector that
specifies how to identify the Pods it manages, and a Pod template
for creating new Pod replicas. Then, a ReplicaSet creates and
deletes Pods as needed to maintain the desired replica count using
the given Pod template, as demonstrated in Example 11-1.
Example 11-1. ReplicaSet definition for a stateless Pod
apiVersion: apps/v1
kind: ReplicaSet
metadata:
  name: rg
  labels:
    app: random-generator
spec:
  replicas: 3               
  selector:                 
    matchLabels:
      app: random-generator
  template:                 
    metadata:
      labels:
        app: random-generator
    spec:
      containers:
      - name: random-generator
        image: k8spatterns/random-generator:1.0

Desired number of Pod replicas to maintain running



Desired number of Pod replicas to maintain running.
Label selector used to identify the Pods to manage.
Template specifying the data for creating new Pods.

The template is used when the ReplicaSet needs to create new
Pods to meet the desired number of replicas. But a ReplicaSet is not
limited to managing the Pods specified by the template. If a bare
Pod has no owner reference (meaning it is not managed by a
controller), and it matches the label selector, it will be acquired by
setting the owner reference and managed by the ReplicaSet. This
setup can lead to a ReplicaSet owning a nonidentical set of Pods
created by different means, and terminate existing bare Pods that
exceed the declared replica count. To avoid such undesired side
effects, it is recommended that you ensure bare Pods do not have
labels matching ReplicaSet selectors.
Regardless of whether you create a ReplicaSet directly or through a
Deployment, the end result will be that the desired number of
identical Pod replicas are created and maintained. The added
benefit of using Deployment is that we can control how the replicas
are upgraded and rolled back, which we described in detail in
Chapter 3, “Declarative Deployment”. Next, the replicas are
scheduled to the available nodes as per the policies we covered in
Chapter 6, “Automated Placement”. The ReplicaSet’s job is to restart
the containers if needed and scale out or in when the number of
replicas is increased or decreased, respectively. With this behavior,
Deployment and ReplicaSet can automate the lifecycle
management of stateless applications.

Networking
Pods created by ReplicaSet are ephemeral and may disappear at
any time, such as when a Pod is evicted because of resource
starvation or because the node the Pod is running on fails. In such a
situation, the ReplicaSet will create a new Pod that will have a new
name, hostname, and IP address. If the application is stateless, as



we’ve defined earlier in the chapter, new requests should be
handled from the newly created Pod the same way as by any other
Pod.
Depending on how the application within the container connects to
the other systems to accept requests or poll for messages, for
example, you may require a Kubernetes Service. If the application is
starting an egress connection to a message broker or database, and
that is the only way it exchanges data, then there is no need for a
Kubernetes Service. But more often, stateless services are
contacted by other services over synchronous request/response-
driven protocols such as HTTP and gRPC. Since the Pod IP address
changes with every Pod restart, it is better to use a permanent IP
address based on a Kubernetes Service that service consumers can
use. A Kubernetes Service has a fixed IP address that doesn’t
change during the lifetime of the Service, and it ensures the client
requests are always load-balanced across instances and routed to
the healthy and ready-to-accept-requests Pods. We cover different
types of Kubernetes Services in Chapter 13, “Service Discovery”. In
Example 11-2, we use a simple Service to expose the Pods
internally within the cluster to other Pods.
Example 11-2. Exposing a stateless service
apiVersion: v1
kind: Service
metadata:
  name: random-generator    
spec:
  selector:                 
    app: random-generator
  ports:
  - port: 80
    targetPort: 8080
    protocol: TCPName of the service that can be used to reach the matching

Pods.
Selector matching the Pod labels from the ReplicaSet.



The definition in this example will create a Service named random-
generator that accepts TCP connections on port 80 and routes
them to port 8080 on all the matching Pods with selector app:
random-generator. Once a Service is created, it is assigned a
clusterIP that is accessible only from within the Kubernetes
cluster, and that IP remains unchanged as long as the Service
definition exists. This acts as a permanent entrypoint to all
matching Pods that are ephemeral and have changing IP addresses.
Notice that Deployment and the resulting ReplicaSet are only
responsible for maintaining the desired number of stateless Pods
that match the label selector. They are unaware of any Kubernetes
Service that might be directing traffic to the same set of Pods or a
different combination of Pods.

Storage
Few stateless services don’t need any state and can process
requests based only on the data provided in every request. Most
stateless services require state, but they are stateless because they
offload the state to some other stateful system or data store, such
as a filesystem. Any Pod, whether it is created by a ReplicaSet or
not, can declare and use file storage through volumes. Different
types of volumes can be used to store state. Some of these are
cloud-provider-specific storage, while others allow mounting
network storage or even sharing filesystems from the node where
the Pod is placed. In this section, we’ll look at the
persistentVolumeClaim volume type, which allows you to use
manually or dynamically provisioned persistent storage.
A PersistentVolume (PV) represents a storage resource abstraction
in a Kubernetes cluster that has a lifecycle independent of any Pod
lifecycle that is using it. A Pod cannot directly refer to a PV;
however, a Pod uses PersistentVolumeClaim (PVC) to request and
bind to the PV, which points to the actual durable storage. This



indirect connection allows for a separation of concerns and Pod
lifecycle decoupling from PV. A cluster administrator can configure
storage provisioning and define PVs. The developer creating Pod
definitions can use PVC to use the storage. With this indirection,
even if the Pod is deleted, the ownership of the PV remains
attached to the PVC and continues to exist. Example 11-3 shows a
storage claim that can be used in a Pod template.
Example 11-3. A claim for a PersistentVolume
apiVersion: v1
kind: PersistentVolumeClaim
metadata:
  name: random-generator-log  
spec:
  storageClassName: "manual"
  accessModes:
   - ReadWriteOnce            
  resources:
   requests:
    storage: 1Gi              Name of the claim that can be referenced from a Pod template.

Indicates that only a single node can mount the volume for
reading and writing.
Requesting 1 GiB of storage.

Once a PVC is defined, it can be referenced from a Pod template
through the persistentVolumeClaim field. One of the
interesting fields of PersistentVolumeClaim is accessModes. It
controls how the storage is mounted to the nodes and consumed by
the Pods. For example, network filesystems can be mounted to
multiple nodes and can allow reading and writing to multiple
applications at the same time. Other storage implementations can
be mounted to only a single node at a time and can be accessed
only by the Pods scheduled on that node. Let’s look at different
accessModes offered by Kubernetes:

ReadWriteOnce



This represents a volume that can be mounted to a single node
at a time. In this mode, one or multiple Pods running on the
node could carry out read and write operations.

ReadOnlyMany
The volume can be mounted to multiple nodes, but it allows
read-only operations to all Pods.

ReadWriteMany
In this mode, the volume can be mounted by many nodes and
allows both read and write operations.

ReadWriteOncePod
Notice that all of the access modes described so far offer per-
node granularity. Even ReadWriteOnce allows multiple Pods on
the same node to read from and write to the same volume
simultaneously. Only ReadWriteOncePod access mode
guarantees that only a single Pod has access to a volume. This
is invaluable in scenarios where at most one writer application is
allowed to access data for data-consistency guarantees. Use this
mode with caution as it will turn your services into a singleton
and prevent scaling out. If another Pod replica uses the same
PVC, the Pod will fail to start because the PVC is already in use
by another Pod. As of this writing, ReadWriteOncePod doesn’t
honor preemption either, which means a lower-priority Pod will
hold on to the storage and not be preempted from the node in
favor of a higher-priority Pod waiting on the same
ReadWriteOncePod claim.

In a ReplicaSet, all Pods are identical; they share the same PVC and
refer to the same PV. This is in contrast to StatefulSets covered in
the next chapter, where PVCs are created dynamically for each



stateful Pod replica. This is one of the major differences between
how stateless and stateful workloads are handled in Kubernetes.

Discussion
A complex distributed system is usually composed of multiple
services, some of which will be stateful and perform some form of
distributed coordination, some of which might be short-lived jobs,
and some of which might be highly scalable stateless services.
Stateless services are composed of identical, swappable,
ephemeral, and replaceable instances. They are ideal for handling
short-lived requests and can scale up and down rapidly without
having any dependencies among the instances. As shown in
Figure 11-1, Kubernetes offers a number of useful primitives to
manage such applications.

Figure 11-1. A distributed stateless application on Kubernetes



At the lowest level, the Pod abstraction ensures that one or more
containers are observed with liveness checks and are always up and
running. Building on that, the ReplicaSet also ensures that the
desired number of stateless Pods are always running on the healthy
nodes. Deployments automate the upgrade and rollback mechanism
of Pod replicas. When there is incoming traffic, the Service
abstraction discovers and distributes traffic to healthy Pod instances
with passing readiness probes. When a persistent file storage is
required, PVCs can request and mount storage.
Although Kubernetes offers these building blocks, it will not enforce
any direct relationship between them. It is your responsibility to
combine them to match the application nature. You have to
understand how liveness checks and ReplicaSet control Pods’
lifecycles, and how they relate to readiness probes and Service
definitions controlling how the traffic is directed to the Pods. You
should also understand how PVCs and accessMode control where
the storage is mounted and how it is accessed. When Kubernetes
primitives are not sufficient, you should know how to combine it
with other frameworks such as Knative and KEDA and how to
autoscale and even turn stateless applications into serverless. The
latter frameworks are covered in Chapter 29, “Elastic Scale”.

More Information
Stateless Service Example

ReplicaSet

Persistent Volumes

Storage Classes

Access Modes
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Chapter 12. Stateful Service

Distributed stateful applications require features such as persistent
identity, networking, storage, and ordinality. The Stateful Service
pattern describes the StatefulSet primitive that provides these
building blocks with strong guarantees ideal for the management of
stateful applications.

Problem
We have seen many Kubernetes primitives for creating distributed
applications: containers with health checks and resource limits,
Pods with multiple containers, dynamic cluster-wide placements,
batch jobs, scheduled jobs, singletons, and more. The common
characteristic of these primitives is that they treat the managed
application as a stateless application composed of identical,
swappable, and replaceable containers and comply with the twelve-
factor app principles.
It is a significant boost to have a platform taking care of the
placement, resiliency, and scaling of stateless applications, but
there is still a large part of the workload to consider: stateful
applications in which every instance is unique and has long-lived
characteristics.
In the real world, behind every highly scalable stateless service is a
stateful service, typically in the shape of a data store. In the early
days of Kubernetes, when it lacked support for stateful workloads,
the solution was placing stateless applications on Kubernetes to get
the benefits of the cloud native model and keeping stateful
components outside the cluster, either on a public cloud or on-
premises hardware, managed with the traditional noncloud native
mechanisms. Considering that every enterprise has a multitude of
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stateful workloads (legacy and modern), the lack of support for
stateful workloads was a significant limitation in Kubernetes, which
was known as a universal cloud native platform.
But what are the typical requirements of a stateful application? We
could deploy a stateful application such as Apache ZooKeeper,
MongoDB, Redis, or MySQL by using a Deployment, which could
create a ReplicaSet with replicas=1 to make it reliable, use a
Service to discover its endpoint, and use PersistentVolumeClaim
(PVC) and PersistentVolume (PV) as permanent storage for its
state.
While that is mostly true for a single-instance stateful application, it
is not entirely true, as a ReplicaSet does not guarantee At-Most-One
semantics, and the number of replicas can vary temporarily. Such a
situation can be disastrous and lead to data loss for distributed
stateful applications. Also, the main challenges arise when it is a
distributed stateful service that is composed of multiple instances. A
stateful application composed of multiple clustered services requires
multifaceted guarantees from the underlying infrastructure. Let’s
see some of the most common long-lived persistent prerequisites
for distributed stateful applications.

Storage
We could easily increase the number of replicas in a ReplicaSet
and end up with a distributed stateful application. However, how do
we define the storage requirements in such a case? Typically, a
distributed stateful application such as those mentioned previously
would require dedicated, persistent storage for every instance. A
ReplicaSet with replicas=3 and a PVC definition would result in
all three Pods attached to the same PV. While the ReplicaSet and
the PVC ensure the instances are up and the storage is attached to
whichever node the instances are scheduled on, the storage is not
dedicated but shared among all Pod instances.



A workaround is for the application instances to share storage and
have an in-app mechanism to split the storage into subfolders and
use it without conflicts. While doable, this approach creates a single
point of failure with the single storage. Also, it is error-prone as the
number of Pods changes during scaling, and it may cause severe
challenges around preventing data corruption or loss during scaling.
Another workaround is to have a separate ReplicaSet (with
replicas=1) for every instance of the distributed stateful
application. In this scenario, every ReplicaSet would get its PVC and
dedicated storage. The downside of this approach is that it is
intensive in manual labor: scaling up requires creating a new set of
ReplicaSet, PVC, or Service definitions. This approach lacks a single
abstraction for managing all instances of the stateful application as
one.

Networking
Similar to the storage requirements, a distributed stateful
application requires a stable network identity. In addition to storing
application-specific data into the storage space, stateful
applications also store configuration details such as hostname and
connection details of their peers. That means every instance should
be reachable in a predictable address that should not change
dynamically, as is the case with Pod IP addresses in a ReplicaSet.
Here we could address this requirement again through a
workaround: create a Service per ReplicaSet and have
replicas=1. However, managing such a setup is manual work,
and the application itself cannot rely on a stable hostname because
it changes after every restart and is also not aware of the Service
name it is accessed from.



Identity
As you can see from the preceding requirements, clustered stateful
applications depend heavily on every instance having a hold of its
long-lived storage and network identity. That is because in a
stateful application, every instance is unique and knows its own
identity, and the main ingredients of that identity are the long-lived
storage and the networking coordinates. To this list, we could also
add the identity/name of the instance (some stateful applications
require unique persistent names), which in Kubernetes would be the
Pod name. A Pod created with ReplicaSet would have a random
name and would not preserve that identity across a restart.

Ordinality
In addition to a unique and long-lived identity, the instances of
clustered stateful applications have a fixed position in the collection
of instances. This ordering typically impacts the sequence in which
the instances are scaled up and down. However, it can also be used
for data distribution or access and in-cluster behavior positioning
such as locks, singletons, or leaders.

Other Requirements
Stable and long-lived storage, networking, identity, and ordinality
are among the collective needs of clustered stateful applications.
Managing stateful applications also carries many other specific
requirements that vary case by case. For example, some
applications have the notion of a quorum and require a minimum
number of instances to always be available; some are sensitive to
ordinality, and some are fine with parallel Deployments; and some
tolerate duplicate instances, and some don’t. Planning for all these
one-off cases and providing generic mechanisms is an impossible
task, and that’s why Kubernetes also allows you to create
CustomResourceDefinitions (CRDs) and Operators for managing



applications with bespoke requirements. The Operator pattern is
explained in Chapter 28.
We have seen some common challenges of managing distributed
stateful applications and a few less-than-ideal workarounds. Next,
let’s check out the Kubernetes native mechanism for addressing
these requirements through the StatefulSet primitive.

Solution
To explain what StatefulSet provides for managing stateful
applications, we occasionally compare its behavior to the already-
familiar ReplicaSet primitive that Kubernetes uses for running
stateless workloads. In many ways, StatefulSet is for managing
pets, and ReplicaSet is for managing cattle. Pets versus cattle is a
famous (but also a controversial) analogy in the DevOps world:
identical and replaceable servers are referred to as cattle, and
nonfungible unique servers that require individual care are referred
to as pets. Similarly, StatefulSet (initially inspired by the analogy
and named PetSet) is designed for managing nonfungible Pods, as
opposed to ReplicaSet, which is for managing identical replaceable
Pods.
Let’s explore how StatefulSets work and how they address the
needs of stateful applications. Example 12-1 is our random-
generator service as a StatefulSet.1

Example 12-1. StatefulSet definition for a stateful application
apiVersion: apps/v1
kind: StatefulSet
metadata:
  name: rg                         
spec:
  serviceName: random-generator    
  replicas: 2                      
  selector:
    matchLabels:



      app: random-generator
  template:
    metadata:
      labels:
        app: random-generator
    spec:
      containers:
      - image: k8spatterns/random-generator:1.0
        name: random-generator
        ports:
        - containerPort: 8080
          name: http
        volumeMounts:
        - name: logs
          mountPath: /logs
  volumeClaimTemplates:            
  - metadata:
      name: logs
    spec:
      accessModes: [ "ReadWriteOnce" ]
      resources:
        requests:
          storage: 10MiName of the StatefulSet is used as prefix for the generated node

names.
References the mandatory Service defined in Example 12-2.
Two Pod members in the StatefulSet named rg-0 and rg-1.
Template for creating a PVC for each Pod (similar to the Pod’s
template).

Rather than going through the definition in Example 12-1 line by
line, we explore the overall behavior and the guarantees provided
by this StatefulSet definition.

Storage
While it is not always necessary, the majority of stateful
applications store state and thus require per-instance-based
dedicated persistent storage. The way to request and associate
persistent storage with a Pod in Kubernetes is through PVs and



PVCs. To create PVCs the same way it creates Pods, StatefulSet
uses a volumeClaimTemplates element. This extra property is
one of the main differences between a StatefulSet and a ReplicaSet,
which has a persistentVolumeClaim element.

Rather than referring to a predefined PVC, StatefulSets create PVCs
by using volumeClaimTemplates on the fly during Pod creation.
This mechanism allows every Pod to get its own dedicated PVC
during initial creation as well as during scaling up by changing the
replicas count of the StatefulSets.

As you probably realize, we said PVCs are created and associated
with the Pods, but we didn’t say anything about PVs. That is
because StatefulSets do not manage PVs in any way. The storage
for the Pods must be provisioned in advance by an admin or
provisioned on demand by a PV provisioner based on the requested
storage class and ready for consumption by the stateful Pods.
Note the asymmetric behavior here: scaling up a StatefulSet
(increasing the replicas count) creates new Pods and associated
PVCs. Scaling down deletes the Pods, but it does not delete any
PVCs (or PVs), which means the PVs cannot be recycled or deleted,
and Kubernetes cannot free the storage. This behavior is by design
and driven by the presumption that the storage of stateful
applications is critical and that an accidental scale-down should not
cause data loss. If you are sure the stateful application has been
scaled down on purpose and has replicated/drained the data to
other instances, you can delete the PVC manually, which allows
subsequent PV recycling.

Networking
Each Pod created by a StatefulSet has a stable identity generated
by the StatefulSet’s name and an ordinal index (starting from 0).
Based on the preceding example, the two Pods are named rg-0



and rg-1. The Pod names are generated in a predictable format
that differs from the ReplicaSet’s Pod-name-generation mechanism,
which contains a random suffix.
Dedicated scalable persistent storage is an essential aspect of
stateful applications and so is networking.
In Example 12-2, we define a headless Service. In a headless
Service, clusterIP is set to None, which means we don’t want a
kube-proxy to handle the Service, and we don’t want a cluster IP
allocation or load balancing. Then why do we need a Service?
Example 12-2. Service for accessing StatefulSet
apiVersion: v1
kind: Service
metadata:
  name: random-generator
spec:
  clusterIP: None         
  selector:
    app: random-generator
  ports:
  - name: http
    port: 8080Declares this Service as headless.

Stateless Pods created through a ReplicaSet are assumed to be
identical, and it doesn’t matter on which one a request lands (hence
the load balancing with a regular Service). But stateful Pods differ
from one another, and we may need to reach a specific Pod by its
coordinates.
A headless Service with selectors (notice .selector.app ==
random-generator) enables exactly this. Such a Service creates
endpoint records in the API Server and creates DNS entries to return
A records (addresses) that point directly to the Pods backing the
Service. Long story short, each Pod gets a DNS entry where clients
can directly reach out to it in a predictable way. For example, if our



random-generator Service belongs to the default namespace,
we can reach our rg-0 Pod through its fully qualified domain name:
rg-0.random-generator.default.svc.cluster.local,
where the Pod’s name is prepended to the Service name. This
mapping allows other members of the clustered application or other
clients to reach specific Pods if they wish to.
We can also perform DNS lookup for Service (SRV) records (e.g.,
through dig SRV random-
generator.default.svc.cluster.local) and discover all
running Pods registered with the StatefulSet’s governing Service.
This mechanism allows dynamic cluster member discovery if any
client application needs to do so. The association between the
headless Service and the StatefulSet is not only based on the
selectors, but the StatefulSet should also link back to the Service by
its name as serviceName: "random-generator".

Having dedicated storage defined through
volumeClaimTemplates is not mandatory, but linking to a
Service through serviceName field is. The governing Service must
exist before the StatefulSet is created and is responsible for the
network identity of the set. You can always create other types of
Services that also load balance across your stateful Pods if that is
what you want.
As Figure 12-1 shows, StatefulSets offer a set of building blocks and
guaranteed behavior needed for managing stateful applications in a
distributed environment. Your job is to choose and use them in a
meaningful way for your stateful use case.





Figure 12-1. A distributed stateful application on Kubernetes

Identity
Identity is the meta building block all other StatefulSet guarantees
are built upon. A predictable Pod name and identity is generated
based on StatefulSet’s name. We then use that identity to name
PVCs, reach out to specific Pods through headless Services, and
more. You can predict the identity of every Pod before creating it
and use that knowledge in the application itself if needed.

Ordinality
By definition, a distributed stateful application consists of multiple
instances that are unique and nonswappable. In addition to their
uniqueness, instances may also be related to one another based on
their instantiation order/position, and this is where the ordinality
requirement comes in.
From a StatefulSet point of view, the only place where ordinality
comes into play is during scaling. Pods have names that have an
ordinal suffix (starting from 0), and that Pod creation order also
defines the order in which Pods are scaled up and down (in reverse
order, from n – 1 to 0).
If we create a ReplicaSet with multiple replicas, Pods are scheduled
and started together without waiting for the first one to start
successfully (running and ready status, as described in Chapter 4,
“Health Probe”). The order in which Pods are starting and are ready
is not guaranteed. It is the same when we scale down a ReplicaSet
(either by changing the replicas count or deleting it). All Pods
belonging to a ReplicaSet start shutting down simultaneously
without any ordering and dependency among them. This behavior
may be faster to complete but is not preferred for stateful
applications, especially if data partitioning and distribution are
involved among the instances.



To allow proper data synchronization during scale-up and -down,
StatefulSet by default performs sequential startup and shutdown.
That means Pods start from the first one (with index 0), and only
when that Pod has successfully started is the next one scheduled
(with index 1), and the sequence continues. During scaling down,
the order reverses—first shutting down the Pod with the highest
index, and only when it has shut down successfully is the Pod with
the next lower index stopped. This sequence continues until the Pod
with index 0 is terminated.

Other Features
StatefulSets have other aspects that are customizable to suit the
needs of stateful applications. Each stateful application is unique
and requires careful consideration while trying to fit it into the
StatefulSet model. Let’s see a few more Kubernetes features that
may turn out to be useful while taming stateful applications:
Partitioned updates

We described earlier the sequential ordering guarantees when
scaling a StatefulSet. As for updating an already-running stateful
application (e.g., by altering the .spec.template element),
StatefulSets allow phased rollout (such as a canary release),
which guarantees a certain number of instances to remain intact
while applying updates to the rest of the instances.
By using the default rolling update strategy, you can partition
instances by specifying a
.spec.updateStrategy.rollingUpdate.partition
number. The parameter (with a default value of 0) indicates the
ordinal at which the StatefulSet should be partitioned for
updates. If the parameter is specified, all Pods with an ordinal
index greater than or equal to the partition are updated,
while all Pods with an ordinal less than that are not updated.
That is true even if the Pods are deleted; Kubernetes recreates



them at the previous version. This feature can enable partial
updates to clustered stateful applications (ensuring the quorum
is preserved, for example) and then roll out the changes to the
rest of the cluster by setting the partition back to 0.

Parallel deployments
When we set .spec.podManagementPolicy to Parallel,
the StatefulSet launches or terminates all Pods in parallel and
does not wait for Pods to run and become ready or completely
terminated before moving to the next one. If sequential
processing is not a requirement for your stateful application, this
option can speed up operational procedures.

At-Most-One Guarantee
Uniqueness is among the fundamental attributes of stateful
application instances, and Kubernetes guarantees that
uniqueness by making sure no two Pods of a StatefulSet have
the same identity or are bound to the same PV. In contrast,
ReplicaSet offers the At-Least-X-Guarantee for its instances. For
example, a ReplicaSet with two replicas tries to keep at least
two instances up and running at all times. Even if there is
occasionally a chance for that number to go higher, the
controller’s priority is not to let the number of Pods go below the
specified number. It is possible to have more than the specified
number of replicas running when a Pod is being replaced by a
new one and the old Pod is still not fully terminated. Or, it can
go higher if a Kubernetes node is unreachable with NotReady
state but still has running Pods. In this scenario, the ReplicaSet’s
controller would start new Pods on healthy nodes, which could
lead to more running Pods than desired. That is all acceptable
within the semantics of At-Least-X.
A StatefulSet controller, on the other hand, makes every possible
check to ensure there are no duplicate Pods—hence the At-Most-



One Guarantee. It does not start a Pod again unless the old
instance is confirmed to be shut down completely. When a node
fails, it does not schedule new Pods on a different node unless
Kubernetes can confirm that the Pods (and maybe the whole
node) are shut down. The At-Most-One semantics of StatefulSets
dictates these rules.
It is still possible to break these guarantees and end up with
duplicate Pods in a StatefulSet, but this requires active human
intervention. For example, deleting an unreachable node
resource object from the API Server while the physical node is
still running would break this guarantee. Such an action should
be performed only when the node is confirmed to be dead or
powered down and no Pod processes are running on it. Or, for
example, when you are forcefully deleting a Pod with kubectl
delete pods <pod> --grace-period=0 --force, which
does not wait for a confirmation from the Kubelet that the Pod is
terminated. This action immediately clears the Pod from the API
Server and causes the StatefulSet controller to start a
replacement Pod that could lead to duplicates.

We discuss other approaches to achieving singletons in more depth
in Chapter 10, “Singleton Service”.

Discussion
In this chapter, we saw some of the standard requirements and
challenges in managing distributed stateful applications on a cloud
native platform. We discovered that handling a single-instance
stateful application is relatively easy, but handling distributed state
is a multidimensional challenge. While we typically associate the
notion of “state” with “storage,” here we have seen multiple facets
of state and how it requires different guarantees from different
stateful applications. In this space, StatefulSets is an excellent



primitive for implementing distributed stateful applications
generically. It addresses the need for persistent storage, networking
(through Services), identity, ordinality, and a few other aspects. It
provides a good set of building blocks for managing stateful
applications in an automated fashion, making them first-class
citizens in the cloud native world.
StatefulSets are a good start and a step forward, but the world of
stateful applications is unique and complex. In addition to the
stateful applications designed for a cloud native world that can fit
into a StatefulSet, a ton of legacy stateful applications exist that
have not been designed for cloud native platforms and have even
more needs. Luckily Kubernetes has an answer for that too. The
Kubernetes community has realized that rather than modeling
different workloads through Kubernetes resources and
implementing their behavior through generic controllers, it should
allow users to implement their custom controllers and even go one
step further and allow modeling application resources through
custom resource definitions and behavior through operators.
In Chapters 27 and 28, you will learn about the related Controller
and Operator patterns, which are better suited for managing
complex stateful applications in cloud native environments.

More Information
Stateful Service Example

StatefulSet Basics

StatefulSets

Example: Deploying Cassandra with a Stateful Set

Running ZooKeeper, a Distributed System Coordinator

Headless Services

https://oreil.ly/FXeca
https://oreil.ly/NdHnS
https://oreil.ly/WyxHN
https://oreil.ly/YECff
https://oreil.ly/WzQXP
https://oreil.ly/7GPda


Force Delete StatefulSet Pods

Graceful Scaledown of Stateful Apps in Kubernetes

1  Let’s assume we have invented a highly sophisticated way of generating
random numbers in a distributed Random Number Generator (RNG) cluster
with several instances of our service as nodes. Of course, that’s not true,
but for this example’s sake, it’s a good enough story.

https://oreil.ly/ZRTlO
https://oreil.ly/7Zw-5


Chapter 13. Service Discovery

The Service Discovery pattern provides a stable endpoint through
which consumers of a service can access the instances providing the
service. For this purpose, Kubernetes provides multiple
mechanisms, depending on whether the service consumers and
producers are located on or off the cluster.

Problem
Applications deployed on Kubernetes rarely exist on their own, and
usually they have to interact with other services within the cluster
or systems outside the cluster. The interaction can be initiated
internally within the service or through external stimulus. Internally
initiated interactions are usually performed through a polling
consumer: either after startup or later, an application connects to
another system and starts sending and receiving data. Typical
examples are an application running within a Pod that reaches a file
server and starts consuming files, or a message that connects to a
message broker and starts receiving or sending messages, or an
application that uses a relational database or a key-value store and
starts reading or writing data.
The critical distinction here is that the application running within the
Pod decides at some point to open an outgoing connection to
another Pod or external system and starts exchanging data in either
direction. In this scenario, we don’t have an external stimulus for
the application, and we don’t need any additional setup in
Kubernetes.
To implement the patterns described in Chapter 7, “Batch Job”, or
Chapter 8, “Periodic Job”, we often use this technique. In addition,
long-running Pods in DaemonSets or ReplicaSets sometimes actively



connect to other systems over the network. The more common use
case for Kubernetes workloads occurs when we have long-running
services expecting external stimulus, most commonly in the form of
incoming HTTP connections from other Pods within the cluster or
external systems. In these cases, service consumers need a
mechanism for discovering Pods that are dynamically placed by the
scheduler and sometimes elastically scaled up and down.
It would be a significant challenge if we had to track, register, and
discover endpoints of dynamic Kubernetes Pods ourselves. That is
why Kubernetes implements the Service Discovery pattern through
different mechanisms, which we explore in this chapter.

Solution
If we look at the “Before Kubernetes Era,” the most common
mechanism of service discovery was through client-side discovery.
In this architecture, when a service consumer had to call another
service that might be scaled to multiple instances, the service
consumer would have a discovery agent capable of looking at a
registry for service instances and then choosing one to call.
Classically, that would be done, for example, either with an
embedded agent within the consumer service (such as a ZooKeeper
client, Consul client, or Ribbon) or with another colocated process
looking up the service in a registry, as shown in Figure 13-1.



Figure 13-1. Client-side service discovery

In the “Post Kubernetes Era,” many of the nonfunctional
responsibilities of distributed systems such as placement, health
checks, healing, and resource isolation are moving into the
platform, and so is service discovery and load balancing. If we use
the definitions from service-oriented architecture (SOA), a service
provider instance still has to register itself with a service registry
while providing the service capabilities, and a service consumer has
to access the information in the registry to reach the service.
In the Kubernetes world, all that happens behind the scenes so that
a service consumer calls a fixed virtual Service endpoint that can
dynamically discover service instances implemented as Pods.
Figure 13-2 shows how registration and lookup are embraced by
Kubernetes.



Figure 13-2. Server-side service discovery

At first glance, Service Discovery may seem like a simple pattern.
However, multiple mechanisms can be used to implement this
pattern, which depends on whether a service consumer is within or
outside the cluster and whether the service provider is within or
outside the cluster.

Internal Service Discovery
Let’s assume we have a web application and want to run it on
Kubernetes. As soon as we create a Deployment with a few
replicas, the scheduler places the Pods on the suitable nodes, and
each Pod gets a cluster-internal IP address assigned before starting
up. If another client service within a different Pod wishes to



consume the web application endpoints, there isn’t an easy way to
know the IP addresses of the service provider Pods in advance.
This challenge is what the Kubernetes Service resource addresses.
It provides a constant and stable entry point for a collection of Pods
offering the same functionality. The easiest way to create a Service
is through kubectl expose, which creates a Service for a Pod or
multiple Pods of a Deployment or ReplicaSet. The command creates
a virtual IP address referred to as the clusterIP, and it pulls both
Pod selectors and port numbers from the resources to create the
Service definition. However, to have full control over the definition,
we create the Service manually, as shown in Example 13-1.
Example 13-1. A simple Service
apiVersion: v1
kind: Service
metadata:
  name: random-generator
spec:
  selector:                
    app: random-generator
  ports:
  - port: 80               
    targetPort: 8080       
    protocol: TCPSelector matching Pod labels.

Port over which this Service can be contacted.
Port on which the Pods are listening.

The definition in this example will create a Service named random-
generator (the name is important for discovery later) and type:
ClusterIP (which is the default) that accepts TCP connections on
port 80 and routes them to port 8080 on all the matching Pods with
the selector app: random-generator. It doesn’t matter when or
how the Pods are created—any matching Pod becomes a routing
target, as illustrated in Figure 13-3.



Figure 13-3. Internal service discovery

The essential points to remember here are that once a Service is
created, it gets a clusterIP assigned that is accessible only from
within the Kubernetes cluster (hence the name), and that IP
remains unchanged as long as the Service definition exists.
However, how can other applications within the cluster figure out
what this dynamically allocated clusterIP is? There are two
ways:
Discovery through environment variables



When Kubernetes starts a Pod, its environment variables get
populated with the details of all Services that exist up to that
moment. For example, our random-generator Service
listening on port 80 gets injected into any newly starting Pod, as
the environment variables shown in Example 13-2 demonstrate.
The application running that Pod would know the name of the
Service it needs to consume and can be coded to read these
environment variables. This lookup is a simple mechanism that
can be used from applications written in any language and is
also easy to emulate outside the Kubernetes cluster for
development and testing purposes. The main issue with this
mechanism is the temporal dependency on Service creation.
Since environment variables cannot be injected into already-
running Pods, the Service coordinates are available only for Pods
started after the Service is created in Kubernetes. That requires
the Service to be defined before starting the Pods that depend
on the Service—or if this is not the case, the Pods need to be
restarted.

Example 13-2. Service-related environment variables set
automatically in Pod
RANDOM_GENERATOR_SERVICE_HOST=10.109.72.32
RANDOM_GENERATOR_SERVICE_PORT=80

Discovery through DNS lookup
Kubernetes runs a DNS server that all the Pods are automatically
configured to use. Moreover, when a new Service is created, it
automatically gets a new DNS entry that all Pods can start using.
Assuming a client knows the name of the Service it wants to
access, it can reach the Service by a fully qualified domain name
(FQDN) such as random-
generator.default.svc.cluster.local. Here, random-
generator is the name of the Service, default is the name of



the namespace, svc indicates it is a Service resource, and
cluster.local is the cluster-specific suffix. We can omit the
cluster suffix if desired, and the namespace as well when
accessing the Service from the same namespace.
The DNS discovery mechanism doesn’t suffer from the
drawbacks of the environment-variable-based mechanism, as
the DNS server allows lookup of all Services to all Pods as soon
as a Service is defined. However, you may still need to use the
environment variables to look up the port number to use if it is a
nonstandard one or unknown by the service consumer.

Here are some other high-level characteristics of the Service with
type: ClusterIP that other types build upon:

Multiple ports
A single Service definition can support multiple source and target
ports. For example, if your Pod supports both HTTP on port 8080
and HTTPS on port 8443, there is no need to define two
Services. A single Service can expose both ports on 80 and 443,
for example.

Session affinity
When there is a new request, the Service randomly picks a Pod
to connect to by default. That can be changed with
sessionAffinity: ClientIP, which makes all requests
originating from the same client IP stick to the same Pod.
Remember that Kubernetes Services performs L4 transport layer
load balancing, and it cannot look into the network packets and
perform application-level load balancing such as HTTP cookie-
based session affinity.

Readiness probes



In Chapter 4, “Health Probe”, you learned how to define a
readinessProbe for a container. If a Pod has defined
readiness checks, and they are failing, the Pod is removed from
the list of Service endpoints to call even if the label selector
matches the Pod.

Virtual IP
When we create a Service with type: ClusterIP, it gets a
stable virtual IP address. However, this IP address does not
correspond to any network interface and doesn’t exist in reality.
It is the kube-proxy that runs on every node that picks this new
Service and updates the iptables of the node with rules to catch
the network packets destined for this virtual IP address and
replaces it with a selected Pod IP address. The rules in the
iptables do not add ICMP rules, but only the protocol specified in
the Service definition, such as TCP or UDP. As a consequence, it
is not possible to ping the IP address of the Service as that
operation uses the ICMP.

Choosing ClusterIP
During Service creation, we can specify an IP to use with the
field .spec.clusterIP. It must be a valid IP address and
within a predefined range. While not recommended, this option
can turn out to be handy when dealing with legacy applications
configured to use a specific IP address, or if there is an existing
DNS entry we wish to reuse.

Kubernetes Services with type: ClusterIP are accessible only
from within the cluster; they are used for discovery of Pods by
matching selectors and are the most commonly used type. Next, we
will look at other types of Services that allow discovery of endpoints
that are manually specified.



Manual Service Discovery
When we create a Service with selector, Kubernetes tracks the
list of matching and ready-to-serve Pods in the list of endpoint
resources. For Example 13-1, you can check all endpoints created
on behalf of the Service with kubectl get endpoints random-
generator. Instead of redirecting connections to Pods within the
cluster, we could also redirect connections to external IP addresses
and ports. We can do that by omitting the selector definition of a
Service and manually creating endpoint resources, as shown in
Example 13-3.
Example 13-3. Service without selector
apiVersion: v1
kind: Service
metadata:
  name: external-service
spec:
  type: ClusterIP
  ports:
  - protocol: TCP
    port: 80

Next, in Example 13-4, we define an endpoint resource with the
same name as the Service and containing the target IPs and ports.
Example 13-4. Endpoints for an external service
apiVersion: v1
kind: Endpoints
metadata:
  name: external-service   
subsets:
  - addresses:
    - ip: 1.1.1.1
    - ip: 2.2.2.2
    ports:
    - port: 8080Name must match the Service that accesses these endpoints.



This Service is also accessible only within the cluster and can be
consumed in the same way as the previous ones, through
environment variables or DNS lookup. The difference is that the list
of endpoints is manually maintained and those values usually point
to IP addresses outside the cluster, as demonstrated in Figure 13-4.
While connecting to an external resource is this mechanism’s most
common use, it is not the only one. Endpoints can hold IP addresses
of Pods but not virtual IP addresses of other Services. One good
thing about the Service is that it allows you to add and remove
selectors and point to external or internal providers without deleting
the resource definition that would lead to a Service IP address
change. So service consumers can continue using the same Service
IP address they first pointed to while the actual service provider
implementation is migrated from on-premises to Kubernetes
without affecting the client.



Figure 13-4. Manual service discovery

In this category of manual destination configuration, there is one
more type of Service, as shown in Example 13-5.
Example 13-5. Service with an external destination
apiVersion: v1
kind: Service
metadata:
  name: database-service
spec:
  type: ExternalName
  externalName: my.database.example.com
  ports:
  - port: 80



This Service definition does not have a selector either, but its
type is ExternalName. That is an important difference from an
implementation point of view. This Service definition maps to the
content pointed by externalName using DNS only, or more
specifically, database-service.
<namespace>.svc.cluster.local will now point to
my.database.example.com. It is a way of creating an alias for
an external endpoint using DNS CNAME rather than going through
the proxy with an IP address. But fundamentally, it is another way
of providing a Kubernetes abstraction for endpoints located outside
the cluster.

Service Discovery from Outside the Cluster
The service discovery mechanisms discussed so far in this chapter
all use a virtual IP address that points to Pods or external
endpoints, and the virtual IP address itself is accessible only from
within the Kubernetes cluster. However, a Kubernetes cluster
doesn’t run disconnected from the rest of the world, and in addition
to connecting to external resources from Pods, very often the
opposite is also required—external applications wanting to reach to
endpoints provided by the Pods. Let’s see how to make Pods
accessible for clients living outside the cluster.
The first method to create a Service and expose it outside of the
cluster is through type: NodePort. The definition in Example 13-
6 creates a Service as earlier, serving Pods that match the selector
app: random-generator, accepting connections on port 80 on
the virtual IP address and routing each to port 8080 of the selected
Pod. However, in addition to all of that, this definition also reserves
port 30036 on all the nodes and forwards incoming connections to
the Service. This reservation makes the Service accessible internally
through the virtual IP address, as well as externally through a
dedicated port on every node.



Example 13-6. Service with type NodePort
apiVersion: v1
kind: Service
metadata:
  name: random-generator
spec:
  type: NodePort           
  selector:
    app: random-generator
  ports:
  - port: 80
    targetPort: 8080
    nodePort: 30036        
    protocol: TCPOpen port on all nodes.

Specify a fixed port (which needs to be available) or leave this
out to get a randomly selected port assigned.

While this method of exposing services (illustrated in Figure 13-5)
may seem like a good approach, it has drawbacks.



Figure 13-5. Node port service discovery

Let’s see some of its distinguishing characteristics:
Port number



Instead of picking a specific port with nodePort: 30036, you
can let Kubernetes pick a free port within its range.

Firewall rules
Since this method opens a port on all the nodes, you may have
to configure additional firewall rules to let external clients access
the node ports.

Node selection
An external client can open connection to any node in the
cluster. However, if the node is not available, it is the
responsibility of the client application to connect to another
healthy node. For this purpose, it may be a good idea to put a
load balancer in front of the nodes that picks healthy nodes and
performs failover.

Pods selection
When a client opens a connection through the node port, it is
routed to a randomly chosen Pod that may be on the same node
where the connection was open or a different node. It is possible
to avoid this extra hop and always force Kubernetes to pick a
Pod on the node where the connection was opened by adding
externalTrafficPolicy: Local to the Service definition.
When this option is set, Kubernetes does not allow you to
connect to Pods located on other nodes, which can be an issue.
To resolve that, you have to either make sure there are Pods
placed on every node (e.g., by using daemon services) or make
sure the client knows which nodes have healthy Pods placed on
them.

Source addresses
There are some peculiarities around the source addresses of
packets sent to different types of Services. Specifically, when we



use type NodePort, client addresses are source NAT’d, which
means the source IP addresses of the network packets
containing the client IP address are replaced with the node’s
internal addresses. For example, when a client application sends
a packet to node 1, it replaces the source address with its node
address, replaces the destination address with the Pod’s
address, and forwards the packet to node 2, where the Pod is
located. When the Pod receives the network packet, the source
address is not equal to the original client’s address but is the
same as node 1’s address. To prevent this from happening, we
can set externalTrafficPolicy: Local as described
earlier and forward traffic only to Pods located on node 1.

