

BIRMINGHAM—MUMBAI

Simplifying State Management in
React Native

Copyright © 2022 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in
a retrieval system, or transmitted in any form or by any means, with-
out the prior written permission of the publisher, except in the case of
brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure
the accuracy of the information presented. However, the information
contained in this book is sold without warranty, either express or im-
plied. Neither the author, nor Packt Publishing or its dealers and dis-
tributors, will be held liable for any damages caused or alleged to
have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information
about all of the companies and products mentioned in this book by
the appropriate use of capitals. However, Packt Publishing cannot
guarantee the accuracy of this information.

Group Product Manager: Rohit Rajkumar

Publishing Product Manager: Nitin Nainani

Senior Editor: Aamir Ahmed

Technical Editor: Joseph Aloocaran

Copy Editor: Safis Editing

Project Coordinator: Manthan Patel

Proofreader: Safis Editing

Indexer: Rekha Nair

Production Designer: Ponraj Dhandapani

Marketing Coordinator: Nivedita Pandey

First published: January 2023

Production reference: 1081222

Published by Packt Publishing Ltd.

Livery Place

35 Livery Street

Birmingham

B3 2PB, UK.

ISBN 978-1-80323-503-5

www.packt.com

http://www.packt.com/

To my entire family, for supporting me throughout the process of writ-
ing this book.

– Aleksandra Desmurs-Linczewska

Contributors

About the author

Aleksandra Desmurs-Linczewska is a web and software developer
with experience reaching as far as Flash and websites laid out with
tables. Aleks has seen her fair share of diverse code bases, bugs,

and Jira tickets. She studied French literature, but after graduating,

she decided to opt for a career in IT, which has always interested her.
She started out creating websites for friends and family. Soon, she
landed her first paying job at a software house in Sopot, Poland. A
few years later, she learned about React Native and started writing
her first app back in 2018. She’s been working on both React JS and
React Native since then. However, she strongly favors React Native.

She personally published a weather app, and she participates in OSS
projects and helps out with PRs, issues, and discussions. She recent-
ly started working for Callstack, the biggest React Native software
house in Poland.

I want to thank my family – for understanding how much time writing
a book can take. I’d also like to thank my team at Packt, for being so
understanding of how long it took me to write this book. I would espe-
cially like to thank Inderpal, who found me and convinced me to try
this, and Aamir for his never-ending patience toward me and his tire-
less work.

About the reviewers

Piyush Nanwani is an IT professional with three years of experience
as a full-stack developer and has worked on designing, developing,

and deploying software applications. Powered by his passion for
technology, he has delivered more than six production-ready self-
started projects. Currently, he is working as a mobile app developer
with M/s. Atlantis Intelligence Ltd. A recent project of his was devel-
oping a low-code platform to build mobile apps. Currently, he is work-
ing on React Native, React JS, MS SQL, and .NET, among other
things. He holds a B.Tech degree in computer science from IP Uni-
versity, New Delhi.

His interests include exploring new technologies, attending confer-
ences, reading books, and dancing.

You can reach Piyush at https://www.linkedin.com/in/piiyush.

https://www.linkedin.com/in/piiyush

Ahir Jere is an experienced full-stack developer. He has worked with
a variety of platforms, such as embedded systems and desktop and
mobile applications, as well as cloud applications. Well-versed in
Python and JavaScript, he has multiple applications powered by
Django and Node.js and creates beautiful, vibrant UI applications with
React and Flutter. These applications range from art galleries for
showcasing peoples’ photography to large e-commerce stores with a
wide variety of products and banking applications for different Fin-
Tech applications.

Table of Contents

Preface

Part 1 – Learn the Basics : Intro to React ,
States , Props , Hooks , and Context

1

What are React and React Native?

Understanding the history of ReactJS

The predecessors

And then there was React

Thinking in React (the React mindset)

Understanding cross-platform software
development

Going over the history of React Native

Reviewing examples of popular apps using
React Native

Summary

2

Managing State in a Simple React App

Technical requirements

What is state and how is it different from
props?

What are stateful and stateless
components?

What are hooks and why use them?

Which hooks should you know?

Setting up the example app

Environment setup

App structure

Summary

Further reading

Part 2 – Creating a Real , Working App

3

Planning and Setting Up the Funbook App

Technical requirements

Planning the needed surfaces and
components

Planning data flows in the app

Getting comfortable previewing and
debugging the app

Summary

Further reading

4

Styling and Populating the Funbook App

Technical requirements

Creating and styling components

Pulling in data for the app

Summary

Further reading

Part 3 – Exploring Various Libraries for
State Management in React Native

5

Implementing Redux in Our Funbook App

Technical requirements

What is Redux? A brief history

Installing and configuring Redux

Dispatching actions

Adding Redux functionalities to the app

User login state walkthrough

Using Redux for liked images

Combining various pieces of global state

Taking advantage of Redux Toolkit for
creating actions

Fetching data

Replacing the context

Debugging

Summary

Further reading

6

Using MobX as a State Manager in a React
Native App

Technical requirements

Going over MobX concepts

Configuring MobX in the Funbook app

Using MobX for FavoritedImages

Creating the store

Fetching data

Adding actions

Deriving data from state

Summary

Further reading

7

Untangling Complex Flows in React Native
Apps with XState

Technical requirements

What are finite state machines?

What is XState – high-level concepts

Configuring XState in the Funbook app

Using XState for the FavoritedImages
surface

Configuring context and components

Fetching image data

Managing the image in the image modal

Liking images

Summary

Further reading

8

Integrating Jotai in a React Native App

Technical requirements

What is Recoil and an atomic state?

What is Jotai?

Configuring Jotai in the Funbook app

Using Jotai for ListOfFavoritedImages

Fetching data with Jotai

Reading and writing atoms

Adding read-write functionality to the
imageListAtom

Implementing the Like button

Summary

Further reading

9

Using React Query for Server-Side-Driven
State Management

Technical requirements

What is React Query and why is it in this
book?

Installing and configuring React Query

Using React Query for data fetching

Fetching image data

Other React Query Functionalities

React Query utilities for React Native

Summary

Further reading

Part 4 – Summary

10

Appendix

Index

Other Books You May Enjoy

Preface

Welcome to the wonderful world of React Native apps! Thanks to this
technology, you can have your own native app up and running in a
matter of minutes. Don’t worry if this is the first time you are hearing
about React Native. Basic knowledge of JavaScript will be enough to
hit the ground running. Together, we will go over the important con-
cepts of React and React Native and we will learn about the React
Native ecosystem, setup, and tooling. By the end of Chapter 4,

Styling and Populating the Funbook App, you will have a fully func-
tioning social-media clone app in your hands.

This is where stuff starts getting interesting. Our app has a few API
endpoints and needs to manage data objects across multiple compo-
nents and screens. This situation is very common in medium-sized
and large applications. Because of this, there are many solutions to
this common problem. A lot of developers use battle-tested and
renowned open-source libraries, such as Redux or MobX. Others
look for innovative ideas and land on XState or Jotai for their projects.

Others still use built-in React functionalities or concentrate on data
fetching instead of state management with the help of React Query.

Throughout this book, we will put ourselves in the shoes of all of
these types of developers. We will pick one specific functionality from

the app – the like button with the list of liked images – and we will try
out the open source libraries listed here, one by one.

When we emerge victorious at the end of this book, you will have a
very good understanding of different ways to manage states in React
Native apps. I hope you will also have an idea of what you prefer, and
why. Redux, MobX, XState, Jotai, and React Query were created to
solve the same problem, but their creators approached it very differ-
ently. I also hope you will simply enjoy this book as much as I’ve en-
joyed writing it.

Who this book is for

This book is meant for beginners in the React and React Native
world. It covers basic topics pertinent to software development with
ReactJS. Even if you are knowledgeable about basic React solutions,

you may be a newbie to MobX, XState, Jotai, or React Query, which
means this book is meant for you as well.

What this book covers

Chapter 1, What are React and React Native?, will start by going over
a brief history of web development to achieve a better understanding
of the ideas behind the creation of React and React Native. We will
also talk about ReactJS concepts, and we will get acquainted with
React Native code.

Chapter 2, Managing State in a Simple React App, will talk about
some real-life problems that React developers face. We will concen-
trate on robust state management for medium-sized and large ap-
plications. Since React itself was not created with the tools to man-
age global states, we will look at modern React solutions and other
state management strategies.

Chapter 3, Planning and Setting Up the Funbook App, will get into
coding for real here! We will create our very own app, a social media
clone app, called Funbook. We will learn about popular tools, espe-
cially Expo, and the React Native ecosystem.

Chapter 4, Styling and Populating the Funbook App, will be all about
making the app we have on our hands look good. We will also popu-
late it with some data so that we can work on a project that’s close to
how a real production app may work.

Chapter 5, Implementing Redux in Our Funbook App, will explore the
tumultuous history of Redux and then go over configuring Redux and
Redux Toolkit in the app. Once the dependencies are set up, we will
move on to implementing the like button and the list of liked images
with the help of Redux. This chapter includes responses from a short
conversation I had with the main Redux and Redux Toolkit maintainer
– Mark Erikson, also known by his Twitter handle @acemarke.

Chapter 6, Using MobX as a State Manager in a React Native App,

will return to the bare React Native app we created in Chapters 1 to 4,

and this time, we will add MobX and MobX-State-Tree into the mix.

We will start with how this library came to be, and then move on to
configuring it in the Funbook app. Once we’re ready, we will use it for
the liked images list and the like button. This chapter includes re-
sponses from an exchange I had with the MobX-State-Tree maintain-
er – Jamon Holmgren.

Chapter 7, Untangling Complex Flows in React Native Apps with XS-
tate, will go deeper into some advanced math problems, as XState is
based on advanced mathematical concepts. When we have a handle
on them, we will move on to configuring XState in the Funbook app
and using it for the liked images functionality.

This chapter includes responses I received from the creator of XState
– David Khourshid, better known on the internet as DavidKPiano.

Chapter 8, Integrating Jotai in a React Native App, will return to the
bare Funbook app again, and this time, we will implement the
youngest state management library in this book: Jotai. We will learn
about its concepts, configure it, and use it for the liked button and
liked images list functionality. This chapter includes responses from a
conversation I had with the creator of Jotai, Daishi Kato.

Chapter 9, Using React Query for Server-Side - Driven State Man-
agement, will look at the problem of state management in a very new
way: maybe we don’t need state management libraries at all. Maybe
all we must do is effectively manage data fetching. In order to test this
hypothesis, we will install, configure, and use React Query, also
known as TanStack Query.

Chapter 10, Appendix, will take a bird’s eye view of everything that we
have learned about in the book. I have also included a few common
job interview questions that are pertinent to the topic of state man-
agement in React Native apps.

To get the most out of this book

You will need to install Expo on your computer. All code examples
have been tested using Expo 44 on macOS, but they should work
with future version releases.

Software/hardware covered in
the book

Operating system
requirements

Expo 44 Windows, macOS, or Linux

JavaScript (ECMAScript 2020) Windows, macOS, or Linux

ReactJS v18 and up Windows, macOS, or Linux

React Native Windows, macOS, or Linux

Additional setup instructions are detailed in Chapter 3, Planning and
Setting Up the Funbook App.

If you are using the digital version of this book, we advise you to
type the code yourself or access the code from the book’s Git-
Hub repository (a link is available in the next section). Doing so
will help you avoid any potential errors related to the copying
and pasting of code.

This book represents the state of the most well-known state manage-
ment libraries in 2022. I encourage you to try new and lesser-known
solutions on your own, as new libraries are published every day.

Download the example code files

You can download the example code files for this book from GitHub at
https://github.com/PacktPublishing/Simplifying-State-Management-
in-React-Native. If there’s an update to the code, it will be updated in
the GitHub repository.

We also have other code bundles from our rich catalog of books and
videos available at https://github.com/PacktPublishing/. Check them
out!

Download the color images

We also provide a PDF file that has color images of the screenshots
and diagrams used in this book. You can download it here:

https://packt.link/wv4Mk.

Conventions used

There are a number of text conventions used throughout this book.

Code in text: Indicates code words in text, database table names,

folder names, filenames, file extensions, pathnames, dummy URLs,

https://github.com/PacktPublishing/Simplifying-State-Management-in-React-Native
https://github.com/PacktPublishing/
https://packt.link/wv4Mk

user input, and Twitter handles. Here is an example: “export const
ListOfAvatars = () => {“.

A block of code is set as follows:

Import { Text } from 'react-native';

const Welcome = () => {

 return <Text>Hello, World! </Text>;

}

When we wish to draw your attention to a particular part of a code
block, the relevant lines or items are set in bold:

return (

 <View style={{ paddingTop: 30 }}>

 <FlatList

 data={arrayOfAvatars}

 renderItem={renderItem}

 keyExtractor={(item) => item.id}

 />

 </View>

Any command-line input or output is written as follows:

$ yarn add react-query

$ expo start

Bold: Indicates a new term, an important word, or words that you see
onscreen. For instance, words in menus or dialog boxes appear in
bold. Here is an example: “If you want to see your app on your
phone, you’ll find the QR code to scan in the Expo Go app right
here. “

BROWSING THROUGH SAMPLE DATA

You can see the example data used in the app whenever you’d like.

Get in touch

Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this
book, email us at customercare@packtpub.com and mention the
book title in the subject of your message.

Errata: Although we have taken every care to ensure the accuracy of
our content, mistakes do happen. If you have found a mistake in this
book, we would be grateful if you would report this to us. Please visit
www.packtpub.com/support/errata and fill in the form.

http://customercare@packtpub.com/
http://www.packtpub.com/support/errata

Piracy: If you come across any illegal copies of our works in any form
on the internet, we would be grateful if you would provide us with the
location address or website name. Please contact us at
copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that
you have expertise in and you are interested in either writing or con-
tributing to a book, please visit authors.packtpub.com.

Share Your Thoughts

Once you’ve read Simplifying State Management in React Native,

we’d love to hear your thoughts! Please click here to go straight to
the Amazon review page for this book and share your feedback.

Your review is important to us and the tech community and will help
us make sure we’re delivering excellent quality content.

Download a free PDF copy of this
book

Thanks for purchasing this book!

http://copyright@packt.com/
http://authors.packtpub.com/
https://packt.link/r/1-803-23503-9

Do you like to read on the go but are unable to carry your print books
everywhere?

Is your eBook purchase not compatible with the device of your
choice?

Don’t worry, now with every Packt book you get a DRM-free PDF ver-
sion of that book at no cost.

Read anywhere, any place, on any device. Search, copy, and paste
code from your favorite technical books directly into your application.

The perks don’t stop there, you can get exclusive access to dis-
counts, newsletters, and great free content in your inbox daily

Follow these simple steps to get the benefits:

1. Scan the QR code or visit the link below

https://packt.link/free-ebook/978-1-80323-503-5

https://packt.link/free-ebook/978-1-80323-503-5

2. Submit your proof of purchase
3. That’s it! We’ll send your free PDF and other benefits to your email
directly

Part 1 – Learn the Basics: Intro
to React, States, Props, Hooks,

and Context

In this part, we will start with some theoretical knowledge that will be
vital for creating a real app. The Readers will learn some of the histo-
ry of React and its general rules, guidelines, and best practices. Next,
we will look into React’s built-in strategies for dealing with states: lo-
cal states, props, hooks, and context.

This part includes the following chapters:

Chapter 1, What are React and React Native?

Chapter 2, Managing State in a Simple React App

1

What are React and React
Native?

Welcome to the magical world of React and React Native. I hope to
make you feel at home here. It’s okay if this is your very first contact
with these frameworks, or you may have played around with them a
little bit already. This book will focus on managing state in React Na-
tive apps, but we will start by going over the basics.

If React and React Native were people, the first one would be the par-
ent of the second one. You can focus on the child framework, but you
will find great benefits in getting to know the “parent” of React Native
– ReactJS.

We will start this journey by going over the history of ReactJS and
specifically, why it was created. We will then continue our study of
ReactJS by looking into what it means to think in React or to have the
React mindset. Once we’re familiar with ReactJS, we will try to under-
stand what cross-platform software development means and what
place React Native holds in the cross-platform development ecosys-
tem. For understanding the ecosystem, we will concentrate on React

Native itself, its brief history, and its current state. We will finish our
tour with a handful of examples of native apps written in React
Native.

In this chapter, we will cover the following topics:

Understanding the history of ReactJS
Thinking in React (the React mindset)
Understanding cross-platform software development
Going over the history of React Native
Reviewing examples of popular apps using React Native

By the end of this chapter, you will have high-level knowledge of Re-
act and React Native. You will also understand their place in the soft-
ware development ecosystem.

Understanding the history of
ReactJS

In this section, we will briefly look into the history of ReactJS. If you’re
not interested in this particular topic, feel free to skip this section and
go straight to Thinking in React. Knowing the history of a framework
is not compulsory for using it. If you prefer condensed knowledge

served in a YouTube pill, I highly recommend watching a 10-minute
video called The Story of React, published on YouTube by uidotdev.

The predecessors

Did you know that the first website ever created is still live? You can
find it here: http://info.cern.ch/hypertext/WWW/TheProject.html. It
was created in 1991! A lot has changed since then. For starters, web
developers wanted to change their websites’ appearance, hence
CSS was created. A few years later those same web developers
wanted to see more interactivity on their now beautiful websites. This
is when JavaScript found its place on the internet. But as we know,

the web never stops evolving. Heavy usage of JavaScript led to the
creation of libraries such as jQuery, BackboneJS, and Ember. Each
library’s creators learned lessons from their competitors. They made
decisions that led to creating very different developer experiences.

The developers had their preferences and little wars over which li-
brary is better.

There is no right answer to this question. What is certain, however, is
that user experience on websites evolved, no matter which library
was used behind the scenes. Websites became much more interac-
tive and adaptable to the user’s screen size. For example, it is com-
mon practice today to create separate menus for mobile views and
desktop views. This can be achieved with JavaScript, or CSS alone.

http://info.cern.ch/hypertext/WWW/TheProject.html

This user experience shift could not take place without the evolution
of JavaScript open source libraries.

After a few years of adding more and more separate bits of Java-
Script to websites, it was time for a more holistic solution. The first
breakthrough came from Google, with AngularJS. AngularJS, offi-
cially released in 2010, was different from other solutions on the mar-
ket at that time. This was not just another library; this was a frame-
work. Developers were able to create complex interactions quickly,

and they were no longer afraid that any change to their JavaScript
files could break the entire page. I don’t want to go into the implemen-
tational details of AngularJS. After all, that is not the focus of this
book. In broad strokes, AngularJS introduced special HTML attributes
that were observed by the framework running in the background. As
you may imagine, when JavaScript is observing dozens or even hun-
dreds of elements and events, it will slow down. So, the user experi-
ence is suffering, and the world is ready for another JavaScript revo-
lution. Google thought they would remain king of the hill with their An-
gular version 2, but in 2013, Facebook developers announced the re-
lease of ReactJS.

And then there was React

ReactJS was presented specifically as a user interface (UI) library. It
was conceived to be used for end user interactions on websites. It

also used JSX – an extension to JavaScript created for React. Many
developers reacted, pun intended, angrily to this new syntax. I would
say though, that angry reactions are not unexpected in the world of
tech. Any new technological solution has to weather the storm of an-
gry Reddit posts saying that it’s ugly, useless, or simply terrible. Luck-
ily for us, ReactJS developers did not stop working on their open
source framework because of this initial negative reaction. Further-
more, developers who got to know ReactJS became its advocates.

Why, you may ask, did ReactJS stand the test of time, while Angular
hasn’t? I believe it has to do with the high-level mindset of the frame-
work. ReactJS proposes elegant, simple solutions while staying com-
pletely configurable to any needs. I will go further into this mindset
idea in the next section.

Going back to our history lesson! We’re in 2013, and ReactJS has en-
tered the scene with a bang. Many people hate it, but others use it for
more and more complex websites. And it turns out, unfortunately, that
ReactJS does not scale well. Your React components use state and
props. If the parent creates a state, which needs to be read four to
five components lower in the hierarchy, you encounter something that
is dubbed prop drilling. Prop drilling means that the developer has to
pass the necessary prop through many parent components in order
to get to the final child that needs to read it. This process is irritating
and boring, at the same time! This is when the first state manage-

ment library was created – Redux. We will talk in detail about Redux
and other state management libraries in the next chapters.

As of writing this book, ReactJS is one of the most popular JavaScript
libraries. It evolves constantly, and its maintainers are open to public
discussions and suggestions. In 2019, they introduced hooks and
context. These two React utilities can cover a lot of your state man-
agement needs. They were created because the React team realized
that developers using React needed an improvement in the state
management area.

A few years before the introduction of hooks and context, specifically
in 2015, Facebook developers released React Native. The true hero
of this book! But let’s not get ahead of ourselves. At this moment, it is
important that you understand the basic concepts of React. Let’s
move on to the React mindset.

Thinking in React (the React
mindset)

The official ReactJS docs include a chapter called Thinking in React:
https://reactjs.org/docs/getting-started.html#thinking-in-react.

IMPORTANT NOTE

Many React users credit reading Thinking in React (https://reac-
tjs.org/docs/thinking-in-react.html) as the moment React finally
clicked for them. It’s probably the oldest React walk-through but it’s
still just as relevant.

Let’s try and capture the most important, and still relevant, parts of
that article.

First of all, when we create a website with ReactJS, we need to think
about how we will construct our components. Not HTML blocks, not
DOM elements, but components. Ideally, each component will be a
separate entity, which either creates a state or consumes props, or
sometimes both. The component is the smallest part of our app, just
like atoms are the smallest parts of our world.

Okay, I realize atoms can be further divided into neutrons, protons,

and electrons. And ReactJS components can be divided into parts
that handle the logic and the actual rendering. However, both atoms
and ReactJS components are the basic building blocks in their re-
spective realms.

Now that we have our components imagined, we need to know how
they should interact with each other. Let’s go back to the ReactJS
docs, where we will find a great chapter, Composition vs. Inheritance:

https://reactjs.org/docs/composition-vs-inheritance.html.

https://reactjs.org/docs/thinking-in-react.html
https://reactjs.org/docs/composition-vs-inheritance.html

This article is very clear in stating that ReactJS components should
be composed, and not stacked in a strict hierarchy. This basically
means that any child component should be created in a way that it
could be reused by other parent components throughout the app.

This promotes the high reusability of atomic components, and at the
same time, reduces the amount of code needed to create an
application.

Now that we have the theory down, let’s move on to specifics. How do
we compose ReactJS components in practice? By using state and
props. What are those, you may ask? Well, I’ll be glad to explain!

Both state and props (short for properties) are plain JavaScript ob-
jects. The big difference between them is that props are read-only,

while state can be changed within the component that manages it.
State is the source of truth, while props are the representations of the
current state of the application. Let’s take a look at a minimal code
example:

import React, { useState } from "react";

const PrettyButton = ({ updateCount, count }) =>

 return (

 <button onClick={updateCount}>This was clic

);

};

export default function App() {

 const [counter, updateCount] = useState(0);

 const handleClick = () => {

 updateCount(counter + 1);

 };

 return (

 <div>

 <h1>Hello There!</h1>

 <PrettyButton count={counter} updateCount

 </div>

);

}

You can play with this sample code online thanks to this
CodeSandbox: https://codesandbox.io/s/admiring-fire-68k94x?

file=/src/App.js.

From the preceding code example, you can see that the App compo-
nent creates the counter state, and the function responsible for up-
dating it. PrettyButton consumes this state in the form of props.

PrettyButton cannot change the value of counter or updateCounter
directly.

If we were to write another parent component that needed to use
PrettyButton, it would need to create its own counter and update-

https://codesandbox.io/s/admiring-fire-68k94x?file=/src/App.js

Counter states. And thanks to that, every instance of PrettyButton
we may want to use in our web app will be independent of the others.

We may also find ourselves importing multiple child components in
the main App component. This is totally natural. We may have an app
with a button, a text, and a modal, all of which need to display the
number of times the button was clicked. All we need to do is add the
necessary components to the parent and pass the counter prop. The
state is mutated only in the parent and then fed to the children.

Now we arrive at the moment where we need to decide which compo-
nent should handle the state change. In our simple code example, the
answer is obvious: we have only one parent. In the real world, this
question may be much more difficult to answer. Luckily for us, we will
look at state management strategies throughout this entire book. I
hope, after reading this book, that you will be well equipped to choose
the best place to store and manage your application state in your Re-
act Native app.

In the previous section, we went over high-level aspects of writing
code in ReactJS. It’s good to keep in mind the patterns we looked at,
as they are just as useful in React Native development. And since
we’re familiar with ReactJS, we are ready to dive into the world of na-
tive apps written in JavaScript.

Understanding cross-platform
software development

Before talking about React Native, we need to go over the landscape
of mobile app development.

It is quite obvious that mobile apps can be created using native plat-
form programming languages. The ones considered most modern
are Swift, for iOS development, and Kotlin, for Android development.
Many developers still use Objective-C and Java, respectively. How-
ever, when the market of mobile phones settled down with the two gi-
ants, Apple and Google, it was tempting to create solutions that could
be written once for both platforms. Similarly, for websites, which can
be opened in any browser, why can’t we have apps that can be run
on any device?

Looking for this mythical cross-platform solution was enticing to many
companies. They were hiring separate teams from iOS and Android
to end up with apps that do not look and feel the same.

The software development world is vast, and we can find many solu-
tions to a single problem. Cross-platform development is not an ex-
ception to this rule. If you google cross-platform apps, you will find a
solution from Microsoft, called Xamarin. You will also find Flutter,

written in a language called Dart. And finally, you will find many solu-
tions based on JavaScript. One of the first meaningful players was
Ionic. Ionic is a framework, built in 2013, for development in Angular-
JS, and it uses Apache Cordova behind the scenes. Ionic develop-
ers build their apps using the exact same syntax they would use to
create a website. At build time, a native app wrapper with a single
WebView is created. The Ionic code is run inside this WebView. Giv-
en this structure, many people call Ionic apps hybrid apps to differ-
entiate them from cross-platform apps.

React Native is a completely different solution. In its case, code is
compiled into a complete native app. JavaScript code runs in the app
and communicates with the phone’s native modules through a
bridge. But where did React Native come from, you may ask?

Let’s dive into that topic in our next section.

Going over the history of React
Native

Back in 2012, Facebook announced they were becoming a mobile-
first company. Facebook realized its users spend more time on their
phones than on computers. They needed to have their websites and
apps working seamlessly on smart devices. However, the majority of

Facebook engineers were web developers. The company started re-
searching options to reuse the knowledge of those web developers
for mobile development. After trying out a few different ideas, they
didn’t want to follow in the footsteps of Ionic, enclosing the apps in-
side WebViews. They needed something new.

That is when a developer named Christopher Chedeau made his
mark on the history of software development. He teamed up with
Jordan Walke, Ashwin Bharambe, and Lin He for an internal Face-
book hackathon. Basing their work on the first attempts done by Jor-
dan – who, by this time, had been able to generate UILabel in iOS
from JavaScript – they created a working prototype that could gener-
ate native UI elements from JavaScript on the user device. And it
took them only 2 days!

THE HISTORY OF REACT NATIVE: FACEBOOK’S OPEN
SOURCE APP DEVELOPMENT FRAMEWORK

You can read the article here:

https://www.techaheadcorp.com/blog/history-of-react-native/.

After this initial success, Jordan and Christopher were able to contin-
ue working on their new product, named React Native, with an entire
team of engineers.

https://www.techaheadcorp.com/blog/history-of-react-native/

After 3 years, they were ready to present what they had to the world.

The official announcement for React Native took place at ReactJS
Conf in 2015. This was the first ReactJS Conf, and React Native was
presented during the keynote! That’s how much faith Facebook had
in this framework. I encourage you to check out the talk; you can find
a link in the official ReactJS docs at
https://reactjs.org/blog/2015/02/18/react-conf-roundup-2015.html.

Since 2015, React Native has grown and changed a lot. Some
changes, such as the introduction of hooks and context, were simple
follow-ups to changes happening in ReactJS. In other cases,

changes were motivated by the community or proposed by the main-
tainers of the framework. React Native on github.com has a whole
section called Discussions and Proposals (https://github.com/react-
native-community/discussions-and-proposals). Everyone is welcome
to add anything they would like to discuss on the topic of React Na-
tive implementations, ecosystems, and so on. This board is a great
resource for what is currently going on and what may be expected to
happen in the future. One of the first issues on this board, the sixth
issue to be exact, was a proposition for a Lean Core. By this time, Re-
act Native has been in the wild for at least 3 years and it has grown a
lot. The framework has included implementations of UI details such
as Switch, or native functionalities such as push notifications. One of
the core maintainers of the repo proposed that all code that is not ab-
solutely necessary be removed from the main package. You can read

https://reactjs.org/blog/2015/02/18/react-conf-roundup-2015.html
http://github.com/

more details on Lean Core here: https://github.com/react-native-com-
munity/discussions-and-proposals/issues/6.

Of course, answering the question of “what is necessary” and “what
isn’t” is not easy. The Lean Core took a few months of discussions
and breaking changes. The shape of the main React Native package
today represents the results of this effort.

In the meantime, the Lean Core initiative energized the community to
go ahead and create their own libraries, which could be useful for Re-
act Native apps. As of writing this book, there are hundreds of li-
braries to choose from when you decide to create a React Native
app. There are UI libraries, navigation libraries, async storage man-
agement libraries, and many more. This is a blessing and a curse be-
cause not every library is well-written and maintained correctly. You
can, unfortunately, happen to use something that may break your app
in the future. So before running to your terminal and typing yarn add,

you may want to use the React Native directory: https://reactnative.di-
rectory. This website provides metrics on open source libraries, which
are very helpful when you want to add a good dependency to your
project.

There are a few libraries that stand out so much, and they are consid-
ered to be recommended for React Native projects. Those libraries
are usually pretty mature and well-maintained. One example is React

https://github.com/react-native-community/discussions-and-proposals/issues/6
https://reactnative.directory/

Navigation, the go-to library for apps that need anything more than
one screen. React Native Testing Library is a library officially cou-
pled with Kent C. Dodd’s React Testing Library. Reanimated is an
animation library, which achieves better performance than any of its
competitors.

An important part of the React Native ecosystem is Expo: https://ex-
po.dev/. Expo is both a framework and a platform for React Native
applications. It offers its users a set of tools useful for developing,

building, and deploying apps.

What does that mean specifically? Expo is a thin layer on top of React
Native, aimed at making the life of developers easier. If writing an app
in React Native was like eating a grilled steak with your hands, Expo
would be like eating Filet Mignon with a baked potato and a side of
Caesar salad. In a fancy restaurant. You may very well prefer the for-
mer, but you cannot deny the obvious advantages of the latter. If you
decide to use Expo, you will find local environment setup instructions
in the official React Native docs: https://reactnative.dev/docs/environ-
ment-setup. Once the app is set up, you will be able to take advan-
tage of the many components created and maintained by the Expo
team. This way, you may save yourself a few headaches and perfor-
mance problems. When you’re ready to show your app to the world,

you can upload your app bundle to the Expo website and use it for
testing and deployment. As you can see, Expo is a very versatile tool.

https://expo.dev/
https://reactnative.dev/docs/environment-setup

Now that we’re up to speed with the history and the current state of
React Native, let’s move on to looking at some real-world apps that
use it.

Reviewing examples of popular
apps using React Native

Now that we know a little bit about React Native, it’s time to get excit-
ed about it. A great way to get excited about a new technology is to
look at what that technology has already been used for. This is also a
good strategy when you must decide to use a particular technology.

The obvious example comes from Meta – the birthplace of React Na-
tive. The very first implementations of ReactJS took place in Face-
book Ads. It is fitting that React Native is used for that same feature
on mobile devices. Facebook’s mobile app is not entirely created with
React Native, but some parts of it use it. That means the Facebook
app is a React Native brownfield app. The opposite of that is apps
written in React Native alone, and that sort of app is called greenfield.

While we’re in the Metaverse, I will mention that the Instagram app
uses React Native, as does the Oculus app.

Don’t worry, Meta is not the only notable company using React Na-
tive. Discord not only uses React Native for their app, but they also
write blog posts about how they maintain their app. In this Medium
article, https://blog.discord.com/how-discord-achieves-native-ios-per-
formance-with-react-native-390c84dcd502, the Discord team states
that they adopted React Native as soon as it was open sourced, and
they are still happy with their decision years later.

Shopify is another big player in the React Native ecosystem. They
have an article on their blog entitled React Native is the Future of Mo-
bile at Shopify: https://shopify.engineering/react-native-future-mobile-
shopify. Shopify engineers also write more technical articles, for ex-
ample, about accessibility: https://www.shopify.com/partners/blog/re-
act-native-accessibility.