Another way to perform Service Discovery for external clients is
through a load balancer. You have seen how a type: NodePort
Service builds on top of a regular Service with type: ClusterIP
by also opening a port on every node. The limitation of this
approach is that we still need a load balancer for client applications
to pick a healthy node. The Service type LoadBalancer addresses
this limitation.
In addition to creating a regular Service, and opening a port on
every node, as with type: NodePort, it also exposes the service
externally using a cloud provider’s load balancer. Figure 13-6 shows
this setup: a proprietary load balancer serves as a gateway to the
Kubernetes cluster.



Figure 13-6. Load balancer service discovery

So this type of Service works only when the cloud provider has
Kubernetes support and provisions a load balancer. We can create a
Service with a load balancer by specifying the type LoadBalancer.
Kubernetes then will add IP addresses to the .spec and .status
fields, as shown in Example 13-7.



Example 13-7. Service of type LoadBalancer
apiVersion: v1
kind: Service
metadata:
  name: random-generator
spec:
  type: LoadBalancer
  clusterIP: 10.0.171.239      
  loadBalancerIP: 78.11.24.19
  selector:
    app: random-generator
  ports:
  - port: 80
    targetPort: 8080
status:                        
  loadBalancer:
    ingress:
    - ip: 146.148.47.155Kubernetes assigns clusterIP and loadBalancerIP when

they are available.
The status field is managed by Kubernetes and adds the
Ingress IP.

With this definition in place, an external client application can open
a connection to the load balancer, which picks a node and locates
the Pod. The exact way that load-balancer provisioning and service
discovery are performed varies among cloud providers. Some cloud
providers will allow you to define the load-balancer address and
some will not. Some offer mechanisms for preserving the source
address, and some replace that with the load-balancer address. You
should check the specific implementation provided by your cloud
provider of choice.



NOTE
Yet another type of Service is available: headless services, for which
you don’t request a dedicated IP address. You create a headless service
by specifying clusterIP None within the Service’s spec section. For
headless services, the backing Pods are added to the internal DNS
server and are most useful for implementing Services to StatefulSets,
as described in detail in Chapter 12, “Stateful Service”.

Application Layer Service Discovery
Unlike the mechanisms discussed so far, Ingress is not a service
type but a separate Kubernetes resource that sits in front of
Services and acts as a smart router and entry point to the cluster.
Ingress typically provides HTTP-based access to Services through
externally reachable URLs, load balancing, TLS termination, and
name-based virtual hosting, but there are also other specialized
Ingress implementations. For Ingress to work, the cluster must have
one or more Ingress controllers running. A simple Ingress that
exposes a single Service is shown in Example 13-8.
Example 13-8. An Ingress definition
apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
  name: random-generator
spec:
  defaultBackend:
    service:
      name: random-generator
      port:
        number: 8080

Depending on the infrastructure Kubernetes is running on, and the
Ingress controller implementation, this definition allocates an
externally accessible IP address and exposes the random-
generator Service on port 80. But this is not very different from a



Service with type: LoadBalancer, which requires an external IP
address per Service definition. The real power of Ingress comes
from reusing a single external load balancer and IP to service
multiple Services and reduce the infrastructure costs. A simple fan-
out configuration for routing a single IP address to multiple Services
based on HTTP URI paths looks like Example 13-9.
Example 13-9. A definition for Nginx Ingress controller
apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
  name: random-generator
  annotations:
    nginx.ingress.kubernetes.io/rewrite-target: /
spec:
  rules:                       
  - http:
      paths:
      - path: /                
        pathType: Prefix
        backend:
          service:
            name: random-generator
            port:
              number: 8080
      - path: /cluster-status  
        pathType: Exact
        backend:
          service:
            name: cluster-status
            port:
              number: 80Dedicated rules for the Ingress controller for dispatching

requests based on the request path.
Redirect every request to Service random-generator…​
…​ except /cluster-status, which goes to another Service.

Since every Ingress controller implementation is different, apart
from the usual Ingress definition, a controller may require additional
configuration, which is passed through annotations. Assuming the



Ingress is configured correctly, the preceding definition would
provision a load balancer and get an external IP address that
services two Services under two different paths, as shown in
Figure 13-7.
Ingress is the most powerful and at the same time most complex
service discovery mechanism on Kubernetes. It is most useful for
exposing multiple services under the same IP address and when all
services use the same L7 (typically HTTP) protocol.



Figure 13-7. Application layer service discovery



OPENSHIFT ROUTES
Red Hat OpenShift is a popular enterprise distribution of
Kubernetes. Besides being fully compliant with Kubernetes,
OpenShift provides some additional features. One of these
features is Routes, which are very similar to Ingress. They are
so similar, in fact, the differences might be difficult to spot. First
of all, Routes predates the introduction of the Ingress object in
Kubernetes, so Routes can be considered a kind of predecessor
of Ingress.
However, some technical differences still exist between Routes
and Ingress objects:

A Route is picked up automatically by the OpenShift-
integrated HAProxy load balancer, so there is no
requirement for an extra Ingress controller to be installed.

You can use additional TLS termination modes like re-
encryption or pass-through for the leg to the Service.

Multiple weighted backends for splitting traffic can be used.

Wildcard domains are supported.

Having said all that, you can use Ingress on OpenShift too. So
you have the choice when using OpenShift.

Discussion
In this chapter, we covered the favorite service discovery
mechanisms on Kubernetes. Discovery of dynamic Pods from within
the cluster is always achieved through the Service resource, though
different options can lead to different implementations. The Service
abstraction is a high-level cloud native way of configuring low-level
details such as virtual IP addresses, iptables, DNS records, or



environment variables. Service discovery from outside the cluster
builds on top of the Service abstraction and focuses on exposing the
Services to the outside world. While a NodePort provides the
basics of exposing Services, a highly available setup requires
integration with the platform infrastructure provider.
Table 13-1 summarizes the various ways service discovery is
implemented in Kubernetes. This table aims to organize the various
service discovery mechanisms in this chapter from more
straightforward to more complex. We hope it can help you build a
mental model and understand them better.



Table 13-1. Service Discovery mechanisms

Name Configuration Client type Summary

ClusterIP type: ClusterI

P

.spec.selector

Internal The most
common
internal
discovery
mechanism

Manual IP type: ClusterI

P

kind: Endpoint

s

Internal External IP
discovery

Manual FQDN type: External

Name

.spec.external

Name

Internal External FQDN
discovery

Headless
Service

type: ClusterI

P

.spec.clusterI

P: None

Internal DNS-based
discovery
without a
virtual IP

NodePort type: NodePort External Preferred for
non-HTTP
traffic

LoadBalancer type: LoadBala

ncer

External Requires
supporting
cloud
infrastructure



Name Configuration Client type Summary

Ingress kind: Ingress External L7/HTTP-based
smart routing
mechanism

This chapter gave a comprehensive overview of all the core
concepts in Kubernetes for accessing and discovering services.
However, the journey does not stop here. With the Knative project,
new primitives on top of Kubernetes have been introduced, which
help application developers with advanced serving and eventing.
In the context of the Service Discovery pattern, the Knative Serving
subproject is of particular interest as it introduces a new Service
resource with the same kind as the Services introduced here (but
with a different API group). Knative Serving provides support for
application revision but also for a very flexible scaling of services
behind a load balancer. We give a short shout-out to Knative
Serving in “Knative”, but a full discussion of Knative is beyond the
scope of this book. In “More Information”, you will find links that
point to detailed information about Knative.

More Information
Service Discovery Example

Kubernetes Service

DNS for Services and Pods

Debug Services

Using Source IP

Create an External Load Balancer

https://oreil.ly/nagmD
https://oreil.ly/AEDi5
https://oreil.ly/WRT5H
https://oreil.ly/voVbw
https://oreil.ly/mGjzg
https://oreil.ly/pzOiM


Ingress

Kubernetes NodePort Versus LoadBalancer Versus Ingress?
When Should I Use What?

Kubernetes Ingress Versus OpenShift Route

https://oreil.ly/Idv2c
https://oreil.ly/W4i8U
https://oreil.ly/W4i8U
https://oreil.ly/fXicP


Chapter 14. Self Awareness

Some applications need to be self-aware and require information
about themselves. The Self Awareness pattern describes the
Kubernetes downward API that provides a simple mechanism for
introspection and metadata injection to applications.

Problem
For the majority of use cases, cloud native applications are stateless
and disposable without an identity relevant to other applications.
However, sometimes even these kinds of applications need to have
information about themselves and the environment they are
running in. That may include information known only at runtime,
such as the Pod name, Pod IP address, and the hostname on which
the application is placed. Or, other static information defined at Pod
level such as the specific resource requests and limits, or some
dynamic information such as annotations and labels that could be
altered by the user at runtime.
For example, depending on the resources made available to the
container, you may want to tune the application thread-pool size, or
change the garbage collection algorithm or memory allocation. You
may want to use the Pod name and the hostname while logging
information, or while sending metrics to a central server. You may
want to discover other Pods in the same namespace with a specific
label and join them into a clustered application. For these and other
use cases, Kubernetes provides the downward API.



Solution
The requirements that we’ve described and the following solution
are not specific only to containers but are present in any dynamic
environment where the metadata of resources changes. For
example, AWS offers Instance Metadata and User Data services that
can be queried from any EC2 instance to retrieve metadata about
the EC2 instance itself. Similarly, AWS ECS provides APIs that can be
queried by the containers and retrieve information about the
container cluster.
The Kubernetes approach is even more elegant and easier to use.
The downward API allows you to pass metadata about the Pod to
the containers and the cluster through environment variables and
files. These are the same mechanisms we used for passing
application-related data from ConfigMaps and Secrets. But in this
case, the data is not created by us. Instead, we specify the keys
that interest us, and Kubernetes populates the values dynamically.
Figure 14-1 gives an overview of how the downward API injects
resource and runtime information into interested Pods.



Figure 14-1. Application introspection mechanisms

The main point here is that with the downward API, the metadata is
injected into your Pod and made available locally. The application
does not need to use a client and interact with the Kubernetes API
and can remain Kubernetes-agnostic. Let’s see how easy it is to
request metadata through environment variables in Example 14-1.
Example 14-1. Environment variables from downward API
apiVersion: v1
kind: Pod
metadata:
  name: random-generator
spec:
  containers:
  - image: k8spatterns/random-generator:1.0
    name: random-generator
    env:
    - name: POD_IP
      valueFrom:
        fieldRef:                         
          fieldPath: status.podIP
    - name: MEMORY_LIMIT



      valueFrom:
        resourceFieldRef:
          containerName: random-generator 
          resource: limits.memoryThe environment variable POD_IP is set from the properties of

this Pod and comes into existence at Pod startup time.
The environment variable MEMORY_LIMIT is set to the value of
the memory resource limit of this container; the actual limit
declaration is not shown here.

In this example, we use fieldRef to access Pod-level metadata.
The keys shown in Table 14-1 are available for
fieldRef.fieldPath both as environment variables and
downwardAPI volumes.



Table 14-1. Downward API information available in fieldRef.fie
ldPath

Name Description

spec.nodeName Name of node hosting the Pod

status.hostIP IP address of node hosting the Pod

metadata.name Pod name

metadata.namespace Namespace in which the Pod is
running

status.podIP Pod IP address

spec.serviceAccountName ServiceAccount that is used for the
Pod

metadata.uid Unique ID of the Pod

metadata.labels['key'] Value of the Pod’s label key

metadata.annotations['ke

y']

Value of the Pod’s annotation key

As with fieldRef, we use resourceFieldRef to access
metadata specific to a container’s resource specification belonging
to the Pod. This metadata is specific to a container and is specified
with resourceFieldRef.container. When used as an
environment variable, by default the current container is used.



Possible keys for resourceFieldRef.resource are shown in
Table 14-2. Resource declarations are explained in Chapter 2,
“Predictable Demands”.

Table 14-2. Downward API information available in resourceFiel
dRef.resource

Name Description

requests.cpu A container’s CPU request

limits.cpu A container’s CPU limit

requests.memory A container’s memory request

limits.memory A container’s memory limit

requests.hugepages-

<size>

A container’s hugepages request (e.g., re
quests.hugepages-1Gi)

limits.hugepages-<s

ize>

A container’s hugepages limit (e.g., limit
s.hugepages-1Gi)

requests.ephemeral-

storage

A container’s ephemeral-storage request

limits.ephemeral-st

orage

A container’s ephemeral-storage limit

A user can change certain metadata such as labels and annotations
while a Pod is running. Unless the Pod is restarted, environment



variables will not reflect such a change. But downwardAPI volumes
can reflect updates to labels and annotations. In addition to the
individual fields described previously, downwardAPI volumes can
capture all Pod labels and annotations into files with
metadata.labels and metadata.annotations references.
Example 14-2 shows how such volumes can be used.
Example 14-2. Downward API through volumes
apiVersion: v1
kind: Pod
metadata:
  name: random-generator
spec:
  containers:
  - image: k8spatterns/random-generator:1.0
    name: random-generator
    volumeMounts:
    - name: pod-info                 
      mountPath: /pod-info
  volumes:
  - name: pod-info
    downwardAPI:
      items:
      - path: labels                 
        fieldRef:
          fieldPath: metadata.labels
      - path: annotations            
        fieldRef:
          fieldPath: metadata.annotationsValues from the downward API can be mounted as files into the

Pod.
The file labels contain all labels, line by line, in the format
name=value. This file gets updated when labels are changing.
The annotations file holds all annotations in the same format
as the labels.

With volumes, if the metadata changes while the Pod is running, it
is reflected in the volume files. But it is still up to the consuming
application to detect the file change and read the updated data



accordingly. If such a functionality is not implemented in the
application, a Pod restart still might be required.

Discussion
Often, an application needs to be self-aware and have information
about itself and the environment in which it is running. Kubernetes
provides nonintrusive mechanisms for introspection and metadata
injection. One of the downsides of the downward API is that it offers
a fixed number of keys that can be referenced. If your application
needs more data, especially about other resources or cluster-related
metadata, it has to be queried on the API Server. This technique is
used by many applications that query the API Server to discover
other Pods in the same namespace that have certain labels or
annotations. Then the application may form a cluster with the
discovered Pods and sync state. It is also used by monitoring
applications to discover Pods of interest and then start
instrumenting them.
Many client libraries are available for different languages to interact
with the Kubernetes API Server to obtain more self-referring
information that goes beyond what the downward API provides.

More Information
Self Awareness Example

AWS EC2: Instance Metadata and User Data

Expose Pod Information to Containers Through Files

Expose Pod Information to Containers Through Environment
Variables

Downward API: Available Fields

https://oreil.ly/fHu1O
https://oreil.ly/iCwPr
https://oreil.ly/qe2Gc
https://oreil.ly/bZrtR
https://oreil.ly/bZrtR
https://oreil.ly/Jh4zf


Part III. Structural Patterns

Container images and containers are similar to classes and objects
in the object-oriented world. Container images are the blueprint
from which containers are instantiated. But these containers do not
run in isolation; they run in other abstractions called Pods, where
they interact with other containers.
The patterns in this category are focused on structuring and
organizing containers in a Pod to satisfy different use cases. Pods
provide unique runtime capabilities. The forces that affect
containers in Pods result in the patterns discussed in the following
chapters:

Chapter 15, “Init Container”, introduces a lifecycle for
initialization-related tasks, decoupled from the main application
responsibilities.

Chapter 16, “Sidecar”, describes how to extend and enhance
the functionality of a preexisting container without changing it.

Chapter 17, “Adapter”, takes a heterogeneous system and
makes it conform to a consistent unified interface that can be
consumed by the outside world.

Chapter 18, “Ambassador”, describes a proxy that decouples
access to external services.



Chapter 15. Init Container

The Init Container pattern enables separation of concerns by
providing a separate lifecycle for initialization-related tasks distinct
from the main application containers. In this chapter, we look
closely at this fundamental Kubernetes concept that is used in many
other patterns when initialization logic is required.

Problem
Initialization is a widespread concern in many programming
languages. Some languages have it covered as part of the
language, and some use naming conventions and patterns to
indicate a construct as the initializer. For example, in the Java
programming language, to instantiate an object that requires some
setup, we use the constructor (or static blocks for fancier use
cases). Constructors are guaranteed to run as the first thing within
the object, and they are guaranteed to run only once by the
managing runtime (this is just an example; we don’t go into detail
here on the different languages and corner cases). Moreover, we
can use the constructor to validate preconditions such as mandatory
parameters. We also use constructors to initialize the instance fields
with incoming arguments or default values.
Init containers are similar but are at the Pod level rather than at the
Java class level. So if you have one or more containers in a Pod that
represent your main application, these containers may have
prerequisites before starting up. These may include special
permissions setup on the filesystem, database schema setup, or
application seed data installation. Also, this initializing logic may
require tools and libraries that cannot be included in the application
image. For security reasons, the application image may not have



permissions to perform the initializing activities. Alternatively, you
may want to delay the startup of your application until an external
dependency is satisfied. For all these kinds of use cases, Kubernetes
uses init containers as implementation of this pattern, which allow
separation of initializing activities from the main application duties.

Solution
Init containers in Kubernetes are part of the Pod definition, and they
separate all containers in a Pod into two groups: init containers and
application containers. All init containers are executed in a
sequence, one by one, and all of them have to terminate
successfully before the application containers are started up. In that
sense, init containers are like constructor instructions in a Java class
that help object initialization. Application containers, on the other
hand, run in parallel, and the startup order is arbitrary. The
execution flow is demonstrated in Figure 15-1.



Figure 15-1. Init and application containers in a Pod

Typically, init containers are expected to be small, run quickly, and
complete successfully, except when an init container is used to
delay the start of a Pod while waiting for a dependency, in which
case it may not terminate until the dependency is satisfied. If an init
container fails, the whole Pod is restarted (unless it is marked with
RestartNever), causing all init containers to run again. Thus, to
prevent any side effects, making init containers idempotent is a
good practice.
On one hand, init containers have all of the same capabilities as
application containers: all of the containers are part of the same
Pod, so they share resource limits, volumes, and security settings
and end up placed on the same node. On the other hand, they have
slightly different lifecycle, health-checking, and resource-handling



semantics. There is no livenessProbe, readinessProbe, or
startupProbe for init containers, as all init containers must
terminate successfully before the Pod startup processes can
continue with application containers.
Init containers also affect the way Pod resource requirements are
calculated for scheduling, autoscaling, and quota management.
Given the ordering in the execution of all containers in a Pod (first,
init containers run a sequence, then all application containers run in
parallel), the effective Pod-level request and limit values become
the highest values of the following two groups:

The highest init container request/limit value

The sum of all application container values for request/limit

A consequence of this behavior is that if you have init containers
with high resource demands and application containers with low
resource demands, the Pod-level request and limit values affecting
the scheduling will be based on the higher value of the init
containers, as demonstrated in Figure 15-2.



Figure 15-2. Effective Pod request/limit calculation

This setup is not resource-efficient. Even if init containers run for a
short period of time and there is available capacity on the node for



the majority of the time, no other Pod can use it.
Moreover, init containers enable separation of concerns and allow
you to keep containers single-purposed. An application container
can be created by the application engineer and focus on the
application logic only. A deployment engineer can author an init
container and focus on configuration and initialization tasks only.
We demonstrate this in Example 15-1, which has one application
container based on an HTTP server that serves files.
The container provides a generic HTTP-serving capability and does
not make any assumptions about where the files to serve might
come from for the different use cases. In the same Pod, an init
container provides Git client capability, and its sole purpose is to
clone a Git repo. Since both containers are part of the same Pod,
they can access the same volume to share data. We use the same
mechanism to share the cloned files from the init container to the
application container.
Example 15-1 shows an init container that copies data into an
empty volume.
Example 15-1. Init Container
apiVersion: v1
kind: Pod
metadata:
  name: www
  labels:
    app: www
spec:
  initContainers:
  - name: download
    image: bitnami/git
    command:                       
    - git
    - clone
    - https://github.com/mdn/beginner-html-site-scripted
    - /var/lib/data
    volumeMounts:                  
    - mountPath: /var/lib/data



      name: source
  containers:
  - name: run
    image: centos/httpd
    ports:
    - containerPort: 80
    volumeMounts:                  
    - mountPath: /var/www/html
      name: source
  volumes:                         
  - emptyDir: {}
    name: sourceClone an external Git repository into the mounted directory.

Shared volume used by both init container and the application
container.
Empty directory used on the node for sharing data.

We could have achieved the same effect by using ConfigMap or
PersistentVolumes but want to demonstrate how init containers
work here. This example illustrates a typical usage pattern of an init
container sharing a volume with the main container.

TIP
For debugging the outcome of init containers, it helps if the command
of the application container is replaced temporarily with a dummy
sleep command so that you have time to examine the situation. This
trick is particularly useful if your init container fails to start up and your
application fails to start because the configuration is missing or broken.
The following command within the Pod declaration gives you an hour to
debug the volumes mounted by entering the Pod with kubectl exec
-it <pod> sh:

   command:
   - /bin/sh
   - "-c"
   - "sleep 3600"



A similar effect can be achieved by using a sidecar, as described
next in Chapter 16, “Sidecar”, where the HTTP server container and
the Git container are running side by side as application containers.
But with the sidecar approach, there is no way of knowing which
container will run first, and sidecar is meant to be used when
containers run side by side continuously. We could also use a
sidecar and init container together if both a guaranteed initialization
and a constant update of the data are required.



MORE INITIALIZATION TECHNIQUES
As you have seen, an init container is a Pod-level construct that
gets activated after a Pod has been started. A few other related
techniques used to initialize Kubernetes resources are different
from init containers and are worth listing here for completeness:
Admission controllers

This set of plugins intercepts every request to the
Kubernetes API Server before persistence of the object and
can mutate or validate it. There are many admission
controllers for applying checks, enforcing limits, and setting
default values, but all are compiled into the kube-
apiserver binary and configured by a cluster administrator
when the API Server starts up. This plugin system is not very
flexible, which is why admission webhooks were added to
Kubernetes.

Admission webhooks
These components are external admission controllers that
perform HTTP callbacks for any matching request. There are
two types of admission webhooks: the mutating webhook
(which can change resources to enforce custom defaults) and
the validating webhook (which can reject resources to
enforce custom admission policies). This concept of external
controllers allows admission webhooks to be developed out
of Kubernetes and configured at runtime.

There used to be other techniques for initializing Kubernetes
resources, such as Initializers and PodPresets, which were
eventually deprecated and removed. Nowadays other projects
such as Metacontroller and Kyverno use admission webhooks or
the Operator pattern to mutate Kubernetes resources and
intervene in the initialization process. These techniques differ



from init containers because they validate and mutate resources
at creation time.
In contrast, the Init Container pattern discussed in this chapter
is something that activates and performs its responsibilities
during startup of the Pod. You could use admission webhooks,
for example, to inject an init container into any Pod that doesn’t
have one already. For example, Istio, which is a popular service
mesh project, uses a combination of techniques discussed in this
chapter to inject its proxies into application Pods. Istio uses
Kubernetes mutating admission webhooks for automatic sidecar
and init container injection into the Pod definition at Pod
definition creation time. When such a Pod is starting up, Istio’s
init container configures the Pod environment to redirect
inbound and outbound traffic from the application to the Envoy
proxy sidecar. The init container runs before any other container
and configures iptable rules to insert the Envoy proxy in the
request path of the application before any traffic reaches the
application. This separation of containers is good for lifecycle
management and also because the init container in this case
requires elevated permissions to configure traffic redirection,
which can pose a security threat. This is an example of how
many initialization activities can be performed before an
application container starts up.
In the end, the most significant difference is that init containers
can be used by developers deploying on Kubernetes, whereas
admission webhooks help administrators and various
frameworks control and alter the container initialization process.

Discussion
So why separate containers in a Pod into two groups? Why not just
use an application container with a bit of scripting in a Pod for



initialization if required? The answer is that these two groups of
containers have different lifecycles, purposes, and even authors in
some cases.
Having init containers run before application containers, and more
importantly, having init containers run in stages that progress only
when the current init container completes successfully, means you
can be sure at every step of the initialization that the previous step
has completed successfully, and you can progress to the next stage.
Application containers, in contrast, run in parallel and do not
provide similar guarantees as init containers. With this distinction in
hand, we can create containers focused on initialization or
application-focused tasks, and reuse them in different contexts by
organizing them in Pods with predictable guarantees.

More Information
Init Container Example

Init Containers

Configuring Pod Initialization

Admission Controllers Reference

Dynamic Admission Control

Metacontroller

Kyverno

Demystifying Istio’s Sidecar Injection Model

Object Initialization in Swift
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Chapter 16. Sidecar

A sidecar container extends and enhances the functionality of a
preexisting container without changing it. The Sidecar pattern is
one of the fundamental container patterns that allows single-
purpose containers to cooperate closely together. In this chapter,
you’ll learn all about the basic sidecar concept. The specialized
follow-up patterns, Adapter and Ambassador, are discussed in
Chapters 17 and 18, respectively.

Problem
Containers are a popular packaging technology that allow
developers and system administrators to build, ship, and run
applications in a unified way. A container represents a natural
boundary for a unit of functionality with a distinct runtime, release
cycle, API, and team owning it. A proper container behaves like a
single Linux process—solves one problem and does it well—and is
created with the idea of replaceability and reuse. This last part is
essential as it allows us to build applications more quickly by
leveraging existing specialized containers.
Today, to make an HTTP call, we don’t have to write a client library
but can use an existing one. In the same way, to serve a website,
we don’t have to create a container for a web server but can use an
existing one. This approach allows developers to avoid reinventing
the wheel and create an ecosystem with a smaller number of
better-quality containers to maintain. However, having single-
purpose reusable containers requires ways of extending the
functionality of a container and a means for collaboration among
containers. The sidecar pattern describes this kind of collaboration,



where a container enhances the functionality of another preexisting
container.

Solution
In Chapter 1, we described how the Pod primitive allows us to
combine multiple containers into a single unit. Behind the scenes, at
runtime, a Pod is a container as well, but it starts as a paused
process (literally with the pause command) before all other
containers in the Pod. It is not doing anything other than holding all
the Linux namespaces the application containers use to interact
throughout the Pod’s lifetime. Apart from this implementation
detail, what is more interesting is all the characteristics that the Pod
abstraction provides.
The Pod is such a fundamental primitive that it is present in many
cloud native platforms under different names but always with
similar capabilities. A Pod as the deployment unit puts certain
runtime constraints on the containers belonging to it. For example,
all containers end up deployed to the same node, and they share
the same Pod lifecycle. In addition, a Pod allows its containers to
share volumes and communicate over the local network or host IPC.
These are the reasons users put a group of containers into a Pod.
Sidecar (sometimes also called Sidekick) is used to describe the
scenario of a container being put into a Pod to extend and enhance
another container’s behavior.
A typical example demonstrating this pattern is of an HTTP server
and a Git synchronizer. The HTTP server container is focused only
on serving files over HTTP and does not know how or where the
files are coming from. Similarly, the Git synchronizer container’s only
goal is to sync data from a Git server to the local filesystem. It does
not care what happens once synced—its only concern is keeping the
local folder in sync with the remote Git server. Example 16-1 shows



a Pod definition with these two containers configured to use a
volume for file exchange.
Example 16-1. Pod with a sidecar
apiVersion: v1
kind: Pod
metadata:
  name: web-app
spec:
  containers:
  - name: app
    image: centos/httpd            
    volumeMounts:
    - mountPath: /var/www/html     
      name: git
  - name: poll
    image: bitnami/git             
    volumeMounts:
    - mountPath: /var/lib/data     
      name: git
    env:
    - name: GIT_REPO
      value: https://github.com/mdn/beginner-html-site-
scripted
    command: [ "sh", "-c" ]
    args:
    - |
      git clone $(GIT_REPO) .
      while true; do
        sleep 60
        git pull
      done
    workingDir: /var/lib/data
  volumes:
  - emptyDir: {}
    name: gitMain application container serving files over HTTP.

Sidecar container running in parallel and pulling data from a Git
server.
Shared location for exchanging data between the sidecar and
main application container as mounted in the app and poll
containers, respectively.



This example shows how the Git synchronizer enhances the HTTP
server’s behavior with content to serve and keeps it synchronized.
We could also say that both containers collaborate and are equally
important, but in a Sidecar pattern, there is a main container and a
helper container that enhance the collective behavior. Typically, the
main container is the first one listed in the containers list, and it
represents the default container (e.g., when we run the command
kubectl exec).

This simple pattern, illustrated in Figure 16-1, allows runtime
collaboration of containers and at the same time enables separation
of concerns for both containers, which might be owned by separate
teams, using different programming languages, with different
release cycles, etc. It also promotes replaceability and reuse of
containers as the HTTP server, and the Git synchronizer can be
reused in other applications and different configuration either as a
single container in a Pod or again in collaboration with other
containers.



Figure 16-1. Sidecar pattern

Discussion
Previously we said that container images are like classes, and
containers are like the objects in object-oriented programming
(OOP). If we continue this analogy, extending a container to
enhance its functionality is similar to inheritance in OOP, and having
multiple containers collaborating in a Pod is similar to composition
in OOP. While both approaches allow code reuse, inheritance
involves tighter coupling between containers and represents an “is-
a” relationship between containers.
On the other hand, a composition in a Pod represents a “has-a”
relationship, and it is more flexible because it doesn’t couple



containers together at build time, giving you the ability to later
swap containers in the Pod definition. With the composition
approach, you have multiple containers (processes) running, health
checked, restarted, and consuming resources, as the main
application container does. Modern sidecar containers are small and
consume minimal resources, but you have to decide whether it is
worth running a separate process or whether it is better to merge it
into the main container.
We see two dominating approaches for using sidecars: transparent
sidecars that are invisible to the application, and explicit sidecars
that the main application interacts with over well-defined APIs.
Envoy proxy is an example of a transparent sidecar that runs
alongside the main container and abstracts the network by
providing common features such as Transport Layer Security (TLS),
load balancing, automatic retries, circuit breaking, global rate
limiting, observability of L7 traffic, distributed tracing, and more. All
of these features become available to the application by
transparently attaching the sidecar container and intercepting all
the incoming and outgoing traffic to the main container. This is
similar to aspect-oriented programming, in that with additional
containers, we introduce orthogonal capabilities to the Pod without
touching the main container.
An example of an explicit proxy that uses the sidecar architecture is
Dapr. A Dapr sidecar container is injected into a Pod and offers
features such as reliable service invocation, publish-subscribe,
bindings to external systems, state abstraction, observability,
distributed tracing, and more. The primary difference between Dapr
and Envoy proxy is that Dapr does not intercept all the networking
traffic going in and out of the application. Rather, Dapr features are
exposed over HTTP and gRPC APIs, which the application invokes or
subscribes to.
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Chapter 17. Adapter

The Adapter pattern takes a heterogeneous containerized system
and makes it conform to a consistent, unified interface with a
standardized and normalized format that can be consumed by the
outside world. The Adapter pattern inherits all its characteristics
from the Sidecar pattern but has the single purpose of providing
adapted access to the application.

Problem
Containers allow us to package and run applications written in
different libraries and languages in a unified way. Today, it is
common to see multiple teams using different technologies and
creating distributed systems composed of heterogeneous
components. This heterogeneity can cause difficulties when all
components have to be treated in a unified way by other systems.
The Adapter pattern offers a solution by hiding the complexity of a
system and providing unified access to it.

Solution
The best way to illustrate the Adapter pattern is through an
example. A major prerequisite for successfully running and
supporting distributed systems is providing detailed monitoring and
alerting. Moreover, if we have a distributed system composed of
multiple services we want to monitor, we may use an external
monitoring tool to poll metrics from every service and record them.
However, services written in different languages may not have the
same capabilities and may not expose metrics in the same format
expected by the monitoring tool. This diversity creates a challenge



for monitoring such a heterogeneous application from a single
monitoring solution that expects a unified view of the whole system.
With the Adapter pattern, it is possible to provide a unified
monitoring interface by exporting metrics from various application
containers into one standard format and protocol. In Figure 17-1, an
adapter container translates locally stored metrics information into
the external format the monitoring server understands.

Figure 17-1. Adapter pattern

With this approach, every service represented by a Pod, in addition
to the main application container, would have another container
that knows how to read the custom application-specific metrics and
expose them in a generic format understandable by the monitoring
tool. We could have one adapter container that knows how to
export Java-based metrics over HTTP and another adapter



container in a different Pod that exposes Python-based metrics over
HTTP. For the monitoring tool, all metrics would be available over
HTTP and in a common, normalized format.
For a concrete implementation of this pattern, let’s add the adapter
shown in Figure 17-1 to our sample random generator application.
When appropriately configured, it writes out a log file with the
random-number generator and includes the time it took to create
the random number. We want to monitor this time with
Prometheus. Unfortunately, the log format doesn’t match the format
Prometheus expects. Also, we need to offer this information over an
HTTP endpoint so that a Prometheus server can scrape the value.
For this use case, an adapter is a perfect fit: a sidecar container
starts a small HTTP server and on every request, reads the custom
log file and transforms it into a Prometheus-understandable format.
Example 17-1 shows a Deployment with such an adapter. This
configuration allows a decoupled Prometheus monitoring setup
without the main application needing to know anything about
Prometheus. The full example in the book’s GitHub repository
demonstrates this setup together with a Prometheus installation.
Example 17-1. Adapter delivering Prometheus-conformant output
apiVersion: apps/v1
kind: Deployment
metadata:
  name: random-generator
spec:
  replicas: 1
  selector:
    matchLabels:
      app: random-generator
  template:
    metadata:
      labels:
        app: random-generator
    spec:
      containers:
      - image: k8spatterns/random-generator:1.0      



        name: random-generator
        env:
        - name: LOG_FILE                             
          value: /logs/random.log
        ports:
        - containerPort: 8080
          protocol: TCP
        volumeMounts:                                
        - mountPath: /logs
          name: log-volume
      # --------------------------------------------
      - image: k8spatterns/random-generator-exporter 
        name: prometheus-adapter
        env:
        - name: LOG_FILE                             
          value: /logs/random.log
        ports:
        - containerPort: 9889
          protocol: TCP
        volumeMounts:                                
        - mountPath: /logs
          name: log-volume
      volumes:
      - name: log-volume                             
        emptyDir: {}Main application container with the random generator service

exposed on 8080.
Path to the log file containing the timing information about
random-number generation.
Directory shared with the Prometheus Adapter container.
Prometheus exporter image, exporting on port 9889.
Path to the same log file to which the main application is
logging.
Shared volume is also mounted in the adapter container.
Files are shared via an emptyDir volume from the node’s
filesystem.

Another use of this pattern is logging. Different containers may log
information in different formats and levels of detail. An adapter can
normalize that information, clean it up, enrich it with contextual
information by using the Self Awareness pattern described in



Chapter 14, and then make it available for pickup by the centralized
log aggregator.

Discussion
The Adapter is a specialization of the Sidecar pattern explained in
Chapter 16. It acts as a reverse proxy to a heterogeneous system
by hiding its complexity behind a unified interface. Using a distinct
name different from the generic Sidecar pattern allows us to more
precisely communicate the purpose of this pattern.
In the next chapter, you’ll get to know another sidecar variation: the
Ambassador pattern, which acts as a proxy to the outside world.

More Information
Adapter Example
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Chapter 18. Ambassador

The Ambassador pattern is a specialized sidecar responsible for
hiding external complexities and providing a unified interface for
accessing services outside the Pod. In this chapter, you will see how
the Ambassador pattern can act as a proxy and decouple the main
container from directly accessing external dependencies.

Problem
Containerized services don’t exist in isolation and very often have to
access other services that may be difficult to reach in a reliable way.
The difficulty in accessing other services may be due to dynamic
and changing addresses, the need for load balancing of clustered
service instances, an unreliable protocol, or difficult data formats.
Ideally, containers should be single-purposed and reusable in
different contexts. But if we have a container that provides some
business functionality and consumes an external service in a
specialized way, the container will have more than one
responsibility.
Consuming the external service may require a special service
discovery library that we do not want to put in our container. Or we
may want to swap different kinds of services by using different kinds
of service-discovery libraries and methods. This technique of
abstracting and isolating the logic for accessing other services in the
outside world is the goal of this Ambassador pattern.

Solution
To demonstrate the pattern, we will use a cache for an application.
Accessing a local cache in the development environment may be a



simple configuration, but in the production environment, we may
need a client configuration that can connect to the different shards
of the cache. Another example is consuming a service by looking it
up in a registry and performing client-side service discovery. A third
example is consuming a service over a nonreliable protocol such as
HTTP, so to protect our application, we have to use circuit-breaker
logic, configure timeouts, perform retries, and more.
In all of these cases, we can use an ambassador container that
hides the complexity of accessing the external services and provides
a simplified view and access to the main application container over
localhost. Figures 18-1 and 18-2 show how an ambassador Pod can
decouple access to a key-value store by connecting to an
ambassador container listening on a local port. In Figure 18-1, we
see how data access can be delegated to a fully distributed remote
store like etcd.

Figure 18-1. Ambassador for accessing a remote distributed cache

For development purposes, this ambassador container can be easily
exchanged with a locally running in-memory key-value store like
memcached (as shown in Figure 18-2).



Figure 18-2. Ambassador for accessing a local cache

Example 18-1 shows an ambassador that runs parallel to a REST
service. Before returning its response, the REST service logs the
generated data by sending it to a fixed URL: http://localhost:9009.
The ambassador process listens in on this port and processes the
data. In this example, it prints the data out just to the console, but
it could also do something more sophisticated like forward the data
to a full logging infrastructure. For the REST service, it doesn’t
matter what happens to the log data, and you can easily exchange
the ambassador by reconfiguring the Pod without touching the main
container.
Example 18-1. Ambassador processing log output
apiVersion: v1
kind: Pod
metadata:
  name: random-generator
  labels:
    app: random-generator
spec:
  containers:
  - image: k8spatterns/random-generator:1.0            
    name: main

http://localhost:9009/


    env:
    - name: LOG_URL                                    
      value: http://localhost:9009
    ports:
    - containerPort: 8080
      protocol: TCP
  - image: k8spatterns/random-generator-log-ambassador 
    name: ambassadorMain application container providing a REST service for

generating random numbers.
Connection URL for communicating with the ambassador via
localhost.
Ambassador running in parallel and listening on port 9009
(which is not exposed to the outside of the Pod).

Discussion
At a higher level, the Ambassador pattern is a Sidecar pattern. The
main difference between ambassador and sidecar is that an
ambassador does not enhance the main application with additional
capability. Instead, it acts merely as a smart proxy to the outside
world (this pattern is sometimes referred to as the Proxy pattern).
This pattern can be useful for legacy applications that are difficult to
modify and extend with modern networking concepts such as
monitoring, logging, routing, and resiliency patterns.
The benefits of the Ambassador pattern are similar to those of the
Sidecar pattern—both allow you to keep containers single-purposed
and reusable. With such a pattern, our application container can
focus on its business logic and delegate the responsibility and
specifics of consuming the external service to another specialized
container. This also allows you to create specialized and reusable
ambassador containers that can be combined with other application
containers.
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Part IV. Configuration
Patterns

Every application needs to be configured, and the easiest way to do
this is by storing configurations in the source code. However, this
approach has the side effect of code and configuration living and
dying together. We need the flexibility to adapt configurations
without modifying the application and recreating its container
image. In fact, mixing code and configuration is an antipattern for a
continuous delivery approach, where the application is created once
and then moves unaltered through the various stages of the
deployment pipeline until it reaches production. The way to achieve
this separation of code and configuration is by using external
configuration data, which is different for each environment. The
patterns in the following chapters are all about customizing and
adapting applications with external configurations for various
environments:

Chapter 19, “EnvVar Configuration”, uses environment variables
to store configuration data.

Chapter 20, “Configuration Resource”, uses Kubernetes
resources like ConfigMaps or Secrets to store configuration
information.

Chapter 21, “Immutable Configuration”, brings immutability to
large configuration sets by putting them into containers linked
to the application at runtime.

Chapter 22, “Configuration Template”, is useful when large
configuration files need to be managed for multiple



environments that differ only slightly.



Chapter 19. EnvVar
Configuration

In this EnvVar Configuration pattern, we look into the simplest way
to configure applications. For small sets of configuration values, the
easiest way to externalize configuration is by putting them into
universally supported environment variables. We’ll see different
ways of declaring environment variables in Kubernetes but also the
limitations of using environment variables for complex
configurations.

Problem
Every nontrivial application needs some configuration for accessing
data sources, external services, or production-level tuning. And we
knew well before the twelve-factor app manifesto that it is a bad
thing to hardcode configurations within the application. Instead, the
configuration should be externalized so that we can change it even
after the application has been built. That provides even more value
for containerized applications that enable and promote sharing of
immutable application artifacts. But how can this be done best in a
containerized world?

Solution
The twelve-factor app manifesto recommends using environment
variables for storing application configurations. This approach is
simple and works for any environment and platform. Every
operating system knows how to define environment variables and
how to propagate them to applications, and every programming

https://12factor.net/


language also allows easy access to these environment variables. It
is fair to claim that environment variables are universally applicable.
When using environment variables, a typical usage pattern is to
define hardcoded default values during build time, which we can
then overwrite at runtime. Let’s see some concrete examples of
how this works in Docker and Kubernetes.
For Docker images, environment variables can be defined directly in
Dockerfiles with the ENV directive. You can define them line by line
or all in a single line, as shown in Example 19-1.
Example 19-1. Example Dockerfile with environment variables
FROM openjdk:11
ENV PATTERN "EnvVar Configuration"
ENV LOG_FILE "/tmp/random.log"
ENV SEED "1349093094"

# Alternatively:
ENV PATTERN="EnvVar Configuration" LOG_FILE=/tmp/random.log 
SEED=1349093094
...

Then a Java application running in such a container can easily
access the variables with a call to the Java standard library, as
shown in Example 19-2.
Example 19-2. Reading environment variables in Java
public Random initRandom() {
  long seed = Long.parseLong(System.getenv("SEED"));
  return new Random(seed);      
} Initializes a random-number generator with a seed from an

EnvVar.

Directly running such an image will use the default hardcoded
values. But in most cases, you want to override these parameters
from outside the image.



When running such an image directly with Docker, environment
variables can be set from the command line by calling Docker, as in
Example 19-3.
Example 19-3. Set environment variables when starting a Docker
container
docker run -e PATTERN="EnvVarConfiguration" \
           -e LOG_FILE="/tmp/random.log" \
           -e SEED="147110834325" \
           k8spatterns/random-generator:1.0

For Kubernetes, these types of environment variables can be set
directly in the Pod specification of a controller like Deployment or
ReplicaSet (as shown in Example 19-4).
Example 19-4. Deployment with environment variables set
apiVersion: v1
kind: Pod
metadata:
  name: random-generator
spec:
  containers:
  - image: k8spatterns/random-generator:1.0
    name: random-generator
    env:
    - name: LOG_FILE
      value: /tmp/random.log             
    - name: PATTERN
      valueFrom:
        configMapKeyRef:                 
          name: random-generator-config  
          key: pattern                   
    - name: SEED
      valueFrom:
        secretKeyRef:                    
          name: random-generator-secret
          key: seedEnvVar with a literal value.

EnvVar from a ConfigMap.
ConfigMap’s name.
Key within the ConfigMap to look for the EnvVar value.
EnvVar from a Secret (lookup semantic is the same as for a



EnvVar from a Secret (lookup semantic is the same as for a
ConfigMap).

In such a Pod template, you not only can attach values directly to
environment variables (as for LOG_FILE), but also can use a
delegation to Kubernetes Secrets and ConfigMaps. The advantage
of ConfigMap and Secret indirection is that the environment
variables can be managed independently from the Pod definition.
Secret and ConfigMap and their pros and cons are explained in
detail in Chapter 20, “Configuration Resource”.
In the preceding example, the SEED variable comes from a Secret
resource. While that is a perfectly valid use of Secret, it is also
important to point out that environment variables are not secure.
Putting sensitive, readable information into environment variables
makes this information easy to read, and it may even leak into logs.



ABOUT DEFAULT VALUES
Default values make life easier, as they take away the burden of
selecting a value for a configuration parameter you might not
even know exists. They also play a significant role in the
convention over configuration paradigm. However, defaults are
not always a good idea. Sometimes they might even be an
antipattern for an evolving application.
This is because changing default values retrospectively is a
difficult task. First, changing default values means replacing
them within the code, which requires a rebuild. Second, people
relying on defaults (either by convention or consciously) will
always be surprised when a default value changes. We have to
communicate the change, and the user of such an application
probably has to modify the calling code as well.
Changes in default values, however, often make sense, because
it is hard to get default values right from the very beginning. It’s
essential that we consider a change in a default value as a
major change, and if semantic versioning is in use, such a
modification justifies a bump in the major version number. If
unsatisfied with a given default value, it is often better to
remove the default altogether and throw an error if the user
does not provide a configuration value. This will at least break
the application early and prominently instead of it doing
something different and unexpected silently.
Considering all these issues, it is often the best solution to avoid
default values from the very beginning if you cannot be 90%
sure that a reasonable default will last for a long time.
Passwords or database connection parameters are good
candidates for not providing default values, as they depend
highly on the environment and often cannot be reliably
predicted. Also, if we do not use default values, the



configuration information has to be provided explicitly, which
serves as documentation too.

Instead of individually referring to configuration values from Secrets
or ConfigMaps, you can also import all values of a particular Secret
or ConfigMap with envFrom. We explain this field in Chapter 20,
“Configuration Resource”, when we talk about ConfigMaps and
Secrets in detail.
Two other valuable features that can be used with environment
variables are the downward API and dependent variables. You
learned all about the downward API in Chapter 14, “Self
Awareness”, so let’s have a look at dependent variables in
Example 19-5 that allow you to reference previously defined
variables in the value definition of other entries.
Example 19-5. Dependent environment variables
apiVersion: v1
kind: Pod
metadata:
  name: random-generator
spec:
  containers:
  - image: k8spatterns/random-generator:1.0
    name: random-generator
    env:
    - name: PORT
      value: "8181"
    - name: IP                        
      valueFrom:
        fieldRef:
          fieldPath: status.podIP
    - name: MY_URL
      value: "https://$(IP):$(PORT)"  Use the downward API to pick up the Pod’s IP. The downward

API is discussed in detail in Chapter 14, “Self Awareness”.
Include the previously defined environment variables IP and
PORT to build up a URL.



With a $(...) notation, you can reference environment variables
defined earlier in the env list or coming from an envFrom import.
Kubernetes will resolve those references during the startup of the
container. Be careful about the ordering, though: if you reference a
variable defined later in the list, it will not be resolved, and the
$(...) reference will be taken over literally. In addition, you can
also reference environment variables with this syntax for Pod
commands, as shown in Example 19-6.
Example 19-6. Using environment variables in a container’s
command definition
apiVersion: v1
kind: Pod
metadata:
  name: random-generator
spec:
  containers:
    - name: random-generator
      image: k8spatterns/random-generator:1.0
      command: [ "java", "RandomRunner", "$(OUTPUT_FILE)", 
"$(COUNT)" ] 
      env:                       
        - name: OUTPUT_FILE
          value: "/numbers.txt"
        - name: COUNT
          valueFrom:
            configMapKeyRef:
              name: random-config
              key: RANDOM_COUNTReference environment variables for the startup command of a

container.
Definition of the environment variables substituted in the
commands.

Discussion
Environment variables are easy to use, and everybody knows about
them. This concept maps smoothly to containers, and every runtime



platform supports environment variables. But environment variables
are not secure, and are good only for a decent number of
configuration values. And when there are a lot of different
parameters to configure, the management of all these environment
variables becomes unwieldy.
In these cases, many people use an extra level of indirection and
put configuration into various configuration files, one for each
environment. Then a single environment variable is used to select
one of these files. Profiles from Spring Boot are an example of this
approach. Since these profile configuration files are typically stored
within the application itself, which is within the container, it couples
the configuration tightly with the application. This often leads to
configuration for development and production ending up side by
side in the same Docker image, which requires an image rebuild for
every change in either environment. We do not recommend this
setup (configuration should always be external to the application),
but this solution indicates that environment variables are suitable
for small to medium sets of configurations only.
The patterns Configuration Resource, Immutable Configuration, and
Configuration Template described in the following chapters are good
alternatives when more complex configuration needs come up.
Environment variables are universally applicable, and because of
that, we can set them at various levels. This option leads to
fragmentation of the configuration definitions and makes it hard to
track for a given environment variable where it is set. When there is
no central place where all environments variables are defined, it is
hard to debug configuration issues.
Another disadvantage of environment variables is that they can be
set only before an application starts, and we cannot change them
later. On the one hand, it’s a drawback that you can’t change
configuration “hot” during runtime to tune the application. However,
many see this as an advantage, as it promotes immutability even to



the configuration. Immutability here means you throw away the
running application container and start a new copy with a modified
configuration, very likely with a smooth Deployment strategy like
rolling updates. That way, you are always in a defined and well-
known configuration state.
Environment variables are simple to use, but are applicable mainly
for simple use cases and have limitations for complex configuration
requirements. The next patterns show how to overcome those
limitations.

More Information
EnvVar Configuration Example

The Twelve-Factor App

Expose Pod Information to Containers Through Environment
Variables

Define Dependent Environment Variables

Spring Boot Profiles for Using Sets of Configuration Values

https://oreil.ly/W25g0
https://oreil.ly/DzBTm
https://oreil.ly/KxFtr
https://oreil.ly/KxFtr
https://oreil.ly/YoUVj
https://oreil.ly/3XVe9


Chapter 20. Configuration
Resource

Kubernetes provides native configuration resources for regular and
confidential data, which allows you to decouple the configuration
lifecycle from the application lifecycle. The Configuration Resource
pattern explains the concepts of ConfigMap and Secret resources
and how we can use them, as well as their limitations.

Problem
One significant disadvantage of the EnvVar Configuration pattern,
discussed in Chapter 19, is that it’s suitable for only a handful of
variables and simple configurations. Another disadvantage is that
because environment variables can be defined in various places, it
is often hard to find the definition of a variable. And even if you find
it, you can’t be entirely sure it won’t be overridden in another
location. For example, environment variables defined within a OCI
image can be replaced during runtime in a Kubernetes Deployment
resource.
Often, it is better to keep all the configuration data in a single place
and not scattered around in various resource definition files. But it
does not make sense to put the content of a whole configuration file
into an environment variable. So some extra indirection would allow
more flexibility, which is what Kubernetes configuration resources
offer.



Solution
Kubernetes provides dedicated configuration Resources that are
more flexible than pure environment variables. These are the
ConfigMap and Secret objects for general-purpose and sensitive
data, respectively.
We can use both in the same way, as both provide storage and
management of key-value pairs. When we are describing
ConfigMaps, the same can be applied most of the time to Secrets
too. Besides the actual data encoding (which is Base64 for Secrets),
there is no technical difference for the use of ConfigMaps and
Secrets.
Once a ConfigMap is created and holding data, we can use the keys
of a ConfigMap in two ways:

As a reference for environment variables, where the key is the
name of the environment variable.

As files that are mapped to a volume mounted in a Pod. The
key is used as the filename.

The file in a mounted ConfigMap volume is updated when the
ConfigMap is updated via the Kubernetes API. So, if an application
supports hot reload of configuration files, it can immediately benefit
from such an update. However, with ConfigMap entries used as
environment variables, updates are not reflected because
environment variables can’t be changed after a process has been
started.
In addition to ConfigMap and Secret, another alternative is to store
configuration directly in external volumes that are then mounted.
The following examples concentrate on ConfigMap usage, but they
can also be used for Secrets. There is one big difference, though:
values for Secrets have to be Base64 encoded.



A ConfigMap resource contains key-value pairs in its data section,
as shown in Example 20-1.
Example 20-1. ConfigMap resource
apiVersion: v1
kind: ConfigMap
metadata:
  name: random-generator-config
data:
  PATTERN: Configuration Resource  
  application.properties: |
    # Random Generator config
    log.file=/tmp/generator.log
    server.port=7070
  EXTRA_OPTIONS: "high-secure,native"
  SEED: "432576345"ConfigMaps can be accessed as environment variables and as a

mounted file. We recommend using uppercase keys in the
ConfigMap to indicate an EnvVar usage and proper filenames
when used as mounted files.

We see here that a ConfigMap can also carry the content of
complete configuration files, like the Spring Boot
application.properties in this example. You can imagine that
for a nontrivial use case, this section could get quite large!
Instead of manually creating the full resource descriptor, we can use
kubectl to create ConfigMaps or Secrets too. For the preceding
example, the equivalent kubectl command looks like that in
Example 20-2.
Example 20-2. Create a ConfigMap from a file
kubectl create cm spring-boot-config \
   --from-literal=PATTERN="Configuration Resource" \
   --from-literal=EXTRA_OPTIONS="high-secure,native" \
   --from-literal=SEED="432576345" \
   --from-file=application.properties



This ConfigMap then can be read in various places—everywhere
environment variables are defined, as demonstrated Example 20-3.
Example 20-3. Environment variable set from ConfigMap
apiVersion: v1
kind: Pod
metadata:
  name: random-generator
spec:
  containers:
  - env:
    - name: PATTERN
      valueFrom:
        configMapKeyRef:
          name: random-generator-config
          key: PATTERN
....

If a ConfigMap has many entries that you want to consume as
environment variables, using a certain syntax can save a lot of
typing. Rather than specifying each entry individually, as shown in
the preceding example in the env section, envFrom allows you to
expose all ConfigMap entries that have a key that also can be used
as a valid environment variable. We can prepend this with a prefix,
as shown in Example 20-4. Any key that cannot be used as an
environment variable is ignored (e.g., "illeg.al"). When multiple
ConfigMaps are specified with duplicate keys, the last entry in
envFrom takes precedence. Also, any same-named environment
variable set directly with env has higher priority.

Example 20-4. Setting all entries of a ConfigMap as environment
variables
apiVersion: v1
kind: Pod
metadata:
  name: random-generator
spec:
  containers:
    envFrom:                          



    - configMapRef:
        name: random-generator-config
      prefix: CONFIG_                 Pick up all keys from the ConfigMap random-generator-

config that can be used as environment variable names.
Prefix all suitable ConfigMap keys with CONFIG_. With the
ConfigMap defined in Example 20-1, this leads to three exposed
environment variables: CONFIG_​PAT⁠TERN_NAME,
CONFIG_EXTRA_OPTIONS, and CONFIG_SEED.

Secrets, as with ConfigMaps, can also be consumed as environment
variables, either per entry or for all entries. To access a Secret
instead of a ConfigMap, replace configMapKeyRef with
secretKeyRef.

When a ConfigMap is used as a volume, its complete content is
projected into this volume, with the keys used as filenames. See
Example 20-5.
Example 20-5. Mount a ConfigMap as a volume
apiVersion: v1
kind: Pod
metadata:
  name: random-generator
spec:
  containers:
  - image: k8spatterns/random-generator:1.0
    name: random-generator
    volumeMounts:
    - name: config-volume
      mountPath: /config
  volumes:
  - name: config-volume
    configMap:  
      name: random-generator-configA ConfigMap-backed volume will contain as many files as

entries, with the map’s keys as filenames and the map’s values
as file content.



The configuration in Example 20-1 that is mounted as a volume
results in four files in the /config folder: an application.properties
file with the content defined in the ConfigMap and the files
PATTERN, EXTRA_OPTIONS, and SEED, each with a single line of
content.
The mapping of configuration data can be fine-tuned more
granularly by adding additional properties to the volume
declaration. Rather than mapping all entries as files, you can also
individually select every key that should be exposed, the filename,
and permissions under which it should be available. Example 20-6
demonstrates how you can granularly select which parts of a
ConfigMap are exposed as volumes.
Example 20-6. Expose ConfigMap entries selectively as volumes
apiVersion: v1
kind: Pod
metadata:
  name: random-generator
spec:
  containers:
  - image: k8spatterns/random-generator:1.0
    name: random-generator
    volumeMounts:
    - name: config-volume
      mountPath: /config
  volumes:
  - name: config-volume
    configMap:
      name: random-generator-config
      items:                          
      - key: application.properties   
        path: spring/myapp.properties
        mode: 0400List of ConfigMap entries to expose as volumes.

Expose only application.properties from the ConfigMap
under the path spring/myapp.properties with file mode
0400.



As you have seen, changes to a ConfigMap are directly reflected in a
projected volume that contains the ConfigMap’s content as files. An
application can watch those files and immediately pick up any
changes. This hot reload is very useful to avoid a redeployment of
an application, which can cause an interruption of the service. On
the other hand, such live changes are not tracked anywhere and
can easily get lost during a restart. These ad hoc chances can cause
configuration drift that is hard to detect and analyze. That is one of
the reasons many people prefer an immutable configuration that
stays constant once deployed. We have dedicated a whole pattern
in Chapter 21, “Immutable Configuration”, to this paradigm, but
there is a cheap way to easily achieve this with ConfigMap and
Secrets too.



HOW SECURE ARE SECRETS?
Secrets hold Base64-encoded data and decode it before passing
it to a Pod either as environment variables or mounted volume.
This is very often confused as a security feature. Base64
encoding is not an encryption method, and from a security
perspective, it is considered the same as plain text. Base64
encoding in Secrets allows you to store binary data, so why are
Secrets considered more secure than ConfigMaps? There are a
number of other implementation details of Secrets that make
them secure. Constant improvements are occurring in this area,
but the main implementation details currently are as follows:

A Secret is distributed only to nodes running Pods that need
access to the Secret.

On the nodes, Secrets are stored in memory in a tmpfs and
never written to physical storage, and they are removed
when the Pod is removed.

In etcd, the backend storage for the Kubernetes API,
Secrets can be stored in encrypted form.

Regardless of all that, there are still ways to get access to
Secrets as a root user, or even by creating a Pod and mounting a
Secret. You can apply role-based access control (RBAC) to
Secrets (as you can do to ConfigMaps or other resources) and
allow only certain Pods with predefined service accounts to read
them. We explain RBAC in great length in Chapter 26, “Access
Control”. But users who have the ability to create Pods in a
namespace can still escalate their privileges within that
namespace by creating Pods. They can run a Pod under a
greater-privileged service account and still read Secrets. A user
or a controller with Pod-creation access in a namespace can
impersonate any service account and access all Secrets and
ConfigMaps in that namespace. Thus, additional encryption of
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sensitive information is often done at the application level too.
In Chapter 25, “Secure Configuration”, you’ll learn several ways
to make Secrets more secure, especially in a GitOps context.

Since version 1.21, Kubernetes supports an immutable field for
ConfigMaps and Secrets that, if set to true, prevents the resource
from being updated once created. Besides preventing unwanted
updates, using immutable ConfigMaps and Secrets considerably
improves a cluster’s performance as the Kubernetes API server does
not need to monitor changes on those immutable objects.
Example 20-7 shows how to declare a Secret immutable. The only
way to change such a Secret after it has been stored on the cluster
is to delete and recreate the updated Secret. Any running Pod
referencing this secret needs to be restarted too.
Example 20-7. Immutable Secret
apiVersion: v1
kind: Secret
metadata:
  name: random-config
data:
  user: cm9sYW5k
immutable: true  Boolean flag declaring the mutability of the Secret (default is

false).

Discussion
ConfigMaps and Secrets allow you to store configuration information
in dedicated resource objects that are easy to manage with the
Kubernetes API. The most significant advantage of using
ConfigMaps and Secrets is that they decouple the definition of
configuration data from its usage. This decoupling allows us to
manage the objects that use the configuration independently of the
configuration definition. Another benefit of ConfigMaps and Secrets
is that they are intrinsic features of the platform. No custom



construct like that in Chapter 21, “Immutable Configuration”, is
required.
However, these configuration resources also have their restrictions:
with a 1 MB size limit for Secrets, they can’t store arbitrarily large
data and are not well suited for nonconfiguration application data.
You can also store binary data in Secrets, but since they have to be
Base64 encoded, you can use only around 700 KB data for it. Real-
world Kubernetes clusters also put an individual quota on the
number of ConfigMaps that can be used per namespace or project,
so ConfigMap is not a golden hammer.
The next two chapters show how to deal with large configuration
data by using the Immutable Configuration and Configuration
Template patterns.

More Information
Configuration Resource Example

Configure a Pod to Use a ConfigMap

Secrets

Encrypting Secret Data at Rest

Distribute Credentials Securely Using Secrets

Immutable Secrets

How to Create Immutable ConfigMaps and Secrets

Size Limit for a ConfigMap
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Chapter 21. Immutable
Configuration

The Immutable Configuration pattern offers two ways to make
configuration data immutable so that your application’s
configuration is always in a well-known and recorded state. With
this pattern, we can not only use immutable and versioned
configuration data, but also overcome the size limitation of
configuration data stored in environment variables or ConfigMaps.

Problem
As you saw in Chapter 19, “EnvVar Configuration”, environment
variables provide a simple way to configure container-based
applications. And although they are easy to use and universally
supported, as soon as the number of environment variables exceeds
a certain threshold, managing them becomes hard.
This complexity can be handled to some degree by using
Configuration Resources, as described in Chapter 20, “Configuration
Resource”, which since Kubernetes 1.21 can be declared as
immutable. However, ConfigMaps still have a size limitation, so if
you work with large configuration data (like precomputed data
models in a machine learning context), then ConfigMaps are not
suitable even when marked as immutable.
Immutability here means that we can’t change the configuration
after the application has started, in order to ensure that we always
have a well-defined state for our configuration data. In addition,
immutable configuration can be put under version control and follow
a change control process.



Solution
There are several options to address the concern of configuration
immutability. The simplest and preferred option is to use
ConfigMaps or Secrets that are marked as immutable in their
declaration. You learned about immutable ConfigMaps in
Chapter 20. ConfigMaps should be the first choice if your
configuration fits into a ConfigMap and is reasonably easy to
maintain. In real-world scenarios, however, the amount of
configuration data can increase quickly. Although a WildFly
application server configuration might still fit in a ConfigMap, it is
quite huge. It becomes really ugly when you have to nest XML or
YAML within YAML—i.e., when the content of your configuration is
also YAML and you embed this as within the ConfigMaps YAML
section. Editor support for such use cases is limited, so you have to
be very careful about the indentation, and even then, you will
probably mess it up more than once (believe us!). Another
nightmare is having to maintain tens or hundreds of entries in a
single ConfigMap because your application requires many different
configuration files. Although this pain can be mitigated to some
degree with good tooling, large configuration data sets like
pretrained machine learning data models are just impossible with
ConfigMap because of the backend size restriction of 1 MB.
To address the concern of complex configuration data, we can put
all environment-specific configuration data into a single, passive
data image that we can distribute as a regular container image.
During runtime, the application and the data image are linked
together so that the application can extract the configuration from
the data image. With this approach, it is easy to craft different
configuration data images for various environments. These images
then combine all configuration information for specific environments
and can be versioned like any other container image.
Creating such a data image is trivial, as it is a simple container
image that contains only data. The challenge is the linking step



during startup. We can use various approaches, depending on the
platform.

Docker Volumes
Before looking at Kubernetes, let’s go one step back and consider
the vanilla Docker case. In Docker, it is possible for a container to
expose a volume with data from the container. With a VOLUME
directive in a Dockerfile, you can specify a directory that can be
shared later. During startup, the content of this directory within the
container is copied over to this shared directory. As shown in
Figure 21-1, this volume linking is an excellent way to share
configuration information from a dedicated configuration container
with another application container.

Figure 21-1. Immutable configuration with Docker volume

Let’s have a look at an example. For the development environment,
we create a Docker image that holds the developer configuration
and creates a volume with mount point /config. We can create such
an image with Dockerfile-config, as in Example 21-1.



Example 21-1. Dockerfile for a configuration image
FROM scratch
ADD app-dev.properties /config/app.properties  
VOLUME /config                                 Add specified property.

Create volume and copy property into it.

We now create the image itself and the Docker container with the
Docker CLI in Example 21-2.
Example 21-2. Building the configuration Docker image
docker build -t k8spatterns/config-dev-image:1.0.1 -f 
Dockerfile-config .
docker create --name config-dev k8spatterns/config-dev-
image:1.0.1 .

The final step is to start the application container and connect it to
this configuration container (Example 21-3).
Example 21-3. Start application container with config container
linked
docker run --volumes-from config-dev k8spatterns/welcome-
servlet:1.0

The application image expects its configuration files to be within a
/config directory, the volume exposed by the configuration
container. When you move this application from the development
environment to the production environment, all you have to do is
change the startup command. There is no need to alter the
application image itself. Instead, you simply volume-link the
application container with the production configuration container, as
seen in Example 21-4.
Example 21-4. Use different configuration for production
environment
docker build -t k8spatterns/config-prod-image:1.0.1 -f 
Dockerfile-config .
docker create --name config-prod k8spatterns/config-prod-
image:1.0.1 .



docker run --volumes-from config-prod k8spatterns/welcome-
servlet:1.0

Kubernetes Init Containers
In Kubernetes, volume sharing within a Pod is perfectly suited for
this kind of linking of configuration and application containers.
However, if we want to transfer this technique of Docker volume
linking to the Kubernetes world, we will find that there is currently
no support for container volumes in Kubernetes. Considering the
age of the discussion and the complexity of implementing this
feature versus its limited benefits, it’s likely that container volumes
will not arrive anytime soon.
So containers can share (external) volumes, but they cannot yet
directly share directories located within the containers. To use
immutable configuration containers in Kubernetes, we can use the
Init Containers pattern from Chapter 15 that can initialize an empty
shared volume during startup.
In the Docker example, we base the configuration Docker image on
scratch, an empty Docker image with no operating system files.
We don’t need anything else because we only want the
configuration data shared via Docker volumes. But for Kubernetes
init containers, we need help from the base image to copy over the
configuration data to a shared Pod volume. A good choice for this is
busybox, which is still small but allows us to use a plain Unix cp
command for this task.
So how does the initialization of shared volumes with configuration
work under the hood? Let’s have a look at an example. First, we
need to create a configuration image again with a Dockerfile, as in
Example 21-5.
Example 21-5. Development configuration image
FROM busybox
ADD dev.properties /config-src/demo.properties



ENTRYPOINT [ "sh", "-c", "cp /config-src/* $1", "--" ]  Using a shell here in order to resolve wildcards.

The only difference from the vanilla Docker case in Example 21-1 is
that we have a different base image and we add an ENTRYPOINT
that copies the properties file to the directory given as an argument
when the container image starts. This image can now be referenced
in an init container within a Deployment’s .template.spec (see
Example 21-6).
Example 21-6. Deployment that copies configuration to destination
in init container
initContainers:
- image: k8spatterns/config-dev:1
  name: init
  args:
  - "/config"
  volumeMounts:
  - mountPath: "/config"
    name: config-directory
containers:
- image: k8spatterns/demo:1
  name: demo
  ports:
  - containerPort: 8080
    name: http
    protocol: TCP
  volumeMounts:
  - mountPath: "/var/config"
    name: config-directory
volumes:
  - name: config-directory
    emptyDir: {}

The Deployment’s Pod template specification contains a single
volume and two containers:

The volume config-directory is of the type emptyDir, so
it’s created as an empty directory on the node hosting this Pod.



The init container Kubernetes calls during startup is built from
the image we just created, and we set a single argument,
/config, used by the image’s ENTRYPOINT. This argument
instructs the init container to copy its content to the specified
directory. The directory /config is mounted from the volume
config-directory.

The application container mounts the volume config-
directory to access the configuration that was copied over
by the init container.

Figure 21-2 illustrates how the application container accesses the
configuration data created by an init container over a shared
volume.



Figure 21-2. Immutable configuration with an init container

Now to change the configuration from the development to the
production environment, all we need to do is exchange the image of
the init container. We can do this either by changing the YAML



definition or by updating with kubectl. However, it is not ideal to
have to edit the resource descriptor for each environment. If you
are on Red Hat OpenShift, an enterprise distribution of Kubernetes,
OpenShift Templates can help address this. OpenShift Templates
can create different resource descriptors for the different
environments from a single template.

OpenShift Templates
OpenShift Templates are regular resource descriptors that are
parameterized. As seen in Example 21-7, we can easily use the
configuration image as a parameter.
Example 21-7. OpenShift Template for parameterizing config image
apiVersion: v1
kind: Template
metadata:
  name: demo
parameters:
  - name: CONFIG_IMAGE                       
    description: Name of configuration image
    value: k8spatterns/config-dev:1
objects:
- apiVersion: apps/v1
  kind: Deployment
    // ....
    spec:
      template:
          metadata:
            // ....
            spec:
              initContainers:
              - name: init
                image: ${CONFIG_IMAGE}       
                args: [ "/config" ]
                volumeMounts:
                - mountPath: /config
                  name: config-directory
              containers:
              - image: k8spatterns/demo:1



                // ...
                volumeMounts:
                - mountPath: /var/config
                  name: config-directory
            volumes:
            - name: config-directory
              emptyDir: {}Template parameter CONFIG_IMAGE declaration.

Use of the template parameter.

We show here only a fragment of the full descriptor, but you can
quickly recognize the parameter CONFIG_IMAGE we reference in
the init container declaration. If we create this template on an
OpenShift cluster, we can instantiate it by calling oc, as in
Example 21-8.
Example 21-8. Applying OpenShift template to create new
application
oc new-app demo -p CONFIG_IMAGE=k8spatterns/config-prod:1

Detailed instructions for running this example, as well as the full
Deployment descriptors, can be found as usual in our example Git
repository.

Discussion
Using data containers for the Immutable Configuration pattern is
admittedly a bit involved. Use these only if immutable ConfigMaps
and Secret are not suitable for your use case.
Data containers have some unique advantages:

Environment-specific configuration is sealed within a container.
Therefore, it can be versioned like any other container image.

Configuration created this way can be distributed over a
container registry. The configuration can be examined even
without accessing the cluster.



The configuration is immutable, as is the container image
holding the configuration: a change in the configuration
requires a version update and a new container image.

Configuration data images are useful when the configuration
data is too complex to put into environment variables or
ConfigMaps, since it can hold arbitrarily large configuration
data.

As expected, the Immutable Configuration pattern also has certain
drawbacks:

It has higher complexity, because extra container images need
to be built and distributed via registries.

It does not address any of the security concerns around
sensitive configuration data.

Since no image volume support is actually available for
Kubernetes workloads, the technique described here is still
limited for use cases where the overhead of copying over data
from init containers to a local volume is acceptable. We hope
that eventually mounting container images directly as volumes
will be possible in the future, but as of 2023, only experimental
CSI support is available.

Extra init container processing is required in the Kubernetes
case, and hence we need to manage different Deployment
objects for different environments.

All in all, you should carefully evaluate whether such an involved
approach is really required.
Another approach for dealing with large configuration files that
differ only slightly from environment to environment is described
with the Configuration Template pattern, the topic of the next
chapter.



More Information
Immutable Configuration Example

How to Mimic --volumes-from in Kubernetes

Immutable ConfigMaps

Feature Request: Image Volumes and Container Volumes

docker-flexvol: A Kubernetes Driver That Supports Docker
Volumes

Red Hat OpenShift: Using Templates

Kubernetes CSI Driver for Mounting Images
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Chapter 22. Configuration
Template

The Configuration Template pattern enables you to create and
process large and complex configurations during application startup.
The generated configuration is specific to the target runtime
environment as reflected by the parameters used in processing the
configuration template.

Problem
In Chapter 20, “Configuration Resource”, you saw how to use the
Kubernetes native resource objects ConfigMap and Secret to
configure applications. But sometimes configuration files can get
large and complex. Putting the configuration files directly into
ConfigMaps can be problematic since they have to be correctly
embedded in the resource definition. We need to be careful and
avoid using special characters like quotes and breaking the
Kubernetes resource syntax. The size of configurations is another
consideration, as there is a limit on the sum of all values of
ConfigMaps or Secrets, which is 1 MB (a limit imposed by the
underlying backend store etcd).
Large configuration files typically differ only slightly for the different
execution environments. This similarity leads to a lot of duplication
and redundancy in the ConfigMaps because each environment has
mostly the same data. The Configuration Template pattern we
explore in this chapter addresses these specific use-case concerns.



Solution
To reduce duplication, it makes sense to store only the differing
configuration values like database connection parameters in a
ConfigMap or even directly in environment variables. During startup
of the container, these values are processed with configuration
templates to create the full configuration file (like a WildFly
standalone.xml). There are many tools like Tiller (Ruby) or
Gomplate (Go) for processing templates during application
initialization. Figure 22-1 is a configuration template example filled
with data coming from environment variables or a mounted volume,
possibly backed by a ConfigMap.
Before the application is started, the fully processed configuration
file is put into a location where it can be directly used like any other
configuration file.
There are two techniques for how such live processing can happen
during runtime:

We can add the template processor as part of the ENTRYPOINT
to a Dockerfile so the template processing becomes directly
part of the container image. The entry point here is typically a
script that first performs the template processing and then
starts the application. The parameters for the template come
from environment variables.

With Kubernetes, a better way to perform initialization is with
an init container of a Pod in which the template processor runs
and creates the configuration for the application containers in
the Pod. The Init Container pattern is described in detail in
Chapter 15.

For Kubernetes, the init container approach is the most appealing
because we can use ConfigMaps directly for the template
parameters. This technique is illustrated in Figure 22-1.



Figure 22-1. Configuration template

The application’s Pod definition consists of at least two containers:
one init container for the template processing and one for the
application container. The init container contains not only the
template processor but also the configuration templates



themselves. In addition to the containers, this Pod also defines two
volumes: one volume for the template parameters, backed by a
ConfigMap, and an emptyDir volume used to share the processed
templates between the init container and the application container.
With this setup, the following steps are performed during startup of
this Pod:

1. The init container is started, and it runs the template processor.
The processor takes the templates from its image, and the
template parameters from the mounted ConfigMap volume, and
stores the result in the emptyDir volume.

2. After the init container has finished, the application container
starts up and loads the configuration files from the emptyDir
volume.

The following example uses an init container for managing a full set
of WildFly configuration files for two environments: a development
environment and a production environment. Both are very similar to
each other and differ only slightly. In fact, in our example, they
differ only in the way logging is performed: each log line is prefixed
with DEVELOPMENT: or PRODUCTION:, respectively.

You can find the full example along with complete installation
instructions in the book’s example GitHub repo. (We show only the
main concept here; for the technical details, refer to the source
repo.)
The log pattern in Example 22-1 is stored in standalone.xml, which
we parameterize by using the Go template syntax.
Example 22-1. Log configuration template
....
<formatter name="COLOR-PATTERN">
  <pattern-formatter pattern="{{(datasource 
"config").logFormat}}"/>
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</formatter>
....

Here we use Gomplate as a template processor, which uses the
notion of a data source for referencing the template parameters to
be filled in. In our case, this data source comes from a ConfigMap-
backed volume mounted to an init container. Here, the ConfigMap
contains a single entry with the key logFormat, from where the
actual format is extracted.
With this template in place, we can now create the Docker image
for the init container. The Dockerfile for the image
k8spatterns/example-configuration-template-init is very simple
(Example 22-2).
Example 22-2. Simple Dockerfile for template image
FROM k8spatterns/gomplate
COPY in /in

The base image k8spatterns/gomplate contains the template
processor and an entry-point script that uses the following
directories by default:

/in holds the WildFly configuration templates, including the
parameterized standalone.xml. These are added directly to the
image.

/params is used to look up the Gomplate data sources, which
are YAML files. This directory is mounted from a ConfigMap-
backed Pod volume.

/out is the directory into which the processed files are stored.
This directory is mounted in the WildFly application container
and used for the configuration.

The second ingredient of our example is the ConfigMap holding the
parameters. In Example 22-3, we just use a simple file with key-
value pairs.

https://gomplate.ca/


Example 22-3. Create ConfigMap with values to fill into the
configuration template
kubectl create configmap wildfly-cm \
       --from-literal='config.yml=logFormat: "DEVELOPMENT: 
%-5p %s%e%n'

Finally, we need the Deployment resource for the WildFly server
(Example 22-4).
Example 22-4. Deployment with template processor as init
container
apiVersion: apps/v1
kind: Deployment
metadata:
  labels:
    example: cm-template
  name: wildfly-cm-template
spec:
  replicas: 1
  template:
    metadata:
      labels:
        example: cm-template
    spec:
      initContainers:
      - image: k8spatterns/example-config-cm-template-init 
        name: init
        volumeMounts:
        - mountPath: "/params"                             
          name: wildfly-parameters
        - mountPath: "/out"                                
          name: wildfly-config
      containers:
      - image: jboss/wildfly:10.1.0.Final
        name: server
        command:
        - "/opt/jboss/wildfly/bin/standalone.sh"
        - "-Djboss.server.config.dir=/config"
        volumeMounts:
        - mountPath: "/config"                             
          name: wildfly-config
      volumes:                                             



      - name: wildfly-parameters
        configMap:
          name: wildfly-cm
      - name: wildfly-config
        emptyDir: {}Image holding the configuration templates that has been

created from Example 22-2.
Parameters are mounted from a volume wildfly-parameters
declared in .
The target directory for writing out processed templates. This is
mounted from an empty volume.
The directory holding the generated full configuration files is
mounted as /config.
Volume declaration for the parameters’ ConfigMap and the
empty directory used for sharing the processed configuration.

This declaration is quite a mouthful, so let’s drill down: the
Deployment specification contains a Pod with our init container, the
application container, and two internal Pod volumes:

The first volume, wildfly-parameters, references the
ConfigMap wildfly-cm with the parameter values that we
created in Example 22-3.

The other volume is an empty directory initially and is shared
between the init container and the WildFly container.

If you start this Deployment, the following will happen:

An init container is created, and its command is executed. This
container takes the config.yml from the ConfigMap volume, fills
in the templates from the /in directory in an init container, and
stores the processed files in the /out directory. The /out
directory is where the volume wildfly-config is mounted.

After the init container is done, a WildFly server starts with an
option so that it looks up the complete configuration from the



/config directory. Again, /config is the shared volume
wildfly-config containing the processed template files.

It is important to note that we do not have to change these
Deployment resource descriptors when going from the development
to the production environment. Only the ConfigMap with the
template parameters is different.
With this technique, it is easy to create a DRY configuration without
copying and maintaining duplicated large configuration files.1 For
example, when the WildFly configuration changes for all
environments, only a single template file in the init container needs
to be updated. This approach has, of course, significant advantages
on maintenance as there is no danger of configuration drift.

TIP
When working with Pods and volumes, as in this pattern, it is not
obvious how to debug if things don’t work as expected. So if you want
to examine the processed templates, check out the directory
/var/lib/kubelet/pods/{podid}/volumes/kubernetes.io~empty-dir/ on
the node, as it contains the content of an emptyDir volume.
Alternatively, just kubectl exec into the Pod when it is running, and
examine the mounted directory (/config in our example) for any created
files.

Discussion
The Configuration Template pattern builds on top of the
Configuration Resource pattern and is especially suited when we
need to operate applications in different environments with similar
complex configurations. However, the setup with configuration
templates is more complicated and has more moving parts that can
go wrong. Use it only if your application requires huge configuration
data. Such applications often require a considerable amount of



configuration data from which only a small fraction is dependent on
the environment. Even when copying over the whole configuration
directly into the environment-specific ConfigMap works initially, it
puts a burden on the maintenance of that configuration because it
is doomed to diverge over time. For such a situation, this template
approach is perfect.
If you are running on top of Red Hat OpenShift, an enterprise
Kubernetes distribution, you have an alternative by using OpenShift
templates for parameterizing resource descriptors. This approach
does not solve the challenge of large configuration sets but is still
very helpful for applying the same deployment resources to slightly
varying environments.

More Information
Configuration Template Example

Tiller Template Engine

Gomplate

Go Template Syntax

1  DRY is an acronym for “Don’t Repeat Yourself.”
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Part V. Security Patterns

Security is a broad topic that has implications for all stages of the
software development lifecycle, from development practices, to
image scanning at build time, to cluster hardening through
admission controllers at deployment time, to threat detection at
runtime. Security also touches all the layers of the software stack,
from cloud infrastructure security, to cluster security, to container
security, to code security, also known as the 4C’s of cloud native
security. In this section, we focus on the intersection of an
application with Kubernetes from the security point of view, as
demonstrated in Figure V-1.

Figure V-1. Security patterns

We start by describing the Process Containment pattern to contain
and limit the actions an application is allowed to perform on the
node it is running on. Then we explore the techniques to limit what
other Pods a Pod can talk to by doing Network Segmentation. In the



Secure Configuration pattern, we discuss how an application within
a Pod can access and use configurations in a secure way. And finally,
we describe the Access Control pattern—how an application can
authenticate and talk to the Kubernetes API server and interact with
it in more advanced scenarios. These give you an overview of the
main security dimensions of an application running on Kubernetes,
and we discuss the resulting patterns in the following chapters:

Chapter 23, “Process Containment”, describes the ways to
contain a process to the least privileges it is entitled to.

Chapter 24, “Network Segmentation”, applies network controls
to limit the traffic a Pod is allowed to participate in.

Chapter 25, “Secure Configuration”, helps keep and use
sensitive configuration data securely and safely.

Chapter 26, “Access Control”, allows users and application
workloads to authenticate and interact with the Kubernetes API
server.



Chapter 23. Process
Containment

This chapter describes techniques that help apply the principle of
least privilege to constrain a process to the minimum privileges it
needs to run. The Process Containment pattern helps make
applications more secure by limiting the attack surface and creating
a line of defense. It also prevents any rogue process from running
out of its designated boundary.

Problem
One of the primary attack vectors for Kubernetes workloads is
through the application code. Many techniques can help improve
code security. For example, static code analysis tools can check the
source code for security flaws. Dynamic scanning tools can simulate
malicious attackers with the goal of breaking into the system
through well-known service attacks such as SQL injection (SQLi),
cross-site request forgery (CSRF), and cross-site scripting (XSS).
Then there are tools for regularly scanning the application’s
dependencies for security vulnerabilities. As part of the image build
process, the containers are scanned for known vulnerabilities. This
is usually done by checking the base image and all its packages
against a database that tracks vulnerable packages. These are only
a few of the steps involved in creating secure applications and
protecting against malicious actors, compromised users, unsafe
container images, or dependencies with vulnerabilities.
Regardless of how many checks are in place, new code and new
dependencies can introduce new vulnerabilities, and there is no way
to guarantee the complete absence of risks. Without runtime



process-level security controls in place, a malicious actor can breach
the application code and attempt to take control of the host or the
entire Kubernetes cluster. The mechanisms we will explore in this
chapter demonstrate how to limit a container only to the
permissions it needs to run and apply the least-privilege principle.
This way, Kubernetes configurations act as another line of defense,
containing any rogue process and preventing it from running outside
its designated boundary.

Solution
Typically, a container runtime such as Docker assigns the default
runtime permissions a container will have. When the container is
managed by Kubernetes, the security configurations that will be
applied to a container are controlled by Kubernetes and exposed to
the user through the security context configurations of the Pod and
the container specs. The Pod-level configurations apply to the Pod’s
volumes and all containers in the Pod, whereas container-level
configurations apply to a single container. When the same
configurations are set at both Pod and container levels, the values
in the container spec take precedence.
As a developer creating cloud native applications, you typically
should not need to deal with many fine-grained security
configurations but instead have them validated and enforced as
global policy. Fine-grained tuning is usually required when creating
specialized infrastructure containers such as build systems and
other plugins that need broader access to the underlying nodes.
Therefore, we will review only the common security configurations
that would be useful for running typical cloud native applications on
Kubernetes.



Running Containers with a Non-Root User
Container images have a user, and can optionally have a group, to
run the container process. These users and groups are used to
control access to files, directories, and volume mounts. With some
other containers, no user is created and the container image runs as
root by default. In others, a user is created in the container image,
but it is not set as the default user to run. These situations can be
rectified by overriding the user at runtime using
securityContext, as shown in Example 23-1.

Example 23-1. Setting a user and group for the containers of a Pod
apiVersion: v1
kind: Pod
metadata:
  name: web-app
spec:
  securityContext:
    runAsUser: 1000   
    runAsGroup: 2000  
  containers:
  - name: app
    image: k8spatterns/random-generator:1.0Indicates the UID to run the container process.

Specifies the GID to run the container process.

The configuration forces any container in the Pod to run with user
ID 1000 and group ID 2000. This is useful when you want to swap
the user that is specified in the container image. But there is also a
danger in setting these values and making runtime decisions about
which user to run the image. Often the user is set in conjunction
with the directory structure containing files that have the same
ownership IDs specified in the container image. To avoid having
runtime failures due to lack of permissions, you should check the
container image file and run the container with the user ID and
group ID defined. This is one way to prevent a container from
running as root, and matching it to the expected user in the image.