The website-builder giant Wix is also active in the React Native
world. They have also written about their adventure with React Native
(https://medium.com/wix-engineering/react-native-at-wix-the-archi-
tecture-db6361764da6) but they also create open source libraries, for
example, this UI kit: https://github.com/wix/react-native-ui-lib.

Circling back to listing specific apps built with React Native, I have to
mention Coinbase. Managing users’ finances in a reliable manner is
the top priority for this crypto market leader. They analyzed, iterated,

and landed on using React Native as their main mobile technology.

https://blog.discord.com/how-discord-achieves-native-ios-performance-with-react-native-390c84dcd502
https://www.shopify.com/partners/blog/react-native-accessibility
https://github.com/wix/react-native-ui-lib

You can read their article about the transition from native technolo-
gies on their blog: https://blog.coinbase.com/announcing-coinbases-
successful-transition-to-react-native-af4c591df971.

You may have heard of companies such as Tesla, Walmart, Sales-
force, Bloomberg, and Vogue. You may have used apps such as Uber
Eats, Artsy, Words with Friends, and SoundCloud Pulse. What do
they have in common? Surprise! (Not really.) They all use React Na-
tive. You can find even more examples with links to articles in the Re-
act Native showcase: https://reactnative.dev/showcase.

Not all React Native stories are success stories, though. One famous
case (by famous, I mean it was tweeted about for a few days) is
Airbnb. Airbnb’s website uses ReactJS, so it was logical for them to
try React Native for their mobile app. After a few years of develop-
ment, they hit development roadblocks and performance issues.

Their app consists of a very big map that needs to work perfectly. The
developers working on the app often needed help from React Native
developers, which was a bottleneck for this web-technology-focused
company. They announced their divorce from React Native in 2018:

https://medium.com/airbnb-engineering/sunsetting-react-native-
1868ba28e30a. Luckily, they still develop their amazing animation li-
brary, Lottie (http://airbnb.io/lottie/#/), which can be used in React
Native apps.

https://blog.coinbase.com/announcing-coinbases-successful-transition-to-react-native-af4c591df971
https://reactnative.dev/showcase
https://medium.com/airbnb-engineering/sunsetting-react-native-1868ba28e30a

Summary

Oof! That was a lot of theory for a programming book, right? Howev-
er, even if you found it a little dry, I strongly believe this theoretical
knowledge will be very useful for the next chapter. We have learned a
little bit about the history of web development and about the motiva-
tions of the creators of both ReactJS and React Native. Knowing all
of this will let us understand the ideas behind different state manage-
ment solutions. In the next chapter, we will jump into the most basic
way of managing state in a React Native app: with hooks and context.

2

Managing State in a Simple
React App

In the previous chapter, we went over a brief history of web develop-
ment, JavaScript, ReactJS, and React Native. Even though histori-
cal knowledge is not required to write great code, I find it useful. Once
we learn why specific library creators encourage some patterns and
discourage others, we can write code that is less error-prone and
more performant. Ah yes! Writing code! That’s why you’re here, dear
reader, isn’t it? Well, I have good news. In this chapter, we will dive
into code examples. We will start by looking at the most basic data
and state management strategies in React: using state and props.

We will then dive into a comparison of stateful and stateless compo-
nents. Once we have a good understanding of how state works in Re-
act applications, we will move on to talking about hooks. We will finish
off this chapter by completing a setup and configuration of our own
little app.

Here are the bullet points of what we will cover:

What is state and how is it different from props?

What are stateful and stateless components?

What are hooks and why use them?

Setting up the example app

By the end of this chapter, you should feel comfortable with React
code. We will also set up the base for our application. Even though
applications can be very different from one another, this basic setup
will remain the same for most of them. Feel free to reuse it for any
other project you may want to work on.

Technical requirements

If you are familiar with ReactJS but you have not worked with React
Native yet, you will be able to follow along with this section without
any problem.

If you have never read or written any ReactJS or React Native code,

it’s important that you learn the basic concepts. Please head over to
the official React Native documentation at
https://reactnative.dev/docs/intro-react and familiarize yourself with
key concepts such as components, JSX, state, and props.

A minimum requirement for this chapter is knowledge of Git, basic
knowledge of command-line interfaces (CLIs), and a working
knowledge of JavaScript.

https://reactnative.dev/docs/intro-react

What is state and how is it
different from props?

Every React Native application is created to display some sort of
data. It can be weather data, images, market data, maps… Using
React Native, we manage how this data is displayed on our users’
screens. React Native offers robust tools for styling and animating
content. However, in this book, we are concentrating on the raw ma-
terial of data used in your app.

In order to have a dynamic piece of data, existing automagically in
sync with our component, we need to declare the list as a component
state.

IMPORTANT NOTE

The most important thing to remember about state is this: state is
managed within the component; it is the component memory.

Any changes in state will cause your component and all its children to
re-render. This is an expected behavior: if your data changes, you
want your UI to change as well. However, multiple component re-ren-
ders may cause your app to encounter performance issues.

Let’s look at an example to better understand state. We will start off
with a very basic component, containing a <Text> element and a
<Pressable> element. <Pressable> is the recommended component
to use in React Native applications in places where a web developer
would use a <button> tag:

import React from "react";

import { View, Text, Pressable } from "react-nati

export const ManagedButton = () => {

 return (

 <View>

 <Text>this text will display the current

 <Pressable onPress="">

 <Text>Press here to check/uncheck</Te

 </Pressable>

 </View>

);

};

As you can probably observe, dear reader, nothing will happen when
the <Pressable> component is tapped because we haven’t provided
an onPress function.

We will now add state to this simple component. We will set a
checked/unchecked text inside the <Text> component, linked to the

component state:

import React, { useState } from "react";

import { View, Text, Pressable } from "react-nati

export const ManagedButton = () => {

 const [checkedState, setCHeckedState] =

 return (

 <View>

 <Text>this text will display the curren

 <Pressable onPress="">

 <Text>Press here to check/uncheck</Te

 </Pressable>

 </View>

);

};

Testing React Native code is a little more complicated than testing
code made to run in browsers (as with JavaScript or ReactJS). Lucky
for us, the good people at Expo created an online tool for testing code
snippets. It’s called Expo Snack and you can use it to test the preced-
ing code at https://snack.expo.dev/@p-syche/simplifying-state-man-
agement---chapter-2-example-1.

Let’s walk through the changes one by one. We start by adding an
import of the useState hook from the React library on the first line.

Then, inside the component, we set this variable:

https://snack.expo.dev/@p-syche/simplifying-state-management---chapter-2-example-1

const [checkedState, setCheckedState] = useState(

The useState hook accepts an array, where the first item is the state
value, and the second item is the function that will set the value. If you
will not change the state in your component, you can omit the second
argument. There is no official rule as per the names of the items in
the array, but it is an accepted convention to name the setter function
similarly to the state value, but with the "set" keyword. Last but not
least, the "unchecked" string is passed to the useState hook. This is
the default value of the useState hook. If you do not wish to set a de-
fault state, you may leave the parentheses empty.

Now that we have the state hook imported and the component state
set with the useState hook, we can use it in our component. Hence,

this line:

<Text>this text will display the current status,

The curly braces surrounding the state are part of JSX. JSX is a syn-
tax extension to JavaScript, and it’s the syntax used to write all
React components. "What does that mean in regular English?" you
ask, dear reader. It means that when writing in JSX, you can write
any JavaScript code, plus you can write additional stuff, such as

component state wrapped in curly braces. You could look at JSX
compared to JavaScript as if it were a pirate speaking as compared
to plain English. All English pirates will understand all English phras-
es, but a regular Englishman will not understand all pirate phrases.

All right, matey? Let’s move on then, yo ho ho!

We have the state set up, but our <Pressable> component still
doesn’t do anything, does it? Let’s add an onPress function, which will
set the state. The simplest way to achieve this is to pass the set-

CheckedState function from the useState hook right into the onPress

function:

<Pressable onPress={setCheckedState("checked")}>

Now, when the <Pressable> button is pressed, it will change the state
of the component, which in turn will change the text displayed in the
<Text> component.

There is much more you can achieve with the useState hook. You
can set it to any value you like, including an object. Every component
can have multiple pieces of state, as many as you’d like, actually! If
you would like to look at other examples of how state can be imple-

mented in a React component, I invite you to check the first link from
the Further reading section.

Let’s move on to the second hero of this section: props. Props is a
short name for properties. Props are JavaScript objects just like
state; the biggest difference between them is that props are read-
only.

IMPORTANT NOTE

The most important thing to remember about props is this: props are
immutable (or read-only).

A natural flow of a ReactJS or React Native app is to have a parent
component with some state—in our previous code example, it was
the "checked"/"unchecked" state. The parent component has chil-
dren: components with images or text, and so on, to whom we pass
the state in the form of a prop. The children can read the state:

whether the text should be "checked" or "unchecked", in this case.

But the children will never change the state of the text. The state of
the text can only be changed within the parent component where
state was declared. Let’s update our code example to include a par-
ent and a child component, with state set in the parent and passed to
the child through props:

import React, { useState } from "react";

import { View, Text, Pressable } from "react-nati

const ManagedText = ({checkedState}) => {

 return (

 <Text>this text will display the current st

);

};

export const ParentComponent = () => {

 const [checkedState, setCheckedState] =

 return (

 <View>

 <ManagedText checkedState={checkedSta

 <Pressable onPress={() =>

 <Text>Press here to check/uncheck</

 </Pressable>

 </View>

);

 };

You can find the preceding code in this Expo Snack: https://snack.ex-
po.dev/@p-syche/simplifying-state-management---chapter-2-exam-
ple-2.

Let’s start with what remained the same as in the previous example.

We have our <ParentComponent>, which, OK, was named <Managed-

Button> before. But let’s be honest, this component didn’t change
much from the previous version. The only change here is that instead

https://snack.expo.dev/@p-syche/simplifying-state-management---chapter-2-example-2

of a <Text> component, we see a <ManagedText> component, with a
mysterious checkedState property. This property is passed to the
<ManagedText> component and then to the <Text> component inside
it. Pressing the <Pressable> component will change the state of
<ParentComponent>, which will also be reflected in the child compo-
nent: <ManagedText>. I believe, dear reader, that the parent/child
nomenclature is quite understandable and doesn’t need additional
explanations. As per the checkedState property, or prop for short, you
should know that you can name it whatever you would like; there is
no need to set the name of the prop to be the same as its value. You
could write something like this, for example:

const ManagedText = (fancyComponentStuff) => {

 return (

 <Text>this text will display the current st

);

};

export const ParentComponent = () => {

 const [checkedState, setCheckedState] =

 return (

 <View>

 <ManagedText fancyComponentStuff={che

 <Pressable onPress={setCheckedState("

 <Text>Press here to check/uncheck</

 </Pressable>

 </View>

);

 };

If you’re curious to learn more about props and state, you can head
over to articles recommended by the official React team. They are
listed in the Further reading section.

Now that you know what state and props are and how they are differ-
ent from each other, in the following section, we will look at stateful
and stateless components.

What are stateful and stateless
components?

Whether you’re completely new to the React world, or you’ve been
here for a little while, you have probably heard the terms stateful and
stateless components. These terms were especially useful before
the introduction of hooks in ReactJS v16.8. Don’t worry about hooks
right now—we’ll get to them toward the end of this chapter.

From a high-level perspective, ReactJS and React Native compo-
nents are nothing more than JavaScript functions. The React library
adds some specific features to those functions. One of those features

is state, a special kind of component memory that we looked at in the
previous section.

A React component that can accept state may look like this:

class Welcome extends React.Component {

 constructor(props) {

 super(props);

 this.state = {name: "World"}

 };

 render() {

 return <Text>Hello, {this.state.name}</Text>;

 }

}

This type of component is also commonly called a “class component”
because of the way it needs to be declared. Class components, or
stateful components, were first-class citizens until ReactJS v16.8.

Any developer who needed to do anything with state would use this
type of component. Unfortunately, these types of components had
many downsides. They used “lifecycle methods”—special func-
tions with very specific names, created to be run in a predetermined
sequence. There are componentDidMount(),

componentWillUnmount(), shouldComponentUpdate(), and a few oth-
ers. These functions were a lifesaver for many developers facing

edge cases. For example, they needed some data to be loaded be-
fore the rest of the component, or maybe they needed to make sure
to clean up some side effect functions before the component un-
mounted. Unfortunately, this also meant that their components be-
came increasingly complex logically. Trying to understand the flow of
the code in a file containing multiple “lifecycle methods” is a real
challenge. If you would like to learn more about lifecycle methods,

please look at the Further reading section, where you will find a link to
an article in the ReactJS documentation entitled Adding Lifecycle
Methods to a Class.

Stateful components are also more difficult to test than stateless
components, plus they compile slower and are bigger after
compilation.

Stateless components, also known as functional components,

are the lightweight brothers of class components. Here’s an example
of a stateless component:

const Welcome = (props) => {

 return <Text>Hello, World! </Text>;

}

Comparing the two example components shown in the preceding
snippet, you should notice a big difference in the number of lines of

code needed to write the given component. Our simple stateful
component needed nine lines for what the functional component
achieved in three!

This means stateless components are easier to write from a devel-
oper’s point of view. They also don’t need magical objects such as
constructor or special lifecycle methods such as componentDidUp-

date. They do, of course, have the great downside of not being able
to manage state. So, an ideal ReactJS or React Native app would
include at least one parent, a stateful component, which then would
pass props to all kinds of stateless children components. However,
there are hardly any ideal apps in the real world. Developers would
very often write stateful components and add lifecycle methods to
manage when UI updates should and should not happen.

This trend changed with the aforementioned ReactJS v16.8 when the
concept of hooks was introduced in the ReactJS world, which we are
going to look at in the next section.

What are hooks and why use
them?

As I mentioned before, stateless components are generally easier to
write and test. They should be the go-to component of ReactJS de-

velopers, but they were often overlooked because they could not
manage state. At the beginning of 2019, the ReactJS team added
hooks to the library. Hooks add state functionality to stateless com-
ponents (therefore, it is better to only use the term functional com-
ponents). One specific hook called useState is a function that re-
turns a stateful value and a function to update it. You may recognize it
from our previous section about state in React components.

Let’s go back to our example of a stateful component, change it to a
functional one, and add the useState hook, as follows:

import React, {useState} from "react";

import {Text} from "react-native";

const Welcome = () => {

 const [name, setName] = useState('World!');

 return <Text>Hello, {name}</Text>;

}

Ta-da! It looks so much cleaner than the previous example! We still
have a component capable of holding and managing state changes,

but it’s much shorter than the stateful class component. I also feel this
type of component has a very nice logical flow, where we declare the
state value and the state setter function on one line.

If you want to see this code in action, you can go to https://snack.ex-
po.dev/@p-syche/example-of-functional-component-with-usestate.

This is an Expo Snack—an equivalent of code snippets for web
development.

Which hooks should you know?

The first hook we spoke about was useState, and that one is the ab-
solute first you should familiarize yourself with. The second most
used hook is useEffect. I also believe this is one of the best-named
hooks. You can use it to add all sorts of side effects to your compo-
nents. "What is a side effect?" you may ask, my dear reader. Let’s try
to grasp this concept using examples: imagine a social media app
(much like the app we will be building in this book!). Now, let’s imag-
ine you are tasked with adding a likes counter. You have your parent
component holding the likes button, and a <Text> component with a
counter. It would look something like this:

const LikesParentComponent = () => {

 const getCounterNumberFromApi = someFunc

 const [counterNumber, setCounterNumber] =

 return (

 <LikesComponent counterNumber={counterNumber}

);

};

https://snack.expo.dev/@p-syche/example-of-functional-component-with-usestate

};

const LikesComponent = (counterNumber) => {

 const [likeState, setLikedState] = useState

 return (

 <View>

 <Text>you {likeState} this post</Text

 <Pressable onPress={setLikedState("li

 <Text>Press here to check/uncheck</

 </Pressable>

 <Text>{counterNumber} other people

 </View>

);

 };

We are passing counterNumber from <LikesParentComponent> as a
prop. Let’s assume this parent component handles retrieving the
number of likes from an API using the very nicely named someFunc-

tionRetrievingDataFromAPI() function.

This is looking pretty good so far, right? We load our components;

they retrieve the likes data from an API and pass it to our <LikesCom-
ponent>, which displays it nicely. But wait! What happens if the user
touches the <Pressable> component? We will set <Text> to liked, but
the counter will not go up! We simply cannot leave it like this! This is
a classic side effect: a user action requires additional changes in
component state. First of all, we cannot change counterNumber from
within <LikesComponent> because, as we learned in the previous sec-

tion on state and props, props are immutable. What can we do, then?

We can use the state setter function from the parent component. This
function can be passed as a prop. This means <LikesParentCompo-

nent> will invoke its child, like this:

<LikesComponent counterNumber={counterNumber} set

So far, so good. Now, all we need to do is call this setter function at
an appropriate time, which means when the button is pressed in
<LikesComponent>. This is what it would look like using the useEffect

hook:

const LikesComponent = (counterNumber, setCountNu

 const [likeState, setLikedState] = useState

 useEffect(() => {

 if (likeState === "liked") {

 setCounterNumber(counterNumber++)

 }

 else {

 setCounterNumber(counterNumber-1)

 }

 }, [likeState])

 return (

 <View>

 <Text>you {likeState} this post</Text

 <Pressable onPress={setLikedState("li

 <Text>Press here to check/uncheck</

 </Pressable>

 <Text>{counterNumber} other people

 </View>

);

 };

As you may notice, the useEffect hook looks very different from the
useState hook. Don’t worry too much about this. These two hooks
are the most used, and you will get used to the way they are con-
ceived and consumed.

The inside of our example useEffect hook is a common if/else

statement checking whether the value of the state equals "liked" or
not. The most crucial and interesting part of this hook is the array at
the very end. This array is called a dependency array. It is used to in-
form the hook function when it should run. In our case, the useEffect

hook should run when the value of likeState changes.

The useEffect hook can be used to update different pieces of the
app, to help with data fetching, for user-driven interactions, and so on.

This hook is very powerful, but it has a very big risk: it can cause
many re-renders when written incorrectly.

THE MOST IMPORTANT THING TO REMEMBER ABOUT
USEEFFECT

Make sure the dependency array of useEffect is correct!

As you may find in the official ReactJS documentation, the default
behavior for effects is to fire the effect after every completed render.
This may often be overkill. In such cases, we can pass an argument
to useEffect’s dependency array. If we set that, our effect will run
only if any items in the dependency array change.

There are a few other built-in hooks. You don’t have to know them all
when starting to write React Native code. The two basic hooks—us-

eState and useEffect—will be enough to get you started. When you
get to a point where those two hooks are not enough, you can go
back to the ReactJS documentation and read about other hooks. You
can also write your own custom hooks useful for your particular app.

Now that we know what hooks are and why we use them, let’s get
started with setting up our sample app!

Setting up the example app

Ah! The moment you’ve probably been waiting for: actually creating
an app!

We will start by preparing our development environment. You will
need an integrated development environment (IDE) such as VS
Code, Sublime Text, Atom, or anything else you may prefer. An IDE is
all you need to write React Native code. But we also need a way to
see what the code renders, don’t we?

In the case of web development, we would simply use the browser to
see and test our code. However, React Native apps cannot be easily
tested in a web browser. They can and should be tested on real or
simulated devices. In an ideal situation, you would have access to
multiple phones, which you would plug into your computer via a USB
in order to see your app. Most of us don’t have multiple phones,

though. That’s why we can use phone simulators. There are two ma-
jor players in the mobile world: Android and Apple. Android simula-
tors are available for virtually any desktop platform thanks to the An-
droid Studio app. Unfortunately, iPhone simulators can be run exclu-
sively on Mac computers.

Setting up simulators can be a daunting task, but don’t worry too
much! There’s Expo!

I spoke about Expo in the first chapter. If you skipped that part, let me
give you a quick rundown: Expo is React Native development tool-
ing. It makes building, testing, and publishing apps much easier.

Expo is a wrapper on top of React Native, aimed at making the de-
veloper experience smoother.

Environment setup

Let’s make sure your development environment is ready. As listed on
the Expo website, you will need the latest Node, Git, and Watchman.

Links to all of these can be found in Expo’s documentation at
https://docs.expo.dev/get-started/installation/. We will be using Yarn
during development, so please make sure you have it installed. You
can find detailed instructions here:

https://classic.yarnpkg.com/en/docs/install. Once you have gone
through the links, follow these steps:

1. When you’re ready, go ahead and install Expo’s CLI tools:

$ npm install –global expo-cli

2. Verify that the installation was successful by running expo whoami.

You’re not logged in yet, so you will see Not logged in. You do not
need an account to use Expo. If you want, you can create an ac-
count by running expo register, or you can log in to an existing
account with expo login.

https://docs.expo.dev/get-started/installation/
https://classic.yarnpkg.com/en/docs/install

3. The next step is to install the Expo Go app on your phone. You can
find it in the Android Store at
https://play.google.com/store/apps/details?id=host.exp.exponent
and on the App Store at https://apps.apple.com/app/expo-
go/id982107779.

Thanks to Expo, it does not matter if you have a Mac computer or a
Windows computer and what kind of phone you have. The Expo Go
app will “automagically” work on Android and Apple devices.

4. We’re all set—it’s time to create the app. Go to your terminal and
run the following command:

$ npx create-expo-app funbook-app

5. When prompted about templates, please choose blank.

You can choose any name you like for your app. I suggested using
“Funbook” because it sounds a little like “Facebook” and we’ll be cre-
ating a social media app clone. Sticking with the same name as me
will probably make it easier to follow along with code examples.

6. After app initialization is successfully run, you can go to your app’s
folder by running the following command:

https://play.google.com/store/apps/details?id=host.exp.exponent
https://apps.apple.com/app/expo-go/id982107779

$ cd funbook-app

7. And run the development server, like so:

$ expo start

Or, if you’re using Yarn, run this command:

$ yarn start

Expo CLI starts Metro Bundler, which is an HTTP server that com-
piles the JavaScript code of our app. You should see a QR code that
you can now scan using the Expo Go app on your phone. You can
run your Funbook app on as many devices as you’d like.

App development can seem a little daunting at first, but don’t worry if
not everything works perfectly on the first try. There’s a big chance
you will find the culprit in your terminal window. The terminal output is
the best source of information for you.

If you see any errors in the terminal, or you feel a little bit lost, make
sure to check the Expo installation documentation: https://docs.ex-

https://docs.expo.dev/get-started/create-a-new-app/

po.dev/get-started/create-a-new-app/.

I set up a public repository that we will use throughout this book. You
can find it here: https://github.com/PacktPublishing/Simplifying-State-
Management-in-React-Native.

On the main branch of this repository, you will find an app that is al-
ready set up. Feel free to clone or fork this repository. Remember that
if you want to run this app on your computer, you will still need to in-
stall Expo tools and other required libraries (node, watchman, and
yarn).

App structure

Let us consider which surfaces and components we will need for a
simplistic social media app. By “surface," I mean what would be in
web development a “page." That is a big building block of the app,

composed of many components, presented together on the screen.

Our app will definitely need a login surface, a social media feed sur-
face, and a personal profile surface. We will also add a screen con-
taining favorited posts and another one where the user can add their
post. We will use fake data for the feed and profile, and a single user-
name and password for logging in. We won’t be implementing a reg-
istration flow in order to stay on the simple side of things.

https://docs.expo.dev/get-started/create-a-new-app/
https://github.com/PacktPublishing/Simplifying-State-Management-in-React-Native

We want to concentrate on data flows, so we will use a free social
media UI kit to get the design “out of the way," so to speak. Here’s a
link to the design file we will use: https://www.pixeltrue.com/free-ui-
kits/social-media-app.

App root

Our app will consist of at least five surfaces, which means we need to
set up navigation to be able to move between those surfaces. The
user will start off on the login surface. They will fill in their information
and they will be redirected to the social media feed surface.

Obviously, we need a way for our users to move around the app. One
of the most used navigation libraries is called React Navigation. This
is a library created especially for React Native applications. It pro-
vides three types of navigation out of the box: Drawer navigation, Tab
navigation, and Stack navigation. Drawer navigation is when you
have a little drawer on the side of your app with links to different
places in your app. Tab navigation will display tabs (either bottom or
top) with links to different places. Stack navigation works like a stack
of cards—each screen is a card having the ability to redirect to any
other card. If you would like to know more about this library, you can
find a link to the documentation in the Further reading section.

https://www.pixeltrue.com/free-ui-kits/social-media-app

There are other navigation libraries out there, but React Navigation is
by far the most popular one in the React Native community. It is also
actively maintained and updated to work with the newest React
Native versions.

We need to start by adding the library as a dependency to our project.
To do that, follow these steps:

1. We can add the library by running the following command:

$ yarn add @react-navigation/native

2. If you visit the documentation website, you will notice there are dif-
ferent CLI commands for “Expo managed projects” and “bare
React Native projects." Make sure to follow the instructions for
Expo-managed projects. In our case, we need to run the following
command:

$ expo install react-native-screens react-nativ

3. We will need to display a login surface first, which will redirect our
users to the main app screen. In order to do that, we will use a

Stack navigator. Let’s add its dependencies to our project, as listed
here at https://reactnavigation.org/docs/stack-navigator/:

$ yarn add @react-navigation/stack

$ expo install react-native-gesture-handler

The last setup step for the stack navigator is importing the gesture
handler library at the very top of our App.js file.

The stack navigator will be very useful to manage the login state of
our app, but we will also need bottom tab navigation to move be-
tween the other screens once the user is logged in. Tab navigation
feels very natural for app users. It is visible on all screens and makes
using the app easy.

As for now, we will only need to run one command:

$ yarn add @react-navigation/bottom-tabs

This command adds bottom tab navigation as a dependency to our
project so that we will be able to use it later.

https://reactnavigation.org/docs/stack-navigator/

You may wonder why we needed to add so many different dependen-
cies separately. This is caused by how the React Navigation authors
decided to structure their library. They were certain most people will
not need every kind of navigation in their app, so why should they in-
clude it in their app bundle? Every library user can decide which part
of React Navigation will be useful to them and include only that part.

Let’s move on to adding a little bit of structure to our basic app. Every
app is built with at least a couple of different surfaces, which in turn
are built with components. Our basic social media clone app will need
a login surface and a main surface, visible after login. Since we’re
creating a social media app, we will go ahead and call the main sur-
face “Feed”, since it will house the user’s newsfeed. As we progress,

we will surely add more surfaces, but those two will be a good starting
point.

Setting up surfaces

The login surface will need an input field for the username, an input
field for the password, and a button to log in. But for now, we will cre-
ate a dummy component with some text.

We will start by creating the login surface. You may wonder what it
means to “create a surface." What I mean by it is that some of the
components will be wrappers for entire surfaces of the app. Some

people prefer to call them screens, and in web development, you
would call them sites or pages. From a coding standpoint, they are
components just like any other component. But we decide that, logi-
cally, they represent a bigger piece of the app, and we put them in a
special folder, called surfaces.

Here’s our login surface:

// ./src/surfaces/Login.js

import React from "react";

import { View, Text } from "react-native";

export const Login = () => {

 return (

 <View>

 <Text>this will be the login screen</Text>

 </View>

);

};

As you may notice it is, in fact, a dummy component, named Login,

and placed in the surfaces folder.

Using that same logic, we will create a Feed surface, which should be
displayed after the users log in:

// ./src/surfaces/Feed.js

import React from "react";

import { View, Text } from "react-native";

export const Feed = () => {

 return (

 <View>

 <Text>this will be the feed screen</Text>

 </View>

);

};

We have the two basic pieces of the app ready; now we need to put
them together. This is where React Navigation comes into play.

Every React Native app needs a root file, just as every website needs
an index.html file at the root. This root file is usually called App.js.

This is the source of truth (SOT) for displaying anything and every-
thing. You can think of it as a trunk of a tree, with many branches
sprouting from it. The branches are different app surfaces in this
metaphor. You got that, right? I’m sure you did! You’re smart! After all,
you are reading my book.

Let’s set up the parent component to display the correct flow—first,
the login screen, and then, the feed:

// ./App.js

// ./App.js

import 'react-native-gesture-handler';

import React, { useState } from "react";

import { NavigationContainer } from "@react-navig

import { createStackNavigator } from "@react-navi

import { createBottomTabNavigator } from "@react-

import { Login } from "./src/surfaces/Login";

import { Feed } from "./src/surfaces/Feed";

const Stack = createStackNavigator();

const Tab = createBottomTabNavigator();

function Home() {

 return (

 <Tab.Navigator>

 <Tab.Screen name="Feed" component={Feed} />

 </Tab.Navigator>

);

}

export default function App() {

 const [userLoggedIn, setIsUserLoggedIn] = useSt

 return (

 <NavigationContainer>

 <Stack.Navigator>

 {!userLoggedIn ? (

 <Stack.Screen name="Login" component={L

) : (

 <Stack.Screen

 name="Home"

 component={Home}

options={{ headerShown: false }}

 options {{ headerShown: false }}

 />

)}

 </Stack.Navigator>

 </NavigationContainer>

);

}

You can find the preceding code in this Expo Snack: https://snack.ex-
po.dev/@p-syche/simplifying-state-management---chapter-2-exam-
ple-3.

In the preceding code, you will notice we used the useState hook.

This way, we easily added state to our functional App component. We
set up our initial state to be false—users opening the app for the first
time are not supposed to be logged in. When the user logs in, they
are redirected to the second “card” in our stack. This “card” is the
Home component. This is a wrapper component used to hold the big-
ger part of our app: all other surfaces besides Login with tabbed bot-
tom navigation. As you may notice, the navigators are nested: tabbed
navigation is inside the stack navigator. This is a common and useful
practice in React Native apps. You can read more about nesting nav-
igators in the React Navigation documentation here: https://react-
navigation.org/docs/nesting-navigators.

https://snack.expo.dev/@p-syche/simplifying-state-management---chapter-2-example-3
https://reactnavigation.org/docs/nesting-navigators

And there we go! We have set up an app using Expo. We added mul-
tiple components representing the future surfaces of the app. We also
added and configured the React Navigation library. Our app is not
very pretty right now, but it should work. You can see it on your phone
through the Expo Go app, or in phone simulators on your computer
screen.

I set up a public repository on GitHub so that you, dear reader, can
more easily follow along with the code snippets and examples pre-
sented in this book. You can find the repo here:

https://github.com/PacktPublishing/Simplifying-State-Management-
in-React-Native. Feel free to clone or fork it. The main branch in-
cludes the basic app setup. Every state management library imple-
mentation is on a different branch. We will discuss the details as we
move forward. If you decide to use this repository, you will notice the
styles from the UI kit are implemented. We will not focus on styling in
this book, but it is a nice addition to any app.

Summary

We have done some really good work here! We started out by looking
at simple code examples necessary to understand some ReactJS
coding concepts such as component state and props, lifecycle meth-
ods, and hooks. It is important to understand and internalize the dif-

https://github.com/PacktPublishing/Simplifying-State-Management-in-React-Native

ferences between state and props, and stateful and stateless compo-
nents. A good grasp of those concepts can determine whether your
app will run smoothly or not.

After diving into important React concepts and examples, we moved
on to actually setting up our app. This is a very exciting moment! We
have our foundation, and we are ready to build a real-life social media
clone app. In the next chapter, we will get comfortable previewing and
debugging our app. We will set up all necessary surfaces, we will add
example data, and finally, we will style the app. I can’t wait!

Further reading

React Native’s documentation—example of components with
state: https://reactnative.dev/docs/intro-react#state.

State versus Props:

https://lucybain.com/blog/2016/react-state-vs-pros/.

https://github.com/uberVU/react-guide/blob/master/props-vs-
state.md.

Adding Lifecycle Methods to a Class—ReactJS docs:

https://reactjs.org/docs/state-and-lifecycle.html#adding-lifecycle-
methods-to-a-class.

https://reactnative.dev/docs/intro-react#state
https://github.com/uberVU/react-guide/blob/master/props-vs-state.md

A full blogpost about hooks:

https://pl.reactjs.org/blog/2019/02/06/react-v16.8.0.html.

ReactJS documentation on hooks:

https://reactjs.org/docs/hooks-reference.html#useeffect.

React Navigation documentation:

https://reactnavigation.org/docs/getting-started/.

React Navigation—bottom tab navigation: https://reactnaviga-
tion.org/docs/tab-based-navigation.

React Navigation guide on authentication flow: https://reactnaviga-
tion.org/docs/auth-flow.

React Navigation guide on nesting navigators: https://reactnaviga-
tion.org/docs/nesting-navigators.

https://reactnavigation.org/docs/tab-based-navigation
https://reactnavigation.org/docs/auth-flow
https://reactnavigation.org/docs/nesting-navigators

Part 2 – Creating a Real,
Working App

In this part, we will concentrate on building a real, functioning mobile
app. Readers will learn to plan out app features and configure the
real setup of the Funbook app; then, they will learn how to style a Re-
act Native app so that it matches a given design, and how to pull in
real data.

This part includes the following chapters:

Chapter 3, Planning and Setting Up the Funbook App
Chapter 4, Styling and Populating the Funbook App

https://epic.packtpub.services/index.php?module=oss_Chapters&action=DetailView&record=552b05fa-8391-bf2a-d8d5-61f378c66211
https://epic.packtpub.services/index.php?module=oss_Chapters&action=DetailView&record=e4875054-2e9a-297d-67db-61f3786c1c05

3

Planning and Setting Up the
Funbook App

In the previous chapter, we learned how to set up a React Native app.

The steps we followed, installing dependencies and building and run-
ning the app, are common for most apps you may want to build. Now,

it’s time to focus on the specifics of the app we will be building in this
book. We want to create a social media clone app so that we can
compare different state management solutions in that app. In this
chapter, we will plan and build our example app using only React Na-
tive built-in solutions – state, props, hooks, and context. We will take
the following steps:

Planning the needed surfaces and components
Planning data flows in the app
Getting comfortable previewing and debugging the app

By the end of this chapter, you will have a good idea of planning out
development work for the Funbook app. You will also find out how to
work comfortably with a React Native app.

Technical requirements

In order to follow along with this chapter, you will need some knowl-
edge of JavaScript and ReactJS. If you have followed the first two
chapters of this book, you should be able to go forward without any
issues.

Feel free to use an IDE of your choice, as React Native does not
need any specific functionality. Currently, the most popular IDEs for
frontend developers are Microsoft’s VSCode, Atom, Sublime Text,
and WebStorm.

You may have followed the setup guide from the previous chapter. In
case you didn’t set up your own app, you can clone the repo dedicat-
ed to this book:

https://github.com/PacktPublishing/Simplifying-State-Management-
in-React-Native.

In this repository, you will find a very basic app, as it was set up in the
previous chapter. You will also find folders with chapter names. Not
surprisingly, each folder holds a version of the Funbook app as de-
scribed in a given chapter.

Planning the needed surfaces
and components

As I’ve mentioned before, we can divide our app into surfaces, and
then break down the surfaces into smaller, reusable components.

Our app will need the following surfaces:

Login
Feed (which is also our Home surface)

Add Post
Favorites
Profile

We have those surfaces set up as files in our project. Let’s take a
quick look at the free design file we’ll be using for our app. You can
find the file here: https://www.pixeltrue.com/free-ui-kits/social-media-
app.

You can download this file and open it in Figma or import it at
https://www.figma.com. If you don’t have a Figma account yet – don’t
worry, they’re free. You can take a moment right now to look at the
actual file, or if a screenshot is enough for you, let’s look together:

https://www.pixeltrue.com/free-ui-kits/social-media-app
https://www.figma.com/

Figure 3.1 – Figma website with the design template

Let’s zoom in on the home page:

Figure 3.2 – Design of the home surface

You may have noticed there are five items in the bottom tabs on the
design. Which one are we missing? The chat bubble. Let’s go ahead
and add this surface to our app. I encourage you to add this file on
your own and then come back here and check against my example.

Here’s what my Conversations surface looks like so far:

import React from "react";

import { View, Text } from "react-native";

export const Conversations = () => {

 return (

 <View>

 <Text>this will be the chat screen</Text>

 </View>

);

};

And here’s the App.js file with the newly added screen:

import "react-native-gesture-handler";

import React, { useState } from "react";

import { NavigationContainer } from "@react-navig

import { createStackNavigator } from "@react-navi

import { createBottomTabNavigator } from "@react-

import { Login } from "./src/surfaces/Login";

import { Feed } from "./src/surfaces/Feed";

import { Profile } from "./src/surfaces/Profile";

import { Favorites } from "./src/surfaces/Favorit

import { AddPost } from "./src/surfaces/AddPost";

import { Conversations } from "./src/surfaces/Con

const Stack = createStackNavigator();

const Tab = createBottomTabNavigator();

function Home() {

 return (

 <Tab.Navigator>

 <Tab.Screen name='Feed' component={Feed} />

 <Tab.Screen name='Conversations'

 <Tab.Screen name='AddPost' component={AddPo

 <Tab.Screen name='Favorites' component={Fav

 <Tab.Screen name='Profile' component={Profi

 </Tab.Navigator>

);

}

[…]

Okay! Looking good so far!

Now that we have our main surfaces set up, let’s try to analyze which
elements are good candidates for reusable components.

Looking back at the design file, let’s start with the Home surface. At
the top, we see a horizontal list of avatars and a list of repetitive cards

below. Each card has an author image, a title, a favorite count, and a
conversation count. So, the home component should be built out of
avatar and card components.

Moving on to the Conversations screen: it consists of a search bar
and a list of cards with the name of the person in the conversation
and the last message exchanged. When a message is clicked, we will
go to the screen named Messaging in the Figma file, where we will
see a bigger avatar, a list of messages, and an input box. Remember
we already have avatars on the home page; let’s see whether we can
reuse an avatar component. Maybe only to some extent, since the
styles are not the same for the home avatars, the conversations
avatars, and the messaging avatars. They are all round images, but
they have different borders and sizes. Maybe we could create an
avatar component that accepts size and border style as a prop.

That’s a pretty good idea! We’ll try to achieve this when we get to
writing code.

The last detailed surface we will in our free design file is Profile. We
have yet another avatar here; this one is not even round. It’s followed
by the username, some statistics, and a two-column list of pictures
and bookmarks. Since we’re not going to be implementing book-
marks, we will exchange the bookmarks from the design for favorites.

You may notice that the two columns are built with two different styles
of elements, and that’s probably how we should also create our com-

ponents: one component for cards in the images column and one
component for the Favorites card column.

Last but not least: the bottom tab bar. Our design file includes four
regular icons and one with a different style. Styling React Navigation
components is a separate task altogether, as we will need to read the
documentation to find out how to implement a custom icon, active
and inactive styles, as well as custom styles.

Since we are using a free design file, it does not cover all the sur-
faces we want to create. I am very happy we have this free resource
at our fingertips, and we’ll try to use the general styles and compo-
nents to figure out what the remaining two of our surfaces should look
like.

The Login surface should surely consist of two inputs: the username
and password. We will re-use the input visible on the Messaging
screen in Figma, and the background of the splash screen. As for the
surface needed for adding posts, we’ll have a rounded square for the
image –to match the Home surface – and an input for the title of the
post.

Let’s summarize our plan: we have all our surfaces created. We will
proceed to create the components necessary for the surfaces. We
will create an avatar component, that we will use on the Home,

Conversations, and Messaging surfaces. We will create a card
component for the Home surface. We will then create another card
component for the Conversations surface, along with a search box
component. We will need to hook up the navigation to move correctly
from Conversations to Messaging. On the Messaging surface, we
will reuse the avatar component, a component for displaying mes-
sages, and a reusable input component. Moving on to the Profile
screen, we will create a profile avatar component, components for
profile statistics and components for cards of images, and different
components for cards of favorited items. We will then move on to
composing the Login screen using input box components created
previously for the messaging screen. We will finish by completing the
Add Post surface, using a version of the Home surface card and in-
put. I don’t recommend creating all the files beforehand, as a lot of
things may change while we create the actual components.

Before we start writing components let’s try to analyze what data will
be needed for our app.

Planning data flows in the app

This is a part of app development that usually does not fall under the
responsibilities of the frontend developer. The clients will often deter-
mine what data they want, and that data is organized by the backend

developers. However, if you can participate in the way the data flows
are organized, you will make your future work easier. Given that we
are only building the frontend of an app using example data, we are
free to organize it however we like.

We will use the design file again, as the basis for what work needs to
be done. Starting with the Home screen, we know we need a list of
users and a list of items to be displayed on the Home surface. As per
the Conversations surface, we will need a list of conversations with
respective usernames and messages. We will also need data for
each one of the conversations, so we can display it on the
Messaging surface. On the Profile surface, we will need a list of data
pertinent to the user (name, avatar image, statistics), and two lists of
images: added images and liked images. As per the surfaces missing
from the design, we will need a login and password for the Login
screen. We will not need any sample data for the Add Post surface.

Working with real data makes it easier to visualize the future shape of
the app and of specific components. That is why I set up GitHub
pages of the book repository to hold our sample data. You can find
them on GitHub Pages (https://packtpublishing.github.io/Simplifying-
State-Management-in-React-Native/) or in the main book repository
in the docs/ folder: https://github.com/PacktPublishing/Simplifying-
State-Management-in-React-Native/tree/main/docs.

https://github.com/PacktPublishing/Simplifying-State-Management-in-React-Native/tree/main/docs

BROWSING THROUGH SAMPLE DATA

You can see the example data used in the app whenever you’d like.

Check out the data branch of the main repository here: https://github.-
com/PacktPublishing/Simplifying-State-Management-in-React-
Native/blob/data/docs/index.md and look in the docs/ folder. You can
copy anything you’d like to your own projects.

The biggest and most obvious piece of the data puzzle we will need
is a list of users. You can view the file on GitHub here: https://github.-
com/PacktPublishing/Simplifying-State-Management-in-React-
Native/blob/main/docs/users.json. Our app will consume the raw
JSON file, which can be accessed through the following link:

https://raw.githubusercontent.com/PacktPublishing/Simplifying-State-
Management-in-React-Native/main/docs/users.json.

You may wonder why I added user IDs if we’re building a simple app
with example data. The reason is that we will use the user data for a
list of avatars on the Home surface. We will create this list with React
and React requires that every item in a list has a unique key prop.

Theoretically, we could use the image URL as our unique key and
then try to remember not to use the same picture for more than one
person. However, using an ID is a much cleaner solution. It is also
closer to what you would see in a real-world app.

https://github.com/PacktPublishing/Simplifying-State-Management-in-React-Native/blob/data/docs/index.md
https://github.com/PacktPublishing/Simplifying-State-Management-in-React-Native/blob/main/docs/users.json
https://raw.githubusercontent.com/PacktPublishing/Simplifying-State-Management-in-React-Native/main/docs/users.json

Now that we have a user list, let’s take a look at what a specific user
profile might look like. Our user will need an ID, which should match
the record with their name in the users.json file. They also have a
name and avatar image URL. We need to know how many posts, fol-
lowers, and users following the given user has. Finally, we need two
lists of images: added and liked images. Take a look at the john_-

doe.json file – that’s what our example user profile data looks like.

Moving on to the Home surface: we will use the same data as in the
users.json file here to display the list of avatars, so we don’t need to
add any additional avatar list data here. It will be followed by a list of
items to be displayed in the form of cards with images. The example
data is available in the home.json file.

Let’s create our sample dataset for the conversations. It’s not very
complicated; it includes a username, a user avatar URL, a message,

and an ID. We will need the conversation ID to correctly display con-
versation details on the Messaging surface.

Finally, we should create sample data for the Messaging surface.

We will create a separate folder for conversation data, called mes-

sages. Inside that folder, we will create a few files for conversations.

Every file is named by the conversation ID, which should make data
fetching easier and more readable.

As for the Login screen, we will use a very small JSON file, which will
hold a username and password. We will use this data to create user
flows when the Login form is filled out correctly or incorrectly.

Looking at the JSON files, you will notice some data is repeated in a
few files; namely, the user ID, user’s name, and avatar image URL. In
a real-world app, this could cause issues in the future, where data up-
dated in place of the app will not be properly updated or available
somewhere else. That is why we will remove all references to user
names and avatar images and leave only the user ID, which we will
use to get the other data from the users.json file.

And there we have it! A big list of users that we will use in different
parts of the app, data for the Home surface, the Profile surface, and
Conversations. We’re ready to create our components! Right?
Right! However, we need to get comfortable previewing and debug-
ging our app first.

Getting comfortable previewing
and debugging the app

Have you been looking to see whether your code runs correctly on a
device or a simulator? If not, let’s see how you can see it. The first
thing you need to do is run this command in your terminal:

$ yarn start

When expo is done setting up your development server, you can hit “i”
for an iPhone simulator (if you’re working on a Mac computer), “a” for
an android simulator (if you have Android Studio installed), or you can
take your phone and use the Expo Go app.

Whichever one you choose, you will see a browser window open au-
tomatically on your device. This browser window looks like this:

Figure 3.3 – Expo developer tools in the browser

If you want to see your app on your phone, you’ll find the QR code to
scan in the Expo Go app right here. You will see error messages
here; you can even use this page to publish your app.

I like working with an iPhone simulator open. Here’s what our app
looks like set up on my computer:

Figure 3.4 – iPhone 13 with iOS 15.2 simulator screenshot

Hopefully, you see something similar. If you don’t, you can always
clone the GitHub repository, or compare your code to the one that’s
published. The state of the app you see in the preceding screenshot
is what should be seen on the main branch of the repo located here:

https://github.com/PacktPublishing/Simplifying-State-Management-
in-React-Native.

Take some time to play around with the app. Try creating some obvi-
ous errors, such as writing plain text outside of the <Text /> compo-
nent, maybe using a <div> tag, or not closing a tag.

We will practice code changes on our bottom tab navigation. We will
not be creating any components for that.

Customizing the appearance of the tab navigator can be achieved by
setting properties when the navigator is set up. We can also add
some specific per-screen options. Our bottom tab navigator will use
icons for tabs, so we will need to start by importing an icon library into
the main App.js file. We will use a library called @expo/vector-icons.

This library is installed by default on all projects initialized with expo.

ADDING LIBRARIES

https://github.com/PacktPublishing/Simplifying-State-Management-in-React-Native

Before adding any additional dependencies and libraries, make sure
to check the Expo documentation to see whether the library you want
is not installed already. If you do need to add something, make sure
to add libraries compatible with the Expo workflow.

Expo has done all the heavy lifting for us; we have a big icon library at
our fingertips. All we need to do is use it to add icons to our navigator.
We will start by adding simple icons to four of the five items:

import Ionicons from "@expo/vector-icons/Ionicons

// …

function Home() {

 return (

 <Tab.Navigator

 screenOptions={({ route }) => ({

 tabBarIcon: ({ focused, color, size }) =>

 let iconName;

 if (route.name === "Feed") {

 iconName = focused ? "md-home" : "md-

 } else if (route.name === "Conversation

 iconName = focused ? "chatbox" : "cha

 } else if (route.name === "Favorites")

 iconName = focused ? "heart" : "heart

 } else if (route.name === "Profile") {

 iconName = focused ? "person-circle

 }

}

 return <Ionicons name={iconName} size={

 },

 tabBarActiveTintColor: "#25A0B0",

 tabBarInactiveTintColor: "#000000",

 })}

 >

 <Tab.Screen name='Feed' component={Feed} />

 <Tab.Screen name='Conversations'

 <Tab.Screen name='AddPost' component={AddPo

 <Tab.Screen name='Favorites' component={Fav

 <Tab.Screen name='Profile' component={Profi

 </Tab.Navigator>

);

}

We added a simple if statement to <Tab.Navigator>, where we give
it specific instructions on what component should be displayed. Every
time we’re displaying a <Ionicons> component from the @expo/vec-

tor-icons library, however, we’re feeding it different props. We’ll
leave the AddPost item for now. Once we create a reusable button
component, we’ll come back here and add it.

What we can customize further now is the tabBar label. As per the de-
sign, the label should not be displayed. We need to add another prop-
erty to <Tab.Navigator>:

// …

tabBarInactiveTintColor: "#000000",

tabBarShowLabel: false,

// …

Looking good! Now, how about the header? Our app has a very
generic header with a white background and the title of the given sur-
face. As you can see on the design, some surfaces don’t have titles
(such as Profile or Messaging) and others have a title on a transpar-
ent background. React Navigation is responsible for the look of the
header, so let’s set it right now. We will add yet another prop to
<Tab.Navigator>:

// …

tabBarInactiveTintColor: "#000000",

tabBarShowLabel: false,

headerTransparent: true,

// …

Yay! That worked – but wait, the text that was displayed on the
screen is now behind a fixed, transparent header!

Figure 3.5 – iPhone simulator showing UI issues

We need to make sure the contents of our app won’t ever fly off the
screen like this. It’s not an easy task to achieve, especially with so
many screen shapes, notches, and digital buttons. Luckily for us, the
creators of React Navigation added a wrapper component called
<SafeAreaView>. We have to add the SafeAreaProvider component
around <NavigationContainer>. This component uses React Context
“under the hood.” In order to use this context, we need to add <SafeA-

reaView> around each one of our surfaces. The main app component
will look like this:

export default function App() {

 const [userLoggedIn, setIsUserLoggedIn] = useSt

 return (

 <SafeAreaProvider>

 <NavigationContainer>

 <Stack.Navigator>

 // …

 </Stack.Navigator>

 </NavigationContainer>

 </SafeAreaProvider>

);

}

Let’s add <SafeAreaView> around the <Feed> component. Do you see
any improvement over what we saw before? No? That’s because
there’s one more gotcha: we need to add the {{flex: 1}} style to the
wrapper component. Okay, the surface looks better – the text is con-
tained on the screen – but it’s still behind the header…

Figure 3.6 – Close-up of the iPhone simulator with changes to the UI

We want to add padding to the top of the surface so that our content
will begin below the header. We want to determine the height of the
header without having to hardcode any pixel values. React Naviga-
tion comes to the rescue again, by providing a custom hook called
useHeaderHeight(). The Feed component looks like this now:

import React from "react";

import { SafeAreaView } from "react-native-safe-a

import { View, Text } from "react-native";

import { useHeaderHeight } from "@react-navigatio

import { useHeaderHeight } from @react navigatio

export const Feed = () => {

 const headerHeight = useHeaderHeight();

 return (

 <SafeAreaView style={{ flex: 1, paddingTop:

 <View>

 <Text>this will be the feed screen</Text>

 </View>

 </SafeAreaView>

);

};

And the app should look like this:

Figure 3.7 – iPhone simulator with fixed UI

Make sure to add <SafeAreaView> to all surfaces if you’re following
along with this book. If you prefer to see the code changes on GitHub,

you will find them on the branch called chapter-3:

https://github.com/PacktPublishing/Simplifying-State-Management-
in-React-Native/tree/main/chapter-3.

If you’re wondering why we’re adding header styles to the <Tab.Navi-

gator> and not the root component, I invite you to take a look at the
<Stack.Navigator> we have set up at the root of our app, in prepara-
tion for a Login screen. In the <Stack.Screen> component, you will
notice the following option:

options={{ headerShown: false }}

We are telling React Navigation to hide the header of <Stack.Naviga-
tor> and display the header of the nested <Tab.Navigator>. This
nested <Tab.Navigator> is also the one we need to style. Go ahead
and change the headerShown option in your project and observe what
happens. You should see another header show up in the app with the
Home title! That’s because we’ve named Home the main parent compo-
nent, used for creating <Tab.Navigator>. Make sure to change the

https://github.com/PacktPublishing/Simplifying-State-Management-in-React-Native/tree/main/chapter-3

headerShown option back to false, before getting back to work on our
app.

I hope you’re getting comfortable with making changes and preview-
ing them in your app. Let’s finish this section by adding a custom font.
We’ll use a library provided by Expo again: Expo Google Fonts. If you
take a quick look at the design file, you’ll find the name of the font
used, it’s a Google font called Poppins.

We’ll go ahead and import the font into the Feed component, add it as
a style prop to the <Text> component, and… oh no! Problem!

Figure 3.8 – iPhone simulator displaying an error

Even though this huge red box seems to be screaming at us, there’s
no need to worry. All we need to do is read the error. It states that
@expo-google-fonts/poppins is not defined. Of course! We need to
install this font in our project. Let’s run the following commands in the
terminal:

$ expo install expo-font

$ expo install @expo-google-fonts/poppins

The error should be gone. Now, we can safely add our font family to
the <Text> component. Or can we?

Figure 3.9 – iPhone simulators displaying an error toast message and
details

The font has not been loaded… Let’s go back to the Expo documen-
tation and make sure we loaded everything correctly.

According to the documentation, we first need to use the useFont

hook with an AppLoading wrapper around the root component! Here’s
what we need to add to the App.js file:

export default function App() {

 const [userLoggedIn, setIsUserLoggedIn] = useSt

 let [fontsLoaded] = useFonts({

 Poppins_400Regular,

 });

 if (!fontsLoaded) {

 return <AppLoading />;

 }

 return (

// …

And there we have it. Now, the app works correctly, and we can add
the fontFamily style wherever we’d like:

l {{ f il " i 400 l "}}

<Text style={{ fontFamily: "Poppins_400Regular"}}

In this section, we got comfortable changing code, previewing our
app, and handling errors. Now, we’re ready to write and style compo-
nents in the next chapter.

Summary

In this chapter, we planned our app and got comfortable previewing
and debugging it. Both of these steps are vital to creating a good de-
veloper experience. First of all, we do not want to face any major sur-
prises – that’s why we want to plan ahead. You could compare this to
how a building is built. No self-respecting construction worker would
start setting up walls and doors before making, or at least looking at,
a blueprint. We, as software developers, are building a digital product
and not a building, but we’re using the word “to build” for very good
reasons.

Second of all, we need to know how to check whether what we’re
writing is actually working. Your code may look logical to you, but that
does not mean that it will work after JavaScript tries to understand
your logic. That is why every web developer has a browser window
open while working, and why a mobile app developer needs to look at
a phone or a phone simulator. Since we will be spending quite a lot of
time looking at our apps on phones, it’s good to get comfortable.

Now, dear reader, we are ready to continue our journey into the
weeds of React Native! In the next chapter, we will build the compo-
nents we planned above. We will also add styles to match our beauti-
ful design. We will encounter a few classical problems of React Na-
tive and a few quirks – and we will have a nice-looking app at the
end!

Further reading

https://docs.expo.dev/guides/icons/ – Expo icons guide.

https://reactjs.org/docs/context.html – React context.
https://github.com/expo/google-fonts – Expo Google Fonts.

https://docs.expo.dev/guides/icons/
https://reactjs.org/docs/context.html
https://github.com/expo/google-fonts

4

Styling and Populating the
Funbook App

In the previous chapter, we planned what surfaces and components
will be needed for our app based on the design file. We also got com-
fortable previewing and debugging the app – at least I hope you got
comfortable, my dear reader! Whether you’re using an iPhone or An-
droid simulator or a real device with the Expo Go app, make sure you
prefer checking your app that way. There’s no wrong answer for pre-
viewing apps built with Expo. In this chapter, we will style our sur-
faces and components. We will finally see an app that looks, hopeful-
ly, close to the design! After that, we will add some real data.

Here’s a very short list of what we’re planning to achieve in this
chapter:

Creating and styling components
Pulling in data for the app

By the end of this chapter, we will have a good-looking app that fetch-
es data from an external API. Feel free to follow closely or write your
own code.

Technical requirements

In order to follow along with this chapter, you will need some knowl-
edge of JavaScript and ReactJS. If you have followed along the first
two chapters of this book, you should be able to go forward without
any issues.

Feel free to use an IDE of your choice, as React Native does not
need any specific functionality. Currently, the most popular IDEs for
frontend developers are Microsoft’s Visual Studio Code, Atom, Sub-
lime Text, and WebStorm.

The code snippets provided in this chapter are here to illustrate what
we should be doing with the code. They do not provide the whole pic-
ture. For a better experience of coding along, open the GitHub repo in
your IDE and look at the files in there.

If you get stuck or lost, you can check the code in the GitHub repo:

https://github.com/PacktPublishing/Simplifying-State-Management-
in-React-Native/tree/main/chapter-4.

Creating and styling components

It’s time to create some real components! Let’s start with the home
surface.

https://github.com/PacktPublishing/Simplifying-State-Management-in-React-Native/tree/main/chapter-4

I like to work from top to bottom, so we will start with the header. Our
free design template includes the app name (“Socially”) and a bell
icon at the top of the feed surface. We won’t be implementing notifica-
tions in our example app, so we’ll overlook this part of the design file.

Adding styles to the header is done through React Navigation. We
will add the following properties to <Tab.Navigator>:

// …

 headerTransparent: true,

 headerTitleAlign: "left",

 headerTitleStyle: {

 paddingTop: 140,

 paddingBottom: 40,

 textAlign: "left",

 fontWeight: "bold",

},

// …

As we analyzed the home surface before, we know we need to create
two parts of this surface: a list of avatars and a list of cards with im-
ages. The list of avatars will use a horizontal FlatList component.
The first item on the list is different; it’s a button used by the user to
add content. We’ll add a ListHeaderComponent property to FlatList,

where we will add this special item. Let’s create a placeholder com-
ponent for now:

// src/components/ListHeaderComponent

import React from "react";

import { View, Text } from "react-native";

export const ListHeaderComponent = () => {

 return (

 <View>

 <Text>List Header component placeholder</Te

 </View>

);

};

In the preceding code, we created a component named
ListHeaderComponent, so we can import it into FlatList. So far, this
component only displays placeholder text.

I added a few profile images exported from the design file into the as-

sets folder. We’ll use them for our list of avatars.

Here’s what the ListOfAvatars component looks like:

// src/components/ListOfAvatars.js

import React from "react";

import { View, Text, FlatList} from "react-native

import { ListHeaderComponent } from "./ListHeader

const arrayOfAvatars = [

{

 {

 id: 1,

 url: "",

 },

 {

 id: 2,

 url: "",

 },

 {

 id: 3,

 url: "",

 },

];

export const ListOfAvatars = () => {

 const renderItem = ({ item }) => {

 return <Text>{item.id}</Text>

 };

 return (

 <View style={{ paddingTop: 30 }}>

 <FlatList

 data={arrayOfAvatars}

 renderItem={renderItem}

 keyExtractor={(item) => item.id}

 horizontal

 ListHeaderComponent={<ListHeaderComponent

 />

 </View>

);

};

Remember to import the necessary components from React Native –
in this case, we need to import FlatList. You may also notice I set up
a very simple data array to be fed into the list of avatars. We’ll man-
age connecting this component to our sample data later.

If you prefer to look at this code on your screen instead of the book,

you can always look in the repo. The code we are working on current-
ly can be found in the chapter-3 branch: https://github.com/Packt-
Publishing/Simplifying-State-Management-in-React-
Native/tree/main/chapter-3.

Once we have FlatList set up with links to actual images, we can
change the <Text> component for an <Image> component, feed it data
from our array, add some styles so that the images are rounded, and
we’re done!

We’ll add a list of cards, which will be very similar to the list of avatars.

We’ll also use an array with temporary data and add some styling,

and we should end up with a component looking like this:

// src/components/ListOfCards.js

export const ListOfCards = () => {

 const renderItem = ({ item }) => {

 return (

https://github.com/PacktPublishing/Simplifying-State-Management-in-React-Native/tree/main/chapter-3

 <Image

 style={{

 width: "100%",

 height: 288,

 borderRadius: 20,

 marginBottom: 32,

 }}

 source={{

 uri: item.url,

 }}

 />

);

 };

 return (

 <View style={{ paddingVertical: 30 }}>

 <FlatList

 data={arrayOfImages}

 renderItem={renderItem}

 keyExtractor={(item) => item.id}

 showsVerticalScrollIndicator={false}

 />

 </View>

);

};

The surface component called Feed should only concern itself with
importing the correct children components and general styling. It
looks like this:

// src/surfaces/Feed.js

export const Feed = () => {

 const headerHeight = useHeaderHeight();

 return (

 <SafeAreaView

 style={{ flex: 1, paddingTop: headerHeigh

 >

 <View>

 <ListOfAvatars />

 <ListOfCards />

 </View>

 </SafeAreaView>

);

};

And the Feed surface of our app should look like this:

Figure 4.1 – An iPhone simulator screenshot of the Feed surface

You can leave your app as is, or you can copy some styling tweaks
that I added in the GitHub repo. We’re not focusing on styles in this
book, so we’re not going to go over them in detail; nonetheless, I en-
courage you to have a look around.

The Feed surface is looking quite similar to the design, so we can
move forward to the Conversations surface.

Our Conversations surface needs to be wrapped in a new navigator
because we want our users to be able to go into the conversation de-
tails. We’ll add a new component called <ConversationsNavigation>,

where we will create a Stack Navigator:

// src/surfaces/ConversationsNavigation.js

import React from "react";

import { Conversations } from "./Conversations";

import { Messages } from "./Messages";

import { createStackNavigator } from "@react-navi

const Stack = createStackNavigator();

export const ConversationsNavigation = () => {

 return (

 <Stack.Navigator

 screenOptions={{

 //…

 }}

 >

 <Stack.Screen name='Conversations'

 <Stack.Screen

 name='Messages'

 component={Messages}

 options={({ route }) => ({

 title: route.params.name,

 //…

 })}

 />

 </Stack.Navigator>

);

};

The most interesting option we’re setting in this component is this
one:

options={({ route }) => ({

 title: route.params.name,

 //…

This line of code tells React Navigation to use a route parameter as
the header title for the Messages surface. If you test your app now, you
will notice this is not happening yet. We also need to set this parame-
ter at the time the user will choose to go to the Messages surface,

which means we need to set it when Conversation is clicked. We will
create the Conversations surface with an input box at the top, fol-
lowed by a list of conversations in FlatList. Each item in the list will
be wrapped in a <Pressable> component, which will look like this:

<Pressable onPress={() => navigation.navigate("Me

When our users choose a conversation, this conversation will pass
the assigned name parameter to the Messages surface, which in turn
will display this name as the header. We can now add a list of dummy
messages and conditional styling, which will style differently mes-
sages from the user and to the user. A useful thing to remember for
message lists is to use the inverted prop on the FlatList compo-
nent of messages. After all, we want the latest item to appear at the
bottom of the list.

You may notice at this point that the Conversations surface and the
Messages surface do not have the bottom tabs visible. The best way
to achieve this functionality is to move our
<ConversationsNavigation> out of the tab navigator and move it into
the main stack navigator. The surfaces listed in the main stack will be
displayed above the surfaces in the Tab Navigator, plus we will be
able to use the pre-configured back button provided by the React

Navigation library. Here’s what the App.js root component should
look like:

// src/App.js

export default function App() {

 //…

 return (

 <SafeAreaProvider>

 <NavigationContainer>

 <Stack.Navigator>

 {!userLoggedIn ? (

 <Stack.Screen name='Login' component=

) : (

 <>

 <Stack.Screen

 name='Home'

 component={Home}

 options={{ headerShown: false }}

 />

 <Stack.Screen

 name='ConversationsNav'

 component={ConversationsNavigatio

 options={{ headerShown: false }}

 />

 </>

)}

 </Stack.Navigator>

 </NavigationContainer>

 </SafeAreaProvider>

);

}

In order to have a button for our Conversations surface displayed in
the tabs, we will need to create an empty dummy surface and pass it
into the Tab Navigator:

// src/surfaces/Home.js

<Tab.Screen name='Feed' component={Feed} />

 <Tab.Screen

 name='ConversationsMain'

 component={ConversationsBase} // just a

 options={{

 tabBarIcon: ({ size }) => (

 <Ionicons name='chatbox-outline' co

),

 }}

 listeners={({ navigation }) => ({

 tabPress: (e) => {

 e.preventDefault();

 navigation.navigate("ConversationsNav

 },

 })}

 />

 <Tab.Screen name='AddPost' component={AddPo

// …

We’ll add a floating button at the bottom of the Conversations sur-
face, and we’re done!

I’m going over these code changes fairly quickly, because we don’t
want to spend too much time focusing on styling or React Navigation
tips and tricks. We want to be up and running with an app that’s close
to something you may find in the real world, so we can start playing
with state and data management. Feel free to go over all code
changes in the GitHub repo, where you can also ask questions and
raise issues.

We’ll continue our progress by adding content to the Favorites sur-
face. This will be a list of cards, like what can be found on the Feed
surface. Next, we’ll add components to the Profile surface. We will
need an avatar, a name, some statistics, and two FlatList compo-
nents that will display added images and favorited images.

We will finish up this surface by adding a custom component to the
Tab Navigator for the central item, the black button for adding posts.