Instead of specifying a user ID to ensure that a container is not
running as root, a less intrusive way is to set the
.spec.securityContext.runAsNonRoot flag to true. When
set, the Kubelet will validate at runtime and prevent any container
from starting with a root user—that is, a user with UID 0. This latter
mechanism doesn’t change the user, but only ensures that a
container is running as a non-root user. If you need to run as root to
access files or volumes in the container, you can limit the exposure
to root by running an init container that can run as root for a short
time, and you can change the file access modes, before applications
containers start up as non-root.
A container may not run as root, but it is possible to obtain root-like
capabilities through privilege escalation. This is most similar to
using the sudo command on Linux and executing commands with
the root privileges. The way to prevent this in containers is by
setting
.spec.containers[].securityContext.allowPrivilege​
Es⁠calation to false. This configuration typically has no side
effects because if an application is designed to run as non-root, it
should not require privilege escalation during its lifetime.
The root user has special permissions and privileges in a Linux
system, and preventing the root user from owning container
processes, escalating privileges to become root, or limiting the root
user lifetime with init containers will help prevent container
breakout attacks and ensure adherence to the general security
practices.

Restricting Container Capabilities
In essence, a container is a process that runs on a node, and it can
have the same privileges a process can have. If the process requires
a kernel-level call, it needs to have the privileges to do so in order
to succeed. You can do this either by running the container as root,



which grants all privileges to the container, or by assigning specific
capabilities required for the application to function.
Containers with the
.spec.containers[].securityContext.privileged flag
set are essentially equivalent to root on the host and bypass the
kernel permission checks. From a security point of view, this option
bundles your container with the host system rather than isolating it.
Therefore, this flag is typically set for containers with administrative
capabilities—for example, to manipulate the network stack or
access hardware devices. It is a better approach to avoid using
privileged containers altogether and give specific kernel capabilities
to containers that need them. In Linux, the privileges traditionally
associated with the root user are divided into distinct capabilities,
which can be independently enabled and disabled. Finding out what
capabilities your container has is not straightforward. You can
employ a whitelisting approach and start your container without any
capabilities and gradually add capabilities when needed for every
use case within the container. You might need the help of your
security team, or you can use tools such as SELinux in permissive
mode and check the audit logs of your application to discover what
capabilities it needs, if any.
To make containers more secure, you should provide them with the
least amount of privileges needed to run. The container runtime
assigns a set of default privileges (capabilities) to the container.
Contrary to what you might expect, if the
.spec.containers[].securityContext.capabilities
section is left empty, the default set of capabilities defined by the
container runtime are far more generous than most processes need,
opening them up to exploits. A good security practice for locking
down the container attack surface is to drop all privileges and add
only the ones you need, as shown in Example 23-2.



Example 23-2. Setting Pod permissions
apiVersion: v1
kind: Pod
metadata:
  name: web-app
spec:
  containers:
  - name: app
    image: docker.io/centos/httpd
    securityContext:
      capabilities:
        drop: [ 'ALL' ]            
        add: ['NET_BIND_SERVICE']  Removes all default capabilities assigned to the container by the

container runtime.
Adds back only the NET_BIND_SERVICE capability.

In this example, we drop all the capabilities and add back only the
NET_BIND_SERVICE capability, which allows binding to privileged
ports with numbers lower than 1024. An alternative approach for
addressing this scenario is to replace the container with one that
binds to an unprivileged port number.
A Pod is more likely to be compromised if its Security Context is not
configured or is too permissive. Limiting the capabilities of
containers to the very minimum acts as an additional line of
defense against known attacks. A malicious actor who breaches an
application would have a harder time taking control of the host
when the container process is not privileged or when the
capabilities are severely limited.

Avoiding a Mutable Container Filesystem
In general, containerized applications should not be able to write to
the container filesystem because containers are ephemeral and any
state will be lost upon restart. As discussed in Chapter 11,
“Stateless Service”, state should be written to external persistence



methods such as database or filesystems. Logs should be written to
stdout or forward to a remote log collector. Such an application can
limit the attack surface of the container further by having a read-
only container filesystem. A read-only filesystem will prevent any
rogue user from tampering with the application configuration or
installing additional executables on the disk that can be used for
further exploits. The way to do that is to set
.spec.containers[].securityContext.readOnlyRootFil
e to true, which will mount the container’s root filesystem as read-
only. This prevents any writes to the container’s root filesystem at
runtime and enforces the principle of immutable infrastructure.
The complete list of values in the securityContext field has
many more items and can vary between Pod and container
configurations. It is beyond the scope of this book to cover all
security configurations. The two other must-check security context
options are seccompProfile and seLinuxOptions. The first
one is a Linux kernel feature that can be used to limit the process
running in a container to call only a subset of the available system
calls. These system calls are configured as profiles and applied to a
container or Pod.
The latter option, seLinuxOptions, can assign custom SELinux
labels to all containers within the Pod as well as the volume.
SELinux uses policies to define which processes can access other
labeled objects in the system. In Kubernetes, it is typically used to
label the container image in such a way as to restrict the process to
access only files within the image. When SELinux is supported on
the host environment, it can be strictly enforced to deny access, or
it can be configured in permissive mode to log access violations.
Configuring these fields for every Pod or container causes them to
be prone to human errors. Unfortunately, setting them is usually the
responsibility of the workload authors who are not typically the
security subject-matter experts in the organization. That is why



there are also cluster-level, policy-driven means defined by cluster
administrators for ensuring all Pods in a namespace meet the
minimum security standards. Let’s briefly review that next.

Enforcing Security Policies
So far, we’ve explored setting security parameters of the container
runtime using the securityContext definition as part of the Pod
and container specifications. These specifications are created
individually per Pod and usually indirectly through higher
abstractions such as Deployments, Jobs, and CronJobs. But how can
a cluster administrator or a security expert ensure that a collection
of Pods follows certain security standards? The answer is in the
Kubernetes Pod Security Standards (PSS) and Pod Security
Admission (PSA) controller. PSS defines a common understanding
and consistent language around security policies, and PSA helps
enforce them. This way, the policies are independent of the
underlying enforcement mechanism and can be applied through PSS
or other third-party tools. These policies are grouped in three
security profiles that are cumulative, from highly permissive to
highly restrictive, as follows:
Privileged

This is an unrestricted profile with the widest possible level of
permissions. It is purposely left open and offers allow-by-default
mechanisms for trusted users and infrastructure workloads.

Baseline
This profile is for common noncritical application workloads. It
has a minimally restrictive policy and provides a balance
between ease of adoption and prevention from known privilege
escalations. For example, it won’t allow privileged containers,
certain security capabilities, and even other configurations
outside of the securityContext field.



Restricted
This is the most restrictive profile that follows the latest
security-hardening best practices at the expense of adoption. It
is meant for security-critical applications, as well as lower-trust
users. On top of the Baseline profile, it puts restrictions on the
fields we reviewed earlier, such as
allowPrivilegeEscalation, runAsNonRoot, runAsUser,
and other container configurations.

PodSecurityPolicy was the legacy security-policy-enforcement
mechanism that was replaced with PSA in Kubernetes v1.25. Going
forward, you can use a third-party admission plugin or the built-in
PSA controller to enforce the security standards for each
namespace. The security standards are applied to a Kubernetes
namespace using labels that define the standard level as described
earlier and one or more actions to take when a potential violation is
detected. Following are the actions you can take:
Warn

The policy violations are allowed with a user-facing warning.

Audit
The policy violations are allowed with an auditing log entry
recorded.

Enforce
Any policy violations will cause the Pod to be rejected.

With these options defined, Example 23-3 creates a namespace that
rejects any Pods that don’t satisfy the baseline standard, and also
generates a warning for Pods that don’t meet the restricted
standards requirements.



Example 23-3. Set security standards for a namespace
apiVersion: v1
kind: Namespace
metadata:
  name: baseline-namespace
  labels:
    pod-security.kubernetes.io/enforce: baseline             

    pod-security.kubernetes.io/enforce-version: v1.25        

    pod-security.kubernetes.io/warn: restricted              

    pod-security.kubernetes.io/warn-version: v1.25Label hinting to the PSA controller to reject Pods that violate the
baseline standard.
Version of the security-standard requirements to use (optional).
Label hinting to the PSA controller to warn about Pods that
violate the restricted standard.

This example creates a new namespace and configures the security
standards to apply to all Pods that will be created in this
namespace. It is also possible to update the configuration of a
namespace or apply the policy to one or all existing namespaces.
For details on how to do this in the least distributive way, check out
“More Information”.

Discussion
One of the common security challenges with Kubernetes is running
legacy applications that are not implemented or containerized with
Kubernetes security controls in mind. Running a privileged container
can be a challenge on Kubernetes distributions or environments
with strict security policies. Understanding how Kubernetes does
process containment at runtime and configures security boundaries,
as shown in Figure 23-1, will help you create applications that run
on Kubernetes more securely. It is important to realize that a
container is not only a packaging format and not only a resource



isolation mechanism, but when configured properly, it is also a
security fence.

Figure 23-1. Process Containment pattern

The tendency of shifting left the security considerations and testing
practices, including deploying into Kubernetes with the production
security standards, is getting more popular. Such practices help
identify and tackle security issues earlier in the development cycle
and prevent last-minute surprises.



NOTE
Shifting left is all about doing things earlier rather than later. It’s about
going leftward on the time ray that describes a development and
deployment process. In our context, shift left implies that the developer
already thinks about operational security when developing the
application. See more details about the Shift Left model on Devopedia.

In this chapter, we hope that we have given you enough food for
thought when creating secure cloud native applications. The
guidelines in this chapter will help you design and implement
applications that don’t write to the local filesystem or require root
privileges (for example, when containerizing applications, to ensure
the container has a designated non-root user) and configure the
security context. We hope that you understand exactly what your
application needs and give it only the minimum permissions. We
also aimed to help you build boundaries between the workloads and
the host, to reduce container privileges and configuring the runtime
environment to limit resource utilization in the event of a breach. In
this endeavor, the Process Containment pattern ensures “what
happens in a container stays in a container,” including any security
breaches.

More Information
Process Containment Example

Configure a Security Context for a Pod or Container

Pod Security Admission

Pod Security Standards

Enforce Pod Security Standards with Namespace Labels

Admission Controllers Reference: PodSecurity
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Linux Capabilities

Introduction to Security Contexts and SCCs

10 Kubernetes Security Context Settings You Should
Understand

Security Risk Analysis Tool for Kubernetes Resources
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Chapter 24. Network
Segmentation

Kubernetes is a great platform for running distributed applications
that communicate with one another over the network. By default,
the network space within Kubernetes is flat, which means that
every Pod can connect to every other Pod in the cluster. In this
chapter, we will explore how to structure this network space for
improved security and a lightweight multitenancy model.

Problem
Namespaces are a crucial part of Kubernetes, allowing you to group
your workloads together. However, they only provide a grouping
concept, imposing isolation constraints on the containers associated
with specific namespaces. In Kubernetes, every Pod can talk to
every other Pod, regardless of their namespace. This default
behavior has security implications, particularly when multiple
independent applications operated by different teams run in the
same cluster.
Restricting network access to and from Pods is essential for
enhancing the security of your application because not everyone
may be allowed to access your application via an ingress. Outgoing
egress network traffic for Pods should also be limited to what is
necessary to minimize the blast radius of a security breach.
Network segmentation plays a vital role in multitenancy setups
where multiple parties share the same cluster. For example, the
following sidebar addresses some of the challenges of multitenancy
on Kubernetes, such as creating network boundaries for
applications.



MULTITENANCY WITH KUBERNETES
Multitenancy refers to platform’s ability to support multiple
isolated user groups, also known as tenants. Kubernetes does
not provide extensive support for multitenancy out of the box,
and the concept itself can be complex and difficult to define. The
Kubernetes documentation on Multitenancy covers various
aspects and the support within the platform, including
namespaces and access control (Chapter 26), quotas to prevent
noisy neighbor issues, storage and network isolation, and
handling of shared resources like cluster-wide DNS or
CustomResourceDefinitions. In this chapter, we will focus on the
network isolation aspects, which offer a softer approach to
multitenancy. Stricter isolation requirements may require a more
encapsulated approach, such as a virtual control plane per
tenant, as provided by vcluster.

In the past, shaping the network topology was primarily the
responsibility of administrators who managed firewalls and iptable
rules. The challenge with this model is that administrators need to
understand the networking requirements of the applications. In
addition, the network graph can get very complex in a microservices
world with many dependencies, requiring deep domain knowledge
about the application. In this sense, the developer must
communicate and sync information about dependencies with
administrators. A DevOps setup can help, but the definition of
network topologies is still far away from the application itself and
can change dynamically over time.
So, what does defining and establishing a network segmentation
look like in a Kubernetes world?

https://oreil.ly/T1cCG
https://oreil.ly/aVbiM


Solution
The good news is that Kubernetes shifts left these networking tasks
so that developers using Kubernetes fully define their applications’
networking topology. You have already seen this process model
described briefly in Chapter 23, when we discussed the Process
Containment pattern.
The essence of this Network Segmentation pattern is how we, as
developers, can define the network segmentation for our
applications by creating “application firewalls.”
There are two ways to implement this feature that are
complementary and can be applied together. The first is through the
use of core Kubernetes features that operate on the L3/L4
networking layers.1 By defining resources of the type NetworkPolicy,
developers can create ingress and egress firewall rules for workload
Pods.
The other method involves the use of a service mesh and targets
the L7 protocol layer, specifically HTTP-based communication. This
allows for filtering based on HTTP verbs and other L7 protocol
parameters. We will explore Istio’s AuthorizationPolicy later in this
chapter.
To start, let’s focus on how to use NetworkPolicies to define the
network boundaries for your application.

Network Policies
NetworkPolicy is a Kubernetes resource type that allows users to
define rules for inbound and outbound network connections for
Pods. These rules act like a custom firewall and determine which
Pods can be accessed and which destinations they can connect to.
The user-defined rules are picked up by the Container Network
Interface (CNI) add-on used by Kubernetes for its internal
networking. However, not all CNI plugins support NetworkPolicies;



for example, the popular Flannel CNI plugin does not support it, but
many others, like Calico, do. All hosted Kubernetes cloud offerings
support NetworkPolicy (either directly or by configuring an add-on)
as well as other distributions like Minikube.
The NetworkPolicy definition consists of a selector for Pods and lists
of inbound (ingress) or outbound (egress) rules.
The Pod selector is used to match the Pods to which the
NetworkPolicy should be applied. This selection is done by using
labels, which are metadata attached to Pods. The labels allow for a
flexible and dynamic grouping of Pods, meaning that the same
NetworkPolicy can be applied to multiple Pods that share the same
labels and are running in the same namespace as the
NetworkPolicy. Pod selectors are described in detail in “Labels”.
The list of ingress and egress rules defines which inbound and
outbound connections are allowed for the Pods matched by the Pod
selector. These rules specify which sources and destinations are
allowed to connect to and from the Pods. For example, a rule could
allow connections from a specific IP address or range of addresses,
or it could block connections to a specific destination.
Let’s start with the simple example in Example 24-1 that allows
access to all database Pods only from backend Pods and nothing
else.
Example 24-1. Simple NetworkPolicy allowing ingress traffic
kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:
  name: allow-database
spec:
  podSelector:        
    matchLabels:
      app: chili-shop
      id: database
  ingress:            
  - from:



    - podSelector:    
        matchLabels:
          app: chili-shop
          id: backendSelector matching all Pods with the label id: database and

app: chili-shop. All those Pods are affected by this
NetworkPolicy.
List of sources that are allowed for incoming traffic.
Pod selector that will allow all Pods of the type backend to
access the selected database Pods.

Figure 24-1 shows how the backend Pods can access the database
Pods but frontend Pods can’t.



Figure 24-1. NetworkPolicy for ingress traffic

NetworkPolicy objects are namespace-scoped and match only Pods
from within the NetworkPolicy’s namespace. Unfortunately, there is
no way to define cluster-wide defaults for all namespaces. However,
some CNI plugins like Calico support customer extensions for
defining cluster-wide behavior.



Network segment definition with labels
In Example 24-1, we can see how label selectors are used to
dynamically define groups of Pods. This is a powerful concept in
Kubernetes that allows users to easily create distinct networking
segments.
Developers are typically the best ones to know which Pods belong
to a specific application and how they communicate with one
another. By carefully labeling the Pods, users can directly translate
the dependency graphs of distributed applications into
NetworkPolicies. These policies can then be used to define the
network boundaries for an application, with well-defined entry and
exit points.
To create network segmentation using labels, it’s common to label
all Pods in the application with a unique app label. The app label
can be used in the selector of the NetworkPolicy to ensure that all
Pods belonging to the application are covered by the policy. For
example, in Example 24-1, the network segment is defined using an
app label with the value chili-shop.

There are two common ways to consistently label workloads:

Using workload-unique labels, you can directly model the
dependency graph between application components such as
other microservices or a database. These workloads can consist
of multiple Pods, for example, when deployed in high
availability. This technique is used to model the permission
graph in Example 24-1, where we use a label type to identify
the application component. Only one type of workload (e.g.,
Deployment or StatefulSet) is expected to carry the label
type: database.

In a more loosely coupled approach, you can define specific
role or permissions labels that need to be attached to
every workload that plays a certain role. Example 24-2 shows



an example of this setup. This approach is more flexible and
allows for new workloads to be added without updating the
NetworkPolicy. However, the more straightforward approach of
directly connecting workloads is often easier to understand by
simply looking at the NetworkPolicy without having to look up
all workloads that apply to a role.

Example 24-2. Role-based network segment definition
kind: Pod
metadata:
  label:
    app: chili-shop
    id: backend
    role-database-client: 'true'       
    role-cache-client: 'true'
....
---
kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:
  name: allow-database-client
spec:
  podSelector:
    matchLabels:
      app: chili-shop
      id: database                     
  ingress:
  - from:
    - podSelector:
        matchLabels:
          app: chili-shop
          role-database-client: 'true' Add all roles that enable this backend Pod to access the

requested services.
Selector matching the database Pods—i.e., Pods with the label
id: database.
Every Pod that is a database client (role-database-client:
'true') is allowed to send traffic to the backend Pod.



Deny-all as default policy
In Examples 24-1 and 24-2, we have seen how to individually
configure the allowed incoming connections for a selected set of
Pods. This setup works fine as long as you don’t forget to configure
one Pod, since the default mode, when NetworkPolicy is not
configured in the namespace, does not restrict incoming and
outgoing traffic (allow-all). Also, for Pods that we might create in
the future, it is problematic that it might be necessary to remember
to add the respective NetworkPolicy.
Therefore, it is highly recommended to start with a deny-all policy,
as shown in Example 24-3.
Example 24-3. Deny-all policy for incoming traffic
kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:
  name: deny-all
spec:
  podSelector: {}     
  ingress: []         An empty selector matches every Pod.

An empty list of ingress rules implies that all incoming traffic
gets dropped.

The list of allowed ingresses is set to an empty list ([]), which
implies there is no ingress rule that allows incoming traffic. Note
that an empty list [] is different from a list with a single empty
element [ {} ], which achieves the exact opposite since the
single empty rule matches everything.

Ingress
Example 24-1 covers the primary use case of a policy that covers
ingress traffic. We have already explained the podSelector field
and given an example of an ingress list that matches Pods that
are allowed to send traffic to the Pod under configuration. The



selected Pod can receive traffic if any of the configured ingress rules
in the list are matched.
Besides selecting Pods, you have additional options to configure the
ingress rules. We already saw the from field for an ingress rule that
can contain a podSelector for selecting all Pods that pass this
rule. In addition, a namespaceSelector can be given to choose
the namespaces in which the podSelector should be applied to
identify the Pods that can send traffic.
Table 24-1 shows the effect of the various combinations of
podSelector and name​sp⁠aceSelector. Combining both fields
allows for very flexible setups.



Table 24-1. Combinations of setting podSelector and namespace
Selector ({}: empty, {...}: non-empty, ---: unset)

podSelector namespaceSelector Behavior

{} {} Every Pod in every
namespace

{} { …​ } Every Pod in the matched
namespaces

{ …​ } { } Every matching Pod in all
namespaces

{ …​ } { …​ } Every matching Pod in
the matching
namespaces

--- { …​ } / {} Every Pod in the
matching namespace/all
namespaces

{ …​ } / {} --- Matching Pods/every Pod
in the NetworkPolicy’s
namespace

As an alternative for selecting Pods from the cluster, a range of IP
addresses can be specified with a field ipBlock. We show IP
ranges in Example 24-5.
Another option is to restrict the traffic to specific ports to the
selected Pod. We can specify this list with a ports field that
contains all allowed ports.



Egress
Not only can incoming traffic be regulated, but so can any request
that a Pod sends in the outgoing direction. Egress rules are
configured precisely with the same options as ingress rules. And as
with ingress rules, starting with a very restrictive policy is
recommended. However, denying all outgoing traffic is not practical.
Every Pod needs interaction with Pods from the system namespace
for DNS lookups. Also, if we use ingress rules to restrict incoming
traffic, we would have to add mirrored egress rules for the source
Pods. So let’s be pragmatic and allow all egress within the cluster,
forbid everything outside the cluster, and let ingress rules define the
network boundaries.
Example 24-4 shows the definition of such a rule.
Example 24-4. Allow all internal egress traffic
kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:
  name: egress-allow-internal-only
spec:
  policyTypes:              
  - Egress
  podSelector: {}           
  egress:
  - to:
    - namespaceSelector: {} Add only Egress as policy type; otherwise, Kubernetes assumes

that you want to specify ingress and egress.
Apply NetworkPolicy to all Pods in the NetworkPolicy’s
namespace.
Allow egress to every Pod in every other namespace.

Figure 24-2 illustrates the effect of this NetworkPolicy and how it
prevents Pods from connecting to external services.



Figure 24-2. NetworkPolicy that allows only internal egress traffic

The policyTypes field in a NetworkPolicy determines the type of
traffic the policy affects. It is a list that can contain the elements
Egress and/or Ingress, and it specifies which rules are included
in the policy. If the field is omitted, the default value is determined
based on the presence of the ingress and egress rule sections:

If an ingress section is present, the default value of
policyTypes is [Ingress].

If an egress section is provided, the default value of
policyTypes is [Ingress, Egress] regardless of whether



ingress rules are provided.

This default behavior implies that to define an egress-only policy,
you must explicitly set policyTypes to [Egress], as in
Example 24-4. Failing to do so would imply an empty ingress
rules set, effectively forbidding all incoming traffic.
With this restriction for cluster-internal egress traffic in place, we
can selectively activate access to external IP addresses for certain
Pods that might require cluster-external network access. In
Example 24-5, such an IP range block for allowing external egress
access is defined.
Example 24-5. NetworkPolicy that allows access to all IP addresses,
with some exceptions
kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:
  name: allow-external-ips
spec:
  podSelector: {}
  egress:
  - to:
    - ipBlock:
        cidr: 0.0.0.0/0   
        except:
        - 192.168.0.0/16  
        - 172.23.42.0/24Allow access to all IP addresses…​

…​except IP addresses that belong to these subnets.

Some care must be taken if you decide to choose more strict egress
rules and also want to restrict the cluster’s internal egress traffic.
First, it is essential to always allow access to the DNS server in the
kube-system namespace. This configuration is best done by
allowing access to port 53 for UDP and TCP to all ports in the
system namespace.



For operators and controllers, the Kubernetes API server needs to
be accessible. Unfortunately, no unique label would select the API
server in the kube-system namespace, so the filtering should
happen on the API server’s IP address. The IP address can best be
fetched from the kubernetes endpoints in the default namespace
with kubectl get endpoints -n default kubernetes.

Tooling
Setting up the network topology with NetworkPolicies gets complex
quickly since it involves creating many NetworkPolicy resources. It is
best to start with some simple use cases that you can adapt to your
specific needs. Kubernetes Network Policy Recipes is a good starting
point.
Commonly, NetworkPolicies are defined along with the application’s
architecture. However, sometimes you must retrofit the policy
schemas to an existing solution. In this case, policy advisor tools
can be beneficial. They work by recording the network activity when
playing through typical use cases. A comprehensive integration test
suite with good test coverage pays off to catch all corner cases
involving network connections. As of 2023, several tools can help
you audit network traffic to create network policies.
Inspektor Gadget is a great tool suite for debugging and inspecting
Kubernetes resources. It is entirely based on eBPF programs that
enable kernel-level observability and provides a bridge from kernel
features to high-level Kubernetes resources. One of Inspektor
Gadget’s features is to monitor network activity and record all UDP
and TCP traffic for generating Kubernetes network policies. This
technique works well but depends on the quality and depth of
covered use cases.

https://oreil.ly/NvQFm
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WHAT IS EBPF?
eBPF is a Linux technology that can run sandboxed programs in
kernel space.2 This technique extends the kernel’s capabilities
safely and allows for much faster innovation on top of this
interface.
To some degree, eBPF is the next-generation plugin architecture
for the Linux kernel. The flexibility of this API has fostered the
evolution of many eBPF projects that cover a wide area of use
cases, including observability and security.

Another great eBPF-based platform is Cilium, which has a dedicated
audit mode that tracks all network traffic and matches it against a
given network policy. By starting with a deny-all policy and audit
mode enabled, Cilium will record all policy violations but will not
block the traffic otherwise. The audit report helps create the proper
NetworkPolicy to fit the traffic patterns exercised.
These are only two examples of the rich and growing landscape of
tools for policy recommendation, simulations, and auditing.
Now that you have seen how we can model the network boundaries
for our application on the TCP/UDP and IP levels, let’s move up
some levels in the OSI stack.

Authorization Policies
Until now, we looked at how we can control the network traffic
between Pods on the TCP/IP level. However, it is sometimes
beneficial to base the network restrictions on filtering on higher-
level protocol parameters. This advanced network control requires
knowledge of higher-level protocols like HTTP and the ability to
inspect incoming and outgoing traffic. Kubernetes does not support
this out of the box. Luckily, a whole family of add-ons extends
Kubernetes to provide this functionality: service meshes.

https://cilium.io/


SERVICE MESH
Some operational requirements like security, observability, or
reliability affect all your applications. A service mesh takes care
of these aspects in a generic way so that applications can focus
on their business logic. Service meshes usually work by injecting
sidecar containers into the workload Pods that act as the
ambassador from Chapter 18 and adapter from Chapter 17 to
intercept L7 incoming and outgoing traffic. Newer techniques to
intercept the network traffic include node-wide proxies and a
mesh data plane.
Prominent examples of service meshes are Istio, Gloo Mesh, and
Linkerd. Still, many more are listed in the CNCF Cloud Native
Interactive Landscape.

We chose Istio as our example service mesh, but you will find
similar functionalities in other service meshes. We won’t go into
much detail about service meshes or Istio. Instead, we’ll focus on a
particular custom resource of Istio that helps us shape the
networking segments on the HTTP protocol level.
Istio has a rich feature set for enabling authentication, transport
security via mTLS, identity management with CERT rotations, and
authorization.
As with other Kubernetes extensions, Istio leverages the
Kubernetes API machinery by introducing its own
CustomResourceDefinitions (CRDs) that are explained in detail in
Chapter 28, “Operator”. Authorization in Istio is configured with the
AuthorizationPolicy resource. While AuthorizationPolicy is only one
component in Istio’s security model, it can be used alone and allows
for partitioning the network space based on HTTP.
The schema of AuthorizationPolicy is very similar to NetworkPolicy
but is more flexible and includes HTTP-specific filters. NetworkPolicy

https://oreil.ly/x_2rg
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and AuthorizationPolicy should be used together. This can lead to a
tricky debugging setup when two configurations must be checked
and verified in parallel. Traffic will pass through to a Pod only if the
two user-defined firewalls spanned by NetworkPolicy and
AuthorizationPolicy definition will allow it.
An AuthorizationPolicy is a namespaced resource and contains a set
of rules that control whether or not traffic is allowed or denied to a
particular set of Pods in a Kubernetes cluster. The policy consists of
the following three parts:
Selector

Specifies which Pods the policy applies to. If no selector is
specified, the policy applies to all Pods in the same namespace
as the policy. If the policy is created in Istio’s root namespace
(istio-system), it applies to all matching Pods in all
namespaces.

Action
Defines what should be done with the traffic that matches the
rules. The possible actions are ALLOW, DENY, AUDIT (for logging
only), and CUSTOM (for user-defined actions).

List of rules
These are evaluated for incoming traffic. All of the rules must be
satisfied for the action to be taken. Each rule has three
components: a from field that specifies the source of the
request, a to field that specifies the HTTP operation that the
request must match, and an optional when field for additional
conditions (e.g., the identity associated with the request must
match a particular value).

Example 24-6 shows a typical example that allows the monitoring
operator access to application endpoints for collecting metric data.



Example 24-6. Authorization for a Prometheus setup
apiVersion: security.istio.io/v1beta1
kind: AuthorizationPolicy
metadata:
  name: prometheus-scraper
  namespace: istio-system   
spec:
  selector:                 
    matchLabels:
      has-metrics: "true"
  action: ALLOW             
  rules:
  - from:                   
    - source:
        namespaces: ["prometheus"]
    to:
    - operation:            
        methods: [ "GET" ]
        paths: ["/metrics/*"]When created in the namespace istio-system, the policy

applies to all matching Pods in all namespaces.
The policy is applied to all Pods with a has-metrics label set
to true.
The action should allow the request to pass if the rules match.
Every request coming from a Pod from the prometheus
namespace…​
…​can perform a GET request on the /metrics endpoint.

In Example 24-6, every Pod that carries the label has-metrics:
"true" allows traffic to its /metrics endpoint from each Pod of
the prometheus namespace.

This policy has an effect only if, by default, all requests are denied.
As for NetworkPolicy, the best starting point is to define a deny-all
policy, as shown in Example 24-7, and then selectively build up the
network topology by allowing dedicated routes.



Example 24-7. Deny-all policy as the default
apiVersion: security.istio.io/v1beta1
kind: AuthorizationPolicy
metadata:
 name: deny-all
 namespace: istio-system 
spec: {}                 The policy applies to all namespaces since it is created in

istio-system.
Policies with an empty spec section deny all requests.

With the help of the proper labeling schema, AuthorizationPolicy
helps define the application’s network segments that are
independent and isolated from one another. All that we said in
“Network segment definition with labels” also applies here.
However, AuthorizationPolicy can also be used for application-level
authorization when we add an identity check to the rules. One
crucial difference to the authorization that we describe in
Chapter 26, “Access Control”, is that AuthorizationPolicy is about
application authorization, while the Kubernetes RBAC model is
about securing the access to the Kubernetes API server. Access
control is primarily helpful for operators monitoring their custom
resources.

Discussion
In the early days of computing, network topologies were defined by
physical wiring and devices like switches. This approach is secure
but not very flexible. With the advent of virtualization, these devices
were replaced by software-backed constructs to provide network
security. Software-defined networking (SDN) is a type of computer
networking architecture that allows network administrators to
manage network services through abstraction of lower-level
functionality. This abstraction is typically achieved by separating the
control plane, which makes decisions about how data should be



transmitted, from the data plane, which actually sends the data.
Even with the use of SDN, administrators are still needed to set up
and rearrange networking boundaries to effectively manage the
network.
Kubernetes has the ability to overlay its flat cluster-internal network
with network segments defined by users through the Kubernetes
API. This is the next step in the evolution of network user
interfaces. It shifts the responsibility to developers who understand
the security requirements of their applications. This shift-left
approach is beneficial in a world of microservices with many
distributed dependencies and a complex network of connections.
NetworkPolicies for L3/L4 network segmentation and
AuthorizationPolicies for more granular control of network
boundaries are essential for implementing this Network
Segmentation pattern.
With the advent of eBPF-based platforms on top of Kubernetes,
there is additional support for finding suitable network models.
Cilium is an example of a platform that combines L3/L4 and L7
firewalling into a single API, making it easier to implement the
pattern described in this chapter in future versions of Kubernetes.

More Information
Network Segmentation Example

Network Policies

The Kubernetes Network Model

Kubernetes Network Policy Recipes

Using Network Policies

Why You Should Test Your Kubernetes Network Policies
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Using the eBPF Superpowers to Generate Kubernetes Security
Policies

Using Advise Network-Policy with Inspektor Gadget

You and Your Security Profiles; Generating Security Policies with
the Help of eBPF

kube-iptables-tailer

Creating Policies from Verdicts

Istio: Authorization Policy

SIG Multitenancy Working Group

1  Level 3 and Level 4 of the OSI Network stack are mostly about IP and
TCP/UDP, respectively.

2  eBPF was originally an acronym for “extended Berkeley Packet Filter” but is
nowadays used as an independent term on its own.
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Chapter 25. Secure
Configuration

No real-world application lives in isolation. Instead, each connects
to external systems in one way or the other. Such external systems
could include value-add services provided by the big cloud
providers, other microservices that your service connects to, or a
database. Regardless of which remote services your application
connects to, you will likely need to go through authentication, which
involves sending over credentials such as username and password
or some other security token. This confidential information must be
stored somewhere close to your application securely and safely.
This chapter’s Secure Configuration pattern is about the best ways
to keep your credentials as secure as possible when running on
Kubernetes.

Problem
As you learned in Chapter 20, “Configuration Resource”, despite
what its name implies, Secret resources are not encrypted but are
only Base64 encoded. Nevertheless, Kubernetes does its best to
restrict access to a Secret’s content with the techniques described in
“How Secure Are Secrets?”.
However, as soon as Secret resources are stored outside the cluster,
they are naked and vulnerable. With the advent of GitOps as a
prevalent paradigm for deploying and maintaining server-side
applications, this security challenge is even more pressing. Should
Secrets be stored on remote Git repositories? If so, then they must
not be stored unencrypted. However, when those are committed



encrypted in a source code management system like Git, where do
they get decrypted on their way into a Kubernetes cluster?
Even when credentials are stored encrypted within the cluster, it is
not guaranteed that nobody else can access that confidential
information. While you can granularly regulate access to Kubernetes
resources with RBAC rules,1 at least one person has access to all
data stored in the cluster: your cluster administrator. You might or
might not be able to trust the cluster administrator. It all depends
on the context in which your application operates. Are you running a
Kubernetes cluster in the cloud operated by somebody else? Or is
your application deployed on a big company-wide Kubernetes
platform, and you need to know who is running this cluster?
Different solutions are required depending on these trust
boundaries and confidentiality requirements.
Secrets are the Kubernetes answer for confidential configuration in-
cluster storage. We talked in depth about Secrets in Chapter 20,
“Configuration Resource”, so let’s now have a look at how we can
improve various security aspects of Secrets with additional
techniques.

Solution
The most straightforward solution for secure configuration is
decoding encrypted information within the application itself. This
approach always works, and not just when running on Kubernetes.
But it takes considerable work to implement this within your code,
and it couples your business logic with this aspect of securing your
configuration. There are better, more transparent ways to do this on
Kubernetes.
The support for secure configuration on Kubernetes falls roughly
into two categories:
Out-of-cluster encryption



This stores encrypted configuration information outside of
Kubernetes, which nonauthorized persons can also read. The
transformation into Kubernetes Secrets happens just before
entering the cluster (e.g., when applying a resource via the API
server) or inside the cluster by a permanently running operator
process.

Centralized secret management
This uses specialized services that are either already offered by
cloud providers (e.g., AWS Secrets Manager or Azure Key Vault)
or are part of an in-house vault service (e.g., HashiCorp Vault)
for storing confidential configuration data.

While out-of-cluster encryption techniques always eventually create
a Secret within the cluster that your application can use, the
support for external secret management systems (SMSs) provided
by Kubernetes add-ons uses various other techniques to bring the
confidential information to the deployed workloads.

Out-of-Cluster Encryption
The gist of the out-of-cluster technique is simple: pick up secret and
confidential data from outside the cluster and transform it into a
Kubernetes Secret. A lot of projects have been grown that
implement this technique. This chapter looks at the three most
prominent ones (as of 2023): Sealed Secrets, External Secrets, and
sops.

Sealed Secrets
One of the oldest Kubernetes add-ons for helping with encrypted
secrets is Sealed Secrets, introduced by Bitnami in 2017. The idea is
to store the encrypted data for a Secret in a
CustomResourceDefinition (CRD) SealedSecret. In the background,
an operator monitors such resources and creates one Kubernetes



Secret for each SealedSecret with the decrypted content. To learn
more about CRDs and operators in general, check out Chapter 28,
“Operator”, which explains this pattern in detail. While the
decryption happens within the cluster, the encryption happens
outside by a CLI tool called kubeseal, which takes a Secret and
translates it to a SealedSecret that can be stored safely in a source
code management system like Git.
Figure 25-1 shows the setup for Sealed Secrets.

Figure 25-1. Sealed Secrets

Secrets are encrypted with AES-256-GCM symmetrically as a session
key, and the session key is encrypted asymmetrically with RSA-
OAEP, the same setup TLS uses.
The secret private key is stored within the cluster and is
automatically created by the SealedSecret Operator. It is up to the
administrator to back up this key and rotate it if needed. The public
key used by kubeseal can be fetched directly from the cluster or
accessed directly from a file. You also can safely store the public key
in Git along with your SealedSecret.
SealedSecrets support three scopes that you can select when
creating a SealedSecret from a Secret:



Strict
This freezes the namespace and name of the SealedSecret. This
mode means you can create the SealedSecret only in the same
namespace and with the same name as the original Secret in
any target cluster. This mode is the default behavior.

Namespace-wide
This allows you to apply the SealedSecret to a different name
than the initial Secret but still pins it to the same namespace.

Cluster-wide
This allows you to apply the SealedSecret to different
namespaces, as it was initially created to do, and the name can
be changed too.

These scopes can be selected when creating the SealedSecret with
kubeseal. Still, you can also add the nonstrict scopes with the
annotations listed in Table 25-1 on the original Secret before
encryption or on the SealedSecret directly.



Table 25-1. Annotation

Annotation Value Descripti

sealedsecrets.bitnami.com/namespace-
wide

"true" Enable
namespac
wide scop
when set t
true—i.e.,
different
name but
same
namespac

sealedsecrets.bitnami.com/cluster-wide "true" Enable
cluster-wid
scope whe
set to tru
i.e., name
and
namespac
can be
changed o
the
SealedSec
after
encryption

Example 25-1 shows a SealedSecret created by kubeseal that can
be directly stored in Git.
Example 25-1. SealedSecret created with kubeseal
# Command to create this sealed secret:
# kubeseal --scope cluster-wide -f mysecret.yaml     



apiVersion: bitnami.com/v1alpha1
kind: SealedSecret
metadata:
  annotations:
    sealedsecrets.bitnami.com/cluster-wide: "true"   
  name: DB-credentials
spec:
  encryptedData:
    password: AgCrKIIF2gA7tSR/gqw+FH6cEV..wPWWkHJbo= 
    user: AgAmvgFQBBNPlt9Gmx..0DNHJpDIMUGgwaQroXT+o=Command to create a SealedSecret from the secret stored in

mysecret.yaml.
Annotation that indicates that this SealedSecret can have any
name and be applied to any namespace.
The secret values are encrypted individually (and shortened here
for the sake of demonstration).

A Sealed Secret is a tool that allows you to store encrypted secrets
in a publicly available location, such as a GitHub repository. It is
important to properly back up the secret key, as without it, it will
not be possible to decrypt the secrets if the operator is uninstalled.
One potential drawback of Sealed Secrets is that they require a
server-side operator to be continuously running in the cluster in
order to perform the decryption.

External Secrets
The External Secrets Operator is a Kubernetes operator that
integrates a growing list of external SMSs. The main difference
between External Secrets and Sealed Secrets is that you do not
manage the encrypted data storage yourself but rely on an external
SMS to do the hard work, including encryption, decryption, and
secure persistence. That way, you benefit from all the features of
your cloud’s SMS, like key rotation and a dedicated user interface.
SMS also provides an excellent way of separating concerns so that
different roles can manage the application deployments and the
secrets separately.
Figure 25-2 shows the External Secrets architecture.

https://oreil.ly/4kC1b


Figure 25-2. External Secrets

A central operator reconciles two custom resources:

SecretStore is the resource that holds the type and
configuration of the external SMS to access. Example 25-2 gives
an example of a store that connects to AWS Secret Manager.



ExternalSecret references a SecretStore, and the operator will
create a corresponding Kubernetes Secret filled with the data
fetched from the external SMS. For example, Example 25-3
references a secret in the AWS Secret Manager and exposes
the value within the specified target Secret.

Example 25-2. SecretStore for connecting to AWS Secret Manager
apiVersion: external-secrets.io/v1beta1
kind: SecretStore
metadata:
  name: secret-store-aws
spec:
  provider:
    aws:                        
      service: SecretsManager
      region: us-east-1
      auth:
        secretRef:
          accessKeyIDSecretRef: 
            name: awssm-secret
            key: access-key
          secretAccessKeySecretRef:
            name: awssm-secret
            key: secret-access-keyProvider aws configures the usage of the AWS Secret Manager.

Reference to a Secret that holds the access keys for talking with
the AWS Secret Manager. A Secret with the name awssm-
secret contains the keys access-key and secret-access-
key used to authenticate against the AWS Secret Manager.

Example 25-3. ExternalSecret that will be transformed into a Secret
apiVersion: external-secrets.io/v1beta1
kind: ExternalSecret
metadata:
  name: db-credentials
spec:
  refreshInterval: 1h
  secretStoreRef:                
    name: secret-store-aws



    kind: SecretStore
  target:
    name: db-credentials-secrets 
    creationPolicy: Owner
  data:
    - key: cluster/db-username   
      name: username
    - key: cluster/db-password
      name: passwordReference to the SecretStore object that holds the connection

parameters for AWS Secret Manager.
Name of the Secret to create.
The username that will be looked up under cluster/DB-
username in AWS Secret Manager and put under the key
username in the resulting Secret.

You have a lot of flexibility in defining the mapping of the external
secret data to the content of the mirrored Secret—for example,
using a template to create a configuration with a particular
structure. See the External Secrets documentation for more
information. One significant advantage of this solution over a client-
side solution is that only the server-side operator knows the
credentials to authenticate against the external SMS.
The External Secrets Operator project merges several other Secret-
syncing projects. In 2023, it is already the dominant solution for this
specific use case of mapping and syncing an externally defined
secret to a Kubernetes Secret. However, it has the same cost as a
server-side component that runs all the time.

Sops
Do we need a server-side component to work with Secrets in a
GitOps world where all resources are stored in a Git repository?
Luckily, solutions exist that work entirely outside of a Kubernetes
cluster. A pure client-side solution is sops (“Secret OPerationS”) by
Mozilla. Sops is not specific to Kubernetes but allows you to encrypt
and decrypt any YAML or JSON file to safely store those in a source

https://oreil.ly/Oj4Qq
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code repository. It does this by encrypting all values of such a
document but leaving the keys untouched.
We can use various methods for encryption with sops:

Asymmetric local encryption via age with the keys stored
locally.

Storing the secret encryption key in a centralized key
management system (KMS). Supported platforms are AWS
KMS, Google KMS, and Azure Key Vault as external cloud
providers and HashiCorp Vault as an SMS you can host on your
own. The identity management of those platforms allows for
fine-granular access control to the encryption key.

SMS VERSUS KMS
In the previous sections, we talked about secret management
systems (SMSs), cloud services that do secret management for
you. They provide an API for storing and accessing the secrets
with granular and configurable access control. Those secrets are
encrypted transparently for the user, and you don’t have to
worry about this. Key management systems (KMSs) are cloud
services you can access with an API. However, in contrast to
SMSs, KMSs are not databases for secure data but care about
the discovery and storage of encryption keys, which you can use
to encrypt data outside of a KMS. The GnuPG keyservers are
good examples of a KMS. Each leading cloud provider offers both
SMSs and KMSs. If you are sold to one of the big clouds, you
also get good integration with its identity management for
defining and assigning the access rules to SMS- and KMS-
managed data.

Sops is a CLI tool you can run locally on your machine or within a
cluster (e.g., as part of a CI pipeline). Especially for the latter use

https://oreil.ly/DH4RE


case and if you are running in one of the big clouds, leveraging one
of their KMSs provides a smooth integration.
Figure 25-3 illustrates how sops handles encryption and decryption
on the client side.

Figure 25-3. Sops for decrypting and encrypting resource files

Example 25-4 shows how to use sops to create an encrypted
version of a ConfigMap.2 This example uses age and a freshly
generated keypair for the encryption, which should be stored safely.
Example 25-4. Sops for creating encrypted secrets
$ age-keygen -o keys.txt       
Public key: age1j49ugcg2rzyye07ksyvj5688m6hmv

$ cat configmap.yaml           
apiVersion: v1
kind: ConfigMap
metadata:
  name_unencrypted: db-auth    
data:
  # User and Password
  USER: "batman"
  PASSWORD: "r0b1n"

$ sops --encrypt \             
    --age age1j49ugcg2rzyye07ksyvj5688m6hmv \
    configmap.yaml > configmap_encrypted.yaml



$ cat configmap_encrypted.yaml
apiVersion: ENC[AES256_GCM,data:...,iv:...,tag:...,type:str] 

kind: ENC[AES256_GCM,data:...,iv:...,tag:...,type:str]
metadata:
    name_unencrypted: db-auth  
data:
    #ENC[AES256_GCM,data:...,iv:...,tag:...,type:comment]
    USER: ENC[AES256_GCM,data:...,iv:...,tag:...=,type:str]
    PASSWORD: 
ENC[AES256_GCM,data:...,iv:...,tag:...,type:str]
sops:                          
    age:
        - recipient: age1j49ugcg2rzyye07ksyvj5688m6hmv
          enc: |               
            -----BEGIN AGE ENCRYPTED FILE-----
            
YWdlLWVuY3J5cHRpb24ub3JnL3YxCi0+IFgyNTUxOSBqems3QkU4aXRyQWxaN
ER1
            
TTdqcUZTeXFXNWhSY0E1T05XMUhVUzFjR1FnCmdMZmhlSlZCRHlqTzlNM0E1Z
280
            
Y0tqQ2VKYXdxdDZIZHpDbmxTYzhQSTgKLS0tIHlBYmloL2laZlA4Q05DTmRwQ
0ls
            
bURoU2xITHNzSXp5US9mUUV0Z0RackkKFtH+uNNe3A13pzSvHjT6n3q9av0pN
7Nb
            
i3AULtKvAGs6oAnH8qYbnwoj3qt/LFfnbqfeFk1zC2uqNONWkKxa2Q==
            -----END AGE ENCRYPTED FILE-----
    last modified: "2022-09-20T09:56:49Z"
    mac: ENC[AES256_GCM,data:...,iv:...,tag:...,type:str]
    unencrypted_suffix: _unencryptedCreate a secret key with age and store it in keys.txt.

The ConfigMap to encrypt.
The name field is changed to name_unencrypted to prevent it
from getting encrypted.
Call sops with the public part of the age key, and store the result
in configmap_encrypted.yml.

Each value is replaced with an encrypted version in ENC[ ]



Each value is replaced with an encrypted version in ENC[...]
(output shortened for readability).
The name of the ConfigMap is left untouched.
An extra section, sops is appended to contain metadata that is
needed for decryption.
Encrypted session key that is used for symmetrical decryption.
This key itself is encrypted asymmetrically by age.

As you can see, every value of the ConfigMap resource gets
encrypted, even those that are not confidential, like resource types
or the name of the resource. You can skip the encryption for specific
values by appending an _unencrypted suffix to the key (which
gets stripped off later when doing the decryption).
The generated configmap_encrypted.yml can safely be stored in Git
or any other source control management. As shown in Example 25-
5, you need the private key to decrypt the ciphered ConfigMap to
apply it to the cluster.
Example 25-5. Decrypt sops-encoded resource and apply it to
Kubernetes
$ export SOPS_AGE_KEY_FILE=keys.txt  
$ sops --decrypt configmap_encrypted.yaml | kubectl apply -f 
- 
configmap/db-auth createdPoint sops to the private key to decrypt the session key.

Decrypt and apply to Kubernetes. Note that every
_unencrypted suffix on the resource keys is removed during
sops decryption.

Sops is an excellent solution for easy GitOps-style integration of
Secrets without worrying about installing and maintaining
Kubernetes add-ons. However, while your configuration can now be
stored securely in Git, it is essential to understand that as soon as
those configurations have been handed over to the cluster, anybody
with elevated access rights can read that data directly via the
Kubernetes API.



If this is not something you can tolerate, we need to dig deeper into
the toolbox and look again at centralized SMSs.

Centralized Secret Management
As explained in “How Secure Are Secrets?”, Secrets are as secure as
possible. Still, any administrator with cluster-wide read access can
read every Secret stored unencrypted. Depending on your trust
relationship with your cluster operators and security requirements,
this might or might not be a problem.
Besides baking individual secret handling into your application code,
an alternative is to keep the secure information outside the cluster
in the external SMS and request the confidential information on
demand over secure channels.
There is a growing number of such SMSs out there, and every cloud
provider offers its variant. We won’t go into many details here for
those individual offerings but focus on the mechanism of how such
systems integrate into Kubernetes. You will find a list of relevant
products as of 2023 in “More Information”.

Secrets Store CSI Driver
The Container Storage Interface (CSI) is a Kubernetes API for
exposing storage systems to containerized applications. CSI shows
the path for third-party storage providers to plug in new types of
storage that can be mounted as volumes in Kubernetes. Of
particular interest in the context of this pattern is the Secrets Store
CSI Driver. This driver, developed and maintained by the Kubernetes
community, allows access to various centralized SMSs and mounts
them as regular Kubernetes volumes. The difference from a
mounted Secret volume as described in Chapter 20, “Configuration
Resource”, is that nothing is stored in the Kubernetes etcd database
but securely outside the cluster.

https://oreil.ly/vm0F3
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The Secrets Store CSI Driver supports the SMS from major cloud
vendors (AWS, Azure, and GCP) and HashiCorp Vault.
The Kubernetes setup for connecting a secret manager via the CSI
driver involves performing these two administrative tasks:

Installing the Secrets Store CSI Driver and configuration for
accessing a specific SMS. Cluster-admin permissions are
required for the installation process.

Configuring access rules and policies. Several provider-specific
steps need to be completed, but the result is that a Kubernetes
service account is mapped to a secret manager-specific role
that allows access to the secrets.

Figure 25-4 shows the overall setup needed for enabling the Secrets
Store CSI Driver with a HashiCorp Vault backend.

Figure 25-4. Secrets Store CSI Driver

After the setup is done, the usage of secret volumes is
straightforward. First, you must define a SecretProviderClass, as
demonstrated in Example 25-6. In this resource, you select the
backend provider for the secret manager. For our example, we
selected HashiCorp’s Vault. In the parameters section, the



provider-specific configuration is added, which contains the
connection parameter to the vault, the role to impersonate, and a
pointer to the secret information that Kubernetes will mount into a
Pod.
Example 25-6. Configuration of how to access a secret manager
apiVersion: secrets-store.csi.x-k8s.io/v1
kind: SecretProviderClass
metadata:
  name: vault-database
spec:
  provider: vault                                
  parameters:
    vaultAddress: "http://vault.default:8200"    
    roleName: "database"                         
    objects: |
      - objectName: "database-password"          
        secretPath: "secret/data/database-creds" 
        secretKey: "password"                    Type of provider to use (azure, gcp, aws, or vault as of

2023).
Connection URL to the Vault service instance.
Vault-specific authentication role contains the Kubernetes
service account allowed to connect.
Name of the file that should be mapped into the mounted
volume.
Path to the stored secret in the vault.
Key to pick from the Vault secret.

This secret manager configuration can then be referenced by its
name when used as a Pod volume. Example 25-7 shows a Pod that
mounts the secrets configured in Example 25-6. One key aspect is
the service account vault-access-sa with which this Pod runs.
This service account must be configured on the Vault side to be part
of the role database referenced in the SecretProviderClass.

You can find this Vault configuration in our complete working and
self-contained example, along with setup instructions.

https://oreil.ly/7w89_


Example 25-7. Pod mounting a CSI volume from Vault
kind: Pod
apiVersion: v1
metadata:
  name: shell-pod
spec:
  serviceAccountName: vault-access-sa  
  containers:
  - image: k8spatterns/random
    volumeMounts:
    - name: secrets-store
      mountPath: "/secrets-store"      
  volumes:
    - name: secrets-store
      csi:                             
        driver: secrets-store.csi.k8s.io
        readOnly: true
        volumeAttributes:
          secretProviderClass: "vault-database" Service account that is used to authenticate against Vault.

Directory in which to mount the secrets.
Declaration of a CSI Driver, which points to the Secret Store CSI
driver.
Reference to the SecretProviderClass that provides the
connection to the Vault service.

While the setup for a CSI Secret Storage drive is quite complex, the
usage is straightforward, and you can avoid storing confidential
data within Kubernetes. However, there are more moving parts than
with Secrets alone, so more things can go wrong, and it’s harder to
troubleshoot.
Let’s look at a final alternative for offering secrets to applications
via well-known Kubernetes abstractions.

Pod injection
As mentioned, an application can always access external SMSs via
proprietary client libraries. This approach’s disadvantage is that you
still have to store the credentials to access the SMS along your



application and add a hard dependency within your code to a
particular SMS. The CSI abstraction for projecting secret information
into volumes visible as files for the deployed application is much
more decoupled.
Alternative solutions leverage other well-known patterns described
in this book:

An Init Container (see Chapter 15) fetches the confidential data
from an SMS and then copies it to a shared local volume that is
mounted by the application container. The secret data is
fetched only once before the main container starts.

A Sidecar (see Chapter 16) syncs the secret data from the SMS
to a local ephemeral volume that is also accessed by the
application. The benefit of the sidecar approach is that it can
update the secrets locally in case the SMS starts to rotate the
secrets.

You can leverage these patterns on your own for your applications,
but this is tedious. It is much better to let an external controller
inject the init container or sidecar into your application.
An excellent example of such an injector is the HashiCorp Vault
Sidecar Agent Injector. This injector is implemented as a so-called
mutating webhook, a variant of a controller (see Chapter 27,
“Controller”), that allows modification of any resource when it is
created. When a Pod specification contains a particular, vault-
specific annotation, the vault controller will modify this specification
to add a container for syncing with Vault and to mount a volume for
the secret data.
Figure 25-5 visualizes this technique, which is entirely transparent
to the user.
While you still need to install the Vault Injector controller, it has
fewer moving parts than hooking up a CSI secret storage volume
with the provider deployment for a particular SMS product. Still, you

https://oreil.ly/T1y41
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can access all the secrets by just reading a file without using a
proprietary client library.

Figure 25-5. Vault Injector



Discussion
Now that we have seen the many ways you can make access to
your confidential information more secure, the question is, which
one is the best?
As usual, it depends:

If your main goal is a simple way to encrypt Secrets stored in
public-readable places like a remote Git repository, the pure
client-side encryption that Sops offers is perfect.

The secret synchronization that the External Secrets Operator
implements is a good choice when separating the concerns of
retrieving credentials in a remote SMS and using them is
essential.

The ephemeral volume projection of secret information
provided by Secret Storage CSI Providers is the right choice for
you when you want to ensure that no confidential information
is stored permanently in the cluster except the access tokens
for accessing external vaults.

Sidebar injections like the Vault Sidecar Agent Injector have the
benefit of shielding from a direct access to an SMS. They are
easily approachable at the cost of blurring the boundary
between developers and administrator because of security
annotations leaking into application deployment.

Note that the listed projects are the most prominent as of this
writing in 2023. The landscape is constantly evolving, so by the
time you read this book, there might be new contenders (or some
existing projects might have stopped). However, the techniques
used (client-side encryption, Secret synchronization, volume
projections, and sidecar injections) are universal and will be part of
future solutions.



But a clear warning at the end: regardless of how securely and
safely you can access your secret configuration, if somebody with
evil intentions has full root access to your cluster and containers, a
means to get to that data will always exist. This pattern makes
these kinds of exploits as difficult as possible by adding an extra
layer on the Kubernetes Secret abstraction.

More Information
Secure Configuration Example

Alex Soto Bueno and Andrew Block’s Kubernetes Secrets
Management (Manning, 2022)

Kubernetes: Sealed Secrets

Sealed Secrets

External Secrets Operator

Kubernetes External Secrets

Sops

Kubernetes Secrets Store CSI Driver

Retrieve HashiCorp Vault Secrets with Kubernetes CSI

HashiCorp Vault

Secret Management Systems:

Azure Key Vault

AWS Secrets Manager

AWS Systems Manager Parameter Store

GCP Secret Manager

https://oreil.ly/-ROVS
https://oreil.ly/sLSSI
https://oreil.ly/XRkqy
https://oreil.ly/2VdMM
https://oreil.ly/VLVi8
https://oreil.ly/HH9GE
https://oreil.ly/2_27G
https://oreil.ly/NFU1g
https://oreil.ly/JUjiP
https://oreil.ly/LWLvX
https://oreil.ly/eJ-dk
https://oreil.ly/nYaCF
https://oreil.ly/caLls


1  RBAC rules are explained in detail in Chapter 26, “Access Control”.

2  In the real world, you should use a Secret for this kind of confidential
information, but here we use a ConfigMap to demonstrate that you can use
any resource file with sops.



Chapter 26. Access Control

As the world becomes increasingly reliant on cloud infrastructure
and containerization, the importance of security can never be
understated. In 2022, security researchers made a troubling
discovery: nearly one million Kubernetes instances were left
exposed on the internet due to misconfigurations.1 Using specialized
security scanners, researchers were able to easily access these
vulnerable nodes, highlighting the need for stringent access-control
measures to protect the Kubernetes control plane. But while
developers often focus on application-level authorization, they
sometimes also need to extend Kubernetes capabilities using the
Operator pattern from Chapter 28. In these cases, access control on
the Kubernetes platform becomes critical. In this chapter, we delve
into the Access Control pattern and explore the concepts of
Kubernetes authorization. With the potential risks and
consequences at stake, it’s never been more important to ensure
the security of your Kubernetes deployment.

Problem
Security is a crucial concern when it comes to operating
applications. At the core of security are two essential concepts:
authentication and authorization.
Authentication focuses on identifying the subject, or who, of an
operation and preventing access by unauthorized actors.
Authorization, on the other hand, involves determining the
permissions for what actions are allowed on resources.
In this chapter, we will discuss authentication briefly, as it is
primarily an administrative concern that involves integrating various
identity-management techniques with Kubernetes. On the other



hand, developers are typically more concerned with authorization,
such as who can perform which operations in the cluster and access
specific parts of an application.
To secure access to their applications running on top of Kubernetes,
developers must consider a range of security strategies, from simple
web-based authentication to sophisticated single-sign-on scenarios
involving external providers for identity and access management. At
the same time, access control to the Kubernetes API server is also
an essential concern for applications running on Kubernetes.
Misconfigured access can lead to privilege escalation and
deployment failures. High-privilege deployments can access or
modify configuration and resources for other deployments,
increasing the risk of a cluster compromise.2 It is important for
developers to understand the authorization rules set up by
administrators and consider security when making configuration
changes and deploying new workloads to meet the organization-
wide policies in the Kubernetes cluster.
Furthermore, as more and more Kubernetes-native applications
extend the Kubernetes API and offer their services via
CustomResourceDefinitions (CRDs) to users, as described in
“Controller and Operator Classification”, access control becomes
even more critical. Kubernetes patterns like Chapter 27, “Controller”,
and Chapter 28, “Operator”, require high privileges to observe the
state of cluster-wide resources, making it crucial to have fine-
grained access management and restrictions in place to limit the
impact of any potential security breaches.

Solution
Every request to the Kubernetes API server has to pass through
three stages—Authentication, Authorization, and Admission Control,
as shown in Figure 26-1.



Figure 26-1. A request to the Kubernetes API server must pass through these
stages

Once a request passes the Authentication and Authorization stages
described in the following sections, a final check is done by
Admission controllers before the request is eventually processed.
Let’s look at these stages separately.

Authentication
As mentioned, we won’t go into too much detail about
authentication because it is mainly an administration concern. But
it’s good to know which options are available, so let’s have a look at
the pluggable authentication strategies Kubernetes has to offer that
an administrator can configure:
Bearer Tokens (OpenID Connect) with OIDC Authenticators

OpenID Connect (OIDC) Bearer Tokens can authenticate clients
and grant access to the API Server. OIDC is a standard protocol
that allows clients to authenticate with an OAuth2 provider that
supports OIDC. The client sends the OIDC token in the
Authorization header of their request, and the API Server
validates the token to allow access. For the entire flow, see the
Kubernetes documentation at OpenID Connect Tokens.
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Client certificates (X.509)
By using client certificates, the client presents a TLS certificate
to the API Server, which is then validated and used to grant
access.

Authenticating Proxy
This configuration option refers to using a custom authenticating
proxy to verify the client’s identity before granting access to the
API Server. The proxy acts as an intermediary between the client
and the API Server and performs authentication and
authorization checks before allowing access.

Static Token files
Tokens can also be stored in standard files and used for
authentication. In this approach, the client presents a token to
the API Server, which is then used to look up the token file and
search for a match.

Webhook Token Authentication
A webhook can authenticate clients and grant access to the API
Server. In this approach, the client sends a token in the
Authorization header of their request, and the API Server
forwards the token to a configured webhook for validation. The
client is granted access to the API Server if the webhook returns
a valid response. This technique is similar to the Bearer Token
option, except that you can use an external custom service for
performing the token validation.

Kubernetes allows you to use multiple authentication plugins
simultaneously, such as Bearer Tokens and Client certificates. If the
Bearer Token strategy authenticates a request, Kubernetes won’t
check the Client certificates, and vice versa. Unfortunately, the order



in which these strategies are evaluated is not fixed, so it’s
impossible to know which one will be checked first. When
evaluating the strategies, the process will stop after one is
successful, and Kubernetes will forward the request to the next
stage.
After authentication, the authorization process will begin.

Authorization
Kubernetes provides RBAC as a standard way to manage access to
the system. RBAC allows developers to control and execute actions
in a fine-grained manner. The authorization plugin in Kubernetes
also provides easy pluggability, allowing users to switch between
the default RBAC and other models, such as attribute-based access
control (ABAC), webhooks, or delegation to a custom authority.
The ABAC-based approach requires a file containing policies in a
JSON per-line format. However, this approach requires the server to
be reloaded for any changes, which can be a disadvantage. This
static nature is one of the reasons ABAC-based authorization is used
only in some cases.
Instead, nearly every Kubernetes cluster uses the default RBAC-
based access control, which we describe in great detail in “Role-
Based Access Control”.
Before we focus on authorization in the rest of this chapter, let’s
quickly look at the last stage performed by admission controllers.

Admission Controllers
Admission controllers are a feature of the Kubernetes API server
that allows you to intercept requests to the API server and take
additional actions based on those requests. For example, you can
use them to enforce policies, perform validations, and modify
incoming resources.

https://oreil.ly/xNBK8


Kubernetes uses Admission controller plugins for implementing
various functions. The functionality ranges from setting default
values on specific resources (like the default storage class on
persistent volumes), to validations (like the allowed resource limits
for Pods), by calling external web hooks.
These external webhooks can be configured with dedicated
resources and are used for validation
(ValidatingWebhookConfiguration) and updating
(MutatingWebhookConfiguration) API resources. The details of
configuring such webhooks are explained in detail in the Kubernetes
documentation “Dynamic Admission Control”.
We won’t go into more detail here as Admission controllers are
mostly an administrative concept, and many other good resources
describe Admission controllers in particular (see “More Information”
for some references).
Instead, for the remainder of the chapter, we will focus on the
authorization aspect and how we can configure a fine-grained
permission model for securing access to the Kubernetes API server.
As mentioned, authentication has two fundamental parts and
authorization: the who, represented by a subject that can be either
a human person or a workload identity, and the what, representing
the actions those subjects can trigger at the Kubernetes API server.
In the next section, we discuss the who before diving into the
details of the what.

Subject
A subject is all about the who, the identity associated with a
request to the Kubernetes API server. In Kubernetes, there are two
kinds of subjects, as shown in Figure 26-2: human users and service
accounts that represent the workload identity of Pods.

https://oreil.ly/JEBu6


Figure 26-2. Subject (user or service account) requests to API Server

Human users and ServiceAccounts can be separately grouped in
user groups and service account groups, respectively. Those groups
can act as a single subject in which all members of the group share



the same permission model. We will talk about groups later in this
chapter, but first, let’s look closely at how human users are
represented in the Kubernetes API.

Users
Unlike many other entities in Kubernetes, human users are not
defined as explicit resources in the Kubernetes API. This design
decision implies that you can’t manage users via an API call. The
authentication and mapping to a user subject happens outside the
usual Kubernetes API machinery by external user management.
As we have seen, Kubernetes supports many ways of authenticating
an external user. Each component knows how to extract the subject
information after successful authentication. Although this
mechanism is different for each authentication component, they will
eventually create the same user representation and add it to the
actual API request to verify by later stages, as shown in
Example 26-1.
Example 26-1. Representation of an external user after successful
authentication
alice,4bc01e30-406b-
4514,"system:authenticated,developers","scopes:openid"

This comma-separated list is a representation of the user and
contains the following parts:

The username (alice)

A unique user id (UID) (4bc01e30-406b-4514)

A list of groups that this user belongs to
(system:authenticated,developers)

Additional information as comma-separated key-value pairs
(scopes:openid)



This information is evaluated by the Authorization plugin against
the authorization rules associated with the user or via its
membership to a user group. In Example 26-1, a user with the
username alice has the default access associated with the group
system:authenticated and the group developers. The extra
information scope:openid indicates OIDC is being used to verify
the user’s identity.
Certain usernames are reserved for internal Kubernetes use and are
distinguished by the special prefix system:. For example, the
username system:anonymous represents anonymous requests to
the Kubernetes API server. It is recommended to avoid creating
your own users or groups with the system: prefix to avoid
conflicts. Table 26-1 lists the default usernames in Kubernetes that
are used when internal Kubernetes components communicate to
one another.



Table 26-1. Default usernames in Kubernetes

Username Purpose

system:anonymous Represents anonymous requests to the
Kubernetes API server

system:apiserver Represents the API server itself

system:kube-proxy Represents process identity of the
kube-proxy service

system:kube-controlle

r-manager

Represents the user agent of the
controller manager

system:kube-scheduler Represents the user of the scheduler

While the management and authentication of external users can
vary depending on the specific setup of a Kubernetes cluster, the
management of workload identities for Pods is a standardized part
of the Kubernetes API and is consistent across all clusters.

Service accounts
Service accounts in Kubernetes represent nonhuman actors within
the cluster and are used as workload identities. They are associated
with Pods and allow running processes inside a Pod to communicate
with the Kubernetes API Server. In contrast to the many ways that
Kubernetes can authenticate human users, service accounts always
use an OpenID Connect handshake and JSON Web Tokens to prove
their identity.
Service accounts in Kubernetes are authenticated by the API server
using a username in the following format:
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system:serviceaccount:<namespace>:<name>. For example,
if you have a service account, random-sa, in the default
namespace, the service account’s username would be
system:serviceaccount:default:random-sa.

JSON WEB TOKENS IN KUBERNETES
JSON Web Tokens (JWTs) are digitally signed tokens that carry a
payload. They consist of a header, payload, and signature and
are represented as a sequence of Base64 URL-encoded parts
separated by periods. Tools like jwt.io can decode, validate, and
inspect JWTs.
In the context of Kubernetes, JWTs are used as Bearer Tokens in
the Authorization HTTP header of API requests to specify
the identity of the workload making the request and additional
information, such as the expiration time or issuer. The
Kubernetes API server verifies the signature of the JWT by
comparing it with a public key published in a JSON Web Key Set
(JWKS). This process is governed by the JSON Web Key (JWK)
specification, which defines the cryptographic algorithms used in
the verification process in RFC 7517.
The tokens issued by Kubernetes contain helpful information in
the payload of the JWT, such as the issuer of the token, its
expiration time, all the user information described in
Example 26-1, and the associated service accounts (if any).

A ServiceAccount is a standard Kubernetes resource, as shown in
Example 26-2.
Example 26-2. ServiceAccount definition
apiVersion: v1
kind: ServiceAccount
metadata:
  name: random-sa                   
  namespace: default

https://jwt.io/
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automountServiceAccountToken: false 
...Name of the service account.

Flag indicating whether the service account token should be
mounted by default into a Pod. The default is set to true.

A ServiceAccount has a simple structure and serves all identity-
related information needed for a Pod when talking with the
Kubernetes API server. Every namespace has a default
ServiceAccount with the name default used to identify any Pod
that does not define an associated ServiceAccount.
Each ServiceAccount has a JWT associated with it that is fully
managed by the Kubernetes backend. A Pod’s associated
ServiceAccount’s token is automatically mounted into the filesystem
of each Pod. Example 26-3 shows the relevant part of a Pod
specification that Kubernetes has automatically added for every Pod
created.
Example 26-3. ServiceAccount token mounted as a file for a Pod
apiVersion: v1
kind: Pod
metadata:
  name: random
spec:
  serviceAccountName: default      
  containers:
    volumeMounts:
    - mountPath: 
/var/run/secrets/kubernetes.io/serviceaccount 
      name: kube-api-access-vzfp7  
      readOnly: true
  ...
  volumes:
  - name: kube-api-access-vzfp7
    projected:                     
      defaultMode: 420
      sources:
      - serviceAccountToken:
          expirationSeconds: 3600  



          path: token              
    ...

serviceAccountName to set the name of the service account
(serviceAccount is a deprecated alias for
serviceAccountName).
/var/run/secrets/kubernetes.io/serviceaccount is the directory
under which the service account token is mounted.
Kubernetes assigns a random Pod-unique name to the auto-
generated volume.
A projected volume injects the ServiceAccount token directly into
the filesystem.
Expiration time of the token in seconds. After this time, the
token expires, and the mounted token file is updated with a new
token.
The name of the file that will contain the token.

To view the mounted token, we can execute a cat on the mounted
file in the running Pod, as shown in Example 26-4.
Example 26-4. Print out the service account JWT (output is
shortened)
$ kubectl exec random -- \
     cat /var/run/secrets/kubernetes.io/serviceaccount/token
eyJhbGciOiJSUzI1NiIsImtpZCI6InVHYV9NZEVYOEZteUNUZFl...

In Example 26-3, the token is mounted into the Pod as a projected
volume. Projected volumes allow you to merge multiple volume
sources, such as Secret and ConfigMap volumes (described in
Chapter 20, “Configuration Resource”), into a single directory. With
this volume type, the ServiceAccount token can also be directly
mapped into the Pod’s filesystem using a serviceAccountToken
subtype. This method has several benefits, including reducing the
attack surface by eliminating the need for an intermediate
representation of the token and by providing the ability to set an
expiration time for the token, which the Kubernetes token controller
will rotate after it expires. Furthermore, the token injected into the
Pod will be valid only for the duration of the Pod’s existence, further



reducing the risk of unauthorized inspection of the service account’s
token.
Before Kubernetes 1.24, Secrets were used to represent these
tokens and were mounted directly with a secret volume type,
which had the disadvantage of long lifetimes and lack of rotation.
Thanks to the new projected volume type, the token is available
only to the Pod and is not exposed as an additional resource, which
reduces the attack surface. You can still create a Secret manually to
contain a ServiceAccount’s token, as demonstrated in Example 26-5.
Example 26-5. Create a Secret for ServiceAccount random-sa
apiVersion: v1
kind: Secret
type: kubernetes.io/service-account-token           
metadata:
  name: random-sa
  annotations:
    kubernetes.io/service-account.name: "random-sa" Special type to indicate that this Secret is about holding a

ServiceAccount.
Reference to ServiceAccount, whose token should be added.

Kubernetes will fill in the token and the public key for validation into
the secret. Also, the lifecycle of this Secret is now bound to the
ServiceAccount itself. If you delete the ServiceAccount, Kubernetes
will also delete this secret.
The ServiceAccount resource has two additional fields for specifying
credentials for pulling container images and defining the secrets
allowed to be mounted:
Image pull secrets

Image pull secrets allow a workload to authenticate with a
private registry when pulling images. Typically, you would need
to manually specify the pull secrets as part of the Pod
specification in the fields .spec.imagePullSecrets.



However, Kubernetes provides a shortcut by allowing you to
attach a pull secret directly to a ServiceAccount in the top-level
field imagePullSecrets. Every Pod associated with the
ServiceAccount will automatically have the pull secrets injected
into its specification when it is created. This automation
eliminates the need to manually include the image pull secrets
in the Pod specification every time a new Pod is created in the
namespace, reducing the manual effort required.

Mountable secrets
The secrets field in the ServiceAccount resource allows you to
specify which secrets a Pod associated with the ServiceAccount
can mount. You can enable this restriction by adding the
kubernetes.io/enforce-mountable-secrets annotation
to the ServiceAccount. If this annotation is set to true, only the
Secrets listed will be allowed to be mounted by Pods associated
with the ServiceAccount.

Groups
Both user and service accounts in Kubernetes can belong to one or
more groups. Groups are attached to requests by the authentication
system and are used to grant permissions to all group members. As
seen in Example 26-1, group names are plain strings that represent
the group name.
As mentioned earlier, groups can be freely defined and managed by
the identity provider to create groups of subjects with the same
permission model. A set of predefined groups in Kubernetes are also
implicitly defined and have a system: prefix in their name. These
predefined groups are listed in Table 26-2.
We will see how group names can be used in a RoleBinding to grant
permissions to all group members in “RoleBinding”.



Table 26-2. System groups in Kubernetes

Group Purpose

system:unauthenticat

ed

Group assigned to every
unauthenticated request

system:authenticated Group assigned to an authenticated user

system:masters Group whose members have
unrestricted access to the Kubernetes
API server

system:serviceaccoun

ts

Group with all ServiceAccounts of the
cluster

system:serviceaccoun

ts:<namespace>

Group with all ServiceAccounts of this
namespace

Now that you have a clear understanding of users, ServiceAccounts,
and groups, let’s examine how these subjects can be associated
with Roles that define the actions they are allowed to perform
against the Kubernetes API server.

Role-Based Access Control
In Kubernetes, Roles define the specific actions that a subject can
perform on particular resources. You can then assign these Roles to
subjects, such as users or service accounts, as described in
“Subject”, through the use of RoleBindings. Roles and RoleBindings
are Kubernetes resources that can be created and managed like any



other resource. They are tied to a specific namespace and apply to
its resources.
Figure 26-3 illustrates the relationship between subjects, Roles, and
RoleBindings.

Figure 26-3. Relationship between Role, RoleBinding, and subjects

In Kubernetes RBAC, it is important to understand that there is a
many-to-many relationship between subjects and Roles. This means
that a single subject can have multiple Roles, and a single Role can
be applied to multiple subjects. The relationship between a subject



and a Role is established using a RoleBinding, which contains
references to a list of subjects and a specific Role.
The RBAC concepts are best explained with a concrete example.
Example 26-6 shows the definition of a Role in Kubernetes.
Example 26-6. Role for allowing access to core resources
apiVersion: rbac.authorization.k8s.io/v1
kind: Role
metadata:
  name: developer-ro 
  namespace: default 
rules:
- apiGroups:
  - ""               
  resources:         
  - pods
  - services
  verbs:             
  - get
  - list
  - watchThe name of the Role, which is used to reference it.

Namespace to which this Role applies. Roles are always
connected to a namespace.
An empty string indicates the core API group.
List of Kubernetes core resources to which the rule applies.
API actions are represented by verbs allowed by subjects
associated with this Role.

The Role defined in Example 26-6 specifies that any user or service
account associated with this Role can perform read-only operations
on Pods and Services.
This Role can then be referenced in the RoleBinding shown in
Example 26-7 to grant access to both the user, alice, and the
ServiceAccount, contractor.



Example 26-7. RoleBinding specification
apiVersion: rbac.authorization.k8s.io/v1
kind: RoleBinding
metadata:
  name: dev-rolebinding
subjects:               
- kind: User            
  name: alice
  apiGroup: "rbac.authorization.k8s.io"
- kind: ServiceAccount  
  name: contractor
  apiGroup: ""
roleRef:
  kind: Role            
  name: developer-ro
  apiGroup: rbac.authorization.k8s.ioList of subjects to connect to a Role.

Human user reference for a user named alice.
Service account with name contractor.
Reference to the Role with the name developer-ro that has
been defined in Example 26-6.

Now that you have a basic understanding of the relationship
between subjects, Roles, and RoleBindings, let’s delve deeper into
the specifics of Roles and RoleBindings.

Role
Roles in Kubernetes allow you to define a set of permitted actions
for a group of Kubernetes resources or subresources. Typical
activities on Kubernetes resources include the following:

Getting Pods

Deleting Secrets

Updating ConfigMaps

Creating ServiceAccounts



You have already seen a Role in Example 26-6. Besides metadata,
such as names and namespaces, a Role definition consists of a list
of rules that describe which resources can be accessed.
Only one rule must match a request to grant access to this Role.
Three fields describe each rule:

apiGroups
This list is used rather than a single value because wildcards can
specify all resources of multiple API groups. For example, an
empty string ("") is used for the core API group, which contains
primary Kubernetes resources such as Pods and Services. A
wildcard character (*) can match all available API groups the
cluster is aware of.

resources
This list specifies the resources that Kubernetes should grant
access to. Each entry should belong to at least one of the
configured apiGroups. A single * wildcard entry means all
resources from all configured apiGroups are allowed.

verbs
Allowed actions in a system are defined using verbs that are
similar to HTTP methods. These verbs include CRUD operations
on resources (CRUD stands for Create-Read-Update-Delete and
describes the usual read-write operations that you can perform
on persistent entities), and separate actions for operations on
collections, such as list and deletecollection.
Additionally, a watch verb allows access to resource change
events and is separate from directly reading the resource with
get. This watch verb is crucial for operators to receive
notifications about the current status of resources they are
managing. Chapter 27, “Controller”, and Chapter 28, “Operator”,
has more on this topic. Table 26-3 lists the most common verbs.



Using the * wildcard character is also possible to allow all
operations on the configured resources for a given rule.

Table 26-3. Kubernetes verb mapping to HTTP
request methods for CRUD operations

Verbs HTTP request methods

get, watch, list GET

create POST

patch PATCH

update PUT

delete, delete collection DELETE

Wildcard permissions make it easier to define all operations without
listing each option individually. All of the properties of a Role’s rule
element allow for an * wildcard, which matches everything.
Example 26-8 allows for all operations on all resources in the core
and networking.k8s.io API group. If a wildcard is used, this list
should have only this wildcard as its single entry.
Example 26-8. Wildcard permission for resources and permitted
operations
rules:
- apiGroups:
  - ""
  - "networking.k8s.io"
  resources:
  - "*"  



  verbs:
  - "*"  All Resources in the listed API groups, core, and

networking.k8s.io.
All actions are allowed on those resources.

Wildcards help developers to configure rules quickly. But they come
with the security risk of privilege escalation. Such broader privileges
can cause security gaps and allow users to perform any operations
that can compromise the Kubernetes cluster or cause unwanted
changes.
Now that we have looked into the what (Roles) and who (subjects)
of the Kubernetes RBAC model, let’s have a closer look at how we
can combine both concepts with RoleBindings.

RoleBinding
In Example 26-7, we saw how RoleBindings link one or more
subjects to a given Role.
Each RoleBinding can connect a list of subjects to a Role. The
subjects list field takes resource references as elements. Those
resource references have a name field plus kind and apiGroup
fields for defining the resource type to reference.
A subject in a RoleBinding can be one of the following types:
User

A user is a human or system authenticated by the API server, as
described in “Users”. User entries have a fixed apiGroup value
of rbac.authorization.k8s.io.

Group
A group is a collection of users, as explained in “Groups”. As for
users, the group entries carry a
rbac.authorization.k8s.io as apiGroup.



ServiceAccount
We discussed ServiceAccount in depth in “Service accounts”.
ServiceAccounts belong to the core API Group that is
represented by an empty string (""). One unique aspect of
ServiceAccounts is that it is the only subject type that can also
carry a namespace field. This allows you to grant access to
Pods from other namespaces.

Table 26-4 summarizes the possible field values for entries in a
RoleBinding’s subject list.

Table 26-4. Possible types for an element subjects list in a RoleBin

Kind API Group Namespace Descrip

User rbac.authorization.k8s.io N/A name is a
referenc
user.

Group rbac.authorization.k8s.io N/A name is a
referenc
group o

ServiceAccount “” Optional name is a
referenc
ServiceA
resource
configur
namesp



The other end of a RoleBinding points to a single Role. This Role
can either be a Role resource within the same namespace as the
RoleBinding or a ClusterRole resource shared across multiple
bindings in the cluster. ClusterRoles are described in detail in
“ClusterRole”.
Similar to the subjects list, Role references are specified by name,
kind, and apiGroup. Table 26-5 shows the possible values for the
roleRef field.

Table 26-5. Possible types for a roleRef field in a RoleBinding

Kind API Group Description

Role rbac.authorization.k8s.io name is a reference to a
Role in the same
namespace.

ClusterRole rbac.authorization.k8s.io name is a reference to
cluster-wide
ClusterRole.



PRIVILEGE-ESCALATION PREVENTION
The RBAC subsystem is responsible for managing Roles and
RoleBindings (as well as ClusterRoles and ClusterRoleBindings).
To prevent privilege escalation, in which users with permissions
to control the RBAC resource elevate their permissions, the
following restrictions apply:

Users can update a Role only if they already have all the
permissions in that Role or if they have permission to use
the escalate verb on all resources in the
rbac.authorization.k8s API group.

For RoleBindings, a similar restriction applies: users must
have all the permissions granted in the referenced Role, or
they must have the bind verb allowance on the RBAC
resources.

More information about these restrictions and how they help
prevent privilege escalation can be found in the Kubernetes
documentation “Privilege Escalation Prevention and
Bootstrapping”.

ClusterRole
ClusterRoles in Kubernetes are similar to regular Roles but are
applied cluster-wide rather than to a specific namespace. They have
two primary uses:

Securing cluster-wide resources such as
CustomResourceDefinitions or StorageClasses. These resources
are typically managed at the cluster-admin level and require
additional access control. For example, developers may have
read access to these resources but need help writing to them.
ClusterRoleBindings are used to grant subjects access to
cluster-wide resources.

https://oreil.ly/Wua_7
https://oreil.ly/Wua_7


Defining typical Roles that are shared across namespaces. As
we saw in “RoleBinding”, RoleBindings can refer only to Roles
defined in the same namespace. ClusterRoles allow you to
define general-access control Roles (e.g., “view” for read-only
access to all resources) that can be used in multiple
RoleBindings.

Example 26-9 shows a ClusterRole that can be reused in multiple
RoleBindings. It has the same schema as a Role except that it
ignores any .meta.namespace field.

Example 26-9. ClusterRole
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
  name: view-pod 
rules:
- apiGroups:     
  - ""
  resources:
  - pods
  verbs:
  - get
  - listName of the ClusterRole but no namespace declaration.

Rule that allows reading operations on all Pods.

Figure 26-4 shows how a single ClusterRole can be shared across
multiple RoleBindings in different namespaces. In this example, the
ClusterRole allows the reading of Pods in the dev-1 and dev-2
namespaces by a ServiceAccount in the test namespace.



Figure 26-4. Sharing a ClusterRole in multiple namespaces

Using a single ClusterRole in multiple RoleBindings allows you to
create typical access-control schemes that can be easily reused. For
example, Table 26-6 includes a selection of useful user-facing
ClusterRoles that Kubernetes provides out of the box. You can view
the complete list of ClusterRoles available in a Kubernetes cluster



using the kubectl get clusterroles command, or refer to the
Kubernetes documentation for a list of default ClusterRoles.

Table 26-6. Standard user-facing ClusterRoles

ClusterRole Purpose

view Allows reading for most resources in a
namespace, except Role, RoleBinding, and Secret

edit Allows reading and modifying most resources in a
namespace, except Role and RoleBinding

admin Grants full control of all resources in a
namespace, including Role and RoleBinding

cluster-admi

n

Grants full control of all namespace resources,
including cluster-wide resources

Sometimes you may need to combine the permissions defined in
two ClusterRoles. One way to do this is to create multiple
RoleBindings that refer to both ClusterRoles. However, there is a
more elegant way to achieve this using aggregation.
To use aggregation, you can define a ClusterRole with an empty
rules field and a populated aggregationRule field containing a
list of label selectors. Then, the rules defined by every other
ClusterRole that has labels matching these selectors will be
combined and used to populate the rules field of the aggregated
ClusterRole.

https://oreil.ly/QklvQ


NOTE
When you set the aggregationRule field, you are handing ownership
of the rules field over to Kubernetes, which will fully manage it.
Therefore, any manual changes to the rules field will be constantly
overwritten with the aggregated rules from the selected ClusterRoles in
the aggregationRule.

This aggregation technique allows you to dynamically and elegantly
build up large rule sets by combining smaller, more focused
ClusterRoles.
Example 26-10 shows how the default view role uses aggregation
to pick up more specific ClusterRoles labeled with
rbac.authorization.k8s.io/aggregate-to-view. The
view role itself also has the label
rbac.authorization.k8s.io/aggregate-to-edit, which is
used by the edit role to include the aggregated rules from the
view ClusterRole.