We can add any custom component that we want as the tab bar icon:

// src/surfaces/Home.js

function Home() {

function Home() {

 return (

 <Tab.Navigator>

//…

 <Tab.Screen

 name='AddPost'

 component={AddPost}

 options={{

 tabBarIcon: ({ size }) => (

 <View

 style={{

 marginTop: -30,

 }}

 >

 <View

 style={{

 position: "absolute",

 backgroundColor: "#000000",

 padding: 30,

 bottom: -10,

 left: -13,

 borderRadius: 23,

 transform: [{ rotate: "-45deg"

 shadowColor: "#000000",

 shadowOffset: { width: 0, heigh

 shadowOpacity: 0.2,

 shadowRadius: 4,

 }}

 />

 <Ionicons name='add-circle-outlin

 </View>

),

 }}

 />

//…

If you look closely, you will notice that the styling for this button is very
similar to the floating button on the Conversations surface. In cases
where we’re repeating a lot of code, it’s a good idea to abstract it into
a separate file. This is called Don’t Repeat Yourself (DRY) program-
ming. We don’t want to go too far, making abstractions for every little
thing. There’s another programming principle called Write Every-
thing Twice (WET) programming, which advocates writing verbose
code, especially when starting a new project. My personal preference
is Avoid Hasty Abstractions (AHA) programming, proposed by
Kent C. Dodds. This approach marries DRY and WET principles and
encourages us programmers to find the best use cases for abstrac-
tions while not overusing them.

In this specific case, we are repeating styling. We can easily create a
class called something like floatingButton and apply it to both of our
components. We could also use the Styled Components library and
create a <FloatingButton> styled component. There are more ways
to achieve this goal of having reusable styles, but we are not going to

dive into them. I’ll do some cleanup in our components, and I’ll meet
you right back here in a few moments so that we can hook up some
real data from our (almost) real API.

Pulling in data for the app

Welcome back! Did you take a moment to look at our app code? Did
you clone the repo from the chapter-3 branch, or did you create your
own components following the broad strokes I described previously?

Either way, I’m glad you’re here! Let’s fetch some data and use some
state!

A quick reminder about the data we’ll be using: I set up GitHub Pages
in the /docs folder, which you can find here: https://github.com/Packt-
Publishing/Simplifying-State-Management-in-React-
Native/tree/main/docs.

You can preview every JSON file right in the GitHub UI. You can also
view the raw contents of any file by clicking the Raw button:

https://github.com/PacktPublishing/Simplifying-State-Management-in-React-Native/tree/main/docs

Figure 4.2 – GitHub UI with the Raw button circled in red

The text file visible after clicking this button is what you could see as
an API response.

We’ll start with fetching the list of users. This list contains user IDs
and links to user avatars. Our API depends on us to manage the user
avatars everywhere in the app and passes them in this one endpoint
only.

So, let’s check where we need the list of users. We need it on the
Feed surface to display the list of avatars. We will also need it to dis-
play avatars on the cards on the Feed surface. We will also need the
user data on the Conversations surface and the Messaging sur-
face. At this point, it will be beneficial to find the common parent of
those surfaces and call our API in the said parent. In our case, the
parent is the root component declared in App.js.

The first thing we’ll do is fetch our data in the parent:

// src/App.js

export default function App() {

 const [userLoggedIn, setIsUserLoggedIn] = useSt

 const [userList, setUserList] = useState(null);

//…

 async function fetchUserData(id) {

 const response = await fetch(requestBase + "/

 setUserList(await response.json());

 }

 useEffect(() => {

 fetchUserData();

 }, []);

 //…

 if (!userList) {

 return <AppLoading />;

 }

Once we have our data fetched and inside the userList object, we
can pass it as a prop from the parent component to the children. Ac-
cording to the React Navigation docs, you can pass additional props
through the render callback of the navigator. Here’s what it would
look like for the Home component:

<Stack.Screen name='Home' options={{ headerShown:

 {(props) => <Home {...props} userList={userLi

</Stack.Screen>

Once we have the userList prop in the Home surface, we should be
done, yes? Unfortunately, no. The Home surface is a parent for the tab
navigator, so we need to do the whole song and dance of adding the
render callback for the Feed surface. Once we get to the Feed surface,

we will need to pass the userList prop to the ListOfAvatars compo-
nent… This is starting to be a bit much, don’t you think? This is a taste
of what would be called prop drilling in a bigger app. Passing an ob-
ject through multiple surfaces and components is not only tedious but
also error-prone. This sort of setup is brittle – it suffices that one com-
ponent in the chain changes, and the whole app may become unus-
able. What can we do to avoid this? We can use React Context. This
is also the strategy recommended by the maintainers of React
Navigation.

WHAT IS CONTEXT?

Context is used to pass data down the component tree without hav-
ing to thread the props manually through every component.

The first step we need to take is to create our context with an initial
value:

const UserListContext = React.createContext(null)

Then, we need to wrap the parent component in a Context Provider
with an updated value:

// src/App.js

return (

 <SafeAreaProvider>

 <UserListContext.Provider value={{ userList

 <NavigationContainer theme={MyTheme}>

 <Stack.Navigator>

//…

The last piece of the context puzzle is how to use it, or “consume it.”
Once the context is provided to the parent, we can consume it in any
one of its children through the <Context.Consumer> component. We
will add this consumer to our list of avatars:

// src/components/ListOfAvatars.js

export const ListOfAvatars = () => {

 const renderItem = ({ item }) => {

 //…

 };

 return (

 return (

 <UserListContext.Consumer>

 {({ userList }) => (

 <View

 //…

 >

 <FlatList

 data={userList}

 renderItem={renderItem}

 keyExtractor={(item) => item.id}

 horizontal

 //…

And there we go! We successfully fetched external data, fed it to our
app, and passed the data around with the help of React Context. Us-
ing context offers a much better developer experience; however, it
does come with its own set of issues. The biggest issue that you
should always keep in mind when using context is that any change to
the context will cause a re-render of the component where the
Provider is placed, along with all the children of the said component.
This means that if we were to have an API where the user can add or
remove other users to their list, every time they would do this, the en-
tire app would have to re-render. Sometimes, that’s what we want; we
want to have the avatar list and the list of images in Feed updated. We
also want to update the Conversations surface in such a case. But
what about the Profile and Add Post surfaces? We will not be an-

swering those questions now, as we’re working with an example app.

However, every time you decide to use React’s Context, you should
ask yourself where to place the Provider and what will happen when
the data of the context changes.

Let’s continue fetching real data for other parts of our app. We’d like
to display images on Feed. We’ll start by fetching data in the
ListOfCards component with a useEffect hook:

// src/components/ListOfCards.js

import AppLoading from "expo-app-loading";

import { requestBase } from "../utils/constants";

export const ListOfCards = () => {

 const [cardList, setCardList] = useState(null);

 async function fetchCardData() {

 const response = await fetch(requestBase + "/

 setCardList(await response.json());

 }

 useEffect(() => {

 fetchCardData();

 }, []);

 if (!cardList) {

 return <AppLoading />;

 }

 return (

 //…

 <FlatList

 data={cardList.listOfitems}

 renderItem={renderItem}

 keyExtractor={(item) => item.itemId}

Once our card items are fetched and passed on to the Card compo-
nent, we can do something more with them – namely, we can check
the author ID against the user list in our context and display the cor-
rect username and avatar thanks to this information.

We will add the same context consumer to the Card component as
the one we added to ListOfAvatars, but that is not going to be
enough in this case. Once we get the whole list, we also need to find
the user whose ID matches the author ID of the card. We’ll adjust the
way we pass the context value, and we’ll filter the userList array:

// src/components/Card.js

import { UserListContext } from "../context";

export const Card = ({ item }) => {

 return (

 <UserListContext.Consumer>

 {({ userList }) => {

 const currentUser = userList.filter(

 (user) => user.id === item.authorId

);

 return (

 <View>

 <Image

 //…

We created a variable called currentUser, which is an array holding
precisely one item – the user who posted the specific card. Unfortu-
nately, this variable is accessible to the Card component only. If we
wanted to use the same information, for example, on a modal that
would open when we tap the image, we would have to either nest the
modal component in the Card component or search for the current
user again. You will see an example of this issue in our very own app
in a few moments, when we’ll be working with the Conversations

surface.

On the other hand, we have composed another surface using the
Card component – the Favorites surface. All we must do to have it
working correctly is fetch the Favorites data. All the rest should fall
into place.

If you encounter any problems with loading data from our example
API hosted on GitHub pages, start by making sure the data is
fetched. You can do so by using console.log in your code and look-
ing in the terminal to see whether the object is fetched or not. Then,

you need to check whether you have all the names and object keys
spelled and nested correctly. If you get stuck at any point, remember

that you can always go to the repo hosted on GitHub, clone it, and
look around at any stage you would like.

Let’s move on to the next component that needs to fetch data –
Conversations. As I mentioned before, we will need to tweak and re-
peat some code we already wrote for the Card component used in the
Feed and Favorites surfaces. In Conversations, we will also fetch the
user list and search for the current user. Make sure to spell every-
thing correctly. The sneaky API author named everything differently!

Here’s what my Conversations component looks like:

// src/components/ConversationItem.js

export const ConversationItem = ({ navigation, it

 return (

 <UserListContext.Consumer>

 {({ userList }) => {

 const currentUser = userList.filter((us

 return (

 <Pressable

 onPress={() =>

 navigation.navigate("Messages", {

 name: currentUser[0].name,

 avatar: currentUser[0].url,

 })

 }

 style={{

 height: 103,

 //…

Please pay attention to [0] after currentUser. We used a filter func-
tion on an array, and we have an array as a result. Omitting [0]

means the app will not be displaying any data because it will see an
array instead of an object.

We have our list of conversations; now’s the time to fetch the specific
conversation when one is tapped by the user. The action of redirect-
ing to the messages screen happens in the <ConversationItem>

component in FlatList on the Conversations surface. The Messages

surface is a part of the same stack navigator as the Conversations,

which means we could go two ways here:

1. Add context to the <ConversationsNavigation> component, set its
value when a conversation is tapped, and consume it on the
Messaging surface.

2. Pass the conversation ID as a route parameter, along with user
data.

The second approach is very tempting because it’s simple. We’re just
adding a piece of data that’s already accessible to us, and we’re
passing it through the navigation to the correct place. There’s nothing
inherently wrong with this approach that I could criticize off the bat. It
is foreseeable, however, that in a real-world app, you would end up

writing very big or duplicated objects to be passed around in the
route params. As per the React Navigation documentation, even
though using route params is convenient, they should not be used as
a replacement for a global app state. Manually passing data through
route params can lead to bugs and an app showing outdated data. If
you’d like a little bit of exercise, you could implement this solution in
your own copy of the FunBook app right now.

When you’re ready, come back here and I’ll walk you through creat-
ing and consuming the new context for the conversations.

We’ll start like before, by creating the context with its initial value:

export const ConversationContext = React.createCo

I’ve decided to hold the functions to create context in a separate file,

called context.js for simplicity’s sake. Once the context is created,

we need to wrap it around the correct component. In this case, we will
need to add the Provider around the nested Stack Navigator of the
Conversations surface. Let’s add the following code to the
<ConversationsNavigation> component:

// src/surfaces/ConversationsNavigation.js

i i " / "

import { ConversationContext } from "../context";

//…

export const ConversationsNavigation = () => {

 const [conversationId, setConversationId] = use

 return (

 <ConversationContext.Provider

 value={{

 conversationId: conversationId,

 setConversationId: setConversationId,

 }}

 >

 <Stack.Navigator

 screenOptions={{

 headerBackTitleVisible: false,

// …

You will notice we are passing both the value and the setter function
to the context this time. This is because we will need to set the value
of the context deeper in the tree, in the <ConversationItem> compo-
nent. Not to worry though; passing functions through context is 100%

a-okay!

What about multiple contexts, you may ask, when you notice that
<ConversationItem> is already wrapped in <UserListContext.Con-

sumer>? Again, this is totally fine. You can have just as many wrap-
pers as you need and like! Here’s what our component with two con-
texts will look like:

// src/components/ConversationItem.js

export const ConversationItem = ({ navigation, it

 const onPressItem = (setConversationId, current

 setConversationId(item.id);

 navigation.navigate("Messages", {

 name: currentUser[0].name,

 avatar: currentUser[0].url,

 });

 };

 return (

 <ConversationContext.Consumer>

 {({ setConversationId }) => (

 <UserListContext.Consumer>

 {({ userList }) => {

 const currentUser = userList.filter(

 (user) => user.id === item.userId

);

 return (

 <Pressable

 onPress={() => onPressItem(setC

 //…

Now that we’re setting the context, let’s consume it in the Messages

surface. We need to first get the conversation ID from the context and
then fetch the correct JSON file for the given conversation. We’ll add

<ConversationContext.Consumer> as a wrapper on the Messages

surface:

// src/surfaces/Messages.js

export const Messages = ({ route }) => {

 const headerHeight = useHeaderHeight();

 return (

 <SafeAreaView style={{ flex: 1, paddingTop:

 <ConversationContext.Consumer>

 {({ conversationId }) => (

Once we get the conversation ID, we’ll use it in the ListOfMessages

component to fetch the data pertinent to the given screen:

// src/components/ListOfMessages.js

import AppLoading from "expo-app-loading";

import { requestBase } from "../utils/constants";

export const ListOfMessages = ({ conversationId }

 const [messages, setMessages] = useState(null);

 async function fetchMessages() {

 const response = await fetch(

 requestBase + "/messages/" + conversationId

);

 setMessages(await response.json());

 }

useEffect(() => {

 useEffect(() => {

 fetchMessages();

 }, []);

 if (!messages) {

 return <AppLoading />;

 }

 const renderItem = ({ item }) => {

 //…

 };

 return (

 //…

 <FlatList

 data={messages.messages}

 renderItem={renderItem}

 keyExtractor={(item) => item.id}

 showsVerticalScrollIndicator={false}

 inverted

 />

 </View>

 //…

And there we go! We’ve done some solid work here; it’s time for a pat
on the back. We have multiple components fetching data and passing
it around when necessary. We’ve set up the Feed component,
Favorites, Conversations, and Messaging. The last surface left is
Profile. I will leave it to you, dear reader, to manage data on this sur-

face. I trust that you have learned enough in this chapter to be able to
do it on your own.

When you go to the book repo, you will find all work related to this
chapter on a branch called chapter-3. You can browse through com-
mits to see how the app development progressed, or you can simply
check out the final state of the app. In the next chapter, we will see
whether we can replace all our context, props, and filtering users with
a more global solution called Redux. Onward and upward!

Summary

We have done a lot of great work in this chapter! There’s a very spe-
cific sort of satisfaction when you see an app that looks nice and
works smoothly, isn’t there?

Here’s where we are at after this chapter – we have an app that’s
styled according to design. This app pulls in external data from an
API. I admit that our app is rather simple. There are many more func-
tionalities that could be added to a social media clone app. And
there’s nothing stopping you from doing just that. You can play
around and add and delete whatever you want. I will also add a few
more functionalities, maybe a modal, or a functioning “like” button,

and I’ll see you in Chapter 5, where we’ll start investigating our first
state management solution – Redux.

Further reading

https://www.digitalocean.com/community/tutorials/what-is-dry-de-
velopment: DRY programming.

https://betterprogramming.pub/when-dry-doesnt-work-go-wet-
6befda0444bf: WET programming.

https://kentcdodds.com/blog/aha-programming: AHA
programming.

https://reactnavigation.org/docs/hello-react-navigation/#passing-
additional-props: Passing additional props in React Navigation.

https://reactjs.org/docs/context.html: React Context.
https://reactnavigation.org/docs/params/#what-should-be-in-
params: React Navigation – what should be in params?

https://www.digitalocean.com/community/tutorials/what-is-dry-development
https://betterprogramming.pub/when-dry-doesnt-work-go-wet-6befda0444bf
https://kentcdodds.com/blog/aha-programming
https://reactnavigation.org/docs/hello-react-navigation/#passing-additional-props
https://reactjs.org/docs/context.html
https://reactnavigation.org/docs/params/#what-should-be-in-params

Part 3 – Exploring Various
Libraries for State Management
in React Native

In this part, we will start with Redux and its Toolkit; we will learn why
they were created, how to configure them, and how to use them for
managing liked images in the example app. Next, we will learn about
MobX, what problems it wants to solve, and how to configure it and
use it to manage liked images in the Funbook app. Then, we will learn
about XState, what the mathematical bases for this library are, how to
configure it, and how to visualize data thanks to its Visualizer. Finally,

we will implement it for managing liked images in the Funbook app.

Next comes Jotai; we will see why it was created and what problems
it solves. Then, we will configure it for the Funbook app and use it to
manage liked images. Finally, we will learn about React Query (or
TanStack Query). We will learn why this library is even mentioned in a
book about state management. Then, we will configure it and use it
for fetching liked images in the Funbook app.

This part includes the following chapters:

Chapter 5, Implementing Redux in Our Funbook App
Chapter 6, Using MobX as a State Manager in a React Native App

Chapter 7, Untangling Complex Flows in React Native Apps with
XState
Chapter 8, Integrating Jotai in a React Native App
Chapter 9, Using React Query for Server-Side - Driven State
Management

https://epic.packtpub.services/index.php?module=oss_Chapters&action=DetailView&record=254c4c24-4e8a-0b72-fab6-61f37807c398

5

Implementing Redux in Our
Funbook App

In the previous chapter, we got our hands “dirty” a little bit. I hope you
liked building the Funbook app! We managed to build the frontend of
a functioning app. Of course, the functionalities we created were limit-
ed. A real-world social media app would be much more robust, with
many more components and user flows. However, bigger apps bring
their own set of problems: handling large datasets, establishing style
guides, managing analytics, and many other problems that we don’t
want to spend our time on. We are here to talk about different solu-
tions for state management. In the interest of staying focused, I
added a few functionalities to our app that were not described in de-
tail in the previous chapter. I added a modal displaying an enlarged
version of the images on the Feed surface, another modal displaying
images added by the users listed at the top of the Feed surface and
components and styles for the Login surface, and a functioning Like
button in the modal with the images, connected to the Profile sur-
face. You can find the full example app in the example-app-full fold-
er on GitHub:

https://github.com/PacktPublishing/Simplifying-State-Management-
in-React-Native/tree/main/example-app-full.

https://github.com/PacktPublishing/Simplifying-State-Management-in-React-Native/tree/main/example-app-full

This app will be the base for all our state management experiments
throughout this book. We will start our experiments by looking at the
oldest state management library: Redux.

In this chapter, we will do the following:

Go over a brief history of Redux
Install and configure Redux in the Funbook app
Add Redux functionalities to the app
Learn about debugging Redux

By the end of this chapter, you should feel comfortable using Redux-
specific jargon, such as reducer, actions, and store. You should also
have a good understanding of what it takes to configure and use
Redux in a real React Native app.

Technical requirements

In order to follow along with this chapter, you will need some knowl-
edge of JavaScript and ReactJS. If you have followed the previous
two chapters of this book, you should be able to go forward without
any issues.

Feel free to use an IDE of your choice, as React Native does not
need any specific functionality. Currently, the most popular IDEs for

frontend developers are Microsoft’s VSCode, Atom, Sublime Text,
and WebStorm.

The code snippets provided in this chapter are here to illustrate what
we should be doing with the code. They do not provide the whole pic-
ture. To code along easier, please open the GitHub repo in your IDE
and look at the files in there. You can either start with the files in the
folder named example-app-full or chapter-5. If you start with exam-

ple-app-full, you will be responsible for implementing the solutions
described in this chapter. If you choose to look at chapter-5, you will
see the entire solution implemented by me.

If you get stuck or lost, you can check the code in the GitHub repo:

https://github.com/PacktPublishing/Simplifying-State-Management-
in-React-Native/tree/main/chapter-5.

What is Redux? A brief history

We went over a brief history of React in Chapter 1, What are React
and React Native?. If you skipped that chapter, or simply don’t re-
member, don’t worry. All you need to know is that ReactJS was pub-
lished in 2013 and it opened doors to creating beautiful single-page
applications. ReactJS was an exciting library to use! A lot of people
jumped on the opportunity and started re-writing their websites. As

https://github.com/PacktPublishing/Simplifying-State-Management-in-React-Native/tree/main/chapter-5

time passed, many developers would discover that creating and
maintaining large applications with ReactJS became tedious. Don’t
forget this was happening before the ReactJS team introduced
hooks and context. Developers had to pass props from parents to
nested children, going through multiple levels of irrelevant compo-
nents. This is called prop drilling, as getting to the child component
through many ancestors feels like drilling.

In 2015, something very interesting happened: Dan Abramov and
Andrew Clark wrote and published a new open source library called
Redux. ReactJS developers were mostly confused at first, given that
Redux introduced new concepts to the ReactJS world. We could
start thinking about global states that are accessible from anywhere
in the app. In order to change a global state, we would need to use
special functions called “actions” and also use something called “re-
ducers"... This was a lot to take in! Regardless, this new library solved
a very real problem, so the only thing to do was to buckle up, watch
Dan Abramov’s tutorials, and use this new and amazing tool!

Thanks to Dan Abramov’s efforts to teach, explain, and popularize
Redux, it became a staple of ReactJS development. As years
passed, new concepts for managing global states were created,

some similar and some very different from Redux. Compared to the
newer solutions, Redux can feel clunky, as it has a large amount of

boilerplate code. Even the library author expressed his doubts
through Twitter:

Figure 5.1 – Dan Abramov’s tweet saying he does not understand the
Redux example code

Around 2016, the maintenance of Redux was passed to Mark Erikson
and Tim Dorr. I had the chance to exchange a few messages with
Mark Erikson. He explained to me that he’s not getting paid for main-

taining Redux; he does it in his spare time, even though it can be
very time-consuming. He says himself that he became a Redux
maintainer by accident, but after reading his excellent blog post on
this topic, I would say he became a Redux maintainer because of the
amazing amount of work he put into Redux documentation and the
time he spent helping developers who use Redux. You can read the
full story on his blog (link in the Further reading section). Mark added
that he likes maintaining Redux. He butts heads with developers who
are unhappy with the decisions he’s making sometimes, but he also
receives support from fellow OSS maintainers, as well as conference
invites. I asked Mark what he thinks about Redux’s place in the cur-
rent state management libraries landscape. He pointed out there are
many resources (NPM statistics, GitHub statistics, etc.) proving that
Redux is still by far the most widely used state management library
with React apps. However, as Mark said, Redux was heavily over-
used from 2016 to 2017. During that time, a lot of developers raised
legitimate complaints about the size of Redux’s boilerplate. This situ-
ation led in turn to a backlash on Twitter, where a lot of people made
claims that “Redux is dead” because one tool or another “killed it.”

“RTK and React-Redux hooks changed that narrative. If you look at
discussions on Reddit and Twitter today, you do see a good number
of folks saying how much they love RTK and recommending it,” Mark
said.

Redux is currently a mature and trusted solution for managing global
states in React and React Native apps. We’ve looked briefly at its
history in this section. It is obvious that it has its shortcomings. To
quote Mark Erikson, “This is a useful tool, not meant for every situa-
tion, but a very valid choice.” It has its fans and haters, but it’s worth
knowing about – and that’s why we’re here! Let’s go!

Installing and configuring Redux

As with any library that we would like to add to our project, we will
start by reading the documentation. The Redux documentation has
evolved a lot over the years. In 2022, the recommended install in-
cludes Redux Toolkit.

Redux Toolkit is the recommended official approach to using
Redux. It contains commonly used packages and dependencies for
building Redux apps. This toolkit also simplifies a lot of tasks neces-
sary for using Redux, such as creating the store or reducers. Any
user is free to install and use core Redux, but we will use the recom-
mended approach and use Redux Toolkit.

WHY NOT JUST REDUX?

The Redux library has evolved a lot since its conception in 2015. Its
ecosystem has also grown a lot. The recommended Redux Toolkit is

the most practical addition to Redux apps written in 2022, although it
is not a necessity.

Let’s start by going into the files for the full app, which is placed in the
example-app-full folder. Feel free to work directly on those files on
your computer. You can also fork the repository or copy the files from
this folder. These files include everything you need to run a complete
app. If you prefer to follow along with the working code, you should
look in the chapter-5 folder. That is where all completed work for this
chapter is placed.

Let’s get started. Follow these steps:

1. Once you are inside the app folder, run the following command:

npm install @reduxjs/toolkit

We will go ahead and install the complementary packages recom-
mended in the Redux documentation.

2. Let’s run the following commands:

npm install react-redux

npm install --save-dev @redux-devtools/core

Now that the dependencies are installed, we can take a minute to talk
about Redux core concepts.

The main concept, and the absolute most important one, is that with
Redux, we consider the state a plain object. The Redux documenta-
tion uses a to-do app as an example, but we can go ahead and use
our Funbook app.

If we were to represent the state of the logged-in user of the Funbook
app with a single object, it may look something like this:

{

 userLoggedIn: true,

 userData: {

 id: 3,

 name: "John Doe",

 email: "john@doe.com",

 image: "imageURL",

 addedImages: […],

 likedImages: […],

 numberOfPosts: 35,

 numberOfFollowers: 1552,

 numberOfFollows: 128,

 idsOfFollowedUsers: […],

 idsOfConversations: […]

 },

}

In this example, we are trying to figure out holistically what user data
will be necessary for the entire app. This is what is considered the
GLOBAL state. We are not going surface to surface; we want to know
all the data relevant to the user. Therefore, in the userData object
here, you will find data such as the username and email, which will be
used on the Profile surface, an array of IDs of followed users, which
we can use on the Feed surface for the list of avatars, and the array
of IDs of conversations necessary for the Conversations surface.

Of course, not all our app data is directly dependent on the logged-in
user. Let’s try and imagine the shape of the part of our global state for
the modals present on the Feed surface. Here’s what the state of the
modal opened on an image click may look like:

{

 imageModalOpen: true,

 imageId: 3,

 authorId: 3,

 imageUrl: "imageUrl",

 numberOfLikes: 28,

 numberOfConversations: 12,

 numberOfFollows: 128

}

Going around the app, we may want to consider the shape of the
slice of a global state related to the Conversations surface. In my
opinion, the data shape we fetch from the fake API set up on GitHub
Pages fits very well with the shape of the global state:

[

 {

 "id": 1,

 "userId": 2,

 "text": "Hey, how's it going?"

 },

 {

 "id": 2,

 "userId": 4,

 "text": "Yo, are you going to the wedding?"

 },

//…

Having the global state be the same shape as the API response is
generally welcome. In these cases, you, as the frontend developer,
will not have to reshape the data or remember what keys are used
where and why. In a perfect world, the API responses would always

fit the shape of the data necessary to be shown on the UI. However,
in the real world, that may mean that the frontend would be unneces-
sarily fetching data that can be shared between surfaces, or fetching
unnecessarily big datasets or images.

I feel we are getting the hang of this whole idea of a global state,

right? Feel free to try and figure out on your own what other slices of
the global state our app may need. Maybe you can sketch out the
shape of the global state necessary for the modal displayed when an
avatar is pressed – or maybe what exactly is needed for the
Favorited images surface, and the same data on the Profile sur-
face. Come back here when you feel ready to move on to the second
Redux concept: dispatching actions.

Oh hi! You’re back! Great! Let’s talk more about Redux then!

Dispatching actions

Let’s say we’ve set up the global state – we replaced a lot of unnec-
essary props and we’re happy – but what if we want to change some-
thing? What if the user likes an image? What if the user adds a new
image or follows another user? We need to tell our state that some-
thing has changed. This is when we will dispatch actions. An action is
a plain JavaScript object that describes what is happening. We could
dispatch an action that looks like this:

{ type: 'LIKE_IMAGE', payload: { Object with data

What now? Has the global state changed magically? Unfortunately,

no. We still need to tell Redux to change the state based on this ac-
tion. The missing piece of this puzzle that ties the actions to the state
is called a reducer. Reducer functions are plain JavaScript functions
that take in the old state and the action and return the new state of
the app. Here’s what a very simple reducer for liked images may look
like:

function likedImages(state =[], action) {

 if (action.type === 'LIKE_IMAGE') {

 let newLikedImages = state;

 newLikedImages.push(action.payload);

 return newLikedImages

 } else {

 return state

 }

}

We are taking in the old state – in this case, the array of liked images.

We are then adding the new item and returning the new state. We
also get some very elegant error handling in the else block, where if
there are any problems, the app will return to the old state.

I have described three concepts in this section:

1. The store – the single source of truth for the global state
2. Reducers – functions that take in the old state and the action, do
what you need them to do, and return the new state

3. Actions – plain JavaScript objects containing information for the
store

These are basically all you need to know to start using Redux effec-
tively. If you would like to read more about the concepts and the his-
tory of this great library, check out the Further reading section where
you’ll find links to the Redux documentation. Now that we know the
basics, we are ready to apply this fresh knowledge to a real app.

Adding Redux functionalities to
the app

We have installed the Redux Toolkit with our friendly package man-
ager in the previous section, but we haven’t made any real changes
in our app yet. We have, however, thought about the data flows in our
app in the previous chapters. The work that we need to do now is go-
ing to be very similar. We will start by designing the state structure
and actions. When we have both of those, we will add reducers to tie
everything together.

There’s a lot of work ahead of us, so let’s try to break it down into
smaller chunks. We will start by looking at the user state and how we
could manage a user’s logged-in and logged-out state with a global
state in Redux. We will then do that same walkthrough for liked im-
ages in our app. When we have successfully set up those two pieces
of the global state, we will look at how we can combine them and use
them in our app. We will then create some actions to handle events in
the app. Once we have the state and the actions, we’ll take a brief
look at how data can be fetched in an app with Redux. Finally, we will
be ready to get rid of the React context we used before for managing
the state of our app.

User login state walkthrough

Let’s start with the user state. We will create a new file called
store.js where we will store our initial state slices. We will add this
JavaScript object to that file:

export const user = {

 userLoggedIn: false,

 userData: null,

};

When the app is first loaded, we will assume the user is not logged in
and there is no user data.

Now, we need to think of an action that will be dispatched when the
user is logging in. It should look like this:

{type: 'LOGIN', payload: userData}

The last part is the reducer. Let’s create a new folder for our reducers,

called… well, reducers. Inside this folder, we will create our reducer
file, which should look like this:

// reducers/user.js

import { user } from "../store";

export const login = (state=user, action) => {

 if (action.type === 'LOGIN') {

 return {

 ...state,

 user: {

 userLoggedIn: true,

 user: action.payload,

 },

 }

 } else {

 return state

 }

}

We are importing our user object as the initial state and then we’re
adding a switch that will listen to specific actions. Let’s listen to the
'LOGIN' action.

But wait – what if our user would like to sign out? We need another
action specifically for this:

{ type: 'LOGOUT' }

I didn’t add any action payload in this case, because we will not be
passing any actual data. We only want to wipe the data and we will do
that in the reducer. We could add another ‘if’ statement to the reduc-
er, but big if-else statements become difficult to read and reason
about. In the case of reducers, it’s a good idea to use the switch

statement, since we’re effectively switching between different states
of the app. Here’s what our reducer will look like:

export const login = (state=user, action) => {

 switch (action.type) {

 case "LOGIN": {

 return {

 ...state,

 user: {

 userLoggedIn: true,

 user: action.payload,

 },

 };

 }

 case "LOGOUT": {

 return {

 ...state,

 user: {

 userLoggedIn: false,

 user: null,

 },

 };

 }

 default:

 return state;

 }

}

OK – now when a user logs in, we will set the global state of the app
to reflect that, right? Almost! We still need to find the right place in our
code where we will dispatch this action, and that place is the login
button on the Login surface – but our Login surface is shown based
on the local state of the main component! That means there’s still a
little bit more work that we need to do before we will see the magic of
Redux. Don’t worry though, it will be worth it!

IMPORTANT INFORMATION

If you do have any doubts about all this extra work we seem to be do-
ing, I invite you, my dear reader, to read the React Navigation docu-
mentation on authentication flows:

https://reactnavigation.org/docs/auth-flow/. In this documentation,

you will find that you should not manually navigate when conditionally
rendering screens. You would also need to set up the context and
preferably use the useReducer hook from ReactJS. If useReducer
sounds familiar at this point, that is because it’s a ReactJS hook with
identical functionality to the Redux reducers. I hope by now you are
starting to feel convinced that using a state management library such
as Redux is a great solution for React Native apps.

You may wonder why we used a spread operator with the state and
then changed the value of userLoggedIn. Theoretically, it would be
easier to just change the value in the state, no? Not in Redux. Redux
is very adamant about the reducers NOT being able to modify the
current state. Reducers can only copy the state and make changes to
the copied values. This is important so that our code is predictable. If
many reducers changed the same slice of state, who’s to say what
would be the result?

IMMUTABILITY

This is a very fancy word, isn’t it? It means that something is not ca-
pable of change, or that it should not be changed. In the case of Java-

https://reactnavigation.org/docs/auth-flow/

Script apps, immutable data management can increase performance
and make programming and debugging easier. Redux reducers take
in the old state and the action and return a new state object; they
should never apply changes to the “old” state object.