Example 26-10. Aggregated ClusterRole
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
  name: view
  labels:
    rbac.authorization.k8s.io/aggregate-to-edit: "true"   
aggregationRule:
  clusterRoleSelectors:
  - matchLabels:
      rbac.authorization.k8s.io/aggregate-to-view: "true" 
rules: []  This label exposes the ClusterRole as eligible for inclusion in the

edit role.
All ClusterRoles that match this selector will be picked up for the
view ClusterRole. Note that this ClusterRole declaration does
not need to be changed if you want to add additional



permissions to the view ClusterRole—you can create a new
ClusterRole with the appropriate label.
The rules field will be managed by Kubernetes and populated
with the aggregated rules.

This technique allows you to quickly compose more specialized
ClusterRoles by aggregating a set of basic ClusterRoles.
Example 26-10 also demonstrates how aggregation can be nested
to build an inheritance chain of permission rule sets.
Since all of the user-facing default ClusterRoles use this aggregation
technique, you can quickly hook into the permission model of
custom resources (as described in Chapter 28, “Operator”) by
simply adding the aggregation-triggering labels of the standard
ClusterRoles (e.g., view, edit, and admin).

Now that we’ve covered the creation of a flexible and reusable
permission model using ClusterRoles and RoleBindings, the final
piece of the puzzle is establishing cluster-wide access rules with
ClusterRoleBindings.

ClusterRoleBinding
The schema for a ClusterRoleBinding is similar to that of a
RoleBinding, except that it ignores the namespace field. The rules
defined in a ClusterRoleBinding apply to all namespaces in the
cluster.
Example 26-11 shows a ClusterRoleBinding that connects a
ServiceAccount test-sa with the ClusterRole view-pod defined in
Example 26-9.
Example 26-11. ClusterRoleBinding
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
  name: test-sa-crb
subjects:             
- kind: ServiceAccount



  name: test-sa
  namespace: test
roleRef:              
  kind: ClusterRole
  name: view-pod
  apiGroup: rbac.authorization.k8s.ioConnects ServiceAccount test-sa from the test namespace.

Allows the rules from the ClusterRole view-pod for every
namespace.

The rules defined in the ClusterRole view-pod apply to all
namespaces in the cluster so that any Pod associated with the
ServiceAccount test-sa can read all Pods in every namespace,
which is illustrated in Figure 26-5. However, it is crucial to use
ClusterRoleBindings with caution, as they grant wide-ranging
permissions across the entire cluster. Therefore, it is recommended
that you carefully consider whether using a ClusterRoleBinding is
necessary.
Using a ClusterRoleBinding may be convenient as it automatically
grants permissions to newly created namespaces. However, using
individual RoleBindings per namespace is generally better for more
granular control over permissions. This extra effort allows you to
omit specific namespaces, such as kube-system, from
unauthorized access.



Figure 26-5. ClusterRoleBinding for reading all Pods

ClusterRoleBindings should be used only for administrative tasks,
such as managing cluster-wide resources like Nodes, Namespaces,
CustomResourceDefinitions, or even ClusterRoleBindings.
These final warnings conclude our tour through the world of
Kubernetes RBAC. This machinery is mighty, but it’s also complex to



understand and sometimes even more complicated to debug. The
following sidebar gives you some tips for better understanding a
given RBAC setup.



DEBUGGING RBAC RULES
In a Kubernetes cluster, many RBAC objects define the overall
security model for accessing the API server. Understanding the
authorization decisions made by the Kubernetes API server can
be challenging, but the Access Review API can help by allowing
you to query the authorization subsystem for permissions.
One way to use this API is through the kubectl auth can-i
command. For example, you can use it to check whether a
ServiceAccount named test-sa in the test namespace has
permission to list all pods in the dev-1 namespace. The
command would look like Example 26-12. This command will
return a simple “yes” or “no” indicating whether the
ServiceAccount has the specified permission.
Example 26-12. Check access permissions with kubectl
kubectl auth can-i \
    list pods --namespace dev-1 --as 
system:serviceaccount:test:test-sa

Behind the scenes, a resource of the type SubjectAccessReview
is created, and the Kubernetes authorization controller updates
the status section of this resource with the result of the
authorization check. You can read more about this API in the
Kubernetes RBAC documentation.
While kubectl auth can-i helps check specific permissions,
it can be tedious and does not provide a comprehensive
overview of a subject’s permissions across the cluster. To better
understand what actions a subject can perform on all resources,
tools like rakkess can be helpful. Rakkess is available as a
kubectl plugin and can be run with the command kubectl
access-matrix. It provides a matrix view of the actions a
subject can perform on specific resources.

https://oreil.ly/ZyONK
https://oreil.ly/Km5D3


Another tool to help visualize and verify the application of fine-
grained permissions is KubiScan, which allows you to scan a
Kubernetes cluster for risky permissions in the RBAC
configuration.

The final section will discuss some general tips for properly using
Kubernetes RBAC.

Discussion
Kubernetes RBAC is a powerful tool for controlling access to API
resources. However, it can be challenging to understand which
definition objects to use and how to combine them to fit a particular
security setup. Here are some guidelines to help you navigate these
decisions:

If you want to secure resources in a specific namespace, use a
Role with a RoleBinding that connects to a user or
ServiceAccount. The ServiceAccount does not have to be in the
same namespace, allowing you to grant access to Pods from
other namespaces.

If you want to reuse the same access rules in multiple
namespaces, use a RoleBinding with a ClusterRole that defines
these shared-access rules.

If you want to extend one or more existing predefined
ClusterRoles, create a new ClusterRole with an
aggregationRule field that refers to the ClusterRoles you
wish to extend, and add your permissions to the rules field.

If you want to grant a user or ServiceAccount access to all
resources of a specific kind in all namespaces, use a
ClusterRole and a ClusterRoleBinding.

https://oreil.ly/zL5a9


If you want to manage access to a cluster-wide resource like a
CustomResourceDefinition, use a ClusterRole and a
ClusterRoleBinding.

We have seen how RBAC allows us to define fine-grained
permissions and manage them. It can reduce risk by ensuring the
applied permission does not leave gaps for the escalation path. On
the other hand, defining any broad open permissions can lead to
security escalations. Let’s close this chapter with a summary of
some general RBAC advice:
Avoid wildcard permissions

We recommend following the principle of least privilege when
composing the fine-grained access control in the Kubernetes
cluster. To avoid unintentional operations, avoid wildcard
permissions when defining the Role and ClusterRoles. For rare
occasions, it might make sense to use wildcards (i.e., to secure
all resources of an API group), but it is a good practice to
establish a general “no wildcard” policy that could be relaxed for
well-reasoned exceptions.

Avoid cluster-admin ClusterRole
ServiceAccounts with high privileges can allow you to perform
actions over any resources, like modifying permissions or
viewing secrets in any namespace, which can lead to severe
security implications. Therefore, never assign the cluster-
admin ClusterRole to a Pod. Never.

Don’t automount ServiceAccount tokens
By default, tokens of ServiceAccounts are mounted within a
container’s filesystem at
/var/run/secrets/kubernetes.io/serviceaccount/token. If such a
Pod gets compromised, any attacker can talk with the API server
with the permissions of the Pod’s associated ServiceAccount.



However, many applications don’t need that token for business
operations. For such a use case, avoid the token mount by
setting the ServiceAccount’s field
automountServiceAccountToken to false.

Kubernetes RBAC is a flexible and powerful method for controlling
access to the Kubernetes API. Therefore, even if your application is
not directly interacting with the API Server to install your application
and connect it to other Kubernetes servers, Access Control is a
valuable pattern to secure the operation of your application.

More Information
Access Control Example

Escalation Paths

Controlling Access to the Kubernetes API

Auditing

Admission Controllers Reference

Dynamic Admission Control

Kubernetes: Authentication Strategies

RBAC Good Practices

Workload Creation

Bound Service Account Tokens

BIG Change in K8s 1.24 About ServiceAccounts and Their
Secrets

Efficient Detection of Changes

Add ImagePullSecrets to a Service Account

https://oreil.ly/GyIlq
https://oreil.ly/HHT3G
https://oreil.ly/BtTB9
https://oreil.ly/XgzNL
https://oreil.ly/QSqW8
https://oreil.ly/7oCSg
https://oreil.ly/hSISq
https://oreil.ly/h7XHg
https://oreil.ly/uC307
https://oreil.ly/bJVhD
https://oreil.ly/T22fJ
https://oreil.ly/T22fJ
https://oreil.ly/RdlPi
https://oreil.ly/jVXQN


RBAC Dev

Rakkess

How the Basics of Kubernetes Auth Scale for Organizations

Kubernetes CVE-2020-8559 Proof of Concept PoC Exploit

OAuth Is Not Authentication

1  See the blog post “Exposed Kubernetes Clusters”.

2  An attacker with escalated privileges on a node can compromise a full
Kubernetes cluster.

https://rbac.dev/
https://oreil.ly/fE1I_
https://oreil.ly/nAFu2
https://oreil.ly/BC6aO
https://oreil.ly/UVz7Y
https://oreil.ly/uGzr_
https://oreil.ly/h1YGJ


Part VI. Advanced Patterns

The patterns in this category cover more complex topics that do not
fit in any of the other categories. Some of the patterns here such as
Controller or Operator are timeless, and Kubernetes itself is built on
them. However, some of the other pattern implementations are still
evolving. To keep up with this, we will keep our online examples up
to date and reflect the latest developments in this space.
In the following chapters, we explore these advanced patterns:

Chapter 27, “Controller”, is essential to Kubernetes itself and
shows how custom controllers can extend the platform.

Chapter 28, “Operator”, combines a controller with custom
domain-specific resources to encapsulate operational
knowledge in an automated form.

Chapter 29, “Elastic Scale”, describes how Kubernetes can
handle dynamic loads by scaling in various dimensions.

Chapter 30, “Image Builder”, moves the aspect of building
application images onto the cluster itself.

https://oreil.ly/p5EwH


Chapter 27. Controller

A controller actively monitors and maintains a set of Kubernetes
resources in a desired state. The heart of Kubernetes itself consists
of a fleet of controllers that regularly watch and reconcile the
current state of applications with the declared target state. In this
chapter, we see how to leverage this Controller pattern to extend
the platform for our needs.

Problem
You’ve already seen that Kubernetes is a sophisticated and
comprehensive platform that provides many features out of the box.
However, it is a general-purpose orchestration platform that does
not cover all application use cases. Luckily, it provides natural
extension points where specific use cases can be implemented
elegantly on top of proven Kubernetes building blocks.
The main questions that arise here are how to extend Kubernetes
without changing and breaking it and how to use its capabilities for
custom use cases.
By design, Kubernetes is based on a declarative resource-centric
API. What exactly do we mean by declarative? As opposed to an
imperative approach, a declarative approach does not tell
Kubernetes how it should act but instead describes how the target
state should look. For example, when we scale up a Deployment,
we do not actively create new Pods by telling Kubernetes to “create
a new Pod.” Instead, we change the Deployment resource’s
replicas property via the Kubernetes API to the desired number.

So, how are the new Pods created? This is done internally by the
controllers. For every change in the resource status (like changing



the replicas property value of a Deployment), Kubernetes
creates an event and broadcasts it to all interested listeners. These
listeners can then react by modifying, deleting, or creating new
resources, which in turn creates other events, like Pod-created
events. These events are then potentially picked up again by other
controllers, which perform their specific actions.
The whole process is also known as state reconciliation, where a
target state (the number of desired replicas) differs from the current
state (the actual running instances), and it is the task of a controller
to reconcile and reach the desired target state again. When looked
at from this angle, Kubernetes essentially represents a distributed
state manager. You give it the desired state for a component
instance, and it attempts to maintain that state should anything
change.
How can we now hook into this reconciliation process without
modifying Kubernetes code and create a controller customized for
our specific needs?

Solution
Kubernetes comes with a collection of built-in controllers that
manage standard Kubernetes resources like ReplicaSets,
DaemonSets, StatefulSets, Deployments, or Services. These
controllers run as part of the controller manager, which is deployed
(as a standalone process or a Pod) on the control plane node.
These controllers are not aware of one another. They run in an
endless reconciliation loop, to monitor their resources for the actual
and desired state and to act accordingly to get the actual state
closer to the desired state.
However, in addition to these out-of-the-box controllers, the
Kubernetes event-driven architecture allows us to natively plug in
other custom controllers. Custom controllers can add extra
functionality to the behavior by reacting to state-changing events,



the same way that internal controllers do. A common characteristic
of controllers is that they are reactive and react to events in the
system to perform their specific actions. At a high level, this
reconciliation process consists of the following main steps:
Observe

Discover the actual state by watching for events issued by
Kubernetes when an observed resource changes.

Analyze
Determine the differences from the desired state.

Act
Perform operations to drive the actual state to the desired state.

For example, the ReplicaSet controller watches for ReplicaSet
resource changes, analyzes how many Pods need to be running, and
acts by submitting Pod definitions to the API Server. The Kubernetes
backend is then responsible for starting up the requested Pod on a
node.
Figure 27-1 shows how a controller registers itself as an event
listener for detecting changes on the managed resources. It
observes the current state and changes it by calling out to the API
Server to get closer to the target state (if necessary).



Figure 27-1. Observe-Analyze-Act cycle

Controllers are part of the Kubernetes control plane, and it became
clear early on that they would also allow you to extend the platform
with custom behavior. Moreover, they have become the standard
mechanism for extending the platform and enable complex
application lifecycle management. And as a result, a new
generation of more sophisticated controllers was born, called
Operators. From an evolutionary and complexity point of view, we
can classify the active reconciliation components into two groups:
Controllers

A simple reconciliation process that monitors and acts on
standard Kubernetes resources. More often, these controllers
enhance platform behavior and add new platform features.

Operators
A sophisticated reconciliation process that interacts with
CustomResourceDefinitions (CRDs), which are at the heart of the



Operator pattern. Typically, these operators encapsulate
complex application domain logic and manage the full
application lifecycle.

As stated previously, these classifications help introduce new
concepts gradually. Here, we focus on the simpler controllers, and in
Chapter 28, we introduce CRDs and build up to the Operator
pattern.
To avoid having multiple controllers acting on the same resources
simultaneously, controllers use the Singleton Service pattern
explained in Chapter 10. Most controllers are deployed just as
Deployments but with one replica, as Kubernetes uses optimistic
locking at the resource level to prevent concurrency issues when
changing resource objects. In the end, a controller is nothing more
than an application that runs permanently in the background.
Because Kubernetes itself is written in Go, and a complete client
library for accessing Kubernetes is also written in Go, many
controllers are written in Go too. However, you can write controllers
in any programming language by sending requests to the
Kubernetes API Server. We see a controller written in a pure shell
script later in Example 27-1.
The most straightforward kind of controllers extend the way
Kubernetes manages its resources. They operate on the same
standard resources and perform similar tasks as the Kubernetes
internal controllers operating on the standard Kubernetes resources,
but they are invisible to the user of the cluster. Controllers evaluate
resource definitions and conditionally perform some actions.
Although they can monitor and act upon any field in the resource
definition, metadata and ConfigMaps are most suitable for this
purpose. The following are a few considerations to keep in mind
when choosing where to store controller data:
Labels



Labels as part of a resource’s metadata can be watched by any
controller. They are indexed in the backend database and can be
efficiently searched for in queries. We should use labels when a
selector-like functionality is required (e.g., to match Pods of a
Service or a Deployment). A limitation of labels is that only
alphanumeric names and values with restrictions can be used.
See the Kubernetes documentation for which syntax and
character sets are allowed for labels.

Annotations
Annotations are an excellent alternative to labels. They have to
be used instead of labels if the values do not conform to the
syntax restrictions of label values. Annotations are not indexed,
so we use annotations for nonidentifying information not used as
keys in controller queries. Preferring annotations over labels for
arbitrary metadata also has the advantage that it does not
negatively impact the internal Kubernetes performance.

ConfigMaps
Sometimes controllers need additional information that does not
fit well into labels or annotations. In this case, ConfigMaps can
be used to hold the target state definition. These ConfigMaps
are then watched and read by the controllers. However, CRDs
are much better suited for designing the custom target state
specification and are recommended over plain ConfigMaps. For
registering CRDs, however, you need elevated cluster-level
permissions. If you don’t have these, ConfigMaps are still the
best alternative to CRDs. We will explain CRDs in detail in
Chapter 28, “Operator”.

Here are a few reasonably simple example controllers you can study
as a sample implementation of this pattern:
jenkins-x/exposecontroller



This controller watches Service definitions, and if it detects an
annotation named expose in the metadata, the controller
automatically exposes an Ingress object for external access of
the Service. It also removes the Ingress object when someone
removes the Service. This project is now archived but still serves
as a good example of implementing a simple controller.

stakater/Reloader
This is a controller that watches ConfigMap and Secret objects
for changes and performs rolling upgrades of their associated
workloads, which can be Deployment, DaemonSet, StatefulSet
and other workload resources. We can use this controller with
applications that are not capable of watching the ConfigMap and
updating themselves with new configurations dynamically. That
is particularly true when a Pod consumes this ConfigMap as
environment variables or when your application cannot quickly
and reliably update itself on the fly without a restart. As a proof
of concept, we implement a similar controller with a plain shell
script in Example 27-2.

Flatcar Linux Update Operator
This is a controller that reboots a Kubernetes node running on
Flatcar Container Linux when it detects a particular annotation
on the Node resource object.

Now let’s take a look at a concrete example: a controller that
consists of a single shell script and that watches the Kubernetes API
for changes on ConfigMap resources. If we annotate such a
ConfigMap with k8spatterns.io/podDeleteSelector, all Pods
selected with the given label selector are deleted when the
ConfigMap changes. Assuming we back these Pods with a high-order
resource like Deployment or ReplicaSet, these Pods are restarted
and pick up the changed configuration.

https://oreil.ly/URMaE
https://oreil.ly/YUGPG
https://oreil.ly/f8_FY


For example, the following ConfigMap would be monitored by our
controller for changes and would restart all Pods that have a label
app with value webapp. The ConfigMap in Example 27-1 is used in
our web application to provide a welcome message.
Example 27-1. ConfigMap use by web application
apiVersion: v1
kind: ConfigMap
metadata:
  name: webapp-config
  annotations:
    k8spatterns.io/podDeleteSelector: "app=webapp"  
data:
  message: "Welcome to Kubernetes Patterns !"Annotation used as selector for the controller in Example 27-2 to

find the application Pods to restart.

Our controller shell script now evaluates this ConfigMap. You can
find the source in its full glory in our Git repository. In short, the
controller starts a hanging GET HTTP request for opening an
endless HTTP response stream to observe the lifecycle events
pushed by the API Server to us. These events are in the form of
plain JSON objects, which are then analyzed to detect whether a
changed ConfigMap carries our annotation. As events arrive, the
controller acts by deleting all Pods matching the selector provided
as the value of the annotation. Let’s have a closer look at how the
controller works.
The main part of this controller is the reconciliation loop, which
listens on ConfigMap lifecycle events, as shown in Example 27-2.
Example 27-2. Controller script
namespace=${WATCH_NAMESPACE:-default}  

base=http://localhost:8001             
ns=namespaces/$namespace

curl -N -s $base/api/v1/${ns}/configmaps?watch=true | \
while read -r event                    



do
   # ...
doneNamespace to watch (or default if not given).

Access to the Kubernetes API via a proxy running in the same
Pod.
Loop with watches for events on ConfigMaps.

The environment variable WATCH_NAMESPACE specifies the
namespace in which the controller should watch for ConfigMap
updates. We can set this variable in the Deployment descriptor of
the controller itself. In our example, we’re using the Downward API
described in Chapter 14, “Self Awareness”, to monitor the
namespace in which we have deployed the controller as configured
in Example 27-3 as part of the controller Deployment.
Example 27-3. WATCH_NAMESPACE extracted from the current
namespace
env:
 - name: WATCH_NAMESPACE
   valueFrom:
     fieldRef:
       fieldPath: metadata.namespace

With this namespace, the controller script constructs the URL to the
Kubernetes API endpoint to watch the ConfigMaps.

NOTE
Note the watch=true query parameter in Example 27-2. This
parameter indicates to the API Server not to close the HTTP connection
but to send events along the response channel as soon as they happen
(hanging GET or Comet are other names for this kind of technique).
The loop reads every individual event as it arrives as a single item to
process.



As you can see, our controller contacts the Kubernetes API Server
via localhost. We won’t deploy this script directly on the Kubernetes
API control plane node, but then how can we use localhost in the
script? As you may have probably guessed, another pattern kicks in
here. We deploy this script in a Pod together with an ambassador
container that exposes port 8001 on localhost and proxies it to the
real Kubernetes Service. See Chapter 18 for more details on the
Ambassador pattern. We see the actual Pod definition with this
ambassador in detail later in this chapter.
Watching events this way is not very robust, of course. The
connection can stop anytime, so there should be a way to restart
the loop. Also, one could miss events, so production-grade
controllers should not only watch on events but from time to time
should also query the API Server for the entire current state and use
that as the new base. For the sake of demonstrating the pattern,
this is good enough.
Within the loop, the logic shown in Example 27-4 is performed.
Example 27-4. Controller reconciliation loop
curl -N -s $base/api/v1/${ns}/configmaps?watch=true | \
while read -r event
do
  type=$(echo "$event"        | jq -r '.type')                

  config_map=$(echo "$event"  | jq -r 
'.object.metadata.name')
  annotations=$(echo "$event" | jq -r 
'.object.metadata.annotations')

  if [ "$annotations" != "null" ]; then
    selector=$(echo $annotations | \                          

     jq -r "\
        to_entries                                           
|\
        .[]                                                  
|\



        select(.key == \"k8spatterns.io/podDeleteSelector\") 
|\
        .value                                               
|\
         @uri                                                 
\
     ")
  fi

  if [ $type = "MODIFIED" ] && [ -n "$selector" ]; then       

    pods=$(curl -s $base/api/v1/${ns}/pods?
labelSelector=$selector |\
           jq -r .items[].metadata.name)

    for pod in $pods; do                                      

      curl -s -X DELETE $base/api/v1/${ns}/pods/$pod
    done
  fi
doneExtract the type and name of the ConfigMap from the event.

Extract all annotations on the ConfigMap with the key
k8spatterns.io/podDeleteSelector. See the following
sidebar for an explanation of this jq expression.
If the event indicates an update of the ConfigMap and our
annotation is attached, then find all Pods matching this label
selector.
Delete all Pods that match the selector.

First, the script extracts the event type that specifies what action
happened to the ConfigMap. Then, we derive the annotations with
jq. jq is an excellent tool for parsing JSON documents from the
command line, and the script assumes it is available in the
container the script is running in.
If the ConfigMap has annotations, we check for the annotation
k8spatterns.io/podDeleteSelector by using a more
complex jq query. The purpose of this query is to convert the
annotation value to a Pod selector that can be used in an API query

https://oreil.ly/e57Xi


option in the next step: an annotation
k8spatterns.io/podDeleteSelector: "app=webapp" is
transformed to app%3Dwebapp that is used as a Pod selector. This
conversion is performed with jq and is explained next if you are
interested in how this extraction works.
If the script can extract a selector, we can now use it directly to
select the Pods to delete. First, we look up all Pods that match the
selector, and then we delete them one by one with direct API calls.
This shell script-based controller is, of course, not production-grade
(e.g., the event loop can stop any time), but it nicely reveals the
base concepts without too much boilerplate code for us.



SOME JQ FU
Extracting the ConfigMap’s
k8spatterns.io/podDeleteSelector annotation value
and converting it to a Pod selector is performed with jq. This is
an excellent JSON command-line tool, but some concepts can be
a bit confusing. Let’s have a close look at how the expressions
work in detail:

selector=$(echo $annotations | \
   jq -r "\
    to_entries                                           
|\
    .[]                                                  
|\
    select(.key == 
\"k8spatterns.io/podDeleteSelector\") |\
    .value                                               
|\
     @uri                                                 
\
 ")

$annotations holds all annotations as a JSON object,
with annotation names as properties.

With to_entries, we convert a JSON object like { "a":
"b"} into an array with entries like { "key": "a",
"value": "b" }. See the jq documentation for more
details.

.[] selects the array entries individually.

From these entries, we pick only the ones with the
matching key. There can be only zero or one matches that
survive this filter.

https://oreil.ly/c3c6b


Finally, we extract the value (.value) and convert it with
@uri so that it can be used as part of a URI.

This expression converts a JSON structure such as

{
  "k8spatterns.io/pattern": "Controller",
  "k8spatterns.io/podDeleteSelector": "app=webapp"
}

to a selector, app%3Dwebapp.

The remaining work is about creating resource objects and
container images. The controller script itself is stored in a
ConfigMap config-watcher-controller, and can be easily
edited later if required.
We use a Deployment to create a Pod for our controller with two
containers:

One Kubernetes API ambassador container that exposes the
Kubernetes API on localhost on port 8001. The image
k8spatterns/kubeapi-proxy is an Alpine Linux with a local
kubectl installed and kubectl proxy started with the
proper CA and token mounted. The original version, kubectl-
proxy, was written by Marko Lukša, who introduced this proxy
in Kubernetes in Action.

The main container that executes the script contained in the
just-created ConfigMap. Here, we use an Alpine base image
with curl and jq installed.

You can find the Dockerfiles for the k8spatterns/kubeapi-
proxy and k8spatterns/curl-jq images in the example Git
repository.
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Now that we have the images for our Pod, the final step is to deploy
the controller by using a Deployment. We can see the main parts of
the Deployment in Example 27-5 (the full version is available in our
example repository).
Example 27-5. Controller Deployment
apiVersion: apps/v1
kind: Deployment
# ....
spec:
  template:
    # ...
    spec:
      serviceAccountName: config-watcher-controller 
      containers:
      - name: kubeapi-proxy                         
        image: k8spatterns/kubeapi-proxy
      - name: config-watcher                        
        image: k8spatterns/curl-jq
        # ...
        command:                                    
        - "sh"
        - "/watcher/config-watcher-controller.sh"
        volumeMounts:                               
        - mountPath: "/watcher"
          name: config-watcher-controller
      volumes:
      - name: config-watcher-controller             
        configMap:
          name: config-watcher-controllerServiceAccount with proper permissions for watching events and

restarting Pods.
Ambassador container for proxying localhost to the Kubeserver
API.
Main container holding all tools and mounting the controller
script.
Startup command calling the controller script.
Volume mapped to the ConfigMap holding our script.
Mount of the ConfigMap-backed volume into the main Pod.



As you can see, we mount the config-watcher-controller-
script from the ConfigMap we created previously and directly use
it as the startup command for the primary container. For simplicity,
we omitted any liveness and readiness checks as well as resource
limit declarations. Also, we need a ServiceAccount config-
watcher-controller that is allowed to monitor ConfigMaps.
Refer to the example repository for the full security setup.
Let’s see the controller in action. For this, we are using a
straightforward web server, which serves the value of an
environment variable as the only content. The base image uses
plain nc (netcat) for serving the content. You can find the Dockerfile
for this image in the example repository. We deploy the HTTP
server with a ConfigMap and Deployment, as is sketched in
Example 27-6.
Example 27-6. Sample web app with Deployment and ConfigMap
apiVersion: v1
kind: ConfigMap                                    
metadata:
  name: webapp-config
  annotations:
    k8spatterns.io/podDeleteSelector: "app=webapp" 
data:
  message: "Welcome to Kubernetes Patterns !"      
---
apiVersion: apps/v1
kind: Deployment                                   
# ...
spec:
  # ...
  template:
    spec:
      containers:
      - name: app
        image: k8spatterns/mini-http-server        
        ports:
        - containerPort: 8080
        env:



        - name: MESSAGE                            
          valueFrom:
            configMapKeyRef:
              name: webapp-config
              key: messageConfigMap for holding the data to serve.

Annotation that triggers a restart of the web app’s Pod.
Message used in web app in HTTP responses.
Deployment for the web app.
Simplistic image for HTTP serving with netcat.
Environment variable used as an HTTP response body and
fetched from the watched ConfigMap.

This concludes our example of our ConfigMap controller
implemented in a plain shell script. Although this is probably the
most complex example in this book, it also shows that it does not
take much to write a basic controller.
Obviously, for real-world scenarios, you would write this sort of
controller in a real programming language that provides better
error-handling capabilities and other advanced features.

Discussion
To sum up, a controller is an active reconciliation process that
monitors objects of interest for the world’s desired state and the
world’s actual state. Then, it sends instructions to try to change the
world’s current state to be more like the desired state. Kubernetes
uses this mechanism with its internal controllers, and you can also
reuse the same mechanism with custom controllers. We
demonstrated what is involved in writing a custom controller and
how it functions and extends the Kubernetes platform.
Controllers are possible because of the highly modular and event-
driven nature of the Kubernetes architecture. This architecture
naturally leads to a decoupled and asynchronous approach for
controllers as extension points. The significant benefit here is that
we have a precise technical boundary between Kubernetes itself



and any extensions. However, one issue with the asynchronous
nature of controllers is that they are often hard to debug because
the flow of events is not always straightforward. As a consequence,
you can’t easily set breakpoints in your controller to stop everything
to examine a specific situation.
In Chapter 28, you’ll learn about the related Operator pattern,
which builds on this Controller pattern and provides an even more
flexible way to configure operations.

More Information
Controller Example

Writing Controllers

Writing a Kubernetes Controller

A Deep Dive into Kubernetes Controllers
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Reloader: ConfigMap Controller
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Chapter 28. Operator

An operator is a controller that uses a CRD to encapsulate
operational knowledge for a specific application in an algorithmic
and automated form. The Operator pattern allows us to extend the
Controller pattern from the preceding chapter for more flexibility
and greater expressiveness.

Problem
You learned in Chapter 27, “Controller”, how to extend the
Kubernetes platform in a simple and decoupled way. However, for
extended use cases, plain custom controllers are not powerful
enough, as they are limited to watching and managing Kubernetes
intrinsic resources only. Moreover, sometimes we want to add new
concepts to the Kubernetes platform, which requires additional
domain objects. For example, let’s say we chose Prometheus as our
monitoring solution and want to add it as a monitoring facility to
Kubernetes in a well-defined way. Wouldn’t it be wonderful to have
a Prometheus resource describing our monitoring setup and all the
deployment details, similar to how we define other Kubernetes
resources? Moreover, could we have resources relating to services
we have to monitor (e.g., with a label selector)?
These situations are precisely the kind of use cases where
CustomResourceDefinition (CRD) resources are very helpful. They
allow extensions of the Kubernetes API, by adding custom resources
to your Kubernetes cluster and using them as if they were native
resources. Custom resources, together with a controller acting on
these resources, form the Operator pattern.
This quote by Jimmy Zelinskie probably describes the characteristics
of operators best:

https://oreil.ly/bFEU-


An operator is a Kubernetes controller that understands two
domains: Kubernetes and something else. By combining
knowledge of both areas, it can automate tasks that usually
require a human operator that understands both domains.

Solution
As you saw in Chapter 27, “Controller”, we can efficiently react to
state changes of default Kubernetes resources. Now that you
understand one half of the Operator pattern, let’s have a look at the
other half—representing custom resources on Kubernetes using CRD
resources.

Custom Resource Definitions
With a CRD, we can extend Kubernetes to manage our domain
concepts on the Kubernetes platform. Custom resources are
managed like any other resource, through the Kubernetes API, and
are eventually stored in the backend store etcd.
The preceding scenario is actually implemented with these new
custom resources by the CoreOS Prometheus operator to allow
seamless integration of Prometheus to Kubernetes. The Prometheus
CRD is defined in Example 28-1, which also explains most of the
available fields for a CRD.
Example 28-1. CustomResourceDefinition
apiVersion: apiextensions.k8s.io/v1
kind: CustomResourceDefinition
metadata:
  name: prometheuses.monitoring.coreos.com 
spec:
  group: monitoring.coreos.com             
  names:
    kind: Prometheus                       
    plural: prometheuses                   
  scope: Namespaced                        



  versions:                                
  - name: v1                               
    storage: true                          
    served: true                           
    schema:
      openAPIV3Schema: ....                Name.

API group it belongs to.
Kind used to identify instances of this resource.
Naming rule for creating the plural form, used for specifying a
list of those objects.
Scope—whether the resource can be created cluster-wide or is
specific to a namespace.
Versions available for this CRD.
Name of a supported version.
Exactly one version has to be the storage version used for
storing the definition in the backend.
Whether this version is served via the REST API.
OpenAPI V3 schema for validation (not shown here).

An OpenAPI V3 schema can also be specified to allow Kubernetes to
validate a custom resource. For simple use cases, this schema can
be omitted, but for production-grade CRDs, the schema should be
provided so that configuration errors can be detected early.
Additionally, Kubernetes allows us to specify two possible
subresources for our CRD via the spec field subresources:1

scale
With this property, a CRD can specify how it manages its replica
count. This field can be used to declare the JSON path, where
the number of desired replicas of this custom resource is
specified: the path to the property that holds the actual number
of running replicas and an optional path to a label selector that
can be used to find copies of custom resource instances. This
label selector is usually optional but is required if you want to
use this custom resource with the HorizontalPodAutoscaler
explained in Chapter 29, “Elastic Scale”.



status
When this property is set, a new API call becomes available that
allows you to update only the status field of a resource. This
API call can be secured individually and allows the operator to
reflect the actual status of the resource, which might differ from
the declared state in the spec field. When a custom resource is
updated as a whole, any sent status section is ignored, as is
the case with standard Kubernetes resources.

Example 28-2 shows a potential subresource path as is also used for
a regular Pod.
Example 28-2. Subresource definition for a
CustomResourceDefinition
kind: CustomResourceDefinition
# ...
spec:
  subresources:
    status: {}
    scale:
      specReplicasPath: .spec.replicas         
      statusReplicasPath: .status.replicas     
      labelSelectorPath: .status.labelSelector JSON path to the number of declared replicas.

JSON path to the number of active replicas.
JSON path to a label selector to query for the number of active
replicas.

Once we define a CRD, we can easily create such a resource, as
shown in Example 28-3.
Example 28-3. A Prometheus custom resource
apiVersion: monitoring.coreos.com/v1
kind: Prometheus
metadata:
  name: prometheus
spec:



  serviceMonitorSelector:
    matchLabels:
      team: frontend
  resources:
    requests:
      memory: 400Mi

The metadata section has the same format and validation rules as
any other Kubernetes resource. The spec contains the CRD-specific
content, and Kubernetes validates against the given validation rule
from the CRD.
Custom resources alone are not of much use without an active
component to act on them. To give them some meaning, we need
again our well-known controller, which watches the lifecycle of
these resources and acts according to the declarations found within
the resources.

Controller and Operator Classification
Before we dive into writing our operator, let’s look at a few kinds of
classifications for controllers, operators, and especially CRDs. Based
on the operator’s action, broadly, the classifications are as follows:
Installation CRDs

Meant for installing and operating applications on the
Kubernetes platform. Typical examples are the Prometheus
CRDs, which we can use for installing and managing Prometheus
itself.

Application CRDs
In contrast, these are used to represent an application-specific
domain concept. This kind of CRD allows applications deep
integration with Kubernetes, which involves combining
Kubernetes with an application-specific domain behavior. For
example, the ServiceMonitor CRD is used by the Prometheus



operator to register specific Kubernetes Services to be scraped
by a Prometheus server. The Prometheus operator takes care of
adapting the Prometheus server configuration accordingly.

NOTE
Note that an operator can act on different kinds of CRDs as the
Prometheus operator does in this case. The boundary between these
two categories of CRDs is blurry.

In our categorization of controller and operator, an operator is-a
controller that uses CRDs.2 However, even this distinction is a bit
fuzzy as there are variations in between.
One example is a controller, which uses a ConfigMap as a kind of
replacement for a CRD. This approach makes sense in scenarios
where default Kubernetes resources are not enough but creating
CRDs is not feasible either. In this case, ConfigMap is an excellent
middle ground, allowing encapsulation of domain logic within the
content of a ConfigMap. An advantage of using a plain ConfigMap is
that you don’t need to have the cluster-admin rights you need when
registering a CRD. In certain cluster setups, it is just not possible for
you to register such a CRD (e.g., when running on public clusters
like OpenShift Online).
However, you can still use the concept of Observe-Analyze-Act when
you replace a CRD with a plain ConfigMap that you use as your
domain-specific configuration. The drawback is that you don’t get
essential tool support like kubectl get for CRDs; you have no
validation on the API Server level and no support for API versioning.
Also, you don’t have much influence on how you model the status
field of a ConfigMap, whereas for a CRD, you are free to define your
status model as you wish.3



Another advantage of CRDs is that you have a fine-grained
permission model based on the kind of CRD, which you can tune
individually, as is explained in Chapter 26, “Access Control”. This
kind of RBAC security is not possible when all your domain
configuration is encapsulated in ConfigMaps, as all ConfigMaps in a
namespace share the same permission setup.
From an implementation point of view, it matters whether we
implement a controller by restricting its usage to vanilla Kubernetes
objects or whether we have custom resources managed by the
controller. In the former case, we already have all types available in
the Kubernetes client library of our choice. For the CRD case, we
don’t have the type information out of the box, and we can either
use a schemaless approach for managing CRD resources or define
the custom types on our own, possibly based on an OpenAPI
schema contained in the CRD definition. Support for typed CRDs
varies by client library and framework used.
Figure 28-1 shows our controller and operator categorization
starting from simpler resource definition options to more advanced
with the boundary between controller and operator being the use of
custom resources.



Figure 28-1. Spectrum of controllers and operators



For operators, there is even a more advanced Kubernetes extension
hook option. When Kubernetes-managed CRDs are not sufficient to
represent a problem domain, you can extend the Kubernetes API
with its own aggregation layer. We can add a custom-implemented
APIService resource as a new URL path to the Kubernetes API.

To connect a Service that is backed by a Pod with the APIService,
you can use a resource like that shown in Example 28-4.
Example 28-4. API aggregation with a custom APIService
apiVersion: apiregistration.k8s.io/v1beta1
kind: APIService
metadata:
  name: v1alpha1.sample-api.k8spatterns.io
spec:
  group: sample-api.k8spattterns.io
  service:
    name: custom-api-server
  version: v1alpha1

Besides the Service and Pod implementation, we need some
additional security configuration for setting up the ServiceAccount
under which the Pod is running.
After it is set up, every request to the API Server https://<api
server ip>/apis/sample-
api.k8spatterns.io/v1alpha1/namespaces/<ns>/... is
directed to our custom Service implementation. It’s up to this
custom Service implementation to handle these requests, including
persisting the resources managed via this API. This approach is
different from the preceding CRD case, where Kubernetes itself
completely manages the custom resources.
With a custom API Server, you have many more degrees of
freedom, which allows you to go beyond watching resource lifecycle
events. On the other hand, you also have to implement much more
logic, so for typical use cases, an operator dealing with plain CRDs
is often good enough.



A detailed exploration of the API Server capabilities is beyond the
scope of this chapter. The official documentation as well as a
complete sample-apiserver have more detailed information. Also,
you can use the apiserver-builder library, which helps with
implementing API Server aggregation.
Now, let’s see how you can develop and deploy operators with
CRDs.

Operator Development and Deployment
Several toolkits and frameworks are available for developing
operators. The three main projects aiding in the creation of
operators are as follows:

Kubebuilder developed under the SIG API Machinery of
Kubernetes itself

Operator Framework, a CNCF project

Metacontroller from Google Cloud Platform

We touch on each of these very briefly to give you a good starting
point for developing and maintaining your own Operators.

Kubebuilder

Kubebuilder, a project by the SIG API Machinery,4 is a framework
and library for creating Kubernetes APIs via
CustomResourceDefinitions.
It comes with outstanding documentation that also covers general
aspects for programming Kubernetes. Kubebuilder’s focus is on
creating Golang-based operators by adding higher-level abstractions
on top of the Kubernetes API to remove some of the overhead. It
also offers scaffolding of new projects and supports multiple CRDs
that can be watched by a single operator. Other projects can
consume Kubebuilder as a library, and it also offers a plugin
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architecture to extend the support to languages and platforms
beyond Golang. For programming against the Kubernetes API,
Kubebuilder is an excellent starting point.

Operator framework
The Operator Framework provides extensive support for developing
operators. It offers several subcomponents:

The Operator SDK provides a high-level API for accessing a
Kubernetes cluster and a scaffolding to start an operator
project.

The Operator Lifecycle Manager manages the release and
updates of operators and their CRDs. You can think of it as a
kind of “operator operator.”

Operator Hub is a publicly available catalog of operators
dedicated to sharing operators built by the community.



NOTE
In the first edition of this book in 2019, we mentioned the high feature
overlap of Kubebuilder and the Operator-SDK, and we speculated that
both projects might eventually merge. It turned out that instead of a
full merge, a different strategy was chosen by the community: all the
overlapping parts have been moved to Kubebuilder, and the Operator-
SDK uses Kubebuilder now as a dependency. This move is a good
example of the power and self-healing effect of community-driven open
source projects. The article “What Are the Differences Between
Kubebuilder and Operator-SDK?” contains more information about the
relationship between Kubebuilder and the Operator-SDK. The Operator-
SDK offers everything needed for developing and maintaining
Kubernetes operators. It is built on top of Kubebuilder and uses it
directly for scaffolding and managing operators written in Golang.
Beyond that, it benefits from Kubebuilder’s plugin system for creating
operators based on other technologies. As of 2023, the Operator-SDK
provides plugins for creating operators based on Ansible playbooks or
Helm Charts and Java-based operators that use a Quarkus runtime.
When scaffolding a project, the SDK also adds the appropriate hooks
for integration with the Operator Lifecycle Manager and the Operator
Hub.

The Operator Lifecycle Manager (OLM) provides valuable help when
using operators. One issue with CRDs is that these resources can be
registered only cluster-wide and require cluster-admin permissions.
While regular Kubernetes users can typically manage all aspects of
the namespaces they have granted access to, they can’t just use
operators without interaction with a cluster administrator.
To streamline this interaction, the OLM is a cluster service running
in the background under a service account with permission to install
CRDs. A dedicated CRD called ClusterServiceVersion (CSV) is
registered along with the OLM and allows us to specify the
Deployment of an operator together with references to the CRD
definitions associated with this operator. As soon as we have
created such a CSV, one part of the OLM waits for that CRD and all
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its dependent CRDs to be registered. If this is the case, the OLM
deploys the operator specified in the CSV. Then, another part of the
OLM can be used to register these CRDs on behalf of a
nonprivileged user. This approach is an elegant way to allow regular
cluster users to install their operators.
Operators can be easily published at the Operator Hub. Operator
Hub makes it easy to discover and install operators. The metadata-
like name, icon, description, and more is extracted from the
operator’s CSV and rendered in a friendly web UI. Operator Hub also
introduces the concept of channels that allow you to provide
different streams like “stable” or “alpha,” to which users can
subscribe for automatic updates of various maturity levels.

Metacontroller
Metacontroller is very different from the other two operator building
frameworks as it extends Kubernetes with APIs that encapsulate the
common parts of writing custom controllers. It acts similarly to
Kubernetes Controller Manager by running multiple controllers that
are not hardcoded but are defined dynamically through
Metacontroller-specific CRDs. In other words, it’s a delegating
controller that calls out to the service providing the actual controller
logic.
Another way to describe Metacontroller is as declarative behavior.
While CRDs allow us to store new types in Kubernetes APIs,
Metacontroller makes it easy to define the behavior for standard or
custom resources declaratively.
When we define a controller through Metacontroller, we have to
provide a function that contains only the business logic specific to
our controller. Metacontroller handles all interactions with the
Kubernetes APIs, runs a reconciliation loop on our behalf, and calls
our function through a webhook. The webhook gets called with a
well-defined payload describing the CRD event. As the function
returns the value, we return a definition of the Kubernetes
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resources that should be created (or deleted) on behalf of our
controller function.
This delegation allows us to write functions in any language that
can understand HTTP and JSON and that do not have any
dependency on the Kubernetes API or its client libraries. The
functions can be hosted on Kubernetes, or externally on a
Functions-as-a-Service provider, or somewhere else.
We cannot go into many details here, but if your use case involves
extending and customizing Kubernetes with simple automation or
orchestration, and you don’t need any extra functionality, you
should have a look at Metacontroller, especially when you want to
implement your business logic in a language other than Go. Some
controller examples will demonstrate how to implement StatefulSet,
Blue-Green Deployment, Indexed Job, and Service per Pod by using
Metacontroller only.

Example
Let’s look at a concrete operator example. We extend our example
in Chapter 27, “Controller”, and introduce a CRD of the type
ConfigWatcher. An instance of this CRD then specifies a reference to
the ConfigMap to watch and specifies which Pods to restart if this
ConfigMap changes. With this approach, we remove the dependency
of the ConfigMap on the Pods, as we don’t have to modify the
ConfigMap itself to add triggering annotations. Also, with our simple
annotation-based approach in the Controller example, we can
connect only a ConfigMap to a single application too. With a CRD,
arbitrary combinations of ConfigMaps and Pods are possible.
This ConfigWatcher custom resource is shown in Example 28-5.
Example 28-5. Simple ConfigWatcher resource
apiVersion: k8spatterns.io/v1
kind: ConfigWatcher
metadata:



  name: webapp-config-watcher
spec:
  configMap: webapp-config 
  podSelector:             
    app: webappReference to ConfigMap to watch.

Label selector to determine Pods to restart.

In this definition, the attribute configMap references the name of
the ConfigMap to watch. The field podSelector is a collection of
labels and their values, which identify the Pods to restart.
We define the type of this custom resource with a CRD (shown in
Example 28-6).
Example 28-6. ConfigWatcher CRD
apiVersion: apiextensions.k8s.io/v1
kind: CustomResourceDefinition
metadata:
  name: configwatchers.k8spatterns.io
spec:
  scope: Namespaced          
  group: k8spatterns.io      
  names:
    kind: ConfigWatcher      
    singular: configwatcher  
    plural: configwatchers
  versions:
  - name: v1                 
    storage: true
    served: true
    schema:
      openAPIV3Schema:       
        type: object
        properties:
          configMap:
            type: string
            description: "Name of the ConfigMap"
          podSelector:
            type: object
            description: "Label selector for Pods"



            additionalProperties:
              type: stringConnected to a namespace.

Dedicated API group.
Unique kind of this CRD.
Labels of the resource as used in tools like kubectl.
Initial version.
OpenAPI V3 schema specification for this CRD.

For our operator to be able to manage custom resources of this
type, we need to attach a ServiceAccount with the proper
permissions to our operator’s Deployment. For this task, we
introduce a dedicated Role used later in a RoleBinding to attach it
to the ServiceAccount in Example 28-7. We explain the concept and
usage of ServiceAccounts, Roles, and RoleBindings in much more
details in Chapter 26, “Access Control”. For now, it is sufficient to
know that the Role definition in Example 28-6 grants permission for
all API operations to any instance of ConfigWatcher resources.
Example 28-7. Role definition allowing access to custom resource
apiVersion: rbac.authorization.k8s.io/v1
kind: Role
metadata:
  name: config-watcher-crd
rules:
- apiGroups:
  - k8spatterns.io
  resources:
  - configwatchers
  - configwatchers/finalizers
  verbs: [ get, list, create, update, delete, 
deletecollection, watch ]

With these CRDs in place, we can now define custom resources as
in Example 28-5.
To make sense of these resources, we have to implement a
controller that evaluates these resources and triggers a Pod restart
when the ConfigMap changes.



We expand here on our controller script in Example 27-2 and adapt
the event loop in the controller script.
In the case of a ConfigMap update, instead of checking for a specific
annotation, we do a query on all resources of the kind
ConfigWatcher and check whether the modified ConfigMap is
included as a configMap value. Example 28-8 shows the
reconciliation loop. Refer to our Git repository for the full example,
which also includes detailed instructions for installing this operator.
Example 28-8. WatchConfig controller reconciliation loop
curl -Ns $base/api/v1/${ns}/configmaps?watch=true | \     
while read -r event
do
  type=$(echo "$event" | jq -r '.type')
  if [ $type = "MODIFIED" ]; then                         

    
watch_url="$base/apis/k8spatterns.io/v1/${ns}/configwatchers"
    config_map=$(echo "$event" | jq -r 
'.object.metadata.name')

    watcher_list=$(curl -s $watch_url | jq -r '.items[]') 

    watchers=$(echo $watcher_list | \                     
               jq -r "select(.spec.configMap == 
\"$config_map\") | .metadata.name")

    for watcher in watchers; do                           
      label_selector=$(extract_label_selector $watcher)
      delete_pods_with_selector "$label_selector"
    done
  fi
doneStart a watch stream to watch for ConfigMap changes for a given

namespace.
Check for a MODIFIED event only.
Get a list of all installed ConfigWatcher custom resources.
Extract from this list all ConfigWatcher elements that refer to
this ConfigMap.
For every ConfigWatcher found delete the configured Pod via a



For every ConfigWatcher found, delete the configured Pod via a
selector. The logic for calculating a label selector as well as the
deletion of the Pods are omitted here for clarity. Refer to the
example code in our Git repository for the full implementation.

As for the controller example, this controller can be tested with a
sample web application that is provided in our example Git
repository. The only difference with this Deployment is that we use
an unannotated ConfigMap for the application configuration.
Although our operator is quite functional, it is also clear that our
shell script-based operator is still quite simple and doesn’t cover
edge or error cases. You can find many more interesting,
production-grade examples in the wild.
The canonical place to find real-world operators is Operator Hub.
The operators in this catalog are all based on the concepts covered
in this chapter. We have already seen how a Prometheus operator
can manage Prometheus installations. Another Golang-based
operator is the etcd operator for managing an etcd key-value store
and automating operational tasks like backing up and restoring the
database.
If you are looking for an operator written in the Java programming
language, the Strimzi Operator is an excellent example of an
operator that manages a complex messaging system like Apache
Kafka on Kubernetes. Another good starting point for Java-based
operators is the Java Operator Plugin, part of the Operator-SDK. As
of 2023, it is still a young initiative; the best entry point for learning
more about creating Java-based operators is the tutorial that
explains the process to create a fully working operator.

Discussion
While we have learned how to extend the Kubernetes platform,
operators are still not a silver bullet. Before using an operator, you

https://oreil.ly/K2t68
https://oreil.ly/S1olv
https://oreil.ly/pEPen


should carefully look at your use case to determine whether it fits
the Kubernetes paradigm.
In many cases, a plain controller working with standard resources is
good enough. This approach has the advantage that it doesn’t need
any cluster-admin permission to register a CRD, but it has its
limitations when it comes to security and validation.
An operator is a good fit for modeling a custom domain logic that
fits nicely with the declarative Kubernetes way of handling
resources with reactive controllers.
More specifically, consider using an operator with CRDs for your
application domain for any of the following situations:

You want tight integration into the already-existing Kubernetes
tooling like kubectl.

You are working on a greenfield project where you can design
the application from the ground up.

You benefit from Kubernetes concepts like resource paths, API
groups, API versioning, and especially namespaces.

You want to have good client support for accessing the API with
watches, authentication, role-based authorization, and
selectors for metadata.

If your custom use case fits these criteria, but you need more
flexibility in how custom resources can be implemented and
persisted, consider using a custom API Server. However, you should
also not consider Kubernetes extension points as the golden
hammer for everything.
If your use case is not declarative, if the data to manage does not
fit into the Kubernetes resource model, or you don’t need a tight
integration into the platform, you are probably better off writing
your standalone API and exposing it with a classical Service or
Ingress object.



The Kubernetes documentation itself also has a chapter for
suggestions on when to use a controller, operator, API aggregation,
or custom API implementation.

More Information
Operator Example

OpenAPI V3

Kubebuilder

Operator Framework

Metacontroller

Client Libraries

Extend the Kubernetes API with CustomResourceDefinitions

Custom Resources

Sample-Controller

What Are Red Hat OpenShift Operators?

1  Kubernetes subresources are additional API endpoints that provide further
functionality within a resource type.

2  is-a emphasizes the inheritance relationship between operator and
controller, that an operator has all characteristics of a controller plus a bit
more.

3  However, you should be aware of common API conventions for status and
other fields when designing your CRDs. Following common community
conventions makes it easier for people and tooling to read your new API
objects.

4  Special Interest Groups (SIGs) are how the Kubernetes community
organizes feature areas. You can find a list of current SIGs on the
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Kubernetes community site.
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Chapter 29. Elastic Scale

The Elastic Scale pattern covers application scaling in multiple dimensions:
horizontal scaling by adapting the number of Pod replicas, vertical scaling
by adapting resource requirements for Pods, and scaling the cluster itself
by changing the number of cluster nodes. While all of these actions can be
performed manually, in this chapter we explore how Kubernetes can
perform scaling based on load automatically.

Problem
Kubernetes automates the orchestration and management of distributed
applications composed of a large number of immutable containers by
maintaining their declaratively expressed desired state. However, with the
seasonal nature of many workloads that often change over time, it is not
an easy task to figure out how the desired state should look. Accurately
identifying how many resources a container will require and how many
replicas a service will need at a given time to meet service-level
agreements takes time and effort. Luckily, Kubernetes makes it easy to
alter the resources of a container, the desired replicas for a service, or the
number of nodes in the cluster. Such changes can happen either manually,
or given specific rules, can be performed in a fully automated manner.
Kubernetes not only can preserve a fixed Pod and cluster setup but can
also monitor external load and capacity-related events, analyze the current
state, and scale itself for the desired performance. This kind of observation
is a way for Kubernetes to adapt and gain antifragile traits based on actual
usage metrics rather than anticipated factors. Let’s explore the different
ways we can achieve such behavior and how to combine the various
scaling methods for an even greater experience.

Solution
There are two main approaches to scaling any application: horizontal and
vertical. Horizontally in the Kubernetes world equates to creating more



replicas of a Pod. Vertically scaling implies giving more resources to
running containers managed by Pods. While it may seem straightforward
on paper, creating an application configuration for autoscaling on a shared
cloud platform without affecting other services and the cluster itself
requires significant trial and error. As always, Kubernetes provides a variety
of features and techniques to find the best setup for our applications, and
we explore them briefly here.

Manual Horizontal Scaling
The manual scaling approach, as the name suggests, is based on a human
operator issuing commands to Kubernetes. This approach can be used in
the absence of autoscaling or for gradual discovery and tuning of the
optimal configuration of an application matching the slow-changing load
over long periods. An advantage of the manual approach is that it also
allows anticipatory rather than reactive-only changes: knowing the
seasonality and the expected application load, you can scale it out in
advance, rather than reacting to an already-increased load through
autoscaling, for example. We can perform manual scaling in two styles.

Imperative scaling
A controller such as ReplicaSet is responsible for making sure a specific
number of Pod instances are always up and running. Thus, scaling a Pod is
as trivially simple as changing the number of desired replicas. Given a
Deployment named random-generator, scaling it to four instances can
be done in one command, as shown in Example 29-1.
Example 29-1. Scaling a Deployment’s replicas on the command line
kubectl scale random-generator --replicas=4

After such a change, the ReplicaSet could either create additional Pods to
scale up or, if there are more Pods than desired, delete them to scale
down.

Declarative scaling
While using the scale command is trivially simple and good for quick
reactions to emergencies, it does not preserve this configuration outside
the cluster. Typically, all Kubernetes applications would have their resource



definitions stored in a source control system that also includes the number
of replicas. Recreating the ReplicaSet from its original definition would
change the number of replicas back to its previous number. To avoid such a
configuration drift and to introduce operational processes for backporting
changes, it is a better practice to change the desired number of replicas
declaratively in the ReplicaSet or some other definition and apply the
changes to Kubernetes, as shown in Example 29-2.
Example 29-2. Using a Deployment for declaratively setting the number of
replicas
kubectl apply -f random-generator-deployment.yaml

We can scale resources managing multiple Pods such as ReplicaSets,
Deployments, and StatefulSets. Notice the asymmetric behavior in scaling
a StatefulSet with persistent storage. As described in Chapter 12, “Stateful
Service”, if the StatefulSet has a .spec.volumeClaimTemplates
element, it will create PVCs while scaling, but it won’t delete them when
scaling down to preserve the storage from deletion.
Another Kubernetes resource that can be scaled but follows a different
naming convention is the Job resource, which we described in Chapter 7,
“Batch Job”. A Job can be scaled to execute multiple instances of the same
Pod at the same time by changing the .spec.parallelism field rather
than .spec.replicas. However, the semantic effect is the same:
increased capacity with more processing units that act as a single logical
unit.

NOTE
For describing resource fields, we use a JSON path notation. For example,
.spec.replicas points to the replicas field of the resource’s spec section.

Both manual scaling styles (imperative and declarative) expect a human to
observe or anticipate a change in the application load, make a decision on
how much to scale, and apply it to the cluster. They have the same effect,
but they are not suitable for dynamic workload patterns that change often
and require continuous adaptation. Next, let’s see how we can automate
scaling decisions themselves.



Horizontal Pod Autoscaling
Many workloads have a dynamic nature that varies over time and makes it
hard to have a fixed scaling configuration. But cloud native technologies
such as Kubernetes enable you to create applications that adapt to
changing loads. Autoscaling in Kubernetes allows us to define a varying
application capacity that is not fixed but instead ensures just enough
capacity to handle a different load. The most straightforward approach to
achieving such behavior is by using a HorizontalPodAutoscaler (HPA) to
horizontally scale the number of Pods. HPA is an intrinsic part of
Kubernetes and does not require any extra installation steps. One
important limitation of the HPA is that it can’t scale down to zero Pods so
that no resources are consumed at all if nobody is using the deployed
workload. Luckily, Kubernetes add-ons offer scale-to-zero and transform
Kubernetes into a true serverless platform. Knative and KEDA are the most
prominent of such Kubernetes extensions. We will have a look at both in
“Knative” and “KEDA”, but let’s first see how Kubernetes offers horizontal
autoscaling out of the box.

Kubernetes HorizontalPodAutoscaler
The HPA is best explained with an example. An HPA for the random-
generator Deployment can be created with the command in Example 29-
3. For the HPA to have any effect, it is important that the Deployment
declare a .spec.resources.requests limit for the CPU as described in
Chapter 2, “Predictable Demands”. Another requirement is enabling the
metrics server, which is a cluster-wide aggregator of resource usage data.
Example 29-3. Create HPA definition on the command line
kubectl autoscale deployment random-generator --cpu-percent=50 --
min=1 --max=5

The preceding command will create the HPA definition shown in
Example 29-4.
Example 29-4. HPA definition
apiVersion: autoscaling/v2
kind: HorizontalPodAutoscaler
metadata:
  name: random-generator
spec:



  minReplicas: 1               
  maxReplicas: 5               
  scaleTargetRef:              
    apiVersion: apps/v1
    kind: Deployment
    name: random-generator
  metrics:
  - resource:
      name: cpu
      target:
        averageUtilization: 50 
        type: Utilization
    type: ResourceMinimum number of Pods that should always run.

Maximum number of Pods until the HPA can scale up.
Reference to the object that should be associated with this HPA.
Desired CPU usage as a percentage of the Pods’ requested CPU
resource. For example, when the Pods have a
.spec.resources.requests.cpu of 200m, a scale-up happens
when on average more than 100m CPU (= 50%) is utilized.

This definition instructs the HPA controller to keep between one and five
Pod instances to retain an average Pod CPU usage of around 50% of the
specified CPU resource limit in the Pod’s .spec.resources.requests
declaration. While it is possible to apply such an HPA to any resource that
supports the scale subresource such as Deployments, ReplicaSets, and
StatefulSets, you must consider the side effects. Deployments create new
ReplicaSets during updates but without copying over any HPA definitions. If
you apply an HPA to a ReplicaSet managed by a Deployment, it is not
copied over to new ReplicaSets and will be lost. A better technique is to
apply the HPA to the higher-level Deployment abstraction, which preserves
and applies the HPA to the new ReplicaSet versions.
Now, let’s see how an HPA can replace a human operator to ensure
autoscaling. At a high level, the HPA controller performs the following steps
continuously:

1. It retrieves metrics about the Pods that are subject to scaling
according to the HPA definition. Metrics are not read directly from the
Pods but from the Kubernetes Metrics APIs that serve aggregated
metrics (and even custom and external metrics if configured to do so).



Pod-level resource metrics are obtained from the Metrics API, and all
other metrics are retrieved from the Custom Metrics API of Kubernetes.

2. It calculates the required number of replicas based on the current
metric value and targeting the desired metric value. Here is a
simplified version of the formula:

desiredReplicas = ⌈currentReplicas ×
currentMetricV alue

desiredMetricV alue
⌉

For example, if there is a single Pod with a current CPU usage metric value
of 90% of the specified CPU resource request value,1 and the desired value
is 50%, the number of replicas will be doubled, as ⌈1 ×

90

50
⌉ = 2. The

actual implementation is more complicated as it has to consider multiple
running Pod instances, cover multiple metric types, and account for many
corner cases and fluctuating values as well. If multiple metrics are
specified, for example, then the HPA evaluates each metric separately and
proposes a value that is the largest of all. After all the calculations, the
final output is a single-integer number representing the number of desired
replicas that keep the measured value below the desired threshold value.
The replicas field of the autoscaled resource will be updated with this
calculated number, and other controllers do their bit of work in achieving
and keeping the new desired state. Figure 29-1 shows how the HPA works:
monitoring metrics and changing declared replicas accordingly.

Figure 29-1. Horizontal Pod autoscaling mechanism

Autoscaling is an area of Kubernetes with many low-level details, and each
one can have a significant impact on the overall behavior of autoscaling. As



such, it is beyond the scope of this book to cover all the details, but “More
Information” provides the latest up-to-date information on the subject.
Broadly, there are the following metric types:
Standard metrics

These metrics are declared with .spec.metrics.resource[].type
equal to Resource and represent resource usage metrics such as CPU
and memory. They are generic and available for any container on any
cluster under the same name. You can specify them as a percentage, as
we did in the preceding example, or as an absolute value. In both
cases, the values are based on the guaranteed resource amount, which
are the container resource requests values and not the limits
values. These are the easiest-to-use metric types generally provided by
the metrics server component, which can be launched as cluster add-
ons.

Custom metrics
These metrics with .spec.metrics.resource[].type equal to
Object or Pod require a more advanced cluster-monitoring setup,
which can vary from cluster to cluster. A custom metric with the Pod
type, as the name suggests, describes a Pod-specific metric, whereas
the Object type can describe any other object. The custom metrics are
served in an aggregated API Server under the
custom.metrics.k8s.io API path and are provided by different
metrics adapters,  such  as  Prometheus,  Datadog,  Microsoft  Azure,  or 
Google  Stackdriver.

External metrics
This category is for metrics that describe resources that are not a part
of the Kubernetes cluster. For example, you may have a Pod that
consumes messages from a cloud-based queueing service. In such a
scenario, you’ll want to scale the number of consumer Pods based on
the queue depth. Such a metric would be populated by an external
metrics plugin similar to custom metrics. Only one external metrics
endpoint can be hooked into the Kubernetes API server. For using
metrics from many different external systems, an extra aggregation
layer like KEDA is required (see “KEDA”).



Getting autoscaling right is not easy and involves a little experimenting and
tuning. The following are a few of the main areas to consider when setting
up an HPA:
Metric selection

Probably one of the most critical decisions around autoscaling is which
metrics to use. For an HPA to be useful, there must be a direct
correlation between the metric value and the number of Pod replicas.
For example, if the chosen metric is of the Queries-per-Second kind
(such as HTTP requests per second), increasing the number of Pods
causes the average number of queries to go down as the queries are
dispatched to more Pods. The same is true if the metric is CPU usage,
as there is a direct correlation between the query rate and CPU usage
(an increased number of queries would result in increased CPU usage).
For other metrics such as memory consumption, that is not the case.
The issue with memory is that if a service consumes a certain amount
of memory, starting more Pod instances most likely will not result in a
memory decrease unless the application is clustered and aware of the
other instances and has mechanisms to distribute and release its
memory. If the memory is not released and reflected in the metrics, the
HPA would create more and more Pods in an effort to decrease it, until
it reaches the upper replica threshold, which is probably not the desired
behavior. So choose a metric that is directly (preferably linearly)
correlated to the number of Pods.

Preventing thrashing
The HPA applies various techniques to avoid rapid execution of
conflicting decisions that can lead to a fluctuating number of replicas
when the load is not stable. For example, during scale-up, the HPA
disregards high CPU usage samples when a Pod is initializing, ensuring
a smoothing reaction to increasing load. During scale-down, to avoid
scaling down in response to a short dip in usage, the controller
considers all scale recommendations during a configurable time window
and chooses the highest recommendation from within the window. All
this makes the HPA more stable when dealing with random metric
fluctuations.

Delayed reaction



Triggering a scaling action based on a metric value is a multistep
process involving multiple Kubernetes components. First, it is the
cAdvisor (container advisor) agent that collects metrics at regular
intervals for the Kubelet. Then the metrics server collects metrics from
the Kubelet at regular intervals. The HPA controller loop also runs
periodically and analyzes the collected metrics. The HPA scaling formula
introduces some delayed reaction to prevent fluctuations/thrashing (as
explained in the previous point). All this activity accumulates into a
delay between the cause and the scaling reaction. Tuning these
parameters by introducing more delay makes the HPA less responsive,
but reducing the delays increases the load on the platform and
increases thrashing. Configuring Kubernetes to balance resources and
performance is an ongoing learning process.

Tuning the autoscale algorithm for the HPA in Kubernetes can be complex.
To help with this, Kubernetes provides the .spec.behavior field in the
HPA specification. This field allows you to customize the behavior of the
HPA when scaling the number of replicas in a Deployment.
For each scaling direction (up or down), you can use the .spec.behavior
field to specify the following parameters:
policies

These describe the maximum number of replicas to scale in a given
period.

stabilizationWindowSeconds

This specifies when the HPA will not make any further scaling decisions.
Setting this field can help to prevent thrashing effects, where the HPA
rapidly scales the number of replicas up and down.

Example 29-5 shows how the behavior can be configured. All behavior
parameters can also be configured on the CLI with kubectl autoscale.

Example 29-5. Configuration of the autoscaling algorithm
apiVersion: autoscaling/v2
kind: HorizontalPodAutoscaler
...
spec:



  ...
  behavior:
    scaleDown:                        
      stabilizationWindowSeconds: 300 
      policies:
      - type: Percent                 
        value: 10
        periodSeconds: 60

    scaleUp:                          
      policies:
      - type: Pods                    
        value: 4
        periodSeconds: 15Scaling behavior when scaling down.

A 5-minute minimum window for down-scaling decisions to prevent
flapping.
Scale down at most 10% of the current replicas in one minute.
Scaling behavior when scaling up.
Scale up at most four Pods within 15 seconds.

Please refer to the Kubernetes documentation on configuring the scaling
behavior for all the details and usage examples.
While the HPA is very powerful and covers the basic needs for autoscaling,
it lacks one crucial feature: scale-to-zero for stopping all Pods of an
application if it is not used. That’s important so that it does not cause any
costs based on memory, CPU, or network usage. However, scaling to zero is
not so hard; the tricky part is waking up again and scaling to at least one
Pod by a trigger, like an incoming HTTP request or an event to process.
The following two sections introduce the two most prominent Kubernetes-
based add-ons for enabling scale-to-zero: Knative and KEDA. It is essential
to understand that Knative and KEDA are not alternative but
complementary solutions. Both projects cover different use cases and can
ideally be used together. As we will see, Knative specializes in stateless
HTTP applications and offers an autoscaling algorithm that goes beyond
the capabilities of the HPA. On the other hand, KEDA is a pull-based
approach that can be triggered by many different sources, like messages in
a Kafka topic or IBM MQ queue.
Let’s have a closer look at Knative and KEDA.
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Knative
Knative is a CNCF project initiated by Google in 2018, with broad industry
support from vendors like IBM, VMware, and Red Hat. This Kubernetes add-
on consists of three parts:
Knative Serving

This is a simplified application deployment model with sophisticated
autoscaling and traffic-splitting capabilities, including scale-to-zero.

Knative Eventing
This provides everything needed to create an Event Mesh to connect
event sources that produce CloudEvents2 with a sink that consumes
these events. Those sinks are typically Knative Serving services.

Knative Functions
This is for scaffolding and building Knative Serving services from source
code. It supports various programming languages and offers an AWS
Lambda-like programming model.

In this section, we will focus on Knative Serving and its autoscaler for an
application that uses HTTP to offer its services. For those workloads, CPU
and memory are metrics that only indirectly correlate to actual usage. A
much better metric is the number of concurrent requests per Pod—i.e.,
requests that are processed in parallel.

NOTE
Another HTTP-based metric that Knative can use is requests per second (rps).
Still, this metric does not say anything about the costs of a single request, so
concurrent requests are typically the much better metric to use, as they capture
the frequency of requests and the duration of those requests. You can select the
scale metric individually for each application or as a global default.

Basing the autoscaling decision on concurrent requests gives a much better
correlation to the latency of HTTP request processing than scaling based on
CPU or memory consumption can provide.



Historically, Knative used to be implemented as a custom metric adapter
for the HPA in Kubernetes. However, it later developed its own
implementation in order to have more flexibility in influencing the scaling
algorithm and to avoid the bottleneck of being able to register only a single
custom metric adapter in a Kubernetes cluster.
While Knative still supports using the HPA for scaling based on memory or
CPU usage, it now focuses on using its own autoscaling implementation,
called the Knative Pod Autoscaler (KPA). This allows Knative to have more
control over the scaling algorithm and to better optimize it for the needs of
the application.
The architecture of the KPA is shown in Figure 29-2.

Figure 29-2. Knative Pod Autoscaler

Three components are playing together for autoscaling a service:
Activator

This is a proxy in front of the application that is always available, even
when the application is scaled down to zero Pods. When the application
is scaled down to zero, and a first request comes in, the request gets
buffered, and the application is scaled up to at least one Pod. It’s
important to note that during a cold start, all incoming requests will be
buffered to ensure that no requests are lost.

Queue proxy



The queue proxy is an ambassador sidecar described in Chapter 18 that
is injected into the application’s Pod by the Knative controller. It
intercepts the request path for collecting metrics relevant to
autoscaling, like concurrent requests.

Autoscaler
This is a service running in the background that is responsible for the
scaling decision based on the data it gets from the activator and queue-
proxy. The autoscaler is the one that sets the replica count in the
application’s ReplicaSet.

The KPA algorithm can be configured in many ways to optimize the
autoscaling behavior for any workload and traffic shape. Table 29-1 shows
some of the configuration options for tuning the KPA for individual services
via annotations. Similar configuration options also exist for global defaults
that are stored in a ConfigMap. You can find the full set of all autoscaling
configuration options in the Knative documentation. This documentation
has more details about the Knative scaling algorithm, like dealing with
bursty workloads by scaling up more aggressively when the increase in
concurrent requests is over a threshold.
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Table 29-1. Important Knative scaling parameters. autoscaling.knativ
e.dev/, the common annotation prefix, has been omitted.

Annotation Description Default

target Number of simultaneous requests that
can be processed by each replica. This
is a soft limit and might be temporarily
exceeded in case of a traffic burst. .spe
c.concurrencyLimit is used as a hard
limit that can’t be crossed.

100

target-utiliza

tion-percentag

e

Start creating new replicas if this
fraction of the concurrency limit has
been reached.

70

min-scale Minimum number of replicas to keep. If
set to a value greater than zero, the
application will never scale down to
zero.

0

max-scale Upper bound for the number of
replicas; zero means unlimited scaling.

0

activation-sca

le

How many replicas to create when
scaling up from zero.

1

scale-down-del

ay

How long scale-down conditions must
hold before scaling down. Useful for
keeping replicas warm before scaling
zero in order to avoid cold start time.

0s

window Length of the time window over which
metrics are averaged to provide the
input for scaling decisions.

60s



Example 29-6 shows a Knative service that deploys an example
application. It looks similar to a Kubernetes Deployment. However, behind
the scenes, the Knative operator creates the Kubernetes resources needed
to expose your application as a web service, i.e., a ReplicaSet, Kubernetes
Service, and Ingress for exposing the application to the outside of your
cluster.
Example 29-6. Knative service
apiVersion: serving.knative.dev/v1         
kind: Service
metadata:
  name: random
  annotations:
    autoscaling.knative.dev/target: "80"   
    autoscaling.knative.dev/window: "120s"
spec:
  template:
    spec:
      containers:
      - image: k8spatterns/random          Knative also uses Service for the resource name but with the API group

serving.knative.dev, which is different from a Kubernetes Service
from the core API group.
Options for tuning the autoscaling algorithm. See Table 29-1 for the
available options.
The only mandatory argument for a Knative Service is a reference to a
container image.

We only briefly touch on Knative here. There is much more that can help
you in operating the Knative autoscaler. Please check out the online
documentation for more features of Knative Serving, like traffic splitting for
the complex rollout scenarios we described in Chapter 3, “Declarative
Deployment”. Also, if you are following an event-driven architecture (EDA)
paradigm for your applications, Knative Eventing and Knative Functions
have a lot to offer.

KEDA
Kubernetes Event-Driven Autoscaling (KEDA) is the other important
Kubernetes-based autoscaling platform that supports scale-to-zero but has
a different scope than Knative. While Knative supports autoscaling based
on HTTP traffic, KEDA is a pull-based approach that scales based on

https://knative.dev/
https://knative.dev/


external metrics from different systems. Knative and KEDA play very well
together, and there is only a little overlap,3 so nothing prevents you from
using both add-ons together.
So, what is KEDA? KEDA is a CNCF project that Microsoft and Red Hat
created in 2019 and consists of the following components:

The KEDA Operator reconciles a ScaledObject custom resource that
connects the scaled target (e.g., a Deployment or StatefulSet) with an
autoscale trigger that connects to an external system via a so-called
scaler. It is also responsible for configuring the HPA with the external
metrics service provided by KEDA.

KEDA’s metrics service is registered as an APIService resource in the
Kubernetes API aggregation layer so that the HPA can use it as an
external metrics service.

Figure 29-3 illustrates the relationship between the KEDA Operator, metrics
service, and the Kubernetes HPA.



Figure 29-3. KEDA autoscaling components

While Knative is a complete solution that completely replaces HPA for a
consumption-based autoscaling, KEDA is a hybrid solution. KEDA’s
autoscaling algorithm distinguishes between two scenarios:



Activation by scaling from zero replicas to one (0 ↔ 1): This action is
performed by the KEDA operator itself when it detects that a used
scaler’s metric exceeds a certain threshold.

Scaling up and down when running (1 ↔ n): When the workload is
already active, the HPA takes over and scales based on the external
metric that KEDA offers.

The central element for KEDA is the custom resource ScaledObject,
provided by the user to configure KEDA-based autoscaling and playing a
similar role as the HorizontalPodAutoscaler resource. As soon as the KEDA
operator detects a new instance of ScaledObject, it automatically creates a
HorizontalPodAutoscaler resource that uses the KEDA metrics service as an
external metrics provider and the scaling parameters.
Example 29-7 shows how you can scale a Deployment based on the
number of messages in an Apache Kafka topic.
Example 29-7. ScaledObject definition
apiVersion: keda.sh/v1alpha1
kind: ScaledObject
metadata:
  name: kafka-scaledobject
spec:
  scaleTargetRef:
    name: kafka-consumer                           
  pollingInterval: 30                              
  triggers:
    - type: kafka                                  
      metadata:
        bootstrapServers: bootstrap.kafka.svc:9092 
        consumerGroup: my-group
        topic: my-topicReference to a Deployment with the name kafka-consumer that

should be autoscaled. You can also specify other scalable workloads
here; Deployment is the default.
In the action phase (scale from zero), poll every 30 seconds for the
metric value. In this example, it is the number of messages in a Kafka
topic.
Select the Apache Kafka scaler.
Configuration options for the Apache Kafka scaler—i.e., how to connect
to the Kafka cluster and which topic to monitor.



KEDA provides many out-of-the-box scalers that can be selected to connect
to external systems for the autoscaling stimulus. You can obtain the
complete list of directly supported scalers from the KEDA home page. In
addition, you can easily integrate custom scalers by providing an external
service that communicates with KEDA over a gRPC-based API.
KEDA is a great autoscaling solution when you need to scale based on work
items held in external systems, like message queues that your application
consumes. To some degree, this pattern shares some of the characteristics
of Chapter 7, “Batch Job”: the workload runs only when work is done and
does not consume any resources when idle. Both can be scaled up for
parallel processing of the work items. The difference here is that a KEDA
ScaledObject does the up-scale automatically, whereas for a Kubernetes
Job, you must manually determine the parallelism parameters. With KEDA,
you can also automatically trigger Kubernetes Jobs based on the
availability of external workloads. The ScaledJob custom resource is
precisely for this purpose so that instead of scaling up replicas from 0 to 1,
a Job resource is started in case a scaler’s activation threshold is met. Note
that the parallelism field in the Job is still fixed, but the autoscaling
happens on the Job resource level itself (i.e., Job resources themselves
play the role of replicas).

https://oreil.ly/rkJKU


PUSH VERSUS PULL HORIZONTAL AUTOSCALERS
Kubernetes knows about two main types of horizontal autoscalers: push
autoscalers and pull autoscalers.
Push autoscalers operate by actively pushing metrics to the autoscaler,
which then uses those metrics to decide how to scale. This technique is
often used when the metrics have been directly generated by a system
closely integrated with the autoscaler. For example, in Knative, the
Activator pushes the metrics about concurrent requests to the
Autoscaler component, as illustrated in Figure 29-2.
Pull autoscalers operate by actively pulling metrics from the application
or external sources. Pulling is often used when the metrics are not
directly accessible to the autoscaler or when the metrics are stored in
an external system. KEDA, for example, is a pull autoscaler that scales
deployments based on, for example, the number of events or messages
in a queue. Figure 29-3 shows how KEDA uses a custom Kubernetes
controller to pull metrics about the number of events and then uses
those metrics to determine whether to scale up or down.
Push autoscalers are often used for applications that receive data, like
from HTTP endpoints. In contrast, pull autoscalers are suitable for
applications that actively retrieve their workload, such as pulling from a
message queue.

Table 29-2 summarizes the unique features and differences between HPA,
Knative, and KEDA.



Table 29-2. Horizontal autoscaling on Kubernetes

HPA Knative KEDA

Scale metrics Resource usage HTTP requests External metrics
like message
queue backlog

Scale-to-zero No Yes Yes

Type Pull Push Pull

Typical use
cases

Stable traffic
web
applications,
Batch processing

Serverless
applications with
rapid scaling,
serverless
functions

Message-driven
microservices

Now that we have seen all the possibilities for scaling horizontally with
HPA, Knative, and KEDA, let’s look at a completely different kind of scaling
that does not alter the number of parallel-running replicas but lets your
application grow and shrink.

Vertical Pod Autoscaling
Horizontal scaling is preferred over vertical scaling because it is less
disruptive, especially for stateless services. That is not the case for stateful
services, where vertical scaling may be preferred. Other scenarios where
vertical scaling is useful include tuning the resource needs of a service
based on actual load patterns. We’ve discussed why identifying the correct
number of Pod replicas might be difficult and even impossible when the
load changes over time. Vertical scaling also has these kinds of challenges
in identifying the correct requests and limits for a container. The
Kubernetes Vertical Pod Autoscaler (VPA) aims to address these challenges
by automating the process of adjusting and allocating resources based on
real-world usage feedback.



As we saw in Chapter 2, “Predictable Demands”, every container in a Pod
can specify its CPU and memory requests, which influences where the
Pods will be scheduled. In a sense, the resource requests and limits of
a Pod form a contract between the Pod and the scheduler, which causes a
certain amount of resources to be guaranteed or prevents the Pod from
being scheduled. Setting the memory requests too low can cause nodes
to be more tightly packed, which in turn can lead to out-of-memory errors
or workload eviction due to memory pressure. If the CPU limits are too
low, CPU starvation and underperforming workloads can occur. On the
other hand, specifying resource requests that are too high allocates
unnecessary capacity, leading to wasted resources. It is important to set
resource requests as accurately as possible since they impact the cluster
utilization and the effectiveness of horizontal scaling. Let’s see how VPA
helps address this.
On a cluster with VPA and the metrics server installed, we can use a VPA
definition to demonstrate vertical autoscaling of Pods, as in Example 29-8.
Example 29-8. VPA
apiVersion: autoscaling.k8s.io/v1
kind: VerticalPodAutoscaler
metadata:
  name: random-generator-vpa
spec:
  targetRef:            
    apiVersion: apps/v1
    kind: Deployment
    name: random-generator
  updatePolicy:
    updateMode: "Off"   Reference to the higher-level resource that holds the selector to identify

the Pods to manage.
The update policy for how VPA will apply changes.

A VPA definition has the following main parts:
Target reference

The target reference points to a higher-level resource that controls
Pods, like a Deployment or a StatefulSet. From this resource, the VPA
looks up the label selector for identifying the Pods it should handle. If



the reference points to a resource that does not contain such a selector,
then it will report an error in the VPA status section.

Update policy
The update policy controls how the VPA applies changes. The Initial
mode allows you to assign resource requests only during Pod creation
time and not later. The default Auto mode allows resource assignment
to Pods at creation time, but additionally, it can update Pods during
their lifetimes, by evicting and rescheduling the Pod. The value Off
disables automatic changes to Pods but allows you to suggest resource
values. This is a kind of dry run for discovering the right size of a
container without applying it directly.

A VPA definition can also have a resource policy that influences how the
VPA computes the recommended resources (e.g., by setting per-container
lower and upper resource boundaries).
Depending on which .spec.updatePolicy.updateMode is configured,
the VPA involves different system components. All three VPA components—
recommender, admission plugin, and updater—are decoupled and
independent and can be replaced with alternative implementations. The
module with the intelligence to produce recommendations is the
recommender, which is inspired by Google’s Borg system. The
implementation analyzes the actual resource usage of a container under
load for a certain period (by default, eight days), produces a histogram,
and chooses a high-percentile value for that period. In addition to metrics,
it also considers resource and specifically memory-related Pod events such
as evictions and OutOfMemory events.

In our example, we chose .spec.updatePolicy.updateMode equals
Off, but there are two other options to choose from, each with a different
level of potential disruption on the scaled Pods. Let’s see how different
values for updateMode work, starting from nondisruptive to a more
disruptive order:
Off

The VPA recommender gathers Pod metrics and events and then
produces recommendations. The VPA recommendations are always



stored in the status section of the VPA resource. However, this is as
far as the Off mode goes. It analyzes and produces recommendations,
but it does not apply them to the Pods. This mode is useful for getting
insight on the Pod resource consumption without introducing any
changes and causing disruption. That decision is left for the user to
make if desired.

Initial
In this mode, the VPA goes one step further. In addition to the activities
performed by the recommender component, it also activates the VPA
admission Controller, which applies the recommendations to newly
created Pods only. For example, if a Pod is scaled manually, updated by
a Deployment, or evicted and restarted for whatever reason, the Pod’s
resource request values are updated by the VPA Admission Controller.
This controller is a mutating admission Webhook that overrides the
requests of new matching Pods that are associated with the VPA
resource. This mode does not restart a running Pod, but it is still
partially disruptive because it changes the resource request of newly
created Pods. This in turn can affect where a new Pod is scheduled.
What’s more, it is possible that after applying the recommended
resource requests, the Pod is scheduled to a different node, which can
have unexpected consequences. Or worse, the Pod might not be
scheduled to any node if there is not enough capacity on the cluster.

Recreate and Auto
In addition to the recommendation creation and its application for
newly created Pods, as described previously, in this mode, the VPA also
activates its updated component. The Recreate update mode forcibly
evicts and restarts all Pods in the deployment to apply the VPA’s
recommendations, while the Auto update mode is supposed to support
in-place updates of resource limits without restarting Pods in a future
version of Kubernetes. As of 2023, Auto behaves the same as
Recreate, so both update modes can be disruptive and may lead to
the unexpected scheduling issues that have been described earlier.



Kubernetes is designed to manage immutable containers with immutable
Pod spec definitions, as seen in Figure 29-4. While this simplifies
horizontal scaling, it introduces challenges for vertical scaling, such as
requiring Pod deletion and recreation, which can impact scheduling and
cause service disruptions. This is true even when the Pod is scaling down
and wants to release already-allocated resources with no disruption.
Another concern is the coexistence of VPA and HPA because these
autoscalers are not currently aware of each other, which can lead to
unwanted behavior. For example, if an HPA is using resource metrics such
as CPU and memory, and the VPA is also influencing the same values, you
may end up with horizontally scaled Pods that are also vertically scaled
(hence double scaling).
We can’t go into more details here. Although it is still evolving, it is worth
keeping an eye on the VPA as it is a feature that has the potential to
significantly improve resource consumption.