If you are curious about the key concepts of Redux, I invite you again
to the Further reading section, where you will find a link to a free
course on Egghead.io, created by the author of Redux, Dan
Abramov.

Using Redux for l iked images

Our global state is rather poor so far. Keeping the user data in the
global state is great but we can surely do more with this great tool.
How about liking posts? The reducer for liking posts will look like this:

export const likedImages = (state = [], action) =

 if (action.type === "LIKE_IMAGE") {

 let newLikedImages = state;

 newLikedImages.push(action.payload);

 return newLikedImages;

 } else {

 return state;

 }

};

http://egghead.io/

And what if the user decided to unlike a post? Let’s add an action and
a reducer for this scenario:

{ type: 'UNLIKE_IMAGE', payload: { Object with da

Now, let’s adjust our reducer. Since we have multiple actions in a sin-
gle reducer, we will use a switch statement again:

// ./reducers/likedImages.js

export const likedImagesReducer = (state = [], ac

 switch (action.type) {

 case "LIKE_IMAGE": {

 const newLikedImage = action.payload;

 return [...state, newLikedImage];

 }

 case "UNLIKE_IMAGE": {

 const stateWithoutLikedImage = state.filter

 (item) => item !== action.payload

);

 return stateWithoutLikedImage;

 }

 default: {

 throw new Error(`Unhandled action type: ${a

 }

 }

}

};

Combining various pieces of global state

We have two reducers, each one meant to manage two different ac-
tions. What we need to do now is create a store that will represent the
global state of the Funbook app and pass actions into reducers. We
could use the createStore function from core Redux, but that would
require adding more boilerplate files and functions, and it is not the
recommended approach for modern Redux. The recommended ap-
proach is using Redux Toolkit, which we will do right now. Redux
Toolkit offers a special configureStore function, which will do a lot of
heavy lifting for us. All we need to do is add this function:

// ./store.js

import { configureStore } from "@reduxjs/toolkit"

import usersReducer from "./reducers/users";

import likedImagesReducer from "./reducers/likedI

export const store = configureStore({

 reducer: {

 user: usersReducer,

 likedImages: likedImagesReducer,

 },

});

The configureStore function combined our two reducers for us, cre-
ating a root reducer required by Redux. This single root reducer is
required to achieve a single source of truth in the app. This function
also adds some useful middleware functionalities, which will check for
common mistakes and expose our code for easier debugging.

We created the global state, and we configured it with the reducers
thanks to Redux Toolkit. Now, we need to tell our Funbook app to
use this state. In order to do so, we will use a <Provider> component
wrapper provided (no pun intended) by the Redux library. If you paid
attention while we were setting up the app without any exterior li-
braries, you will have noticed that the React context also uses
<Provider> components. The naming convention is not an accident.
Both <Provider> components serve the same purpose and React
context uses a lot of the same high-level logic as Redux.

Let’s import the necessary elements into our main app file, App.js:

import { store } from "./store";

import { Provider } from "react-redux";

And let’s wrap our app in the Redux <Provider>:

export default function App() {

//…

 return (

 <SafeAreaProvider>

 <Provider store={store}>

//…

This looks familiar, doesn’t it? Redux’s <Provider> shares a lot of
similarities with React’s context. I cannot give you any links to official
blog posts from the Meta team where React maintainers officially ex-
plain this. I can, however, give you my personal opinion that the Re-
act team saw the solution that Redux was bringing to large React
apps and thought that some of its principles were worth importing into
the React repository itself. There are other state management solu-
tions out there, obviously. If there weren’t, I wouldn’t be able to write
this book! Regardless, Redux holds a special place in the React
ecosystem.

After this short break, we will dive back into our code! We have our
store and Provider set up. We also have two reducers ready: for user
data and liked images data. Let’s start with replacing the liked im-
ages. We’ll go into the surfaces folder, where we will find the Favorit-
ed surface. This, in turn, will lead us to the component named
ListOfFavorites, which displays data from the Favorited context.

We will remove this context and use Redux data. We will start by im-
porting a useSelector hook from Redux, and then we will fetch the

actual data from Redux using this hook:

// src/components/ListOfFavorites

import { useSelector } from "react-redux";

export const ListOfFavorites = ({ navigation }) =

 const { likedImages } = useSelector((state) =

//…

Do you have our app running on your phone or in the simulator? I
hope you do because then you will notice something just went very
wrong!

Figure 5.2 – iPhone simulator screenshot with a Redux error

Unhandled action type…? I think I’ve seen this somewhere… Oh
yes! That’s the default in our switch statement in the likedImages re-
ducer! This is not really the default that we want, so let’s go ahead
and change it so that it returns the initial state by default:

//reducers/likedImages.js

export const likedImagesReducer = (state = [], ac

 switch (action.type) {

 //…

 default: {

 return state;

 }

 }

};

The app loads correctly – we’re back in business! We are passing the
initial state as the default value to the likedImages reducer, which
means we are passing an empty array – but we want to fetch image
data. We did this before in the Context Providers using fetch.

FavoritedContextProvided used React’s useReducer hook along with
an init_likes action dispatched when the images were fetched suc-
cessfully. When it comes to Redux, we do not add functions inside
Provider. We will create a fetching function inside an action, and then

we will dispatch that action when the Favorited surface is rendered.

This is a simplistic solution for a simple app. If you are working on a
bigger app, you would probably need to concern yourself with
caching, avoiding duplicate requests or a cache lifetime. In that case,

you should look into a tool provided by Redux Toolkit, called RTK
Query, which simplifies data fetching and caching in Redux apps.

A FULL TOOLBELT

It may start to feel overwhelming learning about so many tools at
once. We started with Redux, continued with Redux Toolkit, and now
we’re adding RTK Query. Don’t worry too much at this point about li-
braries and tool names. We’re here to learn how to effectively write
an app with a state managed by Redux, and we’re following the docu-
mentation and best practices to do so. Once you’re familiar with the
suggested solution, feel free to look around the Redux ecosystem
and find the approach that you like the most. There are no wrong an-
swers when it comes to what you like and don’t like!

Taking advantage of Redux Toolkit for
creating actions

Our reducer is very limited so far. We can’t use it directly to fetch
data, because as the rules of reducers state, reducers cannot be
used to do any asynchronous logic. If we were writing our app some-

time around 2018 or 2019, we would probably create a separate ac-

tions file, manually configure Redux middleware functions to man-
age asynchronous API calls, and finally proceed to write the fetching
actions. Luckily, in 2022, we can take advantage of Redux Toolkit,
which comes bundled with all the necessary helper functions and a
utility called createSlice. A “slice” in Redux lingo is a collection of
reducers and actions for a single feature in your app. Let’s convert
our likedImages reducer into a Redux Toolkit slice:

//reducers/likedImages.js

import { createSlice } from "@reduxjs/toolkit";

export const likedImagesSlice = createSlice({

 name: "likedImages",

 initialState: [],

 reducers: {

 likeImage: (state) => {

 const newLikedImage = action.payload;

 return [...state, newLikedImage];

 },

 unLikeImage: (state, action) => {

 const stateWithoutLikedImage = state.filter

 (item) => item !== action.payload

);

 return stateWithoutLikedImage;

 },

 },

});

export const { init, likeImage, unLikeImage } = l

export default likedImagesSlice.reducer;

Fetching data

Since Redux was conceived as a state management tool, it did not
come ready to manage fetching data out of the box – but, again, we
are using Redux Toolkit, which is bundled with the necessary mid-
dleware that will let our Redux store digest fetched data. We will use
the createAsyncThunk function from Redux Toolkit.

WHAT’S A THUNK?

A thunk is a special sort of function that’s returned by another func-
tion. This name is not related to Redux itself.

Here’s what our fetching thunk will look like:

import { createAsyncThunk } from "@reduxjs/toolki

import { requestBase } from "./src/utils/constant

export const fetchLikedImages = createAsyncThunk(

 "likedImages/initLikedImages",

 async () => {

 const response = await fetch(requestBase +

 return await response.json();

}

 }

);

Now, we need to tell our Redux slice about this function. We will use
the extraReducers function provided by Redux Toolkit to keep our
reducer clean and readable:

// reducers/likedImages.js

import { createSlice } from "@reduxjs/toolkit";

import { fetchLikedImages } from "../asyncFetches

export const likedImagesSlice = createSlice({

 name: "likedImages",

 initialState: {

 likedImages: [],

 loading: true,

 },

 reducers: {

 //…

 },

 extraReducers: (builder) => {

 builder.addCase(fetchLikedImages.pending, (st

 state.loading = true;

 });

 builder.addCase(fetchLikedImages.fulfilled,

 state.likedImages = action.payload;

 state.loading = false;

});

 });

 builder.addCase(fetchLikedImages.rejected, (s

 state.loading = false;

 });

 },

});

Now that we have a pretty elegant way to manage fetching, including
a pending state and rejected state, let’s actually fetch our data. We
should not fetch it in the ListOfFavorited component, because we
need to have the image data available as soon as the entire app is
rendered. We should fetch the images in the parent component, Home:

//src/surfaces/Home

import { fetchLikedImages } from "../../asyncFetc

import { useDispatch, useEffect } from "react-red

// …

export const Home = () => {

 const dispatch = useDispatch();

 useEffect(() => {

 dispatch(fetchLikedImages());

 }, []);

This way, the liked images data will be fetched when the app is ren-
dered and the user is on the Feed screen. Once the image data is

fetched, we can read it from our global state in the ListOfFavorites

component:

//src/components/ListOfFavorites

import { useSelector, useDispatch } from "react-r

export const ListOfFavorites = ({ navigation }) =

 const { likedImages } = useSelector((state) =

 const dispatch = useDispatch();

 const [imageList, setImageList] = useState([]);

useEffect(() => {

 const reversedImages = [...likedImages].rever

 setImageList(reversedImages);

 }, [likedImages]);

if (!imageList) {

 return <AppLoading />;

 }

//…

 <FlatList

 data={imageList}

 renderItem={renderItem}

 keyExtractor={(item) => item.itemId}

 //…

You may have noticed how the fetched data is passed to the state
hook:

const reversedImages = [...likedImages].reverse()

We are using the ES6 spread operator in order to apply the
reverse() function to a copy of the likedImages array. This is be-
cause the likedImages array is read-only and we cannot operate di-
rectly on it.

Replacing the context

Take a moment to look at what you have accomplished. You effective-
ly replaced the Favorited context with Redux! The last thing we need
to do is to replace the actions when an image is liked or not and then
we’ll be ready to do some cleanup!

Let’s go into the ImageDetailsModal surface and replace context-re-
lated code with Redux code:

//src/surfaces/ImageDetailsModal

import { likeImage, unLikeImage } from "../../red

import { useDispatch, useSelector } from "react-r

export const ImageDetailsModal = ({ navigation, r

 const { likedImages } = useSelector((state) =

 const [isCurrentImageLiked, setIsCurrentImageLi

const dispatch = useDispatch();

 const dispatch useDispatch();

 useEffect(() => {

 const checkIfLiked =

 likedImages?.filter(

 (favoritedImg) => favoritedImg.itemId =

).length > 0;

 setIsCurrentImageLiked(checkIfLiked);

 }, [likedImages]);

The last thing we need to change is the function called when the Like
button is clicked on:

<Pressable

 onPress={() => {

 if (isCurrentImageLiked) {

 dispatch(unLikeImage(route.params.i

 } else {

 dispatch(likeImage(route.params.ima

 }

 }}

 >

And we’re done with applying Redux to the liked images! We can re-
move the Favorited context Provider.

Our app consists of functional components only, so we can use
Redux hooks. If we had class components, we would have to wrap

them with special functions called mapStateToProps and mapDis-

patchToProps. Modern React apps can be built without class compo-
nents though – as you can see in the Funbook app.

In this section, you learned how to create a Redux store for the user
state and liked images. We added reducers for both pieces of the
store, as well as actions. We took advantage of a few utilities provid-
ed by Redux Toolkit to make our lives easier. We pulled it all together
and were finally able to remove a little bit of React’s context. Replac-
ing all other pieces of context with Redux is a very good exercise to
get the hang of this state management library. If you prefer to just
take a look at what it would look like, check out the book repo and the
folder: https://github.com/PacktPublishing/Simplifying-State-
Management-in-React-Native/tree/main/chapter-5-complete.

We will now take a look at handling problems and debugging issues
that may arise while using Redux.

Debugging

Our Funbook app is quite simple so far. However, when working with
bigger apps you will notice that the state becomes more and more
complicated with every added feature. Sometimes, features have
overlapping states or complex actions, responsible for many things
happening across the app. In order to hunt down bugs related to

https://github.com/PacktPublishing/Simplifying-State-Management-in-React-Native/tree/main/chapter-5-complete

complex state changes, we can use a dedicated debugger. Configur-
ing developer tools in a bare Redux app takes a couple of steps, but
we’re using Redux Toolkit! And it comes to the rescue yet again.

Redux Toolkit is preconfigured to work with the Redux DevTools ex-
tension, which runs in the browser. Since we are working on a React
Native app, we will need to use another tool, called React Native De-
bugger. Mac users can install it using the Homebrew tool:

brew install react-native-debugger

If you’re not using a Mac computer, you will find a prebuilt binary of
this app on their installation instructions page:

https://github.com/jhen0409/react-native-debugger.

Once the remote Debugger is installed, you can run it by typing the
following command into your Terminal:

open "rndebugger://set-debugger-loc?host=localhos

Since we are using Expo, there are a few changes we need to make
to actually be able to debug our app. So far, the React Native Debug-
ger tool with the default config has not found our app:

https://github.com/jhen0409/react-native-debugger

Figure 5.3 – React Native Debugger after installation

We need to tell React Native Debugger to look for the right port,
which, in the case of Expo-managed apps, is 19000. You will probably
need to stop the debugger and the app, then run the following com-
mand to open React Native Debugger on the right port:

open "rndebugger://set-debugger-loc?host=localhos

Finally, restart the app by stopping the server in the Terminal and re-
running it as follows:

expo start

React Native Debugger is a very useful tool, not only for debugging
Redux but also for inspecting all sorts of bugs in React Native apps.

In this section, we went over installing and using the React Native
Debugger tool. I encourage you to look around this very useful tool,
inspect the app, and maybe add some bad code to see what an error
in this tool may look like.

Summary

We’ve come a long way on our journey through the state manage-
ment ecosystem. In this chapter, we talked about what is considered
the most common solution for state management in React apps –
Redux. This library has gone through many changes itself. Using it in
2022 is quite different from how it was in 2016 thanks to Redux
Toolkit, which we learned about. We talked about the Redux store,

reducers, and actions. We’ve also implemented Redux for liked im-
ages in our Funbook app. We’re now ready to compare this library to
its descendant: MobX. In the next chapter, we will start by taking a
brief look at the history and the high-level ideas behind MobX. We will
then take example-app-full as our starting point and try to replace
the LikedImages context as we did with Redux.

Further reading

https://redux.js.org/introduction/why-rtk-is-redux-today – Why use
Redux Toolkit?
https://redux.js.org/introduction/core-concepts – Redux core
concepts.

https://blog.isquaredsoftware.com/2016/09/how-i-got-here-my-jour-
ney-into-the-world-of-redux-and-open-source/ – Mark Erikson’s
blog on how he became a Redux maintainer.
https://blog.isquaredsoftware.com/2018/03/redux-not-dead-yet/ –
Redux is not dead.

https://redux.js.org/introduction/why-rtk-is-redux-today
https://redux.js.org/introduction/core-concepts
https://blog.isquaredsoftware.com/2016/09/how-i-got-here-my-journey-into-the-world-of-redux-and-open-source/
https://blog.isquaredsoftware.com/2018/03/redux-not-dead-yet/

https://egghead.io/courses/fundamentals-of-redux-course-from-
dan-abramov-bd5cc867 – Egghead tutorial by Dan Abramov.

https://stackoverflow.com/a/34582848/8798164 – Stack Overflow
answer about state mutations.

https://redux.js.org/tutorials/essentials/part-2-app-structure#rules-
of-reducers – Rules of Reducers.

https://daveceddia.com/what-is-a-thunk/ – what is a thunk?

https://egghead.io/courses/fundamentals-of-redux-course-from-dan-abramov-bd5cc867
https://stackoverflow.com/a/34582848/8798164
https://redux.js.org/tutorials/essentials/part-2-app-structure#rules-of-reducers
https://daveceddia.com/what-is-a-thunk/

6

Using MobX as a State Manager
in a React Native App

In the previous chapter, we had a chance to try the most popular
state management solution in the React ecosystem – Redux. We
looked in detail at replacing the FavoritedImages context with Redux.

You can go back at any time to check what exactly was changed in
the code in the GitHub repo’s folder for Chapter 5:

https://github.com/PacktPublishing/Simplifying-State-Management-
in-React-Native/tree/main/chapter-5.

If you’re curious to see the entire app fully migrated to Redux, please
go to another folder: https://github.com/PacktPublishing/Simplifying-
State-Management-in-React-Native/tree/main/chapter-5-complete.

We’ve had a steep hill to climb so far. We talked about ReactJS,

React Native, and managing state without additional libraries, and
finally, we looked at Redux. I can assure you, my dear reader, that if
you were able to internalize the first five chapters of this book, the
rest will be a breeze! All we will do now is the same exercise: replac-
ing ReactJS context for FavoritedImages with a state management

https://github.com/PacktPublishing/Simplifying-State-Management-in-React-Native/tree/main/chapter-5
https://github.com/PacktPublishing/Simplifying-State-Management-in-React-Native/tree/main/chapter-5-complete

library. In this chapter, we will talk about MobX. We will start by taking
a brief look at the history of MobX and learning about the concepts of
MobX at a high level. After that, we will move on to configuring MobX
in the Funbook app. Once we have the library set up in our project,
we will move on to re-writing the FavoritedImages context with a
MobX state, models, and actions.

Here’s what this chapter will include:

Going over MobX concepts
Configuring MobX in the Funbook app
Using MobX for FavoritedImages

By the end of this chapter, you should feel comfortable using MobX.

Not only will you know what MobX models, snapshots, and stores are
but you will also know whether you prefer them over Redux! And
that’s what this book is really about: getting to know different solu-
tions so you can pick whichever you prefer for your future projects.

Technical requirements

In order to follow along with this chapter, you will need some knowl-
edge of JavaScript and ReactJS. If you have followed at least
Chapters 1 to 4 of this book, you should be able to go forward without
any issues.

Feel free to use an IDE of your choice, as React Native does not
need any specific functionality. Currently, the most popular IDEs for
frontend developers are Microsoft’s VSCode, Atom, Sublime Text,
and WebStorm.

The code snippets provided in this chapter are there to illustrate what
we should be doing with the code. They do not provide the whole pic-
ture. To code along easier, please open the GitHub repo in your IDE
and look at the files in there. You can either start with the file in the
folder named example-app-full or chapter-6. If you start with exam-

ple-app-full, you will be responsible for implementing the solutions
described in this chapter. If you choose to look at chapter-6, you will
see the entire solution implemented by me.

If you get stuck or lost, you can check the code in the GitHub repo:

https://github.com/PacktPublishing/Simplifying-State-Management-
in-React-Native/tree/main/chapter-6.

Going over MobX concepts

As you may have noticed, my dear reader, I like to start every big sec-
tion with a little bit of history about the piece of software that we are
going to examine. It so happens that MobX has a very calm presence
in the React community. There isn’t really any drama surrounding its
conception or development. It was announced in 2015 as a solution

https://github.com/PacktPublishing/Simplifying-State-Management-in-React-Native/tree/main/chapter-6

on the blog of the company Mendix, where the creator of MobX,

Michel Weststrate, used to work. The blog post details the reasons for
creating this library, namely the fact that a pure ReactJS app in 2015

was not very good at managing complex states. Since then, MobX
has been developed as an OSS library on GitHub. In 2016, it was
joined by MobX-State-Tree (MST), a state container system for
MobX. MST is to MobX what Redux Toolkit is to Redux. It’s an addi-
tional tool made for a better developer experience (DX), but it’s not
required. I personally like to make my life easier, so in this book, we
will use MST.

I exchanged a few messages with Jamon Holmgren, who is the CTO
of Infinite Red, one of the most renowned software houses specializ-
ing in React Native, and the maintainer of MST. He said he found out
about MobX around 5 years ago when his teammates were looking
for alternatives to Redux. After doing a trial project, they really liked it
and they’ve been using it ever since. It’s even integrated into Ignite,

the React Native boilerplate by Infinite Red. Jamon says that “MST’s
main advantage is that you get the central store feel of Redux without
having to touch four or five different files for every change. You also
get granular re-renders without having to write a single selector and a
very natural JavaScript-y feel. Developers at Infinite Red used MST
on apps with hundreds of screens and millions of daily active users
with little issue, so it’s a proven state management system that works
really well with React and React Native.” In cases where developers

have to work with less structured data, over which they need more
control, MobX could be the better solution over MST.

“MobX still brings the observability (granular, targeted re-renders)

and natural updates that MST has, but is much lighter weight," Jamon
added.

MobX was created around 7 years ago, but it has stayed relevant
over the years. Jamon says he would like to improve the TypeScript
(TS) types of the library, but overall, he thinks the library is holding up
very well thanks to its author’s, Michel Westrate’s, excellent
engineering.

MobX is currently one of the most popular state management li-
braries for React apps. The documentation states that it’s one of the
most popular Redux alternatives. If you read the docs closely
enough, you may find a few places where the authors allude to MobX
being better than Redux. When I asked Jamon about this rivalry, he
said, “It’s always fun to have other great communities to banter with.

The reality is that the MobX community respects the Redux commu-
nity a ton. Their community pushes ours to be better and improve.

They make different trade-off decisions and one or the other might
not be your particular style, so it’s great to have options.”

The MobX maintainers have, of course, the full right to think the solu-
tion they are working on is better. Now, let’s see what you think, my
dear reader!

As far as MobX concepts and high-level ideas are concerned, there
is one very important sentence underlined in the documentation:

Anything that can be derived from the application state, should be.

Automatically.

- The MobX Motto

This is a new concept! Anything that can be derived, should be de-
rived automatically. Have we derived anything from our app state au-
tomatically before? Not really. At first, we created useState and use-

Effect hooks, coupled with React context. We had to manually up-
date all the necessary pieces of the state whenever the user interact-
ed with our app. In Redux, we wrote out actions and they passed the
information on state updates to the reducers. We may say the state
update happened automatically; we didn’t have to perform any addi-
tional tasks after passing the actions. We did, however, create the ac-
tion and call it manually. We also know that Redux does not promote
deriving values from the application state specifically. The Redux
documentation concentrates more on immutability, the state being
the single source of truth, and using plain functions.

The MobX documentation states that this library is based on trans-
parent functional programming – a concept further explained in the
book MobX Quick Start Guide, published by Packt Publishing. The
philosophy of MobX is to be the following:

1. Straightforward – write minimalistic code and the reactivity sys-
tem will automatically detect all changes without adding special
tools or boilerplate.

2. Effortlessly optimal – data changes are tracked at runtime, which
means the computations run only when needed and we avoid un-
necessary component re-renders.

3. Unopinionated – MobX can be used with any UI framework,

which makes your code decoupled, portable, and easily testable.

One more interesting concept in MobX-land is snapshots. If you have
ever written tests for JavaScript applications, you may have heard the
term “snapshot.” MobX snapshots are similar to test snapshots. They
save the state of the state tree at a given moment in time. Looking at
MobX snapshots can be very handy during debugging or for making
performant state updates after fetching data from the server. If you
want to learn more about snapshots and debugging MobX states, I
invite you to take a look at the Egghead.io course created by Michel
Westrate, the creator of MobX; you can find the link in the Further
reading section. As for fetching data from the server, we will look into
that in this chapter, in the last section.

Now, we have a very theoretical hang on the main concepts of MobX.

We know it’s different from Redux, but you would probably like, my
dear reader, to see some code! Let’s move on to configuring MobX in
the Funbook app.

http://egghead.io/

Configuring MobX in the Funbook
app

As promised by the MobX authors, the boilerplate for this library is
minimal. We will have to add three dependencies and a couple of files
for everything to work correctly. Let’s start by adding the necessary
dependencies by running the following command in the terminal:

npm install mobx mobx-state-tree –save

This command will install both MobX and MobX-State-Tree. MobX is
unopinionated about the UI library we want to use it with. This means
that when we decide to use a specific UI library, we will have to find a
way to get it to cooperate with MobX. It so happens that we have
chosen React Native as our UI library, so we need to add an addi-
tional dependency that will make MobX cooperate smoothly with Re-
act. Let’s run the following command:

npm install mobx-react-lite –save

Now that we have our dependencies, let’s run the following
command:

expo start

It’s a good idea to check frequently whether our app is still running
correctly. Something as innocent as installing dependencies can
sometimes break the app, and we want to know about any issues as
soon as they arise.

Assuming everything is working as expected, we can move on to im-
plementing MobX instead of React’s context in the Funbook app.

A little reminder, my dear reader, about the code: the code related to
this chapter can be found in the chapter-6 folder of this book's repos-
itory: https://github.com/PacktPublishing/Simplifying-State-
Management-in-React-Native/tree/main/chapter-6. If you prefer to fol-
low along on your own, please copy the example-app-full folder and
start working from there.

Using MobX for FavoritedImages

At the beginning of this book, I made a choice, my dear reader, to
write all examples in JavaScript. I have come to regret that decision

https://github.com/PacktPublishing/Simplifying-State-Management-in-React-Native/tree/main/chapter-6

while working on the examples with MobX. MobX documentation
uses TS, a JavaScript superset, which brings many advantages. I
encourage you my dear reader to learn about TS. I will not spend any
more time on this topic as there are hundreds of hugely valuable TS
resources both online and in book form, but I wanted to let you know,

in case you read the MobX documentation, that the examples look a
little different from the code in this book.

Now that we have all of this out of the way, let’s get to coding! We will
create a new folder called models where we will store data models for
our app. The term “data models” may sound very serious to you, but
don’t worry. MobX data models are nothing more than JavaScript
objects with superpowers – by which I mean to say, they look like
simple JavaScript objects, but they are capable of doing much more!

When we have a couple of models ready, we will create one more file
for our global MobX-managed state. We will call this file store.js

and we will place all the logic for fetching and managing liked images
in this file.

Let’s start by creating the simplest model: for the user. We won’t be
implementing actual user state changes, but we’ll just take a quick
look at what MobX models look like in real-world implementation:

// ./models/User.js

import { types } from "mobx-state-tree"

export const User = types.model({

 name: types.string,

 loggedIn: types.boolean,

})

We only need to import one item: types from mobx-state-tree. These
types are very powerful tools in MobX. You can declare very simple
types, such as the ones here – a string and a Boolean – but you can
also declare that these values are optional, as follows:

name: types.optional(types.string, "")

You can also tell MobX what the default values are (that’s what the ""

symbols after the types.string definition in the preceding example
signify), or that a given value may be undefined, like so:

name: types.maybe(types.string)

There are many more types out there, but we won’t be covering all of
them. However, the MST documentation has a very thorough section
on types, and you can find a link to this in the Further reading section.

You may have noticed that types.model is also at the very beginning
of the declaration. This is what indicates to MobX that we are de-
scribing the shape of our data.

Our Users model is very simple. We used it to get a first glance at
MobX data models. Now, it’s time to dig into something more interest-
ing: the LikedImages model.

We start again by importing types from mobx-state-tree and declar-
ing the shape of a single LikedImage item:

// ./models/LikedImages

import { types } from "mobx-state-tree"

const LikedImageItem = types

 .model({

 itemId: types.number,

 authorId: types.number,

 timeStamp: types.string,

 url: types.string,

 likes: types.string,

 conversations: types.string,

 })

We added a few properties to the LikedImageItem model. We will use
those properties in the future to display the necessary data on the

Favorited surface. It just so happens that these properties are
present in the image items fetched from the server.

Now that the single image model has been described, we can move
on to setting up the array of identical images and the actions related
to this array:

export const LikedImages = types

 .model({

 imageList: types.optional (

 })

 .actions(self => ({

 addLikedImage(newImage) {

 // will add images here

 },

 removeLikedImage(imageToRemove) {

 // will remove images here

 },

 }))

Starting from the top, you will notice that we are declaring an object
called imageList, which will store an array of LikedImageItems, and
will be instantiated with the default value of an empty array.

The LikedImageItem model doesn’t do anything interesting, so let’s
move on to the LikedImages array. We have to add a types.model,

where we tell our state manager that this piece of state will be an ar-
ray of LikedImageItems – and then we add placeholders for the two
functions that need to be created: adding and removing liked images.

We can now continue setting up MobX in our app. First of all, we will
set up a store – similarly to Redux-managed apps, this will be the
source of truth for the app. We will then fetch data from the server
and pass it to the app. Once we have all of that ready, we will look at
MobX actions – events to which our models will need to respond.

Last, but not least, we’ll learn about deriving data from the state.

Creating the store

Before adding and removing images, there’s one more step we need
to take. What do you think, my dear reader? Yes, we need to hook up
the store!

Let’s go to our store.js file and tell it to use the User and
LikedImages models. We’ll start by importing all the necessary files
and creating an empty store:

import { types, flow, applySnapshot } from "mobx-

import { LikedImages } from "./src/models/LikedIm

import { User } from './src/models/User';

const RootStore = types

model({

 .model({

 users: User,

 likedImages: LikedImages

 })

export const store = RootStore.create({

 users: {},

 likedImages: {}

})

As you may remember, my dear reader, MobX and MST are unopin-
ionated as far as the UI is concerned. This means we need to look for
detailed instructions on how to best integrate MST with our React
Native app. It just so happens that the documentation recommends
using React’s context to share trees between components. Our ex-
ample is small so far and we will concentrate on one tree (the favorit-
ed images); however, it’s good to get set up correctly for our app to
scale. And also: we understand context very well from the previous
chapters, right? So, this is going to be a piece of cake:

const RootStoreContext = React.createContext(null

export const Provider = RootStoreContext.Provider

export function useMst() {

 const store = useContext(RootStoreContext);

 if (store === null) {

 throw new Error("Store cannot be null,

 }

 return store;

}

In the preceding code, we are creating a very simple context, which
will be the vessel for MobX state. We also added a useMst hook (as
in, “use MobX-State-Tree”) to consume data from the React context.
We also added a handy error message in case anything goes wrong.

We start with a context with a value of null and we will pass the real
store when we add the <Provider> to our app:

// App.js

//…

Import { Provider, store } from "./store.js"

//…

export default function App() {

//…

 return (

 <SafeAreaProvider>

 //…

 <Provider value={store}>

Remember to wrap your app in the Provider created for the MobX
state. This is what is shown in the preceding code snippet.

Now that we’ve declared the store and our models, wrapped the app
in a Provider, and passed the store to this Provider, we need to pull

in the data from MobX in the component. Let’s go to
ListOfFavorited.js and replace the pure React context used previ-
ously with MobX data:

import { useMst } from '../../store';

export const ListOfFavorites = ({ navigation }) =

 const { likedImages } = useMst();

 //…

 return (

 //…

 >

 <FlatList

 data={likedImages.imageList}

 //…

This is going pretty nicely, don’t you think? We have our
ListOfFavoritedImages component ready! Yes? Let’s check in the
app:

Figure 6.1 – Favorited surface with no images

All we see is a blank screen on the Favorited surface. What hap-
pened? We forgot to fetch the images! Let’s see how to do that in the
next section.

Fetching data

We have our image list stored on the server. MobX-State-Tree pro-
poses two ways of fetching asynchronous data, but both are actions.

Let’s create an action in the store:

// ./store.js

const RootStore = types

 .model({

 users: User,

 likedImages: LikedImages

 })

 .actions(self => ({

 async fetchImages() {

 const response = await fetch(reque

 const data = await response.json();

 return data;

 }

 }))

We need an asynchronous function that will do the fetching – we
have called it fetchImages. This function uses JavaScript’s fetch

function and returns data from the server. Now that we have the data,

we need to pass it into the LikedImages model. Let’s add a function
that will do just that:

// ./store.js

const RootStore = types

 //…

 .actions(self => ({

 setLikedImages(newImages) {

 store.likedImages.imageList.replace(n

 },

 async fetchImages() {

 const response = await fetch(reque

 const data = await response.json();

 store.setLikedImages(data);

 }

 }))

The newly added setLikedImages function takes care of replacing the
entire array of images with anything that’s passed to it. We also ad-
justed the fetchImages function, to pass the result of the fetch into
setLikedImages.

Now that we have told our app where to get the data from and where
to put it, we only need to add WHEN. We could call the store.fetch-

Images() function directly from the app when it’s rendered. However,
there is a more elegant solution: using the life cycle hooks provided
by MobX. One of those hooks is called afterCreate, and it’s called,

as you may expect, after a given store is created. Let’s add this hook
to the list of actions in our store:

// ./store.js

const RootStore = types

 //…

 .actions(self => ({

 afterCreate() {

 self.fetchImages();

 },

 //…

 }))

Ta-da! Our app will know what to fetch (the data from the server),
where to put it once it’s fetched (in the LikedImages array), and when
to do so (when the store is created). If you check the app now, you
should see the list of images rendered correctly.

The code we wrote works fine, but we can improve it further. MobX
and MST offer us optimized solutions for writing async logic. Their so-

lution is called generator functions. This may sound scary at first, but
don’t worry. All we need to do is import a couple of utilities from MST
and change the syntax of our function slightly:

// ./store.js

 import { types, flow, applySnapshot } from "mobx

//…

 .actions(self => ({

 afterCreate() {

 self.fetchImages();

 },

 fetchImages: flow(function* fetchImages()

 const response = yield fetch(reques

 applySnapshot(self.likedImages.imag

 })

The fetchImages function in this version uses a generator. For MobX
to understand that this is a generator, we wrap it with flow and use *

with the function keyword. Then, we replace async/await with yield,

which pauses the function and returns a Promise.

As you may have noticed, we removed the setLikedImages action in
this version of the code. It is not needed anymore, as we’re using an-
other MST utility called applySnapshot. I’ve mentioned briefly before
what snapshots in MobX are: they are JavaScript objects represent-

ing the state tree at any given moment. Using the applySnapshot utili-
ty here, we are making sure the update is optimized, as only the nec-
essary data is updated.

This version of the code produces the same result as the previous
one. However, it is written in fewer lines of code and uses practices
recommended by the authors of MobX. It’s a good idea to write code
in the recommended way – it helps us avoid bugs and performance
issues. We surely know less about MobX than its author and main-
tainers, so let’s follow their lead.

Okay – we’re making great progress here. We have the data models
and we have wired them up into a store. We passed the store into our
app thanks to a Provider, and we fetched the initial data. The only
thing left is to add actions and make this app come alive!

Adding actions

Let’s go back to our LikedImages model and add some real code for
the addImages action:

.actions(self => ({

 addLikedImage(newImage) {

 self.imageList.unshift(newImage)

 },

The actions function itself holds a reference to the entire array of
liked images – this is the self keyword. In the first iteration of the
MobX library, you could find uses of a known JavaScript keyword:

this. this can unfortunately be confusing for many developers,

which is why MobX introduced self. Plus, MobX realizes that if
you’re doing an action on a model, you probably need access to that
model, so it serves us what we need!

Now that we have a reference to the LikedImages array, we want to
add a new item to that array. We could use .push(), but I chose to
use .unshift(), which will push the new item to the top of the array
and effectively display it at the top of the list of images on the
Favorites surface.

The place where we would like to call this action is
ImageDetailsModal, because we can “like” images from within this
modal. This modal has a heart button. When it’s tapped, we would
like the image to be added to our user’s array of liked images:

// ./surfaces/ImageDetailsModal.js

export const ImageDetailsModal = ({ navigation, r

 const { likedImages } = useMst();

//…

<Pressable

 onPress={() => {

 likedImages.addLikedImage(route.param

 }}

 >

Beautiful! Now, when we tap this pressable heart icon on an image
from the main feed, we should see the image added on the Favorited
surface, right? Unfortunately, not yet. MobX doesn’t have a lot of boil-
erplate, but we do need to tell it what data to observe. We have to add
an observer wrapper to the ListOfFavorited component. This ob-

server wrapper will re-render our component when it detects a
change in the data models:

// ./components/ListOfFavorited

import { useMst } from '../../store';

import { observer } from "mobx-react-lite"

export const ListOfFavorites = observer(({ naviga

 const { likedImages } = useMst();

And now we’re almost done! There’s only one small catch left. When
you like an image and then go back to the Favorited surface, you
probably won’t see the new image until you start scrolling. This is not
the functionality we’re looking for. We would like to see the newly
liked image appear immediately. The issue here is React Native’s
FlatList component, which accepts simple arrays, but we’re trying to

pass a special sort of array from our MobX model: an observable
array.

MAKING FLATLIST PLAY NICE WITH MOBX

In order for our FlatList to render the updated data correctly, we
need to use the values utility provided by MobX.

Here’s the code of FlatList in the ListOfFavorited component:

Import { values } from "mobx"

<FlatList

 data={values(likedImages.imageList)}

Values is a collection utility provided by the MST library that returns
all values in the collection as an array, which is exactly what FlatList
is expecting. You can read more about collection utilities in MobX in
their documentation, and you can find a link in the Further reading
section.

Now, everything should be working as expected. Make sure to check
your phone or phone simulator frequently. The sooner you discover
errors and issues, the easier they are to debug.

Deriving data from state

I’ve mentioned the fact that MobX’s authors state that anything that
can be derived from state should be. We’ll get a chance to derive
some data now.

We would like to know which images are liked and which are not so
that we can successfully add them to the list of liked images or avoid
duplicating them. Deriving data from the state is done on the data
models through views. I’ve decided to add this following view to the
store because we are working in a constrained environment, and I
want to keep things simple. Here’s the view that I have added to the
RootStore model:

const RootStore = types

 //…

 .views(self => ({

 getIsImageLiked(itemId) {

 return values(self.likedImages?.image

 (favoritedImg) => favorited

).length > 0;

 }

 }))

As with actions, you will notice the self keyword here. It holds a ref-
erence to the current data model for easy access.

I created a getIsImageLiked function by passing it an image ID. We
then filter over the entire liked images array to check whether that im-
age ID exists.

Sure, this is not the most efficient way to check a user’s liked images
in a social media app, which could potentially be hundreds upon hun-
dreds of images – but we do want to see what these views are about,
and this is a great chance to do so.

Let’s go back to ImageDetailsModal, where we would like to check
whether a given image is liked or not and then display the appropriate
icon (an empty heart for images that are not liked and a filled-in heart
for liked images) and pass the appropriate function (either adding or
removing it from the liked images array).

If you copied your code from the example-app-full folder, you’ll find
useEffect in this component, which takes care of checking this exact
thing. Let’s try simply replacing the old React context values with the
new values from the MobX store. Does the code work? Go ahead
and check, I’ll be waiting right here.

Something is not quite right, right? The code does not work as ex-
pected. To be honest, it does not work at all. If you tried to work out

step by step what was happening, and what should be happening be-
tween MobX tree updates and React’s useEffect changes, you may
have found that it’s not that simple to figure out. The precedence of
side effects can be very complicated, and it gets even more compli-
cated in bigger apps – and that is why we use MobX’s dedicated
tools: views.

Going back to our code, we can go ahead and remove useEffect

completely. We’re taking care of the filtering in views, which is added
to the store. Let’s use import from the context hook and use the val-
ues provided by MobX:

 export const ImageDetailsModal = observer(({ na

 const { likedImages, getIsImageLiked } = useMst

 const isCurrentImageLiked = getIsImageLiked

Don’t forget to add the observer wrapper for our component to ob-
serve changes in data!

The heart icon is working as expected now – it looks filled in when an
image has been liked on the Favorited surface and gets filled in
when an un-liked image is newly liked.

We have gone over creating data models and setting up the store, ac-
tions, and views in our MobX-managed version of the Funbook app.

By now, we have an app with MobX and MobX-State-Tree as state
managers. We’re fetching and mutating data; we are even deriving
data from our state! There is still a lot to do in order to convert all of
the states and functionalities of the app to MobX. Feel free to play
around on your own, or check out the chapter-6-complete folder if
you would just like to see the complete app.

Summary

We have just gone over the main ideas and the implementation of
MobX and MobX-State-Tree in the Funbook app. MobX may not be
as popular as Redux in the React ecosystem, but it does hold a very
important place, nonetheless. MobX presents a different way of look-
ing at the state than Redux does and a very different way of manag-
ing it. We created data models and attached actions to them. If you
are a developer trying to understand an existing app for the first time,

having the data and actions in one place may be very helpful to un-
derstand what is going on more quickly. MobX takes this state cen-
tralization one step further by introducing views. We have all the tools
necessary for creating and managing a state accessibly from the very
same place where we declare the shape of the state. The last step is

to add observer wrappers to the components that need to be aware
of state changes and then we have a very nice MobX-managed app.

It’s great to know how you can manage states in a React Native app.

It’s even better to know a few different ways to do so – and if you like
different options, you’ll be happy to know that we will talk about
XState in the next chapter!

Further reading

https://mobx.js.org/README.html: MobX documentation.

https://mobx-state-tree.js.org/intro/welcome: MobX-State-Tree.

https://egghead.io/courses/manage-application-state-with-mobx-
state-tree: Manage Application State with Mobx-state-tree.

https://www.packtpub.com/product/mobx-quick-start-
guide/9781789344837: MobX Quick Start Guide.

https://github.com/infinitered/ignite: Ignite – React Native boiler-
plate by Infinite Red.

https://reactnativeradio.com/episodes/rnr-241-redux-toolkit-vs-
mobx-state-tree-showdown: Redux Toolkit versus MobX-State-
Tree.

https://www.loom.com/share/9e3afe0547824e42bada06191e891ae1

: Intro to MobX-State-Tree and MobX-React by Jamon Holmgren.

https://mobx-state-tree.js.org/overview/types: MST types.

https://mobx.js.org/README.html
https://mobx-state-tree.js.org/intro/welcome
https://egghead.io/courses/manage-application-state-with-mobx-state-tree
https://www.packtpub.com/product/mobx-quick-start-guide/9781789344837
https://github.com/infinitered/ignite
https://reactnativeradio.com/episodes/rnr-241-redux-toolkit-vs-mobx-state-tree-showdown
https://www.loom.com/share/9e3afe0547824e42bada06191e891ae1
https://mobx-state-tree.js.org/overview/types

https://mobx.js.org/collection-utilities.html: MobX collection utilities.

https://mobx.js.org/collection-utilities.html

7

Untangling Complex Flows in
React Native Apps with XState

In the previous chapter, we took a look at MobX—the second most
popular state management library in the React ecosystem. MobX in-
troduced some new concepts, such as using state values derived by
the state manager. Other high-level concepts were similar to Redux
—such as presenting state as plain JavaScript objects. We will now
look at the first outlier on the React-state-management horizon:

XState. XState treats the state not as an object, but as a finite ma-
chine. Don’t worry if you haven’t heard that term yet, as we’ll go over
the topic of finite machines in the first section of this chapter.

We will start by looking at the theoretical side of XState’s basic idea:

state machines. We will then talk about other high-level concepts of
XState—state charts, actions, and the XState visualizer. When we’re
comfortable with the theory, we’ll configure XState in the Funbook
app, and then we will implement XState for managing liking images in
the app.

Here’s a complete list of what is covered in this chapter:

What are finite state machines?

What is XState—high-level concepts
Configuring XState in the Funbook app
Using XState for the FavoritedImages surface

By the end of this chapter, you will be able to understand and use XS-
tate as the state management solution for your projects. You will un-
derstand what a state machine is and how it differs from state objects
used in other state management libraries. I hope that you will also
start seeing which solutions you prefer using.

Technical requirements

In order to follow along with this chapter, you will need some knowl-
edge of JavaScript and ReactJS. If you have followed at least
Chapters 1 through 4 of this book, you should be able to go forward
without any issues.

Feel free to use an IDE of your choice, as React Native does not
need any specific functionality. Currently, the most popular IDEs for
frontend developers are Microsoft’s VS Code, Atom, Sublime Text,
and WebStorm.

The code snippets provided in this chapter are here to illustrate what
we should be doing with the code—they do not provide the whole pic-

ture. For a better experience of coding along, please open the GitHub
repo in your IDE and look at the files in there. You can start with the
files in either the folder named example-app-full or chapter-7. If you
start with example-app-full, you will be responsible for implementing
the solutions described in this chapter. If you choose to look at chap-
ter-7 you will see the entire solution implemented by me.

If you get stuck or lost, you can check the code in the GitHub repo:

https://github.com/PacktPublishing/Simplifying-State-Management-
in-React-Native/tree/main/chapter-7.

What are finite state machines?

If I were to ask you, my dear reader, to guess what finite state ma-
chines are, you would probably say they are related to managing
state in applications. After all, this whole book is on that topic!

Funny thing is, finite state machines have nothing to do with ap-
plications; they have nothing to do with React or even programming
at all. A finite state machine is a mathematical model of computation.

It’s an abstract concept that can be applied to real-life objects or
problems, and it represents a machine that can be in exactly one of a
finite number of states at any given time. The predefined states can
be changed from one to another in response to some user input. Traf-

https://github.com/PacktPublishing/Simplifying-State-Management-in-React-Native/tree/main/chapter-7

fic lights are an example of a simple finite state machine: a traffic light
can be green, red, or yellow at any time, and it should never display
two colors at once. Another example of a simple state machine is an
elevator. The default state of an elevator is to stand still with doors
closed. When a user pushes the button summoning the elevator, the
elevator transitions to a state of movement. When it reaches the right
floor, it opens and closes the doors. The elevator then goes back to
the default, idle state, waiting for the next user input.

If you wish to find out more about this theoretical concept, you will
find a link to a very thorough Wikipedia page on finite state machines
in the Further reading section. As for this book, it’s time to find out
why we are talking about this concept at all. Can you guess? I bet you
can! Finite state machines are the basic concept of the state man-
agement library we’re analyzing in this chapter: XState.

What is XState – high-level
concepts

Now that we have a grasp on the theoretical concept of finite state
machines, we can move on to talking about XState and its main con-
cept: finite state machines! But this time, we’ll look at it in the world of
programming global state in applications.

When using XState to manage global state in an application, we
should think of our state as a finite state machine. This means aban-
doning the previous concept of representing state as a plain Java-
Script object. With XState, a component—or a surface—is a machine
that can be in one of multiple predefined states. Let’s consider the
user login flow. Our entire app can be in one of two states: the user is
logged in or the user is not logged in. We would also need a transition
mechanism for the user to move from one of the states to the other.
The same goes for images on the Home surface. Every image is ei-
ther in the state of being “liked” or “not liked”. The user can change
the current state of the image by clicking the heart icon below the
image.

Besides finite state machines, there are two other important concepts
used in XState: statecharts and the actor model. Statecharts are
basically drawings that can be used to represent state machines.

Here’s an example of a statechart representing the state and transi-
tions of a light bulb:

Figure 7.1 – Simple statechart drawing of a light switch

The preceding diagram serves as a very simple state machine. When
working on a mobile application, you may find yourself working on
much more complicated state machines. Starting from something as
trivial as a form, you can find yourself adding multiple states, such as
enabled/disabled, valid/invalid, and clean/dirty, on multiple elements.

Without statecharts, you would face a state explosion. As fun as it
may sound, it’s not great to face in an app. Let’s take a look at the ex-
ample of complex inputs drawn out with state transitions:

Figure 7.2 – Complex state chart

The user clicks on a valid input and enters the Valid Enabled Un-
changed state. The app transitions automatically into an Invalid En-
abled Unchanged state. When the user provides some input, the
app will be in an Invalid Enabled Changed state. If the input provid-
ed by the user is valid, we will land in a Valid Enabled Changed
state; if not, we will return to Invalid Enabled Changed. What if the
user clicks something else in the form—let’s say, a radio box that dis-
ables the first input? We go into an Invalid (or Valid) Disabled
Changed state. It’s rather hard to reason about this chart. This is the
moment when statechart features come into play. Statecharts offer

an implementation of parallel states, hierarchies, and guards. You
can read more on those concepts in this document recommended in
the XState documentation: https://statecharts.dev/state-machine-
state-explosion.html.

The last big idea behind XState is actor models. This is a mathemati-
cal model of computation, stating that everything is an “actor” and can
do three things: receive messages, send messages, and do some-
thing with the received messages.

I was very lucky to be able to ask XState’s author, David Khourshid, a
few questions on the topic of his state management library. He told
me he “created XState for two reasons: to manage complex logic and
to visualize complex logic. State machines and statecharts are visual
formalisms that excel in representing even the most complex flows
and logic in a visually clear way, and I wanted a simple way to use
them in JavaScript applications." He added that the high-level ideas
of XState were heavily influenced by the World Wide Web Consor-
tium (W3C) State Chart XML (SCXML) specification.

Let’s take a quick detour to find out what SCXML is and what it
means that it has a W3C specification. Depending on your experi-
ence in programming, you may have heard of the Extensible
Markup Language (XML) file format and markup language. XML is
used to store, transmit, and reconstruct data. XML files are easy to

https://statecharts.dev/state-machine-state-explosion.html

read when properly indented and formatted, as they simply describe
data. SCXML is a cousin of XML. It’s an XML-based markup lan-
guage used for providing a state-machine-based environment. The
fact that it has a W3C specification means that it can be used for vari-
ous internet-related programs with great confidence. You can find a
link to the entire W3C specification in the Further reading section.

Going back to XState, not only has it been influenced by SCXML, but
it is also fully compatible with it, which means you could write an
SCXML document describing states, and it will work with an XState
implementation in your React Native app. You can also write it in
JavaScript. Whatever rocks your boat!

I asked David Khourshid about the future of his library. XState is an
open source project, as with all the other state management libraries
we talk about in this book. David said maintaining XState and working
on XState-related tools is his full-time job. He is working on new and
powerful collaborative editing tools for the XState visualizer. He said:

“the next major version of XState (version 5) will have many more
features, be more modular, and have “actors” as first-class citizens.

Actors are entities that can send and receive messages, and state
machines are just one of many behaviors that an actor can have. You
can also represent actors as promises, observables, reducers, and
more, which will allow developers to use XState’s API (and visual
tools) for all of their logic, not just the state-machine-specific logic."

You may have noticed a mention of an XState visualizer in the previ-
ous paragraph. This tool is something that absolutely sets XState
apart from other state management libraries. Thanks to this visualiz-
er, you can see a graphical representation of states and transitions
between states in your app. You can use it to plan a new app or de-
bug an app that you are working on. You can find the visualizer at
https://xstate.js.org/viz/. Here’s an example screenshot of what it
looks like:

Figure 7.3 – Screenshot of the XState visualizer

David said that the visualizer is one of the hardest things he has
worked on. It’s always a work in progress, and it has gone through

many iterations. Currently, it’s an “SVG-based 'canvas' with HTML in-
side." Even though it’s somewhat interactive right now—you can click
on transitions and observe how the state changes—David said that
“making it interactive is yet another layer of difficulty, especially for
drag-and-drop interactions and modifying the statechart." Personally,

I’m very excited about the new versions of the visualizer. It has
helped me many times to plan the best possible state machine for the
apps I worked on (that used XState).

In this section, we have talked about the main ideas behind XState.

They are different from all the previous approaches we analyzed. The
entire library is based on the mathematical concept of finite state ma-
chines. It also uses the theories behind statecharts and actor models,

to make sure managing state in a complex app can be done effective-
ly. Now, it’s time to see this library in action. Let’s move on to imple-
menting XState in the Funbook app.

Configuring XState in the
Funbook app

Let’s see what it takes to use XState in a real app. If you would like to
follow along on your own, you can copy the example-app-full folder
and use it as a starting point. If you prefer to look at the code related
to this chapter, please look in the chapter-7 folder: https://github.-
com/PacktPublishing/Simplifying-State-Management-in-React-
Native/tree/main/chapter-7.

First things first—we need to add XState to the project. You can do so
by running one of the two following commands:

npm install xstate@latest --save

// or

yarn add xstate@latest --save

XState itself is an unopinionated library, much like MobX. This means
it is not ready out-of-the-box to work with React. The XState docu-
mentation has a section called Recipes where you can read more on
the implementation with React or other UI libraries, such as Vue or
Svelte. As for us, we need to add the React-related dependency, xs-

tate-react. Let’s do this by running one of the two following
commands:

npm install xstate-react@latest –-save

// or

yarn add xstate-react@latest –-save

Now that we have the dependencies ready, let’s run the app to make
sure everything is working as expected. If everything is OK, we can
create our very first state machine. We will start with a simple exam-
ple: user login flow. At a high level, there isn’t much logic involved in
this flow. The user can be either logged in or out, and they transition
from one state to the other and back:

import { createMachine } from 'xstate';

export const userFlowMachine = createMachine({

 id: 'userFlow',

 initial: 'anonymous',

 states: {

 anonymous,

 authenticated,

 }

});

Reading through the code is rather logical. We start by importing a
createMachine function, which we call to create our userFlowMachine
instance. In userFlowMachine, we start by defining the machine ID
and the initial state. We then continue to define the two possible
states of the app. The user in our app can be anonymous or authenti-
cated. But how can the user transition from one state to the other?
Let’s add this functionality to the state machine:

import { createMachine } from 'xstate';

export const userFlowMachine = createMachine({

 id: 'userFlow',

 initial: 'anonymous',

 states: {

 anonymous: {

 on: {

 LOGIN: { target: 'authenticated' },

 }

 },

 authenticated: {

 on: {

 LOGOUT: { target: 'anonymous' },

 }

 },

 }

});

Great! Now, the user can be in the anonymous state, from which they
can transition using the LOGIN transition. At this moment, they will be
in the authenticated state, from which they can transition using the
LOGOUT transition. You could continue improving this example by
adding some implementation details to the LOGIN and LOGOUT transi-
tions, or maybe an error state. But I will stop talking about this particu-
lar state machine now and see how it should be used in a React app.

Unsurprisingly, the XState docs recommend using React Context to
manage global state with XState. Luckily for us, we have a good han-
dle on React Context by now, right? So, let’s look at an example of
React Context in the XState documentation:

import React, { createContext } from 'react';

import { useInterpret } from '@xstate/react';

import { userFlowMachine } from './machines/userF

export const GlobalStateContext = createContext({

export const GlobalStateProvider = (props) => {

 const userFlowService = useInterpret(userFlowMa

 return (

 <GlobalStateContext.Provider value={{ userFlo

 {props.children}

 </GlobalStateContext.Provider>

);

};

Hmm… what is this useInterpret() function? It’s imported from xs-

tate-react, and it’s a special tool to make sure we don’t cause too
many re-renders when using React Context. useInterpret() returns
a service, which is a reference to the state machine. As per the XS-
tate documentation: “this value never changes, so we don’t need to
worry about wasted re-renders.”

KNOWING YOUR TOOLS

Every tool was created with an idea of how it should be used. You
could take a hammer and use the wooden handle to hit a nail, but you
have learned this is not how hammers work best. The same rule ap-
plies to JavaScript libraries. No one was born with the knowledge of
JavaScript libraries and tooling. We all must read the documentation
and learn our tools’ best practices.

We have a way to create context, so now, let’s go through XState’s
instructions for using it. We will have to subscribe to the service of the
global context we defined at the root of the app. Here’s what such a
subscription would look like:

import React, { useContext } from 'react';

import { GlobalStateContext } from './globalState

import { useActor } from '@xstate/react';

export const SomeComponent = (props) => {

 const globalServices = useContext(GlobalStateCo

 const [state] = useActor(globalServices. userFl

 return state.matches('loggedIn') ? 'Logged In

};

We have completed the basic setup for XState in a React Native app.

There are many paths to be taken now: improving performance, dis-
patching events, or using state selectors. We will go over the neces-
sary steps in the next section, where we will set up XState for the
LikedImages surface and the modal responsible for adding liked
images.

Using XState for the
FavoritedImages surface

In the previous section, we set up a basic machine that could be used
to control the user flow in the app. Let’s add a new machine, for our
real-world use case: liking images in a social media clone app.

We’ll start by creating a machine minimum viable product (MVP):

// src/machines/likeImagesMachine.js

import { createMachine } from "xstate";

export const likeImagesMachine = createMachine({

id: "likeImagesMachine",

 id: likeImagesMachine ,

 context: {

 likedImages: [

 { Example Image Object 1},

 { Example Image Object 2}

 …

],

 },

 initial: "loading",

 states: {

 loading: {},

 ready: {},

 error: {},

 },

});

Let’s analyze this code from the top: we start by importing the cre-

ateMachine function, which we use on the very first line of the likeIm-

agesMachine function. We set the ID of the machine and the context.
Bear in mind that XState context is different from React context.
We’ve talked a lot about ReactJS context; we know it can be used to
share state between components. XState context is a container for
quantitative data (such as strings, arrays, or objects), which can po-
tentially be infinite. The array of liked images is a great example of
this sort of data, and that’s why we’ll be keeping this array in our ma-
chine’s context. For testing purposes, we will add a couple of images

to this default array of likedImages in the context. All that’s left is
defining states of our machine and setting the default state. Easy-
peasy!

We will start by creating and configuring a wrapper for the state, with
the help of React’s context. Once everything is set up correctly with
mock data, we will fetch real data from our backend. Having fetched
data, we will write the last piece of code: managing liked images with
XState.

Configuring context and components

Now is the time to talk about the first type of context: React context.
We set up a nifty context with the user flow in the previous section.

We will add the liked images machine to this context:

// src/context.js

[…]

import { useInterpret } from "@xstate/react";

 import { likeImagesMachine } from "./machines/

import { userFlow } from "./machines/userFlowMach

export const GlobalStateContext = createContext({

export const useXStateContext = () => {

 const context = React.useContext(GlobalStateCon

 if (context === undefined) {

 throw new Error(

 " useXStateContext must be used within a

);

 }

 return context;

};

export const GlobalStateProvider = (props) => {

 const likedImagesAppService = useInterpret(like

 const userFlowService = useInterpret(userFlow);

 const mergedServices = {

 likedImagesAppService,

 userFlowService,

 };

 return (

 <GlobalStateContext.Provider value={mergedSer

 {props.children}

 </GlobalStateContext.Provider>

);

};

This is a good moment to improve the basic context we set up in the
previous, more theoretical part of this chapter. We will do so by
adding a new custom hook called useXStateContext. Using custom
hooks with React context is a best practice that we covered in previ-
ous chapters. In the GlobalStateProvider function, we added liked-

ImagesMachine through the useInterpret custom hook provided by
the good people at XState. We merge the interpreted machines and

pass them as the context value. The last piece of the context value is
wrapping the component in context. We will have to keep the global
state at the very root of the app so that both the FavoritedImages sur-
face and ImageDetailsModal can reach it. Here’s what your App.js
should roughly look like:

// src/App.js

[…]

import {

 […]

 GlobalStateProvider

 } from "./src/context";

[…]

return (

 <SafeAreaProvider>

 <GlobalStateProvider>

 <UserStateContext.Provider value={userLog

[…]

Let’s use this brand-new machine, interpreted by React context and
holding a few example images in its own context, in the
FavoritedImages surface. The list of favorited images is rendered in
the ListOfFavorites component, and this is the component we will
be changing:

// src/components/ListOfFavorties.js

import { useXStateContext } from "../context";

import { useActor } from "@xstate/react";

export const ListOfFavorites = ({ navigation }) =

 const globalServices = useXStateContext();

 const [state] = useActor(globalServices.

 const [imageData, updateImageData] = useState

//…

 return (

 //…

 <FlatList

 data={imageData}

//…

We start by importing the custom useXStateContext hook we created
to easily consume React context. The second thing we need to import
is XState’s useActor hook. This is a React hook that subscribes to
emitted changes from a given interpreted state machine, named by
the XState author “an actor." If you go to the XState documentation,

you will find there are other implementations of the useActor function,

tailored for use with Svelte, Vue, and other libraries. This is because
XState, much like MobX, is unopinionated when it comes to UI
libraries.

Finally, we need to use all those imported items in our component.
We pull in data from React context, and we subscribe to changes
through the useActor hook. We could use the state returned from the
useActor hook directly. However, React Native’s FlatList needs to
be informed of data changes very clearly to update. Therefore, I
added a useState hook, including the updateImageData setter func-
tion, which will come in handy once we try to add images to this array
dynamically.

Speaking of dynamically, it’s time to think about data fetching through
XState. But before we go any further, make sure to run your app with
the current changes and make sure you can see the example images
from the likeImagesMachine function on the FavoritedImages sur-
face. If you do encounter any errors, you can look at your terminal
window, as many XState errors will be described there. They should
also be visible on your phone simulator or physical device. Here’s an
example error you may see in the console and in the simulator at the
same time:

Figure 7.4 – XState errors in the console and phone simulator

Fetching image data

Fetching data isn’t always the strong suit of state management li-
braries. After all, it’s not their basic responsibility. In the case of XS-
tate, however, fetching comes very naturally as every Promise can be
modeled as a state machine. At a high level, we need to kick off a
function that will be in a default “loading” state. We’ll wait for some-
thing to happen with it—either resolve or reject—and go to the appro-
priate “resolved” or “rejected” states. Here’s how our image-fetching
machine is shaping up:

// src/machines/fetchMachine.js

import { createMachine, assign } from "xstate";

export const fetchImagesMachine = createMachine({

 id: "fetchImages",

 initial: "loading",

 context: {

 retries: 0,

 images: [],

 },

 states: {

 loading: {

 on: {

 RESOLVE: "success",

 REJECT: "failure",

 },

 },

 success: {

 type: "final",

 },

 failure: {

 on: {

 RETRY: {

 target: "loading",

 actions: assign({

 retries: (context, event) => context.

 }),

 },

 },

 },

 },

});

What you can see here is a very simple machine, prepared to de-
scribe the process of fetching data from an external source. We have
three states: the initial state of loading, and success and failure

states. You can see two actions in the loading state, which could be
used to manage the fetching mechanism. There’s also a retry action
in the failure state. We could use it in the app to let the users manu-
ally try to fetch data when an error occurs. As far as the basic setup is

concerned, this is all good, but we need to see how to call a real end-
point. In order to do so, we will change the loading state:

//…

states: {

 loading: {

 invoke: {

 id: 'fetchImagesFunction',

 src: async () => {

 const response = await fetch(

 requestBase + "/john_doe/likedImages.

);

 const imageData = await response.json()

 return imageData;

 },

 onDone: {

 target: "success",

 actions: assign((context, event) => {

 return {

 images: event.data,

 };

 }),

 },

 onError: {

 target: "failure",

 actions: assign({

 error: (context, event) => "Oops!

 }),

 },

 },

 },

Instead of two actions that could be called manually, I added the in-

voke property to the loading state. This way, the images will be
loaded automatically when the machine is spawned, without needing
user interaction. The invoke property’s value is an object that con-
tains the id and src properties of the function that is to be invoked. It
is possible to invoke Promises, callbacks—which can send and re-
ceive events from the parent machine—observables—which can
send events to the parent machine—and entire machines. We will
stay on the simple side of things, and we will add an async fetch

function to the source. You may also create a named function any-
where outside of the machine and invoke it through src. We are also
using two optional values from the invoke property: onDone and on-

Error. These two transitions come in handy when handling Promises.

They act like any other XState transition—they include actions and
the target state. Both actions include the assign keyword. assign is a
function that updates the machine’s context. We use it here to pass
the resulting fetched data to the context so that we can use it later in
our app. Assigner functions have some caveats: they have to be
pure, and they surrender to a strict order. If you want to read more

about them, please check the links provided in the Further reading
section.

If everything works fine, you should be able to fetch images thanks to
this function. But how do we use those images in the likeImagesMa-

chine function? Remember that invoke property we just used for the
Promise? We’ll use that same property on likeImagesMachine in the
loading state, to invoke this fetching machine and pass the fetched
data thanks to the onDone function:

// src/machines/likeImagesMachine.js

import { fetchImagesMachine } from "./fetchImages

export const likeImagesMachine = createMachine({

 id: "likeImagesMachine ",

 context: {

 likedImages: [],

 currentImage: null,

 },

 initial: "loading",

 states: {

 loading: {

 invoke: {

 id: "fetchImagesMachine",

 src: fetchImagesMachine,

 onDone: {

 target: "ready",

 actions: assign({

 likedImages: (context, event) => {

 return event.data.images;

 },

 }),

 },

 },

 },

//…

In this code snippet, we’ve imported the fetchImagesMachine function
and we invoke it in the loading state of the likeImagesMachine func-
tion. Let’s take a closer look at the assigner function we’re using to
pass image data from fetchImagesMachine to this parent machine. It
has an onDone function, which will be called when fetchImagesMa-

chine reaches its final state. This function assigns data returned from
the invoked machine to the context of likeImagesMachine, and the
data is passed through event. You will notice we’re calling event.da-

ta.images. Where did that come from? This is something we need to
add to fetchImagesMachine. So far, that machine only passed fetched
data to its context, but we need to expose it so that the parent ma-
chine, likeImagesMachine, can access it. We already know the on-

Done event in the parent (likeImagesMachine) is called when the child
(fetchImagesMachine) reaches its final state. The final state in our
case is success. This is where we can add the data property:

// src/machines/fetchImagesMachine.js

//…

success: {

 type: "final",

 data: {

 images: (context, event) => context.image

 },

 },

//…

This block of code tells the fetchImagesMachine function to add a
data object to its final state. This is the object that we access when
we run onDone in the parent (likeImagesMachine). If everything went
well, you should be able to see the entire array of fetched images in
your app right now. This is a good moment to run the app on your de-
vice or emulator if you haven’t already.