Figure 29-4. Vertical Pod autoscaling mechanism



Cluster Autoscaling
The patterns in this book primarily use Kubernetes primitives and resources
targeted at developers using a Kubernetes cluster that’s already set up,
which is usually an operational task. Since it is a topic related to the
elasticity and scaling of workloads, we will briefly cover the Kubernetes
Cluster Autoscaler (CA) here.
One of the tenets of cloud computing is pay-as-you-go resource
consumption. We can consume cloud services when needed, and only as
much as needed. CA can interact with cloud providers where Kubernetes is
running and request additional nodes during peak times or shut down idle
nodes during other times, reducing infrastructure costs. While the HPA and
VPA perform Pod-level scaling and ensure service-capacity elasticity within
a cluster, the CA provides node scalability to ensure cluster-capacity
elasticity.

CLUSTER API
All major cloud providers support Kubernetes CA. However, to make this
happen, plugins have been written by cloud providers, leading to
vendor locking and inconsistent CA support. Luckily, the Cluster API
Kubernetes project aims to provide APIs for cluster creation,
configuration, and management. All major public and private cloud
providers like AWS, IBM Cloud, Azure, GCE, vSphere, and OpenStack
support this initiative. This also allows CA to be used in on-premises
Kubernetes installations. The heart of the Cluster API is a machine
controller running in the background, for which several independent
implementations like the Kubermatic machine-controller or the
machine-api-operator by Red Hat OpenShift already exist. It is worth
keeping an eye on the Cluster API as it may become the backbone for
any cluster autoscaling in the future.

CA is a Kubernetes add-on that has to be turned on and configured with a
minimum and maximum number of nodes. It can function only when the
Kubernetes cluster is running on a cloud-computing infrastructure where
nodes can be provisioned and decommissioned on demand and that has
support for Kubernetes CA, such as AWS, IBM Cloud Kubernetes Service,
Microsoft Azure, or Google Compute Engine.



A CA primarily performs two operations: it add new nodes to a cluster or
removes nodes from a cluster. Let’s see how these actions are performed:
Adding a new node (scale-up)

If you have an application with a variable load (busy times during the
day, weekend, or holiday season and much less load during other
times), you need varying capacity to meet these demands. You could
buy fixed capacity from a cloud provider to cover the peak times, but
paying for it during less busy periods reduces the benefits of cloud
computing. This is where CA becomes truly useful.
When a Pod is scaled horizontally or vertically, either manually or
through HPA or VPA, the replicas have to be assigned to nodes with
enough capacity to satisfy the requested CPU and memory. If no node in
the cluster has enough capacity to satisfy all of the Pod’s requirements,
the Pod is marked as unschedulable and remains in the waiting state
until such a node is found. CA monitors for such Pods to see whether
adding a new node would satisfy the needs of the Pods. If the answer is
yes, it resizes the cluster and accommodates the waiting Pods.
CA cannot expand the cluster by a random node—it has to choose a
node from the available node groups the cluster is running on.4 It
assumes that all the machines in a node group have the same capacity
and the same labels, and that they run the same Pods specified by local
manifest files or DaemonSets. This assumption is necessary for CA to
estimate how much extra Pod capacity a new node will add to the
cluster.
If multiple node groups are satisfying the needs of the waiting Pods, CA
can be configured to choose a node group by different strategies called
expanders. An expander can expand a node group with an additional
node by prioritizing least cost or least resource waste, accommodating
most Pods, or just randomly. At the end of a successful node selection,
a new machine should be provisioned by the cloud provider in a few
minutes and registered in the API Server as a new Kubernetes node
ready to host the waiting Pods.

Removing a node (scale-down)



Scaling down Pods or nodes without service disruption is always more
involved and requires many checks. CA performs scale-down if there is
no need to scale up and a node is identified as unneeded. A node is
qualified for scale-down if it satisfies the following main conditions:

More than half of its capacity is unused—that is, the sum of all
requested CPU and the memory of all Pods on the node is less than
50% of the node-allocatable resource capacity.
All movable Pods on the node (Pods that are not run locally by
manifest files or Pods created by DaemonSets) can be placed on
other nodes. To prove that, CA performs a scheduling simulation and
identifies the future location of every Pod that would be evicted. The
final location of the Pods is still determined by the scheduler and can
be different, but the simulation ensures there is spare capacity for
the Pods.
There are no other reasons to prevent node deletion, such as a node
being excluded from scaling down through annotations.
There are no Pods that cannot be moved, such as Pods with a
PodDisruptionBudget that cannot be satisfied, Pods with local
storage, Pods with annotations preventing eviction, Pods created
without a controller, or system Pods.

All of these checks are performed to ensure no Pod is deleted that
cannot be started on a different node. If all of the preceding conditions
are true for a while (the default is 10 minutes), the node qualifies for
deletion. The node is deleted by marking it as unschedulable and
moving all Pods from it to other nodes.

Figure 29-5 summarizes how the CA interacts with cloud providers and
Kubernetes for scaling out cluster nodes.



Figure 29-5. Cluster autoscaling mechanism

As you’ve probably figured out by now, scaling Pods and nodes are
decoupled but complementary procedures. An HPA or VPA can analyze
usage metrics and events, and scale Pods. If the cluster capacity is
insufficient, the CA kicks in and increases the capacity. The CA is also
helpful when irregularities occur in the cluster load due to batch Jobs,
recurring tasks, continuous integration tests, or other peak tasks that
require a temporary increase in the capacity. It can increase and reduce
capacity and provide significant savings on cloud infrastructure costs.

Scaling Levels
In this chapter, we explored various techniques for scaling deployed
workloads to meet their changing resource needs. While a human operator
can manually perform most of the activities listed here, that doesn’t align
with the cloud native mindset. To enable large-scale distributed system
management, automating repetitive activities is a must. The preferred
approach is to automate scaling and enable human operators to focus on
tasks that a Kubernetes Operator cannot automate yet.
Let’s review all of the scaling techniques, from the more granular to the
more coarse-grained order, as shown in Figure 29-6.



Figure 29-6. Application-scaling levels



Application tuning
At the most granular level, there is an application tuning technique we
didn’t cover in this chapter, as it is not a Kubernetes-related activity.
However, the very first action you can take is to tune the application
running in the container to best use the allocated resources. This activity is
not performed every time a service is scaled, but it must be performed
initially before hitting production. For example, for Java runtimes, that is
right-sizing thread pools for best use of the available CPU shares the
container is getting, then tuning the different memory regions such as
heap, nonheap, and thread stack sizes. Adjusting these values is typically
performed through configuration changes rather than code changes.
Container-native applications use start scripts that can calculate good
default values for thread counts, and memory sizes for the application
based on the allocated container resources rather than the shared full-node
capacity. Using such scripts is an excellent first step. You can also go one
step further and use techniques and libraries such as the Netflix Adaptive
Concurrency Limits library, where the application can dynamically calculate
its concurrency limits by self-profiling and adapting. This is a kind of in-app
autoscaling that removes the need for manually tuning services.
Tuning applications can cause regressions similar to a code change and
must be followed by a degree of testing. For example, changing the heap
size of an application can cause it to be killed with an OutOfMemory error,
and horizontal scaling won’t be able to help. On the other hand, scaling
Pods vertically or horizontally, or provisioning more nodes, will not be as
effective if your application is not consuming the resources allocated for the
container properly. So tuning for scale at this level can impact all other
scaling methods and can be disruptive, but it must be performed at least
once for optimal application behavior.

Vertical Pod autoscaling
Assuming the application is consuming the container resources effectively,
the next step is setting the right resource requests and limits in the
containers. Earlier, we explored how VPA can automate the process of
discovering and applying optimal values driven by real consumption. A
significant concern here is that Kubernetes requires Pods to be deleted and
created from scratch, which leaves the potential for short or unexpected



periods of service disruption. Allocating more resources to a resource-
starved container may make the Pod unschedulable and increase the load
on other instances even more. Increasing container resources may also
require application tuning to best use the increased resources.

Horizontal Pod autoscaling
The preceding two techniques are a form of vertical scaling; we hope to
get better performance from existing Pods by tuning them but without
changing their count. The following two techniques are a form of horizontal
scaling: we don’t touch the Pod specification, but we change the Pod and
node count. This approach reduces the chances of introducing any
regression and disruption and allows more straightforward automation.
HPA, Knative, and KEDA are the most popular forms of horizontal scaling.
Initially, HPA provided minimal functionality through CPU and memory
metrics support only. Now it uses custom and external metrics for more
advanced scaling use cases that allow scaling based on metrics that have
an improved cost correlation.
Assuming that you have performed the preceding two methods once for
identifying good values for the application setup itself and determined the
resource consumption of the container, from there on, you can enable HPA
and have the application adapt to shifting resource needs.

Cluster autoscaling
The scaling techniques described in HPA and VPA provide elasticity within
the boundary of the cluster capacity only. You can apply them only if there
is enough room within the Kubernetes cluster. CA introduces flexibility at
the cluster capacity level. CA is complementary to the other scaling
methods but is also completely decoupled. It doesn’t care about the reason
for extra capacity demand, or why there is unused capacity, or whether it is
a human operator or an autoscaler that is changing the workload profiles.
CA can extend the cluster to ensure demanded capacity or shrink it to
spare some resources.

Discussion
Elasticity and the different scaling techniques are an area of Kubernetes
that is still actively evolving. The VPA, for example, is still experimental.



Also, with the popularization of the serverless programming model, scaling
to zero and quick scaling have become a priority. Knative and KEDA are
Kubernetes add-ons that exactly address this need to provide the
foundation for scale-to-zero, as we briefly described in “Knative” and
“KEDA”. Those projects are progressing quickly and are introducing very
exciting new cloud native primitives. We are watching this space closely
and recommend you keep an eye on Knative and KEDA too.
Given a desired state specification of a distributed system, Kubernetes can
create and maintain it. It also makes it reliable and resilient to failures, by
continuously monitoring and self-healing and ensuring its current state
matches the desired one. While a resilient and reliable system is good
enough for many applications today, Kubernetes goes a step further. A
small but properly configured Kubernetes system would not break under a
heavy load but instead would scale the Pods and nodes. So in the face of
these external stressors, the system would get bigger and stronger rather
than weaker and more brittle, giving Kubernetes antifragile capabilities.

More Information
Elastic Scale Example

Rightsize Your Pods with Vertical Pod Autoscaling

Kubernetes Autoscaling 101

Horizontal Pod Autoscaling

HPA Algorithm Details

Horizontal Pod Autoscaler Walk-Through

Knative
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Knative: Serving Your Serverless Services

KEDA
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Autoscaling (KEDA)
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Chapter 30. Image Builder

Kubernetes is a general-purpose orchestration engine, suitable not
only for running applications but also for building container images.
The Image Builder pattern explains why it makes sense to build the
container images within the cluster and what techniques exist today
for creating images within Kubernetes.

Problem
All the patterns in this book so far have been about operating
applications on Kubernetes. You’ve learned how to develop and
prepare applications to be good cloud native citizens. However,
what about building the application itself? The classic approach is to
build container images outside the cluster, push them to a registry,
and refer to them in the Kubernetes Deployment descriptors.
However, building within the cluster has several advantages.
If your company policies allow, having only one cluster for
everything is advantageous. Building and running applications in
one place can considerably reduce maintenance costs. It also
simplifies capacity planning and reduces platform resource
overhead.
Typically, continuous integration (CI) systems like Jenkins are used
to build images. Building with a CI system is a scheduling problem
for efficiently finding free computing resources for build jobs. At the
heart of Kubernetes is a highly sophisticated scheduler that is a
perfect fit for this kind of scheduling challenge.
Once we move to continuous delivery (CD), where we transition
from building images to running containers, if the build happens
within the same cluster, both phases share the same infrastructure



and ease transition. For example, let’s assume that a new security
vulnerability is discovered in a base image used for all applications.
As soon as your team has fixed this issue, you have to rebuild all
the application images that depend on this base image and update
your running applications with the new image. When implementing
this Image Builder pattern, the cluster knows both—the build of an
image and its deployment—and can automatically do a
redeployment if a base image changes. In “OpenShift Build”, we’ll
see how OpenShift implements such automation.
Having seen the benefits of building images on the platform, let’s
look at what techniques exist for creating images in a Kubernetes
cluster.

Solution
As of 2023, a whole zoo of in-cluster container image-build
techniques exists. While all target the same goal of building images,
each tool adds a twist, making it unique and suitable for specific
situations.
Figure 30-1 contains the essential image-building techniques as of
2023 for building container images within a Kubernetes cluster.



Figure 30-1. Container image builds within Kubernetes

This chapter contains a brief overview of most of these techniques.
You can find more details about these tools by following the links in
“More Information”. Please note that while many of the tools
described here are matured and used in production projects, there
are no guarantees that some of those projects still exist when you
read these lines. Before using one, you should check whether the
project is still alive and supported.
Categorizing these tools is not straightforward as they are partly
overlapping or dependent on one another. Each of these tools has a
unique focus, but for in-cluster builds, we can identify these high-
level categories:
Container image builder

These tools create container images within the cluster. There is
some overlap of these tools, and they vary, but all of them can
run without privileged access. You can also run these tools
outside the cluster as CLI programs. The sole purpose of these



builders is to create a container image, but they don’t care about
application redeployments.

Build orchestration
These tools operate on a higher level of abstraction and
eventually trigger the container image builder for creating
images. They also support build-related tasks like updating the
deployment descriptors after the image has been built. CI/CD
systems, as described previously, are typical examples of
orchestrators.

Container Image Builder
One of the essential prerequisites for building images from within a
cluster is creating images without having privileged access to the
node host. Various tools exists that fulfill this prerequisite, and they
can be roughly categorized according to how the container image is
specified and built.



ROOTLESS BUILDS
When building within Kubernetes, the cluster has complete
control over the build process. Because of this, the cluster needs
higher security standards to protect against potential
vulnerabilities. One way to improve security during builds is to
run them without root privileges, a practice known as rootless
builds. There are many ways to achieve rootless builds in
Kubernetes that allow you to build without elevated privileges.
Docker successfully brought container technologies to the
masses thanks to its unmatched user experience. Docker is
based on a client-server architecture with a daemon running in
the background and taking instructions via a REST API from its
client. This daemon needs root privileges mainly for network
and volume management reasons. Unfortunately, this imposes a
security risk, as untrusted processes can escape their container,
and an intruder could get control of the whole host. This concern
applies not only when running containers but also when building
container images because building also happens within a
container when the Docker daemon executes arbitrary
commands.
Most of the in-cluster build techniques described in this chapter
allow container images to be built in a nonprivileged mode to
reduce that attack surface, which is very useful for locked-down
Kubernetes clusters.

Dockerfile-Based builders
The following builders are based on the well-known Dockerfile
format for defining the build instructions. All of them are compatible
on a Dockerfile level, and they either work completely without
talking to a background daemon or talk via a REST API remotely
with a build process that is running in a nonprivileged mode:



Buildah and Podman
Buildah and its sister Podman are potent tools for building OCI-
compliant images without a Docker daemon. They create
images locally within the container before pushing them to an
image registry. Buildah and Podman overlap in functionality, with
Buildah focusing on building container images (though Podman
can also create container images by wrapping the Buildah API).
The difference is shaped more clearly in this README.

Kaniko
Kaniko is one backbone of the Google Cloud Build service and is
deliberately targeted for running as a build container in
Kubernetes. Within the build container, Kaniko still runs with UID
0, but the Pod holding the container itself is nonprivileged. This
requirement prevents the usage of Kaniko in clusters that
disallow running as a root user in a container, like in OpenShift.
We see Kaniko in action in “Build Pod”.

BuildKit
Docker extracted its build engine into a separate project,
BuildKit, which can be used independently of Docker. It inherits
from Docker its client-server architecture with a BuildKit daemon
running in the background, waiting for build jobs. Usually, this
daemon runs directly in the container that triggers the build, but
it can also run in a Kubernetes cluster to allow distributed
rootless builds. BuildKit introduces a Low-Level Build (LLB)
definition format supported by multiple frontends. LLB allows
complex build graphs and can be used for arbitrary complex
build definitions. BuildKit also supports features that go beyond
the original Dockerfile specification. In addition to Dockerfiles,
BuildKit can use other frontends to define the container image’s
content via LLB.
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Multilanguage builders
Many developers care only that their application gets packaged as
container images and not so much about how this is done. To cover
this use case, multilanguage builders exist to support many
programming platforms. They detect an existing project, like a
Spring Boot application or generic Python build, and select an
opinionated image build flow accordingly.
Buildpacks have been around since 2012 and were initially
introduced by Heroku to allow you to push developer’s code directly
to their platform. Cloud Foundry picked up that idea and created a
fork of buildpacks that eventually led to the infamous cf push
idiom that many considered the gold standard of Platform as a
Service (PaaS). In 2018, the different forks of Buildpacks united
under the umbrella of the CNCF and are now known as Cloud Native
Buildpacks (CNB). Besides individual buildpacks for different
programming languages, CNB introduce a lifecycle for transforming
source code to executable container images.

The lifecycle can roughly be divided into three main phases:1

In the detect phase, CNB iterate over a list of configured
buildpacks. Each buildpack can decide whether it fits for the
given source code. For example, a Java-based buildpack will
raise its hand when it detects a Maven pom.xml.

All buildpacks that survived the detect phase will be called in
the build phase to provide their part for the final, possibly
compiled artifact. For example, a buildpack for a Node.js
application calls npm install to fetch all required
dependencies.

The last step in the CNB lifecycle is an export to the final OCI
image that gets pushed to a registry.



CNB target two personas. The primary audience includes
Developers who want to deploy their code onto Kubernetes or any
other container-based platform. The other is Buildpack Authors, who
create individual buildpacks and group them into so-called builders.
You can choose from a list of prefactored buildpacks and builders or
create your own for you and your team. Developers can then pick
up those buildpacks by referencing them when running the CNB
lifecycle on their source code. Several tools are available for
executing this lifecycle; you’ll find a complete list at the Cloud
Native Buildpacks site.
For using CNB within a Kubernetes cluster, the following tasks are
helpful:

pack is a CLI command to configure and execute the CNB
lifecycle locally. It requires access to an OCI container runtime
engine like Docker or Podman to run Builder images that hold
the list of buildpacks to use.

CI steps like Tekton build tasks or GitHub actions that call the
lifecycle directly from a configured Builder image.

kpack comes with an Operator that allows you to configure
and run buildpacks within a Kubernetes cluster. All the core
concepts of CNB, like Builder or Buildpacks, are reflected
directly as CustomResourceDefinitions. kpack is not yet part of
the CNB project itself, but as of 2023 is about to be absorbed.

Many other platforms and projects have adopted CNB as their build
platform of choice. For example, Knative Functions use CNB under
the hood to transform Function code to container images before
they get deployed as Knative services.
OpenShift’s Source-to-Image (S2I) is another opinionated building
method with builder images. S2I takes you directly from your
application’s source code to executable container images. We will
look closely at S2I in “OpenShift Build”.
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Specialized builders
Finally, specialized builders with an opinionated way of creating
images exist for specific situations. While their scope is narrow,
their strong opinion allows for a highly optimized build flow that
increases flexibility and decreases build times. All these builders
perform a rootless build. They create the container image without
running arbitrary commands as with a Dockerfile RUN directive.
They create the image layers locally with the application artifacts
and push them directly to a container image registry:
Jib

Jib is a pure Java library and build extension that integrates
nicely with Java build tools like Maven or Gradle. It creates
separate image layers directly for the Java build artifacts, its
dependencies, and other static resources to optimize image
rebuild times. Like the other builders, it speaks directly with a
container image registry for the resulting images.

ko
For creating images from Golang sources, ko is a great tool. It
can directly create images from remote Git repositories and
update Pod specifications to point to the image after it has been
built and pushed to a registry.

Apko
Apko is a unique builder that uses Alpine’s Apk packages as
building blocks instead of Dockerfile scripts. This strategy allows
for the easy reuse of building blocks when creating multiple
similar images.

This list is only a selection of the many specialized build techniques.
All of them have a very narrow scope of what they can build. The
advantage of this opinionated approach is that they can optimize



build time and image size because they know precisely about the
domain in which they operate and can make strong assumptions.
Now that we have seen some ways to build container images, let’s
jump one abstraction level higher and see how we can embed the
actual build in a broader context.

Build Orchestrators
Build orchestrators are CI and CD platforms like Tekton, Argo CD, or
Flux. Those platforms cover your application’s entire automated
management lifecycle, including building, testing, releasing,
deploying, security scanning, and much more. There are excellent
books that cover those platforms and bring it all together, so we
won’t go into the details here.
In addition to general-purpose CI and CD platforms, we can use
more specialized orchestrators to create container images:
OpenShift builds

One of the oldest and most mature ways of building images in a
Kubernetes cluster is the OpenShift build subsystem. It allows
you to build images in several ways. We take a closer look at
the OpenShift way of building images in “OpenShift Build”.

kbld
kbld is part of Carvel, a toolset for building, configuring, and
deploying on Kubernetes. kbld is responsible for building
containers with one of the builder technologies we described in
“Container Image Builder” and updating resource descriptors
with a reference to the images that have been built. The
technique for updating the YAML files is very similar to how ko
works: kbld looks for image fields and sets their values to the
coordinates of the freshly built image.

Kubernetes Job



You can also use standard Kubernetes Jobs for triggering builds
with any of the image builders from “Container Image Builder”.
Jobs are described in detail in Chapter 7, “Batch Job”. Such a Job
wraps a build Pod specification for defining the runtime parts.
The build Pod picks up the source code from a remote source
repository and uses one of the in-cluster builders to create the
appropriate image. We’ll see such a Pod in action in “Build Pod”.

WHAT HAPPENED TO KNATIVE BUILD?
In the first edition of this book, we described Knative Build as
one possibility for creating container images from within the
cluster. As time has shown, Knative as an umbrella project was
too small for the community, so Knative Build was split off from
Knative and transformed into a new project, Tekton, with a
much larger scope than only building container images. Tekton a
is a full-featured CI solution that fully integrates into Kubernetes
and uses CustomResourceDefinitions as described in Chapter 28
as the basis for the description of the CI pipelines.
While Knative Build is history now, it was an excellent lesson
about how open source communities evolve and can transform
in unexpected ways. Keep this in mind, as it might happen to
other popular projects too.

Build Pod
To carve out the essential ingredients of typical in-cluster builds,
let’s start minimally and use a Kubernetes Pod for performing a
complete build and deploy cycle. These build steps are illustrated in
Figure 30-2.



Figure 30-2. In-cluster container image build with a build Pod

The following tasks are representative of all build orchestrators and
cover all aspects of creating container images:

Check out the source code from a given remote Git repository.

For a compiled language, perform a local build within the
container.



Build the application with one of the techniques described in
“Container Image Builder”.

Push the image to a remote image registry.

Optionally, update a deployment with the new image reference,
which will trigger a redeployment of the application following
the strategies described in Chapter 3, “Declarative
Deployment”.

The build Pod in our example uses init containers as described in
Chapter 15, “Init Container”, to ensure that the build steps are
running one after the other. In a real-world scenario, you would use
a CI system like Tekton to specify and execute these tasks
sequentially.
The complete build Pod definition is shown in Example 30-1.
Example 30-1. Build Pod using Kaniko
apiVersion: v1
kind: Pod
metadata:
  name: build
spec:
  initContainers:
  - name: git-sync          
    image: k8s.gcr.io/git-sync/git-sync
    args: [
      "--one-time",
      "--depth", "1",
      "--root", "/workspace",
      "--repo", "https://github.com/k8spatterns/random-
generator.git",
      "--dest", "main",
      "--branch", "main"]
    volumeMounts:           
    - name: source
      mountPath: /workspace
  - name: build             
    image: gcr.io/kaniko-project/executor
    args:



    - "--context=dir:///workspace/main/"
    - "--destination=index.docker.io/k8spatterns/random-
generator-kaniko"
    - "--image-name-with-digest-file=/workspace/image-name"
    securityContext:
      privileged: false     
    volumeMounts:
    - name: kaniko-secret   
      mountPath: /kaniko/.docker
    - name: source          
      mountPath: /workspace
  containers:
  - name: image-update      
    image: k8spatterns/image-updater
    args:
    - "random"
    - "/opt/image-name"
    volumeMounts:
    - name: source
      mountPath: /opt
  volumes:
  - name: kaniko-secret     
    secret:
      secretName: registry-creds
      items:
      - key: .dockerconfigjson
        path: config.json
  - name: source            
    emptyDir: {}
  serviceAccountName: build-pod  
  restartPolicy: Never      Init container for fetching the source code from a remote Git

repository.
Volume in which to store the source code.
Kaniko as build container, storing the created image as a
reference in the shared workspace.
Build is running unprivileged.
Secret for pushing to Docker Hub registry mounted at a well-
known path so that Kaniko can find it.
Mounting shared workspace for getting the source code.



Container for updating the deployment random with the image
reference from the Kaniko build.
Secret volume with the Docker Hub credentials.
Definition of a shared volume as an empty directory on the
node’s local filesystem.
ServiceAccount that is allowed to patch a Deployment resource.
Never restart this Pod.

This example is quite involved, so let’s break it down into three
main parts.
First, before being able to build a container image, the application
code needs to be fetched. In most cases, the source code is picked
up from a remote Git repository, but other techniques are available.
For development purposes, it is convenient to get the source code
from your local machine so that you don’t have to go over a remote
source repository and mess up your commit history with triggering
commits. Because the build happens within a cluster, that source
code must be uploaded somehow to your build container. Another
possibility is to distribute the source code packaged in a container
image and distribute it via a container image registry.
In Example 30-1, we use an init container to fetch the source code
from our source Git repository and store it in a shared Pod volume
source of type emptyDir so that it can later be picked up by the
build process container.
Second, after the application code is retrieved, the actual build
happens. In our example, we use Kaniko, which uses a regular
Dockerfile and can run entirely unprivileged. We again use an init
container to ensure that the build starts only after the source code
has been fully fetched. The container image is created locally on
disk, and we also configure Kaniko to push the resulting image to a
remote Docker registry.
The credentials for pushing to the registry are picked up from a
Kubernetes Secret. We describe Secrets in detail in Chapter 20,
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“Configuration Resource”.
Luckily, for the particular case of authentication against a Docker
registry, we have direct support from kubectl for creating such a
secret that stores this configuration in a well-known format:

kubectl create secret docker-registry registry-creds \
    --docker-username=k8spatterns \
    --docker-password=********* \
    --docker-server=https://index.docker.io/

For Example 30-1, such a secret is mounted into the build container
under a given path so that Kaniko can pick it up when pushing the
created image. In Chapter 25, “Secure Configuration”, we explain
how such a secret can be stored securely so that it can’t be forged.
The final step is to update an existing Deployment with the newly
created image. This task is now performed in the actual application
container of the Pod.2 The referenced image is from our example
repository and contains just a kubectl binary that patches the
specified Deployment with the new image name with the following
call, shown in Example 30-2.
Example 30-2. Update image field in Deployment
IMAGE=$(cat $1)               
PATCH=<<EOT                   
[{
  "op":    "replace",
  "path":  "/spec/template/spec/containers/0/image",
  "value": "$IMAGE"
}]
EOT
kubectl patch deployment $2 \ 
   --type="json" \
   --patch=$PATCHPickup image name stored by the previous build step in the file

/opt/image-name. This file is provided as the first argument to
this script.



JSON path to update the Pod spec with the new image
reference.
Patch the deployment given as the second argument (random in
our example) and trigger a new rollout.

The Pod’s assigned ServiceAccount build-pod is set up so it can
write to this Deployment. Assigning permissions to a ServiceAccount
is described fully in Chapter 26, “Access Control”. When the image
reference is updated in the Deployment, a rollout as described in
Chapter 3, “Declarative Deployment”, is performed.
You can find the fully working setup in the book’s example
repository. The build Pod is the simplest way to orchestrate an in-
cluster build and redeployment. As mentioned, it is meant for
illustrative purposes only.
For real-world use cases, you should use a CI/CD solution like
Tekton or a whole build orchestration platform like OpenShift Build,
which we describe now.

OpenShift Build
Red Hat OpenShift is an enterprise distribution of Kubernetes.
Besides supporting everything Kubernetes supports, it adds a few
enterprise-related features like an integrated container image
registry, single sign-on support, and a new user interface, and it
also adds a native image building capability to Kubernetes. OKD is
the upstream open source community edition distribution that
contains all the OpenShift features.
OpenShift build was the first cluster-integrated way of directly
building images managed by Kubernetes. It supports multiple
strategies for building images:
Source-to-Image (S2I)

Takes the source code of an application and creates the
runnable artifact with the help of a language-specific S2I builder
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image and then pushes the images to the integrated registry.

Docker builds
Use a Dockerfile plus a context directory and creates an image
as a Docker daemon would do.

Pipeline builds
Map build-to-build jobs of an internally managed Tekton by
allowing the user to configure a Tekton pipeline.

Custom builds
Give you full control over how you create your image. Within a
custom build, you have to create the image on your own within
the build container and push it to a registry.

The input for doing the builds can come from different sources:
Git

Repository specified via a remote URL from where the source is
fetched.

Dockerfile
A Dockerfile that is directly stored as part of the build
configuration resource.

Image
Another container image from which files are extracted for the
current build. This source type allows for chained builds, as
shown in Example 30-4.

Secret
Resource for providing confidential information for the build.



Binary
Source to provide all input from the outside. This input has to be
provided when starting the build.

The choice of which input sources we can use in which way depends
on the build strategy. Binary and Git are mutually exclusive source
types. All other sources can be combined or used on a standalone
basis. We will see later in Example 30-3 how this works.
All the build information is defined in a central resource object
called BuildConfig. We can create this resource either by directly
applying it to the cluster or by using the CLI tool oc, which is the
OpenShift equivalent of kubectl. oc supports build-specific
commands for defining and triggering a build.
Before we look at BuildConfig, we need to understand two
additional concepts specific to OpenShift.
An ImageStream is an OpenShift resource that references one or
more container images. It is a bit similar to a Docker repository,
which also contains multiple images with different tags. OpenShift
maps an actual tagged image to an ImageStreamTag resource so
that an ImageStream (repository) has a list of references to
ImageStreamTags (tagged images). Why is this extra abstraction
required? Because it allows OpenShift to emit events when an
image is updated in the registry for an ImageStreamTag. Images
are created during builds or when an image is pushed to the
OpenShift internal registry. That way, the build or deployment
controllers can listen to these events and trigger a new build or
start a deployment.



NOTE
To connect an ImageStream to a deployment, OpenShift uses the
DeploymentConfig resource instead of the Kubernetes Deployment
resource, which can only use container image references directly.
However, you can still use vanilla Deployment resources in OpenShift
with ImageStreams by adding some OpenShift-specific annotations.

The other concept is a trigger, which we can consider as a kind of
listener to events. One possible trigger is imageChange, which
reacts to the event published because of an ImageStreamTag
change. As a reaction, such a trigger can, for example, cause the
rebuild of another image or redeployment of the Pods using this
image. You can read more about triggers and the kinds of triggers
available in addition to the imageChange trigger in the OpenShift
documentation.

Source-to-Image
Let’s have a quick look at what an S2I builder image looks like. We
won’t go into too many details here, but an S2I builder image is a
standard container image that contains a set of S2I scripts. It is
very similar to Cloud Native Buildpacks but with a much simpler
lifecycle that knows two mandatory commands:
assemble

The script that gets called when the build starts. Its task is to
take the source given by one of the configured inputs, compile it
if necessary, and copy the final artifacts to the proper locations.

run

Used as an entry point for this image. OpenShift calls this script
when it deploys the image. This run script uses the generated
artifacts to deliver the application services.
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Optionally, you can also script to provide a usage message, saving
the generated artifacts for so-called incremental builds that are
accessible by the assemble script in a subsequent build run, or add
some sanity checks.
Let’s have a closer look at an S2I build in Figure 30-3. An S2I build
has two ingredients: a builder image and a source input. Both are
brought together by the S2I build system when a build is started—
either because a trigger event was received or because we started
it manually. When the build image has finished by, for example,
compiling the source code, the container is committed to an image
and pushed to the configured ImageStreamTag. This image contains
the compiled and prepared artifacts, and the image’s run script is
set as the entry point.

Figure 30-3. S2I build with Git source as input

Example 30-3 shows a simple Java S2I build with a Java S2I image.
This build takes a source, the builder image, and produces an
output image that is pushed to an ImageStreamTag. It can be
started manually via oc start-build or automatically when the
builder image changes.



Example 30-3. S2I Build using a Java builder image
apiVersion: build.openshift.io/v1
kind: BuildConfig
metadata:
  name: random-generator-build
spec:
  source:    
    git:
      uri: https://github.com/k8spatterns/random-generator
  strategy:  
    sourceStrategy:
      from:
        kind: DockerImage
        name: fabric8/s2i-java
  output:    
    to:
      kind: ImageStreamTag
      name: random-generator-build:latest
  triggers:  
  - type: GitHub
    github:
      secretReference: my-secretReference to the source code to fetch; in this case, pick it up

from GitHub.
sourceStrategy switches to S2I mode, and the builder image
is picked up directly from Docker Hub.
The ImageStreamTag to update with the generated image. It’s
the committed builder container after the assemble script has
run.
Rebuild automatically when the source code in the repository
changes.

S2I is a robust mechanism for creating application images, and it is
more secure than plain Docker builds because the build process is
under full control of trusted builder images. However, this approach
still has some drawbacks.
For complex applications, S2I can be slow, especially when the build
needs to load many dependencies. Without any optimization, S2I



loads all dependencies afresh for every build. In the case of a Java
application built with Maven, there is no caching as when doing
local builds. To avoid downloading half of the internet again and
again, it is recommended that you set up a cluster-internal Maven
repository that serves as a cache. The builder image then has to be
configured to access this common repository instead of downloading
the artifacts from remote repositories.
Another way to decrease the build time is to use incremental builds
with S2I, which allows you to reuse artifacts created or downloaded
in a previous S2I build. However, a lot of data is copied over from
the previously generated image to the current build container, and
the performance benefits are typically not much better than using a
cluster-local proxy that holds the dependencies.
Another drawback of S2I is that the generated image also contains
the whole build environment.3 This fact increases not only the size
of the application image but also the surface for a potential attack,
as builder tools can become vulnerable too.
To get rid of unneeded builder tools like Maven, OpenShift offers
chained builds, which take the result of an S2I build and create a
slim runtime image. We look at chained builds in “Chained builds”.

Docker builds
OpenShift also supports Docker builds directly within the cluster.
Docker builds work by mounting the Docker daemon’s socket
directly in the build container, which is then used for a docker
build. The source for a Docker build is a Dockerfile and a directory
holding the context. You can also use an Image source that refers
an arbitrary image and from which files can be copied into the
Docker build context directory. As mentioned in the next section,
this technique, together with triggers, can be used for chained
builds.



Alternatively, you can use a standard multistage Dockerfile to
separate the build and runtime parts. Our example repository
contains a fully working multistage Docker build example that
results in the same image as the chained build described in the next
section.

Chained builds
The mechanics of a chained build are shown in Figure 30-4. A
chained build consists of an initial S2I build, which creates the
runtime artifact such as a binary executable. This artifact is then
picked up from the generated image by a second build, typically a
Docker build.

Figure 30-4. Chained build with S2I for compiling and Docker build for application
image

Example 30-4 shows the setup of this second build config, which
uses the JAR file generated in Example 30-3. The image that is
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eventually pushed to the ImageStream random-generator-
runtime can be used in a DeploymentConfig to run the application.

NOTE
The trigger used in Example 30-4 monitors the result of the S2I build.
This trigger causes a rebuild of this runtime image whenever we run an
S2I build so that both ImageStreams are always in sync.

Example 30-4. Docker build for creating the application image
  apiVersion: build.openshift.io/v1
  kind: BuildConfig
  metadata:
    name: runtime
  spec:
    source:
      images:
      - from:             
          kind: ImageStreamTag
          name: random-generator-build:latest
        paths:
        - sourcePath: /deployments/.
          destinationDir: "."
      dockerfile: |-      
        FROM openjdk:17
        COPY *.jar /
        CMD java -jar /*.jar
    strategy:             
      type: Docker
    output:               
      to:
        kind: ImageStreamTag
        name: random-generator:latest
    triggers:             
    - imageChange:
        automatic: true
        from:
          kind: ImageStreamTag



          name: random-generator-build:latest
      type: ImageChangeImage source references the ImageStream that contains the

result of the S2I build run and selects a directory within the
image that contains the compiled JAR archive.
Dockerfile source for the Docker build that copies the JAR
archive from the ImageStream generated by the S2I build.
The strategy selects a Docker build.
Rebuild automatically when the S2I result ImageStream changes
—after a successful S2I run to compile the JAR archive.
Register listener for image updates, and do a redeploy when a
new image has been added to the ImageStream.

You can find the full example with installation instructions in our
example repository.
As mentioned, OpenShift build, along with its most prominent S2I
mode, is one of the oldest and most mature ways to safely build
container images within an OpenShift cluster.

Discussion
You have seen two ways to build container images within a cluster.
The plain build Pod illustrates the most crucial tasks that every build
system needs to execute: fetching the source code, creating a
runnable artifact from your source code, creating a container image
containing the application’s artifacts, pushing this image to an
image registry, and finally updating any deployments so that it picks
up the newly created image from that registry. This example is not
meant for direct production use as it contains too many manual
steps that existing build orchestrators cover more effectively.
The OpenShift build system nicely demonstrates one of the main
benefits of building and running an application in the same cluster.
With OpenShift’s ImageStream triggers, you can connect multiple
builds and redeploy your application if a build updates your
application’s container image. Better integration between build and
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deployment is a step forward to the holy grail of CD. OpenShift
builds with S2I are a proven and established technology, but S2I is
usable only when using the OpenShift distribution of Kubernetes.
The landscape of in-cluster build tools as of 2023 is rich and
contains many exciting techniques that partly overlap. As a result,
you can expect some consolidation, but new tooling will arise over
time, so we’ll see more implementations of the Image Builder
pattern emerge.

More Information
Image Builder Example

Image Builders:

Buildah

Kaniko

What Is BuildKit?

Building Multi-Architecture Images with Buildpacks

Jib

Pack

Kpack

Ko

Apko: A Better Way to Build Containers?

Build Orchestrators:

OpenShift Builds

Kbld

Multistage Build
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Chaining S2I Builds

Build Triggers Overview

Source-to-Image Specification

Incremental S2I Builds

Building Container Images in Kubernetes: It’s Been a Journey!

Build Multi-Architecture Container Images Using Kubernetes

Best Practices for Running Buildah in a Container
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Afterword

Kubernetes is the leading platform for deploying and managing
containerized distributed applications at scale. However, these on-
cluster applications rely on off-cluster resources, including
databases, document stores, message queues, and other cloud
services. Kubernetes is not limited to managing applications within
a single cluster. Kubernetes can also orchestrate off-cluster
resources through various cloud services’ operators. This allows
Kubernetes APIs to be the single “source of truth” for a resource’s
desired state, not only for on-cluster containers but also for off-
cluster resources. If you are already familiar with Kubernetes
patterns and practices for operating applications, you can leverage
this knowledge for managing and using external resources too.
The physical boundaries of a Kubernetes cluster don’t always
conform to the desired application boundaries. Organizations often
need to deploy applications across multiple data centers, clouds,
and Kubernetes clusters for a variety of reasons, such as scaling,
data locality, isolation, and more. Often, the same application or a
fleet of applications has to be deployed into multiple clusters, which
requires multicluster deployments and orchestration. Kubernetes is
frequently embedded in various third-party services and used for
operating applications across multiple clusters. These services
utilize the Kubernetes API as the control plane, with each cluster
serving as a data plane, allowing Kubernetes to extend its reach
across multiple clusters.
Today, Kubernetes has evolved beyond just a container orchestrator.
It is capable of managing on-cluster, off-cluster, and multicluster
resources, making it a versatile and extensible operational model
for managing many kinds of resources. Its declarative YAML API and
asynchronous reconciliation process have become synonymous with



the resource orchestration paradigm. Its CRDs and Operators have
become common extension mechanisms for merging domain
knowledge with distributed systems. We believe that the majority of
modern applications will be running on platforms that are offering
Kubernetes APIs, or on runtimes that are heavily influenced by
Kubernetes abstractions and patterns. If you are a software
developer creating such applications, you must be proficient in
modern programming languages to implement business
functionality, as well as cloud native technologies. Kubernetes
patterns will become mandatory common knowledge for integrating
applications with the runtime platform. Familiarizing yourself with
the Kubernetes patterns will enable you to create and run
applications in any environment.

What We Covered
In this book, we covered the most popular patterns from
Kubernetes, grouped as the following:

Foundational patterns represent the principles that
containerized applications must comply with in order to become
good cloud native citizens. Regardless of the application nature,
and the constraints you may face, you should aim to follow
these guidelines. Adhering to these principles will help ensure
that your applications are suitable for automation on
Kubernetes.

Behavioral patterns describe the communication mechanisms
and interactions between the Pods and the managing platform.
Depending on the type of workload, a Pod may run until
completion as a batch job or be scheduled to run periodically. It
can run as a stateless or stateful service and as a daemon
service or singleton. Picking the right management primitive
will help you run a Pod with the desired guarantees.



Structural patterns focus on structuring and organizing
containers in a Pod to satisfy different use cases. Having good
cloud native containers is the first step but is not enough.
Reusing containers and combining them into Pods to achieve a
desired outcome is the next step.

Configuration patterns cover customizing and adapting
applications for different configuration needs on the cloud.
Every application needs to be configured, and no one way
works for all. We explore patterns from the most common to
the most specialized.

Security patterns describe how to constrain an application while
intersecting with Kubernetes. Containerized applications have
security dimensions too, and we cover application interactions
with the nodes, interactions with other Pods, the Kubernetes
API server, and secure configurations.

Advanced patterns explore more complex topics that do not fit
in any of the other categories. Some of the patterns, such as
Controller, are mature—Kubernetes itself is built on it—and
some are still evolving and might change by the time you read
this book. But these patterns cover fundamental ideas that
cloud native developers should be familiar with.

Final Words
Like all good things, this book has come to an end. We hope you
have enjoyed reading this book and that it has changed the way
you think about Kubernetes. We truly believe Kubernetes and the
concepts originating from it will be as fundamental as object-
oriented programming concepts are. This book is our attempt to
create the Gang of Four Design Patterns but for container
orchestration. We hope this is not the end but the beginning of your
Kubernetes journey; it has been so for us.



Happy kubectl-ing.
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