Managing the image in the image modal

We have ourselves a nice setup—we’re fetching images and feeding
them to the app. Our app is rather static, though. We need a way to
add new images to the liked images array. We would also like to
check whether an image is liked so that we can display the proper
icon in ImageDetailsModal.

If we want to know whether an image should be liked or unliked, we
first need to know whether it’s liked. But even before we can know
whether an image has been liked, we need to know all the data perti-
nent to that image. We will add a new item to the context of the like-

ImagesMachine machine—currentImage:

export const likeImagesMachine = createMachine({

 id: "likeImagesMachine ",

 context: {

 likedImages: [],

 currentImage: null,

 },

//…

This is where we will store information on the currently viewed image.

The context is initialized as null, and we need to add an action that
will update this context value. We will add a new event called
MODAL_OPEN to the ready state of likeImagesMachine:

// src/machines/likeImagesMachine

ready: {

 on: {

 MODAL_OPEN: {

 actions: assign((context, event) => {

 return {

 return {

 currentImage: event.payload,

 };

 }),

 },

 MODAL_CLOSE: {

 actions: assign((context, event) => {

 return {

 currentImage: null,

 };

 }),

 },

 },

//…

We will call the MODAL_OPEN action when ImageDetailsModal is
opened, and MODAL_CLOSE when the modal is closed—pretty straight-
forward! You can see the code in action here:

// src/surfaces/ImageDetailsModal.js

export const ImageDetailsModal = ({ navigation, r

 const globalServices = useXStateContext();

 const { send } = globalServices.likedImagesAppS

 useEffect(() => {

 send({

 type: "MODAL_OPEN",

 payload: route.params.imageItem,

p y p g ,

 });

 return () => {

 send("MODAL_CLOSE", {});

 };

 }, []);

We start by using a custom hook called useXStateContext in order to
consume context values that we set up previously. Then, we use the
send function from likedImagesAppService. Finally, I’ve added a use-

Effect hook calling the MODAL_OPEN action when the modal is ren-
dered and MODAL_CLOSE as a cleanup function.

Now that we have the current image saved in the machine context,
we can check whether it’s liked or not. To do that, we will use yet an-
other utility from XState: a custom hook called useSelector. Selector
is a name that may sound familiar to you. In JavaScript, there are
query selectors, Redux promotes using selector functions, and there
are also CSS selectors. XState selectors are the closest ideologically
to the ones in Redux. They are special functions that receive the cur-
rent state and can return a value based on some conditions. Our cur-
rent state is the array of images and the current image, and the condi-
tion is if the current image is in the image array. The code is illustrat-
ed in the following snippet:

const isImageLikedSelector = (state) => {

 if (!state.context.currentImage) {

 return;

 }

 const checkIfInImagesArray = state.context.like

 (image) => image.itemId === state.context.c

);

 return !!checkIfInImagesArray;

};

As mentioned previously, this selector will receive the current state as
the first argument. We start by checking that the images array is not
null. We are running a find function on that array, and if it were null

or undefined, this would cause the app to crash. Once we’re sure the
images array exists, we can filter it by the current image. You can
place this function anywhere you’d like (in the same file as the ma-
chine, in a file called selectors or utilities, and so on) and then im-
port it into ImageDetailsModal:

// src/surfaces/ImageDetailsModal.js

export const ImageDetailsModal = ({ navigation, r

 const globalServices = useXStateContext();

 const { send } = globalServices.globalAppServic

 const isImageLiked = useSelector(

 globalServices.globalAppService,

 isImageLikedSelector

);

The isImageLiked constant can be used in the component to check
which icon should be displayed and which action (liking or unliking)

should be called.

Liking images

Our state machines are aware of the array of images we have
fetched and that we display on the FavoritedImages surface. They
also become aware of the currently seen image through the
MODAL_OPEN action. Now, we need to tell them what to do if someone
presses the “like” button. Let’s add a new action to the likeImagesMa-

chine function:

// src/machines/likeImagesMachine.js

//…

ready: {

 on: {

 LIKE: {

 actions: assign((context, event) => {

 const updateImageArray = event.payloa

 return {

 likedImages: updateImageArray,

 };

 }),

 },

//…

We’re using the assigner function, which we’ve met before. Inside it,
we’re concatenating the array containing only the current image to
the full array of all images. This way, the newly added image will be at
the top of the array and at the top of FlatList. Now that the action is
ready, we can call it in the modal, like so:

// src/surfaces/ImageDetailsModal

//…

<Pressable

 onPress={() => {

 if (!isImageLiked) {

 send({ type: "LIKE", payload:

 }

//…

We’ve done quite a few changes—let’s test them in our app. If you
followed along, you should be able to see that the fetched images
load correctly on the FavoritedImages surface. The ImageDetails

modal opens correctly as well, showing a full heart for images that
are liked and an empty heart for images that are not liked (those on
the Feed surface). We can even press the empty heart and it changes
to be filled! The like action and the selector work as expected! Great!

Unfortunately, FlatList is a little more stubborn. As mentioned be-
fore, FlatList needs explicit data changes in order to re-render, and
we need it to re-render if we want to see the new images added. We
will have to “twist its hand” a little bit, by adding this useEffect hook:

// src/components/ListOfFavorites

export const ListOfFavorites = ({ navigation }) =

 const globalServices = useXStateContext();

 const [state] = useActor(globalServices.globalA

 const [imageData, updateImageData] = useState([

 useEffect(() => {

 updateImageData(state.context.likedImages);

 }, [state.context.likedImages]);

//…

And now, everything should work flawlessly! Time for a pat on the
back! We’ve covered a lot of topics in this section. We have gone
over a real-world implementation of setting up multiple state ma-
chines, invoking fetching functions, passing context values between
machines, calling actions, and using selectors. With this knowledge,

you should be able to configure any app to use XState as the state
management library.

Summary

XState is the first state management library in this book to be funda-
mentally based on mathematical principles. We talked briefly about
those principles, as understanding them is very useful for under-
standing XState. The most important concept is state machines. They
are not new in the world of mathematics; they are quite novel, howev-
er, when it comes to how we think about global state in mobile apps.

Once we had a grasp on the theory and we discovered the very use-
ful XState visualizer, we were ready to do real work. We set up XS-
tate in the Funbook app, using best practices described in the XState
documentation. We covered the topic of implementing XState as the
global state solution for the use case of managing liked images. We
looked at fetching data and changing data with XState. I hope you en-
joyed it! Now, it’s time to continue our journey to the next outlier in the
state management libraries world: Jotai.

Further reading

https://brilliant.org/wiki/finite-state-machines/: Finite state
machines.

https://www.w3.org/TR/scxml/: W3C SCXML specification.

https://xstate.js.org/docs/recipes/react.html#local-state: XState
recipes.

https://xstate.js.org/docs/guides/context.html#assign-action:

Assigner action.

https://brilliant.org/wiki/finite-state-machines/

8

Integrating Jotai in a React
Native App

In the previous chapter, we ventured into the mathematical world of
XState. We will continue our journey by exploring another young
state management library called Jotai. Jotai is inspired by an experi-
mental state management library created at Facebook called Recoil.
In this chapter, we will take a brief look at Recoil, an experimental
state management library created by Facebook. Once we’re comfort-
able with the main ideas of this library, namely a new concept called
an “atomic state”, we will take a deep dive into Jotai. We will config-
ure Jotai in our app, and we’ll continue to work on data fetching and
managing liked images with the help of Jotai. Here’s what we will go
over in this chapter:

What is Recoil and an atomic state?

What is Jotai?
Configuring Jotai in the Funbook app
Using Jotai for FavoritedImages

By the end of this chapter, you will have a new way of looking at glob-
al state management – by dividing it into small items, called atoms.

You will also know how to set up Jotai in a new project, and how to
use it for data fetching and data management.

Technical requirements

In order to follow along with this chapter, you will need some knowl-
edge of JavaScript and ReactJS. If you have followed at least
Chapters 1 to 4 of this book, you should be able to proceed without
any issues.

Feel free to use an IDE of your choice, as React Native does not
need any specific functionality. Currently, the most popular IDEs for
frontend developers are Microsoft’s VSCode, Atom, Sublime Text,
and WebStorm.

The code snippets provided in this chapter are here to illustrate what
we should be doing with the code. They do not provide the whole pic-
ture. To code along easier, please open the GitHub repo in your IDE
and look at the files in there. You can either start with the file in the
folder named example-app-full or chapter-8. If you start with exam-

ple-app-full, you will be responsible for implementing the solutions
described in this chapter. If you choose to look at chapter-8, you will
see the entire solution implemented by me.

If you get stuck or lost, you can check the code in the GitHub repo:

https://github.com/PacktPublishing/Simplifying-State-Management-
in-React-Native/tree/main/chapter-8.

What is Recoil and an atomic
state?

If you’ve been following this book chapter by chapter, you may be
feeling as though the list of different types of state management li-
braries is never-ending. You would be right, to some extent. New
state management libraries pop up every few weeks; they are some-
times purely open source, and sometimes company-backed. Howev-
er, they rarely propose groundbreaking solutions. More often than
not, they are newer implementations of known concepts. Those im-
plementations are greatly appreciated, as every developer likes work-
ing comfortably – and what are those known concepts, you may ask?

There’s a consensus in the ReactJS world that state management
libraries can be divided into three types:

1. Flux type – these are state management libraries that hold the
state outside of components and use a unidirectional data flow.

They are inspired by Facebook’s Flux, the most famous example

https://github.com/PacktPublishing/Simplifying-State-Management-in-React-Native/tree/main/chapter-8

being Redux. There are modern implementations of this flow, such
as Redux Toolkit or Zustand.

2. Proxy type – these libraries “wrap” the state, conceptually similar
to what a proxy does. When using this type of state management,
the developer can subscribe to, and read, wrapped values like any
other values in the component. The best examples of proxy-type
state management are React’s Context, MobX, or Valtio.

3. Atomic type – this is the state set at the lowest level, managed nat-
urally by setState in class components and the useState hook in
function components. Values set in this way can be passed around
the app and used in a bigger context. Facebook created an exper-
imental library to promote this type of state management, called
Recoil. Jotai soon followed suit.

Recoil was created around mid-2020 and quickly garnered lots of at-
tention. It was published by Facebook itself, the creators of React, so
everyone was expecting a great new solution. The idea of using the
smallest possible denomination of pieces of state, peppered and ac-
cessible throughout React apps, was enticing. Unfortunately, after
the first gasp of excitement, a big part of the React community lost in-
terest in Recoil and went about their days continuing to work mostly
with Redux. Two years later, Recoil’s documentation still states that
it’s experimental and few people are talking about it.

A small community of developers was paying more attention than the
rest of us though. Poimandres, an open source developer collective,

went to work and created their implementation of an atomic state.

They called it Jotai. If you visit their GitHub page, you will see they
also developed Valtio, a proxy-type state management library, and
Zustand, a lightweight flux-type state management library. Valtio and
Zustand are so far in the shadow of their more famous alternatives,

but Jotai has dominated the stage for atomic state management.
This library is production-ready; it’s being actively developed through
GitHub, and its developers provide constant support on an open Dis-
cord server. This is why we will talk about Jotai, and not Recoil, in
this chapter.

What is Jotai?

As mentioned in the previous section, Jotai is an atomic-type state
management library, created by a developer named Daishi Kato, as
part of the Poimandres open source developer collective. I asked
Daishi Kato a few questions through Twitter, and he was nice enough
to answer me. The first question I had was why he decided to create
Jotai. He said: “I have been creating various global state libraries, to
eliminate necessity of memoizing selectors. One notable one is react-
tracked, which is heavily depending on proxies. I noticed proxies
don’t work best for many cases and wanted another solution.

Recoil’s model is a best match for this. So, to solve my problem, I de-
veloped Jotai.” As simple as that! He added that maintaining the vari-
ous state management libraries he created takes about half of his
time, leaving the rest to do freelance work. Daishi said he likes work-
ing most with Jotai and Valtio as they have unique features.

“Zustand is valuable for being minimal. It’s almost nothing. Likewise,

react-tracked is still valuable providing minimal features.” – Daishi
added. When I asked how he would categorize state management
libraries, he said he would divide them into two groups: keeping the
state internal (as with useState) or externally. Daishi is continually
working on new things; you can observe all his work in the Jotai Labs
GitHub repo: https://github.com/jotai-labs. He’s also interested in de-
veloping features for fetching and React’s Suspense. You can find
more links to his projects in the Further reading section.

We now have a good understanding of why Jotai was created. It aims
to solve state management problems from a new perspective, follow-
ing React’s best practices and concepts proposed by the experimen-
tal Recoil library. It’s time we try this “atomic” state approach in our
app. Let’s get to coding!

https://github.com/jotai-labs

Configuring Jotai in the Funbook
app

If you’re a fan of simplicity, my dear reader, you may just fall in love
with this state management library. Configuring it in our app only re-
quires running the install command in the terminal:

npm install jotai

Alternatively, see the following:

Yarn add jotai

There’s one hidden gem of configuration to be added: Suspense. I
specifically used the word gem because this configuration require-
ment of Jotai will make your app crash less. Suspense is a new Re-
actJS functionality, created to only be able to render components that
are ready to be rendered. As with any new functionality, the users
need to get used to it, and sometimes need to be forced to try it. Jotai
is doing exactly this: forcing the users to use Suspense, for their own
good! Let’s go ahead and add it at the root of our app:

// ./App.js

import React, { useState, Suspense } from "react"

export default function App() {

//…

 if (!fontsLoaded) {

 return <AppLoading />;

 }

 return (

 <SafeAreaProvider>

//…

 <Suspense fallback={<AppLoading />}>

 <NavigationContainer theme={MyTheme

 <Stack.Navigator>

//…

Now, our app can use Jotai’s atoms and it’s less prone to unexpect-
ed crashes. Let’s move on to using atoms for
ListOfFavoritedImages.

Using Jotai for
ListOfFavoritedImages

You may have noticed that we didn’t give much of a theoretical intro-
duction to Jotai. This is because this library is minimal. There is no

boilerplate, no complex concepts. All we need to do is create an atom
and use it thanks to a custom hook in the app. Let’s start by creating
an atom with some mock data for the liked images:

// src/atoms/imagesAtoms.js

import { atom } from "jotai";

export const imageListAtom = atom([

 {

 "itemId": 1,

 "authorId": 11,

 "timeStamp": "2 hrs ago",

 "url": "…",

 "likes": "28",

 "conversations": "12"

 },

 {

 "itemId": 2,

 "authorId": 7,

 "timeStamp": "1 week ago",

 "url": "…",

 "likes": "8",

 "conversations": "123"

 },

]);

We have the mocked images array ready; all we need to do now is
use it. Given our previous experiences with other state management

libraries, you are probably expecting to see some sort of setup, wrap-
per, subscription, or something similar. I’m sorry to disappoint, but all
we need to do to use the Jotai atom is… use it. Let’s change the
code in the ListOfFavoritedImages component as follows:

import { useAtom } from "jotai";

import { imageListAtom } from "../atoms/imagesAto

export const ListOfFavorites = ({ navigation }) =

 const [imageList] = useAtom(imageListAtom);

 if (!imageList) {

 return <AppLoading />;

 }

//…

 return (

 //…

 <FlatList

 data={imageList}

//…

In the preceding code, we imported the Jotai custom hook named
useAtom and the atom we created in our imagesAtom file. And what is
the result? Let’s run the app in the simulator and find out!

Figure 8.1 – App displaying images based on Jotai atoms

Everything works! I must admit, this feels almost magical. Surely,

fetching will be more complicated?

Fetching data with Jotai

We successfully set up mocked image data in our app, but we would
like to fetch real data from the server. Going back to the Jotai docs,

we will find a guide on asynchronous atoms (you can find a link to this
part of the documentation in the Further reading section). Here’s what
our async atom for fetching images will look like:

// src/atoms/imageAtoms.js

import { requestBase } from "../utils/constants";

import { atom } from "jotai";

export const imageListAtom = atom([]);

 const urlAtom = atom(requestBase + "/john_doe/l

export const fetchImagesAtom = atom(async (get) =

 const response = await fetch(get(urlAtom));

 return await response.json();

});

We add a requestBase import to use URLs more comfortably. Then,

we proceed to create a basic atom with the specific URL. The last

function is the async atom. We know it’s async because it uses the
async keyword. The body of the async atom function is a fetch func-
tion and data return. The atom is ready, but it’s not connected to any-
thing just yet. We will need to call it in the app and make it fill image-
ListAtom. Let’s start by invoking the fetching. A good place to do so
will be at the root of the app once the user is logged in. This means
we will not be fetching in the App.js root component, but rather in the
Home component:

// src/surfaces/Home.js

import { useAtom } from "jotai";

import { fetchImagesAtom } from "../atoms/imageAt

//…

export const Home = () => {

 const [json] = useAtom(fetchImagesAtom);

We start by importing the necessary pieces: a custom hook from
Jotai and our fetching atom. Then, we use the hook in the compo-
nent. This is a good moment to check that everything is working cor-
rectly. I suggest adding a console.log to the component and seeing
whether the value of json is the same as expected. By the way, there
is no rule for naming the returns of atoms. You may as well write this:

 const [thisIsAVeryFancyAndCuteFetchingMechanism

If you’re using linter plugins (such as ESLint) in your IDE, you may
have received a warning about the json value being declared but not
used. What good does it do to fetch images if we’re not doing any-
thing with them? And what should we do with them? We should make
the newly fetched array of images fill imageListAtom. The way to ac-
complish this is to change our read-only imageListAtom to a read-
write atom.

Reading and writing atoms

Ah! Finally, some theory! I’m sure you’ve been craving this, my dear
reader! (Since it’s difficult to convey irony in a technical text, let me
take this opportunity to explain: the previous sentence is sarcastic).

There are three types of atoms: read-only, write-only, and read-write
atoms. The read-only atoms are the simplest: all you do is create
them and set the value they need to hold on to, for example:

const onlyReadMe = atom('I like to read')

Read-only atoms can hold more than simple values or strings. If you
need more complex logic in your atom, you should use the following
syntax:

 const readMeButInUpperCase = atom((get) =>

In the preceding short snippet, you can observe that atoms have ac-
cess to a getter function, which, in turn, can access other atoms.

If we wanted to add a write functionality to our atom, we can add a
setter function as the second argument to the atom:

const readMeButInUpperCase = atom(

 (get) => get(onlyReadMe).toUpperCase(),

 (get, set, newText) => {

 set(onlyReadMe, newText)

 }

)

We’ve added a new function, which will accept a new text and pass it
to the onlyReadMe atom. If you were to use it in a component, it would
look like this:

const FancyTextComponent = () => {

 const [fancyText, setFancyText] = useAto

return (

 <Pressable onPress={() => setFancyText

<Text>Likes and dislikes: {fancyText}</Te

 <Text>Likes and dislikes: {fancyText}</Te

 </Pressable>

)

In the example component in the preceding screenshot, you can ob-
serve how a read-write atom can be implemented. We start by im-
porting the atom, but we declare two values: the value and the setter,
very similar to what we would use in a regular useState hook. Lower
in the component, we use {fancyText} to display the text from the
atom, and the setFancyText function to set a new text through a but-
ton press.

The last type of atom we can talk about is the write-only atom. The
only difference between this atom and a read-write atom is that we
declare the read argument as null. Here’s an example:

const onlyUsedForSettingValues = atom(null,

 (get, set) => {

 set(onlyReadMe, 'I like using write on

 }

)

When using this type of atom, you always need to make sure to ac-
commodate the hook with the non-existing default value. Here’s how

this write-only hook would be used in the preceding example
component:

const FancyTextComponent = () => {

const [readOnlyFancyText] = useAtom(onlyReadMe);

 const [, setStaticText] = useAtom(onlyUs

return (

 <Pressable onPress={() => setFancyText()>

 <Text>Likes and dislikes: { readOnlyFancy

 </Pressable>

)

Notice the comma in the array with values derived from the useAtom

hook. It indicates there is a null value on the first index, but we
choose to not use it.

Adding read-write functionality to the
imageListAtom

So far, we have a read-only imageListAtom and an async fetchIm-

agesAtom. Let’s add a write functionality to imageListAtom so that it
can accept values from fetchImagesAtom:

// src/atoms/imageAtoms.js

export const imageListAtom = atom([], (get, set,

export const imageListAtom atom([], (get, set,

 set(imageListAtom, newArray);

});

The atom is ready to receive values, so let’s give it some. We have to
go back to the Home component where we kicked off data fetching,

and add a useEffect, which will update imageListAtom. Here’s what
the code should look like:

// src/surfaces/Home.js

export const Home = () => {

 const [json] = useAtom(fetchImagesAtom);

 const [, setAllImages] = useAtom(imageListAtom)

 useEffect(() => {

 if (json) {

 setAllImages(json);

 }

 }, [json]);

This is a good moment to check again whether everything works fine
in the app since we just implemented data fetching. If everything is, in
fact, working as expected, we’ll move on to implementing functionality
for the Like button. If you run into any issues, start by using con-

sole.log to check that the atoms hold and return the values you are
expecting them to have. If you continue to have issues, you can join
the Poimandres Discord server (link in the Further reading section),

where you’ll find a Jotai-dedicated channel. Daishi Kato, the author
of Jotai, answers all sorts of questions on this channel himself.

Once you are sure that everything is good, we’ll move on to imple-
menting the Like button in ImageDetailsModal.

Implementing the Like button

The full functionality of the Like button in ImageDetailsModal consists
of two parts: the heart icon being full or not – indicating whether the
image has been liked, and the actual action of liking an image –
which means adding the new image to the array of images on the
Favorited surface.

Let’s start by creating the necessary atom for the heart icon. We need
to know whether a given image has been liked or not. We can estab-
lish whether it has been liked by filtering the array of images and
checking whether a given image is present in the array. Here’s what
the resulting atom will look like:

// src/atoms/imageAtoms.js

 export const isImageLikedAtom = atom(false,

 const imageList = get(imageListAtom);

 const checkIfLiked =

 imageList?.filter((favoritedImg) => favorit

.length > 0;

 .length 0;

 set(isImageLikedAtom, checkIfLiked);

});

As per the atom syntax, we start by establishing the default value as
false. We then add a setter function, which will receive the new im-
age object. Inside the setter function, we use Jotai’s get function to
get imageListAtom and check our current image object against it. Fi-
nally, we set isImageLikedAtom to the correct value. Once the atom is
created, we need to use it in the component:

// src/surfaces/ImageDetailsModal.js

export const ImageDetailsModal = ({ navigation, r

 const [isCurrentImageLiked, setIsLiked] =

 setIsLiked(route.params.imageItem);

//…

You may wonder why we are calling the setIsLiked function so
crudely – why not add useEffect? The fact of the matter is that we
need this function to be called when the component is rendered and
only then. We could add a useEffect hook with an empty dependen-
cy array, but it would achieve the same result while looking more
complicated.

WHEN DOES IT RUN?

There are some subtleties to the React component life cycle. They
are more obvious with class components, where we would use com-

ponentDidMount, componentWillUnmount, and so on. Functional com-
ponents have the same life cycle, without being as obvious about it.
And it so happens that the useEffect hook only runs after a given
component has finished rendering, while functions called directly do
not wait for the render to finish.

As far as our example goes, we do not need to make sure the render-
ing is complete before calling the setIsLiked function. However, big
applications often ask a lot of their developers, and you may face a
case where you need to closely control when a given atom setter
function (or any other function for that matter) is run. You can read
more on this topic in Difference between ‘useEffect’ and calling func-
tion directly inside a component, linked in the Further reading section.

Circling back to our use case: we have a very nice isImageLiked

atom in place. You can test that it works correctly by opening image
modals on the Feed surface – where the heart icon should be empty
– and on the Favorites surface – where the heart icon should be full.

Now, on to the liking action! We will not need to do anything too fancy
here. We must take imageListAtom and add a new image to it:

// src/atoms/imageAtoms.js

g j

export const addImageToArray = atom(

 null,

 (get, set, newImage) => {

 const clonedArray = get(imageListAtom);

 clonedArray.unshift(newImage);

 set(imageListAtom, clonedArray);

 set(isImageLikedAtom, newImage);

 }

);

As with the example write-only atom, we start by declaring a null for
the default atom value. In the setter function, we get imageListAtom
and we add the new image using the unshift function, which adds
items to the beginning of the original array. We finish by setting the
newly created array as imageListAtom and by triggering the setter in
isImageLikedAtom. Let’s add this to the modal component:

// src/surfaces/ImageDetailsModal.js

export const ImageDetailsModal = ({ navigation, r

 const [, addImage] = useAtom(addImageToArray);

 const [isCurrentImageLiked, setIsLiked] = useAt

 setIsLiked(route.params.imageItem);

return (

//…

 <Pressable

 onPress={() => {

 if (isCurrentImageLiked) {

 // add remove image functionality h

 } else {

 addImage(route.params.imageItem);

 }

 }}

 >

 <Ionicons name={isCurrentImageLiked ?

 </Pressable>

//…

We must import the addImageToArray atom into our component and
then call it in the right place upon the button being tapped. Let’s test
our app! Chances are everything is working perfectly fine. You can
tap the heart icon when it’s empty and it becomes full, and when you
close the modal and go to the Favorites surface, the image is
present there. If you don’t see the new image on the Favorites sur-
face appear immediately, you may be facing an issue caused by
FlatList.

React Native’s FlatList is a pure component, which means it does
not re-render unless specifically instructed to do so. We have en-
countered this same problem already when using MobX. In the case
of MobX, we used special utilities to pass values to FlatList. Jotai,
being minimal, does not offer these specialized utilities. We must
manage this problem outside of Jotai. There are a few things we can

do. We can try using the extraData prop from FlatList – we can
pass atom values to useState and let the natural state re-render the
component. We can also take advantage of the utilities provided by
the React Navigation library. This is my favorite approach, and it is
the one I chose to use. There’s a useIsFocused custom hook in React
Navigation, which can be used to force a re-render when a tab is fo-
cused. From this description, you can see that this is exactly what we
need! Let’s add this hook to the Favorites surface:

// src/surfaces/Favorites.js

import { useIsFocused } from "@react-navigation/n

export const Favorites = ({ navigation }) => {

 const isFocused = useIsFocused();

 return (

 <SafeAreaView style={{ flex: 1, paddingTop:

 <Suspense fallback={<AppLoading />}>

 <ListOfFavorites navigation={navigation}

//…

Using this hook, the Favorites surface will re-render every time this
tab is focused. Of course, this is a hook to be used with great caution.

Too many re-renders cause apps to crash unexpectedly. If you do de-
cide to use it, make sure the re-render is necessary.

Time to visit the Funbook app again! In this section, we started by us-
ing a basic hook with a mock array of images. We then implemented
data fetching using Jotai. We learned about the three types of atoms:

read-only, write-only, and read-write. We used all of this knowledge to
create the Like button functionality with Jotai atoms. So, when you
test your app, try using the Like button in ImageDetailsModal and
check whether your images on the Favorites surface are updated
correctly.

Summary

In this chapter, we covered Jotai, a new kid on the block of state
management libraries. Inspired by a new, atomic approach to state
management proposed by Facebook through their library named
Recoil, Jotai has become more and more popular within the React
community. It offers a bottom-up approach, as opposed to top-down
libraries, such as Redux or MobX. It’s honestly stupidly easy to con-
figure and use. It doesn’t offer many utilities, but the documentation is
very clear and easy to use. In this chapter, we managed to use it to
fetch and store data, and we also used it to implement actions on that
data, such as adding items to an array. Jotai marks the end of our
journey with classic state management libraries.

In the next chapter, we’ll talk about React Query, which is not a state
management library, but a data-fetching library. It does have its place
in this book, however. More on that in the next chapter! See you
there!

Further reading

https://marmelab.com/blog/2022/06/23/proxy-state-with-valtio.html:
A State Management Tour: Proxy State with Valtio.

https://github.com/facebookexperimental/Recoil/tree/main: Recoil
GitHub page.

https://opencollective.com/pmndrs: Poimandres website.

https://github.com/dai-shi/react-suspense-fetch: react-suspense-

fetch.

https://github.com/dai-shi/react-hooks-fetch: react-hooks-fetch.

https://github.com/dai-shi/react-hooks-worker: react-hooks-work-
er.

https://jotai.org/docs/guides/async: Jotai – Async.

https://discord.com/invite/poimandres: Poimandres Discord server.
https://www.geekyhub.in/post/difference-between-useeffect-and-
direct-function-call/: Difference between ‘useEffect’ and calling
function directly inside a component.
https://reactnavigation.org/docs/function-after-focusing-
screen/#re-rendering-screen-with-the-useisfocused-hook: React

https://marmelab.com/blog/2022/06/23/proxy-state-with-valtio.html
https://github.com/facebookexperimental/Recoil/tree/main
https://opencollective.com/pmndrs
https://github.com/dai-shi/react-suspense-fetch
https://github.com/dai-shi/react-hooks-fetch
https://github.com/dai-shi/react-hooks-worker
https://jotai.org/docs/guides/async
https://discord.com/invite/poimandres
https://www.geekyhub.in/post/difference-between-useeffect-and-direct-function-call/
https://reactnavigation.org/docs/function-after-focusing-screen/#re-rendering-screen-with-the-useisfocused-hook

Navigation useIsFocused hook.

9

Using React Query for Server-
Side-Driven State Management

Welcome, my dear reader, to the last chapter describing state man-
agement solutions for our Funbook app. In the previous chapter, we
looked at the youngest state management library (as of the writing of
this book) – Jotai. Jotai is a minimal solution, based on ideas pro-
posed by the Facebook team in their open source library – Recoil.
React Query is minimal as well but in a very different sense. React
Query is created for managing fetching and mutating data on the
server. In this chapter, we will look at what React Query has to offer.
We will start by taking a broad look at this library; we will then imple-
ment it for data fetching. With our current app setup, we don’t have a
real backend server to communicate with, so we can only look at mu-
tating data in theory. We will also look at a few specialized utilities
created for React Native by the React Query team.

Here’s a list of topics we will cover in this chapter:

What is React Query and why is it in this book?

Installing and configuring React Query

Using React Query for data fetching
Other React Query functionalities
React Query utilities for React Native

By the end of this chapter, you will have a good understanding of how
you can use React Query to improve your developer experience and
your code bases. You will have a good knowledge of how to handle
fetching data with React Query and a general knowledge of other
functionalities of this library.

Technical requirements

In order to follow along with this chapter, you will need some knowl-
edge of JavaScript and ReactJS. If you have followed at least
Chapters 1 through 4 of this book, you should be able to go forward
without any issues.

Feel free to use an IDE of your choice, as React Native does not
need any specific functionality. Currently, the most popular IDEs for
frontend developers are Microsoft’s VSCode, Atom, Sublime Text,
and WebStorm.

The code snippets provided in this chapter are here to illustrate what
we should be doing with the code. They do not provide the whole pic-
ture. For a better experience while coding alongside reading this

chapter, please open the GitHub repo in your IDE and look at the files
in there. You can either start with the files in the folder named exam-

ple-app-full or chapter-9 If you start with example-app-full you
will be responsible for implementing the solutions described in this
chapter. If you choose to look at chapter-9 you will see the entire so-
lution implemented by me.

If you get stuck or lost, you can check the code in the GitHub repo:

https://github.com/PacktPublishing/Simplifying-State-Management-
in-React-Native/tree/main/chapter-9.

What is React Query and why is
it in this book?

First things first: let’s talk about the name of this library. In this chap-
ter, I use the name React Query, it is also a commonly used name.

However, the creator of React Query, Tanner Linsley, did some re-
structuring in 2022, in the open source libraries that he owns and
maintains. He created an umbrella name, TanStack, and placed a
plethora of libraries under this name. And so, React Query became
TanStack Query, as of React Query version 4. You can find a link to
the TanStack home page in the Further reading section at end of this
chapter.

https://github.com/PacktPublishing/Simplifying-State-Management-in-React-Native/tree/main/chapter-9

Now that we have the name out of the way, let’s talk about the place
of React Query in this book. React Query is not a state management
library. It’s a library offering a solution for comfortable fetching and
data mutations on the server. Why are we talking about it then? Be-
cause it turns out that efficient communication with the server can re-
place any need for global state management. Given our real-life so-
cial media app clone, we’ve been managing liked images in every
chapter. What if, instead of working with the app state, every time a
user likes an image, we sent that information to the server? Or when
the user visits the FavoritedImages surface we pull the latest version
of the list from the server? You may think: “Boy, that would be a lot of
requests! A lot of loading states and the app being useless…” And
you would be right! Except if you use React Query. React Query not
only facilitates data fetching, but it also manages cached values, re-
freshing values, background fetching, and much more.

Now that we have a theoretical understanding of what React Query
is, we can get to coding. Let’s play with this non-state-management
library.

Installing and configuring React
Query

Installing this library is no different from any other dependency, we
need to run an installation script. To do this using npm, enter the
following:

$ npm i @tanstack/react-query

Or if you would prefer to use yarn, enter the following:

$ yarn add @tanstack/react-query

Once the library is installed, we will need to add some minimal boiler-
plate. We will need to let our app know that we’re using React Query.

We will need to use a special wrapper. Do you see where I’m going
with this? Yes! We will use a provider as follows:

// App.js

import {

 QueryClient,

 QueryClientProvider,

} from '@tanstack/react-query'

//…

const queryClient = new QueryClient()

export default function App() {

//…

 return (

 <SafeAreaProvider>

 <QueryClientProvider client={queryClient}>

//…

 </QueryClientProvider>

 </SafeAreaProvider>

);

}

//…

We will start by importing the necessary functions from React Query
– QueryClient and QueryClientProvider. Then, we will create a new
QueryClient function and pass it to QueryClientProvider. Our app is
ready to use React Query functionalities instead of simple fetching.

This is a good moment to make sure the app is running correctly on
your simulator or device.

Once you have made sure installing new dependencies did not break
anything unexpected in your project, we will be ready to implement
real data fetching with React Query in the next section.

Using React Query for data
fetching

As you know, we need to fetch a few different pieces of data for our
app. We will fetch a list of avatars, a list of images for the feed sur-
face, a list of images for the FavoritedImages surface, and a list of
conversations. We are free to add the React Query fetching wherever
we like. For simple queries, we can simply use the useQuery hook
provided by the library in our components. We can also write our own
custom hooks, holding more logic or conditions. Let’s start by looking
at the simplest possible example: querying the server to check
whether the user is logged in.

In order to use a React Query hook in the top-level component where
we set up our navigation to display either the login screen or not, we
will need to reorganize our code a little bit. We cannot have
QueryClientProvider in the return statement of the same component
trying to use a useQuery hook. Let’s change the name of the main
component from App to AppWrapped and let’s add this new app com-
ponent in the App.js file:

// App.js

export default function App() {

 return (

 <QueryClientProvider client={queryClient}>

 <AppWrapped />

 </QueryClientProvider>

)

};

Now, let’s change the name of the main component from App to
AppWrapped, and let’s remove QueryClientProvider from the child
component. Let me remind you that if you ever get lost in the code
examples, you can take a look at the GitHub repo:

https://github.com/PacktPublishing/Simplifying-State-Management-
in-React-Native/tree/main/chapter-9.

Our AppWrapped component should be ready to use the useQuery

hook. Make sure you start by importing it as follows:

// App.js

import {

 useQuery,

//…

} from '@tanstack/react-query'

//…

const fetchLoginStatus = async () => {

 const response = await fetch(requestBase +

 "/loginState.json");

return response json();

https://github.com/PacktPublishing/Simplifying-State-Management-in-React-Native/tree/main/chapter-9

 return response.json();

 }

const AppWrapped = () => {

 const { data } = useQuery(['loginState'],

 fetchLoginStatus);

//…

{!data?.loggedIn ? (

 <Stack.Screen name='Login' component={Login}

) : (

 <>

 <Stack.Screen

 name='Home'

//…

After you’ve imported the useQuery hook, you need to create a func-
tion responsible for fetching and awaiting data from the server. This is
the fetchLoginStatus function, which we will pass to the useQuery

hook. This function can be created in any file you would like. Once we
have the fetching set up, we need to use the useQuery hook in the
component. We pull in a destructured object key data, where we
check the loggedInStatus value.

OBJECT DESTRUCTURING

Depending on how often you use modern JavaScript, you may have
noticed the destructuring syntax, where the const keyword is followed
by items in curly or square brackets. This syntax is called destructur-

ing assignment and is used to unpack values from arrays (square
brackets), objects, or properties (curly brackets).

const { data } = objectWithADataItem is the same as const data

= objectWithADataItem.data.

Now that we have seen a simple example, let’s look at something
slightly more complex and create a custom hook and a dependent
query.

Fetching image data

Fetching image data could be just as simple as fetching the login
state data; however, I would like to talk about something more com-
plicated. So, we will artificially complicate our lives by making sure
the images are fetched only after the user is logged in. We will start
by creating a custom hook called useCustomImageQuery inside a new-
ly created queries folder. Our custom hook will return a useQuery

hook:

// src/queries/useCustomImageQuery

import { useQuery } from "@tanstack/react-query";

import { requestBase } from "../utils/constants";

const getImages = async () => {

 const response = await fetch(requestBase +

"/john doe/likedImages.json");

 /john_doe/likedImages.json);

 return response.json();

}

export const useCustomImageQuery = () => {

 const { data } = useQuery(['loginState']);

 return useQuery(

 ["imageList"],

 getImages,

 {

 enabled: data?.loggedIn,

 });

};

We started by importing the necessary useQuery function and our util-
ity requestBase. Next, we created our fetching function called getIm-

ages. This function fetches data from a given API endpoint and re-
turns it. Finally, we created a custom hook called useCustomImage-

Query. On the first line of the hook, we check the loginState query. It
looks different than in App.js where we used it first, doesn’t it? It has
only one parameter: loginState. This parameter is called a query
key in the React Query world and it is literally a key to unlocking the
power of React Query. Using this key, you can access any and all
previously fetched data; you could also invalidate it manually or mu-
tate it. As for us, we only need to check the login status now, using
this particular query key.

The return statement of our custom hook consists of a useQuery

hook with three parameters. In the first place, we have the awesome-
ly important query key, imageList. Next, we see the call to the fetch-
ing function. Last but not least, we have a configuration object holding
a key called enabled. This key determines when the given query
should be called. In our case, the query will be called when the result
of the loginStatus query returns the value of true. We just success-
fully set up React Query to fetch images. All that is left is to display
them. Let’s go to the ListOfFavorited component where we will re-
place the context call with the following custom hook:

// src/components/ListOfFavorited.js

import { useCustomImageQuery } from "../queries/

 useCustomImageQuery";

//…

export const ListOfFavorites = ({ navigation }) =

 const { data: queriedImages } = useCustomImageQ

//…

 return (

//…

 <FlatList

 data={ queriedImages }

//…

If everything went according to plan, you should be able to run the ap-
plication now and see a list of favorited images, which is pulled by
React Query from the backend. If you run into any trouble, remember
that the custom hook we created is just another function, and can be
debugged as such. You can put console.log in the component, in the
hook, or in the getImages function called by the hook.

Hopefully, you were able to set up everything smoothly. In this sec-
tion, we practiced using React Query for fetching and displaying data.

We leveraged ReactJS knowledge – because we created a custom
hook – but React Query hooks can be set up in many ways. Given
that our app has a fake backend that can only serve data, this is as
far as we can go in practical usage of React Query. I invite you
though, my dear reader, to continue reading and find out what other
great functionalities this library holds.

Other React Query
Functionalities

As stated above, we can’t use React Query in our example app to
mutate data on the server because our backend is not robust enough.

In a real-life application, you would most probably use an API that ac-
cepts a POST request just as well as a GET request. In these cases,

you would be able to change data with the help of React Query. In or-

der to do so, we are provided with another specialized hook: useMu-

tation. Here’s what this hook would look like if we could use it for the
favorited images:

 const imageListMutation = useMutation(newImage

 return fetch('/john_doe/likedImages ',

 {method: 'POST', body: newImage})

 });

The preceding function is very simple. It wraps a fetch call in a React
Query utility. This utility offers us a few things, such as the fact that it
has the following states: isIdle, isLoading, isError, and isSuccess.

We can check these states and update the view accordingly. We
would use this mutation in ImageDetailsmodal:

// src/surfaces/ImageDetailsmodal.js

//…

export const ImageDetailsmodal = ({ navigation })

 const imageListMutation = useMutation(newImage

 return fetch('/john_doe/likedImages ',

 {method: 'POST', body: newImage})

 });

//…

 return (

//…

 <Pressable

 onPress={() => {

 imageListMutation.mutate({route.params

 })

 }}

 >

 {mutation.isLoading ? (

 <Text>Loading…</Text>

) : (

 <Ionicons

 //…

 />)

 }

 </Pressable>

//…

Let me reiterate: we are doing a dry run of sending data to the server
because our app’s backend cannot handle a POST request.

In the preceding code, we started by adding a React Query mutation
function to ImageDetailsModal. We passed it into the Pressable com-
ponent. Then, inside the Pressable component, we added a ternary
operator to check whether the mutation is in a loading state. In case it
is, we display a Text component saying Loading…. This is a minimal
example of how you can take advantage of mutation states. In a real-

world app, you would probably check for isSucccess and isError as
well and you would probably handle loading more gracefully.

This is all nice, but the way we implemented the mutation above we
would still need to re-fetch the data traditionally to have the latest ver-
sion in the ListOfFavorites component. Unless, we use the full pow-
er of React Query and update the cached version of data, fetched
previously through the useCustomImageQuery hook! Here’s what we
would need to change in the mutation:

const updateImges = () => {

 return fetch('/john_doe/likedImages ',

 {method: 'POST', body: newImage})

}

const imageListMutation = useMutation(updateImges

 onSuccess: data => {

 queryClient.setQueryData(['imageList'], data)

 }

})

In the preceding code snippet, we started by extracting the fetch

function for better readability. We then add onSuccess logic to the mu-
tation and we tell it to update the item marked by the imageList query
key with the new data. Thanks to this strategy we will not have to
manually update the imageList data every time a mutation occurs.

You can read more about updating after mutation responses in the
TanStack documentation, linked in the Further reading section.

We have covered the two most important aspects of React Query:

fetching and mutating data. However, there’s much more functionality
to be taken advantage of in a real-life project. You can check the
fetching status, just like we did with the example mutation. You can
also do parallel queries for fetching data simultaneously. If you want
to, you can set initial data to fill your views before fetching is com-
plete. It is also possible to pause or disable queries whenever you
need. For large datasets, there is a special type of query, a paginated
query, which will batch data into consumable chunks. In case your
data is infinite, React Query provides utilities for infinite queries. Many
big apps may take advantage of prefetching data on page load.

I encourage you, my dear reader, to read the React Query documen-
tation to be able to grasp all the possible solutions it offers. I was sur-
prised myself while using React Query by how many common prob-
lems are solved out of the box by this library.

React Query utilities for React
Native

As we all know, React Native has its own quirks as compared to pure
ReactJS. React Query doesn’t leave managing those quirks to the
developers, but rather steps up with some interesting solutions. For
example, there’s an onlineManager that can be added to React Na-
tive apps to have our apps reconnect when they are online. If we
would like to refresh or refetch data when the app is focused, we can
use React Query’s focusManager together with React Native’s
AppState. In some cases, we may want to refetch data when a spe-
cific screen in our app is focused, and React Query offers a solution
for that use case as well. If you want to read about these utilities and
how to use them in more detail, head over to the TanStack documen-
tation at https://tanstack.com/query/v4/docs/react-native.

Summary

React Query is battle tested for scaling applications and can be a
great solution for all sorts of projects. In this chapter, we installed it in
the Funbook app and added it to the app. We didn’t configure any-
thing specific, as our project is small and didn’t require any changes
from the default configuration. We then looked at how a simple data
fetching mechanism can be used for checking the login status of the
user. Next, we created and used another, more complex, data-fetch-
ing hook with a dependency. We displayed the fetched data and then
we took a tour of other React Query utilities. React Query is the last

https://tanstack.com/query/v4/docs/react-native

stop in our journey through the world of state management libraries
for React Native apps. I hope you enjoyed the ride!

I invite you, my dear reader, to accompany me to the last chapter,
where we will summarize everything we have learned on the topic of
state management in React Native apps.

Further reading

https://tanstack.com/ – The TanStack home page.

https://tanstack.com/query/v4/docs/guides/updates-from-mutation-
responses – TanStack Query, Updates from Mutation Responses.

https://tanstack.com/
https://tanstack.com/query/v4/docs/guides/updates-from-mutation-responses

Part 4 – Summary

In this part, readers will get an overview of all the different solutions
covered throughout the book.

This part includes the following chapter:

Chapter 10, Appendix

10

Appendix

Well, my dear reader, we have reached the last part of this book: the
summary. I sincerely hope you enjoyed reading what I had to say
about state management libraries in React Native and I want to
thank you for getting this far. Let me take you now on a trip down
memory lane of everything we talked about in this book. And if after-
ward you’re not too tired of my thoughts and ruminations, you will find
a bonus section on recruitment interview questions related to state
management.

In the first chapters of this book, we looked very broadly at the history
of web development. We saw the evolution of the internet landscape,

which led to the creation of ReactJS. Then, we talked about the evo-
lution of React itself, which led to the creation of React Native. Know-
ing how close React Native is to ReactJS can be of great help while
working on React Native apps. The ReactJS community is bigger and
more mature than its mobile-first cousin. Many issues that React Na-
tive developers face can be solved with ReactJS knowledge. There’s
a notion called the React mindset, which is crucial for writing robust,
scalable, and bug-free apps. There are many great articles on this
topic, for example, the Thinking in React article posted inside the offi-

cial React documentation. Once we learned how to adopt this mind-
set, we started building our very own app: Funbook.

Unsurprisingly, the app we created is a social media clone app. So-
cial media apps are an interesting topic for example code, as most of
us are very familiar with how they should work. At the same time, they
are much more complicated than the traditional to-do app, present in
most ReactJS tutorials. Setting up any mobile app is a task on its
own. For all the web developers out there, working on mobile apps is
new territory, with its own tooling and processes. Luckily, we can take
advantage of Expo, and have a functioning and testable app in min-
utes. Once we got comfortable with the basic app setup, we got to
coding the real Funbook app. We added a few surfaces: Feed, Con-
versations, Liked Images, and Camera. Then we got to think in Re-
act! We planned and wrote the underlying components of all the sur-
faces. We used many modern React features, such as hooks and
context. By the end of Chapter 4, we had a beautiful, functioning mo-
bile app, which we could test on real devices or on phone simulators
on our computer screens. This may seem like a lot of work, but let me
assure you: before React Native, and a few of its JavaScript prede-
cessors, creating mobile apps working on Android and iOS was a lot
more work!

Chapter 5, Implementing Redux in Our Funbook App, was the first to
talk about external solutions for state management in React Native

apps. The specific solution we talked about was Redux and Redux
Toolkit. Redux is the oldest and most widely known and used state
management library in the React community, as of the time of writing
this book. When used wisely, it’s a great tool. It requires quite a bit of
boilerplate, and its creator has doubts about how it’s implemented.

However, the team behind Redux Toolkit has made great progress in
keeping this library developer-friendly and up to date. We configured
Redux and Redux Toolkit in the Funbook app, and we saw how to use
them for managing the list of liked images.

In the next chapter, we talked about a library considered to be the
second most popular in the React community: MobX. By this time, we
were armed with a sound knowledge of ReactJS, React Native, and
some thoughts on how global state could be managed by React
alone or with Redux. MobX invited us to rethink a few preconceptions
and look at global state management differently. Instead of passing
props or actions through an intricate web of components, MobX gives
us tools to use global state data as any other prop, while only inform-
ing components about being observed. We learned later that this sort
of global state management is sometimes called proxy-based. The
state management library stands between the user and the code,

managing state in a sort of invisible layer, like a proxy on the web.

MobX is sometimes compared to Valtio, another proxy-based state
management library.

After learning about MobX observables, actions, and their approach
to deriving state values (which should be done as much as possible),

we were ready to use it. We implemented the same functionality as
for Redux – managing the list of liked images. And once we had that
working in MobX, we moved on to the next state management library:

XState.

Xstate is less popular than Redux and MobX, but it offers yet another
way of looking at global state management. And even better, it offers
a dedicated tool for doing so! The Xstate visualizer is an incredible
tool that can be used for working in any global state for any app. Be-
ing able to see how different pieces of state relate to each other can
come in handy when you’re tasked with creating a new app. Xstate
not only provides this great tool, but its creator invites us also to take
a more mathematical approach to state management. Thanks to him,

we can learn what a state machine is and that every part of the global
state in an app should always be in a defined state.

After playing around with Xstate, and of course, implementing the list
of liked images with it, we were ready to move on. The next library we
looked at was Jotai.

Jotai was considered the new kid on the block when I started writing
this book. That was many moons ago! As of the time of writing this
summary, there are a few newer state management libraries. I feared

they were not mature enough to be analyzed along with big players
such as Redux and MobX. Jotai, however, has been holding strong
over the last few months and getting more and more attention from
the community. Jotai was heavily inspired by Recoil, a state manage-
ment library created by the React team at Meta. Recoil remains in an
experimental state, but Jotai is ready for usage in production apps.

The main concept in Jotai is the use of atoms. They are the smallest
building block of global state that we can pepper around the app –
just like we could pepper it with useState hooks. The big difference is
that Jotai’s atoms will be freely available throughout the app, without
unpleasant prop drilling or extensive boilerplate. Using Jotai for the
list of liked images felt, for me, a little bit magical: a minimal configu-
ration and we can access pieces of state wherever we’d like!

Once we used Jotai in the Funbook app, we were ready to abandon it
and move on to the next thing. And the next thing was very different
from its predecessors – React Query, and the notion that we may not
need any state management library at all. React Query is not a state
management library; it’s a library created for better data management
and synchronization between an app and the server. It aims at reduc-
ing network calls while keeping data relevant. It is also an incredible
solution as far as developer experience is concerned. The documen-
tation is exhaustive, and it is accompanied by a specialized blog.

Dozens of common developer problems are solved within the library
itself. We used React Query, or TanStack Query, for fetching the list

of liked images. We were, unfortunately, unable to use other features
it offers, such as data mutations, as the backend of the Funbook app
is quite minimal.

The creators of React Query ask a very good question: do you really
need a state management library for your app? Let’s ask ourselves
this same question. We were able to create the Funbook app using
React alone. We were also able to use React Query mixed with local
state. Does this mean all dedicated state management libraries
should be wiped from the earth along with this book? Certainly not.

Choosing a state management library, when choosing from battle-
tested solutions, boils down to developer experience. The end user of
your app will not know whether you’re using Jotai or Redux, but your
fellow developers may give you an earful about it. Some developers
live and breathe Redux, while others would rather not touch Redux-
based projects. There is a silent global consensus in the community
that state management libraries should not be used for fetching and
persisting data in apps. This task should be left for better-suited li-
braries, such as React Query. So, maybe the next app you create will
use MobX for local state and React Query for fetching data? Or
maybe Xstate for local state, Axios for fetching, and Async Storage
for persisting state? Or maybe something else completely. I believe
every state management library has its strong points, as well as
weaknesses. I also believe discussing which is better is a moot point,

as neither is objectively better. I hope that thanks to this book, you
were able to “dip your toe” in a few different solutions and you are
more aware of what you personally prefer. And once you find what
you like, have fun working with it!

Bonus content

Speaking of work: you may find yourself , my dear reader, going
through job interviews where you are asked about React, React Na-
tive, and state management solutions. There are a few questions I
have gotten myself that I found were either very common or very in-
teresting. I’ve compiled a list of those questions in the hope that they
facilitate your next recruitment. Questions regarding React and Re-
dux pop up in most job interviews for roles related to software devel-
opment with React and React Native. Questions about other state
management libraries may get asked if you specify that you are famil-
iar with the given libraries. To be honest, 80% of job offers list React
and Redux. I’m hoping this will change in the coming months and
years, as other state management libraries offer great solutions. Here
are some common or interesting questions:

1. In React, what is the difference between props and state?

2. Is it necessary to use an external state management library in a
React Native app?

3. In Redux, what is a reducer and an action?

4. In Redux, what is the advantage of using selectors?

5. In Redux, are you allowed to change state values directly?

6. In MobX, what is a model?
7. In MobX, how do you make a component aware of the global state
values?

8. In Xstate, what is a state machine?

9. In Xstate, how do you pass additional data through the state
machine?

10. In Jotai, what is the name of the most basic piece of state?

11. Can you replace all state management with React Query alone?

I’m giving you only the questions because giving you the answers
would be a tad too easy, don’t you think? If you must go back in the
book and research the answers, or maybe simply google them,

there’s a better chance the information will stick with you.

I sincerely hope you enjoyed reading this book just as much as I en-
joyed writing it! Thank you for sticking around, and feel free to contact
me through Twitter (if it still exists by the time this book gets pub-
lished!). Good night and good luck!

Index

As this ebook edition doesn't have fixed pagination, the page num-
bers below are hyperlinked for reference only, based on the printed
edition of this book.

A

actions 82, 83

actor model 121

AngularJS 4

Apache Cordova 8

Async Storage 171

atomic type 142

atoms 171

reading 147-149

writing 147-149

Avoid Hasty Abstractions (AHA) 63

Axios 171

B

bridge 8

brownfield app 10

C

Coinbase 11

components

creating 54-63

styling 54-63

component state 16

context 65

cross-platform apps 8

cross-platform software development 7, 8

D

Dart 8

data

fetching, for Funbook app 63-73

fetching, with Jotai 146, 147

fetching, with React Query 160, 161

debugging 97, 98

destructing assignment 161

developer experience (DX) 102

Don’t Repeat Yourself (DRY) 63

Drawer navigation 26

E

Expo 24, 169

URL 9

Expo Snack 21

reference link 15

Extensible Markup Language (XML) 122

F

FavoritedImages surface

XState, using 127, 128

Figma

reference link 36

finite state machines 120

FlatList 114

Flutter 8

flux type 142

Funbook app

data, fetching 63-73

data flows, planning 40-42

debugging 42- 51

Jotai, configuring 143, 144

MobX, configuring 104

previewing 42-51

required components 36-40

required surfaces 36-40

XState, configuring 124-127

functional components 20

G

greenfield 10

H

hooks

usage 20, 21

hybrid apps 8

I

image

liking 138-140

managing, in image modal 136-138

image data

fetching 132-163

ImageDetailsModal

Like button, implementing 150-154

imageListAtom

read-write functionality, adding 149, 150

integrated development environment (IDE) 24

Ionic 8

J

JavaScript 4, 16, 105, 169

Jotai 143, 170

configuring, in Funbook app 143, 144

used, for fetching data 146, 147

using, for ListOfFavoritedImages 144-146

JSX 5, 16

L

Like button

implementing, in ImageDetailsModal 150-154

ListOfFavoritedImages

Jotai, using 144-146

local environment setup instructions, React Native

reference link 10

Lottie

reference link 11

M

Meta 10

minimum viable product (MVP) 127

MobX 101, 170

concepts 102-104

configuring, in Funbook app 104

philosophy 104

MobX, for FavoritedImages

actions, adding 113, 114

data, deriving from state 114, 115

data, fetching 110-113

store, creating 107-110

using 105-107

MobX-State-Tree (MST) 102, 110

N

native app wrapper 8

P

Poppins 49

prop drilling 5, 78

properties (props) 6, 16

proxy-based 170

clbr://internal.invalid/book/B18396_Index.xhtml

proxy type 142

Q

query key 162

R

React 78, 169

mindset 5-7, 169

React application

environment setup 24, 25

root 26, 27

setting up 24

structure 26

surfaces, setting up 27-30

React Context 65

ReactJS 5, 17, 78, 101, 169

components 6

history 4

ReactJS docs

reference link 9

React library 19

React Native 8, 101, 104, 169

components, importing 56

examples, reviewing of popular apps 10, 11

history 8-10

React Native application 14

React Native Debugger 98

React Native directory

reference link 9

React Native Testing Library 9

React Navigation 9, 26, 47, 60

reference link 86

React Navigation documentation

reference link 30

React Query 158, 171

configuring 159

functionalities 164, 165

installing 159

using, to fetch data 160, 161

utilities, for React Native 166

React Testing Library 9

read-write functionality

adding, to imageListAtom 149, 150

Reanimated 9

Recoil 142, 170

reducers 83

Redux 5, 101, 103, 142, 170

actions, dispatching 82, 83

configuring 80-82

context, replacing 95, 96

data, fetching 92-95

functionalities, adding to app 83

global states, combining 88-91

history 78, 79

installing 80-82

user login state 84-86

using, for liked images 87

Redux Toolkit 80, 83, 88, 170

actions, creating 91

RTK Query 91

S

Selector 137

Shopify

reference link 10

source of truth (SOT) 28

Stack navigation 26

stack navigator 27

state 6, 14-18

statecharts 121

State Chart XML (SCXML) 122

stateful components 19, 20

stateless components 19, 20

state management 169

state management libraries 142

atomic type 142

flux type 142

proxy type 142

store 83

Styled Components 63

T

Tab navigation 26

TanStack 158

reference link 166

TanStack Query 171

thunk 92

TypeScript (TS) 103, 105

U

useEffect hook 21-23

user interface (UI) library 5

useState hook 16

V

Valtio 143, 170

values 114

views 115

W

Wix

reference link 11

World Wide Web Consortium (W3C) 122

Write Everything Twice (WET) 63

X

Xamarin 8

XState 121-124

components, configuring 128-130

configuring, in Funbook app 124-127

context, configuring 128-130

image data, fetching 132-135

image, liking 138-140

image, managing in image modal 136-138

reference link 122

using, for FavoritedImages surface 127, 128

XState visualizer 170

reference link 123

Y

Yarn 24

Z

Zustand 142, 143

Hi!

I am Ola Desmurs-Linczewska, author of Simplifying State Manage-
ment in React Native. I really hope you enjoyed reading this book and
found it useful for learning about different state management solu-
tions in React Native apps.

It would really help me (and other potential readers!) if you could
leave a review on Amazon sharing your thoughts on Simplifying State
Management in React Native.

clbr://internal.invalid/book/B18396_Index.xhtml

Your review will help me to understand what’s worked well in this
book, and what could be improved upon for future editions, so it really
is appreciated.

Best Wishes,Aleks.

https://twitter.com/p_syche_

clbr://internal.invalid/book/B18396_Index.xhtml

https://github.com/p-syche

https://adlinczewska.com/

clbr://internal.invalid/book/B18396_Index.xhtml
clbr://internal.invalid/book/B18396_Index.xhtml

Packt.com

Subscribe to our online digital library for full access to over 7,000

books and videos, as well as industry leading tools to help you plan
your personal development and advance your career. For more infor-
mation, please visit our website.

Why subscribe?

Spend less time learning and more time coding with practical
eBooks and Videos from over 4,000 industry professionals
Improve your learning with Skill Plans built especially for you
Get a free eBook or video every month
Fully searchable for easy access to vital information
Copy and paste, print, and bookmark content

http://packt.com/

Did you know that Packt offers eBook versions of every book pub-
lished, with PDF and ePub files available? You can upgrade to the
eBook version at packt.com and as a print book customer, you are
entitled to a discount on the eBook copy. Get in touch with us at cus-
tomercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical ar-
ticles, sign up for a range of free newsletters, and receive exclusive
discounts and offers on Packt books and eBooks.

Other Books You May Enjoy

If you enjoyed this book, you may be interested in these other books
by Packt:

http://packt.com/
http://customercare@packtpub.com/
http://www.packt.com/

https://www.packtpub.com/product/professional-react-native/9781800563681

Professional React Native

Alexander Benedikt Kuttig

ISBN: 978-1-80056-368-1

Become familiar with how React Native works under the hood
Understand how to make the most of React Native for app
development
Explore different approaches to building apps across various
platforms
Become familiar with process automation and automated testing
Contribute to open source code and structure your own code
library
Understand how to set up the architecture for bigger React Native
projects

https://www.packtpub.com/product/react-and-react-native-fourth-edition/9781803231280

React and React Native - Fourth Edition

Adam Boduch, Roy Derks, Mikhail Sakhniuk

ISBN: 978-1-80323-128-0

Explore React architecture, component properties, state, and
context
Work with React Hooks for handling functions and components
Implement code splitting using lazy components and Suspense
Build robust user interfaces for mobile and desktop apps using
Material-UI
Write shared components for Android and iOS apps using React
Native
Simplify layout design for React Native apps using NativeBase
Write GraphQL schemas to power web and mobile apps
Implement Apollo-driven components

Packt is searching for authors
like you

If you’re interested in becoming an author for Packt, please visit au-
thors.packtpub.com and apply today. We have worked with thou-
sands of developers and tech professionals, just like you, to help

http://authors.packtpub.com/

them share their insight with the global tech community. You can
make a general application, apply for a specific hot topic that we are
recruiting an author for, or submit your own idea.

Download a free PDF copy of this
book

Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books
everywhere?

Is your eBook purchase not compatible with the device of your
choice?

Don’t worry, now with every Packt book you get a DRM-free PDF ver-
sion of that book at no cost.

Read anywhere, any place, on any device. Search, copy, and paste
code from your favorite technical books directly into your application.

The perks don’t stop there, you can get exclusive access to dis-
counts, newsletters, and great free content in your inbox daily

Follow these simple steps to get the benefits:

1. Scan the QR code or visit the link below

https://packt.link/free-ebook/978-1-80323-503-5

2. Submit your proof of purchase
3. That’s it! We’ll send your free PDF and other benefits to your email
directly

https://packt.link/free-ebook/978-1-80323-503-5

	Simplifying State Management in React Native
	Contributors
	About the author
	About the reviewers
	Preface
	Who this book is for
	What this book covers
	To get the most out of this book
	Download the example code files
	Download the color images
	Conventions used
	Get in touch
	Share Your Thoughts
	Download a free PDF copy of this book

	Part 1 – Learn the Basics: Intro to React, States, Props, Hooks, and Context
	Chapter 1: What are React and React Native?
	Understanding the history of ReactJS
	The predecessors
	And then there was React

	Thinking in React (the React mindset)
	Understanding cross-platform software development
	Going over the history of React Native
	Reviewing examples of popular apps using React Native
	Summary

	Chapter 2: Managing State in a Simple React App
	Technical requirements
	What is state and how is it different from props?
	What are stateful and stateless components?
	What are hooks and why use them?
	Which hooks should you know?

	Setting up the example app
	Environment setup
	App structure

	Summary
	Further reading

	Part 2 – Creating a Real, Working App
	Chapter 3: Planning and Setting Up the Funbook App
	Technical requirements
	Planning the needed surfaces and components
	Planning data flows in the app
	Getting comfortable previewing and debugging the app
	Summary
	Further reading

	Chapter 4: Styling and Populating the Funbook App
	Technical requirements
	Creating and styling components
	Pulling in data for the app
	Summary
	Further reading

	Part 3 – Exploring Various Libraries for State Management in React Native
	Chapter 5: Implementing Redux in Our Funbook App
	Technical requirements
	What is Redux? A brief history
	Installing and configuring Redux
	Dispatching actions

	Adding Redux functionalities to the app
	User login state walkthrough
	Using Redux for liked images
	Combining various pieces of global state
	Taking advantage of Redux Toolkit for creating actions
	Fetching data
	Replacing the context

	Debugging
	Summary
	Further reading

	Chapter 6: Using MobX as a State Manager in a React Native App
	Technical requirements
	Going over MobX concepts
	Configuring MobX in the Funbook app
	Using MobX for FavoritedImages
	Creating the store
	Fetching data
	Adding actions
	Deriving data from state

	Summary
	Further reading

	Chapter 7: Untangling Complex Flows in React Native Apps with XState
	Technical requirements
	What are finite state machines?
	What is XState – high-level concepts
	Configuring XState in the Funbook app
	Using XState for the FavoritedImages surface
	Configuring context and components
	Fetching image data
	Managing the image in the image modal
	Liking images

	Summary
	Further reading

	Chapter 8: Integrating Jotai in a React Native App
	Technical requirements
	What is Recoil and an atomic state?
	What is Jotai?
	Configuring Jotai in the Funbook app
	Using Jotai for ListOfFavoritedImages
	Fetching data with Jotai
	Reading and writing atoms
	Adding read-write functionality to the imageListAtom
	Implementing the Like button

	Summary
	Further reading

	Chapter 9: Using React Query for Server-Side-Driven State Management
	Technical requirements
	What is React Query and why is it in this book?
	Installing and configuring React Query
	Using React Query for data fetching
	Fetching image data

	Other React Query Functionalities
	React Query utilities for React Native
	Summary
	Further reading

	Part 4 – Summary
	Chapter 10: Appendix
	Bonus content

	Index
	Why subscribe?

	Other Books You May Enjoy
	Packt is searching for authors like you
	Download a free PDF copy of this book

